Moab HPC Suite

Installation and Configuration Guide 9.0.2 for SUSE 12-Based Systems

August 2016 Revised: August 15, 2016

© 2016 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without prior written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other company and product names may be trademarks of their respective companies.

Adaptive Computing Enterprises, Inc. 1712 S. East Bay Blvd., Suite 300 Provo, UT 84606 +1 (801) 717-3700 www.adaptivecomputing.com

Scan to open online help

Welcome	1
Chapter 1 Planning Your Installation	2
Server Hardware Requirements	
Component Requirements	8
Identify The Manual Or RPM Installation Methods	19
Chapter 2 Manual Installation	21
Manual Installation	
Preparing For Manual Installation	
Installing Torque Resource Manager	
Installing Moab Workload Manager	
Installing Moab Accounting Manager	
Installing Moab Web Services	
Installing RLM Server	
Nitro Integration	
Preparing For Nitro Manual Installation Or Upgrade	
Installing Nitro	
Installing Nitro Web Services	62
Additional Configuration	69
Configuring SSL In Tomcat	69
Moab Workload Manager Configuration Options	
Moab Accounting Manager Configuration Options	
Trusting Servers In Java	
Manual Upgrade	74
Preparing For Upgrade	74
Upgrading Torque Resource Manager	75
Upgrading Moab Workload Manager	80
Upgrading Moab Accounting Manager	82
Upgrading Moab Web Services	86
Upgrading RLM Server	93
Upgrading Your Nitro Integration	94
Preparing For Nitro Manual Installation Or Upgrade	
Upgrading Nitro	
Upgrading Nitro Web Services	
Migrating The MAM Database From MySQL To PostgreSQL	
Chapter 3 RPM Installation Method	
About RPM Installations And Upgrades	102
Preparing The Host – Typical Method	104
Creating The Moab-offline Tarball	
Preparing The Host – Offline Method	
RPM Installations	
Installing Torque Resource Manager	

Installing Moab Workload Manager	114
Installing Moab Accounting Manager	117
Installing Moab Web Services	125
Installing Moab Insight	133
Installing Moab Viewpoint	143
Installing RLM Server	156
Installing Remote Visualization	158
Nitro Integration	
Installing Nitro	
Installing Nitro Web Services	176
Additional Configuration	
Configuring SSL In Tomcat	
Trusting Servers In Java	
RPM Upgrades	
Upgrading Torque Resource Manager (RPM)	
Upgrading Moab Workload Manager (RPM)	
Upgrading Moab Accounting Manager (RPM)	192
Upgrading Moab Web Services (RPM)	194
Upgrading Moab Insight (RPM)	
Upgrading Moab Viewpoint (RPM)	
Upgrading RLM Server (RPM)	
Upgrading Remote Visualization (RPM)	
Upgrading Your Nitro Integration (RPM)	
Upgrading Nitro (RPM)	
Upgrading Nitro Web Services (RPM)	
Migrating The MAM Database From MySQL To PostgreSQL	
Chapter 4 Troubleshooting	
General Issues	220
Moab Web Services Issues	
Moab Viewpoint Issues	

Welcome

Revised: August 15, 2016

Welcome to the Moab HPC Suite 9.0.2 Installation and Configuration Guide for SUSE 12-Based Systems.

This guide includes detailed instructions for installing each component of the suite so that you can quickly get up and running.

This guide is intended for system administrators who are responsible for installing the Moab HPC Suite components.

Depending on your system configuration and license, not all of the HPC Suite components may be available.

The Moab HPC Suite 9.0.2 contains the following components for SUSE 12based systems:

- Torque Resource Manager 6.0.2
- Moab Workload Manager 9.0.2
- Moab Accounting Manager 9.0.2
- Moab Web Services 9.0.2
- Moab Insight 9.0.2
- Moab Viewpoint 9.0.2.1
- Remote Visualization 9.0.2
- Nitro 2.0.1
- Nitro Web Services 2.0.1
- Reprise License Manager 12.1 (build:2)

Before commencing the installation or upgrade, please see <u>Chapter 1 Planning</u> <u>your Installation on page 2</u> to verify your system conforms to minimum prerequisites.

Chapter 1 Planning your Installation

It is highly recommended that you *first* perform installations and upgrades in a *test environment*. Standard installation and upgrade procedures and use cases are tested prior to release. However, due to the wide range of possible configurations and customizations, it is important to exercise caution when deploying new versions of software into your production environments. This is especially true when the workload has vital bearing on your organization's day-to-day operations. We recommend that you test in an environment that mirrors your production environment's configuration, workflow and load as closely as possible. Please contact your Adaptive Computing account manager for suggestions and options for installing/upgrading to newer versions.

There are many different ways to install and configure the Moab HPC Suite. Each environment has its own set of requirements and preferences. This chapter is intended to help an administrator understand how each of the Moab HPC Suite components interact, basic requirements and configuration information to prepare for the installation.

Code samples have been provided for convenience. Some code samples provide sample passwords (i.e. "changeme!"). We strongly recommend that you do not use these passwords during installation, as using the documented passwords could introduce unnecessary security vulnerabilities into your system.

In this chapter:

- Installation Terminology on page 2
- Where to Start on page 3
- Server Hardware Requirements on page 3
- Identify the Manual or RPM Installation Methods on page 19
- <u>Component Requirements on page 8</u>

Installation Terminology

To aid in documentation clarity, Adaptive Computing uses the following terms in this Installation and Configuration Guide:

• Components – The different "products" included in the Moab HPC Suite. For example, Moab Workload Manager, Moab Web Services.

- Servers Also known as components, but specifically relating to the actual services. For example, the Moab Workload Manager component is referred to as the Moab Server for non-client services.
- Host The actual box where an Moab HPC Suite component (server or client) is installed.

Previous documentation typically used Head Node to designate a host or a Server.

Where to Start

You will need to plan your environment and determine how many hosts you will need and for which you components you will install using the Manual Installation or the RPM Installation method. The following are suggested steps to help you in your planning and installing process.

- 1. Determine whether you have a small, medium, High-Throughput or large environment; including an example, and required and recommended hardware requirements. See <u>Server Hardware Requirements on page 3</u>.
- 2. Decide whether you will perform a Manual Installation or an RPM Installation for the various components. See <u>Identify the Manual or RPM Installation</u> <u>Methods on page 19</u>.

The Manual Installation and the RPM Installation chapters each have an "Additional Configuration" section that provides additional information and instructions for optional, but recommended configurations.

- 3. Review the software requirements for your components and set up your hosts accordingly. See <u>Component Requirements on page 8</u>.
- 4. Install the individual components on their respective host(s). See <u>Preparing</u> for Manual Installation on page 22 or <u>About RPM Installations and Upgrades</u> on page 102 as applicable.
- 5. Refer to <u>Chapter 4 Troubleshooting on page 220</u> for assistance in addressing common problems during installation and configuration.

Server Hardware Requirements

The Moab HPC Suite is installed and configured differently for small, medium, or large environment types. This topic provides a general topology of the Moab HPC Suite and the server hardware requirements depending on your environment size.

In this topic:

Т

- Topology on page 4
- Hardware Requirements on page 4

Topology

The following diagram provides a general topology of the Moab HPC Suite for a medium (with high throughput) or a large environment.

Please note the following:

- Smaller environments may elect to consolidate the Torque Server with the Moab Server on the same host, including PBS Server in the list of components installed on the same host.
- Although Moab Workload Manager and Moab Accounting Manager may share the same database instance, it is not a requirement. Two database instances may be used, one for each component.
- Larger systems will require more dedicated resources for each component, in which case it may be necessary to move individual components from the Moab Server Host (i.e. databases, Moab Accounting Manager, and/or Viewpoint) to their own respective servers.

Hardware Requirements

The following table identifies the minimum and recommended hardware requirements for the different environment types. Use this table as a guide when planing out your suite topology.

Software requirements are listed per-component rather than suite-wide as the suite components reside on different hosts. See <u>Component</u> <u>Requirements on page 8</u>

Environment Type	# of Compute Nodes	Jobs/ Week	Minimum Requirements (per Host Distribution)	Recommended Requirements (targeting minimum number of hosts)
Proof of Concept / Small Demo	50	<1k	Moab Server+Torque Server Host • 4 Intel/AMD x86-64 cores • At least 8 GB RAM • At least 100 GB dedicated disk space Insight Server Host • 4 Intel/AMD x86-64 cores • At least 8 GB RAM • At least 256 GB dedicated disk space	Same as minimum

Environment Type	# of Compute Nodes	Jobs/ Week	Minimum Requirements (per Host Distribution)	Recommended Requirements (targeting minimum number of hosts)
Medium	500	<100k	Moab Server+Torque Server Host • 8 Intel/AMD x86-64 cores • At least 16 GB RAM • At least 512 GB dedicated disk space Insight Server Host • 8 Intel/AMD x86-64 cores • At least 8 GB of RAM; a dedicated 1 Gbit channel between Insight and Moab • 128 GB local SSD for swap • At least 512 GB disk	Moab Server+Torque Server Host • 16 Intel/AMD x86-64 cores • At least 32 GB RAM • At least 1 TB dedicated disk space Insight Server Host • 8 Intel/AMD x86- 64 cores • At least 8 GB of RAMA dedicated 1 Gbit channel between Insight and Moab • 128 GB local SSD for swap • At least 512 GB disk

Environment Type	# of Compute Nodes	Jobs/ Week	Minimum Requirements (per Host Distribution)	Recommended Requirements (targeting minimum number of hosts)
Medium with High Throughput or Larger	>500	>100k	Moab Server Host • 8 Intel/AMD x86-64 cores • At least 16 GB RAM • At least 512 GB dedicated disk space Torque Server Host • 8 Intel/AMD x86-64 cores • At least 16 GB RAM • At least 512 GB dedicated disk space Insight Server Host • 8 Intel/AMD x86-64 cores • At least 16 GB of RAM; a dedicated 1 Gbit channel between Insight and Moab • 128 GB local SSD for swap • At least 512 GB disk	The Moab Server should not reside on the same host as the Torque Server. MWS Server must reside on the same host as the Moab Server (Moab Server Host). The MAM Server may reside on its own host, on the Moab Host (preferred), or another server's host (except for the Insight Host). The Viewpoint Server may reside on its own host, on the Moab Server Host (preferred), or another server's host (except for the Insight Server Host). Databases may also reside on the same or a different host from its server component.

Please note the following:

- All requirements above (minimum and recommended) target a minimum number of management servers. Administrators are encouraged to separate the Torque Server and the Moab Server onto different hosts where possible for better results; especially when High Throughput is enabled.
- Although many factors may have an impact on performance (network bandwidth, intended use and configuration, etc.), we consider High

Т

Throughput as something that makes a significant enough difference between minimum and recommended hardware requirements to merit mention in the table above.

- Moab and Torque are both multi-threaded and perform better with more processors.
- Due to the large amount of data Moab must send to Insight, Moab performs better without Insight enabled (for environments that do not require Viewpoint, or use Crystal Reporting).
- Regarding disk space, consideration should be given to requirements related to log files, log depth, number of jobs/nodes/reservations (more objects impact database journal size), average number of events generated (more events take more space), etc.

Component Requirements

This topic provides the various software requirements and dependencies for the suite components (servers) for SUSE 12-based systems.

On SLES systems, you must be registered for a SUSE Linux Enterprise subscription in order to have access to required rpm package dependencies.

In this topic:

- Torque on page 9
- Moab Workload Manager on page 10
- Moab Accounting Manager on page 11
- Moab Web Services on page 12
- Moab Insight on page 13
- Moab Viewpoint on page 15
- RLM Server on page 15
- Remote Visualization on page 16
- Nitro on page 17
- <u>Nitro Web Services on page 18</u>

Torque

If you intend to use Torque 6.0 with Moab Workload Manager, you must run Moab version 9.0 or 8.0 or later. Torque 6.0 will not work with versions earlier than Moab 8.0.

In this section:

- Supported Operating Systems on page 9
- Software Requirements on page 9

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

Software Requirements

- libxml2-devel package (package name may vary)
- openssl-devel package (package name may vary)
- Tcl/Tk version 8 or later if you plan to build the GUI portion of Torque or use a Tcl-based scheduler
- cpusets and cgroups
 - NUMA-awareness uses cgroups, which include cpusets. Red Hat systems must use libcgroup version 0.40.rc1-16.el6 or later; SUSE systems need to use a comparative libcgroup version.
 - cpusets: libhwloc 1.9.1 is the minimum supported, however NVIDIA K80 requires libhwloc 1.11.0. If you need to install libhwloc and the corresponding hwloc-devel package, see <u>Linux Cpuset Support</u> in the *Torque Resource Manager Administrator Guide*.

Using "zypper install hwloc" may install an older, non-supported version.

() If --enable-cgroups is specified, --enable-cpuset is ignored.

If you are building with cgroups enabled, you must have boost version 1.41 or later.

- if you build Torque from source (i.e. clone from github), the following additional software is required:
 - gcc
 - ∘ gcc-c++
 - posix-compatible version of make
 - libtool 1.5.22 or later
 - boost-devel 1.36.0 or later

Red Hat 6-based systems come packaged with 1.41.0 and Red Hat 7-based systems come packaged with 1.53.0. If needed, use the --with-boost-path=DIR option to change the packaged boost version. See <u>Customizing the Install</u> in the Torque Resource Manager Administrator Guide.

Moab Workload Manager

In this section:

- Supported Operating Systems on page 10
- Software Requirements on page 10
- Supported Resource Managers on page 11

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

A SUSE 11-based OS is *only* supported for Moab Server if your configuration does *not* include MWS.

Software Requirements

- libcurl (http://curl.haxx.se/libcurl/)
- Perl 5.8.8 or later
- perI-CPAN (package name may vary)
- libxml2-devel (package name may vary)
- (Optional) Moab Accounting Manager 9.0

 (Optional) MySQL, PostgreSQL, or Oracle with ODBC driver (see <u>Database</u> <u>Configuration</u> in the *Moab Workload Manager Administrator Guide* for details)

Supported Resource Managers

- Torque 5.0 or later
- SLURM

Moab Accounting Manager

MAM is commonly installed on the same host as Moab Workload Manager; however, in some cases you might obtain better performance by installing them on different hosts.

In this topic:

- <u>Supported Operating Systems on page 11</u>
- Software Requirements on page 11
- Depends On (not necessarily on the same host) on page 11

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

Software Requirements

- gcc
- httpd
- mod_ssl
- rrdtool
- Moab Workload Manager 9.0.2
- Perl modules; see <u>Installing Moab Accounting Manager on page 35</u> (Manual Installation) <u>Installing Moab Accounting Manager on page 117</u> (RPM Installation) for more details

Depends On (not necessarily on the same host)

MAM uses an RDBMS as a back end.

• PostgreSQL 7.2 or later

Adaptive Computing recommends that the database used by MAM does *not* reside on the same host as the database used by Insight. However, if you choose to install the MAM PostgreSQL database on the *same* host where the Insight PostgreSQL database, then the MAM PostgreSQL database *must* be same version as the Insight PostgreSQL database. See <u>Moab Insight on page</u> <u>13</u> for supported database versions.

Moab Web Services

MWS Server *must* reside same host as Moab Server (Moab Server Host).

In this topic:

- Supported Operating Systems on page 12
- Software Requirements on page 12
- Depends On (not necessarily on the same host) on page 12

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 12

Software Requirements

- Moab Workload Manager 9.0.2
- Oracle® Java® 8 Runtime Environment

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run Moab Web Services.

• Apache Tomcat[™] 7

Depends On (not necessarily on the same host)

- OpenLDAP or PAM; see <u>Installing Moab Web Services on page 44</u> (Manual Installation) <u>Installing Moab Web Services on page 125</u> (RPM Installation) for more details
- MongoDB® 2.4.x

Moab Insight

A M S

Moab Workload Manager and Insight both tend to heavily consume system resources. The Insight Server and the Moab Server *must* run on different hosts.

Only an RPM-based installation is supported for installing Moab Insight.

In this section:

- Supported Operating Systems on page 13
- Software Requirements on page 13
- Depends On (not on the same host) on page 13
- Performance Benchmarks on page 13

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 12

Software Requirements

Oracle® Java® 8 Runtime Environment

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run Moab Web Services.

Depends On (not on the same host)

- Moab Workload Manager 9.0.2
- MongoDB 2.4.x
- PostgreSQL 9.3 or later

Performance Benchmarks

Adaptive Computing has tested and certified Insight's scale and performance under the following server configuration and load scenarios.

Server Configuration

Host hardware: 8 core AMD Opteron 6320 2.8 GHz servers, with 32GB of ram and a 500GB WD Blue hard drive

Installed services: Moab Workload Manager, Moab Web Services, Moab Insight, Moab Viewpoint (all at version 9.0.0 and running on the same host)

The benchmarks were ran with multiple services on a single host to benchmark Insight under very aggressive working conditions. Moab Insight must be installed on its own host.

Jobs in queue	Avg Job Dur- ation	Avg job Size (ppn)	Number of Nodes	Procs per Node	Avg Jobs per Week
1000	200	32	500	32	25200
1000	60	32	500	32	84000
1000	10	32	500	32	504000
1000	200	16	6384	16	321754
1000	60	16	6384	16	1072512
1000	10	16	6384	16	6435072
10000	200	32	500	32	25200
10000	60	32	500	32	84000
10000	10	32	500	32	504000
10000	200	16	6384	16	321754
10000	60	16	6384	16	1072512
25000	200	32	500	32	25200
25000	60	32	500	32	84000
25000	10	32	500	32	504000

Load Scenarios

Moab Viewpoint

• Only an RPM-based installation is supported for installing Moab Viewpoint.

In this section:

- Supported Operating Systems on page 15
- Depends On (not necessarily on the same host) on page 15
- Supported Browsers on page 15

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 12

The Linux kernel version must be at least 2.6.13 and the giblic version must be at least 2.5.

Depends On (not necessarily on the same host)

- Moab Web Services 9.0.2
- Moab Insight 9.0.2

Supported Browsers

- Mozilla Firefox 25+
- Internet Explorer 10+
- Chrome 35+

RLM Server

Remote Visualization and Nitro require access to a centralized Reprise License Manager (RLM) server.

This server is not load-extensive so it may be installed on any host within your Moab HPC Suite environment. It may also be installed on its own host.

If your company already utilizes an RLM Server, you do not have to install another as long as the Moab HPC Suite components can access it.

The host on which you install RLM Server must always be on and should have High Availability (uptime).

Supported Versions

These RLM versions are supported when using Moab HPC Suite components.

- v11.3 (build:1)
- v12.0 (build:2)
- v12.1 (build:1)
- v12.1 (build:2)

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release. Adaptive Computing *strongly* recommends that your RLM Server is v12.1 (build:2).

Remote Visualization

Remote Visualization comes packaged with FastX 2.2. FastX 2.2 requires reverse DNS to be set up on your network in order for the Gateway Server and Session Servers to resolve each other's IP addresses and hostnames. Without it, Session Servers will not be able to register correctly with the Gateway Server and authentication to the Gateway Server will fail.

Only an RPM-based installation is supported for installing Remote Visualization.

In this section:

- Supported Operating Systems on page 16
- License Requirements on page 17
- Software Requirements on page 17
- Depends On (not on the same host) on page 17

Supported Operating Systems

- CentOS 6.x, 7.x
- RHEL 6.x, 7.x

Т

- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 12

License Requirements

Remote Visualization requires access to a centralized Reprise License Manager (RLM) server. See <u>RLM Server on page 15</u> for more information.

Software Requirements

Gateway Server Host (Remote Visualization Server Host) and Session Servers (Torque MOM Hosts):

- ImageMagick
- ImageMagick-perl
- perl-Crypt-SSLeay
- perl-X11-Protocol

The installation of these packages is included in the Install Remote Visualization procedure.

In addition, *each* Session Server must include the graphical applications (resources) you will have Moab schedule. For example, desktop (gnome-session), xterm, firefox, chrome.

Depends On (not on the same host)

- Torque Resource Manager 6.0.2
- Moab Workload Manager 9.0.2
- Moab Web Services 9.0.2
- Moab Insight 9.0.2
- Moab Viewpoint 9.0.2

Nitro

Т

When integrated with the Moab HPC Suite, Nitro resides on the Torque compute nodes.

In this section:

- Hardware Requirements on page 18
- <u>Supported Operating Systems on page 18</u>

- License Requirements on page 18
- Software Requirements on page 18

Hardware Requirements

- Nitro requires one or more multi-core processors per host. Generally the more processors (sockets) and/or OS cores a host has, the more tasks Nitro can execute simultaneously on each host; although this will be application-dependent.
- It is recommended that hosts should have sufficient memory to execute as many applications as possible so that Nitro can run them at a rate of one application instance per OS core (especially if they are not multithreaded). This eliminates the need for users to have to request memory in their Nitro task definitions.

See the Nitro Administrator Guide for information on specifying memory requirements.

Supported Operating Systems

- CentOS 6.x, 7.x
- Red Hat 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

License Requirements

Nitro requires access to a centralized Reprise License Manager (RLM) server. See <u>RLM Server on page 15</u> for more information.

Software Requirements

Nitro is built with all needed libraries statically linked. This provides for a quick and simple installation and helps avoid troublesome library mismatches. No additional packages need to be installed on the compute nodes.

However, users running the nitrostat utility require Python 2.6.6 or later on the system from which they are running it.

Nitro Web Services

Nitro Web Services is commonly installed on the Moab Server Host.

In this section:

- <u>Supported Operating Systems on page 19</u>
- Depends On (not necessarily on the same host) on page 19

Supported Operating Systems

- CentOS 6.x, 7.x
- Red Hat 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 12

Depends On (not necessarily on the same host)

• Nitro 2.0.0 – Installed on Torque compute nodes

A Nitro 2.0.0.1 release is available to fix an issue with Nitro Web Services for Red Hat 7-based systems.

- Viewpoint 9.0.2
- MongoDB 2.4.x

Identify the Manual or RPM Installation Methods

Adaptive Computing provides two methods for installing the Moab HPC Suite components, Manual Installation and RPM Installation.

Depending on your environment and which components you are installing (and on which host), you may need to use a combination of Manual Installation and RPM Installation.

Most components can be installed using either method. Please choose one method for each component.

Manual Installation

This method provides advantages for administrators who want non-standard configure options.

- This method has more supported operating systems than the RPM Installation method.
- Some components can not be installed using the Manual Installation method.

RPM Installation

This method provides advantages for administrators who want a standard installation, with little customization.

 Whether you are installing RPMs on one host or on several hosts, each host must have the Adaptive Computing Package Repository enabled.
 <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host –</u> <u>Offline Method on page 109</u>.

L

Chapter 2 Manual Installation

This chapter provides installation, configuration, and upgrading information using the Manual Installation method.

Be aware of the following:

- On SLES systems, you must be registered for a SUSE Linux Enterprise subscription in order to have access to required rpm package dependencies.
- Manual Installation is not available for Insight, Viewpoint, or Remote Visualization.
- Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges. You will see that the instructions execute commands as the root user. Also be aware that the same commands will work for a non-root user with the sudo command.

Related Topics

- Chapter 1 Planning your Installation on page 2
- Preparing for Manual Installation on page 22

Manual Installation

This section provides instructions and other information for installing your Moab HPC Suite components for SUSE 12-based systems using the Manual installation method.

In this section:

- Preparing for Manual Installation on page 22
- Installing Torque Resource Manager on page 24
- Installing Moab Workload Manager on page 30
- Installing Moab Accounting Manager on page 35
- Installing Moab Web Services on page 44
- Installing RLM Server on page 55
- Nitro Integration on page 57

Preparing for Manual Installation

The manual installation process of the Moab HPC Suite includes installing the different components in the suite. This guide contains detailed instructions for installing each component.

Many individual components have dependencies on other components (see <u>Chapter 1 Planning your Installation on page 2</u>). However, if you do not require a certain component, you do not have to install it.

The install instructions for each component include information about system requirements and dependencies. Some include prerequisite instructions that you will need to complete before you begin the install. Please read this information carefully, and make sure you have installed all the dependencies and packages that are necessary in order to avoid errors during the Moab HPC Suite install process.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Set Up Proxies

If your site uses a proxy to connect to the internet, configure yum to use a proxy by editing the /etc/yum.conf file as follows:

proxy=http://<proxy_server_id>:<port>

If your site uses an external repository to install python dependencies (for example, the host where you install Viewpoint might need to download extra packages), you will need to set up pip to use a proxy. Do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

Add Software Repositories

Do the following:

- 1. Verify that you have a licensed installation of SLES 12 and that you are registered for a SUSE Linux Enterprise subscription.
- 2. Add the SLES 12 DVD ISO image as a repository.

```
[root]# zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-Server-DVD-x86_64-
GM-DVD1.iso sles12sp1_dvd1
```

3. Download the SUSE Linux Enterprise 12 Software Development Kit e-Media Kit and add the ISO image as a repository.

[root]# zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-SDK-DVD-x86_64-GM-DVD1.iso sles12sp1_sdk1

4. Add the devel:languages:perl and the devel:languages:python repositories.

```
[root]# zypper addrepo --refresh --repo
http://download.opensuse.org/repositories/devel:/languages:/perl/SLE_12_
SP1/devel:languages:perl.repo
[root]# zypper addrepo --refresh --repo
http://download.opensuse.org/repositories/devel:/languages:/python/SLE_12_
SP1/devel:languages:python.repo
```

Install the Moab HPC Suite Software Components for SUSE 12-Based Systems

To install the Moab HPC Suite, install the packages in the following order:

- 1. Torque. See Installing Torque Resource Manager on page 24.
- 2. Moab Workload Manager. See <u>Installing Moab Workload Manager on page</u> <u>30</u>.

- 3. Moab Accounting Manager. See <u>Installing Moab Accounting Manager on</u> page 35.
- 4. Moab Web Services. See Installing Moab Web Services on page 44.
- 5. Moab Insight (RPM install method only). See <u>Installing Moab Insight on page</u> <u>133</u>.
- 6. Moab Viewpoint (RPM install method only). See <u>Installing Moab Viewpoint</u> on page 143.
- 7. RLM Server. See <u>Installing RLM Server on page 55</u>.
- 8. Remote Visualization (RPM install method only). See <u>Installing Remote</u> <u>Visualization on page 158</u>
- 9. Integrate Nitro with your Moab HPC Suite. See <u>Nitro Integration on page</u> <u>57</u>.

Installing Torque Resource Manager

If you intend to use Torque Resource Manager 6.0.2 with Moab Workload Manager, you must run Moab version 8.0 or later. However, some Torque 6.0 functionality requires Moab 9.0 or later.

This topic contains instructions on how to install and start Torque Resource Manager (Torque).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (*not* on Cray compute/service/login nodes).

However, you *must* install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_ mom *must* run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See <u>Installation Notes for Moab and Torque for Cray</u> in the *Moab Workload Manager Administrator Guide* for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Prerequisites on page 25
- Install Dependencies, Packages, or Clients on page 26
- Install Torque Server on page 26
- Install Torque MOMs on page 27

- Install Torque Clients on page 29
- <u>Configure Data Management on page 29</u>

Prerequisites

In this section:

- Open Necessary Ports on page 25
- Verify the hostname on page 25

Open Necessary Ports

Torque requires certain ports to be open for essential communication.

- For client and pbs_mom communication to pbs_server, the default port is 15001.
- For pbs_server communication to pbs_mom, the default port is 15002.
- For pbs_mom communication to pbs_mom, the default port is 15003.

For more information on how to configure the ports that Torque uses for communication, see <u>Configuring Ports</u> in the *Torque Resource Manager Administrator Guide* for more information.

If you have a firewall enabled, do the following:

1. On the Torque Server Host:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following port to the FW_SERVICES_EXT_TCP parameter
FW_SERVICES_EXT_TCP="15001"
[root]# service SuSEfirewall2 restart
```

2. On the Torque MOM Hosts (compute nodes):

[root]# vi /etc/sysconfig/SuSEfirewall2
Add the following ports to the FW_SERVICES_EXT_TCP parameter
FW_SERVICES_EXT_TCP="15002 15003"

[root]# service SuSEfirewall2 restart

Verify the hostname

On the Torque Server Host, confirm your host (with the correct IP address) is in your /etc/hosts file. To verify that the hostname resolves correctly, make sure that hostname and hostname -f report the correct name for the host.

Install Dependencies, Packages, or Clients

Install Packages

On the Torque Server Host, use the following commands to install the libxml2-devel, openssl-devel, and boost-devel packages.

```
[root]# zypper install libopenssl-devel libtool libxml2-devel boost-devel gcc gcc-c++
make gmake
```

Install Torque Server

You must complete the prerequisite tasks and the tasks to install the dependencies, packages, or clients before installing Torque Server. See <u>Prerequisites on page 25</u> and <u>Install Dependencies</u>, Packages, or Clients on page 26.

On the Torque Server Host, do the following:

- 1. Download the latest 6.0.2 build from the <u>Adaptive Computing</u> website. It can also be downloaded via command line (github method or the tarball distribution).
 - Clone the source from github.

If git is not installed:

[root]# zypper install git

```
[root]# git clone https://github.com/adaptivecomputing/torque.git -b 6.0.2 6.0.2
[root]# cd 6.0.2
[root]# ./autogen.sh
```

• Get the tarball source distribution.

```
[root]# zypper install wget
[root]# wget http://www.adaptivecomputing.com/download/torque/torque-6.0.2-
<filename>.tar.gz -0 torque-6.0.2.tar.gz
[root]# tar -xzvf torque-6.0.2.tar.gz
[root]# cd torque-6.0.2/
```

2. Run each of the following commands in order.

```
[root]# ./configure
[root]# make
[root]# make install
```

If tk-devel and tcl-devel packages are installed on your host, you *must* also use the --disable-gui option when executing configure.

See <u>Customizing the Install</u> in the *Torque Resource Manager Administrator Guide* for information on which options are available to customize the ./configure command.

3. Verify that the /var/spool/torque/server_name file exists and contains the correct name of the server.

[root]# echo <torque_server_hostname> > /var/spool/torque/server_name

4. Configure the trgauthd daemon to start automatically at system boot.

```
[root]# cp contrib/systemd/trqauthd.service /usr/lib/systemd/system/
[root]# systemctl enable trqauthd.service
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
[root]# systemctl start trqauthd.service
```

5. By default, Torque installs all binary files to /usr/local/bin and /usr/local/sbin. Make sure the path environment variable includes these directories for both the installation user and the root user.

[root]# export PATH=/usr/local/bin/:/usr/local/sbin/:\$PATH

6. Initialize serverdb by executing the torque.setup script.

[root]# ./torque.setup root

- 7. Add nodes to the /var/spool/torque/server_priv/nodes file. See <u>Specifying Compute Nodes</u> in the *Torque Resource Manager Administrator Guide* for information on syntax and options for specifying compute nodes.
- 8. Configure pbs_server to start automatically at system boot, and then start the daemon.

```
[root]# qterm
[root]# cp contrib/systemd/pbs_server.service /usr/lib/systemd/system/
[root]# systemctl enable pbs_server.service
[root]# systemctl start pbs_server.service
```

Install Torque MOMs

In most installations, you will install a Torque MOM on each of your compute nodes.

See <u>Specifying Compute Nodes</u> or <u>Configuring on Compute Nodes</u> in the Torque Resource Manager Administrator Guide for more information.

Do the following:

- 1. On the Torque Server Host, do the following:
 - a. Create the self-extracting packages that are copied and executed on your nodes.

```
[root]# make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.
The package files are self-extracting packages that can be copied and executed
on your production machines. Use --help for options.
```

b. Copy the self-extracting packages to each Torque MOM Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

The only required package for the compute node is mom-linux. Additional packages are recommended so you can use client commands and submit jobs from compute nodes.

```
[root]# scp torque-package-mom-linux-x86_64.sh <mom-node>:
[root]# scp torque-package-clients-linux-x86_64.sh <mom-node>:
```

c. Copy the pbs_mom startup script to each Torque MOM Host.

[root]# scp contrib/systemd/pbs_mom.service <mom-node>:/usr/lib/systemd/system/

Not all sites see an inherited ulimit but those that do can change the ulimit in the pbs_mom init script. The pbs_mom init script is responsible for starting and stopping the pbs_mom process.

2. On each Torque MOM Host, do the following:

a. Install the self-extracting packages and run ldconfig.

[root]# ssh root@<mom-node>
[root]# ./torque-package-mom-linux-x86_64.sh --install
[root]# ./torque-package-clients-linux-x86_64.sh --install
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig

b. Configure pbs_mom to start at system boot, and then start the daemon.

[root]# systemctl enable pbs_mom.service
[root]# systemctl start pbs_mom.service

Install Torque Clients

If you want to have the Torque client commands installed on hosts other than the Torque Server Host (such as the compute nodes or separate login nodes), do the following:

- 1. On the Torque Server Host, do the following:
 - a. Copy the self-extracting client package to each Torque Client Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

```
[root]# scp torque-package-clients-linux-x86 64.sh <torque-client-host>:
```

b. Copy the trgauthd startup script to each Torque Client Host.

```
[root]# scp contrib/systemd/trqauthd.service <torque-client-
host>:/usr/lib/systemd/system/
```

2. On each Torque Client Host, do the following:

Many of these steps can be done from the Torque server from a remote shell, such as SSH. Set up shared SSH keys if you do not want to supply a password for each Torque Client Host.

a. Install the self-extracting client package.

```
[root]# ./torque-package-clients-linux-x86_64.sh --install
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
```

b. Enable and start the trqauthd service.

[root]# systemctl enable trqauthd.service
[root]# systemctl start trqauthd.service

Configure Data Management

When a batch job completes, stdout and stderr files are generated and placed in the spool directory on the master Torque MOM Host for the job instead of the submit host. You can configure the Torque batch environment to copy the stdout and stderr files back to the submit host. See <u>Configuring Data</u> <u>Management</u> in the *Torque Resource Manager Administrator Guide* for more information.

Related Topics

Preparing for Manual Installation on page 22

Installing Moab Workload Manager

This topic contains instructions on how to install and start Moab Workload Manager (Moab).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (*not* on Cray compute/service/login nodes).

However, you *must* install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_mom *must* run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See <u>Installation Notes for Moab and Torque for Cray</u> in the *Moab Workload Manager Administrator Guide* for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Open Necessary Ports on page 30
- Install Dependencies, Packages, or Clients on page 31
- (Optional) Build a Custom RPM on page 31
- Install Moab Server on page 32
- <u>Configure Torque to Trust Moab on page 34</u>
- Verify the Installation on page 34
- (Optional) Install Moab Client on page 34

Open Necessary Ports

Moab uses a configurable server port (default 42559) for client-server communication. If you intend to run client commands on a different host from the Moab Server Host, or if you will be using Moab in a grid, and if you have a firewall enabled, you will need to configure the firewall to allow the server port.

On the Moab Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following ports to the FW_SERVICES_EXT_TCP parameter as required
# Needed on the Moab server for off-host client communication
FW_SERVICES_EXT_TCP="42559"
[root]# service SuSEfirewall2 restart
```

Install Dependencies, Packages, or Clients

In this section:

- Dependencies and Packages on page 31
- Torque Client on page 31

Dependencies and Packages

On the Moab Server Host, use the following commands to install the required Moab dependencies and packages.

```
[root]# zypper update
[root]# zypper install make curl libxml2-devel gcc
```

Torque Client

If you are using Torque and are installing the Torque Server on a different host (Torque Server Host) from the Moab Server (Moab Server Host), you will need to install the Torque client on the Moab Server Host in order for Moab to interact with Torque.

Follow the instructions in <u>Install Torque Clients on page 29</u> using the Moab Server Host as the Torque Client Host; with the exception that you must copy and install the torque-package-devel-linux-*arch*.sh self-extracting package in addition to the torque-package-client-linux-*arch*.sh package.

(Optional) Build a Custom RPM

If you want to build a custom RPM, do the following:

1. Install rpm-build.

[root]# zypper install rpm-build

2. Download the latest Moab build (moab-<version>-<OS>.tar.gz) from the Adaptive Computing Moab HPC Suite Download Center (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).

The variable marked <version> indicates the build's version, revision, and changeset information. The variable marked <OS> indicates the OS for which the build was designed.

- 3. Untar the downloaded package.
- 4. Change directories into the untarred directory.
- 5. Edit the ./moab.spec file for RPM customization.

- 6. Run ./rpm-build.
- 7. Locate the custom RPM in rpm/RPMS/x86_64.

Install Moab Server

You must complete the tasks to install the dependencies, packages, or clients before installing Moab Server. See <u>Install Dependencies</u>, <u>Packages</u>, or <u>Clients on page 31</u>.

If your configuration uses firewalls, you *must also* open the necessary ports before installing the Moab Server. See <u>Open Necessary Ports on page 30</u>.

On the Moab Server Host, do the following:

1. Download the latest Moab build (moab-<version>-<OS>.tar.gz) from the <u>Adaptive Computing Moab HPC Suite Download Center</u> (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).

The variable marked <version> indicates the build's version, revision, and changeset information. The variable marked <OS> indicates the OS for which the build was designed.

2. As the root user, run each of the following commands in order.

[root]# tar xzvf moab-*<version>-<OS>*.tar.gz [root]# cd moab-*<version>-<OS>*

If Elastic Computing is part of your Moab Workload Manager configuration, install deps/acpython-base*.

[root]# zypper install deps/acpython-base*

3. Configure Moab. If you are installing Moab Accounting Manager, configure Moab with the --with-am option.

[root]# ./configure <options>

See <u>Moab Workload Manager Configuration Options on page 69</u> for a list of commonly used options or use ./configure --help for a complete list of available options.

4. ONLY if you are using green computing, or if you are using a resource manager other than Torque.

Run the make perideps command to install the necessary perimodules using CPAN. When first running CPAN, you will be asked for configuration

Т
information. It is recommended that you choose an automatic configuration. You will be prompted to provide input during module installation; running the make perideps command with a script is not recommended.

