
 

Moab Workload 
Manager 
 
Administrator’s 
Guide 
 
 
 
Version 6.0.4 



Moab Workload Manager
Administrator's Guide

version 6.0.4

Copyright © 2001-2011 Adaptive Computing Enterprises Inc. All Rights Reserved
Distribution of this document for commercial purposes in either

hard or soft copy form is strictly prohibited
without prior written consent from Adaptive Computing.

Overview
Moab Workload Manager is a highly advanced scheduling and management system designed for clusters,
grids, and on-demand/utility computing systems. At a high level, Moab applies site policies and extensive
optimizations to orchestrate jobs, services, and other workload across the ideal combination of network,
compute, and storage resources. Moab enables true adaptive computing allowing compute resources to be
customized to changing needs and failed systems to be automatically fixed or replaced. Moab increases
system resource availability, offers extensive cluster diagnostics, delivers powerful QoS/SLA features, and
provides rich visualization of cluster performance through advanced statistics, reports, and charts.

Moab works with virtually all major resource management and resource monitoring tools. From hardware
monitoring systems like IPMI to system provisioning systems and storage managers, Moab takes advantage
of domain expertise to allow these systems to do what they do best, importing their state information and
providing them with the information necessary to better do their job. Moab uses its global information to
coordinate the activities of both resources and services, which optimizes overall performance in-line with
high-level mission objectives.

Legal Notices

Table of Contents
1.0 Philosophy and Goals of the Moab Workload Manager

1.1 Value of a Batch System
1.2 Philosophy and Goals
1.3 Workload

2.0 Installation and Initial Configuration
2.1 Hardware and Software Requirements
2.2 Building and Installing Moab
2.3 Upgrading Moab
2.4 Initial Moab Configuration
2.5 Initial Moab Testing (Monitor, Interactive, Simulation and Normal Modes)

3.0 Scheduler Basics
3.1 Layout of Scheduler Components
3.2 Scheduling Environment and Objects
3.2.2 Scheduling Dictionary
3.3 Scheduling Iterations and Job Flow
3.4 Configuring the Scheduler
3.5 Credential Overview

Job Attributes/Flags Overview
4.0 Scheduler Commands

4.1 Client Overview
4.2 Monitoring System Status
4.3 Managing Jobs
4.4 Managing Reservations
4.5 Configuring Policies
4.6 End-user Commands

5.0 Prioritizing Jobs and Allocating Resources
5.1 Job Prioritization



Priority Overview
Job Priority Factors

Fairshare Job Priority Example
Common Priority Usage
Prioritization Strategies
Manual Job Priority Adjustment
5.2 Node Allocation
5.3 Node Access
5.4 Node Availability
5.5 Task Distribution
5.6 Scheduling Jobs When VMs Exist

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management
6.1 Fairness Overview
6.2 Usage Limits/Throttling Policies
6.3 Fairshare
Sample FairShare Data File
6.4 Charging and Allocation Management
6.5 Internal Charging Facilities

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities
7.1 Advance Reservations
7.1.1 Reservation Overview
7.1.2 Administrative Reservations
7.1.3 Standing Reservations
7.1.4 Reservation Policies
7.1.5 Configuring and Managing Reservations
7.1.6 Enabling Reservations for End Users
7.2 Partitions
7.3 QoS Facilities

8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption
8.1 Optimization Overview
8.2 Backfill
8.3 Node Sets
8.4 Preemption

9.0 Statistics, Accounting, and Profiling
9.1 Scheduler Performance Evaluation Overview
9.2 Accounting - Job and System Statistics
9.3 Testing New Versions and Configurations
9.4 Answering What If? Questions with the Simulator

10.0 Managing Shared Resources - Usage Based Limits, Policies, and SMP Issues
10.1 Consumable Resource Handling
10.2 Load Balancing Features
10.3 Resource Usage Limits
10.4 General SMP Issues

11.0 General Job Administration
11.1 Deferred Jobs and Job Holds
11.2 Job Priority Management
11.3 Suspend/Resume Handling
11.4 Checkpoint/Restart
11.5 Job Dependencies
11.6 Setting Job Defaults and Per Job Limits
11.7 General Job Policies
11.8 Using a Local Queue
11.9 Job Deadline Support
11.10 Job Templates

12.0 General Node Administration
12.1 Node Location (Partitions, Racks, Queues, etc.)
12.2 Node Attributes (Node Features, Speed, etc.)
12.3 Node Specific Policies (MaxJobPerNode, etc.)



12.4 Managing Shared Cluster Resources
12.5 Node State Management
12.6 Managing Consumable Generic Resources
12.7 Enabling Generic Metrics
12.8 Enabling Generic Events

13.0 Resource Managers and Interfaces
13.1 Resource Manager Overview
13.2 Resource Manager Configuration
13.3 Resource Manager Extensions
13.4 Adding Resource Manager Interfaces
13.5 Managing Resources Directly with the Native Interface
13.6 Utilizing Multiple Resource Managers
13.7 License Management
13.8 Provisioning Managers
13.9 Network Management
13.10 Integrating with Hardware Managers
13.11 Enabling Resource Manager Translation

14.0 Troubleshooting and System Maintenance
14.1 Internal Diagnostics
14.2 Logging Facilities
14.3 Object Messages
14.4 Notifying Administrators of Failures and Critical Events
14.5 Issues with Client Commands
14.6 Tracking System Failures
14.7 Problems with Individual Jobs
14.8 Diagnostic Scripts

15.0 Improving User Effectiveness
15.1 User Feedback Loops
15.2 User Level Statistics
15.3 Job Start Time Estimates
15.4 Collecting Performance Information on Individual Jobs

16.0 Cluster Analysis, Testing, and Simulation
16.1 Evaluating New Releases and Policies
16.2 Testing New Middleware
16.3 Simulation Overview
16.3.1 Simulation Overview
16.3.2 Resource Traces
16.3.3 Workload Accounting Records
16.3.4 Simulation Specific Configuration

17.0 Moab Workload Manager for Grids
17.1 Grid Basics
17.2 Grid Configuration
17.3 Centralized Grid Management
17.4 Source-Destination Grid Management
17.5 Localized Grid Management
17.6 Resource Control and Access
17.7 Workload Submission and Control
17.8 Reservations in the Grid
17.9 Grid Usage Policies
17.10 Grid Scheduling Policies
17.11 Grid Credential Management
17.12 Grid Data Management
17.13 Accounting and Allocation Management
17.14 Grid Security
17.15 Grid Diagnostics and Validation

18.0 Green Computing
18.1 Establishing Script Interaction between Moab and a Power Management Tool



18.2 Enabling Green Power Management
18.3 Allocating and Adjusting Green Pool Size
18.4 Miscellaneous Power Management Options

19.0 Object Triggers
19.1 Trigger Creation
19.2 Trigger Management
19.3 Trigger Components
19.4 Trigger Types
19.5 Trigger Variables
19.6 Trigger Examples

20.0 Virtual Private Clusters
20.1 Configuring VPC Profiles
20.2 VPC Commands

21.0 Miscellaneous
21.1 User Feedback
21.2 Enabling High Availability Features
21.3 Identity Managers
21.4 Information Services for the Enterprise and Grid
21.5 Malleable Jobs

22.0 Database Configuration
22.1 SQLite3
22.2 Connecting to a MySQL Database with an ODBC Driver

Appendices
Appendix D: Adjusting Default Limits
Appendix E: Security Configuration
Appendix F: Parameters Overview
Appendix G: Commands Overview

Commands - checkjob
Commands - checknode
Commands - mcredctl
Commands - mdiag

Commands - mdiag -a (accounts)
Commands - mdiag -b (queues)
Commands - mdiag -c (class)
Commands - mdiag -f (fairshare)
Commands - mdiag -g (group)
Commands - mdiag -j (job)
Commands - mdiag -n (nodes)
Commands - mdiag -p (priority)
Commands - mdiag -q (QoS)
Commands - mdiag -r (reservation)
Commands - mdiag -R (Resource Manager)
Commands - mdiag -S
Commands - mdiag -t (Partition)
Commands - mdiag -T (Triggers)
Commands - mdiag -u (user)

Commands - mjobctl
timespec.shtml

Commands - mnodectl
Commands - moab
Commands - mrmctl
Commands - mrsvctl
Commands - mschedctl
Commands - mshow
Commands - mshow -a (Available Resources)

Commands - mshow (Usage in a Hosting Environment)
Commands - msub



Applying the msub Submit Filter
Submitting Jobs via msub in XML

Commands - mvmctl
Commands - resetstats
Commands - showbf
Commands - showq
Commands - showres
Commands - showstart
Commands - showstate
Commands - showstats
Commands - showstats -f
Commands Providing Maui Compatibility

Commands - canceljob
Commands - changeparam
Commands - diagnose
Commands - releasehold
Commands - releaseres
Commands - runjob
Commands - sethold
Commands - setqos
Commands - setres
Commands - setspri
Commands - showconfig

Appendix H: Interfacing with Moab (APIs)
Moab Java API Quick Start Guide

Appendix I: Considerations for Large Clusters
Appendix J: Adding Moab as a Service
Appendix K: Migrating from Maui 3.2
Appendix O: Resource Manager Integration Overview

Compute Resource Managers
Moab-Loadleveler Integration Guide
Moab-TORQUE/PBS Integration Guide

PBS Integration Guide - RM Access Control
pbsdefault.shtml

Moab-SGE Integration Notes
Moab-SLURM Integration Guide
Wiki Interface Overview

Wiki Interface Specification
Wiki Socket Protocol Description
Wiki Configuration

Moab-LSF Integration Guide
LSF Integration via the Native Interface

Cray XT/TORQUE Integration Guide
Provisioning Resource Managers

Validating an xCAT Installation for Use with Moab
Integrating an xCAT Physical Provisioning Resource Manager with Moab
Enabling Moab Provisioning with SystemImager

Hardware Integration
NUMA - Integration Guide

Appendix Q: Moab in the Data Center
Appendix W: Wiki Interface Overview
SCHEDCFG Flags



Legal Notices
Copyright
© 2011 Adaptive Computing Enterprises, Inc. All rights reserved. Distribution of this document for
commercial purposes in either hard or soft copy form is strictly prohibited without prior written consent from
Adaptive Computing Enterprises, Inc.

Trademarks
Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster
Manager, Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive
Computing products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc.
The Adaptive Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing
Enterprises, Inc. All other company and product names may be trademarks of their respective companies.



1.0 Philosophy
A scheduler's purpose is to optimally use resources in a convenient and manageable way. System users want
to specify resources, obtain quick turnaround on their jobs, and have reliable resource allocation. On the
other hand, administrators want to understand both the workload and the resources available. This includes
current state, problems, and statistics—information about what is happening that is transparent to the end-
user. Administrators need an extensive set of options to enable management enforced policies and tune the
system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in many respects. Moab
matches jobs to nodes, dynamically reprovisions nodes to satisfy workload, and dynamically modifies
workload to better take advantage of available nodes. Moab allows sites to fully visualize cluster and user
behavior. It can integrate and orchestrate resource monitors, databases, identity managers, license
managers, networks, and storage systems, thus providing a cohesive view of the cluster—a cluster that fully
acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and virtual clusters on
demand and from scratch that are custom-tailored to a specific request. Moab can integrate visualization
services, web farms and application servers; it can create powerful grids of disparate clusters. Moab
maintains complete accounting and auditing records, exporting this data to information services on
command, and even providing professional billing statements to cover all used resources and services.

Moab provides user- and application-centric web portals and powerful graphical tools for monitoring and
controlling every conceivable aspect of a cluster's objectives, performance, workload, and usage. Moab is
unique in its ability to deliver a powerful user-centric cluster with little effort. Its design is focused on ROI,
better use of resources, increased user effectiveness, and reduced staffing requirements.

1.1 Value of a Batch System

1.2 Philosophy and Goals of the Moab Scheduler

1.3 Workload



1.1 Value of a Batch System
Batch systems provide centralized access to distributed resources through mechanisms for submitting,
launching, and tracking jobs on a shared resource. This greatly simplifies use of the cluster's distributed
resources, allowing users a single system image in terms of managing jobs and aggregate compute resources
available. Batch systems should do much more than just provide a global view of the cluster, though. Using
compute resources in a fair and effective manner is complex, so a scheduler is necessary to determine when,
where, and how to run jobs to optimize the cluster. Scheduling decisions can be categorized as follows:

1.1.1 Traffic Control
1.1.2 Mission Policies
1.1.3 Optimizations

1.1.1  Traffic Control
A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster performance decreases,
job execution is delayed, and jobs may fail. Thus, the scheduler tracks resources and dedicates requested
resources to a particular job, which prevents use of such resources by other jobs.

1.1.2  Mission Policies
Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes, or mission goals,
there are usually rules about system use pertaining to who or what is allowed to use the system. To be
effective, a scheduler must provide a suite of policies allowing a site to map site mission policies into
scheduling behavior.

1.1.3  Optimizations
The compute power of a cluster is a limited resource; over time, demand inevitably exceeds supply.
Intelligent scheduling decisions facilitate higher job volume and faster job completion. Though subject to the
constraints of the traffic control and mission policies, the scheduler must use whatever freedom is available
to maximize cluster performance.



1.2 Philosophy and Goals
Managers want high system utilization and the ability to deliver various qualities of service to various users
and groups. They need to understand how available resources are delivered to users over time. They also
need administrators to tune cycle delivery to satisfy the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to measure them.
The value of statistics is best understood if optimal statistical values are known for a given environment,
including workload, resources, and policies. That is, if an administrator could determine that a site's typical
workload obtained an average queue time of 3.0 hours on a particular system, that would be a useful
statistic; however, if an administrator knew that through proper tuning the system could deliver an average
queue time of 1.2 hours with minimal negative side effects, that would be valuable knowledge.

Moab development relies on extensive feedback from users, administrators, and managers. At its core, it is a
tool designed to manage resources and provide meaningful information about what is actually happening on
the system.

1.2.1 Management Goals
A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a manager must
deliver cycles to those projects that are most critical to the success of the funding organizations.
Management tasks to fulfill this role may include the following:

Define cluster mission objectives and performance criteria
Evaluate current and historical cluster performance
Instantly graph delivered service

1.2.2 Administration Goals
An administrator must ensure that a cluster is effectively functioning within the bounds of the established
mission goals. Administrators translate goals into cluster policies, identify and correct cluster failures, and
train users in best practices. Given these objectives, an administrator may be tasked with each of the
following:

Maximize utilization and cluster responsiveness
Tune fairness policies and workload distribution
Automate time-consuming tasks
Troubleshoot job and resource failures
Instruct users of available policies and in their use regarding the cluster
Integrate new hardware and cluster services into the batch system

1.2.3 End-user Goals
End-users are responsible for learning about the resources available, the requirements of their workload, and
the policies to which they are subject. Using this understanding and the available tools, they find ways to
obtain the best possible responsiveness for their own jobs. A typical end-user may have the following tasks:

Manage current workload
Identify available resources
Minimize workload response time
Track historical usage
Identify effectiveness of prior submissions



1.3 Workload
Moab can manage a broad spectrum of compute workload types, and it can optimize all four workload types
within the same cluster simultaneously, delivering on the objectives most important to each workload type.
The workload types include the following:

1.3.1 Batch Workload
1.3.2 Interactive Workload
1.3.3 Calendar Workload
1.3.4 Service Workload

1.3.1 Batch Workload
Batch workload is characterized by a job command file that typically describes all critical aspects of the
needed compute resources and execution envionment. With a batch job, the job is submitted to a job queue,
and is run somewhere on the cluster as resources become available. In most cases, the submittor will submit
multiple batch jobs with no execution time constraints and will process the job results as they become
available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver compute resources to
the most important workload and provide general SLA guarantees while maximizing system utilization and
minimizing average response time.

1.3.2 Interactive Workload
Interactive workload differs from batch in that requestors are interested in immediate response and are
generally waiting for the interactive request to be executed before going on to other activities. In many
cases, interactive submittors will continue to be attached to the interactive job, routing keystrokes and other
input into the job and seeing both output and error information in real-time. While interactive workload may
be submitted within a job file, commonly, it is routed into the cluster via a web or other graphical terminal
and the end-user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee immediate
execution or at least a minimal wait time for interactive jobs. Targeted service levels require management
when mixing batch and interactive jobs. Interactive and other jobs types can be dynamically steered in terms
of what they are executing as well as in terms of the quantity of resources required by the application. Moab
can apply dynamic or malleable job facilities to dynamically grow and shrink jobs as needed to meet these
changing constraints.

1.3.3 Calendar Workload
Calendar workload must be executed at a particular time and possibly in a regular periodic manner. For such
jobs, time constraints range from flexible to rigid. For example, some calendar jobs may need to complete by
a certain time, while others must run exactly at a given time each day or each week.

Moab can schedule the future and can thus guarantee resource availability at needed times to allow calendar
jobs to run as required. Furthermore, Moab provisioning features can locate or temporarily create the needed
compute environment to properly execute the target applications.

1.3.4 Service Workload
Moab can schedule and manage both individual applications and long-running or persistent services. Service
workload processes externally-generated transaction requests while Moab provides the distributed service
with needed resources to meet target backlog or response targets to the service. Examples of service
workload include parallel databases, web farms, and visualization services. Moab can apply cluster, grid, or
dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract manner. Using the
JOBCFG parameter, aspects of the service jobs can be discovered or configured with attributes describing
them as resource consumers possessing response time, backlog, state metrics and associated QoS targets.



In addition, each application can specify the type of compute resource required (OS, arch, memory, disk,
network adapter, data store, and so forth) as well as the support environment (network, storage, external
services, and so forth).

If the QoS response time/backlog targets of the application are not being satisfied by the current resource
allocation, Moab evaluates the needs of this application against all other site mission objectives and workload
needs and determines what it must do to locate or create (that is, provision, customize, secure) the needed
resources. With the application resource requirement specification, a site may also indicate proximity/locality
constraints, partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the application via a site
customized URL. This URL can be responsible for whatever application-specific hand-shaking must be done to
launch and initialize the needed components of the distributed application upon the new resources. Moab
engages in the hand-off by providing needed context and resource information and by launching the URL at
the appropriate time.

See Also
QOS/SLA Enforcement



2.0 Installation and Initial Configuration
2.1 Prerequisites
2.2 Building and Installing Moab
2.3 Upgrading Moab
2.4 Initial Configuration
2.5 Initial Testing



2.1 Hardware and Software Requirements
2.1.1 Hardware Requirements
2.1.2 Supported Platforms

2.1.1 Hardware Requirements
Adaptive Computing recommends a quad-core system with 8 GB of RAM and at least 100 GB of disk space;
such a configuration is sufficient for most operating environments. If you have questions about unique
configuration requirements, contact your account representative.

2.1.2 Supported Platforms
Moab works with a variety of platforms. Many commonly used resource managers, operating systems, and
architectures are supported.

2.1.1.1 Resource Managers that Integrate with Moab

The following resource managers integrate with Moab:

BProc
clubMASK
LoadLeveler
LSF
OpenPBS
PBSPro
S3
SLURM
TORQUE
WIKI
xCAT

2.1.1.2 Supported Operating Systems

Moab supports variants of Linux, including:

Debian
Fedora
FreeBSD
RedHat
SuSE

Moab supports variants of Unix, including:

AIX
IRIX
HP-UX
OS/X
OSF/Tru-64
Solaris
SunOS

2.1.1.3 Supported Architectures

Supported hardware architectures:

AMD x86
AMD Opteron

http://www.adaptivecomputing.com/resources/docs/torque/index.php


HP
Intel x86
Intel IA-32
Intel IA-64
IBM i-Series
IBM p-Series
IBM x-Series
IBM SP
Mac G4, G5
SGI Altix



2.2 Building and Installing Moab
2.2.1 Moab Server Installation
2.2.2 Moab Client Installation

After reading this section you will be able to:

install the Moab server.
install end-user commands on remote systems.

This section assumes a working knowledge of Linux or Unix based operating systems, including use of
commands such as:

tar
make
vi

Some operating systems use different commands (such as gmake and gtar instead of make and tar).

2.2.1 Moab Server Installation
Before installing Moab, view the Prerequisites to verify your platform is supported.

By default, the Moab home directory is configured as /opt/moab, the Moab server daemon is installed to
/opt/moab/sbin/, and the client commands are installed to /opt/moab/bin/. $MOABHOMEDIR is the location
of the etc/, log/, spool/, and stat/ directories. $MOABHOMEDIR is the default location for the moab.cfg and
moab-private.cfg files. Moab searches for server files in this order:
/opt/moab/
/opt/moab/etc/
/etc/

$MOABHOMEDIR is required whenever the Moab binary is started or when client commands are used.
Adaptive Computing recommends putting $MOABHOMEDIR in a global location, such as /etc/profile,
/etc/bashrc, or /etc/environment.

Moab contains a number of architectural parameter settings that you can adjust for non-standard
installations. See Appendix D - Adjusting Default Limits and make any needed changes prior to using
make install.

To install Moab
1. Untar the distribution file.

2. Navigate to the unpacked directory.

3. Configure the installation package.

You can customize the location of the Moab home directory, the server daemon, the client commands,
and configure Moab to use a resource manager when using the ./configure command. For a
complete list of options, use ./configure --help.

An example of some commonly used options for ./configure is provided below.

In the above example:

> tar -xzvf moab-6.0.0.tar.gz

> cd moab-6.0.0

> /configure --prefix=/usr/local --with-homedir=/var/moab --with-
torque=/var/spool/torque/



The install directory (--prefix option) is configured as /usr/local and the home directory (--
with-homedir option) is configured as /var/moab/.
The Moab server daemon installs to /usr/local/sbin/.
The Moab client commands install to /usr/local/bin/.
The Moab tools files install to /usr/local/tools/.
Moab is configured to work with the TORQUE resource manager.

All Moab executables are placed in $MOABHOMEDIR/bin (such as /moab-6.0.0/bin/) until the
installation is performed.

If you choose the default path (/opt/moab/), the administrator must update $PATH manually to
include the new default folders.

You can install the Moab init script, allowing Moab to start automatically when the machine is
booted, by using --with-init.

4. Install Moab.
Moab should be installed by root. If you cannot install Moab as root, please contact Customer
Support.

A default moab.cfg file will be created in the Moab home directory.
5. Copy the license file.

The license file should be placed in the same directory as moab.cfg (which is /opt/moab/ by default)
before starting Moab. To verify the current status of your license, use moab --about.

Moab checks the status of the license every day just after midnight. At 60 and 45 days before, and
daily from 30 days before license expiration to and including the license expiration date, Moab sends
an e-mail to all level 1 administrators informing them of the pending Moab license expiration. A log
record is also made of the upcoming expiration event. For the notifications to occur correctly,
administrator e-mail notification must be enabled and moab.cfg must contain e-mail addresses for
level 1 administrators:

Moab has an internal license that enables some functionality for a limited time for evaluation
purposes. If you want to enable adaptive energy management, dynamic multi-OS provisioning,
grid management, and other features, or if you want to evaluate Moab for a longer period,
contact evaluation support. Use mdiag -S -v to see which features your license supports.

6. Start Moab.

moabd is an alternate method of starting Moab that sets the MOABHOMEDIR and
LD_LIBRARY_PATH environment variables before calling the Moab binary. It is safe and
recommended if things are not installed in their default locations, but can be used in all cases.

2.2.2 Moab Client Installation
Moab has several client commands that are used at remote locations to check various statistics. You can
choose to copy all, or only a subset, of the client commands to a remote location. Below is a suggested list of
client commands to install on end-user accessible nodes.

Command Description

> sudo make install

> cp moab.lic $MOABHOMEDIR/moab.lic

ADMINCFG[1] USERS=u1,u2,u3[,...]

USERCFG[u1] u1@company.com
USERCFG[u2] u2@company.com
USERCFG[u3] u3@company.com

MAILPROGRAM DEFAULT

> moab

http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php


checkjob display detailed job summary

msub submit a job

showq display job queue

showbf display immediate resource availability

showstart display estimated job start time

showstats display usage statistics

setres create personal reservation

releaseres release personal reservation

For more information on all client commands, see the Commands Overview.

2.2.2.1 Command Installation when Server and Client Have Similar Architecture

Moab commands are enabled on remote systems by copying desired command executables to the client
machine (or to a shared network file system). To enable client communication with the Moab server, use a
nearly-blank moab.cfg file on the client system that has only one line that defines the SCHEDCFG parameter
with a SERVER attribute.

Place the file in /etc on the remote submission hosts.

The client commands and the Moab daemon must have the same version and revision number.

2.2.2.2 Command Installation when Server and Client Have Diverse Architecture

Moab clients need to be built for each client system that has different architechture from the server. If you
are using secret key security (enabled by default), a common secret key must be specified for the client and
server. Verify moab-private.cfg is configured properly.

See Also
End User Commands

SCHEDCFG[Moab] SERVER=moabserver:42559



2.3 Upgrading Moab
Upgrading Moab may require changing the database.  Please see the README.database file included in the
Moab distribution for specific version information. You can test the newest version of Moab on your system
(before making the new version live) to verify your policies, scripts, and queues work the way you want them
to.

The Moab 5.4 uninstaller does not remove the 5.4 man pages. These must be removed manually when
upgrading from Moab 5.4. You can use this script to remove the man pages:

------Start of script------
#!/bin/bash

LIST="checkjob.1 mdiag.1 mdiag-n.1 mjobctl.1 mrmctl.1 mshow.1 releaseres.1 schedctl.1
showconfig.1 showstart.1 checknode.1 mdiag-f.1 mdiag-p.1 mjstat.1 mrsvctl.1 mshowa.1 resetstats.1
setres.1 showq.1 showstate.1 mcredctl.1 mdiag-j.1 mdiag-S.1 mnodectl.1 mschedctl.1 msub.1
runjob.1 showbf.1 showres.1 showstats.1"

MAN_DIR=/usr/local/share/man

for file in $LIST
do
rm -f $MAN_DIR/man1/$file
done
------End of script------

To upgrade Moab:

1. Untar the distribution file.

2. Navigate to the unpacked directory.

3. Configure the installation package.

Use the same configure options as when Moab was installed previously. If you cannot remember which
options were used previously, check the config.log file in the directory where the previous version of
Moab was installed from.

For a complete list of configure options, use ./configure --help.

4. Stop Moab.

The Moab server must be stopped before the new version is installed.

While Moab is down:
All currently running jobs continue to run on the nodes.
The job queue remains intact.
New jobs cannot be submitted to Moab.

5. Install Moab.

Moab should be installed by root. If you cannot install Moab as root, please contact Customer
Support.

> tar -xzvf moab-6.0.0.tar.gz

> cd moab-6.0.0

 > mschedctl -k

moab will be shutdown immediately

> sudo make install

http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php


6. Verify the version number is correct before starting the new server version.

7. Start Moab.

> moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

2.3.1 Upgrading the Moab 6.0 Database
The ODBC database schema has been updated for Moab 6.0. When updating Moab to version 6.0, the
changes below must be applied to the database for database functionality to work. If the schema Moab
expects to operate against is different from the actual schema of the database Moab is connected to, Moab
might not be able to use the database properly and data might be lost. Below are the SQL statements
required to update the schema for Moab 6.0.

