
- 1 -

Moab Accounting Manager®

Administrator Guide
Version 7.1.0

http://www.adaptivecomputing.com/

- 2 -

Notice
This is the minor release of the Moab Accounting Manager Administrator
Guide. Other information may be found by subscribing and posting to the
Moab Accounting Manager users list (gold-users@supercluster.org) or by sub-
mitting bug reports or change requests to Adaptive Computing Enterprises,
Inc. (gold-support@adaptivecomputing.com).

- 3 -

Moab Accounting Manager® 1

Notice 2

1.0 Overview 11

1.1 Background 12

1.2 Conceptual Overview 13

1.3 Features 15

1.4 Interfaces 17

1.4.1 Command-Line Clients 17

1.4.2 Interactive Control Program 17

1.4.3 Web-based Graphical User Interface 17

1.4.4 Perl API 17

1.4.5 Java API 18

1.4.6 SSSRMAP Wire Protocol 19

1.5 Documentation 20

1.6 License 21

1.6.1 Moab Accounting Manager License 21

1.6.2 BSD License 21

2.0 Installation 23

2.1 Select a Database 24

2.2 Install Prerequisites 26

2.2.1 Perl 5.8 or higher [REQUIRED] 26

2.2.2 Suidperl 5.8 or higher [OPTIONAL] 26

2.2.3 PostgreSQL database 7.2 or higher (or other tested database)
[OPTIONAL] 26

2.2.4 libxml2 2.4.25 or higher [REQUIRED] 27

2.2.5 gnu readline 2.0 or higher [OPTIONAL] 28

2.2.6 Apache Httpd Server 2.0 or higher with mod_ssl [OPTIONAL] 28

2.2.7 OpenSSL 0.9.5a or higher [REQUIRED] 29

2.2.8 Disable SELinux 29

2.3 Preparation 30

2.4 Configuration 31

2.5 Compilation 34

- 4 -

2.6 Perl Module Dependencies 35

2.7 Installation 37

2.8 Database Setup 38

2.8.1 Initialize the database 38

2.8.2 Configure trusted connections 38

2.8.3 Enable support for transactions 38

2.8.4 Start the database 39

2.8.5 Create the database 39

2.8.6 Bootstrap 39

2.9 General Setup 41

2.10 Startup 42

2.11 Web Server Setup 43

2.12 Accessing the GUI 46

2.13 Initialization 47

3.0 Upgrading 48

3.1 Preparation 49

3.2 Configuration 50

3.3 Compilation 51

3.4 Server Shutdown 52

3.5 Installation 53

3.6 Server Startup 54

4.0 Migrating 55

4.1 Database Backup 56

4.2 Create Database 57

4.3 Preparation 58

4.4 Configuration 59

4.5 Compilation 60

4.6 Installation 61

4.7 General Setup 62

4.8 Server Startup 63

4.9 Database Migration 64

5.0 Getting Started 65

- 5 -

5.1 HPC Usage Tracking 66

5.1.1 Usage Record Customization (Optional) 67

5.1.2 Record the Usage 68

5.1.3 List Usage Records 69

5.2 HPC Charge Accounting 70

5.2.1 Usage Record Customization (Optional) 71

5.2.2 Decide on a Currency and Set the Currency Precision 72

5.2.3 Define Charge Rates 73

5.2.4 Create a Single NonLimiting Account 74

5.2.5 Create an Unlimited Allocation 75

5.2.6 Issue a Refund 77

5.2.7 Examine Account Statement 78

5.3 HPC Allocation Enforcement 80

5.3.1 Usage Record Customization (Optional) 81

5.3.2 Decide on a Currency and Set the Currency Precision 82

5.3.3 Define Charge Rates 83

5.3.4 Define Accountable Entities 84

5.3.5 Create Accounts 86

5.3.6 Make Deposits 88

5.3.7 Check The Balance 90

5.3.8 Integrate Moab Accounting Manager with Your Brokering System 91

5.3.9 Obtain a Usage Quote 92

5.3.10 Make a Usage Reservation 93

5.3.11 Charge for the Usage 95

5.3.12 Usage Refund 97

5.3.13 Examine Account Statement 99

6.0 Managing Users 101

6.1 Creating Users 102

6.2 Querying Users 103

6.3 Modifying Users 105

6.4 Deleting Users 106

6.5 User Auto-Generation 107

- 6 -

6.6 Default User 108

7.0 Managing Projects 109

7.1 Creating Projects 110

7.2 Querying Projects 111

7.3 Modifying Projects 113

7.4 Deleting Projects 114

7.5 Project Auto-Generation 115

7.6 Default Project 116

8.0 Managing Machines 117

8.1 Creating Machines 118

8.2 Querying Machines 119

8.3 Modifying Machines 120

8.4 Deleting Machines 121

8.5 Machine Auto-Generation 122

8.6 Default Machine 123

9.0 Managing Accounts 124

9.1 Creating Accounts 126

9.2 Querying Accounts 128

9.3 Modifying Accounts 130

9.4 Making Deposits 131

9.5 Querying The Balance 134

9.6 Personal Balance 136

9.7 Making Withdrawals 137

9.8 Making Transfers 138

9.9 Obtaining an Account Statement 139

9.10 Deleting Accounts 142

9.11 Account Auto-Generation 143

9.12 Hierarchical Accounts 144

9.13 Account Priority 146

10.0 Managing Allocations 147

10.1 Creating Allocations 149

10.2 Querying Allocations 150

- 7 -

10.3 Modifying Allocations 152

10.4 Delete Allocations 153

10.5 Allocation Auto-Generation 154

10.6 Allocation Precedence 155

11.0 Managing Reservations 156

11.1 Creating Reservations 158

11.2 Querying Reservations 159

11.3 Modifying Reservations 161

11.4 Deleting Reservations 162

12.0 Managing Quotes 163

12.1 Creating Quotes 165

12.2 Creating Quote Templates 166

12.3 Querying Quotes 167

12.4 Modifying Quotes 168

12.5 Deleting Quotes 169

13.0 Managing Usage Records 170

13.1 Creating a Usage Record 171

13.2 Querying Usage Records 172

13.3 Modifying a Usage Record 173

13.4 Deleting a Usage Record 174

13.5 Obtaining Usage Quotes 175

13.6 Making Usage Reservations 177

13.7 Charging for Usage 178

13.8 Issuing Usage Refunds 180

13.9 Customizing the Usage Record Object 181

13.10 Usage Record Property Verification 184

13.11 Usage Record Property Defaults 185

13.12 Usage Record Property Auto-Generation 186

13.13 Usage Record Property Instantiators 187

14.0 Managing Itemized Charges 190

14.1 Querying Itemized Charges 191

14.2 Displaying Itemized Charges for a Transaction 193

- 8 -

15.0 Managing Charge Rates 194

15.1 Creating Charge Rates 198

15.2 Querying Charge Rates 202

15.3 Modifying Charge Rates 204

15.4 Deleting Charge Rates 205

16.0 Managing Transactions 206

16.1 Querying Transactions 207

16.2 Customizing the Transaction Object 208

17.0 Managing Events 209

17.1 Querying Events 211

17.2 Deleting Events 213

18.0 Managing Notifications 214

18.1 Querying Notifications 215

18.2 Deleting Notifications 217

19.0 Managing Roles 220

19.1 Creating Roles 221

19.2 Querying Roles 222

19.3 Modifying Roles 224

19.4 Deleting Roles 225

20.0 Managing Passwords 226

20.1 Setting Passwords 227

20.2 Querying Passwords 228

20.3 Deleting Passwords 229

21.0 Using the Gold Shell (goldsh) 230

21.1 Usage 231

21.2 Command Syntax 233

21.3 Valid Objects 235

21.4 Valid Actions for an Object 236

21.5 Valid Predicates for an Object and Action 237

21.6 Common Options 240

21.7 Common Actions Available for most Objects 241

21.7.1 Query Action 241

- 9 -

21.7.2 Create Action 243

21.7.3 Modify Action 243

21.7.4 Delete Action 245

21.7.5 Undelete Action 246

21.8 Multi-Object Queries 249

22.0 Customizing Objects 251

22.1 Managing Objects 252

22.1.1 Creating a Custom Object 253

22.1.2 Querying Objects 254

22.1.3 Modifying an Object 255

22.1.4 Deleting an Object 256

22.1.5 Object Auto-Generation 257

22.1.6 Global Object-Based Defaults 258

22.2 Managing Attributes 259

22.2.1 Adding an Attribute to an Object 261

22.2.2 Querying Attributes 262

22.2.3 Modifying an Attribute 264

22.2.4 Removing an Attribute from an Object 265

22.2.5 Local Attribute-Based Defaults 266

22.3 Managing Actions 267

22.3.1 Adding an Action to an Object 268

22.3.2 Querying Actions 269

22.3.3 Modifying an Action 270

22.3.4 Removing an Action from an Object 271

22.4 Examples Creating Custom Objects 272

23.0 Integration with the Resource Management System 275

23.1 Dynamic versus Delayed Accounting 275

23.1.1 Delayed Accounting 275

23.1.2 Dynamic Accounting 275

23.2 Interaction Points 276

23.2.1 Usage Quote @ Usage Creation Time [Optional — Recommended] 276

- 10 -

23.2.2 Usage Reservation @ Usage Start Time [Optional — Highly Rec-
ommended] 276

23.2.3 Usage Charge @ Usage End Time [Required] 277

23.3 Methods of interacting with Moab Accounting Manager 278

23.3.1 Configuring an application that already has hooks for Moab
Accounting Manager 278

23.3.2 Using the appropriate command-line client 279

23.3.3 Using the interactive control program 279

23.3.4 Use the Perl API 279

23.3.5 Use the Java API 280

23.3.6 Communicating via the SSSRMAP Protocol 281

24.0 Configuration Files 283

24.1 Site Configuration 284

24.2 Server Configuration 285

24.3 Client Configuration 287

24.4 GUI Configuration 290

- 11 -

1.0 Overview
Moab Accounting Manager is an accounting management system that allows for
usage tracking and charging for resource or service usage in cloud and technical
computing environments. It acts much like a bank in which credits are deposited
into accounts with constraints designating which entities may access the account.
As resources or services are utilized, accounts are charged and usage recorded. It
supports familiar operations such as deposits, withdrawals, transfers, and refunds.
It provides balance and usage feedback to users, managers, and system admin-
istrators.

Since the accounting and billing models vary widely from organization to organ-
ization, Moab Accounting Manager has been designed to be extremely flexible, fea-
turing customizable usage and account definitions, and supporting a variety of
tracking, charging and allocation configurations. Attention has been given to scal-
ability, security, and fault tolerance.

- 12 -

1.1 Background
Moab Accounting Manager was originally developed as open source software called
the Gold Allocation Manager at Pacific Northwest National Laboratory (PNNL) under
the Department of Energy (DOE) Scalable Systems Software (SSS) SciDAC project.
It has been extended and enhanced by Adaptive Computing Enterprises, Inc. (form-
erly Cluster Resources, Inc.) and is in production use at many commercial, gov-
ernment and educational sites.

- 13 -

1.2 Conceptual Overview
Moab Accounting Manager was designed to be used in cloud and technical com-
puting environments for usage tracking, charge accounting and allocation enforce-
ment. Usage tracking involves simply recording resource or service usage in
customizable usage records. Charge accounting involves calculating and recording
charges for usage for invoicing or cost tracking. Charge accounting may be enabled
with the establishment of a bottomless account and the defining of charge rates.
Allocation enforcement involves establishing limits on the use of system resources.
Allocation enforcement can be enabled by defining separate accounts having lim-
ited debit or credit balances.

In this overview, we will assume that you want to track or charge for the usage of
some salable or usable item(s). An item may be a resource such as computer cycles
used within a job or virtual machine, or it may be a service or something else. The
use of an item will result in a usage record. The usage record will track how much
and what aspects of the item were used, to whom and what the usage was attrib-
uted, and (optionally) how much the usage cost.

With Accounting Manager, it is possible to allocate how much of the resources or
services can be used by different entities. This is done by associating a cost for the
usage by deciding on a currency unit (referred to generically as credits), whether
based on a real currency such as dollars, or a reference currency such as billing
units or processor seconds. Next, you will define charge rates in this currency for
the components of your usage (resource or service costs, multipliers, fees, etc.).

Pools of funds called allocations may be created via deposits and can be debit or
credit based, finite or infinite, and may be limited to a time frame in which they
can be used. These allocations are deposited into logical containers called
accounts which have constraints that distinguish who or what can use the funds
and for what purposes.

A resource or service manager interacts with Moab Accounting Manager to ensure
sufficient funds and to track and charge for usage. A typical usage pattern might
be as follows. Before you use a resource or service, a quote is obtained to see how
much it will cost and to verify that you have sufficient funds and access to the
item. If you agree to the quoted price, you can commit your request for the
usage. When it is time for you to start using the resource or service, a hold (called
a reservation) is placed against your account for the quoted amount (in part or in
whole). As you use the item, an appropriate account will be charged and the res-
ervation adjusted. When the final charge is made for actual usage, the remainder
of the reservation is removed. A usage record is updated and the transaction and
charge history is recorded throughout this process. The actual sequence of inter-
actions is very flexible and will be defined by the architecture between the
resource or service manager and the accounting system (Moab Accounting Man-
ager).

- 14 -

To recap: Accounts, which are containers for a reference currency referred to as
credits, are differentiated by constraints that define the entities (such as users,
projects, machines, classes, organizations, etc.) that can use the credits. Deposits
of time-bounded credits are made into accounts creating allocations. Charge rates
are created which define how much it will cost to use certain resources or serv-
ices. Use of a resource or service results in a usage record, and will normally
involve a quote detailing the cost of the item before it is used, a reservation
against your account while it is being used, and a charge against your account
after usage has ended. Other bank-like operations that can be performed on
accounts include withdrawals, transfers, refunds, balance checks, statement
reports, etc. All modifying actions against accounts or other objects are recorded
in the transaction history. The current or past state of any object in Moab Account-
ing Manager can be queried to produce reports.

- 15 -

1.3 Features
l Dynamic Charging — Rather than post-processing resource usage records
on a periodic basis to rectify project balances, charging can occur incre-
mentally throughout usage or at usage completion.

l Reservations — A hold is placed against the account for the estimated
amount of credits before the usage begins, followed by appropriate charges
during and/or at the end of the usage, thereby preventing projects from
using more resources or services than were allocated to them.

l Customizable Usage Records — Usage record fields can be configured
by the site to track custom usage properties.

l Flexible Accounts — A uniquely flexible account design allows resource
or service credits to be allocated to particular entities and purposes.

l Expiring Allocations — Credits may be restricted for use within a des-
ignated time period allowing sites to implement a use-it-or-lose-it policy to
prevent year-end resource exhaustion and establishing an allocation cycle.

l Flexible Charging — The billing system can track and charge for com-
posite time-based or non-time-based resource or service usage, and apply
flexible charge multipliers and fees.

l Guaranteed Quotes — Users and resource brokers can determine ahead of
time the cost of using resources or services.

l Credit and Debit Accounts — Allocations feature an optional credit
limit allowing support for both debit and credit models. This feature can also
be used to enable overdraft protection for specific accounts.

l Infinite Allocations — Deposits can be made with infinite amounts or
infinite credit limits when used with a supporting database.

l Powerful Querying — a powerful querying and update mechanism (based
on SQL queries) that facilitates flexible reporting and streamlines admin-
istrative tasks.

l Nonintrusiveness — object-level, attribute-level and correlated defaults
may be established for arbitrary objects such as users, projects and organ-
izations. Additionally, these objects may be configured to be automatically
created the first time they are seen by the resource management system.
These features allow the accounting system to be used with less impact and
involvement from users and administrators.

l Consistency — Moab Accounting Manager has been engineered for robust-
ness, consistency and resiliency. Complex operations are atomic and are auto-
matically rolled back on failure.

l Security — multiple security mechanisms for strong authentication and

- 16 -

encryption.

l Role-Based Authorization — fine-grained (instance-level) Role Based
Access Controls are provided for all operations which allows users to view
and manipulate only those objects permitted to them.

l Dynamic Customization — Sites can create or modify record types on
the fly enabling them to meet their custom accounting needs. Dynamic
object creation allows sites to customize the types of accounting data they
collect without modifying the code. This capability turns this system into a
generalized information service. This capability is extremely powerful and
can be used to manage all varieties of custom configuration data, or to func-
tion as a persistence interface for other components.

l Web Interface — a powerful dynamic web-based GUI is provided for easy
remote access for users, managers and administrators which displays only the
actions allowed by their role.

l Journaling — a journaling mechanism preserves the indefinite historical
state of all objects and records. This powerful mechanism allows historical
bank statements to be generated, provides an undo/redo capability and
allows commands to be run as if it were any arbitrary time in the past.

l Event Scheduler — an event engine can be used to schedule arbitrary
Gold commands to run periodically or at a designated time in the future.

- 17 -

1.4 Interfaces
Moab Accounting Manager provides a variety of means of interaction, including
command-line interfaces, graphical user interfaces, application programming inter-
faces, and communication protocols.

1.4.1 Command-Line Clients
The command-line clients provided feature rich argument sets and built-in doc-
umentation. These commands allow scripting and are the preferred way to interact
with Moab Accounting Manager for basic usage and administration. Use the --help
option for usage information or the --man option for a manual page on any com-
mand.

Example 1 - Listing Users Using a Command-Line Client

glsuser

1.4.2 Interactive Control Program
The goldsh command uses a control language to issue object-oriented requests to
the server and display the results. The commands may be included directly as com-
mand-line arguments or read from stdin. Use the "ShowUsage:=True" option after a
valid Object Action combination for usage information on the command.

Example 2 - Listing Users Using the goldsh Control Program

goldsh User Query

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. Do not use this command
unless you understand the syntax and the potential for unintended results.

1.4.3 Web-based Graphical User Interface
A powerful and easy-to-use web-based GUI permits browser access by users, man-
agers and administrators according to their role definitions.

Example 3 - Listing Users via the Web GUI

Click on "Manage Users" -> "List Users"

1.4.4 Perl API

- 18 -

You can access the full functionality via the Perl API. Use perldoc to obtain usage
information for the Moab Accounting Manager Perl Gold modules.
Example 4 - Listing Users Using the Perl API

use Gold;
my $request = new Gold::Request
(object => "User", action =>
"Query");
my $response = $request-
>getResponse();
foreach my $datum ($response-
>getData())
{

print $datum->toString(),
"\n";
}

1.4.5 Java API
Although deprecated, the Java API may still be usable to interact with Moab
Accounting Manager. The javadoc command can be run on the contrib/java/gold
directory to generate documentation for the Gold java classes.
Example 5 - Listing Users Using the Java API

import java.util.*;
import gold.*;

public class Test
{

public static void main
(String [] args) throws
Exception

{
Gold.initialize();
Request request = new

Request("User", "Query");
Response response =

request.getResponse();
Iterator dataItr =

response.getData().iterator();
while (dataItr.hasNext())
{

System.out.println((Datum)

- 19 -

dataItr.next()).toString());
}

}
}

1.4.6 SSSRMAP Wire Protocol
It is also possible to interact with Moab Accounting Manager by directly using the
SSSRMAP Wire Protocol and Message Format over the network. Documentation for
these protocols can be found at SSS Resource Management and Accounting Doc-
umentation.
Example 6 - Listing Users via the SSSRMAP Wire Protocol

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml;
charset="utf-8"
Transfer-Encoding: chunked
190
<?xml version="1.0"
encoding="UTF-8"?>
<Envelope>

<Body actor="scottmo"
chunking="True">

<Request action="Query"
object="User"></Request>

</Body>
<Signature>

<Digest-
Value>azu4obZswzBt8-
9OgATukBeLyt6Y=</DigestValue>

<Sig-
nature-
Value>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>

<SecurityToken
type="Symmetric"
name="scottmo"></SecurityToken>

</Signature>
</Envelope>
0

http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold

- 20 -

1.5 Documentation
The documentation for Moab Accounting Manager includes this Administrator
Guide, release notes, built-in man pages, module documentation and online doc-
umentation.

l Moab Accounting Manager Administrator Guide — The Moab
Accounting Manager Administrator Guide is a comprehensive manual for
users and administrators of Moab Accounting Manager and includes infor-
mation about features, interfaces, installation, getting started, usage, con-
figuration and customization. The Administrator Guide can be found under
the $PREFIX/doc directory in .pdf and .html formats. These documents are
also available online.

l Release Notes — The Release Notes describe the primary features and
fixes included in the release, along with notes to aid in migration from pre-
vious versions and can be found under the doc directory in the distribution
tarball.

l Command Line built-in Man Pages and Usage Synopsis — All
command-line clients support a --man option that provides full doc-
umentation of the command options and a --help option that provides a brief
usage synopsis.

l Module Perl Pod Documentation — Documentation for Moab Account-
ing Manager Perl modules can be viewed by changing directory to the $PR-
EFIX/lib directory and running perldoc <modulename>, e.g. perldoc
Gold::Request.

l Online Documentation — The Moab Accounting Manager Administrator
Guide can be found online at http://www.-
adaptivecomputing.com/documentation. The Gold project web page at
http://www.adaptivecomputing.com/resources/docs/gold/files/index.php
and includes the original Gold project documentation.

http://www.adaptivecomputing.com/resources/docs/gold/index.php
http://www.adaptivecomputing.com/resources/docs/gold/index.php
http://www.adaptivecomputing.com/resources/docs/gold/index.php
http://www.clusterresources.com/products/gold-allocation-manager.php

- 21 -

1.6 License
The Moab Accounting Manager software and associated documentation, data and
information include parts which are copyrighted by Adaptive Computing Enter-
prises, Inc., and parts which are copyrighted by Battelle Memorial Institute. The
terms and conditions for the use and redistribution of these parts are governed by
the Moab Accounting Manager License and the BSD License respectively. Refer to
the LICENSE file for details.

1.6.1 Moab Accounting Manager License
Copyright (C) 2006 - 2012 Pacific Northwest National Laboratory, Battelle Memorial
Institute. All rights reserved.

The Moab Accounting Manager License specifies the terms and conditions for use
and redistribution.

The Moab Accounting Manager License applies to the Moab Accounting Manager
software offered by Adaptive Computing Enterprises, Inc. By installing or using this
software, Licensee accepts a non-exclusive license from Adaptive Computing Enter-
prises, Inc. and is bound to accept acknowledgement of and abide by the notices
and conditions of the Moab Accounting Manager License.

1.6.2 BSD License
Copyright (C) 2003 - 2005 Pacific Northwest National Laboratory, Battelle Memorial
Institute. All rights reserved.

The BSD license specifies the terms and conditions for use and redistribution.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

l Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

l Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

l Neither the name of Battelle nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

- 22 -

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- 23 -

2.0 Installation
If you are performing a fresh installation of Moab Accounting Manager, follow the
instructions in this chapter. If you are upgrading an existing version of Moab
Accounting Manager to a new maintenance or fix version where there are no data-
base schema changes, follow the instructions contained in 3.0 Upgrading. If you
are upgrading an existing version of Gold Allocation Manager or Moab Accounting
Manager to a a new major or minor release where there are database schema
changes, follow the instructions in 4.0 Migrating.

Moab Accounting Manager uses the standard configure, make, and make install
steps for installation. However, there are a number of preparation, prerequisite,
setup, and customization steps that need to be performed.

This document provides general installation guidance and provides a number of
sample steps referenced to a particular installation on a Linux platform using the
bash shell. These steps indicate the userid in brackets performing the step. The
exact commands to be performed and the user that issues them will vary based on
the platform, shell, installation preferences, etc.

- 24 -

2.1 Select a Database
Moab Accounting Manager makes use of a database for transactions and data per-
sistence. Three databases have been tested for use with Moab Accounting Manager
thus far: PostgreSQL, MySQL, and SQLite. Postgres and MySQL are external data-
bases which run in a distinct (possibly remote) process and communicate over sock-
ets. These databases must be separately installed, configured, and started. SQLite
is an embedded database bundled with SQL queries being performed within the
goldd process itself through library calls. The following information may help you
make a choice of databases to use.

l PostgreSQL — PostgreSQL is an open source database. PostgreSQL version
7.2 or higher is required. The PostgreSQL database has been thoroughly
tested in production with Moab Accounting Manager and all product func-
tionality is available since it was developed using the PostgreSQL database.
Postgres supports multiple connections so Moab Accounting Manager is con-
figured to be a forking server when using PostgreSQL.

PostgreSQL is recommended since it is an excellent database, has been more
thoroughly tested than the others, and supports all Moab Accounting Manager
features.

l MySQL — MySQL is an open source database. MySQL version 4.0.6 or higher is
required. Prior versions did not support UNION which is used by Moab
Accounting Manager in time travel. It is possible to use 4.0 with a minor code
tweak to the OFFSET line in Database.pm.

MySQL 4.1 is required in order to have support for the (undocumented) Trans-
action Undo and Redo functionality since subqueries were not supported
until this version.

Infinite Allocations are not supported with MySQL as it does not implement
the IEEE Standard 754 for Floating Point Arithmetic.

l SQLite — SQLite is an open source embedded database bundled with Moab
Accounting Manager. It does not require any configuration and reads and
writes from a file. Initial testing has shown Moab Accounting Manager to per-
form at least as fast as PostgreSQL for small databases.

SQLite 3.2.8 is required in order to be able to customize objects after instal-
lation. Previous versions did not support the "ALTER TABLE ADD COLUMN"
functionality.

Due to the lack of "ALTER TABLE DROP COLUMN" functionality, migration of
Moab Accounting Manager data to newer schema versions cannot be sup-
ported. Hence, when upgrading from one major version to another, a fresh
database bootstrap is required.

- 25 -

Since SQLite supports only a single connection, Moab Accounting Manager is
not configured to be a forking server when using SQLite. This should prob-
ably not be an issue for small to medium sized clusters.

Due to a lack of support for multi-column IN clauses, the (undocumented)
Transaction Undo and Redo functions are not available.

Infinite Allocations are not supported with SQLite as it does not implement
the IEEE Standard 754 for Floating Point Arithmetic.

- 26 -

2.2 Install Prerequisites
You will first need to build, test and install the following prerequisites:

2.2.1 Perl 5.8 or higher [REQUIRED]
The Moab Accounting Manager server and clients are written in Perl. Perl 5.8 or
higher is required. Use 'perl -v' to see what level of Perl is installed.

For RedHat-based systems:

[root]# yum install perl

2.2.2 Suidperl 5.8 or higher [OPTIONAL]
Command-line clients and Perl API scripts use a security promotion method (gauth
or suidperl) to authenticate and encrypt communications with the server. It is rec-
ommended that you install and use setuid perl as the security promotion method if
it is available for your system. Otherwise, configure will compile and use gauth as
the security promotion method. Use 'suidperl -v' to see if suidperl is installed. See
the description for the security.promotion configuration parameter in the Client
Configuration section for more information about the two security promotion
methods.

For RedHat-based systems:

[root]# yum install perl-
suidperl

For SUSE-based systems

[root]# chmod 4755
/usr/bin/sperl*

For Debian-based systems:

[root]# apt-get install perl-
suid

2.2.3 PostgreSQL database 7.2 or higher (or other
tested database) [OPTIONAL]
If you intend to use the PostgreSQL, the MySQL or other external database, you
will need to install it. PostgreSQL is recommended since it is an excellent data-
base supporting all necessary features and has been more thoroughly tested than

- 27 -

the others. The only thing needed for SQLite is the sqlite3 client for boot-
strapping.

For PostgreSQL on Redhat-based systems:

[root]# yum install postgresq1
postgresql-libs postgresql-
server
postgresql-devel

For PostgreSQL on SUSE-based systems:

[root]# zypper install
postgresq1 postgresql-libs
postgresql-server
postgresql-devel

For PostgreSQL on Debian-based systems:

[root]# apt-get install
postgresql postgresql-common
postgresql-client
postgresql-server-dev-9.1

For MySQL on Redhat-based systems:

[root]# yum install mysql
mysql-devel mysql-server

For MySQL on SUSE-based systems:

[root]# zypper install mysql
mysql-server

For MySQL on Debian-based systems:

[root]# apt-get install mysql-
common mysql-server
libmysqlclient-dev

For SQLite on Debian-based systems:

[root]# apt-get install sqlite3

2.2.4 libxml2 2.4.25 or higher [REQUIRED]
LibXML2 is needed by the XML::LibXML perl module to communicate via the
SSSRMAP message format. The libxml2 development package is needed for the
XML::LibXML perl module to install properly.

For RedHat-based systems:

- 28 -

[root]# yum install libxml2
libxml2-devel

For SUSE-based systems:

[root]# zypper install libxml2
libxml2-devel

For Debian-based systems:

[root]# apt-get install libxml2
libxml2-dev

2.2.5 gnu readline 2.0 or higher [OPTIONAL]
The interactive control program (goldsh) can support command-line-editing
capabilities if readline support is enabled.

For RedHat-based systems:

[root]# yum install ncurses-
devel readline-devel

For SUSE-based systems:

[root]# zypper install ncurses-
devel readline-devel

For Debian-based systems:

[root]# apt-get install
ncurses-dev libreadline.dev

2.2.6 Apache Httpd Server 2.0 or higher with mod_
ssl [OPTIONAL]
Moab Accounting Manager provides a web-based GUI so that managers, users, and
administrators can interact with the accounting and allocation system. The web
interface utilizes Perl CGI and SSL and needs to have an httpd server (preferably
apache) installed. mod_ssl is also needed and is often bundled as part of the
apache2 server.

For RedHat-based systems:

[root]# yum install httpd mod_
ssl

For SUSE-based systems:

- 29 -

[root]# zypper install apache2

For Debian-based systems:

[root]# apt-get install apache2

2.2.7 OpenSSL 0.9.5a or higher [REQUIRED]
OpenSSL is used to encode the secret key and is used in the web interface to
encrypt communications with the server.

For RedHat-based systems:

[root]# yum install openssl

For Debian-based systems:

[root]# apt-get install openssl

2.2.8 Disable SELinux
In some distributions (e.g. redHad-based systems), Security-Enhanced Linus (SELi-
nux) blocks the use of setuid perl (used in client authentication). If you are using
setuid perl as the security promotion method (this is the default if available), you
will need to disable SELinux.

For RedHat-based systems:

[root]# vi
/etc/sysconfig/selinux
SELINUX=disabled

[root]# setenforce 0

- 30 -

2.3 Preparation
To build and install Moab Accounting Manager, you first need to unpack the tar
archive and change directory into the top directory of the distribution. For max-
imum security, it is recommended that you install and run Moab Accounting Man-
ager under its own non-root userid. This user will be referred to as the accounting
admin user.