[root]# make perldeps

5. Install Moab.

[root]# make install

6. Modify the Moab configuration file.

[root]# vi /opt/moab/etc/moab.cfg

Do the following:

a. Verify that **SUBMITCMD** is set up for your Torque resource manager and that it points to a valid qsub executable. For example:

RMCFG[torque] SUBMITCMD=/usr/local/bin/qsub

If you use a SLURM resource manager, see <u>Moab-SLURM Integration</u> <u>Guide</u> in the *Moab Workload Manager Administrator Guide* for configuration information. If you use a NATIVE resource manager, see <u>Managing Resources Directly with the Native Interface</u> in the *Moab Workload Manager Administrator Guide* for configuration information.

b. If you are using Torque as a resource manager and you installed the Torque Server on a different host (Torque Server Host), configure the RMCFG HOST parameter to tell Moab the host on which Torque Server is running.

RMCFG[torque] HOST=<torque server hostname>

7. Source the appropriate profile script to add the Moab executable directories to your current shell *\$PATH* environment.

[root]# . /etc/profile.d/moab.sh

 Copy your license file into the same directory as moab.cfg (/opt/moab/etc/ by default).

[root]# cp moab.lic \$MOABHOMEDIR/etc/moab.lic

To verify the current status of your license, run the following command:

[root] # moab --about 2>&1 | grep License

You should get something similar to the following in the response:

Moab Workload Manager Version '9.0.2' License Information: Current License: Max Procs = 10000 Current License: Valid Until - Thu Jul 13 19:42:10 2017

9. Start Moab.

```
[root]# systemctl start moab.service
```

Configure Torque to Trust Moab

If you are using Torque as a resource manager and you installed the Torque Server on a different host (Torque Server Host); recommended, do the following:

• On the Torque Server Host, add the name of the Moab Server Host (where Moab Server is installed) as a manager and as a submit host.

```
[root]# qmgr
Qmgr: set server managers += root@<moab_server_hostname>
Qmgr: set server submit_hosts += <moab_server_hostname>
Qmgr: exit
```

Verify the Installation

If you have a resource manager configured, verify that the scheduler is able to schedule a job. Do the following:

 Submit a sleep job as a non-root user (adaptive is used in this example) and verify the job is running.

```
[root]# su - adaptive
[adaptive]$ echo sleep 150 | msub
[adaptive]$ showq
[adaptive]$ exit
```

(Optional) Install Moab Client

After you have installed Moab Server, you can create a client tarball to install just the Moab client commands on a login/client host. This tarball uses a single tar command to install the binary Moab client command files and their man pages. The tarball also contains a moab.cfg file configured with the Moab Server host name and port number so you do not have to manually configure this information on the login/client node.

If your site needs secure communication and authentication between Moab Client Host and the Moab Server Host, create a site-specific key and place it in the same directory as your moab.cfg file. By default, this would be \$MOABHOMEDIR/etc/.moab.key. When the Moab server and client commands detect the presence of those two files they will use the key in those files to authenticate and communicate, instead of the default key. See <u>Mauth Authentication</u> in the Moab Workload Manager Administrator Guide for more information.

Do the following:

1. On the Moab Server Host, create the client tarball.

[root]# make client-pkg

- 2. Copy the tarball to the root directory of the Moab Client Host.
- 3. On the Moab Client Host, run the tarball to install the Moab client commands.

[[root]# tar xvf client.tgz

Related Topics

Preparing for Manual Installation on page 22

Installing Moab Accounting Manager

This topic contains instructions on how to install and start Moab Accounting Manager (MAM).

Perform the following in order:

- Plan Your Installation
- Open Necessary Ports
- Install and Initialize the PostgreSQL Server
- Install Dependencies, Packages, or Clients
- (Optional) Build a Custom RPM
- Install MAM Server
- Configure the MAM GUI
- Access the MAM GUI
- <u>Configure Moab Workload Manager to Use Moab Accounting Manager</u>
- Initialize Moab Accounting Manager

Plan Your Installation

The first step is determining the number of different hosts (physical machines) required for your MAM installation.

Your MAM installation includes:

- MAM Server
- MAM Database
- MAM GUI (optional)
- MAM Clients (possibly several hosts)

Each of these components can be installed on their own hosts (meaning the actual physical machine) or can be combined on same hosts. For example, the MAM Database can be installed on the same *host* as the MAM Server. Or the MAM Server may be installed on the same host you installed the Moab Server.

If your configuration will have the MAM PostgresSQL database on the *same* host as the Insight PostgreSQL database, the MAM PostgreSQL database *must* be same version as the Insight PostgreSQL database. See <u>Installing Moab Accounting Manager on page 35</u> for supported database versions.

Once you have determined which components are installed on which hosts, complete the rest of the instructions for the MAM installation.

The instructions that follow in this topic will use the term Host after each component to reflect installing on a host (again, meaning the physical machine). For example, MAM Server Host and MAM Database Host. Depending on your configuration, Host may refer to as installed on its own machine or installed on the same machine as another component.

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

Do the following as needed:

1. If you will be installing the MAM Server on a different host from where you installed the Moab Server *or* you will be installing the MAM Clients on other hosts, then on the MAM Server Host, open the MAM Server port (7112) in the firewall.

[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="7112"

[root]# service SuSEfirewall2 restart

2. If using the MAM GUI, then on the MAM GUI Host, open the https port (443) in the firewall for secure browser communication.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="443"
[root]# service SuSEfirewall2 restart
```

3. If you will be installing the MAM PostgreSQL Database on a different host from the MAM Server, then on the host where the MAM PostgreSQL Database Host will reside, open the postgres port (5432) in the firewall.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5432"
[root]# service SuSEfirewall2 restart
```

Install and Initialize the PostgreSQL Server

Moab Accounting Manager uses a database for transactions and data persistence.

The MAM PostgreSQL database may be installed on:

- the same host as the MAM Server.
- a separate PostgreSQL database host.
- a separate shared PostgreSQL database host. If this shared database host will include the Insight PostgreSQL database, then the MAM PostgreSQL database must be same version as the Insight PostgreSQL database. See <u>Installing Moab Accounting Manager on page 35</u> for supported database versions.

On the host where the MAM PostgreSQL database will reside, do the following:

These instructions assume you will be installing the MAM PostgreSQL database on a *different host* from where the Insight PostgreSQL database will reside.

If you wish to install *both* the MAM and the Insight PostgreSQL databases on the same host, different instructions are required. For example, you will need to enable the Insight-specific postgresql RPM repo by following the RPM instructions to prepare the host (see <u>Preparing the Host – Typical</u> <u>Method on page 104</u> or <u>Preparing the Host – Offline Method on page 109</u>) and you will need to modify the MAM PostgreSQL install instructions to reflect the different version of PostgreSQL required by Insight (see <u>Install</u> <u>PostgreSQL on page 137</u> for an example of how to install PostgreSQL for Insight).

1. Install and initialize the PostgreSQL Server.

```
[root]# zypper install postgresql-server
[root]# systemctl start postgresql.service
```

2. Configure trusted connections.

Edit or add a "host" line in the pg_hba.conf file for the interface from which the MAM Server will be connecting to the database and ensure that it specifies a secure password-based authentication method (for example, md5).

```
[root]# vi /var/lib/pgsql/data/pg_hba.conf
# Replace 127.0.0.1 with the IP address of the MAM Server Host if the
# MAM PostgreSQL server is on a separate host from the MAM server.
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
```

 If the MAM Database Host is installed on a *different* host from where you will install the MAM Server, configure PostgreSQL to accept connections from the MAM Server Host.

[root]# vi /var/lib/pgsql/data/postgresql.conf
Replace <mam-server-host> with the interface name from which the MAM server
will be connecting to the database.
listen_addresses = '<mam-server-host>'

4. Start or restart the database.

```
[root]# systemctl enable postgresql.service
[root]# systemctl restart postgresql.service
```

Install Dependencies, Packages, or Clients

Use the following instructions to install the required Moab Accounting Manager dependencies, packages, or clients.

Depending on your configuration, the MAM Server Host and the MAM GUI Host may be installed on the same host. The MAM Client Host is automatically installed on the same host as the MAM Server Host; however, you can also install the MAM Client Host on any other hosts on which you want to have the MAM client commands available to users or administrators.

1. On the MAM Server Host, the MAM GUI Host, and the MAM Client Hosts, do the following:

```
[root]# zypper install gcc lsb-release perl-Config-Tiny perl-Crypt-CBC perl-Crypt-
DES perl-Crypt-DES_EDE3 perl-Digest-HMAC perl-Error perl-Log-Log4perl perl-XML-
LibXML perl-Params-Validate perl-YAML perl-Log-Dispatch perl-Log-Dispatch-
FileRotate
```

2. On the MAM Server Host, do the following:

[root]# zypper install postgresql postgresql-devel libpq5 perl-DBD-Pg perl-Date-Manip perl-DBI

3. On the MAM GUI Host, do the following:

[root]# zypper install apache2 perl-CGI perl-CGI-Session

4. On each of the MAM Client Hosts (including the MAM Server Host), do the following:

[root]# zypper install libopenssl-devel perl-TermReadLine-Gnu perl-Term-ReadKey

If any of the Perl module packages fail to install or are unavailable for your system, you can install it from CPAN by running cpan MODULENAME where MODULENAME is the respective perl module name.

(Optional) Build a Custom RPM

If you want to build a custom RPM, do the following:

1. Install rpm-build.

[root]# zypper install rpm-build

2. Download the latest MAM build (mam-<version>.tar.gz) from the <u>Adaptive Computing Moab HPC Suite Download Center</u> (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/). **1** The variable marked *<version>* indicates the build's version.

- 3. Untar the downloaded package.
- 4. Change directories into the untarred directory.
- 5. Edit the ./mam.spec file for RPM customization.
- 6. Run./rpm-build.
- 7. Locate the custom RPM in rpm/RPMS/x86 64.

Install MAM Server

On the MAM Server Host, do the following:

1. Create a user called mam and switch to that user.

```
[root]# useradd -m mam
[root]# su - mam
[mam]$ mkdir src
[mam]$ cd src
```

 Download the latest MAM build (mam-<version>.tar.gz) from the <u>Adaptive Computing Moab HPC Suite Download Center</u> (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).

The variable marked <*version* > indicates the build's version.

3. Untar the MAM tarball.

[mam]\$ tar -zxvf mam-9.0.2.tar.gz

4. Navigate to mam-9.0.2.

```
[mam]$ cd mam-9.0.2
```

5. Configure the software. For a list of all the configuration options, see <u>Moab</u> Accounting Manager Configuration Options on page 70.

[mam]\$./configure

6. Compile the software.

```
[mam]$ make
```

If you only need to install the clients on a particular system, replace make with make clients-only. If you only need to install the web GUI on a particular system, replace make with make gui-only.

7. Install the software.

```
[mam]$ exit
[root]# cd ~mam/src/mam-9.0.2
[root]# make install
```

If you only need to install the clients on a particular system, replace make install with make install-clients-only. If you only need to install the web GUI on a particular system, replace make install with make installgui-only.

8. As the database user, create a database called mam and grant database privileges to the mam user.

PostgreSQL should have previously been installed using the instructions in <u>Preparing for Manual Installation on page 22</u>.

```
[root]# su - postgres
[postgres]$ psql
create database mam;
create user mam with password 'changeme!';
\q
```

[postgres]\$ exit

The password you define must be synchronized with the database.password value in /opt/mam/etc/mam-server.conf

```
[root] # vi /opt/mam/etc/mam-server.conf
```

```
database.password = changeme!
```

9. Run the hpc.sql script to populate the Moab Accounting Manager database with objects, actions, and attributes necessary to function as an Accounting Manager.

```
[root]# su - mam
[mam]$ cd src/mam-9.0.2
[mam]$ psql mam < hpc.sql
[mam]$ exit</pre>
```

 Configure MAM to automatically start up at system boot; start the mam service.

```
[root]# systemctl enable mam.service
[root]# systemctl start mam.service
```

Configure the MAM GUI

If you plan to use the web GUI, then on the MAM GUI Host, do the following:

 As root, add or edit the SSL virtual host definition as appropriate for your environment. To do so, configure the cgi-bin directory in ssl.conf. Below the cgi-bin directory element, create an alias for /cgi-bin pointing to your cgi-bin directory. If you chose to install to a cgi-bin sub-directory, you might want to create an alias for that as well. Also, add index.cgi to the DirectoryIndex so you can use the shorter sub-directory name.

```
[root]# a2enflag SSL
[root]# cp /etc/apache2/vhosts.d/vhost-ssl.template /etc/apache2/vhosts.d/mam-
ssl.conf
[root]# vi /etc/apache2/vhosts.d/mam-ssl.conf
<Directory "/srv/www/cgi-bin">
    Options ExecCGI
    AddHandler cgi-script .cgi
    AllowOverride All
    Require all granted
</Directory>
# Aliases for /cgi-bin
Alias /cgi-bin/ /srv/www/cgi-bin/
Alias /mam /srv/www/cgi-bin/mam/
# Make shorter sub-dir name available
DirectoryIndex index.cgi
```

 For the highest security, it is recommended that you install a public key certificate that has been signed by a certificate authority. The exact steps to do this are specific to your distribution and the chosen certificate authority. An overview of this process for CentOS 7 is documented at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_ Linux/7/html/System_Administrators_Guide/ch-Web_Servers.html#s2apache-mod_ssl.

Alternatively, if your network domain can be secured from man-in-themiddle attacks, you could use a self-signed certificate. Often this does not require any additional steps since in many distributions, such as Red Hat, the Apache SSL configuration provides self-signed certificates by default.

If your configuration uses self-signed certificates, do the following:

[root]# cd /etc/apache2
[root]# openssl genrsa -out ssl.key/server.key 1024
[root]# openssl req -new -key ssl.key/server.key -x509 -out ssl.crt/server.crt

3. Start or restart the HTTP server daemon.

```
[root]# systemctl enable apache2.service
[root]# systemctl restart apache2.service
```

Access the MAM GUI

If you plan to use the web GUI, then on the MAM Server Host, do the following:

1. Create a password for the mam user to be used with the MAM Web GUI.

```
[root]# su - mam
[mam]$ mam-set-password
[mam]$ exit
```

- 2. Verify the connection.
 - a. Open a web browser and navigate to https://<mam-serverhost>/cgi-bin/mam.
 - b. Log in as the mam user with the password you set in step 1.

Configure Moab Workload Manager to Use Moab Accounting Manager

Do the following:

1. Configure Moab to talk to MAM

Do one of the following:

- **MAM Option.** If you are will be using the MAM (direct network) accounting manager interface with Moab Workload Manager (this is the default), do the following:
 - a. On the Moab Server Host, edit the Moab configuration file, uncomment the AMCFG lines and set the TYPE to MAM and set the HOST. If the Moab Server and the MAM Server are on the same host, set HOST to 'localhost'; otherwise, set HOST to the host name for the MAM Server (MAM Server Host).

[root]# vi /opt/moab/etc/moab.cfg
AMCFG[mam] TYPE=MAM HOST=<mam_server_host>

Customize additionally as needed. See <u>Accounting, Charging, and</u> <u>Allocation Management</u> in the *Moab Workload Manager Administrator Guide*

- b. Configure Moab to authenticate with MAM using the MAM secret key.
 - i. On the MAM Server Host, copy the auto-generated secret key from the token.value value in the /opt/mam/etc/mam-site.conf file.
 - ii. On the Moab Server Host, add the secret key to the moabprivate.cfg file as the value of the CLIENTCFG KEY attribute.

[root]# vi /opt/moab/etc/moab-private.cfg
CLIENTCFG[AM:mam] KEY=<MAMSecretKey>

• Native Option. If you are will be using the Native (custom script) accounting manager interface with Moab Workload Manager, do the following:

a. On the Moab Server Host, edit the Moab configuration file, uncomment the AMCFG lines and set the TYPE to NATIVE.

b. If you are installing Moab Accounting Manager on a different host (MAM Server Host) from the Moab Server (Moab Server Host), you will need to install the Moab Accounting Manager client on the Moab Server Host in order for the custom scripts to use the MAM API.

On the *Moab* Server Host, follow the instructions in <u>Install</u> <u>Dependencies</u>, <u>Packages</u>, <u>or Clients on page 39</u> and <u>Install MAM</u> <u>Server on page 40</u>; with the following exceptions:

- Install only the dependent packages applicable to MAM Client Hosts
- Use the configure option --without-init
- Instead of running make, use make clients-only
- Instead of running make install, use make install-clients-only
- Omit the step to create the database and all of the steps thereafter
- 2. On the Moab Server Host, restart Moab.

systemctl restart moab.service

Initialize Moab Accounting Manager

You will need to initialize Moab Accounting Manager to function in the way that is most applicable to the needs of your site. See <u>Initial Setup</u> in the *Moab* Accounting Manager Administrator Guide to set up Moab Accounting Manager for your desired accounting mode.

Related Topics

Preparing for Manual Installation on page 22

Installing Moab Web Services

You must deploy Moab Web Services on the *same* host as Moab Server (Moab Server Host). For documentation clarity, these instructions refer to the shared host for Moab Server and MWS as the MWS Server Host.

This topic contains instructions on how to install Moab Web Services (MWS).

In this topic:

- Open Necessary Ports on page 45
- Install Dependencies, Packages, or Clients on page 45

• Install MWS Server on page 47

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Tomcat Port (8080) on page 45
- Open the MWS MongoDB Database Port (27017) on page 45

Open the Tomcat Port (8080)

On the MWS Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

FW_SERVICES_EXT_TCP="8080"

[root]# service SuSEfirewall2 restart

Open the MWS MongoDB Database Port (27017)

Depending on your system configuration, your MongoDB databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the MWS MongoDB database on the same host where you have installed other MongoDB databases instead of on the MWS Server Host.

Do the following, as needed:

- If you have chosen to install the MWS MongoDB database on the *same* host you installed other MongoDB databases (for example, the same host you installed the Moab MongoDB database), confirm the firewall port (27017) is already opened on that host.
- If you have chosen to install the MWS MongoDB database on a *different* host from other MongoDB databases, you will need to open the MWS MongoDB database port in firewall for that host. To open the port in the firewall, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="27017"
[root]# service SuSEfirewall2 restart
```

Install Dependencies, Packages, or Clients

In this section:

- Install Java on page 46
- Install Tomcat on page 46
- Install MongoDB on page 46

Install Java

Install the Linux x64 RPM version of Oracle® Java® 8 Runtime Environment.

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run MWS.

On the MWS Server Host, do the following:

- 1. Install the Linux x64 RPM version of Oracle Java SE 8 JRE.
 - a. Go to the to the <u>Oracle Java download page</u> (http://java.com/en/download/linux_manual.jsp).
 - Copy the URL for the Linux x64 RPM version, and run the following command:

```
[ [root]# ln -s /usr/sbin/update-alternatives /usr/sbin/alternatives
[ [root]# rpm -Uh <URL>
```

Install Tomcat

Install Tomcat 7.

```
Tomcat 7 is required to run MWS 9.0 and later. MWS 9.0 will not run on Tomcat 6.
```

On the MWS Server Host, do the following:

[[root]# zypper install tomcat

Install MongoDB

To install and enable MongoDB, do the following on the MWS Server Host:

1. Install MongoDB.

```
[root]# zypper ar --refresh -r
http://download.opensuse.org/repositories/server:/database/SLE_
12/server:database.repo
[root]# zypper install mongodb
```

2. Start MongoDB.

There may be a short delay (approximately three minutes) for Mongo to start the first time.

```
[root]# systemctl enable mongodb.service
[root]# systemctl start mongodb.service
```

- 3. Prepare the MongoDB database by doing the following:
 - a. Add the required MongoDB users.

The passwords used below (secret1, secret2, and secret3) are examples. Choose your own passwords for these users.

```
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");
> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);
> use mws;
> db.addUser("mws_user", "secret3");
> exit
```

Because the admin_user has read and write rights to the admin database, it also has read and write rights to all other databases. See <u>Control Access to MongoDB Instances with Authentication</u> (at http://docs.mongodb.org/manual/tutorial/control-access-tomongodb-with-authentication) for more information.

b. Enable authentication in MongoDB.

MongoDB authentication is enabled (auth = true) by default. No further action is needed.

Install MWS Server

You must complete the tasks to install the dependencies, packages, or clients before installing MWS Server. See <u>Install Dependencies, Packages,</u> or Clients on page 45.

If your configuration uses firewalls, you *must also* open the necessary ports before installing the MWS Server. See <u>Open Necessary Ports on page 45</u>.

On the MWS Server Host, do the following:

- 1. Verify Moab Server is installed and configured as desired (for details, see <u>Installing Moab Workload Manager on page 30</u>).
- 2. Start Moab.

```
[root]# systemctl start moab.service
```

3. Create the MWS home directory and subdirectories.

See <u>Configuration</u> in the *Moab Web Services Administrator Guide* for more information.

The default location for the MWS home directory is /opt/mws. These instructions assume the default location.

Do the following:

```
[root]# mkdir -p \
    /opt/mws/etc/mws.d \
    /opt/mws/hooks \
    /opt/mws/log \
    /opt/mws/plugins \
    /opt/mws/spool/hooks \
    /opt/mws/utils
[root]# chown -R tomcat:tomcat /opt/mws
[root]# chmod u+w \
    /opt/mws/log \
    /opt/mws/plugins \
    /opt/mws/spool \
    /opt/mws/spool/hooks \
    /opt/mws/utils
```

4. Download the latest MWS build (mws-<version>.tar.gz) from the Adaptive Computing website.

The variable marked <*version*> is the desired version of the suite; for example, 9.0.2.

5. Extract the contents of the MWS download tarball into a temporary directory. For example:

```
[root]# mkdir /tmp/mws-install
[root]# cd /tmp/mws-install
[root]# tar xvzf $HOME/Downloads/mws-9.0.2.tar.gz
```

6. Copy the extracted utility files to the utility directory created in the previous step and give the tomcat user ownership of the directory.

```
[root]# cd /tmp/mws-install/mws-9.0.2/utils
[root]# cp * /opt/mws/utils
[root]# chown tomcat:tomcat /opt/mws/utils/*
```

7. Connect Moab to MongoDB.

- The <u>USEDATABASE</u> parameter is unrelated to the MongoDB configuration.
- a. Set the MONGOSERVER parameter in /opt/moab/etc/moab.cfg to the MongoDB server hostname. Use localhost as the hostname if Moab and MongoDB are hosted on the same server.

MONGOSERVER <host>[:<port>]

If your **MONGOSERVER** host is set to anything other than localhost, edit the /etc/mongod.conf file on the MongoDB server host and either comment out any bind_ip parameter or set it to the correct IP address.

```
# Listen to local interface only. Comment out to listen on all interfaces.
#bind_ip=127.0.0.1
```

b. In the /opt/moab/etc/moab-private.cfg file, set the MONGOUSER and MONGOPASSWORD parameters to the MongoDB moab_user credentials you set. See Install MongoDB on page 46.

MONGOUSER moab_user MONGOPASSWORD secret2

c. Verify that Moab is able to connect to MongoDB.

```
[root]# systemctl restart moab.service
[root]# mdiag -S | grep Mongo
Mongo connection (localhost) is up (credentials are set)
```

- 8. Secure communication using secret keys.
 - a. (Required) Moab and MWS use Message Authentication Codes (MAC) to ensure messages have not been altered or corrupted in transit. Generate a key and store the result in /opt/moab/etc/.moab.key.

```
[root]# systemctl stop moab.service
[root]# dd if=/dev/urandom count=24 bs=1 2>/dev/null | base64 >
/opt/moab/etc/.moab.key
[root]# chown root:root /opt/moab/etc/.moab.key
[root]# chmod 400 /opt/moab/etc/.moab.key
[root]# systemctl start moab.service
```

- b. (Optional) Moab supports message queue security using AES. This feature requires a Base64-encoded 16-byte (128-bit) shared secret. Do the following:
 - i. Generate a key and append the result to /opt/moab/etc/moabprivate.cfg

[root]# systemctl stop moab.service [root]# echo "MESSAGEQUEUESECRETKEY \$(dd if=/dev/urandom count=16 bs=1 2>/dev/null | base64)" >> /opt/moab/etc/moab-private.cfg [root]# systemctl start moab.service

If MWS is configured to encrypt the message queue and Moab is not (or vice versa), then MWS will ignore the messsages from Moab. Furthermore, all attempts to access the MWS service resource will fail.

ii. Verify that encryption is on for the ZeroMQ connection.

```
[root]# mdiag -S|grep 'ZeroMQ MWS'
ZeroMQ MWS connection is bound on port 5570 (encryption is on)
```

- 9. Set up the MWS configuration files. In the extracted directory are several configuration files.
 - a. Copy the configuration files into place and grant the tomcat user ownership.

```
[root]# cd /tmp/mws-install/mws-9.0.2
[root]# cp mws-config.groovy /opt/mws/etc
[root]# cp mws-config-hpc.groovy /opt/mws/etc/mws.d
[root]# chown tomcat:tomcat /opt/mws/etc/mws-config.groovy
/opt/mws/etc/mws.d/mws-config-hpc.groovy
```

- b. In the /opt/mws/etc/mws-config.groovy file, change these settings:
 - moab.secretKey: Must match the Moab secret key you generated earlier (contained in /opt/moab/etc/.moab.key).
 - auth.defaultUser.username: Any value you like, or leave as is.
 - auth.defaultUser.password: Any value you like, but choose a strong password.
 - moab.messageQueue.secretKey: If you opted to configure a message queue security key in MWS, this parameter value should match exactly that key specified in /opt/moab/etc/moab-private.cfg for the MESSAGEQUEUESECRETKEY Moab configuration parameter you generated earlier.

If MWS is configured to encrypt the message queue and Moab is not (or vice versa), then the messages from Moab will be ignored. Furthermore, all attempts to access the MWS service resource will fail.

```
[root]# vi /opt/mws/etc/mws-config.groovy
// Replace <ENTER-KEY-HERE> with the contents of /opt/moab/etc/.moab.key.
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559
// Replace <ENTER-KEY-HERE> with the value of MESSAGEQUEUESECRETKEY in
/opt/moab/etc/moab-private.cfg.
moab.messageQueue.secretKey = "<ENTER-KEY-HERE>"
// Change these to be whatever you like.
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"
```

If you do not change **auth.defaultUser.password**, your MWS will not be secure (because anyone reading these instructions would be able to log into your MWS). Here are some <u>tips</u> (http://www.uscert.gov/cas/tips/ST04-002.html) for choosing a good password.

- c. If you are using Moab Accounting Manager, change these settings in /opt/mws/etc/mws.d/mws-config-hpc.groovy:
 - mam.secretKey: needs to match the MAM secret key in /opt/mam/etc/mam-site.conf on the MAM Server (as token.value)
 - mam.server: set to the hostname of the MAM Server
 - mam.port: set to the port of the MAM Server

```
[root]# vi /opt/mws/etc/mws.d/mws-config-hpc.groovy
mam.secretKey = "<ENTER-KEY-HERE>"
mam.server = "localhost"
mam.port = 7112
```

d. Do one of the following:

You can configure only one authentication method in /opt/mws/etc/mws-config.groovy—LDAP or PAM, but not both. If you have configured both LDAP and PAM, MWS defaults to using LDAP.

If you need multiple authentication methods, you must add them to your local PAM configuration. See your distribution documentation for details.

• If you are configuring an MWS connection to your LDAP server, add the following parameters to the /opt/mws/etc/mws-config.groovy file:

L

For more information about PAM configuration with MWS, see <u>PAM (Pluggable Authentication Module) Configuration Using</u> /opt/mws/etc/mws-config.groovy.

e. Add the grails.mongo.username and grails.mongo.password parameters to the /opt/mws/etc/mws-config.groovy file. Use the MWS credentials you added to MongoDB in the Preparing for Manual Installation section.

grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

f. Make the MWS configuration files read-only.

```
[root]# chmod 400 /opt/mws/etc/mws-config.groovy /opt/mws/etc/mws.d/mws-config-
hpc.groovy
```

10. Configure Tomcat

Add the following lines to the end of /etc/tomcat/tomcat.conf.

```
CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m -
Dfile.encoding=UTF8"
JAVA_HOME="/usr/java/latest"
```

D MaxPermSize is ignored using Java 8; and therefore can be omitted.

11. Deploy the mws.war file and start Tomcat.

```
[root]# systemctl enable tomcat.service
[root]# systemctl stop tomcat.service
[root]# cp /tmp/mws-install/mws-9.0.2/mws.war /usr/share/tomcat/webapps
[root]# systemctl start tomcat.service
```

- 12. Navigate to http://<server>:8080/mws/ in a web browser to verify that MWS is running (you will see some sample queries and a few other actions).
- 13. Log in to MWS to verify that your credentials are working. (Your login credentials are the auth.defaultUser.username and auth.defaultUser.password values you set in the /opt/mws/etc/mws-config.groovy file.)

If you encounter problems, or if the application does not seem to be running, see the steps in <u>Moab Web Services Issues on page 223</u>.

Related Topics

Preparing for Manual Installation on page 22

Installing RLM Server

Access to a Reprise License Manager (RLM) server is required when using Remote Visualization and/or Nitro.

The RLM Server can run multiple licenses. If your company already uses an RLM Server, you do not need to install a new one for Remote Visualization orNitro. However, Remote Visualization and Nitro will use a different port than the default RLM Server port (5053). Skip this topic and follow the instructions in <u>Installing Remote Visualization on page 158</u> or <u>Installing Nitro on page 58</u> as applicable.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release. Adaptive Computing *strongly* recommends that your RLM Server is v12.1 (build:2).

This topic contains instructions on how to install an RLM Server.

In this topic:

- Open Necessary Ports on page 55
- Install the RLM Server on page 56
- Change the Default Passwords on page 57

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

These instructions assume you are using the default ports. If your configuration will use other ports, then substitute your port numbers when opening the ports.

On the RLM Server do the following:

1. Open the RLM Server port (5053) and the RLM Web Interface port (5054).

[root]# vi /etc/sysconfig/SuSEfirewall2
FW SERVICES EXT TCP="5053 5054"

[root]# service SuSEfirewall2 restart

2. If Remote Visualization is part of your configuration, open the Remote Visualization port (57889).

[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="57889"

[root]# service SuSEfirewall2 restart

3. If Nitro is part of your configuration, open the ISV adapativeco port for the Adaptive license-enabled products (for example: 5135).

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5135"
[root]# service SuSEfirewall2 restart
```

Install the RLM Server

On the host where the RLM Server will reside, do the following:

- 1. Download the latest RLM build (ac-rlm-<version>.tar.gz). from the Adaptive Computing Moab HPC Suite Download Center (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).
- 2. As the root user, run each of the following commands in order.

```
[root]# tar xzvf ac-rlm-<version>.tar.gz
[root]# cd ac-rlm-<version>
```

3. Create a non-root user and group (rlm is used in the example).

```
[root]# groupadd -r rlm
[root]# useradd -r -g rlm -d /opt/rlm -c "A non-root user under which to run
Reprise License Manager" rlm
```

4. Create a directory and install the tarball files in that location (we are using /opt/rlm as the install location in the example).

```
[root]# mkdir -p -m 0744 /opt/rlm
[root]# cd /opt/rlm
[root]# tar -xzvf /tmp/ac-rlm-<version>.tar.gz --strip-components=1
[root]# chown -R rlm:rlm /opt/rlm
```

• The --strip-components=1 removes the "ac-rlm-<*version*>/" from the relative path so that they are extracted into the current directory.

5. Install the startup scripts.

If you are using a user:group other than rlm:rlm or a location other than /opt/rlm, then edit the following files to reflect those changes after copying them.

[root]#	ср	<pre>systemd/rlm.service /etc/systemd/system</pre>	
			÷

6. Start the services and configure the RLM Server to start automatically at system reboot.

[root]# systemctl enable rlm.service
[root]# systemctl start rlm.service

Change the Default Passwords

The RLM Web interface includes two usernames (admin and user) by default. These usernames have the default password "changeme!".

If you do not change this password, RLM, and Remote Visualization, will not be secure. For tips on choosing a good password, see <u>https://www.us-cert.gov/ncas/tips/ST04-002</u>.

Do the following for *both* the user and the admin usernames:

- Using a web browser, navigate to your RLM instance. (http://<RLM_ host>:5054; where <RLM_host> is the IP address or name of the RLM Server Host).
- 2. Log in.
- Select Change Password and change the password according to your password security process.

The password for "user" will be needed as part of the Remote Visualization installation.

Nitro Integration

This section provides instructions on integrating Nitro as part of your Moab HPC Suite configuration.

- <u>Preparing for Nitro Manual Installation or Upgrade on page 95</u>
- Installing Nitro on page 58
- Installing Nitro Web Services on page 62

Preparing for Nitro Manual Installation or Upgrade

This topic contains instructions on how to download and unpack the Nitro Tarball Bundle for all the hosts in your configuration.

Whether you are installing tarballs on one host or on several hosts, each host (physical machine) on which a server is installed (Nitro, Nitro Web Servcies) *must* have the Nitro Tarball Bundle.

Set Up Proxies

If your site uses a proxy to connect to the Internet, do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

Download and Unpack the Nitro Tarball Bundle

The Nitro Tarball Bundle contains all the tarballs available for Nitro. However, not every tarball may be installed on the same host.

On each host (physical machine), do the following:

- 1. Using a web browser, navigate to the <u>Adaptive Computing Nitro Download</u> <u>Center</u> https://www.adaptivecomputing.com/support/downloadcenter/nitro/.
- 2. Download the Nitro Tarball Bundle nitro-tarball-bundle-<version>- <OS>.tar.gz.

The variable marked <version> indicates the build's version, revision, and changeset information. The variable marked <OS> indicates the OS for which the build was designed.

3. Unpack the Nitro Tarball Bundle.

[root]# tar xzvf nitro-tarball-bundle-<version>-<OS>.tar.gz

Related Topics

- Nitro Integration on page 57
- Upgrading Your Nitro Integration on page 94

Installing Nitro

This topic contains instructions on how to install Nitro.

Nitro

• needs to be available to all of the nodes that will be used as part of the Nitro job.

- can be installed either to each node individually *or* to a shared file system that each node can access.
- can be installed to integrate with a scheduler, such as Moab, or without (Nitro standalone). The instructions are the same.

In this topic:

- Obtain a Nitro License on page 59
- Open Necessary Ports on page 60
- Install Nitro on page 61
- Verify Network Communication on page 62

Obtain a Nitro License

The Nitro license file is installed on an RLM Server.

These instructions assume you already have access to an RLM Server. See <u>Installing RLM Server on page 55</u> for instructions on how to set up a new RLM Server.

Do the following:

- 1. On the RLM server, obtain the hostid and hostname.
 - hostid

[root]# /opt/rlm/rlmhostid

You should see output similar to the following.

```
rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
```

Hostid of this machine: 00259096f004

hostname

[root]# /opt/rlm/rlmhostid host

You should see output similar to the following.

```
rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
Hostid of this machine: host=<your-host-name>
```

- 2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you just obtained.
- 3. Adaptive Computing will generate the license and send you the Nitro license file (.lic) file in a return email.

- 4. On the RLM server, do the following:
 - a. Download and install the license file.

```
[root]# cd /opt/rlm
[root]# chown rlm:rlm <licenseFileName>.lic
```

b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the ISV adaptiveco port for the Adaptive license-enabled products. This is the same port number you opened during the RLM Server installation. See the instructions to open necessary ports in the <u>Installing RLM Server on page 55</u> (manual installation method) or <u>Installing RLM Server on page 156</u> (RPM installation method) for more information.

```
[root]# vi /opt/rlm/nitro.lic
```

ISV adaptiveco port=5135

The license file already references the RLM Server port (5053 by default).

- If the RLM Server in your configuration uses different ports, you will need to modify the license file to reflect the actual ports. See the instructions to open necessary ports in the <u>Installing RLM Server on</u> <u>page 55</u> (manual installation method) or <u>Installing RLM Server on</u> <u>page 156</u> (RPM installation method) for more information.
- c. If you did *not* install an RLM Server using the file available from Adaptive Computing (for example, because your system configuration already uses one), do the following:
 - i. Download the 'adaptiveco.set' file from the <u>Adaptive Computing Nitro</u> <u>Download Center</u> (https://www.adaptivecomputing.com/support/downloadcenter/nitro/).
 - ii. Copy the 'adaptiveco.set' file into the same directory where the Nitro license resides (/opt/rlm).
- d. Perform a reread to update the RLM Server with your license.

[root]# /opt/rlm/rlmreread

Open Necessary Ports

Nitro uses several ports for communication between the workers and the coordinator.

The default port is 47000, and up to four ports are used in running Nitro (ports 47000-47003).

On each compute node (coordinator), open the necessary ports.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

FW SERVICES EXT TCP="47000 47001 47002 47003"

[root]# service SuSEfirewall2 restart

Install Nitro

You must complete the tasks to obtain a Nitro license before installing Nitro. See <u>Obtain a Nitro License on page 59</u>.

If your configuration uses firewalls, you *must also* open the necessary ports before installing Nitro. See <u>Open Necessary Ports on page 60</u>.

On the host where Nitro will reside, do the following:

- 1. If you have not already done so, complete the steps to prepare the host. See <u>Preparing for Nitro Manual Installation or Upgrade on page 95</u>.
- 2. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

- 3. Identify the Nitro product tarball (nitro-<*version*>-<*OS*>.tar.gz).
- 4. As the root user, run each of the following commands in order.

```
[root]# mkdir /opt/nitro
[root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1
```

5. Copy the license file you generated earlier in this topic to each compute node (coordinator). On each compute node, *or* on the shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

6. Identify the launch_nitro.sh script version for your resource manager. This script will be copied to the bin directory from where user job scripts will execute Nitro. See the *Nitro Administrator Guide* for more information.

Reference scripts are provided in /opt/nitro/scripts.

```
[root]# find /opt/nitro -name launch_nitro.sh
./scripts/lsf/launch_nitro.sh
./scripts/torque/launch_nitro.sh
./scripts/slurm/launch_nitro.sh
./scripts/alps/torque/launch_nitro.sh
./scripts/alps/slurm/launch_nitro.sh
```

7. Copy the launch script to the bin directory. (This example uses the Torquebased launch script.) [root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/

This is a "copy" file operation and not a "move" operation. This allows you to customize your version of the script and always have the factory version available for consultation and/or comparison.