<   Description VARCHAR(1024),
---
>   Description TEXT,
---
 
ALTER TABLE Events ADD COLUMN Name VARCHAR(64);
 
CREATE TABLE Nodes (
  ID VARCHAR(64),
  State VARCHAR(64),
  OperatingSystem VARCHAR(64),
  ConfiguredProcessors INTEGER UNSIGNED,
  AvailableProcessors INTEGER UNSIGNED,
  ConfiguredMemory INTEGER UNSIGNED,
  AvailableMemory INTEGER UNSIGNED,
  Architecture VARCHAR(64),
  AvailGres VARCHAR(64),
  ConfigGres VARCHAR(64),
  AvailClasses VARCHAR(64),
  ConfigClasses VARCHAR(64),
  ChargeRate DOUBLE,
  DynamicPriority DOUBLE,
  EnableProfiling INTEGER UNSIGNED,
  Features VARCHAR(64),
  GMetric VARCHAR(64),
  HopCount INTEGER UNSIGNED,
  HypervisorType VARCHAR(64),
  IsDeleted INTEGER UNSIGNED,
  IsDynamic INTEGER UNSIGNED,
  JobList VARCHAR(64),
  LastUpdateTime INTEGER UNSIGNED,
  LoadAvg DOUBLE,
  MaxLoad DOUBLE,
  MaxJob INTEGER UNSIGNED,
  MaxJobPerUser INTEGER UNSIGNED,
  MaxProc INTEGER UNSIGNED,
  MaxProcPerUser INTEGER UNSIGNED,
  OldMessages VARCHAR(64),
  NetworkAddress VARCHAR(64),
  NodeSubstate VARCHAR(64),
  Operations VARCHAR(64),
  OSList VARCHAR(64),
  Owner VARCHAR(64),
  ResOvercommitFactor VARCHAR(64),
  Partition VARCHAR(64),
  PowerIsEnabled INTEGER UNSIGNED,
  PowerPolicy VARCHAR(64),
  PowerSelectState VARCHAR(64),
  PowerState VARCHAR(64),
  Priority INTEGER UNSIGNED,
  PriorityFunction VARCHAR(64),
  ProcessorSpeed INTEGER UNSIGNED,

 > moab --about
 
Defaults:   server=:42559  cfgdir=/opt/moab  vardir=/opt/moab
Build dir:  /home/admin01/dev/moab/
Build host: node01
Build date: Thu Mar  5 13:08:47 MST 2009
Build args: NA
Compiled as little endian.
Version: moab server 5.0.0 (revision 12867)
Copyright 2000-2008 Cluster Resources, Inc., All Rights Reserved

> moab



  ProvisioningData VARCHAR(64),
  AvailableDisk INTEGER UNSIGNED,  
  AvailableSwap INTEGER UNSIGNED,  
  ConfiguredDisk INTEGER UNSIGNED,
  ConfiguredSwap INTEGER UNSIGNED,
  ReservationCount INTEGER UNSIGNED,
  ReservationList VARCHAR(64),
  ResourceManagerList VARCHAR(64),
  Size INTEGER UNSIGNED,
  Speed DOUBLE,
  SpeedWeight DOUBLE,
  TotalNodeActiveTime INTEGER UNSIGNED,
  LastModifyTime INTEGER UNSIGNED,
  TotalTimeTracked INTEGER UNSIGNED,
  TotalNodeUpTime INTEGER UNSIGNED,
  TaskCount INTEGER UNSIGNED,
  VMOSList VARCHAR(64),          
  PRIMARY KEY (ID)
);

CREATE TABLE Jobs (
  ID VARCHAR(64),
  SourceRMJobID VARCHAR(64),
  DestinationRMJobID VARCHAR(64),
  GridJobID VARCHAR(64),
  AName VARCHAR(64),
  User VARCHAR(64),
  Account VARCHAR(64),
  Class VARCHAR(64),
  QOS VARCHAR(64),
  OwnerGroup VARCHAR(64),
  JobGroup VARCHAR(64),
  State VARCHAR(64),
  EState VARCHAR(64),
  SubState VARCHAR(64),
  UserPriority INTEGER UNSIGNED,
  SystemPriority INTEGER UNSIGNED,
  CurrentStartPriority INTEGER UNSIGNED,
  RunPriority INTEGER UNSIGNED,
  PerPartitionPriority TEXT,
  SubmitTime INTEGER UNSIGNED, 
  QueueTime INTEGER UNSIGNED,
  StartTime INTEGER UNSIGNED,
  CompletionTime INTEGER UNSIGNED,
  CompletionCode INTEGER,
  UsedWalltime INTEGER UNSIGNED,
  RequestedMinWalltime INTEGER UNSIGNED,
  RequestedMaxWalltime INTEGER UNSIGNED,
  CPULimit INTEGER UNSIGNED,
  SuspendTime INTEGER UNSIGNED,
  HoldTime INTEGER UNSIGNED,
  ProcessorCount INTEGER,
  RequestedNodes INTEGER,
  ActivePartition VARCHAR(64),
  SpecPAL VARCHAR(64),
  DestinationRM VARCHAR(64),
  SourceRM VARCHAR(64),
  Flags TEXT,
  MinPreemptTime INTEGER UNSIGNED,
  Dependencies TEXT,
  RequestedHostList TEXT,
  ExcludedHostList TEXT,
  MasterHostName VARCHAR(64),
  GenericAttributes TEXT,
  Holds TEXT,
  Cost DOUBLE,
  Description TEXT,
  Messages TEXT,
  NotificationAddress TEXT,
  StartCount INTEGER UNSIGNED,
  BypassCount INTEGER UNSIGNED,
  CommandFile TEXT,
  Arguments TEXT,
  RMSubmitLanguage TEXT,
  StdIn TEXT,
  StdOut TEXT,
  StdErr TEXT,
  RMOutput TEXT,
  RMError TEXT,
  InitialWorkingDirectory TEXT,
  UMask INTEGER UNSIGNED,
  RsvStartTime INTEGER UNSIGNED,
  BlockReason TEXT,
  BlockMsg TEXT,
  PSDedicated DOUBLE,
  PSUtilized DOUBLE,
  PRIMARY KEY (ID)
);
 
CREATE TABLE Requests (
  JobID VARCHAR(64),



  RIndex INTEGER UNSIGNED,
  AllocNodeList VARCHAR(1024),
  AllocPartition VARCHAR(64),
  PartitionIndex INTEGER UNSIGNED,
  NodeAccessPolicy VARCHAR(64),
  PreferredFeatures TEXT,
  RequestedApp VARCHAR(64),
  RequestedArch VARCHAR(64),
  ReqOS VARCHAR(64),
  ReqNodeSet VARCHAR(64),
  ReqPartition VARCHAR(64),
  MinNodeCount INTEGER UNSIGNED,
  MinTaskCount INTEGER UNSIGNED,
  TaskCount INTEGER UNSIGNED,
  TasksPerNode INTEGER UNSIGNED,
  DiskPerTask INTEGER UNSIGNED,
  MemPerTask INTEGER UNSIGNED,
  ProcsPerTask INTEGER UNSIGNED,
  SwapPerTask INTEGER UNSIGNED,
  NodeDisk INTEGER UNSIGNED,
  NodeFeatures TEXT,
  NodeMemory INTEGER UNSIGNED,
  NodeSwap INTEGER UNSIGNED,
  NodeProcs INTEGER UNSIGNED,
  GenericResources TEXT,
  ConfiguredGenericResources TEXT,
  PRIMARY KEY (JobID,RIndex)
);

INSERT INTO ObjectType (Name,ID) VALUES ("Rsv",13);
INSERT INTO ObjectType (Name,ID) VALUES ("RM",14);
INSERT INTO ObjectType (Name,ID) VALUES ("Sched",15);
INSERT INTO ObjectType (Name,ID) VALUES ("SRsv",16);
INSERT INTO ObjectType (Name,ID) VALUES ("Sys",17);
INSERT INTO ObjectType (Name,ID) VALUES ("TNode",18);
INSERT INTO ObjectType (Name,ID) VALUES ("Trig",19);
INSERT INTO ObjectType (Name,ID) VALUES ("User",20);
INSERT INTO ObjectType (Name,ID) VALUES ("CJob",23);
INSERT INTO ObjectType (Name,ID) VALUES ("GRes",30);
INSERT INTO ObjectType (Name,ID) VALUES ("Gmetric",31);
INSERT INTO ObjectType (Name,ID) VALUES ("Stats",39);
INSERT INTO ObjectType (Name,ID) VALUES ("TJob",42);
INSERT INTO ObjectType (Name,ID) VALUES ("Paction",43);
INSERT INTO ObjectType (Name,ID) VALUES ("VM",45);
INSERT INTO ObjectType (Name,ID) VALUES ("VPC",47);
INSERT INTO ObjectType (Name,ID) VALUES ("JGroup",48);

INSERT INTO EventType (Name,ID) VALUES ("TRIGTHRESHOLD",41);
INSERT INTO EventType (Name,ID) VALUES ("VMCREATE",42);
INSERT INTO EventType (Name,ID) VALUES ("VMDESTROY",43);
INSERT INTO EventType (Name,ID) VALUES ("VMMIGRATE",44);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWERON",45);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWEROFF",46);
INSERT INTO EventType (Name,ID) VALUES ("NODEMODIFY",47);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWEROFF",48);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWERON",49);
INSERT INTO EventType (Name,ID) VALUES ("NODEPROVISION",50);
INSERT INTO EventType (Name,ID) VALUES ("ALLSCHEDCOMMAND",51);
INSERT INTO EventType (Name,ID) VALUES ("AMCANCEL",52);
INSERT INTO EventType (Name,ID) VALUES ("AMDEBIT",53);
INSERT INTO EventType (Name,ID) VALUES ("AMQUOTE",54);
INSERT INTO EventType (Name,ID) VALUES ("AMRESERVE",55);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLEND",56);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLSTART",57);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLEEND",58);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLESTART",59);
INSERT INTO EventType (Name,ID) VALUES ("JOBCHECKPOINT",60);



2.4 Initial Moab Configuration
After Moab is installed, there may be minor configuration remaining within the primary configuration file,
moab.cfg. While the configure script automatically sets these parameters, sites may choose to specify
additional parameters. If the values selected in configure are satisfactory, then this section may be safely
ignored.

The parameters needed for proper initial startup include the following:

SCHEDCFG
The SCHEDCFG parameter specifies how the Moab server will execute and communicate with
client requests. The SERVER attribute allows Moab client commands to locate the Moab server
and is specified as a URL or in <HOST>[:<PORT>] format. For example:

ADMINCFG
Moab provides role-based security enabled via multiple levels of admin access. Users who are to
be granted full control of all Moab functions should be indicated by setting the ADMINCFG[1]
parameter. The first user in this USERS attribute list is considered the primary administrator. It
is the ID under which Moab will execute. For example, the following may be used to enable
users greg and thomas as level 1 admins:

Moab may only be launched by the primary administrator user ID.

The primary administrator should be configured as a manager/operator/administrator in
every resource manager with which Moab will interface.

If the msub command will be used, then root must be the primary administrator.

Moab's home directory and contents should be owned by the primary administrator.

RMCFG
For Moab to properly interact with a resource manager, the interface to this resource manager
must be defined as described in the Resource Manager Configuration Overview. Further, it is
important that the primary Moab administrator also be a resource manager administrator within
each of those systems. For example, to interface to a TORQUE resource manager, the following
may be used:

See Also
Parameter Overview
mdiag -C command (for diagnosing current Moab configuration)

SCHEDCFG[orion] SERVER=cw.psu.edu

ADMINCFG[1] USERS=greg,thomas

RMCFG[torque1] TYPE=pbs

http://www.adaptivecomputing.com/resources/docs/torque/index.php


2.5 Initial Moab Testing
Moab has been designed with a number of key features that allow testing to occur in a no risk environment.
These features allow you to safely run Moab in test mode even with another scheduler running whether it be
an earlier version of Moab or another scheduler altogether. In test mode, Moab collects real-time job and
node information from your resource managers and acts as if it were scheduling live. However, its ability to
actually affect jobs (that is, start, modify, cancel, charge, and so forth) is disabled.

Moab offers the following test modes to provide a means for verifying such things as proper configuration and
operation:

2.5.1 Minimal Configuration Required To Start
2.5.1.1 Normal Mode
2.5.1.2 Monitor Mode
2.5.1.3 Interactive Mode
2.5.1.4 Simulation Mode

2.5.1 Scheduler Modes
Central to Moab testing is the MODE attribute of the SCHEDCFG parameter. This parameter attribute allows
administrators to determine how Moab will run. The possible values for MODE are NORMAL, MONITOR,
INTERACTIVE, and SIMULATION. For example, to request monitor mode operation, include the line
SCHEDCFG MODE=MONITOR in the moab.cfg file.

2.5.1.1 Normal Mode

If initial evaluation is complete or not required, you can place the scheduler directly into production by setting
the MODE attribute of the SCHEDCFG parameter to NORMAL and (re)starting the scheduler.

2.5.1.2 Monitor Mode (or Test Mode)

Monitor mode allows evaluation of new Moab releases, configurations, and policies in a risk-free manner. In
monitor mode, the scheduler connects to the resource manager(s) and obtains live resource and workload
information. Using the policies specified in the moab.cfg file, the monitor-mode Moab behaves identical to a
live or normal-mode Moab except the ability to start, cancel, or modify jobs is disabled. In addtion, allocation
management does not occur in monitor mode. This allows safe diagnosis of the scheduling state and behavior
using the various diagnostic client commands. Further, the log output can also be evaluated to see if any
unexpected situations have arisen. At any point, the scheduler can be dynamically changed from monitor to
normal mode to begin live scheduling.

To set up Moab in monitor mode, do the following:

Remember that Moab running in monitor mode will not interfere with your production scheduler.

2.5.1.2.1 Running Multiple Moab Instances Simultaneously

If running multiple instances of Moab, whether in simulation, normal, or monitor mode, make certain that
each instance resides in a different home directory to prevent conflicts with configuration, log, and statistics
files. Before starting each additional Moab, set the MOABHOMEDIR environment variable in the execution
environment to point to the local home directory. Also, each instance of Moab should run using a different
port to avoid conflicts.

If running multiple versions of Moab, not just different Moab modes or configurations, set the $PATH
variable to point to the appropriate Moab binaries.

> vi moab.cfg
  (change the MODE attribute of the SCHEDCFG parameter from NORMAL to 
MONITOR)
> moab



To point Moab client commands (such as showq) to the proper Moab server, use the appropriate command
line arguments or set the environment variable MOABHOMEDIR in the client execution environment as in
the following example:

> moabd is a safe and recommended method of starting Moab if things are not installed in their default
locations.

2.5.1.3 Interactive Mode

Interactive mode allows for evaluation of new versions and configurations in a manner different from monitor
mode. Instead of disabling all resource and job control functions, Moab sends the desired change request to
the screen and asks for permission to complete it. For example, before starting a job, Moab may post
something like the following to the screen:

The administrator must specifically accept each command request after verifying that it correctly meets
desired site policies. Moab will then execute the specified command. This mode is useful in validating
scheduler behavior and can be used until configuration is appropriately tuned and all parties are comfortable
with the scheduler's performance. In most cases, sites will want to set the scheduling mode to normal after
verifying correct behavior.

2.5.1.4 Simulation Mode

Simulation mode is of value in performing a test drive of the scheduler or when a stable production system
exists and an evaluation is desired of how various policies can improve the current performance.

The initial test drive simulation can be configured using the following steps:

(Consider viewing the simulation configuration demo.)

In simulation mode, the scheduler does not background itself as it does in monitor and normal modes.

The sample workload and resource traces files allow the simulation to emulate a 192 node IBM SP. In this
mode, all Moab commands can be run as if on a normal system. The mschedctl command can be used to
advance the simulation through time. The Simulation section describes the use of the simulator in detail.

If you are familiar with Moab, you may want to use the simulator to tune scheduling policies for your own
workload and system. The resource and workload traces are described further in the Collecting Traces section.

# point moab clients/server to new configuration
> export MOABHOMEDIR=/opt/moab-monitor

# set path to new binaries (optional)
> export PATH=/opt/moab-monitor/bin:/opt/moab-monitor/sbin:$PATH

# start Moab server
> moab

# query Moab server
> showq

Command:  start job 1139.ncsa.edu on node list 
test013,test017,test018,test021
Accept:  (y/n) [default: n]?

> vi moab.cfg

(change the MODE attribute of the SCHEDCFG parameter from NORMAL to 
SIMULATION)
(add 'SIMRESOURCETRACEFILE  traces/Resource.Trace1')
(add 'SIMWORKLOADTRACEFILE  traces/Workload.Trace1')

> moab &

http://www.clusterresources.com/services/Tutorials/MSim.html


Generally, at least a week's worth of workload should be collected to make the results of the simulation
statistically meaningful. Once the traces are collected, the simulation can be started with some initial policy
settings. Typically, the scheduler is able to simulate between 10 and 100 minutes of wallclock time per
second for medium to large systems. As the simulation proceeds, various statistics can be monitored if
desired. At any point, the simulation can be ended and the statistics of interest recorded. One or more
policies can be modified, the simulation re-run, and the results compared. Once you are satisfied with the
scheduling results, you can run the scheduler live with the tuned policies.



3.0 Scheduler Basics
3.1 Layout of Scheduler Components
3.2 Scheduling Environment and Objects
3.3 Scheduling Iterations and Job Flow
3.4 Configuring the Scheduler
3.5 Credential Overview



3.1 Layout of Scheduler Components
Moab is initially unpacked into a simple one-deep directory structure. What follows demonstrates the default
layout of scheduler components; some of the files (such as log and statistics files) are created while Moab
runs.

Moab checks for critical config files in directories in this order:
/opt/moab/
/opt/moab/etc/
/etc/

* $(MOABHOMEDIR) (default is /opt/moab and can be modified via the --with-homedir parameter
during ./configure)

.moab.ck - checkpoint file

.moab.pid - lock file
moab.lic - license file
contrib - directory containing contributed code and plug-ins
docs - directory for documentation
moab.cfg - general configuration file
moab.dat - configuration file generated by Moab Cluster Manager
moab-private.cfg - secure configuration file containing private information
lib - directory for library files (primarily for tools/)
log- directory for log files

moab.log - log file
moab.log.1 - previous log file

spool - directory for temporary files
stats- directory for statistics files

events.<date> - event files
{DAY|WEEK|MONTH|YEAR}.<date> - usage profiling data
FS.<PARTITION>.<epochtime> - fairshare usage data

samples - directory for sample configuration files, simulation trace files, etc.
$(MOABINSTDIR) (default is /opt/moab and can be modified via the --prefix parameter during
./configure)

bin - directory for client commands
{showq, setres, ...} - client commands

sbin - directory for server daemons
moab - Moab binary

tools - directory for resource manager interfaces and local scripts
/etc/moab.cfg - if the Moab home directory cannot be found at startup, this file is checked to see if it
declares the Moab home directory. If a declaration exists, the system checks the declared directory to
find Moab. The syntax is: MOABHOMEDIR=<DIRECTORY>.

If you want to run Moab from a different directory other than /opt/moab but did not use the --with-
homedir parameter during ./configure, you can set the $MOABHOMEDIR environment variable, declare the
home directory in the /etc/moab.cfg file, or use the -C command line option when using the Moab server or
client commands to specify the configuration file location.

When Moab runs, it creates a log file, moab.log, in the log directory and creates a statistics file in the stats
directory with the naming convention events.WWW_MMM_DD_YYYY. (Example: events.Sat_Oct_10_2009).
Additionally, a checkpoint file, .moab.ck, and lock file, .moab.pid, are maintained in the Moab home
directory.

3.1.1 Layout of Scheduler Components with Integrated Database
Enabled
If USEDATABASE INTERNAL is configured, the layout of scheduler components varies slightly. The .moab.ck
file and usage profiling data (stat/{DAY|WEEK|MONTH|YEAR}.<date>) are stored in the moab.db database.
In addition, the event information is stored in both event files: (stat/events.<date>) and moab.db.

http://www.adaptivecomputing.com/resources/docs/mcm/index.php


See Also
Commands Overview
Installation



3.2 Scheduling Environment
3.2.1 Scheduling Objects

3.2.1.1 Jobs
3.2.1.1.1 Job States
3.2.1.1.2 Requirement (or Req)

3.2.1.2 Nodes
3.2.1.3 Advance Reservations
3.2.1.4 Policies
3.2.1.5 Resources
3.2.1.6 Task
3.2.1.7 PE
3.2.1.8 Class (or Queue)
3.2.1.9 Resource Manager (RM)

3.2.2 Scheduling Dictionary

3.2.1 Scheduling Objects
Moab functions by manipulating a number of elementary objects, including jobs, nodes, reservations, QoS
structures, resource managers, and policies. Multiple minor elementary objects and composite objects are
also used; these objects are defined in the scheduling dictionary.

3.2.1.1 Jobs

Job information is provided to the Moab scheduler from a resource manager such as Loadleveler, PBS, Wiki,
or LSF. Job attributes include ownership of the job, job state, amount and type of resources required by the
job, and a wallclock limit indicating how long the resources are required. A job consists of one or more task
groups, each of which requests a number of resources of a given type; for example, a job may consist of two
task groups, the first asking for a single master task consisting of 1 IBM SP node with at least 512 MB of RAM
and the second asking for a set of slave tasks such as 24 IBM SP nodes with at least 128 MB of RAM. Each
task group consists of one or more tasks where a task is defined as the minimal independent unit of
resources. By default, each task is equivalent to one processor. In SMP environments, however, users may
wish to tie one or more processors together with a certain amount of memory and other resources.

3.2.1.1.1 Job States

The job's state indicates its current status and eligibility for execution and can be any of the values listed in
the following tables:

Pre-Execution States
State Definition

deferred Job that has been held by Moab due to an inability to schedule the job under current conditions.
Deferred jobs are held for DEFERTIME before being placed in the idle queue. This process is
repeated DEFERCOUNT times before the job is placed in batch hold.

hold Job is idle and is not eligible to run due to a user, (system) administrator, or batch system hold
(also, batchhold, systemhold, userhold).

idle Job is currently queued and eligible to run but is not executing (also, notqueued).

migrated Job that has been migrated to a remote peer, but have not yet begun execution. Migrated jobs
show can show up on any grid system

staged Job has been migrated to another scheduler but has not yet started executing. Staged jobs show
up only when using data staging.

Execution States
State Definition



starting Batch system has attempted to start the job and the job is currently performing pre-start tasks
that may include provisioning resources, staging data, or executing system pre-launch scripts.

running Job is currently executing the user application.

suspended Job was running but has been suspended by the scheduler or an administrator; user application
is still in place on the allocated compute resources, but it is not executing.

canceling Job has been canceled and is in process of cleaning up.

Post-Execution States
State Definition

completed Job has completed running without failure.

removed Job has run to its requested walltime successfully but has been canceled by the scheduler or
resource manager due to exceeding its walltime or violating another policy; includes jobs
canceled by users or administrators either before or after a job has started.

vacated Job canceled after partial execution due to a system failure.

3.2.1.1.2 Task Group (or Req)

A job task group (or req) consists of a request for a single type of resources. Each task group consists of the
following components:

Task Definition — A specification of the elementary resources that compose an individual task.
Resource Constraints — A specification of conditions that must be met for resource matching to
occur. Only resources from nodes that meet all resource constraints may be allocated to the job task
group.
Task Count — The number of task instances required by the task group.
Task List — The list of nodes on which the task instances are located.
Task Group Statistics — Statistics tracking resource utilization.

3.2.1.2 Nodes

Moab recognizes a node as a collection of resources with a particular set of associated attributes. This
definition is similar to the traditional notion of a node found in a Linux cluster or supercomputer wherein a
node is defined as one or more CPUs, associated memory, and possibly other compute resources such as
local disk, swap, network adapters, and software licenses. Additionally, this node is described by various
attributes such as an architecture type or operating system. Nodes range in size from small uniprocessor PCs
to large symmetric multiprocessing (SMP) systems where a single node may consist of hundreds of CPUs and
massive amounts of memory.

In many cluster environments, the primary source of information about the configuration and status of a
compute node is the resource manager. This information can be augmented by additional information sources
including node monitors and information services. Further, extensive node policy and node configuration
information can be specified within Moab via the graphical tools or the configuration file. Moab aggregates this
information and presents a comprehensive view of the node configuration, usages, and state.

While a node in Moab in most cases represents a standard compute host, nodes may also be used to
represent more generalized resources. The GLOBAL node possesses floating resources that are available
cluster wide, and created virtual nodes (such as network, software, and data nodes) track and allocate
resource usage for other resource types.

For additional node information, see General Node Administration.

3.2.1.3 Advance Reservations

An advance reservation dedicates a block of specific resources for a particular use. Each reservation consists
of a list of resources, an access control list, and a time range for enforcing the access control list. The
reservation ensures the matching nodes are used according to the access controls and policy constraints
within the time frame specified. For example, a reservation could reserve 20 processors and 10 GB of



memory for users Bob and John from Friday 6:00 a.m. to Saturday 10:00 p.m. Moab uses advance
reservations extensively to manage backfill, guarantee resource availability for active jobs, allow service
guarantees, support deadlines, and enable metascheduling. Moab also supports both regularly recurring
reservations and the creation of dynamic one-time reservations for special needs. Advance reservations are
described in detail in the Advance Reservations overview.

3.2.1.4 Policies

A configuration file specifies policies controls how and when jobs start. Policies include job prioritization,
fairness policies, fairshare configuration policies, and scheduling policies.

3.2.1.5 Resources

Jobs, nodes, and reservations all deal with the abstract concept of a resource. A resource in the Moab world is
one of the following:

processors — specify with a simple count value
memory — specify real memory or RAM in megabytes (MB)
swap — specify virtual memory or swap in megabytes (MB)
disk — specify local disk in megabytes (MB)

In addition to these elementary resource types, there are two higher level resource concepts used within
Moab: task and the processor equivalent, or PE.

3.2.1.6 Task

A task is a collection of elementary resources that must be allocated together within a single node. For
example, a task may consist of one processor, 512 MB of RAM, and 2 GB of local disk. A key aspect of a task
is that the resources associated with the task must be allocated as an atomic unit, without spanning node
boundaries. A task requesting 2 processors cannot be satisfied by allocating 2 uniprocessor nodes, nor can a
task requesting 1 processor and 1 GB of memory be satisfied by allocating 1 processor on 1 node and
memory on another.

In Moab, when jobs or reservations request resources, they do so in terms of tasks typically using a task
count and a task definition. By default, a task maps directly to a single processor within a job and maps to a
full node within reservations. In all cases, this default definition can be overridden by specifying a new task
definition.

Within both jobs and reservations, depending on task definition, it is possible to have multiple tasks from the
same job mapped to the same node. For example, a job requesting 4 tasks using the default task definition of
1 processor per task, can be satisfied by 2 dual processor nodes.

3.2.1.7 PE

The concept of the processor equivalent, or PE, arose out of the need to translate multi-resource
consumption requests into a scalar value. It is not an elementary resource but rather a derived resource
metric. It is a measure of the actual impact of a set of requested resources by a job on the total resources
available system wide. It is calculated as follows:

   PE = MAX(ProcsRequestedByJob  / TotalConfiguredProcs, 
            MemoryRequestedByJob / TotalConfiguredMemory, 
            DiskRequestedByJob   / TotalConfiguredDisk, 
            SwapRequestedByJob   / TotalConfiguredSwap) * TotalConfiguredProcs

For example, if a job requested 20% of the total processors and 50% of the total memory of a 128-processor
MPP system, only two such jobs could be supported by this system. The job is essentially using 50% of all
available resources since the system can only be scheduled to its most constrained resource—memory in this
case. The processor equivalents for this job should be 50% of the processors, or PE = 64.

Another example: Assume a homogeneous 100-node system with 4 processors and 1 GB of memory per
node. A job is submitted requesting 2 processors and 768 MB of memory. The PE for this job would be
calculated as follows:

   PE = MAX(2/(100*4), 768/(100*1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the memory on a 4-processor node.



The calculation works equally well on homogeneous or heterogeneous systems, uniprocessor or large SMP
systems.

3.2.1.8 Class (or Queue)

A class (or queue) is a logical container object that implicitly or explicitly applies policies to jobs. In most
cases, a class is defined and configured within the resource manager and associated with one or more of the
following attributes or constraints:

Attribute Description

Default Job
Attributes

A queue may be associated with a default job duration, default size, or default resource
requirements.

Host
Constraints

A queue may constrain job execution to a particular set of hosts.

Job
Constraints

A queue may constrain the attributes of jobs that may submitted, including setting limits such
as max wallclock time and minimum number of processors.

Access List A queue may constrain who may submit jobs into it based on such things as user lists and
group lists.

Special
Access

A queue may associate special privileges with jobs including adjusted job priority.

As stated previously, most resource managers allow full class configuration within the resource manager.
Where additional class configuration is required, the CLASSCFG parameter may be used.

Moab tracks class usage as a consumable resource allowing sites to limit the number of jobs using a
particular class. This is done by monitoring class initiators that may be considered to be a ticket to run in a
particular class. Any compute node may simultaneously support several types of classes and any number of
initiators of each type. By default, nodes will have a one-to-one mapping between class initiators and
configured processors. For every job task run on the node, one class initiator of the appropriate type is
consumed. For example, a 3-processor job submitted to the class batch consumes three batch class
initiators on the nodes where it runs.

Using queues as consumable resources allows sites to specify various policies by adjusting the class initiator
to node mapping. For example, a site running serial jobs may want to allow a particular 8-processor node to
run any combination of batch and special jobs subject to the following constraints:

only 8 jobs of any type allowed simultaneously
no more than 4 special jobs allowed simultaneously

To enable this policy, the site may set the node's MAXJOB policy to 8 and configure the node with 4 special
class initiators and 8 batch class initiators.

In virtually all cases jobs have a one-to-one correspondence between processors requested and class
initiators required. However, this is not a requirement, and with special configuration, sites may choose to
associate job tasks with arbitrary combinations of class initiator requirements.

In displaying class initiator status, Moab signifies the type and number of class initiators available using the
format [<CLASSNAME>:<CLASSCOUNT>]. This is most commonly seen in the output of node status
commands indicating the number of configured and available class initiators, or in job status commands when
displaying class initiator requirements.

3.2.1.9  Resource Manager (RM)

While other systems may have more strict interpretations of a resource manager and its responsibilities,
Moab's multi-resource manager support allows a much more liberal interpretation. In essence, any object that
can provide environmental information and environmental control can be used as a resource manager,
including sources of resource, workload, credential, or policy information such as scripts, peer services,
databases, web services, hardware monitors, or even flats files. Likewise, Moab considers to be a resource
manager any tool that provides control over the cluster environment whether that be a license manager,



queue manager, checkpoint facility, provisioning manager, network manager, or storage manager.

Moab aggregates information from multiple unrelated sources into a larger more complete world view of the
cluster that includes all the information and control found within a standard resource manager such as
TORQUE, including node, job, and queue management services. For more information, see the Resource
Managers and Interfaces overview.

Arbitrary Resource

Nodes can also be configured to support various arbitrary resources. Use the NODECFG parameter to specify
information about such resources. For example, you could configure a node to have 256 MB RAM, 4
processors, 1 GB Swap, and 2 tape drives.

http://www.adaptivecomputing.com/resources/docs/torque/index.php


3.2.2 Scheduling Dictionary
Account

Definition: A credential also known as project ID. Multiple users may be associated a single account ID and
each user may have access to multiple accounts. (See credential definition and ACCOUNTCFG
parameter.)

Example: ACCOUNT=hgc13

  
ACL (Access Control List)

Definition: In the context of scheduling, an access control list is used and applied much as it is elsewhere.
An ACL defines what credentials are required to access or use particular objects. The principal
objects to which ACLs are applied are reservations and QoS's. ACLs may contain both allow and
deny statements, include wildcards, and contain rules based on multiple object types.

Example: Reservation META1 contains 4 access statements.

Allow jobs owned by user john or bob 
Allow jobs with QoS premium 
Deny jobs in class debug 
Allow jobs with a duration of less than 1 hour 

  
Allocation

Definition: A logical, scalar unit assigned to users on a credential basis, providing access to a particular
quantity of compute resources. Allocations are consumed by jobs associated with those
credentials.

Example: ALLOCATION=30000

  
Class

Definition: (see Queue) A class is a logical container object that holds jobs allowing a site to associate
various constraints and defaults to these jobs. Class access can also be tied to individual nodes
defining whether a particular node will accept a job associated with a given class. Class based
access to a node is denied unless explicitly allowed via resource manager configuration. Within
Moab, classes are tied to jobs as a credential.

Example: job cw.073 is submitted to class batch

node cl02 accepts jobs in class batch

reservation weekend allows access to jobs in class batch

  
CPU

Definition: A single processing unit. A CPU is a consumable resource. Nodes typically consist of one or more
CPUs. (same as processor )

  
Credential

Definition: An attribute associated with jobs and other objects that determines object identity. In the case
of schedulers and resource managers, credential based policies and limits are often established.
At submit time, jobs are associated with a number of credentials such as user, group , account ,



QoS, and class. These job credentials subject the job to various polices and grant it various
types of access.

In most cases, credentials set both the privileges of the job and the ID of the actual job
executable.

Example: Job cw.24001 possesses the following credentials:

USER=john;GROUP=staff;ACCOUNT=[NONE]; 
QOS=[DEFAULT];CLASS=batch

  
Disk

Definition: A quantity of local disk available for use by batch jobs. Disk is a consumable resource.

  
Execution Environment

Definition: A description of the environment in which the executable is launched. This environment may
include attributes such as the following: 
an executable 
command line argumentss 
input file 
output file 
local user ID 
local group ID 
process resource limits

Example: Job cw.24001 possesses the following execution environment:

EXEC=/bin/sleep;ARGS="60"; 
INPUT=[NONE];OUTPUT=[NONE]; 
USER=loadl;GROUP=staff;

  
Fairshare

Definition: A mechanism that allows historical resource utilization information to be incorporated into job
priority decisions.

  
Fairness

Definition: The access to shared compute resources that each user is granted. Access can be equal or
based on factors such as historical resource usage, political issues, and job value.

  
Group

Definition: A credential typically directly mapping to a user's Unix group ID.

