Moab HPC Suite

Installation and Configuration Guide 9.1.0 for SUSE 11-Based Systems

November 2016
Welcome

Chapter 1 Planning Your Installation

Chapter 2 Manual Installation

Chapter 3 Troubleshooting

Documentation Changes

This topic lists miscellaneous edits to the Installation and Configuration Guide. Edits are listed in descending order by revision date.
Documentation Changes

- Dec 1, 2016 – Added instructions to check your version for RLM Server prior to upgrading; corrected minor typographical errors.
Welcome

Revised: 12/1/2016

Welcome to the 9.1.0 Moab HPC Suite Installation and Configuration Guide for SUSE 11-Based Systems.

This guide includes detailed instructions for installing each component of the suite so that you can quickly get up and running.

This guide is intended for system administrators who are responsible for installing the Moab HPC Suite components.

⚠️ Depending on your system configuration and license, not all of the HPC Suite components may be available.

The 9.1.0 Moab HPC Suite contains the following components for SUSE 11-based systems:

- Torque Resource Manager 6.1.0
- Moab Workload Manager 9.1.0
- Moab Accounting Manager 9.1.0
- Nitro 2.1.0; Nitro Web Services is not available for a SUSE 11-based system.
- Reprise License Manager 12.1BL2

Before commencing the installation or upgrade, please see Chapter 1 Planning your Installation on page 3 to verify your system conforms to minimum prerequisites.
Chapter 1 Planning your Installation

It is highly recommended that you first perform installations and upgrades in a test environment. Standard installation and upgrade procedures and use cases are tested prior to release. However, due to the wide range of possible configurations and customizations, it is important to exercise caution when deploying new versions of software into your production environments. This is especially true when the workload has vital bearing on your organization's day-to-day operations. We recommend that you test in an environment that mirrors your production environment's configuration, workflow and load as closely as possible. Please contact your Adaptive Computing account manager for suggestions and options for installing/upgrading to newer versions.

There are many different ways to install and configure the Moab HPC Suite. Each environment has its own set of requirements and preferences. This chapter is intended to help an administrator understand how each of the Moab HPC Suite components interact, basic requirements and configuration information to prepare for the installation.

Code samples have been provided for convenience. Some code samples provide sample passwords (i.e. “changeme!”). We strongly recommend that you do not use these passwords during installation, as using the documented passwords could introduce unnecessary security vulnerabilities into your system.

In this chapter:
- Installation Terminology on page 3
- Where to Start on page 4
- Server Hardware Requirements on page 4
- Identify the Installation Methods on page 14
- Component Requirements on page 9

Installation Terminology
To aid in documentation clarity, Adaptive Computing uses the following terms in this Installation and Configuration Guide:

- Components – The different "products" included in the Moab HPC Suite. For example, Moab Workload Manager, Moab Web Services.
Servers – Also known as components, but specifically relating to the actual services. For example, the Moab Workload Manager component is referred to as the Moab Server for non-client services.

Host – The actual box where an Moab HPC Suite component (server or client) is installed.

Previous documentation typically used Head Node to designate a host or a Server.

Where to Start
You will need to plan your environment and determine how many hosts you will need and for which you components you will install using the Manual Installation or the RPM Installation method. The following are suggested steps to help you in your planning and installing process.

1. Determine whether you have a small, medium, High-Throughput or large environment; including an example, and required and recommended hardware requirements. See Server Hardware Requirements on page 4.

2. Decide whether you will perform a Manual Installation or an RPM Installation for the various components. See Identify the Installation Methods on page 14.

3. Review the software requirements for your components and set up your hosts accordingly. See Component Requirements on page 9.

4. Install the individual components on their respective host(s). See Preparing for Manual Installation on page 18 or 1.1 About RPM Installations and Upgrades as applicable.

5. Refer to Chapter 3 Troubleshooting on page 79 for assistance in addressing common problems during installation and configuration.

Server Hardware Requirements

The Moab HPC Suite is installed and configured differently for small, medium, or large environment types. This topic provides a general topology of the Moab HPC Suite and the server hardware requirements depending on your environment size.

In this topic:
Topography

The following diagram provides a general topology of the Moab HPC Suite for a medium (with high throughput) or a large environment.

Please note the following:

- Smaller environments may elect to consolidate the Torque Server with the Moab Server on the same host, including PBS Server in the list of components installed on the same host.

- Although Moab Workload Manager and Moab Accounting Manager may share the same database instance, it is not a requirement. Two database instances may be used, one for each component.

- Larger systems will require more dedicated resources for each component, in which case it may be necessary to move individual components from the Moab Server Host (i.e. databases, Moab Accounting Manager, and/or Viewpoint) to their own respective servers.
Hardware Requirements

The following table identifies the minimum and recommended hardware requirements for the different environment types. Use this table as a guide when planning out your suite topology.

Software requirements are listed per-component rather than suite-wide as the suite components reside on different hosts. See Component Requirements on page 9

<table>
<thead>
<tr>
<th>Environment Type</th>
<th># of Compute Nodes</th>
<th>Jobs/Week</th>
<th>Minimum Requirements (per Host Distribution)</th>
<th>Recommended Requirements (targeting minimum number of hosts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof of Concept / Small Demo</td>
<td>50</td>
<td><1k</td>
<td>Moab Server+Torque Server Host</td>
<td>Same as minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 Intel/AMD x86-64 cores</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 8 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 100 GB dedicated disk space</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insight Server Host</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 Intel/AMD x86-64 cores</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 8 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 256 GB dedicated disk space</td>
<td></td>
</tr>
<tr>
<td>Environment Type</td>
<td># of Compute Nodes</td>
<td>Jobs/Week</td>
<td>Minimum Requirements (per Host Distribution)</td>
<td>Recommended Requirements (targeting minimum number of hosts)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Medium</td>
<td>500</td>
<td><100k</td>
<td>Moab Server+Torque Server Host</td>
<td>Moab Server+Torque Server Host</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 Intel/AMD x86-64 cores</td>
<td>• 16 Intel/AMD x86-64 cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 16 GB RAM</td>
<td>• At least 32 GB RAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 512 GB dedicated disk space</td>
<td>• At least 1 TB dedicated disk space</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insight Server Host</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 8 Intel/AMD x86-64 cores</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 8 GB of RAM; a dedicated 1 Gbit channel between Insight and Moab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 128 GB local SSD for swap</td>
<td>• 128 GB local SSD for swap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• At least 512 GB disk</td>
<td>• 128 GB local SSD for swap</td>
</tr>
</tbody>
</table>

Chapter 1 Planning your Installation
<table>
<thead>
<tr>
<th>Environment Type</th>
<th># of Compute Nodes</th>
<th>Jobs/Week</th>
<th>Minimum Requirements (per Host Distribution)</th>
<th>Recommended Requirements (targeting minimum number of hosts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium with High Throughput or Larger</td>
<td>>500</td>
<td>>100k</td>
<td>Moab Server Host
• 8 Intel/AMD x86-64 cores
• At least 16 GB RAM
• At least 512 GB dedicated disk space</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Torque Server Host
• 8 Intel/AMD x86-64 cores
• At least 16 GB RAM
• At least 512 GB dedicated disk space</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insight Server Host
• 8 Intel/AMD x86-64 cores
• At least 16 GB of RAM; a dedicated 1 Gbit channel between Insight and Moab
• 128 GB local SSD for swap
• At least 512 GB disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Moab Server should not reside on the same host as the Torque Server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MWS Server must reside on the same host as the Moab Server (Moab Server Host).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The MAM Server may reside on its own host, on the Moab Host (preferred), or another server's host (except for the Insight Host).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Viewpoint Server may reside on its own host, on the Moab Server Host (preferred), or another server's host (except for the Insight Server Host).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Databases may also reside on the same or a different host from its server component.</td>
<td></td>
</tr>
</tbody>
</table>

Please note the following:

- All requirements above (minimum and recommended) target a minimum number of management servers. Administrators are encouraged to separate the Torque Server and the Moab Server onto different hosts where possible for better results; especially when High Throughput is enabled.

- Although many factors may have an impact on performance (network bandwidth, intended use and configuration, etc.), we consider High
Throughput as something that makes a significant enough difference between minimum and recommended hardware requirements to merit mention in the table above.

- Moab and Torque are both multi-threaded and perform better with more processors.
- Due to the large amount of data Moab must send to Insight, Moab performs better without Insight enabled (for environments that do not require Viewpoint, or use Crystal Reporting).
- Regarding disk space, consideration should be given to requirements related to log files, log depth, number of jobs/nodes/reservations (more objects impact database journal size), average number of events generated (more events take more space), etc.

Component Requirements

This topic provides the various software requirements and dependencies for the suite components (servers) for SUSE 11-based systems.

On SLES systems, you must be registered for a SUSE Linux Enterprise subscription in order to have access to required rpm package dependencies.

In this topic:

- [Torque on page 9](#)
- [Moab Workload Manager on page 11](#)
- [Moab Accounting Manager on page 12](#)
- [RLM Server on page 12](#)
- [Nitro on page 13](#); Nitro Web Services is not available for a SUSE 11-based system.

Torque

If you intend to use Torque 6.1 with Moab Workload Manager, you must run Moab version 8.0 or later. However, some Torque functionality may not be available. See [Compatibility Requirements](#) in the Moab HPC Suite Release Notes for more information.

In this section:

- [Supported Operating Systems on page 10](#)
- [Software Requirements on page 10](#)
Supported Operating Systems
- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

Software Requirements
- libxml2-devel package (package name may vary)
- openssl-devel package (package name may vary)
- Tcl/Tk version 8 or later if you plan to build the GUI portion of Torque, or use a Tcl-based scheduler
- cpusets and cgroups
 cgroups are supported and cpusets are handled by the cgroup cpuset subsystem.

It is recommended that you use --enable-cgroups instead of --enable-cpuset. --enable-cpuset is deprecated and no new features will be added to it.

- boost version: 1.41 or later
- libcgroup version: Red Hat-based systems must use libcgroup version 0.40.rc1-16.el6 or later; SUSE-based systems need to use a comparative libcgroup version.
- libhwloc version: 1.9.1 is the minimum supported, however NVIDIA K80 requires libhwloc 1.11.0. Instructions for installing hwloc are provided as part of the Torque Resource Manager install or upgrade instructions.

- if you build Torque from source (i.e. clone from github), the following additional software is required:
 - gcc
 - gcc-c++
 - posix-compatible version of make
 - libtool 1.5.22 or later
Moab Workload Manager

In this section:
- Supported Operating Systems on page 11
- Software Requirements on page 11
- Supported Resource Managers on page 11

Supported Operating Systems
- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

A SUSE 11-based OS is only supported for Moab Server if your configuration does not include MWS.

Software Requirements
- libcurl (http://curl.haxx.se/libcurl/)
- Perl 5.8.8 or later
- perl-CPAN (package name may vary)
- libxml2-devel (package name may vary)
- (Optional) Moab Accounting Manager 8.1
- (Optional) MySQL, PostgreSQL, or Oracle with ODBC driver (see Database Configuration in the Moab Workload Manager Administrator Guide for details)

Supported Resource Managers
- Torque 4.2.9 or later
- SLURM
Moab Accounting Manager

MAM is commonly installed on the same host as Moab Workload Manager; however, in some cases you might obtain better performance by installing them on different hosts.

In this topic:
- Supported Operating Systems on page 12
- Software Requirements on page 12
- Depends On (not necessarily on the same host) on page 12

Supported Operating Systems
- CentOS 6.x, 7.x
- RHEL 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

Software Requirements
- gcc
- perl-suidperl
- httpd
- mod_ssl
- rrdtool
- Moab Workload Manager 9.1.0
- Perl modules; see 1.1 Installing Moab Accounting Manager (Manual Installation) 1.1 Installing Moab Accounting Manager (RPM Installation) for more details

Depends On (not necessarily on the same host)
MAM uses an RDBMS as a back end. Adaptive Computing recommends that the database used by MAM does not reside on the same host as the database used by Insight.
- PostgreSQL 7.2 or later

RLM Server
Moab’s Elastic Computing Feature, Viewpoint’s Remote Visualization Feature, and Nitro require access to a centralized Reprise License Manager (RLM)
server.
Adaptive Computing strongly recommends that your RLM Server is version 12.1BL2.

This server is not load-extensive so it may be installed on any host within your Moab HPC Suite environment. It may also be installed on its own host.

- If your company already utilizes an RLM Server, you do not have to install another as long as the Moab HPC Suite components can access it.
- The host on which you install RLM Server must always be on and should have High Availability (uptime).

Nitro

- When integrated with the Moab HPC Suite, Nitro resides on the Torque compute nodes.

In this section:
- Hardware Requirements on page 13
- Supported Operating Systems on page 14
- License Requirements on page 14
- Software Requirements on page 14

Hardware Requirements

- Nitro requires one or more multi-core processors per host. Generally the more processors (sockets) and/or OS cores a host has, the more tasks Nitro can execute simultaneously on each host; although this will be application-dependent.
- It is recommended that hosts should have sufficient memory to execute as many applications as possible so that Nitro can run them at a rate of one application instance per OS core (especially if they are not multi-threaded). This eliminates the need for users to have to request memory in their Nitro task definitions.

