@Adaptive

@@MPUT"N@ Unify Context > Apply Policy > ActIntelligently

Moab Workload
Manager

Administrator’s
Guide

Version 6.0.4

“adaptive SR Moab

COMPUTING && hESUURUES. (ninedinteligent Automation

Moab Workload Manager
Administrator's Guide

version 6.0.4

Copyright © 2001-2011 Adaptive Computing Enterprises Inc. All Rights Reserved
Distribution of this document for commercial purposes in either
hard or soft copy form is strictly prohibited
without prior written consent from Adaptive Computing.

Overview

Moab Workload Manager is a highly advanced scheduling and management system designed for clusters,
grids, and on-demand/utility computing systems. At a high level, Moab applies site policies and extensive
optimizations to orchestrate jobs, services, and other workload across the ideal combination of network,
compute, and storage resources. Moab enables true adaptive computing allowing compute resources to be
customized to changing needs and failed systems to be automatically fixed or replaced. Moab increases
system resource availability, offers extensive cluster diagnostics, delivers powerful QoS/SLA features, and
provides rich visualization of cluster performance through advanced statistics, reports, and charts.

Moab works with virtually all major resource management and resource monitoring tools. From hardware
monitoring systems like IPMI to system provisioning systems and storage managers, Moab takes advantage
of domain expertise to allow these systems to do what they do best, importing their state information and
providing them with the information necessary to better do their job. Moab uses its global information to
coordinate the activities of both resources and services, which optimizes overall performance in-line with
high-level mission objectives.

Legal Notices

Table of Contents

« 1.0 Philosophy and Goals of the Moab Workload Manager
o 1.1 Value of a Batch System
o 1.2 Philosophy and Goals
o 1.3 Workload
¢ 2.0 Installation and Initial Configuration
o 2.1 Hardware and Software Requirements
o 2.2 Building and Installing Moab
o 2.3 Upgrading Moab
o 2.4 Initial Moab Configuration
o 2.5 Initial Moab Testing (Monitor, Interactive, Simulation and Normal Modes)
¢ 3.0 Scheduler Basics
o 3.1 Layout of Scheduler Components
3.2 Scheduling Environment and Objects
3.2.2 Scheduling Dictionary
3.3 Scheduling Iterations and Job Flow
3.4 Configuring the Scheduler
3.5 Credential Overview
= Job Attributes/Flags Overview
e 4.0 Scheduler Commands
o 4.1 Client Overview
4.2 Monitoring System Status
4.3 Managing Jobs
4.4 Managing Reservations
4.5 Configuring Policies
4.6 End-user Commands

e 5.0 Prioritizing Jobs and Allocating Resources
o 5.1 Job Prioritization

O O O o o

O O O o o

0O O 0O 0o 0o o o o

Priority Overview
Job Priority Factors
= Fairshare Job Priority Example
Common Priority Usage
Prioritization Strategies
Manual Job Priority Adjustment
5.2 Node Allocation
5.3 Node Access
5.4 Node Availability
5.5 Task Distribution
5.6 Scheduling Jobs When VMs Exist

¢ 6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

O O O o o

o

6.1 Fairness Overview

6.2 Usage Limits/Throttling Policies

6.3 Fairshare

Sample FairShare Data File

6.4 Charging and Allocation Management
6.5 Internal Charging Facilities

e 7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

o

[e]
[e]
[e]
[e]
[e]
[e]
[e]
[e]

7.1 Advance Reservations

7.1.1 Reservation Overview

7.1.2 Administrative Reservations

7.1.3 Standing Reservations

7.1.4 Reservation Policies

7.1.5 Configuring and Managing Reservations
7.1.6 Enabling Reservations for End Users
7.2 Partitions

7.3 QoS Facilities

+ 8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption

o

o

o

o

8.1 Optimization Overview
8.2 Backfill

8.3 Node Sets

8.4 Preemption

¢ 9.0 Statistics, Accounting, and Profiling

o

o

o

o

9.1 Scheduler Performance Evaluation Overview

9.2 Accounting - Job and System Statistics

9.3 Testing New Versions and Configurations

9.4 Answering What If? Questions with the Simulator

« 10.0 Managing Shared Resources - Usage Based Limits, Policies, and SMP Issues

o

o

o

o

10.1 Consumable Resource Handling
10.2 Load Balancing Features

10.3 Resource Usage Limits

10.4 General SMP Issues

e 11.0 General Job Administration

o

0O O 0O 0o 0o o o o

o

11.1 Deferred Jobs and Job Holds

11.2 Job Priority Management

11.3 Suspend/Resume Handling

11.4 Checkpoint/Restart

11.5 Job Dependencies

11.6 Setting Job Defaults and Per Job Limits
11.7 General Job Policies

11.8 Using a Local Queue

11.9 Job Deadline Support

11.10 Job Templates

e 12.0 General Node Administration

o

o

o

12.1 Node Location (Partitions, Racks, Queues, etc.)
12.2 Node Attributes (Node Features, Speed, etc.)
12.3 Node Specific Policies (MaxJobPerNode, etc.)