- Customize the bin/launch_nitro.sh script as needed for your site's administrative policies. For example, to enable the Nitro coordinator's host to always execute a local Nitro worker, modify the bin/launch_nitro.sh script version to always pass the --run-local-worker command line option to the coordinator. See the Nitro Administrator Guide for more information on editing the launch script.
- 9. If you are *not* using a shared file system, copy the Nitro installation directory to *all* hosts.

[root]# scp -r /opt/nitro root@host002:/opt

Verify Network Communication

Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports *and* that the nodes are able to communicate with one another.

Related Topics

• <u>Nitro Integration on page 57</u>

Installing Nitro Web Services

This topic contains instructions on how to install Nitro Web Services.

Do the following in the order presented:

- 1. Open Necessary Ports
- 2. Install MongoDB
- 3. Install and Configure Nitro Web Services
- 4. Configure Viewpoint for Nitro Web Services
- 5. Publish Nitro Events to Nitro Web Services

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Tornado Web Port (9443) and the ZMQ Port (47100) on page 63
- Open the MongoDB Database Port (27017) on page 63

Open the Tornado Web Port (9443) and the ZMQ Port (47100)

On the Nitro Web Services Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

FW SERVICES EXT TCP="9443 47100"

```
[root]# service SuSEfirewall2 restart
```

Open the MongoDB Database Port (27017)

Nitro Web Services requires access to a MongoDB database. Depending on your system configuration, your MongoDB databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the Nitro Web Services MongoDB on the same host where you have installed other MongoDB databases.

Do the following, as needed:

- If you have chosen to install the Nitro Web Services MongoDB database on the *same* host you installed other MongoDB databases, confirm the firewall port (27017) is already opened on that host.
- If you have chosen to install the Nitro Web Services MongoDB database on a *different* host from other MongoDB databases, you will need to open the Nitro Web Services MongoDB database port in the firewall for that host. To open the port in the firewall, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="27017"
[root]# service SuSEfirewall2 restart
```

Install MongoDB

If you have chosen to install the Nitro Web Services MongoDB database on a *different* host from other MongoDB databases, do the following on the host where the Nitro Web Services MongoDB database will reside (for example, on the Nitro Web Service Host):

1. Install MongoDB.

```
[root]# zypper ar --refresh -r
http://download.opensuse.org/repositories/server:/database/SLE_
12/server:database.repo
[root]# zypper install mongodb
```

2. Start MongoDB.

There may be a short delay (approximately 3 minutes) for Mongo to start the first time.

[root]# systemctl enable mongodb.service
[root]# systemctl start mongodb.service
[root]# systemctl daemon-reload

- 3. Prepare the MongoDB database by doing the following:
 - a. Add the required MongoDB users.

The password used below (secret1) is an example. Choose your own password for this user.

```
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");
> exit
```

Because the admin_user has read and write rights to the admin database, it also has read and write rights to all other databases. See <u>Control Access to MongoDB Instances with Authentication</u> (http://docs.mongodb.org/manual/tutorial/control-access-tomongodb-with-authentication/) for more information.

b. Enable authentication in MongoDB.

MongoDB authentication is already enabled. No further action is needed.

Install and Configure Nitro Web Services

You must complete the tasks earlier in this topic before installing Nitro Web Services.

On the host where Nitro Web Services will reside, do the following:

- 1. If you have not already done so, complete the steps to prepare the host. See <u>Preparing for Nitro Manual Installation or Upgrade on page 95</u>.
- 2. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

3. Identify and unpack the Nitro Web Services tarball (nitro-web-services-<version>.<0S>.tar.gz).

```
[root]# tar -xzvpf nitro-web-services-<version>.<OS>.tar.gz
```

4. Install Nitro Web Services.

```
[root]# cd ./nitro-web-services-<version>.<OS>
[root]# ./install <directory>
# <directory> is where you want to install Nitro Web Services (defaults to /opt)
```

5. Understand and edit the configuration files.

This includes clarifying what each configuration file is for and what to expect the first time the NWS service is started vs. each subsequent start.

MongoDB user, table, and index creation is performed at initial startup. Many of the options defined in the Nitro Web Service configuration files influence Mongo user/password and index creation.

Usernames and passwords are created *only* if they do not yet exist. Changing a password in the configuration file after initial startup will not update the password in Mongo.

The installation provides two configuration files

/opt/nitro-web-services/etc/nitro.cfg

This is the Nitro Web Services web application configuration file.

Before initial startup, set "admin_username" and "admin_password" to the MongoDB admin username and password you used when setting up MongoDB. It is also recommended that you change all other default passwords before starting Nitro Web Services. If you do not change the passwords at this point, it will be more difficult to change them later.

By default, NWS uses an auto-generated self-signed SSL certificate. The auto-generated self-signed SSL certification is created at service start up; not during the installation process.

However, you can use your own ssl_certfile, ssl_keyfile, and ca_certs files if you wish.

If you choose to use your own ssl_certfile and ssl_keyfile, ssl_create_self_signed_cert=true is ignored.

/opt/nitro-web-services/etc/zmq_job_status_adapter.cfg

This is the Nitro ZMQ Job Status Adapter configuration file.

The Nitro ZMQ Job Status Adapter listens to job status updates on the ZMQ bus and publishes them to MongoDB using the Nitro Web Services REST API. The username and password must be set to a MongoDB user with write permissions. At minimum, set the password for nitro-writeonly-user to the password defined in /opt/nitro-web-services/etc/nitro.cfg and

make sure the SSL options are set correctly based on SSL settings in /opt/nitro-web-services/etc/nitro.cfg.

- 6. If you did not need to install the Nitro Web Services MongoDB database earlier in this topic, verify that the 'mongodb_host' and 'mongodb_port' in /opt/nitro-web-services/etc/nitro.cfg are set correctly ('localhost' on port '27017' are the defaults).
- 7. Start the services and configure Nitro Web Services to start automatically at system boot.

```
[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service
[root]# systemctl daemon-reload
[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service
```

Configure Viewpoint for Nitro Web Services

Do the following:

- Using a web browser, navigate to your Viewpoint instance (http://<server>:8081) and then log in as the MWS administrative user (moab-admin, by default).
- 2. Click **Configuration** from the menu and then click **Nitro Services** from the left pane. The following is an example of the Nitro Services Configuration page.

Basic Configuration	Nitro Services Configuration	
File Manager	Nitro WS URL	
Roles	Username nitro-readonly-user	
Principals	Password ••••••	
Remote Visualization Services	Trust Self Signed 🕑	
Nitro Services	TEST	SAVE
Application Templates		
Licensed Features		

3. Enter the configuration information. The following table describes the required information.

Field	Description
Nitro WS URL	Hostname (or IP address) and port number for the host on which you installed Nitro Web Services. For example, https:// <i><hostname></hostname></i> :9443
Username	Name of the user. This typically nitro-readonly-user.
Password	The user's password.
Trust Self Signed	Indicates whether Nitro Web Services was set up using self-signed certificates.

- 4. Click **TEST** to confirm the settings are correct. This confirms whether Nitro Web Services is up and receiving connections.
- 5. Click **SAVE** to submit your settings.
- 6. (Recommended) Use curl to test Nitro Web Services connectivity.

```
[root]# curl --insecure --data '{"username": "nitro-admin", "password":
"ChangeMe2!"}' \
https://<hostname>:9443/auth
```

You should get something similar to the following in the response:

```
{
  "status": 200,
  "data": {
   "nitro-key": "3e0fb95e9a0e44ae91daef4deb500dcc67a3714880e851d781512a49",
    "user": {
      "username": "nitro-admin",
      "last_updated": "2016-02-26 23:34:55.604000",
      "name": "Nitro Admin",
      "created": "2016-02-26 23:34:55.604000",
      "auth": {
        "job": [
          "read",
          "write",
          "delete"
        ],
        "user": [
          "read",
          "write",
          "delete"
        1
      }
    }
  }
}
```

Publish Nitro Events to Nitro Web Services

You need to configure the Nitro coordinators to send job status updates to the Nitro Web Services's ZMQ Job Status Adapter. The ZMQ Job Status Adapter is

responsible for reading job status updates off of the ZMQ bus and persisting them to Mongo. Nitro Web Services can then be used to access Nitro job status.

Each Nitro job has a Nitro Coordinator. Nitro Coordinators can be configured to publish job status updates to ZMQ by setting the "nws-connector-address" configuration option in Nitro's nitro.cfg file. Each compute node allocated/scheduled to a Nitro Job can play the role of a Nitro coordinator. Therefore, you must update the "nws-connector-address" in each compute node's nitro.cfg file.

Configuring nws-connector-address is simplified if each node is sharing Nitro's configuration over a shared filesystem. If you are not using a shared filesystem, update the Nitro configuration on each compute node.

Do the following:

- 1. If you have not already done so, on the Nitro Web Services host, locate the msg_port number in the /opt/nitro-web-services/etc/zmq_job_status_adapter.cfg file. This is the port number you need to specify for the nws-connector-address.
- 2. On *each* Nitro compute note (Torque MOM Host), specify the nws-connectoraddress in the /opt/nitro/etc/nitro.cfg file.

```
...
# Viewpoint connection allows Nitro to communicate job status information
# to viewpoint. This option indicates name and port of the remote server
# in the form: <host>:<port>
nws-connector-address <nitro-web-services-hostname>:47100
...
```

Related Topics

• Nitro Integration on page 57
Additional Configuration

In this section:

- Configuring SSL in Tomcat on page 183
- Moab Workload Manager Configuration Options on page 69
- Moab Accounting Manager Configuration Options on page 70
- Trusting Servers in Java on page 184

Configuring SSL in Tomcat

To configure SSL in Tomcat, please refer to the Apache Tomcat <u>documentation</u> (http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html).

Moab Workload Manager Configuration Options

The following is a list of commonly used configure options. For a complete list, use ./configure --help when configuring Moab.

Option	Description	Example
prefix	Specifies the location of the binaries and libraries of the Moab install. The default location is /opt/moab.	[root]# ./configureprefix=/usr/local
with- am	Specifies that you want to configure Moab with Moab Accounting Manager. There is a similarwith-torque option that configures Moab with Torque, but you do not need to specify this option if you install the "torque" tarball version.	<pre>[[root]# ./configurewith-am]</pre>
with- flexlm	Causes Moab to install the license mon.flexLM.pl script in the /op- t/moab/tools directory. For more information about this script, see the Inter- facing to FLEXIm section in the Moab Admin- istrator Guide.	<pre>[[root]# ./configurewith-flexlm</pre>

Option	Description	Example
with- homedi- r	Specifies the location of the Moab configuration directory and the MOABHOMEDIR environment variable. The default location is /opt/moab. MOABHOMEDIR is automatically set on some distributions during installation, when the <u>with-profile</u> option is enabled.	[root]# ./configurewith- homedir=/var/moab The Moab HPC Suite home directory will be /var/moab instead of the default /opt/moab.
 without- init	Disables the installation of a distribution- specific, Moab service startup file. By default, make install will install an init.d or systemd service startup file as appropriate for your distribution. The installed file (/etc/init.d/moab or /usr/lib/systemd/system/moab.servic e) may be customized to your needs. If you do not want this file to be installed, use this option to exclude it.	<pre>[[root]# ./configurewithout-init]</pre>
 without- profile	Disables the installation of a distribution- specific shell profile for bash and C shell. By default, make install will install the Moab shell initialization scripts as appropriate for your operating system. These scripts help to establish the MOABHOMEDIR, PERL5LIB, PATH and MANPATH environment variables to specify where the new moab configuration, scripts, binaries and man pages reside. The installed scripts (/etc/profile.d/moab. {csh, sh}) may be customized to your needs. If you do not want these scripts to be installed, use this option to exclude them.	<pre>[root]# ./configurewithout-profile</pre>

Moab Accounting Manager Configuration Options

The following table comprises commonly-used configure options.

Option	Description
-h,help	Run ./configurehelp to see the list of configure options.

Chapter 2 Manual Installation

Option	Description		
localstatedir=DIR	Home directory where per-configuration subdirectories (such as etc, log, data) will be installed (defaults to PREFIX).		
prefix=PREFIX	Base installation directory where all subdirectories will be installed unless otherwise designated (defaults to /opt/mam).		
with-cgi-bin=DIR	If you intend to use the web GUI, usewith-cgi-bin to specify the directory where you want the Moab Accounting Manager CGI files to reside (defaults to /var/www/cgi-bin/mam).		
with-db-name=NAME	Name of the SQL database that the server will sync with (defaults to mam).		
with-legacy-links	Creates symbolic links allowing the use of the old client and server command names (for example, mam-list-users would be created as symbolic link to mam-list-users). When running a command under its old name, the command will issue a deprecation warning. This warning can be disabled by setting client.deprecationwarning = false in the mam-client.conf file. The default is not to install the legacy links.		
with-mam-libs=local site	Usewith-mam-libs to indicate whether you want to install the Perl MAM modules in a local directory (\${exec_prefix}/lib) or in the default system site-perl directory (defaults to local).		
with-pro- motion=mamauth suidperl	Command-line clients and scripts using the API need to use a security pro- motion method to authenticate and encrypt the communication using the sym- metric key. The default is suidperl if it is installed on the system, otherwise the default is mamauth. See the description for the security.promotion con- figuration parameter in the <u>Client Configuration</u> section for more information about the two security promotion methods.		
with-sha=SHA SHA1	Allows you to override the auto-detected SHA Digest Perl (whether Digest::SHA1 or Digest::SHA) that should be used for your system.		
with-user=USER	Usewith-user to specify the accounting admin userid that the server will run under and who will have full administrative privileges (defaults to the user running the configure command). It is recommended that this be a non-privileged user for the highest security.		
without-gui	Specifies whether to install the CGI web GUI. If you do not intend to use the CGI web GUI, you can specifywithout-gui to not install the CGI scripts. Otherwise, the default is to install the GUI CGI scripts.		

Option	Description
without-init	If you do not intend to use the mam init.d service, you can use without-init to specify that Moab HPC Suite should not install the mam init.d script. Otherwise, the script is installed by default.
without-profile	If you do not intend to use the mam profile.d environment scripts, you can usewithout-profile to specify that Moab HPC Suite should not install the mam profile.d scripts. Otherwise, the scripts are installed by default.

Trusting Servers in Java

In this topic:

Prerequisites on page 72

Retrieve the Server's X.509 Public Certificate on page 72

Add the Server's Certificate to Java's Keystore on page 73

Prerequisites

Some of these instructions refer to JAVA_HOME, which must point to the same directory that Tomcat uses. To set JAVA_HOME, do this:

[[root]# source /etc/tomcat/tomcat.conf

Your system administrator might have defined Tomcat's JAVA_HOME in a different file.

Retrieve the Server's X.509 Public Certificate

To retrieve the server's certificate, use the following command:

[root]# \$JAVA_HOME/bin/keytool -printcert -rfc -sslserver <servername>:<port> >
/tmp/public.cert.pem

Replace <servername> with the server's host name and <port> with the secure port number. The default port for https is 443. The default port for ldaps is 636. If successful, /tmp/public.cert.pem contains the server's public certificate. Otherwise, /tmp/public.cert.pem contains an error message. This message is typical: keytool error: java.lang.Exception: No certificate from the SSL server. This message suggests that the server name or port is incorrect. Consult your IT department to determine the correct server name and port.

Add the Server's Certificate to Java's Keystore

Java stores trusted certificates in a database known as the keystore. Because each new version of Java has its own keystore, you need to add the server certificate to the Java keystore (using the steps below) every time you install a new version of Java.

Java's keystore is located at <code>\$JAVA_HOME/lib/security/cacerts</code>. If Tomcat's <code>JAVA_HOME</code> points to a JDK, then the keystore is located at <code>\$JAVA_HOME/jre/lib/security/cacerts</code>. To add the server certificate to the keystore, run the following command:

[root]# \$JAVA_HOME/bin/keytool -import -trustcacerts -file /tmp/public.cert.pem -alias
<servername> -keystore \$JAVA_HOME/lib/security/cacerts

You will be prompted for the keystore password, which is "changeit" by default.

Your system administrator might have changed this password.

After you've entered the keystore password, you'll see the description of the server's certificate. At the end of the description it prompts you to trust the certificate.

Trust this certificate? [no]:

Type yes and press **Enter** to add the certificate to the keystore.

Manual Upgrade

This section provides instructions and other information when upgrading your Moab HPC Suite components for SUSE 12-based systems using the Manual upgrade method.

In this section:

- Preparing for Upgrade on page 74
- Upgrading Torque Resource Manager on page 75
- Upgrading Moab Workload Manager on page 80
- <u>Upgrading Moab Accounting Manager on page 82</u>
- Upgrading Moab Web Services on page 86
- Upgrading RLM Server on page 93
- <u>Upgrading Your Nitro Integration on page 94</u>
- <u>Migrating the MAM Database from MySQL to PostgreSQL on page 217</u>

Preparing for Upgrade

The upgrade process of the Moab HPC Suite includes upgrading the database and different components in the suite. This guide contains detailed instructions for upgrading each component for SUSE 12-based systems.

It is highly recommended that you *first* perform upgrades in a *test environment*. Installation and upgrade procedures are tested prior to release; however, due to customizable variations that may be utilized by your configuration, it is not recommended to drop new versions of software directly into production environments. This is especially true when the workload has vital bearing. Contact Adaptive Computing Professional Services for more information.

Because many system-level files and directories are accessed during the upgrade, the upgrade instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade the Moab HPC Suite in the following order:

- 1. Torque. See <u>Upgrading Torque Resource Manager</u>.
- 2. Moab Workload Manager. See Upgrading Moab Workload Manager.
- 3. Moab Accounting Manager. See Upgrading Moab Accounting Manager.
- 4. Moab Web Services. See Upgrading Moab Web Services.
- 5. RLM Server. See <u>Upgrading RLM Server on page 93</u>.
- 6. Upgrade Nitro with your Moab HPC Suite. See <u>Upgrading Your Nitro</u> <u>Integration on page 94</u>.

Upgrading Torque Resource Manager

Torque 6.0 binaries are backward compatible with Torque 5.0 or later. However they are not backward compatible with Torque versions prior to 5.0. When you upgrade to Torque 6.0.2 from versions prior to 5.0, all MOM and server daemons must be upgraded at the same time.

The job format is compatible between 6.0 and previous versions of Torque and any queued jobs will upgrade to the new version. It is not recommended to upgrade Torque while jobs are in a running state.

This topic contains instructions on how to upgrade and start Torque Resource Manager (Torque).

If you need to upgrade a Torque version prior to 4.0, contact Adaptive Computing.

See <u>Considerations Before Upgrading</u> in the *Torque Resource Manager Administrator Guide* for additional important information including about how to handle running jobs during an upgrade, mixed server/MOM versions, and the possibility of upgrading the MOMs without having to take compute nodes offline.

In this topic:

- Before You Upgrade on page 76
- Stop Torque Services on page 76
- Upgrade the Torque Server on page 77
- Update the Torque MOMs on page 78
- Update the Torque Clients on page 78
- Start Torque Services on page 79
- Perform Status and Error Checks on page 79

Before You Upgrade

This section contains information of which you should be aware before upgrading.

In this section:

- <u>serverdb on page 76</u>
- Running Jobs on page 76
- Cray Systems on page 76

serverdb

The pbs_server configuration is saved in the file *TORQUE_HOME/server* priv/serverdb. When running Torque 4.1 or later for the first time, this file converts from a binary file to an XML-like format.

Recommended: before shutting down pbs_server to upgrade it, make a backup of the settings in serverdb by running the following command:

qmgr -c "print server" > qmgr.backup

In the event of a loss of settings, this can by restored by running the following command:

qmgr < qmgr.backup

Running Jobs

Before upgrading the system, all running jobs must complete. To prevent queued jobs from starting, nodes can be set to offline or all queues can be disabled (using the "started" queue attribute). See <u>pbsnodes</u> or <u>Queue</u> <u>Attributes</u> in the *Torque Resource Manager Administrator Guide* for more information.

Cray Systems

For upgrading Torque to 6.0.2 on a Cray system, refer to the <u>Installation Notes</u> for <u>Moab and Torque for Cray</u> in Appendix G of the <u>Moab Workload Manager</u> Administrator Guide.

Stop Torque Services

Do the following:

1. On the Torque Server Host, shut down the Torque server.

```
[root]# systemctl stop pbs_server.service
```

2. On each Torque MOM Host, shut down the Torque MOM service.

Confirm all jobs have completed before stopping pbs_mom. You can do this by typing "momctl -d3". If there are no jobs running, you will see the message "NOTE: no local jobs detected" towards the bottom of the output. If jobs are still running and the MOM is shutdown, you will only be able to track when the job completes and you will not be able to get completion codes or statistics.

[root]# systemctl stop pbs mom.service

3. On each Torque Client Host (including the Moab Server Host, the Torque Server Host, and the Torque MOM Hosts, if applicable), shut down the trqauthd service.

[root]# systemctl stop trqauthd.service

Upgrade the Torque Server

You must complete all the previous upgrade steps in this topic before upgrading Torque server. See the list of steps at the beginning of this topic.

On the Torque Server Host, do the following:

1. Back up your server priv directory.

[root]# tar -cvf backup.tar.gz TORQUE HOME/server priv

2. If not already installed, install the Boost C++ headers.

[root]# zypper install boost-devel

- 3. Download the latest 6.0.2 build from the Adaptive Computing website.
- 4. Install the latest Torque tarball.

```
[root]# cd /tmp
[root]# tar xzvf torque-<version>-<build number>.tar.gz
[root]# cd torque-<version>-<build number>
[root]# ./configure
[root]# make
[root]# make install
```

- 5. Update the pbs_server service startup script.
 - a. Make a backup of your current service startup script.

[root]# cp /usr/lib/systemd/system/pbs_server.service pbs_server.service.bak

b. Copy in the new stock service startup script.

```
[root]# cp contrib/systemd/pbs_server.service /usr/lib/systemd/system/
```

c. Merge in any customizations.

```
[root]# vi /usr/lib/systemd/system/pbs server.service
```

Update the Torque MOMs

Do the following:

- 1. On the Torque Server Host, do the following:
 - a. Create the self-extracting packages that are copied and executed on your nodes.

```
[root]# make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.
The package files are self-extracting packages that can be copied and executed
on your production machines. Use --help for options.
```

b. Copy the self-extracting packages to each Torque MOM Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

[root]# scp torque-package-mom-linux-x86_64.sh <torque-mom-host>:

c. Copy the pbs_mom startup script to each Torque MOM Host.

```
[root]# scp contrib/systemd/pbs_mom.service <torque-mom-
host>:/usr/lib/systemd/system/
```

2. On each Torque MOM Host, do the following:

This step can be done from the Torque server from a remote shell, such as SSH. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

[root]# ./torque-package-mom-linux-x86 64.sh --install

Update the Torque Clients

This section contains instructions on updating the Torque clients on the Torque Client Hosts (including the Moab Server Host and Torque MOM Hosts, if

applicable).

- 1. On the Torque Server Host, do the following:
 - a. Copy the self-extracting packages to each Torque Client Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

[root]# scp torque-package-clients-linux-x86_64.sh <torque-client-host>:

b. Copy the trgauthd startup script to each Torque Client Host.

```
[root]# scp contrib/systemd/trqauthd.service <torque-client-
host>:/usr/lib/systemd/system/
```

2. On each Torque Client Host, do the following:

This step can be done from the Torque server from a remote shell, such as SSH. Set up shared SSH keys if you do not want to supply a password for each Torque Client Host.

[root]# ./torque-package-clients-linux-x86_64.sh --install

Start Torque Services

Do the following:

1. On each Torque Client Host (including the Moab Server Host, Torque Server Host and Torque MOM Hosts, if applicable), start up the trqauthd service.

```
[ [root]# systemctl daemon-reload
[ [root]# systemctl start trqauthd.service
```

2. On each Torque MOM Host, start up the Torque MOM service.

```
[root]# systemctl daemon-reload
[root]# systemctl start pbs_mom.service
```

3. On the Torque Server Host, start up the Torque server.

```
[root]# systemctl daemon-reload
[root]# systemctl start pbs_server.service
```

Perform Status and Error Checks

On the Torque Server Host, do the following:

1. Check the status of the jobs in the queue.

```
[root]# qstat
```

2. Check for errors.

```
[root]# grep -i error /var/spool/torque/server_logs/*
[root]# grep -i error /var/spool/torque/mom_logs/*
```

Upgrading Moab Workload Manager

This topic provides instructions to upgrade Moab Workload Manager to the latest release version. Depending on which version of Moab you are presently running, upgrade instructions may vary.

Moab Workload Manager uses the standard configure, make, and make install steps for upgrades. This topic provides a number of sample steps referenced to a particular installation on a Linux platform using the bash shell. These steps indicate the user ID in brackets performing the step. The exact commands to be performed and the user that issues them will vary based on the platform, shell, installation preferences, and other factors.

It is highly recommended that you *first* perform upgrades in a *test environment*. See the warning in <u>Preparing for Upgrade on page 74</u>. It is also recommend that you verify the policies, scripts, and queues work the way you want them to in this test environment. See <u>Testing New Releases and Policies</u> in the *Moab Workload Manager Administrator Guide* for more information.

If you are also upgrading Torque from an older version (pre-4.0), contact Adaptive Computing.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Moab Workload Manager

On the Moab Server Host, do the following:

- 1. If you have not already done so, install extra packages from the add-on repositories. See <u>Preparing for Manual Installation on page 22</u>
- 2. Download the latest Moab build (moab-<version>-<OS>.tar.gz) from the Adaptive Computing website.

The variable marked <*version*> indicates the build's version, revision, and changeset information. The variable marked <*OS*> indicates the OS for which the build was designed.

3. Untar the distribution file. For example:

[root]# tar -xzvf moab-<version>-<OS>.tar.gz

- 4. Change directory into the extracted directory.
- 5. Configure the installation package.

Use the same configure options as when Moab was installed previously. If you cannot remember which options were used previously, check the config.log file in the directory where the previous version of Moab was installed from.

For a complete list of configure options, use ./configure --help.

6. Stop Moab.

```
[root]# mschedctl -k
moab will be shutdown immediately
```

While Moab is down, all currently running jobs continue to run on the nodes, the job queue remains intact, and new jobs cannot be submitted to Moab.

- 7. Back up your Moab Workload Manager home directory (/opt/moab/ by default) before continuing.
- 8. If you are using green computing, or if you are using a resource manager other than Torque, run the make perideps command to install the necessary perimodules using CPAN.

CPAN is installed on SUSE-based systems by default

[root]# make perldeps

9. Install Moab.

[root]# make install

Default configuration files are installed during make install. Existing configuration files are not overwritten and the new files are given a .dist extension.

10. If you use ODBC, you must confirm the database schema compatibility. For example, if you are upgrading Moab 8.1 to 9.0 no schema changes were

made; however if you upgrade from Moab 8.0 and prior, you will need to upgrade your database. See <u>Migrating Your Database to Newer Versions of</u> <u>Moab</u> in the *Moab Workload Manager Administrator Guide* for more information.

11. Verify the version number is correct before starting the new server version.

```
[root]# moab --about
Defaults: server=:42559 cfgdir=/opt/moab (env) vardir=/opt/moab
Build dir: /tmp/jenkins/workspace/MWM-9.0.0/label/build-<OS>
Build host: us-devops-build10
Build date: Fri Oct 09 13:00:00 MST 2015
Build args: NA
Compiler Flags: -D__M64 -D_BUILDDATETIME="2015100913" -DMUSEZEROMQ -
DMUSEWEBSERVICES -DMUSEMONGODB -DMMAX_GRES=512 -DMMAX_RANGE=2048 -DMMAX_TASK=32768
-fPIC -gdwarf-3 -Wall -Wextra -DVALGRIND -Og -x c++ -std=c++11 -DDMAX_PJOB=512 -D__
GNU_SOURCE
Compiled as little endian.
Version: moab server 9.0.0 (revision 2015100913, changeset
14dee972ebcee919207e48054e9f285db9f6a555)
```

12. If you are using Moab Accounting Manager with the native interface (TYPE=native), remove all entries in moab.cfg with the form (AMCFG[*] *URL=exec://*), except for those that you have customized. See <u>AMCFG</u> <u>Parameters and Flags</u> in the *Moab Workload Manager Administrator Guide* for more information.

In Moab Workload Manager 8.1 and after, Moab defaults to using a set of stock scripts that no longer need to be explicitly configured in the server configuration file.

13. Start Moab.

[root]# systemctl start moab.service

Upgrading Moab Accounting Manager

This topic provides instructions to upgrade MAM to the latest release version. It includes instructions for migrating your database schema to a new version if necessary.

Moab Accounting Manager uses the standard configure, make, and make install steps for upgrades. This document provides a number of sample steps referenced to a particular installation on a Linux platform using the bash shell. These steps indicate the user ID in brackets performing the step. The exact commands to be performed and the user that issues them will vary based on the platform, shell, installation preferences, and other factors.

Upgrade Moab Accounting Manager

On the MAM Server Host, do the following:

- 1. Determine the MAM Accounting admin user and change to that user.
 - If you are upgrading MAM from a version *prior* to 9.0, use glsuser.

```
[root]# glsuser | grep 'Accounting Admin'
mam True
Accounting Admin
[root]# su - mam
```

• If you are upgrading MAM at or after 9.0, use mam-list-users.

```
[root]# mam-list-users | grep 'Accounting Admin'
mam True
Accounting Admin
[root]# su - mam
```

- 2. Determine whether you need to migrate your database.
 - a. Determine your database version.
 - If you are upgrading MAM from a version prior to 9.0, run goldsh System Query.

```
[[mam]$ goldsh System Query
```

• If you are upgrading MAM at or after 9.0, run mam-shell System Query.

```
[mam]$ mam-shell System Query
```

- b. If the current version is lower than 9.0, you must migrate your database. The steps required to do so are incorporated in the remaining steps for this topic.
- 3. Stop the server daemon.
 - If you are upgrading MAM from a version *prior* to 9.0, run goldd-k.

```
[mam]$ goldd -k
```

• If you are upgrading MAM at or after 9.0, run mam-server -k.

```
[mam]$ mam-server -k
```

- 4. If you determined that you must migrate your database, create a database backup.
 - PostgreSQL database.

```
[ [mam]$ pg_dump -U <mam_database_user> -W <old_database_name> > /tmp/<old_
database_name>.sql
```

• MySQL database.

```
[ [mam]$ mysqldump -u <mam_database_user> -p <old_database_name> > /tmp/<old_
database_name>.sql
```

- 5. Verify that each of the prerequisites listed in <u>Installing Moab Accounting</u> <u>Manager on page 35</u> have been satisfied.
- 6. Download the latest MAM build (mam-<version>.tar.gz) from the Adaptive Computing website.

The variable marked <version> indicates the build's version, revision, and changeset information.

7. Unpack the tar archive and change directory into the top directory of the distribution.

```
[mam]$ tar -zxvf mam-<version>.tar.gz
[mam]$ cd mam-<version>
```

8. Configure Moab Accounting Manager by running the configure script with the desired options.

It is recommended that you use the same configure options that were used in the previous installation. You can examine the config.log file where you unpacked your previous distribution to help determine the configuration options that were used to install the prior version of MAM.

Client and server command names changed beginning with 9.0. If you want to create symbolic links to enable you to continue to use the old client and server command names, use the --with-legacy-links option with configure. When running a command under its old name, the command will issue a deprecation warning. This warning can be disabled by setting client.deprecationwarning = false in the mam-client.conf file.

[mam]\$./configure

9. To compile the program, type make.

[mam]\$ make

If you only need to install the clients on a particular system, replace make with make clients-only. If you only need to install the web GUI on a particular system, replace make with make gui-only.

10. Run make install as root to install Moab Accounting Manager.

```
[mam]$ su -c "make install"
```

If you only need to install the clients on a particular system, replace "make install" with "make install-clients-only". If you only need to install the web GUI on a particular system, replace "make install" with "make install-gui-only".

- 11. Edit the configuration files as necessary. You may want to compare your existing configuration files with those distributed with the new release to determine if you want to merge and change any of the new options within your configuration files.
 - If you are upgrading MAM from a version prior to 9.0, the install process will have saved your prior configuration files to {goldd,gold,goldg}.conf.pre-9.0 and written new default server configuration file as mam-{server,client,gui}.conf. You will need to merge any non-default parameters from your prior config files to the new default config files.

```
[mam]$ diff /opt/mam/etc/goldd.conf.pre-9.0 /opt/mam/etc/mam-server.conf
[mam]$ vi /opt/mam/etc/mam-server.conf
[mam]$ diff /opt/mam/etc/gold.conf.pre-9.0 /opt/mam/etc/mam-client.conf
[mam]$ vi /opt/mam/etc/mam-client.conf
[mam]$ diff /opt/mam/etc/goldg.conf.pre-9.0 /opt/mam/etc/mam-gui.conf
[mam]$ vi /opt/mam/etc/mam-gui.conf
```

 If you are upgrading MAM at or after 9.0, merge and change any of the new options supplied in the new default configuration files (saved in mam-{server,client,gui}.conf.dist) into your existing configuration files (mam-{server,client,gui}.conf).

Verify that your current path points to your newly installed clients and server.

```
[mam]$ which mam-server
/opt/mam/sbin/mam-server
```

12. Start the server daemon back up.

```
[mam]$ mam-server
```

13. If you are migrating your database to 9.0, you will do so by running one or more migration scripts. You must run every incremental migration script

between the version you are currently using and the new version (9.0). These scripts are designed to be rerunnable, so if you encounter a failure, resolve the failure and rerun the migration script. If you are unable to resolve the failure and complete the migration, contact Support.

For example, if you are migrating from Moab Accounting Manager version 7.2, you must run five migration scripts: the first to migrate the database schema from 7.2 to 7.3, the second to migrate from 7.3 to 7.5, the third to migrate the database schema from 7.5 to 8.0, the fourth to migrate the database schema from 8.0 to 8.1, and the fifth to migrate the database schema from 8.1 to 9.0.

[mam]\$ sbin/migrate_7.2-7.3.pl
[mam]\$ sbin/migrate_7.3-7.5.pl
[mam]\$ sbin/migrate_7.5-8.0.pl
[mam]\$ sbin/migrate_8.0-8.1.pl
[mam]\$ sbin/migrate_8.1-9.0.pl

14. Verify that the resulting database schema version is 9.0.

```
      [mam]$ mam-shell System Query

      Name
      Version Description

      Moab Accounting Manager
      9.0
      Commercial Release
```

15. Verify that the executables have been upgraded to 9.0.2.

[mam]\$ mam-server -v

Moab Accounting Manager version 9.0.2

Upgrading Moab Web Services

This topic provides instructions to upgrade Moab Web Services to the latest release version. Depending on which version of MWS you are presently running, upgrade instructions may vary.

You must deploy Moab Web Services on the same host as Moab Server (Moab Server Host). For documentation clarity, these instructions refer to the host for Moab Server and MWS Server as the MWS Server Host.

Before You Upgrade

MWS requires Tomcat 7. It is also recommended that you upgrade to Java 8 and MongoDB 2.4.x.

Upgrade to Tomcat 7

Tomcat 7 is required to run MWS 9.0 and later.

Tomcat 7 is installed by default. No further action is needed.

Upgrade to Java 8

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run MWS.

If you wish to upgrade to Java 8, refer to the <u>Install Java on page 46</u> instructions.

Upgrade the MongoDB

It is highly recommended that you perform a full database backup before updating your database. This can be done using the mongodump utility documented in the <u>MongoDB documentation</u> (http://www.mongodb.org/display/DOCS/Backups).

On the host where the MWS MongoDB database resides, do the following:

1. Check your MongoDB version.

[root]# mongo --version

2. If your MongoDB version is prior to 2.4, upgrade the database.

```
[root]# zypper ar --refresh -r
http://download.opensuse.org/repositories/server:/database/SLE_
12/server:database.repo
[root]# zypper install mongodb
[root]# systemctl enable mongodb.service
[root]# systemctl start mongodb.service
```

Upgrade Moab Web Services

You must complete the tasks in <u>Before You Upgrade on page 86</u> before upgrading MWS.

On the MWS Server Host, do the following:

1. Create a directory for which you will extract the contents of the MWS download tarball. For example:

```
[root]# mkdir /tmp/mws-install
[root]# cd /tmp/mws-install
```

2. Download the latest MWS build (mws-<version>.tar.gz) from the Adaptive Computing website.

The variable marked *<version>* is the desired version of the suite; for example, 9.0.2.

 In the directory you created earlier, extract the contents of the MWS download tarball and then change directory into the extracted directory. For example:

```
[root]# tar xvzf mws-9.0.2.tar.gz
[root]# cd mws-9.0.2
```

4. Deploy the updated mws.war to Tomcat.

```
[root]# systemctl stop tomcat.service
[root]# rm -rf /usr/share/tomcat/webapps/mws /usr/share/tomcat/webapps/mws.war
[root]# cp mws.war /usr/share/tomcat/webapps/
[root]# chown -R tomcat:tomcat /usr/share/tomcat/webapps/mws.war
```

5. Back up the MWS home directory and create the required destination directory structure.

```
[root] # cp -r /opt/mws /opt/mws-9.0-backup
[root] # mkdir -p ∖
   /opt/mws/etc/mws.d \
   /opt/mws/hooks \
   /opt/mws/log \
   /opt/mws/plugins \
  /opt/mws/spool/hooks \
  /opt/mws/utils
[root] # chown -R tomcat:tomcat /opt/mws
[root] # chmod -R 555 /opt/mws
[root] # chmod u+w ∖
   /opt/mws/log \
   /opt/mws/plugins \
   /opt/mws/spool \
   /opt/mws/spool/hooks \
   /opt/mws/utils
```

Copy the extracted utility files to the utility directory created above and give the tomcat user ownership of the directory.