- See the Nitro Installation and Configuration Guide for information on specifying memory requirements.
Supported Operating Systems
- CentOS 6.x, 7.x
- Red Hat 6.x, 7.x
- Scientific Linux 6.x, 7.x
- SUSE Linux Enterprise Server 11, 12

License Requirements
Nitro requires access to a centralized Reprise License Manager (RLM) server. See RLM Server on page 12 for more information.

Software Requirements
Nitro is built with all needed libraries statically linked. This provides for a quick and simple installation and helps avoid troublesome library mismatches. No additional packages need to be installed on the compute nodes.

However, users running nitrosub and/or the nitrostat utility require Python 2.6.6 or later on the system from which they are running it.

Identify the Installation Methods
Adaptive Computing provides different methods for installing the Moab HPC Suite components, Manual Installation, RPM Installation or the new Automated Installation (uses RPM methodology).

Depending on your environment and which components you are installing (and on which host), you may need to use a combination of Manual Installation and RPM Installation. However, the automated installer is only available for systems that support RPM installations. See for more information on the automated installer.

Manual Installation
This method provides advantages for administrators who want non-standard configure options.

- This method has more supported operating systems than the RPM Installation method.
- Some components can not be installed using the Manual Installation method.

RPM Installation
This method provides advantages for administrator who want a standard installation, with little customization.
This method is *not* applicable for SUSE 11-based systems.

Automated Installation

This method provides advantages for systems who do not want the complexity of the Manual Installation or a RPM Typical or Offline Installation.

- This method is *not* applicable for SUSE 11-based systems.
Chapter 2 Manual Installation

This chapter provides installation, configuration, and upgrading information using the Manual Installation method.

Be aware of the following:

- On SLES systems, you must be registered for a SUSE Linux Enterprise subscription in order to have access to required rpm package dependencies.
- Manual Installation is not available for Insight, Viewpoint, or Remote Visualization.
- Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges. You will see that the instructions execute commands as the root user. Also be aware that the same commands will work for a non-root user with the `sudo` command.

Related Topics

- [Chapter 1 Planning your Installation on page 3](#)
- [Preparing for Manual Installation on page 18](#)
Manual Installation

This section provides instructions and other information for installing your Moab HPC Suite components for SUSE 11-based systems using the Manual installation method.

In this section:
- Preparing for Manual Installation on page 18
- Installing Torque Resource Manager on page 20
- Installing Moab Workload Manager on page 27
- Installing Moab Accounting Manager on page 34
- Installing RLM Server on page 44
- Nitro Integration on page 46

Preparing for Manual Installation

The manual installation process of the Moab HPC Suite includes installing the different components in the suite.

Many individual components have dependencies on other components (see Chapter 1 Planning your Installation on page 3). However, if you do not require a certain component, you do not have to install it.

The install instructions for each component include information about system requirements and dependencies. Some include prerequisite instructions that you will need to complete before you begin the install. Please read this information carefully, and make sure you have installed all the dependencies and packages that are necessary in order to avoid errors during the Moab HPC Suite install process.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the `sudo` command.

This topic contains prerequisite instructions that you will need to complete before you begin the installations.

In this topic:
Set Up Proxies

If your site uses a proxy to connect to the internet, configure yum to use a proxy by editing the `/etc/yum.conf` file as follows:

```ini
proxy=http://<proxy_server_id>:<port>
```

If your site uses an external repository to install python dependencies (for example, the host where you install Viewpoint might need to download extra packages), you will need to set up `pip` to use a proxy. Do the following:

```bash
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

Enable Extra Packages for the Repository

Many individual components have dependencies that are found in the optional add-on repositories for the distribution. You must enable the respective repository for your distribution on all hosts upon which you install Adaptive Computing software components.

Do the following:

1. Verify that you have a licensed installation of SLES 11 and that you are registered for a SUSE Linux Enterprise subscription.
2. Download the SUSE Linux Enterprise 11 Software Development Kit e-Media Kit and add the ISO to the repository.

   ```bash
   [root]# zypper addrepo --refresh --repo
   [root]# zypper addrepo --refresh --repo
   ```

Update Your System Software to the Latest Version

It is recommended that you update your system software to the latest version before installing Moab HPC Suite components.
On each host where you will install the Moab HPC Suite components, do the following:

```bash
[root]# zypper update
```

Ensure Hostname Resolution for all Hosts

Each host should be resolvable from all other hosts in the cluster. Usually this is implemented by having all hosts in DNS. Alternatively, each host may include all other hosts (with the correct IP address) in its /etc/hosts file.

Install the Moab HPC Suite Software Components

To install the Moab HPC Suite, install the packages in the following order:

2. Moab Workload Manager. See Installing Moab Workload Manager on page 27.
3. Moab Accounting Manager. See Installing Moab Accounting Manager on page 34.
4. RLM Server. See Installing RLM Server on page 44.
5. Integrate Nitro with your Moab HPC Suite. See Nitro Integration on page 46.

Installing Torque Resource Manager

If you intend to use Torque Resource Manager 6.1.0 with Moab Workload Manager, you must run Moab version 8.0 or later. However, some Torque functionality may not be available. See Compatibility Requirements in the Moab HPC Suite Release Notes for more information.

This topic contains instructions on how to install and start Torque Resource Manager (Torque).
For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (not on Cray compute/service/login nodes).

However, you must install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_mom must run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See Installation Notes for Moab and Torque for Cray in the Moab Workload Manager Administrator Guide for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Open Necessary Ports on page 21
- Install Dependencies, Packages, or Clients on page 22
- Install Torque Server on page 23
- Install Torque MOMs on page 24
- Install Torque Clients on page 26
- Configure Data Management on page 27

Open Necessary Ports

Torque requires certain ports to be open for essential communication.

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ports</th>
<th>Functions</th>
<th>When Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque Server Host</td>
<td>15001</td>
<td>Torque Client and MOM communication to Torque Server</td>
<td>Always</td>
</tr>
<tr>
<td>Torque MOM Host (Compute Nodes)</td>
<td>15002</td>
<td>Torque Server communication to Torque MOMs</td>
<td>Always</td>
</tr>
<tr>
<td>Torque MOM Host (Compute Nodes)</td>
<td>15003</td>
<td>Torque MOM communication to other Torque MOMs</td>
<td>Always</td>
</tr>
</tbody>
</table>

See also:
Opening Ports in a Firewall on page 53 for general instructions and an example of how to open ports in the firewall.

Configuring Ports in the Torque Resource Manager Administrator Guide for more information on how to configure the ports that Torque uses for communication.

Install Dependencies, Packages, or Clients

In this section:

- Install Packages on page 22
- Install hwloc on page 22

Install Packages

On the Torque Server Host, use the following commands to install the libxml2-devel, openssl-devel, and boost-devel packages.

```
[root]# zypper install libopenssl-devel libtool libxml2-devel boost-devel gcc gcc-c++ make gmake
```

Install hwloc

⚠️ Using "zypper install hwloc" may install an older, non-supported version.

When cgroups are enabled (recommended), hwloc version 1.9.1 or later is required. NVIDIA K80 requires libhwloc 1.11.0.

The following instructions are for installing version 1.9.1.

Do the following:

1. On the Torque Server Host, each Torque MOM Host, and each Torque Client Host, do the following:
 b. Run each of the following commands in order.

```
[root]# zypper install gcc make
[root]# tar -xzf hwloc-1.9.1.tar.gz
[root]# cd hwloc-1.9.1
[root]# ./configure
[root]# make
[root]# make install
```

2. Run the following commands on the Torque Server Host, each Torque MOM Host, and each Torque Client Host.

```
[root]# echo /usr/local/lib >/etc/ld.so.conf.d/hwloc.conf
[root]# ldconfig
```
Install Torque Server

You must complete the prerequisite tasks and the tasks to install the dependencies, packages, or clients before installing Torque Server. See Installing Torque Resource Manager on page 20 and Install Dependencies, Packages, or Clients on page 22.

On the Torque Server Host, do the following:

1. Download the latest 6.1.0 build from the Adaptive Computing website. It can also be downloaded via command line (github method or the tarball distribution).
 - Clone the source from github.

 If git is not installed:

   ```
   [root]# zypper install git
   You will also need to install automake:
   [root]# zypper install autotools automake pkg-config
   ```

   ```
   [root]# git clone https://github.com/adaptivecomputing/torque.git -b 6.1.0
   [root]# cd 6.1.0
   [root]# ./autogen.sh
   ```

 Get the tarball source distribution.

   ```
   [root]# zypper install wget
   [root]# wget http://www.adaptivecomputing.com/download/torque/torque-6.1.0.tar.gz
   [root]# tar -xzvf torque-6.1.0.tar.gz
   [root]# cd torque-6.1.0/
   ```

2. Depending on your system configuration, you will need to add ./configure command options.

 At a minimum, you add:
 - --enable-cgroups
 - --with-hwloc-path=/usr/local

 See Torque on page 9 for more information.

 These instructions assume you are using cgroups. When cgroups are supported, cpusets are handled by the cgroup cpuset subsystem. If you are not using cgroups, use --enable-cpusets instead.
3. Run each of the following commands in order.

   ```
   [root]# ./configure --enable-cgroups --with-hwloc-path=/usr/local 
   # add any other specified options
   [root]# make
   [root]# make install
   ```

4. Source the appropriate profile file to add /usr/local/bin and /usr/local/sbin to your path.

   ```
   [root]# . /etc/profile.d/torque.sh
   ```

5. Initialize `serverdb` by executing the `torque.setup` script.

   ```
   [root]# ./torque.setup root
   ```


7. Configure `pbs_server` to start automatically at system boot, and then start the daemon.

   ```
   [root]# chkconfig --add pbs_server
   [root]# service pbs_server restart
   ```

Install Torque MOMs

In most installations, you will install a Torque MOM on each of your compute nodes.

See `Specifying Compute Nodes` or `Configuring Torque on Compute Nodes` in the `Torque Resource Manager Administrator Guide` for more information.

Do the following:

1. On the Torque Server Host, do the following:
 a. Create the self-extracting packages that are copied and executed on your nodes.
Chapter 2 Manual Installation

```
[root]# make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.
```

The package files are self-extracting packages that can be copied and executed on your production machines. Use --help for options.

b. Copy the self-extracting MOM packages to each Torque MOM Host.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.

```
[root]# scp torque-package-mom-linux-x86_64.sh <mom-node>:
```

Not all sites see an inherited ulimit but those that do can change the ulimit in the pbs_mom init script. The pbs_mom init script is responsible for starting and stopping the pbs_mom process.

c. Copy the pbs_mom startup script to each Torque MOM Host.

```
[root]# scp contrib/init.d/suse.pbs_mom <mom-node>:/etc/init.d/pbs_mom
```

2. On each Torque MOM Host, confirm that cgroups have been mounted; if not, mount them.

a. Run `lssubsys-am`.

b. If the command is not found, or you do not see something similar to the following, then cgroups are not mounted, continue with these instructions.

```
ns
perf_event
net_prio
cpuset /cgroup/cpuset
cpu /cgroup/cpu
cpuacct /cgroup/cpuacct
memory /cgroup/memory
deVICES /cgroup/devices
freezer /cgroup/freezer
net_cls /cgroup/net_cls
blkio /cgroup/blkio
```

c. Do the following:

i. Install the cgroup library package.

```
[root]# zypper install libcgroup1
```
ii. Edit /etc/cgconfig.conf and add the following:

```bash
code
mount {
    devices = /mnt/cgroups/devices;
    cpuset = /mnt/cgroups/cpuset;
    cpu = /mnt/cgroups/cpu;
    cpuacct = /mnt/cgroups/cpuacct;
    memory = /mnt/cgroups/memory;
}
```

iii. Mount cgroups.

