

Gold

User’s
Guide

Version 2.2.0

Gold User's Guide
version 2.2.0

Gold is an open source accounting system that tracks and manages resource usage on
High Performance Computers. It acts much like a bank in which resource credits are
deposited into accounts with access controls designating which users, projects, and
machines may access the account. As jobs complete or as resources are utilized, accounts
are charged and resource usage recorded. Gold supports familiar operations such as
deposits, withdrawals, transfers, and refunds. It provides balance and usage feedback to
users, managers, and system administrators.

Since accounting needs vary widely from organization to organization, Gold has been
designed to be extremely flexible, featuring customizable accounting and supporting a
variety of accounting models. Attention has been given to scalability, security, and fault
tolerance. Gold facilitates the sharing of resources between organizations or within a Grid
by providing distributed accounting while preserving local site autonomy.

Legal Notices

Table of Contents

Features
Interfaces

Command Line Clients
Interactive Control Program
Web-based Graphical User Interface
Perl API
SSSRMAP Wire Protocol

Installation
Preparation

Select a Database
Install Prerequisites

PostgreSQL database 7.2 or higher (or other tested database) [REQUIRED]
Perl 5.6.1 or higher (with suidperl) [REQUIRED]
libxml2 2.4.25 or higher [REQUIRED]
Gnu readline 2.0 or higher [OPTIONAL]
Apache Httpd Server 2.0 or higher [OPTIONAL]
OpenSSL 0.9.5a or higher [OPTIONAL]
mod_ssl 2.26 or higher [OPTIONAL]

Configuration
Compilation
Perl Module Dependencies
Installation
General Setup
Database Setup
Web Server Setup
Bootstrap
Startup
Initialization

Getting Started
Define Users
Define Machines
Define Projects
Add Users to the Projects
Make Deposits
Check The Balance
Integrate Gold with your Resource Management System
Obtain A Job Quote
Make A Job Reservation
Charge for a Job
Refund a Job
List Transactions
Examine Account Statement
Examine Project Usage

Getting More Advanced
Define Projects
Define Accounts
Make Deposits
Check The Balance
Define Charge Rates
Obtain A Guaranteed Job Quote
Make A Quoted Job Reservation
Charge for a Quoted Job
Partially Refund a Job
Examine Account Statement

Managing Users
Creating Users
Querying Users
Modifying Users
Deleting Users

Managing Machines
Creating Machines
Querying Machines
Modifying Machines
Deleting Machines

Managing Projects
Creating Projects
Querying Projects
Modifying Projects
Deleting Projects
Project Usage Summary

Managing Accounts
Creating Accounts
Querying Accounts
Modifying Accounts
Making Deposits
Querying The Balance
Personal Balance
Making Withdrawals
Making Transfers
Obtaining an Account Statement
Deleting Accounts

Managing Allocations
Creating Allocations
Querying Allocations
Modifying Allocations
Deleting Allocations

Managing Reservations
Creating Reservations
Querying Reservations
Modifying Reservations
Deleting Reservations

Managing Quotations
Creating Quotations
Querying Quotations
Modifying Quotations
Deleting Quotations

Managing Jobs
Creating Jobs
Querying Jobs
Modifying Jobs
Deleting Jobs
Obtaining Job Quotes
Making Job Reservations
Charging Jobs
Issuing Job Refunds

Managing Charge Rates
Creating ChargeRates
Querying ChargeRates
Modifying Charge Rates
Deleting Charge Rates

Managing Transactions
Querying Transactions

Managing Roles
Querying Roles
Querying Role Users
Querying Role Actions
Creating Roles
Associating an Action with a Role
Adding a Role to a User
Removing an Action from a Role
Removing a Role from a User
Deleting Roles

Managing Passwords
Creating Passwords
Querying Passwords
Modifying Passwords
Deleting Passwords

Using the Gold Shell (goldsh)
Usage
Command Syntax
Valid Objects
Valid Actions for an Object
Valid Predicates for an Object and Action
Common Options

Common Actions Available for most Objects
Query Action
Create Action
Modify Action
Delete Action
Undelete Action

Multi-Object Queries
Customizing Gold Objects

Removing an Attribute from an Object
Adding an Attribute to an Object
Modifying an Attribute
Creating a Custom Object
Adding an Action to an Object
Examples Creating Custom Objects

Integration with the Resource Management System
Dynamic versus Delayed Accounting

Delayed Accounting
Dynamic Accounting

Interaction Points
Job Quotation @ Job Submission Time [Optional — Recommended]
Job Reservation @ Job Start Time [Optional — Highly Recommended]
Job Charge @ Job End Time [Required]

Methods of interacting with Gold
Configuring an application that already has hooks for Gold
Using the appropriate command-line client
Using the Gold control program
Use the Perl API
Communicating via the SSSRMAP Protocol

Configuration Files
Server Configuration
Client Configuration

Legal Notices

Copyright

© 2010 Adaptive Computing Enterprises, Inc. All rights reserved. Distribution of this document for
commercial purposes in either hard or soft copy form is strictly prohibited without prior written consent from
Adaptive Computing Enterprises, Inc.

Trademarks

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Cluster Manager, Moab
Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing
products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The
Adaptive Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing Enterprises,
Inc. All other company and product names may be trademarks of their respective companies.

Acknowledgments

Gold includes software developed by Pacific Northwest National Laboratory and Battelle Memorial Institute.

http://www.pnl.gov/
http://www.battelle.org/

Features
Dynamic Charging — Rather than post-processing resource usage records on a periodic basis to rectify
project balances, acounts are updated immediately at job completion.

Reservations — A hold is placed against the account for the estimated number of resource credits
before the job runs, followed by an appropriate charge at the moment the job completes, thereby
preventing projects from using more resources than were allocated to them.

Flexible Accounts — A uniquely flexible account design allows resource credits to be allocated to
specific projects, users, and machines.

Expiring Allocations — Resource credits may be restricted for use within a designated time period
allowing sites to implement a use-it-or-lose-it policy to prevent year-end resource exhaustion and
establishing a project cycle.

Flexible Charging — The system can track and charge for composite resource usage (memory, disk,
CPU, etc) and custom charge multipliers can be applied (Quality of Service, Node Type, Time of Day,
etc).

Guaranteed Quotes — Users and resource brokers can determine ahead of time the cost of using
resources.

Credit and Debit Accounts — Accounts feature an optional credit limit allowing support for both
debit and credit models. This feature can also be used to enable overdraft protection for specific
accounts.

Nested Accounts — A hierarchical relationship may be created between accounts. This allows for the
delegation of management responsibilities, the establishment of automatic rules for the distribution of
downstream resource credits, and the option of making higher level credits available to lower level
accounts.

Powerful Querying — Gold supports a powerful querying and update mechanism that facilitates
flexible reporting and streamlines administrative tasks.

Transparency — Gold allows the establishment of default projects, machines, and users. Additionally
Gold can allow user, machines, and projects to be automatically created the first time they are seen by
the resource management system. These features allow job submitters to use the system without even
knowing it.

Security — Gold supports multiple security mechanisms for strong authentication and encryption.

Role Based Authorization — Gold provides fine-grained (instance-level) Role Based Access Control
for all operations.

Dynamic Customization — Sites can create or modify record types on the fly enabling them to meet
their custom accounting needs. Dynamic object creation allows sites to customize the types of
accounting data they collect without modifying the code. This capability turns this system into a
generalized information service. This capability is extremely powerful and can be used to manage all
varieties of custom configuration data, to provide meta-scheduling resource mapping, or to function as
a persistence interface for other components.

Multi-Site Exchange — A traceback mechanism will allows all parties of a transaction (resource
requestor and provider) to have a first-hand record of the resource utilization and to have a say as to
whether or not the job should be permitted to run, based on their independent policies and priorities. A
job will only run if all parties are agreeable to the idea that the target resources can be used in the
manner and amount requested. Support for traceback debits will facilitate the establishment of trust
and exchange relationships between administrative domains.

Web Interface — Gold will implement a powerful dynamic web-based GUI for easy remote access for
users, managers, and administrators.

Journaling — Gold implements a journaling mechanism that preserves the indefinite historical state of
all objects and records. This powerful mechanism allows historical bank statements to be generated,
provides an undo/redo capability, and allows commands to be run as if it were any arbitrary time in

the past.

Open Source — Being open source allows for site self-sufficiency, customizability, and promotes
community development and interoperability.

Interfaces
Gold provides a variety of means of interaction, including command-line interfaces, graphical user interfaces,
application programming interfaces, and communication protocols.

Command Line Clients
The command-line clients provided feature rich argument sets and built-in documentation. These commands
allow scripting and are the preferred way to interact with Gold for basic usage and administration. Use the --
help option for usage information or the --man option for a manual page on any command.

Example 1. Listing Users

Interactive Control Program
The goldsh command uses a control language to issue object-oriented requests to the server and display the
results. The commands may be included directly as command-line arguments or read from stdin. Use the
"ShowUsage:=True" option after a valid Object Action combination for usage information on the command.

Example 2. Listing Users

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Do not use this command unless you understand the syntax and the potential for unintended results.

Web-based Graphical User Interface
A powerful and easy-to-use web-based GUI is being developed for use by users, managers, and
administrators. It sports two interface types:

Management Interface — The management interface supports an interface that makes administration
and interaction very safe and easy. It approaches things from a functional standpoint, aggregating
results and protecting against accidental modifications.

Object Interface — The object interface exposes you to the full power of the actions the server can
perform on the objects. This interface allows actions to be performed on many objects in a single
command and can impose arbitrary field conditions, field updates, and field selections to the query.

Example 3. Listing Users

Click on "Manage Users" -> "List Users"

Perl API
You can access the full Gold functionality via the Perl API. Use perldoc to obtain usage information for the
Perl Gold modules.

Example 4. Listing Users

glsuser

goldsh User Query

use Gold;

my $request = new Gold::Request(object => "User", action => "Query");

SSSRMAP Wire Protocol
It is also possible to interact with Gold by directly using the SSSRMAP Wire Protocol and Message Format
over the network. Documentation for these protocols can be found at SSS Resource Management and
Accounting Documentation.

Example 5. Listing Users

my $response = $request->getResponse();
foreach my $datum ($response->getData())
{
 print $datum->toString(), "\n";
}

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
 <Body actor="scottmo" chunking="True">
 <Request action="Query" object="User"></Request>
 </Body>
 <Signature>
 <DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
 <SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
 <SecurityToken type="Symmetric" name="scottmo"></SecurityToken>
 </Signature>
</Envelope>
0

http://www.clusterresources.com/products/gold/docs/
http://www.clusterresources.com/products/gold/docs/

Installation
Gold uses the standard configure, make, and make install steps. However, there are a number of
preparation, prerequisite, setup, and customization steps that need to be performed. This document provides
general installation guidance and provides a number of sample steps referenced to a particular installation on
a Linux platform using the bash shell. These steps indicate the userid in brackets performing the step. The
exact commands to be performed and the user that issues them will vary based on the platform, shell,
installation preferences, etc.

Preparation
To build and install Gold, you first need to unpack the archive and change directory into the top directory of
the distribution. For security reasons, it is recommended that you install and run Gold under its own non-root
userid.

Select a Database
Gold makes use of a database for transactions and data persistence. Three databases have been tested for
use with Gold thus far: PostgreSQL, MySQL, and SQLite. Postgres and MySQL are external databases which
run in a distinct (possibly remote) process and communicate over sockets. These databases must be
separately installed, configured, and started. SQLite is an embedded database bundled with the Gold source
code with SQL queries being performed within the goldd process itself through library calls. The following
information may help you make a choice of databases to use.

PostgreSQL — PostgreSQL is an open source database. Gold requires Postgres 7.2 or higher (7.1 can
probably be used but generates warnings from the DBD::Pg module). The PostgreSQL database has
been thoroughly tested in production with Gold and all Gold functionality is available since it was
developed using the PostgreSQL database. Postgres supports multiple connections so Gold is
configured to be a forking server when using PostgreSQL.

PostgreSQL is recommended since it is an excellent database, has been more thoroughly tested than
the others, and supports all Gold features.

MySQL — MySQL is an open source database. Gold requires MySQL 4.0.6 or higher. (Prior versions did
not support UNION which is used by Gold in time travel. It is possible to use 4.0 with a minor code
tweak to the OFFSET line in Database.pm).

MySQL 4.1 is required in order to have support for the (undocumented) Transaction Undo and Redo
functionality since subqueries were not supported until this version.

SQLite — SQLite is an open source embedded database bundled with Gold. It does not require any
configuration and reads and writes from a file. Initial testing has shown Gold to perform at least as
fast as PostgreSQL for small databases.

Due to the lack of "ALTER TABLE" functionality, Gold objects cannot be customized after installation. It
appears that this functionality is likely to be forthcoming in a future release of SQLite.

Since SQLite supports only a single connection, Gold is not configured to be a forking server when

[root]# useradd scottmo

[root]# passwd scottmo

[scottmo]$ mkdir ~/src

[scottmo]$ cd ~/src

[scottmo]$ gzip -cd gold-2.1.10.0.tar.gz | tar xvf -

[scottmo]$ cd gold-2.1.10.0

using SQLite. This should probably not be an issue for small to medium sized clusters.

Due to a lack of support for multi-column IN clauses, the (undocumented) Transaction Undo and Redo
functions are not available.

Install Prerequisites
You will first need to build, test and install the following prerequisites:

PostgreSQL database 7.2 or higher (or other tested database)
[REQUIRED]
Gold makes use of a database for transactions and data persistence. Three databases have been tested for
use with Gold thus far: PostgreSQL, MySQL and SQLite (see Select a Database). If you intend to use the
PostgreSQL or the MySQL database, you will need to install it. PostgreSQL is recommended since it is an
excellent database, has been more thoroughly tested than the others, and supports the most features.
PostgreSQL is available at: <http://www.postgresql.org/>

Or if you are using rpms, you will need the postgresql, postgresql-libs, postgresql-server, and postgresql-
devel rpms appropriate for your architecture and operating system:

[root]# cd /usr/local/src

[root]# wget
http://ftp7.us.postgresql.org/pub/postgresql//source/v8.3.3/postgresql-
8.3.3.tar.gz

[root]# gzip -cd postgresql-8.3.3.tar.gz | tar -xvf -

[root]# cd postgresql-8.3.3

[root]# ./configure

[root]# make

[root]# make install

[root]# adduser postgres

[root]# mkdir /usr/local/pgsql/data

[root]# chown postgres /usr/local/pgsql/data

[root]# touch /var/log/pgsql

[root]# chown postgres /var/log/pgsql

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresq
7.3.2-3.i386.rpm

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresq
libs-7.3.2-3.i386.rpm

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresq
server-7.3.2-3.i386.rpm

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresq
devel-7.3.2-3.i386.rpm

[root]# rpm -Uvh postgresql-7.3.2-3.i386.rpm postgresql-libs-7.3.2-
3.i386.rpm postgresql-server-7.3.2-3.i386.rpm postgresql-devel-7.3.2-

Perl 5.6.1 or higher (with suidperl) [REQUIRED
NOTE: Recent operating systems distrubuting Perl 5.12 or higher no longer provide suidperl. Since this is the only security promotion method available in Gold,
you will need to upgrade to Moab Accounting Manager 7.1 or higher in order to use the new gauth security promotion method.