12.4 Managing Shared Cluster Resources

12.5 Node State Management

12.6 Managing Consumable Generic Resources
12.7 Enabling Generic Metrics

12.8 Enabling Generic Events

Resource Managers and Interfaces
13.1 Resource Manager Overview

13.2 Resource Manager Configuration

13.3 Resource Manager Extensions

13.4 Adding Resource Manager Interfaces

13.5 Managing Resources Directly with the Native Interface
13.6 Utilizing Multiple Resource Managers

13.7 License Management

13.8 Provisioning Managers

13.9 Network Management

13.10 Integrating with Hardware Managers

13.11 Enabling Resource Manager Translation

Troubleshooting and System Maintenance
14.1 Internal Diagnostics

14.2 Logging Facilities
14.3 Object Messages
14.4 Notifying Administrators of Failures and Critical Events
14.5 Issues with Client Commands
14.6 Tracking System Failures
14.7 Problems with Individual Jobs
o 14.8 Diagnostic Scripts
e« 15.0 Improving User Effectiveness
o 15.1 User Feedback Loops
o 15.2 User Level Statistics
o 15.3 Job Start Time Estimates
o 15.4 Collecting Performance Information on Individual Jobs
¢ 16.0 Cluster Analysis, Testing, and Simulation
o 16.1 Evaluating New Releases and Policies
16.2 Testing New Middleware
16.3 Simulation Overview
16.3.1 Simulation Overview
16.3.2 Resource Traces
16.3.3 Workload Accounting Records
16.3.4 Simulation Specific Configuration

Moab Workload Manager for Grids
17.1 Grid Basics

17.2 Grid Configuration

17.3 Centralized Grid Management

17.4 Source-Destination Grid Management
17.5 Localized Grid Management

17.6 Resource Control and Access

17.7 Workload Submission and Control
17.8 Reservations in the Grid

17.9 Grid Usage Policies

17.10 Grid Scheduling Policies

17.11 Grid Credential Management

17.12 Grid Data Management

17.13 Accounting and Allocation Management
17.14 Grid Security

o 17.15 Grid Diagnostics and Validation

« 18.0 Green Computing
o 18.1 Establishing Script Interaction between Moab and a Power Management Tool

o 13.

o 14,

o 0o o oo o 0o©o0 o0 00000000 00©o0 o0 o000

o 17.

OOOOOOOOOOOOOOQOOOOOO

o

o

o

18.2 Enabling Green Power Management
18.3 Allocating and Adjusting Green Pool Size
18.4 Miscellaneous Power Management Options

19.0 Object Triggers

o

O O o o

o

19.1 Trigger Creation
19.2 Trigger Management
19.3 Trigger Components
19.4 Trigger Types

19.5 Trigger Variables
19.6 Trigger Examples

20.0 Virtual Private Clusters

o

o

20.1 Configuring VPC Profiles
20.2 VPC Commands

21.0 Miscellaneous

[e]
[e]
[e]
[e]

o

21.1 User Feedback

21.2 Enabling High Availability Features

21.3 Identity Managers

21.4 Information Services for the Enterprise and Grid
21.5 Malleable Jobs

22.0 Database Configuration

o

o

22.1 SQLite3
22.2 Connecting to a MySQL Database with an ODBC Driver

Appendices
o Appendix D: Adjusting Default Limits

o Appendix E: Security Configuration
o Appendix F: Parameters Overview
o Appendix G: Commands Overview

= Commands - checkjob
= Commands - checknode
= Commands - mcredctl

= Commands - mdiag

Commands - mdiag -a (accounts)
Commands - mdiag -b (queues)
Commands - mdiag -c (class)
Commands - mdiag -f (fairshare)
Commands - mdiag -g (group)
Commands - mdiag -j (job)
Commands - mdiag -n (nodes)
Commands - mdiag -p (priority)
Commands - mdiag -q (QoS)
Commands - mdiag -r (reservation)
Commands - mdiag -R (Resource Manager)
Commands - mdiag -S

Commands - mdiag -t (Partition)
Commands - mdiag -T (Triggers)
Commands - mdiag -u (user)

Commands - mjobctl
= timespec.shtml
= Commands - mnodectl
= Commands - moab
= Commands - mrmctl
= Commands - mrsvctl
» Commands - mschedctl
= Commands - mshow
= Commands - mshow -a (Available Resources)
= Commands - mshow (Usage in a Hosting Environment)
= Commands - msub