```
[root]# service cgconfig start
```

iv. Run lssubsys -am again and confirm cgroups are mounted.

3. On each Torque MOM Host, do the following:
 a. Install cgroup-tools.
 b. Install the self-extracting MOM package.
      ```
      [root]# ./torque-package-mom-linux-x86_64.sh --install
      ```
 c. Configure pbs_mom to start at system boot, and then start the daemon.
      ```
      [root]# chkconfig --add pbs_mom
      [root]# service pbs_mom start
      ```

Install Torque Clients

If you want to have the Torque client commands installed on hosts other than
the Torque Server Host (such as the compute nodes or separate login nodes),
do the following:

1. On the Torque Server Host, do the following:
 a. Copy the self-extracting client package to each Torque Client Host.
      ```bash
      Adaptive Computing recommends that you use a remote shell, such
      as SSH, to install packages on remote systems. Set up shared SSH
      keys if you do not want to supply a password for each Torque Client
      Host.
      ```
      ```
      [root]# scp torque-package-clients-linux-x86_64.sh <torque-client-host>:
      ```
 b. Copy the trqauthd startup script to each Torque Client Host.
      ```
      [root]# scp contrib/init.d/suse.trqauthd <torque-client-host>:/etc/init.d/trqauthd
      ```

2. On each Torque Client Host, install the self-extracting client package:

   ```
   [root]# ./torque-package-clients-linux-x86_64.sh --install
   ```
Configure Data Management

When a batch job completes, stdout and stderr files are generated and placed in the spool directory on the master Torque MOM Host for the job instead of the submit host. You can configure the Torque batch environment to copy the stdout and stderr files back to the submit host. See Configuring Data Management in the Torque Resource Manager Administrator Guide for more information.

Related Topics

Preparing for Manual Installation on page 18

Installing Moab Workload Manager

This topic contains instructions on how to install and start Moab Workload Manager (Moab).

For Cray systems, Adaptive Computing recommends that you install Moab and Torque Servers (head nodes) on commodity hardware (not on Cray compute/service/login nodes).

However, you must install the Torque pbs_mom daemon and Torque client commands on Cray login and "mom" service nodes since the pbs_mom mom must run on a Cray service node within the Cray system so it has access to the Cray ALPS subsystem.

See Installation Notes for Moab and Torque for Cray in the Moab Workload Manager Administrator Guide for instructions on installing Moab and Torque on a non-Cray server.

In this topic:

- Understand Licenses on page 27
- Open Necessary Ports on page 28
- Install Dependencies, Packages, or Clients on page 28
- Obtain and Install the Elastic Computing License on page 29
- Install Moab Server on page 30
- Configure Torque to Trust Moab on page 33
- Verify the Installation on page 33
- (Optional) Install Moab Client on page 33

Understand Licenses

As part of the Moab modularity, introduced in version 9.0.1, Moab features can be licensed separately. See Module-Based Features.
With the 9.1.0 release, Moab now uses an RLM Server to manage licenses. For the Moab core and for most Moab features, an RLM Server is not required. The new Moab "core" license will have a new name to reflect the RLM generation. Do not rename this license to moab.lic.

Elastic Computing, beginning with 9.1.0, requires an RLM Server as part of your configuration.

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ports</th>
<th>Functions</th>
<th>When Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moab Server Host</td>
<td>42559</td>
<td>Moab Server Port</td>
<td>If you intend to run client commands on a host different from the Moab Server Host or if you will be using Moab in a grid</td>
</tr>
</tbody>
</table>

See [Opening Ports in a Firewall on page 53](#) for general instructions and an example of how to open ports in the firewall.

Install Dependencies, Packages, or Clients

In this section:

- [Dependencies and Packages on page 28](#)
- [Torque Client on page 28](#)

Dependencies and Packages

On the Moab Server Host, use the following commands to install the required Moab dependencies and packages.

```
[root]# zypper install make curl libxml2-devel gcc
```

Torque Client

If you are using Torque and are installing the Torque Server on a different host (Torque Server Host) from the Moab Server (Moab Server Host), you will need to install the Torque client on the Moab Server Host in order for Moab to interact with Torque.

Follow the instructions in [Install Torque Clients on page 26](#) using the Moab Server Host as the Torque Client Host; with the exception that you must copy
and install the torque-package-devel-linux-<arch>.sh self-extracting package in addition to the torque-package-clients-linux-<arch>.sh package.

Obtain and Install the Elastic Computing License

If using Elastic Computing, Moab requires access to an RLM license server to record usage.

These instructions assume you already have access to an RLM Server. See Installing RLM Server on page 44 for instructions on how to set up a new RLM Server.

Do the following:

1. On the RLM server, obtain the hostid and hostname.
 - hostid
     ```
     [root]# /opt/rlm/rlmhostid
     
     rlmhostid v12.1
     Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
     Hostid of this machine: 00259096f004
     ```

 - hostname
     ```
     [root]# /opt/rlm/rlmhostid host
     
     rlmhostid v12.1
     Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
     Hostid of this machine: host=<your-host-name>
     ```

2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you just obtained.

3. Adaptive Computing will generate the license and send you the Elastic Computing license file (.lic) file in a return email.

4. On the RLM server, do the following:
 a. Download and install the license file.
      ```
      [root]# cd /opt/rlm
      [root]# chown rlm:rlm <licenceFileName>.lic
      ```

 b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the ISV adaptiveco port for the Adaptive license-enabled products. This is the same port number you opened during the RLM
Server installation. See the instructions to open necessary ports in the Installing RLM Server on page 44 (manual installation method) or 1.1 Installing RLM Server (RPM installation method) for more information.

```bash
[root]# vi /opt/rlm/moab_elastic_tracking.lic
ISV adaptiveco port=5135
```

The license file already references the RLM Server port (5053 by default).

If the RLM Server in your configuration uses different ports, you will need to modify the license file to reflect the actual ports. See the instructions to open necessary ports in the Installing RLM Server on page 44 (manual installation method) or 1.1 Installing RLM Server (RPM installation method) for more information.

c. If you did not install an RLM Server using the file available from Adaptive Computing (for example, because your system configuration already uses one), do the following:

ii. Install the 'adaptiveco.set' file.

```bash
[root]# chown rlm:rlm adaptiveco.set
```

iii. Place the 'adaptiveco.set' file in the same directory where the Elastic Computing license resides. Typically, this is the RLM Server base directory (/opt/rlm); but may be different depending on your configuration.

d. Perform a reread on the RLM Server base directory to update the RLM Server with your license. For example:

```bash
[root]# /opt/rlm/rlmreread
```

Install Moab Server

You **must** complete the tasks to install the dependencies, packages, or clients before installing Moab Server. See Install Dependencies, Packages, or Clients on page 28.

If your configuration uses firewalls, you **must also** open the necessary ports before installing the Moab Server. See Open Necessary Ports on page 28.

On the Moab Server Host, do the following:
Chapter 2 Manual Installation

2. As the root user, run each of the following commands in order.

```
[root]# tar xzvf moab-9.1.0-<OS>.tar.gz
[root]# cd moab-9.1.0-<OS>
```

The variable marked <OS> indicates the OS for which the build was designed.

If Elastic Computing is part of your Moab Workload Manager configuration, install `deps/acpython-base*`.

```
[root]# zypper install deps/acpython-base*
```

3. Configure Moab. If you are installing Moab Accounting Manager, configure Moab with the `--with-am` option.

```
[root]# ./configure <options>
```

See Moab Workload Manager Configuration Options on page 53 for a list of commonly used options or use `./configure --help` for a complete list of available options.

4. ONLY if you are using green computing, or if you are using a resource manager other than Torque.

Run the `make perldeps` command to install the necessary perl modules using CPAN. When first running CPAN, you will be asked for configuration information. It is recommended that you choose an automatic configuration. You will be prompted to provide input during module installation; running the `make perldeps` command with a script is not recommended.

```
[root]# make perldeps
```

5. Install Moab.

```
[root]# make install
```

6. Modify the Moab configuration file.

```
[root]# vi /opt/moab/etc/moab.cfg
```

Do the following:
Chapter 2 Manual Installation

a. Verify that **SUBMITCMD** is set up for your Torque resource manager and that it points to a valid `qsub` executable. For example:

```
RMCFG[torque] SUBMITCMD=/usr/local/bin/qsub
```

If you use a SLURM resource manager, see [Moab-SLURM Integration Guide](#) in the *Moab Workload Manager Administrator Guide* for configuration information. If you use a NATIVE resource manager, see [Managing Resources Directly with the Native Interface](#) in the *Moab Workload Manager Administrator Guide* for configuration information.

b. If you are using Torque as a resource manager and you installed the Torque Server on a different host (Torque Server Host), configure the `RMCFG HOST` parameter to tell Moab the host on which Torque Server is running.

```
RMCFG[torque] HOST=<torque_server_hostname>
```

7. Source the appropriate profile script to add the Moab executable directories to your current shell `$PATH` environment.

```
[root]# . /etc/profile.d/moab.sh
```

8. Copy your license file into the same directory as `moab.cfg` (/opt/moab/etc/ by default).

```
[root]# cp moab.lic $MOABHOMEDIR/etc/moab.lic
```

To verify the current status of your license, run the following command:

```
[root] # moab --about 2>&1 | grep License
```

You should get something similar to the following in the response:

- **New RLM-Based License (version 9.1.0 or after)**

```
$ moab --about | grep License
Moab Workload Manager Version 'master' License Information:
Current License: (moab_license) Valid Until - 15-jan-2017
Current License: Max Sockets = 1000000
Current License: (moab_grid) Valid Until - 15-jan-2017
Current License: (moab_green) Valid Until - 15-jan-2017
Current License: (moab_provision) Valid Until - 15-jan-2017
Current License: (moab_vms) Valid Until - 15-jan-2017
Current License: Max VMs = 1000000
Current License: (moab_elastic) Valid Until - 15-jan-2017
Current License: (moab_groupsharing) Valid Until - 15-jan-2017
Current License: (moab_advancedrm) Valid Until - 15-jan-2017
Current License: (moab_workflow) Valid Until - 15-jan-2017
```

- **Legacy License Format**
Moab Workload Manager Version '9.1.0' License Information:
Current License: Max Procs = 10000
Current License: Valid Until - Jul 13 19:42:10 2017

A license is required for Moab. A trial license may be included in your Moab installation enabling you to run Moab for a limited time and with limited features. Email licenses@adaptivecomputing.com for information on obtaining licenses.

[root]# chkconfig moab on
[root]# service moab start

Configure Torque to Trust Moab

If you are using Torque as a resource manager and you installed the Torque Server on a different host (Torque Server Host); recommended, do the following:

- On the Torque Server Host, add the name of the Moab Server Host (where Moab Server is installed) as a manager and as a submit host.

```bash
[root]# qmgr
Qmgr: set server managers += root@<moab_server_hostname>
Qmgr: set server submit_hosts += <moab_server_hostname>
Qmgr: exit
```

Verify the Installation

If you have a resource manager configured, verify that the scheduler is able to schedule a job. Do the following:

- Submit a sleep job as a non-root user (adaptive is used in this example) and verify the job is running.

```bash
[root]# su - adaptive
[adaptive]$ echo sleep 150 | msub
[adaptive]$ showq
[adaptive]$ exit
```

(Optional) Install Moab Client

After you have installed Moab Server, you can create a client tarball to install just the Moab client commands on a login/client host. This tarball uses a single `tar` command to install the binary Moab client command files and their man pages. The tarball also contains a `moab.cfg` file configured with the Moab Server host name and port number so you do not have to manually configure this information on the login/client node.
If your site needs secure communication and authentication between Moab Client Host and the Moab Server Host, create a site-specific key and place it in the same directory as your `moab.cfg` file. By default, this would be `$MOABHOMEDIR/etc/.moab.key`. When the Moab server and client commands detect the presence of those two files they will use the key in those files to authenticate and communicate, instead of the default key. See Mauth Authentication in the Moab Workload Manager Administrator Guide for more information.

Do the following:

1. On the Moab Server Host, create the client tarball.

   ```bash
   [root]# make client-pkg
   ```

2. Copy the tarball to the root directory of the Moab Client Host.

3. On the Moab Client Host, run the tarball to install the Moab client commands.

   ```bash
   [root]# tar xvf client.tgz
   ```

Related Topics

Preparing for Manual Installation on page 18

Installing Moab Accounting Manager

This topic contains instructions on how to install and start Moab Accounting Manager (MAM).

Perform the following in order:

- [Installing Moab Accounting Manager](#)
- [Open Necessary Ports](#)
- [Install and Initialize the PostgreSQL Server](#)
- [Install Dependencies, Packages, or Clients](#)
- [Install MAM Server](#)
- [Configure the MAM GUI](#)
- [Configure MAM Web Services](#)
- [Access the MAM GUI](#)
- [Access MAM Web Services](#)
- [Configure Moab Workload Manager to Use Moab Accounting Manager](#)
- [Initialize Moab Accounting Manager](#)
Plan Your Installation

The first step is determining the number of different hosts (physical machines) required for your MAM installation.

Your MAM installation includes:

- MAM Server
- MAM Database
- MAM Clients (possibly several hosts)
- MAM GUI (optional)
- MAM Web Services (optional)

Each of these components can be installed on their own hosts (meaning the actual physical machine) or can be combined on same hosts. For example, the MAM Database can be installed on the same host as the MAM Server. Or the MAM Server may be installed on the same host you installed the Moab Server.

Once you have determined which components are installed on which hosts, complete the rest of the instructions for the MAM installation.

The instructions that follow in this topic will use the term Host after each component to reflect installing on a host (again, meaning the physical machine). For example, MAM Server Host and MAM Database Host. Depending on your configuration, Host may refer to as installed on its own machine or installed on the same machine as another component.

Open Necessary Ports

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ports</th>
<th>Functions</th>
<th>When Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAM Server Host</td>
<td>7112</td>
<td>MAM Server Port</td>
<td>If you will be installing the MAM Server on a different host from where you installed the Moab Server or you will be installing the MAM Clients on other hosts</td>
</tr>
<tr>
<td>MAM GUI Host</td>
<td>443</td>
<td>HTTPS Port</td>
<td>If using the MAM GUI</td>
</tr>
<tr>
<td>MAM Web Services Host</td>
<td>443</td>
<td>HTTPS Port</td>
<td>If using MAM Web Services</td>
</tr>
</tbody>
</table>
See [Opening Ports in a Firewall on page 53](#) for general instructions and an example of how to open ports in the firewall.

Install and Initialize the PostgreSQL Server

Moab Accounting Manager uses a database for transactions and data persistence.

- the same host as the MAM Server.
- a separate PostgreSQL database host.
- a separate shared PostgreSQL database host.

On the host where the MAM PostgreSQL database will reside, do the following:

1. Install and initialize the PostgreSQL Server.

   ```bash
   [root]# zypper install postgresql-server
   [root]# service postgresql start
   ```

2. Configure trusted connections.

 Edit or add a "host" line in the pg_hba.conf file for the interface from which the MAM Server will be connecting to the database and ensure that it specifies a secure password-based authentication method (for example, md5).

   ```bash
   [root]# vi /var/lib/pgsql/data/pg_hba.conf
   
   # Replace 127.0.0.1 with the IP address of the MAM Server Host if the
   # MAM PostgreSQL server is on a separate host from the MAM server.
   host  all  all  127.0.0.1/32  md5
   host  all  all  ::1/128    md5
   ```

3. If the MAM Database Host is installed on a different host from where you will install the MAM Server, configure PostgreSQL to accept connections from the MAM Server Host.

   ```bash
   [root]# vi /var/lib/pgsql/data/postgresql.conf
   
   # Replace <mam-server-host> with the interface name from which the MAM server
   # will be connecting to the database.
   listen_addresses = '<mam-server-host>'
   ```
4. If your PostgreSQL database version is prior to version 9.1, configure
postgresql to avoid interpreting backslashes as escape characters.