The Gold server and clients are written in Perl. Perl 5.6.1 or higher is required. The perl installation must
include suidperl for proper client authentication. Use 'perl -v' to see what level of Perl is installed and
'suidperl -v' to see if suidperl is installed. Perl is available at: <http://www.perl.com/>

Or if you are using rpms, you will need the perl and the perl-suidperl rpms appropriate for your architecture
and operating system:

libxml2 2.4.25 or higher [REQUIRED]
LibXML2 is needed by the XML::LibXML perl module to communicate via the SSSRMAP message format.
LibXML2 is available at: <http://www.xmlsoft.org/>

3.i386.rpm

[root]# cd /usr/local/src

[root]# wget http://www.cpan.org/src/perl-5.10.0.tar.gz

[root]# gzip -cd perl-5.10.0.tar.gz | tar xvf -

[root]# cd perl-5.10.0

[root]# sh Configure -Dd_dosuid -de

[root]# make

[root]# make test

[root]# make install

[root]# (cd /usr/include && /usr/local/bin/h2ph *.h sys/*.h)

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-
5.8.3-18.1.i386.rpm

[root]# wget
ftp://rpmfind.speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-
suidperl-5.8.3-18.1.i386.rpm

[root]# rpm -Uvh perl-5.8.3-18.1.i386.rpm perl-suidperl-5.8.3-
18.1.i386.rpm

[root]# cd /usr/local/src

[root]# wget —passive-ftp ftp://xmlsoft.org/libxml2/libxml2-
2.6.32.tar.gz

[root]# gzip -cd libxml2-2.6.32.tar.gz | tar xvf -

[root]# cd libxml2-2.6.32

[root]# ./configure

[root]# make

[root]# make install

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

jelliott
Typewritten Text

Gnu readline 2.0 or higher [OPTIONAL]
The interactive control program (goldsh) can support command-line-editing capabilities if readline support is
enabled. Most recent linux distributions come with the appropriate readline support. Gnu readline is available
at: <http://www.gnu.org/>

Apache Httpd Server 2.0 or higher [OPTIONAL]
Gold provides a web based GUI so that managers, users, and administrators can interact with the accounting
and allocation system. The web interface utilizes Perl CGI and SSL and needs to have an httpd server
(preferably apache) installed. Apache httpd is available at: <http://httpd.apache.org/>

OpenSSL 0.9.5a or higher [OPTIONAL]
If you are installing the GUI you will need SSL (preferably OpenSSL). OpenSSL is a command line toolkit for
using secure socket layer encryption on a server. OpenSSL is available at: <http://www.openssl.org/>

mod_ssl 2.26 or higher [OPTIONAL]
If you are installing the GUI you will need an apache interface to OpenSSL (preferably mod_ssl). There are
other alternatives to mod_ssl (one of which is apache-ssl from which the mod_ssl code was forked), however
mod_ssl has become the defacto standard and is the most widely adopted. mod_ssl is available at:
<http://www.modssl.org/>

[root]# cd /usr/local/src

[root]# wget http://ftp.gnu.org/gnu/readline/readline-5.0.tar.gz

[root]# gzip -cd readline-5.0.tar.gz | tar xvf -

[root]# cd readline-5.0

[root]# ./configure

[root]# make

[root]# make install

[root]# cd /usr/local/src

wget http://rpm.emsl.pnl.gov/3.0AW/en/os/i386-U4/RedHat/RPMS/httpd-
2.0.46-44.ent.i386.rpm

[root]# rpm -Uvh httpd-2.0.46-44.ent.i386.rpm

[root]# cd /usr/local/src

wget http://rpm.emsl.pnl.gov/3.0AW/en/os/i386-U4/RedHat/RPMS/openssl-
0.9.7a-33.12.i386.rpm

[root]# rpm -Uvh openssl-0.9.7a-33.12.i386.rpm

[root]# cd /usr/local/srcwget
http://rpm.emsl.pnl.gov/3.0AW/en/os/i386-U4/RedHat/RPMS/mod_ssl-
2.0.46-44.ent.i386.rpm

[root]# rpm -Uvh mod_ssl-2.0.46-44.ent.i386.rpm

Configuration
To configure Gold, run the "configure" script provided with the distribution.

To see the list of options:

-h, —help display the list of options

Use prefix to tell it where Gold should be installed (defaults to /opt/gold)
—prefix=PREFIX install architecture-independent files in PREFIX

Use with-db to specify the database you intend to use with Gold. Currently only PostgreSQL (Pg),
MySQL (mysql), and SQLite (SQLite) have been tested for use with Gold. Postgres and MySQL are
external databases which runs in a distinct (possibly remote) process and communicates over sockets
while SQLite is an embedded database bundled with Gold with SQL queries being performed within the
goldd process itself through library calls. Initial testing has shown SQLite to be at least as fast as
PostgreSQL for small installations. The default is to use PostgreSQL.
—with-db=DATABASE database to be used { Pg, mysql, SQLite } [Pg]

Use without-readline if you do not want to use the gnu readline library
—without-readline Don't use readline in interactive control program

Use with-user to specify the userid that Gold will run under (defaults to the user running the configure
command).
—with-user=USER user id under which the Gold server will run

Use with-log-dir to specify the directory to which logs will be written
(defaults to PREFIX/log).
—with-log-dir=PATH directory for log files [PREFIX/log]

Use with-perl-libs to indicate whether you want to install the required perl modules in a local Gold
directory (PREFIX/lib) or in the default system site-perl directory (triggered by running make deps).
—with-perl-libs=local|site install policy for prerequisite perl libs [local]

Use with-gold-libs to indicate whether you want to install the Gold modules in a local Gold directory
(PREFIX/lib) or in the default system site-perl directory (defaults to local).
—with-gold-libs=local|site install policy for Gold perl libs [local]

If you will intend to use the Gold web GUI, use with-cgi-bin to specify the directory where you want
the Gold CGI files to reside (defaults to /var/www/cgi-bin/gold).
—with-cgi-bin=DIR directory to install cgi-bin files if using web GUI [/var/www/cgi-bin/gold]

The PERL environment variable helps the install process find the desired (5.6) perl interpreter if it is not in
your path or not found first in a path search.

PERL full pathname of the Perl interpreter

Some other influential environment variables are:
CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>
CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have
headers in a nonstandard directory <include dir>

Example 1:

[scottmo]$ cd gold-2.2.0

[scottmo]$./configure

Compilation
To compile the program, type make:

If you would like to install the web GUI, type make gui:

[scottmo]$ make

[scottmo]$ make gui

Perl Module Dependencies
Gold requires the use of a number of Perl modules. These modules are included in tarball form in the Gold
distribution and they can be installed by typing 'make deps':

This will install the following Perl modules as necessary. By default, these will be installed under gold's
lib/perl5 directory. To install these in the system site-perl directory, use the configure parameter with-perl-
libs as described in the configuration section.

CGI.pm
CGI::Session
Compress::Zlib
Crypt::CBC
Crypt::DES
Crypt::DES_EDE3
Data::Properties
Date::Manip
DBI
DBD::Pg or DBD::SQLite
Digest
Digest::HMAC
Digest::MD5
Digest::SHA1
Error
Log::Dispatch
Log::Dispatch::FileRotate
Log::Log4perl
MIME::Base64
Module::Build
Params::Validate
SOAP
Term::ReadLine::Gnu
Time::HiRes
XML::SAX
XML::LibXML::Common
XML::LibXML
XML::NamespaceSupport

If you would prefer to do so, you could install these modules via other sources, such as from rpm, or from
CPAN using 'perl -MCPAN -e shell'.

[root]# make deps

Installation
Use `make install' to install Gold. You may need to do this as root if any of the installation or log directories
do not already have write permission as the Gold admin user.

If you would like to install the web GUI, type make install-gui (as root).

The standard installation process will copy the binaries and perl scripts to /usr/local/bin, install the server in
/usr/local/sbin, put the libs in /usr/local/lib, the config files in /usr/local/etc, and the man pages in
/usr/local/man. You can customize the directories either through the configuration process or by making the
necessary changes in the Makefile.

To delete the files created by the Gold installation, you can use 'make uninstall'.

You will also need to generate a secret key which enables secure communication between clients and server.
This key is a pass-phrase consisting of up to 80 characters and can include spaces and the regular visible
ASCII characters. Note that if you are using Gold with the Maui Scheduler, they will need both need to use a
shared secret key.

Enter your secret key (up to 80 characters and can include spaces): sss

[root]# make install

[root]# make install-gui

[root]# make auth_key

General Setup
Edit the Gold configuration files.

[scottmo]$ vi /opt/gold/etc/goldd.conf

[scottmo]$ vi /opt/gold/etc/gold.conf

Database Setup
If you have chosen to use PostgreSQL, you will need to configure the database to support Gold connections
and schema. No setup is needed if you are using SQLite.

Initialize the database (if you installed from tarball).

Add the IP ADDRESS of the host where the Gold server will run (even if it is the same host as the database
server).

Startup postgres with the -i option to allow internet domain sockets

Add the "gold" user as a database administrator

Create the Gold database

Edit the Gold configuration files.

[postgres]$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

[postgres]$ echo "host all all 192.168.1.1 255.255.255.255 trust"
>>/usr/local/pgsql/data/pg_hba.conf

[postgres]$ /usr/local/pgsql/bin/postmaster -i -D
/usr/local/pgsql/data >/var/log/pgsql 2>&1 &

[postgres]$ /usr/local/pgsql/bin/createuser gold

Shall the new user be allowed to create databases? y
Shall the new user be allowed to create more new users? n

[scottmo]$ /usr/local/pgsql/bin/createdb gold

[scottmo]$ vi /opt/gold/etc/goldd.conf

[scottmo]$ vi /opt/gold/etc/gold.conf

Web Server Setup
If you want to use the Gold web GUI, you will need to configure your Httpd server to use SSL. For RedHat
Linux systems, a good guide on this is "Buiding a Secure RedHat Apache Server HOWTO" at
<http://www.faqs.org/docs/Linux-HOWTO/SSL-RedHat-HOWTO.html>.

The following shows an example configuration that involves making some modifications to the httpd
configuration to support the use of cgi-bin and SSL connections as well as the creation of a private key and a
self-signed certificate.

Edit the httpd.conf file under /etc/httpd/conf:

Edit your cgi-bin Directory to agree with the cgi-bin directory you configured Gold to use and ensure it has
the following properties:

Add a virtual host definition and edit as appropriate for your environment:

If you are installing your cgi-bin files directly under /var/www/cgi-bin, use /var/www/cgi-bin as
your DocumentRoot. If you are installing your cgi-bin files under a subdirectory such as
/var/www/cgi-bin/gold, you may want to use /var/www/cgi-bin/gold as your DocumentRoot. You
could specify /var/www/cgi-bin here, but then you'll need to use an extra gold subdirectory in your
URL when accessing the Gold GUI from your browser.

Create an Alias for cgi-bin pointing to your cgi-bin directory. You may need to callout your specific cgi-bin
subdirectory if your web server configuration interferes with your cgi-bin alias. You may also need to
comment out any conflicting ScriptAlias definition:

Create a Private Key for Gold

[root]# cd /etc/httpd/conf

[root]# cp httpd.conf httpd.conf.orig

[root]# vi httpd.conf

<Directory "/var/www/cgi-bin">
 Options ExecCGI
 AddHandler cgi-script .cgi .pl
</Directory>

<VirtualHost 192.168.72.24:443>
 DocumentRoot /var/www/cgi-bin/gold
 ServerName gold-server.whatever.org
 ServerAdmin Your.Email@whatever.org
 ErrorLog logs/gold-error_log
 TransferLog logs/gold-access_log
 SSLEngine on
 SSLCertificateFile /etc/httpd/conf/ssl.crt/gold-server.crt
 SSLCertificateKeyFile /etc/httpd/conf/ssl.key/gold-server.key
 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown
</VirtualHost>

#ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
Alias /cgi-bin/gold "/var/www/cgi-bin/gold"

[root]# mkdir ssl.key
[root]# openssl genrsa -out ssl.key/gold-server.key 1024

Create a Self-Signed Certificate

Startup or restart httpd.

In order to use the web GUI, users will have to generate passwords for themselves using the
gchpasswd client command.

To access the web GUI, open a browser with url: https://$server/gold.cgi

[root]# openssl req -new -key ssl.key/gold-server.key -x509 -out
ssl.crt/gold-server.crt

[root]# /usr/sbin/apachectl restart

[scottmo]# gchpasswd

[scottmo]# mozilla https://gold-server/gold.cgi

Bootstrap
You will need to populate the Gold database with an sql dump that defines the objects, actions, and
attributes necessary to function as an Accounting and Allocation Manager.

If you are using PostgreSQL:

If you are using SQLite:

[scottmo]$ /usr/local/pgsql/bin/psql gold < bank.sql

[scottmo]$ /opt/gold/sbin/sqlite /opt/gold/data/gold.db < bank.sql

Startup
Start the Gold server daemon. It is located in the PREFIX/sbin directory.

Alternatively, if you are on linux system that supports init.d scripts, you can add an add Gold as a system
startup service by copying etc/gold.d to /etc/init.d/gold, giving it execute permission, and then start Gold by
issuing:

[scottmo]$ /opt/gold/sbin/goldd

[root]# service gold start

Initialization
You are now ready to define users, projects, machines, accounts etc. as necessary for your site. The next
chapter (Getting Started) provides a useful primer for this phase of the Gold setup.

Getting Started
In order to prepare Gold for use as an allocation and accounting manager, you will need to perform some
initial steps to define users, machines, and projects, and then make deposits, etc. This chapter proceeds by
offering a number of examples in performing these steps. These steps may be used as a guide, substituting
values and options appropriate for your system.

It is assumed that you have already installed and bootstrapped Gold as an allocation and accounting manager
and started the Gold server before performing the steps suggested in this section.

You will need to be a Gold System Adminstrator to perform the tasks in this chapter.

Define Users
First, you will need to define the users that will use, manage or administer the resources (see Creating
Users).

Example 1. Add the users amy, bob, and dave.

$ gmkuser -n "Wilkes, Amy" -E "amy@western.edu" amy

Successfully created 1 User

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" bob

Successfully created 1 User

$ gmkuser -n "Miller, David" -E "dave@western.edu" dave

Successfully created 1 User

$ glsuser

Name Active CommonName PhoneNumber EmailAddress
DefaultProject Description
------ --------- ------------------------ ---------------- -------
----------------- --------------------- ----------------
gold True
Gold Admin
amy True Wilkes, Amy
amy@western.edu
bob True Smith, Robert F.
bob@western.edu
dave True Miller, David
dave@western.edu

Define Machines
You will also need to add the names of the machines that provide resources (see Creating Machines).

Example 2. Define machines called colony and blue.

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

$ gmkmachine -d "IBM SP2" blue

Successfully created 1 Machine

$ glsmachine

Name Active Architecture OperatingSystem
Description
--------- --------- ------------------ ---------------------- ----

colony True Linux
Cluster
blue True IBM SP2

Define Projects
Next you should create the projects that will use the resources (see Creating Projects).

In these examples, assume that the account.autogen configuration parameter is set to automatically
create a default account for each project (see Server Configuration).

Example 3. Define the projects biology and chemistry.

$ gmkproject -d "Biology Department" biology

Successfully created 1 Project
Auto-generated Account 1

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project
Auto-generated Account 2

$ glsproject

Name Active Users Machines Description
------------- --------- ------- ------------ ---------------------

biology True Biology Department
chemistry True Chemistry Department

Add Users to the Projects
Although this could have been done at the project creation step, you can now assign users to be members of
your projects (see Modifying Projects).

Example 4. Adding users to your projects.

$ gchproject —addUsers amy,bob biology

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ gchproject —addUsers amy,bob,dave chemistry

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ glsproject

Name Active Users Machines Description

------------- --------- ------------------ ------------ ----------

biology True amy,bob Biology
Department
chemistry True amy,dave,bob Chemistry
Department

Make Deposits
Now you can make some deposits (see Making Deposits).

Example 5. Add 360000000 credits to each project and cause them both to be valid just for the
fiscal year 2005.

Use glsalloc to examine allocations:

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p biology

Successfully deposited 360000000 credits into account 1

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p chemistry

Successfully deposited 360000000 credits into account 2

$ glsalloc

Id Account StartTime EndTime Amount
CreditLimit Deposited Description
--- ---------- --------------- --------------- ------------- -----
----------- ------------- ----------------
1 1 2005-01-01 2006-01-01 360000000 0
360000000
2 2 2005-01-01 2006-01-01 360000000 0
360000000

Check The Balance
You can verify the resulting balance (see Querying The Balance).

Example 6. View amy's balance

Example 7. You may just want the total balance for a certain project and machine

$ gbalance -u amy

Id Name Amount Reserved Balance CreditLimit
Available
--- ------------- ------------- ------------ ------------- -------
--------- -------------
1 biology 360000000 0 360000000 0
360000000
2 chemistry 360000000 0 360000000 0
360000000

$ gbalance -u amy -p chemistry -m colony —total

Balance

360000000
The account balance is 360000000 credits

Integrate Gold with your Resource Management
System
Now you are ready to run some jobs. Before doing so you will need to integrate Gold with your Resource
Management System (see Integrating with the Resource Management System).

Although the quotation, reservation, and charge steps will most likely be invoked automatically by your
resource management system, it is useful to understand their effects by invoking them manually.

Now we'll simulate the lifecycle of a job.

Example 8. Assume the job has the following characteristics:

Job Id: PBS.1234.0
Job Name: heavywater
User Name: amy
Project Name: chemistry
Machine Name: colony
Requested Processors: 16
Estimated WallClock: 3600 seconds
Actual WallClock: 1234 seconds

Obtain A Job Quote
When a job is submitted, it is useful to check that the user's account has enough funds to run the job. This
will be verified when the job starts, but by that point the job may have waited some time in the queue only to
find out it never could have run in the first place. The job quotation step (see Obtaining Job Quotes) can fill
this function. Additionally, the quote can be used to determine the cheapest place to run, and to guarantee
the current rates will be used when the job is charged.

Example 9. See how much it will cost to run the job.