[root]# useradd -m moab
[root]# passwd moab
[moab]$ mkdir ~/src
[moab]$ cd ~/src
[moab]$ tar -zxvf mam-
7.1.tar.gz
[moab]$ cd mam-7.1

- 31 -

2.4 Configuration
To configure Moab Accounting Manager, run the "configure" script provided with
the distribution.
The following is a list of configure options:

l -h,--help display the list of options
Run ./configure --help to see the list of configure options.

l --prefix=PREFIX install architecture-independent files
in PREFIX [/opt/mam]
Base installation directory where all subdirectories will be installed unless
otherwise designated (defaults to /opt/mam).

l --exec-prefix=EPREFIX install architecture-dependent
files in EPREFIX [PREFIX]
Directory where architecture-depended subdirectories (such as bin, sbin,
lib) will be installed (defaults to PREFIX).

l --bindir=DIR user executables [EPREFIX/bin]
Client scripts will be installed to this subdirectory (defaults to EPREFIX/bin).

l --sbindir=DIR system admin executables [EPREFIX/sbin]
System scripts and binaries (including goldd, goldsh, gauth) will be installed
to this subdirectory (defaults to EPREFIX/sbin).

l --libdir=DIR object code libraries [EPREFIX/lib]
Gold Perl modules will be installed in this subdirectory (defaults to [EPRE-
FIX/lib]).

l --localstatedir=DIR modifiable single-machine data [PRE-
FIX]
Home directory where per-configuration subdirectories (such as etc, log,
data) will be installed (defaults to PREFIX).

l --sysconfdir=DIR read-only single-machine data [LOCAL-
STATEDIR/etc]
Subdirectory where configuration and stateful files reside (defaults to LOCAL-
STATEDIR/etc).

l --datarootdir=DIR read-only arch.-independent data root
[PREFIX/share]
Directory where documentation subdirectories (such as doc, man) reside
(defaults to PREFIX/share)

- 32 -

l --docdir=DIR documentation root [DATAROOTDIR/doc/mam]
Directory where application documentation (pdf, html) resides (defaults to
DATAROOTDIR/doc/mam).

l --with-db-name=NAME database name [mam]
Name of the SQL database that the server will sync with (defaults to mam).

l --with-db-type=DATABASE database type { Pg, mysql,
SQLite } [Pg]
Use with-db-type to specify the database server type you intend to use with
Moab Accounting Manager. Currently only PostgreSQL (Pg), MySQL (mysql)
and SQLite (SQLite) have been tested for use with Moab Accounting Manager.
Postgres and MYSQL are external databases which runs in a distinct (possibly
remote) process and communicates over sockets while SQLite is an embed-
ded database with SQL queries being performed within the goldd process
itself through library calls. Initial testing has shown SQLite to be at least as
fast as PostgreSQL for small installations. The default is to use PostgreSQL.

l --with-user=USER accounting admin user id under which
the server will run
Use --with-user to specify the accounting admin userid that the server will
run under and who will have full administrative privileges (defaults to the
user running the configure command). It is recommended that this be a non-
privileged user for the highest security.

l --with-promotion=gauth|suidperl method used to promote
privileges to read site.conf
Command-line clients and scripts using the API need to use a security pro-
motion method to authenticate and encrypt the communication using the
symmetric key. The default is suidperl if it is installed on the system, other-
wise the default is gauth. See the description for the secu-
rity.promotion configuration parameter in the Client Configuration
section for more information about the two security promotion methods.

l --with-gold-libs=local|site install policy for Gold per
libs [local]
Use with-gold-libs to indicate whether you want to install the Gold modules
in a local gold directory (${exec_prefix}/lib) or in the default system site-
perl directory (defaults to local).

l --with-cgi-bin=DIR directory to install cgi-bin files if
using web gui [/var/www/cgi-bin/mam]
If you intend to use the web GUI, use with-cgi-bin to specify the directory
where you want the Moab Accounting Manager CGI files to reside (defaults to

- 33 -

/var/www/cgi-bin/mam).

l --with-context=CONTEXT specifies the accounting context
(hpc or cloud) [hpc]
By specifying the accounting context (either hpc or cloud) some client com-
mands can be adjusted to show the proper fields for that context. The
default is hpc.

l --with-skin=SKIN specifies the skin for the web-based GUI (viewpoint or leg-
acy) [viewpoint]
If you intend to use the web GUI, you can specify whether you want to use a
skin design more compatible with Viewpoint (if you intend to access the web
GUI from within Moab Viewpoint) or whether you want to use the legacy GUI
styles (normally used standalone). The default is viewpoint.

To assume the defaults, just run configure.

[moab]$./configure

- 34 -

2.5 Compilation
To compile the program, type make.

[moab]$ make

If you would like to install the web GUI, type make gui.

[moab]$ make gui

- 35 -

2.6 Perl Module Dependencies
Moab Accounting Manager requires the use of a number of Perl modules. These
modules can be installed from CPAN by typing 'make deps'.

[root]# make deps

After running make deps initially, it is useful to run it again to see if all of
the dependencies were installed cleanly. If not, you will need to intercede
in the dependency installation. You can verify that this step is complete
when make deps shows all modules as being up to date.

On CentOS 5, any CPAN errors you may encounter can be overcome by run-
ning:

perl -MCPAN -e force install
Log::Dispatch:File::Rotate

This step should install the following Perl modules from CPAN:

l CGI::Session
l Compress::Zlib
l Config::Tiny
l Crypt::CBC
l Crypt::DES
l Crypt::DES_EDE3
l Date::Manip
l DBI
l DBD::Pg, DBD::MySQL or DBD::SQLite
l Digest::HMAC
l Digest::SHA1
l Error
l Log::Dispatch
l Log::Dispatch::FileRotate
l Log::Log4perl
l Module::Build
l Module::Implementation
l Params::Validate
l SOAP
l Term::ReadLine::Gnu
l XML::SAX
l XML::LibXML::Common
l XML::LibXML
l XML::NamespaceSupport

- 36 -

If you would prefer to do so, you can install these modules via other sources, such
as from rpm, or manually from CPAN.

- 37 -

2.7 Installation
Use `make install' to install Moab Accounting Manager. You may need to do this as
root if any of the installation or log directories do not already have write per-
mission as the accounting admin user.

[root]# make install

If you would like to install the web GUI, type make install-gui (as root).

[root]# make install-gui

To delete the files created by the product installation, you can use 'make unin-
stall'.

- 38 -

2.8 Database Setup
If you have chosen to use PostgreSQL or MySQL, you will need to define a database
user, create the Moab Accounting Manager database, and configure the database
server to support transactions and connections from the server host. No setup is
needed if you are using SQLite.

2.8.1 Initialize the database
For PostgreSQL, the database must be initialized before it can be configured.

[root]# service postgresql
initdb

On some operating systems, this is achieved by starting the database serv-
ice.

[root]# service postgresql
start

2.8.2 Configure trusted connections
For PostgreSQL, add the host-based client authentication as appropriate. Edit or
add a line in the pg_hba.conf file for the interface from which the Moab Account-
ing Manager server will be connecting to the database.

[postgres]$ vi
/var/lib/pgsql/data/pg_hba.conf
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

For PostgreSQL, configure postgres to accept connections from your host.

[postgres]$ vi
/var/lib/pgsql/data/pos-
tgresql.conf
listen_addresses = 'localhost'
what IP address(es) to listen
on;

2.8.3 Enable support for transactions
If you are using the MySQL database you will need to configure the server to sup-
port transactions (MySQL 5.5.5 and later supports transactions by default).

- 39 -

[root]$ vi /etc/my.cnf
default-storage-engine = INNODB
Place under the [mysqld]
section

2.8.4 Start the database
Start (or restart) the database server with the new configurations in effect.

For PostgreSQL database:

[root]# service postgresql
restart

For MySQL database:

[root]# service mysqld start

2.8.5 Create the database
Create the Moab Accounting Manager database and add the accounting admin user
as a database administrator. This must be performed as the database user (postgres
or mysql).

For PostgreSQL database:

[postgres]$ psql

create database mam;
create user moab with password
'changeme';

For MySQL database:

[root]# mysql

create database mam;
grant all on *.* to
'moab'@'localhost' identified
by 'changeme';
exit

2.8.6 Bootstrap
You will need to populate the Moab Accounting Manager database with an SQL
dump that defines the objects, actions, and attributes necessary to function as an

- 40 -

Accounting and Allocation Manager. Use cloud.sql if you are in a cloud context or
hpc.sql if you are in an HPC context.

For PostgreSQL database:

[moab]$ psql mam < hpc.sql # or
cloud.sql

For MySQL database:

[moab]$ mysql mam < hpc.sql #
or cloud.sql

For SQLite database:

[moab]$ sqlite3
/opt/mam/data/mam.db < hpc.sql
or cloud.sql

- 41 -

2.9 General Setup
Edit the configuration files as necessary.

[moab]$ vi
/opt/mam/etc/goldd.conf
database.password = changeme
[moab]$ vi
/opt/mam/etc/gold.conf

Edit your startup files as appropriate to configure the PATH. Then add the PATH in
your current environment.

[root]$ cp etc/profile.d/*sh
/etc/profile.d
[moab]$. /etc/profile.d/mam.sh

- 42 -

2.10 Startup
Start the server daemon. It is located in the PREFIX/sbin directory.

[moab]$ goldd

Alternatively, if you are on a Linux system that supports init.d scripts, you can
create a system startup service for Moab Accounting Manager. Sample scripts are
provided in contrib/init.d/ that can be edited for your distribution and installed
into /etc/init.d. After adding execute permissions, Moab Accounting Manager can
then be started by issuing:

[root]# service mam start

- 43 -

2.11 Web Server Setup
If you want to use the web GUI, you will need to configure your Apache HTTP
server to use SSL. The following shows some sample steps to configure the web
GUI. The actual steps you will need to use will vary according to your distribution
and environment. The web server configuration must be modified to support the
invocation of cgi-bin scripts over an SSL connection using a private key and a
signed certificate.

Configure apache to use SSL
Edit the apache configuration files to use SSL, CGI and to define aliases.

For SUSE-based systems:

[root]# vi
/etc/sysconfig/apache2

APACHE_SERVER_FLAGS="-DSSL"

Configure the SSL virtual host definition.

For RedHat-based systems:

[root]# vi
/etc/httpd/conf.d/ssl.conf

For SUSE-based systems:

[root]# cp
/etc/apache2/vhosts.d/vhost-
ssl.te-
mplate/etc/apache2/vhosts.d/ma-
m-ssl.conf
[root]# vi
/etc/apache2/vhosts.d/mam-
ssl.conf

Add or edit the SSL virtual host definition as appropriate for your environment:

<VirtualHost _default_:443>
...

Configure your cgi-bin
directory

<Directory "/var/www/cgi-
bin">

Options ExecCGI

- 44 -

AddHandler cgi-script .cgi
AllowOverride All
Order allow,deny
Allow from all

</Directory>

Create an alias for /cgi-
bin pointing to your cgi-bin
directory

If you chose to install to
a cgi-bin subdir, you may want
to create

an alias for that as well.
Alias /cgi-bin/ /var/www/cgi-

bin/
Alias /mam/ /var/www/cgi-

bin/mam
Add index.cgi to the

DirectoryIndex so you can use
the shorter dir name
DirectoryIndex index.cgi

...
</VirtualHost>

Install a Signed Certificate
For the highest security, it is recommended that you install a public key cer-
tificate that has been signed by a certificate authority. The exact steps to do this
will be specific to your distribution and the chosen certificate authority. An over-
view of this process for CentOS is documented at http://www-
.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html.

Alternatively, if your network domain can be secured from man-in-the-middle
attacks, you could use a self-signed certificate. Often this does not require any
additional steps since in many distributions (e.g., RedHat-based), the Apache SSL
configuration provides self-signed certificates by default.

The following steps assume you are using self-signed certificates:

Create self-signed SSL certificate and key files. Some distributions (e.g. RedHat)
ship with ready-made certificates.

For SUSE-based systems:

[root]# cd /etc/apache2

http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html

- 45 -

[root]# openssl genrsa -out
ssl.key/server.key 1024
[root]# openssl req -new -key
ssl.key/server.key -x509 -out
ssl.crt/server.crt

Restart the HTTP Server
Startup or restart the Apache HTTP server.

For RedHat-based systems:

[root]# service httpd restart

For SUSE-based or Debian-based systems:

[root]# service apache2 restart

- 46 -

2.12 Accessing the GUI
In order to use the Web GUI, users will have to generate passwords for them-
selves using the gchpasswd client command. Moab Accounting Manager may
have to be restarted in order for role privileges to be reflected in the GUI.

[moab]# gchpasswd

To access the web gui, open a browser with URL: https://localhost/mam.

[moab]$ firefox
https://localhost/mam

- 47 -

2.13 Initialization
You are now ready to define users, accounts, charge rates, etc. as necessary for
your site. The next chapter (Getting Started) provides a useful primer for this
phase of the Moab Accounting Manager setup.

You can run one of the initialization scripts in the test directory to set up a sample
initial environment (with some dummy users, accounts, charge rates, etc.) for
your desired accounting mode and context.

For HPC allocation enforcement:

[moab]$ test/hpc-allocation-
enforcement.sh

For Cloud allocation enforcement:

[moab]$ test/cloud-allocation-
enforcement.sh

- 48 -

3.0 Upgrading
Moab Accounting Manager uses the standard configure, make and make install steps
for upgrades. This document assumes that you are updating Moab Accounting Man-
ager to a new maintenance or fix level within the same major and minor release.
Instructions for migrating to a new minor or major release can be found in the
Migrating chapter. This document provides a number of sample steps referenced to
a particular installation on a Linux platform using the bash shell. These steps indi-
cate the userid in brackets performing the step. The exact commands to be per-
formed and the user that issues them will vary based on the platform, shell,
installation preferences, etc.

- 49 -

3.1 Preparation
To build and update Moab Accounting Manager, you first need to unpack the tar
archive and change directory into the top directory of the distribution.

[moab]$ cd ~/src
[moab]$ tar -zxvf mam-
7.1.0.tar.gz
[moab]$ cd mam-7.1.0

- 50 -

3.2 Configuration
To configure Moab Accounting Manager, run the "configure" script provided with
the distribution with the desired options.

[moab]$./configure

- 51 -

3.3 Compilation
To compile the program, type make.

[moab]$ make

If you would like to install the web GUI, type make gui.

[moab]$ make gui

- 52 -

3.4 Server Shutdown
Stop the server daemon.

[moab]$ goldd -k

- 53 -

3.5 Installation
Use `make install' to install Moab Accounting Manager. You may need to do this as
root if any of the installation or log directories do not already have write per-
mission as the accounting admin user (moab).

[root]# make install

If you would like to install the web GUI, type make install-gui (as root).

[root]# make install-gui

- 54 -

3.6 Server Startup
Start the server daemon back up.

[moab]$ goldd

- 55 -

4.0 Migrating
This procedure assumes that you are updating Moab Accounting Manager to a new
major or minor release where there are database schema changes. Instructions for
upgrading to a new maintenance or fix release where there are no database
schema changes can be found in 3.0 Upgrading.

The instructions in this chapter demonstrate the process of migrating a database
schema from Moab Accounting Manager 7.0 to 7.1 or from Gold Allocation Manager
2.2 to Moab Accounting Manager 7.1. By default, this version will unpack into a sep-
arate directory (/opt/mam) which, after modifying the database and port of the
prior installation, will allow us to run or access both versions simultaneously. You
can determine your current database version by running 'goldsh System Query'.

If you are migrating from a version of Gold Allocation manager prior to ver-
sion 2.2, you will first need to perform a migration install to Gold Allocation
Manager 2.2 using the Gold Allocation Manager tarball and the associated
migration script and procedures.

SQLite databases cannot yet be migrated in most circumstances since cur-
rent versions do not support the ALTER TABLE ADD COLUMN syntax.

This chapter provides a number of sample steps referenced to a particular instal-
lation on a Linux platform using the bash shell. These steps indicate the userid in
brackets performing the step. The exact commands to be performed and the user
that issues them will vary based on the platform, shell, installation preferences,
etc. These steps are very similar to the steps for performing a maintenance or fix
upgrade install with the exception that the migration scripts should be run after
restarting the server after the make install.

- 56 -

4.1 Database Backup
Quiesce the former Moab Accounting Manager server daemon.
[adaptive]$
/opt/gold/sbin/goldd -k

Back up your old database to a file.

l Migrating from Gold Allocation Manager 2.2
l For a PostgreSQL database:

[adaptive]$ pg_dump gold >
~/gold-2.2.sql

l For a MySQL database:
[adaptive]$ mysqldump gold
> ~/gold-2.2.sql

l Migrating from Moab Accounting Manager 7.0
l For a PostgreSQL database:

[adaptive]$ pg_dump gold >
~/mam-7.0.sql

l For a MySQL database:
[adaptive]$ mysqldump gold
> ~/mam-7.0.sql

- 57 -

4.2 Create Database
Create a new database so that you can preserve and reference the old data sep-
arately. Use the instructions that match your current version of Gold or MAM and
your database type.

l Migrating from Gold Allocation Manager 2.2
l For a PostgreSQL database:

[adaptive]$ psql
create database mam;
[adaptive]$ psql mam <
~/gold-2.2.sql

l For a MySQL database:
[adaptive]$ mysql
create database mam;
[adaptive]$ mysql mam <
~/gold-2.2.sql

l Migrating from Moab Accounting Manager 7.0
l For a PostgreSQL database:

[adaptive]$ psql
create database mam;
[adaptive]$ psql mam <
~/mam-7.0.sql

l For a MySQL database:
[adaptive]$ mysql
create database mam;
[adaptive]$ mysql mam <
~/mam-7.0.sql

- 58 -

4.3 Preparation
To build and update Moab Accounting Manager, unpack the tar archive and change
directory into the top directory of the distribution.
[adaptive]$ cd ~/src
[adaptive]$ tar -zxvf mam-
7.1.0.tar.gz
[adaptive]$ cd mam-7.1.0

- 59 -

4.4 Configuration
To configure MAM, run the configure script provided with the distribution with
the desired options.
[adaptive]$./configure

- 60 -

4.5 Compilation
To compile the program, type make:
[adaptive]$ make

If you would like to install the web GUI, type make gui:
[adaptive]$ make gui

- 61 -

4.6 Installation
Use make install to install Moab Accounting Manager. You will need to do this
as root.
[root]# make install

If you would like to install the web GUI, type make install-gui as root.
[root]# make install-gui

You may need to rerun make deps if you are installing to a new directory and
you chose to install the former perl libs in a local directory.
[root]# make deps

- 62 -

4.7 General Setup
Edit the configuration files as necessary for your new installation. You will very
likely want to merge your previous configuration settings into your new con-
figuration files.
[adaptive]$ vi
/opt/mam/etc/goldd.conf
[adaptive]$ vi
/opt/mam/etc/gold.conf

Configure your PATH environment variable to find the newly installed directories.
[adaptive]$ export
PATH=/opt/mam/bin:/opt/mam/sbin-
:$PATH

- 63 -

4.8 Server Startup
Start up the new server daemon.
[adaptive]$ goldd

- 64 -

4.9 Database Migration
Now you will need to migrate your database to the new schema. This script is
designed to be rereunnable, so if you encounter a failure, resolve the failure and
rerun the migration script. If you are unable to resolve the issue and complete the
migration, contact support.

l Migrating from Gold Allocation Manager 2.2

[adaptive]$ sbin/migrate_2.2_
to_7.1.pl

Edit the prior configuration files to change the port. This will allow you to
run and access both versions simultaneously.

[adaptive]$ vi
/opt/gold/etc/goldd.conf
server.port = 7111

l Migrating from Moab Accounting Manager 7.0

[adaptive]$ sbin/migrate_7.0_
to_7.1.pl

Edit the prior configuration files to change the port. This will allow you to
run and access both versions simultaneously.

[adaptive]$ vi
/opt/gold/etc/goldd.conf
server.port = 7111

- 65 -

5.0 Getting Started
Moab Accounting Manager can be configured in a myriad of use cases. It can be
used in different contexts such as cloud or High Performance Computing (HPC). It
can be used in different accounting modes such as for usage tracking, charge
accounting or allocation enforcement. This chapter will outline a few basic exam-
ples of setting up Moab Accounting Manager for use in a High Performance Com-
puting environment to track and charge projects for job resource usage.

If you want to use Moab Accounting Manager solely for recording resource usage
but not for charging, then review the section on HPC Usage Tracking. If you want
to calculate and record charges, but not restrict any workload from being serv-
iced, then review the section on HPC Charge Accounting. If you want charge and
establish limits on the use of system resources, then review the section on HPC
Allocation Enforcement.

You will need to be an Moab Accounting Manager System Administrator to per-
form the tasks in this chapter. It is assumed that you have already installed
and bootstrapped Moab Accounting Manager and started the server before per-
forming the steps suggested in this chapter.

- 66 -

5.1 HPC Usage Tracking
When used solely for usage tracking, Moab Accounting Manager logs resource usage
in usage records. This usage can be queried to report what resources were used
when and by whom. In this case, there is no need for charge rates, accounts, allo-
cations, reservations or quotes. There is no need to define project membership.
The only real consideration is whether you want to customize the usage record to
display usage properties unique to your site.

- 67 -

5.1.1 Usage Record Customization (Optional)
As an example, we will add a usage record property to track GPU usage. See the
section on Customizing the Usage Record Object for additional examples.

Example 1 - Adding a GPU Field to the Usage Record

$ goldsh Attribute Create
Object=UsageRecord Name=GPUs
DataType=Integer
Successfully created 1
attribute

Example 2 - Selecting the Usage Record fields we would like to see via glsusage

We can select the usage records fields that show up in glsusage by editing the usag-
erecord.show attribute in the client configuration file (gold.conf). This is the
same parameter that would have to be edited for the new GPU attribute to show
up in glsusage. The web GUI will automatically display the new attribute.

$ vi /var/gold/etc/gold.conf
usagerecord.show = Id,Instance,
User,Project,Machine,Stage,
Processors,GPUs,Nodes,Duration,
StartTime,EndTime

- 68 -

5.1.2 Record the Usage
After a job completes, the usage is recorded (see Creating a Usage Record). This
step is normally performed automatically by Moab Accounting Manager via the
NAMI API but we can use the command line interface for the purpose of illus-
tration.

Example 3 - Record resource usage for our job

$ gmkusage -J job1 -u amy -p
chemistry -m colony -P 16 -X
GPUs=8 -N 4 -t 720
Successfully created 1 usage
record with id 1

- 69 -

5.1.3 List Usage Records
Let's examine the usage record that was created (see Querying Usage Records).

Example 4 - List Usage Records

$ glsusage
Id Type Instance User
Project Machine Processors
GPUs Nodes Duration EndTime
--- --- -------- ----- ----
--- ------- ---------- ---
-- ------ --------- -------
1 Job job1 amy
chemistry colony 16
8 4 720

- 70 -

5.2 HPC Charge Accounting
Some sites may want to use Moab Accounting Manager to calculate and record
charges, but not to restrict or prevent any workload from being serviced. In this
case, we need only define a single account with bottomless funds. Moab Account-
ing Manager will ascribe a charge for resource utilization and attribute it to the
entities using it. Reservations, balance queries and quotes are not needed. The
main task is to define charge rates.

- 71 -

5.2.1 Usage Record Customization (Optional)
It may be desirable to customize the usage record to display usage properties
unique to your site. See the section on Customizing the Usage Record Object for
examples.

- 72 -

5.2.2 Decide on a Currency and Set the Currency Pre-
cision
Since we will be calculating charges, we will need to decide on a currency unit
and set the currency precision. For this example we will define a currency in
which one credit represents the value of using one processor core for one second.
We will assume for simplicity that one processor second on one machine will have
the same value as a processor second on another machine. Charges for other
resource types will be given an appropriate value relative to this currency unit. All
allocations and charges will be specified in terms of this currency. The only action
to take here would be to set the currency precision to be the number of decimal
places you want Moab Accounting Manager to display when reporting currency
amounts. Since processor seconds can easily be represented as an integer with no
decimal places and the default currency precision is zero, there is no action to
take here. If instead we were to have chosen dollars as the currency base, we
would want to set the currency.precision value in goldd.conf, gold.conf and
goldg.conf to 2.

- 73 -

5.2.3 Define Charge Rates
Since we are charging for usage, we must establish the charge rates for the usage.
In our example, we will establish a charging scheme that charges 1 credit for each
processor second utilized by the job as well as 1 credit for every GigaByte of mem-
ory utilized by the job per second.

We will add Processors and Memory as consumable resource charge rates (with a
Type of Value Based Resource) so their values will be multiplied by the amount of
time they are used. We will define a processor charge rate of 1 currency unit that
will charge one credit per processor second used and we will set the memory
charge rate to be .001 since we will assume that the memory will be reported in
MegaBytes and we want to charge 1 currency unit for every GigaByte second of
memory used. See the chapter on Managing Charge Rates for more detailed infor-
mation on setting up charge rates.

Example 5 - Define Charge Rates for Processors and Memory

$ gmkrate -n Processors -T VBR
-z 1
Successfully created 1 charge
rate

$ gmkrate -T VBR -n Memory -z
.001
Successfully created 1 charge
rate

$ glsrate
Name Value Type Rate
Description
------- ----- ---- ---- -

Memory VBR 0.001
Processors VBR 1

- 74 -

5.2.4 Create a Single NonLimiting Account
Since we do not want to limit usage in any way, it is probably not necessary to
create individual accounts. It may be sufficient to create a single unconstrained
account with unlimited credits. This section will demonstrate this approach. Usage
charges associated with various projects, users, machines, etc. can be extracted
with usage record queries by applying appropriate filters. If you do wish to track
usage via separate distinct accounts (which will additionally allow you to produce
separate account statements), you may want to follow the steps outlined in the
HPC Allocation Enforcement section with the exception that you will make very
large or infinite deposits into the accounts. See the chapter on Managing Accounts
for more detailed information on setting up accounts.

Example 6 - Create a single unconstrained account

$ gmkaccount -n "Common
Account"
Successfully created 1 account
with id 1

$ glsaccount
Id Name Amount
Constraints Description
-- -------------- ------ ------
----- -----------
1 Common Account 0

- 75 -

5.2.5 Create an Unlimited Allocation
Since we do not wish to limit usage, we need to create a large or an unlimited
allocation. We can do this by depositing infinite credits or by establishing an infi-
nite credit limit (which will allow the account to have an unlimited negative bal-
ance). See the section on Making Deposits for additional information.

the use of infinite allocations requires the use of a database that supports the
IEEE Standard 754 for Floating-Point Arithmetic (e.g. PostgreSQL). If you are
not using a supporting database type, you can deposit a very large amound
(e.g. 1000000000) instead.

Example 7 - Creating a single unlimited allocation via an infinite deposit

$ gdedeposit -z Infinity
Successfully deposited inf
credits into account 1

Let's examine the allocated we just created.

$ glsalloc
Id Account Active StartTime
EndTime Amount CreditLimit
Deposited Description
-- ------- ------ --------- ---
----- -------- ----------- ----
----- -----------
1 1 True -Infinity
Infinity Infinity 0
Infinity

$ glsaccount
Id Name Amount
Constraints Description
-- -------------- -------- ----
------- -----------
1 Common Account Infinity

Since the account has infinite funds, it will not be necessary to check the balance
regularly because it is not going to change, but let's look at it to see how we have
it set up.

$ gbalance
Id Name Available
Allocated PercentUsed
-- -------------- --------- --

- 76 -

------- -----------
1 Common Account Infinity
Infinity 0.00

- 77 -

5.2.6 Issue a Refund
Since this was an imaginary job, refund the account (see Issuing Usage Refunds).

Example 10 - Issue a refund for our job

$ grefund -J job1
Successfully refunded 12960
credits to usage record 1
instance job1

Notice that the usage charge is now zero because the job has been fully refunded.

$ glsusage -u amy --show
Instance,Charge,User,Project,
Machine,Processors,Memory,
Duration
Instance Charge User Project
Machine Processors Memory

Duration
-------- ------ ---- ---------
------- ---------- ------ ----

job1 0 amy chemistry
colony 16 2000 720

- 78 -

5.2.7 Examine Account Statement
Finally, you can examine the account statement for our activities (see Obtaining
an Account Statement).

If you want to be able to issue separate account statements for different
projects, users, etc. then you will need to establish separate accounts by fol-
lowing the initial steps outlined in the HPC Allocation Enforcement section
with the exception that you will make very large or infinite deposits into the
accounts.

Example 11 - We can request an itemized account statement to see the debits
and credits for the common account

$ gstatement
++++++ ++++++ ++++++ ++++++
++++++ ++++++ ++++++ ++++++
++++++ ++++++ ++++++ ++++++
++++++ +
+
+ Includes account 1 (Common
Account)
+ Generated on Thu Dec 22
18:26:55 2011.
+ Reporting account activity
from -Infinity to Now.
+++++++ ++++++ ++++++ ++++++
++++++ ++++++ ++++++ ++++++
++++++ ++++++ ++++++ ++++++
++++++ +

Beginning Balance:
0

------------------ ------------

Total Credits:
Infinity
Total Debits:
-12960
------------------ ------------

Ending Balance:
Infinity

- 79 -

++++++ ++++++ ++++++ ++++++
++++++ Credit Detail ++ ++++++
++++++ ++++++ ++++++ ++++++ +
Object Action Instance
Amount Time
----------- ------ --------
-------- -------------------
Account Deposit
Infinity 2011-12-22 17:50:24
UsageRecord Refund job1

12960 2011-12-22 18:13:30
++++++ ++++++ ++++++ ++++++
++++++ + Debit Detail +++
++++++ ++++++ ++++++ ++++++
++++++ +

- 80 -

5.3 HPC Allocation Enforcement
With Moab Accounting Manager, one can establish limits on the use of system
resources. Rates are established for the use of resources and resource credits can
be apportioned to different parties or purposes. Some sites establish an allocation
cycle where proposals for resource usage are periodically reviewed and suitable
candidates are granted an allocation on the computing system. Other sites limit
consumers to what they "pay" for. In either case, multiple accounts are needed;
with rosters, allocation limits, balance and usage feedback, reservations, and pos-
sibly quotes.

- 81 -

5.3.1 Usage Record Customization (Optional)
It may be desirable to customize the usage record to display usage properties
unique to your site. See the section on Customizing the Usage Record Object for
examples.

- 82 -

5.3.2 Decide on a Currency and Set the Currency Pre-
cision
Since we will be calculating charges, we will need to decide on a currency unit
and set the currency precision. For this example we will define the currency to be
in dollars (and cents). Deposits into accounts will be made in this currency.
Resource charges will be calculated from charge rates based on this currency.
Since dollars and cents are represented as a floating point number with two dec-
imal places we must specify a currency precision of two.

Example 12 - Setting the currency precision to two

The currency precision value must be set in the server and client configuration
files (goldd.conf and gold.conf). It must also be set in the GUI configuration file
(goldg.conf) if you will be using the web GUI.

$ vi /var/gold/etc/goldd.conf
currency.precision = 2

$ vi /var/gold/etc/gold.conf
currency.precision = 2

- 83 -

5.3.3 Define Charge Rates
Since we are charging, we must establish the charge rates for the usage. In our
example, we will establish a charging scheme that charges 1 dollar for each proc-
essor hour utilized by the job.

Since we want to charge 1 dollar per hour of usage per processor and because
time-based charge rates are multiplied by the duration in seconds, we need create
a charge rate for processors that charges 1/3600th of a dollar per second. See the
chapter on Managing Charge Rages for more detailed information on setting up
charge rates.

Example 13 - Modify the Processors Charge Rate

$ gchrate -n Processors -z
.00027778 -T VBR -d "1 dollar
per processor-hour
Successfully modified 1 charge
rate

$ glsrate
Name Value Type Rate

Description
----------- ----- ---- --------
-- --------------------------
Processors VBR
0.00027778 1 dollar per
processor-hour

- 84 -

5.3.4 Define Accountable Entities
Next we must decide to which entities we want to entitle our allocations. In this
example, we will distribute the funds among different projects. Each project will
be assigned a set of user members that can charge to that project. Moab Account-
ing Manager can be customized to associate funds with any number of arbitrary
entities such as Users, Groups, Projects, Organizations, Classes, Machines, etc. We
will start by defining some projects and the associated user members of the
projects. We will also associate each project with an organization so that usage
reports can be generated for the organization level as well as the project and user
level.

We will create projects for biology, chemistry and film and assign them some
users. The biology and chemistry project will be associated with the sciences
organization while the film project will be associated with the arts organization.
See the chapter on Managing Projects for more information on setting up projects.

Example 14 - Define the biology, chemistry and film projects

$ gmkproject -p biology -o
sciences -u amy, bob -d
"Biology Department"
Successfully created 1 project

$ gmkproject -p chemistry -o
sciences -u amy, dave -d
"Chemistry Department"
Successfully created 1 project

$ gmkproject -p film -o arts -u
bob, dave -d "Film Department"
Successfully created 1 project

$ glsproject
Successfully created 1 project

$glsproject
Name Active Users
Organization Description
------- ------ --------- --
---------- -----------------
biology True amy, bob
sciences Biology Department
chemistry True amy, dave

- 85 -

sciences Chemistry
Department

film True bob, dave
arts Film Department

- 86 -

5.3.5 Create Accounts
The next task will be to create the accounts which will hold the allocated credits.
An account is much like a numbered bank account, where credits can be deposited
and are defined by constraints that distinguish who or what can use the funds and
for what purposes. In this example, we will create an account for each of the
three projects. Had we enabled account auto-generation or used the --create-
account=True option with the gmkproject command, an account would have been
created automatically with the creation of each project. See Managing Accounts
for more detailed information on setting up accounts.