```
[root]# vi /var/lib/pgsql/data/postgresql.conf
standard_conforming_strings = on
```

5. Start or restart the database.

```
[root]# chkconfig postgresql on
[root]# service postgresql restart
```

Install Dependencies, Packages, or Clients

Use the following instructions to install the required Moab Accounting Manager
dependencies, packages, or clients.

**Depending on your configuration, the MAM Server Host and the
MAM GUI Host may be installed on the same host. The MAM Client Host is
automatically installed on the same host as the MAM Server Host;
however, you can also install the MAM Client Host on any other hosts on
which you want to have the MAM client commands available to users or
administrators.**

1. On the MAM Server Host, the MAM GUI Host, the MAM Web Services Host,
and the MAM Client Hosts, do the following:

```
[root]# zypper install gcc lsb-release perl-Config-Tiny perl-Crypt-CBC perl-Crypt-
DES perl-Crypt-DES EDE3 perl-Digest-HMAC perl-Error perl-JSON perl-Log-Dispatch
perl-Log-Dispatch-FileRotate perl-Log-Log4perl perl-Params-Validate perl-XML-LibXML
perl-YAML
```

2. On the MAM Server Host, do the following:

```
[root]# zypper install postgresql postgresql-libs perl-DBD-Pg perl-Date-Manip perl-
DBI
```

3. On the MAM GUI Host, do the following:

```
[root]# zypper install apache2 perl-CGI perl-CGI-Session
```

4. On the MAM Web Services Host, do the following:

```
[root]# zypper install apache2 apache2-mod_perl
```

5. On each of the MAM Client Hosts (including the MAM Server Host), do the
following:

```
[root]# zypper install libopenssl-devel perl-TermReadLine-Gnu perl-TermReadKey
[root]# chmod 4755 /usr/bin/sperl*
```
If any of the Perl module packages fail to install or are unavailable for your system, you can install it from CPAN by running `cpan MODULENAME` where `MODULENAME` is the respective perl module name.

Install MAM Server

On the MAM Server Host, do the following:

1. Create a user called `mam` and switch to that user.

   ```
   [root]# useradd -m mam
   [root]# su - mam
   [mam]$ mkdir src
   [mam]$ cd src
   ```


3. As the `mam` user, run each of the following commands in order.

   ```
   [mam]$ tar -zxvf mam-9.1.0.tar.gz
   [mam]$ cd mam-9.1.0
   ```

4. Configure the software. For a list of all the configuration options, see Moab Accounting Manager Configuration Options on page 55.

   ```
   [mam]$ ./configure
   ```

5. Compile the software.

   ```
   [mam]$ make
   ```

 Depending on your configuration, you may need to replace "make" with a make command that includes additional functionality. Specifically:

 - If you only need to install the clients on a particular system, use `clients-only`.
 - If you only need to install the web GUI on a particular system, use `make gui-only`.
 - If you only need to install the web services on a particular system, use `make ws-only`.

6. Install the software.

   ```
   [mam]$ exit
   [root]# cd ~mam/src/mam-9.1.0
   [root]# make install
   ```
Depending on your configuration, you may need to replace "make install" with a make command that includes additional functionality. Specifically:

- If you only need to install the clients on a particular system, use make install-clients-only.
- If you only need to install the web GUI on a particular system, use make install-gui-only.
- If you only need to install the web services on a particular system, use make install-ws-only

7. As the database user, create a database called mam and grant database privileges to the mam user.

```bash
[root]# su - postgres
[postgres]$ psql
create database mam;
create user mam with password 'changeme!';
\q
[postgres]$ exit
```

The password you define must be synchronized with the database.password value in /opt/mam/etc/mam-server.conf

```bash
[root]# vi /opt/mam/etc/mam-server.conf
database.password = changeme!
```

8. Run the hpc.sql script to populate the Moab Accounting Manager database with objects, actions, and attributes necessary to function as an Accounting Manager.

```bash
[root]# su - mam
[mam]$ cd src/mam-9.1.0
[mam]$ psql mam < hpc.sql
[mam]$ exit
```

9. Configure MAM to automatically start up at system boot; start the mam service.

```bash
[root]# chkconfig --add mam
[root]# service mam start
```

Configure the MAM GUI

If you plan to use the web GUI, then on the MAM GUI Host, do the following:
1. As root, add or edit the SSL virtual host definition as appropriate for your environment. To do so, configure the cgi-bin directory in ssl.conf. Below the cgi-bin directory element, create an alias for /cgi-bin pointing to your cgi-bin directory. If you chose to install to a cgi-bin sub-directory, you might want to create an alias for that as well. Also, add index.cgi to the DirectoryIndex so you can use the shorter sub-directory name.

```
[root]# a2ensflag SSL
[root]# cp /etc/apache2/vhosts.d/vhost-ssl.template /etc/apache2/vhosts.d/mam-ssl.conf
[root]# vi /etc/apache2/vhosts.d/mam-ssl.conf

<Directory "/srv/www/cgi-bin”>
## Add these lines
Options ExecCGI
AddHandler cgi-script .cgi
AllowOverride All
Order allow,deny
Allow from all
</Directory>

# Aliases for /cgi-bin
Alias /cgi-bin/ /srv/www/cgi-bin/
Alias /mam /srv/www/cgi-bin/mam/

# Make shorter sub-dir name available
DirectoryIndex index.cgi
```

2. For the highest security, it is recommended that you install a public key certificate that has been signed by a certificate authority. The exact steps to do this are specific to your distribution and the chosen certificate authority. An overview of this process for CentOS 7 is documented at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Web_Servers.html#s2-apache-mod_ssl.

Alternatively, if your network domain can be secured from man-in-the-middle attacks, you could use a self-signed certificate.

If your configuration uses self-signed certificates, do the following:

```
[root]# cd /etc/apache2
[root]# openssl genrsa -out ssl.key/server.key 1024
[root]# openssl req -new -key ssl.key/server.key -x509 -out ssl.crt/server.crt
```

3. Start or restart the HTTP server daemon.

```
[root]# chkconfig apache2 on
[root]# service apache2 restart
```

Configure MAM Web Services

If you plan to use MAM Web Services, then on the MAM Web Services Host, do the following:
1. **Edit the SSL virtual host definition in ssl.conf to include the mamws location.**

 For example:

   ```
   [root]# a2enflag SSL
   [root]# a2enmod perl
   # Do not repeat the following copy step if performed previously on the same host
   when configuring the web server
   [root]# cp /etc/apache2/vhosts.d/vhost-ssl.template /etc/apache2/vhosts.d/mam-
   ssl.conf
   [root]# vi /etc/apache2/vhosts.d/mam-ssl.conf
   # Place the following within the 443 VirtualHost definition
   PerlOptions +Parent
   PerlSwitches -Mlib=/opt/mam/lib
   PerlModule MAM::WSResponseHandler
   PerlModule MAM::WSAuthenHandler
   <Location /mamws>
   SetHandler perl-script
   PerlResponseHandler MAM::WSResponseHandler
   Options +ExecCGI
   AuthName MAM
   PerlAuthenHandler MAM::WSAuthenHandler
   Require valid-user
   Order allow,deny
   Allow from all
   </Location>
   ```

2. **For the highest security, it is recommended that you install a public key certificate that has been signed by a certificate authority. The exact steps to do this are specific to your distribution and the chosen certificate authority. An overview of this process for CentOS 7 is documented at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_ Linux/7/html/System_Administrators_Guide/ch-Web_Servers.html#s2-apache-mod_ssl.**

 Alternatively, if your network domain can be secured from man-in-the-middle attacks, you could use a self-signed certificate. Often this does not require any additional steps since in many distributions, such as Red Hat, the Apache SSL configuration provides self-signed certificates by default.

 If your configuration uses self-signed certificates, do the following:

   ```
   [root]# cd /etc/apache2
   [root]# openssl genrsa -out ssl.key/server.key 1024
   [root]# openssl req -new -key ssl.key/server.key -x509 -out ssl.crt/server.crt
   ```

3. **Start or restart the HTTP server daemon.**

   ```
   [root]# chkconfig apache2 on
   [root]# service apache2 restart
   ```
Access the MAM GUI

If you plan to use the web GUI, then on the MAM Server Host, do the following:

1. Create a password for the `mam` user to be used with the MAM Web GUI.

```
[root]# su - mam
[mam]$ mam-set-password
[mam]$ exit
```

2. Verify the connection.
 a. Open a web browser and navigate to `https://<mam-server-host>/cgi-bin/mam`.
 b. Log in as the `mam` user with the password you set in step 1.

Access MAM Web Services

If you plan to use MAM web services, then on a MAM Client Host, do the following:

1. Create a password for the `mam` user that you wish to access MAM Web Services.

```
[root]# su - mam
[mam]$ mam-set-password
[mam]$ exit
```

2. Make a call to web services.

```
[root]# curl -k -X GET --basic -u mam:changeme! 'https://<mam-web-services-host>/mamws/system'
```

Alternatively, for queries, you can use the browser to access the URL. For example: 'https://<mam-web-services-host>/mamws/system'.

Configure Moab Workload Manager to Use Moab Accounting Manager

Do the following:

1. Configure Moab to talk to MAM

 Do one of the following:

 - **MAM Option.** If you are will be using the MAM (direct network) accounting manager interface with Moab Workload Manager (this is the default), do the following:

 a. On the Moab Server Host, edit the Moab configuration file, uncomment the AMCFG lines and set the TYPE to MAM and set the HOST. If the
Moab Server and the MAM Server are on the same host, set HOST to 'localhost'; otherwise, set HOST to the host name for the MAM Server (MAM Server Host).

```bash
[root]# vi /opt/moab/etc/moab.cfg
AMCFG[mam] TYPE=MAM HOST=<mam_server_host>
```

Customize additionally as needed. See Accounting, Charging, and Allocation Management in the Moab Workload Manager Administrator Guide.

b. Configure Moab to authenticate with MAM using the MAM secret key.
 i. On the MAM Server Host, copy the auto-generated secret key from the token.value value in the /opt/mam/etc/mam-site.conf file.
 ii. On the Moab Server Host, add the secret key to the moab-private.cfg file as the value of the CLIENTCFG KEY attribute.

```bash
[root]# vi /opt/moab/etc/moab-private.cfg
CLIENTCFG[AM:mam] KEY=<MAMSecretKey>
```

- **Native Option.** If you are will be using the Native (custom script) accounting manager interface with Moab Workload Manager, do the following:
 a. On the Moab Server Host, edit the Moab configuration file, uncomment the AMCFG lines and set the TYPE to NATIVE.

```bash
[root]# vi /opt/moab/etc/moab.cfg
AMCFG[mam] TYPE=NATIVE
```

b. If you are installing Moab Accounting Manager on a different host (MAM Server Host) from the Moab Server (Moab Server Host), you will need to install the Moab Accounting Manager client on the Moab Server Host in order for the custom scripts to use the MAM API.

On the Moab Server Host, follow the instructions in Install Dependencies, Packages, or Clients on page 37 and Install MAM Server on page 38; with the following exceptions:

- Install only the dependent packages applicable to MAM Client Hosts
- Use the configure option --without-init
- Instead of running make, use make clients-only
- Instead of running make install, use make install-clients-only
- Omit the step to create the database and all of the steps thereafter

2. On the Moab Server Host, restart Moab.