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600

Successfully quoted 57600 credits

Make A Job Reservation
When a job starts, the resource management system creates a reservation (or pending charge) against the
appropriate allocations based on the estimated wallclock limit specified for the job (see Making a Job
Reservation).

Example 10. Make a reservation for the job.

This reservation will decrease the balance by the amount reserved.

Although the allocation has not changed.

This is best illustrated by the detailed balance listing:

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -t 3600

Successfully reserved 57600 credits for job PBS.1234.0

$ glsres

Id Account Amount Name Job User Project
Machine EndTime Type Description
--- ---------- --------- --------------- ----- ------ ------------
- ---------- --------------------------------- ---------- --------

1 2 57600 PBS.1234.0 1 amy chemistry
colony 2005-08-03 15:29:30-07 Normal

$ gbalance -p chemistry —total —quiet

359942400

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount
CreditLimit Deposited Description
--- ---------- --------------- --------------- ------------- -----
----------- ------------- ----------------
2 2 2005-01-01 2006-01-01 360000000 0
360000000

$ gbalance -p chemistry

Id Name Amount Reserved Balance CreditLimit
Available
--- ------------- ------------- ------------ ------------- -------
--------- -------------
2 chemistry 360000000 57600 359942400 0
359942400

Charge for a Job
After a job completes, any associated reservations are removed and a charge is issued against the
appropriate allocations based on the actual wallclock time used by the job (see Charging Jobs).

Example 11. Issue the charge for the job.

Your allocation will now have gone down by the amount of the charge.

However, your balance actually goes up (because the reservation that was removed was larger than the
actual charge).

A job record was created for the job as a side-effect of the charge (see Querying Jobs).

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -t 1234 -
X WallDuration=1234

Successfully charged job PBS.1234.0 for 19744 credits
1 reservations were removed

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount
CreditLimit Deposited Description
--- ---------- --------------- --------------- ------------- -----
----------- ------------- ----------------
2 2 2005-01-01 2006-01-01 359980256 0
360000000

$ gbalance -p chemistry —total

Balance

359980256
The account balance is 359980256 credits

$ glsjob

Id JobId User Project Machine Charge Class
Type Stage QualityOfService Nodes Processors
Executable Application StartTime EndTime WallDuration
QuoteId Description
--- --------------- ------ ------------- ---------- --------- ----
--- --------- --------- ------------------------ ------- ---------
------ --------------- ---------------- ------------- ---------- -
----------------- ---------- ----------------
1 PBS.1234.0 amy chemistry colony 19744
Normal Charge 16
1234 1

Refund a Job
Since this was an imaginary job, refund the user's account (see Issuing Job Refunds).

Example 12. Issue a refund for the job.

The balance is back as it was before the job ran.

The allocation, of course, is likewise restored.

Notice that the job charge is now zero because the job has been fully refunded.

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

$ gbalance -p chemistry —total

Balance

360000000
The account balance is 360000000 credits

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount
CreditLimit Deposited Description
--- ---------- --------------- --------------- ------------- -----
----------- ------------- ----------------
2 2 2005-01-01 2006-01-01 360000000 0
360000000

$ glsjob

Id JobId User Project Machine Charge Class
Type Stage QualityOfService Nodes Processors
Executable Application StartTime EndTime WallDuration
QuoteId Description
--- --------------- ------ ------------- ---------- --------- ----
--- --------- --------- ------------------------ ------- ---------
------ --------------- ---------------- ------------- ---------- -
----------------- ---------- ----------------
1 PBS.1234.0 amy chemistry colony 0
Normal Charge 16
1234 1

List Transactions
You can now check the resulting transaction records (see Querying Transactions).

Example 13. List all the job transactions

Example 14. It may also be illustrative to examine what transactions actually composed the
charge request.

$ glstxn -O Job —
show="RequestId,TransactionId,Object,Action,JobId,Project,User,Machine,

RequestId TransactionId Object Action JobId
Project User Machine Amount
------------- ------------------- --------- ---------- -----------
---- ------------- ------ ---------- ---------
298 299 Job Create

298 303 Job Quote
chemistry amy colony 57600
299 304 Job Modify

299 307 Job Reserve PBS.1234.0
chemistry amy colony 57600
300 311 Job Charge PBS.1234.0
chemistry amy colony 19744
300 312 Job Modify

301 314 Job Refund PBS.1234.0

301 315 Job Modify

$ glstxn -R 655 —
show="Id,Object,Action,Name,JobId,Amount,Account,Delta"

Id Object Action Name JobId Amount
Account Delta
---- ---------------- --------- --------------- --------------- --
------- ---------- ---------
308 Usage Create

309 Reservation Delete PBS.1234.0

310 Allocation Modify 2

311 Job Charge 1 PBS.1234.0 19744
2 -19744
312 Job Modify 1

Examine Account Statement
Finally, you can examine the account statement for the activities (see Obtaining an Account Statement).

Example 15. You can request an itemized account statement over all time for the chemistry
project (account 2)

$ gstatement -p chemistry

###

#
Statement for account 2 (chemistry) generated on Tue Aug 3
16:06:15 2005.
#
Reporting account activity from -infinity to now.
#
###

Beginning Balance: 0
--------------------------- ------------------------------
Total Credits: 360019744
Total Debits: -19744
--------------------------- ------------------------------
Ending Balance: 360000000

############################### Credit Detail
##################################

Object Action JobId Amount Time
---------- ---------- --------------- ------------- ------------

Account Deposit 360000000 2005-08-03
16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03

Examine Project Usage
An additional report examines the charge totals for each user that completed jobs (see Project Usage
Summary).

Example 16. Display usage by user for the chemistry project

$ gusage -p chemistry

###

#
Usage Summary for project chemistry
Generated on Tue Feb 8 11:05:06 2005.
Reporting user charges from 2006-07-01 to 2006-10-01
#
###

User Amount
------ ---------
amy 19744

Getting More Advanced
In the previous chapter, a view of the system was presented that largely ignored the presence of accounts
and other advanced features in Gold. This chapter will touch on the additional versatility derived from explicit
use of accounts and other advanced features.

You need to be a Gold System Adminstrator to perform the tasks in this chapter.

Define Projects
Assume that you have created users and machines as before in the Getting Started chapter (see Define Users
and Define Machines). Again you will create some projects.

In these examples, assume that the account.autogen configuration parameter is NOT set to
automatically create a default account for each project (see Server Configuration).

Example 1. Define the project members at the same time.

For the biology project, define a set of users and a default set of machines for the project. The specified
default machine will be honored within accounts associated with this project that specify MEMBERS in the
machine list.

For the chemistry projects, define a set of member users.

Use glsproject to see your projects.

Note that accounts were not auto-generated this time because the account.autogen feature is set to
false.

$ gmkproject -d "Biology Department" -u amy,bob -m blue biology

Successfully created 1 Project

$ gmkproject -d "Chemistry Department" -u amy,bob,dave chemistry

Successfully created 1 Project

$ glsproject

Name Active Users Machines Description
------------- --------- ------------------ ------------ ----------

biology True amy,bob blue Biology
Department
chemistry True amy,dave,bob Chemistry
Department

Define Accounts
Next, you can create your accounts (see Creating Accounts). Think of your accounts as bank accounts to
which you can associate the users, projects, and machines that can use them.

Example 2. Create some accounts for use by the biology and chemistry projects.

This shows that there is:

a single account for biology available to all of its defined members and able to be used only on the
blue machine (since blue is its only member machine).
an account usable toward the chemistry project on the colony machine only.
an account usable anywhere for chemistry by amy only.
an account usable anywhere for chemistry by any member except for amy.

$ gmkaccount -p biology -u MEMBERS -m MEMBERS -n "biology"

Successfully created Account 1

$ gmkaccount -p chemistry -u MEMBERS -m colony -n "chemistry on
colony"

Successfully created Account 2

$ gmkaccount -p chemistry -u amy -n "chemistry for amy"

Successfully created Account 3

$ gmkaccount -p chemistry -u MEMBERS,-amy -n "chemistry not amy"

Successfully created Account 4

$ glsaccount

Id Name Amount Projects Users
Machines Description
--- ---------------------------- --------- ------------- -------
----------- ------------ ---------------------
1 biology biology MEMBERS
MEMBERS
2 chemistry on colony chemistry MEMBERS
colony
3 chemistry for amy chemistry amy
ANY

Make Deposits
Now you can make some deposits (see Making Deposits).

Example 3. Deposit 100 million credits for use by the biology project. Establish a use-it-or-lose-it
policy in which one fourth of the credits expire each quarter. Since there is only one account for
the biology project, you can specify the project name in the deposit.

Example 4. Next, make some deposits valid toward the chemistry project for the entire year. Since
there are multiple accounts for the chemistry project, you must specify the appropriate account id
in the deposit.

First, dedicate 50 million credits for use on colony.

Then give amy special access to 10 million credits that she can use anywhere — with 9 million credits prepaid
and a million credits of overdraft.

Finally, give all the other members except amy access to the remaining 40 million credits.

Example 5. Take a closer look at the accounts and the allocations that have been created.

$ gdeposit -s 2005-01-01 -e 2005-04-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-04-01 -e 2005-07-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-07-01 -e 2005-10-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-10-01 -e 2006-01-01 -z 25000000 -p biology

Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 50000000 -a 2

Successfully deposited 50000000 credits into account 2

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 9000000 -L 1000000 -a 3

Successfully deposited 9000000 credits into account 3

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 40000000 -a 4

Successfully deposited 40000000 credits into account 4

$ glsaccount

Id Name Amount Projects Users
Machines Description
--- ---------------------------- ------------ ------------- ------
------------ ------------ ----------------
1 biology 25000000 biology MEMBERS
MEMBERS
2 chemistry on colony 50000000 chemistry MEMBERS

Examine the allocations with the time period information.

colony
3 chemistry for amy 9000000 chemistry amy
ANY
4 chemistry not amy 40000000 chemistry MEMBERS,-
amy ANY

$ glsalloc

Id Account StartTime EndTime Amount CreditLimit
Deposited Description
--- ---------- --------------- --------------- ------------ ------
---------- ------------- ----------------
1 1 2005-01-01 2005-04-01 25000000 0
25000000
2 1 2005-04-01 2005-07-01 25000000 0
25000000
3 1 2005-07-01 2005-10-01 25000000 0
25000000
4 1 2005-10-01 2006-01-01 25000000 0
25000000
5 2 2005-01-01 2006-01-01 50000000 0
50000000
6 3 2005-01-01 2006-01-01 9000000 1000000
9000000
7 4 2005-01-01 2006-01-01 40000000 0
40000000

Check The Balance
You can examine the resulting balance (see Querying The Balance).

Example 6. View amy's balance

We see that amy's total balance is composed of some 25000000 credits useable toward the biology project,
50000000 for chemistry on colony, and another 10000000 which can be used for chemistry on any machine.
Notice that the 10000000 credits available for use in account 3 is composed of a 9000000 balance plus an
overdraft limit of 1000000 (meaning your account can go negative by that amount).

Example 7. Retrieve amy's balance for chemistry on colony.

Example 8. Get the total that can be used by amy for chemistry on colony. This includes amy's
available credit.

$ gbalance -u amy

Id Name Amount Reserved Balance
CreditLimit Available
--- ---------------------------- ------------ ------------ -------
----- ---------------- -------------
1 biology 25000000 0 25000000
0 25000000
2 chemistry on colony 50000000 0 50000000
0 50000000
3 chemistry for amy 9000000 0 9000000
1000000 10000000

$ gbalance -u amy -p chemistry -m colony —total

Balance

59000000
The account balance is 60000000 credits

$ gbalance -u amy -p chemistry -m colony —total —available

Balance

60000000
The account balance is 60000000 credits

Define Charge Rates
Gold allows you to define how much you will charge for your resources (see Creating Charge Rates).

In the Getting Started chapter, you relied on the fact that the default Gold installation predefines a Processors
charge rate for you. This means that the total charge for a job will be calculated by taking the number of
processors used in the job multiplied by the Processors charge rate which is then multiplied by the wallclock
limit. For example:

Example 9. Examine the predefined charge rates.

Now you can create some of your own.

Example 10. Charge for memory used

Example 11. You might want a quality of service multiplier

Example 12. Creating another quality-based charge multiplier

Example 13. View current charge rates.

((16 [Processors] * 1 [ChargeRate{Resource}{Processors}])) * 1234
[WallDuration] = 19744.

$ goldsh ChargeRate Query

Type Name Instance Rate Description
------------ --------------- -------- ------ ----------------
VBR Processors 1

$ goldsh ChargeRate Create Type=VBR Name=Memory Rate=0.001

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBM Name=QualityOfService
Instance=BottomFeeder Rate=0.5

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBM Name=QualityOfService
Instance=Premium Rate=2

Successfully created 1 ChargeRate

$ goldsh ChargeRate Query

Type Name Instance Rate
Description
------------------------ ------------------ ------------- -------

VBR Processors 1

VBR Memory 0.001

NBM QualityOfService BottomFeeder 0.5

NBM QualityOfService Premium 2

Obtain A Guaranteed Job Quote
This time, use the job quote to guarantee the charge rates (this may be useful in the case of fluxuating rates
like market based rates).

Example 14. Request a guaranteed charge quote that reflects the memory and quality of service
you expect to use.

This time it actually created a persistent quote ...

... and created a job entry.

$ gquote -p chemistry -u amy -m colony -P 16 -M 2048 -t 3600 -Q
Premium --guarantee

Successfully quoted 129946 credits with quote id 1

$ glsquote 1

Id Amount Job Project User Machine StartTime
EndTime WallDuration CallType Used
ChargeRates
Description
--- --------- ---- ------------- ------ ---------- ---------------
------------- ---------------------------- ------------------ ---
--------- ------ --
--- -------

1 129946 1 chemistry amy colony 2005-02-16 12:06:25
2005-02-23 13:06:25 3600 Normal 0
NBM:QualityOfService:Premium:2,VBR:Processors::1,VBR:Memory::0.001

$ glsjob -j 1

Id JobId User Project Machine Queue QualityOfService
Stage Charge Processors Nodes WallDuration StartTime
EndTime Description
--- ------- ------ ------------- ---------- ------- --------------
---------- ------- --------- --------------- ------- -------------
----- ------------- ---------- ----------------
1 amy chemistry colony Premium
Quote 16

Make A Quoted Job Reservation
If the quote id is specified when making the reservation, the reservation will use the quoted amounts in
calculating the amount to reserve and it will connect to the existing job entry.

Example 15. Make a reservation for the job that reflects the resource and quality preferences
while specifying the quote id.

The reservation modifies the job entry to take on the new JobId and to change its stage from Quote to
Reserve.

As before, the reservation will decrease the balance by the amount reserved.

Gold has two accounts to choose from. Gold will debit allocations in the order of earliest expiring and most
specific first. Specifically, precedence is considered in the following order of highest to lowest: hierarchical
relation, expiration time, generality of the project, generality of the user, and generality of the machine.
Here, Gold considers the account that is exclusively for amy to be more specific (and of hence of higher
precedence) than the account that is exclusively for the colony machine. This ordering will ensure that
allocations that will expire the soonest will be used up first and that accounts with more specific access
restrictions will be used in favor of accounts that have more general access (for example - amy will use up an
account just for amy before the she begins using a shared account).

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -M 2048
-t 3600 -Q Premium -q 1

Successfully reserved 129946 credits for job PBS.1234.0

$ glsres

Id Name Amount StartTime EndTime
Job User Project Machine Accounts Description
--- --------------- --------- ---------------------------- -------
--------------------- ---- ------ ------------- ---------- -------
----- ----------------
1 PBS.1234.0 129946 2005-02-16 12:35:13 2005-02-16
13:35:13 3 amy chemistry colony 3

$ glsjob -j 1

Id JobId User Project Machine Queue
QualityOfService Stage Charge Processors Nodes
WallDuration StartTime EndTime Description
--- --------------- ------ ------------- ---------- ------- ------
------------------ ---------- --------- --------------- ------- --
---------------- ------------- ---------- ----------------
1 PBS.1234.0 amy chemistry colony Premium
Reserve 16

$ gbalance -u amy -p chemistry -m colony

Id Name Amount Reserved Balance
CreditLimit Available
--- ---------------------------- ------------ ------------ -------
----- ---------------- -------------
2 chemistry on colony 50000000 0 50000000
0 50000000
3 chemistry for amy 8960512 129946 8830566
1000000 9830566

Charge for a Quoted Job
Even if the charge rates change between submission and completion of a job, a job tied to a quote will use
the quoted charge rates in a prorated manner.

Example 16. Change a charge rate and issue the charge for the job and request that the quote be
honored.

The charge modifies the job entry with the actual usage, charges, and wallduration while changing its stage
from Reserve to Charge.

The detail charge information for the job can be extracted from the transaction log.