Note that in most cases, referenced objects will be auto-generated, such as the
users that were auto-generated as they were added to the projects. Undefined
projects, would have likewise been auto-generated as they were newly associated
with accounts, but had we taken that ordering, we would still have needed to go
back and associate the appropriate users, organization, etc. to these projects. We
could have also created the users explicitly and provided additional detail about
each user, before adding them to the projects. Of course, even though they were
auto-generated, we can still go back and add detailed information to each user as
desired. See Managing Users for more detailed information on setting up users.

Example 15. Create four project-based accounts

$ gmkaccount -p biology -n
"biology"
Successfully created 1 account
with id 1 and 1 constraint

$ gmkaccount -p chemistry -n
"chemistry"
Successfully created 1 account
with id 2 and 1 constraints

$ gmkaccount -p film -n "film"
Successfully created 1 account
with id 3 and 1 constraints

$ glsaccount
ID Name Amount

Constraints
Description
-- -------- -------

- 87 -

1 biology 0
Project=biology

2 chemistry 0
Project=chemistry
3 film 0
Project=film

- 88 -

5.3.6 Make Deposits
Now we need to allocate funds to these accounts by making deposits to themAn
allocation has a start and end time associated with it declaring the time frame in
which it can be used (defaulting to negative and positive infinity). It can also have
a credit limit which defines the extent to which the allocation is allowed to go
negative. Multiple allocations (usually with different expenditure time frames) can
be associated with an account. Judicial use of allocation time frames can be help-
ful to establish an allocation cycle and set expectations for credit expenditure.
See Making Deposits for additional information.

In this example, we will allocate 5000 and 3000 dollars to the biology and chem-
istry projects respectively. The film project will be given a credit limit of 2000 dol-
lars which allows them to charge up to 2000 dollars before rectifying their
account. When making a deposit we must specify the account we are depositing
into unless the account can be unambiguously determined by its constraint ref-
erences (i.e. there is only a single account associated with the project biology).
We will create allocations that must be used within the current year.

Example 16. Making Deposits

$ gdeposit -s 2012-01-01 -e
2013-01-01 -z 5000 -p biology
Successfully deposited 5000.00
credits into account 1

$ gdeposit -s 2012-01-01 -e
2013-01-01 -z 3000 -p chemistry
Successfully deposited 3000.00
credits into account 2

$ gdeposit -s 2012-01-01 -e
2013-01-01 -L 2000 -p film
Successfully deposited 0.00
credits into account 3

Let's examine the allocations we just created:

$ glsalloc

Id Account Active StartTime
EndTime Amount CreditLimit
Deposited Description

-- ------- ------ ------------
----------- ------- -----------

- 89 -

- ---------- ----------------
1 1 True 2012-01-01
2013-01-01 5000.00
00.0 5000.00
2 2 True 2012-01-01
2013-01-01 3000.00
0.00 3000.00
3 3 True 2012-01-01
2013-01-01 0.00
2000.00 0.00

$ glsaccount

Id Name Amount
Constraints Description
--- ------- ------- ----
--------- ------------
1 biology 5000.00
Project=biology
2 chemistry 3000.00
Project=chemistry
3 film 0.00
Project=film

- 90 -

5.3.7 Check The Balance
We can verify the resulting balance (see Querying the Balance).

Example 17. Let's look at amy's balance

$ gbalance -u amy

Id Name Available
Allocated PercentUsed
-- --------- --------- --------
- -----------
1 biology 5000.00
5000.00 0.00
2 chemistry 3000.00
3000.00 0.00

- 91 -

5.3.8 Integrate Moab Accounting Manager with Your
Brokering System
Now we are ready to run some jobs. Before doing so you will need to integrate
Moab Accounting Manager with your Resource Management System (see Integrating
with the Resource Management System).

In practice, the billing actions (quote, reservation and charge) will be invoked
automatically by your brokering system (i.e. initiated by Moab or by the resource
manager). However, we will demonstrate these steps manually to illustrate their
effects.

Let's simulate the lifecycle of a job.

Example 18. We'll assume our job has the following characteristics:

Job Id: moab.1
Job Name:
heavywater
User Name: amy
Project Name: chemistry
Machine Name: colony
Requested Processors: 16
Estimated WallClock: 3600
seconds
Actual WallClock: 1234
seconds

- 92 -

5.3.9 Obtain a Usage Quote
When a job is submitted, it is useful to check that the user's account has enough
funds enough funds for the requested usage. This will be verified when the job
starts, but by that point the job may have waited some time in the queue only to
find out it never could have run in the first place. The usage quote step (see
Obtaining Usage Quotes) can fill this function. Additionally, the quote can be used
to determine the cheapest place to run, and to guarantee the current rates will be
used when the usage is charged.

Example 19. Let's see how much it will cost to use the resources.

$ gquote -u amy -p chemistry -c
batch -m colony -P 16 -t 3600
Successfully quoted 16.00
credits

- 93 -

5.3.10 Make a Usage Reservation
When a job starts or usage begins, the workload manager typically creates a res-
ervation (or hold) against the appropriate allocations based on the estimated dura-
tion of the job (see Making Usage Reservations).

Example 20. Make a reservation for the estimated usage of the job.

$ greserve -J moab.1 -p
chemistry -u amy -m colony -P
16 -t 3600
Successfully reserved 16.00
credits with reservation id 1
for instance moab.1 and created
usage record 1

$ glsres
Id Instance Amount
StartTime EndTime

Duration UsageRecord
Accounts Description
--- -------- ------- --------
----------- -------------------
-------- ----------- -------
- -----------
1 moab.1 16.00 2012-05-
29 15:20:45 2012-05-29 16:20:45
3600 1 2

This reservation will decrease our available balance by the amount reserved.

$ gbalance -p chemistry —total
—quiet
2984.00

The actual allocation has not changed.

$ glsalloc -p chemistry
Id Account Active StartTime
EndTime Amount CreditLimit
Deposited Description

--- -------- ------ ---------
- ---------- ------- ----------
- --------- -----------

- 94 -

2 2 True 2012-01-
01 2013-01-01 3000.00
0.00 3000.00

This is best illustrated by the detailed balance listing:

$ gbalance -u amy -p chemistry
--show=Id,Name,Amount,Reserved,
Balance,CreditLimit,Available
Id Name Amount
Reserved Balance CreditLimit
Available
--- ---------- ------- -------
-- ------- ----------- ------

2 chemistry 3000.00
16.00 2984.00 0.00
2984.00

Note that the reservation resulted in the initial creation of a usage record for the
job.

$ glsusage -u amy -p chemistry
Id Type Instance Charge Stage
User Group Project
Organization Class
QualityOfService Machine Nodes
Processors Memory Desk Network
Duration Starttime EndTime
Description
-- ---- -------- ------ -------
---- ----- --------- ----------
-- ----- ---------------- -----
-- ----- ---------- ------ ----
------- -------- --------- ----
--- ------------
1 Job moab.1 0.00 Reserve
amy chemistry sciences

colony
16

0

- 95 -

5.3.11 Charge for the Usage
After a job completes, any associated reservations are removed and a charge is
issued against the appropriate allocations based on the resources and wallclock
time actually used by the job (see Charging for Usage).

Example 21. Issue the charge for the job.

$ gcharge -J moab.1 -u amy -p
chemistry -m colony -P 16 -t
1234
Successfully charged 5.48
credits for instance moab.1
1 reservation was removed

Your allocation will now have gone down by the amount of the charge.

$ glsalloc -u amy -p chemistry
Id Account Active StartTime

EndTime Amount
CreditLimit Deposited
Description
--- -------- ------ ---------
- ---------- ------- ------
----- --------- --------------
--
2 2 True 2012-01-
01 2013-01-01 2994.52
0.00 3000.00

However, your balance actually goes up (because the reservation that was
removed was larger than the actual charge).

- 96 -

$ gbalance -u amy -p chemistry
--show=ID,Name,Amount,Reserved,
Balance,CreditLimit,Available

Id Name Amount Reserved
Balance CreditLimit Available
-- --------- ------- -------- -
------ ----------- ---------
2 chemistry 2994.52 0.00
2994.52 0.00 2994.52

A usage record for the job was updated as a side-effect of the charge (see Que-
rying Usage).

$ glsusage -u amy -p chemistry
Id Type Instance Charge
Stage Quote User Group
Project Organization Class
QualityOfService Machine
Nodes Processors Memory Desk
Network Duration Starttime

EndTime Description
--- --- ---------- ------ --
----- ----- ------ ------- ---
----- ------------ ----- --
-------------- ------- -----
---------- ------ ---- ----

--- -------- --------- -----
-- -------------
1 Job moab.1 5.48
Charge amy amy
chemistry sciences

colony
16

1234

- 97 -

5.3.12 Usage Refund
Since this was an imaginary job, refund the user's account (see Issuing Usage
Refunds).

Example 22. Issue a refund for the job.

$ grefund -J moab.1
Successfully refunded 5.48
credits to usage record 1 for
instance moab.1

The balance is back as it was before the job ran.

$ gbalance -u amy -p chemistry
--show=Id,Name,Amount,Reserved,
Balanace,CreditLimit,Available

Id Name Amount Reserved
Balance CreditLimit Available
-- --------- ------ -------- --
----- ----------- ---------
2 chemistry 3000.00 0.00
3000.00 0.00 3000.00

The allocation, of course, is likewise restored.

$ glsalloc -u amy -p chemistry
Id Account Active StartTime
EndTime Amount CreditLimit
Deposited Description
--- -------- ------ ----------
---------- ------- -----------
--------- ------------
2 2 True 2012-01-01
2013-01-01 3000.00 0.00
3000.00

Notice that the usage charge is now zero because the job has been fully refunded.

$ glsusage
Id Type Instance Charge
Stage Quote User Group
Project Organization Class
QualityOfService Machine
Nodes Processors Memory Desk

- 98 -

Network Duration Starttime
EndTime Description
--- --- -------- ------- ----
--- ----- ------ ------- -----
--- ------------ ------ ----

1 Job moab.1 0.00
Reserve amy
chemistry sciences

colony
16

- 99 -

5.3.13 Examine Account Statement
Finally, you can examine the account statement for the activities (see Obtaining
an Account Statement).

Example 23. You can request an itemized account statement over all time for
use amy and the chemistry project (account 2)

$ gstatement -u amy -p
chemistry

###############################-
###############################-
##################
#
Includes account 2 (chemistry
for amy)
Generated on Tue May 29
15:48:22 2012
#
Reporting account activity
from -infinity to now.
#

###############################-
###############################-
##################
Beginning Balance:
0.00
--------------------------- ---

Total Credits:
3005.48
Total Debits:
-5.48
--------------------------- ---

Ending Balance:
30000.00

###############################
Credit Detail

- 100 -

###############################-
###
Object Action
Instance Amount Time
---------- ---------- ------
---- -------- --------------

Account Deposit

3000.00 2012-05-29
14:52:15
UsageRecord Refund moab.1

5.48 2012-05-29
15:41:20

###############################
Debit Detail
###############################-
####
Object Action Instance
Project User Machine

Amount Time
------------- -------- --------
- ----------- ------ ----------
------- -----------------------

UsageRecord Charge moab.1
chemistry amy colony
-5.48 2012-05-29 15:37:02

###############################
End of Report
###############################-
###

- 101 -

6.0 Managing Users
A user is a person authorized to use a resource or service. Default user properties
include the common name, phone number, email address, default project, and
description for that person. A user can be created, queried, modified, and
deleted. By default, a standard user may only query their own user record.

User queries allow the specification of filter options which narrow down the users
that will be returned to those belonging to the specified project.

- 102 -

6.1 Creating Users
To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address]
[-p default_project] [-d description] [-X, --extension property_name=pro-
perty_value[,property_name=property_value...]] [--debug] [--site site_name] [-?,
--help] [--man] [--quiet] [-v, --verbose] [-V, --version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing
gmkuser --man at the command line.

Example 1. Creating a user

$ gmkuser -n "Smith, Robert F."
-E "bob@bank.com" -F "(509)
555-1234" bob
Successfully created 1 user

- 103 -

6.2 Querying Users
To display user information, use the command glsuser:

glsuser [-A | -I] [-p project_name] [-X, --extension property_name=property_
value [,property_name=property_value...]] [--full] [—show attrib-
ute_name[,attribute_name...]] [-l, --long] [-w, --wide] [--raw] [--debug] [--
site site_name] [-?, --help] [--man] [--quiet] [-V, --version] [[-u] user_pattern]

The fields which are displayed by default by this command can be cus-
tomized by setting the user.show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsuser --man at the command line.

Example 2. Listing standard info about active users

$ glsuser -A
Name Active CommonName

PhoneNumber
EmailAddress
DefaultProject
Description
------ --------- --------------
---------- --------------------
- ------------------------ ----
----------------- -------------

amy True Wilkes, Amy

(509) 555-8765
amy@bank.com

bob True Smith, Robert
F. (509) 555-1234
bob@bank.com

Example 3. Displaying bob's phone number

$ glsuser —show PhoneNumber bob
—quiet
(509) 555-1234

Example 4. Listing amy's projects

- 104 -

$ glsuser —show Projects amy -l
-q

chemistry
biology

Example 5. Listing all users belonging to the chemistry project

$ glsuser —show Name -p
chemistry -q

amy
dave

- 105 -

6.3 Modifying Users
To modify a user, use the command gchuser:

gchuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-
p default_project] [-d description] [-X, --extension property_name=pro-
perty_value [,property_name=property_value...]] [--debug] [--site site_name] [-?,
--help] [--man] [--quiet] [-v, --verbose] [-V, --Version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing
gchuser --man at the command line.

Example 6. Activating a user

$ gchuser -A bob
Successfully modified 1 user

Example 7. Changing a user's email address

$ gchuser -E
"rsmith@cs.univ.edu" bob
Successfully modified 1 user

- 106 -

6.4 Deleting Users
To delete a user, use the command grmuser:

grmuser [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose]
[-V, --version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing
grmuser --man at the command line.

Example 8. Deleting a user

$ grmuser bob
Successfully deleted 1 user

- 107 -

6.5 User Auto-Generation
By default, users will automatically be created when first added as a member to a
project or role. It is also possible to have users be created automatically when first
encountered in a usage function (charge, reserve or quote). In order for user auto-
generation to occur, the AutoGen property for the User object must be set to
'True'. This is the default. Additionally, for user auto-generation to occur when a
user is added as a member of another object (such as Project) via an association
table (e.g. ProjectUser), the Values property for the user attribute of the Asso-
ciation (e.g. Name) must be set to '@User', indicating that that value should be con-
strained to be a valid instance of the User object. For user auto-generation to
occur when initially encountered in a usage function, the Values property of the
user attribute of the UsageRecord object must be similarly set to '@User'. The
auto-creation of users can be completely disabled by setting the AutoGen property
for the User object to 'False'.

Example 9. Enable auto-generation of users when initially seen in a charge

$ goldsh Attribute Modify
Object==UsageRecord Name==User
Values=@User
Successfully modified 1
attribute

Example 10. Disable all auto-generation of users

$ goldsh Object Modify
Name==User AutoGen=False
Successfully modified 1 object

See Object Auto-Generation for more information about the auto-generation of
objects.

- 108 -

6.6 Default User
It is possible to set a global default user to which usage would be ascribed in
quotes, reservations or charges where no user is specified. This can be accom-
plished by setting the DefaultValue property for the User object to the desired
user. It is also possible to set a user default for a specific object, which will result
in usage being ascribed to the specified user when the object is attributed to the
usage. This is done by creating a default usage override modifier. For example, to
specify that acmeuser be the default user for usage associated with the acme
organization, you might first create an attribute called DefaultUser for the Organ-
ization Object with the Values property of @?=User. Then you would populate the
new DefaultUser property for the acme organization with the value of acmeuser.
See the chapter on Customizing Objects for more information on default and other
usage override modifiers.

Example 11. Assign a global default user

$ goldsh Object Modify
Name==User
DefaultValue=anonymous
Successfully modified 1 object

- 109 -

7.0 Managing Projects
A project is a name given to a particular undertaking requiring the use of
resources or services for a common purpose. Users may be designated as members
of a project and may be allowed to share its allocations. The user members may be
designated as active or inactive, and as a project admin or not a project admin.
Default project properties include the description, the organization it is part of,
and whether or not it is active. A project can be created, queried, modified and
deleted. A project's user membership can also be adjusted. By default, a standard
user may only query projects they belong to.

Project queries allow the specification of filter options which narrow down the
projects that will be returned to those having the specified users in them.

- 110 -

7.1 Creating Projects
To create a new project, use the command gmkproject:

gmkproject [-A | -I] [-o organization_name] [-d description] [-X, --exten-
sion property_name=property_value [,property_name=property_value...]] [-u [^ |
!] [+ | -]user_name [, [^ | !] [+ | -]user_name...]] [—createAccount=True|False]
[--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --ver-
sion] {[-p] project_name}

Additional detail for this command can be found in the man page by issuing
gmkproject --man at the command line.

When defining users, the optional caret or exclamation symbol indicates whether
the user should be created as an admin (^) or not (!) for the project. The optional
plus or minus sign can precede each member to indicate whether the member
should be created in the active (+) or inactive (-) state. By default, a user will be
created in the active state but not an admin. Multiple users may be passed to the -
u option in a comma-delimited list. Alternatively, multiple -u options may be spec-
ified.

If the Account object's AutoGen property is set to true (see Account Auto-
Generation), an account will be automatically created for the project
(unless overridden with the --createAccount option). The auto-gen-
erated account will be associated with the new project.

Example 1. Creating a project

$ gmkproject -d "Chemistry
Department" chemistry
Successfully created 1 project

Example 2. Creating a project and specifying user members at the same time

In this example, we make amy the project admin and associate the project with
the sciences organization.

$ gmkproject -d "Chemistry
Department" -u ^amy,bob,dave
chemistry -o sciences
Successfully created 1 project

- 111 -

7.2 Querying Projects
To display project information, use the command glsproject:

glsproject [-A | -I] [-o organization_name][-X, --extension property_
name=property_value [,property_name=property_value...]] [-u user_name] [--
full] [--show attribute_name [,attribute_name...]...] [-l, --long] [-w, --
wide] [--raw] [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-V, --ver-
sion] [[-p] project_pattern]

The fields which are displayed by default by this command can be cus-
tomized by setting the project.show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsproject --man at the command line.

Example 3. Listing all info about all projects

$ glsproject
Name Active Users

Organization
Description
------------- --------- -------
----- ------------- ---------

biology True amy,
^bob sciences
Biology Department
chemistry True ^amy,
^dave sciences
Chemistry Department
film True amy,
^dave arts Film
Department

Example 4. Displaying the name and user members of a project in long format

$ glsproject -—show Name,Users
-l chemistry
Name Users
------------- -------
chemistry ^amy

dave

- 112 -

Example 5. Listing all project names

$ glsproject --show Name --
quiet
biology
chemistry
film

Example 6. Listing all project that have dave as a member

$ glsproject --show Name -u
dave --quiet
chemistry
film

- 113 -

7.3 Modifying Projects
To modify a project, use the command gchproject:

gchproject [-A | -I] [-o organization] [-d description] [-X, --extension prop-
erty_name=property_value [,property_name=property_value...]] [--addUser(s) [^
| !] [+ | -]user_name [, [^ | !] [+ | -]user_name...]] [--addUser(s) [^ | !] [+ | -]
user_name [, [^ | !] [+ | -]user_name...]] [--delUser(s) user_name [,user_
name...]] [--modUser(s) [^ | !] [+ | -]user_name [,user_name...]] [--debug] [--
site site_man] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version] {[-p]
project_name}

Additional detail for this command can be found in the man page by issuing
gchproject --man at the command line.

User members may be added, removed or modified in a project. When adding user
members to a project, the optional caret or exclamation symbol indicates whether
the user should be created as an admin (^) or not (!) for the project. The optional
plus or minus signs can precede each member to indicate whether the member
should be created in the active (+) or inactive (-) state. When modifying user
members of a project, the caret symbol or exclamation symbol indicates the user
should be changed to become an admin (^) or not (!) for the project. The plus or
minus signs indicate whether the user should be changed to become active (+) or
inactive (-). If an active or admin modifier is not specified, that aspect of the user
member will remain unchanged.

Example 7. Deactivating a project

$ gchproject -I chemistry
Successfully modified 1 project

Example 8. Adding users as members of a project

$ gchproject --add-users
jsmith,barney chemistry
Successfully added 2 users

Example 9. Deactivating a user in a project

$ gchproject --mod-user -dave
chemistry
Successfully modified 1 user

- 114 -

7.4 Deleting Projects
To delete a project, use the command grmproject:

grmproject [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] {[-p] project_name}

Additional detail for this command can be found in the man page by issuing
grmproject --man at the command line.

Example 10. Deleting a project

$ grmproject chemistry
Successfully deleted 1 project

- 115 -

7.5 Project Auto-Generation
It is possible to have projects be created automatically when first encountered in
a usage function (charge, reserve or quote). It is also possible for projects to be
automatically created when initially added as a member of another object. In
order for project auto-generation to occur, the AutoGen property for the Project
object must be set to 'True'. This is the default. For project auto-generation to
occur when initially encountered in a usage function, the Values property of the
project attribute of the UsageRecord object must be set to '@Project'. Addi-
tionally, for project auto-generation to occur when a project is added as a
member of another object (such as the Organization object) via an association
table (e.g. OrganizationProject), the Values property for the project attribute of
the Association (e.g. Name) must be set to '@Project', indicating that that value
should be constrained to be a valid instance of the Project object. The auto-cre-
ation of projects can be completely disabled by setting the AutoGen property for
the Project object to 'False'.

Example 11. Enable auto-generation of projects when initially seen in a charge

$ goldsh Attribute Modify
Object==UsageRecord
Name==Project Values=@Project
Successfully modified 1
attribute

Example 12. Disable all auto-generation of projects

$ goldsh Object Modify
Name==Project AutoGen=False
Successfully modified 1 object

See Object Auto-Generation for more information about the auto-generation of
objects.

- 116 -

7.6 Default Project
It is possible to set a global default project to which usage would be ascribed in
quotes, reservations or charges where no project is specified. This can be accom-
plished by setting the DefaultValue property for the Project object to the desired
project name. It is also possible to set a project default for a specific object,
which will result in usage being ascribed to the specified project when the object
is attributed to the usage. This is done by creating a default usage override mod-
ifier. For example, to specify that debug be the default project for usage asso-
ciated with the machine sandbox, you might first create an attribute called
DefaultProject for the Machine Object with the Values property of @?=Project.
Then you would populate the new DefaultProject property for the sandbox
machine with the value of debug. See the chapter on Customizing Objects for
more information on default and other usage override modifiers.

Example 13. Assign a global default project

$ goldsh Object Modify
Name==Project
DefaultValue=common
Successfully modified 1 object

- 117 -

8.0 Managing Machines
A machine is a location where resources or services can be used such as a cluster,
cloud or a store. Default machine properties include the description and whether
or not it is active. A machine can be created, queried, modified and deleted.

- 118 -

8.1 Creating Machines
To create a new machine, use the command gmkmachine:

gmkmachine [-A | -I] [--arch architecture] [--opsys operating_system] [-o
organization_name] [-d description] [-X, --extension property_name=pro-
perty_value [,property_name=property_value...]] [--debug] [--site site_man] [-?, -
-help] [--man] [--quiet] [-v, --verbose] [-V, --version] {[-m] machine_name}

Additional detail for this command can be found in the man page by issuing
gmkmachine --man at the command line.

Example 1. Creating a machine

$ gmkmachine --arch amd64 --
opsys linux "Linux Cluster"
colony
Successfully created 1 machine

- 119 -

8.2 Querying Machines
To display machine information, use the command glsmachine:

glsmachine [-A | -I] [-X, --extension property_name=property_value[,property_
name=property_value...]] [--full] [--show attribute_name[,attribute_
name...]...] [--raw] [--debug] [--site site_man] [-?, --help] [--man] [--quiet] [[-m]
machine_pattern]

The fields which are displayed by default by this command can be cus-
tomized by setting the machine.show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsmachine --man at the command line.

Example 2. Listing all inactive machine names and descriptions

$ glsmachine -I --show Name,
Description
Name Description

------- -----------------------

inert This machine is
unusable

- 120 -

8.3 Modifying Machines
To modify a machine, use the command gchmachine:

gchmachine [-A | -I] [--arch architecture] [--opsys operating_system] [-d
description] [-o organization] [-X, --extension property_name=property_
value [,property_name=property_value...]] [--site site_man] [--debug] [-?, --help]
[--man] [--quiet] [-v, --verbose] [-V, --version] {[-m] machine_name}

Additional detail for this command can be found in the man page by issuing
gchmachine --man at the command line.

Example 3. Deactivating a machine

$ gchmachine -I colony
Successfully modified 1 machine

- 121 -

8.4 Deleting Machines
To delete a machine, use the command grmmachine:

grmmachine [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] {[-m] machine_name}

Additional detail for this command can be found in the man page by issuing
grmmachine --man at the command line.

Example 4. Deleting a machine

$ grmmachine colony
Successfully deleted 1 machine

- 122 -

8.5 Machine Auto-Generation
It is possible to have machines be created automatically when first encountered in
a usage function (charge, reserve or quote). It is also possible to have machines
automatically be created when initially added as a member of another object. In
order for machine auto-generation to occur, the AutoGen property for the
Machine object must be set to 'True'. This is the default. For machine auto-gen-
eration to occur when initially encountered in a usage function, the Values prop-
erty of the machine attribute of the UsageRecord object must be set to
'@Machine'. Additionally, for machine auto-generation to occur when a machine is
added as a member of another object (such as a hypothetical Site object) via an
association table (e.g. SiteMachine), the Values property for the machine attribute
of the Association (e.g. Name) must be set to '@Machine', indicating that that
value should be constrained to be a valid instance of the Machine object. The
auto-creation of machines can be completely disabled by setting the AutoGen prop-
erty for the Machine object to 'False'.

Example 5. Enable auto-generation of machines when initially seen in a charge

$ goldsh Attribute Modify
Object==UsageRecord
Name==Machine Values=@Machine
Successfully modified 1
attribute

Example 6. Disable all auto-generation of machines

$ goldsh Object Modify
Name==Machine AutoGen=False
Successfully modified 1 object

See Object Auto-Generation for more information about the auto-generation of
objects.

- 123 -

8.6 Default Machine
It is possible to set a global default machine to which usage would be ascribed in
quotes, reservations or charges where no machine is specified. This can be accom-
plished by setting the DefaultValue property for the Machine object to the desired
machine name. It is also possible to set a machine default for a specific object,
which will result in usage being ascribed to the specified machine when the
object is attributed to the usage. This is done by creating a default usage override
modifier. For example, to specify that whitecloud be the default machine for
usage associated with the amy user, you might first create an attribute called
DefaultMachine for the User Object with the Values property of @?=Machine. Then
you would populate the new DefaultMachine property for the amy user with the
value of whitecloud. See the chapter on Customizing Objects for more infor-
mation on default and other usage override modifiers.

Example 7. Assign a global default machine

$ goldsh Object Modify
Name==Machine
DefaultValue=cloud
Successfully modified 1 object

- 124 -

9.0 Managing Accounts
An account is a container for a time-bounded reference currency called credits for
which the usage is restricted by constraints that define how the credits must be
used. Much like with a bank, an account is a repository for these resource or serv-
ice credits which are added through deposits and debited through withdrawals and
charges. Each account has a set of constraints designating which entities (such as
Users, Projects, Machines, Classes, Organizations, etc.) may access the account or
for which aspects of usage the funds are intended (QualityOfService, Geo-
graphicalArea, Feature, etc.). Account constraints may also be negated with an
exclamation point leading the constraint value.

When credits are deposited into an account, they are associated with a time
period within which they are valid. These time-bounded pools of credits are
known as allocations. (An allocation is a pool of billable units associated with an
account for use during a particular time period.) By using multiple allocations that
expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Accounts may be nested. Hierarchically nested accounts may be useful for the del-
egation of management roles and responsibilities. Deposit shares may be estab-
lished that assist to automate a trickle-down effect for funds deposited at higher
level accounts. Additionally, an optional overflow feature allows charges against
lower level accounts to trickle up the hierarchy.

Accounts may have a name which is not necessarily unique for the account.
Accounts may also have a priority which will influence the order of account selec-
tion when charging. Operations include creating, querying, modifying and deleting
accounts as well as making deposits, withdrawals, transfers and balance queries.
An account (or all accounts) may also be reset which means that all of the credits
and deposited tallies in all active allocations associated with the account are set
to zero. By default, a standard user may only query and view the balance for
accounts which pertain to them.

Some account operations (Account Query, Account Balance, Account Deposit,
Account Withdraw and Account Refund) allow the specification of filter options
which narrow down the accounts that will be acted on for that operation. There
are two account filter types that can be employed: Exclusive and NonExclusive. If
an exclusive filter type is used, the query will return only the accounts for which
the specified filters meet all constraints for usage. Another way to think of an
exclusive filter is to ask if usage were to be posted given only the specified filter
options as ACLs, which accounts would be eligible for charging? For example,
Account Query FilterType:=Exclusive Filter:=User=scottmo would not return an
account with the sole constraint Machine=blue because Machine=blue was not
included in the filters. Not only must the filters be a non-conflicting superset of
the account constraints, but all constraint dependencies must also be satisfied (for

- 125 -

example, an appropriate user may need to be specified with the project). If a non-
exclusive filter type is used, the query will return all accounts for which the
filters do not specifically exclude the constraints. The query assumes that if con-
straints are not specified within the filters, they can be assumed as a wildcard and
will return all accounts that are not specifically excluded by the filter. For exam-
ple, Account Query FilterType:=NonExclusive Filter:=User=scottmo would return an
account whose only constraint was Machine=blue (because it does not conflict) but
would not return an account with the constraint User=bob (because it does con-
flict).

- 126 -

9.1 Creating Accounts
gmkaccount is used to create a new account. You can specify an account name, a
description, and any number of account constraints. If a name is not specified and
constraints are specified, a name will be automatically generated based on the
constraints. A new unique id is automatically generated for the account.

gmkaccount [-n account_name] [-d description] [-X, --extension prop-
erty_name=property_value [,property_name=property_value...]] [-
c class_name] [-g group_name] [-m machine_name] [-o organization_
name] [-p project_name] [-u user_name] [, [-C, --constraint constraint_
name=[!]constraint_value[,constraint_name=[!] [constraint_
value...]] [--parent parent_account_id] [--debug] [--site site_name] [-?, --
help] [--man] [--quiet] [-v, --verbose] [-V, --version]

Additional detail for this command can be found in the man page by issuing
gmkaccount --man at the command line.

It is possible to have accounts be created automatically when projects are
created by setting the account.autogen configuration parameter to true (see
Account Auto-Generation). The auto-generated account will be associated
with the new project.

Example 1. Creating an account valid for the chemistry project

$ gmkaccount -p chemistry -n
"Chemistry"
Successfully created 1 account
with id 7 and 1 constraint

Example 2. Creating a wide-open account that can be used by anyone for any-
thing

$ gmkaccount -n "Windfall"
Successfully created 1 account
with id 8

Example 3. Creating an account valid toward all biology project members
except for dave and just the machine colony

$ gmkaccount -C
Project=biology,User=!dave,

- 127 -

Machine=colony -n "Biology on
Colony not for Dave"
Successfully created 1 account
with id 9 and 3 constraints

- 128 -

9.2 Querying Accounts
To display account information, use the command glsaccount:

glsaccount [-A | -I] [-n account_name] [-X, --extension property_name=pro-
perty_value [,property_name=property_value...]] [-u user_name] [-
g group_name] [-p project_name] [-o organization_name] [-c class_
name] [-m machine_name] [-f, --filter filter_name=filter_value[,
filter_name=filter_value...]] [-F, --filter-type Exclusive|(NonExclusive)]
[--full] [--show attribute_name [,attribute_name...]...] [-l, --long] [-w, --
wide] [--raw] [-h, --hours] [--debug] [--site site_man] [-?, --help] [--man] [--quiet]
[-V, --version] [[-a] account_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the account.show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsaccount --man at the command line.