```bash
service moab restart
```
Initialize Moab Accounting Manager

You will need to initialize Moab Accounting Manager to function in the way that is most applicable to the needs of your site. See Initial Setup in the Moab Accounting Manager Administrator Guide to set up Moab Accounting Manager for your desired accounting mode.

Related Topics

Preparing for Manual Installation on page 18

Installing RLM Server

The RLM Server can run multiple licenses.

Access to a Reprise License Manager (RLM) server is required when using Moab's Elastic Computing Feature, Viewpoint's Remote Visualization Feature, or Nitro.

As the RLM Server can run multiple licenses, it is recommended that you install one RLM Server for your configuration. If your company already uses an RLM Server, you do not need to install a new one for Adaptive Computing products. However, Adaptive Computing strongly recommends that your RLM Server is version 12.1BL2 and the Adaptive Computing products may use a different port than the default RLM Server port (5053).

If your system configuration requires more than one RLM Server, additional configuration may be needed. See Using Multiple RLM Servers on page 56 for more information.

This topic contains instructions on how to install an RLM Server.

In this topic:

- Open Necessary Ports on page 44
- Install the RLM Server on page 45
- Change the Default Passwords on page 46

Open Necessary Ports

These instructions assume you are using the default ports. If your configuration will use other ports, then substitute your port numbers when opening the ports.

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.
Install the RLM Server

On the host where the RLM Server will reside, do the following:

1. Download the latest RLM build from the Adaptive Computing Moab HPC Suite Download Center (https://www.adaptivecomputing.com/support/download-center/moab-hpc-suite-download/).

2. As the root user, run each of the following commands in order.

   ```
   [root]# tar xzvf ac-rlm-12.1.tar.gz
   [root]# cd ac-rlm-12.1
   ```

3. Create a non-root user and group (rlm is used in the example).

   ```
   [root]# groupadd -r rlm
   [root]# useradd -r -g rlm -d /opt/rlm -c "A non-root user under which to run Reprise License Manager" rlm
   ```

4. Create a directory and install the tarball files in that location (we are using /opt/rlm as the install location in the example).

   ```
   [root]# mkdir -p -m 0744 /opt/rlm
   [root]# cd /opt/rlm
   [root]# tar -xzvf /tmp/ac-rlm-12.1.tar.gz --strip-components=1
   [root]# chown -R rlm:rlm /opt/rlm
   ```
5. Install the startup scripts.

The --strip-components=1 removes the "ac-rlm-12.1/" from the relative path so that they are extracted into the current directory.

If you are using a user:group other than rlm:rlm or a location other than /opt/rlm, then edit the following files to reflect those changes after copying them.

```
[root]# cp init.d/rlm /etc/init.d
```

6. Start the services and configure the RLM Server to start automatically at system reboot.

```
[root]# chkconfig --add rlm
[root]# chkconfig rlm on
[root]# service rlm start
```

Change the Default Passwords

The RLM Web interface includes two usernames (admin and user) by default. These usernames have the default password "changeme!".

If you do not change this password, RLM, and Remote Visualization, will not be secure. For tips on choosing a good password, see https://www.us-cert.gov/ncas/tips/ST04-002.

Do the following for both the user and the admin usernames:

1. Using a web browser, navigate to your RLM instance. (http://<RLM_host>:5054; where <RLM_host> is the IP address or name of the RLM Server Host).
2. Log in.
3. Select **Change Password** and change the password according to your password security process.

The password for "user" will be needed as part of the Remote Visualization installation.

Nitro Integration

This section provides instructions on integrating Nitro as part of your Moab HPC Suite configuration.
Preparing for Nitro Manual Installation on page 47

Installing Nitro on page 48; Nitro Web Services is not available for a SUSE 11-based system.

Preparing for Nitro Manual Installation

This topic contains instructions on how to download and unpack the Nitro Tarball Bundle for all the hosts in your configuration.

Whether you are installing tarballs on one host or on several hosts, each host (physical machine) on which a server is installed (Nitro, Nitro Web Services) must have the Nitro Tarball Bundle.

Nitro Web Services is currently not available for SUSE 11-based systems; it is not in the Nitro Tarball Bundle for that OS.

Set Up Proxies

If your site uses a proxy to connect to the Internet, do the following:

```
export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>
```

Download and Unpack the Nitro Tarball Bundle

The Nitro Tarball Bundle contains all the tarballs available for Nitro. However, not every tarball may be installed on the same host.

On each host (physical machine), do the following:

The variable marked <version> indicates the build's version, revision, and changeset information. The variable marked <OS> indicates the OS for which the build was designed.

3. Unpack the Nitro Tarball Bundle.

```
[root]# tar xzvf nitro-tarball-bundle-<version>-<OS>.tar.gz
```

Related Topics

- Nitro Integration on page 46
Installing Nitro

This topic contains instructions on how to install Nitro.

Nitro

- needs to be available to all of the nodes that will be used as part of the Nitro job.
- can be installed either to each node individually or to a shared file system that each node can access.

⚠ Some Nitro functionality, such as using the nitrosub command, is not available unless you are using a shared file system.

- can be installed to integrate with a scheduler, such as Moab, or without (Nitro standalone). The instructions are the same.

In this topic:

- Obtain a Nitro License on page 48
- Open Necessary Ports on page 50
- Install Nitro on page 51
- Verify Network Communication on page 52

Obtain a Nitro License

The Nitro license file is installed on an RLM Server.

⚠ These instructions assume you already have access to an RLM Server. See Installing RLM Server on page 44 for instructions on how to set up a new RLM Server.

Do the following:

1. On the RLM server, obtain the hostid and hostname.

 - `hostid`

     ```
     [root]# /opt/rlm/rlmhostid
     ```

 You should see output similar to the following.

     ```
     rlmhostid v12.1
     Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.
     Hostid of this machine: 00259096f004
     ```
hostname

You should see output similar to the following.

<table>
<thead>
<tr>
<th>rlmhostid v12.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostid of this machine: host=<your-host-name></td>
</tr>
</tbody>
</table>

2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you just obtained.

3. Adaptive Computing will generate the license and send you the Nitro license file (typically, nitro.lic) file in a return email.

4. On the RLM server, do the following:
 a. Download and install the license file.

   ```
   [root]# cd /opt/rlm
   [root]# chown rlm:rlm nitro.lic
   ```

 b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the ISV adaptiveco port for the Adaptive license-enabled products. This is the same port number you opened during the RLM Server installation. See the instructions to open necessary ports in the Installing RLM Server on page 44 (manual installation method) or 1.1 Installing RLM Server (RPM installation method) for more information.

   ```
   [root]# vi /opt/rlm/nitro.lic
   ISV adaptiveco port=5135
   ```

 The license file already references the RLM Server port (5053 by default).

 If the RLM Server in your configuration uses different ports, you will need to modify the license file to reflect the actual ports. See the instructions to open necessary ports in the Installing RLM Server on page 44 (manual installation method) or 1.1 Installing RLM Server (RPM installation method) for more information.

 c. If you did not install an RLM Server using the file available from Adaptive Computing (for example, because your system configuration already uses one), do the following:

 i. Download the 'adaptiveco.set' file from the Adaptive Computing Nitro Download Center (https://www.adaptivecomputing.com/support/download-center/nitro/).
ii. Copy the 'adaptiveco.set' file into the same directory where the Nitro license resides (/opt/rlm).

d. Perform a reread to update the RLM Server with your license.

```
[root]# /opt/rlm/rlmreread
```

Open Necessary Ports

Nitro uses several ports for communication between the workers and the coordinator.

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the necessary ports.

> The listed ports is for configurations that have only one coordinator. If multiple coordinators are run on a single compute host, then sets of ports (range of 4) must be opened for the number of expected simultaneous coordinators.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ports</th>
<th>Functions</th>
<th>When Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Hosts (Nitro Coordinator)</td>
<td>47000</td>
<td>Coordinator/Worker communication</td>
<td>Always</td>
</tr>
<tr>
<td>Compute Hosts (Nitro Coordinator)</td>
<td>47001</td>
<td>Coordinator PUB/SUB channel - publishes status information</td>
<td>Always</td>
</tr>
<tr>
<td>Compute Hosts (Nitro Coordinator)</td>
<td>47002</td>
<td>Reserved for future functionality</td>
<td></td>
</tr>
<tr>
<td>Compute Hosts (Nitro Coordinator)</td>
<td>47003</td>
<td>API communication channel</td>
<td>Always</td>
</tr>
</tbody>
</table>

See [Opening Ports in a Firewall on page 53](#) for general instructions and an example of how to open ports in the firewall.
Install Nitro

You must complete the tasks to obtain a Nitro license before installing Nitro. See Obtain a Nitro License on page 48.

If your configuration uses firewalls, you must also open the necessary ports before installing Nitro. See Open Necessary Ports on page 50.

On the host where Nitro will reside, do the following:

1. If you have not already done so, complete the steps to prepare the host. See Preparing for Nitro Manual Installation on page 47.

2. Change the directory to the root of the unpacked Nitro tarball bundle.

   ```
   [root]# cd nitro-tarball-bundle-<version>-<OS>
   ```

3. Identify the Nitro product tarball (nitro-<version>-<OS>.tar.gz).

4. As the root user, run each of the following commands in order.

   ```
   [root]# mkdir /opt/nitro
   [root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1
   ```

5. Copy the license file you generated earlier in this topic to each compute node (coordinator). On each compute node, or on the shared file system, do the following:

   ```
   [root]# cp nitro.lic /opt/nitro/bin/
   ```

6. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

 This is a "copy" file operation and not a "move" operation. This allows you to customize your version and always have the factory version available for consultation and/or comparison.

 a. Copy the `launch_nitro.sh` and `launch_worker.sh` scripts for your resource manager to the bin directory. Each resource manager has a subdirectory with the scripts directory that contains the scripts. This example uses Torque as the resource manager.

      ```
      [root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
      [root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/
      ```

 b. Copy the nitrosub command to the bin directory.

      ```
      [root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/
      ```
Chapter 2 Manual Installation

c. Copy the `nitro_job.sh` and the `worker_job.sh` scripts to the etc directory.

```
[root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
[root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/
```

7. Now that you have copied the scripts and the nitrosub command, edit the copies for your site’s administrative policies.

- `bin/nitrosub` command (applicable only if using a shared file system).
 At a *minimum*, do the following:

 a. Uncomment the "_resource_manager" line for your resource manager.

 b. Uncomment the "resource_type" line for your licensing model’s allocation (nodes or cores).

 c. If your system will be using dynamic jobs, set the "_dynamic_size" value to the number of resources to allocate to a dynamic job.

 See `nitrosub Command` in the *Nitro Administrator Guide* for more information.

- `bin/launch_nitro.sh` and `bin/launch.worker.sh` scripts. See `Launch Scripts` in the *Nitro Administrator Guide* for more information.

8. If your system configuration allows multiple coordinators on the same node, additional configuration may be needed. See *Running Multiple Coordinators on the Same Node* on page 57 for more information.

9. If you are *not* using a shared file system, copy the Nitro installation directory to *all* hosts.

```
[root]# scp -r /opt/nitro root@host002:/opt
```

If you are not using a shared file system, you may not be able to use the nitrosub client command.

Verify Network Communication

Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports *and* that the nodes are able to communicate with one another.

Related Topics

- *Nitro Integration* on page 46
Additional Configuration

In this section:
- Opening Ports in a Firewall on page 53
- Moab Workload Manager Configuration Options on page 53
- Moab Accounting Manager Configuration Options on page 55
- Using Multiple RLM Servers on page 56
- Running Multiple Coordinators on the Same Node on page 57 (if Nitro is part of your configuration)

Opening Ports in a Firewall

If your site is running firewall software on its hosts, you will need to configure the firewall to allow connections to the products in your installation.

This topic provides an example and general instructions for how to open ports in your firewall. The actual port numbers for the various products will be provided in the installation instructions for that product.

SUSE 11-based systems use SuSEfirewall2 as the default firewall software. If you use different firewall software, refer to your firewall documentation for opening ports in your firewall.

The following is an example of adding port 1234 when using SuSEfirewall2.