= Applying the msub Submit Filter
= Submitting Jobs via msub in XML

Commands - mvmctl

Commands - resetstats
Commands - showbf
Commands - showq
Commands - showres
Commands - showstart
Commands - showstate
Commands - showstats
Commands - showstats -f

= Commands Providing Maui Compatibility
= Commands - canceljob
= Commands - changeparam
= Commands - diagnose
= Commands - releasehold
= Commands - releaseres
= Commands - runjob
= Commands - sethold
= Commands - setqos
= Commands - setres
= Commands - setspri
= Commands - showconfig
Appendix H: Interfacing with Moab (APIs)
= Moab Java API Quick Start Guide
Appendix I: Considerations for Large Clusters
Appendix J: Adding Moab as a Service
Appendix K: Migrating from Maui 3.2
Appendix O: Resource Manager Integration Overview
= Compute Resource Managers
= Moab-Loadleveler Integration Guide
= Moab-TORQUE/PBS Integration Guide
= PBS Integration Guide - RM Access Control
= pbsdefault.shtml
= Moab-SGE Integration Notes
Moab-SLURM Integration Guide
= Wiki Interface Overview
= Wiki Interface Specification
= Wiki Socket Protocol Description
= Wiki Configuration
= Moab-LSF Integration Guide
= LSF Integration via the Native Interface
= Cray XT/TORQUE Integration Guide
= Provisioning Resource Managers
= Validating an xCAT Installation for Use with Moab
= Integrating an xCAT Physical Provisioning Resource Manager with Moab
= Enabling Moab Provisioning with SystemImager

= Hardware Integration
= NUMA - Integration Guide

o Appendix Q: Moab in the Data Center
o Appendix W: Wiki Interface Overview
o SCHEDCFG Flags

[e]

O O o o

Legal Notices
Copyright

© 2011 Adaptive Computing Enterprises, Inc. All rights reserved. Distribution of this document for
commercial purposes in either hard or soft copy form is strictly prohibited without prior written consent from
Adaptive Computing Enterprises, Inc.

Trademarks

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster
Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive
Computing products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc.
The Adaptive Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing
Enterprises, Inc. All other company and product names may be trademarks of their respective companies.

1.0 Philosophy

A scheduler's purpose is to optimally use resources in a convenient and manageable way. System users want
to specify resources, obtain quick turnaround on their jobs, and have reliable resource allocation. On the
other hand, administrators want to understand both the workload and the resources available. This includes
current state, problems, and statistics—information about what is happening that is transparent to the end-
user. Administrators need an extensive set of options to enable management enforced policies and tune the
system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in many respects. Moab
matches jobs to nodes, dynamically reprovisions nodes to satisfy workload, and dynamically modifies
workload to better take advantage of available nodes. Moab allows sites to fully visualize cluster and user
behavior. It can integrate and orchestrate resource monitors, databases, identity managers, license
managers, networks, and storage systems, thus providing a cohesive view of the cluster—a cluster that fully
acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and virtual clusters on
demand and from scratch that are custom-tailored to a specific request. Moab can integrate visualization
services, web farms and application servers; it can create powerful grids of disparate clusters. Moab
maintains complete accounting and auditing records, exporting this data to information services on
command, and even providing professional billing statements to cover all used resources and services.

Moab provides user- and application-centric web portals and powerful graphical tools for monitoring and
controlling every conceivable aspect of a cluster's objectives, performance, workload, and usage. Moab is

unique in its ability to deliver a powerful user-centric cluster with little effort. Its design is focused on ROI,
better use of resources, increased user effectiveness, and reduced staffing requirements.

e 1.1 Value of a Batch System
e 1.2 Philosophy and Goals of the Moab Scheduler

e 1.3 Workload

1.1 Value of a Batch System

Batch systems provide centralized access to distributed resources through mechanisms for submitting,
launching, and tracking jobs on a shared resource. This greatly simplifies use of the cluster's distributed
resources, allowing users a single system image in terms of managing jobs and aggregate compute resources
available. Batch systems should do much more than just provide a global view of the cluster, though. Using
compute resources in a fair and effective manner is complex, so a scheduler is necessary to determine when,
where, and how to run jobs to optimize the cluster. Scheduling decisions can be categorized as follows:

e« 1.1.1 Traffic Control
e« 1.1.2 Mission Policies
¢ 1.1.3 Optimizations

1.1.1 Traffic Control

A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster performance decreases,
job execution is delayed, and jobs may fail. Thus, the scheduler tracks resources and dedicates requested
resources to a particular job, which prevents use of such resources by other jobs.

1.1.2 Mission Policies

Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes, or mission goals,
there are usually rules about system use pertaining to who or what is allowed to use the system. To be
effective, a scheduler must provide a suite of policies allowing a site to map site mission policies into
scheduling behavior.