Notice from the Itemized Charges above that the quoted memory charge rate of .001 was used instead of the
current rate of .002. Notice also that the amounts have been prorated according to actual resources used
and actual wallclock duration.

$ goldsh ChargeRate Modify Type==VBR Name==Memory Rate=.002

Successfully modified 1 ChargeRate

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -M 2048 -
t 1234 -Q Premium -X WallDuration=1234 -q 1

Successfully charged job PBS.1234.0 for 44542 credits
1 reservations were removed

$ glsjob -j 1

Id JobId User Project Machine Queue
QualityOfService Stage Charge Processors Nodes
WallDuration StartTime EndTime Description
--- --------------- ------ ------------- ---------- ------- ------
------------------ --------- --------- --------------- ------- ---
--------------- ------------- ---------- ----------------
3 PBS.1234.0 amy chemistry colony Premium
Charge 44542 16 1234

$ glstxn -A Charge -J PBS.1234.0 --show Details

Details

WallDuration=1234,QuoteId=1,QualityOfService=Premium,Processors=16,Item
(16 [Processors] * 1 [ChargeRate{VBR}{Processors}]) + (2048
[Memory] * 0.001 [ChargeRate{VBR}{Memory}])) * 1234 [WallDuration]
* 2 [ChargeRate{QualityOfService}{Premium}] = 44542.464

Partially Refund a Job

Example 17. Suppose you want to issue a partial refund.

Notice that the Job Charge is now 10000 credits lower as a result. Gold will not let your refunds total more
than the total charge for the job.

$ grefund -j 1 -z 10000

Successfully refunded 10000 credits for job PBS.1234.0

$ glsjob 1

Id JobId User Project Machine Queue
QualityOfService Stage Charge Processors Nodes
WallDuration StartTime EndTime Description
--- --------------- ------ ------------- ---------- ------- ------
------------------ --------- --------- --------------- ------- ---
--------------- ------------- ---------- ----------------
3 PBS.1234.0 amy chemistry colony Premium
Charge 34542 16 1234

Examine Account Statement
You can get request account statement for activites as they apply to a particular account.

Example 18. You can request an itemized account statement over all time for account 3
(chemistry for amy)

$ gstatement -a 3

###

#
Statement for account 3 (chemistry for amy)
Generated on Wed Feb 16 15:16:04 2005.
Reporting account activity from -infinity to now.
#
###

Beginning Balance: 0
--------------------------- ------------------------------
Total Credits: 9010000
Total Debits: -44542
--------------------------- ------------------------------
Ending Balance: 8965458

############################### Credit Detail
##################################

Object Action JobId Amount Time
---------- ---------- ------- ---------- -----------------------

Account Deposit 9000000 2005-02-16 15:10:44
Job Refund 10000 2005-02-16 15:15:36

############################### Debit Detail

Managing Users
A user is a person authorized to submit jobs to run on a high performance computing resource. User
properties include the common name, phone number, email, organization, and default project for that person.
A user can be created, queried, modified, and deleted.

Creating Users
To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-p default_project] [-d
description] [—debug] [-? | —help] [--man] [—quiet] [-v | —verbose] {[-u] user_name}

It is possible to have users be created automatically when first encountered in a job function (charge,
reserve or quote) by setting the user.autogen configuration parameter to true (see Server
Configuration). However, bear in mind that users must be defined in order to assign them as members
of a project. It is also possible to establish a system default user to be used in job functions (charge,
reserve, quote) when the user is unspecified (user.default parameter).

Example 1. Creating a user

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" -F "(509) 555-
1234" bob

Successfully created 1 User

Querying Users
To display user information, use the command glsuser:

glsuser [-A | -I] [—show attribute_name[,attribute_name...]...] [—showHidden] [—showSpecial] [-l | —
long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-u] user_pattern]

Example 2. Listing all info about active users

Example 3. Displaying bob's phone number

Example 4. Listing all user names without the header

Example 5. Listing a user's projects

$ glsuser -A

Name Active CommonName PhoneNumber
EmailAddress DefaultProject Description
------ --------- ------------------------ --------------------- --
---------------------- --------------------- ----------------
amy True Wilkes, Amy (509) 555-8765
amy@western.edu
bob True Smith, Robert F. (509) 555-1234
bob@western.edu

$ glsuser —show PhoneNumber bob —quiet

(509) 555-1234

$ glsuser —show Name —quiet

amy
bob

$ glsuser —show Projects amy -l
Projects

chemistry
biology

Modifying Users
To modify a user, use the command gchuser:

gchuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-p default_project] [-d
description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-u] user_name}

Example 6. Activating a user

Example 7. Changing a user's email address

$ gchuser -A bob

Successfully modified 1 User

$ gchuser -E "rsmith@cs.univ.edu" bob

Successfully modified 1 User

Deleting Users
To delete a user, use the command grmuser:

grmuser [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-u] user_name}

Example 8. Deleting a user

$ grmuser bob

Successfully deleted 1 User

Managing Machines
A machine is a resource that can run jobs such as a cluster or an SMP box. Machine properties include the
description and whether it is active. A machine can be created, queried, modified, and deleted.

Creating Machines
To create a new machine, use the command gmkmachine:

gmkmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-d description] [—debug] [-
? | —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

It is possible to have machines be created automatically when first encountered in a job function
(charge, reserve or quote) by setting the machine.autogen configuration parameter to true (see Server
Configuration). However, bear in mind that machines must be defined in order to assign them as
members of a project. It is also possible to establish a system default machine to be used in job
functions (charge reserve, quote) when the machine is unspecified (machine.default parameter).

Example 1. Creating a machine

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

Querying Machines
To display machine information, use the command glsmachine:

glsmachine [-A | -I] [—show attribute_name[,attribute_name...]...] [—showHidden] [—showSpecial] [—
raw] [—debug] [-? | —help] [—man] [—quiet] [[-m] machine_pattern]

Example 2. Listing all inactive machine names and descriptions

$ glsmachine -I —show Name,Description

Name Description
------- ------------------------------------
inert This machine is unusable

Modifying Machines
To modify a machine, use the command gchmachine:

gchmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-d description] [—debug] [-?
| —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

Example 3. Deactivating a machine

$ gchmachine -I colony

Successfully modified 1 Machine

Deleting Machines
To delete a machine, use the command grmmachine:

grmmachine [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

Example 4. Deleting a machine

$ grmmachine colony

Successfully deleted 1 Machine

Managing Projects
A project is a research interest or activity requiring the use of computational resources for a common
purpose. Users may be designated as members of a project and allowed to share its allocations. The project
user list will be honored within accounts including the project that specify MEMBERS in the user list. Machines
may also be designated as members of a project as a default resource pool. The project machine list will be
honored within accounts including the project that specify MEMBERS in the machine list.

Creating Projects
To create a new project, use the command gmkproject:

gmkproject [-A | -I] [-u [+ | -]user_name [, [+ | -]user_name...]] [-m [+ | -]machine_name [, [+ | -
]machine_name...]] [-d description] [—createAccount=True|False] [—debug] [-? | —help] [—man] [—
quiet] [-v | —verbose] {[-p] project_name}

If the account.autogen configuration parameter is set to true (see Server Configuration), an account
will be automatically created for the project (unless overridden with the —createAccount option). The
auto-generated account will be associated with the new project, the user MEMBERS of the project and
ANY machine.

It is possible to have projects be created automatically when first encountered in a job function
(charge, reserve, or quote) by setting the project.autogen configuration parameter to true (see Server
Configuration). It is also possible to establish a system default project (project.default) to be used in
job functions (charge, reserve, quote) when the project is unspecified and the user does not have a
default project.

Example 1. Creating a project

Example 2. Creating a project and specifying user members at the same time

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project

$ gmkproject -d "Chemistry Department" -u amy,bob,dave chemistry

Successfully created 1 Project

Querying Projects
To display project information, use the command glsproject:

glsproject [-A | -I] [—show attribute_name [,attribute_name...]...] [—showHidden] [—showSpecial] [-l |
—long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-p] project_pattern]

Example 3. Listing all info about all projects

Example 4. Displaying the name and user members of a project in long format

Example 5. Listing all project names

$ glsproject

Name Active Users Machines Description

------------- --------- ------------------ ------------ ----------

biology True amy,bob colony Biology
Department
chemistry True amy,dave,bob Chemistry
Department

$ glsproject —show Name,Users -l chemistry

Name Users
------------- -------
chemistry bob
 dave
 amy

$ glsproject —show Name —quiet

biology
chemistry

Modifying Projects
To modify a project, use the command gchproject:

gchproject [-A | -I] [-d description] [—addUser(s) [+ | -]user_name [, [+ | -]user_name...]] [—
addMachines(s) [+ | -]machine_name [, [+ | -]machine_name...]] [—delUser(s) user_name [,user_name...]]
[—delMachines(s) machine_name [,machine_name...]] [—actUser(s) user_name [,user_name...]] [—
actMachines(s) machine_name [,machine_name...]] [—deactUser(s) user_name [,user_name...]] [—
deactMachines(s) machine_name [,machine_name...]] [—debug] [-? | —help] [—man] [—quiet] [-v | —
verbose] {[-p] project_name}

Example 6. Deactivating a project

Example 7. Adding users as members of a project

Example 8. Adding machines as members of a project

$ gchproject -I chemistry

Successfully modified 1 Project

$ gchproject —addUsers jsmith,barney chemistry

Successfully created 2 ProjectUsers

$ gchproject —addMachines colony chemistry

Successfully created 1 ProjectMachines

Deleting Projects
To delete a project, use the command grmproject:

grmproject [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name}

Example 9. Deleting a project

$ grmproject chemistry

Successfully deleted 1 Project

Project Usage Summary
To generate a project usage summary broken down by user, use the command gusage. This report lists the
total charges by each of the active users during the specified time frame.

gusage [-s start_time] [-e end_time] [-h | —hours] [—debug] [-? | —help] [—man] {[-p] project_name}

Example 10. Displaying a usage summary for the chemistry project during the third quarter of
2006

$ gusage -p chemistry -s 2006-07-01 -e 2006-10-01

##
#
Usage for project chemistry
Generated on Tue Feb 8 11:05:06 2005.
Reporting user charges from 2006-07-01 to 2006-10-01
#
##

User Amount
------ ---------
amy 19744
bob 36078

Managing Accounts
An account is a container for time-bounded resource credits valid toward a specific set of projects, users, and
machines. Much like with a bank, an account is a repository for resource credits. Each account has a set of
access control lists designating which users, projects, and machines may access the account. An account may
restrict the projects that can charge to it. Normally an account will be tied to a single project but it may be
tied to an arbitrary set of projects or ANY project. An account may restrict the users that can charge to it. It
will frequently be tied to the the user MEMBERS of the associated project(s) but it may be tied to an arbitrary
set of users or ANY user. An account may restrict the machines that can charge to it. It may be tied to an
arbitrary set of machines, just the machine MEMBERS of the associated project(s) or ANY machine.

When resource credits are deposited into an account, they are associated with a time period within which
they are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
resource credits associated with an account for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and establish a
project cycle.

Accounts may be nested. Hierarchically nested accounts may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down effect for
funds deposited at higher level accounts. Additionally, an optional overflow feature allows charges against
lower level accounts to trickle up the hierarchy.

Operations include creating, querying, modifying, and deleting accounts as well as making deposits,
withdrawals, transfers, and balance queries.

Creating Accounts
gmkaccount is used to create a new account. A new id is automatically generated for the account.

gmkaccount [-n account_name] [-p [+ | -]project_name [, [+ | -]project_name...]] [-u [+ | -]user_name
[, [+ | -]user_name...]] [-m [+ | -]machine_name [, [+ | -]machine_name...]] [-d description] [—debug] [-
? | —help] [—man] [—quiet] [-v | —verbose]

When creating an account, it is important to specify at least one user, machine, and project
designation. If omitted, these will default to ANY.

It is possible to have accounts be created automatically when projects are created by setting the
account.autogen configuration parameter to true (see Server Configuration). The auto-generated
account will be associated with the new project, the user MEMBERS of the project and ANY machine.

Example 1. Creating an account

Example 2. Creating a wide-open account

$ gmkaccount -p chemistry -u MEMBERS -m ANY -n "Chemistry"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

$ gmkaccount -p ANY -u ANY -m ANY -n "Cornucopia"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

Example 3. Creating an account valid toward all biology project members except for dave and all
machines except for blue

$ gmkaccount -p biology -u MEMBERS,-dave -m ANY,-blue -n "Not Dave"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountUser
Successfully created 1 AccountMachine
Successfully created 1 AccountMachine

Querying Accounts
To display account information, use the command glsaccount:

glsaccount [-A | -I] [-n account_name] [-p project_name] [-u user_name] [-m machine_name] [-s
start_time] [-e end_time] [—exact-match] [—show attribute_name [,attribute_name...]...] [—
showHidden] [-l | —long] [-w | —wide] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-
a] account_id]

Example 4. Listing all info about all accounts with multi-valued fields displayed in a multi-line
format

Example 5. Listing all info about all accounts useable by dave

$ glsaccount —long

Id Name Amount Projects Users Machines
Description
--- --------------- ------------- ------------- ---------- -------
----- ----------------
1 Biology 360000000 biology MEMBERS blue

2 Chemistry 360000000 chemistry MEMBERS ANY

3 Cornucopia 0 ANY ANY ANY

4 Not Dave 250000 biology -dave -blue

$ glsaccount -u dave —long

Id Name Amount Projects Users Machines
Description
--- --------------- ------------- ------------- ---------- -------
----- ----------------
2 Chemistry 360000000 chemistry MEMBERS ANY

3 Cornucopia 0 ANY ANY ANY

Modifying Accounts
To modify an account, use the command gchaccount:

gchaccount [-n account_name] [-d description] [—addProject(s) [+ | -]project_name [, [+ | -
]project_name...]] [—addUser(s) [+ | -]user_name [, [+ | -]user_name...]] [—addMachine(s) [+ | -
]machine_name [, [+ | -]machine_name...]] [—delProject(s) project_name [,project_name...]] [—delUser(s)
user_name [,user_name...]] [—delMachine(s) machine_name [,machine_name...]] [—debug] [-? | —help] [—
man] [—quiet] [-v | —verbose] {[-a] account_id}

Example 6. Adding a user to the list of users that share the account

$ gchaccount —addUser dave 1

Successfully created 1 AccountUser

Making Deposits
gdeposit is used to deposit time-bounded resource credits into accounts resulting in the creation or
enlargement of an allocation. (See Allocations for managing allocations). The start time will default to -infinity
and the end time will default to infinity if not specified. Accounts must first be created using gmkaccount
(unless auto-generated).

gdeposit {-a account_id | -p project_name} [-i allocation_id] [-s start_time] [-e end_time] [[-z]
amount] [-L credit_limit] [-d description] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [-v |
—verbose]

Example 7. Making a deposit

Example 8. Making a deposit "into" a project

If a project has a single account then a deposit can be made against the project.

Example 9. Creating a credit allocation

$ gdeposit -s 2003-10-01 -e 2004-10-01 -z 360000000 -a 1

Successfully deposited 360000000 credits into account 1

$ gdeposit -s 2003-10-01 -e 2004-10-01 -z 360000000 -p chemistry

Successfully deposited 360000000 credits into account 2

$ gdeposit -L 10000000000 -a 3

Successfully deposited 0 credits into account 3

Querying The Balance
To display balance information, use the command gbalance:

gbalance [-p project_name] [-u user_name] [-m machine_name] [—total] [—available] [—raw] [-h | —
hours] [—debug] [-? | —help] [—man] [—quiet]

Example 10. Querying the project balance detail broken down by account

Example 11. Querying the total balance for a particular user in a particular project on a particular
machine

Example 12. List the projects and available balance amy can charge to

$ gbalance -p chemistry

Id Name Amount Reserved Balance
CreditLimit Available
--- --------------- ------------- ------------ ------------- -----
-------------- -------------------
1 Chemistry 360000000 0 360000000 0
360000000
2 Cornucopia 0 0 0
1000000000000 1000000000000

$ gbalance -u bob -m colony -p chemistry —total

Balance

360000000
The account balance is 360000000 credits

$ gbalance -u amy —show Project,Balance

Project Balance
------------- -------------
biology 360000000
chemistry 360000000

Personal Balance
The mybalance has been provided as a wrapper script to show users their personal balance. It provides a
list of balances for the projects that they can charge to:

gbalance [-h | —hours] [-? | —help] [—man]

Example 13. List my (project) balances

Example 14. List my balance in (Processor) hours

$ mybalance

Project Balance
------------- -------------------
biology 324817276
chemistry 9999979350400

$ mybalance -h

Project Balance
------------- -------------------
biology 90227.02
chemistry 2777772041.77

Making Withdrawals
To issue a withdrawal, use the command gwithdraw:

gwithdraw {-a account_id | -p project_name} [-i allocation_id] {[-z] amount} [-d description] [-h |
—hours] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 15. Making a withdrawal

Example 16. Making a withdrawal "from" a project

If a project has a single account then a withdrawal can be made against the project.