```
[root]# vi /etc/sysconfig/SuSEfirewall2
FW_SERVICES_EXT_TCP="1234"
[root]# service SuSEfirewall2_setup restart
```

Moab Workload Manager Configuration Options

The following is a list of commonly used configure options. For a complete list, use `./configure --help` when configuring Moab.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--prefix</td>
<td>Specifies the location of the binaries and libraries of the Moab install. The default location is <code>/opt/moab</code></td>
<td><code>./configure --prefix=/usr/local</code></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>--with-am</td>
<td>Specifies that you want to configure Moab with Moab Accounting Manager.</td>
<td>![Example](root#/configure --with-am)</td>
</tr>
<tr>
<td>--with-am-dir</td>
<td>Uses the specified prefix directory for the accounting manager if installed in a non-default location.</td>
<td>![Example](root#/configure --with-am-dir=/opt/mam-9.1.0)</td>
</tr>
<tr>
<td>--with-flexlm</td>
<td>Causes Moab to install the <code>license.mong.flexlm.pl</code> script in the <code>/opt/moab/tools</code> directory. For more information about this script, see the Interfacing to FLEXlm section in the Moab Administrator Guide.</td>
<td>![Example](root#/configure --with-flexlm)</td>
</tr>
</tbody>
</table>
| --with-homedir | Specifies the location of the Moab configuration directory and the MOABHOMEDIR environment variable. The default location is `/opt/moab`.
 Tip: By default, MOABHOMEDIR is automatically set during installation. Use the `--without-profile` option to disable installed scripts. | ![Example](root#/configure --with-homedir=/var/moab)
 The Moab HPC Suite home directory will be /var/moab instead of the default /opt/moab. |
<p>| --without-init | Disables the installation of a distribution-specific, Moab service startup file. By default, make install will install an init.d or systemd service startup file as appropriate for your distribution. The installed file `[/etc/init.d/moab or /usr/lib/systemd/system/moab.service] may be customized to your needs. If you do not want this file to be installed, use this option to exclude it. | ![Example](root#/configure --without-init) |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--without-profile</td>
<td>Disables the installation of a distribution-specific shell profile for bash and C shell. By default, make install will install the Moab shell initialization scripts as appropriate for your operating system. These scripts help to establish the MOABHOMEDIR, PERL5LIB, PATH and MANPATH environment variables to specify where the new moab configuration, scripts, binaries and man pages reside. The installed scripts (/etc/profile.d/moab.{csh,sh}) may be customized to your needs. If you do not want these scripts to be installed, use this option to exclude them.</td>
<td>[root]$./configure --without-profile</td>
</tr>
</tbody>
</table>

Moab Accounting Manager Configuration Options

The following table comprises commonly-used configure options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h,--help</td>
<td>Run ./configure --help to see the list of configure options.</td>
</tr>
<tr>
<td>--localstatedir=DIR</td>
<td>Home directory where per-configuration subdirectories (such as etc, log, data) will be installed (defaults to PREFIX).</td>
</tr>
<tr>
<td>--prefix=PREFIX</td>
<td>Base installation directory where all subdirectories will be installed unless otherwise designated (defaults to /opt/mam).</td>
</tr>
<tr>
<td>--with-cgi-bin=DIR</td>
<td>If you intend to use the web GUI, use --with-cgi-bin to specify the directory where you want the Moab Accounting Manager CGI files to reside (defaults to /var/www/cgi-bin/mam).</td>
</tr>
<tr>
<td>--with-db-name=NAME</td>
<td>Name of the SQL database that the server will sync with (defaults to mam).</td>
</tr>
<tr>
<td>--with-legacy-links</td>
<td>Creates symbolic links allowing the use of the old client and server command names (for example, mam-list-users would be created as symbolic link to mam-list-users). When running a command under its old name, the command will issue a deprecation warning. This warning can be disabled by setting client.deprecationwarning = false in the mam-client.conf file. The default is not to install the legacy links.</td>
</tr>
</tbody>
</table>
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`--with-mam-libs=local</td>
<td>site`</td>
</tr>
<tr>
<td>`--with-promotion=mamauth</td>
<td>suidperl`</td>
</tr>
<tr>
<td><code>--with-user=USER</code></td>
<td>Use <code>--with-user</code> to specify the accounting admin user id that the server will run under and who will have full administrative privileges (defaults to <code>mam</code>). It is recommended that this be a non-privileged user for the highest security.</td>
</tr>
<tr>
<td><code>--without-gui</code></td>
<td>Specifies whether to install the CGI web GUI. If you do not intend to use the CGI web GUI, you can specify <code>--without-gui</code> to not install the CGI scripts. Otherwise, the default is to install the GUI CGI scripts.</td>
</tr>
<tr>
<td><code>--without-init</code></td>
<td>If you do not intend to use the <code>mam init.d</code> service, you can use <code>--without-init</code> to specify that Moab HPC Suite should not install the <code>mam init.d script</code>. Otherwise, the script is installed by default.</td>
</tr>
<tr>
<td><code>--without-profile</code></td>
<td>If you do not intend to use the <code>mam profile.d</code> environment scripts, you can use <code>--without-profile</code> to specify that Moab HPC Suite should not install the <code>mam profile.d</code> scripts. Otherwise, the scripts are installed by default.</td>
</tr>
</tbody>
</table>

Using Multiple RLM Servers

As the RLM Server can run multiple licenses, it is recommended that you install one RLM Server for your configuration.

However, if your configuration requires more than one RLM Server, you will need to configure the Adaptive Computing products to connect to a specific RLM Server. If not configured to connect to a specific RLM Server, the Adaptive Computing product will scan the network and connect to the first RLM Server it finds listening to request the license. If the first RLM Server does not have the product’s license, the RLM connection will fail.

If you are using multiple RLM Servers, do the following to configure the an Adaptive Computing product to connect to a specific RLM Server:
Chapter 2 Manual Installation

1. Modify the RLM Server not to accept the network search connections.
 - Edit the init script in /opt/rlm/ to add -noudp.

   ```bash
   start() {
     su -l $rlmuser -s /bin/bash -c "$rlmdir/rlm -dlog $debuglog -noudp &"
   }
   ```

2. Enable the Adaptive Computing product to connect to a specific RLM.
 On the host where the Adaptive Computing product resides, do the following:
 a. Create a new text file and name it with the .lic extension (typically, remote.lic) and save it in the same location as the other Adaptive Computing licenses. Be careful not to override an existing license.
 b. Edit the new remote.lic file to point to the specific RLM Server hostname and port. Port 5053 is the default. If you use a different port number for the RLM Server, specify that port number in the remote.lic file.

   ```plaintext
   HOST <hostname> ANY 5053
   ```

 Repeat as needed for each Adaptive Computing product that you want to connect to a specific RLM Server.

Running Multiple Coordinators on the Same Node

Nitro provides the ability to run multiple coordinators on the same node.

- Running multiple coordinators on the same node is not available if your system configuration uses a policy to limit nodes to a single job (i.e., NODEACCESSPOLICY=SINGLEJOB on Moab).

If your system is configured to allow multiple coordinators on the node:

- It is recommended that you instruct your users to submit Nitro jobs using the nitrosub command. See nitrosub Command for more information.

- If you prefer that your users do not use the nitrosub command, and instead you prefer that they submit the Nitro jobs directly to your scheduler/resource manager, then you will need to add the --port-file option to the bin/launch_nitro.sh and bin/launch_worker.sh scripts to ensure that all coordinators will be able to run.

   ```bash
   NITRO_OPTIONS="--port-file --job-id ${NITROJOBID} ${NITRO_OPTIONS}"
   Add the --port-file option before the --job-id information.
   ```
Manual Upgrade

This section provides instructions and other information when upgrading your for installing your Moab HPC Suite components for SUSE 11-based systems using the Manual upgrade method.

⚠️ It is highly recommended that you first perform upgrades in a test environment. Installation and upgrade procedures are tested prior to release; however, due to customizable variations that may be utilized by your configuration, it is not recommended to drop new versions of software directly into production environments. This is especially true when the workload has vital bearing. Contact Adaptive Computing Professional Services for more information.

ℹ️ Because many system-level files and directories are accessed during the upgrade, the upgrade instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user.
Please note that the same commands will work for a non-root user with the sudo command.

In this section:

- Upgrading Torque Resource Manager on page 58
- Upgrading Moab Workload Manager on page 65
- Upgrading Moab Accounting Manager on page 67
- Upgrading RLM Server on page 72
- Upgrading Your Nitro Integration on page 73
- Migrating the MAM Database from MySQL to PostgreSQL on page 75

Upgrading Torque Resource Manager

Torque 6.1 binaries are backward compatible with Torque 5.0 or later. However they are not backward compatible with Torque versions prior to 5.0. When you upgrade to Torque 6.1.0 from versions prior to 5.0, all MOM and server daemons must be upgraded at the same time.

The job format is compatible between 6.1 and previous versions of Torque and any queued jobs will upgrade to the new version. It is not recommended to upgrade Torque while jobs are in a running state.
This topic contains instructions on how to upgrade and start Torque Resource Manager (Torque).

If you need to upgrade a Torque version prior to 4.0, contact Adaptive Computing.

See 1.1 Considerations Before Upgrading in the Torque Resource Manager Administrator Guide for additional important information, including about how to handle running jobs during an upgrade, mixed server/MOM versions, and the possibility of upgrading the MOMs without having to take compute nodes offline.

In this topic:

- Before You Upgrade on page 59
- Stop Torque Services on page 60
- Upgrade the Torque Server on page 61
- Update the Torque MOMs on page 62
- Update the Torque Clients on page 63
- Start Torque Services on page 64
- Perform Status and Error Checks on page 64

Before You Upgrade

This section contains information of which you should be aware before upgrading.

In this section:

- Running Jobs on page 59
- Cray Systems on page 60
- hwloc on page 60

Running Jobs

Before upgrading the system, all running jobs must complete. To prevent queued jobs from starting, nodes can be set to offline or all queues can be disabled (using the "started" queue attribute). See pbsnodes or Queue Attributes in the Torque Resource Manager Administrator Guide for more information.
Cray Systems

For upgrading Torque to 6.1.0 on a Cray system, refer to the Installation Notes for Moab and Torque for Cray in Appendix G of the Moab Workload Manager Administrator Guide.

hwloc

⚠️ Using "zypper install hwloc" may install an older, non-supported version.

When cgroups are enabled (recommended), hwloc version 1.9.1 or later is required. NVIDIA K80 requires libhwloc 1.11.0.

The following instructions are for installing version 1.9.1.

Do the following:

1. On the Torque Server Host, each Torque MOM Host, and each Torque Client Host, do the following:
 b. Run each of the following commands in order.

   ```
   [root]# zypper install gcc make
   [root]# tar -xzvf hwloc-1.9.1.tar.gz
   [root]# cd hwloc-1.9.1
   [root]# ./configure
   [root]# make
   [root]# make install
   ```

2. Run the following commands on the Torque Server Host, each Torque MOM Host, and each Torque Client Host.

   ```
   [root]# echo /usr/local/lib > /etc/ld.so.conf.d/hwloc.conf
   [root]# ldconfig
   ```

Stop Torque Services

Do the following:

1. On the Torque Server Host, shut down the Torque server.

   ```
   [root]# service pbs_server stop
   ```
2. On each Torque MOM Host, shut down the Torque MOM service.

 ![Warning]
 Confirm all jobs have completed before stopping pbs_mom. You can do this by typing "momctl -d3". If there are no jobs running, you will see the message "NOTE: no local jobs detected" towards the bottom of the output. If jobs are still running and the MOM is shutdown, you will only be able to track when the job completes and you will not be able to get completion codes or statistics.

   ```
   [root]# service pbs_mom stop
   ```

3. On each Torque Client Host (including the Moab Server Host, the Torque Server Host, and the Torque MOM Hosts, if applicable), shut down the trqauthd service.

   ```
   [root]# service trqauthd stop
   ```

 Upgrade the Torque Server

 ![Tip]
 You must complete all the previous upgrade steps in this topic before upgrading Torque server. See the list of steps at the beginning of this topic.

On the Torque Server Host, do the following:

1. Back up your server_priv directory.

   ```
   [root]# tar -cvf backup.tar.gz TORQUE_HOME/server_priv
   ```

2. If not already installed, install the Boost C++ headers.

   ```
   [root]# zypper install boost-devel
   ```

3. Download the latest Torque build from the Adaptive Computing website.

4. Depending on your system configuration, you will need to add ./configure command options.

 At a minimum, you add:

 - --enable-cgroups
 - --with-hwloc-path=/usr/local

 See Torque on page 9 for more information.

 ![Note]
 These instructions assume you are using cgroups. When cgroups are supported, cpusets are handled by the cgroup cpuset subsystem. If you are not using cgroups, use --enable-cpusets instead.
See Customizing the Install in the Torque Resource Manager Administrator Guide for more information on which options are available to customize the ./configure command.

5. Install the latest Torque tarball.