1.1.3 Optimizations

The compute power of a cluster is a limited resource; over time, demand inevitably exceeds supply.
Intelligent scheduling decisions facilitate higher job volume and faster job completion. Though subject to the
constraints of the traffic control and mission policies, the scheduler must use whatever freedom is available
to maximize cluster performance.

1.2 Philosophy and Goals

Managers want high system utilization and the ability to deliver various qualities of service to various users
and groups. They need to understand how available resources are delivered to users over time. They also
need administrators to tune cycle delivery to satisfy the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to measure them.
The value of statistics is best understood if optimal statistical values are known for a given environment,
including workload, resources, and policies. That is, if an administrator could determine that a site's typical
workload obtained an average queue time of 3.0 hours on a particular system, that would be a useful
statistic; however, if an administrator knew that through proper tuning the system could deliver an average
queue time of 1.2 hours with minimal negative side effects, that would be valuable knowledge.

Moab development relies on extensive feedback from users, administrators, and managers. At its core, it is a
tool designed to manage resources and provide meaningful information about what is actually happening on
the system.

1.2.1 Management Goals

A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a manager must
deliver cycles to those projects that are most critical to the success of the funding organizations.
Management tasks to fulfill this role may include the following:

o Define cluster mission objectives and performance criteria
o Evaluate current and historical cluster performance
o Instantly graph delivered service

1.2.2 Administration Goals

An administrator must ensure that a cluster is effectively functioning within the bounds of the established
mission goals. Administrators translate goals into cluster policies, identify and correct cluster failures, and
train users in best practices. Given these objectives, an administrator may be tasked with each of the
following:

o Maximize utilization and cluster responsiveness

o Tune fairness policies and workload distribution

o Automate time-consuming tasks

e Troubleshoot job and resource failures

o Instruct users of available policies and in their use regarding the cluster
o Integrate new hardware and cluster services into the batch system

1.2.3 End-user Goals

End-users are responsible for learning about the resources available, the requirements of their workload, and
the policies to which they are subject. Using this understanding and the available tools, they find ways to
obtain the best possible responsiveness for their own jobs. A typical end-user may have the following tasks:

e Manage current workload

o Identify available resources

¢ Minimize workload response time

e Track historical usage

o Identify effectiveness of prior submissions

1.3 Workload

Moab can manage a broad spectrum of compute workload types, and it can optimize all four workload types
within the same cluster simultaneously, delivering on the objectives most important to each workload type.
The workload types include the following:

o 1.3.1 Batch Workload

e 1.3.2 Interactive Workload
e 1.3.3 Calendar Workload

e 1.3.4 Service Workload

1.3.1 Batch Workload

Batch workload is characterized by a job command file that typically describes all critical aspects of the
needed compute resources and execution envionment. With a batch job, the job is submitted to a job queue,
and is run somewhere on the cluster as resources become available. In most cases, the submittor will submit
multiple batch jobs with no execution time constraints and will process the job results as they become
available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver compute resources to
the most important workload and provide general SLA guarantees while maximizing system utilization and
minimizing average response time.

1.3.2 Interactive Workload

Interactive workload differs from batch in that requestors are interested in immediate response and are
generally waiting for the interactive request to be executed before going on to other activities. In many
cases, interactive submittors will continue to be attached to the interactive job, routing keystrokes and other
input into the job and seeing both output and error information in real-time. While interactive workload may
be submitted within a job file, commonly, it is routed into the cluster via a web or other graphical terminal
and the end-user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee immediate
execution or at least a minimal wait time for interactive jobs. Targeted service levels require management
when mixing batch and interactive jobs. Interactive and other jobs types can be dynamically steered in terms
of what they are executing as well as in terms of the quantity of resources required by the application. Moab
can apply dynamic or malleable job facilities to dynamically grow and shrink jobs as needed to meet these
changing constraints.

1.3.3 Calendar Workload

Calendar workload must be executed at a particular time and possibly in a regular periodic manner. For such
jobs, time constraints range from flexible to rigid. For example, some calendar jobs may need to complete by
a certain time, while others must run exactly at a given time each day or each week.

Moab can schedule the future and can thus guarantee resource availability at needed times to allow calendar
jobs to run as required. Furthermore, Moab provisioning features can locate or temporarily create the needed
compute environment to properly execute the target applications.

1.3.4 Service Workload

Moab can schedule and manage both individual applications and long-running or persistent services. Service
workload processes externally-generated transaction requests while Moab provides the distributed service
with needed resources to meet target backlog or response targets to the service. Examples of service
workload include parallel databases, web farms, and visualization services. Moab can apply cluster, grid, or
dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract manner. Using the
JOBCFG parameter, aspects of the service jobs can be discovered or configured with attributes describing
them as resource consumers possessing response time, backlog, state metrics and associated QoS targets.