```
[root]# cd utils
[root]# cp * /opt/mws/utils
[root]# chown tomcat:tomcat /opt/mws/utils/*
```

 Merge the changes in the /tmp/mws-install/mws-9.0.2/mwsconfig.groovy file into your existing /opt/mws/etc/mwsconfig.groovy.

- a. Depending on your current MWS version, do the following as needed:
 - If Insight is part of your configuration:
 - add the health check information for the Insight Server (insight.server, insight.command.port, insight.command.timeout.seconds); prior to version 9.0.2.
 - insight.server is the DNS name of the host on which the Insight Server is running.
 - add the Insight configuration information (dataSource_ insight.username, dataSource_insight.password, dataSource_ insight.url); prior to version 9.0.

- If Viewpoint is part of your configuration, register Viewpoint as client; prior to version 9.0
- b. Confirm the value for moab.messageQueue.secretKey matches the value located in /opt/moab/etc/moab-private.cfg; if you have not yet configured a secret key, see <u>Secure communication using secret keys</u>.

The following is an example of the merged /opt/mws/etc/mws-config.groovy file for MWS 9.0.2:

```
// Any settings in this file may be overridden by any
// file in the mws.d directory.
// Change these to be whatever you like.
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"
// Moab Workload Manager configuration.
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559
moab.messageDigestAlgorithm = "SHA-1"
// MongoDB configuration.
// grails.mongo.username = "mws user"
// grails.mongo.password = "<ENTER-KEY-HERE>"
// Insight configuration.
// dataSource_insight.username = "mws"
// dataSource insight.password = "changeme!"
// dataSource insight.url = "jdbc:postgresql://127.0.0.1:5432/moab insight"
// insight.server = "localhost"
// insight.command.port = 5568
// insight.command.timeout.seconds = 5
// Message bus configuration.
moab.messageQueue.port = 5570
// moab.messageQueue.secretKey = "<ENTER-KEY-HERE>"
mws.messageQueue.address = "*"
mws.messageQueue.port = 5564
// Sample OAuth Configuration
grails.plugin.springsecurity.oauthProvider.clients = [
       [
               clientId : "viewpoint",
clientSecret : "<ENTER-CLIENTSECRET-HERE>",
               authorizedGrantTypes: ["password"]
       1
]
// Sample LDAP Configurations
// Sample OpenLDAP Configuration
//ldap.server = "192.168.0.5"
//ldap.port = 389
//ldap.baseDNs = ["dc=acme,dc=com"]
//ldap.bindUser = "cn=Manager,dc=acme,dc=com"
//ldap.password = "*****"
//ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"
// Sample Active Directory Configuration
//ldap.server = "192.168.0.5"
//ldap.port = 389
//ldap.baseDNs = ["CN=Users, DC=acme, DC=com", "OU=Europe, DC=acme, DC=com"]
//ldap.bindUser = "cn=Administrator, cn=Users, DC=acme, DC=com"
//ldap.password = "****"
//ldap.directory.type = "Microsoft Active Directory"
```

```
log4j = {
   // Configure an appender for the events log.
   def eventAppender = new org.apache.log4j.rolling.RollingFileAppender(
           name: 'events', layout: pattern(conversionPattern: "%m%n"))
   def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
           fileNamePattern: '/opt/mws/log/events.%d{yyyy-MM-dd}',
           activeFileName: '/opt/mws/log/events.log')
   rollingPolicy.activateOptions()
   eventAppender.setRollingPolicy(rollingPolicy)
   // Configure an appender for the audit log.
   def auditAppender = new org.apache.log4j.rolling.RollingFileAppender(
           name: 'audit',
           layout: new com.ace.mws.logging.ACPatternLayout("%j\t\t\t%c
{1}\t\t\t%m%n"))
   def auditRollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
           fileNamePattern: '/opt/mws/log/audit.%d{yyyy-MM-dd}',
           activeFileName: '/opt/mws/log/audit.log')
   auditRollingPolicy.activateOptions()
   auditAppender.setRollingPolicy(auditRollingPolicy)
   appenders {
       rollingFile name: 'stacktrace',
               file: '/opt/mws/log/stacktrace.log',
               maxFileSize: '100MB'
       rollingFile name: 'rootLog',
               file: '/opt/mws/log/mws.log',
               maxFileSize: '100MB', //The maximum file size for a single log
file
              maxBackupIndex: 10, //Retain only the 10 most recent log files,
delete older logs to save space
               layout: new com.ace.mws.logging.ACPatternLayout(), //Configures
the output format of each log entry
              threshold: org.apache.log4j.Level.ERROR //Ignore any logging
entries less verbose than this threshold
       rollingFile name: 'jdbc',
               file: '/opt/mws/log/jdbc.log',
               maxFileSize: '100MB',
               maxBackupIndex: 10,
               layout: new com.ace.mws.logging.ACPatternLayout()
       appender eventAppender
       appender auditAppender
   }
   // NOTE: This definition is a catch-all for any logger not defined below
   root. {
       error 'rootLog'
   // Individual logger configurations
   debug 'com.ace.mws',
           'grails.app.conf.BootStrap',
           'grails.app.controllers.com.ace.mws',
           'grails.app.domain.com.ace.mws',
           'grails.app.filters.com.ace.mws',
           'grails.app.services.com.ace.mws',
```

```
'grails.app.tagLib.com.ace.mws',
           'grails.app.jobs.com.ace.mws',
           'grails.app.gapiParser',
           'grails.app.gapiRequest',
           'grails.app.gapiSerializer',
           'grails.app.translator',
           'plugins'
                      // MWS plugins
       info 'com.ace.mws.gapi.Connection',
           'com.ace.mws.gapi.parsers',
           'grails.app.service.grails.plugins.reloadconfig',
           'com.ace.mws.gapi.serializers'
       off 'org.codehaus.groovy.grails.web.errors'
       warn additivity: false, jdbc: 'org.apache.tomcat.jdbc'
       // Logs event information to the events log, not the rootLog
       trace additivity: false, events: 'com.ace.mws.events.EventFlatFileWriter'
       // Logs audit information to the audit log, not the rootLog
       trace additivity: false, audit: 'mws.audit'
}
```

- 8. Merge any changes supplied in the new mws-config-hpc.groovy file in to your installed /opt/mws/etc/mws.d/mws-config-hpc.groovy.
- 9. Remove unused MWS plugins. Unused plugins must be removed as their presence will prevent MWS from starting up.
 - Remove all plugins from /opt/mws/plugins except for the diagnostics, native, and power-management plugins.

```
[root]# cd /opt/mws/plugins
[root]# rm plugins-reports.jar plugins-storage.jar plugins-vcenter.jar
```

- 10. Verify the Tomcat user has read access to the /opt/mws/etc/mwsconfig.groovy and /opt/mws/etc/mws.d/mws-config-hpc.groovy file.
- 11. Verify the following lines are added to the end of /etc/tomcat/tomcat.conf.

```
CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m -
Dfile.encoding=UTF8"
JAVA HOME="/usr/java/latest"
```

12. Upgrade the schema of the mws database in MongoDB.

```
You must perform this step, regardless of whether you upgraded MongoDB to version 2.4.x.
```

Run the database migration script provided with MWS. (It is safe to run this script more than once. If for any reason, errors occur during the execution of the script, run it again.)

[root] # mongo -u mws user mws /opt/mws/utils/db-migrate.js -p

I The script might take several minutes to execute.

13. Start Tomcat.

You will need to start the "tomcat" service. Starting the "tomcat6" service will install the wrong version of Tomcat.

```
[ [root]# systemctl start tomcat.service
```

14. Visit <u>http://localhost:8080/mws/</u> in a web browser to verify that MWS is running again.

You will see some sample queries and a few other actions.

15. Log into MWS to verify configuration. (The credentials are the values of auth.defaultUser.username and auth.defaultUser.password set in /opt/mws/etc/mws-config.groovy.)

If you encounter problems, or if MWS does not seem to be running, see the steps in <u>Moab Web Services Issues on page 223</u>.

Upgrading RLM Server

This topic contains instructions on how to upgrade the RLM Server.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release. Adaptive Computing *strongly* recommends that your RLM Server is v12.1 (build:2).

Upgrade the RLM Server

These instructions assume you used /opt/rlm as the install location.

On the RLM Server Host, do the following:

 Download the latest RLM build (ac-rlm-<version>.tar.gz) from the <u>Adaptive Computing Moab HPC Suite Download Center</u> (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).

2. Stop the RLM service.

```
[root]# systemctl stop rlm.service
```

3. Archive the existing RLM installation, including the license file(s).

```
[root] # mv /opt/rlm/ /opt/rlm-<archive_version>/
```

4. Install the new tarball files.

```
[root]# mkdir -p -m 0744 /opt/rlm
[root]# cd /opt/rlm
[root]# tar -xzvf /<unpack-directory>/ac-rlm-<version>.tar.gz --strip-components=1
[root]# chown -R rlm:rlm /opt/rlm
```

The --strip-components=1 removes the "ac-rlm-<version>/" from the relative path so that they are extracted into the current directory.

5. Install the startup scripts.

If you are using a user:group other than rlm:rlm or a location other than /opt/rlm, then edit the following files to reflect those changes after copying them.

```
[root]# cp systemd/rlm.service /etc/systemd/system
```

6. Restore the license file(s).

[root]# cp /opt/rlm-<archive version>/*.lic /opt/rlm/

7. Restart the RLM service.

```
[root]# systemctl daemon-reload
[root]# systemctl restart rlm.service
```

Upgrading Your Nitro Integration

This section provides instructions on upgrading your Nitro Integration as part of your Moab HPC Suite configuration.

In this section:

- Preparing for Nitro Manual Installation or Upgrade on page 95
- Upgrading Nitro on page 95
- <u>Upgrading Nitro Web Services on page 97</u>

Preparing for Nitro Manual Installation or Upgrade

This topic contains instructions on how to download and unpack the Nitro Tarball Bundle for all the hosts in your configuration.

Whether you are installing tarballs on one host or on several hosts, each host (physical machine) on which a server is installed (Nitro, Nitro Web Servcies) must have the Nitro Tarball Bundle.

Set Up Proxies

If your site uses a proxy to connect to the Internet, do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

Download and Unpack the Nitro Tarball Bundle

The Nitro Tarball Bundle contains all the tarballs available for Nitro. However, not every tarball may be installed on the same host.

On each host (physical machine), do the following:

- 1. Using a web browser, navigate to the <u>Adaptive Computing Nitro Download</u> <u>Center</u> https://www.adaptivecomputing.com/support/downloadcenter/nitro/.
- 2. Download the Nitro Tarball Bundle nitro-tarball-bundle-<version>- <OS>.tar.gz.

The variable marked <version> indicates the build's version, revision, and changeset information. The variable marked <OS> indicates the OS for which the build was designed.

3. Unpack the Nitro Tarball Bundle.

[root]# tar xzvf nitro-tarball-bundle-*<version>-<OS>*.tar.gz

Related Topics

- Nitro Integration on page 57
- Upgrading Your Nitro Integration on page 94

Upgrading Nitro

This topic contains instructions on how to upgrade Nitro.

In this topic:

- Upgrade Nitro on page 96
- Verify Network Communication on page 97

Upgrade Nitro

On the host where Nitro resides, do the following:

- 1. If you have not already done so, complete the steps to prepare the host. See <u>Preparing for Nitro Manual Installation or Upgrade on page 95</u>.
- 2. Back up your existing launch script in /opt/nitro/bin/.
- 3. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

 Identify the Nitro product tarball (nitro-<*version*>-<*OS*>.tar.gz) and unpack the tarball into the same directory you created when you first installed Nitro (for example, /opt/nitro).

[root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1

5. Identify the launch nitro.sh script version for your resource manager.

Reference scripts are provided in /opt/nitro/scripts.

[root]# find . -name launch_nitro.sh ./scripts/lsf/launch_nitro.sh ./scripts/torque/launch_nitro.sh ./scripts/slurm/launch_nitro.sh ./scripts/alps/torque/launch_nitro.sh ./scripts/alps/slurm/launch_nitro.sh

6. Copy the latest launch script to the bin directory. (This example uses the Torque-based launch script.)

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/launch_nitro.sh

This is a "copy" file operation and not a "move" operation. This allows you to customize your version of the script and always have the factory version available for consultation and/or comparison.

- 7. Merge any customizations from your existing <code>launch_nitro.sh</code> script into the script you just copied to the bin directory.
- 8. If you are not using a shared file system, copy the updated Nitro installation directory to all hosts.

Only the Nitro bin directory with its proper path is required to run Nitro jobs. This means that you only need to copy the Nitro bin directory to the other hosts.

[root]# scp -r /opt/nitro/bin root@host002:/opt,	/nitro	 >		,
nitrostat	100%	12KB	12.0KB/s	00:00
launch_nitro.sh		6890	6.7KB/s	00:00
nitro	100%	15MB	14.9MB/s	00:00

Verify Network Communication

Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports *and* that the nodes are able to communicate with one another.

Related Topics

Upgrading Your Nitro Integration on page 94

Upgrading Nitro Web Services

This topic contains instructions on how to upgrade Nitro Web Services.

Upgrade Nitro Web Services

On the host where Nitro Web Services resides, do the following:

- 1. If you have not already done so, complete the steps to prepare the host. See <u>Preparing for Nitro Manual Installation or Upgrade on page 95</u>.
- 2. Stop the services.

```
[root]# systemctl stop nitro-web-services.service
[root]# systemctl stop nitro-zmq-job-status-adapter.service
```

- 3. Back up the contents of the /opt/nitro-web-services/etc directory (at least the nitro.cfg and the zmg job status adapter.cfg files).
- 4. Remove the /opt/nitro-web-services directory.

[root]# rm -rf /opt/nitro-web-services

5. Change the directory to the root of the unpacked Nitro tarball bundle.

```
[root]# cd nitro-tarball-bundle-<version>-<OS>
```

6. Identify and unpack the Nitro Web Services tarball (nitro-web-services-<version>.<OS>.tar.gz).

```
[root]# tar -xzvpf nitro-web-services-<version>.<OS>.tar.gz
```

7. Install Nitro Web Services.

```
[root]# cd ./nitro-web-services-<version>.<OS>
[root]# ./install <directory>
# <directory> is where you want to install Nitro Web Services (defaults to /opt)
```

L

8. Restore the nitro.cfg and the zmq_job_status_adapter.cfg files (and any other files) you backed up earlier in this procedure.

See "<u>Understand and edit the configuration files.</u>" for more information on the configuration files.

9. Start the services.

[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service

Related Topics

• Upgrading Your Nitro Integration on page 94

Migrating the MAM Database from MySQL to PostgreSQL

PostgreSQL is the preferred DBMS for MAM. Customers who have already installed MySQL as the DBMS for MAM are not required to migrate their database to use PostgreSQL at this time. However, MySQL is considered deprecated and new installations will only use PostgreSQL.

PostgreSQL does not provide a standard procedure for migrating an existing database from MySQL to PostgreSQL. Adaptive Computing has had success using the py-mysql2pgsql tools for migrating/converting/exporting data from MySQL to PostgreSQL. See https://github.com/philipsoutham/py-mysql2pgsq for additional details.

To Migrate the MAM Database

This procedure was successfully tested on an actual customer MySQL database with millions of transactions on CentOS 6.4. It completed in less than an hour.

1. Make a backup copy of your MySQL mam database.

[root]# mysqldump mam > /archive/mam.mysql

- 2. Follow the instructions to Install PostgreSQL.
 - Manual Install Install and Initialize the PostgreSQL Server on page 37
 - RPM Install Install and Initialize PostgreSQL Server on page 120
- 3. Install the prerequisite packages.

```
[root]# zypper install git postgresql-devel gcc MySQL-python python-psycopg2 PyYAML
termcolor python-devel
```

4. Install pg-mysql2pgsql (from source).

```
[root]# cd /software
[root]# git clone git://github.com/philipsoutham/py-mysql2pgsql.git
[root]# cd py-mysql2pgsql
[root]# python setup.py install
```

5. Run pg-mysql2pgsql once to create a template yaml config file.

```
[root]# py-mysql2pgsql -v
```

6. Edit the config file to specify the MySQL database connection information and a file to output the result.

```
[root] # vi mysql2pgsql.yml
mysql:
hostname: localhost
port: 3306
socket:
username: mam
password: changeme
database: mam
compress: false
destination:
# if file is given, output goes to file, else postgres
file: /archive/mam.pgsql
postgres:
hostname: localhost
port: 5432
username:
password:
database:
```

7. Run the pg-mysql2pgsql program again to convert the database.

[root]# py-mysql2pgsql -v

8. Create the mam database in PostgreSQL.

```
[root]# su - postgres
[postgres]$ psql
postgres=# create database "mam";
postgres=# create user mam with password 'changeme!';
postgres=# \q
[postgres]$ exit
```

9. Import the converted data into the PostgreSQL database.

```
[root]# su - mam
[mam]$ psql mam < /archive/mam.pgsql</pre>
```

10. Point MAM to use the new postgresql database.

11. Restart Moab Accounting Manager.

[mam]S_mam_corrupr_r
·

Т

Chapter 3 RPM installation Method

This chapter contains an introduction to the RPM Installation method and explains how to prepare your component hosts (physical machines in your cluster) for the RPM installations and upgrades. Information and configuration information for each Moab HPC Suite product or module using the RPM Installation method, is also provided.

In this chapter:

- About RPM Installations and Upgrades on page 102
- Preparing the Host Typical Method on page 104
- Creating the moab-offline Tarball on page 106
- Preparing the Host Offline Method on page 109
- <u>RPM Installations on page 110</u>
- <u>RPM Upgrades on page 186</u>

About RPM Installations and Upgrades

This topic contains information useful to know and understand when using RPMs for installation and upgrading.

Adaptive Computing provides RPMs to install or upgrade the various component servers (such as Moab Server, MWS Server, Torque Server). The Moab HPC Suite RPM bundle contains all the RPMs for the Moab HPC Suite components and modules. However, not every component may be installed or upgraded on the same host (for example, it is recommended that you install the Torque Server on a different host from the Moab Server.

In this topic:

- <u>RPM Installation and Upgrade Methods on page 102</u>
- Special Considerations on page 103
- Installation and Upgrade Process on page 103

RPM Installation and Upgrade Methods

Depending on your configuration, you may install many servers on a single host, or a single server on its own host. In addition, you can install various clients and GUIs on the same host you installed the server or on another host. For example, you have the Moab Server and the MWS Server on the same host (required) and you install the Torque Server on a different host (recommended).

Be aware that the same host may be called by different names. For example, even though the Moab Server and the MWS Server are installed on the same host, the MWS instructions will call it the MWS Server Host, not the Moab Server Host.

Adaptive Computing provides two different types of RPM installation or upgrade methods.

- The typical method is the original RPM method in which you download the Moab HPC Suite RPM bundle to each host in your Moab HPC Suite environment.
- The offline method is available for configurations where the hosts in your Moab HPC Suite environment do *not* have internet access in order to download the Moab HPC Suite RPM dependencies. This method requires an authorized user to download the Moab HPC Suite RPM bundle and other related dependencies and create a moab-offline tarball. That tarball is then copied (using scp, DVD, USB drive, or similar) to each host in your

Moab HPC Suite environment. See <u>Creating the moab-offline Tarball on</u> page 106 for instructions on how to create the tarball.

Special Considerations

Be aware of the following:

- On SLES systems, you must be registered for a SUSE Linux Enterprise subscription in order to have access to required rpm package dependencies.
- Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges. You will see that the instructions execute commands as the root user. Also be aware that the same commands will work for a non-root user with the sudo command.
- If using the offline method, the internet-enabled host *must* have the *exact* same OS as the hosts within your Moab HPC Suite environment. As the Moab HPC Suite can have several hosts, and each host may not use the same OS, you may need to repeat this procedure for each OS used.

Installation and Upgrade Process

Each host (physical machine) will need to have the Moab HPC Suite RPM bundle and the Adaptive Computing repository enabled. This is referred to as preparing the host. Again this can be done using the typical or the offline method. See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing</u> the Host – Offline Method on page 109.

Once each host has been prepared, you can install or upgrade the individual components on the designated hosts. It is recommended that you or upgrade the software components in the following order.

- 1. Torque Resource Manager. See <u>Installing Torque Resource Manager on</u> page 110 or <u>Upgrading Torque Resource Manager (RPM) on page 186</u>.
- 2. Moab Workload Manager. See <u>Installing Moab Workload Manager on page</u> <u>114</u> or <u>Upgrading Moab Workload Manager (RPM) on page 189</u>.
- 3. Moab Accounting Manager. See <u>Installing Moab Accounting Manager on</u> page 117 or <u>Upgrading Moab Accounting Manager (RPM) on page 192</u>.
- 4. Moab Web Services. See <u>Installing Moab Web Services on page 125</u> or <u>Upgrading Moab Web Services (RPM) on page 194</u>.
- 5. Moab Insight. See <u>Installing Moab Insight on page 133</u> or <u>Upgrading Moab</u> <u>Insight (RPM) on page 201</u>.
- 6. Moab Viewpoint. See <u>Installing Moab Viewpoint on page 143</u> or <u>Upgrading</u> <u>Moab Viewpoint (RPM) on page 203</u>.

Т

- 7. RLM Server (if using Viewpoint's Remote Visualization or Nitro and you do not already have an RLM Server). See <u>Installing RLM Server on page 156</u> or <u>Upgrading RLM Server (RPM) on page 207</u>
- 8. Remote Visualization. See <u>Installing Remote Visualization on page 158</u> or <u>Upgrading Remote Visualization (RPM) on page 208</u>.
- 9. Integrate Nitro with your Moab HPC Suite. See <u>Nitro Integration on page</u> <u>172</u> or <u>Upgrading Your Nitro Integration (RPM) on page 215</u>.

Related Topics

• Chapter 3 RPM installation Method on page 101

Preparing the Host – Typical Method

This topic contains instructions on how to download the Moab HPC Suite RPM bundle and enable the Adaptive Computing repository for all the hosts in your configuration.

The Moab HPC Suite RPM bundle contains all the RPMs for the Moab HPC Suite components and modules. However, not every component may be installed on the same host (for example, it is recommended that you install the Torque Server on a different host from the Moab Server.

Whether you are installing RPMs on one host or on several hosts, each host (physical machine) on which a server is installed (Torque Server Host, Moab Server Host, etc) must have the Adaptive Computing Package Repository enabled. If Remote Visualization is part of your configuration, the Adaptive Computing Package Repository must also be enabled on the Torque MOM Hosts (compute nodes); otherwise is not necessary to enable the Adaptive Computing repository on the Torque MOM Hosts or client hosts.

On each host (physical machine), do the following:

1. If your site uses a proxy to connect to the Internet, do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

2. Add the SLES 12 DVD ISO image as a repository.

```
[root]# zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-Server-DVD-x86_64-
GM-DVD1.iso sles12sp1_dvd1
```

3. Download the SUSE Linux Enterprise 12 Software Development Kit e-Media
Kit and add the ISO image as a repository.

```
[root]# zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-SDK-DVD-x86_64-GM-
DVD1.iso sles12sp1_sdk1
```

- 4. Download the 2.0.1.1 Moab HPC Suite RPM bundle from the <u>Adaptive</u> <u>Computing Moab HPC Suite Download Center</u> (https://www.adaptivecomputing.com/support/download-center/moabhpc-suite-download/).
- 5. Untar the RPM bundle.

[root]# tar zxf *<RPM bundle>*

6. Change directories into the untarred directory.

Consider reviewing the README file for additional details on using the RPM distribution tarball.

7. Install the suite repositories. The -y option installs with the default settings for the RPM suite.

For a description of the options of the repository installer script, run: [root]# ./install-rpm-repos.sh -h

[root]# ./install-rpm-repos.sh [<repository-directory>] [-y]

If the installation returns the following warning line:

Warning: RPMDB altered outside of yum.

This is normal and can safely be ignored.

The [<*repository-directory*>] option is the directory where you want to copy the RPMs. If no argument is given, run "install-rpm-repos.sh -h" to view usage information and identify the default directory location. If the [<*repository-directory*>] already exists, RPMs will be added to the existing directory. No files are overwritten in [<*repository-directory*>].

A repository file is also created and points to the [*<repository-directory>*] location.

The repository files is created in /etc/zypp/repos.d/.

For ease in repository maintenance, the install script fails if Adaptive Computing RPMs are copied to different directories. If a non-default [*<repository-directory>*] is specified, please use the same directory for future updates.

The script installs the <code>createrepo</code> package and its dependencies. You must answer "y" to all the questions in order for the RPM install of the suite to work.

Additionally, the script installs the openSUSE Apache:Modules, devel:languages:python, devel:languages:perl, and server:database repositories.

8. Test the repository.

```
[root]# zypper search moab
```

If no error is given, the repository is correctly installed. The following is an example of the output after verifying the repository:

```
>moab-accounting-manager.x86_64 : Moab Accounting Manager for Moab HPC Suite
moab-hpc-enterprise-suite.noarch : Moab HPC Suite virtual package
moab-insight.x86_64 : Moab Insight
moab-perl-RRDs.noarch : Moab RRDs
moab-tomcat-config.x86_64 : Tomcat Configuration for Web Services
moab-web-services.x86_64 : Moab Web Services
moab-workload-manager.x86_64 : Moab Workload Manager
moab-workload-manager-client.x86_64 : Moab Workload Manager Client
moab-workload-manager-client.x86_64 : Moab Workload Manager Common Files
moab-perl-data.noarch : Perl Configuration for perl packages by Adaptive Computing
moab-torque-client.x86_64 : Torque Client
moab-torque-devel.x86_64 : Torque Development Files
moab-torque-mom.x86_64 : Torque Server
...
```

 Continue with instructions to install or upgrade the Moab HPC Suite components. See <u>Installation and Upgrade Process on page 103</u> for more information.

Creating the moab-offline Tarball

The Moab Offline Tarball is *only* created if you are using the RPM Installation – Offline Method. See <u>RPM Installation and Upgrade Methods</u> <u>on page 102</u> for more information.

This topic contains instructions on how to create a moab-offline tarball on a web-enabled host outside of your Moab HPC Suite environment. This is the tarball that is then copied (using either by scp, DVD, USB or similar) to each host within your Moab HPC Suite environment.

The internet-enabled host must have the exact same OS as the hosts within your Moab HPC Suite environment. As the Moab HPC Suite can have several hosts, and each host may not use the same OS, you may need to repeat this procedure for each OS used.

These instructions assume the user is non-root, but has sudo rights.

On a web-enabled host, do the following:

1. If the host uses a proxy to connect to the Internet, do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

- 2. Download the 2.0.1.1 Moab HPC Suite RPM bundle from the <u>Adaptive</u> <u>Computing Moab HPC Suite Download Center</u> https://www.adaptivecomputing.com/support/download-center/moab-hpcsuite-download/.
- 3. Untar the RPM bundle.

tar zxf <RPM bundle>

4. Change directories into the untarred directory.

Consider reviewing the README file for additional details on using the RPM distribution tarball.

5. Install the suite repositories.

sudo ./install-rpm-repos.sh -y

If the installation returns the following warning line:

Warning: RPMDB altered outside of yum.

This is normal and can safely be ignored.

The script installs the createrepo package and its dependencies. You must answer "y" to all the questions in order for the RPM install of the suite to work.

Additionally, the script installs the openSUSE Apache:Modules, devel:languages:python, devel:languages:perl, and server:database repositories.

6. Confirm you own /opt.

sudo chown <user>:<user> /opt

7. Create the moab-offline directory in which to store the RPMs.

```
mkdir /opt/moab-offline
```

8. Download the Moab HPC Suite RPMs into the moab-offline directory.

Do the following:

a. Configure zypper to have access to the SLES 12 (service pack 1) DVD1 and SDK1 ISO repositories.

```
zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-SDK-DVD-x86_64-GM-
DVD1.iso sles12sp1_sdk1
zypper addrepo --refresh iso:/?iso=/srv/iso/SLE-12-SP1-Server-DVD-x86_64-GM-
DVD1.iso sles12sp1_dvd1
```

 b. Use zypper to download all packagers and dependencies with the --download-only option. The files will be downloaded into /var/cache/zypp/packages.

sudo zypper install --download-only moab-hpc-suite

c. Copy the downloaded RPMs into the moab-offline directory.

find /var/cache/zypp/packages/ -type f|xargs -I '{}' cp '{}' /opt/moab-offline/

9. Download the Java RPM into the moab-offline directory.

The Java version may vary depending on the Moab HPC Suite components in your configuration. See <u>Component Requirements on</u> <u>page 8</u> for more information.

```
cd /opt/moab-offline
wget <java url>
```

10. Create a repository file for the moab-offline directory.

The createrepo package and its dependencies should have been installed when you ran ./install-rpm-repos.sh -y.

```
echo "[moab-offline]
name=moab-offline
baseurl=file:///opt/moab-offline
failovermethod=priority
enabled=1
gpgcheck=0" > moab-offline.repo
```

11. Create the moab-offline tarball. The "h" option ensures the symlinked targets will be copied, instead of just the links.

tar hczvf moab-offline.tgz moab-offline

This tarball can now be copied (using scp, DVD, USB drive, or similar) to *each* host within your Moab HPC Suite environment.

Preparing the Host – Offline Method

The offline method is available for configurations where the hosts in your environment do not have internet access in order to download the Moab HPC Suite RPM dependencies.

This topic describes how to deploy the moab-offline tarball so that you can install various Moab HPC Suite components and their dependencies on all the hosts in your environment.

On each host (physical machine), do the following:

- 1. If you have not already done so, copy the moab-offline tarball to the host. For example, copy it from a CD, USB drive, or Shared network drive. See <u>Creating the moab-offline Tarball on page 106</u> for instructions on how to create the tarball.
- 2. Place the moab-offline tarball in the /opt directory and enter that directory.

```
mv moab-offline.tgz /opt
cd /opt
```

3. Untar the moab-offline directory.

```
tar xvzf moab-offline.tgz
```

- 4. Copy the moab-offline.repo into place.
 - a. Copy to zypp.repos.d.

cp moab-offline/moab-offline.repo /etc/zypp.repos.d/

b. Update the cache.

zypper clean

 Continue with instructions to install or upgrade the Moab HPC Suite components. See <u>Installation and Upgrade Process on page 103</u> for more information.

RPM Installations

This section provides instructions and other information for installing your Moab HPC Suite components for SUSE 12-based systems using the RPM installation method.

In this section:

- Preparing the Host Typical Method on page 104
- <u>Creating the moab-offline Tarball on page 106</u>
- Preparing the Host Offline Method on page 109
- Installing Torque Resource Manager on page 110
- Installing Moab Workload Manager on page 114
- Installing Moab Accounting Manager on page 117
- Installing Moab Web Services on page 125
- Installing Moab Insight on page 133
- Installing Moab Viewpoint on page 143
- Installing RLM Server on page 156
- Installing Remote Visualization on page 158
- Installing Nitro on page 173
- Installing Nitro Web Services on page 176

Installing Torque Resource Manager

If you intend to use Torque Resource Manager 6.0.2 with Moab Workload Manager, you must run Moab version 8.0 or later. However, some Torque 6.0 functionality requires Moab 9.0 or later.

This topic contains instructions on how to install, configure, and start Torque Resource Manager (Torque).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (*not* on Cray compute/service/login nodes).

However, you *must* install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_ mom *must* run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See <u>Installation Notes for Moab and Torque for Cray</u> in the *Moab Workload Manager Administrator Guide* for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Prerequisites on page 111
- Install Torque Server on page 112
- Install Torque MOMs on page 113
- Configure Data Management on page 114

Prerequisites

In this section:

- Open Necessary Ports on page 111
- Verify the hostname on page 112

Open Necessary Ports

Torque requires certain ports to be open for essential communication.

- For client and pbs_mom communication to pbs_server, the default port is 15001.
- For pbs_server communication to pbs_mom, the default port is 15002.
- For pbs_mom communication to pbs_mom, the default port is 15003.

For more information on how to configure the ports that Torque uses for communication, see <u>Configuring Ports</u> in the *Torque Resource Manager Administrator Guide* for more information.

If you have a firewall enabled, do the following:

1. On the Torque Server Host:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

Add the following port to the FW_SERVICES_EXT_TCP parameter
FW_SERVICES_EXT_TCP="15001"

[root]# service SuSEfirewall2 restart

2. On each Torque MOM Host (Compute Hosts):

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following ports to the FW_SERVICES_EXT_TCP parameter
FW_SERVICES_EXT_TCP="15002 15003"
[root]# service SuSEfirewall2 restart
```

Verify the hostname

On the Torque Server Host, confirm your host (with the correct IP address) is in your /etc/hosts file. To verify that the hostname resolves correctly, make sure that hostname and hostname -f report the correct name for the host.

Install Torque Server

You *must* complete the prerequisite tasks earlier in this topic before installing the Torque Server. See <u>Prerequisites on page 111</u>.

On the Torque Server Host, do the following:

- If you are installing the Torque Server on its own host (recommend) and not on the same host where you installed another server (such as Moab Server), verify you completed the steps to prepare the host. See <u>Preparing the Host</u> <u>– Typical Method on page 104</u> or <u>Preparing the Host – Offline Method on</u> <u>page 109</u>.
- 2. Install the Torque Server RPM.

```
[root]# zypper install moab-torque-server
```

3. Source the following file to add the Torque executable directories to your current shell *\$PATH* environment.

```
[root]# . /etc/profile.d/torque.sh
```

4. Add the hostnames of your Torque MOMs (which is commonly all of your compute nodes) to the /var/spool/torque/server_priv/nodes file. You can remove the hostname entry for the Torque server node *unless* you will be running a Torque MOM daemon on this host. See <u>Managing Nodes</u> in the *Torque Resource Manager Administrator Guide* for information on syntax

and options for specifying compute nodes.

Example:

```
[root]# vi /var/spool/torque/server_priv/nodes
node01 np=16
node02 np=16
...
```

5. Start the Torque server.

```
[root]# systemctl start pbs_server.service
[root]# systemctl start trqauthd.service
```

Install Torque MOMs

In most installations, you will install a Torque MOM on each of your compute nodes.

Do the following:

1. From the Torque Server Host, copy the moab-torque-common and moabtorque-mom RPM files to each MOM node. It is also recommended that you install the moab-torque-common RPM so you can use client commands and submit jobs from compute nodes.

[root]# scp RPMs/moab-torque-common-*.rpm <torque-mom-host>:
[root]# scp RPMs/moab-torque-mom-*.rpm <torque-mom-host>:
[root]# scp RPMs/moab-torque-client-*.rpm <torque-mom-host>:

2. On each Torque MOM Host, install the RPMs; moab-torque-common is installed *first*.

```
[root]# ssh root@<torque-mom-host>
[root]# zypper install moab-torque-common-*.rpm moab-torque-mom-*.rpm moab-torque-
client-*.rpm
```

3. On each Torque MOM Host, create or edit the /var/spool/torque/server_name file to contain the hostname of the Torque server.

[root]# echo <torque_server_hostname> > /var/spool/torque/server_name

4. On each Torque MOM Host, edit the /var/spool/torque/mom_ priv/config file. This file is identical for all compute nodes and can be created on the Torque Server and distributed in parallel to all systems.

5. On each Torque MOM Host, start the pbs_mom daemon.

[root]# systemctl start pbs mom.service

6. If you installed the Torque Client RPM on the MOMs, then on each Torque MOM Host, start the trqauthd daemon.

[root]# systemctl start trqauthd.service

Configure Data Management

When a batch job completes, stdout and stderr files are generated and placed in the spool directory on the master Torque MOM Host for the job instead of the submit host. You can configure the Torque batch environment to copy the stdout and stderr files back to the submit host. See <u>Configuring Data</u> <u>Management</u> in the *Torque Resource Manager Administrator Guide* for more information.

Related Topics

Chapter 3 RPM installation Method on page 101

Installing Moab Workload Manager

This topic contains instructions on how to install, configure, and start Moab Workload Manager (Moab).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (*not* on Cray compute/service/login nodes).

However, you *must* install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_mom *must* run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See <u>Installation Notes for Moab and Torque for Cray</u> in the *Moab Workload Manager Administrator Guide* for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Open Necessary Ports on page 115
- Install Moab Server on page 115
- <u>Configure Torque to Trust Moab on page 117</u>
- Verify the Installation on page 117

Open Necessary Ports

Moab uses a configurable server port (default 42559) for client-server communication. If you intend to run client commands on a host different from the Moab Server Host, or if you will be using Moab in a grid, and if you have a firewall enabled, then you will need to configure the firewall to allow the server port.

On the Moab Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following ports to the FW_SERVICES_EXT_TCP parameter as required
# Needed on the Moab server for off-host client communication
FW_SERVICES_EXT_TCP="42559"
[root]# service SuSEfirewall2 restart
```

Install Moab Server

On the Moab Server Host do the following:

- 1. If you configuration uses firewalls, confirm you have opened the necessary ports. See <u>Open Necessary Ports on page 115</u>.
- 2. If you have not already done so, complete the steps to prepare the Moab Server Host. See <u>Preparing the Host Typical Method on page 104</u> or <u>Preparing the Host Offline Method on page 109</u>.
- 3. Install RPM packages.
 - a. Install the Moab Server RPMs.

```
[root]# zypper install moab-workload-manager moab-workload-manager-hpc-
configuration
```

b. If you are using Torque as a resource manager and installed the Torque Server on a different host (Torque Server Host; recommended) from the Moab Server (Moab Server Host), you will need to install the Torque client RPM on the Moab Server Host in order for Moab to interact with Torque.