  
Job

Definition: The fundamental object of resource consumption. A job contains the following components: 
A list of required consumable resources 
A list of resource constraints controlling which resources may be allocated to the job 
A list of job constraints controlling where, when, and how the job should run 
A list of credentials 
An execution environment

  



Job Constraints

Definition: A set of conditions that must be fulfilled for the job to start. These conditions are far reaching
and may include one or more of the following: 
When the job may run. (After time X, within Y minutes.) 
Which resources may be allocated. (For example, node must possess at least 512 MB of RAM,
run only in partition or Partition C, or run on HostA and HostB.) 
Starting job relative to a particular event. (Start after job X successfully completes.)

Example: RELEASETIME>='Tue Feb 12, 11:00AM' 
DEPEND=AFTERANY:cw.2004 
NODEMEMORY==256MB

  
Memory

Definition: A quantity of physical memory (RAM). Memory is provided by compute nodes. It is required as a
constraint or consumed as a consumable resource by jobs. Within Moab, memory is tracked and
reported in megabytes (MB).

Example: Node node001 provides the following resources: 
   PROCS=1,MEMORY=512,SWAP=1024

Job cw.24004 consumes the following resources per task: 
   PROCS=1,MEMORY=256

  
Node

Definition: A node is the fundamental object associated with compute resources. Each node contains the
following components: 
A list of consumable resources 
A list of node attributes

  
Node Attribute

Definition: A node attribute is a non-quantitative aspect of a node. Attributes typically describe the node
itself or possibly aspects of various node resources such as processors or memory. While it is
probably not optimal to aggregate node and resource attributes together in this manner, it is
common practice. Common node attributes include processor architecture, operating system,
and processor speed. Jobs often specify that resources be allocated from nodes possessing
certain node attributes.

Example: ARCH=AMD,OS=LINUX24,PROCSPEED=950

  
Node Feature

Definition: A node feature is a node attribute that is typically specified locally via a configuration file. Node
features are opaque strings associated with the node by the resource manager that generally
only have meaning to the end-user, or possibly to the scheduler. A node feature is commonly
associated with a subset of nodes allowing end-users to request use of this subset by requiring
that resources be allocated from nodes with this feature present. In many cases, node features
are used to extend the information provided by the resource manager.

Example: FEATURE=s950,pIII,geology

(This may be used to indicate that the node possesses a 950 MHz Pentium III processor and
that the node is owned by the Geology department.)

  



Processor

Definition: A processing unit. A processor is a consumable resource. Nodes typically consist of one or more
processors. (same as CPU)

  
Quality of Service (QoS)

Definition: An object that provides special services, resources, and so forth.

  
Queue

Definition: (see Class)

  
Reservation

Definition: An object that reserves a specific collection or resources for a specific timeframe for use by jobs
that meet specific conditions.

Example: Reserve 24 processors and 8 GB of memory from time T1 to time T2 for use by user X or jobs in
the class batch.

  
Resource

Definition: Hardware, generic resources such as software, and features available on a node, including
memory, disk, swap, and processors.

  
Resource, Available

Definition: A compute node's configured resources minus the maximum of the sum of the resources utilized
by all job tasks running on the node and the resources dedicated; that is, R.Available =
R.Configure - MAX(R.Dedicated,R.Utilized).

In most cases, resources utilized will be associated with compute jobs that the batch system has
started on the compute nodes, although resource consumption may also come from the
operating system or rogue processes outside of the batch system's knowledge or control.
Further, in a well-managed system, utilized resources are less than or equal to dedicated
resources and when exceptions are detected, one or more resource limit policies is activated to
preempt the jobs violating their requested resource usage.

Example: Node cl003 has 4 processors and 512 MB of memory. It is executing 2 tasks of job
clserver.0041 that are using 1 processor and 60 MB of memory each. One processor and 250
MB of memory are reserved for user jsmith, but are not currently in use.

Node cl003's resources available to user jsmith:

2 processors
392 MB memory

Node cl003's resources available to a user other than jsmith:

1 processor
142 MB memory

  
Resource, Configured

Definition: The total amount of consumable resources that are available on a compute node for use by job
tasks.



Example: Node cl003 has 4 processors and 512 MB of memory. It is executing 2 tasks of job
clserver.0041 that are using 1 processor and 60 MB of memory each. One processor and 250
MB of memory are reserved for user jsmith but are not currently in use.

Node cl003's configured resources:

4 processors
512 MB memory

  
Resource, Consumable

Definition: Any object that can be used (that is, consumed and thus made unavailable to another job) by,
or dedicated to a job is considered to be a resource. Common examples of resources are a
node's physical memory or local disk. As these resources may be given to one job and thus
become unavailable to another, they are considered to be consumable. Other aspects of a node,
such as its operating system, are not considered to be consumable since its use by one job does
not preclude its use by another.

Note that some node objects, such as a network adapter, may be dedicated under some
operating systems and resource managers and not under others. On systems where the network
adapter cannot be dedicated and the network usage per job cannot be specified or tracked,
network adapters are not considered to be resources, but rather attributes.

Nodes possess a specific quantity of consumable resources such as real memory, local disk, or
processors. In a resource management system, the node manager may choose to report only
those configured resources available to batch jobs. For example, a node may possess an 80-GB
hard drive but may have only 20 GB dedicated to batch jobs. Consequently, the resource
manager may report that the node has 20 GB of local disk available when idle. Jobs may
explicitly request a certain quantity of consumable resources.

  
Resource, Constraint

Definition: A resource constraint imposes a rule on which resources can be be used to match a resource
request. Resource constraints either specify a required quantity and type of resource or a
required node attribute. All resource constraints must be met by any given node to establish a
match.

  
Resource, Dedicated

Definition: A job may request that a block of resources be dedicated while the job is executing. At other
times, a certain number of resources may be reserved for use by a particular user or group. In
these cases, the scheduler is responsible for guaranteeing that these resources, utilized or not,
are set aside and made unavailable to other jobs.

Example: Node cl003 has 4 processors and 512 MB of memory. It is executing 2 tasks of job
clserver.0041 that are using 1 processor and 60 MB of memory each. One processor and 250
MB of memory are reserved for user jsmith but are not currently in use. 

Node cl003's dedicated resources are:

1 processor
250 MB memory

  
Resource, Utilized

Definition: All consumable resources actually used by all job tasks running on the compute node.



Example: Node cl003 has 4 processors and 512 MB of memory. It is executing 2 tasks of job
clserver.0041 that are using 1 processor and 60 MB of memory each. One processor and 250
MB of memory are reserved for user jsmith but are not currently in use.

Node cl003's utilized resources are:

2 processors
120 MB memory

  
Swap

Definition: A quantity of virtual memory available for use by batch jobs. Swap is a consumable resource
provided by nodes and consumed by jobs.

  
Task

Definition: An atomic collection of consumable resources.

  
User, Global

Definition: The user credential used to provide access to functions and resources. In local scheduling,
global user IDs map directly to local user IDs.

  
User, Local

Definition: The user credential under which the job executable will be launched.

  
Workload

Definition: Generalized term.



3.3 Scheduling Iterations and Job Flow
3.3.1 Scheduling Iterations

3.3.1.1 Update State Information
3.3.1.2 Handle User Requests
3.3.1.3 Perform Next Scheduling Cycle

3.3.2 Detailed Job Flow
3.3.2.1 Determine Basic Job Feasibility
3.3.2.2 Prioritize Jobs
3.3.2.3 Enforce Configured Throttling Policies
3.3.2.4 Determine Resource Availability
3.3.2.5 Allocate Resources to Job
3.3.2.6 Distribute Jobs Tasks Across Allocated Resources
3.3.2.7 Launch Job

3.3.1 Scheduling Iterations
In any given scheduling iteration, many activities take place, examples of which are listed below:

Refresh reservations
Schedule reserved jobs
Schedule priority jobs
Backfill jobs
Update statistics
Update State Information
Handle User Requests

3.3.1.1 Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up-to-date information on
compute resources, workload, and policy configuration. On most systems, these calls are to a centralized
resource manager daemon that possesses all information. Jobs may be reported as being in any of the
following states listed in the job state table.

3.3.1.2 Handle User Requests

User requests include any call requesting state information, configuration changes, or job or resource
manipulation commands. These requests may come in the form of user client calls, peer daemon calls, or
process signals.

3.3.1.3 Perform Next Scheduling Cycle

Moab operates on a polling/event driven basis. When all scheduling activities complete, Moab processes user
requests until a new resource manager event is received or an internal event is generated. Resource manager
events include activities such as a new job submission or completion of an active job, addition of new node
resources, or changes in resource manager policies. Internal events include administrator schedule requests,
reservation activation/deactivation, or the expiration of the RMPOLLINTERVAL timer.

3.3.2 Detailed Job Flow

3.3.2.1 Determine Basic Job Feasibility

The first step in scheduling is determining which jobs are feasible. This step eliminates jobs that have job
holds in place, invalid job states (such as Completed, Not Queued, Deferred), or unsatisfied preconditions.
Preconditions may include stage-in files or completion of preliminary job steps.

3.3.2.2 Prioritize Jobs



With a list of feasible jobs created, the next step involves determining the relative priority of all jobs within
that list. A priority for each job is calculated based on job attributes such as job owner, job size, and length of
time the job has been queued.

3.3.2.3 Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many jobs, nodes, processors, and so
forth are allowed on a per credential basis. Jobs that violate these policies are not considered for scheduling.

3.3.2.4 Determine Resource Availability

For each job, Moab attempts to locate the required compute resources needed by the job. For a match to be
made, the node must possess all node attributes specified by the job and possess adequate available
resources to meet the TasksPerNode job constraint. (Default TasksPerNode is 1.) Normally, Moab
determines that a node has adequate resources if the resources are neither utilized by nor dedicated to
another job using the calculation.

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).

The RESOURCEAVAILABILITYPOLICY parameter can be modified to adjust this behavior.

3.3.2.5 Allocate Resources to Job

If adequate resources can be found for a job, the node allocation policy is then applied to select the best set
of resources. These allocation policies allow selection criteria such as speed of node, type of reservations, or
excess node resources to be figured into the allocation decision to improve the performance of the job and
maximize the freedom of the scheduler in making future scheduling decisions.

3.3.2.6 Distribute Jobs Tasks Across Allocated Resources

With the resources selected, Moab then maps job tasks to the actual resources. This distribution of tasks is
typically based on simple task distribution algorithms such as round-robin or max blocking, but can also
incorporate parallel language (such as MPI and PVM) library-specific patterns used to minimize interprocess
communication overhead.

3.3.2.7 Launch Job

With the resources selected and task distribution mapped, the scheduler then contacts the resource manager
and informs it where and how to launch the job. The resource manager then initiates the actual job
executable.



3.4 Configuring the Scheduler
3.4.1 Adjusting Server Behavior

3.4.1.1 Logging
3.4.1.2 Checkpointing
3.4.1.3 Client Interface
3.4.1.4 Scheduler Mode

Scheduler configuration is maintained using the flat text configuration file moab.cfg. All configuration file
entries consist of simple <PARAMETER> <VALUE> pairs that are whitespace delimited. Parameter names are
not case sensitive but <VALUE> settings are. Some parameters are array values and should be specified as
<PARAMETER>[<INDEX>] (Example: QOSCFG[hiprio] PRIORITY=1000); the <VALUE> settings may be
integers, floats, strings, or arrays of these. Some parameters can be specified as arrays wherein index values
can be numeric or alphanumeric strings. If no array index is specified for an array parameter, an index of
zero (0) is assumed. The example below includes both array based and non-array based parameters:

See the parameters documentation for information on specific parameters.

The moab.cfg file is read when Moab is started up or recycled. Also, the mschedctl -m command can be
used to reconfigure the scheduler at any time, updating some or all of the configurable parameters
dynamically. This command can be used to modify parameters either permanently or temporarily. For
example, the command mschedctl -m LOGLEVEL 3 will temporarily adjust the scheduler log level. When the
scheduler restarts, the log level restores to the value stored in the Moab configuration files. To adjust a
parameter permanently, the option --flags=persistent should be set.

At any time, the current server parameter settings may be viewed using the mschedctl -l command.

3.4.1 Adjusting Server Behavior
Most aspects of Moab behavior are configurable. This includes both scheduling policy behavior and daemon
behavior. In terms of configuring server behavior, the following realms are most commonly modified.

3.4.1.1 Logging

Moab provides extensive and highly configurable logging facilities controlled by parameters.

LOGDIR - Indicates directory for log files.
LOGFACILITY - Indicates scheduling facilities to track.
LOGFILE - Indicates path name of log file.
LOGFILEMAXSIZE - Indicates maximum size of log file before rolling.
LOGFILEROLLDEPTH - Indicates maximum number of log files to maintain.
LOGLEVEL - Indicates verbosity of logging.

3.4.1.2 Checkpointing

Moab checkpoints its internal state. The checkpoint file records statistics and attributes for jobs, nodes,
reservations, users, groups, classes, and almost every other scheduling object.

CHECKPOINTEXPIRATIONTIME - Indicates how long unmodified data should be kept after the
associated object has disappeared; that is, job priority for a job no longer detected.
CHECKPOINTFILE - Indicates path name of checkpoint file.
CHECKPOINTINTERVAL - Indicates interval between subsequent checkpoints.

3.4.1.3 Client Interface

SCHEDCFG[cluster2] SERVER=head.c2.org MODE=NORMAL

LOGLEVEL 6
LOGDIR   /var/tmp/moablog



The Client interface is configured using the SCHEDCFG parameter. Most commonly, the attributes SERVER
and PORT must be set to point client commands to the appropriate Moab server. Other parameters such as
CLIENTTIMEOUT may also be set.

3.4.1.4 Scheduler Mode

The scheduler mode of operation is controlled by setting the MODE attribute of the SCHEDCFG parameter.
The following modes are allowed:

Mode Description

Interactive Moab interactively confirms each scheduling action before taking any steps. (See interactive
mode overview for more information.)

Monitor Moab observes cluster and workload performance, collects statistics, interacts with allocation
management services, and evaluates failures, but it does not actively alter the cluster, including
job migration, workload scheduling, and resource provisioning. (See monitor mode overview for
more information.)

Normal Moab actively schedules workload according to mission objectives and policies; it creates
reservations; starts, cancels, preempts, and modifies jobs; and takes other scheduling actions.

Simulation Moab obtains workload and resource information from specified simulation trace files and
schedules the defined virtual environment.

Singlestep Moab behaves as in NORMAL mode but will only schedule a single iteration and then exit.

Slave Moab behaves as in NORMAL mode but will only start a job when explicitly requested by a
trusted grid peer service or administrator.

Test Moab behaves as in NORMAL mode, will make reservations, and scheduling decisions, but will
then only log scheduling actions it would have taken if running in NORMAL mode. In most
cases, TEST mode is identical to MONITOR mode. (See test mode overview for more
information.)

See Also
Initial Configuration
Adding #INCLUDE files to moab.cfg



3.5 Credential Overview
Moab supports the concept of credentials, which provide a means of attributing policy and resource access to
entities such as users and groups. These credentials allow specification of job ownership, tracking of resource
usage, enforcement of policies, and many other features. There are five types of credentials—user, group,
account, class, and QoS. While the credentials have many similarities, each plays a slightly different role.

3.5.1 General Credential Attributes
3.5.2 User Credential
3.5.3 Group Credential
3.5.4 Account (or Project) Credential
3.5.5 Class (or Queue) Credential
3.5.6 QoS Credential

3.5.1 General Credential Attributes
Internally, credentials are maintained as objects. Credentials can be created, destroyed, queried, and
modified. They are associated with jobs and requests providing access and privileges. Each credential type
has the following attributes:

Priority Settings
Usage Limits
Service Targets
Credential and Partition Access
Statistics
Credential Defaults, State and Configuration Information

All credentials represent a form of identity, and when applied to a job, express ownership. Consequently, jobs
are subject to policies and limits associated with their owners.

3.5.1.1 Credential Priority Settings

Each credential may be assigned a priority using the PRIORITY attribute. This priority affects a job's total
credential priority factor as described in the Priority Factors section. In addition, each credential may also
specify priority weight offsets, which adjust priority weights that apply to associated jobs. These priority
weight offsets include FSWEIGHT, QTWEIGHT, and XFWEIGHT.

Example

3.5.1.2 Credential Usage Limits

# set priority weights
CREDWEIGHT      1
USERWEIGHT      1
CLASSWEIGHT     1
SERVICEWEIGHT   1

XFACTORWEIGHT   10
QUEUETIMEWEIGHT 1000

# set credential priorities
USERCFG[john] PRIORITY=200

CLASSCFG[batch] PRIORITY=15
CLASSCFG[debug] PRIORITY=100

QOSCFG[bottomfeeder] QTWEIGHT=-50 XFWEIGHT=100

ACCOUNTCFG[topfeeder] PRIORITY=100



Usage limits constrain which jobs may run, which jobs may be considered for scheduling, and what quantity
of resources each individual job may consume. With usage limits, policies such as MAXJOB, MAXNODE, and
MAXMEM may be enforced against both idle and active jobs. Limits may be applied in any combination as
shown in the example below where usage limits include 32 active processors per group and 12 active jobs for
user john. For a job to run, it must satisfy the most limiting policies of all associated credentials. The
Throttling Policy section documents credential usage limits in detail.

3.5.1.3 Service Targets

Credential service targets allow jobs to obtain special treatment to meet usage or response time based
metrics. Additional information about service targets can be found in the Fairshare section.

3.5.1.4 Credential and Partition Access

Access to partitions and to other credentials may be specified on a per credential basis with credential access
lists, default credentials, and credential membership lists.

Credential Access Lists

You can use the ALIST, PLIST, and QLIST attributes (shown in the following table) to specify the list of
credentials or partitions that a given credential may access.

Credential Attribute

Account ALIST (allows credential to access specified list of accounts)

Partition PLIST (allows credential to access specified list of partitions)

QoS QLIST (allows credential to access specified list of QoS's)

Example

Account-based access lists are only enforced if using an allocation manager or if the
ENFORCEACCOUNTACCESS parameter is set to TRUE.

Assigning Default Credentials

Use the the *DEF attribute (shown in the following table) to specify the default credential or partition for a
particular credential.

Credential Attribute

Account ADEF (specifies default account)

Class CDEF (specifies default class)

QoS QDEF (specifies default QoS)

Example

GROUPCFG[DEFAULT] MAXPROC=32 MAXNODE=100
GROUPCFG[staff]   MAXNODE=200

USERCFG[john]     MAXJOB=12

USERCFG[bob]   ALIST=jupiter,quantum
USERCFG[steve] ALIST=quantum

# user bob can access accounts a2, a3, and a6. If no account is 
explicitly requested, 
# his job will be assigned to account a3
USERCFG[bob]   ALIST=a2,a3,a6 ADEF=a3 



Specifying Credential Membership Lists

As an alternate to specifying access lists, administrators may also specify membership lists. This allows a
credential to specify who can access it rather than allowing each credential to specify which credentials it can
access. Membership lists are controlled using the MEMBERULIST, EXCLUDEUSERLIST and
REQUIREDUSERLIST attributes, shown in the following table:

Credential Attribute

User ---

Account, Group, QoS MEMBERULIST

Class EXCLUDEUSERLIST and REQUIREDUSERLIST

Example

Example 1: Controlling Partition Access on a Per User Basis

A site may specify the user john may access partitions atlas, pluto, and zeus and will default to partition
pluto. To do this, include the following line in the configuration file:

Example 2: Controlling QoS Access on a Per Group Basis

A site may also choose to allow everyone in the group staff to access QoS standard and special with a
default QoS of standard. To do this, include the following line in the configuration file:

Example 3: Controlling Resource Access on a Per Account Basis

An organization wants to allow everyone in the account omega3 to access nodes 20 through 24. To do this,
include the following in the configuration file:

3.5.1.5 Credential Statistics

Full statistics are maintained for each credential instance. These statistics record current and historical
resource usage, level of service delivered, accuracy of requests, and many other aspects of workload. Note,
though, that you must explicitly enable credential statistics as they are not tracked by default. You can enable
credential statistics by including the following in the configuration file:

# user steve can access accounts a14, a7, a2, a6, and a1. If no 
account is explicitly 
# requested, his job will be assigned to account a2

USERCFG[steve] ALIST=a14,a7,a2,a6,a1 ADEF=a2 

# account omega3 can only be accessed by users johnh, stevek, jenp
ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp

USERCFG[john] PLIST=atlas,pluto,zeus PDEF=pluto

GROUPCFG[staff] QLIST=standard,special QDEF=standard

ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp
SRCFG[omega3]   HOSTLIST=r:20-24 ACCOUNTLIST=omega3

USERCFG[DEFAULT]        ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT]       ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT]     ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT]       ENABLEPROFILING=TRUE
QOSCFG[DEFAULT]         ENABLEPROFILING=TRUE



3.5.1.6 Job Defaults, Credential State, and General Configuration

Credentials may apply defaults and force job configuration settings via the following parameters:

COMMENT

Description: Associates a comment string with the target credential.

Example:

  
HOLD

Description: Specifies a hold should be placed on all jobs associated with the target credential. 

The order in which this HOLD attribute is evaluated depends on the following credential
precedence: USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, QOSCFG,
USERCFG[DEFAULT], GROUPCFG[DEFAULT], ACCOUNTCFG[DEFAULT],
CLASSCFG[DEFAULT], QOSCFG[DEFAULT].

Example:

  
JOBFLAGS

Description: Assigns the specified job flag to all jobs with the associated credential.

Example:

  
NOSUBMIT

Description: Specifies whether jobs belonging to this credential can submit jobs using msub.

Example:

  
OVERRUN

Description: Specifies the amount of time a job may exceed its wallclock limit before being terminated.
(Only applies to user and class credentials.)

Example:

  
VARIABLE

Description: Specifies attribute-value pairs associated with the specified credential. These variables may be
used in triggers and other interfaces to modify system behavior.

Example:

Credentials may carry additional configuration information. They may specify that detailed statistical profiling
should occur, that submitted jobs should be held, or that corresponding jobs should be marked as
preemptible.

USERCFG[steve] COMMENT='works for boss, provides good service'
CLASSCFG[i3]   COMMENT='queue for I/O intensive workload'

GROUPCFG[bert] HOLD=yes

CLASSCFG[batch] JOBFLAGS=suspendable
QOSCFG[special] JOBFLAGS=restartable

ACCOUNTCFG[general]  NOSUBMIT=TRUE
CLASSCFG[special]    NOSUBMIT=TRUE

CLASSCFG[bigmem] OVERRUN=00:15:00

GROUPCFG[staff] VARIABLE='nocharge=true'



3.5.2 User Credential
The user credential is the fundamental credential within a workload manager; each job requires an
association with exactly one user. In fact, the user credential is the only required credential in Moab; all
others are optional. In most cases, the job's user credential is configured within or managed by the operating
system itself, although Moab may be configured to obtain this information from an independent security and
identity management service.

As the fundamental credential, the user credential has a number of unique attributes.

Role
Email Address
Disable Moab User Email

3.5.2.1 Role

Moab supports role-based authorization, mapping particular roles to collections of specific users. See the
Security section for more information.

3.5.2.1 Email Address

Facilities exist to allow user notification in the event of job or system failures or under other general
conditions. This attribute allows these notifications to be mailed directly to the target user.

3.5.2.2 Disable Moab User Email

You can disable Moab email notifications for a specific user.

3.5.3 Group Credential
The group credential represents an aggregation of users. User-to-group mappings are often specified by the
operating system or resource manager and typically map to a user's Unix group ID. However, user-to-group
mappings may also be provided by a security and identity management service, or you can specify such
directly within Moab.

With many resource managers such as TORQUE, PBSPro, and LSF, the group associated with a job is either
the user's active primary group as specified within the operating system or a group that is explicitly requested
at job submission time. When a secondary group is requested, the user's default group and associated policies
are not taken into account. Also note that a job may only run under one group. If more constraining policies
are required for these systems, an alternate aggregation scheme such as the use of Account or QOS
credentials is recommended.

To submit a job as a secondary group, refer to your local resource manager's job submission options. For
TORQUE users, see the group_list=g_list option of the qsub -W command.

3.5.4 Account Credential
The account credential is also referred to as the project. This credential is generally associated with a group
of users along the lines of a particular project for accounting and billing purposes. User-to-accounting
mapping may be obtained from a resource manager or allocation manager, or you can configure it directly
within Moab. Access to an account can be controlled via the ALIST and ADEF credential attributes specified
via the Identity Manager or the moab.cfg file.

The MANAGERS attribute (applicable only to the account and class credentials) allows an administrator to
assign a user the ability to manage jobs inside the crendential, as if the user is the job owner.

USERCFG[sally]    EMAILADDRESS=sally@acme.com

USERCFG[john]    NOEMAIL=TRUE

http://www.adaptivecomputing.com/resources/docs/torque/commands/qsub.php#W


Example: MANAGERS Attribute

If a user is able to access more than one account, the desired account can be specified at job submission
time using the resource-manager specific attribute. For example, with TORQUE this is accomplished using the
-A argument to the qsub command.

Example: Enforcing Account Usage

Job-to-account mapping can be enforced using the ALIST attribute and the ENFORCEACCOUNTACCESS
parameter.

3.5.5 Class Credential
3.5.5.1 Class Job Defaults
3.5.5.2 Per Job Min/Max Limits
3.5.5.3 Resource Access
3.5.5.4 Class Membership Constraints
3.5.5.5 Attributes Enabling Class Access to Other Credentials
3.5.5.6 Special Class Attributes (such as Managers and Job Prologs)
3.5.5.7 Setting Default Classes
3.5.5.8 Creating a Remap Class
3.5.5.9 Class Attribute Overview
3.5.5.10 Enabling Queue Complex Functionality

The concept of the class credential is derived from the resource manager class or queue object. Classes differ
from other credentials in that they more directly impact job attributes. In standard HPC usage, a user submits
a job to a class and this class imposes a number of factors on the job. The attributes of a class may be
specified within the resource manager or directly within Moab. Class attributes include the following:

Job Defaults
Per Job Min/Max Limits
Resource Access Constraints
Class Membership Constraints
Attributes Enabling Class Access to Other Credentials
Special Class Attributes

When using SLURM, Moab classes have a one-to-one relationship with SLURM partitions of the same
name.

For all classes configured in Moab, a resource manager queue with the same name should be created.

3.5.5.1 Class Job Defaults

Classes can be assigned to a default job template that can apply values to job attributes not explicitly
specified by the submitter. Additionally, you can specify shortcut attributes from the table that follows:

Attribute Description

DEFAULT.ATTR Job Attribute

ACCOUNTCFG[general]  MANAGERS=ops
ACCOUNTCFG[special]  MANAGERS=stevep

USERCFG[john]    ALIST=proj1,proj3
USERCFG[steve]   ALIST=proj2,proj3,proj4
USERCFG[brad]    ALIST=proj1
USERCFG[DEFAULT] ALIST=proj2

ENFORCEACCOUNTACCESS TRUE
...

http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/commands/qsub.php#A
http://www.adaptivecomputing.com/resources/docs/torque/commands/qsub.php


DEFAULT.DISK Required Disk (in MB)

DEFAULT.EXT Job RM Extension

DEFAULT.FEATURES Required Node Features/Properties

DEFAULT.GRES Required Consumable Generic Resources

DEFAULT.MEM Required Memory/RAM (in MB)

DEFAULT.NODE Required Node Count

DEFAULT.NODESET Node Set Specification

DEFAULT.PROC Required Processor Count

DEFAULT.TPN Tasks Per Node

DEFAULT.WCLIMIT Wallclock Limit

Defaults set in a class/queue of the resource manager will override the default values of the
corresponding class/queue specified in Moab.

RESOURCELIMITPOLICY must be configured in order for the CLASSCFG limits to take effect.

 

Example

3.5.5.2 Per Job Min/Max Limits

Classes can be assigned a minimum and a maximum job template that constrains resource requests. Jobs
submitted to a particular queue must meet the resource request constraints of these templates.

Limit Description

MAX.CPUTIME Max Allowed Utilized CPU Time

MAX.NODE Max Allowed Node Count

MAX.PROC Max Allowed Processor Count

MAX.PS Max Requested Processor-Seconds

MIN.NODE Min Allowed Node Count

MIN.PROC Min Allowed Processor Count

MIN.PS Min Requested Processor-Seconds

MIN.TPN Min Tasks Per Node

MIN.WCLIMIT Min Requested Wallclock Limit

MAX.WCLIMIT Max Requested Wallclock Limit

The parameters listed in the preceding table are for classes only, and they function on a per-job basis.
The MAX.* and MIN.* parameters are different from the MAXJOB, MAXNODE, and MAXMEM
parameters described earlier in Credential Usage Limits.

CLASSCFG[batch] DEFAULT.DISK=200MB DEFAULT.FEATURES=prod 
DEFAULT.WCLIMIT=1:00:00
CLASSCFG[debug] DEFAULT.FEATURES=debug DEFAULT.WCLIMIT=00:05:00



3.5.5.3 Resource Access

Classes may be associated with a particular set of compute resources. Consequently, jobs submitted to a
given class may only use listed resources. This may be handled at the resource manager level or via the
CLASSCFG HOSTLIST attribute.

3.5.5.4 Class Membership Constraints

Classes may be configured at either the resource manager or scheduler level to only allow select users and
groups to access them. Jobs that do not meet these criteria are rejected. If specifying class
membership/access at the resource manager level, see the respective resource manager documentation.
Moab automatically detects and enforces these constraints. If specifying class membership/access at the
scheduler level, use the REQUIREDUSERLIST or EXCLUDEUSERLIST attributes of the CLASSCFG
parameter.

Under most resource managers, jobs must always be a member of one and only one class.

3.5.5.5 Attributes Enabling Class Access to Other Credentials

Classes may be configured to allow jobs to access other credentials such as QoS's and Accounts. This is
accomplished using the QDEF, QLIST, ADEF, and ALIST attributes.

3.5.5.6 Special Class Attributes

The class object also possesses a few unique attributes including JOBPROLOG, JOBEPILOG, JOBTRIGGER,
RESFAILPOLICY, and DISABLEAM attributes described in what follows:

MANAGERS

Users listed via the MANAGERS parameter are granted full control over all jobs submitted to or running
within the specified class.

In particular, a class manager can perform the following actions on jobs within a class/queue:

view/diagnose job (checkjob)
cancel, requeue, suspend, resume, and checkpoint job (mjobctl)
modify job (mjobctl)

JOBPROLOG

The JOBPROLOG class performs a function similar to the resource manager level job prolog feature;
however, there are some key differences:

Moab prologs execute on the head node; resource manager prologs execute on the nodes allocated to
the job.
Moab prologs execute as the primary Moab administrator, resource manager prologs execute as root.
Moab prologs can incorporate cluster environment information into their decisions and actions. (See
Valid Variables.)
Unique Moab prologs can be specified on a per class basis.
Job start requests are not sent to the resource manager until the Moab job prolog is successfully
completed.
Error messages generated by a Moab prolog are attached to jobs and associated objects; stderr from
prolog script is attached to job.
Moab prologs have access to Moab internal and peer services.