In addition, each application can specify the type of compute resource required (OS, arch, memory, disk,
network adapter, data store, and so forth) as well as the support environment (network, storage, external
services, and so forth).

If the QoS response time/backlog targets of the application are not being satisfied by the current resource
allocation, Moab evaluates the needs of this application against all other site mission objectives and workload
needs and determines what it must do to locate or create (that is, provision, customize, secure) the needed
resources. With the application resource requirement specification, a site may also indicate proximity/locality
constraints, partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the application via a site
customized URL. This URL can be responsible for whatever application-specific hand-shaking must be done to
launch and initialize the needed components of the distributed application upon the new resources. Moab
engages in the hand-off by providing needed context and resource information and by launching the URL at
the appropriate time.

See Also

¢ QOS/SLA Enforcement

2.0 Installation and Initial Configuration

2.1 Prerequisites

2.2 Building and Installing Moab
2.3 Upgrading Moab

2.4 Initial Configuration

2.5 Initial Testing

2.1 Hardware and Software Requirements

e 2.1.1 Hardware Requirements
e 2.1.2 Supported Platforms

2.1.1 Hardware Requirements

Adaptive Computing recommends a quad-core system with 8 GB of RAM and at least 100 GB of disk space;
such a configuration is sufficient for most operating environments. If you have questions about unique
configuration requirements, contact your account representative.

2.1.2 Supported Platforms

Moab works with a variety of platforms. Many commonly used resource managers, operating systems, and
architectures are supported.

2.1.1.1 Resource Managers that Integrate with Moab

The following resource managers integrate with Moab:

e BProc

e clubMASK
o LoadlLeveler
e LSF

e« OpenPBS
e PBSPro

¢ S3

e SLURM

o TORQUE
o WIKI

o XCAT

2.1.1.2 Supported Operating Systems

Moab supports variants of Linux, including:

e« Debian
e« Fedora
e FreeBSD
¢ RedHat
e SuSE

Moab supports variants of Unix, including:

e AIX

e IRIX

e HP-UX

e 0OS/X

e OSF/Tru-64
e Solaris

¢ SunOS

2.1.1.3 Supported Architectures

Supported hardware architectures:

o AMD x86
¢ AMD Opteron

http://www.adaptivecomputing.com/resources/docs/torque/index.php

HP

Intel x86
Intel IA-32
Intel IA-64
IBM i-Series
IBM p-Series
IBM x-Series
IBM SP

Mac G4, G5
SGI Altix

2.2 Building and Installing Moab

e 2.2.1 Moab Server Installation
e 2.2.2 Moab Client Installation

After reading this section you will be able to:

¢ install the Moab server.
¢ install end-user commands on remote systems.

This section assumes a working knowledge of Linux or Unix based operating systems, including use of
commands such as:

o tar
« make
o Vi

0 Some operating systems use different commands (such as gmake and gtar instead of make and tar).

2.2.1 Moab Server Installation

Before installing Moab, view the Prerequisites to verify your platform is supported.

By default, the Moab home directory is configured as Zopt/moab, the Moab server daemon is installed to
/opt/moab/sbin/, and the client commands are installed to Zopt/moab/bin/. $MOABHOMEDIR is the location
of the etc/, log/, spool/, and stat/ directories. $MOABHOMEDIR is the default location for the moab.cfg and

moab-private.cfg files. Moab searches for server files in this order:
/opt/moab/

/opt/moab/etc/

/etc/

$MOABHOMEDIR is required whenever the Moab binary is started or when client commands are used.
Adaptive Computing recommends putting $MOABHOMEDIR in a global location, such as Zetc/profile,
/etc/bashrc, or /etc/environment.

0 Moab contains a number of architectural parameter settings that you can adjust for non-standard
installations. See Appendix D - Adjusting Default Limits and make any needed changes prior to using
make install.

To install Moab

1. Untar the distribution file.

> tar -xzvf moab-6.0.0.tar.gz

2. Navigate to the unpacked directory.

> cd moab-6.0.0

3. Configure the installation package.

You can customize the location of the Moab home directory, the server daemon, the client commands,
and configure Moab to use a resource manager when using the ./configure command. For a
complete list of options, use ./configure --help.

An example of some commonly used options for ./configure is provided below.

> /configure --prefix=/usr/local --with-homedir=/var/moab --with-

torque=/var/spool/torque/

In the above example:

o The install directory (--prefix option) is configured as /usr/local and the home directory (--
with-homedir option) is configured as /var/moab/ .

The Moab server daemon installs to Zusr/local/sbin/.