Example 5. Listing all info about all accounts with multi-valued fields displayed
in a multi-line format

$ glsaccount —long
Id Name Amount

Constraints
Description
--- --------------- -------
---- ------------- -------

1 Biology
25000000 Project=biology

2 chemistry for amy
34802392 User=amy

Project=chemistry

3 chemistry not amy 5000000
User=!amy

Project=chemistry

4 film on colony 0
Project=film

Machine=colony

Example 6. Wide listing all info about all accounts useable by amy

- 129 -

$ glsaccount -u amy
Id Name Amount

Constraints
Description

--- --------------- --------
----- -------------

1 biology 25000000

Project=biology
2 chemistry for amy 24802392

Project=chemistry,User=amy

4 film on colony 0
Machine=colony,

Project=dance

- 130 -

9.3 Modifying Accounts
To modify an account, use the command gchaccount:

gchaccount [-n account_name] [--priority account_priority] [-d description]
[-X, --extension property_name=property_value [,property_name=pro-
perty_value...]][—addConstraint(s) constraint_name= [!]constraint_
value[,constraint_name= [!]constraint_value...]] [--delConstraint(s)
constraint_name[,constraint_name...]] [--parent parent_account_
id] | --reset [--all]} [-u user_name] [-g group_name] [-p project_name] [-o
organization_name] [-cclass_name] [-m machine_name] [-f, --filter
filter_name=filter_value[,filter_name=filter_value...]] [-F, --
filter-type Exclusive|(NonExclusive)] [--debug] [--site site_name] [-?, --help] [--
man] [--quiet] [-v, --verbose] [-V --version] ([-a] account_id}

Additional detail for this command can be found in the man page by issuing
gchaccount --man at the command line.

Example 6 - Adding a constraint to an account so that it can only be used by
the acme organization

$ gchaccount —add-constraint
Organization=acme 7
Successfully created 1
constraint

Example 7 - Resetting an account

$ gchaccount --reset 1
Successfully reset 4512 credits
from 1 allocation

- 131 -

9.4 Making Deposits
gdeposit is used to deposit time-bounded resource credits into an account result-
ing in the creation or increase of an allocation. (See Managing Allocations for man-
aging allocations). The start time will default to -infinity and the end time will
default to infinity if not specified. Filter options can be specified to help select a
unique account for the deposit. If multiple accounts are matched by the filters,
the matching accounts will be listed and you will be prompted to respecify the
deposit with one of the account ids. If an allocation for the deposit account is
found having the start and end times for the deposit, the amount of the allocation
will be increased by the deposit amount. Otherwise, a new allocation will be
created for the account with the amount of the deposit. If no accounts match your
criteria, if the account auto-generation is enabled, an account will be created and
the deposit made into it. Otherwise, the deposit will fail (the account will need to
be first created using gmkaccount.

Deposits may be used to extend the debit ceiling by specifying an amount for the
deposit (with the -z option) or extend the credit floor by specifying a credit limit
for the deposit (with the -L option) or a combination of both options may be used.
Additionally, Infinity may be used for either of these option values when Moab
Accounting Manager is coupled with a database that supports IEEE Standard 754 for
Floating-Point Arithmetic (e.g. PostgreSQL).

gdeposit [-L credit_limit] [-s start_time] [-e end_time] [-d descrip-
tion] [-a account_id] [-i allocation_id] [-p project_name] [-o organ-
ization_name] [-c class_name] [-m machine_name] [-f, --filter filter_
name=filter_value[,filter_name=filter_value...]] [-F, --filterType
Exclusive|(NonExclusive)] [--create-account True|False] [--reset] [-h, --hours] [--
debug] [--site site name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --ver-
sion] [[-z] amount]

Additional detail for this command can be found in the man page by issuing
gdeposit --man at the command line.

Example 8. Making a deposit into account 1

$ gdeposit -z 360000000 -a 1
Successfully deposited
360000000 credits into account
1

Example 9. Making a deposit "into" a project

If a project has a single account then a deposit can be made against the project.

- 132 -

$ gdeposit -z 360000000 -p
chemistry
Successfully deposited
360000000 credits into account
2

Example 10. Creating a credit allocation

$ gdeposit -L 10000000000 -a 3
Successfully deposited 0
credits into account 3

Example 11. Making a reset deposit

Reset the active allocations in the account before making the deposit.

$ gdeposit -a 4 -z 36000000 --
reset
Successfully deposited 36000000
credits into account 4
Successfully reset 12767021
credits from 1 allocation

Example 12. Creating an infinite allocation

$ gdeposit -z Infinity -a 5
Successfully deposited inf
credits into account 5

The use of infinite allocations requires the use of a database that supports
the IEEE Standard 754 for Floating-Point Arithmetic (e.g. PostgreSQL).

Example 13. Making a series of quarterly allocations

$ gdeposit -s 2012-01-01 -e
2012-04-01 -z 25000000 -p
biology
Successfully deposited 25000000
credits into account 6

$ gdeposit -s 2012-04-01 -e
2012-07-01 -z 25000000 -p
biology

- 133 -

Successfully deposited 25000000
credits into account 6

$ gdeposit -s 2012-07-01 -e
2012-10-01 -z 25000000 -p
biology
Successfully deposited 25000000
credits into account 6

$ gdeposit -s 2012-10-01 -e
2013-01-01 -z 25000000 -p
biology
Successfully deposited 25000000
credits into account 6

- 134 -

9.5 Querying The Balance
To display balance information, use the command gbalance:

gbalance [-u user_name] [-g group_name] [-p project_name] [-o organ-
ization_name] [-c class_name] [-m machine_name] [-f, --filter filter_
name=filter_value[,filter_name=filter_value...]] [-F, --filterType
Exclusive|(NonExclusive)] [-l, --long] [-w, --wide] [--raw] [-h, --hours] [--site site_
name] [--debug] [-? --help] [--man] [--quiet] [-V, --version]

The fields which are displayed by default by the gbalance command can be
customized by setting the balance.show configuration parameter in
gold.conf.

Additional detail for this command can be found in the man page by issuing
gbalance --man at the command line.

Example 14. Querying amy's balance

$ gbalance -u amy
Id Name Available
Allocated PercentUsed
--- -------- ---------- ------
---- -----------
13 biology 2785.87
5000.00 44.28
2 chemistry 1785.87
3000.00 40.47

Example 15. Querying the total balance available to bob for the biology
project on a colony cluster

$ gbalance -u bob -m colony -p
chemistry --total --available -
-quiet
2785.87

Example 16. List the available balances that amy can charge against along with
the constraints on those balances

$ gbalance -u amy —show
Balance,Constraints

- 135 -

Balance Constraints
------------- -------------
25000000 Project=biology
34802392
Project=chemistry,User=amy

0 Machine=colony,
Project=film

- 136 -

9.6 Personal Balance
The mybalance has been provided as a wrapper script to show users their personal
balance. It provides a list of balances for the accounts that they can charge to:

mybalance [-h, --hours] [-?, --help] [--man]

Additional detail for this command can be found in the man page by issuing
mybalance --man at the command line.

Example 17. List my account balances

$ mybalance
Balance Name
------------- -----------------
--
25000000 biology
34802302 chemistry for amy

Example 18. List my balance in (Processor) hours

$ mybalance -h
Balance Name
------------- -----------------
--
6944.44 biology
9667.33 chemistry for amy

- 137 -

9.7 Making Withdrawals
A withdrawal can be used to debit an account without being associated with the
usage charge from some item. To issue a withdrawal, use the command
gwithdraw:

gwithdraw [-a account_id] [-i allocation_id] [-u user-name] [-g group_
name] [-p project_name] [-p organization_name] [-c class_name] [-m
machine_name] [-f, --filter filter_name=filter_value[,filter_
name=filter_value...]] [-F, --filter-type Exclusive|(NonExclusive)] [[-z]
amount} [-d description] [-h, --hours] [--debug] [--site site_name] [-?, --help]
[--man] [--quiet] [-v, --verbose] [-V, --version {[-z] amount}

Additional detail for this command can be found in the man page by issuing
gwithdraw --man at the command line.

Example 19. Making a withdrawal

$ gwithdraw -z 12800 -a 1 -d
"Grid Tax"
Successfully withdrew 12800
credits from account 1

Example 20. Making a withdrawal "from" a project

If a project has a single account then a withdrawal can be made against the
project.

$ gwithdraw -z 12800 -p biology
Successfully withdrew 12800
credits from account 1

If more than one account exists for the project or filter, you will be asked to be
more specific:

$ gwithdraw -z 12800 -p
chemistry
Multiple accounts were matched
for the withdrawal.
Please respecify using one of
the following account ids:
2 [chemistry for amy]
3 [chemistry not amy]

- 138 -

9.8 Making Transfers
To issue a transfer between accounts, use the command gtransfer. If the allo-
cation id is specified, then only credits associated with the specified allocation
will be transferred, otherwise, only active credits will be transferred. Account
transfers preserve the allocation time periods associated with the resource credits
from the source to the destination accounts. Source and destination filters may be
used if they result in a single source account and single destination account.

gtransfer {--from-account source_account_id | --from-filter source_
filter_name=source_filter_value[,source_filter_name=source_
filter_value...]| -i allocation_id} {--to-account destination_
account_id| --to-filter destination_filter_name=destination_
filter_value[,destination_filter_name=destination_filter_
value...]} [-d description] [-h, --hours] [--debug] [--site site_name] [-?, --
help] [--man] [--quiet] [-v --verbose] {[-z] amount}

Additional detail for this command can be found in the man page by issuing
gtransfer --man at the command line.

Example 21. Transferring credits between two accounts

$ gtransfer --from-account 1 --
to-account 2 10000
Successfully transferred 10000
credits from account 1 to
account 2

Example 22. Transferring credits between two single-account projects

$ gtransfer --from-filter
Project=biology --to-filter
Project=chemistry 10000
Successfully transferred 10000
credits from account 1 to
account 2

- 139 -

9.9 Obtaining an Account Statement
To generate an account statement, use the command gstatement. For a specified
time frame it displays the beginning and ending balances as well as the total cred-
its and debits to the account over that period. This is followed by an itemized
report of the debits and credits. Summaries of the debits and credits will be dis-
played instead of the itemized report if the --summarize option is specified. If
filter options are specified instead of an account, then the statement will consist
of information merged from all accounts valid toward the specified entities.

gstatement [[-a] account_id] [-n account_name] [-u user_name] [-g
group_name] [-p project_name] [-o organization_name] [-c class_
name] [-m machine_name] [-f, --filter filter_name=filter_value[,
filter_name=filter_value...]] [-F, --filter-type Exclusive|(NonExclusive)]
[-s start_time] [-e end_time] [--summarize] [-h, --hours] [--debug] [--site
site_man] [-?, --help] [--man] [-V, --version]

Additional detail for this command can be found in the man page by issuing
gstatement --man at the command line.

Example 23. Generating an account statement for all chemistry accounts for
the fourth quarter of 2011

$ gstatement -p chemistry -s
2011-10-01 -e 2012-01-01

###############################-
End of Report
###############################-
#
$ gstatement -p chemistry -s
2011-10-01 -e 2012-01-01 --
summarize

###############################-
###############################-
##################
#
Includes account 3 (chemistry
not amy)
Includes account 2 (chemistry
for amy)
Generated on Mon Feb 7

- 140 -

18:44:23 2012.
Reporting account activity
from 2011-10-01 to 2012-01-01.
#

###############################-
###############################-
##################
Beginning Balance: 0
--------------------------- ---

Total Credits:
90122212
Total Debits: -
5308668
--------------------------- ---

Ending Balance:
84813544
###############################
Credit Summary
###############################-
###
Object Action Amount

---------- -------- -------
-
Account Deposit
90100000
UsageRecord Refund
22212
###############################
Debit Summary
###############################-
####
Object Action Project

User Machine Amount
Count
------------- --------- -------
-- ---- -------- -------

UsageRecord Charge
chemistry amy colony -

- 141 -

19744 239

###############################
End of Report
###############################-
###

The fields which are used as default discriminators in the detail section of
the gstatement command (which are by default Project, User and Machine)
can be customized by setting the statement.show configuration parameter
in gold.conf.

- 142 -

9.10 Deleting Accounts
To delete an account, use the command grmaccount:

grmaccount [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] {[-a] account_id}

Additional detail for this command can be found in the man page by issuing
grmaccount --man at the command line.

Example 24. Deleting an account

$ grmaccount 2
Successfully deleted 1 account

- 143 -

9.11 Account Auto-Generation
It is possible to enable the auto-generation of accounts by setting the AutoGen
property of the Account object to True. When creating a new project, if account
auto-generation is enabled, an account will automatically be created for the
project (unless overridden with the --create-account option). The account
will be usable only by usage attributed to the new project. Additionally, if
account auto-generation is set, a deposit that does not match an existing account
will automatically generate an account using the filters as constraint options.
Objects associated with the constraint that have AutoGen set to True will be auto-
generated as well (unless overridden with the --create-account option).

Example 25. Enable auto-generation of accounts

$ goldsh Object Modify
Name==Account AutoGen=True
Successfully modified 1 object

- 144 -

9.12 Hierarchical Accounts
An account hierarchy can be established between accounts. When creating an
account or by modifying it later, one can specify a parent account id via the --
parent option to establish the object account as a child of the specified parent
account. An account may have multiple children accounts but only a single parent
account.

Example 26. Establishing a child relationship with another account

$ gchaccount --parent 3 -a 6
Successfully added 1 parent

Deposit shares may be established between the parent account and its children
that assist to automate a trickle-down effect for funds deposited at higher level
accounts (DepositShare is an attribute of the AccountAccount association object).
Deposit shares are integers and are treated as a percentage of each deposit and
the sum of the deposit shares for an account's children may not exceed 100. If the
deposit shares for the children of an account totals less than 100, the difference is
taken to be the share of the deposit that will be allocated to the parent. When a
deposit is made into a parent account, for each child account that has a non-zero
deposit share a recursive deposit amounting to the designated percentage of the
parent deposit is issued to that child. After the share amounts have been depos-
ited to each of the child accounts, the remaining percentage of the deposit is allo-
cated to the parent account. This effect is recursive with each child. If a start
time and/or end time are specified in the original deposit, these time frames will
be recursively applied to all descendant deposits. You have to use the goldsh inter-
active control program to manage deposit shares. For the AccountAccount asso-
ciation object, the Account is the parent and the Id is the child.

Example 27. Establishing a 10% deposit share between a parent and a child
account

$ goldsh AccountAccount Modify
Account==3 Id==6
DepositShare=10

Account Id DepositShare
Overflow
--------- ---- ------------

3 6 10 False

- 145 -

Successfully modified 1
accountAccount

An overflow policy may be established between the parent account and its chil-
dren to enable a trickle-up effect for charges, reservations and quotes from the
lower level accounts (Overflow is an attribute of the AccountAccount association
object). The Overflow attribute is a boolean value (True or False). If the overflow
value between a child and its parent is set to True, any charges, reservations or
quotes issued against the child account that cannot be satisfied by the balance in
the child account, will recursively issue the unsatisfied portion of the charge, res-
ervation or quote against the parent account. If the charge, reservation or quote
cannot be satisfied by the ancestors, no charges, reservations or quotes will result
against any of accounts. The balance in the descendant accounts will be depleted
before ancestor accounts. This effect is recursive with each parent. If a parent
account is linked with overflow to a child account and a charge, reservation or
quote overflows to the parent account, the constraints of the parent account will
not be checked against the properties of the item. One must use the goldsh con-
trol program to manage the overflow policy. For the AccountAccount association
object, the Account is the parent and the Id is the child.

Example 28. Enabling overflow between a parent and a child account

$ goldsh AccountAccount Modify
Account==3 Id==6 Overflow=True

Account Id DepositShare
Overflow
--------- ---- ------------

3 6 10 True

Successfully modified 1
accountAccount

- 146 -

9.13 Account Priority
By default, when an item can charge to multiple accounts, accounts with more
constraints are chosen over accounts with fewer constraints. For example, if the
user amy is charging against the chemistry project for usage of an item and there
are two viable accounts, one with a single constraint (e.g. Project=chemistry) and
another with two constraints (e.g. Project=chemistry and User=amy), credits will
be taken from the more specific account (with 2 constraints) before they are taken
from the more general account (with 1 constraint). To override this behavior, it is
possible to give a priority to an account. The priority factor of an account has
higher precedence than the specificity (constraint count) of the account. Thus, all
else being equal, if an account with a lower number of constraints is given a
higher priority than an account with a higher number of constraints, the higher
priority account will be depleted first. Other factors, such as the end time of the
allocation or whether there is an existing reservation for the item against an
account, have a higher precedence than the specificity of the account. If you
want the allocations in a particular account to be chosen before allocations that
expire sooner or that have a reservation, you may need to specify account prior-
ities that are in the millions (see Allocation Precedence for a discussion of the
manner of sorting allocations for charging).

Example 29. Setting an account priority

$ goldsh Account Modify Id==3
Priority=1
Successfully modified 1
account

- 147 -

10.0 Managing Allocations
An allocation is a time-bounded pool of resource or service credits associated with
an account. An account may have multiple allocations, each for use during a dif-
ferent time period.

An allocation has a start time and an end time that defines the time period during
which the allocation may be used. By default an allocation is created with an
unbounded time period (-Infinity to Infinity). An active flag is automatically
updated to True if the account is within its valid timeframe or False if it is not. An
allocation that becomes active because the current time is greater than its start
time undergoes an activation which normally registers as a credit to the account.
An allocation that becomes inactive because the current time is greater than its
end time undergoes a deactivation which normally registers as a debit to the
account.

An allocation may have a credit limit representing the amount by which it can go
negative. Thus, by having a positive balance in the Amount field, the account is
like a debit account, implementing a pay-first use-later model. By establishing a
credit limit instead of depositing an initial balance, the account will be like a
credit account, implementing a use-first pay-later model. These strategies can be
combined by depositing some amount of funds coupled with a credit limit, imple-
menting a form of overdraft protection where the funds will be used down to the
negative of the credit limit.

An allocation also has a Deposited attribute that is incremented with each cred-
iting deposit. When a deposit is made, if a matching allocation already exists with
the appropriate time period, the existing allocation is modified. Otherwise, a new
allocation is created. If the deposit results in an increased balance for the
account, the Deposited field is incremented by the same amount. Thus, the Depos-
ited field seeks to track the total amount deposited to the allocation over its life-
time. An allocation can be reset, which causes both the Amount and the Deposited
fields to be reset to zero.

It is possible for the allocation Amount or CreditLimit to be set to Infinity (via a
deposit). If the amount is infinite, debits will not decrease the balance. An infi-
nite deposit will result in an infinite Deposited amount. If the credit limit is infi-
nite, there will be no negative limit for debits. It is not possible to have infinite
charges, reservations, quotes, withdrawals, refunds or transfers. However, it is pos-
sible to have infinite allocation activations, deactivations and deletions. This
capability is only available when using a database that supports IEEE Standard 754
for Floating-Point Arithmetic (e.g. PostgreSQL).

Operations include querying, modifying, resetting and deleting allocations. Allo-
cations can be created by an account deposit, creating an account with allocation
auto-generation enabled, refunding a usage record, or a transfer between

- 148 -

accounts. Allocations may also be indirectly modified via charges, withdrawals,
transfers, or refunds. By default, a standard user may only query allocations which
pertain to them.

Allocation queries allow the specification of filter options which filter the allo-
cations to those with accounts meeting the specified account constraints. There
are two account filter types that can be employed: Exclusive and NonExclusive. If
an exclusive filter type is used, the query will return only allocations relating to
accounts for which the specified filters meet all constraints. For example, Allo-
cation Query FilterType:=Exclusive Filter:=User=scottmo would not return an allo-
cation for an account with the sole constraint Machine=blue. If a non-exclusive
filter type is used, the query will return all allocations relating to accounts for
which the filters do not specifically exclude the constraints. The query assumes
that if constraints are not specified within the filters, they can be assumed as a
wildcard and will return all allocations involving accounts that are not specifically
excluded by the filter. For example, Allocation Query FilterType:=NonExclusive
Filter:=User=scottmo would return an allocation with an account whose only con-
straint was Machine=blue but would not return an allocation with an account with
the constraint User=bob.

- 149 -

10.1 Creating Allocations
Allocations are normally created by making account deposits via the gdeposit com-
mand (See Making Deposits).

- 150 -

10.2 Querying Allocations
To display allocation information, use the command glsalloc:

glsalloc [-A | -I] [-a account_id] [-X, --extension property_name=pro-
perty_value[,property_name=property_value...]] [-u user_name] [-g
group_name] [-p project_name] [-o organization_name] [-c class_
name] [-m machine_name] [-f, --filter filter_name=filter_value[,
filter_name=filter_value...]] [-F, --filter-type Exclusive|(NonExclusive)]
[--include-ancestors] [--full] [—show attribute_name [,attribute_
name...]] [-l, --long] [-w, --wide] [--raw] [-h, --hours] [--debug] [--site site_man]
[-?, --help] [--man] [--quiet] [-V --version] [[-i] allocation_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the allocation.show configuration parameter in
gold.conf. Additional detail for this command can be found in the man page
by issuing glsalloc --man at the command line.

Example 1. Listing allocations for account 1

$ glsalloc -a 1
Id Account Active
StartTime EndTime
Amount CreditLimit
Deposited Description
--- -------- ------- -------
---- ---------- --------- --
----------- --------- -------

2 1 False 2012-
04-01 2012-07-01 25000000

0 250000

3 1 False 2012-
07-01 2012-10-01 25000000

0 250000

4 1 False 2012-
10-01 2013-01-01 25000000

0 250000

1 1 True 2012-
01-01 2012-04-01 24974400

- 151 -

0 250000

- 152 -

10.3 Modifying Allocations
To modify an allocation, use the command gchalloc:

gchalloc [-s start_time] [-e end_time] [-L credit_limit] [-D deposited]
[-d description] [-X, --extension property_name=property_value[,prop-
erty_name=property_value...]] [-h, --hours] [--debug] [--site site_name]
[-?, --help] [--man] [—quiet] [-v, --verbose] {[-i] allocation_id}

Additional detail for this command can be found in the man page by issuing
gchalloc --man at the command line.

Example 2. Changing the end time for an allocation

$ gchalloc -e "2013-01-01" 4
Successfully modified 1
allocation

Example 3. Changing the credit limit for an allocation

$ gchalloc -L 500000000000 -i 2
Successfully modified 1
allocation

Example 4. Resetting an allocation

$ gchalloc -e --reset 2
Successfully reset 25000000
credits from 1 allocation

- 153 -

10.4 Delete Allocations
To delete an allocation, use the command grmalloc:

grmalloc [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose]
[-V, --version] {-I | [-i] allocation_id}

Additional detail for this command can be found in the man page by issuing
grmalloc --man at the command line.

Example 5. Deleting an allocation

$ grmalloc 4
Successfully deleted 1
allocation

Example 6. Purging inactive allocations

$ grmalloc -I
Successfully deleted 2
allocations

- 154 -

10.5 Allocation Auto-Generation
It is possible to enable the auto-generation of allocations by setting the AutoGen
property of the Allocation object to True. When creating a new account, if allo-
cation auto-generation is enabled, an allocation will automatically be created for
the account via a deposit. The deposit will use the default amount and default
credit limit (defined in the DefaultValue property of the Allocation Amount and
Allocation CreditLimit attributes). The default action for allocation auto-gen-
eration is to create an allocation with an infinite credit limit.

Example 7. Enable auto-generation of allocations

$ goldsh Object Modify
Name==Allocation AutoGen=True
Successfully modify 1 object

- 155 -

10.6 Allocation Precedence
When issuing a charge (or a reservation or quote) for the usage of a resource or
service, the feasible allocations are sorted according to a weight given to them for
that transaction. The weight for each allocation is calculated as follows: If the
instance has a current reservation against one or more allocations, these allo-
cations are given a value of 10000000 + int((2147483647 - <end_epoch_time>) /
86400). Thus, these reserved allocations will generally have the highest prec-
edence (subject to large account priorities), with those that expire sooner being
used first. For the remaining non-nested accounts, allocations will be given a
value of 100 * int((2147483647 - <end_epoch_time>) / 86400) + 10 * <account_prior-
ity> + <constraint_count>. Thus, sooner expiring allocations will be used before
later expiring allocations, account priority will be the next highest factor (assum-
ing small priority values of 1-10), followed by the number of constraints on the
account (more specific accounts will be used before more general accounts). Of
course, since priority is configurable, a sufficiently large priority (in the millions)
can be used to override the precedence of earlier expiring allocations or even allo-
cations with reservations. Lastly, nested accounts that become feasible because of
overflow to ancestor accounts have a negative weighting and are used last, with
the earliest expiring allocations being used before later expiring allocations and
closer level ancestors being depleted before ancestor accounts that are at more
distant levels. These allocations are given a weight of <distance * 100000> - <end_
epoch_time>. After all feasible allocations are sorted according to the above rules,
the charge (or reservation or quote) will be applied against the allocations one by
one in sorted order (highest value first) until the request is fulfilled, or until it
fails due to insufficient funds. If a transaction is not able to be satisfied in whole,
the entire transaction will fail and no partial debits will be applied.

- 156 -

11.0 Managing Reservations
A reservation is a hold placed against an allocation. Before usage of a resource or
service begins, a reservation (or hold) is made against one or more allocations
within the requesting user's applicable account(s).Subsequent usage requests will
also post reservations while the available balance (active allocations minus res-
ervations) allows. When the usage ends, the reservation is removed and the actual
charge is made to the allocation(s). This procedure ensures that usage will only be
permitted so long as the requestors have sufficient reserves.

Associated with a reservation is the instance name (name of the item being used
such as the job id), the usage record (which contains the item details), a start
time and end time for the reservation and a description. The reservation will auto-
matically expire and no longer count against the user's balance after the end time
passes. Each reservation will be associated with held amounts from one or more
allocations. Operations include creating, querying, modifying and deleting res-
ervations. By default, a standard user may only query reservations attributed to
them.

Reservation queries allow the specification of filter options which narrow down
the reservations that will be returned. There are two reservation filter types that
can be employed: AttributedTo and ImpingesUpon. If ImpingesUpon is used, the
query will return all reservations associated with accounts satisfying the filters.
For example, Reservation Query FilterType:=ImpingesUpon Filter:=User=scottmo
will return all reservations impinging on Accounts usable by scottmo. If Attrib-
utedTo is used, the query will return all reservations associated with usage records
satisfying the filters. For example, Reservation Query FilterType:=AttributedTo
Filter:=User=scottmo will return all reservations for resources or services allocated
to scottmo.

When a reservation is created via the UsageRecord Reserve action (such as via gre-
serve), if another reservation exists with the same instance name, the default
behavior is to leave the old reservation in place (and create the new one along
side it). This behavior assumes that the other reservation is probably a separate res-
ervation created by a resource or service manager that reuses instance ids. How-
ever, alternate behaviors may be specified via the mutually exclusive Modify or
Replace options. If the Replace option is specified, any pre-existing reservations
with matching instance names will first be deleted, thereby ensuring only one res-
ervation per instance name at a time. If the Modify option is specified, a pre-exist-
ing reservation with matching instance name will be modified to have the new
properties (but keeping the same reservation id), and can be used to extend a res-
ervation. This might be used with incremental charging to dynamically stretch res-
ervations along a little at a time as needed. (See Making Usage Reservations for a
description of the action using these options).

- 157 -

Reservation may be granted a grace period (in seconds), which is defined as the
difference between the validity period of the reservation (end time minus start
time) and the expected duration of the usage. The purpose of a grace period is to
account for the fact that we may not know precisely when the usage will begin
and the reservation needs to be remain in force during the lifetime of the usage.
One can apply a desired grace period for a reservation by setting the end time
longer than the specified duration. Alternatively, a grace duration option can be
specified with the duration when creating a reservation via greserve as a helper to
computing a relatively adjusted end time.

- 158 -

11.1 Creating Reservations
Reservations are normally created by the resource management system with the
greserve command (See Making Usage Reservations).

gmkres [-J instance_name|job_id] [-s start_time] {-e end_time | -t res-
ervation_duration] [-d description] [-X, --extension property_name=pro-
perty_value [,property_name=property_value...]] {-A allocation_id<-
account_id=subreservation_amount[,allocation_id<-account_
id=subreservation_amount...]} [--debug] [--site site_name] [-?, --help] [--
man] [—quiet] [-v, --verbose] [-V, --version]

Additional detail for this command can be found in the man page by issuing
gmkres --man at the command line.

Example 1. Creating a manual reservation

$ gmkres -J weekend_run -t
84600 -A "5<-2=3600"
Successfully created 1
reservation

Use of the gmkres command bypasses the normal mechanisms that prevent
more reservations from being placed against an allocation than it can support.
Use greserve instead if you wish to avoid the possibility of oversubscribing
the allocations.

- 159 -

11.2 Querying Reservations
To display reservation information, use the command glsres:

glsres [-A | -I] [-J instance_pattern | job_id_pattern] [-X, --extension
property_name=property_value [,property_name=property_value...]] [-u user_
name] [-g group_name] [-p project_name] [-o organization_name] [-c
class_name] [-m machine_name] [-f, --filter filter_name=filter_value
[,filter_name=filter_value...]] [-F, --filter-type (AttributedTo)|Imping-
esUpon] [--full] [--show attribute_name [,attribute_name...]...] [-l, --long]
[-w, --wide] [--raw] [-h, --hours] [--debug] [--site site_name] [-?, --help] [--man] [-
-quiet] [-V, --version] [[-r] reservation_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the reservation.show configuration parameter in
gold.conf. Additional detail for this command can be found in the man page
by issuing glsres --man at the command line.

Example 2. Listing all info about all reservations for amy

$ glsres -u amy
Id Instance Amount
StartTime EndTime

UsageRecord Accounts
Description

--- ------------ -------- -----
--------------- ---------------
----- ------------ ---------- -
---------- -------------
3 PBS.1234.4 57600 2012-
04-06 21:21:48 2012-04-06
22:31:48 7 2

Example 3. Listing all info about all reservations that impinge against dave's
balance

$ glsres -u dave -F
ImpingesUpon
Id Instance Amount
StartTime EndTime

UsageRecord Accounts
Description

--- ----------- -------- -----

- 160 -

--------------- ---------------
----- ----------- ---------- -

4 batch.12 7600 2012-
04-06 15:30:34 2012-04-06
15:41:50 244 3

- 161 -

11.3 Modifying Reservations
To modify a reservation, use the command gchres:

gchres [-s start_time] [-e end_time] [-t reservation_duration] [-d
description] [-X, --extension property_name=property_value [,property_
name=property_value...]] [—debug] [--site site_name] [-?, --help] [--man] [--
quiet] [-v, --verbose] [-V, --version] {[-r] reservation_id}

Additional detail for this command can be found in the man page by issuing
gchres --man at the command line.

Example 4. Changing the expiration time of a reservation

$ gchres -e "2012-06-06
14:43:02" 1
Successfully modified 1
reservation

- 162 -

11.4 Deleting Reservations
To delete a reservation, use the command grmres:

grmres [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-
V, --version] {-I | -J instance_name | job_id | [-r] reservation_id}

Additional detail for this command can be found in the man page by issuing
grmres --man at the command line.

Example 5. Deleting a reservation by instance (or job id)

$ grmres -n PBS.1234.0
Successfully deleted 1
reservation

Example 6. Deleting a reservation by Reservation Id

$ grmres 1
Successfully deleted 1
reservation

Example 7. Purging stale reservations

$ grmres -I
Successfully deleted 2
reservations

- 163 -

12.0 Managing Quotes
A quotation provides a way to determine beforehand how much would be charged
for a job. When a quotation is requested, the charge rates applicable to the job
requesting the quote are saved and a quote id is returned. When the job makes a
reservation and the final charge, the quote can be referenced to ensure that the
saved charge rates are used instead of current values. A quotation has an expi-
ration time after which it cannot be used. A quotation may also be used to verify
that the given job has sufficient funds and meets the policies necessary for the
charge to succeed.