Valid epilog and prolog variables are:

$TIME - Time that the trigger launches

# allow john and steve to cancel and modify all jobs submitted to the 
class/queue special
CLASSCFG[special] MANAGERS=john,steve



$HOME - Moab home directory
$USER - User name the job is running under
$JOBID - Unqiue job identifier
$HOSTLIST - Entire host list for job
$MASTERHOST - Master host for job

The JOBPROLOG class attribute allows a site to specify a unique per-class action to take before a job is
allowed to start. This can be used for environmental provisioning, pre-execution resource checking, security
management, and other functions. Sample uses may include enabling a VLAN, mounting a global file system,
installing a new application or virtual node image, creating dynamic storage partitions, or activating job
specific software services.

A prolog is considered to have failed if it returns a negative number. If a prolog fails, the associated
job will not start.

If a prolog executes successfully, the associated epilog is guaranteed to start, even if the job fails for
any reason. This allows the epilog to undo any changes made to the system by the prolog.

Job Prolog Examples

JOBEPILOG

The Moab epilog is nearly identical to the prolog in functionality except that it runs after the job completes
within the resource manager but before the scheduler releases the allocated resources for use by subsequent
jobs. It is commonly used for job clean-up, file transfers, signalling peer services, and undoing other forms of
resource customization.

An epilog is considered to have failed if it returns a negative number. If an epilog fails, the associated
job will be annotated and a message will be sent to administrators.

JOBTRIGGER

Job triggers can be directly associated with jobs submitted into a class using the JOBTRIGGER attribute. Job
triggers are described using the standard trigger description language specified in the Trigger overview
section. In the example that follows, users submitting jobs to the class debug will be notified with a
descriptive message anytime their job is preempted.

RESFAILPOLICY

This policy allows specification of the action to take on a per-class basis when a failure occurs on a node
allocated to an actively running job. See the Node Availability Overview for more information.

DISABLEAM

You can disable allocation management for jobs in specific classes by setting the DISABLEAM class attribute
to FALSE. For all jobs outside of the specified classes, allocation enforcement will continue to be enforced.

# explicitly specify prolog arguments for special epilog
CLASSCFG[special] JOBPROLOG='$TOOLSDIR/specialprolog.pl $JOBID 
$HOSTLIST'

# use default prolog arguments for batch prolog
CLASSCFG[batch]   JOBPROLOG=$TOOLSDIR/batchprolog.pl

CLASSCFG[batch] 
JOBTRIGGER=atype=exec,etype=preempt,action
="$HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME"

# do not enforce allocations on low priority and debug jobs

CLASSCFG[lowprio]  DISABLEAM=TRUE
CLASSCFG[debug]    DISABLEAM=TRUE



3.5.5.7 Setting Default Classes

In many cases, end-users do not want to be concerned with specifying a job class/queue. This is often
handled by defining a default class. Whenever a user does not explicitly submit a job to a particular class, a
default class, if specified, is used. In resource managers such as TORQUE, this can be done at the resource
manager level and its impact is transparent to the scheduler. The default class can also be enabled within the
scheduler on a per resource manager or per user basis. To set a resource manager default class within Moab,
use the DEFAULTCLASS attribute of the RMCFG parameter. For per user defaults, use the CDEF attribute of
the USERCFG parameter.

3.5.5.8 Creating a Remap Class

If a single default class is not adequate, Moab provides more flexible options with the REMAPCLASS
parameter. If this parameter is set and a job is submitted to the remap class, Moab attempts to determine
the final class to which a job belongs based on the resources requested. If a remap class is specified, Moab
compares the job's requested nodes, processors, memory, and node features with the class's corresponding
minimum and maximum resource limits. Classes are searched in the order in which they are defined; when
the first match is found, Moab assigns the job to that class. In the example that follows, a job requesting 4
processors and the node feature fast are assigned to the class quick.

The following parameters can be used to remap jobs to different classes:

MIN.PROC
MAX.PROC
MIN.WCLIMIT
MAX.WCLIMIT
REQ.FEATURES
REQ.FLAGS=INTERACTIVE
REQUIREDUSERLIST

If the parameter REMAPCLASSLIST is set, then only the listed classes are searched and they are searched in
the order specified by this parameter. If none of the listed classes are valid for a particular job, that job
retains its original class.

The remap class only works with resource managers that allow dynamic modification of a job's
assigned class/queue. Also note that OpenPBS and TORQUE 1.x support dynamic job queue
modification, but this change is not persistent and will be lost if pbs_server is restarted.

If default credentials are specified on a remap class, a job submitted to that class will inherit those
credentials. If the destination class has different defaults credentials, the new defaults override the
original settings. If the destination class does not have default credentials, the job maintains the
defaults inherited from the remap class.

3.5.5.9 Class Attribute Overview

The following table enumerates the different parameters for CLASSCFG:

# jobs submitted to 'batch' should be remapped
REMAPCLASS        batch

# stevens only queue
CLASSCFG[stevens] REQ.FEATURES=stevens 
REQUIREDUSERLIST=stevens,stevens2

# special queue for I/O nodes
CLASSCFG[io]      MAX.PROC=8 REQ.FEATURES=io

# general access queues
CLASSCFG[quick]   MIN.PROC=2 MAX.PROC=8 REQ.FEATURES=fast|short
CLASSCFG[medium]  MIN.PROC=2 MAX.PROC=8
CLASSCFG[DEFAULT] MAX.PROC=64
...

http://www.adaptivecomputing.com/resources/docs/torque/index.php


DEFAULT.ATTR

Format: <ATTRIBUTE>[,<ATTRIBUTE>]...

Description: One or more comma-delimited generic job attributes.

Example: ---

  
DEFAULT.DISK

Format: <INTEGER>

Description: Default amount of requested disk space.

Example: ---

  
DEFAULT.EXT

Format: <STRING>

Description: Default job RM extension.

Example: ---

  
DEFAULT.FEATURES

Format: Comma-delimited list of features.

Description: Default list of requested node features (a.k.a, node properties). This only applies to compute
resource reqs.

Example: ---

  
DEFAULT.GRES

Format: <STRING>[<COUNT>][,<STRING>[<COUNT>]]...

Description: Default list of per task required consumable generic resources.

Example:

  
DEFAULT.MEM

Format: <INTEGER> (in MB)

Description: Default amount of requested memory.

Example: ---

  
DEFAULT.NODE

Format: <INTEGER>

Description: Default required node count.

Example: ---

  
DEFAULT.NODESET

Format: <SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...]

CLASSCFG[viz] DEFAULT.GRES=viz:2



Description: Default node set.

Example:

  
DEFAULT.PROC

Format: <INTEGER>

Description: Default number of requested processors.

Example: ---

  
DEFAULT.TPN

Format: <INTEGER>

Description: Default number of tasks per node.

Example: ---

  
DEFAULT.WCLIMIT

Format: <INTEGER>

Description: Default wallclock limit.

Example: ---

  
EXCL.FEATURES

Format: Comma- or pipe-delimited list of node features.

Description: Set of excluded (disallowed) features. If delimited by commas, reject job if all features are
requested; if delimited by the pipe symbol (|), reject job if at least one feature is requested.

Example:

  
EXCL.FLAGS

Format: Comma-delimited list of job flags.

Description: Set of excluded (disallowed) job flags. Reject job if any listed flags are set.

Example:

  
EXCLUDEUSERLIST

Format: Comma-delimited list of users.

Description: List of users not permitted access to class. 

The number of unique users is limited by the Moab Maximum ACL limit, which defaults
to 32.

Example: ---

  
FORCENODEACCESSPOLICY

CLASSCFG[amd] DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON

CLASSCFG[intel] EXCL.FEATURES=ATHLON,AMD

CLASSCFG[batch] EXCL.FLAGS=INTERACTIVE



Format: one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description: Node access policy associated with queue. If set, this value overrides any per job settings
specified by the user at the job level. (See Node Access Policy overview for more information.)

Example:

  
FSCAP

Format: <DOUBLE>[%]

Description: See fairshare policies specification.

Example: ---

  
FSTARGET

Format: <DOUBLE>[%]

Description: See fairshare policies specification.

Example: ---

  
HOSTLIST

Format: Host expression, or comma-delimited list of hosts or host ranges.

Description: List of hosts associated with a class. If specified, Moab constrains the availability of a class to
only nodes listed in the class host list.

Example:

  
JOBEPILOG

Format: <STRING>

Description: Scheduler level job epilog to be run after job is completed by resource manager. (See special
class attributes.)

Example: ---

  
JOBFLAGS

Format: Comma-delimited list of job flags.

Description: See the flag overview for a description of legal flag values.

Example:

  
JOBPROLOG

Format: <STRING>

Description: Scheduler level job prolog to be run before job is started by resource manager. (See special
class attributes.)

Example: ---

  

CLASSCFG[batch] FORCENODEACCESSPOLICY=SINGLEJOB

CLASSCFG[batch] HOSTLIST=r:abs[45-113]

CLASSCFG[batch] JOBFLAGS=restartable



JOBTRIGGER

Format: <STRING>

Description: Scheduler level job trigger to be associated with jobs submitted to this class. (See special class
attributes.)

Example: ---

  
MANAGERS

Format: <USER>[,<USER>]...

Description: Users allowed to control, cancel, preempt, and modify jobs within class/queue. (See special
class attributes.)

Example:

  
MAXJOB

Format: <INTEGER>

Description: Maximum number of jobs allowed in the class.

Example: ---

  
MAXPROCPERNODE

Format: <INTEGER>

Description: Maximum number of processors requested per node.

Example: ---

  
MAX.CPUTIME

Format: <INTEGER>

Description: Maximum allowed utilized CPU time.

Example: ---

  
MAX.NODE

Format: <INTEGER>

Description: Maximum number of requested nodes per job. (Also used when REMAPCLASS is set to
correctly route the job.)

Example:

Deny jobs requesting over 64 nodes access to the class batch.

  
MAX.PROC

Format: <INTEGER>

Description: Maximum number of requested processors per job. (Also used when REMAPCLASS is set to
correctly route the job.)

Example:

CLASSCFG[fast] MANAGERS=root,kerry,e43

CLASSCFG[batch] MAX.NODE=64

CLASSCFG[small] MAX.PROC[USER]=3,6



  
MAX.PS

Format: <INTEGER>

Description: Maximum requested processor-seconds.

Example: ---

  
MAX.WCLIMIT

Format: [[[DD:]HH:]MM:]SS

Description: Maximum allowed wallclock limit per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example:

  
MIN.NODE

Format: <INTEGER>

Description: Minimum number of requested nodes per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example:

Jobs must request at least 16 nodes to be allowed to access the class.

  
MIN.PROC

Format: <INTEGER>

Description: Minimum number of requested processors per job. (Also used when REMAPCLASS is set to
correctly route the job.)

Example:

Jobs must request at least 32 processors to be allowed to access the class.

  
MIN.PS

Format: <INTEGER>

Description: Minimum requested processor-seconds.

Example: ---

  
MIN.TPN

Format: <INTEGER>

Description: Minimum required tasks per node per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example: ---

  
MIN.WCLIMIT

Format: [[[DD:]HH:]MM:]SS

CLASSCFG[long] MAX.WCLIMIT=96:00:00

CLASSCFG[dev] MIN.NODE=16

CLASSCFG[dev] MIN.PROC=32



Description: Minimum required wallclock limit per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example: ---

  
NODEACCESSPOLICY

Format: one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description: Default node access policy associated with queue. This value will be overridden by any per job
settings specified by the user at the job level. (See Node Access Policy overview.)

Example:

  
PARTITION

Format: <STRING>

Description: Partition name where jobs associated with this class must run.

Example:

  
PRIORITY

Format: <INTEGER>

Description: Priority associated with the class. (See Priority overview.)

Example:

  
QDEF

Format: <QOSID>

Description: Default QoS for jobs submitted to this class.

Example:

Jobs submitted to class batch that do not explicitly request a QoS will have the QoS base
assigned.

  
QLIST

Format: <QOSID>[,<QOSID>]...

Description: List of accessible QoS's for jobs submitted to this class.

Example:

  
REQ.FEATURES

Format: Comma- or pipe-delimited list of node features.

Description: Set of required features. If delimited by commas, all features are required; if delimited by the
pipe symbol (|), at least one feature is required.

Example:

CLASSCFG[batch] NODEACCESSPOLICY=SINGLEJOB

CLASSCFG[batch] PARTITION=p12

CLASSCFG[batch] PRIORITY=1000

CLASSCFG[batch] QDEF=base

CLASSCFG[batch] QDEF=base QLIST=base,fast,special,bigio

CLASSCFG[amd] REQ.FEATURES=ATHLON,AMD



  
REQ.FLAGS

Format: REQ.FLAGS can be used with only the INTERACTIVE flag.

Description: Sets the INTERACTIVE flag on jobs in this class.

Example:

  
REQUIREDACCOUNTLIST

Format: Comma-delimited list of accounts.

Description:
List of accounts allowed to access and use a class (analogous to *LIST for other credentials).

The number of unique accounts is limited by the Moab Maximum ACL limit, which
defaults to 32.

Example:

  
REQUIREDUSERLIST

Format: Comma-delimited list of users.

Description: List of users allowed to access and use a class (analogous to *LIST for other credentials). 

The number of unique users is limited by the Moab Maximum ACL limit, which defaults
to 32.

Example:

  
REQUIREDQOSLIST

Format: Comma-delimited list of QoS's

Description: List of QoS's allowed to access and use a class (analogous to *LIST for other credentials). 

The number of unique QoS's is limited by the Moab Maximum ACL limit, which defaults
to 32.

Example: CLASSCFG[jasper] REQUIREDQOSLIST=hi,lo

  
RMLIST

Format: [!]<RMID>[,[!]<RMID>]]...

Description: List of resource managers that can (or cannot) view or access the class. By default, all
resource managers can view and access all queues/classes. If this attribute is specified, only
listed resource managers can see the associated queue. If an exclamation point character (!) is
specified in the value, then access is granted to all resource managers who are not listed. This
feature is most commonly used in grid environments.

Example:

  

CLASSCFG[orion] REQ.FLAGS=INTERACTIVE

CLASSCFG[jasper] REQUIREDACCOUNTLIST=testers,development

CLASSCFG[jasper] REQUIREDUSERLIST=john,u13,steve,guest

CLASSCFG[special] RMLIST=LL,chemgrid



SYSPRIO

Format: <INTEGER>

Description: Value of system priority applied to every job submitted to this class.

Example:

  
WCOVERRUN

Format: [[[DD:]HH:]MM:]SS

Description: Tolerated amount of time beyond the specified wallclock limit.

Example: ---

3.5.5.10 Enabling Queue Complex Functionality

Queue complexes allow an organization to build a hierarchy of queues and apply certain limits and rules to
collections of these queues. Moab supports this functionality in two ways. The first way, queue mapping, is
very simple but limited in functionality. The second method provides very rich functionality but requires more
extensive configuration using the Moab hierarchical fairshare facility.

Queue Mapping

Queue mapping allows collections of queues to be mapped to a parent credential object against which various
limits and policies can be applied, as in the following example.

3.5.6 QoS Credential
The concept of a quality of service (QoS) credential is unique to Moab and is not derived from any underlying
concept or peer service. In most cases, the QoS credential is used to allow a site to set up a selection of
service levels for end-users to choose from on a long-term or job-by-job basis. QoS's differ from other
credentials in that they are centered around special access where this access may allow use of additional
services, additional resources, or improved responsiveness. Unique to this credential, organizations may also
choose to apply different charge rates to the varying levels of service available within each QoS. As QoS is an
internal credential, all QoS configuration occurs within Moab.

QoS access and QoS defaults can be mapped to users, groups, accounts, and classes, allowing limited service
offering for key users. As mentioned, these services focus around increasing access to special scheduling
capabilities & additional resources and improving job responsiveness. At a high level, unique QoS attributes
can be broken down into the following:

Usage Limit Overrides
Service Targets

CLASSCFG[special] SYSPRIO=100

QOSCFG[general]   MAXIJOB[USER]=14  PRIORITY=20
QOSCFG[prio]      MAXIJOB[USER]=8   PRIORITY=2000

# group short, med, and long jobs into 'general' QOS
CLASSCFG[short]   QDEF=general FSTARGET=30
CLASSCFG[med]     QDEF=general FSTARGET=40
CLASSCFG[long]    QDEF=general FSTARGET=30 MAXPROC=200

# group interactive and debug jobs into 'prio' QOS
CLASSCFG[inter]   QDEF=prio  
CLASSCFG[debug]   QDEF=prio

CLASSCFG[premier] PRIORITY=10000



Privilege Flags
Charge Rate
Access Controls

3.5.6.1 QoS Usage Limit Overrides

All credentials allow specification of job limits. In such cases, jobs are constrained by the most limiting of all
applicable policies. With QoS override limits, however, jobs are limited by the override, regardless of other
limits specified.

3.5.6.2 QoS Service Targets

Service targets cause the scheduler to take certain job-related actions as various responsiveness targets are
met. Targets can be set for either job queue time or job expansion factor and cause priority adjustments,
reservation enforcement, or preemption activation. In strict service centric organizations, Moab can be
configured to trigger various events and notifications in the case of failure by the cluster to meet
responsiveness targets.

3.5.6.3 QoS Privilege Flags

QoS's can provide access to special capabilities. These capabilities include preemption, job deadline support,
backfill, next to run priority, guaranteed resource reservation, resource provisioning, dedicated resource
access, and many others. See the complete list in the QoS Facility Overview section.

3.5.6.4 QoS Charge Rate

Associated with the QoS's many privileges is the ability to assign end-users costs for the use of these
services. This charging can be done on a per-QoS basis and may be specified for both dedicated and use-
based resource consumption. The Per QoS Charging section covers more details on QoS level costing
configuration while the Charging and Allocation Management section provides more details regarding general
single cluster and multi-cluster charging capabilities.

3.5.6.5 QoS Access Controls

QoS access control can be enabled on a per QoS basis using the MEMBERULIST attribute or specified on a
per-requestor basis using the QDEF and QLIST attributes of the USERCFG, GROUPCFG, ACCOUNTCFG, and
CLASSCFG parameters. See Managing QoS Access for more detail.

See Also
Identity Manager Interface
Usage Limits



Job Attributes/Flags Overview
Job Attributes

FLAGS

Format: <FLAG>[,<FLAG>]...

Default: ---

Description: specifies job specific flags

Example: FLAGS=ADVRES,DEDICATED

(The job should only utilize reserved resources and should only use resources on hosts which
can be exclusively dedicated)

  
PDEF

Format: <PARTITION_NAME>

Default: [DEFAULT]

Description: specifies the default partition associated with the object. 

Example: PDEF=P1

(The object is assigned the default partition P1)

  
PLIST*

Format: <PARTITION_NAME>[^|&] 
[:<PARTITION_NAME>[^|&]]...

Default: [ALL]

Description: specifies the list of partitions the object can access.  If no partition list is specified, the object
is granted default access to all partitions.

Example: PLIST=OldSP:Cluster1:O3K

(The object can access resources located in the OldSP, Cluster1, and/or O3K partitions)

  
QDEF

Format: <QOS_NAME>

Default: [DEFAULT]

Description: specifies the default QOS associated with the object.

Example: QDEF=premium

(The object is assigned the default QOS premium)

  
QLIST*



Format: <QOS_NAME>[^|&] 
[:<QOS_NAME>[^|&]]...

Default: <QDEF>

Description: specifies the list of QoS's the object can access.  If no QOS list is specified, the object is
granted access only to its default partition/

Example: QLIST=premium:express:bottomfeeder

(The object can access any of the 3 QOS's listed)

*Note:  By default, jobs may access QOS's based on the 'logical or' of the access lists associated with all job
credentials.  For example, a job associated with user John, group staff, and class batch may utilize QOS's
accessible by any of the individual credentials.  Thus the job's QOS access list, or QLIST, equals the 'or' of the
user, group, and class QLIST's.  (i.e., JOBQLIST = USERQLIST | GROUPQLIST | CLASSQLIST).    If the
ampersand symbol, '&', is associated with any list, this list is logically and'd with the other lists.    If the carat 
symbol, '^', is associated with any object QLIST, this list is exclusively set, regardless of other object access
lists using the following order of precedence user, group, account, QOS, and class.  These special symbols
affect the behavior of both QOS and partition access lists.

Job Flags

ADVRES

Format: ADVRES[:<RESID>]

Default: Use available resources where ever found, whether inside a reservation or not.

Description: specifies the job may only utilize accessible, reserved resources.  If <RESID> is specified, only
resources in the specified reservation may be utilized.

Example: FLAGS=ADVRES:META.1

(The job may only utilize resources located in the META.1 reservation)

  
BENCHMARK

Format: BENCHMARK

Default: N/A

Description: N/A

Example: FLAGS=BENCHMARK

  
BESTEFFORT

Format: BESTEFFORT

Default: N/A

Description: N/A

Example: FLAGS=BESTEFFORT

  
BYNAME

Format: BYNAME

Default: N/A



Description: N/A

Example: FLAGS=BYNAME

  
DEDICATED

Format: DEDICATED

Default: Use resources according to the global NODEACCESSPOLICY

Description: specifies that the job should not share node resources with tasks from any other job

Example: FLAGS=DEDICATED

(The job will only allocate resources from nodes which can be exclusively dedicated to this job)

  
DYNAMIC

Format: DYNAMIC

Default: If set, active jobs may dynamically grow and shrink based on internal job requests or external
scheduler driven requests based on application performance targets.  Note: In order for a job
to use this flag, the job's associated QOS credential must also have the DYNAMIC flag set
within the QFLAGS attribute.

Description: do not allow dynamic allocations for active jobs

Example: FLAGS=DYNAMIC

The job will be allowed to dynamically allocate/de-allocate resources according to internal
requests or scheduler-specified performance targets.

  
IGNIDLEJOBRSV

Format: IGNIDLEJOBRSV

Default: N/A

Description: Only applies to QOS. IGNIDLEJOBRSV allows jobs to start without a guaranteed walltime.
Instead, it overlaps the idle reservations of real jobs and is preempted 2 minutes before the
real job starts.

Example: QOSCFG[standby] JOBFLAGS=IGNIDLEJOBRSV

  
NOQUEUE

Format: NOQUEUE

Default: Jobs remain queued until the are able to run

Description: specifies that the job should be removed it is is unable to allocate resources and start
execution immediately.

Example: FLAGS=NOQUEUE

(The job should be removed unless it can start running at submit time.)

This functionality is identical to the resource manager extension QUEUEJOB:FALSE.

  



PREEMPTEE

Format: PREEMPTEE

Default: Jobs may not be preempted by other jobs

Description: Specifies that the job may be preempted by other jobs which have the PREEMPTOR flag set.

Example: FLAGS=PREEMPTEE

(The job may be preempted by other jobs which have the 'PREEMPTOR' flag set)

  
PREEMPTOR

Format: PREEMPTOR

Default: Jobs may not preempt other jobs

Description: Specifies that the job may preempt other jobs which have the PREEMPTEE flag set 

Example: FLAGS=PREEMPTOR

(The job may preempt other jobs which have the 'PREEMPTEE' flag set)

  
PRESTART

Format: PRESTART

Default: Jobs are started only after the first scheduling iteration

Description: Note:  used only in simulation mode to pre-populate a system.

Example: FLAGS=PRESTART

  
RESTARTABLE

Format: RESTARTABLE

Default: Jobs may not be restarted if preempted.

Description: Specifies jobs can be requeued and later restarted if preempted

Example: FLAGS=RESTARTABLE

(The associated job can be preempted and restarted at a later date)

  
SHAREDRESOURCE

Format: SHAREDRESOURCE

Default: N/A

Description: N/A

Example: N/A

  
SUSPENDABLE

Format: SUSPENDABLE

Default: Jobs may not be suspended if preempted.



Description: Specifies jobs can be suspended and later resumed if preempted

Example: FLAGS=SUSPENDABLE

(The associated job can be suspended and resumed at a later date)

  
SYSTEMJOB

Format: SYSTEMJOB

Default: N/A

Description: Creates an internal system job that does not require resources.

Example: FLAGS=SYSTEMJOB

  
WIDERSVSEARCHALGO

Format: <BOOLEAN>

Default: ---

Description: When Moab is determining when and where a job can run, it either searches for the most
resources or the longest range of resources. In almost all cases searching for the longest range
is ideal and returns the soonest starttime. In some rare cases, however, a particular job may
need to search for the most resources. In those cases this flag can be used to have the job
find the soonest starttime. The flag can be specified at submit time, or you can use mjobctl -m
to modify the job after it has been submitted.

Example:

See Also

Setting Per-Credential Job Flags

> msub -l flags=widersvsearchalgo

> mjobctl -m flags+=widersvsearcalgo job.1



4.0 Scheduler Commands
4.1 Client Overview
4.2 Monitoring System Status
4.3 Managing Jobs
4.4 Managing Reservations
4.5 Configuring Policies
4.6 End-user Commands



4.1 Client Overview
Moab Workload Manager acts as a server to simple clients, referred to as commands. Each command queries
the Moab Workload Manager to retrieve statistics, status or to update a parameter.

The Commands Overview lists all available commands.



4.2 Status Commands
The status commands organize and present information about the current state and historical statistics of the
scheduler, jobs, resources, users, and accounts. The following table presents the primary status commands
and flags.

Command Description

checkjob Displays detailed job information such as job state, resource requirements, environment,
constraints, credentials, history, allocated resources, and resource utilization.

checknode Displays detailed node information such as node state, resources, attributes, reservations,
history, and statistics.

mdiag -f Displays summarized fairshare information and any unexpected fairshare configuration.

mdiag -j Displays summarized job information and any unexpected job state.

mdiag -n Displays summarized node information and any unexpected node state.

mdiag -p Displays summarized job priority information.

resetstats Resets internal statistics.

showstats
-f

Displays various aspects of scheduling performance across a job duration/job size matrix.

showq [-
r|-i]

Displays various views of currently queued active, idle, and non-eligible jobs.

showstats
-g

Displays current and historical usage on a per group basis.

showstats
-u

Displays current and historical usage on a per user basis.

showstats
-v

Displays high level current and historical scheduling statistics.



4.3 Job Management Commands
Moab shares job management tasks with the resource manager. Typically, the scheduler only modifies
scheduling relevant aspects of the job such as partition access, job priority, charge account, and hold state.
The following table covers the available job management commands. The Commands Overview lists all
available commands.

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history,
allocated resources, and resource utilization.

mdiag -j Displays summarized job information and any unexpected job state.

releasehold
-a

Removes job holds or deferals.

runjob Starts job immediately, if possible.

sethold Sets hold on job.

setqos Sets/modifies QoS of existing job.

setspri Adjusts job/system priority of job.

See Also
Job State Definitions



4.4 Reservation Management Commands
Moab exclusively controls and manages all advance reservation features including both standing and
administrative reservations. The following table covers the available reservation management commands.

Command Description

mdiag -r Displays summarized reservation information and any unexpected state.

mrsvctl Reservation control.

mrsvctl -r Removes reservations.

mrsvctl -c Creates an administrative reservation.

showres Displays information regarding location and state of reservations.



4.5 Policy/Configuration Management Commands
Moab allows dynamic modification of most scheduling parameters allowing new scheduling policies,
algorithms, constraints, and permissions to be set at any time. Changes made via Moab client commands are
temporary and are overridden by values specified in Moab configuration files the next time Moab is shut down
and restarted. The following table covers the available configuration management commands.

Command Description

mschedctl -l Displays triggers, messages, and settings of all configuration parameters.

mschedctl Controls the scheduler (behavior, parameters, triggers, messages).

mschedctl -m Modifies system values.



4.6 End-user Commands
While the majority of Moab commands are tailored for use by system administrators, a number of commands
are designed to extend the knowledge and capabilities of end-users. The following table covers the
commands available to end-users.

When using Active Directory as a central authentication mechanism, all nodes must be reported with a
different name when booted in both Linux and Windows (for instance, 'node01-l' for Linux and
'node01' for Windows). If a machine account with the same name is created for each OS, the most
recent OS will remove the previously-joined machine account. The nodes must report to Moab with the
same hostname. This can be done by using aliases (adding all node names to the /etc/hosts file on
the system where Moab is running) and ensuring that the Linux resource manager reports the node
with its global name rather than the Linux-specific one ('node01' rather than 'node01-l').

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history,
allocated resources, and resource utilization.

msub Submit a new job.

releaseres Releases a user reservation.

setres Create a user reservation.

showbf Shows resource availability for jobs with specific resource requirements.

showq Displays detailed prioritized list of active and idle jobs.

showstart Shows estimated start time of idle jobs.

showstats Shows detailed usage statistics for users, groups, and accounts, to which the end-user has
access.

See Also
Commands Overview



5.0 Prioritizing Jobs and Allocating Resources
5.1 Job Priority
5.2 Node Allocation
5.3 Node Access Policies
5.4 Node Availability
5.5 Task Distribution Policies
5.6 Scheduling Jobs When VMs Exist



5.1 Job Prioritization
In general, prioritization is the process of determining which of many options best fulfills overall goals. In the
case of scheduling, a site will often have multiple, independent goals that may include maximizing system
utilization, giving preference to users in specific projects, or making certain that no job sits in the queue for
more than a given period of time. The approach used by Moab in representing a multi-faceted set of site
goals is to assign weights to the various objectives so an overall value or priority can be associated with each
potential scheduling decision. With the jobs prioritized, the scheduler can roughly fulfill site objectives by
starting the jobs in priority order.

5.1.1 Priority Overview
5.1.2 Job Priority Factors
5.1.3 Common Priority Usage
5.1.4 Prioritization Strategies
5.1.5 Manual Priority Management

See Also
mdiag -p (Priority Diagnostics)



5.1.1 Priority Overview
Moab's prioritization mechanism allows component and subcomponent weights to be associated with many
aspects of a job to enable fine-grained control over this aspect of scheduling. To allow this level of control,
Moab uses a simple priority-weighting hierarchy where the contribution of each priority subcomponent is
calculated as follows:

<COMPONENT WEIGHT> * <SUBCOMPONENT WEIGHT> * <PRIORITY SUBCOMPONENT VALUE>

Each priority component contains one or more subcomponents as described in the section titled Priority
Component Overview. For example, the Resource component consists of Node, Processor, Memory, Swap,
Disk, Walltime, and PE subcomponents. While there are numerous priority components and many more
subcomponents, a site need only focus on and configure the subset of components related to their particular
priority needs. In actual usage, few sites use more than a small fraction (usually 5 or fewer) of the available
priority subcomponents. This results in fairly straightforward priority configurations and tuning. By mixing and
matching priority weights, sites may generally obtain the desired job-start behavior. At any time, you can
issue the mdiag -p command to determine the impact of the current priority-weight settings on idle jobs.
Likewise, the command showstats -f can assist the administrator in evaluating priority effectiveness on
historical system usage metrics such as queue time or expansion factor.