$ gwithdraw -z 12800 -a 1 -d "Grid Tax"

Successfully withdrew 12800 credits from account 1

$ gwithdraw -z 12800 -p chemistry

Successfully withdrew 12800 credits from account 2

Making Transfers
To issue a transfer between accounts, use the command gtransfer. If the allocation id is specified, then only
credits associated with the specified allocation will be transferred, otherwise, only active credits will be
transferred. Account transfers preserve the allocation time periods associated with the resource credits from
the source to the destination accounts. If a one-to-one mapping exists between project and account, then
the fromProject/toProject options may be used in place of the fromAccount/toAccount options.

gtransfer {—fromAccount source_account_id | —fromProject source_project_name | -i allocation_id}
{—toAccount destination_account_id | —toProject destination_project_name} [-d description] [-h | —
hours] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-z] amount}

Example 17. Transferring credits between two accounts

Example 18. Transferring credits between two single-account projects

$ gtransfer --fromAccount 1 --toAccount 2 10000

Successfully transferred 10000 credits from account 1 to account 2

$ gtransfer --fromProject biology --toProject chemistry 10000

Successfully transferred 10000 credits from account 1 to account 2

Obtaining an Account Statement
To generate an account statement, use the command gstatement. For a specified time frame it displays the
beginning and ending balances as well as the total credits and debits to the account over that period. This is
followed by an itemized report of the debits and credits. Summaries of the debits and credits will be displayed
instead of the itemized report if the —summarize option is specified. If a project, user or machine is specified
instead of an account, then the statement will consist of information merged from all accounts valid toward
the specified entities.

gstatement [[-a] account_id] [-p project_name] [-u user_name] [-m machine_name] [-s start_time] [-e
end_time] [—summarize] [-h | —hours] [—debug] [-? | —help] [—man]

Example 19. Generating an account statement for the third quarter of 2006

$ gstatement -a 2 -s 2006-07-01 -e 2006-10-01

###

#
Statement for account 2 (chemistry) generated on Tue Aug 3
16:06:15 2005.
#
Reporting account activity from -infinity to now.
#
###

Beginning Balance: 0
--------------------------- ------------------------------
Total Credits: 360019744
Total Debits: -19744
--------------------------- ------------------------------
Ending Balance: 360000000

############################### Credit Detail
##################################

Object Action JobId Amount Time
---------- ---------- --------------- ------------- ------------

Account Deposit 360000000 2005-08-03
16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03

Deleting Accounts
To delete an account, use the command grmaccount:

grmaccount [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a] account_id}

Example 20. Deleting an account

$ grmaccount 2

Successfully deleted 1 Account

Managing Allocations
An allocation is a time-bounded pool of resource credits associated with an account. An account may have
multiple allocations, each for use during a different time period. An allocation may also have a credit limit
representing the amount by which it can go negative.

Operations include querying, modifying, and deleting allocations.

Creating Allocations
Allocations are created by making account deposits via the gdeposit command (See Making Deposits).

Querying Allocations
To display allocation information, use the command glsalloc:

glsalloc [-A | -I] [-a account_id] [-p project_name] [—show attribute_name [,attribute_name...]...] [—
showHidden] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-i] allocation_id]

Example 1. Listing allocations for account 4

$ glsalloc -a 4

Id Account StartTime EndTime Amount CreditLimit
Deposited Active Description
--- ---------- --------------- --------------- --------- ---------
------- ------------- --------- ----------------
4 4 2005-01-01 2005-04-01 250000 0
250000 False
5 4 2005-04-01 2005-07-01 250000 0
250000 False
6 4 2005-07-01 2005-10-01 250000 0
250000 True
7 4 2005-10-01 2006-01-01 250000 0
250000 False

Modifying Allocations
To modify an allocation, use the command gchalloc:

gchalloc [-s start_time] [-e end_time] [-L credit_limit] [-d description] [-h | —hours] [—debug] [-?
| —help] [--man] [—quiet] [-v | —verbose] {[-i] allocation_id}

Example 2. Changing the end time for an allocation

Example 3. Changing the credit limit for an allocation

$ gchalloc -e "2005-01-01" 4

Successfully modified 1 Allocation

$ gchalloc -L 500000000000 -i 2

Successfully modified 1 Allocation

Deleting Allocations
To delete an allocation, use the command grmalloc:

grmalloc [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-I | [-i] allocation_id}

Example 4. Deleting an allocation

Example 5. Purging inactive allocations

$ grmalloc 4

Successfully deleted 1 Allocation

$ grmalloc -I

Successfully deleted 2 Allocations

Managing Reservations
A reservation is a hold placed against an account. Before a job runs, a reservation (or hold) is made against
one or more of the requesting user's applicable account(s). Subsequent jobs will also post reservations while
the available balance (active allocations minus reservations) allows. When a job completes, the reservation is
removed and the actual charge is made to the account(s). This procedure ensures that jobs will only run so
long as they have sufficient reserves.

Associated with a reservation is the name of the reservation (often the job id requiring the reservation), the
user, project, and machine as applicable, an expiration time, and an amount. Operations include creating,
querying, modifying, and deleting reservations.

Creating Reservations
Reservations are created by the resource management system with the greserve command (See Making Job
Reservations).

Querying Reservations
To display reservation information, use the command glsres:

glsres [-A | -I] [-n reservation_name | job_id_pattern] [-p project_name] [-u user_name] [-m
machine_name] [—show attribute_name [,attribute_name...]...] [—showHidden] [-l | —long] [-w | —wide]
[—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [[-r] reservation_id]

Example 1. Listing all info about all reservations for bob

Example 2. Listing all info about all reservations that impinge against amy's balance

$ glsres -u bob

Id Name Amount StartTime
EndTime Job User Project Machine
Accounts Description
--- --------------------------- --------- -----------------------
----- ---------------------------- ---- ------ ------------- -----
----- ------------ ----------------
1 Interactive.789654 3600 2005-01-13 16:48:15
2005-01-13 17:48:15 1 bob chemistry blue 1

$ glsres -u amy —option name=UseRules value=True

Id Name Amount StartTime
EndTime Job User Project Machine
Accounts Description
--- --------------------------- --------- -----------------------
----- ---------------------------- ---- ------ ------------- -----
----- ------------ ----------------
1 Interactive.789654 3600 2005-01-13 16:48:15
2005-01-13 17:48:15 1 bob chemistry blue 1
2 PBS.1234.0 7200 2005-01-13 17:59:09
2005-01-14 02:28:41 2 amy chemistry colony 2

Modifying Reservations
To modify a reservation, use the command gchres:

gchres [-s start_time] [-e end_time] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-v | —
verbose] {[-r] reservation_id}

Example 3. Changing the expiration time of a reservation

$ gchres -e "2004-08-07 14:43:02" 1

Successfully modified 1 Reservation

Deleting Reservations
To delete a reservation, use the command grmres:

grmres [—debug] [-? | —help] [—man] [-q | —quiet] [-v | —verbose] {-I | -n reservation_name |
job_id | [-r] reservation_id}

Example 4. Deleting a reservation by name (JobId)

Example 5. Deleting a reservation by ReservationId

Example 6. Purging stale reservations

$ grmres -n PBS.1234.0

Successfully deleted 1 Reservation

$ grmres 1

Successfully deleted 1 Reservation

$ grmres -I

Successfully deleted 2 Reservations

Managing Quotations
A quotation provides a way to determine beforehand how much would be charged for a job. When a
quotation is requested, the charge rates applicable to the job requesting the quote are saved and a quote id
is returned. When the job makes a reservation and the final charge, the quote can be referenced to ensure
that the saved chargerates are used instead of current values. A quotation has an expiration time after which
it cannot be used. A quotation may also be used to verify that the given job has sufficient funds and meets
the policies necessary for the charge to succeed.

Operations include querying, modifying, and deleting quotations.

Creating Quotations
Quotations are normally created by the resource management system with the gquote command (See Making
Job Quotations).

Querying Quotations
To display quotation information, use the command glsquote:

glsquote [-A | -I] [-p project_name] [-u user_name] [-m machine_name] [—show attribute_name
[,attribute_name...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [-h | —hours] [—debug] [-? | —
help] [—man] [—quiet] [[-q] quote_id]

Example 1. Listing all info about all quotes for user amy on machine colony

$ glsquote -u amy -m colony

Id Amount Job Project User Machine StartTime
EndTime WallDuration Type Used
ChargeRates Description
--- --------- ---- ------------- ------ ---------- ---------------
------------- ---------------------------- ------------------ ---
------ ------ ------------------------------- ----------------
1 57600 1 chemistry amy colony 2005-01-14 10:09:58
2005-09-10 15:27:07 3600 Normal 0
VBR:Processors:1

Modifying Quotations
To modify a quotation, use the command gchquote:

gchquote [-s start_time] [-e expiration_time] [-d description] [—debug] [-? | —help] [--man] [—
quiet] [-v | —verbose] {[-q] quote_id}

Example 2. Changing the expiration time of a quotation

$ gchquote -e "2005-03-01" 1

Successfully modified 1 Quotation

Deleting Quotations
To delete a quotation, use the command grmquote:

grmquote [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-I | [-q] quote_id}

Example 3. Deleting a quotation

Example 4. Purging stale quotations

$ grmquote 1

Successfully deleted 1 Quotation

$ grmquote -I

Successfully deleted 2 Quotations

Managing Jobs
Gold can track the jobs that run on your system, recording the charges and resources used for each job.
Typically, a job record is created when the resource manager charges for a job. Job quotes, reservations,
charges, and refunds can be issued.

Creating Jobs
In most cases, jobs will be created by the resource management system with the greserve command or the
gcharge command.

However, it is also possible to create job records by hand using the gmkjob command:

gmkjob [-u user_name] [-p project_name] [-m machine_name] [-o organization] [-C queue_name] [-Q
quality_of_service] [-P processors] [-N nodes] [-M memory] [-D disk] [-n job_name] [--application
application] [--executable executable] [-t wallclock_duration] [-s start_time] [-e end_time] [-T
job_type] [-d description] [-X | --extension property=value...] [--debug] [-? | --help] [--man] [--
quiet] [-v | --verbose] [-V | --version] [[-J] job_id]

Example 1. Creating a job record

$ gmkjob -u jsmith -p chem -m cluster -X Charge=2468 -P 2 -t 1234 -J
PBS.1234.0

Successfully created Job 102

Querying Jobs
To display job information, use the command glsjob:

glsjob [[-J] job_id_pattern] [-p project_name] [-u user_name] [-m machine_name] [-C queue] [-T type]
[—stage stage] [-s start_time] [-e end_time] [—show attribute_name[,attribute_name...]...] [—
showHidden] [—raw] [—debug] [-? | —help] [—man] [—quiet] [-v | --verbose] [-V | --version] [[-j]
gold_job_id]

Example 2. Show specific info about jobs run by amy

$ glsjob —show=JobId,Project,Machine,Charge -u amy

JobId Project Machine Charge
--------------- ------------- ---------- ---------
PBS.1234.0 chemistry colony 0

Modifying Jobs
It is possible to modify a job record by using the command gchjob:

gchjob [-u user_name] [-p project_name] [-m machine_name] [-o organization] [-C queue_name] [-Q
quality_of_service] [-P processors] [-N nodes] [-M memory] [-D disk] [-n job_name] [--application
application] [--executable executable] [-t wallclock_duration] [-s start_time] [-e end_time] [-T
job_type] [-d description] [-X | --extension property=value...] [--debug] [-? | --help] [--man] [--
quiet] [-v | --verbose] [-V | --version] [[-J] job_id]

Example 3. Changing a job

$ gchjob -Q HalfPrice --application=NwChem -X Charge=1234 -d
"Benchmark" -J PBS.1234.0

Successfully modified 1 Job

Deleting Jobs
To delete a job, use the command grmjob:

grmjob [--debug] [-? | --help] [--man] [--quiet] [-v | --verbose] [-V | --version] [[-J] job_id]

Example 4. Deleting a job

$ grmjob -J PBS.1234.0

Successfully deleted 1 Job

Obtaining Job Quotes
Job quotes can be used to determine how much it will cost to run a job. This step verifies that the submitter
has sufficient funds for, and meets all the allocation policy requirements for running the job and can be used
at job submission as an early filter to prevent jobs from getting in and waiting in the job queue just to be
blocked from running later. If a guaranteed quote is requested, a quote id is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A guaranteed quote has
the side effect of creating a quotation record and a permanent job record.

To request a job quote, use the command gquote:

gquote [-u user_name] [-p project_name] [-m machine_name] [-o organization] [-C queue_name] [-Q
quality_of_service] [-P processors] [-N nodes] [-M memory] [-D disk] [-n job_name] [--application
application] [-t wallclock_duration] [-s start_time] [-e end_time] [-T job_type] [-d description] [-
X | --extension property=value...] [--debug] [-? | --help] [--man] [--quiet] [-v | --verbose] [-V | --
version] [[-J] job_id]

Example 5. Requesting a quotation

Example 6. Requesting a guaranteed quote

It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

$ gquote -p chemistry -u amy -m colony -P 2 -t 3600

Successfully quoted 7200 credits

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600 --guarantee

Successfully quoted 57600 credits with quote id 1

$ glsquote

Id Amount Job Project User Machine StartTime
EndTime WallDuration Type Used
ChargeRates Description
--- --------- ----- ------------- ------ ---------- --------------
-------------- ---------------------------- ------------------ --
-------- ------ ------------------------------- ----------------
1 57600 1 chemistry amy colony 2005-01-14
10:09:58 2005-08-10 15:27:07 3600
Normal 0 VBR:Processors:1

Making Job Reservations
A job reservation can be used to place a hold on the user's account before a job starts to ensure that the
credits will be there when it completes.

To create a job reservation use the command greserve:

greserve [-u user_name] [-p project_name] [-m machine_name] [-o organization] [-C queue_name] [-Q
quality_of_service] [-P processors] [-N nodes] [-M memory] [-D disk] [-n job_name] [--application
application] [-t wallclock_duration] [-s start_time] [-e end_time] [-T job_type] [-d
reservation_description] [-X | --extension property=value...] [--debug] [-? | --help] [--man] [--quiet]
[-v | --verbose] [-V | --version] [[-J] job_id]

Example 7. Creating a reservation

It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 3600

Successfully reserved 7200 credits for job PBS.1234.0

Charging Jobs
A job charge debits the appropriate allocations based on the user, project and machine associated with the
job. The charge is calculated based on factors including the resources used, the job run time, and other
quality-based factors (See Managing Charge Rates).

To charge for a job use the command gcharge:

gcharge [-u user_name] [-p project_name] [-m machine_name] [-o organization] [-C queue_name] [-Q
quality_of_service] [-P processors] [-N nodes] [-M memory] [-D disk] [-S job_state] [-n job_name] [-
T job_type] [--application application] [--executable executable] [-t charge_duration] [-s
charge_start_time] [-e charge_end_time] [-d reservation_description] [-X | --extension
property=value...] [--debug] [-? | --help] [--man] [--quiet] [-v | --verbose] [-V | --version] [-q
quote_id] [-r reservation_id] [[-j] gold_job_id] {-J job_id}

Example 8. Issuing a job charge

It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

$ gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234 -X
WallDuration=1234

Successfully charged job PBS.1234.0 for 2468 credits
1 reservations were removed

Issuing Job Refunds
A job can be refunded in part or in whole by issuing a job refund. This action attempts to lookup the
referenced job to ensure that the refund does not exceed the original charge and so that the charge entry
can be updated. If multiple matches are found (such as the case when job ids are non-unique), this
command will return the list of matched jobs with unique ids so that the correct job can be specified for the
refund.

To issue a refund for a job, use the command grefund:

grefund [-z amount] [-a account_id] [-d description] [-h | --hours] [--debug] [-? | --help] [--man] [--
quiet] [-v | --verbose] [-V | --version] [[-J] job_id | [-j] gold_job_id]

Example 9. Issuing a job refund

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

Managing Charge Rates
Charge Rates establish how much to charge for usage. There are nine main types of charge rates: Value
Based Resources, Name Based Resources, Value Based Usage, Name Based Usage, Value Based Multipliers,
Name Based Multipliers, Value Based Fees, Name Based Fees and Multi-dimensional Value Based Resources.