Associated with a quote is the id, the instance name (name of the item being used
such as the job id), the amount quoted (assuming full use of the quoted resources
or services), the usage record (which contains the usage details), a start and end
time for the quote, a duration (how long the item is expected to be used), a bool-
ean indicating whether the quote is pinned or unpinned, and a description. Each
guaranteed quote will be associated with one or more saved charge rates. Oper-
ations include creating, querying, modifying and deleting quotes. By default, a
standard user may only query quotes attributed to them.

Quote queries allow the specification of filter options which narrow down the
quotes that will be returned. The query will return all quotes associated with
usage records satisfying the filters. For example, Quote Query Filter:=User=scottmo
will return all quotes for resources or services allocated to scottmo.

A quote may be pinned (restricted to a particular instance) or unpinned (allowed
to be used by any number of different instances). If a quote is pinned and has not
been tied to a particular instance when initially created, it will be tied to the first
instance that claims it. Once pinned to an instance, it can then be used repeatedly
by that same instance until the quote expires, but not by any other instance. If a
quote is not pinned, any instances may use the quoted rates while the quote is
active.

A quote may be granted a grace period, which is defined as the difference
between the validity period of the quote (end time minus start time) and the
expected duration of the usage in seconds. The purpose of a grace period is to
account for the fact that we may not know precisely when the usage will begin
and the quote needs to be valid during the time of completion of the usage in
order for the guaranteed charge rates to be applied. One can apply a desired grace
period for a quote by setting the end time longer than the specified duration.
Alternatively, a grace duration option can be specified with the duration when cre-
ating a quote via gquote as a helper to computing a relatively adjusted end time.

A distinction may be made between quotes and quote templates, both of which
use the Quote object. A quote will always return a cost estimate and will be asso-
ciated with a specific usage record. A quote template provides a way to bundle

- 164 -

together a package of special charge rates that can be applied to quotes, res-
ervations and charges. Quote templates use the same Quote object as regular
quotes but they are not associated with a usage record and do not generate a
quote amount.

In calculating a price, a quote will use (in order of lower to higher precedence)
the standard charge rates, the charge rates from a specified quote template, the
specified override charge rates, or an externally specified charge amount. In sav-
ing guaranteed charge rates, the standard charge rates pertaining to the specified
usage record properties will be used unless overridden by a specified quote tem-
plate or specified charge rates.

There are several key purposes for using quotes and quote templates. First, a
quote may be requested to discover the cost of using a resource or service. If this
is your sole purpose, then you may want to use the gquote command with the --
costOnly option. Second, a quote can be used to check whether the requestor has
sufficient access and funds to use the requested resource. This may be accom-
plished by invoking the gquote command without the --costOnly option. Third, a
quote or a quote template can be used to lock-in current or specified charge rates
for use in future reservations and charges. If the details of the usage are known
and you would like to get a quote amount with a quote id that can be referenced
to guarantee the quoted charge rates, you may use the gquote command with the
--guarantee option. Override charge rates may be factored in to the cost estimate
of the quote by using the gquote command with the --rate option. If specific over-
ride charge rates need to be saved or guaranteed for future use within a quote,
reservation or charge without generating a cost estimate, create a pinned quote
template by using the gmkquote command with the --pin and -R options. If it is
necessary to create a quote template that can be used to override the standard
charge rates for multiple instances, use the gmkquote command with the --nopin
and -R options.

- 165 -

12.1 Creating Quotes
Quotes are normally generated by the resource management system with the
gquote command before an instance uses requested resources or services (see
Obtaining Usage Quotes).

- 166 -

12.2 Creating Quote Templates
Quote templates may be created by using the gmkquote command. Quote tem-
plates provide a way to bundle together a package of special charge rates that can
be applied to quotes, reservations and charges.

gmkquote [[--pin] [-J instance_name|job_id | --nopin] [-s start_time] {-e
end_time | -t quote_duration} [-d description] [-X, --extension prop-
erty_name=property_value [,property_name=property_value...]] {-
R charge_rate_type:charge_rate_name[{charge_rate_instance}]
=charge_rate_amount[,charge_rate_type:charge_rate_name
[{charge_rate_instance}]=charge_rate_amount...]} [--debug] [--site
site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version]

Additional detail for this command can be found in the man page by issuing
gmkquote --man at the command line.

Example 1. Creating a pinned quote template

$ gmkquote --pin -J vpc.1 -t
86400 -R
VBR:Processors=1.5,
NBM:QualityOfService{Premium}
=1.7
Successfully created 1 quote
template with id 17

Example 2. Creating an unpinned quote template

$ gmkquote --nopin -t 86400 -R
VBR:Disk=2.5,NBR:License
{Matlab}=4
Successfully created 1 quote
template with id 18

Use of the gmkquote command will not result in a cost estimate or the cre-
ation of a usage record. Use gquote instead if you wish to obtain a quote for
usage.

- 167 -

12.3 Querying Quotes
To display quotation information, use the command glsquote:

glsquote [-A | -I] [-J instance_name|job_id [-X, --extension property_
name=property_value [,property_name=property_value...]] [-u
user_name] [-g group_name] [-p project_name] [-m machine_name] [-f, --
filter filter_name=filter_value[,filter_name=filter_value...]] [-
F, --filter-type (AttributedTo)|ImpingesUpon] [--full] [--show attribute_name[,
attribute_name...]] [-l, --long] [-w, --wide] [--raw] [-h, --hours]] [--debug] [--
site site_name[-?, --help] [--man] [--quiet] [[-q] quote_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the quote.show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsquote --man at the command line.

Example 3. Listing all quotes for user amy on machine colony

$ glsquote -u amy -m colony
Id Amount Pinned Instance
UsageRecord StartTime

EndTime Duration
ChargeRates Description

--- ------- ------ --------- -
---------- -------------------
------------------- ---------
------------- ----------------

-- --------- ------ -----------
-------------------- ----------

1 57600 True
242 2012-04-06
12:49:53 2012-04-13 13:09:58
3600 VBR:Processors:1

- 168 -

12.4 Modifying Quotes
To modify a quote, use the command gchquote:

gchquote [-s start_time] [-e expiration_time] [-d description] [-X, --
extension property_name=property_value [,property_name=pro-
perty_value...]] [—debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v
| --verbose] [-V, --version] {[-q] quote_id}

Additional detail for this command can be found in the man page by issuing
gchquote --man at the command line.

Example 4. Changing the expiration time of a quote

$ gchquote -e "2012-05-01" 1
Successfully modified 1 quote

- 169 -

12.5 Deleting Quotes
To delete a quote, use the command grmquote:

grmquote [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose]
[-V, --version] {-I | [-q] quote_id}

Additional detail for this command can be found in the man page by issuing
grmquote --man at the command line.

Example 5. Deleting a quote

$ grmquote 1
Successfully deleted 1 quote

Example 6. Purging stale quotes

$ grmquote -I
Successfully deleted 2 quotes

- 170 -

13.0 Managing Usage Records
Moab Accounting Manager can track the usage of resources and services on your sys-
tem, recording the charge and the details of the usage in a usage record. A usage
record is created when a resource or service manager requests a guaranteed quote
for usage, places a reservation for usage, or charges for the usage of an item.
Usage records can also be created directly via UsageRecord Create (gmkusage). A
refund can be invoked to credit a charge amount back to the originating account.
Usage records can also be queried, modified or deleted. By default, a standard
user may only query usage records attributed to them.

In a typical use case, a quote might be used to discover how much it would cost to
use an item (resource or service) and to verify the user had sufficient access to
the item and funds to cover the requested usage. Just before the item is about to
be used, a reservation (or hold) might be placed against the user's allocated cred-
its for the requested usage. After the usage is complete, a charge for the actual
usage can be debited from their account and the reservation removed.

As is the case for other Moab Accounting Manager objects, usage records are highly
customizable. One may remove most usage record properties and add new usage
record properties. Refer to the section Customizing the Usage Record Object for
examples of customizing usage records.

- 171 -

13.1 Creating a Usage Record
In most cases, usage records will be created by the resource management system
via the API or with the gquote, the greserve or the gcharge command.

However, it is also possible to create usage records directly using the gmkusage
command:

gmkusage [-T usage_record_type] [-u user_name] [-g group_name] [-p
project_name] [-o organization] [-c class_name] [-Q quality_of_serv-
ice] [-m machine_name] [-N nodes] [-P processors] [-M memory] [-D disk]
[-n network] [-t usage_duration] [-s start_time] [-S service_id] [-e end_
time] [-d description] [-X | --extension property=value[,property_
name=property_value...]] [--debug] [--site site_name] [-?, --help] [--man] [--
quiet] [-v, --verbose] [-V, --version] {[-J] instance_name|job_id}

Additional detail for this command can be found in the man page by issuing
gmkusage --man at the command line.

Example 1. Creating a usage record

$ gmkusage -u jsmith -p chem -m
cluster -X Charge=2468 -P 2 -t
1234 -J PBS.1234.0
Successfully created 1 usage
record with id 246

The fields which are displayed by default by this command can be cus-
tomized by setting the usagerecord.show configuration parameter in
gold.conf.

Use of the gmkusage command to record usage will not result in the deb-
iting of a user's allocation. Use gcharge instead if you wish to charge for the
usage.

- 172 -

13.2 Querying Usage Records
To display usage record information, use the command glsusage:

glsusage [-T usage_record_type] [[-J] instance_name_pattern|job_id_
pattern] [-u user_name] [-g group_name] [-p project_name] [-o organ-
ization_name] [-c class_name] [-m machine_name] [--stage stage] [-s
start_time] [-S service_id] [-e end_time] [-X, --extension property_
name=property_value [,property_name=property_value...]] [--full] [-
-show attribute_name [,attribute_name...]] [--raw] [-h, --hours] [--debug]
[--site site_name] [-?, --help] [--man] [--quiet] [-V, --verbose] [[-j] usage_rec-
ord_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the usagerecord.show configuration parameter in
gold.conf. Additional detail for this command can be found in the man page
by issuing glsusage --man at the command line.

Example 2. Show specific info about usage tallied by amy

$ glsusage --show=Type,
Instance,Project,Machine,Charge
-u amy
Type Instance Project
Machine Charge
----- ---------- ---------- --
-------- -------
Job PBS.1234.0 chemistry
colony 22212

- 173 -

13.3 Modifying a Usage Record
It is possible to modify a usage record by using the command gchusage:

gchusage [-T usage_record_type] [-u user_name] [-g group_name] [-p
project_name] [-o organization] [-c class_name] [-Q quality_of_serv-
ice] [-m machine_name] [-N nodes] [-P processors] [-M memory] [-D disk]
[-n network] [-t usage_duration] [-s start_time] [-S service_id] [-e
end_time] [-d description] [-X, --extension property_name=property_
value[,property_name=property_value...]] [--debug] [--site site_name]
[-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version] {[-j] usage_record_id | -
J instance_name|job_id}

Additional detail for this command can be found in the man page by issuing
gchusage --man at the command line.

Example 3. Changing a usage record

$ gchusage -Q HalfPrice -X
Charge=1234 -d "Benchmark" -J
PBS.1234.0
Successfully modified 1 usage
record

Changing a recorded charge in this manner will not change the allocated bal-
ance (see Issuing Usage Refunds to refund a charge).

- 174 -

13.4 Deleting a Usage Record
To delete a usage record, use the command grmusage:

grmjob [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-
V, --version] [[-j] usage_record_id|-J] instance_name|job_id]

Additional detail for this command can be found in the man page by issuing
grmusage --man at the command line.

Example 4. Deleting a usage record

$ grmusage -J PBS.1234.0
Successfully deleted 1 usage
record

- 175 -

13.5 Obtaining Usage Quotes
Usage quotes can be used to determine how much it will cost to use a resource or
service. Provided the cost-only option is not specified, this step will additionally
verify that the submitter has sufficient funds and meets all the allocation policy
requirements for the usage, and can be used at the submission of the usage
request as an early filter to prevent the usage from getting blocked when it tries
to obtain a reservation to start later. If a guaranteed quote is requested, a quote
id is returned and can be used in the subsequent charge to guarantee the rates
that were used to form the original quote. A guaranteed quote has the side effect
of creating a quote record and a permanent usage record. A quote id will be
returned which can be used with the reservation and charge to claim the quoted
charge rates. A cost-only quote can be used to determine how much would be
charged for usage without verifying sufficient funds or checking to see if the
charge could succeed. A breakdown of the charges in the quote can be returned
by specifying the --itemize option with the --verbose option.

To request a usage quote, use the command gquote:

gquote [-T usage_record_type] [-u user_name] [-g group_name] [-p
project_name] [-o organization] [-c class_name] [-Q quality_of_serv-
ice] [-m machine_name] [-N nodes] [-P processors] [-M memory] [-D disk]
[-n network] [-X, --extension property name=property_value[,prop-
erty_name=property_value...]] [-t quote_duration] [-G grace_dura-
tion]] [-s quote_start_time] [-S service_id] [-e quote_end_time] [-d
quote_description] [-z quote_amount] [--cost-only | --guarantee] [-R
charge_rate_type:charge_rate_name[{charge_rate_instance}]
=charge_rate_amount[,charge_rate_type:charge_rate_name
[{charge_rate_instance}]=charge_rate_amount...]] [--debug] [--site
site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version] [[-j]
usage_record_id] [-q quote_template_id] [-J] instance_name|job_id]

Additional detail for this command can be found in the man page by issuing
gquote --man at the command line.

Example 5. Requesting a quote

$ gquote -p chemistry -u amy -m
colony -P 2 -t 3600
Successfully quoted 7200
credits

Example 6. Requesting a guaranteed quote

- 176 -

$ gquote -p chemistry -u amy -m
colony -P 16 -t 3600 --
guarantee
Successfully quoted 57600
credits with quote id 1 and
usage record id 86

$ glsquote
Id Amount UsageRecord
StartTime EndTime

Duration Used
ChargeRates Description
--- ------- ----------- -----
-------------- ---------------
---- --------- ----- ----------
------ -------------
1 57600 86 2012-
04-06 10:09:58 2012-04-06
11:09:58 3600 0
VBR:Processors:1

It is possible to establish a system default machine, project or user to be
used in job functions (charge, reserve or quote) when left unspecified (see
Server Configuration).

- 177 -

13.6 Making Usage Reservations
A usage reservation can be used to place a hold on the user's account before usage
starts to ensure that the credits will be there when it completes. The replace
option may be specified if you want the new reservation to replace existing res-
ervations of the same instance name (associated with the same usage record). The
modify option may be specified to dynamically extend any existing reservation
with the same instance name with the specified characteristics instead of creating
a new one. See Managing Reservations for more information about these options.

To create a job reservation use the command greserve:

greserve [-T usage_record_type] [-u user_name] [-g group_name] [-p
project_name] [-o organization] [-c class_name] [-Q quality_of_serv-
ice] [-m machine_name] [-N nodes] [-P processors] [-M memory] [-D disk]
[-n network] [-X, --extension property name=property_value[,prop-
erty_name=property_value...]] [-t reservation_duration] [-G
grace_duration]] [-s reservation_start_time] [-S service_id] [-e res-
ervation_end_time] [-d reservation_description] [-z reservation_
amount] [--replace|--modify] [-R charge_rate_type:charge_rate_name
[{charge_rate_instance}]=charge_rate_amount[,charge_rate_
type:charge_rate_name[{charge_rate_instance}]=charge_rate_
amount...]] [--itemize] [--debug] [--site site_name] [-?, --help] [--man] [--quiet]
[-v, --verbose] [-V, --version] [-q quote_id] [[-j] usage_record_id] {-J]
instance_name|job_id}

Additional detail for this command can be found in the man page by issuing
greserve --man at the command line.

Example 7. Creating a reservation

$ greserve -J PBS.1234.0 -p
chemistry -u amy -m colony -P 2
-t 3600
Successfully reserved 7200
credits with reservation id 37
for instance PBS.1234.0 and
created usage record id 87

- 178 -

13.7 Charging for Usage
A usage charge debits the appropriate allocations based on the attributes of the
usage. The charge is calculated based on factors including the resources and serv-
ices used, the usage time, and other quality-based factors (see Managing Charge
Rates). By default, any reservations associated with the charge will be removed.
The incremental option may be specified if you want associated reservations to be
reduced instead of removed. If a usage record already exists for the instance being
charged it will be updated with the data properties passed in with the charge
request, otherwise a new usage record will be created.

A quote id can be specified to use a previously quoted set of charge rates. This
will also ensure the charge will update the usage record instantiated with the
quote. A reservation id can be specified to help match up a charge with its res-
ervation (this may assist in deleting the correct reservation if instance ids are not
unique). This will also ensure the charge will update the usage record that may
have been instantiated by the reservation.

Although, by default, Moab Accounting Manager will calculate the charge for the
usage using its default charge rates or using the charge rates saved by a referenced
quote or quote template, it is possible to specify override charge rates via the rate
option. Alternatively, it is possible to designate an externally calculated charge by
specifying the charge amount with the Charge option (-z option to gcharge).

To charge for a usage use the command gcharge:

gcharge [-T usage_record_type] [-u user_name] [-g group_name] [-p
project_name] [-o organization] [-c class_name] [-Q quality_of_serv-
ice] [-m machine_name] [-N nodes] [-P processors] [-M memory] [-D disk]
[-n network] [-x usage_state] [-X, --extension property name=property_
value[,property_name=property_value...]] [-t charge_duration] [-s
charge_start_time] [-S service_id] [-e charge_end_time] [-d charge_
description] [-z charge_amount] [--incremental] [-R charge_rate_
type:charge_rate_name[{charge_rate_instance}]=charge_rate_
amount[,charge_rate_type:charge_rate_name[{charge_rate_
instance}]=charge_rate_amount...]] [-h, --hours] [--itemize] [--debug] [--
site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version] [[-j]
usage_record_id] [-q quote_id] [-r reservation_id] {-J instance_
name|job_id}

Additional detail for this command can be found in the man page by issuing
gcharge --man at the command line.

Example 8. Issuing a usage charge

- 179 -

$ gcharge -J PBS.1234.0 -p
chemistry -u amy -m colony -P 2
-t 1234
Successfully charged 2468
credits for instance PBS.1234.0
1 reservation was removed

- 180 -

13.8 Issuing Usage Refunds
A charged amount can be credited back in part or in whole by issuing a usage
refund. This action attempts to lookup the referenced usage record to ensure that
the refund does not exceed the original charge and so that the charge entry can
be updated. If multiple matches are found (such as the case when instance names
(such as job ids) are non-unique), this command will return the list of matched
usage records with unique ids so that the correct usage record can be specified for
the refund.

To issue a refund for a usage charge, use the command grefund:

grefund [-z amount] [-a account_id] [-d description] [-A] [-h, --hours] [--
debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --ver-
sion] [-J] instance_name|job_id | [-j] usage_record_id]

Additional detail for this command can be found in the man page by issuing
grefund --man at the command line.

Example 9. Issuing a usage refund

$ grefund -J PBS.1234.0
Successfully refunded 19744
credits for instance PBS.1234.0

- 181 -

13.9 Customizing the Usage Record Object
The usage record object as natively defined can be customized with the attributes
you want to track in your use cases. The chapter on Customizing Objects goes into
some detail on the customization syntax. However, since this may be a common
requirement, this section will provide a few examples on modifying, adding and
deleting usage record attributes and getting them to be tracked and show up in
queries.

Usage record discriminators are those properties which are considered primary dif-
ferentiators between usage, reservation and quote records. Usage record dis-
criminators are used in the dynamic web portal as filters for the listing,
modification and deletion of usage records, reservations and quotes. The default
usage record discriminators are Type, User, Group, Project, Organization, Class,
QualityOfService and Machine. Any new attributes added to the usage record
object will become usage record discriminators. Removing a discriminator attrib-
ute from the usage record object will necessarily remove it as a usage record dis-
criminator as well. It will be necessary to log out and back in after adding or
removing a discriminator in order for it to be reflected in the web GUI.

Example 10. Setting VM as the default Usage Record Type

As installed, the usage record type defaults to "Job". The default value can be set
to NULL if there should be no default value, or to any other default value. This
example will demonstrate how to set the default usage record type to "VM".

$ goldsh Attribute Modify
Object=UsageRecord Name=Type
DefaultValue=VM
Successfully modified 1
attribute

Example 11. Adding a UsageRecord Application Field (and descriminator)

Let's say you would like to track the application run by your usage scenarios. First,
you would add Application as an Attribute of the UsageRecord Object.

- 182 -

$ goldsh Attribute Create
Object=UsageRecord
Name=Application
DataType=String
Successfully created 1
attribute

If you want the new attribute to show up in glsusage, you must add it to the usag-
erecord.show string in gold.conf.

$ vi /opt/mam/etc/gold.conf
usagerecord.show = Id,Instance,
User,Group,Organization,
Project,QualityOfService,
Machine,Stage,Charge,
Processors,Nodes,Application,
Duration,StartTime,EndTime,
Description

If you want to filter the usage records by Application, (such as listing all usage rec-
ords associated with the specified application), use the -X (or --extension) option
in glsusage.

$ glsusage -X Application=foo -
-show=Type,Instance,Charge,
User,Application
Type Instance Charge User
Application
---- ---------- ------ ---- ---

Job PBS.1234.0 19744 amy foo

You could also use Application as the basis of a ChargeRate. See Name-Based
Resources or Name-Based Multipliers in the Managing Charge Rates chapter for
details on how to do this.

Although the initial step above allows the application value to be tracked in the
usage record, it is also possible to add it as an attribute of the Transaction table so
that it will be automatically populated from actions having assignments, con-
ditions, options and data values referring to the Application.

$ goldsh Attribute Create
Object=Transaction
Name=Application
DataType=String
Successfully created 1

- 183 -

attribute

Additionally, the gstatement client command can show Application as one of its dis-
criminators (which are Project, User and Machine by default) in its debit detail.
These statement discriminators are specified by the --show argument to gstate-
ment and can be configured with the statement.show configuration parameter in
gold.conf.

Example 12. Removing the UsageRecord Class Field

Let's say you were not interested in tracking the class. First, you would delete
Class as an Attribute of the UsageRecord Object.

$ goldsh Attribute Delete
Object==UsageRecord Name==Class
Successfully deleted 1
attribute

Next, we need to make sure glsusage doesn't try to list the class.

$ vi /opt/mam/etc/gold.conf
usagerecord.show = Id,Instance,
User,Project,Machine,
QualityOfService,Stage,Charge,
Processors,Nodes,Application,
Duration,StartTime,EndTime,
Description

If the attribute you want to delete is also an attribute in the Transaction table,
you could delete it from there as well.

- 184 -

13.10 Usage Record Property Verification
If a usage record property has an object associated with it, you may want to verify
that when that usage record property is specified in a scheduling action (Charge,
Reserve, Quote), it verifies that that property is a valid instance of its object type.
You can apply a simple verification to a usage record property by setting the prop-
erty's Values attribute to an '@' sign followed by the name of the object.

Example 13. Ensure that a machine specified in a charge actually exists

$ goldsh Attribute Modify
Object==UsageRecord
Name==Machine Values=@Machine
Successfully modified 1
attribute

See Managing Attributes for more information about setting the Values attribute.

- 185 -

13.11 Usage Record Property Defaults
It is possible to set defaults for usage record properties when they are not spec-
ified in the usage data for a charge, reservation or quote. There are two cases
which must be considered -- when the property has an object associated with it
and when the property does not.

If a property does not have an object associated with it, simply set the Default-
Value attribute for the property's UsageRecord Attribute object to the desired
value.

Example 14. Setting a system-wide simple default class of batch for usage func-
tions

$ goldsh Attribute Modify
Object==UsageRecord Name==Class
DefaultValue=batch
Successfully modified 1
attribute

If a property does have an object associated with it, you will need to both set the
DefaultValue attribute for the property's UsageRecord Attribute object to the
desired value AND set the DefaultValue attribute for the corresponding object to
the desired value.

Example 15. Setting a system-wide simple default machine of cloud for usage
functions

$ goldsh Attribute Modify
Object==UsageRecord
Name==Machine
DefaultValue=cloud
Successfully modified 1
attribute

$ goldsh Attribute Modify
Object==UsageRecord
Name==Machine
DefaultValue=cloud
Successfully modified 1
attribute

See Global Object-based Defaults for more information about setting default
values for objects. See Local Attribute-based Defaults for more information about
setting default values for attributes.

- 186 -

13.12 Usage Record Property Auto-Generation
It is possible for usage record properties which have object definitions to auto-
matically create the referenced objects the first time they are encountered in a
usage function (charge, reserve or quote). To do this, the referenced object must
be set to AutoGen=True and the Values attribute for the UsageRecord attribute cor-
responding to the object must be set to a string consisting of the '@' sign followed
by the object name.

Example 16. Setting the Usage Record Type to auto-generate Items for usage
functions

For example, let's assume there were many usage record types that could be
charged for (Food, Book, Haircut) and that you had already created an Item
object. It would be possible to automatically generate a new Item instance each
time a new usage record type was referenced in a charge operation.

$ goldsh Object Modify
Name==Item AutoGen=True
Successfully modified 1 object

$ goldsh Attribute Modify
Object==UsageRecord Name==Type
Values=@Item
Successfully modified 1
attribute

See Object Auto-Generation for more information about the auto-generation of
objects.

- 187 -

13.13 Usage Record Property Instantiators
It is possible to establish a dynamic correlation between usage record properties in
which one usage record property can instantiate another. For example, if a user is
specified in a charge but no project is specified then the user's default project
should be applied to the account constraints and logged; or if a project is spec-
ified in a charge but not its organization then the organization corresponding to
that project should be looked up and applied to the account constraints and
logged. Three usage record property instantiator types are currently supported and
are configured by prefixing the property instance's Values foreign object reference
with the appropriate characters: Assign if not defined (@?=), Assign if not different
(@!=), Assign always (@:=). We shall look at each of these individually and in dif-
ferent terms.

l Applying a correlated default (@?=) -- If property X is specified with the
value x in the usage record and property Y is not specified in the usage rec-
ord and if the object instance referred to by x has a correlated default value
of y' for property Y', then y' will be applied as the default value for property
Y in the usage record. For example, we could establish the notion of a
default project for a user.

Example 17. Establishing a default project for a user

First we add a DefaultProject attribute (the name is arbitrary) to the User
object and give it a Values property of @?=Project.

$ goldsh Attribute Create
Object=User
Name=DefaultProject
DataType=String
Values="\"@?=Project\""
Description="\"Default
Project\""
Successfully created 1
attribute

Then we can establish the default project for user scottmo to be chemistry.

User Modify Name==scottmo
DefaultProject=chemistry
Successfully modifed 1 user

Subsequently, when a Charge, Reserve or Quote is issued that specifies the
User scottmo but does not specify the Project, the Project chemistry Project
will be applied to the charge as if originally specified in the usage record
charge data.

- 188 -

l Applying a correlated verification (@!=) -- If property X is specified with the
value x in the usage record and property Y is specified with the value y in
the usage record and if the object instance referred to by x has a correlated
verification value of y' for the property Y' and if y' does not equal y, then fail
with an error message. Additionally, if property X is specified with the value
x in the usage record and property Y is not specified in the usage record and
if the object instance referred to by x has a correlated verification value of
y' for property Y', then y' will be applied as the default value for property Y
in the usage record. For example, we could establish a parent-child rela-
tionship between organizations and projects in which explicitly specified
incongruities result in a failure.

Example 18. Establishing a verification hierarchy with projects and organ-
izations

First we add a VerifyOrganization attribute (the name is arbitrary) to the
Project object and give it a Values property of @!=Organization.

$ goldsh Attribute Create
Object=Project
Name=VerifyOrganization
DataType=String
Values="\"@!=Organization\""
Description="\"Verify
Organization\""
Successfully created 1
attribute

Then we can establish the verify organization for project chemistry to be
sciences.

$ goldsh Project Modify
Name==chemistry
VerifyOrganization=sciences
Successfully modifed 1
project

Subsequently, when a Charge, Reserve or Quote is issued that specifies the
Project chemistry and specifies the wrong Organization (e.g. arts), the trans-
action will fail with an error message. Additionally, when a Charge, Reserve
or Quote is issued that specifies the Project chemistry but does not specify
the Organization, the Organization sciences will be applied to the charge as
if originally specified in the usage record charge data.

l Applying a correlated override (@:=) -- If property X is specified with the
value x in the usage record and if the object instance referred to by x has a
correlated override value of y' for property Y', then y' will be applied as the

- 189 -

override value for property Y in the usage record. For example, we could
establish a parent-child relationship between organizations and projects in
which explicitly specified incongruities are silently overridden with the
value from the child.

Example 19. Establishing an override hierarchy with projects and organ-
izations

First we add an OverrideOrganization attribute (the name is arbitrary) to the
Project object and give it a Values property of @:=Organization.

$ goldsh Attribute Create
Object=Project
Name=OverrideOrganization
DataType=String
Values="\"@:=Organization\""
Description="\"Override
Organization\""
Successfully created 1
attribute

Then we can establish the override organization for project chemistry to be
sciences.

$ goldsh Project Modify
Name==chemistry
OverrideOrganization=sciences
Successfully modifed 1
project

Subsequently, when a Charge, Reserve or Quote is issued that specifies the
Project chemistry and specifies either the wrong Organization (e.g. arts) or
no Organization, the Organization sciences will be silently applied to the
charge as if originally specified in the usage record charge data.

- 190 -

14.0 Managing Itemized Charges
The itemized charge table provides an ability to display the components of a com-
posite charge in a line item format. Each charge transaction will write the com-
ponents of its charge into the charge record so that you can get a line-item
breakdown of each charge for usage including the names, values, rates, scaling fac-
tors, charge amounts and details listed for each component of the charge. This
capability is enabled by setting charge.itemization = true in the goldd.conf (it is
false by default).

Itemized charges may only be queried. They are created automatically in charge
transactions and there are no command line clients to change or remove them.

Additionally, an itemize option can be specified for quotes, reservations and
charges to include an itemized charge breakdown in the response data instead of a
single line with the amount.

- 191 -

14.1 Querying Itemized Charges
To display itemized charge information, use the command glscharge:

glscharge [-j usage_record_id] [-J instance_name] [-n usage_property_
name] [-s start_time] [-e end_time] [--full] [-- show attribute_name[,attrib-
ute_name...]] [-- raw] [-h, --hours] [-- debug] [--site site_name] [-?, --help] [--
man] [--quiet] [-V, --version]

Additional detail for this command can be found in the man page by issuing
glscharge --man at the command line.

Example 1. Listing all itemized charge information

$ glscharge
UsageRecord Instance Name
Value Duration Rate
ScalingFactor Amount
CreationTime Description
----------- -------- ----------
----- -------- --------- ------
------- ------ ---------------
---- -----------
24 job.1 Storage
100 86400 1.157e-07 1

1 2012-04-05
17:49:41
25 job.2 Processors
4 86400 5.787e-07 1

20 2012-04-05
17:49:42
25 job.2 Memory
4096 86400 1.13e-08 1

4 2012-04-05
17:49:42
26 job.3 Processors
1 86400 5.787e-05 1

5 2012-04-05
17:49:43
26 job.3 Memory
1004 86400 1.13e-08 1

1 2012-04-05
17:49:43

- 192 -

- 193 -

14.2 Displaying Itemized Charges for a Trans-
action
In addition to the itemized charge table, Moab Accounting Manager captures the
itemized charges for usage record charges, reservations and guaranteed quotes in
the details of the transaction. The itemized charges show the details for the for-
mula used to calculate the charge for the transaction. To display the itemized
charges for a scheduling transaction, parse the details from the command glstxn --
full -A Charge|Reserve|Quote:

Example 14. Extract the itemized charges for a job charge

$ glstxn -A Charge -J
PBS.1234.1 -q --show Details |
perl -pe 's/.*(ItemizedCharges
[^,]*).*/\1/'
ItemizedCharges:=(((16
[Processors] * 1 [ChargeRate
{VBR}{Processors}]) + (2000
[Memory] * 0.001 [ChargeRate
{VBR}{Memory}])) * 1234
[Duration]) = 22212

- 194 -

15.0 Managing Charge Rates
Charge Rates establish how much to charge for usage. Charge rates are applied
when usage properties matching the charge rate names are found in the usage
data. In order for a charge rate of a given name to be applied, a usage record
attribute of the same name must exist.