```
[root]# zypper install moab-torque-client
```

c. If you are using Moab Accounting Manager and will be using the Native (custom script) accounting manager interface, and are installing the Moab Accounting Manager Server on a different host from the Moab Server (Moab Server Host) you will need to the install Moab Accounting

Manager client on the Moab Server Host in order for the custom scripts to use the MAM API.

[[root]# zypper install moab-accounting-manager

4. Source the following file to add the Moab executable directories to your current shell *\$PATH* environment.

[root]# . /etc/profile.d/moab.sh

5. Copy your license file into the same directory as moab.cfg (/opt/moab/etc/ by default).

[root]# cp moab.lic \$MOABHOMEDIR/etc/moab.lic

To verify the current status of your license, run the following command:

[root] # moab --about 2>&1 | grep License

You should get something similar to the following in the response:

```
Moab Workload Manager Version '9.0.2' License Information:
Current License: Max Procs = 10000
Current License: Valid Until - Thu Jul 13 19:42:10 2017
```

A license is required for Moab. A trial license may be included in your Moab installation enabling you to run Moab for a limited time and with limited features. Email licenses@adaptivecomputing.com for information on obtaining licenses.

- 6. If you are using Torque as your resource manager and you installed the Torque Server on a different host (Torque Server Host) from the Moab Server (Moab Server Host), do the following:
 - a. Create or edit the /var/spool/torque/server_name file to contain the hostname of the Torque Server.

[root]# echo <Torque_server_hostname> > /var/spool/torque/server_name

b. Verify that the Torque Server hostname used is *exactly* the name returned by a reverse hostname lookup.

[root]# cat /var/spool/torque/server_name | perl -lpe '\$_=(gethostbyname(\$_))
[0]'

If different, take the necessary steps to make them match. For example, it may be necessary to add the Torque Server hostname to the /etc/hosts file on the Moab Server Host.

[root]# vi /etc/hosts
<Torque server ip address> <Torque server hostname> <Torque server FQDN>

c. Start the trgauthd daemon.

[root]# systemctl start trqauthd.service

7. Start Moab (assumes Moab configured with the --with-init option).

```
[root]# systemctl start moab.service
```

Configure Torque to Trust Moab

If you are using Torque as a resource manager and you installed the Torque Server on a different host (Torque Host); recommended, do the following:

• On the *Torque* Host, add the name of the Moab Server Host (where Moab Server is installed) as a manager, and submit the host.

```
[root]# qmgr
Qmgr: set server managers += root@<moab_server_hostname>
Qmgr: set server submit_hosts += <moab_server_hostname
Qmgr: exit
```

Verify the Installation

If you have a resource manager configured, verify that the scheduler is able to schedule a job. Do the following:

 Submit a sleep job as a non-root user (adaptive is used in this example) and verify the job is running.

```
[root]# su - adaptive
[adaptive]$ echo sleep 150 | msub
[adaptive]$ showq
[adaptive]$ exit
```

Related Topics

Chapter 3 RPM installation Method on page 101

Installing Moab Accounting Manager

This topic contains instructions on how to install, configure, and start Moab Accounting Manager (MAM).

Perform the following:

- 1. Plan Your Installation
- 2. Confirm Requirements

- 3. Open Necessary Ports
- 4. Install Dependencies, Packages, or Clients
- 5. Install MAM Server
- 6. Configure the MAM GUI
- 7. Access the MAM GUI
- 8. Configure Moab Workload Manager to use Moab Accounting Manager
- 9. Initialize Moab Accounting Manager

Plan Your Installation

The first step is determining the number of different hosts (physical machines) required for your MAM installation.

Your MAM installation includes:

- MAM Server
- MAM Database
- MAM GUI (optional)
- MAM Clients (possibly several hosts)

Each of these components can be installed on their own hosts (meaning the actual physical machine) or can be combined on same hosts. For example, the MAM Database can be installed on the same *host* as the MAM Server. Or the MAM Server may be installed on the same host you installed the Moab Server.

If your configuration will have the MAM PostgresSQL database on the same host as the Insight PostgreSQL database, the MAM PostgreSQL database must be same version as the Insight PostgreSQL database. See <u>Installing Moab Accounting Manager on page 117</u> for supported database versions.

Once you have determined which components are installed on which hosts, complete the rest of the instructions for the MAM installation.

The instructions that follow in this topic will use the term Host after each component to reflect installing on a host (again, meaning the physical machine). For example, MAM Server Host and MAM Database Host. Depending on your configuration, Host may refer to as installed on its own machine or installed on the same machine as another component.

Confirm Requirements

In this section:

- Hardware Requirements on page 119
- <u>Supported Operating Systems on page 119</u>
- Supported Databases on page 119

Hardware Requirements

- Dual or Quad core Intel/AMD x86-64 processor
- At least 8 GB of RAM
- 1-2 TB disk space

MAM is commonly installed on the same host as Moab; however, in some cases you might obtain better performance by installing them on different hosts.

Supported Operating Systems

MAM has been tested on the following variants of Linux:

- CentOS (6.x, 7.x)
- RHEL (6.x, 7.x)
- Scientific Linux (6.x, 7.x)
- SLES (12)

Supported Databases

MAM uses an RDBMS as a back end.

• PostgreSQL 7.2 or higher

Adaptive Computing recommends that the database used by MAM does *not* reside on the same host as the database used by Insight. However, if you choose to install the MAM PostgreSQL database on the *same* host where the Insight PostgreSQL database, then the MAM PostgreSQL database *must* be same version as the Insight PostgreSQL database. See <u>Installing Moab</u> Accounting Manager on page 117 for supported database versions.

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

Do the following as needed.

1. If you will be installing the MAM Server on a different host from where you installed the Moab Server *or* you will be installing the MAM Clients on other

hosts, then on the MAM Server Host, open the MAM Server port (7112) in the firewall.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="7112"
```

- [root]# service SuSEfirewall2 restart
- 2. If using the MAM GUI, then on the MAM GUI Host, open the https port in the firewall for secure browser communication.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="443"
[root]# service SuSEfirewall2 restart
```

3. If you will be installing the MAM Database on a different host from the MAM Server, then on the MAM Database Host, open the postgres port (5432) in the firewall.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5432"
[root]# service SuSEfirewall2 restart
```

Install Dependencies, Packages, or Clients

In this section:

- Install and Initialize PostgreSQL Server on page 120
- Install Perl ReadLine (Optional) on page 122

Install and Initialize PostgreSQL Server

Moab Accounting Manager uses a database for transactions and data persistence.

The MAM PostgreSQL database may be installed on:

- the same host as the MAM Server.
- a separate PostgreSQL database host.
- a separate shared PostgreSQL database host. If this shared database host will include the Insight PostgreSQL database, then the MAM PostgreSQL database must be same version as the Insight PostgreSQL database. See <u>Installing Moab Accounting Manager on page 117</u> for supported database versions.

On the host where the MAM PostgreSQL database will reside, do the following:

These instructions assume you will be installing the MAM PostgreSQL database on a *different host* from where the Insight PostgreSQL database will reside.

If you wish to install *both* the MAM and the Insight PostgreSQL databases on the same host, different instructions are required. For example, you will need to enable the Insight-specific postgresql RPM repo by following the RPM instructions to prepare the host (see <u>Preparing the Host – Typical</u> <u>Method on page 104</u> or <u>Preparing the Host – Offline Method on page 109</u>) and you will need to modify the MAM PostgreSQL install instructions to reflect the different version of PostgreSQL required by Insight (see <u>Install</u> <u>PostgreSQL on page 137</u> for an example of how to install PostgreSQL for Insight).

1. Install and initialize PostgreSQL.

```
[root]# zypper install postgresql-server
[root]# systemctl start postgresql.service
```

2. Configure trusted connections.

Edit or add a "host" line in the pg_hba.conf file for the interface from which the MAM Server will be connecting to the database and ensure that it specifies a secure password-based authentication method (for example, md5).

[root]# vi /var/lib/pgsql/data/pg_hba.conf
Replace 127.0.0.1 with the IP address of the MAM Server Host if the
MAM PostgreSQL server is on a separate host from the MAM server.
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

3. If the MAM Database Host is installed on a *different* host from where you will install the MAM Server, configure PostgreSQL to accept connections from the MAM Server Host.

[root]# vi /var/lib/pgsql/data/postgresql.conf
Replace <mam-server-host> with the interface name from which the MAM server
will be connecting to the database.
listen_addresses = '<mam-server-host>'

4. Start or restart the database.

[root]# systemctl enable postgresql.service
[root]# systemctl restart postgresql.service

Install Perl ReadLine (Optional)

Moab Accounting Manager can be optionally configured to provide command history editing functionality in the mam-shell command.

The perl-Term-ReadLine-Gnu package is recommended and is typically included in the standard repositories for the OS.

To install the perl-Term-ReadLine-Gnu package:

```
[root]# zypper install perl-Term-ReadLine-Gnu
```

Install MAM Server

You must complete all the previous sections in this topic before installing MAM server. See the list of steps at the beginning of this topic.

On the MAM Server Host do the following:

- 1. If you are installing the MAM Server on its own host and *not* on the same host where you installed another server (such as Moab Server), verify you completed the steps to prepare the host. See <u>Preparing the Host – Typical</u> Method on page 104 or Preparing the Host – Offline Method on page 109.
- 2. Install the MAM Server RPM.

```
zypper install moab-accounting-manager
```

- 3. As the database user, create a database called mam and grant database privileges to the mam user.
 - PostgreSQL was installed and initialized earlier in this topic. See <u>Install</u> and Initialize PostgreSQL Server on page 120.

```
[root]# su - postgres
[postgres]$ psql
create database mam;
create user mam with password 'changeme!';
\q
[postgres]$ exit
```

The password you define must be synchronized with the database.password value in /opt/mam/etc/mam-server.conf.

```
[root]# vi /opt/mam/etc/mam-server.conf
database.password = changeme!
```

4. Run the hpc.sql script to populate the Moab Accounting Manager database with objects, actions, and attributes necessary to function as an Accounting

Manager.

```
[root]# su - mam
[mam]$ psql mam < /usr/share/moab-accounting-manager/hpc.sql
[mam]$ exit</pre>
```

5. Start the mam service.

```
[root]# systemctl enable mam.service
[root]# systemctl start mam.service
```

Configure the MAM GUI

If you plan to use the web GUI, then on the MAM GUI Host, do the following:

 As root, add or edit the SSL virtual host definition as appropriate for your environment. To do so, configure the cgi-bin directory in ssl.conf. Below the cgi-bin directory element, create an alias for /cgi-bin pointing to your cgi-bin directory. If you chose to install to a cgi-bin sub-directory, you might want to create an alias for that as well. Also, add index.cgi to the DirectoryIndex so you can use the shorter sub-directory name.

```
[root]# a2enflag SSL
[root]# cp /etc/apache2/vhosts.d/vhost-ssl.template /etc/apache2/vhosts.d/mam-
ssl.conf
[root]# vi /etc/apache2/vhosts.d/mam-ssl.conf
<Directory "/srv/www/cgi-bin">
Options ExecCGI
AddHandler cgi-script .cgi
AllowOverride All
Require all granted
</Directory>
# Aliases for /cgi-bin
Alias /cgi-bin/ /srv/www/cgi-bin/
Alias /mam /srv/www/cgi-bin/mam/
# Make shorter sub-dir name available
DirectoryIndex index.cgi
```

 For the highest security, it is recommended that you install a public key certificate that has been signed by a certificate authority. The exact steps to do this are specific to your distribution and the chosen certificate authority. An overview of this process for CentOS 7 is documented at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_ Linux/7/html/System_Administrators_Guide/ch-Web_Servers.html#s2apache-mod_ssl.

Alternatively, if your network domain can be secured from man-in-themiddle attacks, you could use a self-signed certificate. Often this does not require any additional steps since in many distributions, such as Red Hat, the Apache SSL configuration provides self-signed certificates by default.

If your configuration uses self-signed certificates, do the following:

```
[root]# cd /etc/apache2
[root]# openssl genrsa -out ssl.key/server.key 1024
[root]# openssl req -new -key ssl.key/server.key -x509 -out ssl.crt/server.crt
```

3. Start or restart the HTTP server daemon.

```
[root]# systemctl enable apache2.service
[root]# systemctl restart apache2.service
```

Access the MAM GUI

If you plan to use the web GUI, then on the MAM Server Host, do the following:

1. Create a password for the mam user to be used with the MAM Web GUI.

```
[root]# su - mam
[mam]$ mam-set-password
[mam]$ exit
```

- 2. Verify the connection.
 - a. Open a web browser and navigate to https://<mam-serverhost>/mam.
 - b. Log in as the mam user with the password you set in step 1.

Configure Moab Workload Manager to use Moab Accounting Manager

Do the following, where applicable:

1. On the *Moab* Server Host, edit the Moab configuration file.

```
[root]# vi /opt/moab/etc/moab.cfg
AMCFG[mam] TYPE=MAM HOST=<mam server host>
```

- a. Uncomment the AMCFG lines and customize as needed. See <u>Accounting</u>, <u>Charging</u>, and <u>Allocation Management</u> in the *Moab Workload Manager Administrator Guide*.
- b. If the Moab Server and the MAM Server are on the same host, set HOST to 'localhost'; otherwise, set HOST to the host name for the MAM Server (MAM Server Host).
- 2. Configure Moab to authenticate with MAM using the MAM secret key.
 - a. On the MAM Server Host, copy the auto-generated secret key from the token.value value in the /opt/mam/etc/mam-site.conf file.
 - b. On the *Moab* Server Host, add the secret key to the moab-private.cfg file as the value of the CLIENTCFG KEY attribute.

[root]# vi /opt/moab/etc/moab-private.cfg

```
CLIENTCFG[AM:mam] KEY=<MAMSecretKey>
```

3. Restart Moab

[root]# systemctl restart moab.service

Initialize Moab Accounting Manager

You will need to initialize Moab Accounting Manager to function in the way that is most applicable to the needs of your site. See <u>Initial Setup</u> in the *Moab Accounting Manager Administrator Guide* to set up Moab Accounting Manager for your desired accounting mode.

Related Topics

Chapter 3 RPM installation Method on page 101

Installing Moab Web Services

You must deploy Moab Web Services on the *same* host as Moab Server (Moab Server Host). For documentation clarity, these instructions refer to the host for Moab Server and MWS Server as the MWS Server Host.

This topic contains instructions on how to install, configure, and start Moab Web Services (MWS).

In this topic:

- Open Necessary Ports on page 125
- Install Dependencies, Packages, or Clients on page 126
- Install MWS Server on page 128
- Verify the Installation on page 132

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Tomcat Port (8080) on page 125
- Open the MWS MongoDB Database Port (27017) on page 126

Open the Tomcat Port (8080)

On the MWS Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW SERVICES EXT TCP="8080"
```

```
[root]# service SuSEfirewall2 restart
```

Open the MWS MongoDB Database Port (27017)

Depending on your system configuration, your MongoDB databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the MWS MongoDB database on the same host where you have installed other MongoDB databases instead of on the MWS Server Host.

Do the following, as needed:

- If you have chosen to install the MWS MongoDB database on the *same* host you installed other MongoDB databases (for example, the same host you installed the Moab MongoDB database), confirm the firewall port (27017) is already opened on that host.
- If you have chosen to install the MWS MongoDB database on a *different* host from other MongoDB databases, you will need to open the MWS MongoDB database port in firewall for that host. To open the port in the firewall, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="27017"
[root]# service SuSEfirewall2 restart
```

Install Dependencies, Packages, or Clients

In this section:

- Install Java on page 126
- Install MongoDB on page 127

Install Java

Install the Linux x64 RPM version of Oracle® Java® 8 Runtime Environment.

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run MWS.

On the MWS Server Host, do the following:

- 1. Install the Linux x64 RPM version of Oracle Java SE 8 JRE.
 - a. Go to the to the <u>Oracle Java download page</u> (http://java.com/en/download/linux_manual.jsp).
 - b. Copy the URL for the Linux x64 RPM version, and run the following command:

```
[root]# ln -s /usr/sbin/update-alternatives /usr/sbin/alternatives
[root]# rpm -Uh <URL>
```

Install MongoDB

To install and enable MongoDB, on the MWS Server Host, do the following:

1. Install MongoDB

```
[root]# zypper install mongodb
```

2. Start MongoDB.

There may be a short delay (approximately 3 minutes) for Mongo to start the first time.

```
[root]# systemctl enable mongodb.service
[root]# systemctl start mongodb.service
```

- 3. Prepare the MongoDB database by doing the following:
 - a. Add the required MongoDB users.

The passwords used below (secret1, secret2, and secret3) are examples. Choose your own passwords for these users.

```
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");
> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);
> use mws;
> db.addUser("mws_user", "secret3");
> exit
```

Because the admin_user has read and write rights to the admin database, it also has read and write rights to all other databases. See <u>Control Access to MongoDB Instances with Authentication</u> (http://docs.mongodb.org/manual/tutorial/control-access-tomongodb-with-authentication/) for more information.

b. Enable authentication in MongoDB.

MongoDB authententication is already enabled. No further action is needed.

Install MWS Server

You must complete the tasks to install the dependencies, packages, or clients before installing MWS Server. See <u>Install Dependencies, Packages,</u> or Clients on page 126.

If your configuration uses firewalls, you *must also* open the necessary ports before installing MWS Server. See <u>Open Necessary Ports on page</u> 125.

On the MWS Host, do the following:

1. Install the MWS RPMs.

[root]# zypper install moab-web-services moab-web-services-hpc-configuration

2. Connect Moab to MongoDB

The USEDATABASE parameter is unrelated to the MongoDB configuration.

a. Set the MONGOSERVER parameter in /opt/moab/etc/moab.cfg to the MongoDB server hostname. Use localhost as the hostname if Moab and MongoDB are on the same host.

MONGOSERVER <host>[:<port>]

If your MONGOSERVER host is set to anything other than localhost, edit the /etc/mongod.conf file on the MongoDB Server host and either comment out any bind_ip parameter or set it to the correct IP address.

Listen to local interface only. Comment out to listen on all interfaces. #bind_ip=127.0.0.1

b. In the /opt/moab/etc/moab-private.cfg file, set the MONGOUSER and MONGOPASSWORD parameters to the MongoDB moab_user credentials you set. See <u>Install MongoDB on page 127</u> earlier in this topic.

MONGOUSER moab_user MONGOPASSWORD secret2

c. Verify that Moab is able to connect to MongoDB.

```
[root]# systemctl restart moab.service
[root]# mdiag -S | grep Mongo
Mongo connection (localhost) is up (credentials are set)
```

- 3. Secure communication using secret keys
 - a. (Required) Moab and MWS use Message Authentication Codes (MAC) to ensure messages have not been altered or corrupted in transit. Generate a key and store the result in /opt/moab/etc/.moab.key.

```
[root]# systemctl stop moab.service
[root]# dd if=/dev/urandom count=24 bs=1 2>/dev/null | base64 >
/opt/moab/etc/.moab.key
[root]# chown root:root /opt/moab/etc/.moab.key
[root]# chmod 400 /opt/moab/etc/.moab.key
[root]# systemctl start moab.service
```

- b. (Optional) Moab supports message queue security using AES. This feature requires a Base64-encoded 16-byte (128-bit) shared secret.
 - a. Generate a key and append the result to /opt/moab/etc/moabprivate.cfg.

```
[root]# systemctl stop moab.service
[root]# echo "MESSAGEQUEUESECRETKEY $(dd if=/dev/urandom count=16 bs=1
2>/dev/null | base64)" >> /opt/moab/etc/moab-private.cfg
[root]# systemctl start moab.service
```

If MWS is configured to encrypt the message queue and Moab is not (or vice versa), then MWS will ignore the messsages from Moab. Furthermore, all attempts to access the MWS service resource will fail.

b. Verify that encryption is on for the ZeroMQ connection.

```
[root]# mdiag -S|grep 'ZeroMQ MWS'
ZeroMQ MWS connection is bound on port 5570 (encryption is on)
```

- 4. Set up the MWS configuration file.
 - a. In the /opt/mws/etc/mws-config.groovy file, change these settings:
 - moab.secretKey: Must match the Moab secret key you generated earlier (contained in /opt/moab/etc/.moab.key).
 - auth.defaultUser.username: Any value you like, or leave as is.
 - auth.defaultUser.password: Any value you like, but choose a strong password.

 moab.messageQueue.secretKey: If you opted to configure a message queue security key in MWS, this parameter value should match exactly that key specified in /opt/moab/etc/moab-private.cfg for the MESSAGEQUEUESECRETKEY Moab configuration parameter you generated earlier.

If MWS is configured to encrypt the message queue and Moab is not (or vice versa), then the messages from Moab will be ignored. Furthermore, all attempts to access the MWS service resource will fail.

```
[root]# vi /opt/mws/etc/mws-config.groovy
// Replace <ENTER-KEY-HERE> with the contents of /opt/moab/etc/.moab.key.
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559
// Replace <ENTER-KEY-HERE> with the value of MESSAGEQUEUESECRETKEY in
/opt/moab/etc/moab-private.cfg.
moab.messageQueue.secretKey = "<ENTER-KEY-HERE>"
// Change these to be whatever you like.
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"
```

If you do not change **auth.defaultUser.password**, your MWS will not be secure (because anyone reading these instructions would be able to log into your MWS). Here are some <u>tips</u> for choosing a good password.

- b. If you are using Moab Accounting Manager, change these settings in /opt/mws/etc/mws.d/mws-config-hpc.groovy:
 - mam.secretKey: needs to match the MAM secret key in /opt/mam/etc/mam-site.conf on the MAM Server (as token.value)
 - mam.server: set to the hostname of the MAM Server
 - mam.port: set to the port of the MAM Server

```
[root]# vi /opt/mws/etc/mws.d/mws-config-hpc.groovy
mam.secretKey = "<ENTER-KEY-HERE>"
mam.server = "localhost"
mam.port = 7112
```

- c. Do one of the following:
 - You can configure only one authentication method in /opt/mws/etc/mws-config.groovy—LDAP or PAM, but not both. If you have configured both LDAP and PAM, MWS defaults to using LDAP.

If you need multiple authentication methods, you must add them to your local PAM configuration. See your distribution documentation for details.

• If you are configuring an MWS connection to your LDAP server, add the following parameters to the /opt/mws/etc/mws-config.groovy file:

ldap.server = "192.168.0.5" ldap.port = 389 ldap.baseDNs = ["dc=acme,dc=com"] ldap.bindUser = "cn=Manager,dc=acme,dc=com" ldap.password = "*****" ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

This is just an example LDAP connection. Be sure to use the appropriate domain controllers (dc) and common names (cn) for your environment.

If you followed the Adaptive Computing tutorial, <u>Setting Up</u> <u>OpenLDAP on CentOS 6</u>, your Idap.directory.type should be set to "OpenLDAP Using InetOrgPerson Schema." However, the use of other schemas is supported. For more information see <u>LDAP</u> <u>Configuration Using mws-config.groovy</u>.

To see how to configure a secure connection to the LDAP server, see <u>Securing the LDAP Connection</u>.

• If you are configuring MWS to use PAM, add the the pam.configuration.service parameter to the /opt/mws/etc/mws-config.groovy file. For example:

pam.configuration.service = "login"
This is just an example PAM configuration file name. Make sure you specify the name of the
configuration file you want MWS to use.

Configuring MWS to authenticate via PAM using local passwd and shadow files presents a significant security risk. To make local authentication work, you would need to run Tomcat as root or give Tomcat read access to /etc/shadow. This configuration is highly discouraged and is not supported by Adaptive Computing.

The recommended approach is to configure PAM and NSS to authenticate against NIS or LDAP. For example, to make sure users with both local and NIS accounts are authenticating against NIS, configure the <code>nsswitch.conf</code> file as shown below.

passwd: nis files shadow: nis files group: nis files

For more information about PAM configuration with MWS, see <u>PAM (Pluggable Authentication Module) Configuration Using mwsconfig.groovy</u>.

d. Add the grails.mongo.username and grails.mongo.password parameters to the /opt/mws/etc/mws-config.groovy file. Use the MWS credentials you added to MongoDB.

```
...
grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"
```

5. Start or restart Tomcat.

```
[root]# systemctl enable tomcat.service
[root]# systemctl restart tomcat.service
```

Verify the Installation

- 1. Open a web browser.
- 2. Navigate to http://<server>:8080/mws/. You will see some sample queries and a few other actions.
- 3. Log in to MWS to verify that your credentials are working. (Your login credentials are the auth.defaultUser.username and auth.defaultUser.password values you set in the /opt/mws/etc/mws-config.groovy file.)

If you encounter problems, or if the application does not seem to be running, see the steps in Moab Web Services Issues on page 223.

Related Topics

- Chapter 3 RPM installation Method on page 101
- Installing Moab Workload Manager on page 114

Installing Moab Insight

This topic contains instructions on how to install Moab Insight (Insight).

Because Insight accumulates data for one cluster at a time, one Insight Server (daemon) should service one Moab instance. However, you can configure PostgreSQL to aggregate data using database replication mechanisms if you desire cross-cluster data.

Moab Workload Manager and Insight both tend to heavily consume system resources. Therefore, Adaptive Computing requires that the Insight Server and the Moab Workload Manager Server run on different hosts. For these installation instructions, the "Moab Server Host" refers to one host and the "Insight Server Host" refers to another host.

In this topic:

- Prerequisites on page 133
- Dependencies, Packages, or Client Installations on page 135
- Install Insight on page 139

Prerequisites

In this section:

Т

- Open Necessary Ports on page 134
- Verify the hostname on page 135

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Insight Server Port (5568)
- Open the Insight PostgreSQL Database Port (5432)
- Open the MongoDB Database Port (27017)
- Open the Moab Server Ports (5574 and 5575)

Open the Insight Server Port (5568)

On the Insight Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

```
FW_SERVICES_EXT_TCP="5568"
[root]# service_SuSEfirewall2 restart
```

Open the Insight PostgreSQL Database Port (5432)

Insight requires access to the Insight PostgreSQL database. Depending on your system configuration, your PostgreSQL databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the Insight PostgreSQL database on the same host where you have installed the Moab PostgreSQL database instead of on the Insight Server Host.

On the Insight Database Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5432"
[root]# service SuSEfirewall2 restart
```

Open the MongoDB Database Port (27017)

Insight also requires access to the Moab MongoDB database. Depending on your system configuration, your MongoDB databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the Insight MongoDB on the same host where you have installed other MongoDB databases instead of on the Insight Server Host.

Do the following, as needed:

L

- If you have chosen to install the Insight MongoDB database on the *same* host you installed the Moab MongoDB database, confirm the firewall port (27017) is already opened on that host.
- If you have chosen to install the Insight MongoDB database on a *different* host from the Moab MongoDB database (for example if you installed the Insight MongoDB database on the Insight Server Host or on still a different host), you will need to make sure that *both* the Moab MongoDB database host and the Insight MongoDB database host have the firewall port (27017) open. To open the port in the firewall, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="27017"
[root]# service SuSEfirewall2 restart
```

Open the Moab Server Ports (5574 and 5575)

On the Moab Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5574 5575"
[root]# service SuSEfirewall2 restart
```

Verify the hostname

On the Insight Server Host, confirm your host (with the correct IP address) is in your /etc/hosts file. To verify that the hostname resolves correctly, make sure that hostname and hostname -f report the correct name for the host.

Dependencies, Packages, or Client Installations

In this section:

- Install Java on page 135
- Install MongoDB on page 136
- Install PostgreSQL on page 137

Install Java

Install the Linux x64 RPM version of Oracle® Java® 8 Runtime Environment.

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported.. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run Insight.

On the Insight Server Host, do the following:

- 1. Install the Linux x64 RPM version of Oracle Java SE 8 JRE.
 - a. Go to the to the <u>Oracle Java download page</u> (http://java.com/en/download/linux_manual.jsp).
 - Copy the URL for the Linux x64 RPM version, and run the following command:

```
[root]# ln -s /usr/sbin/update-alternatives /usr/sbin/alternatives
[root]# rpm -Uh <URL>
```

Install MongoDB

The Insight MongoDB may be installed on the Insight Server Host or on different host. If you will install on a different host, and your configuration uses firewalls, open the necessary port. See <u>Open Necessary Ports on</u> page 134

To install and enable MongoDB, do the following:

- 1. On the host you have chosen to install the Insight MongoDB database, do the following:
 - a. Install mongodb.

[root]# zypper install mongodb

b. Start MongoDB.

There may be a short delay (approximately 3 minutes) for Mongo to start the first time.

```
[root]# systemctl enable mongodb.service
[root]# systemctl start mongodb.service
```

2. Add the required MongoDB users to Insight MongoDB and Moab MongoDB; regardless of whether they share a host.

These instructions show password examples (secret1, secret2, and secret3). Choose your own passwords for these users.

• Insight MongoDB

```
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");
> use insight;
> db.addUser ("insight_user", "secret4");
> db.addUser("mws_user", "secret3", true);
> exit
```

Moab MongoDB

```
[root]# mongo
> use admin;
> db.auth("admin_user", "secret1");
> use moab;
> db.addUser ("insight_user", "secret4", true);
> exit
```


3. Edit the MongoDB configuration.

Verify user authentication is enabled in MongoDB and that the mongo server is listening for external connections. By default some versions of MongoDB listen only for connections from localhost. Commenting out bind_ip causes the mongo server to listen on all interfaces.

If Insight MongoDB resides on a different host from Moab MongoDB, you will need to perform this procedure twice (once for each host).

```
[root]# vi /etc/mongodb.conf
#bind_ip = <local_host>
...
auth = true
[root]# systemctl restart mongodb.service
```

Install PostgreSQL

The Insight PostgreSQL database may be installed on the Insight Server Host or on different host. If you will install on a different host, and your configuration uses firewalls, open the necessary port. See <u>Open</u> <u>Necessary Ports on page 134</u>.

On the host you have chosen to install the Insight PostgreSQL database, do the following:

1. Install PostgreSQL.

```
[root]# zypper install postgresql-server
[root]# systemctl start postgresql
```

2. Edit the PostgreSQL configuration file to listen for connections on all interfaces. See the documentation provided in the postgresql.conf file if you want to be more restrictive.

```
[root]# vi /var/lib/pgsql/data/postgresql.conf
# Uncomment the listen addresses line in the configuration:
listen addresses = '*'
```

3. Edit the PostgreSQL host-based authentication (HBA) configuration file to enable TCP connections using encrypted passwords (change ident to md5) and add a line for each host that needs to connect to the database. See the "ADDRESS" documentation provided in pg_hba.conf for details.

[root]# vi /var/lib/pgsql/data/pg_hba.conf

If you are using MWS, add the IP address of the host on which MWS Server is installed. This is shown in the following example as <*MWS_host_address*>.

Using "0.0.0.0/0" in place of "<*MWS_host_address*>" will allow connections from all hosts.

If the "host" lines are not present, add them as they appear in the example.

(# TYPE	DATABASE	USER	ADDRESS	METHOD
 # "loca local	al" is for Unix all	domain socket con all	nections only	peer
# IPv4 host using M	local connectio all WS	ns: all	<mws_host_address>/32</mws_host_address>	md5 # If
host host	all all	all all	<insight_host_address>/32 127.0.0.1/32</insight_host_address>	md5 md5
# IPv6 host	local connectio all	ns: all	::1/128	md5

4. Start or restart the PostgreSQL database.

[root]#	evetomet]	enable nostgresgi service	Į
[1000]#	Systemetr	enable postgresqr.service	ł
[root]#	systemctl	restart postgresgl.service	ļ
	-		J

Install Insight

You must complete the tasks to install the dependencies, packages, or clients before installing Insight Server. See <u>Dependencies</u>, Packages, or <u>Client Installations on page 135</u>.

If your configuration uses firewalls, you *must also* open the necessary ports before installing Insight Server. See <u>Open Necessary Ports on page</u> 134.

These instructions contain steps to edit the /opt/insight/etc/config.groovy file.

Commented out values in the config.groovy file are not necessarily the default values.

It is recommended that anytime you edit the config.groovy file that you first stop Insight, edit the file and then restart Insight.

- 1. If you have not already done so, complete the steps to prepare the Insight Server Host. See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host – Offline Method on page 109</u>.
- 2. Install the Insight RPM.

[root]# zypper install moab-insight

3. Create the Insight user and PostgreSQL database.

PostgreSQL was installed earlier in this topic. See <u>Install PostgreSQL</u> on page 137.

This instructions show the default changeme! password. Change this password according to your password security process.

a. Change to the postgres user.

su - postgres

b. Do the following:

```
[postgres]$ psql
CREATE USER moab_insight WITH PASSWORD 'changeme!';
CREATE DATABASE moab_insight WITH OWNER=moab_insight;
CREATE DATABASE moab_insight_reference WITH OWNER=moab_insight;
\q
```

c. Initialize the moab_insight database. This sets up event triggers so that database schema validation works correctly in Insight.

[postgres]\$ psql moab insight -f /opt/insight/db/initialize.sql

- d. If you are also using MWS, create and grant permissions for the MWS user to query the database.
 - i. Log in to the moab_insight database.

[postgres]\$ psql moab_insight

ii. Create the MWS user and grant the MWS user select permissions on all tables in the public schema.

```
CREATE USER mws WITH PASSWORD 'changeme!';
GRANT SELECT ON ALL TABLES IN SCHEMA public TO mws;
```

iii. Connect to the moab_insight database as the moab_insight user. You will be prompted for the password your selected for the moab_insight user earlier in the procedure (default is "changeme!").

\connect moab insight moab insight localhost

iv. Grant the MWS user select permissions on all tables in the public schema.

```
ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT SELECT ON TABLES TO mws;
\q
[postgres]$ exit
```

- 4. If you are using MWS, on the MWS Server Host, do the following:
 - a. Add or edit the following parameters in the /opt/mws/etc/mwsconfig.groovy file to specify connection information for the Insight Server and Database.

```
[root]# vi /opt/mws/etc/mws-config.groovy
dataSource_insight.url = "jdbc:postgresql://<insight_postgresql_server_ip_
address>:5432/moab_insight"
dataSource_insight.username = "<postgresql_mws_username>"
dataSource_insight.password = "<postgresql_mws_user_password>"
insight.server = "<insight_server_ip_address>"
insight.command.port = 5568
insight.command.timeout.seconds = 5
```

In this example,

- <insight_postgresql_server_ip_address> represents the DNS name for the host on which the Insight PostgreSQL database resides.
- <postgresql_mws_username> and <postgresql_mws_user_ password> represent the username and password used to connect to the Insight PostgreSQL database. These were specified for the MWS

L
user earlier in this procedure (default user is "MWS", default password is "changeme!").

- <insight_server_ip_address> represents the DNS name for the host on which the Insight Server is running.
- the default PostgreSQL port number (5432) and the default Insight command port number (5568) are used.

See Configuration in the *Moab Web Services Reference Guide* for more information on the MWS configuration properties.

b. Restart Tomcat.

```
[root]# systemctl restart tomcat.service
```

5. Configure Insight's connection to the Insight PostgreSQL database. On the **Insight Server Host, edit** /opt/insight/etc/config.groovy as follows:

```
jdbc.referenceUrl = "jdbc:postgresql://<insight postgresql server ip address>/moab
insight reference"
jdbc.url = "jdbc:postgresql://<insight postgresql server ip address>/moab insight"
jdbc.username = "moab insight"
jdbc.password = "changeme!"
```

6. Configure Insight's connection to the Insight MongoDB database and the Moab MongoDB database. On the Insight Server Host, edit /opt/insight/etc/config.groovy as follows:

```
mongo.host="<insight mongo host>"
mongo.port=<insight mongo port>
mongo.username="insight user"
mongo.password="secret4"
moab.mongo.host="<moab mongo host>"
moab.mongo.port=<moab mongo port>
```

moab.mongo.username="insight user" moab.mongo.password="secret4"

I "secret4" is the password you specified when installing the mongoDB. See Install MongoDB on page 136.

7. On the Insight Server Host, verify that Insight runs on startup.

[root]# systemctl enable insight.service

- 8. On the Moab Server Host, configure Moab's connection to Insight.
 - a. In /opt/moab/etc/moab.cfg, configure the INSIGHTENDPOINT parameter so that Moab can connect to Insight. See Moab Parameters in the Moab Workload Manager Administrator Guide for parameter information.

INSIGHTENDPOINT <hostname>[:<port>]

<hostname> is the server where Insight is located. <hostname> is required, <port> is optional.

b. In /opt/moab/etc/moab-private.cfg, configure the MESSAGEQUEUESECRETKEY parameter so that Moab can connect to Insight. See Secure communication using secret keys on page 129.

MESSAGEQUEUESECRETKEY <secret key>

The *<secret key>* is required when updating the Insight configuration file later in this procedure.

c. Restart Moab in order for the new configuration parameters to take effect.

```
systemctl restart moab.service
```

d. Verify that Moab is properly configured to connect to Insight.

mdiag -S | grep Insight

You should see something similar to the following:

```
[root]# mdiag -S | grep Insight
ZeroMQ Insight connection is bound on port 5574 (reliability port 5575) on host
* using Insight endpoint <the insight hostname displays here>:5568
encryption is on)
ZeroMQ Insight reliable message delivery is using store file(s) up to 1024 MB in
/opt/moab/spool/insight_store/
```

9. On the Insight Server Host, configure the moab.host and messageQueue.secretKey parameters in the Insight configuration file /opt/insight/etc/config.groovy.

```
moab.host = "<moab server>"
messageQueue.secretKey = "<secret key>"
```

The <secret key> must match the secret key configured in moabprivate.cfg on the Moab server for the MESSAGEQUEUESECRETKEY configuration parameter.

10. On the Insight Server Host, start Insight.

[root]# systemctl start insight.service

The first time you start Insight it will take a minute or two to create the database schema. Although 'service insight start' will quickly return OK, it is not safe to terminate Insight while this initialization is taking place. Rebooting or terminating Insight during this initialization may cause the database to not be initialized correctly.

You will know it is safe to reboot or terminate Insight if you see the following line in /opt/insight/log/insight.log.

2014-12-11T18:36:08.059-0700 main INFO com.ace.insight.app.Application 0 Started Application in 89.502 seconds (JVM running for 89.882)

Related Topics

Chapter 3 RPM installation Method on page 101

Installing Moab Viewpoint

This topic contains instructions on how to install Moab Viewpoint (Viewpoint).

In this topic:

- Prerequisites on page 143
- Install Viewpoint Server on page 146
- Enable Access to the Viewpoint File Manager on page 150
- License Viewpoint on page 151
- Configure Viewpoint on page 152
- Configure File Manager on page 153
- Grant Users Access to Viewpoint on page 155

Viewpoint requires a connection to Moab Server and MWS installed on the shared host. Viewpoint may also be installed on that shared host or on a different host. For documentation clarity, the instructions refer to the shared Moab Server and MWS Server host as the Moab Server Host and the host on which you install Viewpoint Server as the Viewpoint Server Host.

Prerequisites

In this section:

- Open Necessary Ports on page 144
- <u>Configure the ViewpointQueryHelper Plugin on page 144</u>

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Viewpoint PostgreSQL Database Port (5432)
- Open the Apache Web Server Port (8081)
- Open the Viewpoint File Manager Port (8443)

Open the Viewpoint PostgreSQL Database Port (5432)

Viewpoint requires access to the Viewpoint PostgreSQL database. Depending on your system configuration, your PostgreSQL databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the Viewpoint PostgreSQL database on the same host where you have installed the Insight PostgreSQL database instead of on the Viewpoint Server Host.

If you choose to install the Viewpoint PostgreSQL database on a *different* host from where you will install Viewpoint Server, do the following on the Viewpoint Database Host:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5432"
[root]# service SuSEfirewall2 restart
```

Open the Apache Web Server Port (8081)

On the Viewpoint Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

FW_SERVICES_EXT_TCP="8081"

[root]# service SuSEfirewall2 restart

Open the Viewpoint File Manager Port (8443)

On the Moab Server Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

```
FW_SERVICES_EXT_TCP="8443"
```

```
[root]# service SuSEfirewall2 restart
```

Configure the ViewpointQueryHelper Plugin

You will need to configure the MWS ViewpointQueryHelper plugin to allow Viewpoint to query the Insight MongoDB (MongoDB host, database, port, and

user information).