As mentioned above, a job's priority is the weighted sum of its activated subcomponents. By default, the
value of all component and subcomponent weights is set to 1 and 0 respectively. The one exception is the
QUEUETIME subcomponent weight that is set to 1. This results in a total job priority equal to the period of
time the job has been queued, causing Moab to act as a simple FIFO. Once the summed component weight is
determined, this value is then bounded resulting in a priority ranging between 0 and MAX_PRIO_VAL which is
currently defined as 1000000000 (one billion). In no case will a job obtain a priority in excess of
MAX_PRIO_VAL through its priority subcomponent values.

Negative priority jobs may be allowed if desired; see ENABLENEGJOBPRIORITY and
REJECTNEGPRIOJOBS for more information.

Using the setspri command, site administrators may adjust the base calculated job priority by either
assigning a relative priority adjustment or an absolute system priority. A relative priority adjustment causes
the base priority to be increased or decreased by a specified value. Setting an absolute system priority,
SPRIO, causes the job to receive a priority equal to MAX_PRIO_VAL + SPRIO, and thus guaranteed to be of
higher value than any naturally occurring job priority.

See Also
REJECTNEGPRIOJOBS parameter



5.1.2 Job Priority Factors
5.1.2.1 Credential (CRED) Component
5.1.2.2 Fairshare (FS) Component
5.1.2.3 Resource (RES) Component
5.1.2.4 Service (SERVICE) Component
5.1.2.5 Target Service (TARG) Component
5.1.2.6 Usage (USAGE) Component
5.1.2.7 Job Attribute (ATTR) Component

Moab allows jobs to be prioritized based on a range of job related factors. These factors are broken down into
a two-tier hierarchy of priority factors and subfactors, each of which can be independently assigned a weight.
This approach provides the administrator with detailed yet straightforward control of the job selection process.

Each factor and subfactor can be configured with independent priority weight and priority cap values
(described later). In addition, per credential and per QoS priority weight adjustments may be specified for a
subset of the priority factors. For example, QoS credentials can adjust the queuetime subfactor weight and
group credentials can adjust fairshare subfactor weight.

The following table highlights the factors and subfactors that make up a job's total priority.

Factor SubFactor Metric

CRED
(job credentials)

USER user-specific priority (See USERCFG)

GROUP group-specific priority (See GROUPCFG)

ACCOUNT account-specific priority (SEE ACCOUNTCFG)

QOS QoS-specific priority (See QOSCFG)

CLASS class/queue-specific priority (See CLASSCFG)

FS
(fairshare usage)

FSUSER user-based historical usage (See Fairshare Overview)

FSGROUP group-based historical usage (See Fairshare Overview)

FSACCOUNT account-based historical usage (See Fairshare Overview)

FSQOS QoS-based historical usage (See Fairshare Overview)

FSCLASS class/queue-based historical usage (See Fairshare Overview)

FSGUSER imported global user-based historical usage (See ID Manager
and Fairshare Overview)

FSGGROUP imported global group-based historical usage (See ID
Manager and Fairshare Overview)

FSGACCOUNT imported global account-based historical usage (See ID
Manager and Fairshare Overview)

FSJPU current active jobs associated with job user

FSPPU current number of processors allocated to active jobs
associated with job user

FSPSPU current number of processor-seconds allocated to active jobs
associated with job user

WCACCURACY user's current historical job wallclock accuracy calculated as
total processor-seconds dedicated / total processor-seconds
requested 



Factor values are in the range of 0.0 to 1.0.

RES
(requested job
resources)

NODE number of nodes requested

PROC number of processors requested

MEM total real memory requested (in MB)

SWAP total virtual memory requested (in MB)

DISK total local disk requested (in MB)

PS total processor-seconds requested

PE total processor-equivalent requested

WALLTIME total walltime requested (in seconds)

SERV
(current service
levels)

QUEUETIME time job has been queued (in minutes)

XFACTOR minimum job expansion factor

BYPASS number of times job has been bypassed by backfill

STARTCOUNT number of times job has been restarted

DEADLINE proximity to job deadline

SPVIOLATION Boolean indicating whether the active job violates a soft
usage limit

USERPRIO user-specified job priority

TARGET
(target service levels)

TARGETQUEUETIME time until queuetime target is reached (exponential)

TARGETXFACTOR distance to target expansion factor (exponential)

USAGE
(consumed resources
-- active jobs only)

CONSUMED processor-seconds dedicated to date

REMAINING processor-seconds outstanding

HUNGER processors needed to balance a dynamic job

PERCENT percent of required walltime consumed

EXECUTIONTIME seconds since job started

ATTR
(job attribute-based
prioritization)

ATTRATTR Attribute priority if specified job attribute is set (attributes
may be user-defined or one of preemptor, or preemptee).
Default is 0.

ATTRSTATE Attribute priority if job is in specified state (see Job States).
Default is 0.

ATTRGRES Attribute priority if a generic resource is requested. Default is
0.

*CAP parameters (FSCAP) are available to limit the maximum absolute value of each priority
component and subcomponent. If set to a positive value, a priority cap will bound priority component
values in both the positive and negative directions.

All *CAP and *WEIGHT parameters are specified as positive or negative integers. Non-integer values
are not supported.



5.1.2.1 Credential (CRED) Component
The credential component allows a site to prioritize jobs based on political issues such as the relative
importance of certain groups or accounts. This allows direct political priorities to be applied to jobs.

The priority calculation for the credential component is as follows:

Priority += CREDWEIGHT * (
USERWEIGHT * Job.User.Priority +
GROUPWEIGHT * Job.Group.Priority +
ACCOUNTWEIGHT * Job.Account.Priority +
QOSWEIGHT * Job.Qos.Priority +
CLASSWEIGHT * Job.Class.Priority)

All user, group, account, QoS, and class weights are specified by setting the PRIORITY attribute of using the
respective *CFG parameter, namely, USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, and CLASSCFG.

For example, to set user and group priorities, you might use the following:

Class (or queue) priority may also be specified via the resource manager where supported (as in PBS
queue priorities). However, if Moab class priority values are also specified, the resource manager
priority values will be overwritten.

All priorities may be positive or negative.

5.1.2.2 Fairshare (FS) Component
Fairshare components allow a site to favor jobs based on short-term historical usage. The Fairshare Overview
describes the configuration and use of fairshare in detail.

The fairshare factor is used to adjust a job's priority based on current and historical percentage system
utilization of the job's user, group, account, class, or QoS. This allows sites to steer workload toward a
particular usage mix across user, group, account, class, and QoS dimensions.

The fairshare priority factor calculation is as follows:

Priority += FSWEIGHT * MIN(FSCAP, (
FSUSERWEIGHT * DeltaUserFSUsage +
FSGROUPWEIGHT * DeltaGroupFSUsage +
FSACCOUNTWEIGHT * DeltaAccountFSUsage +
FSQOSWEIGHT * DeltaQOSFSUsage +
FSCLASSWEIGHT * DeltaClassFSUsage +
FSJPUWEIGHT * ActiveUserJobs +
FSPPUWEIGHT * ActiceUserProcs +
FSPSPUWEIGHT * ActiveUserPS +
WCACCURACYWEIGHT * UserWCAccuracy ))

All *WEIGHT parameters just listed are specified on a per partition basis in the moab.cfg file. The
Delta*Usage components represent the difference in actual fairshare usage from the corresponding fairshare
usage target. Actual fairshare usage is determined based on historical usage over the time frame specified in
the fairshare configuration. The target usage can be either a target, floor, or ceiling value as specified in the
fairshare configuration file. See the Fairshare Overview for further information on configuring and tuning
fairshare. Additional insight may be available in the fairshare usage example. The ActiveUser* components
represent current usage by the job's user credential.

5.1.2.3 Resource (RES) Component
Weighting jobs by the amount of resources requested allows a site to favor particular types of jobs. Such

CREDWEIGHT      1
USERWEIGHT      1
GROUPWEIGHT     1

USERCFG[john]   PRIORITY=2000
USERCFG[paul]   PRIORITY=-1000
GROUPCFG[staff] PRIORITY=10000



prioritization may allow a site to better meet site mission objectives, improve fairness, or even improve
overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the resources requested. This
is good in three main scenarios: (1) when you need to favor large resource jobs because it's part of your
site's mission statement, (2) when you want to level the response time distribution across large and small
jobs (small jobs are more easily backfilled and thus generally have better turnaround time), and (3) when
you want to improve system utilization. While this may be surprising, system utilization actually increases as
large resource jobs are pushed to the front of the queue. This keeps the smaller jobs in the back where they
can be selected for backfill and thus increase overall system utilization. The situation is like the story about
filling a cup with golf balls and sand. If you put the sand in first, it gets in the way when you try to put in the
golf balls and you are unable to put in as many golf balls. However, if you put in the golf balls first, the sand
can easily be poured in around them completely filling the cup.

The calculation for determining the total resource priority factor is as follows:

    Priority += RESWEIGHT * MIN(RESCAP, ( 
        NODEWEIGHT     * TotalNodesRequested + 
        PROCWEIGHT     * TotalProcessorsRequested + 
        MEMWEIGHT      * TotalMemoryRequested + 
        SWAPWEIGHT     * TotalSwapRequested + 
        DISKWEIGHT     * TotalDiskRequested + 
        WALLTIMEWEIGHT * TotalWalltimeRequested + 
        PEWEIGHT       * TotalPERequested))

The sum of all weighted resources components is then multiplied by the RESWEIGHT parameter and capped
by the RESCAP parameter. Memory, Swap, and Disk are all measured in megabytes (MB). The final resource
component, PE, represents Processor Equivalents. This component can be viewed as a processor-weighted
maximum percentage of total resources factor. For example, if a job requested 25% of the processors and
50% of the total memory on a 128-processor system, it would have a PE value of MAX(25,50) * 128, or 64.
The concept of PEs is a highly effective metric in shared resource systems.

Ideal values for requested job processor count and walltime can be specified using
PRIORITYTARGETPROCCOUNT and PRIORITYTARGETDURATION.

5.1.2.4 Service (SERVICE) Component
The Service component specifies which service metrics are of greatest value to the site. Favoring one service
subcomponent over another generally improves that service metric.

The priority calculation for the service priority factor is as follows:

Priority += SERVICEWEIGHT * (
QUEUETIMEWEIGHT * <QUEUETIME> +
XFACTORWEIGHT * <XFACTOR> +
BYPASSWEIGHT * <BYPASSCOUNT> +
STARTCOUNTWEIGHT * <STARTCOUNT> +
DEADLINEWEIGHT * <DEADLINE> +
SPVIOLATIONWEIGHT * <SPBOOLEAN> +
USERPRIOWEIGHT * <USERPRIO> )

5.1.2.4.1 QueueTime (QUEUETIME) Subcomponent

In the priority calculation, a job's queue time is a duration measured in minutes. Using this subcomponent
tends to prioritize jobs in a FIFO order. Favoring queue time improves queue time based fairness metrics and
is probably the most widely used single job priority metric. In fact, under the initial default configuration, this
is the only priority subcomponent enabled within Moab. It is important to note that within Moab, a job's
queue time is not necessarily the amount of time since the job was submitted. The parameter
JOBPRIOACCRUALPOLICY allows a site to select how a job will accrue queue time based on meeting various
throttling policies. Regardless of the policy used to determine a job's queue time, this effective queue time is
used in the calculation of the QUEUETIME, XFACTOR, TARGETQUEUETIME, and TARGETXFACTOR priority
subcomponent values.

The need for a distinct effective queue time is necessitated by the fact that many sites have users who like to
work the system, whatever system it happens to be. A common practice at some long existent sites is for
some users to submit a large number of jobs and then place them on hold. These jobs remain with a hold in
place for an extended period of time and when the user is ready to run a job, the needed executable and



data files are linked into place and the hold released on one of these pre-submitted jobs. The extended hold
time guarantees that this job is now the highest priority job and will be the next to run. The use of the
JOBPRIOACCRUALPOLICY parameter can prevent this practice and prevent "queue stuffers" from doing
similar things on a shorter time scale. These "queue stuffer" users submit hundreds of jobs at once to swamp
the machine and consume use of the available compute resources. This parameter prevents the user from
gaining any advantage from stuffing the queue by not allowing these jobs to accumulate any queue time
based priority until they meet certain idle and active Moab fairness policies (such as max job per user and
max idle job per user).

As a final note, you can adjust the QUEUETIMEWEIGHT parameter on a per QoS basis using the QOSCFG
parameter and the QTWEIGHT attribute. For example, the line QOSCFG[special] QTWEIGHT=5000 causes
jobs using the QoS special to have their queue time subcomponent weight increased by 5000.

5.1.2.4.2 Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but favors shorter jobs
based on their requested wallclock run time. In its traditional form, the expansion factor (XFactor) metric is
calculated as follows:

XFACTOR = 1 + <QUEUETIME> / <EXECUTIONTIME>

However, a couple of aspects of this calculation make its use more difficult. First, the length of time the job
will actually run—<EXECUTIONTIME>—is not actually known until the job completes. All that is known is how
much time the job requests. Secondly, as described in the Queue Time Subcomponent section, Moab does not
necessarily use the raw time since job submission to determine <QUEUETIME> to prevent various scheduler
abuses. Consequently, Moab uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETIME> / <WALLCLOCKLIMIT>

In the equation Moab uses, EFFQUEUETIME is the effective queue time subject to the JOBPRIOACCRUALPOLICY
parameter and WALLCLOCKLIMIT is the user- or system-specified job wallclock limit.

Using this equation, it can be seen that short running jobs will have an XFactor that will grow much faster
over time than the xfactor associated with long running jobs. The following table demonstrates this favoring
of short running jobs:

Job Queue Time 1 hour 2 hours 4 hours 8 hours 16 hours

XFactor for 1 hour
job

1 + (1 / 1) =
2.00

1 + (2 / 1) =
3.00

1 + (4 / 1) =
5.00

1 + (8 / 1) =
9.00

1 + (16 / 1) =
17.0

XFactor for 4 hour
job

1 + (1 / 4) =
1.25

1 + (2 / 4) =
1.50

1 + (4 / 4) =
2.00

1 + (8 / 4) =
3.00

1 + (16 / 4) =
5.0

Since XFactor is calculated as a ratio of two values, it is possible for this subcomponent to be almost
arbitrarily large, potentially swamping the value of other priority subcomponents. This can be addressed
either by using the subcomponent cap XFACTORCAP, or by using the XFMINWCLIMIT parameter. If the latter
is used, the calculation for the XFactor subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETIME> / MAX(<XFMINWCLIMIT>,<WALLCLOCKLIMIT>)

Using the XFMINWCLIMIT parameter allows a site to prevent very short jobs from causing the XFactor
subcomponent to grow inordinately.

Some sites consider XFactor to be a more fair scheduling performance metric than queue time. At these sites,
job XFactor is given far more weight than job queue time when calculating job priority and job XFactor
distribution consequently tends to be fairly level across a wide range of job durations. (That is, a flat XFactor
distribution of 1.0 would result in a one-minute job being queued on average one minute, while a 24-hour
job would be queued an average of 24 hours.)

Like queue time, the effective XFactor subcomponent weight is the sum of two weights, the
XFACTORWEIGHT parameter and the QoS-specific XFWEIGHT setting. For example, the line
QOSCFG[special] XFWEIGHT=5000 causes jobs using the QoS special to increase their expansion factor
subcomponent weight by 5000.

5.1.2.4.3 Bypass (BYPASS) Subcomponent



The bypass factor is based on the bypass count of a job where the bypass count is increased by one every
time the job is bypassed by a lower priority job via backfill. Backfill starvation has never been reported, but if
encountered, use the BYPASS subcomponent.

5.1.2.4.4 StartCount (STARTCOUNT) Subcomponent

Apply the startcount factor to sites with trouble starting or completing due to policies or failures. The primary
causes of an idle job having a startcount greater than zero are resource manager level job start failure,
administrator based requeue, or requeue based preemption.

5.1.2.4.5 Deadline (DEADLINE) Subcomponent

The deadline factor allows sites to take into consideration the proximity of a job to its DEADLINE. As a jobs
moves closer to its deadline its priority increases linearly. This is an alternative to the strict deadline
discussed in QOS SERVICE.

5.1.2.4.6 Soft Policy Violation (SPVIOLATION) Subcomponent

The soft policy violation factor allows sites to favor jobs which do not violate their associated soft resource
limit policies.

5.1.2.4.7 User Priority (USERPRIO) Subcomponent

The user priority subcomponent allows sites to consider end-user specified job priority in making the overall
job priority calculation. Under Moab, end-user specified priorities may only be negative and are bounded in
the range 0 to -1024. See Manual Priority Usage and Enabling End-user Priorities for more information.

User priorities can be positive if ENABLEPOSUERPRIORITY TRUE is specified in moab.cfg.

5.1.2.5 Target Service (TARG) Component
The target factor component of priority takes into account job scheduling performance targets. Currently, this
is limited to target expansion factor and target queue time. Unlike the expansion factor and queue time
factors described earlier which increase gradually over time, the target factor component is designed to grow
exponentially as the target metric is approached. This behavior causes the scheduler to do essentially all in its
power to make certain the scheduling targets are met.

The priority calculation for the target factor is as follows:

    Priority += TARGETWEIGHT * ( 
        TARGETQUEUETIMEWEIGHT  * QueueTimeComponent + 
        TARGETXFACTORWEIGHT    * XFactorComponent)

The queue time and expansion factor target are specified on a per QoS basis using the XFTARGET and
QTTARGET attributes with the QOSCFG parameter. The QueueTime and XFactor component calculations are
designed to produce small values until the target value begins to approach, at which point these components
grow very rapidly. If the target is missed, this component remains high and continues to grow, but it does
not grow exponentially.

5.1.2.6 Usage (USAGE) Component
The Usage component applies to active jobs only. The priority calculation for the usage priority factor is as
follows:

    Priority += USAGEWEIGHT * ( 
        USAGECONSUMEDWEIGHT       * ProcSecondsConsumed + 
        USAGEHUNGERWEIGHT       * ProcNeededToBalanceDynamicJob + 
        USAGEREMAININGWEIGHT      * ProcSecRemaining + 
        USAGEEXECUTIONTIMEWEIGHT  * SecondsSinceStart + 
        USAGEPERCENTWEIGHT        * WalltimePercent )

5.1.2.7 Job Attribute (ATTR) Component



The Attribute component allows the incorporation of job attributes into a job's priority. The most common
usage for this capability is to do one of the following:

adjust priority based on a job's state (favor suspended jobs)
adjust priority based on a job's requested node features (favor jobs that request attribute pvfs)
adjust priority based on internal job attributes (disfavor backfill or preemptee jobs)
adjust priority based on a job's requested licenses, network consumption, or generic resource
requirements

To use job attribute based prioritization, the JOBPRIOF parameter must be specified to set corresponding
attribute priorities. To favor jobs based on node feature requirements, the parameter NODETOJOBATTRMAP
must be set to map node feature requests to job attributes.

The priority calculation for the attribute priority factor is as follows:

Priority += ATTRWEIGHT * (
ATTRATTRWEIGHT * <ATTRPRIORITY> +
ATTRSTATEWEIGHT * <STATEPRIORITY> +
ATTRGRESWEIGHT * <GRESPRIORITY> 
JOBIDWEIGHT * <JOBID> +
JOBNAMEWEIGHT * <JOBNAME_INTEGER> )

Example

See Also
Node Allocation Priority
Per Credential Priority Weight Offsets
Managing Consumable Generic Resources

ATTRWEIGHT      100
ATTRATTRWEIGHT    1
ATTRSTATEWEIGHT   1
ATTRGRESWEIGHT    5

# favor suspended jobs
# disfavor preemptible jobs
# favor jobs requesting 'matlab'

JOBPRIOF STATE[Running]=100  STATE[Suspended]=1000  ATTR[PREEMPTEE]=-
200  ATTR[gpfs]=30  GRES[matlab]=400

# map node features to job features

NODETOJOBATTRMAP  gpfs,pvfs
...



Fairshare Job Priority Example

   Consider the following information associated with calculating the fairshare factor for job X.

Job X 
    User A 
    Group B 
    Account C 
    QOS D 
    Class E

User A 
    Fairshare Target:                   50.0 
    Current Fairshare Usage:    45.0

Group B 
    Fairshare Target:                   [NONE] 
    Current Fairshare Usage:     65.0

Account C 
    Fairshare Target:                    25.0 
    Current Fairshare Usage:     35.0

QOS D 
    Fairshare Target:                    10.0+ 
    Current Fairshare Usage:      25.0

 Class E 
    Fairshare Target:                     [NONE] 
    Current Fairshare Usage:       20.0

Priority Weights: 
    FSWEIGHT                       100 
    FSUSERWEIGHT              10 
    FSGROUPWEIGHT          20 
    FSACCOUNTWEIGHT   30 
    FSQOSWEIGHT                40 
    FSCLASSWEIGHT             0

    In this example, the Fairshare component calculation would be as follows:

    Priority += 100 * ( 
        10 * 5 + 
        20 * 0 + 
        30 * (-10) + 
        40 * 0 + 
          0 * 0)

   User A is 5% below his target so fairshare increases the total fairshare factor accordingly.  Group B has no
target so group fairshare usage is ignored.  Account C is above its 10% above its fairshare usage target so
this component decreases the job's total fairshare factor.  QOS D is 15% over its target but the '+' in the
target specification indicates that this is a 'floor' target, only influencing priority when fairshare usage drops
below the target value.  Thus, the QOS D fairshare usage delta does not influence the fairshare factor.

    Fairshare is a great mechanism for influencing job turnaround time via priority to favor a particular
distribution of jobs.  However, it is important to realize that fairshare can only favor a particular distribution
of jobs, it cannot force it.  If user X has a fairshare target of 50% of the machine but does not submit
enough jobs, no amount of priority favoring will get user X's usage up to 50%.

   See the Fairshare Overview for more information.



5.1.3 Common Priority Usage
5.1.3.1 Credential Priority Factors
5.1.3.2 Service Level Priority Factors
5.1.3.3 Priority Factor Caps
5.1.3.4 User Selectable Prioritization

Site administrators vary widely in their preferred manner of prioritizing jobs. Moab's scheduling hierarchy
allows sites to meet job control needs without requiring adjustments to dozens of parameters. Some choose
to use numerous subcomponents, others a few, and still others are content with the default FIFO behavior.
Any subcomponent that is not of interest may be safely ignored.

5.1.3.1 Credential Priority Factors
To help clarify the use of priority weights, a brief example may help. Suppose a site wished to maintain the
FIFO behavior but also incorporate some credential based prioritization to favor a special user. Particularly,
the site would like the user john to receive a higher initial priority than all other users. Configuring this
behavior requires two steps. First, the user credential subcomponent must be enabled and second, john
must have his relative priority specified. Take a look at the sample moab.cfg file:

The USER priority subcomponent was enabled by setting the USERWEIGHT parameter. In fact, the
parameters used to specify the weights of all components and subcomponents follow this same
*WEIGHT naming convention (as in RESWEIGHT and TARGETQUEUETIMEWEIGHT.

The second part of the example involves specifying the actual user priority for the user john. This is
accomplished using the USERCFG parameter. Why was the priority 300 selected and not some other value?
Is this value arbitrary? As in any priority system, actual priority values are meaningless, only relative values
are important. In this case, we are required to balance user priorities with the default queue time based
priorities. Since queuetime priority is measured in minutes queued, the user priority of 300 places a job by
user john on par with a job submitted 5 minutes earlier by another user.

Is this what the site wants? Maybe, maybe not. At the onset, most sites are uncertain what they want in
prioritization. Often, an estimate initiates prioritization and adjustments occur over time. Cluster resources
evolve, the workload evolves, and even site policies evolve, resulting in changing priority needs over time.
Anecdotal evidence indicates that most sites establish a relatively stable priority policy within a few iterations
and make only occasional adjustments to priority weights from that point.

5.1.3.2 Service Level Priority Factors
In another example, suppose a site administrator wants to do the following:

favor jobs in the low, medium, and high QoS's so they will run in QoS order
balance job expansion factor
use job queue time to prevent jobs from starving

Under such conditions, the sample moab.cfg file might appear as follows:

USERWEIGHT       1
USERCFG[john]    PRIORITY=300

QOSWEIGHT               1
XFACTORWEIGHT           1
QUEUETIMEWEIGHT        10
TARGETQUEUETIMEWEIGHT   1

QOSCFG[low]       PRIORITY=1000
QOSCFG[medium]    PRIORITY=10000
QOSCFG[high]      PRIORITY=100000
QOSCFG[DEFAULT]   QTTARGET=4:00:00 



This example is a bit more complicated but is more typical of the needs of many sites. The desired QoS
weightings are established by enabling the QoS subfactor using the QOSWEIGHT parameter while the various
QoS priorities are specified using QOSCFG. XFACTORWEIGHT is then set as this subcomponent tends to
establish a balanced distribution of expansion factors across all jobs. Next, the queuetime component is used
to gradually raise the priority of all jobs based on the length of time they have been queued. Note that in this
case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default value of 1. Finally, the
TARGETQUEUETIMEWEIGHT parameter is used in conjunction with the USERCFG line to specify a queue time
target of 4 hours.

5.1.3.3 Priority Factor Caps
Assume now that the site administrator is content with this priority mix but has a problem with users
submitting large numbers of very short jobs. Very short jobs would tend to have rapidly growing XFactor
values and would consequently quickly jump to the head of the queue. In this case, a factor cap would be
appropriate. Such caps allow a site to limit the contribution of a job's priority factor to be within a defined
range. This prevents certain priority factors from swamping others. Caps can be applied to either priority
components or subcomponents and are specified using the <COMPONENTNAME>CAP parameter (such as
QUEUETIMECAP, RESCAP, and SERVCAP). Note that both component and subcomponent caps apply to
the pre-weighted value, as in the following equation:

Priority Cap Example

5.1.3.4 User Selectable Prioritization
Moab allows users to specify a job priority to jobs they own or manage. This priority may be set at job
submission time or it may be dynamically modified (using setspri or mjobctl) after submitting the job. For
fairness reasons, users may only apply a negative priority to their job and thus slide it further back in the
queue. This enables users to allow their more important jobs to run before their less important ones without
gaining unfair advantage over other users.

User priorities can be positive if ENABLEPOSUERPRIORITY TRUE is specified in moab.cfg.

    Priority =
      C1WEIGHT * MIN(C1CAP,SUM(
        S11WEIGHT * MIN(S11CAP,S11S) +
        S12WEIGHT * MIN(S12CAP,S12S) +
        ...)) +
      C2WEIGHT * MIN(C2CAP,SUM(
        S21WEIGHT * MIN(S21CAP,S21S) +
        S22WEIGHT * MIN(S22CAP,S22S) +
        ...)) +
      ... 

QOSWEIGHT              1
QOSCAP                 10000

XFACTORWEIGHT          1
XFACTORCAP             1000

QUEUETIMEWEIGHT        10
QUEUETIMECAP           1000

USERPRIOWEIGHT   100

> setspri -r 100 332411

successfully modified job priority



Specifying a user priority at job submission time is resource manager specific. See the associated
resource manager documentation for more information.

User Selectable Priority w/QoS

Using the QoS facility, organizations can set up an environment in which users can more freely select the
desired priority of a given job. Organizations may enable access to a number of QoS's each with its own
charging rate, priority, and target service levels. Users can then assign job importance by selecting the
appropriate QoS. If desired, this can allow a user to jump ahead of other users in the queue if they are
willing to pay the associated costs.

See Also
User Selectable Priority



5.1.4 Prioritization Strategies
Each component or subcomponent may be used to accomplish different objectives. WALLTIME can be used
to favor (or disfavor) jobs based on their duration. Likewise, ACCOUNT can be used to favor jobs associated
with a particular project while QUEUETIME can be used to favor those jobs waiting the longest.

Queue Time
Expansion Factor
Resource
Fairshare
Credential
Target Metrics

Each priority factor group may contain one or more subfactors. For example, the Resource factor consists of
Node, Processor, Memory, Swap, Disk, and PE components. From the table in Job Priority Factors section, it is
apparent that the prioritization problem is fairly complex since every site needs to prioritize a bit differently.
When calculating a priority, the various priority factors are summed and then bounded between 0 and
MAX_PRIO_VAL, which is currently defined as 100000000 (one billion).

The mdiag -p command assists with visualizing the priority distribution resulting from the current job priority
configuration. Also, the showstats -f command helps indicate the impact of the current priority settings on
scheduler service distributions.



5.1.5 Manual Job Priority Adjustment
Batch administrator's regularly find a need to adjust the calculated priority of a job to meet current needs.
Current needs often are broken into two categories:

1. The need to run an administrator test job as soon as possible.
2. The need to pacify a disserviced user.

You can use the setspri command to handle these issues in one of two ways; this command allows the
specification of either a relative priority adjustment or the specification of an absolute priority. Using absolute
priority specification, administrators can set a job priority guaranteed to be higher than any calculated value.
Where Moab-calculated job priorities are in the range of 0 to 1 billion, system administrator assigned absolute
priorities start at 1 billion and go up. Issuing the setspri <PRIO>  <JOBID> command, for example, assigns
a priority of 1 billion + <PRIO> to the job. Thus, setspri 5 job.1294 sets the priority of job job.1294 to
1000000005.

For more information, see Common Priority Usage - End-user Adjustment.



5.2 Node Allocation Policies
While job prioritization allows a site to determine which job to run, node allocation policies allow a site to
specify how available resources should be allocated to each job. The algorithm used is specified by the
parameter NODEALLOCATIONPOLICY. There are multiple node allocation policies to choose from allowing
selection based on reservation constraints, node configuration, resource usage, preferences, and other factors.
You can specify these policies with a system-wide default value or on a per-job basis. Please note that
LASTAVAILABLE is the default policy.

Available algorithms are described in detail in the following sections and include FIRSTAVAILABLE,
LASTAVAILABLE, PRIORITY, CPULOAD, MINRESOURCE, CONTIGUOUS, MAXBALANCE, FASTEST, and LOCAL.