Value Based Resource — Value Based Resource (or Consumable Resource) Charge Rates define how
much it costs per unit of time to use a consumable resource like processors, memory, telescope time,
generic resources that have a count and are charged per time used, etc. These resource metrics must
first be multiplied by the wallclock duration before being added to the total charge. Value Based
Resource Charge Rates are of Type "VBR", with the Name being the resource name (such as
Processors) and the given Rate (such as 1) being multiplied by the consumed resource value (such as
8).

Name Based Resource — Name Based Resource Charge Rates define how much it costs per unit of
time to use a named resource like license, etc. The cost for the named resource must first be
multiplied by the wallclock duration before being added to the total charge. Name Based Resource
Charge Rates are of Type "NBR", with the Name being the resource name (such as License), with the
Instance being the resource value (such as matlab), and having the given Rate (such as 5).

Value Based Usage — Value Based Usage Charge Rates define how much to charge for metrics of
total resource usage such as cputime, power consumed, generic resources or licenses that are charged
flat fees per use, etc. These usage metrics are added to the total charge without being multiplied by
wall duration. Value Based Usage Charge Rates are of Type "VBU", with the Name being the resource
name (such as Power) and the given Rate (such as .001) being multiplied by the consumed resource
value (such as 40000).

Name Based Usage — Name Based Usage Charge Rates define how much it costs to use a named
attribute having a flat charge such as feature, etc. These usage metrics are added to the total charge
without being multiplied by wall duration. Name Based Usage Charge Rates are of Type "NBU", with
the Name being the resource name (such as Feature), with the instance being the usage value (such
as GPU), and having the given flat Rate (such as 200).

Value Based Multiplier — Value Based Multiplier Charge Rates are scaled multipliers which apply a
multiplicative charge factor based on a numeric scaling factor. These incoming scaling factors are
multiplied against the Value-Based Multiplier Rate and then are multiplied against the total of the
resource and usage charges for the job. Value Based Multiplier Charge Rates are of Type "VBM", with
the Name being the multiplier name (such as Discount) and the given Rate (such as 1) being
multiplied with the scaling factor (such as .5) before being multiplied to the total job charge.

Name Based Multiplier — Name Based Multiplier Charge Rates are quality based multipliers which
apply a multiplicative charge factor based on a quality of the job such as quality of service, nodetype,
queue, user, time of day, etc. These charge multipliers are determined by a hash or lookup table based
on the value of the job attribute. These rates are multiplied against the total of the resource and usage
charges for the job. Name Based Multiplier Charge Rates are of Type "NBM", with the Name being the
quality name (such as QualityOfService), with the Instance being the quality instance (such as
Premium), and having the given multiplier Rate (such as 2).

Value Based Fee — Value Based Fee Charge Rates define how much to charge for scaled or
enumerated fees such as setup fees, shipping charges, etc. which should be added after the multipliers
are applied. These fees are added to the total charge. Value Based Fee Charge Rates are of Type
"VBF", with the Name being the fee name (such as Shipping) and the given Rate (such as 25) being
multiplied by the scaling or counted value (such as 4).

Name Based Fee — Name Based Fee Charge Rates define how much it costs to use a named attribute
having a flat charge such as feature, etc. which should be added after the multipliers are applied.
These fees are added to the total charge. Name Based Fee Charge Rates are of Type "NBF", with the
Name being the fee name (such as Zone), with the instance being the fee value (such as Asia), and
having the given flat Rate (such as 100).

Multi-dimensional Value Based Resource — Multi-dimensional Value Based Resource Charge Rates
applies a consumable resource cost that varies depending on the value of a separate named job
property. These resource metrics will first be multiplied by the wallclock duration before being added to
the total charge. For example, using this capability you can apply different processor rates for different

users or machines, or different disk prices for different queues. Multi-dimensional Value Based
Resource Charge Rates have the Type being the consumable resource (such as Processors), the Rate
being the cost of this resource (such as 1.5), the Name being the name of the controlling job property
(such as User), and the Instance being the value of the controlling job property (such as frank).

By default, job charges are calculated according to the following formula: For each Value Based Resource
Charge Rate applicable to a given job, a value-based resource charge is calculated by multiplying the amount
of the resource used by the amount of time it was used, multiplied by the charge rate for that resource. For
each Name Based Resource Charge Rate applicable to a given job, a name-based resource charge is
calculated by multiplying the charge rate for that named resource by the amount of time it was used. For
each Value Based Usage Charge Type applicable to a given job, a value-based usage charge is calculated by
multiplying the amount of the usage by the charge rate for that usage. For each Name Based Usage Charge
Type applicable to a given job, a name-based usage charge is given by the charge rate for that usage. For
each Multi-dimensional Value Based Resource Charge Rate applicable to a given job, a value-based resource
charge is calculated by multiplying the amount of the resource used by the amount of time it was used,
multiplied by the charge rate for that resource. These value-based, name-based and multi-dimensional
value-based resource charges and the value-based and name-based usage charges are added together.
Then, for each Value Based Multiplier Charge Rate applicable to the job, a value-based multiplier is calculated
by multiplying the amount of the multiplier by the charge rate for that multipler. For each Name Based
Multiplier Charge Rate applicable to the job, a name-based multiplier is given by charge rate for that
multipler. The sum of the resource and usage charges is then multiplied by each of the applicable value-
based and name-based multipliers. Next, for each Value Based Fee Charge Type applicable to a given job, a
value-based fee charge is calculated by multiplying the amount of the fee by the charge rate for that fee. For
each Name Based Fee Charge Type applicable to a given job, a name-based fee charge is given by the
charge rate for that fee. Finally, these value-based and name-based fee charges are to the total job charge.

In short, the formula can be represented by
(((((Σ(VBR*value)+Σ(NBR)+Σ(MVBR*value))*wall_duration)+(Σ(VBU*value)+Σ(NBU)))
*Π(VBM*value)*Π(NBM))+(Σ(VBF*value)+Σ(NBF))).

Creating ChargeRates
To create a new charge rate, use the command goldsh ChargeRate Create:

goldsh ChargeRate Create Type=<Charge Rate Type> Name=<Charge Rate Name> [Instance=<Floating
Point Multiplier>] Rate=<Floating Point Multiplier> [Description=<Description>]
[ShowUsage:=True]

Example 1. Creating a couple of value-based resource charge rates

Example 2. Creating a name-based resource charge rate

Example 3. Creating a couple of value-based usage charge rates

$ goldsh ChargeRate Create Type=VBR Name=Processors Rate=1

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=VBR Name=Processors Rate=0.001

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBR Name=License Instance=Matlab
Rate=5

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=VBU Name=Power Rate=0.001

Successfully created 1 ChargeRate

Example 4. Creating a name-based usage charge rate

Example 5. Creating a value-based multiplier charge rate

Example 6. Creating a couple of name-based multiplier charge rates

Example 7. Creating a value-based fee charge rate

Example 8. Creating a name-based fee charge rate

Example 9. Creating a couple of multi-dimensional value-based resource charge rates

$ goldsh ChargeRate Create Type=VBU Name=CpuTime Rate=1

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBU Name=Feature Instance=GPU Rate=200

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=VBM Name=Discount Rate=1

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBM Name=QualityOfService
Instance=Premium Rate=2

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBM Name=QualityOfService
Instance=BottomFeeder Rate=0.5

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=VBF Name=Shipping Rate=25

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=NBF Name=Zone Instance=Asia Rate=200

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=Disk Name=User Instance=dave Rate=0.02

Successfully created 1 ChargeRate

$ goldsh ChargeRate Create Type=Disk Name=User Instance=michael
Rate=0.05

Successfully created 1 ChargeRate

Querying ChargeRates
To display charge rate information, use the command goldsh ChargeRate Query:

goldsh ChargeRate Query [Show:=<"Field1,Field2,...">] [Type==<Charge Rate Type>]
[Name==<Charge Rate Name>] [Instance==<Charge Rate Instance>] [Rate==<Floating Point
Multiplier>] [Description==<Description>] [ShowUsage:=True]

Example 8. Listing all charge rates

$ goldsh ChargeRate Query

Type Name Instance Rate Description
------ ----------------- ---------- ------- ----------------

VBR Processors 1
VBR Memory 0.001
NBR License Matlab 5
VBU Power 0.001
VBU CpuTime 1
NBU Feature GPU 200
VBM Discount 1
NBM QualityOfService Premium 2
NBM QualityOfService BottomFeeder 0.5
VBF Shipping 25
NBF Zone Asia 200
Disk User dave 0.02
Disk User michael 0.05

Modifying Charge Rates
To modify a charge rate, use the command goldsh ChargeRate Modify:

goldsh ChargeRate Modify [Rate=<Floating Point Multiplier>] [Description=<Description>]
[Type==<Charge Rate Type>] [Name==<Charge Rate Name>] [Instance==<Charge Rate Instance>]
[Rate==<Floating Point Multiplier>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent modification of all charge rates.

Example 9. Changing a charge rate

$ goldsh ChargeRate Modify Type==VBR Name==Memory Rate=0.05

Successfully modified 1 ChargeRate

Deleting Charge Rates
To delete a charge rate, use the command goldsh ChargeRate Delete:

goldsh ChargeRate Delete [Type==<Charge Rate Type>] [Name==<Charge Rate Name>]
[Instance==<Charge Rate Instance>] [Rate==<Floating Point Multiplier>]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent deletion of all charge rates.

Example 10. Deleting a charge rate

$ goldsh ChargeRate Delete Type==VBR Name==Memory

Successfully deleted 1 ChargeRate

Managing Transactions
Gold logs all modifying transactions in a detailed transaction journal (queries are not recorded). Previous
transactions can be queried but not modified or deleted.

Querying Transactions
To display transaction information, use the command glstxn:

glstxn [-O object] [-A action] [-n name_or_id] [-U actor] [-a account_id] [-i allocation_id] [-u
user_name] [-p project_name] [-m machine_name] [-J job_id] [-s start_time] [-e end_time] [-T
transaction_id] [-R request_id] [—show attribute_name[,attribute_name...]...] [—showHidden] [—
raw] [—debug] [-? | —help] [—man] [—quiet]

Example 1. List all deposits made in 2004

Example 2. List everything done by amy since the beginning of 2004

Example 3. List all transactions affecting Job Id PBS.1234.0

Example 4. List all transactions affecting charge rates

$ glstxn -A Deposit -s 2004-01-01 -e 2005-01-01

$ glstxn -U amy -s 2004-01-01

$ glstxn -J PBS.1234.0

$ glstxn -O ChargeRate

Managing Roles
Gold uses instance-level role based access controls to determine what users can perform what functions.
Named roles are created, privileges are associated with the roles, and users are assigned to these roles.

Querying Roles
To display the currently defined roles, use the command goldsh Role Query:

goldsh Role Query [Show:=<"Field1,Field2,...">] [Name==<Role Name>]
[Description==<Description>] [ShowUsage:=True]

Example 1. Listing all roles

$ goldsh Role Query

Name Description
------------------ --

SystemAdmin Can update or view any object
Anonymous Things that can be done by anybody
OVERRIDE A custom authorization method will be invoked
ProjectAdmin Can update or view a project they are admin for
UserServices User Services
Scheduler Scheduler relevant Transactions

Querying Role Users
To list what users can perform what roles, use the command goldsh RoleUser Query:

goldsh RoleUser Query [Show:=<"Field1,Field2,...">] [Role==<Role Name>] [Name==<User Name>]
[ShowUsage:=True]

Example 2. Listing all role users

$ goldsh RoleUser Query

 Role Name
------------------ ------
SystemAdmin gold
Anonymous ANY
OVERRIDE ANY
Scheduler maui
SystemAdmin root
UserServices amy

Querying Role Actions
To list what actions can be performed by what roles, use the command goldsh RoleAction Query:

goldsh RoleAction Query [Show:=<"Field1,Field2,...">] [Role==<Role Name>] [Object==<Object
Name>] [Name==<Action Name>] [Instance==<Instance Name>] [ShowUsage:=True]

Example 3. Listing all role actions

$ goldsh RoleAction Query

Role Object Name Instance
------------------ --------------------- ---------- ------------
Anonymous ANY Query ANY
Anonymous Account Balance ANY
Anonymous Password ANY SELF
OVERRIDE Account Balance ANY
ProjectAdmin Project ANY ADMIN
Scheduler Job Charge ANY
Scheduler Job Quote ANY
Scheduler Job Reserve ANY
SystemAdmin ANY ANY ANY
UserServices Job Refund ANY
UserServices Machine ANY ANY
UserServices Project ANY ANY
UserServices ProjectMachine ANY ANY
UserServices ProjectUser ANY ANY
UserServices User ANY ANY

Creating Roles
To create a new role, use the command goldsh Role Create:

goldsh Role Create Name=<Role Name> [Description=<Description>] [ShowUsage:=True]

Example 4. Creating a Manager role

$ goldsh Role Create Name=Manager Description="Manages Roles and
Responsibilities"

Name Description
---------- ---
Manager Manages Roles and Responsibilities

Successfully created 1 Role

Associating an Action with a Role
To add an action to a role, use the command goldsh RoleAction Create:

goldsh RoleAction Create Role=<Role Name> Object=<Object Name> Name=<Action Name>
[Instance=<Instance Name>] [ShowUsage:=True]

The Instance indicates which specific instances of the object the action(s) can be performed on. Instances
are interpreted as the value of the solitary primary key for an object. Unless otherwise specified, the instance
will default to a value of ANY.

Valid values for Instance include:

ANY Any or all of the object instances
NONE No object instances
SELF Only objects identified with myself (like my own username)
ADMIN Only object instances that I am an admin for
<specific> A specific named instance

For example, the Role Action:

allows users having the ChemistryAdmin role to modify the Chemistry Project.

Example 5. Allow the Manager to change role responsibilities

Role Object Name Instance
--------------------- --------------------- ----------- ---------

ChemistryAdmin Project Modify Chemistry

$ goldsh RoleAction Create Role=Manager Object=RoleAction Name=ANY

Role Object Name Instance
---------- --------------- ------ ------------
Manager RoleAction ANY ANY

Successfully created 1 RoleAction

Adding a Role to a User
To associate a user with a role, use the command goldsh RoleUser Create:

goldsh RoleUser Create Role=<Role Name> Name=<User Name> [ShowUsage:=True]

Example 6. Adding a user to the Manager role

A user must first be defined to Gold before they can be added to a role (see Creating Users).

$ goldsh RoleUser Create Role=Manager Name=dave

Role Name
---------- ------
Manager dave

Successfully created 1 RoleUser

Removing an Action from a Role
To disassociate an action from a role, use the command goldsh RoleAction Delete:

goldsh RoleAction Delete [Role==<Role Name>] [Object==<Object Name>] [Name==<Action Name>]
[Instance==<Instance Name>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent deletion of all role actions.

Example 7. Don't let UserServices Create or Update Projects

$ goldsh RoleAction Delete Role==UserServices Object==Project
Name==ANY

Role Object Name Instance
------------------ ---------- ------ ------------
UserServices Project ANY ANY

Successfully deleted 1 RoleActions

Removing a Role from a User
To disassociate a user and a role, use the command goldsh RoleUser Delete:

goldsh RoleUser Delete [Role==<Role Name>] [Name==<User Name>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent deletion of all role users.

Example 8. Removing dave as a Manager

$ goldsh RoleUser Delete Role==Manager Name==dave

Role Name
---------- ------
Manager dave

Successfully deleted 1 RoleUser

Deleting Roles
To delete a role, use the command goldsh Role Delete:

goldsh Role Delete [Name==<Role Name>] [Description==<Description>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent modification of all roles.

Example 9. Deleting the Manager role

$ goldsh Role Delete Name==Manager

Name Description
---------- ---
Manager Manages Roles and Responsibilities

Successfully deleted 1 Roles and 3 associations

Managing Passwords
Passwords must be established for each user who wishes to use the web-based GUI. Passwords must be at
least eight characters and are stored in encrypted form. Valid operations on passwords include creating,
modifying, and deleting passwords.

Creating Passwords
To create a new password, use the command goldsh Password Create:

goldsh Password Create User=<User Name> Password=<Encrypted Password> [ShowUsage:=True]

Example 1. Creating a password

$ goldsh Password Create User=amy Password=mysecret

User Password
------ --
amy Nn0NaSpwELQ+FKa36og9l6EczO+kUEoN

Successfully created 1 Password

Querying Passwords
To display password information, use the command goldsh Password Query:

goldsh Password Query [Show:=<"Field1,Field2,...">] [User==<User Name>] [ShowUsage:=True]

Example 2. List the users who have set passwords

$ goldsh Password Query Show:=User

User

amy
gold

Modifying Passwords
To change a password, use the command goldsh Password Modify:

goldsh Password Modify [Password=<Encrypted Password>] [Name==<User Name>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent modification of all passwords.