There are four major categories of charge rates: Resource, Usage, Multiplier, and
Fee. These are distinguished by the way they are factored into the charge cal-
culation. Resource charge rates are additive charges that are multiplied by the
amount of time that they are used in seconds. Usage charge rates are additive
charges that are not multiplied by time. Multiplier charge rates apply multipliers
to the sum of the Resource and Usage charges. Fee charge rates are added after
the multipliers have been applied.

Each of the major charge rate types has two sub-types: value-based and name-
based.

l Name-based charge rates charge rates are used for usage properties that take
strings for values (e.g. QualityOfService=premium or Project=chemistry). The
charge rate that is applied will be determined by a lookup of the usage prop-
erty value to see if there is a matching charge rate value. A default rate may
be specified by creating a name-based charge rate with an empty charge rate
value. Multiple values may be assigned to the same rate via separate charge
rate definitions or by combining the values in a single charge rate value sep-
arated by commas.

l Value-based charge rates are used for usage properties that take numbers for
values (e.g. Processors=2 or CpuTime=12.67). The charge rate that is applied
will be multiplied by the usage property value. The charge rate value is com-
monly left blank to be taken as the default rate for the full range of usage
property values. A particular value may also be specified as the charge rate
value which means that that rate will only be used if the usage property
value exactly matches the charge rate value. A half-bounded expression may
be used by specifying a less than or greater than sign with an optional equal
sign, followed by the number. For example, the charge rate value <=4 would
match a usage property value of x if x <= 4. A charge rate value may also be
specified as a range (of the form <number>[-<number>]). For example, the
range 1-4 would be match a usage property value of x if 1 <= x <= 4. If you
need to be more specific about the boundedness of the ranges, you may
replace the dash with a less than sign with an optional equal sign on either
side of it to indicate whether the endpoints are included. For example, the
range 1<4 would match if 1 < x < 4, 1=<4 would match if 1 <= x < 4, 1<=4
would match if 1 < x <=4 and 1=<=4 would match if 1 <= x <= 4. So you might
use ranges like 1=<2, 2=<4, 4=<8, and >=8. Multiple values or value ranges hav-

- 195 -

ing the same charge rate may be specified in a single expression separated by
commas.

Thus there are eight composite types of charge rates referred to by their acro-
nyms: VBR (Value-Based Resource), NBR (Name-Based Resource), VBU (Value-Based
Usage), NBU (Name-Based Usage), VBM (Value-Based Multiplier), NBM (Name-Based
Multiplier), VBF (Value-Based Fee) and NBF (Name-Based Fee).

l Value-Based Resource — Value-Based Resource (or Consumable
Resource) Charge Rates define how much it costs per unit of time to use a
consumable resource like processors, memory, telescope time, generic
resources that are charged per time used, etc. These resource metrics must
first be multiplied by the usage duration in seconds before being added to
the total charge. Value-Based Resource Charge Rates are of Type "VBR", with
the Name being the resource name (such as Processors) and the given Rate
(such as 1) being multiplied by the consumed resource value (such as 8).

l Name-Based Resource — Name-Based Resource Charge Rates define how
much it costs per unit of time to use a named resource like license, etc. The
cost for the named resource must first be multiplied by the usage duration in
seconds before being added to the total charge. Name-Based Resource
Charge Rates are of Type "NBR", with the Name being the resource name
(such as License), the Value being the resource value (such as matlab), and
having the given Rate (such as 5).

l Value-Based Usage — Value-Based Usage Charge Rates define how much
to charge for metrics of total resource usage such as cputime, power con-
sumed, generic resources or licenses that are charged flat fees per use, etc.
These usage metrics are added to the total charge without being multiplied
by the duration. Value-Based Usage Charge Rates are of Type "VBU", with the
Name being the resource name (such as Power) and the given Rate (such as
.001) being multiplied by the consumed resource value (such as 40000).

l Name-Based Usage — Name-Based Usage Charge Rates define how much it
costs to use a named attribute having a flat charge such as feature, etc.
These usage metrics are added to the total charge without being multiplied
by multiplied by the duration. Name-Based Usage Charge Rates are of Type
"NBU", with the Name being the resource name (such as Feature), the
Instance being the usage value (such as GPU), and having the given flat Rate
(such as 200).

l Value-Based Multiplier — Value-Based Multiplier Charge Rates are
scaled multipliers which apply a multiplicative charge factor based on a
numeric scaling factor. These incoming scaling factors are multiplied against
the Value-Based Multiplier Rate and then are multiplied against the total of
the resource and usage charges. Value Based Multiplier Charge Rates are of
Type "VBM", with the Name being the multiplier name (such as Discount) and

- 196 -

the given Rate (such as 1) being multiplied with the scaling factor (such as
.5) before being multiplied to the total charge.

l Name-Based Multiplier — Name-Based Multiplier Charge Rates are qual-
ity based multipliers which apply a multiplicative charge factor based on a
quality of the usage such as quality of service, nodetype, class, user, time of
day, etc. These charge multipliers are determined by a hash or lookup table
based on the value of the usage attribute. These rates are multiplied against
the total of the resource and usage charges. Name-Based Multiplier Charge
Rates are of Type "NBM", with the Name being the multiplier name (such as
QualityOfService), the Value being the quality instance (such as Premium),
and having the given multiplier Rate (such as 2).

l Value-Based Fee — Value-Based Fee Charge Rates define how much to
charge for scaled or enumerated fees such as setup fees, shipping charges,
etc. which should be added after the multipliers are applied. These fees are
added to the total charge. Value-Based Fee Charge Rates are of Type "VBF",
with the Name being the fee name (such as Shipping) and the given Rate
(such as 25) being multiplied by the scaling or counted value (such as 4).

l Name-Based Fee — Name-Based Fee Charge Rates define how much it
costs to use a named attribute having a flat charge such as feature, etc.
which should be added after the multipliers are applied. These fees are
added to the total charge. Name-Based Fee Charge Rates are of Type "NBF",
with the Name being the fee name (such as Zone), the Value being the fee
value (such as Asia), and having the given flat Rate (such as 100).

By default, usage charges are calculated according to the following formula: For
each value-based resource charge rate matching a usage property in the usage rec-
ord data, a value-based resource charge is calculated by multiplying the usage
property value by the charge rate and by the duration of time it was used. For
each name-based resource charge rate matching a usage property name and value
in the usage record data, a name-based resource charge is calculated by mul-
tiplying the charge rate by the duration of time it was used. For each value-based
usage charge type matching a usage property in the usage record data, a value-
based usage charge is calculated by multiplying the usage property value by the
charge rate. For each name-based usage charge type matching a usage property
name and value in the usage record data, a name-based usage charge is given by
the charge rate. These value-based and name-based resource charges and the
value-based and name-based usage charges are added together. Then, for each
value-based multiplier charge rate matching a usage property in the usage record
data, a value-based multiplier is calculated by multiplying the usage property
value of the charge rate. For each name-based multiplier charge rate matching a
usage property name and value in the usage record data, a name-based multiplier
is given by the charge rate. The sum of the resource and usage charges is then mul-
tiplied by the product of the applicable value-based and name-based multipliers.

- 197 -

Next, for each value-based fee charge type matching a usage property in the usage
record data, a value-based fee charge is calculated by multiplying the usage prop-
erty value by the charge rate. For each name-based ree charge type matching a
usage property name and value in the usage record data, a name-based fee charge
is given by the charge rate for that fee. Finally, these value-based and name-based
fee charges are added to the multiplied usage charge subtotal.

In short, the formula can be represented by (((((Σ(VBR*value)+Σ(NBR)+Σ
(MVBR*value))*duration)+(Σ(VBU*value)+Σ(NBU))) *Π(VBM*value)*Π(NBM))+(Σ
(VBF*value)+Σ(NBF))).

- 198 -

15.1 Creating Charge Rates
To create a new charge rate, use the command gmkrate:

gmkrate -n charge_rate_name [-x charge_rate_value] -T charge_rate_
type [-d description] [-- debug] [--site site_name] [-?, --help] [--man] [--quiet]
[-v, --verbose] [-V, --version] {[-z] charge_rate_amount}

Additional detail for this command can be found in the man page by issuing
gmkrate --man at the command line.

If a usage record attribute does not exist for the name of the charge rate
you are creating, you must first create the corresponding usage record prop-
erty. See Customizing the Usage Record Object.

Example 1. Creating a value-based resource charge rate

$ gmkrate -T VBR -n Memory -z
0.001
Successfully created 1 charge
rate

Example 2. Creating a name-based resource charge rate

$ gmkrate -T NBR -n License -x
Matlab -z 5
Successfully created 1 charge
rate

Example 3. Creating a value-based usage charge rate

$ gmkrate -T VBU -n CpuTime -z
l
Successfully created 1 charge
rate

Example 4. Creating a name-based usage charge rate

$ gmkrate -T NBU -n Feature -x
GPU -z 200

Successfully created 1
charge rate

- 199 -

Example 5. Creating a value-based multiplier charge rate

$ gmkrate -T VBM -n Discount -z
1
Successfully created 1 charge
rate

Example 6. Creating a couple of name-based multiplier charge rates and a
default rate

$ gmkrate -T NBM -n
QualityOfService -x Premium -z
2
Successfully created 1 charge
rate

$ gmkrate -T NBM -n
QualityOfService -J
BottomFeeder -z 0.5
Successfully created 1 charge
rate

$ gmkrate -T NBM -n
QualityOfService -z 1
Successfully created 1 charge
rate

Example 7. Creating a value-based fee charge rate

$ gmkrate -T VBF -n Shipping -z
25
Successfully created 1 charge
rate

Example 8. Creating a name-based fee charge rate

$ gmkrate -T NBF -n Zone -x
Asia -z 200
Successfully created 1 charge
rate

Example 9. Creating a couple of conditional value-based resource charge rates

- 200 -

$ gmkrate -T VBR -n Disk -x
User=dave? -z 0.2
Successfully created 1 charge
rate

$ gmkrate -T Disk -n User -x
User=mike? -z 0.5
Successfully created 1 charge
rate

Example 10. Creating some value-based resource charge rate ranges and a
default

$ $ gmkrate -T VBR -n
Processors -x 1-4 -z 2
Successfully created 1 charge
rate

$ gmkrate -T VBR -n Processors
-x 5-8 -z 1.5
Successfully created 1 charge
rate

$ gmkrate -T VBR -n Processors
-z 1
Successfully created 1 charge
rate

Example 11: Creating some value-based usage charge rate ranges for floating
point values

$ $ gmkrate -T VBU -n Power -x
'<2' -z 0.005
Successfully created 1 charge
rate

$ $ gmkrate -T VBU -n Power -x
'2=<4' -z 0.004
Successfully created 1 charge
rate

$ $ gmkrate -T VBU -n Power -x
'>=4' -z 0.003
Successfully created 1 charge

- 201 -

rate

Example 12: Assigning multiple classes to run for free

$ $ gmkrate -T NBM -n Class -x
dev,test -z 0
Successfully created 1 charge
rate

- 202 -

15.2 Querying Charge Rates
To display charge rate information, use the command glsrate:

glsrate [-n charge_rate_name] [-x charge_rate_value] [-T charge_rate_
type] [--full] [--show attribute_name][,attribute_name...]] [--raw] [--
debug] [--site site_name] [-?, --help] [--man] [--quiet] [-V, --version]

Additional detail for this command can be found in the man page by issuing
glsrate --man at the command line.

Example 13. Listing all charge rates

$ glsrate
Name Value
Type Rate Description
----------------- ----------
---- ------- ------------
CpuTime
VBU 1
Discount
VBM 1
Disk User=dave?
VBR 0.2
Disk User=mike?
VBR 0.5
Feature GPU
NBU 200
License Matlab
NBR 5
Memory
VBR 0.001
Power
VBU 0.001
Processors
VBR 1
Processors 1-4
VBR 2
Processors 5-8
VBR 1.5
QualityOfService NBM
1

QualityOfService BottomFeeder

- 203 -

NBM 0.5
QualityOfService Premium
NBM 2
Shipping
VBF 25
Zone Asia
NBF 200

- 204 -

15.3 Modifying Charge Rates
To modify a charge rate, use the command gchrate:

gchrate [-n choice="plain" charge_rate_name [-x charge_rate_value] [-T
charge_rate_type] [-z charge_rate_amount] [-d description] [-- debug] [--
site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version]

Additional detail for this command can be found in the man page by issuing
gchrate --man at the command line.

Example 14. Changing a charge rate

$ gchrate -T VBR -n Memory -z
0.05
Successfully modified 1 charge
rate

- 205 -

15.4 Deleting Charge Rates
To delete a charge rate, use the command grmrate:

gmrate [-n choice="plain"charge_rate_name] [-x charge_rate_instance]
[-- debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --ver-
sion]

Additional detail for this command can be found in the man page by issuing
grmrate --man at the command line.

Example 15. Deleting a charge rate

$ grmrate -T VBR -n Memory
Successfully deleted 1 charge
rate

- 206 -

16.0 Managing Transactions
Moab Accounting Manager logs all modifying transactions in a detailed transaction
journal (queries are not recorded). Previous transactions can be queried but not
modified or deleted. By default, a standard user may only query transactions per-
formed by them.

- 207 -

16.1 Querying Transactions
To display transaction information, use the command glstrans:

glstrans [-O object] [-A action] [-k primary_key_value] [-U actor] [-a
account_id] [-i allocation_id] [-u user_name] [-p project_name] [-m
machine_name] [-j usage_record_id] [-J instance_name|job_id] [-s
start_time] [-e end_time] [-T transaction_id] [-R request_id] [-X, --
extension property_name=property_value [,property_name=property_value...]] [-
-show attribute_name[,attribute_name...]] [--raw] [-h, --hours] [--debug]
[--site site_name] [-?, --help] [--man] [--quiet] [-V, --version]

The fields which are displayed by default by this command can be cus-
tomized by setting the transaction.show configuration parameter in
gold.conf. Additional detail for this command can be found in the man page
by issuing glstrans --man at the command line.

Example 1. List all deposits made in 2012

$ glstrans -A Deposit -s 2012-
01-01 -e 2013-01-01

Example 2. List everything done by amy since the beginning of 2012

$ glstrans -U amy -s 2012-01-01

Example 3. List all transactions related to job moab.1

$ glstrans -J moab.1

Example 4. List all transactions affecting charge rates

$ glstrans -O ChargeRate

- 208 -

16.2 Customizing the Transaction Object
The transaction record as natively defined can be customized with the attributes
you want to track in your use cases. It is possible to add additional attributes to
the Transaction table so that it will be automatically populated from actions hav-
ing assignments, conditions, options and data values referring to the attribute.

Transaction discriminators are those properties which are considered primary dif-
ferentiators between transaction records (besides the metadata differentiators of
object, action and instance). Transaction discriminators are used in the dynamic
web portal as filters for the listing of transaction records. The default transaction
discriminators are User, Project and Machine. Any new attributes added to the
Transaction object will become transaction discriminators. Removing a dis-
criminator attribute from the transaction object will necessarily remove it as a
transaction discriminator as well. It will be necessary to log out and back in after
adding or removing a discriminator in order for it to be reflected in the web GUI.

Example 5. Adding an Organization field to the Transaction record (which also
makes it a discriminator)

$ goldsh Attribute Create
Object=Transaction
Name=Organization
DataType=String
Successfully created 1
attribute

- 209 -

17.0 Managing Events
Moab Accounting Manager has an internal event scheduler that can be configured
to execute Moab Accounting Manager actions at a designated time in the future or
on a periodic basis. Valid actions on an event include Create, Query, Fire, Modify,
Refresh and Delete. Event attributes include Id, FireCommand, ArmTime, Fire-
Time, RearmPeriod, EndTime, Notify, RearmOnFailure, FailureCommand, CatchUp
and Description.

There are two server configuration parameters which affect event scheduling:
event.scheduler which specifies whether the event scheduler is enabled or not (it
is disabled by default) and event.pollinterval which is the period in minutes that
the event scheduler uses to fire events. The poll interval must divide evenly into
the number of minutes in a day (1440).

The command(s) to be fired by an event are expressed in a serialized form of the
request identical to the syntax used in the interactive control program (goldsh).
There are two commands that can be configured in an event: the FireCommand
which is the command to be executed when the event is fired, and the Fai-
lureCommand which is the command to be executed if the fired command results
in an unsuccessful response status. The FireTime is the target time for the event to
be triggered by the event scheduler. The actual fire time may be dependent on
the state of the server and will be recorded in the CreationTime property of the
corresponding "Event Fire" Transaction. An event may also be fired manually with
the Event Fire action.

The RearmPeriod is a time period expression specifying when the event will be
rearmed. This period expression is of the form: "<period>[[@<instant>][~|^]|!]"
where period may be something like 1 day, 2 hours, or 5 minutes. Instant locks the
period to a specific instant within the time period such as 1 day @ hour 12 or 1
month @ day 3. The modifiers indicate whether the time period should be relative
to now (!), or relative to the start of this (~) designator (month or minute, etc.),
or relative to the start of the first (^) designator (month or minute, etc.). For
example, assuming the FireTime was 7:15, if you specified "4 hours !" as the rearm
period it would be rearmed at 11:15, if you specified "4 hours ~" as the rearm
period it would be rearmed at 11:00, and if you specified "4 hours ^" as the rearm
period it would be rearmed at 8:00.

The ArmTime is the time the event was last armed or fired. This field is used as a
reference time to be able to derive how long the event has been waiting to
happen. This field will be initially set to mark the moment the first FireTime is set
and updated thereafter to indicate the last time the event was fired. In the case
where an event does not have a FireTime set, this field may be set manually and
used in a similar manner. If we consider the time between event firings as "laps",
this could be thought of as the Lap Start Time. If the RearmOnFailure boolean is
set to False, the event will not be rearmed if the command was unsuccessful. If set

- 210 -

to True, the event will be evaluated for rearming even if the command response
has a status of Failure. The standard default is False. If the CatchUp boolean is set
to True and the server was down during the time this event should have fired, the
event scheduler will attempt to make up for the past due events by progressively
firing them (rearming based on previous arm time) until catching up to the
present. The actions will still show as having occurred in the present rather than
in the past. If set to False, and the server is brought back up after an outage, the
event scheduler will still fire immediately for a past due event, but it will only
fire once and then rearm relative to the current time.

A Notification method can be specified via the Notify parameter and is of the
form: [+-=][<delivery_method>:] [<recipient>][,[+-=][<delivery_method>:][<recip-
ient>]]*. If the term is a -, the notification is sent only on failure. If the term is a
+, the notification is sent only on success. Otherwise the notification is always
sent. There can be multiple notify expressions separated by a comma. All appli-
cable notifications will be sent. See the chapter on Managing Notifications for
more information about delivery method and recipient.

- 211 -

17.1 Querying Events
To display event information, use the command glsevent:

glsevent [-s start_time] [-e end_time] [--full] [--show attribute_name[,attrib-
ute_name...]] [--raw] [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-
V, --version] [[-E] event_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the event-show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsevent --man at the command line.

Example 1. Listing all events

$ glsevent
Id FireCommand FireTime

ArmTime
RearmPeriod EndTime Notify
RearmOnFailure FailureCommand
CatchUp CreationTime
DescriptionFailure
FailureCommand CatchUp
CreatimeTime
Description-- -----------------
- ------------------- ---------
---------- ----------- -------
------------- -------------- --
------------ ------- ----------
--------- ------------------ --

-- ------------------ ---------
---------- -------------------
----------- ------- --------- -
------------- -------------- --
----- ------------------- -----

9 Payment Use Id:-5 2012-04-
09 16:00:00 2012-04-09 15:00:00
1 hour store:amy
False True

2012-04-09 13:15:09 Use Payment

- 212 -

10 Payment End Id:=5 2012-04-
10 13:15:39 2012-04-09 13:15:40

store:amy
False
True 2012-04-09 13:15:40 End
Payment

- 213 -

17.2 Deleting Events
To delete an event, use the command grmevent:

grmevent [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] {[-E] event_id}

Additional detail for this command can be found in the man page by issuing
grmevent --man at the command line.

Example 2. Deleting an event

$ grmevent 9
Successfully deleted 1 event

- 214 -

18.0 Managing Notifications
When event commands are executed (asynchronously), the success or failure of
the operation is communicated back to the initiator via a notification. When an
event is created, you may specify the Notify option which will associate a noti-
fication method with the event. Currently there is only one DeliveryMethod imple-
mented which is Store. With the Store delivery method, command response
information is stored as instances of the Notification object. These messages can
later be retrieved by the initiator via a Notification Query. Payments can also
route a notification method down to their associated events via a Notify option.

The notification attributes include Id (autogenerated), Type, Event, Status, Code,
Message, Key, Recipient, EndTime and CreationTime. Stored notifications can be
queried on any of these conditions. The notification type distinguishes what type
of command resulted in the notification (Fire or Failure). The notification key is
the value of the primary key of the object instance that the command acted on
(e.g. the Payment Id). The recipient could be a user name or any tag that iden-
tifies the intended reader for the notification. The Notification Query supports a
Delete option, which if set to True, will delete the notifications after they have
been queried. Additionally, stored notification have an EndTime after which they
are automatically deleted by Gold. The Notification actions include Send, Refresh,
Create, Query, Delete and Modify.

There are two server configuration parameters which affect notifications: noti-
fication.deliverymethod which dictates which deliverymethod is used by default if
unspecified and notification.duration which defines how long notifications stick
around if the Store delivery method is used.

- 215 -

18.1 Querying Notifications
To display event information, use the command glsnot:

glsnot [-E event_id] [-T notification_type] [-k primary_key_value] [-k primary_
key_value] -u recipient] [-x status] [-s start_time] [-e end_time] [--delete] [--
full] [--show attribute_name[,attribute_name...]] [--raw] [--debug] [--site site_
name] [-?, --help] [--man] [--quiet] [-V, --version] [[-N] notification_id]

The fields which are displayed by default by this command can be cus-
tomized by setting the event-show configuration parameter in gold.conf.
Additional detail for this command can be found in the man page by issuing
glsnot --man at the command line.

Example 1. Listing all failure notifications

$ glsnot -x Failure
Id Event Type Status Code
Message

Key
Recipient EndTime
CreationTime
-- ----- ---- ------- ---- ----

-------------------- --- ------
--- ------------------- -------
------------4 20 Fire
Failure 782 Payment Begin
failed starting payment: Failed
creating payment starting
reservation: Insufficient
balance to reserve usage
(Instance Moab.1)\nClearing the

- 216 -

event fire time.\nThe
controlling event has been
deleted. 9 amy 2012-04-
23 13:35:01 2012-04-09
13:35:01se True

2012-04-09 13:15:09 Use
Payment
4 20 Fire Failure 782
Payment Begin failed starting
payment: Failed creating
payment starting reservation:
Insufficient balance to reserve
usage (Instance Moab.1)
\nClearing the event fire
time.\nThe controlling event
has been deleted. 9 amy
2012-04-23 13:35:01 2012-04-09
13:35:01

- 217 -

18.2 Deleting Notifications
To delete a notification, use the command grmnot:

grmnot [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose]
[-V, --version] {[-N] notification_id}

Additional detail for this command can be found in the man page by issuing
grmnot --man at the command line.

Example 2. Deleting a notification

$ grmnot 4
Successfully deleted 1
notification

Example 3. Deleting all successful notifications

To delete many notifications, query them with the --delete option:

$ glsnot -x Success --delete
Id Event Type Status Code
Message

Key
Recipient EndTime
CreationTime
-- ----- ---- ------- ---- ----

-------------------- --- ------
--- ------------------- -------
------------4 20 Fire
Failure 782 Payment Begin
failed starting payment: Failed
creating payment starting

- 218 -

reservation: Insufficient
balance to reserve usage
(Instance Moab.1)\nClearing the
event fire time.\nThe
controlling event has been
deleted. 9 amy 2012-04-
23 13:35:01 2012-04-09
13:35:01se True

2012-04-09 13:15:09 Use
Payment
1 11 Fire Success 000
Payment Begin: Successfully
charged 10 credits for instance
Moab.1\nSuccessfully charged 20
credits for instance
Moab.2\nSuccessfully charged 20
credits for instance
Moab.3\nSuccessfully started
payment (6) and created 3
reservations\nClearing the
event fire time.\nThe
controlling event has been
deleted. 6 scottmo 2012-04-
23 13:28:02 2012-04-09 13:28:02
2 14 Fire Success 000
Payment Begin: Successfully
charged 10 credits for instance
Moab.1\nSuccessfully charged 20
credits for instance
Moab.2\nSuccessfully charged 20
credits for instance
Moab.3\nSuccessfully started
payment (7) and created 3
reservations\nClearing the
event fire time.\nThe
controlling event has been
deleted. 7 amy 2012-04-
23 13:31:02 2012-04-09 13:31:02
3 17 Fire Success 000
Payment Begin: Successfully
charged 10 credits for instance
Moab.1\nSuccessfully charged 20

- 219 -

credits for instance
Moab.2\nSuccessfully charged 20
credits for instance
Moab.3\nSuccessfully started
payment (8) and created 3
reservations\nClearing the
event fire time.\nThe
controlling event has been
deleted. 8 amy 2012-04-
23 13:32:02 2012-04-09 13:32:02
Successfully deleted 3
notifications

- 220 -

19.0 Managing Roles
Moab Accounting Manager uses instance-level role-based access controls to deter-
mine what users can perform what functions. Named roles are created, actions are
associated with the roles, and users are assigned to these roles.

The actions for a role consist of a set of tuples of object, action and instance per-
mitted by the role. In other words, each role action defines an object (whether
specific or ANY), the action that can be taken on that object (whether specific or
ANY) and the instance of the object that action can be taken on (whether specific
or ANY).

In the base configuration, there are three default roles: SystemAdmin, Anonymous
and OVERRIDE. Other configurations, such as the bank configuration, add addi-
tional roles. Roles can be added as desired. The three base roles are required for
proper function of Moab Accounting Manager and should not be deleted. By
default, the SystemAdmin role can perform any action on any object. This role is
usually assigned to the super user. The Anonymous role is intended to define the
actions available to your standard unprivileged user. This may include the ability
to set your password, query certain public objects and modify objects that belong
to you (implemented via the OVERRIDE role). The OVERRIDE role is a special role
type that defines those actions that should use special business logic intrinsic to
the routine that handles that object and action. For example, in the bank con-
figuration, the OVERRIDE logic for the Project Query routine will only allow the
standard user to see information about projects for which he or she is a member. A
given user's privileges will be the superset of the actions of all roles that apply to
that user.

The instance indicates which specific instances of the object the action can be per-
formed on. There are several special instance types that can be used in certain sit-
uations. The ANY instance is supported by all objects and permits the specified
action on all instances of the specified object. The SELF instance applies to the
user's own instance if the object is User, or to objects that have a User attribute
associated with the user. The MEMBERS instance applies to objects for which the
user is a direct member. The ADMIN instance applies to objects for which the user
is designated as an administrator. Unless otherwise specified, the instance will
default to a value of ANY.

- 221 -

19.1 Creating Roles
To create a new role, use the command gmkrole. Users and actions may be asso-
ciated with the role at creation time. When assigning actions to a role, the object,
action and instance must be specified in the form shown. Multiple actions or users
may be specified for the role.

gmkrole [-d description] [-u user_name[,user_name...]] [-A object_
name->action_name[{instance_name}] [,object_name->action_name
[{instance_name}]...]] [--debug] [--site site_name] [-?, --help] [--man] [--quiet]
[-v, --verbose] [-V, --version] {[-r] role_name}

Additional detail for this command can be found in the man page by issuing
gmkrole --man at the command line.

Example 1. Creating a Manager role

$ gmkrole -r Manager -d
"Manages Roles and
Responsibilities" -v
Successfully created 1 role

- 222 -

19.2 Querying Roles
To display the role information, use the command glsrole:

glsrole [--full] [--show attribute_name[,attribute_name...]] [-l, --long]
[-w, --wide] [--raw] [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-
V, --version] [[-r] role_name]

Additional detail for this command can be found in the man page by issuing
glsrole --man at the command line.

Example 2. Listing all roles along with users and descriptions

$ glsrole --show=Name,Users,
Description
Name Users
Description

----------- ----- ---------

Anonymous ANY Things
that can be done by anybody

OVERRIDE ANY A custom
authorization method will be
invoked
ProjectAdmin Can
update or view a project they
are admin for
Schedule root Scheduler
relevant Transactions
SystemAdmin scottmo Can
update or view any object

UserServices User
Services

Example 3. Listing information about the scheduler role

$ glsrole -l Scheduler
Name Users Actions

Description

- 223 -

----------- ----- -----------
------------- ---------------

Scheduler root
UsageRecord->Create(ANY)
Scheduler relevant Transactions

UsageRecord->Quote(ANY)

UsageRecord->Reserve(ANY)

UsageRecord->Charge(ANY)

Reservation->Delete(ANY)

- 224 -

19.3 Modifying Roles
To modify a role, use the command gchrole:

gchrole [-d description] [--AddUser(s) user_name{,user_name...]] [--
addAction(s) object_name->action_name[{instance_name}][,object_
name->action_name[{instance_name}]...]] [--delUser(s) user_name[,
user_name...]] [--del-action(s) object_name->action_name[{instance_
name}] [,object_name->action_name [{instance_name}]...]] [--debug] [--
site site_name] [-?, --help] [--man] [--quiet] [-v, --verbose] [-V, --version] [[-r]
role_name]

Additional detail for this command can be found in the man page by issuing
gchrole --man at the command line.

Users may be added to a role or removed from a role. Actions also may be added
to a role or removed from a role. When specifying actions, the instance will
default to a value of ANY.

Example 4. Adding a user to a role

Let's add dave to our new Manager role:

$ gchrole --add-user dave -r
Manager
Successfully added 1 user

Example 5. Associating an action with a role

Allow the Manager to change role responsibilities:

gchrole --add-action
"RoleAction->ANY" Manager -v
Successfully added 1 action

- 225 -

19.4 Deleting Roles
To delete a role, use the command grmrole:

grmrole [--debug] [-S, --site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] [[-r] role_name]

Additional detail for this command can be found in the man page by issuing
grmrole --man at the command line.

Users may be added to a role or removed from a role. Actions also may be added
to a role or removed from a role. When specifying actions, the instance will
default to a value of ANY.

Example 6. Deleting the Manager role

Let's add dave to our new Manager role:

$ grmrole Manager
Successfully deleted 1 role and
2 associations

- 226 -

20.0 Managing Passwords
Passwords must be established for each user who wishes to use the web-based GUI.
Passwords must be at least eight characters and are stored in encrypted form. A
gchpasswd command line client exists to aid a user or administrator in setting or
changing a password. Other operations (deleting or listing password entries) must
be performed using the interactive control program (goldsh). By default, a stand-
ard user may only set or change their own password. A system administrator may
set or change any user's password.

Because Moab Accounting Manager caches password information for faster
responsiveness, it will be necessary to restart the server after running
gchpasswd for the GUI to accept that password change.

- 227 -

20.1 Setting Passwords
To set a new password, use the command gchpasswd. If the user name is not spec-
ified via an option or as the unique argument, then the invoking user will be taken
as the user whose password will be set. The invoker will be prompted for the new
password.

gchpasswd [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, --ver-
bose] [-V, --version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing
gchpasswd --man at the command line.

Example 1. Setting a password

$ gchpasswd amy

Enter your new password:
Successfully created 1 password

- 228 -

20.2 Querying Passwords
To display password information, use the command goldsh Password Query:

goldsh Password Query [Show:=<"Field1,Field2,...">] [User==<User
Name>] [ShowUsage:=True]

Example 2. List the users who have set passwords

$ goldsh Password Query
Show:=User
User

amy
gold

- 229 -

20.3 Deleting Passwords
To delete a password, use the command goldsh Password Delete:

goldsh Password Delete User==<User Name>]

The goldsh control program allows you to make powerful and sweeping mod-
ifications to Moab Accounting Manager objects. Misuse of this command
could result in the inadvertent deletion of all passwords.

Example 3. Deleting a password

$ goldsh Password Delete
User==amy
User Password

------ ------------------------

amy
HZYzwD20o1XIE/gxRYyFKP2sumkCluH-
m
Successfully deleted 1 password

- 230 -

21.0 Using the Gold Shell (goldsh)
goldsh is an interactive control program that can access all of the advanced func-
tionality in Moab Accounting Manager.