Do the following:

- Using a web browser, navigate to your MWS instance (http://<server>:8080/mws/) and then log in as the MWS administrative user (moab-admin, by default).
- 2. Select **Plugins** and then from the drop-down select **Plugins** to display the list of MWS plugins (displays Plugin List page).
- 3. Click the viewpoint-query-helper plugin to view this plugin's information (displays Show Plugin page).
- 4. Click **Edit** to modify the Configuration table fields (displays Edit Plugin page). The following is an example of the Edit Plugin page.

Moab ®Web	Services		Welcome, moab-admin Documentation LogOut
🕈 Plugins Ad	dmin		
Edit Plugin			
ID	viewpoint-query-helper		
Plugin Type	ViewpointQueryHelper (Open Do	cumentation)	
State	Started		
Precedence •	2 ‡		
Auto Start	t 🥑		
Configuration	Select	Add Entry	
	Кеу	Value	
	* Host	localhost	
	* Database	insight	
	* Port	27017 ‡	
	* User	mws_user	
	* Password	•••••	
Update Cancel			

5. Modify the values as needed. The following table describes the required information.

Кеу	Value Description
host	Name or IP address of the host on which Insight MongoDB resides.
database	Name of the MongoDB database to which Insight writes.
port	Port number for Insight MongoDB (typically 27017).

L

Кеу	Value Description
user	User name with which MWS connects to Insight MongoDB.
password	Password used by the user listed in the value for the "user" key.

- This is the user name and password you specified when installing Insight. See the step "Add the required MongoDB users to Insight MongoDB and Moab MongoDB; regardless of whether they share a host." for the user and password information.
- When finished, click Update to save your changes and close this page (return to the Show Plugin page); otherwise click Cancel to reset all the changes.
- 7. When satisfied with the values, on the Show Plugin page, confirm that the State is "Started". If it is not, go to Plugins, select Plugin Monitoring, and start the plugin using the green start button.
- 8. Log out of your MWS instance and close the web browser.

See also <u>About Moab Web Services Plugins</u> in the *Moab Web Services Reference Guide* for more information.

Install Viewpoint Server

• You *must* complete the prerequisite tasks earlier in this topic before installing the Viewpoint Server. See <u>Prerequisites on page 143</u>.

Do the following:

1. If you are installing Viewpoint on its own host *or* on a host that does not have another RPM installation, complete the steps to prepare the host. See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host – Offline Method on page 109</u>.

2. Set up PostgreSQL for Viewpoint.

These instructions assume you will install the Viewpoint PostgreSQL database on the same host as the Insight PostgreSQL database (strongly recommended). Depending on your system confirmation, this may be the on the Insight Server Host or on the PostgreSQL Database Host.

If you choose to install the Viewpoint PostgreSQL database on a host that does not already have a PostgreSQL database, you will need to install the Viewpoint PostgreSQL database. See <u>Install PostgreSQL on page 137</u> for more information.

On the host containing the Insight PostgreSQL, do the following:

```
[root]# su - postgres
[postgres]$ psql
CREATE USER moab_viewpoint WITH PASSWORD 'changeme!';
CREATE DATABASE moab_viewpoint WITH OWNER=moab_viewpoint;
\q
[postgres]$ exit
```

3. On the Moab Server Host, install the moab-viewpoint-filemanager package.

a. Update zypper.

[root]# zypper update zypper

b. Install the package.

[root]# zypper install moab-viewpoint-filemanager

c. Using the instructions in /opt/acfileman/utils/certshandling/Readme.txt, follow these steps:

Step 1. Create CA (Certificate Authority).

Step 2. Create server (WebDav server) certificate and key.

Step 3. Create client certificate and key.

Step 4. Configure WebDav server.

For example:

```
[root]# cd /opt/acfileman/utils/certs-handling
[root]# ./ac-cert-tool.sh create-ca
[root]# ./ac-cert-tool.sh create-server-cert --altnames 127.0.0.1,localhost
<moab_host>
[root]# ./ac-cert-tool.sh create-client-cert
[root]# bash certs/servers/<moab_host>/install-server-certs.sh -u root:root -p
600 /opt/acfileman/etc/
[root]# vi /opt/acfileman/etc/uwsgi.ini
```

Provided you followed the above steps, your key files will have been installed in /opt/acfileman/etc/server-cert.pem and /opt/acfileman/etc/server-key.pem. To change the location where your certificates are stored, edit the /opt/acfileman/etc/uwsgi.ini file accordingly.

d. Configure the moab-viewpoint-filemanager package to start up at system boot and start the moab-viewpoint-filemanager.

```
[root]# systemctl enable acfileman.service
[root]# systemctl restart acfileman.service
```

- 4. On the Moab Server Host, enable negative job priority and remote visualization features.
 - a. Set the ENABLENEGJOBPRIORITY parameter in

/opt/moab/etc/moab.cfg.

```
[root]# vi /opt/moab/etc/moab.cfg
ENABLENEGJOBPRIORITY TRUE
```

You must set this Moab parameter to support Viewpoint features that enable users to specify user priorities for their jobs. See <u>Advanced Settings</u> in the Viewpoint Reference Guide for more information on enabling user priorities for jobs.

b. If using the Remote Visualization features, set the USEMOABJOBID parameter in /opt/moab/etc/moab.cfg.

```
[root]# vi /opt/moab/etc/moab.cfg
USEMOABJOBID TRUE
```

c. Restart Moab.

[root]# systemctl restart moab.service

- 5. On the Moab Server Host, register Viewpoint as a client in MWS.
 - a. Edit the grails.plugin.springsecurity.oauthProvider.clients array in /opt/mws/etc/mws-config.groovy and specify a client id and a client secret. Leave the authorizedGrantTypes field unchanged.

The following is a suggested script for generating the client secret:

 dd if=/dev/urandom count=24 bs=1 2>/dev/null | base64

b. Restart Tomcat.

```
[root]# systemctl restart tomcat.service
```

- 6. On the Viewpoint Server Host, do the following:
 - a. Install the moab-viewpoint package.

```
[root]# zypper install moab-viewpoint
```

b. (Optional) Configure virtual hosts. The moab-viewpoint package installs a file for Apache.

/etc/apache2/conf.d/viewpoint.conf

Virtual host configurations should be made within this file. See http://httpd.apache.org/docs/2.2/vhosts/ for more information.

c. Edit the /opt/viewpoint/etc/viewpoint.cfg values as needed. The following is an example of the viewpoint.cfg file with the default values.

```
[admin]
username = viewpoint-admin
password = pbkdf2_
sha256$20000$ZHeToCJgrSUH$+xmzYdhpqZCJokxO9eGzyr2B6jrfCgLlBT+pBgMis4w=
[environment]
VIEWPOINT_DATABASE_NAME = moab_viewpoint
VIEWPOINT_DATABASE_PASSWORD = changeme!
VIEWPOINT_DATABASE_USER = moab_viewpoint
VIEWPOINT_DATABASE_USER = moab_viewpoint
VIEWPOINT_DATABASE_HOST = localhost
VIEWPOINT_DATABASE_PORT = 5432
[settings]
past_hours = 24
future_hours = 4
```

Be aware of the following:

• **[admin]**: For security purposes, the admin password is encrypted. In the example, the default is the encrypted equivalent to "changeme!", which is the default for the Viewpoint instance. Change this default password to a different encrypted password.

To encrypt the password, do the following (substituting "changeme!" with your password):

[root]# echo -n 'changeme!' | /opt/viewpoint/bin/viewpoint makehash
Using default hasher
pbkdf2_sha256\$20000\$ZHeToCJgrSUH\$+xmzYdhpqZCJokxO9eGzyr2B6jrfCgLlBT+pBgMis4w=

The default hashing algorithm is pbkdf2_sha256. To show the other available algorithms, run

/opt/viewpoint/bin/viewpoint makehash --help

bcrypt_sha256 and bcrypt are *not* supported on Red Hat 7-based systems.

- [environment]: "changeme!", although unencrypted, is the default for the Viewpoint database password. If you do not change this password, your Viewpoint database will not be secure. For tips on choosing a good password, see <u>https://www.us-</u> cert.gov/ncas/tips/ST04-002.
- **[settings]**: These values are used to limit the threshold for the Resource Job Timeline. See <u>Resource Job Timeline Page</u> in the *Moab Viewpoint Reference Guide*.
- d. Initialize Viewpoint's PostgreSQL database.

[root]# /opt/viewpoint/bin/viewpoint migrate

e. Start (or restart) the Apache service.

[root]# systemctl enable apache2.service [root]# systemctl restart apache2.service

Enable Access to the Viewpoint File Manager

This section finishes the SSL authentication steps you began when you installed moab-viewpoint-filemanager -- that is, Step 5 of

/opt/acfileman/utils/certs-handling/Readme.txt that you skipped earlier.

Do the following:

1. On the Moab Server Host, do the following:

```
[root]# cd /opt/acfileman/utils/certs-handling/certs
[root]# scp ca/ca-cert.pem client/client-cert.pem client/client-key.pem
root@<viewpoint_host>:/opt/viewpoint/lib/viewpoint/webdav_client
```

2. On the Viewpoint Server Host, set the mode, owner, and group of the files you copied over.

[root]# cd /opt/viewpoint/lib/viewpoint/webdav_client [root]# chmod 600 ca-cert.pem client-key.pem client-cert.pem [root]# chown wwwrun:www ca-cert.pem client-key.pem client-cert.pem [root]# systemctl restart apache2.service

License Viewpoint

Do the following:

- Using a web browser, navigate to your Viewpoint instance. (http://<viewpoint_host>:8081; where <viewpoint_host> is the IP address or name of the Viewpoint Server Host).
- 2. Log in as the Viewpoint administrative user (viewpoint-admin, by default) using the password you set in the Viewpoint installation instructions.

The Viewpoint administrative user has very limited rights.

The Configuration page displays with *only* the authorized features. The following is an example of what you will see once you first log in.

CONFIGURATION				
Basic Configuration	Basic Configurat	Basic Configuration		
File Manager	MWS Configurat	MWS Configuration		
Licensed Features	Server	http://127.0.0.1:8080		
	Username	moab-admin		
	Password			
	Path	/mws/		
	ClientId	viewpoint		
	Client Secret			
	Misc Options			
	Node Names to Ignore	DEFAULT,GLOBAL		
	🕑 Use Google Ana	lytics to help improve this product		
		TEST SAVE		

- 3. Select Licensed Features from the left page. The Licensed Features page appears with *only* the Viewpoint tab available.
- 4. In the License section, locate the Viewpoint Host ID.
- 5. Email licenses@adaptivecomputing.com with that hostid.
- 6. Adaptive Computing will generate the license and send you the Viewpoint license (.lic) file in a return email.
- 7. Save the Viewpoint license in a safe location.
- 8. Go back to your Viewpoint instance and log in again as the Viewpoint administrative user and navigate to the Licensed Features page.
- 9. Click **Browse**, navigate to where you saved the Viewpoint License file, and then click **Open**.

10. Click Upload.

11. Once the license file has uploaded, the Viewpoint License information shows green check boxes for your licensed features and displays the path to your uploaded license file under the Viewpoint Host ID information. The following is an example of what you will see once the license file is uploaded.

Basic Configuration	Viewpoint License		
Licensed Features	License Browse No file chosen Viewpoint Host ID: fa163e8e25f3 License path: /opt/viewpoint/etc/licen	se.d/license.lic	IPLOAD REVIEW
	Viewpoint Licensed Featur	es Description	Statu
	Admin Functionality	Enables admin functionality in Viewpoint allowing admins to manage their Moab systems directly from Viewpoint.	0
	User Functionality	Enables user-centric functionality in Viewpoint like managing application templates and jobs.	0
	Nitro Support	Enables Nitro support in Viewpoint, allowing admins and users to manage Nitro applications directly from Viewpoint.	0
	Remote Visualization Support	Enables Remote Visualization in Viewpoint, allowing users to manage their remote sessions directly from the browser	0
	More Information		

- Click **Preview** to view the contents of the license file you uploaded
- You can also expand the More Information section to see expiration information.

Configure Viewpoint

Do the following:

1. If you have not already done so, log into your Viewpoint instance as the Viewpoint administrative user.

The Configuration page displays.

- 2. In the MWS Configuration area, do the following:
 - a. In the Server field, enter the URL for MWS on the Moab Server Host (for example: "http://server:8080").

Т

If your configuration uses a secure connection between Viewpoint and MWS, the URL must contain "http**s**" and the secure port.

- b. In the Username and Password fields, enter the MWS administrator credentials. You can find these credentials in /opt/mws/etc/mws-config.groovy on the Moab Server Host. Look for auth.defaultUser.username and auth.defaultUser.password.
- c. In the Path field, the default value (/mws/) is already filled in. Leave it as is unless you have installed MWS with a non-default path.
- d. In the Client Id and Client Secret fields, enter the values that you set during the Viewpoint installation. Refer back to the step (<u>On the Moab</u> <u>Server Host, register Viewpoint as a client in MWS.</u>) earlier in this topic.
- 2. In the Misc Options area, do the following:
 - a. In the Node Names to Ignore field, enter the nodes that you want Viewpoint to ignore. Separate node names with a comma (,).
 - b. Choose whether you wish to use Google Analytics to help improve this product.
- 3. Click **TEST** to confirm the settings are correct.
- 4. Click **SAVE** to submit your settings.

Configure File Manager

Do the following:

- 1. If you have not already done so, log into your Viewpoint instance as the Viewpoint administrative user.
- 2. Select File Manager from the left pane. The File Manager Configuration page appears.

The following image is an example of the File Manager Configuration page.

HOME	WORKLOAD	TEMPLATES	NODES	FILE MANAGER	SESSIONS	CONFIGURATION
Basic Configurati	on	File Ma	anager Con	figuration		
File Manager			Server URL	http://127.0.0.1:8001		
Roles		Se	erver Verify SSL			
Principals		SSL	Certificate File			
Remote Visualiza	tion Services	SSL	Certificate Key			
Nitro Services			CA Bundle File			
Application Temp	lates	Se	erver Root Path	/		
Licensed Feature	s	A	ccessible Roots	/home:/tmp		
		Ma	aximum Upload Size(bytes)	-1		
				TEST	SAVE	

3. Modify the values as needed. The following table describes the required information.

Field	Description
Server URL	The name of the Moab Server host on which you installed the File Manager Service and the port number for the File Manager Service (for example, "https://server:8443").
Server Verify SSL	When enabled:The client SSL certificate will be verified.Viewpoint will use the given certificate when connecting to File Manager Service.
SSL Certificate File	The location of the SSL certificate file on the Viewpoint Server. Usually, /opt/viewpoint/lib/viewpoint/webdav_client/client-cert.pem.
SSL Certificate Key	The location of the SSL certificate key on the Viewpoint Server. Usually, /opt/viewpoint/lib/viewpoint/webdav_client/client-key.pem.
CA Bundle File	The location of the CA bundle file on the Viewpoint Server. Usually, /opt/viewpoint/lib/viewpoint/webdav_client/ca-cert.pem.
Server Root Path	The root URL path where File Manager Service publishes its API (usually it is simply "/").

Field	Description
Accessible Roots	The root folders that users can access from the File Manager page. This can be used to limit users' access to certain directories, without giving them access to the "/" folder on the remote file system (RFS). Separate root folders with a colon (for example, /home:/usr/share/groups). For example, if you define /home and /usr/share/groups as accessible roots, although users will be able to see a tree similar to the following, the users will not be able to see (access) anything inside /usr other than "share" and anything inside "share" other than "groups".
Maximum Upload Size (bytes)	Total amount of data that can be uploaded in a single file. A value of '-1' means unlimited.

- 4. Click **TEST** to confirm the settings are correct.
- 5. Click **SAVE** to submit your settings.

Grant Users Access to Viewpoint

For a user to be able to access Viewpoint, he or she must be a member of a principal.

Do the following:

- Using a web browser, navigate to your Viewpoint instance. (http://<viewpoint_host>:8081; where <viewpoint_host> is the IP address or name of the Viewpoint Server Host)
- 2. Log in as the MWS administrative user (moab-admin, by default).
- 3. Click **Configuration** from the menu. The Basic Configuration page displays.
- 4. Click **Principals** from the left pane.
- 5. Create one or more principals. See <u>Creating or Editing Principals</u> in the *Moab Viewpoint Reference Guide* for instructions on setting up principals.

Т

Viewpoint comes configured with an admin and a user role that you can assign to the principals. You can also modify the default roles and create new roles as needed. See <u>About Roles</u> in the *Moab Viewpoint Reference Guide* for more information.

Related Topics

Chapter 3 RPM installation Method on page 101

Installing RLM Server

Access to a Reprise License Manager (RLM) server is required when using Remote Visualization and/or Nitro.

The RLM Server can run multiple licenses. If your company already uses an RLM Server, you do not need to install a new one for Remote Visualization or Nitro. However, Remote Visualization and Nitro will use a different port than the default RLM Server port (5053). Skip this topic and follow the instructions in <u>Installing Remote Visualization on page 158</u> or <u>Installing Nitro on page 173</u> as applicable.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release. Adaptive Computing *strongly* recommends that your RLM Server is v12.1 (build:2).

This topic contains instructions on how to install an RLM Server.

In this topic:

- Open Necessary Ports on page 156
- Install the RLM Server on page 157
- <u>Change the Default Passwords on page 157</u>

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

These instructions assume you are using the default ports. If your configuration will use other ports, then substitute your port numbers when opening the ports.

On the RLM Server do the following:

1. Open the RLM Server port (5053) and the RLM Web Interface port (5054).

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5053 5054"
```

- [root]# service SuSEfirewall2 restart
- 2. If Remote Visualization is part of your configuration, open the Remote Visualization port (57889).

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="57889"
[root]# service SuSEfirewall2 restart
```

3. If Nitro is part of your configuration, open the ISV adapativeco port for the Adaptive license-enabled products (for example: 5135).

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="5135"
[root]# service SuSEfirewall2 restart
```

Install the RLM Server

If your configuration uses firewalls, you must also open the necessary ports before installing Nitro. See <u>Open Necessary Ports on page 156</u>.

On the host on where the RLM Server will reside, do the following:

- If you are installing RLM Server on its own host or on a host that does not have another RPM installation, complete the steps to prepare the host. See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host –</u> <u>Offline Method on page 109</u>.
- 2. Install the RPM.

[root]# zypper install ac-rlm

Change the Default Passwords

The RLM Web interface includes two usernames (admin and user) by default. These usernames have the default password "changeme!".

If you do not change this password, RLM, and Remote Visualization, will not be secure. For tips on choosing a good password, see https://www.us-cert.gov/ncas/tips/ST04-002.

Do the following for both the user and the admin usernames:

1. Using a web browser, navigate to your RLM instance. (http://<*RLM_host*>:5054; where <*RLM_host*> is the IP address or name of the RLM Server Host).

If you have problems connecting using the web browser, on the RLM server check /opt/rlm/rlm.dll for error information.

- 2. Log in.
- 3. Select **Change Password** and change the password according to your password security process.

The password for "user" will be needed as part of the Remote Visualization installation.

Installing Remote Visualization

This topic contains instructions on how to install Remote Visualization, including licensing and configuration information.

Remote Visualization uses the FastX product. The Remote Visualization installation includes installing the Remote Visualization Server (gateway server) and Remote Visualization on the Torque MOM Hosts (session servers).

Remote Visualization Server (gateway server) and the Remote Visualization Session Servers, must be configured in order for Remote Visualization to work.

In this topic:

- Open Necessary Ports on page 159
- Obtain and Install the Remote Visualization License on page 159
- Configure the RLM Plugin on page 160
- <u>Configure Moab to use Moab Web Services as a Resource Manager on</u> page 162
- Install Remote Visualization on page 163
- Configure the Gateway Server on page 165
- Configure a Session Server on page 167
- <u>Copy the Session Server Configuration to the Remaining Session Servers</u> on page 170

Т

- <u>(Optional) Install Graphical Packages on Each Torque MOM Host on page</u>
 <u>170</u>
- Configure Moab for Remote Visualization on page 171
- Configure Viewpoint for Remote Visualization on page 171

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to Remote Visualization.

Do the following:

1. On the Remote Visualization Server (also known as the gateway server), do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following ports to the FW_SERVICES_EXT_TCP parameter as required
# Needed on the Moab server for off-host client communication
FW_SERVICES_EXT_TCP="3000 3443"
[root]# service SuSEfirewall2 restart
```

2. On each Remote Visualization Session Server (Torque MOM Host), do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
# Add the following ports to the FW_SERVICES_EXT_TCP parameter as required
# Needed on the Moab server for off-host client communication
FW_SERVICES_EXT_TCP="3000 3443 6000:6005 16001 35091" #ports 16001 and 35091 are
only needed if using gnome
FW_SERVICES_EXT_UDP="117"
[root]# service SuSEfirewall2 restart
```

Obtain and Install the Remote Visualization License

Remote Visualization uses the RLM to validate the amount of open and available sessions.

These instructions assume you already have access to an RLM Server. See <u>Installing RLM Server on page 156</u> for instructions on how to set up a new RLM Server.

Do the following:

1. Email licenses@adaptivecomputing.com and request an activation key. Adaptive Computing will send you the activation key in a return email.

- 2. Once you have your activation key, do the following on the RLM Server:
 - a. Install the license activation script and dependencies.

[root]# zypper install perl-Crypt-SSLeay StarNetFastX2

b. Run the license activation script.

/usr/lib/fastx2/install/activate

- c. When prompted:
 - Enter the activation key.
 - Enter how many seats (sessions) you want for this license.

When the license has generated you will see something similar to the following:

License activated and saved in /usr/lib/fastx2/rlm/FastX2-<date>.lic

d. Move the license file to the /opt/rlm directory.

mv /usr/lib/fastx2/rlm/FastX2-<date>.lic /opt/rlm

This license file references the default RLM Server port (5053). If the RLM Server in your configuration uses a different port, you will need to modify the license file to reflect the actual port.

- e. If you did *not* install an RLM Server using the file available from Adaptive Computing (for example, because your system configuration already uses one), do the following:
 - Download the 'starnet.set' file from the <u>Adaptive Computing Moab HPC</u> <u>Suite Download Center</u> (https://www.adaptivecomputing.com/support/downloadcenter/moab-hpc-suite-download/).
 - ii. Copy the 'starnet.set' file into the same directory where the Remote Visulaization license resides (/opt/rlm).
- f. Remove the license activation script.

[root]# zypper remove StarNetFastX2

g. Restart RLM.

[root]# systemctl restart rlm.service

Configure the RLM Plugin

Moab can schedule available remote visualization sessions by querying the RLM server for the number of active and total available sessions.

In order for Moab to schedule remote visualization sessions, Moab also needs to be configured to use Moab Web Services as a resource manager. See <u>Configuring Moab Workload Manager</u> in the *Moab Web Services Reference Guide* for more information.

Do the following:

- Using a web browser, navigate to your MWS instance (http://<server>:8080/mws/) and then log in as the MWS administrative user (moab-admin, by default).
- 2. Select **Plugins** and then from the drop-down select **Plugins** to display the list of MWS plugins (displays Plugin List page).
- 3. Click Add Plugin (displays Create Plugin page).
- 4. Select **RLM** from the Plugin Type drop-down.
- 5. Click **Continue** (displays the already built information for this plugin on the Create Plugin page).
- 6. In the Configuration field, select **Resource** from the drop-down and then click **Add Entry** (adds the Resource key to the table). The following is an example of what your Create Plugin page should look like.

Create Plugin		
Plugin Type	RLM (Open Documentation)	
ID *	rlm	
Precedence	\$	
Poll Interval *	30	
Auto Start		
Configuration	Resource •	Add Entry
	Key	Value
	* URL	http://server:5054
	* Username	user
	* Password	••••••
	* ISV	starnet
	* Product	fastx2
	Resource	remote_visualization Remove
Save Cancel		

7. Enter the key values. The following table describes the required information.

Кеу	Value Description
URL	URL for the RLM Server web interface in the form: <i><protocol>://<rlm_server_host>:<rlm_web_interface_port></rlm_web_interface_port></rlm_server_host></protocol></i> . For example: http://server:5054
Username	The username in the RLM Web interface; typically user.
Password	Password used by the user listed in the Username key. This is the password you set when you install the RLM. See <u>Change the Default Passwords</u> .
ISV	Independent software vender for Remote Visualization. This value must be starnet.
Product	Name of the licensed product for Remote Visualization. This value must be fastx2.
Resource	Name of the resource to report to Moab Workload Manager. This value must be remote_ visualization.

8. When finished, click **Save** to save your changes and close this page; otherwise click **Cancel** to reset all the changes.

The state should be "Started". If the state says "Errored", click Edit, modify the values as needed, click Update. Then from the Plugin Monitoring page, locate the RLM plugin and click the play icon.

9. Log out of your MWS instance and close the web browser.

Configure Moab to use Moab Web Services as a Resource Manager

In order for Moab to schedule remote visualization sessions, Moab also needs to be configured to use Moab Web Services as a resource manager.

On the Moab Server Host, do the following:

1. Add the following lines to /opt/moab/etc/moab.cfg:

RMCFG[mws]	TYPE=MWS
RMCFG[mws]	BASEURL=http://localhost:8080/mws
The BASEURL must match the configu	red URL of MWS.

2. Add the following line to /opt/moab/etc/moab-private.cfg:

```
CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!
```

USERNAME and PASSWORD must match the values of auth.defaultUser.username and auth.defaultUser.password, respectively, found in the MWS configuration file. The MWS RM contacts MWS directly using the base URL, username, and password configured.

3. Restart Moab.

[root]# systemctl restart moab.service

Install Remote Visualization

Remote Visualization needs to be installed on the gateway server and on *all* the session servers (Torque MOM Hosts).

You must complete all the tasks earlier in this topic before installing Remote Visualization.

Do the following:

- 1. Make sure that your DNS server is configured for reverse lookups. Without reverse DNS, Session Servers will fail to register with your Gateway Server. As a result, authentication requests to the Gateway Server will fail because the Gateway Server will not be able to connect to any Session Servers.
- Prepare the hosts for RPM installation. If you will be installing Remote Visualization on a host that does not have another RPM installation, complete the steps to prepare the host. See <u>Preparing the Host – Typical</u> <u>Method on page 104</u> or <u>Preparing the Host – Offline Method on page 109</u>.
- 3. On the Remote Visualization Gateway Server Host *and* each Session Server Host, do the following:
 - a. Install FastX and all its dependencies.

```
[root]# zypper --non-interactive install perl-PerlMagick perl-Crypt-SSLeay perl-
X11-Protocol StarNetFastX2
```

b. Create or use an unprivileged account to login into FastX with admin privileges.

The following example uses the ace user and password. You can use an existing user, as long as that user can ssh into this host with a username/password pair.

[root]# useradd ace
...
[root]# passwd ace
...

c. Add the node.js repository and refresh zypper.

```
[root]# zypper addrepo
http://download.opensuse.org/repositories/devel:languages:nodejs/SLE_
12/devel:languages:nodejs.repo
[root]# zypper refresh
```

d. Run the install.sh script on the Remote Visualization Gateway Server and on all of the Session Servers (Torque MOM Hosts).

```
[root]# export LICENSE_SERVER_HOST="<RLM Server IP address>"
[root]# export ADMIN_USER="ace" # the Remote Visualization administrator user
[root]# printf "y\n$LICENSE_SERVER_HOST\ny\ny\n$ADMIN_USER\ny\n" |
/usr/lib/fastx2/install.sh
```

- a. If your Viewpoint configuration will use *password-based* authentication for Remote Visualization, do the following on *each* Session Server:
 - a. Set the following parameters in /etc/ssh/sshd config:

```
PasswordAuthentication yes
ChallengeResponseAuthentication no
```

b. Restart the sshd service.

[root]# systemctl restart sshd.service

- b. If your Viewpoint configuration will use *key-based* authentication for Remote Visualization, do the following:
 - a. Log in as the FastX admin user and generate a ssh key.
 - Accept the defaults.

A passphrase is not supported by Viewpoint. Leave this field empty.

```
[ace@<hostname> ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ace/.ssh/id_rsa):
Created directory '/home/ace/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ace/.ssh/id_rsa.
Your public key has been saved in /home/ace/.ssh/id_rsa.pub.
The key fingerprint is:
```

- b. Copy the generated id_rsa private key to a location where Viewpoint has access.
- c. Set the generated id_rsa public key as an authorized key for the Gateway Server.

```
root# cat .ssh/id_rsa.pub >> .ssh/authorized_keys
```

d. Copy the id_rsa publish key to all the Session Servers and set it as an authorized key.

For documentation clarity, these instructions use node00 through node09 as the names of the Session Servers; with node00 designated as the initial Session Server.

```
[root]# for i in {00..09} ; do scp .ssh/id_rsa.pub
<fastxadminuser>@node$i:id_rsa.pub ; done
[root]# for i in {00..09} ; do ssh <fastxadminuser>@node$i "cat id_rsa.pub >>
.ssh/authorized_keys ; rm -f id_rsa.pub" ; done
```

Configure the Gateway Server

Do the following:

- Using a web browser, navigate to your *secure* Remote Visualization Gateway Server instance. (https://<gateway_host>:3443; where <gateway_host> is the IP address or name of the Gateway Server Host).
- 2. Log in as the FastX admin user.

Adaptive COMPUTING
User Name
ace
Password
Use Public Key Authentication
Log in
Version: 2.2.77

3. Click the icon for Admin\System Configuration. The icon is circled in the example to assist in finding its location.

4. Select the Network tab. If it is not already selected, select the Configuration sub-tab to display the FastX Network Configuration page.

Т

Adaptive	Theme	Admins	Sessions	Network	% ೩ ₩ \$ ace
www		Configuration			
Fas	tX Netwo Secret Key SecretShare Accept o Send da	ork Configu dKey lata from c ta to cluste	uration luster mem er members	bers	07 07
					Save

- 5. Do the following:
 - a. In the Secret Key field, enter a name for the secret key. Record this secret key (e.g. copy to your clipboard) because you will need it when configuring the Session Servers later in this topic.
 - b. Enable the connection to accept data from cluster member.
 - c. In the box to specify the log in method, select "Sessions log in to the system running the fewest sessions".
 - d. Disable the Gateway Server from sending data to cluster members.

The following image is an example of the completed FastX Network Configuration page for the Gateway Server.

Adaptive	Theme	Admins	Sessions	Network					يد %	🕮 🏶 ace
www		Configuration								help
Fa	stX Netwo Secret Key mysecretkey Accept c	ork Configu data from cl	uration	bers (ON]				
	Sessions	log in to the syste	m running the few	riteria. rest sessions	-					
	Send da	ta to cluste	er members		OFF					
						Save				

6. Click **Save** to submit your changes.

Configure a Session Server

This section provides instructions on how to configure *one* Session Server (referred to as the initial Session Server). The configuration will then be copied

to the additional Session Servers in your environment in a later procedure.

Do the following:

- Using a web browser, navigate to your secure Remote Visualization Session Server instance. (https://<session-host>:3443; where <session_host> is the IP address or name of the *initial* Remote Visualization Session Server Host).
- 2. Log in as the FastX admin user.

Adaptive
COMPUTING
User Name
ace
Password
Use Public Key Authentication
Log In
Version: 2.2.77

3. Select the icon for Admin\System Configuration. The icon is circled in the example to assist in finding its location.

4. Select the Network tab. If it is not already selected, select the Configuration sub-tab to display the FastX Network Configuration page.

Adaptive	Theme	Admins	Sessions	Network						% <u>R</u>	■ \$	ace
www		Configuration										
Fas	tX Netwo Secret Key	ork Configu	uration									
	SecretShare	lata from c	luster mem	bers	OFF							
	Send da	ta to cluste	er members		OFF							
						Save	e					

- 5. Do the following:
 - a. In the Secret Key field, enter the name of the secret key created when configuring the Gateway Server earlier in this topic.

- b. Disable the connection to accept data from cluster members.
- c. Enable the Gateway Server to send data to cluster members.
- d. In the box to specify whether to SSL certificates, select "I am using a selfsigned certificate".
- e. In the Cluster member URLs area, do the following:
 - i. Click the + icon.
 - ii. In the box that displays, enter the IP address or name and the port number of the Gateway Server you just configured (for example: "https://mgmtnode:3443").

The following image is an example of the completed FastX Network Configuration page.

Adaptive Theme Admins Sessions Netv	work	☆ 匙 ■ \$ ace
WWW Settings Configuration		help
FastX Network Configuration		
Secret Key		
mysecretkey		
Accept data from cluster members		
Send data to cluster members		
SSL Certificates		
I am using a self-signed certificate	•	
Cluster member URLs +		
https://mgmtnode:3443	x	
	Save	

6. Click **Save** to submit your changes.

Copy the Session Server Configuration to the Remaining Session Servers

After you configured the initial Session Server, the settings are saved in the network.json file.

For documentation clarity, these instructions use node00 through node09 as the names of the Session Servers; with node00 designated as the initial Session Server.

On the *initial* Session Server Host, copy the network.json file to the *remaining* Session Server Hosts in your environment, and restart the FastX service.

[root]# for i in {01..09} ; do scp /usr/lib/fastx2/config/network.json root@node\$i:/usr/lib/fastx2/config/network.json ; done [root]# for i in {01..09} ; do ssh node\$i "chown fastx. /usr/lib/fastx2/config/. -R" ; done [root]# for i in {01..09} ; do ssh node\$i "systemctl restart fastx.service" ; done

(Optional) Install Graphical Packages on Each Torque MOM Host

A few graphical packages are available to let you easily submit remote visualization jobs from Viewpoint (install a desktop environment).

One each Torque MOM Host, run the following command(s):

```
[root]# zypper install gnome-desktop
[root]# zypper install -t pattern gnome-basic x11
```

L

Configure Moab for Remote Visualization

On the Moab Server Host, verify the /opt/moab/etc/moab.cfg file contains the following uncommented parameter:

JOBCFG[remote_visualization] FLAGS=usemoabjobid SELECT=TRUE

This parameter configuration specifies that Moab will reference remote visualization jobs by their internal Moab job id. However, the job's output and error files will still be generated by your resource manager (for exampe, Torque). This means that, even though your job will get assigned a Moab job id, your job's output and error file names will reference the resource manager's job id (for example, job.oX).

If you need the job's output files to match the same job id as your Moab job, append the following parameters to your moab.cfg:

RMCFG[pbs] SYNCJOBID=TRUE FLAGS=ProxyJobSubmission

RMCFG[internal] JOBIDFORMAT=integer

Be advised that these appended parameters are *not* recommended for all systems; especially if your configuration includes customizations. If your system is not working as expected, contact Adaptive Computing support for assistance.

If you have made changes to the moab.cfg file, make sure you restart Moab.

[root]# systemctl restart moab.service

Configure Viewpoint for Remote Visualization

Do the following:

- Using a web browser, navigate to your Viewpoint instance (http://<server>:8081) and then log in as the MWS administrative user (moab-admin, by default).
- 2. Click **Configuration** from the menu and then click **Remote Visualization Services** from the left pane.

The following is an example of the Remote Visualization Configuration page.

HOME	WORKLOAD	TEMPLATES	NODES	FILE MANAGER	SESSIONS	CONFIGURATION
Basic Configuration		Remot	e Visualiza	tion Configurati	on	
File Manager			Gateway Server			
Roles		г	rust Self Signed	9		
Principals			Username			
<u>Remote Visualizatio</u>	on Services	Authent	ication Method	Password Based Authentication	•	
Nitro Services			Password			
Application Templat	es					
Licensed Features				TEST	SAVE	

- 3. Enter the hostname (or IP address) and port number for the FastX gateway server in the Gateway Server field. For example, https://*server*:3443.
- 4. If your Remote Visualization configuration was set up using self-signed certificates, confirm the Trust Self Signed check box is selected.
- 5. Enter the FastX admin user you specified when you installed the Remote Visualization Server in the Username field. For example, ace.
- 6. If your configuration will authenticate using the *password-based* method, do the following:
 - a. Select Password Based Authentication from the Authentication Method box.
 - b. Enter the FastX admin user's password in the Password field.

The /etc/ssh/sshd_config file on each Session server must be configured to enable password authentication. See <u>Install Remote</u> <u>Visualization on page 163</u> earlier in this topic for more information.

- 7. If your configuration will authenticate using the *key-based* method, do the following:
 - a. Select Key Based Authentication from the Authentication Method box.
 - b. Click UPLOAD KEY and navigate to the copy of the generated <code>.ssh/id_rsa</code> file.
- 8. Click **TEST** to confirm your settings are correct.
- 9. Click **SAVE** to submit your settings.

Nitro Integration

This section provides instructions on integrating Nitro as part of your Moab HPC Suite configuration.

In this section:

- Installing Nitro on page 173
- Installing Nitro Web Services on page 176

Installing Nitro

This topic contains instructions on how to install Nitro.

Nitro

- needs to be available to all of the nodes that will be used as part of the Nitro job.
- can be installed either to each node individually *or* to a shared file system that each node can access.
- can be installed to integrate with a scheduler, such as Moab, or without (Nitro standalone). The instructions are the same.

In this topic:

- Obtain a Nitro License on page 173
- Open Necessary Ports on page 175
- Install Nitro on page 175
- Verify Network Communication on page 176

Obtain a Nitro License

The Nitro license file is installed on an RLM Server.

These instructions assume you already have access to an RLM Server. See <u>Installing RLM Server on page 55</u> for instructions on how to set up a new RLM Server.

Do the following:

- 1. On the RLM server, obtain the hostid and hostname.
 - hostid

```
------ [root]# /opt/rlm/rlmhostid
```

You should see output similar to the following.