5.2.1 Node Allocation Overview
5.2.1.1 Heterogeneous Resources
5.2.1.2 Shared Nodes
5.2.1.3 Reservations or Service Guarantees
5.2.1.4 Non-flat Network

5.2.2 Resource Based Algorithms
5.2.2.1 CPULOAD
5.2.2.2 FIRSTAVAILABLE
5.2.2.3 LASTAVAILABLE
5.2.2.4 PRIORITY
5.2.2.5 MINRESOURCE
5.2.2.6 CONTIGUOUS
5.2.2.7 MAXBALANCE
5.2.2.8 FASTEST
5.2.2.9 LOCAL

5.2.3 Time Based Algorithms
5.2.4 Specifying Per Job Resource Preferences

5.2.4.1 Specifying Resource Preferences
5.2.4.2 Selecting Preferred Resources

5.2.1 Node Allocation Overview
Node allocation is the process of selecting the best resources to allocate to a job from a list of available
resources. Making this decision intelligently is important in an environment that possesses one or more of the
following attributes:

heterogeneous resources (resources which vary from node to node in terms of quantity or quality)
shared nodes (nodes may be utilized by more than one job)
reservations or service guarantees
non-flat network (a network in which a perceptible performance degradation may potentially exist
depending on workload placement)

5.2.1.1 Heterogeneous Resources

If the available compute resources have differing configurations, and a subset of the submitted jobs cannot
run on all of the nodes, then allocation decisions can significantly affect scheduling performance. For example,
a system may be comprised of two nodes, A and B, which are identical in all respects except for RAM; node A
has 256 MB and and node B has 1 GB of RAM. Two single processor jobs, X and Y, are submitted, one
requesting at least 512 MB of RAM, the other, at least 128 MB. The scheduler could run job X on node A in
which case job Y would be blocked until job X completes. A more intelligent approach may be to allocate node
B to job X because it has the fewest available resources yet still meets the constraints. This is somewhat of a
best fit approach in the configured resource dimension and is essentially what is done by the MINRESOURCE
algorithm.

5.2.1.2 Shared Nodes



Symmetric Multiprocessing (SMP)

When sharing SMP-based compute resources amongst tasks from more than one job, resource contention
and fragmentation issues arise. In SMP environments, the general goal is to deliver maximum system
utilization for a combination of compute-intensive and memory-intensive jobs while preventing
overcommitment of resources.

By default, most current systems do not do a good job of logically partitioning the resources (such as CPU,
memory, and network bandwidth) available on a given node. Consequently contention often arises between
tasks of independent jobs on the node. This can result in a slowdown for all jobs involved, which can have
significant ramifications if large-way parallel jobs are involved. Virtualization, CPU sets, and other techiques
are maturing quickly as methods to provide logical partitioning within shared resources.

On large-way SMP systems (> 32 processors/node), job packing can result in intra-node fragmentation. For
example, take two nodes, A and B, each with 64 processors. Assume they are currently loaded with various
jobs and A has 24 and B has 12 processors free. Two jobs are submitted; job X requests 10 processors and
job Y requests 20 processors. Job X can start on either node but starting it on node A prevents job Y from
running. An algorithm to handle intra-node fragmentation is straightforward for a single resource case, but
the algorithm becomes more involved when jobs request a combination of processors, memory, and local
disk. These workload factors should be considered when selecting a site's node allocation policy as well as
identifying appropriate policies for handling resource utilization limit violations.

Interactive Nodes

In many cases, sites are interested in allowing multiple users to simultaneously use one or more nodes for
interactive purposes. Workload is commonly not compute intensive consisting of intermittent tasks including
coding, compiling, and testing. Because these jobs are highly variant in terms of resource usage over time,
sites are able to pack a larger number of these jobs onto the same node. Consequently, a common practice is
to restrict job scheduling based on utilized, rather than dedicated resources.

Interactive Node Example

The example configuration files that follow show one method by which node sharing can be accomplished
within a TORQUE + Moab environment. This example is based on a hypothetical cluster composed of 4 nodes
each with 4 cores. For the compute nodes, job tasks are limited to actual cores preventing overcommitment
of resources. For the interactive nodes, up to 32 job tasks are allowed, but the node also stops allowing
additional tasks if either memory is fully utilized or if the CPU load exceeds 4.0. Thus, Moab continues packing
the interactive nodes with jobs until carrying capacity is reached.

moab.cfg

/var/spool/torque/server_priv/nodes

/var/spool/torque/mom_priv/config

# constrain interactive jobs to interactive nodes
# constrain interactive jobs to 900 proc-seconds
CLASSCFG[interactive]  HOSTLIST=interactive01,interactive02
CLASSCFG[interactive]  MAX.CPUTIME=900

RESOURCELIMITPOLICY    CPUTIME:ALWAYS:CANCEL

# base interactive node allocation on load and jobs
NODEALLOCATIONPOLICY  PRIORITY

NODECFG[interactive01] PRIORITYF='-20*LOAD - JOBCOUNT'
NODECFG[interactive02] PRIORITYF='-20*LOAD - JOBCOUNT'

interactive01 np=32
interactive02 np=32
compute01     np=4
compute02     np=4

# interactive01

http://www.adaptivecomputing.com/resources/docs/torque/index.php


/var/spool/torque/mom_priv/config

5.2.1.3 Reservations or Service Guarantees

A reservation based system adds the time dimension into the node allocation decision. With reservations,
node resources must be viewed in a type of two dimension node-time space. Allocating nodes to jobs
fragments this node-time space and makes it more difficult to schedule jobs in the remaining, more
constrained node-time slots. Allocation decisions should be made in such a way as to minimize this
fragmentation and maximize the scheduler's ability to continue to start jobs in existing slots. The following
figure shows that job A and job B are running. A reservation, X, is created some time in the future. Assume
that job A is 2 hours long and job B is 3 hours long. Again, two new single-processor jobs are submitted, C
and D; job C requires 3 hours of compute time while job D requires 5 hours. Either job will just fit in the free
space located above job A or in the free space located below job B. If job C is placed above job A, job D,
requiring 5 hours of time will be prevented from running by the presence of reservation X. However, if job C
is placed below job B, job D can still start immediately above job A.

The preceding example demonstrates the importance of time based reservation information in making node
allocation decisions, both at the time of starting jobs and at the time of creating reservations. The impact of
time based issues grows significantly with the number of reservations in place on a given system. The
LASTAVAILABLE algorithm works on this premise, locating resources that have the smallest space between
the end of a job under consideration and the start of a future reservation.

5.2.1.4 Non-flat Network

On systems where network connections do not resemble a flat all-to-all topology, task placement may impact
performance of communication intensive parallel jobs. If latencies and network bandwidth between any two
nodes vary significantly, the node allocation algorithm should attempt to pack tasks of a given job as close to
each other as possible to minimize impact of bandwidth differences.

5.2.2 Resource Based Algorithms
Moab contains a number of allocation algorithms that address some of the needs described earlier. You can
also create allocation algorithms and interface them with the Moab scheduling system. The current suite of
algorithms is described in what follows.

5.2.2.1 CPULOAD

Nodes are selected that have the maximum amount of available, unused CPU power (<#of CPU's> - <CPU
load>). CPULOAD is a good algorithm for timesharing node systems and applies to jobs starting immediately.
For the purpose of future reservations, the MINRESOURCE algorithm is used.

5.2.2.2 FIRSTAVAILABLE

Simple first come, first served algorithm where nodes are allocated in the order they are presented by the
resource manager. This is a very simple, and very fast algorithm.

$max_load 4.0

# interactive02

$max_load 4.0



5.2.2.3 LASTAVAILABLE

This algorithm selects resources to minimize the amount of time after the job and before the trailing
reservation. This algorithm is a best fit in time algorithm that minimizes the impact of reservation based
node-time fragmentation. It is useful in systems where a large number of reservations (job, standing, or
administrative) are in place.

5.2.2.4 PRIORITY

This algorithm allows a site to specify the priority of various static and dynamic aspects of compute nodes
and allocate them with preference for higher priority nodes. It is highly flexible allowing node attribute and
usage information to be combined with reservation affinity. Using node allocation priority, you can specify the
following priority components:

Component Name Description

ADISK Local disk currently available to batch jobs.

AMEM Real memory currently available to batch jobs.

APPLAFFINITY Application affinity for the job being evaluated; learning algorithm will select best
nodes for a given application and certain size of job based on historical statistics.

APPLFAILURERATE Application failure rate for the job being evaluated. The failure rate for a node
relative to a job requesting a specific application is computed as a ratio of the
number of recorded failures on the node for jobs requesting the application to the
total number of recorded jobs on the node that have requested the application.

APROCS Processors currently available to batch jobs on node (configured procs - dedicated
procs).

ARCH[<ARCH>] Processor architecture

ASWAP Virtual memory currently available to batch jobs.

CDISK Total local disk allocated for use by batch jobs.

CMEM Total real memory on node.

COST Based on node CHARGERATE.

CPROCS Total processors on node.

CSWAP Total virtual memory configured on node.

FEATURE[<FNAME>] Boolean; specified feature is present on node.

GMETRIC[<GMNAME>] Current value of specified generic metric on node.

JOBCOUNT Number of jobs currently running on node.

LOAD Current 1 minute load average.

MTBF Mean time between failure (in seconds).

NODEINDEX Node's nodeindex as specified by the resource manager.

OS True if job compute requirements match node operating system.

PARAPROCS Processors currently available to batch jobs within partition (configured procs -
dedicated procs).

POWER TRUE if node is ON.

PREF Boolean; node meets job specific resource preferences.



PRIORITY Administrator specified node priority.

RANDOM Per iteration random value between 0 and 1. (Allows introduction of random
allocation factor.) 

Regardless of coefficient, the contribution of this weighted factor cannot
exceed 32768. The coefficient, if any, of the RANDOM component must
precede, not follow, the component in order to work correctly. For example:

100 * RANDOM

RSVAFFINITY Reservation affinity for job being evaluated (1 for positive affinity, 0 for neutral
affinity, -1 for negative affinity).

SPEED If set, node processor speed (procspeed); otherwise, relative node speed.

SUSPENDEDJCOUNT Number of suspended jobs currently on the node.

USAGE Percentage of time node has been running batch jobs since the last statistics
initialization.

The node allocation priority function can be specified on a node by node or cluster wide basis. In both cases,
the recommended approach is to specify the PRIORITYF attribute with the NODECFG parameter. Some
examples follow.

Example: Favor the fastest nodes with the most available memory that are running the fewest jobs.

If spaces are placed within the priority function for readability, the priority function value must be
quoted to allow proper parsing.

Example: A site has a batch system consisting of two dedicated batchX nodes, as well as numerous desktop
systems. The allocation function should favor batch nodes first, followed by desktop systems that are the least
loaded and have received the least historical usage.

Example: Pack tasks onto loaded nodes first.

Example: Pack tasks onto nodes with the most processors available and the lowest CPU temperature.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='SPEED + .01 * AMEM - 10 * JOBCOUNT'
...

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='-LOAD - 5*USAGE'
NODECFG[batch1] PRIORITY=1000 PRIORITYF='PRIORITY + APROCS'
NODECFG[batch2] PRIORITY=1000 PRIORITYF='PRIORITY + APROCS'
...

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=JOBCOUNT
...

RMCFG[torque] TYPE=pbs
RMCFG[temp]   TYPE=NATIVE  CLUSTERQUERYURL=exec://$TOOLSDIR/hwmon.pl

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='100*APROCS - GMETRIC[temp]'
...



Example: Send jobs with a certain size and application to nodes that have historically executed similar jobs
in an efficient manner.

5.2.2.5 MINRESOURCE

This algorithm prioritizes nodes according to the configured resources on each node. Those nodes with the
fewest configured resources that still meet the job's resource constraints are selected.

5.2.2.6 CONTIGUOUS

This algorithm allocates nodes in contiguous (linear) blocks as required by the Compaq RMS system.

5.2.2.7 MAXBALANCE

This algorithm attempts to allocate the most balanced set of nodes possible to a job. In most cases, but not
all, the metric for balance of the nodes is node procspeed. Thus, if possible, nodes with identical procspeeds
are allocated to the job. If identical procspeed nodes cannot be found, the algorithm allocates the set of
nodes with the minimum node procspeed span or range.

5.2.2.8 FASTEST

This algorithm selects nodes in the order of fastest node first order. Nodes are selected by node speed if
specified. If node speed is not specified, nodes are selected by processor speed. If neither is specified, nodes
are selected in a random order.

5.2.2.9 LOCAL

Calls the locally created contrib node allocation algorithm.

5.2.3 Time Based Algorithms
Time based algorithms allow the scheduler to optimize placement of jobs and reservations in time and are
typically of greatest value in systems with the following criteria:

large backlog
large number of system or standing reservations
heavy use of backfill

The FIRSTAVAILABLE, LASTAVAILABLE, and PRIORITY algorithms take into account a node's availability
in time and should be considered in such cases.

5.2.4 Specifying Per Job Resource Preferences
While the resource based node allocation algorithms can make a good guess at what compute resources
would best satisfy a job, sites often possess a subset of jobs that benefit from more explicit resource
allocation specification. For example one job may perform best on a particular subset of nodes due to direct
access to a tape drive, another may be very memory intensive. Resource preferences are distinct from node
requirements. While the former describes what a job needs to run at all, the latter describes what the job
needs to run well. In general, a scheduler must satisfy a job's node requirement specification and then satisfy
the job's resource preferences as well as possible.

5.2.4.1 Specifying Resource Preferences

A number of resource managers natively support the concept of resource preferences (such as Loadleveler).
When using these systems, the language specific preferences keywords may be used. For systems that do not
support resource preferences natively, Moab provides a resource manager extension keyword, "PREF," which
you can use to specify desired resources. This extension allows specification of node features, memory, swap,

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='100*APPLAFFINITY'
...



and disk space conditions that define whether the node is considered preferred.

Moab 5.2 (and earlier) only supports feature-based preferences.

5.2.4.2 Selecting Preferred Resources

Enforcing resource preferences is not completely straightforward. A site may have a number of potentially
conflicting requirements that the scheduler is asked to simultaneously satisfy. For example, a scheduler may
be asked to maximize the proximity of the allocated nodes at the same time it is supposed to satisfy resource
preferences and minimize node overcommitment. To allow site specific weighting of these varying
requirements, Moab allows resource preferences to be enabled through the Priority node allocation
algorithm. For example, to use resource preferences together with node load, the following configuration
might be used:

To request specific resource preferences, a user could then submit a job indicating those preferences. In the
case of a PBS job, the following can be used:

See Also
Generic Metrics
Per Job Node Allocation Policy Specification via Resource Manager Extensions

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT]     PRIORITYF='5 * PREF - LOAD'
...

> qsub -l nodes=4,walltime=1:00:00,pref=feature:fast



5.3 Node Access Policies
Moab allocates resources to jobs on the basis of a job task—an atomic collection of resources that must be
co-located on a single compute node. A given job may request 20 tasks where each task is defined as one
processor and 128 MB of RAM. Compute nodes with multiple processors often possess enough resources to
support more than one task simultaneously. When it is possible for more than one task to run on a node,
node access policies determine which tasks may share the compute node's resources.

Moab supports a distinct number of node access policies that are listed in the following table:

Policy Description

SHARED Tasks from any combination of jobs may use available resources.

SHAREDONLY Only jobs requesting shared node access may use available resources.

SINGLEJOB Tasks from a single job may use available resources.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may use available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

This policy is useful in environments where job epilog/prologs scripts are used to
clean up processes based on userid.

5.3.1 Configuring Node Access Policies
The global node access polices may be specified via the parameter NODEACCESSPOLICY. This global
default may be overridden on a per node basis with the ACCESS attribute of the NODECFG parameter or on a
per job basis using the resource manager extension NACCESSPOLICY. Finally, a per queue node access policy
may also be specified by setting either the NODEACCESSPOLICY or FORCENODEACCESSPOLICY
attributes of the CLASSCFG parameter. FORCENODEACCESSPOLICY overrides any per job specification in
all cases, whereas NODEACCESSPOLICY is overridden by per job specification.

By default, nodes are accessible using the setting of the system wide NODEACCESSPOLICY parameter
unless a specific ACCESS policy is specified on a per node basis using the NODECFG parameter. Jobs may
override this policy and subsequent jobs are bound to conform to the access policies of all jobs currently
running on a given node. For example, if the NODEACCESSPOLICY parameter is set to SHARED, a new job
may be launched on an idle node with a job specific access policy of SINGLEUSER. While this job runs, the
effective node access policy changes to SINGLEUSER and subsequent job tasks may only be launched on
this node provided they are submitted by the same user. When all single user jobs have completed on that
node, the effective node access policy reverts back to SHARED and the node can again be used in SHARED
mode.

Example

To set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

See Also

# by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY  SINGLETASK

# allow nodes 13 and 14 to be shared
NODECFG[node13]   ACCESS=SHARED
NODECFG[node14]   ACCESS=SHARED



Per job naccesspolicy specification via Resource Manager Extensions
JOBNODEMATCHPOLICY parameter
NODEAVAILABILITY parameter



5.4 Node Availability Policies
5.4.1 Node Resource Availability Policies
5.4.2 Node Categorization
5.4.3 Node Failure/Performance Based Notification
5.4.4 Node Failure/Performance Based Triggers
5.4.5 Handling Transient Node Failures
5.4.6 Reallocating Resources When Failures Occur

Moab enables several features relating to node availability. These include policies that determine how per
node resource availability should be reported, how node failures are detected, and what should be done in the
event of a node failure.

5.4.1 Node Resource Availability Policies
Moab allows a job to be launched on a given compute node as long as the node is not full or busy. The
NODEAVAILABILITYPOLICY parameter allows a site to determine what criteria constitutes a node being
busy. The legal settings are listed in the following table:

Availability
Policy Description

DEDICATED The node is considered busy if dedicated resources equal or exceed configured resources.

UTILIZED The node is considered busy if utilized resources equal or exceed configured resources.

COMBINED The node is considered busy if either dedicated or utilized resources equal or exceed
configured resources.

The default setting for all nodes is COMBINED, indicating that a node can accept workload so long as the
jobs that the node was allocated to do not request or use more resources than the node has available. In a
load balancing environment, this may not be the desired behavior. Setting the NODEAVAILABILITYPOLICY
parameter to UTILIZED allows jobs to be packed onto a node even if the aggregate resources requested
exceeds the resources configured. For example, assume a scenario with a 4-processor compute node and 8
jobs requesting 1 processor each. If the resource availability policy was set to COMBINED, this node would
only allow 4 jobs to start on this node even if the jobs induced a load of less than 1.0 each. With the resource
availability policy set to UTILIZED, the scheduler continues allowing jobs to start on the node until the
node's load average exceeds a per processor load value of 1.0 (in this case, a total load of 4.0). To prevent a
node from being over populated within a single scheduling iteration, Moab artificially raises the node's load
for one scheduling iteration when starting a new job. On subsequent iterations, the actual measured node
load information is used.

Per Resource Availability Policies

By default, the NODEAVAILABILITYPOLICY sets a global per node resource availability policy. This policy
applies to all resource types on each node such as processors, memory, swap, and local disk. However, the
syntax of this parameter is as follows:

<POLICY>[:<RESOURCETYPE>] ...

This syntax allows per resource availability specification. For example, consider the following:

This configuration causes Moab to only consider the quantity of processing resources actually dedicated to
active jobs running on each node and ignore utilized processor information (such as CPU load). For memory
and disk, both utilized resource information and dedicated resource information should be combined to
determine what resources are actually available for new jobs.

5.4.2 Node Categorization

NODEAVAILABILITYPOLICY  DEDICATED:PROC COMBINED:MEM COMBINED:DISK
...



Moab allows organizations to detect and use far richer information regarding node status than the standard
batch idle, busy, down states commonly found. Using node categorization, organizations can record, track,
and report on per node and cluster level status including the following categories:

Category Description

Active Node is healthy and currently executing batch workload.

BatchFailure Node is unavailable due to a failure in the underlying batch system (such as a
resource manager server or resource manager node daemon).

Benchmark Node is reserved for benchmarking.

EmergencyMaintenance Node is reserved for unscheduled system maintenance.

GridReservation Node is reserved for grid use.

HardwareFailure Node is unavailable due to a failure in one or more aspects of its hardware
configuration (such as a power failure, excessive temperature, memory,
processor, or swap failure).

HardwareMaintenance Node is reserved for scheduled system maintenance.

Idle Node is healthy and is currently not executing batch workload.

JobReservation Node is reserved for job use.

NetworkFailure Node is unavailable due to a failure in its network adapter or in the switch.

Other Node is in an uncategorized state.

OtherFailure Node is unavailable due to a general failure.

PersonalReservation Node is reserved for dedicated use by a personal reservation.

Site[1-8] Site specified usage categorization.

SoftwareFailure Node is unavailable due to a failure in a local software service (such as
automounter, security or information service such as NIS, local databases, or
other required software services).

SoftwareMaintenance Node is reserved for software maintenance.

StandingReservation Node is reserved by a standing reservation.

StorageFailure Node is unavailable due to a failure in the cluster storage system or local storage
infrastructure (such as failures in Lustre, GPFS, PVFS, or SAN).

UserReservation Node is reserved for dedicated use by a particular user or group and may or may
not be actively executing jobs.

VPC Node is reserved for VPC use.

Node categories can be explicitly assigned by cluster administrators using the mrsvctl -c command to create
a reservation and associate a category with that node for a specified timeframe. Further, outside of this
explicit specification, Moab automatically mines all configured interfaces to learn about its environment and
the health of the resources it is managing. Consequently, Moab can identify many hardware failures, software
failures, and batch failures without any additional configuration. However, it is often desirable to make
additional information available to Moab to allow it to integrate this information into reports; automatically
notify managers, users, and administrators; adjust internal policies to steer workload around failures; and
launch various custom triggers to rectify or mitigate the problem.

You can specify the FORCERSVSUBTYPE parameter to require all administrative reservations be
associated with a node category at reservation creation time.



Example

Node health and performance information from external systems can be imported into Moab using the native
resource manager interface. This is commonly done using generic metrics or consumable generic resources
for performance and node categories or node variables for status information. Combined with arbitrary node
messaging information, Moab can combine detailed information from remote services and report this to other
external services.

Use the NODECATCREDLIST parameter to generate extended node category based statistics.

5.4.3 Node Failure/Performance Based Notification
Moab can be configured to cause node failures and node performance levels that cross specified thresholds to
trigger notification events. This is accomplished using the GEVENTCFG parameter as described in the Generic
Event Overview section. For example, the following configuration can be used to trigger an email to
administrators each time a node is marked down.

5.4.4 Node Failure/Performance Based Triggers
Moab supports per node triggers that can be configured to fire when specific events are fired or specific
thresholds are met. These triggers can be used to modify internal policies or take external actions. A few
examples follow:

decrease node allocation priority if node throughput drops below threshold X
launch local diagnostic/recovery script if parallel file system mounts become stale
reset high performance network adapters if high speed network connectivity fails
create general system reservation on node if processor or memory failure occurs

As mentioned, Moab triggers can be used to initiate almost any action, from sending mail to updating a
database, to publishing data for an SNMP trap, to driving a web service.

5.4.5 Handling Transient Node Failures
Since Moab actively schedules both current and future actions of the cluster, it is often important for it to
have a reasonable estimate of when failed nodes will be again available for use. This knowledge is particularly
useful for proper scheduling of new jobs and management of resources in regard to backfill. With backfill,
Moab determines which resources are available for priority jobs and when the highest priority idle jobs can
run. If a node experiences a failure, Moab should have a concept of when this node will be restored.

When Moab analyzes down nodes for allocation, one of two issues may occur with the highest priority jobs. If
Moab believes that down nodes will not be recovered for an extended period of time, a transient node failure
within a reservation for a priority job may cause the reservation to slide far into the future allowing other
lower priority jobs to allocate and launch on nodes previously reserved for it. Moments later, when the
transient node failures are resolved, Moab may be unable to restore the early reservation start time as other
jobs may already have been launched on previously available nodes.

In the reverse scenario, if Moab recognizes a likelihood that down nodes will be restored too quickly, it may
make reservations for top priority jobs that allocate those nodes. Over time, Moab slides those reservations
further into the future as it determines that the reserved nodes are not being recovered. While this does not
delay the start of the top priority jobs, these unfulfilled reservations can end up blocking other jobs that
should have properly been backfilled and executed.

Creating Automatic Reservations

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
FORCERSVSUBTYPE  TRUE

GEVENTCFG[nodedown] ACTION=notify REARM=00:20:00
...



If a node experiences occasional transient failures (often not associated with a node state of down), Moab
can automatically create a temporary reservation over the node to allow the transient failure time to clear
and prevent Moab from attempting to re-use the node while the failure is active. This reservation behavior is
controlled using the NODEFAILURERESERVETIME parameter as in the following example:

Blocking Out Down Nodes

If one or more resource managers identify failures and mark nodes as down, Moab can be configured to
associate a default unavailability time with this failure and the node state down. This is accomplished using
the NODEDOWNSTATEDELAYTIME parameter. This delay time floats and is measured as a fixed time into the
future from the time NOW; it is not associated with the time the node was originally marked down. For
example, if the delay time was set to 10 minutes, and a node was marked down 20 minutes ago, Moab
would still consider the node unavailable until 10 minutes into the future.

While it is difficult to select a good default value that works for all clusters, the following is a general rule of
thumb:

Increase NODEDOWNSTATEDELAYTIME if jobs are getting blocked due to priority reservations
sliding as down nodes are not recovered.
Decrease NODEDOWNSTATEDELAYTIME if high priority job reservations are getting regularly
delayed due to transient node failures.

5.4.6 Reallocating Resources When Failures Occur
If a failure occurs within a collection of nodes allocated to a job or reservation, Moab can automatically re-
allocate replacement resources. For jobs, this can be configured with JOBACTIONONNODEFAILURE. For
reservations, use the RSVREALLOCPOLICY.

5.4.6.1 Allocated Resource Failure Policy for Jobs

How an active job behaves when one or more of its allocated resources fail depends on the allocated resource
failure policy. Depending on the type of job, type of resources, and type of middleware infrastructure, a site
may choose to have different responses based on the job, the resource, and the type of failure.

Failure Responses

By default, Moab cancels a job when an allocated resource failure is detected. However, you can specify the
following actions:

Policy Description

cancel Cancels job.

hold Requeues and holds job.

ignore Ignores failure and allows job to continue running.

migrate Migrates failed task to new node. 

Only available with systems that provide migration.

notify Notifies administrator and user of failure but takes no further action.

requeue Requeues job and allows it to run when alternate resources become available.

Policy Precedence

# reserve nodes for 1 minute if transient failures are detected
NODEFAILURERESERVETIME  00:01:00

# assume down nodes will not be recovered for one hour
NODEDOWNSTATEDELAYTIME  01:00:00



For a given job, the applied policy can be set at various levels with policy precedence applied in the job,
class/queue, partition, and then system level. The following table indicates the available methods for setting
this policy:

Object Parameter Example

Job resfailpolicy resource manager extension

Class/Queue RESFAILPOLICY attribute of CLASSCFG
parameter

Partition JOBACTIONONNODEFAILURE attribute of
PARCFG parameter

System NODEALLOCRESFAILUREPOLICY parameter

Failure Definition

Any allocated node going down constitutes a failure. However, for certain types of workload, responses to
failures may be different depending on whether it is the master task (task 0) or a slave task that fails. To
indicate that the associated policy should only take effect if the master task fails, the allocated resource
failure policy should be specified with a trailing asterisk (*), as in the following example:

TORQUE Failure Details

When a node fails becoming unresponsive, the resource manager central daemon identifies this failure within
a configurable time frame (default: 60 seconds). Detection of this failure triggers an event that causes Moab
to immediately respond. Based on the specified policy, Moab notifies administrators, holds the job, requeues
the job, allocates replacement resources to the job, or cancels the job. If the job is canceled or requeued,
Moab sends the request to TORQUE, which immediately frees all non-failed resources making them available
for use by other jobs. Once the failed node is recovered, it contacts the resource manager central daemon,
determines that the associated job has been canceled/requeued, cleans up, and makes itself available for
new workload.

See Also
Node State Overview
JOBACTIONONNODEFAILURE parameter
NODEFAILURERESERVETIME parameter
NODEDOWNSTATEDELAYTIME parameter (down nodes will be marked unavailable for the specified
duration)
NODEDRAINSTATEDELAYTIME parameter (offline nodes will be marked unavailable for the specified
duration)
NODEBUSYSTATEDELAYTIME parameter (nodes with unexpected background load will be marked
unavailable for the specified duration)
NODEALLOCRESFAILUREPOLICY parameter (action to take if executing jobs have one or more
allocated nodes fail)

> qsub -l resfailpolicy=requeue

CLASSCFG[batch] 
RESFAILPOLICY=CANCEL

PARCFG[web3] 
JOBACTIONONNODEFAILURE=NOTIFY

NODEALLOCRESFAILUREPOLICY=MIGRATE

CLASSCFG[virtual_services] RESFAILPOLICY=requeue*



5.5 Task Distribution Policies
Under Moab, task distribution policies are specified at a global scheduler level, a global resource manager
level, or at a per job level. In addition, you can set up some aspects of task distribution as defaults on a per
class basis. See the TASKDISTRIBUTIONPOLICY parameter for more information.

See Also
Node Set Overview
Node Allocation Overview
TASKDISTPOLICY Resource Manager Extension



5.6 Scheduling Jobs When VMs Exist 
Each Job has a VM usage policy. This policy directs how Moab considers physical and virtual nodes when
allocating resources for a job. These are the supported policies:

Policy Details

CREATEPERSISTENTVM Makes the VM persist after the job completes. The VM is not terminanted until the
mvmctl -d <vmid> command is used.

CREATEVM The job should create a one-time use virtual machine for the job to run on. Any
virtual machines created by the job are destroyed when the job is finished. If
specified, the job itself must request an OS so an appropriate virtual machine can
be provisioned.

REQUIREPM States that the job should run only on physical machines.

REQUIREVM States that the job should run only on virtual machines that already exist.

If the HIDEVIRTUALNODES parameter is configured with a value of TRANSPARENT, jobs are given a default
policy of REQUIREVM. Otherwise they are given a policy of REQUIREPM. These defaults can be overridden by
using the extension resource VMUSAGEPOLICY or by setting the policy via a job template. An example of
both is given below.

Examples

As an extension resource:

As a template parameter:

The VMUSAGEPOLICY of a job can be viewed by using checkjob -v.

> msub -l vmusagepolicy=requirepm

JOBCFG[vmjob] VMUSAGE=requirevm



6.0 Managing Fairness - Throttling Policies,
Fairshare, and Allocation Management

6.1 Fairness Overview
6.2 Usage Limits/Throttling Policies
6.3 Fairshare
6.4 Charging and Allocation Management
6.5 Internal Charging Facilities



6.1 Fairness Overview
The concept of cluster fairness varies widely from person to person and site to site. While some interpret it
as giving all users equal access to compute resources, more complicated concepts incorporating historical
resource usage, political issues, and job value are equally valid. While no scheduler can address all possible
definitions of fair, Moab provides one of the industry's most comprehensive and flexible set of tools allowing
most sites the ability to address their many and varied fairness management needs.

Under Moab, most fairness policies are addressed by a combination of the facilities described in the following
table:

Job Prioritization

Description: Specifies what is most important to the scheduler. Using service based priority factors allows a
site to balance job turnaround time, expansion factor, or other scheduling performance
metrics.

Example:

Causes jobs to increase in priority by 10 points for every minute they remain in the queue.

  
Usage Limits (Throttling Policies)

Description: Specifies limits on exactly what resources can be used at any given instant.