The Moab client commands install to Zusr/local/bin/.

The Moab tools files install to Zusr/local/tools/.

Moab is configured to work with the TORQUE resource manager.

O O o o

All Moab executables are placed in $MOABHOMEDIR/bin (such as /moab-6.0.0/bin/) until the
installation is performed.

0 If you choose the default path (Z7opt/moab/), the administrator must update $PATH manually to
include the new default folders.

o You can install the Moab init script, allowing Moab to start automatically when the machine is
booted, by using --with-init.

4. Install Moab.

0 Moab should be installed by root. If you cannot install Moab as root, please contact Customer
Support.

> sudo make install

A default moab.cfg file will be created in the Moab home directory.
5. Copy the license file.

The license file should be placed in the same directory as moab.cfg (which is Zopt/moab/ by default)
before starting Moab. To verify the current status of your license, use moab --about.

Moab checks the status of the license every day just after midnight. At 60 and 45 days before, and
daily from 30 days before license expiration to and including the license expiration date, Moab sends
an e-mail to all level 1 administrators informing them of the pending Moab license expiration. A log
record is also made of the upcoming expiration event. For the notifications to occur correctly,
administrator e-mail notification must be enabled and moab.cfg must contain e-mail addresses for
level 1 administrators:

ADMINCFG[1] USERS=ul,u2,u3[,-..]

USERCFG[ul] ul@company.com
USERCFG[u2] u2@company .com

USERCFG[u3] u3@company .com

MATLPROGRAM DEFAULT

o Moab has an internal license that enables some functionality for a limited time for evaluation
purposes. If you want to enable adaptive energy management, dynamic multi-OS provisioning,
grid management, and other features, or if you want to evaluate Moab for a longer period,
contact evaluation support. Use mdiag -S -v to see which features your license supports.

6. Start Moab.

> moab

0 moabd is an alternate method of starting Moab that sets the MOABHOMEDIR and
LD_LIBRARY_PATH environment variables before calling the Moab binary. It is safe and
recommended if things are not installed in their default locations, but can be used in all cases.

2.2.2 Moab Client Installation

Moab has several client commands that are used at remote locations to check various statistics. You can
choose to copy all, or only a subset, of the client commands to a remote location. Below is a suggested list of
client commands to install on end-user accessible nodes.

Command Description

http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php

checkjob display detailed job summary

msub submit a job
showq display job queue
showbf display immediate resource availability

releaseres release personal reservation

For more information on all client commands, see the Commands Overview.

2.2.2.1 Command Installation when Server and Client Have Similar Architecture

Moab commands are enabled on remote systems by copying desired command executables to the client
machine (or to a shared network file system). To enable client communication with the Moab server, use a
nearly-blank moab.cfg file on the client system that has only one line that defines the SCHEDCFG parameter
with a SERVER attribute.

Place the file in Zetc on the remote submission hosts.

0 The client commands and the Moab daemon must have the same version and revision number.

2.2.2.2 Command Installation when Server and Client Have Diverse Architecture
Moab clients need to be built for each client system that has different architechture from the server. If you

are using secret key security (enabled by default), a common secret key must be specified for the client and
server. Verify moab-private.cfg is configured properly.

See Also

¢ End User Commands

2.3 Upgrading Moab

Upgrading Moab may require changing the database. Please see the README.database file included in the
Moab distribution for specific version information. You can test the newest version of Moab on your system
(before making the new version live) to verify your policies, scripts, and queues work the way you want them
to.

o The Moab 5.4 uninstaller does not remove the 5.4 man pages. These must be removed manually when
upgrading from Moab 5.4. You can use this script to remove the man pages:

—————— Start of script------
#!/bin/bash

LIST="checkjob.1 mdiag.1 mdiag-n.1 mjobctl.1 mrmctl.1 mshow.1 releaseres.1 schedctl.1
showconfig.1 showstart.1 checknode.1 mdiag-f.1 mdiag-p.1 mjstat.1 mrsvctl.1 mshowa.1 resetstats.1
setres.1 showq.1 showstate.1 mcredctl.1 mdiag-j.1 mdiag-S.1 mnodectl.1 mschedctl.1 msub.1
runjob.1 showbf.1 showres.1 showstats.1"

MAN_DIR=/usr/local/share/man

for file in $LIST

do

rm -f $MAN_DIR/man1/$file
done

To upgrade Moab:

1. Untar the distribution file.

> tar -xzvf moab-6.0.0.tar.gz

2. Navigate to the unpacked directory.

> cd moab-6.0.0

3. Configure the installation package.
Use the same configure options as when Moab was installed previously. If you cannot remember which
options were used previously, check the config.log file in the directory where the previous version of
Moab was installed from.
For a complete list of configure options, use ./ configure --hel p.