```
rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
Hostid of this machine: 00259096f004
```

hostname

```
[root]# /opt/rlm/rlmhostid host
```

You should see output similar to the following.

```
rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
Hostid of this machine: host=<your-host-name>
```

- 2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you just obtained.
- 3. Adaptive Computing will generate the license and send you the Nitro license file (.lic) file in a return email.
- 4. On the RLM server, do the following:
 - a. Download and install the license file.

```
[root]# cd /opt/rlm
[root]# chown rlm:rlm <licenseFileName>.lic
```

b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the ISV adaptiveco port for the Adaptive license-enabled products. This is the same port number you opened during the RLM Server installation. See the instructions to open necessary ports in the <u>Installing RLM Server on page 55</u> (manual installation method) or <u>Installing RLM Server on page 156</u> (RPM installation method) for more information.

```
[root]# vi /opt/rlm/nitro.lic
```

ISV adaptiveco port=5135

The license file already references the RLM Server port (5053 by default).

If the RLM Server in your configuration uses different ports, you will need to modify the license file to reflect the actual ports. See the instructions to open necessary ports in the <u>Installing RLM Server on</u> <u>page 55</u> (manual installation method) or <u>Installing RLM Server on</u> <u>page 156</u> (RPM installation method) for more information.

- c. If you did *not* install an RLM Server using the file available from Adaptive Computing (for example, because your system configuration already uses one), do the following:
 - Download the 'adaptiveco.set' file from the <u>Adaptive Computing Nitro</u> <u>Download Center</u> (https://www.adaptivecomputing.com/support/downloadcenter/nitro/).

- ii. Copy the 'adaptiveco.set' file into the same directory where the Nitro license resides (/opt/rlm).
- d. Perform a reread to update the RLM Server with your license.

```
[[root]# /opt/rlm/rlmreread
```

Open Necessary Ports

Nitro uses several ports for communication between the workers and the coordinator.

The default port is 47000, and up to four ports are used in running Nitro (ports 47000-47003).

On each compute node (coordinator), open the necessary ports.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW SERVICES EXT TCP="47000 47001 47002 47003"
```

[root]# service SuSEfirewall2 restart

Install Nitro

You must complete the tasks to obtain a Nitro license before installing Nitro. See Obtain a Nitro License on page 173.

If your configuration uses firewalls, you *must also* open the necessary ports before installing Nitro. See <u>Open Necessary Ports on page 175</u>.

On the host on where Nitro will reside, do the following:

- 1. If you are installing Nitro on its own host *or* on a host that does not have another RPM installation, complete the steps to prepare the host. See <u>Preparing the Host Typical Method on page 104</u> or <u>Preparing the Host Offline Method on page 109</u>.
- 2. Install the RPM.

[root]# zypper install nitro

3. Copy the license file you generated earlier in this topic to each compute node (coordinator). On each compute node, *or* on the shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

4. Identify the launch_nitro.sh script version for your resource manager. This script will be copied to the bin directory from where user job scripts will execute Nitro. See the *Nitro Administrator Guide* for more information.

Reference scripts are provided in /opt/nitro/scripts.

```
[root]# find /opt/nitro -name launch_nitro.sh
./scripts/lsf/launch_nitro.sh
./scripts/torque/launch_nitro.sh
./scripts/slurm/launch_nitro.sh
./scripts/alps/torque/launch_nitro.sh
./scripts/alps/slurm/launch_nitro.sh
```

5. Copy the launch script to the bin directory. (This example uses the Torquebased launch script.)

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/

This is a "copy" file operation and not a "move" operation. This allows you to customize your version of the script and always have the factory version available for consultation and/or comparison.

- Customize the bin/launch_nitro.sh script as needed for your site's administrative policies. For example, to enable the Nitro coordinator's host to always execute a local Nitro worker, modify the bin/launch_nitro.sh script version to always pass the --run-local-worker command line option to the coordinator. See the Nitro Administrator Guide for more information on editing the launch script.
- 7. If you are *not* using a shared file system, copy the Nitro installation directory to *all* hosts.

[root]# scp -r /opt/nitro root@host002:/opt

Verify Network Communication

Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports *and* that the nodes are able to communicate with one another.

Related Topics

• Nitro Integration on page 172

Installing Nitro Web Services

This topic contains instructions on how to install Nitro Web Services.

Do the following in the order presented:

- 1. Open Necessary Ports
- 2. Install MongoDB
- 3. Install and Configure Nitro Web Services
- 4. Configure Viewpoint for Nitro Web Services
- 5. Publish Nitro Events to Nitro Web Services

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

In this section:

- Open the Tornado Web Port (9443) and the ZMQ Port (47100) on page 177
- Open the MongoDB Database Port (27017) on page 177

Open the Tornado Web Port (9443) and the ZMQ Port (47100)

On the Nitro Web Services Host, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
```

FW_SERVICES_EXT_TCP="9443 47100"

```
[root]# service SuSEfirewall2 restart
```

Open the MongoDB Database Port (27017)

Nitro Web Services requires access to a MongoDB database. Depending on your system configuration, your MongoDB databases may not be installed on the same host as their corresponding component servers. For example, you may choose to install the Nitro Web Services MongoDB on the same host where you have installed other MongoDB databases.

Do the following, as needed:

- If you have chosen to install the Nitro Web Services MongoDB database on the same host you installed other MongoDB databases confirm the firewall port (27017) is already opened on that host.
- If you have chosen to install the Nitro Web Services MongoDB database on a *different* host from other MongoDB databases, you will need to open the Nitro Web Services MongoDB database port in the firewall for that host. To open the port in the firewall, do the following:

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="27017"
[root]# service SuSEfirewall2 restart
```

Install MongoDB

If you have chosen to install the Nitro Web Services MongoDB database on a *different* host from other MongoDB databases, do the following on the host where the Nitro Web Services MongoDB database will reside (for example, on the Nitro Web Services Host):

1. Install MongoDB.

```
[root]# zypper ar --refresh -r
http://download.opensuse.org/repositories/server:/database/SLE_
12/server:database.repo
[root]# zypper install mongodb
```

2. Start MongoDB

There may be a short delay (approximately 3 minutes) for Mongo to start the first time.

[root]# systemctl enable mongodb.service [root]# systemctl start mongodb.service [root]# systemctl daemon-reload

- 3. Prepare the MongoDB database by doing the following:
 - a. Add the required MongoDB users.

The password used below (secret1) is an example. Choose your own password for this user.

```
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");
> exit
```

Because the admin_user has read and write rights to the admin database, it also has read and write rights to all other databases. See <u>Control Access to MongoDB Instances with Authentication</u> (http://docs.mongodb.org/manual/tutorial/control-access-tomongodb-with-authentication/) for more information.

b. Enable authentication in MongoDB.

MongoDB authentication is already enabled. No further action is needed.

Install and Configure Nitro Web Services

You must complete the tasks earlier in this topic before installing Nitro Web Services.

On the host where Nitro Web Services will reside, do the following:

- If you are installing Nitro Web Services on its own host *or* on a host that does not have another RPM installation, complete the steps to prepare the host. See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host</u> <u>– Offline Method on page 109</u>.
- 2. Install the Nitro Web Services RPM.

[root]# zypper --non-interactive install nitro-web-services

3. Understand and edit the configuration files.

This includes clarifying what each configuration file is for and what to expect the first time the NWS service is started vs. each subsequent start.

MongoDB user, table, and index creation is performed at initial startup. Many of the options defined in the Nitro Web Service configuration files influence Mongo user/password and index creation.

Usernames and passwords are created *only* if they do not yet exist. Changing a password in the configuration file after initial startup will not update the password in Mongo.

The installation provides two configuration files

/opt/nitro-web-services/etc/nitro.cfg

This is the Nitro Web Services web application configuration file.

Before initial startup, set "admin_username" and "admin_password" to the MongoDB admin username and password you used when setting up MongoDB. It is also recommended that you change all other default passwords before starting Nitro Web Services. If you do not change the passwords at this point, it will be more difficult to change them later.

By default, NWS uses an auto-generated self-signed SSL certificate. The auto-generated self-signed SSL certification is created at service start up; not during the installation process.

However, you can use your own certfile, keyfile, and ca_certs files if you wish.

If you choose to use your own ssl_certfile and ssl_keyfile, ssl_create_self_signed_cert=true is ignored.

/opt/nitro-web-services/etc/zmq_job_status_adapter.cfg

This is the Nitro ZMQ Job Status Adapter configuration file.

The Nitro ZMQ Job Status Adapter listens to job status updates on the ZMQ bus and publishes them to MongoDB using the Nitro Web Services REST API. The username and password must be set to a MongoDB user

with write permissions. At minimum, set the password for nitro-writeonlyuser to the password defined in /opt/nitro-web-services/etc/nitro.cfg and make sure the SSL options are set correctly based on SSL settings in /opt/nitro-web-services/etc/nitro.cfg.

- 4. If you did not need to install the Nitro Web Services MongoDB database earlier in this topic, verify that the 'mongodb_host' and 'mongodb_port' in /opt/nitro-web-services/etc/nitro.cfg are set correctly ('localhost' on port '27017' are the defaults).
- 5. Start the services and configure Nitro Web Services to start automatically at system boot.

```
[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service
[root]# systemctl daemon-reload
[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service
```

Configure Viewpoint for Nitro Web Services

Do the following:

- Using a web browser, navigate to your Viewpoint instance (http://<server>:8081) and then log in as the MWS administrative user (moab-admin, by default).
- 2. Click **Configuration** from the menu and then click **Nitro Services** from the left pane. The following is an example of the Nitro Services Configuration page.

Basic Configuration	Nitro Services Co	Nitro Services Configuration							
File Manager	Nitro WS URL								
Roles	Username	nitro-readonly-user							
Principals	Password	••••••							
Remote Visualization Services	Trust Self Signed	Ø							
Nitro Services		TEST SAVE							
Application Templates									
Licensed Features									

3. Enter the configuration information. The following table describes the required information.

Field	Description
Nitro WS URL	Hostname (or IP address) and port number for the host on which you installed Nitro Web Services. For example, https:// <i><hostname></hostname></i> :9443
Username	Name of the user. This typically nitro-readonly-user.
Password	The user's password.
Trust Self Signed	Indicates whether Nitro Web Services was set up using self-signed certificates.

- 4. Click **TEST** to confirm the settings are correct. This confirms whether Nitro Web Services is up and receiving connections.
- 5. Click **SAVE** to submit your settings.
- 6. (Recommended) Use curl to test Nitro Web Services connectivity.

```
[root]# curl --insecure --data '{"username": "nitro-admin", "password":
"ChangeMe2!"}' \
https://<hostname>:9443/auth
```

You should get something similar to the following in the response:

```
{
  "status": 200,
  "data": {
   "nitro-key": "3e0fb95e9a0e44ae91daef4deb500dcc67a3714880e851d781512a49",
    "user": {
      "username": "nitro-admin",
      "last_updated": "2016-02-26 23:34:55.604000",
      "name": "Nitro Admin",
      "created": "2016-02-26 23:34:55.604000",
      "auth": {
        "job": [
          "read",
          "write",
          "delete"
        ],
        "user": [
          "read",
          "write",
          "delete"
        1
      }
    }
  }
}
```

Publish Nitro Events to Nitro Web Services

You need to configure the Nitro coordinators to send job status updates to the Nitro Web Services's ZMQ Job Status Adapter. The ZMQ Job Status Adapter is

responsible for reading job status updates off of the ZMQ bus and persisting them to Mongo. Nitro Web Services can then be used to access Nitro job status.

Each Nitro job has a Nitro Coordinator. Nitro Coordinators can be configured to publish job status updates to ZMQ by setting the "nws-connector-address" configuration option in Nitro's nitro.cfg file. Each compute node allocated/scheduled to a Nitro Job can play the role of a Nitro coordinator. Therefore, you must update the "nws-connector-address" in each compute node's nitro.cfg file.

Configuring nws-connector-address is simplified if each node is sharing nitro's configuration over a shared filesystem. If you are not using a shared filesystem, update the nitro configuration on each compute node.

Do the following:

- 1. If you have not already done so, on the Nitro Web Services Host, locate the msg_port number in the /opt/nitro-web-services/etc/zmq_job_status_adapter.cfg file. This is the port number you need to specify for the nws-connector-address.
- 2. On *each* Nitro compute note (Torque MOM Host), specify the nws-connectoraddress in the /opt/nitro/etc/nitro.cfg file.

```
...
# Viewpoint connection allows Nitro to communicate job status information
# to viewpoint. This option indicates name and port of the remote server
# in the form: <host>:<port>
nws-connector-address <nitro-web-services-hostname>:47100
...
```

Related Topics

• Nitro Integration on page 172

Additional Configuration

In this section:

- Configuring SSL in Tomcat on page 183
- Trusting Servers in Java on page 184

Configuring SSL in Tomcat

To configure SSL in Tomcat, please refer to the Apache Tomcat <u>documentation</u> (http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html).

Trusting Servers in Java

In this topic:

Prerequisites on page 184

Retrieve the Server's X.509 Public Certificate on page 184

Add the Server's Certificate to Java's Keystore on page 184

Prerequisites

Some of these instructions refer to JAVA_HOME, which must point to the same directory that Tomcat uses. To set JAVA_HOME, do this:

[root]# source /etc/tomcat/tomcat.conf

Your system administrator might have defined Tomcat's JAVA_HOME in a different file.

Retrieve the Server's X.509 Public Certificate

To retrieve the server's certificate, use the following command:

[root]# \$JAVA_HOME/bin/keytool -printcert -rfc -sslserver <servername>:<port> >
/tmp/public.cert.pem

Replace <*servername*> with the server's host name and <*port*> with the secure port number. The default port for https is 443. The default port for ldaps is 636. If successful, /tmp/public.cert.pem contains the server's public certificate. Otherwise, /tmp/public.cert.pem contains an error message. This message is typical: keytool error: java.lang.Exception: No certificate from the SSL server. This message suggests that the server name or port is incorrect. Consult your IT department to determine the correct server name and port.

Add the Server's Certificate to Java's Keystore

Java stores trusted certificates in a database known as the keystore. Because each new version of Java has its own keystore, you need to add the server certificate to the Java keystore (using the steps below) every time you install a new version of Java.

Java's keystore is located at \$JAVA_HOME/lib/security/cacerts. If Tomcat's JAVA_HOME points to a JDK, then the keystore is located at \$JAVA_ HOME/jre/lib/security/cacerts. To add the server certificate to the keystore, run the following command:

[root]# \$JAVA_HOME/bin/keytool -import -trustcacerts -file /tmp/public.cert.pem -alias
<servername> -keystore \$JAVA_HOME/lib/security/cacerts

You will be prompted for the keystore password, which is "changeit" by default.

Your system administrator might have changed this password.

After you've entered the keystore password, you'll see the description of the server's certificate. At the end of the description it prompts you to trust the certificate.

```
Trust this certificate? [no]:
```

Type yes and press **Enter** to add the certificate to the keystore.

RPM Upgrades

This section provides instructions and other information when upgrading your Moab HPC Suite components for SUSE 12-based systems using the RPM upgrade method.

In this section:

- Preparing the Host Typical Method on page 104
- <u>Creating the moab-offline Tarball on page 106</u>
- Preparing the Host Offline Method on page 109
- <u>Upgrading Torque Resource Manager (RPM) on page 186</u>
- Upgrading Moab Workload Manager (RPM) on page 189
- Upgrading Moab Accounting Manager (RPM) on page 192
- Upgrading Moab Web Services (RPM) on page 194
- Upgrading Moab Insight (RPM) on page 201
- <u>Upgrading Moab Viewpoint (RPM) on page 203</u>
- Upgrading RLM Server (RPM) on page 207
- <u>Upgrading Remote Visualization (RPM) on page 208</u>
- <u>Upgrading Your Nitro Integration (RPM) on page 215</u>
- <u>Migrating the MAM Database from MySQL to PostgreSQL on page 217</u>

Upgrading Torque Resource Manager (RPM)

This topic provides instructions to upgrade Torque Resource Manager to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Steps

Do the following:

1. If you installed Torque Server on its own host *or* if Torque Server is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host.

Do the same as needed for each Torque MOM Host (compute node).

See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host</u> – Offline Method on page 109.

- 2. Stop all Torque Server, Torque MOM, and Torque Client Services. See <u>Stop</u> <u>Torque Services on page 187</u>.
- 3. Upgrade Torque Server, Torque MOMs, and Torque Clients. See <u>Upgrade</u> <u>Torque Server, MOMs, and Clients on page 187</u>.
- 4. Start all Torque Server, Torque MOM, and Torque Client Services. See <u>Start</u> <u>Torque Services on page 188</u>.

Stop Torque Services

Do the following:

1. On the Torque Server Host, shut down the Torque server.

```
[root]# systemctl stop pbs server.service
```

2. On each Torque MOM Host, shut down the Torque MOM service.

Confirm all jobs have completed before stopping pbs_mom. You can do this by typing "momctl -d3". If there are no jobs running, you will see the message "NOTE: no local jobs detected" towards the bottom of the output. If jobs are still running and the MOM is shutdown, you will only be able to track when the job completes and you will not be able to get completion codes or statistics.

[root]# systemctl stop pbs_mom.service

3. On each Torque Client Host (including the Moab Server Host, the Torque Server Host, and the Torque MOM Hosts, if applicable), shut down the trqauthd service.

[root]# systemctl stop trqauthd.service

Upgrade Torque Server, MOMs, and Clients

You must complete all the previous upgrade steps in this topic before upgrading Torque Server, MOMs, and Clients. See the list of steps at the beginning of this topic.

Do the following:

1. Upgrade Torque Server.

On the Torque Server Host, install the upgrade.

```
[root]# zypper update moab-torque*
```

2. Upgrade Torque MOMs.

Do the following:

a. On the Torque Server Host, locate the directory where the rpm distro tarball was upacked and copy the moab-torque-common and moabtorque-mom RPM files to each Torque MOM Host (excluding a Torque MOM Host that also resides on the Torque Server Host). It is also recommended that you install the moab-torque-common RPM so you can use client commands and submit jobs from the Torque MOM Hosts (compute nodes).

[root]# scp RPMs/moab-torque-common-*.rpm <torque-mom-host>:
[root]# scp RPMs/moab-torque-mom-*.rpm <torque-mom-host>:
[root]# scp RPMs/moab-torque-client-*.rpm <torque-mom-host>:

b. On each Torque MOM Host (excluding a Torque MOM Host that also resides on the Torque Server Host), use the uploaded RPMs to update the host.

```
[root]# ssh root@<torque-mom-host>
[root]# zypper update moab-torque-*
```

3. Upgrade Torque Clients.

If you have any Torque Client Hosts that are different from the Torque Server Host or the Torque MOM Hosts (such as login nodes or when the Moab Server Host is different from the Torque Server Host), update those Torque Client Hosts.

```
[root]# zypper update moab-torque*
```

Start Torque Services

Do the following:

1. On the Torque Server Host, start up the Torque server.

```
[root]# systemctl daemon-reload
[root]# systemctl start pbs server.service
```

2. On each Torque MOM Host, start up the Torque MOM service.

```
[root]# systemctl daemon-reload
[root]# systemctl start pbs mom.service
```

3. On each Torque Client Host (including the Moab Server Host, Torque Server Host and Torque MOM Hosts, if applicable), start up the trqauthd service.

[root]# systemctl daemon-reload
[root]# systemctl start trqauthd.service

Upgrading Moab Workload Manager (RPM)

This topic provides instructions to upgrade Moab Workload Manager to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Steps

Do the following:

- 1. If you installed Moab Server on its own host *or* if Moab Server is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host. See <u>Preparing the Host Typical Method on page 104</u> or <u>Preparing the Host Offline Method on page 109</u>.</u>
- 2. If you use ODBC, confirm the database schema compatibility. For example, if you are upgrading Moab 8.1 to 9.0 no schema changes were made; however if you upgrade from Moab 8.0 and prior, you will need to upgrade your database. See <u>Migrating Your Database to Newer Versions of Moab</u> in the *Moab Workload Manager Administrator Guide* for more information.
- 3. Upgrade Moab Server. See <u>Upgrade Moab Server on page 189</u>.

Upgrade Moab Server

You must complete all the previous upgrade steps in this topic before upgrading Moab Server. See the list of steps at the beginning of this topic.

The Moab RPM automatically creates a backup of all relevant files. These backups are stored in /var/tmp/backup-<rpmName>-

If changes are detected between any existing configuration files and new configuration files, a version of the new configuration file will be saved under <configurationFileLocation>/<fileName>.rpmnew.

On the Moab Server Host, do the following:

1. Stop Moab.

```
[root]# systemctl stop moab.service
```

2. Install the upgrade.

```
[root]# zypper update moab-workload-manager*
```

3. Merge the configuration files.

You will need to decide whether to start with the old configuration file and add newer configuration options (or vice versa). Typically it depends on the amount of customization you previously made in earlier versions. In instances where you have modified very little, you should consider using the newer configuration and merging site-specific settings from the old file into the new one. The following steps highlight important changes between the 7.2.x default configuration and the 9.0.2 default configuration. Also note that new configuration files may have auto-generated content for secret keys and default passwords be careful to ensure that secret keys shared between components are configured correctly.

The recommended layout for the /opt/moab/etc/ directory appears as follows:

```
[root]# ls -1 /opt/moab/etc
total 29
-rw-r--r-- 1 root moab 2323 Nov 13 13:41 config.moab.pl
-rw-r--r-- 1 root moab 989 Nov 13 13:41 config.sql.pl
lrwxrwxrwx. 1 root root 14 Nov 13 15:46 moab.cfg -> moab.hpc.cfg
-rw-r--r-- 1 root moab 23500 Nov 13 15:43 moab.hpc.cfg
drwxr-xr-x. 2 root moab 4096 Nov 13 15:41 moab.d
-rw-r--r-- 1 root moab 391 Nov 13 13:41 moab.dat
-rw-r--r-- 1 root root 493 Nov 6 16:14 moab.lic
-rw------ 1 root moab 288 Nov 13 15:39 moab-private.cfg
lrwxrwxrwx. 1 root root 14 Nov 13 15:46 nami.cfg -> nami.hpc.cfg
-rw-r--r--. 1 root moab 563 Nov 13 15:43 nami.hpc.cfg
```

a. Merge the /opt/moab/etc/moab-private.cfg file. Make sure that unique items in /opt/moab/etc/moab-private.cfg.rpmnew are added

to the existing /opt/moab/etc/moab-private.cfg file. Include the new MWS RM credentials if you configure MWS as a resource manager:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

- The default MWS credentials in 7.2.x were admin:adminpw. For releases after 7.2.x, the default credentials were changed to moab-admin:changeme!. Use whatever credentials you have configured in /opt/mws/etc/mws-config.groovy.
- b. Merge customizations from /opt/moab/etc/moab.cfg and /opt/moab/etc/moab.d/* into /opt/moab/etc/moab.hpc.cfg.

If you are upgrading from a version prior to 9.0, the Torque RPMs will have moved the Torque binaries from /usr to /usr/local. Make sure that your RMCFG[] SUBMITCMD parameter is set to the correct path for qsub.

[root]# vi /opt/moab/etc/moab.cfg
RMCFG[pbs] TYPE=PBS SUBMITCMD=/usr/local/bin/qsub

- Although there are several ways to configure and merge changes into the /opt/moab/etc/moab.cfg file, the following instructions outline the recommended best practices. *Deviations from these best practices may result in unexpected behavior or added difficulty in future upgrades.*
- It is best to use the new default configuration file
 (/opt/moab/etc/moab.hpc.cfg) and merge changes from previous
 files into that one. You will notice that content from the
 /opt/moab/etc/moab.d/ directory has been merged into
 /opt/moab/etc/moab.hpc.cfg. Ensure that custom configuration
 options in all files located in /opt/moab/etc/moab.d/ directory get
 merged in to /opt/moab/etc/moab.hpc.cfg.
- You should avoid #include configurations.
- Although the upgrade should have created a backup of the moab.cfg file (in /var/tmp/backup-<rpmName>-<timestamp>.tar.gz), it is best to create your own backup until you can confirm the updated configuration behaves as expected.

[[root]# cp /opt/moab/etc/moab.cfg /opt/moab/etc/moab.cfg.bak

4. Start Moab.

```
[root]# systemctl daemon-reload
[root]# systemctl start moab.service
```

Upgrading Moab Accounting Manager (RPM)

This topic provides instructions to upgrade Moab Accounting Manager to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Steps

Do the following:

1. If you installed MAM Server on its own host *or* if MAM Server is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host.

Do the same as needed for the MAM GUI Host and each MAM Client Host.

See <u>Preparing the Host – Typical Method on page 104</u> or <u>Preparing the Host</u> – Offline Method on page 109.

- 2. Upgrade MAM Server. See Upgrade MAM Server on page 192.
- 3. Upgrade MAM GUI. See <u>Upgrade MAM GUI on page 193</u>.
- 4. Upgrade MAM Clients. See <u>Upgrade MAM Clients on page 194</u>.

Upgrade MAM Server

You must complete all the previous upgrade steps in this topic before upgrading MAM Server. See the list of steps at the beginning of this topic.

On the MAM Server Host, do the following:

1. Stop MAM.

[root]# systemctl stop mam.service

2. Install the upgrade.

[root]# zypper update moab-accounting-manager*

3. Compare your existing configuration files (/opt/mam/etc/mam-*.conf) with those distributed with the new release

(/opt/mam/etc/mam-*.conf.rpmnew) and merge the differing lines into your configuration files.

4. Start the mam service.

```
[root]# systemctl daemon-reload
[root]# systemctl start mam.service
```

- 5. Migrate the Moab Accounting Manager database from your current version to 9.0, running the migration script.
 - a. Run one or more migration scripts. You must run every incremental migration script between the version you are currently using and the new version (9.0). The migration scripts are located in the /usr/share/moab-accounting-manager/ directory. These scripts are designed to be rerunnable, so if you encounter a failure, resolve the failure and rerun the migration script. If you are unable to resolve the failure and complete the migration, contact Support.

I The migration scripts *must* be run as the mam user.

For example, if you are migrating from Moab Accounting Manager version 7.2, you must run five migration scripts: the first to migrate the database schema from 7.2 to 7.3, the second to migrate from 7.3 to 7.5, the third to migrate the database schema from 7.5 to 8.0, the fourth to migrate the database schema from 8.0 to 8.1, and the fifth to migrate the database schema from 8.1 to 9.0.

```
[root]# su - mam
[mam]$ /usr/share/moab-accounting-manager/migrate_7.2-7.3.pl
[mam]$ /usr/share/moab-accounting-manager/migrate_7.3-7.5.pl
[mam]$ /usr/share/moab-accounting-manager/migrate_7.5-8.0.pl
[mam]$ /usr/share/moab-accounting-manager/migrate_8.0-8.1.pl
[mam]$ /usr/share/moab-accounting-manager/migrate_8.1-9.0.pl
```

b. Verify that the resulting database schema version is 9.0.

[mam]\$ mam-shell System Query Name Version Description Moab Accounting Manager 9.0 Commercial Release

c. Verify that the executables have been upgraded to 9.0.2.

```
[mam]$ mam-server -v
Moab Accounting Manager version 9.0.2
```

Upgrade MAM GUI

If you are using the MAM GUI and the MAM GUI Host is different from the MAM Server Host, then do the following on the MAM GUI Host:

1. Install the upgrade.

• If you are upgrading the MAM RPM from a version prior to 9.0, do the following:

```
cp -p /opt/mam/etc/goldg.conf /opt/mam/etc/goldg.conf.rpmsave
rpm -e --nopostun moab-hpc-accounting-manager
yum install moab-accounting-manager
cp -p /opt/mam/etc/mam-gui.conf /opt/mam/etc/mam-gui.conf.rpmnew
\cp -f /opt/mam/etc/goldg.conf.rpmsave /opt/mam/etc/mam-gui.conf
```

• If you are upgrading the MAM RPM from a version at or after 9.0, do the following:

```
[root]# yum update moab-accounting-manager*
```

 Compare your current gui configuration file (/opt/mam/etc/mam-gui.conf) with the one distributed with the new release (/opt/mam/etc/mamgui.conf.rpmnew) and merge the differing lines into your current configuration file.

Upgrade MAM Clients

If you are have any MAM Client Hosts that are different from the MAM Server Host or MAM GUI Hosts, then do the following on each MAM Client Host:

- 1. Install the upgrade.
 - If you are upgrading the MAM RPM from a version prior to 9.0, do the following:

```
cp -p /opt/mam/etc/gold.conf /opt/mam/etc/gold.conf.rpmsave
rpm -e --nopostun moab-hpc-accounting-manager
yum install moab-accounting-manager
cp -p /opt/mam/etc/mam-client.conf /opt/mam/etc/mam-client.conf.rpmnew
\cp -f /opt/mam/etc/gold.conf.rpmsave /opt/mam/etc/mam-client.conf
```

• If you are upgrading the MAM RPM from a version at or after 9.0, do the following:

```
[root] # yum update moab-accounting-manager*
```

 Compare your current client configuration file (/opt/mam/etc/mamclient.conf) with the one distributed with the new release (/opt/mam/etc/mam-client.conf.rpmnew) and merge the differing lines into your current configuration file.

Upgrading Moab Web Services (RPM)

This topic provides instructions to upgrade Moab Web Services to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

L

If upgrading Moab Web Services from a version prior to 8.0, this upgrade removes all MWS roles and permissions and recreates the default roles. If you have modified any MWS permissions or roles, you will need to recreate them after the upgrade is complete.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Steps

Do the following:

- Confirm the Moab Server RPM upgrade has completed on the host on which MWS Server is also installed. See <u>Upgrading Moab Workload Manager</u> (RPM) on page 189.
- 2. Upgrade your MongoDB database version to 2.4.x (recommended). See <u>Upgrade the MongoDB on page 87</u>.
- 3. Upgrade to Java 8 (recommended). See Upgrade to Java 8 on page 195
- 4. Upgrade MWS Server. See <u>Upgrade MWS Server on page 195</u>.

Upgrade to Java 8

Oracle Java 8 Runtime Environment is the recommended Java environment, but Oracle Java 7 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and so on cannot run MWS.

If you wish to upgrade to Java 8, refer to the <u>Install Java on page 46</u> instructions.

Upgrade MWS Server

You must complete all the previous upgrade steps in this topic before upgrading MWS server. See the list of steps at the beginning of this topic.

Т

The MWS RPM automatically creates a backup of all relevant files. These backups are stored in /var/tmp/backup-<rpmName>-

If changes are detected between any existing configuration files and new configuration files, a version of the new configuration file will be saved under <configurationFileLocation>/<fileName>.rpmnew.

On the MWS Server Host, do the following:

1. Stop Tomcat.

[root]# systemctl stop tomcat.service

2. Back up the MWS home directory.

[root] # cp -r /opt/mws /opt/mws-8.1-backup

3. Install the upgrade.

[root]# zypper update moab-web-services*

4. Upgrade the schema of the mws database in MongoDB.

You *must* perform this step, regardless of whether you upgraded MongoDB to version 2.4.x.

Run the database migration script provided with MWS. (It is safe to run this script more than once. If for any reason, errors occur during the execution of the script, run it again.)

[root]# mongo -u mws_user mws /opt/mws/utils/db-migrate.js -p

You may be prompted for the mongo password. The password can be found in the /opt/mws/etc/mws-config.groovy file under the "grails.mongo.password" key.

The script might take several minutes to execute.

5. Merge the changes in the /tmp/mws-install/mws-9.0.2/mwsconfig.groovy file into your existing /opt/mws/etc/mwsconfig.groovy.

- a. Depending on your current MWS version, do the following as needed:
 - If Insight is part of your configuration:
 - add the health check information for the Insight Server (insight.server, insight.command.port, insight.command.timeout.seconds); prior to version 9.0.2.
 - insight.server must be changed to the DNS name for the host on which the Insight Server is running; "localhost" is not valid.
 - add the Insight configuration information (dataSource_ insight.username, dataSource_insight.password, dataSource_ insight.url); prior to version 9.0.
 - I dataSource_insight.url is "jdbc:postgresql://<insight database host>:5432/moab_insight"; where <insight database host> is the IP address or name of the host on which the Insight PostgreSQL Database Server is running.
 - If Viewpoint is part of your configuration, register Viewpoint as client; prior to version 9.0
- b. Confirm the value for moab.messageQueue.secretKey matches the value located in /opt/moab/etc/moab-private.cfg; if you have not yet configured a secret key, see <u>Secure communication using secret keys</u>.

Т

The following is an example of the merged /opt/mws/etc/mws-config.groovy file for MWS 9.0.2:

```
// Any settings in this file may be overridden by any
// file in the mws.d directory.
// Change these to be whatever you like.
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"
// Moab Workload Manager configuration.
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559
moab.messageDigestAlgorithm = "SHA-1"
// MongoDB configuration.
// grails.mongo.username = "mws user"
// grails.mongo.password = "<ENTER-KEY-HERE>"
// Insight configuration.
// dataSource_insight.username = "mws"
// dataSource insight.password = "changeme!"
// dataSource insight.url = "jdbc:postgresql://127.0.0.1:5432/moab insight"
// insight.server = "localhost"
// insight.command.port = 5568
// insight.command.timeout.seconds = 5
// Message bus configuration.
moab.messageQueue.port = 5570
// moab.messageQueue.secretKey = "<ENTER-KEY-HERE>"
mws.messageQueue.address = "*"
mws.messageQueue.port = 5564
// Sample OAuth Configuration
grails.plugin.springsecurity.oauthProvider.clients = [
       [
               clientId : "viewpoint",
clientSecret : "<ENTER-CLIENTSECRET-HERE>",
               authorizedGrantTypes: ["password"]
       1
]
// Sample LDAP Configurations
// Sample OpenLDAP Configuration
//ldap.server = "192.168.0.5"
//ldap.port = 389
//ldap.baseDNs = ["dc=acme,dc=com"]
//ldap.bindUser = "cn=Manager,dc=acme,dc=com"
//ldap.password = "*****"
//ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"
// Sample Active Directory Configuration
//ldap.server = "192.168.0.5"
//ldap.port = 389
//ldap.baseDNs = ["CN=Users, DC=acme, DC=com", "OU=Europe, DC=acme, DC=com"]
//ldap.bindUser = "cn=Administrator, cn=Users, DC=acme, DC=com"
//ldap.password = "*****"
//ldap.directory.type = "Microsoft Active Directory"
```

```
log4j = {
   // Configure an appender for the events log.
   def eventAppender = new org.apache.log4j.rolling.RollingFileAppender(
           name: 'events', layout: pattern(conversionPattern: "%m%n"))
   def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
           fileNamePattern: '/opt/mws/log/events.%d{yyyy-MM-dd}',
           activeFileName: '/opt/mws/log/events.log')
   rollingPolicy.activateOptions()
   eventAppender.setRollingPolicy(rollingPolicy)
   // Configure an appender for the audit log.
   def auditAppender = new org.apache.log4j.rolling.RollingFileAppender(
           name: 'audit',
           layout: new com.ace.mws.logging.ACPatternLayout("%j\t\t\t%c
\{1\} \setminus t \setminus t \otimes m \in n")
   def auditRollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
           fileNamePattern: '/opt/mws/log/audit.%d{yyyy-MM-dd}',
           activeFileName: '/opt/mws/log/audit.log')
   auditRollingPolicy.activateOptions()
   auditAppender.setRollingPolicy(auditRollingPolicy)
   appenders {
       rollingFile name: 'stacktrace',
               file: '/opt/mws/log/stacktrace.log',
               maxFileSize: '100MB'
       rollingFile name: 'rootLog',
               file: '/opt/mws/log/mws.log',
               maxFileSize: '100MB', //The maximum file size for a single log
file
               maxBackupIndex: 10, //Retain only the 10 most recent log files,
delete older logs to save space
               layout: new com.ace.mws.logging.ACPatternLayout(), //Configures
the output format of each log entry
               threshold: org.apache.log4j.Level.ERROR //Ignore any logging
entries less verbose than this threshold
       rollingFile name: 'jdbc',
               file: '/opt/mws/log/jdbc.log',
               maxFileSize: '100MB',
               maxBackupIndex: 10,
               layout: new com.ace.mws.logging.ACPatternLayout()
       appender eventAppender
       appender auditAppender
   }
   // NOTE: This definition is a catch-all for any logger not defined below
   root. {
       error 'rootLog'
   // Individual logger configurations
   debug 'com.ace.mws',
           'grails.app.conf.BootStrap',
           'grails.app.controllers.com.ace.mws',
           'grails.app.domain.com.ace.mws',
           'grails.app.filters.com.ace.mws',
           'grails.app.services.com.ace.mws',
```

```
'grails.app.tagLib.com.ace.mws',
           'grails.app.jobs.com.ace.mws',
           'grails.app.gapiParser',
           'grails.app.gapiRequest',
           'grails.app.gapiSerializer',
           'grails.app.translator',
           'plugins'
                      // MWS plugins
       info 'com.ace.mws.gapi.Connection',
           'com.ace.mws.gapi.parsers',
           'grails.app.service.grails.plugins.reloadconfig',
           'com.ace.mws.gapi.serializers'
       off 'org.codehaus.groovy.grails.web.errors'
       warn additivity: false, jdbc: 'org.apache.tomcat.jdbc'
       // Logs event information to the events log, not the rootLog
       trace additivity: false, events: 'com.ace.mws.events.EventFlatFileWriter'
       // Logs audit information to the audit log, not the rootLog
       trace additivity: false, audit: 'mws.audit'
}
```

- 6. Merge any changes supplied in the new mws-config-hpc.groovy file in to your installed /opt/mws/etc/mws.d/mws-config-hpc.groovy.
- 7. Remove unused MWS plugins. Unused plugins must be removed as their presence will prevent MWS from starting up.
 - Remove all plugins from /opt/mws/plugins except for the diagnostics, native, and power-management plugins.

```
[root]# cd /opt/mws/plugins
[ [root]# rm plugins-reports.jar plugins-storage.jar plugins-vcenter.jar
```

- 8. Verify the Tomcat user has read access to the /opt/mws/etc/mwsconfig.groovy and /opt/mws/etc/mws.d/mws-config-hpc.groovy file.
- 9. Verify the following lines are added to the end of /etc/tomcat/tomcat.conf.

```
CATALINA_OPTS="-DMWS_HOME=/opt/mws_-Xms256m_-Xmx3g_-Dfile.encoding=UTF8"
JAVA_HOME="/usr/java/latest"
```

10. Start Tomcat.

[root]# systemctl start tomcat.service

MWS 9.0.2 introduced a new Connection Health entry for Insight Server. The new Insight Server health check will display a connection problem until you upgrade Insight to 9.0.2.