Example 3. Changing amy's password

$ goldsh Password Modify User==amy Password=changeme

User Password
------ --
amy HZYzwD20o1XIE/gxRYyFKP2sumkCluHm

Successfully modified 1 Passwords

Deleting Passwords
To delete a password, use the command goldsh Password Delete:

goldsh Password Delete [Name==<User Name>]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent deletion of all passwords.

Example 4. Deleting a password

$ goldsh Password Delete User==amy

User Password
------ --
amy HZYzwD20o1XIE/gxRYyFKP2sumkCluHm

Successfully deleted 1 Passwords

Using the Gold Shell (goldsh)
goldsh is an interactive control program that can access all of the advanced functionality in Gold.

The goldsh control program allows you to make powerful and sweeping modifications to many objects
with a single command. Inadvertant mistakes could result in modifications that are very difficult to
reverse.

Usage
Gold commands can be invoked directly from the command line as arguments, or read from stdin
(interactively or redirected from a file).

goldsh [—debug] [-? | —help] [--man] [—raw] [—quiet] [-v | —verbose] [<Command>]

Example 1. Specifying the command as direct arguments

Example 2. Using the interactive prompt

Example 3. Reading commands from a file

$ goldsh System Query

Name Version Organization Description
------ ------------ ------------------ ------------------
Gold 2.0.b1.0 Beta Release

$ goldsh

gold> System Query

Name Version Organization Description
------ ------------ ------------------ ------------------
Gold 2.0.b1.0 Beta Release

gold> quit

$ cat >commands.gold <<EOF

System Query
quit
EOF

$ goldsh <commands.gold

Name Version Organization Description
------ ------------ ------------------ ------------------
Gold 2.0.b1.0 Beta Release

Command Syntax
Gold commands are of the form:

<Object> [,<Object>...] <Action> [[<Conjunction>] [<Open_Parenthesis>...] [<Object>.] <Name>
<Operator> [<Object>.] <Value> [<Close_Parenthesis>...] ...]

The basic form of a command is <Object> <Action> [<Name><Operator><Value>]*. When an action is
performed on more than one object, such as in a multi-object query, the objects are specified in a comma-
separated list. Commands may accept zero or more predicates which may function as fields to return,
conditions, update values, processing options, etc. Predicates, in their simplest form, are expressed as Name,
Operator, Value tuples. Predicates may be combined via conjunctions with grouping specified with
parentheses. When performing multi-object queries, names and values may need to be associated with their
respective objects.

Valid conjunctions include:

&&

and

||

or

&!

and not

|!

or not

Open parentheses may be any number of literal open parentheses '('.

Name is the name of the condition, assignment, or option. When performing a multi-object query, a name
may need to be prepended by its associated object separated by a period.

Valid operators include:

==

equals

<

less than

>

greater than

<=

less than or equal to

>=

greater than or equal to

!=

not equal to

~

matches

=

is assigned

+=

is incremented by

-=

is decremented by

:=

option

:!

not option

Value is the value of the selection list, condition, assignment, or option. When performing a multi-object
query, a value may need to be prepended by its associated object (called the subject) separated by a period.

Close parentheses may be any number of literal closing parentheses ')'.

Valid Objects
To list the objects available for use in Gold commands, issue the Gold command: Object Query

Example 4. Listing all objects

gold> Object Query Show:="Sort(Name)"

Name

ANY
Account
AccountAccount
AccountMachine
AccountOrganization
AccountProject
AccountUser
Action
Allocation
Attribute
ChargeRate
Job
Machine
NONE
Object
Organization
Password
Project
ProjectMachine
ProjectUser
Quotation
QuotationChargeRate
Reservation
Role
RoleAction

Valid Actions for an Object
To list the actions that can be performed on an object, use the Gold command: Action Query

Example 5. Listing all actions associated with the Account object

gold> Action Query Object==Account Show:="Sort(Name)"

Name

Balance
Create
Delete
Deposit
Modify
Query
Transfer
Undelete
Withdraw

Valid Predicates for an Object and Action
By appending the option "ShowUsage:=True" to a command, the syntax of the command is returned,
expressed in SSSRMAP XML Message Format.

Example 6. Show the usage for Allocation Query

gold> Allocation Query ShowUsage:=True

<Request action="Query">
 <Object>Allocation<Object>
 [<Get name="Id" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
 [<Get name="Account"
[op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
 [<Get name="StartTime"
[op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
 [<Get name="EndTime"
[op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
 [<Get name="Amount"
[op="Sort|Tros|Count|GroupBy|Max|Min|Sum|Average"]></Get>]
 [<Get name="Deposited"
[op="Sort|Tros|Count|GroupBy|Max|Min|Sum|Average"]></Get>]
 [<Get name="Active" [op="Sort|Tros|Count|GroupBy"]></Get>]
 [<Get name="Description"
[op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
 [<Where name="Id" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or
(And)"] [group="<Integer Number>Integer Number}</Where>]
 [<Where name="Account" [op="EQ|NE|GT|GE|LT|LE|Match (EQ)"]
[conj="And|Or (And)"] [group="<Integer Number>Account Name}</Where>]
 [<Where name="StartTime" [op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"] [group="<Integer Number>YYYY-MM-DD
[hh:mm:ss]|-infinity|infinity|now</Where>]
 [<Where name="EndTime" [op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"] [group="<Integer Number>YYYY-MM-DD
[hh:mm:ss]|-infinity|infinity|now</Where>]
 [<Where name="Amount" [op="EQ|NE|GT|GE|LT|LE (EQ)"]

Common Options
There are a number of options that may be specified for all commands. These options include: ShowUsage

ShowUsage

This option may be included with any command to cause the command to return a usage message in
SSSRMAP XML Message Format.

Common Actions Available for most Objects
There are a number of actions that are available for most objects. These actions include Query, Create,
Modify, Delete, and Undelete. Commands involving these actions inherit some common structure unique to
the action type.

Query Action
The Query action is used to query objects. It accept predicates that describe the attributes (fields) to return
(including aggregation operations on those attributes), conditions that select which objects to return the
attributes for, and other options unique to queries.

Selections

Selections use the Show option to specify a list of the attributes to return for the selected object. If
selections are not specified, a default set of attributes (those not marked as hidden) will be returned.

Name = Show
Op = :=
Value = "attribute1,attribute2,attribute3,..."

Aggregation operators may be applied to attributes by enclosing the target attribute in parenthesis and
prepending the name of the desired operator. The aggregation operators that can be applied depend
on the datatype of the attribute.

Valid selection operators include:

Sort Ascending sort
Tros Descending sort
Count Count
Max Maximum value
Min Minimum value
Average Average value
Sum Sum
GroupBy Group other aggregations by this attribute

For example: Allocation Query Show:="Sum(Amount),GroupBy(Account)"

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. * matches zero or more unspecified characters and ? matches exactly one unspecified
character. For example mscf* matches objects having the specified attributes whose values start with
the letters mscf, while mscf? matches objects having the specified attributes whose values start with
mscf and have a total of exactly five characters.

Options

Options indicate processing options that affect the result.

Name = Name of the option
Op = :=
Value = Value of the option

Valid options for query actions include:

ShowHidden:=True|False (False) Includes hidden attributes in the result
Time:="YYYY-MM-DD [hh:mm:ss]" Run the command as if it were the specified time
Unique:=True|False (False) Display only unique results (like DISTINCT in SQL)
Limit:={Integer Number} Limit the results to the number of objects specified

Example 7. Return the number of inactive reservations

Create Action
The Create action is used to create a new object. It accepts predicates that describe the values of the
attributes to be set.

Assignments

Assignments specify values to be assigned to attributes in the new object.

Name = Name of the attribute being assigned a value
Op = = (is assigned)
Value = The new value being assigned to the attribute

Example 8. Add a new project member

Modify Action
The Modify action is used to modify existing objects. It accepts predicates that select which objects will be
modified and predicates that describe the values of the attributes to be set.

Assignments

Assignments specify values to be assigned to attributes in the selected objects.

Name = Name of the attribute being assigned a value
Op = assignment operators {=, +=, -=}
Value = The value being assigned to the attribute

Valid assignment operators include:

= is assigned

gold> Reservation Query EndTime<now Show:="Count(Id)"

Id

8

gold> ProjectUser Create Project=chemistry Name=scottmo

Project Name Active Admin
------------- ---------- --------- -------
chemistry scottmo True False

Successfully created 1 ProjectUser

+= is incremented by
-= is decremented by

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. * matches zero or more unspecified characters and ? matches exactly one unspecified
character. For example mscf* matches objects having the specified attributes whose values start with
the letters mscf, while mscf? matches objects having the specified attributes whose values start with
mscf and have a total of exactly five characters.

Example 9. Change/set scottmo phone number and email address

Example 10. Extend all reservations against project chemistry by 10 days

Delete Action
The Delete action is used to delete objects. It accepts predicates that select which objects are to be deleted.

Conditions

Conditions are used to select which objects the action is to be performed on.

gold> User Modify Name==scottmo PhoneNumber="(509) 376-2204"
EmailAddress="Scott.Jackson@pnl.gov"

Name Active CommonName PhoneNumber
EmailAddress DefaultProject Description
---------- --------- ------------------------- ------------------
--- ------------------------------- --------------------- -------

scottmo True Jackson, Scott M. (509) 376-2204
Scott.Jackson@pnl.gov

Successfully modified 1 Users

gold> Reservation Modify EndTime+="10 days" Project==chemistry

Id Account Amount Name Job User Project
Machine EndTime Description
--- ---------- --------- --------------- ---- ------ -------------
---------- ---------------------------- ----------------
1 2 57600 PBS.1234.0 1 amy chemistry
colony 2004-11-06 10:47:30

Successfully modified 1 Reservations

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. * matches zero or more unspecified characters and ? matches exactly one unspecified
character. For example mscf* matches objects having the specified attributes whose values start with
the letters mscf, while mscf? matches objects having the specified attributes whose values start with
mscf and have a total of exactly five characters.

Example 11. Get rid of the pesky Jacksons

Undelete Action
The Delete action is used to restore deleted objects. It accepts predicates that select which objects are to be
undeleted.

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. * matches zero or more unspecified characters and ? matches exactly one unspecified
character. For example mscf* matches objects having the specified attributes whose values start with
the letters mscf, while mscf? matches objects having the specified attributes whose values start with
mscf and have a total of exactly five characters.

gold> User Delete CommonName~"Jackson*"

Name Active CommonName PhoneNumber
EmailAddress DefaultProject Description
---------- --------- ------------------------- ------------------
--- ------------------------------- --------------------- -------

scottmo True Jackson, Scott M. (509) 376-2204
Scott.Jackson@pnl.gov

Successfully deleted 1 Users and 1 associations

Example 12. Resurrect the deleted users that were active

gold> User Undelete Active==True

Name Active CommonName PhoneNumber
EmailAddress DefaultProject Description
---------- --------- ------------------------- ------------------
--- ------------------------------- --------------------- -------

scottmo True Jackson, Scott M. (509) 376-2204
Scott.Jackson@pnl.gov

Successfully undeleted 1 Users and 1 associations

Multi-Object Queries
Gold supports multi-object queries (table joins). Multiple objects are specified via a comma-separated list
and attributes need to be prefixed by the associated object.

Example 13. Print the current and total allocation summed by project

Example 14. Show all active projects for amy or bob

gold> Allocation,AccountProject Query
Show:="GroupBy(AccountProject.Name),Sum(Allocation.Amount),Sum(Allocati
Allocation.Account==AccountProject.Account Allocation.Active==True

Name Amount Deposited
------------- ------------- -------------
biology 193651124 360000000
chemistry 296167659 360000000

gold> Project,ProjectUser Query Show:="Project.Name" (
ProjectUser.Name==bob || ProjectUser.Name==amy) &&
Project.Name==ProjectUser.Project && Project.Active==True Unique:=True

Name

biology
chemistry

Customizing Gold Objects
Gold provides the ability to dynamically create new objects or customize or delete existing objects through
the Gold control program (goldsh).

The object customizations described in this chapter will be noticeable in subsequent goldsh queries
(and in the web GUI after a fresh login). For installations with a database that supports multiple
connections (e.g. PostgreSQL) these changes will be visible immediately while others (e.g. SQLite) will
require the Gold server to be restarted. Client commands may need to be modified to properly interact
with changed objects or attributes.

The goldsh control program allows you to make powerful and sweeping modifications to many objects
with a single command. Inadvertent mistakes could result in modifications that are very difficult to
reverse.

Removing an Attribute from an Object
To delete an attribute from an object, use the command goldsh Attribute Delete:

goldsh Attribute Delete Object==<Object Name> Name==<Attribute Name> [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent deletion of all attributes.

When using Gold as an Allocation Manager, certain objects and attributes are assumed to exist. For
example, a call to Job Charge would fail if you had deleted the Allocation Amount attribute. The
Attribute Undelete command might come in useful in such a case.

Example 1. Removing the Organization attribute from Machine

Example 2. Perhaps you don't care to track the Executable attribute in a Job

$ goldsh Attribute Delete Object==Machine Name==Organization

Successfully deleted 1 Attribute

$ goldsh Attribute Delete Object==Job Name==Executable

Successfully deleted 1 Attribute

Adding an Attribute to an Object
To create a new attribute for an object, use the command goldsh Attribute Create:

goldsh Attribute Create Object=<Object Namee> Name=<Attribute Name>
[DataType=AutoGen|TimeStamp|Boolean|Float|Integer|Currency|(String)] [PrimaryKey=True|(False)]
[Required=True|(False)] [Fixed=True|(False)] [Values=<Foreign Key or List of Values>]
[DefaultValue=<Default Value>] [Sequence=<Integer Number>] [Hidden=<True|(False)>]
[Description=<Description>] [ShowUsage:=True]

Example 3. Adding a Country Attribute to User

Example 4. Track submission time in jobs

$ goldsh Attribute Create Object=User Name=Country
Values="(Brazil,China,France,Russia,USA)" DefaultValue=USA

Successfully created 1 Attribute

$ goldsh Attribute Create Object=Job Name=SubmissionTime
DataType=TimeStamp

Successfully created 1 Attribute

Modifying an Attribute
To modify an attribute, use the command goldsh Attribute Modify:

goldsh Attribute Modify Object==<Object Name> Name==<Attribute Name> [Required=True|(False)]
[Fixed=True|(False)] [Values=<Foreign Key or List of Values>] [DefaultValue=<Default Value>]
[Sequence=<Integer Number>] [Hidden=<True|(False)>] [Description=<Description>]
[ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to Gold objects.
Misuse of this command could result in the inadvertent modification of all attributes.

Example 5. Change User Organization values to not be restricted by foreign key

$ goldsh Attribute Modify Object==User Name==Organization Values=NULL

Successfully modified 1 Attribute

Creating a Custom Object
To create a new object, use the command goldsh Object Create:

goldsh Object Create Name=<Object Namee> [Association=True|(False)] [Parent=<Parent Object>]
[Child=<Child Object>] [Description=<Description>] [ShowUsage:=True]

Example 6. Creating a Node Object

Example 7. Track submission time in jobs

$ goldsh Object Create Name=Node Description="Node Information"

Successfully created 1 Object

$ goldsh Attribute Create Object=Job Name=SubmissionTime
DataType=TimeStamp

Successfully created 1 Attribute

Adding an Action to an Object
To specify that an action is allowed for an object, use the command goldsh Action Create:

goldsh Action Create Object=<Object Namee> Name=<Action Name> [Display=True|(False)]
[Description=<Description>] [ShowUsage:=True]

Example 8. Adding a Modify Action to Transaction

$ goldsh Action Create Object=Transaction Name=Modify
Description=Modify

Successfully created 1 Action

Examples Creating Custom Objects
Creating a custom object involves defining a new object, adding attributes to the object, and adding actions
to the object.

Example 9. Creating a License object to track license usage and charges.

Invoke the Gold control program in interactive mode.

Create the License Object.

Next, define its attributes. Give each record a unique id (so the record can be more easily modified), a license
type that can be one of (Matlab,Mathematica,Compiler,AutoCAD,Oracle), the user who is using it, the start
and end time, how many instances of the license were used, and how much was charged.

Finally, designate the actions you want to allow on the object. The standard set of actions includes Create,
Query, Delete, Modify, and Undelete. If you would like to manage licenses from the web GUI, set
Display=True.

$ goldsh

gold> Object Create Name=License Description=License

Successfully created 1 Object

gold> Attribute Create Object=License Name=Id DataType=AutoGen
PrimaryKey=True Description="Record Id"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=Type DataType=String
Required=True Values="(Matlab,Mathematica,Compiler,AutoCAD,Oracle)"
Fixed=True Description="License Type"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=User Required=True
Values="@User" Description="User Name"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=StartTime
DataType=TimeStamp Description="Start Time"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=EndTime
DataType=TimeStamp Description="End Time"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=Count DataType=Integer
Description="Number of Licenses Used"

gold> Action Create Object=License Name=Create Display=True
Description=Create

Successfully created 1 Action

When done, exit the goldsh prompt.