4. Stop Moab.

The Moab server must be stopped before the new version is installed.

> mschedctl -k

moab will be shutdown immediately

0 While Moab is down:
o All currently running jobs continue to run on the nodes.

o The job queue remains intact.
o New jobs cannot be submitted to Moab.

5. Install Moab.

> sudo make install

0 Moab should be installed by root. If you cannot install Moab as root, please contact Customer
Support.

http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php

6. Verify the version number is correct before starting the new server version.

> moab --about

Defaults: server=:42559 cfgdir=/opt/moab vardir=/opt/moab
Build dir: /home/adminOl/dev/moab/
Build host: nodeOl

Build date: Thu Mar 5 13:08:47 MST 2009

Build args: NA

Compiled as little endian.

Version: moab server 5.0.0 (revision 12867)

Copyright 2000-2008 Cluster Resources, Inc., All Rights Reserved

7. Start Moab.

0 > moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

2.3.1 Upgrading the Moab 6.0 Database

The ODBC database schema has been updated for Moab 6.0. When updating Moab to version 6.0, the
changes below must be applied to the database for database functionality to work. If the schema Moab
expects to operate against is different from the actual schema of the database Moab is connected to, Moab
might not be able to use the database properly and data might be lost. Below are the SQL statements
required to update the schema for Moab 6.0.

< Description VARCHAR(1024),

> Description TEXT,

ALTER TABLE Events ADD COLUMN Name VARCHAR (64);

CREATE TABLE Nodes (
ID VARCHAR (64),
State VARCHAR(64),
OperatingSystem VARCHAR (64),
ConfiguredProcessors INTEGER UNSIGNED,
AvailableProcessors INTEGER UNSIGNED,
ConfiguredMemory INTEGER UNSIGNED,
AvailableMemory INTEGER UNSIGNED,
Architecture VARCHAR (64),
AvailGres VARCHAR(64),
ConfigGres VARCHAR (64),
AvailClasses VARCHAR (64
ConfigClasses VARCHAR (6
ChargeRate DOUBLE,
DynamicPriority DOUBLE,
EnableProfiling INTEGER UNSIGNED,
Features VARCHAR (64),
GMetric VARCHAR (64),
HopCount INTEGER UNSIGNED,
HypervisorType VARCHAR (64),
IsDeleted INTEGER UNSIGNED,
IsDynamic INTEGER UNSIGNED,
JobList VARCHAR(64),
LastUpdateTime INTEGER UNSIGNED,
LoadAvg DOUBLE,
MaxLoad DOUBLE,
MaxJob INTEGER UNSIGNED,
MaxJobPerUser INTEGER UNSIGNED,
MaxProc INTEGER UNSIGNED,
MaxProcPerUser INTEGER UNSIGNED,
OldMessages VARCHAR (64)
NetworkAddress VARCHAR (
NodeSubstate VARCHAR (64
Operations VARCHAR (64),
OSList VARCHAR (64),
Owner VARCHAR (64),
ResOvercommitFactor VARCHAR (64),
Partition VARCHAR (64),
PowerIsEnabled INTEGER UNSIGNED,
PowerPolicy VARCHAR(64),
PowerSelectState VARCHAR (64),
PowerState VARCHAR (64),
Priority INTEGER UNSIGNED,
PriorityFunction VARCHAR (64),
ProcessorSpeed INTEGER UNSIGNED,

)y
4),

4

64),
)y

)

ProvisioningData VARCHAR (64),
AvailableDisk INTEGER UNSIGNED,
AvailableSwap INTEGER UNSIGNED,
ConfiguredDisk INTEGER UNSIGNED,
ConfiguredSwap INTEGER UNSIGNED,
ReservationCount INTEGER UNSIGNED,
ReservationList VARCHAR (64),
ResourceManagerList VARCHAR (64),
Size INTEGER UNSIGNED,

Speed DOUBLE,

SpeedWeight DOUBLE,
TotalNodeActiveTime INTEGER UNSIGNED,
LastModifyTime INTEGER UNSIGNED,
TotalTimeTracked INTEGER UNSIGNED,
TotalNodeUpTime INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
VMOSList VARCHAR (64),

PRIMARY KEY (ID)

CREATE TABLE Jobs (

)

ID VARCHAR (64),

SourceRMJobID VARCHAR(64)
DestinationRMJobID VARCHAR(64),
GridJobID VARCHAR(64),

AName VARCHAR (64),

User VARCHAR (64),

Account VARCHAR (64),

Class VARCHAR (64),

QOS VARCHAR (64),
OwnerGroup VARCHAR (64
JobGroup VARCHAR(64),
State VARCHAR (64)
EState VARCHAR (64),
SubState VARCHAR (64),