Example:

Allows john to only run 3 jobs at a time. Allows the group staff to use up to 128 total
processors and all other groups to use up to 64 processors.

  
Fairshare

Description: Specifies usage targets to limit resource access or adjust priority based on historical cluster
and grid level resource usage.

Example:

Enables priority based fairshare and specifies a fairshare target for user steve such that his
jobs are favored in an attempt to keep his jobs using at least 25.0% of delivered compute
cycles.

  
Allocation Management

Description: Specifies long term, credential-based resource usage limits.

Example:

Enables the GOLD allocation management interface. Within the allocation manager, project or

SERVICEWEIGHT    1
QUEUETIMEWEIGHT 10

USERCFG[john]     MAXJOB=3
GROUPCFG[DEFAULT] MAXPROC=64
GROUPCFG[staff]   MAXPROC=128

USERCFG[steve] FSTARGET=25.0+
FSWEIGHT       1
FSUSERWEIGHT   10

AMCFG[bank] TYPE=GOLD HOST=server.sys.net



account based allocations may be configured. These allocations may, for example, do such
things as allow project X to use up to 100,000 processor-hours per quarter, provide various
QoS sensitive charge rates, and share allocation access.

  
Quality of Service

Description: Specifies additional resource and service access for particular users, groups, and accounts.
QoS facilities can provide special priorities, policy exemptions, reservation access, and other
benefits (as well as special charge rates).

Example:

Enables jobs requesting the orion QoS a priority increase, an expansion factor target to
improve response time, the ability to preempt other jobs, an exemption from system level job
size policies, and the ability to always reserve needed resources if it cannot start immediately.

  
Standing Reservations

Description: Reserves blocks of resources within the cluster for specific, periodic time frames under the
constraints of a flexible access control list.

Example:

Reserve nodes node011 through node014 from 9:00 AM until 5:00 PM for use by jobs from
user john or steve or from the project jupiter.

  
Class/Queue Constraints

Description: Associates users, resources, priorities, and limits with cluster classes or cluster queues that
can be assigned to or selected by end-users.

Example:

Assigns long jobs a high priority but only allow them to run on certain nodes.

Selecting the Correct Policy Approach

Moab supports a rich set of policy controls in some cases allowing a particular policy to be enforced in more
than one way. For example, cycle distribution can be controlled using usage limits, fairshare, or even queue
definitions. Selecting the most correct policy depends on site objectives and needs; consider the following
when making such a decision:

Minimal End-user Training
Does the solution use an approach familiar to or easily learned by existing users?

End-user Transparency
Can the configuration be enabled/disabled without impacting user behavior or job submission?

Impact on System Utilization and System Responsiveness
Solution Complexity

Is the impact of the configuration readily intuitive and is it easy to identify possible side effects?

QOSCFG[orion] PRIORITY=1000 XFTARGET=1.2 
QOSCFG[orion] QFLAGS=PREEMPTOR,IGNSYSTEM,RESERVEALWAYS

SRCFG[jupiter] HOSTLIST=node01[1-4]
SRCFG[jupiter] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[jupiter] USERLIST=john,steve ACCOUNTLIST=jupiter

CLASSCFG[long] MIN.WCLIMIT=24:00:00
SRCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=acn[1-4][0-9]



Solution Extensibility and Flexibility
Will the proposed approach allow the solution to be easily tuned and extended as cluster needs
evolve?

See Also
Job Prioritization
Usage Limits (Throttling Policies)
Fairshare
Allocation Management
Quality of Service
Standing Reservations
Class/Queue Constraints



6.2 Usage Limits/Throttling Policies
A number of Moab policies allow an administrator to control job flow through the system. These throttling
policies work as filters allowing or disallowing a job to be considered for scheduling by specifying limits
regarding system usage for any given moment. These policies may be specified as global or specific
constraints specified on a per user, group, account, QoS, or class basis.

6.2.1 Fairness via Throttling Policies
6.2.1.1 Basic Fairness Policies
6.2.1.2 Multi-Dimension Fairness Policies

6.2.2 Override Limits
6.2.3 Idle Job Limits
6.2.4 System Job Limits
6.2.5 Hard and Soft Limits
6.2.6 Per-partition Limits

6.2.1 Fairness via Throttling Policies
Moab allows significant flexibility with usage limits, or throttling policies. At a high level, Moab allows resource
usage limits to be specified in three primary workload categories: (1) active, (2) idle, and (3) system job
limits.

6.2.1.1 Basic Fairness Policies

Active Job Limits - Constrain the total cumulative resources available to active jobs at a given time.
Idle Job Limits - Constrain the total cumulative resources available to idle jobs at a given time.
System Job Limits - Constrain the maximum resource requirements of any single job.

These limits can be applied to any job credential (user, group, account, QoS, and class), or on a system-wide
basis. Using the keyword DEFAULT, a site may also specify the default setting for the desired user, group,
account, QoS, and class. Additionally, QoS's may be configured to allow limit overrides to any particular
policy.

To run, a job must meet all policy limits. Limits are applied using the *CFG set of parameters, particularly
USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG. Limits are specified by associating
the desired limit to the individual or default object. The usage limits currently supported are listed in the
following table.

MAXJOB

Units: # of jobs

Description: Limits the number of jobs a credential may have active (starting or running) at any given time.

MAXJOB=0 is not supported. You can, however, achieve similar results by using the HOLD
attribute of the USERCFG parameter:

Example:

  
MAXMEM

USERCFG[john] HOLD=yes

USERCFG[DEFAULT] MAXJOB=8 
GROUPCFG[staff]  MAXJOB=2,4



Units: total memory in MB

Description: Limits the total amount of dedicated memory (in MB) that can be allocated by a credential's
active jobs at any given time.

Example:

  
MAXNODE

Units: # of nodes

Description: Limits the total number of compute nodes that can be in use by active jobs at any given time. 

On some systems (including TORQUE/PBS), nodes have been softly defined rather than
strictly defined; that is, a job may request 2 nodes but Torque will translate this request
into 1 node with 2 processors. This can prevent Moab from enforcing a MAXNODE
policy correctly for a single job. Correct behavior can be achieved using MAXPROC.

Example:

  
MAXPE

Units: # of processor equivalents

Description: Limits the total number of dedicated processor-equivalents that can be allocated by active jobs
at any given time.

Example:

  
MAXPROC

Units: # of processors

Description: Limits the total number of dedicated processors that can be allocated by active jobs at any
given time.

Example:

  
MAXPS

Units: <# of processors> * <walltime>

Description: Limits the number of outstanding processor-seconds a credential may have allocated at any
given time. For example, if a user has a 4-processor job that will complete in 1 hour and a 2-
processor job that will complete in 6 hours, they have 4 * 1 * 3600 + 2 * 6 * 3600 = 16 *
3600 outstanding processor-seconds. The outstanding processor-second usage of each
credential is updated each scheduling iteration, decreasing as jobs approach their completion
time.

Example:

  
MAXWC

Units: job duration [[[DD:]HH:]MM:]SS

Description: Limits the cumulative remaining walltime a credential may have associated with active jobs. It

ACCOUNTCFG[jasper] MAXMEM=2048

CLASSCFG[batch] MAXNODE=64

QOSCFG[base] MAXPE=128

CLASSCFG[debug] MAXPROC=32

USERCFG[DEFAULT] MAXPS=720000



behaves identically to the MAXPS limit (listed earlier) only lacking the processor weighting. Like
MAXPS, the cumulative remaining walltime of each credential is also updated each scheduling
iteration. 

MAXWC does not limit the maximum wallclock limit per job. For this capability, use
MAX.WCLIMIT.

Example:

The following example demonstrates a simple limit specification:

This example allows user john to run up to 8 jobs while all other users may only run up to 4.

Simultaneous limits of different types may be applied per credential and multiple types of credentials may
have limits specified. The next example demonstrates this mixing of limits and is a bit more complicated.

This configuration may potentially apply multiple limits to a single job. As discussed previously, a job may
only run if it satisfies all applicable limits. Thus, in this example, the scheduler will be constrained to allow at
most 2 simultaneous user steve jobs with an aggregate node consumption of no more than 30 nodes.
However, if the job is submitted to a class other than batch, it may be limited further. Here, only 16 total
nodes may be used simultaneously by jobs running in any given class with the exception of the class batch.
If steve submitted a job to run in the class interactive, for example, and there were jobs already running
in this class using a total of 14 nodes, his job would be blocked unless it requested 2 or fewer nodes by the
default limit of 16 nodes per class.

6.2.1.2 Multi-Dimension Fairness Policies and Per Credential Overrides

Multi-dimensional fairness policies allow a site to specify policies based on combinations of job credentials. A
common example might be setting a maximum number of jobs allowed per queue per user or a total number
of processors per group per QoS. As with basic fairness policies, multi-dimension policies are specified using
the *CFG parameters. Moab supports the most commonly used multi-dimensional fairness policies (listed in
the table below) using the following format:

*CFG[X]  <LIMITTYPE>[<CRED>]=<LIMITVALUE>

The "*CFG" is one of USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, or CLASSCFG, the <LIMITTYPE> policy
is one of the policies listed in the table in section 6.2.1.1, and <CRED> is of the format
<CREDTYPE>[:<VALUE>] with CREDTYPE being one of USER, GROUP, ACCT, QoS, or CLASS. The optional
<VALUE> setting can be used to specify that the policy only applies to a specific credential value. For
example, the following configuration sets limits on the class fast, controlling the maximum number of jobs
any group can have active at any given time and the number of processors in use at any given time for user
steve.

The following example configuration may clarify further:

USERCFG[ops] MAXWC=72:00:00

USERCFG[DEFAULT]  MAXJOB=4
USERCFG[john]     MAXJOB=8

USERCFG[steve]    MAXJOB=2 MAXNODE=30
GROUPCFG[staff]   MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch]   MAXNODE=32

CLASSCFG[fast] MAXJOB[GROUP]=12
CLASSCFG[fast] MAXPROC[USER:steve]=50
CLASSCFG[fast] MAXIJOB[USER]=10

# allow class batch to run up the 3 simultaneous jobs
# allow any user to use up to 8 total nodes within class
CLASSCFG[batch] MAXJOB=3 MAXNODE[USER]=8



Multi-dimensional policies cannot be applied on DEFAULT credentials.

The table below lists the 112 currently implemented, multi-dimensional usage limit permutations. The "slmt"
stands for "Soft Limit" and "hlmt" stands for "Hard Limit."

Multi-Dimension Usage Limit Permutations

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXIJOB[QOS]=hlmt
MAXIJOB[QOS:qosname]=hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXIPROC[QOS]=hlmt
MAXIPROC[QOS:qosname]=hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXJOB[QOS]=slmt,hlmt
MAXJOB[QOS:qosname]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXJOB[USER]=slmt,hlmt 
MAXJOB[USER:username]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXMEM[USER]=slmt,hlmt 
MAXMEM[USER:username]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXNODE[USER]=slmt,hlmt 
MAXNODE[USER:username]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXPROC[QOS]=slmt,hlmt 
MAXPROC[QOS:qosname]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXPS[QOS]=slmt,hlmt
MAXPS[QOS:qosname]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

ACCOUNTCFG[name] 
ACCOUNTCFG[name]

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXJOB[QOS:qosname]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

CLASSCFG[name]
CLASSCFG[name]

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name] 

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXMEM[QOS:qosname]=slmt,hlmt

# allow users steve and bob to use up to 3 and 4 total processors 
respectively within class
CLASSCFG[fast] MAXPROC[USER:steve]=3 MAXPROC[USER:bob]=4



CLASSCFG[name]
CLASSCFG[name]

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXNODE[QOS:qosname]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXPROC[GROUP]=slmt,hlmt 
MAXPROC[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXPROC[QOS:qosname]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXPROC[USER]=slmt,hlmt 
MAXPROC[USER:username]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXPS[GROUP]=slmt,hlmt 
MAXPS[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXPS[QOS:qosname]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXWC[GROUP]=slmt,hlmt 
MAXWC[GROUP:groupname]=slmt,hlmt

CLASSCFG[name] MAXWC[QOS:qosname]=slmt,hlmt

CLASSCFG[name] 
CLASSCFG[name]

MAXWC[USER]=slmt,hlmt 
MAXWC[USER:username]=slmt,hlmt

GROUPCFG[name] MAXJOB[CLASS:classname]=slmt,hlmt

GROUPCFG[name] MAXJOB[QOS:qosname]=slmt,hlmt

GROUPCFG[name] 
GROUPCFG[name]

MAXJOB[USER]=slmt,hlmt 
MAXJOB[USER:username]=slmt,hlmt

GROUPCFG[name] MAXMEM[CLASS:classname]=slmt,hlmt

GROUPCFG[name] MAXMEM[QOS:qosname]=slmt,hlmt

GROUPCFG[name] 
GROUPCFG[name]

MAXMEM[USER]=slmt,hlmt 
MAXMEM[USER:username]=slmt,hlmt

GROUPCFG[name] MAXNODE[CLASS:classname]=slmt,hlmt

GROUPCFG[name] MAXNODE[QOS:qosname]=slmt,hlmt

GROUPCFG[name]
GROUPCFG[name]

MAXNODE[USER]=slmt,hlmt 
MAXNODE[USER:username]=slmt,hlmt

GROUPCFG[name] MAXPROC[CLASS:classname]=slmt,hlmt

GROUPCFG[name] MAXPROC[QOS:qosname]=slmt,hlmt

GROUPCFG[name]
GROUPCFG[name] 

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

GROUPCFG[name] MAXPS[CLASS:classname]=slmt,hlmt



GROUPCFG[name] MAXPS[QOS:qosname]=slmt,hlmt

GROUPCFG[name]
GROUPCFG[name] 

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

GROUPCFG[name] MAXWC[CLASS:classname]=slmt,hlmt

GROUPCFG[name] MAXWC[QOS:qosname]=slmt,hlmt

GROUPCFG[name]
GROUPCFG[name]

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXIJOB[ACCT]=hlmt
MAXIJOB[ACCT:accountname]=hlmt

QOSCFG[name] 
QOSCFG[name]

MAXIPROC[ACCT]=hlmt
MAXIPROC[ACCT:accountname]=hlmt

QOSCFG[name] 
QOSCFG[name]

MAXJOB[ACCT]=slmt,hlmt 
MAXJOB[ACCT:accountname]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXPROC[ACCT]=slmt,hlmt
MAXPROC[ACCT:accountname]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXPROC[USER]=slmt,hlmt 
MAXPROC[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXPS[ACCT]=slmt,hlmt 
MAXPS[ACCT:accountname]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

QOSCFG[name] 
QOSCFG[name]

MAXWC[USER]=slmt,hlmt 
MAXWC[USER:username]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXPROC[GROUP]=slmt,hlmt 
MAXPROC[GROUP:groupname]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXPS[GROUP]=slmt,hlmt 
MAXPS[GROUP:groupname]=slmt,hlmt

USERCFG[name]
USERCFG[name]

MAXWC[GROUP]=slmt,hlmt 
MAXWC[GROUP:groupname]=slmt,hlmt



6.2.2 Override Limits
Like all job credentials, the QoS object may be associated with resource usage limits. However, this credential
can also be given special override limits that supersede the limits of other credentials, effectively causing all
other limits of the same type (MAXJOB) to be ignored. Override limits are applied by preceding the limit
specification with the capital letter O. The following configuration provides an example of this in the last line:

The preceding configuration is identical to the earlier example with the exception of the final QOSCFG line. In
this case, the QOSCFG parameter does two things:

Only 3 hiprio QoS jobs may run simultaneously.
hiprio QoS jobs may run with up to 64 nodes per credential ignoring other credential MAXNODE
limits.

Given the preceding configuration, assume a job is submitted with the credentials, user steve, group staff,
class batch, and QoS hiprio.

Such a job will start so long as running it does not lead to any of the following conditions:

Total nodes used by user steve does not exceed 64.
Total active jobs associated with user steve does not exceed 2.
Total active jobs associated with group staff does not exceed 5.
Total nodes dedicated to class batch does not exceed 64.
Total active jobs associated with QoS hiprio does not exceed 3.

While the preceding example is a bit complicated for most sites, similar combinations may be required to
enforce policies found on many systems.

6.2.3 Idle Job Limits
Idle (or queued) job limits control which jobs are eligible for scheduling. To be eligible for scheduling, a job
must meet the following conditions:

Be idle as far as the resource manager is concerned (no holds).
Have all job prerequisites satisfied (no outstanding job or data dependencies).
Meet all idle job throttling policies.

If a job fails to meet any of these conditions, it will not be considered for scheduling and will not accrue
service based job prioritization. (See service component and JOBPRIOACCRUALPOLICY.) The primary purpose
of idle job limits is to ensure fairness among competing users by preventing queue stuffing and other similar
abuses. Queue stuffing occurs when a single entity submits large numbers of jobs, perhaps thousands, all at
once so they begin accruing queuetime based priority and remain first to run despite subsequent submissions
by other users.

Idle limits are specified in a manner almost identical to active job limits with the insertion of the capital letter
I into the middle of the limit name. For example, to limit the number of (eligible) idle jobs a given user could
have at once, the following parameter could be used:

As just shown, idle limits can constrain the total number of jobs considered to be eligible on a per credential
basis. Further, like active job limits, idle job limits can also constrain eligible jobs based on aggregate
requested resources. This could, for example, allow a site to indicate that for a given user, only jobs
requesting up to a total of 64 processors, or 3200 processor-seconds would be considered at any given time.
Which jobs to select is accomplished by prioritizing all idle jobs and then adding jobs to the eligible list one at
a time in priority order until jobs can no longer be added. This eligible job selection is done only once per

USERCFG[steve]    MAXJOB=2   MAXNODE=30
GROUPCFG[staff]   MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch]   MAXNODE=32
QOSCFG[hiprio]    OMAXJOB=3  OMAXNODE=64

USERCFG[DEFAULT]  MAXIJOB=20



scheduling iteration, so, consequently, idle job limits only support a single hard limit specification. Any
specified soft limit is ignored.

All single dimensional job limit types supported as active job limits are also supported as idle job limits. In
addition, Moab also supports MAXIJOB[USER] and MAXIPROC[USER] policies on a per class basis. (See Basic
Fairness Policies.)

Example:

6.2.4 System Job Limits
System job limits, also known as individual job limits, constrain the quantity of resources that may be
requested by any single job. Unlike active and idle job usage limits, system job limits are specified on a global
basis. The following table details the associated parameters.

Limit Parameter Description

duration SYSTEMMAXJOBWALLTIME Limits the maximum requested wallclock time per job.

processors SYSTEMMAXPROCPERJOB Limits the maximum requested processors per job.

processor-
seconds

SYSTEMMAXPROCSECONDPERJOB Limits the maximum requested processor-seconds per
job.

6.2.5 Hard and Soft Limits
Hard and soft limit specification allows a site to balance both fairness and utilization on a given system.
Typically, throttling limits are used to constrain the quantity of resources a given credential (such as user or
group) is allowed to consume. These limits can be very effective in enforcing fair usage among a group of
users. However, in a lightly loaded system, or one in which there are significant swings in usage from project
to project, these limits can reduce system utilization by blocking jobs even when no competing jobs are
queued.

Soft limits help address this problem by providing additional scheduling flexibility. They allow sites to specify
two tiers of limits; the more constraining limits soft limits are in effect in heavily loaded situations and reflect
tight fairness constraints. The more flexible hard limits specify how flexible the scheduler can be in selecting
jobs when there are idle resources available after all jobs meeting the tighter soft limits have started. Soft
and hard limits are specified in the format [<SOFTLIMIT>,]<HARDLIMIT>. For example, a given site may
want to use the following configuration:

With this configuration, the scheduler would select all jobs that meet the per user MAXJOB limit of 2. It
would then attempt to start and reserve resources for all of these selected jobs. If after doing so there still
remain available resources, the scheduler would then select all jobs that meet the less constraining hard per
user MAXJOB limit of 8 jobs. These jobs would then be scheduled and reserved as available resources allow.

If no soft limit is specified or the soft limit is less constraining than the hard limit, the soft limit is set equal to
the hard limit.

Example:

USERCFG[steve]     MAXIJOB=2 MAXINODE=30
GROUPCFG[staff]   MAXIJOB=5
CLASSCFG[DEFAULT] MAXINODE=16
CLASSCFG[batch]   MAXINODE=32 MAXIJOB[USER]=2 MAXIJOB[USER:john]=6
QOSCFG[hiprio]      MAXIJOB=3 MAXINODE=64

USERCFG[DEFAULT]  MAXJOB=2,8

USERCFG[steve]    MAXJOB=2,4 MAXNODE=15,30
GROUPCFG[staff]   MAXJOB=2,5
CLASSCFG[DEFAULT] MAXNODE=16,32
CLASSCFG[batch]   MAXNODE=12,32



Job preemption status can be adjusted based on whether the job violates a soft policy using the
ENABLESPVIOLATIONPREEMPTION parameter.

6.2.6 Per-partition Limits
Per-partition scheduling can set limits and enforce credentials and polices on a per-partition basis.
Configuration for per-partition scheduling is done on the grid head. In a grid, each Moab cluster is considered
a partition. Per-partition scheduling is typically used in a Master/Slave grid.

To enable per-partition scheduling, add the following to moab.cfg:

6.2.6.1 Per-partition Limits

You can configure per-job limits and credential usage limits on a per-partition basis in the moab.cfg file. Here
is a sample configuration for partitions "g02" and "g03" in moab.cfg.

You can then add per-partition limits in each partition configuration file:

/opt/moab/parg02.cfg

/opt/moab/parg03.cfg

You can configure Moab so that jobs submitted to any partition besides g02 and g03 get the default limits in
moab.cfg:

6.2.6.2 Supported Credentials and Limits

The user, group, account, QoS, and class credentials are supported in per-partition scheduling.

The following per-job limits are supported:

MAX.NODE
MAX.WCLIMIT
MAX.PROC

The following credential usage limits are supported:

MAXJOB
MAXNODE
MAXPROC
MAXWC
MAXSUBMITJOBS

Multi-dimensional limits are supported for the listed credentials and per-job limits. For example:

QOSCFG[hiprio]    MAXJOB=3,5 MAXNODE=32,64

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

PARCFG[g02]   CONFIGFILE=/opt/moab/parg02.cfg 
PARCFG[g03]   CONFIGFILE=/opt/moab/parg03.cfg

CLASSCFG[pbatch]   MAXJOB=5 

CLASSCFG[pbatch]   MAXJOB=10 

CLASSCFG[DEFAULT]  MAXJOB=2

CLASSCFG[pbatch]   MAXJOB[user:frank]=10



See Also
Managing Job Resource Limit Violations
RESOURCELIMITPOLICY parameter
FSTREE parameter (set usage limits within share tree hierarchy)
Credential Overview



6.3 Fairshare
Fairshare is a mechanism that allows historical resource utilization information to be incorporated into job
feasibility and priority decisions. Moab's fairshare implementation allows organizations to set system
utilization targets for users, groups, accounts, classes, and QoS levels. You can use both local and global
(multi-cluster) fairshare information to make local scheduling decisions.

6.3.1 Overview
6.3.2 Fairshare Parameters

6.3.2.1 FSPOLICY - Specifying the Metric of Consumption
6.3.2.2 Specifying Fairshare Timeframe
6.3.2.3 Managing Fairshare Data

6.3.3 Using Fairshare Information
6.3.3.1 Fairshare Targets
6.3.3.2 Fairshare Caps
6.3.3.3 Priority Based Fairshare
6.3.3.4 Per-Credential Fairshare Weights
6.3.3.5 Extended Fairshare Examples

6.3.4 Hierarchical Fairshare/Share Trees
6.3.4.1 Defining the Tree
6.3.4.2 Controlling Tree Evaluation

6.3.5 Importing Fairshare Data

6.3.1 Overview
Fairshare allows historical resource utilization information to be incorporated into job feasibility and priority
decisions. This feature allows site administrators to set system utilization targets for users, groups, accounts,
classes, and QoS levels. Administrators can also specify the time frame over which resource utilization is
evaluated in determining whether the goal is being reached. Parameters allow sites to specify the utilization
metric, how historical information is aggregated, and the effect of fairshare state on scheduling behavior. You
can specify fairshare targets for any credentials (such as user, group, and class) that administrators want
such information to affect.

6.3.2 Fairshare Parameters
Fairshare is configured at two levels. First, at a system level, configuration is required to determine how
fairshare usage information is to be collected and processed. Second, some configuration is required at the
credential level to determine how this fairshare information affects particular jobs. The following are system
level parameters:

Parameter Description

FSINTERVAL Duration of each fairshare window.

FSDEPTH Number of fairshare windows factored into current fairshare utilization.

FSDECAY Decay factor applied to weighting the contribution of each fairshare window.

FSPOLICY Metric to use when tracking fairshare usage.

Credential level configuration consists of specifying fairshare utilization targets using the *CFG suite of
parameters, including ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and USERCFG.

If global (multi-cluster) fairshare is used, Moab must be configured to synchronize this information with an
identity manager.



           

6.3.2.1 FSPOLICY - Specifying the Metric of Consumption

As Moab runs, it records how available resources are used. Each iteration (RMPOLLINTERVAL seconds) it
updates fairshare resource utilization statistics. Resource utilization is tracked in accordance with the
FSPOLICY parameter allowing various aspects of resource consumption information to be measured. This
parameter allows selection of both the types of resources to be tracked as well as the method of tracking. It
provides the option of tracking usage by dedicated or consumed resources, where dedicated usage tracks
what the scheduler assigns to the job and consumed usage tracks what the job actually uses.

Metric Description

DEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job. (Useful in
dedicated and shared nodes environments).

DEDICATEDPS Usage tracked by processor seconds dedicated to each job. (Useful in dedicated node
environments.)

PDEDICATEDPS Usage tracked by processor seconds dedicated to each job with per node usage scaled by
the node processor speed attribute. (Useful in dedicated and shared nodes environments
with heterogeneous compute nodes.)

SDEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job with per node
usage scaled by the node speed attribute. (Useful in dedicated and shared nodes
environments with heterogeneous compute nodes.)

UTILIZEDPS Usage tracked by processor seconds used by each job. (Useful in shared node/SMP
environments.)

Example

An example may clarify the use of the FSPOLICY parameter. Assume a 4-processor job is running a parallel
/bin/sleep for 15 minutes. It will have a dedicated fairshare usage of 1 processor-hour but a consumed
fairshare usage of essentially nothing since it did not consume anything. Most often, dedicated fairshare
usage is used on dedicated resource platforms while consumed tracking is used in shared SMP environments.

Percentage Based Fairshare

By default, when comparing fairshare usage against fairshare targets, Moab calculates usage as a percentage

FSPOLICY    DEDICATEDPS%
FSINTERVAL  24:00:00
FSDEPTH     28
FSDECAY     0.75



of delivered cycles. To change the usage calculation to be based on available cycles, rather than delivered
cycles, the percent (%) character can be specified at the end of the FSPOLICY value as in the preceding
example.

6.3.2.2 Specifying Fairshare Timeframe

When configuring fairshare, it is important to determine the proper timeframe that should be considered.
Many sites choose to incorporate historical usage information from the last one to two weeks while others are
only concerned about the events of the last few hours. The correct setting is very site dependent and usually
incorporates both average job turnaround time and site mission policies.

With Moab's fairshare system, time is broken into a number of distinct fairshare windows. Sites configure the
amount of time they want to consider by specifying two parameters, FSINTERVAL and FSDEPTH. The
FSINTERVAL parameter specifies the duration of each window while the FSDEPTH parameter indicates the
number of windows to consider. Thus, the total time evaluated by fairshare is simply FSINTERVAL *
FSDEPTH.

Many sites want to limit the impact of fairshare data according to its age. The FSDECAY parameter allows
this, causing the most recent fairshare data to contribute more to a credential's total fairshare usage than
older data. This parameter is specified as a standard decay factor, which is applied to the fairshare data.
Generally, decay factors are specified as a value between 1 and 0 where a value of 1 (the default) indicates
no decay should be specified. The smaller the number, the more rapid the decay using the calculation
WeightedValue = Value * <DECAY> ^ <N> where <N> is the window number. The following table shows the
impact of a number of commonly used decay factors on the percentage contribution of each fairshare
window.

Decay Factor Win0 Win1 Win2 Win3 Win4 Win5 Win6 Win7

1.00 100% 100% 100% 100% 100% 100% 100% 100%

0.80 100% 80% 64% 51% 41% 33% 26% 21%

0.75 100% 75% 56% 42% 31% 23% 17% 12%

0.50 100% 50% 25% 13% 6% 3% 2% 1%

While selecting how the total fairshare time frame is broken up between the number and length of windows is
a matter of preference, it is important to note that more windows will cause the decay factor to degrade the
contribution of aged data more quickly.

6.3.2.3 Managing Fairshare Data

Using the selected fairshare usage metric, Moab continues to update the current fairshare window until it
reaches a fairshare window boundary, at which point it rolls the fairshare window and begins updating the
new window. The information for each window is stored in its own file located in the Moab statistics directory.
Each file is named FS.<EPOCHTIME>[.<PNAME>] where <EPOCHTIME> is the time the new fairshare window
became active (see sample data file) and <PNAME> is only used if per-partition share trees are configured.
Each window contains utilization information for each entity as well as for total usage.

Historical fairshare data is recorded in the fairshare file using the metric specified by the FSPOLICY
parameter. By default, this metric is processor-seconds.

Historical faireshare data can be directly analyzed and reported using the showfs command located in
the tools directory.

When Moab needs to determine current fairshare usage for a particular credential, it calculates a decay-
weighted average of the usage information for that credential using the most recent fairshare intervals where
the number of windows evaluated is controlled by the FSDEPTH parameter. For example, assume the
credential of interest is user john and the following parameters are set:

FSINTERVAL   12:00:00
FSDEPTH      4
FSDECAY      0.5



Further assume that the fairshare usage intervals have the following usage amounts:

Fairshare Interval Total User john Usage Total Cluster Usage
0 60 110
1 0 125
2 10 100
3 50 150

Based on this information, the current fairshare usage for user john would calculated as follows:

Usage = (60 + .5^1 * 0 + .5^2 * 10 + .5^3 * 50) / (110 + .5^1*125 + .5^2*100 + .5^3*150)

The current fairshare usage is relative to the actual resources delivered by the system over the
timeframe evaluated, not the resources available or configured during that time.

Historical fairshare data is organized into a number of data files, each file containing the information
for a length of time as specified by the FSINTERVAL parameter. Although FSDEPTH, FSINTERVAL,
and FSDECAY can be freely and dynamically modified, such changes may result in unexpected
fairshare status for a period of time as the fairshare data files with the old FSINTERVAL setting are
rolled out.