```
[root]# cd /tmp
[root]# tar xzvf torque-6.1.0.tar.gz
[root]# cd torque-6.1.0
[root]# ./configure --enable-cgroups --with-hwloc-path=/usr/local # add any other specified options
[root]# make
[root]# make install
```

Update the Torque MOMs

Do the following:

1. On the Torque Server Host, do the following:
 a. Create the self-extracting packages that are copied and executed on your nodes.
      ```
      [root]# make packages
      Building ./torque-package-clients-linux-x86_64.sh ...
      Building ./torque-package-mom-linux-x86_64.sh ...
      Building ./torque-package-server-linux-x86_64.sh ...
      Building ./torque-package-gui-linux-x86_64.sh ...
      Building ./torque-package-devel-linux-x86_64.sh ...
      Done.
      The package files are self-extracting packages that can be copied and executed on your production machines. Use --help for options.
      
      b. Copy the self-extracting mom package to each Torque MOM Host.
         Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.
         ```
 [root]# scp torque-package-mom-linux-x86_64.sh <torque-mom-host>:
         ```
   
   2. On each Torque MOM Host, confirm that cgroups have been mounted; if not, mount them.
      a. Run lssubsys -am.
      b. If the command is not found, or you do not see something similar to the following, then cgroups are not mounted, continue with these instructions.
c. Do the following:
   i. Install the cgroup library package.
      
      ```bash
 [root]# zypper install libcgroup1
      ```
   
   ii. Edit `/etc/cgconfig.conf` and add the following:
      
      ```bash
 mount {
 devices = /mnt/cgroups/devices;
 cpuset = /mnt/cgroups/cpuset;
 cpu = /mnt/cgroups/cpu;
 cpuacct = /mnt/cgroups/cpuacct;
 memory = /mnt/cgroups/memory;
 }
      ```
   
   iii. Mount cgroups.
      
      ```bash
 [root]# service cgconfig start
      ```
   
   d. Run `issubsys-am` again and confirm cgroups are mounted.

3. On each Torque MOM Host, do the following:
   a. Install cgroup-tools.
   
   b. Install the self-extracting MOM package.
      
      ```bash
 [root]# ./torque-package-mom-linux-x86_64.sh --install
      ```

**Update the Torque Clients**

This section contains instructions on updating the Torque clients on the Torque Client Hosts (including the Moab Server Host and Torque MOM Hosts, if applicable).

1. On the Torque Server Host, do the following:
   a. Copy the self-extracting client package to each Torque Client Host.
      
      Adaptive Computing recommends that you use a remote shell, such as SSH, to install packages on remote systems. Set up shared SSH keys if you do not want to supply a password for each Torque MOM Host.
Chapter 2 Manual Installation

b. If Moab Workload Manager is part of your configuration, copy the self-extracting devel package to the Moab Server Host.

2. On each Torque Client Host, do the following:

   This step can be done from the Torque server from a remote shell, such as SSH. Set up shared SSH keys if you do not want to supply a password for each Torque Client Host.

   

2. On each Torque Client Host, do the following:

   

3. If Moab Workload Manager is part of your configuration, do the following on the Moab Server Host:

   

Start Torque Services

Do the following:

1. On each Torque Client Host (including the Moab Server Host, Torque Server Host and Torque MOM Hosts, if applicable), start up the trqauthd service.

   

2. On each Torque MOM Host, start up the Torque MOM service.

   

3. On the Torque Server Host, start up the Torque server.

   

Perform Status and Error Checks

On the Torque Server Host, do the following:

   

   • Verify that the status of the nodes and jobs are as expected.
Upgrading Moab Workload Manager

This topic provides instructions to upgrade Moab Workload Manager to the latest release version. Depending on which version of Moab you are presently running, upgrade instructions may vary.

Moab Workload Manager uses the standard configure, make, and make install steps for upgrades. This topic provides a number of sample steps referenced to a particular installation on a Linux platform using the bash shell. These steps indicate the user ID in brackets performing the step. The exact commands to be performed and the user that issues them will vary based on the platform, shell, installation preferences, and other factors.

It is highly recommended that you first perform upgrades in a test environment. See the warning in 1.1 Preparing for Upgrade. It is also recommend that you verify the policies, scripts, and queues work the way you want them to in this test environment. See Testing New Releases and Policies in the Moab Workload Manager Administrator Guide for more information.

If you are also upgrading Torque from an older version (pre-4.0), contact Adaptive Computing.

Because many system-level files and directories are accessed during the installation, the instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same commands will work for a non-root user with the sudo command.

Upgrade Moab Workload Manager

On the Moab Server Host, do the following:

1. If you have not already done so, install extra packages from the add-on repositories. See Preparing for Manual Installation on page 18
2. Download the latest Moab build from the Adaptive Computing website.
3. Untar the distribution file. For example:

   `[root]# tar -xzvf moab-9.1.0-<OS>.tar.gz`

   The variable marked <OS> indicates the OS for which the build was designed.
4. Change directory into the extracted directory.

   `[root]# cd moab-9.1.0-<OS>`
5. Configure the installation package.

Use the same configure options as when Moab was installed previously. If you cannot remember which options were used previously, check the `config.log` file in the directory where the previous version of Moab was installed from.

For a complete list of configure options, use `./configure --help`.


```
[root]# service moab stop
```

While Moab is down, all currently running jobs continue to run on the nodes, the job queue remains intact, and new jobs cannot be submitted to Moab.

7. Back up your Moab Workload Manager home directory (`/opt/moab` by default) before continuing.

8. If you are using green computing, or if you are using a resource manager other than Torque, run the `make perldeps` command to install the necessary perl modules using CPAN.

```
[root]# make perldeps
```

9. Install Moab.

```
[root]# make install
```

Default configuration files are installed during `make install`. Existing configuration files are not overwritten and the new files are given a `.dist` extension.

10. If you use ODBC, you must confirm the database schema compatibility. See Migrating Your Database to Newer Versions of Moab in the Moab Workload Manager Administrator Guide for more information.

11. Verify the version number is correct before starting the new server version.

```
[root]# moab --about
```

You should get something similar to the following in the response:
12. If you are using Moab Accounting Manager with the native interface (TYPE=native), remove all entries in moab.cfg with the form (AMCFG[*] *URL=exec://*), except for those that you have customized. See AMCFG Parameters and Flags in the Moab Workload Manager Administrator Guide for more information.

   ! In Moab Workload Manager 8.1 and after, Moab defaults to using a set of stock scripts that no longer need to be explicitly configured in the server configuration file.


   [root]# service moab start

**Upgrading Moab Accounting Manager**

This topic provides instructions to upgrade MAM to the latest release version. It includes instructions for migrating your database schema to a new version if necessary.

Moab Accounting Manager uses the standard configure, make, and make install steps for upgrades. This document provides a number of sample steps referenced to a particular installation on a Linux platform using the bash shell. These steps indicate the user ID in brackets performing the step. The exact commands to be performed and the user that issues them will vary based on the platform, shell, installation preferences, and other factors.

**Upgrade Moab Accounting Manager**

On the MAM Server Host, do the following:
1. Determine the MAM Accounting admin user and change to that user.
   - If you are upgrading MAM from a version prior to 9.0, use glsuser.
     
     ```
 [root]$ glsuser | grep 'Accounting Admin'
 mam True
 Accounting Admin
 [root]$ su -m am
     ```
   
   - If you are upgrading MAM from a version at or after 9.0, use mam-list-users.
     
     ```
 [root]$ mam-list-users | grep 'Accounting Admin'
 mam True
 Accounting Admin
 [root]$ su -m am
     ```

2. Determine whether you need to migrate your database.
   a. Determine your database version.
      
      - If you are upgrading MAM from a version prior to 9.0, run goldsh System Query.
        
        ```
 [mam]$ goldsh System Query
        ```
      
      - If you are upgrading MAM from a version at or after 9.0, run mam-shell System Query.
        
        ```
 [mam]$ mam-shell System Query
        ```
   
   b. If the current version is lower than 9.1, you must migrate your database. The steps required to do so are incorporated in the remaining steps for this topic.

3. Stop the server daemon.
   
   ```
 [mam]$ su -c "service mam stop"
   ```

4. If you determined that you must migrate your database, create a database backup.
   
   ```
 [mam]$ pg_dump -U <mam_database_user> -W <old_database_name> > /tmp/<old_database_name>.sql
   ```

5. If your PostgreSQL database version is prior to version 9.1, update the postgresql configuration to avoid interpreting backslashes as escape
characters.

```
[root]# vi /var/lib/pgsql/data/postgresql.conf
standard_conforming_strings = on
[root]# service postgresql restart
```

6. Verify that each of the prerequisites listed in 1.1 Installing have been satisfied.

7. Download the latest MAM build from the Adaptive Computing website.

8. Unpack the tar archive and change directory into the top directory of the distribution.

```
[mam]$ tar -zxvf mam-9.1.0.tar.gz
[mam]$ cd mam-9.1.0
```

9. Configure Moab Accounting Manager by running configure with the desired options.

It is recommended that you use the same configure options that were used in the previous installation. You can examine the config.log file where you unpacked your previous distribution to help determine the configuration options that were used to install the prior version of MAM.

⚠️ Client and server command names changed beginning with 9.0. If you want to create symbolic links to enable you to continue to use the old client and server command names, use the --with-legacy-links option with configure. When running a command under its old name, the command will issue a deprecation warning. This warning can be disabled by setting client.deprecationwarning = false in the mam-client.conf file.

```
[mam]$./configure
```

10. Run make to compile the program.

```
[mam]$ make
```
Depending on your configuration, you may need to replace "make" with a make command that includes additional functionality. Specifically:

- If you only need to install the clients on a particular system, use clients-only.
- If you only need to install the web GUI on a particular system, use make gui-only.
- If you only need to install the web services on a particular system, use make ws-only

11. Run `make install` as root to install Moab Accounting Manager.

```
[mam]$ su -c "make install"
```

12. Edit the configuration files as necessary. You may want to compare your existing configuration files with those distributed with the new release to determine if you want to merge and change any of the new options within your configuration files.

- If you are upgrading MAM from a version prior to 9.0, the install process will have saved your prior configuration files to 
  `{goldd,gold,goldg}.conf.pre-9.0` and written new default server configuration file as `mam-{server,client,gui}.conf`. You will need to merge any non-default parameters from your prior config files to the new default config files.

```
[mam]$ diff /opt/mam/etc/goldd.conf.pre-9.0 /opt/mam/etc/mam-server.conf
[mam]$ vi /opt/mam/etc/mam-server.conf
[mam]$ diff /opt/mam/etc/gold.conf.pre-9.0 /opt/mam/etc/mam-client.conf
[mam]$ vi /opt/mam/etc/mam-client.conf
[mam]$ diff /opt/mam/etc/goldg.conf.pre-9.0 /opt/mam/etc/mam-gui.conf
[mam]$ vi /opt/mam/etc/mam-gui.conf
```

- If you are upgrading MAM from a version at or after 9.0, merge and change any of the new options supplied in the new default configuration
files (saved in mam-{server,client,gui}.conf.dist) into your existing configuration files (mam-{server,client,gui}.conf).

```
[mam]$ diff /opt/mam/etc/mam-server.conf /opt/mam/etc/mam-server.conf.dist
[mam]$ vi /opt/mam/etc/mam-server.conf
[mam]$ diff /opt/mam/etc/mam-client.conf /opt/mam/etc/mam-client.conf.dist
[mam]$ vi /opt/mam/etc/mam-client.conf
[mam]$ diff /opt/mam/etc/mam-gui.conf /opt/mam/etc/mam-gui.conf.dist
[mam]$ vi /opt/mam/etc/mam-gui.conf
```

- If you are upgrading MAM from a version at or after 9.1, and you are using MAM Web Services, merge and change any of the new options supplied in the new default MAM Web Services configuration file (saved in mam-ws.conf.dist) into your existing MAM Web Services configuration file (mam-ws.conf).

```
[mam]$ diff /opt/mam/etc/mam-ws.conf /opt/mam/etc/mam-ws.conf.dist
[mam]$ vi /opt/mam/etc/mam-ws.conf
```

13. Start the server daemon.

```
[mam]$ su -c "service mam start"
```

14. If you are migrating your database to 9.1, you will do so by running one or more migration scripts. You must run every incremental migration script between the version you are currently using and the new version (9.1). These scripts are designed to be rerunnable, so if you encounter a failure, resolve the failure and rerun the migration script. If you are unable to resolve the failure and complete the migration, contact Support.

For example, if you are migrating from Moab Accounting Manager version 7.2, you must run six migration scripts: the first to migrate the database schema from 7.2 to 7.3, the second to migrate from 7.3 to 7.5, the third to migrate the database schema from 7.5 to 8.0, the fourth to migrate the database schema from 8.0 to 8.1, the fifth to migrate the database schema from 8.1 to 9.0, and the sixth to migrate the database schema from 9.0 to 9.1.

```
[mam]$ sbin/migrate_7.2-7.3.pl
[mam]$ sbin/migrate_7.3-7.5.pl
[mam]$ sbin/migrate_7.5-8.0.pl
[mam]$ sbin/migrate_8.0-8.1.pl
[mam]$ sbin/migrate_8.1-9.0.pl
[mam]$ sbin/migrate_9.0-9.1.pl
```

15. Verify that the resulting database schema version is 9.1.

```
[mam]$ mam-shell System Query
Name Version Description
------------------------------ --------- ---------------------------------------
Moab Accounting Manager 9.1 9.1 Commercial Release
```
16. Verify that the executables have been upgraded to 9.1.0.