Upgrading Moab Insight (RPM)

This topic provides instructions to upgrade Moab Insight to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade the Insight Server

Do the following:

1. On the Moab Server Host, stop Moab from sending messages to Insight.

```
[root]# mschedctl -s
```

- 2. On the Insight Server Host, do the following:
 - a. If you have not already done so, complete the steps to prepare the Insight Server Host for the upgrade. See <u>Preparing the Host Typical</u> Method on page 104 or Preparing the Host Offline Method on page 109.
 - b. Stop Insight

```
[root]# systemctl stop insight.service
```

c. Back up the Insight home directory.

```
[root]# cp -r /opt/insight /opt/insight-9.0.1-backup
```

d. Back up your Insight databases

```
[root]# su - postgres
[postgres]$ pg_dump moab_insight > /tmp/moab_insight_9.0.1.dump
[postgres]$ pg_dump moab_insight_reference > /tmp/moab_insight_reference_
9.0.1.dump
[postgres]$ exit
[root]# mv /tmp/moab_insight_9.0.1.dump /opt
[root]# mv /tmp/moab_insight_reference_9.0.1.dump /opt
[root]# mongodump --username insight_user --password secret4 -d insight --out
/opt/insight_9.0.1.mongo.dump
```

e. Install the upgrade

```
[root]# zypper update moab-insight*
```

f. Merge the new configuration from

```
/opt/insight/etc/config.groovy.rpmnew into
/opt/insight/etc/config.groovy.
```

g. Verify the insight user has read access to the /opt/insight/etc/config.groovy file.

```
[root]# ls -l /opt/insight/etc/config.groovy
-rw-r--r-. 1 insight insight 3787 Jan 24 17:51 /opt/insight/etc/config.groovy
```

h. Verify the following line is added to the end of /opt/insight/etc/insight.conf:

JAVA HOME="/usr/java/latest"

i. Optional. Postpone the database upgrade.

Upon starting, Insight will detect what version the PostgreSQL and Mongo Insight database schemas are. If the schemas are not compatible with the current version, Insight will upgrade the schemas, including all data contained therein.

- If upgrading from 9.0.1 this could take anywhere from several minutes to several hours, depending on how large a system you have.
- If upgrading from 9.0.0 the upgrade could take days.

If you cannot wait that long and you don't have immediate need for the old data, you can postpone the database upgrade and allow the Insight upgrade to continue.

To postpone the database upgrade, set the following in the /opt/insight/etc/config.groovy file.

insight.skip.database.migration = true

When you have time to perform the database upgrade, set this property back to "false" and restart Insight.

j. Start Insight.

```
[root]# systemctl daemon-reload
[root]# systemctl start insight.service
```

k. If you decided *not* to postpone the database upgrade, then wait for and confirm the database upgrade completed. *All* data must be transferred before the upgrade is complete.

To track the upgrade process, view /opt/insight/log/insight.log file. You should output similar to the following:

```
2016-06-28T06:25:12.323-0600
                                      INFO
                             main
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully transferred
21942 of 22101 node samples to MongoDB
2016-06-28T06:25:12.383-0600
                             main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully transferred
21995 of 22101 node samples to MongoDB
2016-06-28T06:25:12.439-0600
                             main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully transferred
22048 of 22101 node samples to MongoDB
2016-06-28T06:25:12.498-0600 main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully transferred
22101 of 22101 node samples to MongoDB
2016-06-28T06:25:12.871-0600 main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully upgraded 900
of 1140 workload view entries in MongoDB
2016-06-28T06:25:12.911-0600 main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully upgraded
1000 of 1140 workload view entries in MongoDB
2016-06-28T06:25:12.945-0600 main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully upgraded
1100 of 1140 workload view entries in MongoDB
2016-06-28T06:25:12.959-0600 main
                                      INFO
com.ace.insight.data.service.dbinit.DbUpgradeService 0 Successfully upgraded
1140 of 1140 workload view entries in MongoDB
```

When the upgrade is completed, you will see the following lines in your /opt/insight/log/insight.log file:

2016-06-28T06:25:13.120-0600 main INFO com.ace.insight.data.service.dbinit.DbUpgradeService 0 Database has been upgraded to current version

3. On the Moab Server Host, have Moab resume sending messages to Insight.

mschedctl -r

Upgrading Moab Viewpoint (RPM)

This topic provides instructions to upgrade Moab Viewpoint to the latest release version using the RPM upgrade method. It includes instructions for migrating your database schema to a new version if necessary.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

In this topic:

- Upgrade the Viewpoint Server on page 204
 - Update the Permissions List on page 207
- Upgrade the Viewpoint File Manager Service on page 207
- Update the Viewpoint License on page 207

Upgrade the Viewpoint Server

On the Viewpoint Server Host, do the following:

- 1. If you installed Viewpoint Server on its own host *or* if Viewpoint Server is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host. See <u>Preparing the Host Typical</u> <u>Method on page 104 or Preparing the Host Offline Method on page 109</u>.
- 2. Stop the Apache service.

[root]# systemctl stop httpd.service

3. If you are upgrading from Viewpoint 9.0.0, do the following:

Beginning with the 9.0.1 release, several variables became obsolete. In addition, the configuration files were renamed and/or moved.

- a. Remove these obsolete variables from /etc/httpd/conf.d/viewpoint.conf:
 - IRIS_LOGS_FILENAME
 - IRIS_LOGS_PATH
 - IRIS_SESSION_FILE_PATH
 - IRIS_TEMPLATE_DEBUG

The IRIS_DEBUG variable must *not* be used in production; also remove this variable from /etc/httpd/conf.d/viewpoint.conf.

b. Back up configuration files.

```
[root]# cp -p /opt/viewpoint/config/config.json /etc/httpd/conf.d/viewpoint.conf
/tmp
```

c. Back up certificates to connect to the file manager (if Viewpoint connects to file manager over SSL).

```
[root]# cp -p /opt/viewpoint/webdav_client/client-cert.pem
/opt/viewpoint/webdav_client/client-key.pem /opt/viewpoint/webdav_client/ca-
cert.pem /tmp
```

d. Remove your existing Viewpoint installation and some packages that are no longer needed.

L

```
[root]# rpm -e --nodeps moab-viewpoint
[root]# rpm -q --quiet python-importlib && rpm -e python-importlib
[root]# rpm -q --quiet mod_wsgi && rpm -e mod_wsgi
```

e. Remove some leftover files.

```
[root]# rm -rf /var/log/viewpoint /opt/viewpoint
/etc/httpd/conf.d/viewpoint.conf /etc/cron.daily/viewpoint.sh
```

- 4. If you are upgrading Viewpoint from 9.0.1 or later, do the following:
 - a. Back up configuration files.

```
[root]# cp -p /opt/viewpoint/lib/viewpoint/config/config.json
/opt/viewpoint/etc/viewpoint.cfg /tmp
```

b. Back up certificates to connect to the file manager (if Viewpoint connects to file manager over SSL).

```
[root]# cp -p /opt/viewpoint/lib/viewpoint/webdav_client/client-cert.pem
/opt/viewpoint/lib/viewpoint/webdav_client/client-key.pem
/opt/viewpoint/lib/viewpoint/webdav_client/ca-cert.pem /tmp
```

c. Remove your existing Viewpoint installation.

[root]# rpm -e --nodeps moab-viewpoint

5. Install the new Viewpoint RPM.

[root]# zypper install moab-viewpoint

6. If you are upgrading from Viewpoint 9.0.0, restore certificates to their new location:

```
[root]# cp -p /tmp/client-cert.pem /tmp/client-key.pem /tmp/ca-cert.pem
/opt/viewpoint/lib/viewpoint/webdav client/
```

- 7. Merge customizations into the new viewpoint.conf file.
 - If you are upgrading Viewpoint from 9.0.0, merge the customizations in the old /etc/httpd/conf.d/viewpoint.conf into the /opt/viewpoint/etc/viewpoint.cfg.

All IRIS_DATABASE* SetEnv entries in /etc/httpd/conf.d/viewpoint.conf are obsolete. Database environment variables are now stored in /opt/viewpoint/etc/viewpoint.cfg. Therefore, move all your uncommented database SetEnv entries into the environment section of /opt/viewpoint/etc/viewpoint.cfg; and edit as needed to reflect the 9.0.2 renaming (see the warning later in this step for more information).

Т

• If you are upgrading Viewpoint from 9.0.1, merge customizations into the /opt/viewpoint/etc/viewpoint.cfg and edit as needed to reflect the 9.0.2 naming.

Beginning with version 9.0.2, all IRIS_* variables were renamed to VIEWPOINT_*

8. After you are finished, your /opt/viewpoint/etc/viewpoint.cfg will look something like this:

```
[admin]
username = viewpoint-admin
password = pbkdf2_
sha256$20000$ZHeToCJgrSUH$+xmzYdhpqZCJokxO9eGzyr2B6jrfCgLlBT+pBgMis4w=
[environment]
VIEWPOINT_DATABASE_HOST = localhost
VIEWPOINT_DATABASE_PORT = 5432
VIEWPOINT_DATABASE_NAME = moab_viewpoint
VIEWPOINT_DATABASE_USER = moab_viewpoint
VIEWPOINT_DATABASE_USER = moab_viewpoint
VIEWPOINT_DATABASE_PASSWORD = changeme!
[settings]
past_hours = 24
future_hours = 4
```

9. Change the admin password in /opt/viewpoint/etc/viewpoint.cfg.

For security purposes, the admin password is encrypted. In the example above, the default is the encrypted equivalent to "changeme!", which is the default for the Viewpoint instance. Change this default password to a different encrypted password. To encrypt the password, do the following (substituting "changeme!" with your password):

[root]# echo -n 'changeme!' | /opt/viewpoint/bin/viewpoint makehash
Using default hasher
pbkdf2_sha256\$20000\$ZHeToCJgrSUH\$+xmzYdhpqZCJokxO9eGzyr2B6jrfCgLlBT+pBgMis4w=

The default hashing algorithm is pbkdf2_sha256. To show the other available algorithms, run /opt/viewpoint/bin/viewpoint makehash --help

- 10. Initialize Viewpoint's PostgreSQL database.
 - If you are upgrading from Viewpoint 9.0.0, do the following:

[root]# /opt/viewpoint/bin/viewpoint migrate --fake-initial

• If you are upgrading from Viewpoint 9.0.1 or later, do the following:

```
[root]# /opt/viewpoint/bin/viewpoint migrate
```

11. Start the Apache service.

```
[root]# systemctl start httpd.service
```

Update the Permissions List

Once you have updated the Viewpoint Server, you will need to update the MWS configuration in the Viewpoint Portal to sync the permissions list.

Do the following:

- Using a web browser, navigate to your Viewpoint instance. (http://<viewpoint_host>:8081; where <viewpoint_host> is the IP address or name of the Viewpoint Server Host).
- 2. Log in as the Viewpoint administrative user (viewpoint-admin, by default). The Configuration page displays with the Basic Configuration page selected.
- 3. In the MWS Configuration area, click **SAVE**.

Upgrade the Viewpoint File Manager Service

On the Moab Server Host where the Viewpoint File Manager Service resides, do the following:

1. Install the moab-viewpoint-filemanager package.

[root]# zypper install moab-viewpoint-filemanager

2. Restart the File Manager Service.

[root]# systemctl restart acfileman.service

Update the Viewpoint License

- If upgrading from 9.0.0, you will need to license Viewpoint for the first time. Follow the instructions in <u>License Viewpoint on page 151</u>.
- If upgrading from 9.0.1, no action is needed; your existing license remains in effect.

Upgrading RLM Server (RPM)

This topic contains instructions on how to upgrade the RLM Server using the RPM upgrade method.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release. Adaptive Computing *strongly* recommends that your RLM Server is v12.1 (build:2).

Upgrade the RLM Server

On the RLM Server Host, do the following:

- 1. If you installed the RLM Server on its own host *or* if the RLM Server is the first component being upgraded on a host with other RPM installations,, complete the steps to prepare the host. See <u>Preparing the Host Typical</u> <u>Method on page 104 or Preparing the Host Offline Method on page 109</u>.
- 2. Stop the RLM service.

[root]# systemctl stop rlm.service

- 3. Install the upgrade.
 - If you are upgrading from ac-rlm version 12.0, remove the old RPM and install the new RPM.

```
[root]# zypper remove ac-rlm
[root]# zypper install ac-rlm
```

• If you are upgrading from an ac-rlm version later than 12.0, upgrade the RPM.

[root]# zypper update ac-rlm

4. Restart the RLM service.

[root]# systemctl daemon-reload
[root]# systemctl restart rlm.service

Upgrading Remote Visualization (RPM)

Remote Visualization needs to be upgraded on the gateway server and on *all* the session servers (Torque MOM Hosts).

Remote Visualization Server 9.0.2 is required for Viewpoint 9.0.2.

In this topic:

- Upgrade the Gateway Server on page 209
- <u>Configure the Gateway Server on page 209</u>
- Upgrade the Session Servers on page 212

- Configure a Session Server on page 212
- <u>Copy the Session Server Configuration to the Remaining Session Servers</u> on page 215

Upgrade the Gateway Server

Do the following:

- 1. Make sure that your DNS server is configured for reverse lookups. Without reverse DNS, Session Servers will fail to register with your Gateway Server. As a result, authentication requests to the Gateway Server will fail because the Gateway Server will not be able to connect to any Session Servers.
- 2. On the Remote Visualization Gateway Server Host, do the following
 - a. If you installed Remote Visualization Gateway Server on its own host or if Remote Visualization Gateway Server is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host. See <u>Preparing the Host – Typical Method on page 104</u> or Preparing the Host – Offline Method on page 109.
 - b. Install the new Remote Visualization RPM.

[root]# zypper update StarNetFastX2

c. Confirm the config directory is owned by root; if it is, chown it to "fastx".

```
[root]# ls -ld /usr/lib/fastx2/config
drwxr-xr-x 2 root root 4096 Jun 6 11:11 /usr/lib/fastx2/config
```

[root]# chown fastx. /usr/lib/fastx2/config/ -R

d. Remove the existing gateway-server.json file.

[root]# rm /usr/lib/fastx2/config/gateway-server.json

e. Restart the FastX service.

[root]# systemctl restart fastx.service

Configure the Gateway Server

Do the following:

- Using a web browser, navigate to your *secure* Remote Visualization Gateway Server instance. (https://<gateway_host>:3443; where <gateway_host> is the IP address or name of the Gateway Server Host).
- 2. Log in as the FastX admin user.

Adaptive COMPUTING
User Name
ace
Password
Use Public Key Authentication
Log In
Version: 2.2.77

3. Click the icon for Admin\System Configuration. The icon is circled in the example to assist in finding its location.

4. Select the Network tab. If it is not already selected, select the Configuration sub-tab to display the FastX Network Configuration page.

Т

& Adaptive	Theme	Admins	Sessions	Network	쑸│봤│瞷│夲 │ace
www		Configuration			help
Fas	tX Netwo Secret Key SecretShare Accept d Send da	ork Configu dKey lata from c ta to cluste	uration luster mem er members	bers	7
					Save

- 5. Do the following:
 - a. In the Secret Key field, enter the secret key name referenced by the current (non-upgraded) Session Servers. Record this secret key (e.g. copy to your clipboard) because you will need it when configuring the Session servers later in this topic.
 - b. Enable the connection to accept data from cluster member.
 - c. In the box to specify the log in method, select "Sessions log in to the system running the fewest sessions".
 - d. Disable the Gateway Server from sending data to cluster members.

The following image is an example of the completed FastX Network Configuration page for the Gateway Server.

Adaptive	Theme	Admins	Sessions	Network					% & ■	🏶 ace
www		Configuration								
Fa	stX Netwo Secret Key	ork Configu	uration							
	mysecretke	у								
	Accept of	data from c	luster mem	bers						
	Log in to a s	system based o	n the following c	riteria:						
	Sessions	log in to the syste	em running the few	est sessions	-					
	Send da	ita to cluste	er members							
						Cours.				
						Save				

6. Click **Save** to submit your changes.

Upgrade the Session Servers

These instructions assume you installed the Remote Visualization Session Servers on the same hosts on where the Torque MOM Hosts (compute nodes) were installed and that you have prepared those hosts for RPM upgrades.

Do the following:

- 1. Make sure that your DNS server is configured for reverse lookups. Without reverse DNS, Session Servers will fail to register with your Gateway Server. As a result, authentication requests to the Gateway Server will fail because the Gateway Server will not be able to connect to any Session Servers.
- 2. On the *each* Session Server host, do the following:
 - a. Upgrade FastX.

```
[root]# zypper update StarNetFastX2
[root]# chown fastx. /usr/lib/fastx2/config -R
[root]# rm -f /usr/lib/fastx2/config/session-server.json
```

b. Restart the FastX service.

[root]# systemctl restart fastx.service

Configure a Session Server

This section provides instructions on how to configure *one* Session Server (referred to as the initial Session Server). The configuration will then be copied to the additional Session Servers in your environment in a later procedure.

Do the following:

- Using a web browser, navigate to your secure Remote Visualization Session Server instance. (https://<session-host>:3443; where <session_host> is the IP address or name of the *initial* Remote Visualization Session Server Host).
- 2. Log in as the FastX admin user.
| Adaptive
COMPUTING | | | |
|-------------------------------|--|--|--|
| User Name | | | |
| ace | | | |
| Password | | | |
| | | | |
| Use Public Key Authentication | | | |
| Log In | | | |
| Version: 2.2.77 | | | |

3. Select the icon for Admin\System Configuration. The icon is circled in the example to assist in finding its location.

4. Select the Network tab. If it is not already selected, select the Configuration sub-tab to display the FastX Network Configuration page.

Adaptive	Theme	Admins	Sessions	Network		쑸│봤│曜│ �│ace	
www	Settings	Configuration				help	
Fas	tX Netwo Secret Key SecretShare Accept o Send da	ork Configu dKey lata from c ta to cluste	iration luster men	nbers s	OFF		
	Save						

- 5. Do the following:
 - a. In the Secret Key field, enter the name of the secret key used when configuring the Gateway Server earlier in this topic.

• You will not be able to login to the portal on the Gateway Server until you have completed the configuration of at least one Session Server. If you did not save it earlier, the secret key can be found in the /usr/lib/fastx2/config/network.json on the Gateway Server.

- b. Disable the connection to accept data from cluster members.
- c. Enable the Gateway Server to send data to cluster members.
- d. In the box to specify whether to SSL certificates, select "I am using a selfsigned certificate".
- e. In the Cluster member URLs area, do the following:
 - i. Click the + icon.
 - ii. In the box that displays, enter the IP address or name and the port number of the Gateway Server you just upgraded (for example: "https://mgmtnode:3443").

The following image is an example of the completed FastX Network Configuration page.

Adaptive	Theme	Admins	Sessions	Network	☆ \$\$ \$\$
www	Settings	Configuration			
Fas	tX Netwo	ork Configu	iration		
	Secret Key	0			
	mysecretkey	/			
	Accept d	lata from cl	luster meml	oers	
	Send da	ta to cluste	r members		
	SSL Certifi	cates		UN	0
		a self-signed cert	ificate		•
	T unit using	a sen signea cert	incute		
	Cluster me	mber URLs +			
	https://mgn	ntnode:3443			x
					Save

6. Click **Save** to submit your changes.

Copy the Session Server Configuration to the Remaining Session Servers

After you configured the initial Session Server, the settings are saved in the network.json file.

For documentation clarity, these instructions use node00 through node09 as the names of the Session Servers; with node00 designated as the initial Session Server.

On the *initial* Session Server Host, copy the network.json file to the *remaining* Session Server Hosts in your environment, and restart the FastX service.

[root]# for i in {01..09} ; do scp /usr/lib/fastx2/config/network.json root@node\$i:/usr/lib/fastx2/config/network.json ; done [root]# for i in {01..09} ; do ssh node\$i "chown fastx. /usr/lib/fastx2/config/. -R" ; done [root]# for i in {01..09} ; do ssh node\$i "systemctl restart fastx.service" ; done

Upgrading Your Nitro Integration (RPM)

This section provides instructions on upgrading your Nitro Integration as part of your Moab HPC Suite configuration.

In this section:

- Upgrading Nitro (RPM) on page 216
- Upgrading Nitro Web Services (RPM) on page 217

Upgrading Nitro (RPM)

This topic contains instructions on how to upgrade Nitro using the RPM upgrade method.

Upgrade Nitro

On the host where Nitro resides, do the following:

- 1. If you installed Nitro on its own host *or* if Nitro is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host. See <u>Preparing the Host Typical Method on page 104</u> or <u>Preparing the Host Offline Method on page 109</u>.
- 2. Back up your existing launch script in /opt/nitro/bin/.
- 3. Install the upgrade.

```
[root]# zypper update nitro
```

4. Identify the launch nitro.sh script version for your resource manager.

Reference scripts are provided in /opt/nitro/scripts.

```
[root]# find . -name launch_nitro.sh
./scripts/lsf/launch_nitro.sh
./scripts/torque/launch_nitro.sh
./scripts/slurm/launch_nitro.sh
./scripts/alps/torque/launch_nitro.sh
./scripts/alps/slurm/launch_nitro.sh
```

5. Copy the latest launch script to the bin directory. (This example uses the Torque-based launch script.)

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/launch_nitro.sh

This is a "copy" file operation and not a "move" operation. This allows you to customize your version of the script and always have the factory version available for consultation and/or comparison.

- 6. Merge any customizations from your existing <code>launch_nitro.sh</code> script into the script you just copied to the bin directory.
- 7. If you are not using a shared file system, copy the updated Nitro installation directory to all hosts.

Only the Nitro bin directory with its proper path is required to run Nitro jobs. This means that you only need to copy the Nitro bin directory to the other hosts.

[root]# scp -r /opt/nitro/bin root@host002:/opt	/nitro	 >]
nitrostat	100%	12KB	12.0KB/s	00:00
launch nitro.sh	100%	6890	6.7KB/s	00:00
nitro	100%	15MB	14.9MB/s	00:00
				/

Related Topics

• Upgrading Your Nitro Integration (RPM) on page 215

Upgrading Nitro Web Services (RPM)

This topic contains instructions on how to upgrade Nitro Web Services using the RPM upgrade method.

Upgrade Nitro Web Services

On the host where Nitro Web Services resides, do the following:

- 1. If you installed Nitro Web Services on its own host *or* if Nitro Web Services is the first component being upgraded on a host with other RPM installations, complete the steps to prepare the host. See <u>Preparing the Host Typical</u> <u>Method on page 104 or Preparing the Host Offline Method on page 109</u>.
- 2. Stop the services.

```
[root]# systemctl stop nitro-web-services.service
[root]# systemctl stop nitro-zmq-job-status-adapter.service
```

3. Install the upgrade.

[root]# zypper update nitro-web-services

4. If you are upgrading Nitro from 2.0.0, re-enable the services.

```
[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service
```

5. Start the services.

```
[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service
```

Related Topics

• Upgrading Your Nitro Integration (RPM) on page 215

Migrating the MAM Database from MySQL to PostgreSQL

PostgreSQL is the preferred DBMS for MAM. Customers who have already installed MySQL as the DBMS for MAM are not required to migrate their database to use PostgreSQL at this time. However, MySQL is considered deprecated and new installations will only use PostgreSQL.

PostgreSQL does not provide a standard procedure for migrating an existing database from MySQL to PostgreSQL. Adaptive Computing has had success using the py-mysql2pgsql tools for migrating/converting/exporting data from MySQL to PostgreSQL. See https://github.com/philipsoutham/py-mysql2pgsq for additional details.

To Migrate the MAM Database

This procedure was successfully tested on an actual customer MySQL database with millions of transactions on CentOS 6.4. It completed in less than an hour.

1. Make a backup copy of your MySQL mam database.

[root]# mysqldump mam > /archive/mam.mysql

- 2. Follow the instructions to Install PostgreSQL.
 - Manual Install Install and Initialize the PostgreSQL Server on page 37
 - RPM Install Install and Initialize PostgreSQL Server on page 120
- 3. Install the prerequisite packages.

```
[root]# zypper install git postgresql-devel gcc MySQL-python python-psycopg2 PyYAML
termcolor python-devel
```

4. Install pg-mysql2pgsql (from source).

```
[root]# cd /software
[root]# git clone git://github.com/philipsoutham/py-mysql2pgsql.git
[root]# cd py-mysql2pgsql
[root]# python setup.py install
```

5. Run pg-mysql2pgsql once to create a template yaml config file.

[root]# py-mysql2pgsql -v

6. Edit the config file to specify the MySQL database connection information and a file to output the result.

[root]# vi mysql2pgsql.yml

```
mysql:
hostname: localhost
port: 3306
socket:
username: mam
password: changeme
database: mam
compress: false
destination:
# if file is given, output goes to file, else postgres
file: /archive/mam.pgsql
postgres:
hostname: localhost
port: 5432
username:
password:
database:
```

7. Run the pg-mysql2pgsql program again to convert the database.

[root]# py-mysql2pgsql -v

8. Create the mam database in PostgreSQL.

```
[root]# su - postgres
[postgres]$ psql
postgres=# create database "mam";
postgres=# create user mam with password 'changeme!';
postgres=# \q
[postgres]$ exit
```

9. Import the converted data into the PostgreSQL database.

```
[root]# su - mam
[mam]$ psql mam < /archive/mam.pgsql</pre>
```

10. Point MAM to use the new postgresql database.

11. Restart Moab Accounting Manager.

```
[mam]$ mam-server -r
```

L

Chapter 4 Troubleshooting

This chapter details some common problems and general solutions. Additional troubleshooting may be found in the individual Moab HPC Suite component documentation.

In this chapter:

- General Issues on page 220
- Moab Web Services Issues on page 223
- Moab Viewpoint Issues on page 227

General Issues

This topic details some common problems and general solutions.

In this topic:

- Moab error: "cannot determine local hostname" on page 220
- Moab error: "Moab will now exit due to license file not found" on page 221
- Other Moab issues on page 221
- Where do I change my passwords? on page 221

Moab error: "cannot determine local hostname"

```
# systemctl start moab.service
Starting moab: ERROR: cannot determine local hostname - node is misconfigured
[FAILED]
...
SCHEDCFG[Moab] SERVER=<moab-hostname>:42559
...
```

Also check /etc/hosts to be sure the host name resolves, at least with localhost:

```
...
127.0.0.1 <moab-hostname> localhost localhost.localdomain localhost4
localhost4.localdomain4
...
```

Moab error: "Moab will now exit due to license file not found"

```
# systemctl start moab.service
Starting moab: Moab will now exit due to license file not found
Please contact Adaptive Computing (sales@adaptivecomputing.com) to get a license for
your system
                                    [FAILED]
```

If you encounter this error when starting Moab, make sure your Moab license file is named **moab.lic** and is located in the /opt/moab/etc/ directory.

Also make sure the license is not expired. The expiration date is listed in the license file. For example:

```
# cat /opt/moab/etc/moab.lic
# Expires after Tue Dec 31 10:43:46 2013
```

Other Moab issues

See Troubleshooting and System Maintenance in the *Moab Workload Manager* Administrator Guide.

Where do I change my passwords?

In this section:

- Moab Super User Username and Password on page 221
- MongoDB Passwords on page 222

Moab Super User Username and Password

The default username and password for Moab are moab-admin and changeme! (respectively).

To change the username and/or the password for the Moab super user.

1. Stop the moab service.

```
[root]# systemctl stop moab.service
```

2. Stop the tomcat service.

```
[root]# systemctl stop tomcat.service
```

- 3. Change the respective values in the following files:
 - /opt/mws/etc/mws-config.groovy:

```
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"
```

• /opt/moab/etc/moab-private.cfg:

```
CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!
```

• /opt/moab/etc/cloud.cfg:

CONFIG[default]	MWS USERNAME=moab-admin
CONFIG[default]	MWS_PASSWORD=changeme!

4. Start the tomcat service.

```
[root]# systemctl start tomcat.service
```

5. Start the moab service.

```
[root]# systemctl start moab.service
```

MongoDB Passwords

To change the passwords for MongoDB:

1. Stop the moab service.

```
[root]# systemctl stop moab.service
```

2. Stop the tomcat service.

```
[root]# systemctl stop tomcat.service
```

- Change the passwords for the MongoDB accounts (i.e., moab_user and/or mws_user). See the <u>MongoDB documentation</u> (http://docs.mongodb.org/manual/tutorial/change-user-password/) for detailed instructions.
- 4. Edit the password values in the following files:
 - /opt/moab/etc/moab-private.cfg:

```
    MONGOUSER
    moab_user

    MONGOPASSWORD
    secret2
```

/opt/mws/etc/mws-config.groovy:

```
// MongoDB configuration.
grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"
```

5. Start the tomcat service.

```
[root]# systemctl start tomcat.service
```

6. Start the moab service.

```
[root]# systemctl start moab.service
```

Moab Web Services Issues

This topic details some common problems and general solutions for Moab Web Services.

If something goes wrong with MWS, look in the following files:

- The MWS log file. By default this is /opt/mws/log/mws.log.
- The Tomcat catalina.out file, usually in /var/log/tomcat or \$CATALINA_HOME/logs.

If you remove the log4j configuration from /opt/mws/etc/mwsconfig.groovy, MWS writes its log files to java.io.tmpdir. For Tomcat, java.io.tmpdir is generally set to \$CATALINA_BASE/temp or CATALINA_TMPDIR.

In this topic:

- MongoDB: Errors during MWS startup on page 223
- MongoDB: Out of semaphores to get db connection on page 225
- MongoDB: Connection wait timeout after 120000 ms on page 226
- java.lang.OutOfMemoryError: Java heap space on page 226
- java.lang.OutOfMemoryError: PermGen space on page 226
- <u>SEVERE: Context [/mws] startup failed due to previous errors on page</u>
 <u>226</u>
- <u>MoabReached Maximum Number of Concurrent Client Connections on</u> page 226

MongoDB: Errors during MWS startup

If the application fails to start and gives error messages such as these:

Error creating bean with name 'mongoDatastore' can't say something; nested exception is com.mongodb.MongoException

```
ERROR grails.app.services.com.ace.mws.ErrorService 0
Error encountered while attempting to authenticate account or query database; the
MongoDB server is not available. Please verify connection to server '/127.0.0.1:27017'
and that MongoDB is running.
```

MongoDB is most likely not running, or the MongoDB host and port are misconfigured.

In this case, there are a few things to verify:

(Not relevant if MongoDB is installed on a different host) Is MongoDB installed?

Run the following commands to assess whether MongoDB is installed on the current host.

```
$ mongo
-bash: mongo: command not found
```

To remedy, install MongoDB, start the mongod service and then restart the tomcat service. See <u>Install MongoDB on page 46</u> (Manual Installation) or <u>Install MongoDB on page 127</u> (RPM Installation) for more information on how to install and configure MongoDB.

 (Only relevant if MongoDB is installed on a different host) Is MWS configured to connect to the remote MongoDB host?

Run the following commands to assess whether MongoDB is installed on the current host.

```
[root]# cat /opt/mws/etc/mws-config.groovy | grep 'grails.mongo'
// grails.mongo.username = "mws_user"
// grails.mongo.password = "<ENTER-KEY-HERE>"
// grails.mongo.host = "127.0.0.1"
// grails.mongo.port = 27017
```

Make sure that the grails.mongo.* options are configured in /opt/mws/etc/mws-config.groovy for the remote MongoDB server and then restart the tomcat service.

```
[root]# systemctl restart tomcat.service
```

Is MWS configured to authenticate with MongoDB, and is MongoDB configured to enforce authentication?

Run the following commands to assess the relevant MWS and MongoDB configurations.

```
[root]# cat /opt/mws/etc/mws-config.groovy | grep 'grails.mongo'
// grails.mongo.username = "mws_user"
// grails.mongo.password = "<ENTER-KEY-HERE>"
[root]# cat /etc/mongod.conf | grep 'auth'
#noauth = true
auth = true
```

The configuration above is problematic because the grails.mongo credentials are commented out in the /opt/mws/etc/mws- config.groovy file while MongoDB is configured to enforce authentication ("auth = true"). Similar connection issues will exist if the grails.mongo parameters do not match the credentials configured for the "mws_user" on both the mws and moab databases in MongoDB.

(For upgrade scenarios only) If the application fails to start and gives the following message in /opt/mws/etc/log/mws.log:

```
java.lang.Exception: The db-migrate.js script has not yet been run. Please see the upgrade section of the installation guide for instructions.
```

Then the db-migrate.js script must be run to update the schema of the mws database in MongoDB.

MongoDB: Out of semaphores to get db connection

To resolve this error, adjust the values of connectionsPerHost or threadsAllowedToBlockForConnectionMultiplier by adding them to /opt/mws/etc/mws-config.groovy. For example:

```
grails.mongo.options.connectionsPerHost = 60
grails.mongo.options.threadsAllowedToBlockForConnectionMultiplier = 10
```

For more information on these options, refer to these documents:

- <u>Configuring Moab Web Services</u> in the *Moab Web Services Administrator Guide*, which briefly discusses a few MongoDB driver options.
- The <u>MongoOptions</u> documentation (http://api.mongodb.org/java/current/com/mongodb/MongoOptions.ht ml), which contains full details on all MongoDB driver options.

You must restart Tomcat after adding, removing, or changing grails.mongo.options parameters.

As shipped, /opt/mws/etc/mws-config.groovy does not contain any grails.mongo.options parameters. To adjust their values, you need to add them to /opt/mws/etc/mws-config.groovy.

The default value of **connectionsPerHost** is normally 10, but MWS sets it internally to 50.

The default value of **threadsAllowedToBlockForConnectionMultiplier** is 5.

Any of the options listed in MongoOptions can be specified in /opt/mws/etc/mws-config.groovy. Just use the prefix grails.mongo.options as shown above.

MongoDB: Connection wait timeout after 120000 ms See <u>MongoDB: Out of semaphores to get db connection</u> above.

java.lang.OutOfMemoryError: Java heap space

Increase the size of the heap using JVM options **-Xms** and **-Xmx**. Here are the suggested values:

CATALINA OPTS="-DMWS HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

- -Xms: Set initial Java heap size.
- -Xmx: Set maximum Java heap size.

Beginning with Java 8, the MaxPermSize option is ignored.

java.lang.OutOfMemoryError: PermGen space

(Recommended) Upgrade to Java. Java 8 has completely removed PermGen space and the MaxPermSize option is ignored.

For Java version prior to 8, you can increase the size of the permanent generation using JVM option **-XX:MaxPermSize**. Here are the suggested values:

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

SEVERE: Context [/mws] startup failed due to previous errors

If catalina.out contains this error, look in /opt/mws/log/mws.log and /opt/mws/log/stacktrace.log for more details on the error.

Also ensure that the /opt/mws/etc/mws-config.groovy file can be read by the Tomcat user. The permissions should appear as follows:

\$ ls -al /opt/mws/etc/mws-config.groovy
-r----- 1 tomcat tomcat 4056 Dec 4 12:07 mws-config.groovy

MoabReached Maximum Number of Concurrent Client Connections

When this error message is encountered, simply add a new line to the moab.cfg file:

CLIENTMAXCONNECTIONS 256

This will change the Moab configuration when Moab is restarted. Run the following command to immediately use the new setting:

[root]# changeparam CLIENTMAXCONNECTIONS 256

The number 256 above may be substituted for the desired maximum number of Moab client connections.

Moab Viewpoint Issues

This topic details some common problems and general solutions for Moab Viewpoint.

In this topic:

• Viewpoint does not report any of my jobs or nodes on page 227

Viewpoint does not report any of my jobs or nodes

There are multiple reasons why jobs and nodes might not show up in Viewpoint.

Verify the following:

1. Moab HPC Suite Setup

Essentially, there are many communication points in our stack from the point that jobs get submitted to the point they get displayed in Viewpoint.

Please take a look at the following diagram describing our data flow architecture:

The Moab Workload Manager will push data into Insight using a ZeroMQ message queue pipe.

Then, Insight will parse that data and insert it into two distinct databases: a PostgreSQL relational database and a NoSQL MongoDB database.

When Viewpoint needs to query information on jobs and nodes, it will communicate with Moab Web Services, which in turn will consume the data directly from the databases (PostgreSQL and MongoDB) where Insight recorded Moab's events.

Failure to configure the communication channels between all these components will result in Viewpoint not being able to display job or node information.

2. Hardware Specifications

Another reason why Viewpoint might not be able to show job and node information is that you installed all Moab HPC components in a single machine that is too overloaded.

See Server Hardware Requirements on page 3 for more information.

3. RPM Versions

One other common problem customers can experience is that they install incompatible versions of our software components.

Please make sure you are using the same major version across all components (e.g. Moab Workload Manager 9, Moab Web Services 9, Insight 9, etc.).