UserPrlorlty INTEGER UNSIGNED,
SystemPriority INTEGER UNSIGNED
CurrentStartPriority INTEGER UNSIGNED,
RunPriority INTEGER UNSIGNED,
PerPartitionPriority TEXT,

SubmitTime INTEGER UNSIGNED,
QueueTime INTEGER UNSIGNED,

StartTime INTEGER UNSIGNED,
CompletionTime INTEGER UNSIGNED,
CompletionCode INTEGER,

UsedWalltime INTEGER UNSIGNED,
RequestedMinWalltime INTEGER UNSIGNED,
RequestedMaxWalltime INTEGER UNSIGNED,
CPULimit INTEGER UNSIGNED,
SuspendTime INTEGER UNSIGNED,
HoldTime INTEGER UNSIGNED,
ProcessorCount INTEGER,
RequestedNodes INTEGER,
ActivePartition VARCHAR (64),

SpecPAL VARCHAR (64),

DestinationRM VARCHAR (64),

SourceRM VARCHAR (64),

Flags TEXT,

MinPreemptTime INTEGER UNSIGNED,
Dependencies TEXT,

RequestedHostList TEXT,
ExcludedHostList TEXT,

MasterHostName VARCHAR (64),
GenericAttributes TEXT,

Holds TEXT,

Cost DOUBLE,

Description TEXT,

Messages TEXT,

NotificationAddress TEXT,

StartCount INTEGER UNSIGNED,
BypassCount INTEGER UNSIGNED,
CommandFile TEXT,

Arguments TEXT,

RMSubmitLanguage TEXT,

StdIn TEXT,

StdOut TEXT,

StdErr TEXT,

RMOutput TEXT,

RMError TEXT,

InitialWorkingDirectory TEXT,

UMask INTEGER UNSIGNED,

RsvStartTime INTEGER UNSIGNED,
BlockReason TEXT,

BlockMsg TEXT,

PSDedicated DOUBLE,

PSUtilized DOUBLE,

PRIMARY KEY (ID)

R (
64
j

CREATE TABLE Requests (

JobID VARCHAR (64),

)7

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

RIndex INTEGER UNSIGNED,
AllocNodeList VARCHAR (1024
AllocPartition VARCHAR (64)
PartitionIndex INTEGER UNS
NodeAccessPolicy VARCHAR (6
PreferredFeatures TEXT,
RequestedApp VARCHAR (64
RequestedArch VARCHAR (6
RedOS VARCHAR (64),
RegNodeSet VARCHAR (64),
RegPartition VARCHAR (64),
MinNodeCount INTEGER UNSIGNED,
MinTaskCount INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
TasksPerNode INTEGER UNSIGNED,
DiskPerTask INTEGER UNSIGNED,
MemPerTask INTEGER UNSIGNED,
ProcsPerTask INTEGER UNSIGNED,
SwapPerTask INTEGER UNSIGNED,
NodeDisk INTEGER UNSIGNED,
NodeFeatures TEXT,

NodeMemory INTEGER UNSIGNED,
NodeSwap INTEGER UNSIGNED,
NodeProcs INTEGER UNSIGNED,
GenericResources TEXT,

4
GNE
)

)
i
4

)y
4),

ConfiguredGenericResources TEXT,

PRIMARY KEY (JobID,RIndex)

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

Name, ID)

ObjectType
Name, ID)

(
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (
ObjectType (

EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType
EventType

(

(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)
(Name, ID)

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

"TJob",
"Paction"
"VM", 45) ;
"vpCc",47) ;
"JGroup", 4

"TRIGTHRESHOLD",

"VMCREATE",

"VMDESTROY"
"VMMIGRATE",
"VMPOWERON",
"VMPOWEROFF
"NODEMODIFY
"NODEPOWERO

"NODEPOWERON",

"NODEPROVIS

"ALLSCHEDCOMMAND

"AMCANCEL",
"AMDEBIT", 5
"AMQUOTE", 5

"AMRESERVE",
"RMPOLLEND",

"RMPOLLSTAR

8);

42)

3)i
4);
5);
46
47
FF",

)i
);
4
49
TON",

52);
3):
4);
55);
56);
T",57)

"SCHEDCYCLEEND",
"SCHEDCYCLESTART"

"JOBCHECKPO

INT",

U—lvm\ ~e

)i
b

41) ;

’

)i
51);

8);
59);
) r

2.4 Initial Moab Configuration

After Moab is installed, there may be minor configuration remaining within the primary configuration file,
moab.cfg. While the configure script automatically sets these parameters, sites may choose to specify

additional parameters. If the values selected in configure are satisfactory, then this section may be safely
ignored.

The parameters needed for proper initial startup include the following:

« SCHEDCFG

o The SCHEDCFG