```
[mam]$ mam-server -v
Moab Accounting Manager version 9.1.0
```

17. If you are upgrading MAM from a version prior to 9.1.0, and you wish to use MAM Web Services, perform the following procedures (provided in the Installing Moab Accounting Manager topic):
   - 1.1.8 Configure MAM Web Services
   - 1.1.10 Access MAM Web Services

## Upgrading RLM Server

Adaptive Computing *strongly* recommends that your RLM Server is version 12.1BL2.

In this topic:
- [Confirm if an Upgrade is Needed](#) on page 72
- [Upgrade the RLM Server](#) on page 72

### Confirm if an Upgrade is Needed

Run the following command to determine your current version of RLM Server.

```
[root]# /opt/rlm/rlm -v
```

If the version reported is less than 12.1BL2, continue with the section to Upgrade the RLM Server later in this topic.

### Upgrade the RLM Server

> These instructions assume you used /opt/rlm as the install location.

On the RLM Server Host, do the following:

1. Download the latest RLM build from the [Adaptive Computing Moab HPC Suite Download Center](https://www.adaptivecomputing.com/support/download-center/moab-hpc-suite-download/).
2. Stop the RLM service.

```
[root]# service rlm stop
```
3. Archive the existing RLM installation, including the license file(s).
4. Install the new tarball files.

```
[root]# mv /opt/rlm/ /opt/rlm-<archive_version>/
[root]# mkdir -p -m 0744 /opt/rlm
[root]# cd /opt/rlm
[root]# tar -xzxvf /<unpack-directory>/ac-rlm-12.1.tar.gz --strip-components=1
[root]# chown -R rlm:rlm /opt/rlm
```

The `--strip-components=1` removes the "ac-rlm-12.1/" from the relative path so that they are extracted into the current directory.

5. Install the startup scripts.

```
[root]# cp init.d/rlm /etc/init.d
```

6. Restore the license file(s).

```
[root]# cp /opt/rlm-<archive_version>/*.lic /opt/rlm/
```

7. Restart the RLM service.

```
[root]# service rlm restart
```

Upgrading Your Nitro Integration

This section provides instructions on upgrading your Nitro Integration as part of your Moab HPC Suite configuration.

In this section:

- Preparing for Nitro Manual Installation on page 47
- Upgrading Nitro on page 73; Nitro Web Services is not available for a SUSE 11-based system

Upgrading Nitro

This topic contains instructions on how to upgrade Nitro.

In this topic:

- Upgrade Nitro on page 74
- Verify Network Communication on page 75
Upgrade Nitro

On the Nitro Host, do the following:

1. If you have not already done so, complete the steps to prepare the host. See Preparing for Nitro Manual Installation on page 47.

2. Back up your existing launch script in /opt/nitro/bin/.

3. Change the directory to the root of the unpacked Nitro tarball bundle.

   ```
 [root]# cd nitro-tarball-bundle<version><OS>
   ```

4. Identify the Nitro product tarball (nitro-<version>-<OS>.tar.gz) and unpack the tarball into the same directory you created when you first installed Nitro (for example, /opt/nitro).

   ```
 [root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1
   ```

5. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

   This is a "copy" file operation and not a "move" operation. This allows you to customize your version and always have the factory version available for consultation and/or comparison.

   a. Copy the `launch_nitro.sh` and `launch_worker.sh` scripts for your resource manager to the bin directory. Each resource manager has a subdirectory with the scripts directory that contains the scripts. This example uses Torque as the resource manager.

      ```
 [root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
 [root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/
      ```

   b. Copy the nitrosub command to the bin directory.

      ```
 [root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/
      ```

   c. Copy the `nitro_job.sh` and the `worker_job.sh` scripts to the etc directory.

      ```
 [root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
 [root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/
      ```

6. Merge any customizations from your existing launch scripts, job scripts, and the nitrosub command (if applicable) into the new launch scripts, job scripts, and the nitrosub command that you copied from the scripts directory.

7. If your system configuration allows multiple coordinators on the same node, additional configuration may be needed. See Running Multiple Coordinators on the Same Node on page 57 for more information.

8. If you are not using a shared file system, copy the updated Nitro installation directory to all hosts.
Verify Network Communication

*Verify* that the nodes that will be running Nitro are able to communicate with the Nitro ports *and* that the nodes are able to communicate with one another.

Related Topics

- [Upgrading Your Nitro Integration on page 73](#)

Migrating the MAM Database from MySQL to PostgreSQL

PostgreSQL is the preferred DBMS for MAM. Customers who have already installed MySQL as the DBMS for MAM are not required to migrate their database to use PostgreSQL at this time. However, MySQL is considered deprecated and new installations will only use PostgreSQL.

PostgreSQL does not provide a standard procedure for migrating an existing database from MySQL to PostgreSQL. Adaptive Computing has had success using the py-mysql2pgsql tools for migrating/converting/exporting data from MySQL to PostgreSQL. See [https://github.com/philipsoutham/py-mysql2pgsql](https://github.com/philipsoutham/py-mysql2pgsql) for additional details.

To Migrate the MAM Database

This procedure was successfully tested on an actual customer MySQL database with millions of transactions on CentOS 6.4. It completed in less than an hour.

1. Make a backup copy of your MySQL mam database.
   
   ```
 [root]# mysqldump mam > /archive/mam.mysql
   ```

2. Follow the instructions to Install PostgreSQL.
   - **Manual Install** - [1.1 Installing Moab Web Services](#)
   - **RPM Install** - [1.1 Installing Moab Web Services](#)

3. Install the prerequisite packages.

4. Install pg-mysql2pgsql (from source).
5. Run `pg-mysql2pgsql` once to create a template YAML config file.

```
[root]# cd /software
[root]# git clone git://github.com/philipsoutham/py-mysql2pgsql.git
[root]# cd py-mysql2pgsql
[root]# python setup.py install
```

6. Edit the config file to specify the MySQL database connection information and a file to output the result.

```
[root]# vi mysql2pgsql.yml
```

```
mysql:
 hostname: localhost
 port: 3306
 socket:
 username: mam
 password: changeme
 database: mam
 compress: false
 destination:
 # if file is given, output goes to file, else postgres
 file: /archive/mam.pgsql
postgres:
 hostname: localhost
 port: 5432
 username:
 password:
 database:
```

7. Run the `pg-mysql2pgsql` program again to convert the database.

```
[root]# py-mysql2pgsql -v
```

8. Create the mam database in PostgreSQL.

```
[root]# su - postgres
[postgres]$ psql
postgres=# create database "mam";
prompt=# create user mam with password 'changeme!';
prompt=# \q
[postgres]$ exit
```

9. Import the converted data into the PostgreSQL database.

```
[root]# su - mam
[mam]$ psql mam < /archive/mam.pgsql
```

10. Point MAM to use the new postgresql database.
11. **Restart Moab Accounting Manager.**

```
[mam]$ cd /software/mam-latest
[mam]$./configure # This will generate an etc/mam-server.conf.dist file
[mam]$ vi /opt/mam/etc/mam-server.conf # Merge in the database.datasource from etc/mam-server.conf.dist

[mam]$ mam-server -r
```
Chapter 3 Troubleshooting

This chapter details some common problems and general solutions. Additional troubleshooting may be found in the individual Moab HPC Suite component documentation.

In this chapter:
- General Issues on page 79
- Moab Workload Manager Issues on page 83

General Issues

This topic details some common problems and general solutions.

In this topic:
- Where do I need to set credentials and what are the default values? on page 79
  - Database Credentials on page 80
  - Product Credentials on page 81

Where do I need to set credentials and what are the default values?

Communication and cooperation between various components of the Moab HPC Suite requires credentials to be properly configured. For ease of use, the credential information, including where credentials are set, default values, and where they are used are grouped by database and product.

In this section:
- Database Credentials on page 80
- Product Credentials on page 81
# Database Credentials

## MongoDB

<table>
<thead>
<tr>
<th>Database</th>
<th>User</th>
<th>Default Password</th>
<th>Used By</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>admin_user</td>
<td>secret1</td>
<td>system admins</td>
<td>NA</td>
</tr>
<tr>
<td>moab</td>
<td>moab_user</td>
<td>secret2</td>
<td>/opt/moab/etc/moab-private.cfg</td>
<td>MONGOUSER, MONGOPASSWORD</td>
</tr>
<tr>
<td>moab</td>
<td>mws_user</td>
<td>secret3</td>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>grails.-mongodbusername, grails.-mongodbpassword</td>
</tr>
<tr>
<td>moab</td>
<td>insight_user</td>
<td>secret4</td>
<td>/opt/insight/etc/config.groovy</td>
<td>moab.-mongodbusername, moab.-mongodbpassword</td>
</tr>
<tr>
<td>mws</td>
<td>mws_user</td>
<td>secret3</td>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>grails.-mongodbusername, grails.-mongodbpassword</td>
</tr>
<tr>
<td>insight</td>
<td>insight_user</td>
<td>secret4</td>
<td>/opt/insight/etc/config.groovy</td>
<td>mongodbusername, mongodbpassword</td>
</tr>
<tr>
<td>insight</td>
<td>mws_user</td>
<td>secret3</td>
<td>http://&lt;mws_server-&gt;:8080/mws/admin/plugins/edit/viewpoint-query-helper</td>
<td>user, password</td>
</tr>
<tr>
<td>nitro-db</td>
<td>nitro_user</td>
<td>secret5</td>
<td>/opt/nitro-web-services/etc/nitro.cfg</td>
<td>db_username, db_password</td>
</tr>
</tbody>
</table>
### PostgreSQL

<table>
<thead>
<tr>
<th>Database</th>
<th>User</th>
<th>Default Password</th>
<th>Used By</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>moab_viewpoint</td>
<td>moab_viewpoint</td>
<td>changeme!</td>
<td>/opt/viewpoint/etc/viewpoint.cfg</td>
<td>VIEWPOINT_DATABASE_USER, VIEWPOINT_DATABASE_PASSWORD</td>
</tr>
<tr>
<td>mam</td>
<td>mam</td>
<td>changeme!</td>
<td>/opt/mam/etc/mam-server.cfg</td>
<td>database.user, database.password</td>
</tr>
</tbody>
</table>

### Product Credentials

#### Moab Workload Manager

<table>
<thead>
<tr>
<th>Declared Parameter</th>
<th>Used By</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Parameter Name</td>
<td></td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>moab.messageQueue.secretKey</td>
<td>NA</td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>messageQueue.secretKey</td>
<td>NA</td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

#### Moab Accounting Manager

<table>
<thead>
<tr>
<th>Declared Parameter</th>
<th>Used By</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Parameter Name</td>
<td></td>
</tr>
<tr>
<td>/opt/mam/etc/mam-site.conf</td>
<td>token.value</td>
<td>CLIENTCFG [AM:mam] KEY</td>
</tr>
</tbody>
</table>
# Moab Web Services

<table>
<thead>
<tr>
<th>Declared Parameter</th>
<th>Used By</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Parameter Name</td>
<td>File</td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>auth.defaultUser.username</td>
<td>http://&lt;viewpoint_server&gt;:8081/configuration/</td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>auth.defaultUser.password</td>
<td>http://&lt;viewpoint_server&gt;:8081/configuration/</td>
</tr>
<tr>
<td>/opt/mws/etc/mws-config.groovy</td>
<td>grails.plugin.springsecurity.oauthProvider.clients[0].clientSecret</td>
<td>http://&lt;viewpoint_server&gt;:8081/configuration/</td>
</tr>
</tbody>
</table>

# Nitro Web Services

<table>
<thead>
<tr>
<th>Declared Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Parameter Name</td>
</tr>
<tr>
<td>/opt/nitro-web-services/etc/nitro.cfg</td>
<td>ws_admin_password</td>
</tr>
</tbody>
</table>
Moab Workload Manager Issues

This topic details some common problems and general solutions for Moab Workload Manager.

See also Troubleshooting and System Maintenance in the Moab Workload Manager Administrator Guide.

In this topic:
Moab error: "cannot determine local hostname" on page 84
Moab error: "Moab will now exit due to license file not found" on page 84

Moab error: "cannot determine local hostname"

```bash
service moab start
Starting moab: ERROR: cannot determine local hostname - node is misconfigured
[FAILED]
```

... SCHEDCFG[Moab]  SERVER=<moab-hostname>:42559 ...

Also check `/etc/hosts` to be sure the host name resolves, at least with localhost:

```bash
... 127.0.0.1 <moab-hostname> localhost localhost.localdomain localhost4
 localhost4.localdomain4 ...
```

Moab error: "Moab will now exit due to license file not found"

```bash
service moab start
Starting moab: Moab will now exit due to license file not found
Please contact Adaptive Computing (sales@adaptivecomputing.com) to get a license for your system
[FAILED]
```

If you encounter this error when starting Moab, make sure your Moab license file is named `moab.lic` and is located in the `/opt/moab/etc/` directory.

Also make sure the license is not expired. The expiration date is listed in the license file. For example:

```bash
cat /opt/moab/etc/moab.lic
...
Expires after Tue Dec 31 10:43:46 2013
...