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. Inadvertant mistakes
could result in modifications that are very difficult to reverse.

- 231 -

21.1 Usage
Goldsh commands can be invoked directly from the command line as arguments, or
read from stdin (interactively or redirected from a file).

goldsh [--debug] [--site site_name] [-?, --help] [--man] [--raw] [--quiet] [-v, --ver-
bose] [-V, --version] [<Command>]

Additional detail for this command can be found in the man page by issuing
goldsh --man at the command line.

Example 1. Specifying the command as direct arguments

$ goldsh System Query

Name
Version Description
----------------------- ------
- ------------------
Moab Accounting Manager
7.0.0 Commercial Release

Example 2. Using the interactive prompt

$ goldsh

gold> System Query

Name Version
Description
----------------------- -------

Moab Accounting Manager 7.0.0
Commercial Release
gold> quit

Example 3. Reading commands from a file

$ cat >commands.gold <<EOF
System Query
quit
EOF

- 232 -

$ goldsh <commands.gold

Name
Version Description
----------------------- ------
- ------------------
Moab Accounting Manager
7.0.0 Commercial Release

- 233 -

21.2 Command Syntax
goldsh commands are of the form:

<Object> [=<Alias>] [,<Object> [=<Alias>]...] <Action> [[<Con-
junction>] [<Open_Parenthesis>...] [<Object>.] <Name> <Operator>
[<Subject>.] <Value> [<Close_Parenthesis>...] ...]

The basic form of a command is <Object> <Action> [<Name><Operator><Value>]*.
When an action is performed on more than one object, such as in a multi-object
query, the objects are specified in a comma-separated list. Commands may accept
zero or more predicates which may function as fields to return, conditions, update
values, processing options, etc. Predicates, in their simplest form, are expressed
as Name, Operator, Value tuples. Predicates may be combined via conjunctions
with grouping specified with parentheses. When performing multi-object queries,
names and values may need to be associated with their respective objects.

Valid conjunctions include:

&&
and

||
or

&!
and not

|!
or not

Open parentheses may be any number of literal open parentheses '('.

Name is the name of the condition, assignment, or option. When performing a
multi-object query, a name may need to be prepended by its associated object
separated by a period.

Valid operators include:

==
equals

<
less than

>
greater than

<=
less than or equal to

>=

- 234 -

greater than or equal to

!=
not equal to

~
matches

=
is assigned

+=
is incremented by

-=
is decremented by

:=
option

:!
not option

Value is the value of the selection list, condition, assignment, or option. When
performing a multi-object query, a value may need to be prepended by its asso-
ciated object (called the subject) separated by a period.

Close parentheses may be any number of literal closing parentheses ')'.

- 235 -

21.3 Valid Objects
To list the objects available for use with commands in goldsh commands, use the
goldsh command: Object Query

Example 4. Listing all objects

gold> Object Query Show:="Sort
(Name)"
Name

Account
AccountAccount
Action
Allocation
Attribute
ChargeRate
Constrainst
Machine
Object
Organization
Password
Project
ProjectUser
Quote
QuoteChargeRate
Reservation
Role
RoleAction
RoleUser
System
Transaction
UsageRecord
User

- 236 -

21.4 Valid Actions for an Object
To list the actions that can be performed on an object, use the goldsh command:
Action Query

Example 5. Listing all actions associated with the Account object

gold> Action Query
Object==Account Show:="Sort
(Name)"
Name

Balance
Create
Delete
Deposit
Modify
Query
Transfer
Undelete
Withdraw

- 237 -

21.5 Valid Predicates for an Object and Action
By appending the option "ShowUsage:=True" to a command, the syntax of the com-
mand is returned, expressed in SSSRMAP XML Message Format.

Example 6. Show the usage for Allocation Query

gold> Allocation Query
ShowUsage:=True
<Request action="Query">

<Object>Allocation<Object>
[<Get name="Id"

[op="Sort|Tros|Count|-
GroupBy|Max|Min"]></Get>]

[<Get name="Account"
[op="Sort|Tros|Count|-
GroupBy|Max|Min"]></Get>]

[<Get name="StartTime"
[op="Sort|Tros|Count|-
GroupBy|Max|Min"]></Get>]

[<Get name="EndTime"
[op="Sort|Tros|Count|-
GroupBy|Max|Min"]></Get>]

[<Get name="Amount"
[op="Sort|Tros|Count|-
GroupBy|Max|Min|Sum|Average"]
></Get>]

[<Get name="CreditLimit"
[op="Sort|Tros|Count|-
GroupBy|Max|Min|Sum|Average"]
></Get>]

[<Get name="Deposited"
[op="Sort|Tros|Count|-
GroupBy|Max|Min|Sum|Average"]
></Get>]

[<Get name="Active"
[op="Sort|Tros|Count|GroupBy"]
></Get>]

[<Get name="Description"
[op="Sort|Tros|Count|-
GroupBy|Max|Min"]></Get>]

[<Where name="Id"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]

- 238 -

[conj="And|Or (And)"]
[group="<Integer Number>Integer
Number}</Where>]

[<Where name="Account"
[op="EQ|NE|GT|GE|LT|LE|-
Match|NotMatch (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>Account
Name}</Where>]

[<Where name="StartTime"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>YYYY-
MM-DD [hh:mm:ss]|-
infinity|infinity|now</Where>]

[<Where name="EndTime"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>YYYY-
MM-DD [hh:mm:ss]|-
infinity|infinity|now</Where>]

[<Where name="Amount"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>Decimal
Number}</Where>]

[<Where name="CreditLimit"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>Decimal
Number}</Where>]

[<Where name="Deposited"
[op="EQ|NE|GT|GE|LT|LE (EQ)"]
[conj="And|Or (And)"]
[group="<Integer Number>Decimal
Number}</Where>]

[<Where name="Active"
[op="EQ|NE (EQ)"] [conj="And|Or
(And)"] [group="<Integer
Number>True|False</Where>]

[<Where name="Description"
[op="EQ|NE|GT|GE|LT|LE|-
Match|NotMatch (EQ)"]

- 239 -

[conj="And|Or (And)"]
[group="<Integer
Number>Description}</Where>]

[<Option
name="Filter">True|False
(False)</Option>]

[<Option
name="F-
ilter-
Type">Exclusive|NonExclusive
(NonExclusive)</Option>]

[<Option
name="-
IncludeAncestors">True|False
(False)</Option>]

[<Option name="Time">YYYY-
MM-DD [hh:mm:ss]</Option>]

[<Option
name="Unique">True|False
(False)</Option>]

[<Option name="Limit">
{Integer Number}</Option>]

[<Option
name="Offset">Integer Number}
</Option>]

[<Option
name="ShowHidden">True|False
(False)</Option>]

[<Option
name="ShowUsage">True|False
(False)</Option>]
<Request>

- 240 -

21.6 Common Options
There are a number of options that may be specified for all commands. These
options include: ShowUsage

ShowUsage
This option may be included with any command to cause the command to
return a usage message in SSSRMAP XML Message Format.

- 241 -

21.7 Common Actions Available for most
Objects
There are a number of actions that are available for most objects. These actions
include Query, Create, Modify, Delete, and Undelete. Commands involving these
actions inherit some common structure unique to the action type.

21.7.1 Query Action
The Query action is used to query objects. It accepts selections that describe the
attributes (fields) to return (including aggregation operations on those attributes),
conditions that select which objects to return the attributes for, and other options
unique to queries.

Selections
Selections use the Show option to specify a list of the attributes to return for
the selected object. If selections are not specified, a default set of attrib-
utes (defaulting to those not marked as hidden) will be returned.

Name = Show
Op = :=
Value = "attribute1,attribute2,attribute3,..."

Aggregation operators may be applied to attributes by enclosing the target
attribute in parenthesis and prepending the name of the desired operator.
The aggregation operators that can be applied depend on the datatype of the
attribute.

Valid selection operators include:

Sort Ascending sort
Tros Descending sort
Count Count
Max Maximum value
Min Minimum value
Average Average value
Sum Sum
GroupBy Group other aggregations by this attribute

Additionally, aliases can be applied to selections so that columns can be
renamed as desired. Aliases are expressed by adding "=<Alias>" to the target
attribute name (and after the trailing parenthesis of the aggregation, if spec-
ified).

- 242 -

For example: Allocation Query Show:="GroupBy)Account),Sum(Amount)
=Total"

Conditions
Conditions are used to select which objects the action is to be performed
on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively)
in a manner similar to file globbing. * matches zero or more unspecified char-
acters and ? matches exactly one unspecified character. For example mscf*
matches objects having the specified attributes whose values start with the
letters mscf, while mscf? matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Options
Options indicate processing options that affect the result.

Name = Name of the option
Op = :=
Value = Value of the option

Valid options for query actions include:

ShowHidden:=True|False (False) Includes hidden attributes in the result
Time:="YYYY-MM-DD [hh:mm:ss]" Run the command as if it were the spec-
ified time
Unique:=True|False (False) Display only unique results (like DISTINCT in SQL)
Limit:={Integer Number} Limit the results to the number of objects specified

Example 7. Return the number of inactive reservations

- 243 -

gold> Reservation Query
EndTime<now Show:="Count(Id)"
Id

8

21.7.2 Create Action
The Create action is used to create a new object. It accepts assignments that
describe the values of the attributes to be set.

Assignments
Assignments specify values to be assigned to attributes in the new object.

Name = Name of the attribute being assigned a value
Op = = (is assigned)
Value = The new value being assigned to the attribute

Example 8. Add a new project member

gold> ProjectUser Create
Project=chemistry Name=scottmo
Project Name Active

Admin
------------- ---------- ------
--- -------
chemistry scottmo True

False
Successfully created 1
projectUser

21.7.3 Modify Action
The Modify action is used to modify existing objects. It accepts conditions that
select which objects will be modified and predicates that describe the values of
the attributes to be set.

Assignments
Assignments specify values to be assigned to attributes in the selected
objects.

Name = Name of the attribute being assigned a value
Op = assignment operators {=, +=, -=}
Value = The value being assigned to the attribute

- 244 -

Valid assignment operators include:

= is assigned
+= is incremented by
-= is decremented by

Conditions
Conditions are used to select which objects the action is to be performed
on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively)
in a manner similar to file globbing. * matches zero or more unspecified char-
acters and ? matches exactly one unspecified character. For example mscf*
matches objects having the specified attributes whose values start with the
letters mscf, while mscf? matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Example 9. Change/set scottmo's phone number and email address

gold> User Modify Name==scottmo
PhoneNumber="(509) 376-2204"
Email-
Address="scottmo@a-
daptivecomputing.com"
Name Active CommonName

PhoneNumber
EmailAddress
DefaultProject

Description
---------- --------- ----------

- 245 -

--------------- ---------------
------ ------------------------
------- --------------------- -

scottmo True Jackson,
Scott M. (509) 376-2204

scottmo@adaptivecomputing.com

Successfully modified 1 user

Example 10. Extend all reservations against project chemistry by 10 days

gold> Reservation Modify
EndTime+=864000
Project==chemistry
Id Account Amount
Instance UsageRecord User
Project Machine EndTime

Description
--- ---------- --------- ------
----- ----------- ------ -----
----- ---------- --------------
-------------- ----------------
1 2 57600
PBS.1234.0 1 amy
chemistry colony 2012-04-
06 10:47:30
Successfully modified 1
reservation

21.7.4 Delete Action
The Delete action is used to delete objects. It accepts conditions that select which
objects are to be deleted.

Conditions
Conditions are used to select which objects the action is to be performed
on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

- 246 -

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively)
in a manner similar to file globbing. * matches zero or more unspecified char-
acters and ? matches exactly one unspecified character. For example mscf*
matches objects having the specified attributes whose values start with the
letters mscf, while mscf? matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Example 11. Get rid of the pesky Jacksons

gold> User Delete
CommonName~"Jackson*"
Name Active CommonName

PhoneNumber
EmailAddress
DefaultProject

Description
---------- --------- ----------
--------------- ---------------
------ ------------------------
------- --------------------- -

scottmo True Jackson,
Scott M. (509) 376-2204

scottmo@adaptivecomputing.gov

Successfully deleted 1 user and
1 association

21.7.5 Undelete Action
The Undelete action is used to restore deleted objects. It accepts conditions that
select which objects are to be undeleted.

- 247 -

Conditions
Conditions are used to select which objects the action is to be performed
on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively)
in a manner similar to file globbing. * matches zero or more unspecified char-
acters and ? matches exactly one unspecified character. For example mscf*
matches objects having the specified attributes whose values start with the
letters mscf, while mscf? matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Example 12. Resurrect the deleted users that were active

gold> User Undelete
Active==True
Name Active CommonName

PhoneNumber
EmailAddress
DefaultProject

Description
---------- --------- ----------
--------------- ---------------
------ ------------------------
------- --------------------- -

scottmo True Jackson,
Scott M. (509) 376-2204

scottmo@adaptivecomputing.com

- 248 -

Successfully undeleted 1 user
and 1 association

- 249 -

21.8 Multi-Object Queries
Goldsh supports multi-object queries (table joins). Multiple objects are specified
via a comma-separated list and attributes need to be prefixed by the associated
object.

Example 13. Print the sums for active balance and allocated amounts grouped
by project

gold> Allocation,Constraint
Query
Show:="GroupBy
(Constraint.Value=Project),Sum
(Allocation.Amount=Balance),Sum
(Allo-
cation.Deposited=Allocation)"

Con-
straint.A-
ccount==Allocation.Account
Constraint.Name==Project
Allocation.Active==True

Project Balance
Allocation
------------- ------------- ---

biology 193651124
360000000
chemistry 296167659
360000000

Example 14. Show all active projects for amy's privileges

gold> RoleUser,RoleAction Query
Show:="RoleAction.Object,
RoleAction.Name=Action"
RoleUser.Role==RoleAction.Role
&& (RoleUser.Name==amy ||
RoleUser.Name==ANY)
Unique:=True

Object Action

- 250 -

------------------ -------
Account Balance

Account Query
AccountAccount Query
Action Query
Allocation Query
Attribute Query
ChargeRate Query
Constraint Query
Machine Query
Object Query
Organization Query
Password ANY
Project Query
ProjectUser Query
Quote Query
QuoteChargeRate Query
Reservation Query
ReservationAllocation Query
Role Query
RoleAction Query
RoleUser Query
System Query
Transaction Query
UsageRecord Query
User Query

Although the forgoing was a good example of a join request, it should be
understood that it is not a straightforward way to determine the full extent
of a user's privileges. Some of the actions may be tied to specific object
instances and many of them are associated with an override method which
may not actually permit the user access to any instances of the object.
Using Show:="RoleUser.Role,RoleUser.Name=User,RoleAction.Object,RoleAc-
tion.Name=Action,RoleAction.Instance" may be revealing in this regard. See
the chapter on Managing Roles for more information about managing roles.

- 251 -

22.0 Customizing Objects
Moab Accounting Manager provides the ability to dynamically create new objects
or customize or delete existing objects through the interactive control program
(goldsh).

The object customizations described in this chapter will be noticeable in
subsequent goldsh queries (and in the web GUI after a fresh login). For
installations with a database that supports multiple connections (e.g. Post-
greSQL) these changes will be visible immediately while others (e.g. SQLite)
will require the server to be restarted. Client commands may need to be
modified to properly interact with changed objects or attributes.

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. Inadvertent mistakes
could result in modifications that are very difficult to reverse.

- 252 -

22.1 Managing Objects
In Moab Accounting Manager, Objects correspond to tables in the repository which
have Attributes (such as Name and Color) and Actions (such as Query and Modify).
A specific instance of an object is described as an Instance and has Properties (the
specific values of the attributes for that object). The instance is uniquely referred
to via its primary key(s) (such as its Name or Id).

An object must have a name and may have a description. An object may be set to
auto-generate its instances when first seen (see Object Auto-Generation) and/or a
default value may be designated for the object (see Global Object-based
Defaults).

Objects may reference other objects. If a single instance of an object references
only a single instance of another object (for example, a usage record may only
have one user), then it is sufficient for the first object to have an attribute field
for the second object (the UsageRecord object has an attribute called User). How-
ever, if there may be a many-to-many relationship between objects (for example,
a project may have multiple users and a user may belong to multiple projects),
then it is necessary to maintain a separate object as an association table (e.g. Pro-
jectUser). When creating an association object, the object should be given an
appropriate name (e.g. ProjectUser), it should be marked as an association (Asso-
ciation=True), and an object needs to be designated for the parent (e.g. Project)
and the child (e.g. User). The association object itself may have additional attrib-
utes that provide qualitative information about the association (e.g. a particular
ProjectUser association may be active or be an administrator).

- 253 -

22.1.1 Creating a Custom Object
To create a new object, use the command goldsh Object Create. When an object
is created, the 5 default actions are automatically created for the object: Create,
Delete, Modify, Query and Undelete. A number of default metadata attributes are
created as well: CreationTime, ModificationTime, Deleted, RequestId and Trans-
actionId. These attributes are normally hidden in regular queries.

goldsh Object Create Name=<Object Name> [AutoGen=True|(False)] [Default-
Value=<Default Value>] [Description=<Description>] [Association=True|False)]
[Child=<Child Object>] [Parent=<Parent Object>][ShowUsage:=True]

Example 1. Creating a Node Object

$ goldsh Object Create
Name=Node Description=\"Node
Information\"
Successfully created 1 object
and 5 actions

Example 2. Add a node name attribute

$ goldsh Attribute Create
Object=Node Name=Name
DataType=String PrimaryKey=True
Successfully created 1
attribute

Example 3. Add a processor count attribute

$ goldsh Attribute Create
Object=Node Name=Processors
DataType=Integer
Successfully created 1
attribute

- 254 -

22.1.2 Querying Objects
To display object information, use the command goldsh Object Query.

goldsh Object Query [Name=<Object Name>] [Show:=Name,AutoGen,
DefaultValue,Description,Association,Parent,Child] [Sho-
wUsage:=True]

Example 4. List Information for the Node Object

$ goldsh Object Query
Name==Node

Name Association Parent
Child DefaultValue AutoGen
Description
---- ----------- ------ ----
- ------------ ------- -----

Node False

False Node
Information

- 255 -

22.1.3 Modifying an Object
It is possible to modify an object by using the command goldsh Object Modify.

goldsh Object Query [Name=<Object Name>] [AutoGen=True|False] [Default-
Value=Default Value>] [Description=Description>] [Association=True|
(False)] [Child=Child Object>] [Parent=Parent Object>] [ShowUsage:=True]

Example 5. Changing the Node object's description

$ goldsh Object Modify
Name==Node Description="\"Host
Information\""
Successfully modified 1 object

- 256 -

22.1.4 Deleting an Object
To delete an object, use the command goldsh Object Delete. When an object is
deleted, all associated attributes, actions and other associations are automatically
deleted as well.

goldsh Object Delete [Name=<Object Name>] [ShowUsage:=True]

Example 6. Deleting the Node Object

$ goldsh Object Delete
Name==Node
Successfully deleted 1 object

This is a very dangerous operation and could result in the deletion of all
object definitions requiring database repair. The goldsh control program
allows you to make powerful and sweeping modifications to many objects
with a single command. Be sure to specify conditions for the object you
want to delete.

- 257 -

22.1.5 Object Auto-Generation
It is possible to have object instances be automatically generated the first time
they are referenced in designated contexts. For example, you might want a user
be auto-generated when newly added to a project. You could have an organ-
ization auto-generated when specified as the default for a user. You could have a
cost-center be auto-generated when referenced in a usage record. To do this, the
referenced object must be set to AutoGen=True and the Values property for the
attribute that you want to trigger the auto-generation must be set to a string con-
sisting of the '@' sign followed by the object name.

Example 7. Auto-generate a machine's organization

For example, let's assume that your machines belong to specific organizations that
you may want to run a report against but you don't want to define all of the organ-
izations up front. It would be possible to automatically generate a new organ-
ization instance each time an undefined organization is specified for a machine.

$ goldsh Object Modify
Name==Organization AutoGen=True
Successfully modified 1 object

$ goldsh Attribute Modify
Object==Machine
Name==Organization
Values=@Organization
Successfully modified 1
attribute

See Usage Record Property Auto-Generation for a discussion of auto-generating
objects referenced in usage records.

- 258 -

22.1.6 Global Object-Based Defaults
It is possible to set a global default for an object that will be applied to all attrib-
utes referencing this object. When a new instance of an object is being created
which has an attribute referring to another object via its Values property, if that
attribute has not been specified and you want it to default to the global default,
you will need to set the DefaultValue attribute for the referenced object to the
desired value.

Example 8. Setting a system-wide simple default organization called general

$ goldsh Object Modify
Name==Organization
DefaultValue=general
Successfully modified 1 object

Thereafter each (non-association) object which has an attribute with a Values prop-
erty set to @Organization will default to general if that attribute is not specified.
Perhaps we would want the default value to be taken for the organization when a
new project is created.

$ goldsh Attribute Modify
Object==Project
Name==Organization
Values=@Organization
Successfully modified 1
attribute

See Local Attribute-based Defaults for more information about setting default
values for attributes. See Usage Record Property Defaults for more information
about setting default values for usage record properties.

- 259 -

22.2 Managing Attributes
Objects can have any number of fields called Attributes. When an object is first
created, a number of attributes are created for the object by default. These are:
CreationTime (time the object was first created), ModificationTime (time the
object was last updated), Deleted (whether the object is deleted or not), Reque-
stId (request id that resulted in the last modification of the object), TransactionId
(transaction id that resulted in the last modification of the object).

An attribute must have a name and be associated with an object.

An attribute will have a data type which can be one of (AutoGen, TimeStamp, Bool-
ean, Float, Integer, Currency, String) and defaults to String. A data type of
AutoGen means the field will be a primary key of type integer which will assume
the next auto-incremented value from the g_key_generator table. TimeStamps are
epoch times stored in integer format. Booleans are strings constrained to the
values of True or False (or unset). Float is used to store decimal or floating point
values. Currency is like Float but may have special business logic for handling cur-
rency values.

An object may have zero or more attributes which are primary keys (Pri-
maryKey==True), the combination of which are used to uniquely identify an object
instance. Moab Accounting Manager will try to ensure that there can only be one
object instance with the exact same set of values of its primary keys.

A required attribute (Required==True), must be either specified or be derived via
a default value or other dynamic mechanism when the object is created. It can
also not be unset.

A fixed attribute (Fixed==True), may not be changed from its initial value.

An attribute may be constrained to certain values via the Values attribute. The
values may be constrained to members of a list expressed as a parenthesized
comma-delimited list of strings (i.e. Values="(Brazil,China,France,Russia,USA)").
Alternatively, the values may be constrained to be an instance of a particular
object type (like a foreign key constraint) by assigning to the Values attribute the
name of an object prefixed by the '@' sign (e.g. Values="@Project" -- which would
constrain the value of this attribute to be a valid project name). Stronger versions
of the @-prefixed object-constrained values may be used in Quote, Reserve and
Charge actions to enforce dynamic interactions between usage record properties
such as to assign default values if not defined (e.g. Values="@?=Project"), ver-
ification values which evoke an error if they differ (e.g. Values="@!=Project"), or
designated values which always overwrite the value (e.g. Values="@:=Project").
See Usage Record Property Instantiators for more information.

A default value may be assigned to an attribute via the DefaultValue attribute.
When a new instance of an object is created, if a property is not specified for the
attribute, the default value will be used.

- 260 -

The Sequence attribute determines which order an object's attributes will be
listed in for queries if no selection list is specified in the query. Attributes with
smaller sequence numbers will appear before attributes with larger sequence
numbers. The Sequence attribute is also used to enforce a proper attribute display
ordering in the web GUI.

The Hidden attribute specifies whether an attribute should be shown in a query by
default or not. Hidden attributes can be seen in queries by specifying the Sho-
wHidden option with a value of True.

The Description field is a location to describe the meaning of the attribute and is
used in the GUI for field descriptions.

- 261 -

22.2.1 Adding an Attribute to an Object
To create a new attribute for an object, use the command goldsh Attribute
Create:

goldsh Attribute Create Object=<Object Name> Name=<Attribute Name>
[DataType=AutoGen|TimeStamp|Boolean|Float|Integer|Currency|(String)] [Pri-
maryKey=True|(False)] [Required=True|(False)] [Fixed=True|(False)] [Values=<For-
eign Key or List of Values>] [DefaultValue=<Default Value>]
[Sequence=<Integer Number>] [Hidden=<True|(False)>]
[Description=<Description>] [ShowUsage:=True]

Example 9. Adding a Country Attribute to User

$ goldsh Attribute Create
Object=User Name=Country
Values=\"\(Brazil,China,France,
Russia,USA\)" DefaultValue=USA
Successfully created 1
attribute

Example 10. Tracking Submission Time in Usage records

$ goldsh Attribute Create
Object=UsageRecord
Name=SubmissionTime
DataType=TimeStamp
Successfully created 1
attribute

- 262 -

22.2.2 Querying Attributes
To display attribute information, use the command goldsh Attribute Query:

goldsh Attribute Query Object=<Object Name> Name=<Attribute Name>
[Show:=Object,Name,DataType,PrimaryKey,Required,Fixed,Values,
DefaultValue,Sequence,Hidden,Description] [ShowHidden:=True] [Sho-
wUsage:=True]

Example 11. List the attributes of the Node object

$ goldsh Attribute Query
Object==Node

Object Name
DataType PrimaryKey Required
Fixed Values DefaultValue
Sequence Hidden Description

------ ---------------- -------
-- ---------- -------- ----- --
---- ------------ -------- ----
-- ----------------------------
-
Node Processors Integer

False False False
20 False

Node Name String
True True True

10 False

Node TransactionId Integer
False False True

990 True
Last Modifying Transaction Id
Node RequestId Integer

False False True
980 True

Last Modifying Request Id
Node Deleted Boolean

False False True
970 True

Is this object deleted?

- 263 -

Node ModificationTime
TimeStamp False False
True 960

True Last Updated

Node CreationTime
TimeStamp False False
True 950

True First Created

- 264 -

22.2.3 Modifying an Attribute
To modify an attribute, use the command goldsh Attribute Modify:

goldsh Attribute Modify Object==<Object Name> Name==<Attribute Name>
[Required=True|(False)] [Fixed=True|(False)] [Values=<Foreign Key or List
of Values>] [DefaultValue=<Default Value>] [Sequence=<Integer
Number>] [Hidden=<True|(False)>] [Description=<Description>] [Sho-
wUsage:=True]

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. A mistake made using this
command could result in the inadvertent modification of all attributes.

Example 12. Change User Organization values to not be restricted to the set of
organization instances

$ goldsh Attribute Modify
Object==User Name==Organization
Values=NULL
Successfully modified 1
attribute

- 265 -

22.2.4 Removing an Attribute from an Object
To delete an attribute, use the command goldsh Attribute Delete:

goldsh Attribute Delete Object==<Object Name> Name==<Attribute Name>
[ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. A mistake made using this
command could result in the inadvertent deletion of all attributes.

When using Moab Accounting Manager as an Allocation Manager, certain
objects and attributes are assumed to exist. For example, a call to Usag-
eRecord Charge would fail if you had deleted the Allocation Amount attrib-
ute. The Attribute Undelete command might come in useful in such a case.

Example 13. Removing the Organization attribute from Machine

$ goldsh Attribute Delete
Object==Machine
Name==Organization
Successfully deleted 1
attribute

Example 14. Perhaps we don't care to track the QualityOfService attribute in a
Usage record

$ goldsh Attribute Delete
Object==UsageRecord
Name==QualityOfService
Successfully deleted 1
attribute

- 266 -

22.2.5 Local Attribute-Based Defaults
It is possible to set a specific default for an object attribute that will be applied
when an instance of that object is created but the attribute is not specified. This
type of default is intended for attributes which do not refer to another object or
which should vary from the object global default. This default value is assigned to
an attribute via the DefaultValue attribute. When a new instance of the associated
object is created, if a property is not specified for the attribute, the specified
default value will be used. A local attribute default will have precedence over a
global object default.

goldsh Attribute Delete Object==<Object Name> Name==<Attribute Name>
[ShowUsage:=True]

Example 15. Setting a default organization just for the project object

$ goldsh Attribute Modify
Object==Project
Name==Organization
DefaultValue=university
Successfully modified 1
attribute

Example 16. Setting a default phone for the user object

$ goldsh Attribute Modify
Object==User Name==Phone
DefaultValue="\"NoPhone\""
Successfully modified 1
attribute

See Global Object-based Defaults for more information about setting default
values for objects.

See Usage Record Property Defaults for more information about setting default
values for usage record properties.

- 267 -

22.3 Managing Actions
Moab Accounting Manager defines which actions can be performed by which
objects. When an object is first created, five basic actions are created for the
object by default. These are: Create, Modify, Query, Delete and Undelete. Spe-
cific code must exist in Moab Accounting Manager modules in order for objects to
support additional actions.

An action is uniquely specified by its name and the object with which it is asso-
ciated. An action also has a description and a boolean display attribute which gov-
erns whether this action should be displayed in the web GUI or not.

- 268 -

22.3.1 Adding an Action to an Object
To specify that an action is allowed for an object, use the command goldsh Action
Create:

goldsh Action Create Object=<Object Name> Name=<Action Name> [Dis-
play=True|(False)] [Description=<Description>] [ShowUsage:=True]

Example 17. Adding a Modify Action to Transaction

$ goldsh Action Create
Object=Transaction Name=Modify
Description=Modify
Successfully created 1 action

- 269 -

22.3.2 Querying Actions
To display action information, use the command goldsh Action Query:

goldsh Action Query [Object==<Object Name>] [Name==<Attribute Name>]
[Show:=Object,Name,Display,Description] [ShowUsage:=True]

Example 18. List the actions of the Node object

$ goldsh Action Query
Object==Node
Object Name Display
Description
------ -------- ------- -------

Node Create False Create

Node Delete False Delete

Node Modify False Modify

Node Query False Query

Node Undelete False
Undelete

- 270 -

22.3.3 Modifying an Action
To modify an action, use the command goldsh Action Modify:

goldsh Action Modify [Object==<Object Name>] [Name==<Attribute Name>]
[Display=True|(False)] [Description=<Description>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. A mistake made using this
command could result in the inadvertent modification of all actions.

Example 19. Display all Node actions but Undelete in the web GUI

$ goldsh Action Modify
Object==Node Name!=Undelete
Display=True
Successfully modified 4 actions

- 271 -

22.3.4 Removing an Action from an Object
To delete an action from an object, use the command goldsh Action Delete:

goldsh Action Delete [Object==<Object Name>] [Name==<Attribute Name>]
[ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping mod-
ifications to many objects with a single command. A mistake made using this
command could result in the inadvertent modification of all actions.

When using Moab Accounting Manager as an allocation manager, certain
actions are assumed to exist. Be careful what you delete!

Example 20. Do not allow projects to be deleted

$ goldsh Action Delete
Object==Project Name==Delete
Successfully deleted 1 action

- 272 -

22.4 Examples Creating Custom Objects
Creating a custom object normally involves defining a new object and adding
attributes to the object.

Example 1. Creating a License object to track license usage and charges.

Invoke the Moab Accounting Manager control program in interactive mode.