That's about it. Licenses should now be able to be managed via the GUI and goldsh. The data source will
need to use one of the methods of interacting with Gold (see Methods of interacting with Gold) in order to
push license record usage info to Gold.

Apart from being used as an Allocation Manager, Gold can be used as a generalized information service. It
can be used to manage just about any object oriented information over the web. For example, Gold could be
used to provide meta-schedulers with machine/user mappings, or node/resource information.

Example 10. Using Gold as a Grid Map File.

Invoke the Gold control program in interactive mode.

Create the GridMap Object.

Next, define its attributes. Each entry will consist of a userid (which will serve as the primary key) and a
required public X.509 certificate.

Finally, designate the actions you want to allow on the object. If you would like to manage certificates from
the web GUI, set Display=True.

gold> Action Create Object=License Name=Query Display=True
Description=Query

Successfully created 1 Action

gold> Action Create Object=License Name=Modify Display=True
Description=Modify

Successfully created 1 Action

gold> Action Create Object=License Name=Delete Display=True
Description=Delete

Successfully created 1 Action

gold> Action Create Object=License Name=Undelete Display=True
Description=Undelete

Successfully created 1 Action

gold> quit

$ goldsh

gold> Object Create Name=GridMap Description="Online Grid Map File"

Successfully created 1 Object

gold> Attribute Create Object=GridMap Name=User PrimaryKey=True
Values=@User Description="User Name"

Successfully created 1 Attribute

gold> Attribute Create Object=GridMap Name=Certificate DataType=String
Required=True Description="X.509 Public Key"

Successfully created 1 Attribute

Exit the goldsh prompt.

From this point, a peer service will need to use one of the methods of interacting with Gold (see Methods of
interacting with Gold) in order to query the GridMap information.

gold> Action Create Object=GridMap Name=Create Display=True
Description=Create

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Query Display=True
Description=Query

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Modify Display=True
Description=Modify

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Delete Display=True
Description=Delete

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Undelete Display=True
Description=Undelete

Successfully created 1 Action

gold> quit

Integration with the Resource Management
System

Dynamic versus Delayed Accounting
Delayed Accounting
In the absence of a dynamic system, some sites enforce allocations by periodically (weekly or nightly)
parsing resource manager job logs and then applying debits against the appropriate project accounts.
Although Gold can easily support this type of system by the use of the qcharge command in post-processing
scripts, this approach allows users or projects to use resources significantly beyond their designated
allocation and generally suffers from stale accounting information.

Dynamic Accounting
Gold's design allows it to interact dynamically with your resource management system. Charges for resource
utilization can be made immediately when the job finishes (or even incrementally throughout the job).
Additionally, reservations can be issued at the start of a job to place a hold against the user's account,
thereby ensuring that a job will only start if it has sufficient reserves to complete. The remainder of this
document will describe the interactions for dynamic accounting.

Interaction Points
Job Quotation @ Job Submission Time [Optional —
Recommended]
When a job is submitted to a grid scheduler or resource broker, it may be useful to determine how much it
will cost to run on a particular resource by requesting a job quote. If the quote succeeds, it will return a
quote id along with the quoted amount for the job. This quote id may be used later to guarantee that the
same charge rates used to form the quote will also be used in the final job charge calculation.

Even when a job is exclusively scheduled locally, it is useful to obtain a quote at the time of submission to
the local resource manager to ensure the user has sufficient funds to run the job and that it meets the
access policies necessary for the charge to succeed. A warning can be issued if funds are low or the job
might be rejected with an informative message in the case of insufficient funds or any other problems with
the account. Without this interaction, the job might wait in the queue for days only to fail when it tries to
start.

To make a job quotation with Gold at this phase requires that:

the grid scheduler has built-in Gold allocation manager support {Silver}, or

the resource manager supports a submit filter {LoadLeveler(SUBMIT_FILTER), LSF(esub)}, or

a wrapper could be created for the submit command {PBS(qsub)}.

Job Reservation @ Job Start Time [Optional — Highly
Recommended]
Just before a job starts, a hold (reservation) is made against the appropriate account(s), temporarily reducing
the user's available balance by an amount based on the resources requested and the estimated wallclock
limit. If this step is ommitted, it would be possible for users to start more jobs than they have funds to
support.

If the reservation succeeds, it will return a message indicating the amount reserved for the job. In the case
where there are insufficient resources to run the job or some other problem with the reservation, the
command will fail with an informative message. Depending on site policy, this may or may not prevent the
job from starting.

To make a job reservation with Gold at this phase requires that:

the scheduler or resource manager has built-in Gold allocation manager support {Maui(AMCFG)}, or

the resource manager is able to run a script at job start time {LoadLeveler(prolog), PBS(prologue),
LSF(pre_exec)}.

Job Charge @ Job End Time [Required]
When a job ends, a charge is made to the user's account(s). Any associated reservations are automatically
removed as a side-effect. Depending on site policy, a charge can be elicited only in the case of a successful
completion, or for all or specific failure cases as well. Ideally, this step will occur immediately after the job
completes (dynamic accounting). This has the added benefit that job run times can often be reconstructed
from Gold job reservation and charge timestamps in case the resource management job accounting data
becomes corrupt.

If the charge succeeds, it will return a message indicating the amount charged for the job.

To make a job charge with Gold at this phase requires that:

the scheduler or resource manager has built-in Gold allocation manager support {Maui(AMCFG)}, or

the resource manager is able to run a script at job start time {LoadLeveler(epilog), PBS(epilogue),

LSF(post_exec)}, or

the resource manament system supports some kind of feedback or notification machanism occurring at
the end of a job (an email can be parsed by a mail filter).

Methods of interacting with Gold
There are essentially six ways of programatically interacting with Gold.

Configuring an application that already has hooks for Gold
The easiest way to use Gold is to use a resource management system with built-in support for Gold. For
example, the Maui Scheduler and Silver Grid Scheduler can be configured to directly interact with Gold to
perform the quotes, reservations, and charges by setting the appropriate parameters in their config files.

Example 1. Configuring Maui to use Gold

Add an appropriate AMCFG line into maui.cfg to tell Maui how to talk to Gold

Add a CLIENTCFG line into maui-private.cfg to specify the shared secret key. This secret key will be the same
secret key specified in the "make auth_key" step.

Gold will need to allow the the user id that maui runs under to perform scheduler related commands (Job
Charge, Reserve, Quote, etc).

Using the appropriate command-line client
From inside a script, or by invoking a system command, you can use a command line client (one of the "g"
commands in gold's bin directory).

Example 2. To issue a charge at the completion of a job, you would use gcharge:

Using the Gold control program
The Gold control program, goldsh, will issue a charge for a job expressed in xml (SSS Job
Object).

$ vi /usr/local/maui/maui.cfg

AMCFG[bank] TYPE=GOLD HOST=control_node1 PORT=7112 SOCKETPROTOCOL=HTTP
WIREPROTOCOL=XML CHARGEPOLICY=DEBITALLWC JOBFAILUREACTION=IGNORE
TIMEOUT=15

$ vi /usr/local/maui/maui-private.cfg

CLIENTCFG[AM:bank] KEY=sss AUTHTYPE=HMAC64

$ gmkuser -d "Maui Scheduler" maui

Successfully created 1 User

$ goldsh RoleUser Create Role=Scheduler Name=maui

Role Name
--------------- ------
Scheduler maui

Successfully created 1 RoleUser

gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

Example 3. To issue a charge you must invoke the Charge action on the Job object:

Use the Perl API
If your resource management system is written in Perl or if it can invoke a Perl script, you
can access the full Gold functionality via the Perl API.

Example 4. To make a charge via this interface you might do something like:

Communicating via the SSSRMAP Protocol
Finally, it is possible to interact with Gold by directly using the SSSRMAP Wire Protocol
and Message Format over the network (see SSS Resource Management and Accounting
Documentation). This will entail building the request body in XML, appending an XML digital
signature, combining these in an XML envelope framed in an HTTP POST, sending it to the
server, and parsing the similarly formed response. The Maui Scheduler communicates with Gold
via this method.

Example 5. The message might look something like:

goldsh
Data:="<Job><JobId>PBS.1234.0</JobId><ProjectId>chemistry</ProjectId>
<UserId>amy</UserId><MachineName>colony</MachineName>
<Processors>2</Processors><WallDuration>1234</WallDuration>"

use Gold;

my $request = new Gold::Request(object => "Job", action => "Charge");
my $job = new Gold::Datum("Job");
$job->setValue("JobId", "PBS.1234.0");
$job->setValue("ProjectId", "chemistry");
$job->setValue("UserId", "amy");
$job->setValue("MachineName", "colony");
$job->setValue("Processors", "2");
$job->setValue("WallDuration", "1234");
$request->setDatum($job);
my $response = $request->getResponse();
print $response->getStatus(), ": ", $response->getMessage(), "\n";

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>

<Envelope>
 <Body actor="scottmo" chunking="True">
 <Request action="Charge" object="Job">
 <Data>
 <Job>
 <JobId>PBS.1234.0</JobId>
 <ProjectId>chemistry</ProjectId>
 <UserId>amyh</UserId>
 <MachineName>colony</MachineName>
 <Processors>2</Processors>
 <WallDuration>1234</WallDuration>
 </Job>
 </Data>
 </Request>
 <//Body>
 <Signature>
 <DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>

http://www.clusterresources.com/products/gold/docs/
http://www.clusterresources.com/products/gold/docs/

 <SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
 <SecurityToken type="Symmetric"></SecurityToken>
 </Signature>
</Envelope>
0

Configuration Files
Gold uses two configuration files: one for the server (goldd.conf) and one for the clients (gold.conf). For
configuration parameters that have hard-coded defaults, the default value is specified within brackets.

Server Configuration
The following configuration parameters may be set in the server configuration file (goldd.conf).

account.autogen [true] — If set to true, when a new project is created Gold will automatically create
an associated default account. Additionally, if you try to make a deposit and no accounts match the
specifications, an account will be created using the specified criteria and a deposit will be made into
that account.

allocation.autogen [true] — If set to true, when a new account is created Gold will automatically
create an associated default allocation with zero credits.

database.datasource [DBI:Pg:dbname=gold;host=localhost] — The Perl DBI data source name for
the database you wish to connect to.

database.password — The password to be used for the database connection (if any).

database.user — The username to be used for the database connection (if any).

response.chunksize [0] — Indicates the line length in the data response that will trigger message
segmentation (or truncation). A value of 0 (zero) means unlimited, i.e. that the server will not truncate
or segment large responses unless overriden by a chunksize specification in a client request. The
response chunksize will be taken to be the smaller of the client and server chunksize settings.

currency.precision [0] — Indicates the number of decimal places in the resource credit currency. For
example, if you are will be dealing with processor-seconds of an integer resource unit, use 0 (which is
the default). If you will be charging dollars and cents, then use 2. This parameter should be the same
in the goldd.conf and gold.conf files.

log4perl.appender.Log.filename — Used by log4perl to set the base name of the log file.

log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup logs.

log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to before it is
rotated.

log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written to the log. The
logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written to the
screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

machine.autogen [false] — If set to true, Gold will automatically create new machines when they are
first encountered in a job function (charge, reserve, or quote). Additionally, a new machine will be
automatically created if you try to add an undefined machine as a member of a project or account.

machine.default [NONE] — If not set to NONE, Gold will use the specified default for the machine in a
job function (charge, reserve, or quote) in which a machine was not specified.

project.autogen [false] — If set to true, Gold will automatically create new projects when they are
first encountered in a job function (charge, reserve, or quote). Additionally, a new project will be
automatically created if you try to add an undefined project as a member of an account.

project.default [NONE] — If not set to NONE, Gold will use the specified default for the project in a
job function (charge, reserve, or quote) in which a project was not specified and no default project can
be found for the user.

security.authentication [true] — Indicates whether incoming message authentication is required.

security.encryption [false] — Indicates whether incoming message encryption is required.

server.host [localhost] — The hostname on which the Gold server runs.

server.port [7112] — The port the Gold server listens on.

super.user [root] — The primary Gold system admin which by default can perform all actions on all
objects. The super user is sometimes used as the actor in cases where an action is invoked from within
another action.

user.autogen [false] — If set to true, Gold will automatically create new users when they are first
encountered in a job function (charge, reserve, or quote). Additionally, a new user will be
automatically created if you try to add an undefined user as a member of a project or account.

user.default [NONE] — If not set to NONE, Gold will use the specified default for the user in a job
function (charge, reserve, or quote) in which a user was not specified.

Client Configuration
The following configuration parameters may be set in the client configuration file (gold.conf).

log4perl.appender.Log.filename — Used by log4perl to set the base name of the log file.

log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup logs.

log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to before it is
rotated.

log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written to the log. The
logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written to the
screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

response.chunking [true] — Indicates whether large responses should be chunked (segmented). If
set to false, large responses will be truncated.

response.chunksize [0] — Indicates the line length in the data response that will trigger message
segmentation (or truncation). A value of 0 (zero) means unlimited, i.e. that the client will accept the
chunksize set by the server. The response chunksize will be taken to be the smaller of the client and
server chunksize settings.

currency.precision [0] — Indicates the number of decimal places in the resource credit currency. For
example, if you are will be dealing with processor-seconds of an integer resource unit, use 0 (which is
the default). If you will be charging dollars and cents, then use 2. This parameter should be the same
in the goldd.conf and gold.conf files.

security.authentication [true] — Indicates whether outgoing message are signed.

security.encryption [false] — Indicates whether outgoing messages are encrypted.

security.token.type [Symmetric] — Indicates the default security token type to be used in both
authentication and encryption.

server.host [localhost] — The hostname on which the Gold server runs.

server.port [7112] — The port the Gold server listens on.

	Gold User's Guide version 2.2.0

	Table of Contents

	Legal Notices

	Features
	Interfaces
	Installation
	Install Prerequisites
	Configuration
	Compilation
	Perl Module Dependencies
	Installation
	General Setup
	Database Setup
	Web Server Setup
	Bootstrap
	Startup
	Initialization
	Getting Started
	Define Machines
	Define Projects
	Add Users to the Projects
	Make Deposits
	Check The Balance
	Integrate Gold with your Resource Management System
	Obtain A Job Quote
	Make A Job Reservation
	Charge for a Job
	Refund a Job
	List Transactions
	Examine Account Statement
	Examine Project Usage
	Getting More Advanced
	Define Accounts
	Make Deposits
	Check The Balance
	Define Charge Rates
	Obtain A Guaranteed Job Quote
	Make A Quoted Job Reservation
	Charge for a Quoted Job
	Partially Refund a Job
	Examine Account Statement
	Managing Users
	Querying Users
	Modifying Users
	Deleting Users
	Managing Machines
	Querying Machines
	Modifying Machines
	Deleting Machines
	Managing Projects
	Querying Projects
	Modifying Projects
	Deleting Projects
	Project Usage Summary
	Managing Accounts
	Querying Accounts
	Modifying Accounts
	Making Deposits
	Querying The Balance
	Personal Balance
	Making Withdrawals
	Making Transfers
	Obtaining an Account Statement
	Deleting Accounts
	Managing Allocations
	Querying Allocations
	Modifying Allocations
	Deleting Allocations
	Managing Reservations
	Querying Reservations
	Modifying Reservations
	Deleting Reservations
	Managing Quotations
	Querying Quotations
	Modifying Quotations
	Deleting Quotations
	Managing Jobs
	Querying Jobs
	Modifying Jobs
	Deleting Jobs
	Obtaining Job Quotes
	Making Job Reservations
	Charging Jobs
	Issuing Job Refunds
	Managing Charge Rates
	Querying ChargeRates
	Modifying Charge Rates
	Deleting Charge Rates
	Managing Transactions
	Managing Roles
	Querying Role Users
	Querying Role Actions
	Creating Roles
	Associating an Action with a Role
	Adding a Role to a User
	Removing an Action from a Role
	Removing a Role from a User
	Deleting Roles
	Managing Passwords
	Querying Passwords
	Modifying Passwords
	Deleting Passwords
	Using the Gold Shell (goldsh)
	Command Syntax
	Valid Objects
	Valid Actions for an Object
	Valid Predicates for an Object and Action
	Common Options
	Common Actions Available for most Objects
	Multi-Object Queries
	Customizing Gold Objects
	Adding an Attribute to an Object
	Modifying an Attribute
	Creating a Custom Object
	Adding an Action to an Object
	Examples Creating Custom Objects
	Integration with the Resource Management System
	Interaction Points
	Methods of interacting with Gold
	Configuration Files
	Client Configuration