$ goldsh

Create the License Object.

gold> Object Create
Name=License
Description=License
Successfully created 1 object
and 5 actions

Next, define its attributes. Give each record a unique id (so the record can be
more easily modified), a license type that can be one of (Matlab,Mathematica,Com-
piler,AutoCAD,Oracle), the user who is using it, the start and end time, how many
instances of the license were used, and how much was charged.

gold> Attribute Create
Object=License Name=Id
DataType=AutoGen
PrimaryKey=True
Description="Record Id"
Successfully created 1
attribute
gold> Attribute Create
Object=License Name=Type
DataType=String Required=True
Values="(Matlab,Mathematica,
Compiler,AutoCAD,Oracle)"
Fixed=True Description="License
Type"
Successfully created 1
attribute
gold> Attribute Create
Object=License Name=User
Required=True Values="@User"
Description="User Name"
Successfully created 1
attribute

- 273 -

gold> Attribute Create
Object=License Name=StartTime
DataType=TimeStamp
Description="Start Time"
Successfully created 1
attribute
gold> Attribute Create
Object=License Name=EndTime
DataType=TimeStamp
Description="End Time"
Successfully created 1
attribute
gold> Attribute Create
Object=License Name=Count
DataType=Integer
Description="Number of Licenses
Used"
Successfully created 1
attribute
gold> Attribute Create
Object=License Name=Charge
DataType=Currency
Description="Amount Charged"
Successfully created 1
attribute

Finally, since we would like to manage licenses from the web GUI, set Dis-
play=True.

gold> Action Modify
Object=License Name!=Undelete
Display=True
Successfully modified 4 actions

When done, exit the goldsh prompt.

gold> quit

That's about it. Licenses should now be able to be managed via the GUI and
goldsh. The data source will need to use one of the methods of interacting with
Moab Accounting Manager (see Interaction Methods) in order to push license record
usage info to Moab Accounting Manager.

Apart from being used as an Allocation Manager, Moab Accounting Manager can be
used as a generalized information service. It can be used to manage just about any
object-oriented information over the web. For example, Moab Accounting Manager

- 274 -

could be used to provide meta-schedulers with machine/user mappings, or
node/resource information.
Example 2. Using Moab Accounting Manager as a Grid Map File.

Invoke the goldsh control program in interactive mode.

$ goldsh

Create the GridMap Object.

gold> Object Create
Name=GridMap
Description="Online Grid Map
File"
Successfully created 1 object
and 5 actions

Next, define its attributes. Each entry will consist of a userid (which will serve as
the primary key) and a required public X.509 certificate.

gold> Attribute Create
Object=GridMap Name=User
PrimaryKey=True Values=@User
Description="User Name"
Successfully created 1
attribute
gold> Attribute Create
Object=GridMap Name=Certificate
DataType=String Required=True
Description="X.509 Public Key"
Successfully created 1
attribute

Exit the goldsh prompt.

gold> quit

From this point, a peer service will need to use one of the methods of interacting
with Moab Accounting Manager (see Interaction Methods) in order to query the
GridMap information.

- 275 -

23.0 Integration with the Resource Man-
agement System
23.1 Dynamic versus Delayed Accounting
23.1.1 Delayed Accounting
In the absence of a dynamic system, some sites enforce allocations by periodically
(weekly or nightly) parsing resource manager job logs and then applying debits
against the appropriate project accounts. Although Moab Accounting Manager can
easily support this type of system by the use of the qcharge command in post-proc-
essing scripts, this approach will allow a user or project to use resources sig-
nificantly beyond their designated allocation and generally suffers from stale
accounting information.

23.1.2 Dynamic Accounting
Moab Accounting Manager's design allows it to interact dynamically with your
resource management system. Charges for resource utilization can be made imme-
diately when the usage ends or incrementally. Additionally, reservations can be
issued when the usage begins to place a hold against the user's account, thereby
ensuring that usage will only be permitted to start if it has sufficient reserves to
complete. The remainder of this document will describe the interactions for
dynamic accounting.

- 276 -

23.2 Interaction Points

23.2.1 Usage Quote @ Usage Creation Time [Optional
— Recommended]
When a usage request is submitted to a grid or cloud scheduler or resource broker,
it may be useful to determine how much it will cost to use a particular resource or
service by requesting a usage quote. If the quote is guaranteed, it will return a
quote id along with the quoted amount for the job. This quote id may be used
later to guarantee that the same charge rates used to form the quote will also be
used in the final job charge calculation.

Even when a usage request is exclusively serviced locally, it is useful to obtain a
quote at the time of submission to ensure the user has sufficient funds to satisfy
the usage request and that it meets the access policies necessary for the charge to
succeed. A warning can be issued if funds are low or the usage might be rejected
with an informative message in the case of insufficient funds or any other prob-
lems with the account. Without this interaction, the job or usage request might
wait in the queue for days to be scheduled only to fail when it tries to obtain a res-
ervation at its start time.

To make a usage quote with Moab Accounting Manager at this phase requires that:

l the grid or cloud scheduler has built-in support for Moab Accounting Manager
{Moab}, or

l the resource manager supports a submit filter PBS(submit_filter), {Load-
Leveler(SUBMIT_FILTER), LSF(esub)}, or

l a wrapper could be created for the submit command {PBS(qsub), SGE(qsub),
LSF(bsub)}.

23.2.2 Usage Reservation @ Usage Start Time
[Optional — Highly Recommended]
Just before usage begins (or a job starts), a hold (reservation) is made against the
appropriate account(s), temporarily reducing the user's available balance by an
amount based on the resources requested and the estimated wallclock limit. If this
step is omitted, it would be possible for users to use more resources or services
(i.e. start more jobs) than they have funds to support.

If the reservation succeeds, it will return a message indicating the amount
reserved for the usage. In the case where there are insufficient resources to satisfy
the usage request or some other problem with the reservation, the command will

- 277 -

fail with an informative message. Depending on site policy, this may or may not
prevent the usage from occurring.

To make a usage reservation with Moab Accounting Manager at this phase requires
that:

l the scheduler or resource manager has built-in support for Moab Accounting
Manager {Moab (see the AMCFG Configuration Parameter in Appendix A in
Moab Workload Manager)}, or

l the resource manager is able to run a script at usage start time {LoadLeveler
(prolog), PBS(prologue), LSF(pre_exec)}.

23.2.3 Usage Charge @ Usage End Time [Required]
When the usage is ended, a charge is made to the user's account(s). Any associated
reservations are automatically removed as a side-effect. Depending on site policy,
a charge can be elicited only in the case of a successful completion, or for all or
specific failure cases as well. Ideally, this step will occur immediately after the
usage completes (dynamic accounting). This has the added benefit that usage run
times can often be reconstructed from the usage reservation and charge times-
tamps in case the resource management usage accounting data becomes corrupt.

If the charge succeeds, it will return a message indicating the amount charged for
the usage.

To make a usage charge with Moab Accounting Manager at this phase requires that:

l the scheduler or resource manager has built-in support for Moab Accounting
Manager {Moab (see the AMCFG Configuration parameter in Appendix F in
Moab Workload Manager)}, or

l the resource manager is able to run a script at usage start time {LoadLeveler
(epilog), PBS(epilogue), LSF(post_exec)}, or

l the resource management system supports some kind of feedback or noti-
fication mechanism occurring at the end of the usage (an email can be
parsed by a mail filter).

http://www.adaptivecomputing.com/resources/docs/mwm/7-0-1/help.htm#a.fparameters.html
http://www.adaptivecomputing.com/resources/docs/mwm/7-0-1/help.htm#a.fparameters.html

- 278 -

23.3 Methods of interacting with Moab Account-
ing Manager
There are essentially six ways of programmatically interacting with Moab Account-
ing Manager. Consider a simple usage charge in each of the different ways.

23.3.1 Configuring an application that already has
hooks for Moab Accounting Manager
The easiest way to integrate with Moab Accounting Manager is to use a resource
management system with built-in support for it. For example, the Moab Workload
Manager can be configured to directly interact with Moab Accounting Manager to
perform the quotes, reservations, and charges by setting the appropriate param-
eters in their config files.

Example 1. Configuring Moab to use Moab Accounting Manager

Add an appropriate AMCFG line into moab.cfg to tell Moab how to talk to Moab
Accounting Manager.

$ vi /opt/moab/moab.cfg
AMCFG[gold] TYPE=GOLD
HOST=batchserver PORT=7112
SOCKETPROTOCOL=HTTP
WIREPROTOCOL=XML
CHARGEPOLICY=DEBITALLWC
JOBFAILUREACTION=HOLD,RETRY
TIMEOUT=30

Add a CLIENTCFG line into moab-private.cfg to specify the shared secret key. This
secret key will be the same secret key specified in the "make auth_key" step.

$ vi /var/moab/etc/moab.cfg
AMCFG[mam] TYPE=NATIVE
CHARGEPOLICY=DEBITALLWC
AMCFG[mam]
RESERVE-
URL=exec://$-
TOOLSDIR/mam/bank.reserve.mam.pl
AMCFG[mam]
RESERVEFAILUREACTION=HOLD
AMCFG[mam]
CHARGE-

- 279 -

URL=exec://$-
TOOLSDIR/mam/bank.charge.mam.pl

23.3.2 Using the appropriate command-line client
From inside a script, or by invoking a system command, you can use a command-
line client (one of the "g" commands in the bin directory).
Example 2. To issue a charge at the completion of a job usage, you would use
gcharge:

gcharge -J PBS.1234.0 -p
chemistry -u amy -m colony -P 2
-t 1234 -X Duration=1234

23.3.3 Using the interactive control program
The interactive control program, goldsh, will issue a charge for a job expressed in
xml.
Example 3. To issue a charge you must invoke the Charge action on the Job
object:

UsageRecord Charge
Data:="<-
Usag-
eRecord><Instance>PBS.1234.0</Instance><Project>chemistry</Project>
<User>amy</Use-
r><-
Machine>colony</Machine><Processors>2</Processors><Duration>1234</Duration>
</UsageRecord>" Duration:=1234

23.3.4 Use the Perl API
If your resource management system is written in Perl or if it can invoke a Perl
script, you can access the full functionality via the Perl API.
Example 4. To make a charge via this interface you might do something like:

use Gold;
my $request = new Gold::Request
(object => "UsageRecord",
action => "Charge");
my $usageRecord = new
Gold::Datum("UsageRecord");

- 280 -

$usageRecord->setValue
("Instance", "PBS.1234.0");
$usageRecord->setValue
("Project", "chemistry");
$usageRecord->setValue("User",
"amy");
$usageRecord->setValue
("Machine", "colony");
$usageRecord->setValue
("Processors", "2");
$usageRecord->setValue
("Duration", "1234");
$request->setDatum
($usageRecord);
$request->setOption("Duration",
"1234");
my $response = $request-
>getResponse();
print $response->getStatus(),
": ", $response->getMessage(),
"\n";

23.3.5 Use the Java API
Although deprecated, the Java API may still be usable to interact with Moab
Accounting Manager. The javadoc command can be run on the contrib/java/gold
directory to generate documentation for the gold java classes.
Example 5. To make a charge via this interface you might do something like:

import java.util.*;
import gold.*;

public class Test
{
public static void main(String

[] args} throws Exception
{

Gold.initialize();
Request request = new

Request("UsageRecord",
"Charge");

Datum usageRecord = new
Datum("UsageRecord");

- 281 -

usageRecord.setValue
("Instance", "PBS.1234.0");

usageRecord.setValue
("Project", "chemistry");

usageRecord.setValue("User",
"amy");

usageRecord.setValue
("Machine", "colony");

usageRecord.setValue
("Processors", "2");

usageRecord.setValue
("Duration", "1234");

request.setDatum
(usageRecord);

request.setOption
("Duration","1234");

Response response =
request.getResponse();

System.out.println
(response.getStatus() + ": " +
response.getMessage() + "\n");

}
}

23.3.6 Communicating via the SSSRMAP Protocol
Finally, it is possible to interact with Moab Accounting Manager by directly using
the SSSRMAP Wire Protocol and Message Format over the network (see SSS
Resource Management and Accounting Documentation). This will entail building
the request body in XML, appending an XML digital signature, combining these in
an XML envelope framed in an HTTP POST, sending it to the server, and parsing
the similarly formed response. The Moab Workload Manager communicates with
Moab Accounting Manager via this method.
Example 6. The message might look something like:

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml;
charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0"
encoding="UTF-8"?>

http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold
http://www.adaptivecomputing.com/resources/docs/gold

- 282 -

<Envelope>
<Body>

<Request action="Charge"
actor="scottmo">

<Object>UsageRecord</Object>
<Data>

<UsageRecord>

<Instance>PBS.1234.0</Instance>

<Project>chemistry</Project>
<User>amyh</User>

<Machine>colony</Machine>

<Processors>2</Processors>

<Duration>1234</Duration>
</UsageRecord>

</Data>
</Option

name="Duration">1234>/Option>
</Request>

<//Body>
<Signature>

<Digest-
Value>azu4obZswzBt8-
9OgATukBeLyt6Y=</DigestValue>

<Sig-
nature-
Value>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>

<SecurityToken
type="S-
ymmetric"></SecurityToken>

</Signature>
</Envelope>
0

- 283 -

24.0 Configuration Files
Moab Accounting Manager uses four configuration files: one for the connection
information (site.conf), one for the server (goldd.conf), one for the clients
(gold.conf) and one for the graphical user interface (goldg.conf). For con-
figuration parameters that have hard-coded defaults, the default value is specified
within brackets.

- 284 -

24.1 Site Configuration
The site configuration file specifies the connection information for the current
site such as the server host name, port, backup server, default security method
and the symmetric key. Optionally, it may also have blocks that specify connection
information for other sites. This file should be readable only by the accounting
admin user.

Example 1. The following is an example site.conf file

server.host = red-head1
backup.host = red-head2
server.port = 7071
token.type = Symmetric
token.value =
pBaIapJqbfLd8NiyzTJefFXW

[white]
server.host = white-head1
server.port = 7071
token.value =
Fl7wOkioUpyjdqJ8ckvWK_ta

[blue]
server.host = blue-head1
server.port = 7071
token.valne =
gVSeQ8Diz5O3pzj01y4inGWq

The following configuration parameters may be set in the site configuration file
(site.conf).

l backup.host - The hostname of the backup server. Each site can have both
a primary server and a hot-standby backup server. They should either point
to the same database or separate instances of replicated database. If back-
up.host is specified, clients will try communicating with the primary server
first, and if the connection fails, they will try communicating with the
backup server.

l server.host - The hostname of the server
l server.port [7112] - The port that the server listens on
l token-type [Symmetric] - Indicates the default security token type to be
used in both authentication and encryption. Valid token types include Pass-
word and Symmetric. The default is Symmetric.

l token.value - When using the Symmetric token type, token.value is the
secret key. It is a base64-encoded symmetric key used between clients and
the server for authentication and encryption.

- 285 -

24.2 Server Configuration
The following configuration parameters may be set in the server configuration file
(goldd.conf).

l currency.itemization [false] — Enables (true) or disables (false) the
storing of itemized charges to the Charge table for charge transactions.

l currency.precision [0] — Indicates the number of decimal places in the
resource credit currency. For example, if you are will be dealing with an
integer billable unit like processor-seconds, use 0 (which is the default). If
you will be charging dollars and cents, then use 2. This parameter should be
the same in the goldd.conf and gold.conf files.

l database.datasource [DBI:Pg:dbname=mam;host=localhost] — The Perl
DBI data source name for the database you wish to connect to

l database.password — The password to be used for the database con-
nection (if any)

l database.user — The username to be used for the database connection
(if any)

l event.scheduler [false] — Specifies whether the event scheduler is ena-
bled (true) or not (false)

l event.pollinterval [5] — The period in minutes that the event sched-
uler uses to check and fire events. The poll interval must divide evenly into
the number of minutes in a day (1440).

l log4perl.appender.Log.filename — Used by log4perl to set the base
name of the log file

l log4perl.appender.Log.max — Used by log4perl to set the number of
rolling backup logs

l log4perl.appender.Log.size — Used by log4perl to set the size the
log will grow to before it is rotated

l log4perl.appender.Log.Threshold — Used by log4perl to set the
debug level written to the log. The logging threshold can be one of TRACE,
DEBUG, INFO, WARN, ERROR, and FATAL

l log4perl.appender.Screen.Threshold — Used by log4perl to set the
debug level written to the screen. The logging threshold can be one of
TRACE, DEBUG, INFO, WARN, ERROR, and FATAL

l notification.deliverymethod [store] — Specifies which deliv-
erymethod is used by default if unspecified

l notification.duration [1209600] — Defines how long in seconds that
stored notifications persist before being automatically deleted. The default
is two weeks.

- 286 -

l response.chunksize [0] — Indicates the line length in the data response
that will trigger message segmentation (or truncation). A value of 0 (zero)
means unlimited, i.e. that the server will not truncate or segment large
responses unless overriden by a chunksize specification in a client request.
The response chunksize will be taken to be the smaller of the client and
server chunksize settings.

l security.authentication [true] — Indicates whether incoming message
authentication is required

l security.encryption [false] — Indicates whether incoming message
encryption is required

l super.user [root] — The primary Moab Accounting Manager system admin
which by default can perform all actions on all objects. The super user is
sometimes used as the actor in cases where an action is invoked from within
another action.

- 287 -

24.3 Client Configuration
The following configuration parameters may be set in the client configuration file
(gold.conf):

l account.show [Id,Name,Amount,Constraints,Description] — The default
fields shown by glsaccount

l accounting.context [hpc] — By specifying the accounting context
(either hpc or cloud), the behavior of some client commands are adjusted to
show the proper fields for that context. The default is hpc.

l allocation.show [Id,Account,Active,StartTime,EndTime,Amount,Cred-
itLimit,Deposited] — The default fields shown by glsalloc

l balance.show [Id,Name,Amount,Reserved,Balance,CreditLimit,Available]
— The default fields shown by gbalance

l currency.precision [0] — Indicates the number of decimal places in the
credit currency. For example, if you will be dealing with integer billable
units like processor-seconds, use 0 (which is the default). If you will be charg-
ing dollars and cents, then use 2. This parameter should be the same in the
goldd.conf and gold.conf files.

l event.show — [Id,FireCommand,FireTime,ArmTime,RearmPeriod,EndTime,
Notify,RearmOnFailure,FailureCommand,CatchUp,CreationTime,Description]
-- The default fields shown by glsevent

l log4perl.appender.Log.filename — Used by log4perl to set the base
name of the log file

l log4perl.appender.Log.max — Used by log4perl to set the number of
rolling backup logs

l log4perl.appender.Log.size — Used by log4perl to set the size the
log will grow to before it is rotated

l log4perl.appender.Log.Threshold — Used by log4perl to set the
debug level written to the log. The logging threshold can be one of TRACE,
DEBUG, INFO, WARN, ERROR, and FATAL.

l log4perl.appender.Screen.Threshold — Used by log4perl to set the
debug level written to the screen. The logging threshold can be one of
TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

l machine.show [Name,Active,Architecture,OperatingSystem,Description] —
The default fields shown by glsmachine

l notification.show — [Id,Event,Type,Status,Code,Message,Key,Recip-
ient,EndTime,CreationTime]
--The default fields shown by glsnot

- 288 -

l project.show [Name,Active,Users,Organization,Description] — The default
fields shown by glsproject

l quote.show [Id,Amount,Pinned,Instance,UsageRecord,StartTime,EndTime,
Duration,ChargeRates,Description] — The default fields shown by glsquote

l reservation.show [Id,Instance,Amount,StartTime,EndTime,UsageRecord,
Accounts,Description] — The default fields shown by glsres

l response.chunking [false] — Indicates whether large responses should be
chunked (segmented). If set to false, large responses will be truncated

l response.chunksize [1000] — Indicates the line length in the data
response that will trigger message segmentation (or truncation). A value of 0
(zero) means unlimited, i.e., that the client will accept the chunksize set by
the server. The response chunksize will be taken to be the smaller of the
client and server chunksize settings.

l security.authentication [true] — Indicates whether outgoing message
are signed

l security.encryption [false] — Indicates whether outgoing messages are
encrypted

l server.promotion [suidperl] — When using the symmetric key for secu-
rity authentication or encryption, since the site.conf file is readable only by
the accounting admin user, a method must be employed to temporarily
elevate privileges in order to encrypt the communication with the symmetric
key. One of two security promotion methods may be selected: suidperl or
gauth. Suiperl allows a Perl script to temporarily elevate privileges to the
owner of the script if the setuid bit is set on the file. This method is rec-
ommended when suidperl can be installed on the system. If you prefer not to
use suidperl or if it is not available for your system (such as with Perl 5.12
and higher), you will need to use the gauth security promotion method.
Gauth is a setuid binary that allows the request body to be passed in as stand-
ard input and returns the authenticated digest and signature. Currently, only
suidperl can be used for encryption of client communication. The security
promotion method should be configured at install time by specifying the --
with-promotion configuration parameter and defaults to suidperl when it
is available.

l statement.show [Project,User,Machine] — The default discriminator fields
in gstatement

l transaction.show [Id,Object,Action,Actor,Name,Child,Instance,Count,
Amount,Delta,User,Project,Machine,Account,Allocation,UsageRecord,Dura-
tion,Description] — The default fields shown by glstrans

l usagerecord.show [Id,Type,Instance,Charge,Stage,Quote,User,Group,
Project,Organization,Class,QualityOfService,Machine,Nodes,Processors,

- 289 -

Memory,Disk,Network,Duration,StartTime,EndTime,Description] — The
default fields shown by glsusage

l user.show [Name,Active,CommonName,PhoneNumber,EmailAddress,
DefaultProject,Description] — The default fields shown by glsuser

- 290 -

24.4 GUI Configuration
The following configuration parameters may be set in the GUI configuration file
(goldg.conf).

l currency.enablehours [false] — If set to true, the graphical user inter-
face will include a ShowHours radio button (defaulting to True) for certain
panels (e.g. Account Balance, Deposit, Query, Statement, Transfer, With-
draw) that will allow the currency inputs or outputs to be divided by 3600.

l currency.precision [0] — Indicates the number of decimal places in the
credit currency. For example, if you will be dealing with integer billable
units like processor-seconds, use 0 (which is the default). If you will be charg-
ing dollars and cents, then use 2. This parameter should be the same in the
goldd.conf and gold.conf files.

l gui.style [viewpoint] — Modifies the appearance and behavior of the web
GUI to be consistent with use within viewpoint or for standalone use. Valid
values are legacy or viewpoint. The default is viewpoint.

l log4perl.appender.Log.filename — Used by log4perl to set the base
name of the log file

l log4perl.appender.Log.max — Used by log4perl to set the number of
rolling backup logs

l log4perl.appender.Log.size — Used by log4perl to set the size the
log will grow to before it is rotated

l log4perl.appender.Log.Threshold — Used by log4perl to set the
debug level written to the log. The logging threshold can be one of TRACE,
DEBUG, INFO, WARN, ERROR, and FATAL.

l response.chunking [false] — Indicates whether large responses should be
chunked (segmented). If set to false, large responses will be truncated.

l response.chunksize [1000] — Indicates the line length in the data
response that will trigger message segmentation (or truncation). A value of 0
(zero) means unlimited, i.e. that the client will accept the chunksize set by
the server. The response chunksize will be taken to be the smaller of the
client and server chunksize settings.

l security.authentication [true] — Indicates whether outgoing message
are signed

l security.encryption [false] — Indicates whether outgoing messages are
encrypted

l server.promotion [suidperl] — When using the symmetric key for secu-
rity authentication or encryption, since the site.conf file is readable only by
the accounting admin user, a method must be employed to temporarily

- 291 -

elevate privileges in order to encrypt the communication with the symmetric
key. One of two security promotion methods may be selected: suidperl or
gauth. Suidperl allows a Perl script to temporarily elevate privileges to the
owner of the script if the setuid bit is set on the file. This method is rec-
ommended when suidperl can be installed on the system. If you prefer not to
use suidperl, or if it is not available for your system (such as with Perl 5.12
and higher), you will need to use the gauth security promotion method.
Gauth is a setuid binary that allows the request body to be passed in as stand-
ard input and returns the authenticated digest and signature. Currently, only
suidperl can be used for encryption of client communication. The security
promotion method should be configured at install time by specifying the --
with-promotion configuration parameter and defaults to suidperl when it
is available.

l statement.discriminators — The Account Statement page will group
summary entries in the debit detail by these transaction properties.

	Moab Accounting Manager®
	Notice
	1.0 Overview
	1.1 Background
	1.2 Conceptual Overview
	1.3 Features
	1.4 Interfaces
	1.4.1 Command-Line Clients
	1.4.2 Interactive Control Program
	1.4.3 Web-based Graphical User Interface
	1.4.4 Perl API
	1.4.5 Java API
	1.4.6 SSSRMAP Wire Protocol

	1.5 Documentation
	1.6 License
	1.6.1 Moab Accounting Manager License
	1.6.2 BSD License

	2.0 Installation
	2.1 Select a Database
	2.2 Install Prerequisites
	2.2.1 Perl 5.8 or higher [REQUIRED]
	2.2.2 Suidperl 5.8 or higher [OPTIONAL]
	2.2.3 PostgreSQL database 7.2 or higher (or other tested database) [OPTIONAL]
	2.2.4 libxml2 2.4.25 or higher [REQUIRED]
	2.2.5 gnu readline 2.0 or higher [OPTIONAL]
	2.2.6 Apache Httpd Server 2.0 or higher with mod_ssl [OPTIONAL]
	2.2.7 OpenSSL 0.9.5a or higher [REQUIRED]
	2.2.8 Disable SELinux

	2.3 Preparation
	2.4 Configuration
	2.5 Compilation
	2.6 Perl Module Dependencies
	2.7 Installation
	2.8 Database Setup
	2.8.1 Initialize the database
	2.8.2 Configure trusted connections
	2.8.3 Enable support for transactions
	2.8.4 Start the database
	2.8.5 Create the database
	2.8.6 Bootstrap

	2.9 General Setup
	2.10 Startup
	2.11 Web Server Setup
	2.12 Accessing the GUI
	2.13 Initialization

	3.0 Upgrading
	3.1 Preparation
	3.2 Configuration
	3.3 Compilation
	3.4 Server Shutdown
	3.5 Installation
	3.6 Server Startup

	4.0 Migrating
	4.1 Database Backup
	4.2 Create Database
	4.3 Preparation
	4.4 Configuration
	4.5 Compilation
	4.6 Installation
	4.7 General Setup
	4.8 Server Startup
	4.9 Database Migration

	5.0 Getting Started
	5.1 HPC Usage Tracking
	5.1.1 Usage Record Customization (Optional)
	5.1.2 Record the Usage
	5.1.3 List Usage Records

	5.2 HPC Charge Accounting
	5.2.1 Usage Record Customization (Optional)
	5.2.2 Decide on a Currency and Set the Currency Precision
	5.2.3 Define Charge Rates
	5.2.4 Create a Single NonLimiting Account
	5.2.5 Create an Unlimited Allocation
	5.2.6 Issue a Refund
	5.2.7 Examine Account Statement

	5.3 HPC Allocation Enforcement
	5.3.1 Usage Record Customization (Optional)
	5.3.2 Decide on a Currency and Set the Currency Precision
	5.3.3 Define Charge Rates
	5.3.4 Define Accountable Entities
	5.3.5 Create Accounts
	5.3.6 Make Deposits
	5.3.7 Check The Balance
	5.3.8 Integrate Moab Accounting Manager with Your Brokering System
	5.3.9 Obtain a Usage Quote
	5.3.10 Make a Usage Reservation
	5.3.11 Charge for the Usage
	5.3.12 Usage Refund
	5.3.13 Examine Account Statement

	6.0 Managing Users
	6.1 Creating Users
	6.2 Querying Users
	6.3 Modifying Users
	6.4 Deleting Users
	6.5 User Auto-Generation
	6.6 Default User

	7.0 Managing Projects
	7.1 Creating Projects
	7.2 Querying Projects
	7.3 Modifying Projects
	7.4 Deleting Projects
	7.5 Project Auto-Generation
	7.6 Default Project

	8.0 Managing Machines
	8.1 Creating Machines
	8.2 Querying Machines
	8.3 Modifying Machines
	8.4 Deleting Machines
	8.5 Machine Auto-Generation
	8.6 Default Machine

	9.0 Managing Accounts
	9.1 Creating Accounts
	9.2 Querying Accounts
	9.3 Modifying Accounts
	9.4 Making Deposits
	9.5 Querying The Balance
	9.6 Personal Balance
	9.7 Making Withdrawals
	9.8 Making Transfers
	9.9 Obtaining an Account Statement
	9.10 Deleting Accounts
	9.11 Account Auto-Generation
	9.12 Hierarchical Accounts
	9.13 Account Priority

	10.0 Managing Allocations
	10.1 Creating Allocations
	10.2 Querying Allocations
	10.3 Modifying Allocations
	10.4 Delete Allocations
	10.5 Allocation Auto-Generation
	10.6 Allocation Precedence

	11.0 Managing Reservations
	11.1 Creating Reservations
	11.2 Querying Reservations
	11.3 Modifying Reservations
	11.4 Deleting Reservations

	12.0 Managing Quotes
	12.1 Creating Quotes
	12.2 Creating Quote Templates
	12.3 Querying Quotes
	12.4 Modifying Quotes
	12.5 Deleting Quotes

	13.0 Managing Usage Records
	13.1 Creating a Usage Record
	13.2 Querying Usage Records
	13.3 Modifying a Usage Record
	13.4 Deleting a Usage Record
	13.5 Obtaining Usage Quotes
	13.6 Making Usage Reservations
	13.7 Charging for Usage
	13.8 Issuing Usage Refunds
	13.9 Customizing the Usage Record Object
	13.10 Usage Record Property Verification
	13.11 Usage Record Property Defaults
	13.12 Usage Record Property Auto-Generation
	13.13 Usage Record Property Instantiators

	14.0 Managing Itemized Charges
	14.1 Querying Itemized Charges
	14.2 Displaying Itemized Charges for a Transaction

	15.0 Managing Charge Rates
	15.1 Creating Charge Rates
	15.2 Querying Charge Rates
	15.3 Modifying Charge Rates
	15.4 Deleting Charge Rates

	16.0 Managing Transactions
	16.1 Querying Transactions
	16.2 Customizing the Transaction Object

	17.0 Managing Events
	17.1 Querying Events
	17.2 Deleting Events

	18.0 Managing Notifications
	18.1 Querying Notifications
	18.2 Deleting Notifications

	19.0 Managing Roles
	19.1 Creating Roles
	19.2 Querying Roles
	19.3 Modifying Roles
	19.4 Deleting Roles

	20.0 Managing Passwords
	20.1 Setting Passwords
	20.2 Querying Passwords
	20.3 Deleting Passwords

	21.0 Using the Gold Shell (goldsh)
	21.1 Usage
	21.2 Command Syntax
	21.3 Valid Objects
	21.4 Valid Actions for an Object
	21.5 Valid Predicates for an Object and Action
	21.6 Common Options
	21.7 Common Actions Available for most Objects
	21.7.1 Query Action
	21.7.2 Create Action
	21.7.3 Modify Action
	21.7.4 Delete Action
	21.7.5 Undelete Action

	21.8 Multi-Object Queries

	22.0 Customizing Objects
	22.1 Managing Objects
	22.1.1 Creating a Custom Object
	22.1.2 Querying Objects
	22.1.3 Modifying an Object
	22.1.4 Deleting an Object
	22.1.5 Object Auto-Generation
	22.1.6 Global Object-Based Defaults

	22.2 Managing Attributes
	22.2.1 Adding an Attribute to an Object
	22.2.2 Querying Attributes
	22.2.3 Modifying an Attribute
	22.2.4 Removing an Attribute from an Object
	22.2.5 Local Attribute-Based Defaults

	22.3 Managing Actions
	22.3.1 Adding an Action to an Object
	22.3.2 Querying Actions
	22.3.3 Modifying an Action
	22.3.4 Removing an Action from an Object

	22.4 Examples Creating Custom Objects

	23.0 Integration with the Resource Management System
	23.1 Dynamic versus Delayed Accounting
	23.1.1 Delayed Accounting
	23.1.2 Dynamic Accounting

	23.2 Interaction Points
	23.2.1 Usage Quote @ Usage Creation Time [Optional — Recommended]
	23.2.2 Usage Reservation @ Usage Start Time [Optional — Highly Recommended]
	23.2.3 Usage Charge @ Usage End Time [Required]

	23.3 Methods of interacting with Moab Accounting Manager
	23.3.1 Configuring an application that already has hooks for Moab Accounting Manager
	23.3.2 Using the appropriate command-line client
	23.3.3 Using the interactive control program
	23.3.4 Use the Perl API
	23.3.5 Use the Java API
	23.3.6 Communicating via the SSSRMAP Protocol

	24.0 Configuration Files
	24.1 Site Configuration
	24.2 Server Configuration
	24.3 Client Configuration
	24.4 GUI Configuration