6.3.3 Using Fairshare Information

6.3.3.1 Fairshare Targets

Once the global fairshare policies have been configured, the next step involves applying resulting fairshare
usage information to affect scheduling behavior. As mentioned in the Fairshare Overview, site administrators
can configure how fairshare information impacts scheduling behavior. This is done through specification of
fairshare targets. The targets can be applied to user, group, account, QoS, or class credentials using the
FSTARGET attribute of *CFG credential parameters. These targets allow fairshare information to affect job
priority and each target can be independently selected to be one of the types documented in the following
table:

Target type — Ceiling

Target Modifier: -

Job Impact: Priority

Format: Percentage Usage

Description: Adjusts job priority down when usage exceeds target.

  
Target type — Floor

Target Modifier: +

Job Impact: Priority

Format: Percentage Usage

Description: Adjusts job priority up when usage falls below target.

  
Target type — Target

Target Modifier: N/A

Job Impact: Priority

Format: Percentage Usage

Description: Adjusts job priority when usage does not meet target.



Example

The following example increases the priority of jobs belonging to user john until he reaches 16.5% of total
cluster usage. All other users have priority adjusted both up and down to bring them to their target usage of
10%:

6.3.3.2 Fairshare Caps

Where fairshare targets affect a job's priority and position in the eligible queue, fairshare caps affect a job's
eligibility. Caps can be applied to users, accounts, groups, classes, and QoS's using the FSCAP attribute of
*CFG credential parameters and can be configured to modify scheduling behavior. Unlike fairshare targets, if
a credential reaches its fairshare cap, its jobs can no longer run and are thus removed from the eligible
queue and placed in the blocked queue. In this respect, fairshare targets behave like soft limits and fairshare
caps behave like hard limits. Fairshare caps can be absolute or relative as described in the following table. If
no modifier is specified, the cap is interpreted as relative.

Absolute Cap

Cap
Modifier:

^

Job Impact: Feasibility

Format: Absolute Usage

Description: Constrains job eligibility as an absolute quantity measured according to the scheduler charge
metric as defined by the FSPOLICY parameter

  
Relative Cap

Cap
Modifier:

%

Job Impact: Feasibility

Format: Percentage Usage

Description: Constrains job eligibility as a percentage of total delivered cycles measured according to the
scheduler charge metric as defined by the FSPOLICY parameter.

Example

The following example constrains the marketing account to use no more than 16,500 processor seconds
during any given floating one week window. At the same time, all other accounts are constrained to use no
more than 10% of the total delivered processor seconds during any given one week window.

FSPOLICY         DEDICATEDPS
FSWEIGHT         1
FSUSERWEIGHT     100

USERCFG[john]    FSTARGET=16.5+
USERCFG[DEFAULT] FSTARGET=10
...

FSPOLICY           DEDICATEDPS
FSINTERVAL         12:00:00
FSDEPTH            14

ACCOUNTCFG[marketing] FSCAP=16500^
ACCOUNTCFG[DEFAULT]   FSCAP=10
...



6.3.3.3 Priority Based Fairshare

The most commonly used type of fairshare is priority based fairshare. In this mode, fairshare information
does not affect whether a job can run, but rather only the job's priority relative to other jobs. In most cases,
this is the desired behavior. Using the standard fairshare target, the priority of jobs of a particular user who
has used too many resources over the specified fairshare window is lowered. Also, the standard fairshare
target increases the priority of jobs that have not received enough resources.

While the standard fairshare target is the most commonly used, Moab can also specify fairshare ceilings and
floors. These targets are like the default target; however, ceilings only adjust priority down when usage is too
high and floors only adjust priority up when usage is too low.

Since fairshare usage information must be integrated with with Moab's overall priority mechanism, it is critical
that the corresponding fairshare priority weights be set. Specifically, the FSWEIGHT component weight
parameter and the target type subcomponent weight (such as FSUSERWEIGHT and FSGROUPWEIGHT) be
specified.

If these weights are not set, the fairshare mechanism will be enabled but have no effect on scheduling
behavior. See the Job Priority Factor Overview for more information on setting priority weights.

Example

Job preemption status can be adjusted based on whether the job violates a fairshare target using the
ENABLEFSVIOLATIONPREEMPTION parameter.

6.3.3.4 Credential Specific Fairshare Weights

Credential-specific fairshare weights can be set using the FSWEIGHT attribute of the ACCOUNT, GROUP, and
QOS credentials as in the following example:

If specified, a per-credential fairshare weight is added to the global component fairshare weight.

The FSWEIGHT attribute is only enabled for ACCOUNT, GROUP, and QOS credentials.

# set relative component weighting
FSUSERWEIGHT  10
FSGROUPWEIGHT 50

FSINTERVAL  12:00:00
FSDEPTH     4
FSDECAY     0.5
FSPOLICY    DEDICATEDPS

# all users should have a FS target of 10%
USERCFG[DEFAULT] FSTARGET=10.0

# user john gets extra cycles
USERCFG[john]    FSTARGET=20.0

# reduce staff priority if group usage exceed 15%
GROUPCFG[staff]  FSTARGET=15.0-

# give group orion additional priority if usage drops below 25.7%
GROUPCFG[orion]  FSTARGET=25.7+

FSWEIGHT  1000

ACCOUNTCFG[orion1] FSWEIGHT=100
ACCOUNTCFG[orion2] FSWEIGHT=200
ACCOUNTCFG[orion3] FSWEIGHT=-100

GROUPCFG[staff] FSWEIGHT=10



6.3.3.5 Extended Fairshare Examples

Example 1: Multi-Cred Cycle Distribution

Example 1 represents a university setting where different schools have access to a cluster. The Engineering
department has put the most money into the cluster and therefore has greater access to the cluster. The
Math, Computer Science, and Physics departments have also pooled their money into the cluster and have
reduced relative access. A support group also has access to the cluster, but since they only require minimal
compute time and shouldn't block the higher-paying departments, they are constrained to five percent of the
cluster. At this time, users Tom and John have specific high-priority projects that need increased cycles.

6.3.4 Hierarchical Fairshare/Share Trees
Moab supports arbitrary depth hierarchical fairshare based on a share tree. In this model, users, groups,
classes, and accounts can be arbitrarily organized and their usage tracked and limited. Moab extends
common share tree concepts to allow mixing of credential types, enforcement of ceiling and floor style usage
targets, and mixing of hierarchical fairshare state with other priority components.

6.3.4.1 Defining the Tree

The FSTREE parameter can be used to define and configure the share tree used in fairshare configuration.
This parameter supports the following attributes:

SHARES

Format: <COUNT>[@<PARTITION>][,<COUNT>[@<PARTITION>]]... where <COUNT> is a double and
<PARTITION> is a specified partition name.

Description: Specifies the node target usage or share.

Example:

#global general usage limits - negative priority jobs are considered 
in scheduling
ENABLENEGJOBPRIORITY   TRUE

# site policy - no job can last longer than 8 hours
USERCFG[DEFAULT] MAX.WCLIMIT=8:00:00 

# Note:  default user FS target only specified to apply default 
user-to-user balance
USERCFG[DEFAULT] FSTARGET=1

# high-level fairshare config
FSPOLICY       DEDICATEDPS
FSINTERVAL     12:00:00
FSDEPTH        32 #recycle FS every 16 days
FSDECAY        0.8 #favor more recent usage info

# qos config
QOSCFG[inst]    FSTARGET=25
QOSCFG[supp]    FSTARGET=5
QOSCFG[premium] FSTARGET=70

# account config (QoS access and fstargets)
# Note:  user-to-account mapping handled via allocation manager
# Note:  FS targets are percentage of total cluster, not percentage 
of QOS
ACCOUNTCFG[cs]   QLIST=inst    FSTARGET=10
ACCOUNTCFG[math] QLIST=inst    FSTARGET=15



  
MEMBERLIST

Format: Comma delimited list of child nodes of the format [<OBJECT_TYPE>]:<OBJECT_ID> where
object types are only specified for leaf nodes associated with user, group, class, qos, or
acct credentials.

Description: Specifies the tree objects associated with this node.

Example:

Current tree configuration and monitored usage distribution is available using the mdiag -f -v commands.

6.3.4.2 Controlling Tree Evaluation

Moab provides multiple policies to customize how the share tree is evaluated.

Policy Description

FSTREEISPROPORTIONAL Allows fs tree priority weighting to be proportional to usage discrepancies.

FSTREETIERMULTIPLIER Decreases the value of sub-level usage discrepancies.

FSTREECAP Caps lower level usage factors to prevent them from exceeding upper tier
discrepancies.

6.3.4.2.1 Using FS Floors and Ceilings with Hierarchical Fairshare

All standard fairshare facilities including target floors, target ceilings, and target caps are supported when
using hierarchical fairshare.

6.3.4.2.2 Multi-Partition Fairshare

Moab supports independent, per-partition hierarchical fairshare targets allowing each partition to possess
independent prioritization and usage constraint settings. This is accomplished by setting the SHARES
attribute of the FSTREE parameter and using the per-partition share specification.

In the following example, partition 1 is shared by the engineering and research departments, all organizations
are allowed to use various portions of partition 2, and partition 3 is only accessible by research and sales.

If no partition is specified for a given share value, then this value is assigned to the global partition. If

FSTREE[Eng]   SHARES=1500.5
FSTREE[Sales] SHARES=2800

FSTREE[root]   SHARES=100      MEMBERLIST=Eng,Sales
FSTREE[Eng]    SHARES=1500.5   
MEMBERLIST=user:john,user:steve,user:bob
FSTREE[Sales]  SHARES=2800     MEMBERLIST=Sales1,Sales2,Sales3
FSTREE[Sales1] SHARES=30       MEMBERLIST=user:kellyp,user:sam
FSTREE[Sales2] SHARES=10       
MEMBERLIST=user:ux43,user:ux44,user:ux45
FSTREE[Sales3] SHARES=60       MEMBERLIST=user:robert,user:tjackson

FSTREE[root]     SHARES=10000                         
MEMBERLIST=eng,research,sales
FSTREE[eng]      SHARES=500@par1,100@par2             
MEMBERLIST=user:johnt,user:stevek
FSTREE[research] SHARES=1000@par1,500@par2,2000@par3  
MEMBERLIST=user:barry,user:jsmith,user:bf4
FSTREE[sales]    SHARES=500@par2,1000@par3            
MEMBERLIST=user:jen,user:lisa



a partition exists for which there are no explicitly specified shares for any node, this partition will use
the share distribution assigned to the global partition.

6.3.4.2.3 Dynamically Importing Share Tree Data

Share trees can be centrally defined within a database, flat file, information service, or other system and this
information can be dynamically imported and used within Moab by setting the fstree parameter within the
Identity Manager Interface. This interface can be used to load current information at startup and periodically
synchronize this information with the master source.

Share trees defined within a flat file can be cumbersome; consider running tidy for xml to improve
readability. Sample usage:

Sample (truncated) output:

6.3.4.2.4 Specifying Share Tree Based Limits

Limits can be specified on internal nodes of the share tree using standard credential limit semantics as shown
in the following example:

6.3.4.2.5 Other Uses of Share Trees

If a share tree is defined, it can be used for purposes beyond fairshare. These include organizing general
usage and performance statistics for reporting purposes (see showstats -T), enforcement of tree node based
usage limits, and specification of resource access policies.

6.3.5 Importing Fairshare Data

Moab can import fairshare data from external sources. Global fairshare data can be imported using the
Identity Manager interface. To import global fairshare data, the total global fairshare usage must be imported
on the "sched" object through the identity manager in addition to the global fairshare usage and target for
particular credentials.

The following example shows a sample moab.cfg file that incorporates fairshare data from an external source
and factors it into job priority:

> tidy -i -xml goldy.cfg <filename> <output file>

FSTREE[tree]
<fstree>
  <tnode partition="g02" name="root" type="acct" share="100">
  
...

  </tnode>
</fstree>

FSTREE[sales]  SHARES=400  MAXJOB=15  MAXPROC=200  MEMBERLIST=s1,s2,s3
FSTREE[s1]     SHARES=150  MAXJOB=4   MAXPROC=40   
MEMBERLIST=user:ben,user:jum3
FSTREE[s2]     SHARES=50   MAXJOB=1   MAXPROC=50   
MEMBERLIST=user:carol,user:johnson
FSTREE[s3]     SHARES=200  MAXPS=4000 MAXPROC=150  
MEMBERLIST=s3a,s3b,s3c

IDCFG[gfs]        SERVER="file:///$HOME/tools/id.txt" 
REFRESHPERIOD=minute

FSPOLICY          DEDICATEDPS



In this example, Moab imports fairshare information from an external source and uses it to calculate a job's
priority.

See Also
mdiag -f command

provides diagnosis and monitoring of the fairshare facility
FSENABLECAPPRIORITY parameter
ENABLEFSPREEMPTION parameter
ENABLESPPREEMPTION parameter
FSTARGETISABSOLUTE parameter

FSWEIGHT          1
FSGUSERWEIGHT     1
FSGGROUPWEIGHT    1
FSGACCOUNTWEIGHT  1

sched globalfsusage=890
user:wightman   globalfsusage=8  globalfstarget=100
group:wightman  globalfsusage=8  globalfstarget=10
acct:project    globalfsusage=24 globalfstarget=50

$ mdiag -p -v
diagnosing job priority information (partition: ALL)

Job                    PRIORITY*     FS(GUser: GGrp:GAcct)  Serv(QTime)
             Weights   --------       1(    1:    1:    1)     1(    1)

16                          157    99.4( 99.9:  9.1: 47.3)   0.6(  1.0)

Percent Contribution   --------    99.4( 63.5:  5.8: 30.1)   0.6(  
0.6)



Sample FairShare Data File

FS.<EPOCHTIME>

Note: The total usage consumed in this time interval is 7081435.840 processor-seconds. Since every job in
this example scenario had a user, group, account, and QOS assigned to it, the sum of the usage of all
members of each category should equal the total usage value (i.e., USERA + USERB + USERC + USERD =
GROUPA + GROUPB = ACCTA + ACCTB + ACCTC = QOS0 + QOS1 + QOS2 = SCHED).

# FS Data File (Duration:  43200 seconds)  Starting: Sat Jul  8 
06:00:20

user                jvella   134087.910
user              reynolds    98283.840
user                gastor    18751.770
user                uannan   145551.260
user               mwillis   149279.140
...
group              DEFAULT   411628.980
group              RedRock  3121560.280
group               Summit   500327.640
group               Arches  3047918.940
acct        Administration   653559.290
acct           Engineering  4746858.620
acct                Shared    75033.020
acct              Research  1605984.910
qos               Deadline  2727971.100
qos           HighPriority  4278431.720
qos               STANDARD    75033.020
class                batch  7081435.840
sched             iCluster  7081435.840



6.4 Charging and Allocation Management
6.4.1 Charging and Allocation Management Overview
6.4.2 Using an External Allocation Manager

6.4.2.1 Configuring the Allocation Manager Interface
6.4.2.3 Allocation Management Policies
6.4.2.3 Allocation Charge Rates

6.4.3 Allocation Manager Details
6.4.3.1 Gold Allocation Manager
6.4.3.2 Native Allocation Manager
6.4.3.3 File Allocation Manager

6.4.1 Charging and Allocation Management Overview
Charging is the process of assigning a value to the use of resources and tracking this usage on a per
consumer basis. Often, charging is accompanied by a corresponding assignment of resources (an allocation)
to each consumer. Within Moab, charging can be quite flexible. Moab supports the following:

1. Assignment of fixed, expirable allocations to users, groups, and projects
2. Assignment of fixed, non-expirable allocations to users, groups, and projects
3. Assignment of dynamic allocations available within a sliding window
4. Specification of Quality of Service levels with distinct service targets and charging rates
5. Management over which consumers can request/access which Quality of Service levels
6. Ability to specify the metric of consumption for charging (i.e., CPU hours, dedicated node hours, PE's,

etc.)
7. Ability to charge by requested QoS, delivered QoS, or other factors
8. Creation of complete persistent internal record of services delivered and resources allocated
9. Ability to call out to external auditing/accounting systems in real-time to authorize usage

10. Ability to call out to external auditing/accounting systems in real-time to register usage
11. Ability to adjust charge rates according to the configuration of resources allocated (i.e., processor

speed, RAM installed, etc.)

6.4.2 Using an External Allocation Manager
An allocation manager (also known as an allocation bank or CPU bank) is a software system that manages
resource allocations. A resource allocation grants a job a right to use a particular amount of resources. While
full details of each allocation manager may be found within its respective documentation, the following brief
review highlights a few of the values of using such a system.

An allocation manager functions much like a bank in that it provides a form of currency that allows jobs to
run on an HPC system. The owners of the resource (cluster/supercomputer) determine how they want the
system to be used (often via an allocations committee) over a particular time frame—often a month, quarter,
or year. To enforce their decisions, they distribute allocations to various projects via accounts and assign
each account an account manager. These allocations can be used for particular machines or globally. They
can also have activation and expiration dates associated with them. All transaction information is typically
stored in a database or directory server allowing extensive statistical and allocation tracking.

Each account manager determines how the allocations are made available to individual users within a project.
Allocation managers such as Gold (from U.S. Dept of Energy) allow the account manager to dedicate portions
of the overall allocation to individual users, specify some allocations as shared by all users, and hold some of
the allocations in reserve for later use.

When using an allocations manager, each job must be associated with an account. To accomplish this with
minimal user impact, the allocation manager could be set up to handle default accounts on a per user basis.
However, as is often the case, some users may be active on more than one project and thus have access to
more than one account. In these situations, a mechanism, such as a job command file keyword, should be
provided to allow a user to specify which account should be associated with the job.

The amount of each job's allocation charge is directly associated with the amount of resources used
(processors) by that job and the amount of time it was used. Optionally, the allocation manager can also be

http://www.emsl.pnl.gov/docs/mscf/gold/


configured to charge accounts varying amounts based on the QoS desired by the job, the type of compute
resources used, and the time when the resources were used (both in terms of time of day and day of week).

The allocation manager interface provides near real-time allocation management, giving a great deal of
flexibility and control over how available compute resources are used over the medium- and long-term, and
works hand-in-hand with other job management features such as Moab's usage limit policies and fairshare
mechanism.

The ENFORCEACCOUNTACCESS parameter controls whether the scheduler enforces account
constraints.

6.4.2.1 Configuring the Allocation Manager Interface

Moab's allocation manager interface(s) are defined using the AMCFG parameter. This parameter allows
specification of key aspects of the interface as shown in the following table:

APPENDMACHINENAME CHARGEPOLICY FALLBACKACCOUNT FALLBACKQOS

FLUSHINTERVAL FLAGS NODECHARGEPOLICY SERVER

SOCKETPROTOCOL STRICTQUOTE TIMEOUT WIREPROTOCOL

JOBFAILUREACTION

APPENDMACHINENAME

Format: BOOLEAN

Default: FALSE

Description: If specified, Moab appends the machine name to the consumer account to create a unique
account name per cluster.

Example:

Moab appends the machine name to each account before making a debit from the allocation
manager.

  
CHARGEPOLICY

Format: one of DEBITALLWC, DEBITALLCPU, DEBITALLPE, DEBITALLBLOCKED,
DEBITSUCCESSFULWC, DEBITSUCCESSFULCPU, DEBITSUCCESSFULPE, or
DEBITSUCCESSFULBLOCKED

Default: DEBITSUCCESSFULWC

Description: Specifies how consumed resources should be charged against the consumer's credentials. See
Charge Policy Overview for details.

Example:

Allocation charges are based on actual CPU usage only, not dedicated CPU resources.
If the LOCALCOST flag (AMCFG[] FLAGS=LOCALCOST) is set, Moab uses the information
gathered with CHARGEPOLICY to calculate charges. If LOCALCOST is not set, Moab
sends this information to Gold to calculate charges.

  
FALLBACKACCOUNT

Format: STRING

Default: ---

Description: If specified, Moab verifies adequate allocations for all new jobs. If adequate allocations are not
available in the job's primary account, Moab changes the job's credentials to use the fallback

AMCFG[tg13] APPENDMACHINENAME=TRUE

AMCFG[bank] CHARGEPOLICY=DEBITALLCPU



account. If not specified, Moab places a hold on jobs that do not have adequate allocations in
their primary account.

Example:

Moab assigns the account freecycle to jobs that do not have adequate allocations in their
primary account. 

When both FALLBACKACCOUNT and FALLBACKQOS are specified, only
FALLBACKACCOUNT takes effect.

  
FALLBACKQOS

Format: STRING

Default: ---

Description: If specified, Moab verifies adequate allocations for all new jobs. If adequate allocations are not
available in the job's primary QoS, Moab changes the job's credentials to use the fallback QoS.
If not specified, Moab places a hold on jobs that do not have adequate allocations in their
primary QoS.

Example:

Moab assigns the QoS freecycle to jobs that do not have adequate allocations in their
primary QoS. 

When both FALLBACKACCOUNT and FALLBACKQOS are specified, only
FALLBACKACCOUNT takes effect.

  
FLAGS

Format: <STRING>

Default: ---

Description: AMCFG flags are used to enable special services.

Example:

Moab calculates the charge for the job locally and sends that as a charge to Gold, which then
charges that amount for the job. This prevents Gold from having to calculate the charge for
the job itself.

  
FLUSHINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 24:00:00

Description: Indicates the amount of time between allocation manager debits for long running reservation
and job based charges.

Example:

Moab updates its charges every twelve hours for long running jobs and reservations.

  
JOBFAILUREACTION

AMCFG[bank] FALLBACKACCOUNT=freecycle

AMCFG[bank] FALLBACKQOS=freecycle

AMCFG[xxxx] FLAGS=LOCALCOST

AMCFG[bank] FLUSHINTERVAL=12:00:00



Format: <SERVERFAILUREACTION>[,<FUNDSFAILUREACTION>] where the action is one of CANCEL,
HOLD, IGNORE, or RETRY

Default: IGNORE,HOLD

Description: The server failure action is taken if the allocation manager is down or otherwise unresponsive.
The funds failure action is taken if the allocation manager reports that insufficient allocations
are available to execute the job under the given user and account. If the action is set to
CANCEL, Moab cancels the job; if set to HOLD, Moab defers the job; if set to IGNORE, Moab
ignores the failure and continues to start the job; if set to RETRY, Moab does not start the job
on this attempt but will attempt to start the job at the next opportunity.

Example:

Allocation management is strictly enforced, preventing jobs from starting if the allocation
manager is unavailable.

  
NODECHARGEPOLICY

Format: one of AVG, MAX, or MIN

Default: MIN

Description: When charging for resource usage, the allocation manager will charge by node allocation
according to the specified policy. For AVG, MAX, and MIN, the allocation manager will charge
by the average, maximum, and minimum node charge rate of all allocated nodes. (Also see
CHARGEPOLICY attribute.)

Example:

Allocation management charges jobs by the maximum allocated node's charge rate.

  
SERVER

Format: URL

Default: N/A

Description: Specifies the type and location of the allocation manager service. If the keyword ANY is
specified instead of a URL, Moab will use the local service directory to locate the allocation
manager. 

The URL protocol must be one of file or gold.

Example:

  
SOCKETPROTOCOL

Format: one of SUTCP, SSS-HALF, HTTP, or SSS-CHALLENGE

Default: SSS-HALF

Description: Specifies the socket protocol to be used for scheduler-allocation manager communication.

Example:

AMCFG[wg13] JOBFAILUREACTION=HOLD

NODECFG[node01]  CHARGERATE=1.5
NODECFG[node02]  CHARGERATE=1.75
AMCFG[wg13] NODECHARGEPOLICY=MAX

AMCFG[bio-sys] SERVER=gold://tiny.supercluster.org:4368

AMCFG[bank] SOCKETPROTOCOL=SSS-CHALLENGE



  
TIMEOUT

Format: [[[DD:]HH:]MM:]SS

Default: 15

Description: Specifies the maximum delay allowed for scheduler-allocation manager communications.

Example:

  
WIREPROTOCOL

Format: one of AVP, HTML, SSS2, or XML

Default: XML

Description: Specifies the wire protocol to be used for scheduler-allocation manager communication.

Example:

The first step to configure the allocation manager involves specifying where the allocation service can be
found. This is accomplished by setting the AMCFG parameter's SERVER attribute to the appropriate URL.

After the interface URL is specified, secure communications between scheduler and allocation manager must
be enabled. As with other interfaces, this is configured using the CLIENTCFG parameter within the moab-
private.cfg file as described in the Security Appendix. In the case of an allocation manager, the KEY and
AUTHTYPE attributes should be set to values defined during initial allocation manager build and
configuration as in the following example:

6.4.2.2 AMCFG Flags

AMCFG flags can be used to enable special services and to disable default services. These services are
enabled/disabled by setting the AMCFG FLAGS attribute.

Flag Name Description

ACCOUNTFAILASFUNDS When this flag is set, logic failures within the Allocation Manager are treated as
fund failures and are canceled. When ACCOUNTFAILASFUNDS is not set,
Allocation Manager failures are treated as a server failure and the result is a job
which requests an account to which the user does not have access.

LOCALCOST Moab calculates the charge for the job locally and sends that as a charge to Gold,
which then charges the amount for the job, instead of calculating the charge in
Gold. This flag has only been tested for the Gold allocation manager.

STRICTQUOTE Sends an estimated process count from Moab to Gold when an initial quote is
requested for a newly-submitted job.

6.4.2.3 Allocation Management Policies

In most cases, the scheduler interfaces with a peer service. (If the protocol FILE is specified, the allocation
manager transactions are written to the specified flat file.) With all peer services based allocation managers,
the scheduler checks with the allocation manager before starting any job. For allocation tracking to work,
however, each job must specify an account to charge or the allocation manager must be set up to handle
default accounts on a per user basis.

AMCFG[bank] TIMEOUT=30

AMCFG[bank] WIREPROTOCOL=SSS2

CLIENTCFG[AM:bank] KEY=mysecr3t AUTHTYPE=HMAC64



Under this configuration, when Moab starts a job, it contacts the allocation manager and requests an
allocation reservation (or lien) be placed on the associated account. This allocation reservation is equivalent to
the total amount of allocation that could be consumed by the job (based on the job's wallclock limit) and is
used to prevent the possibility of allocation over subscription. Moab then starts the job. When the job
completes, Moab debits the amount of allocation actually consumed by the job from the job's account and
then releases the allocation reservation, or lien.

These steps should be transparent to users. Only when an account has insufficient allocations to run a
requested job will the presence of the allocation manager be noticed. If preferred, an account may be
specified for use when a job's primary account is out of allocations. This account, specified using the AMCFG
parameter's FALLBACKACCOUNT attribute, is often associated with a low QoS privilege and priority, and is
often configured to run only when no other jobs are present.

The scheduler can also be configured to charge for reservations. One of the big hesitations with dedicating
resources to a particular group is that if the resources are not used by that group, they go idle and are
wasted. By configuring a reservation to be chargeable, sites can charge every idle cycle of the reservation to
a particular project. When the reservation is in use, the consumed resources will be associated with the
account of the job using the resources. When the resources are idle, the resources will be charged to the
reservation's charge account. In the case of standing reservations, this account is specified using the
parameter SRCFG attribute CHARGEACCOUNT. In the case of administrative reservations, this account is
specified via a command line flag to the setres command.

Moab only interfaces to the allocation manager when running in NORMAL mode. However, this behavior can
be overridden by setting the environment variable MOABAMTEST to any value. With this variable set, Moab
attempts to interface to the allocation manager regardless of the scheduler's mode of operation.

Charge Metrics

The allocation manager interface allows a site to charge accounts in a number of different ways. Some sites
may wish to charge for all jobs regardless of whether the job completed successfully. Sites may also want to
charge based on differing usage metrics, such as dedicated wallclock time or processors actually used. Moab
supports the following charge policies specified via the CHARGEPOLICY attribute:

DEBITALLWC - Charges all jobs regardless of job completion state using processor weighted wallclock
time dedicated as the usage metric.
DEBITALLCPU - Charges all jobs based on processors used by job.
DEBITALLPE - Charges all jobs based on processor-equivalents dedicated to job,
DEBITALLBLOCKED - Charges all jobs based on processors dedicated and blocked according to node
access policy or QoS node exclusivity.
DEBITREQUESTEDWC - Charges for reservations based on requested wallclock time. Only applicable
when using virtual private clusters.
DEBITSUCCESSFULWC - Charges only jobs that successfully complete using processor weighted
wallclock time dedicated as the usage metric. This is the default metric.
DEBITSUCCESSFULCPU - Charges only jobs that successfully complete using CPU time as the usage
metric.
DEBITSUCCESSFULPE - Charges only jobs that successfully complete using PE weighted wallclock
time dedicated as the usage metric.
DEBITSUCCESSFULBLOCKED - Charges only jobs that successfully complete based on processors
dedicated and blocked according to node access policy or QoS node exclusivity.

On systems where job wallclock limits are specified, jobs that exceed their wallclock limits and are
subsequently canceled by the scheduler or resource manager are considered to have successfully
completed as far as charging is concerned, even though the resource manager may report these jobs
as having been removed or canceled.

If machine-specific allocations are created within the allocation manager, the allocation manager
machine name should be synchronized with the Moab resource manager name as specified with the
RMCFG parameter, such as the name orion in RMCFG[orion] TYPE=PBS.

To control how jobs are charged when heterogeneous resources are allocated and per resource charges
may vary within the job, use the NODECHARGEPOLICY attribute.

When calculating the cost of the job, Moab will use the most restrictive node access policy. See
NODEACCESSPOLICY for more information.

Allocation Management Example



In the following example, Moab charges allocations according to blocked resources and records these charges
in the specified file.

6.4.2.3 Allocation Charge Rates

By default, Moab refers the decision of how much to charge to the allocation manager itself. However, if
using the FILE Allocation Manager, job and reservation charge rates can be specified on a per-QoS basis
using the DEDRESCOST parameter. If using the Gold Allocation Manager, per-QoS charge rates can be
configured in Gold as demonstrated in these examples.

6.4.3.1 Gold Allocation Manager

Gold is an accounting and allocation management system developed at PNNL under the DOE Scalable
Systems Software (SSS) project. Gold supports a dynamic approach to allocation tracking and enforcement
with reservations, quotations, and so forth. It offers more flexible controls for managing access to
computational resources and exhibits a more powerful query interface. Gold supports hierarchical project
nesting. Journaling allows preservation of all historical state information.

Gold is dynamically extensible. New object/record types and their fields can be dynamically created and
manipulated through the regular query language turning this system into a generalized accounting and
information service. This capability offers custom accounting, meta-scheduler resource-mapping, and an
external persistence interface.

Gold supports strong authentication and encryption and role based access control. Gold features a powerful
web-based GUI for easy remote access for users, managers and administrators. Gold supports interaction
with peer accounting systems with a traceback feature enabling it to function in a meta-scheduling or grid
environment.

To configure a Gold allocation manager interface, set the SERVER attribute to point to the Gold server host
and port; example follows:

moab.cfg:

moab-private.cfg:

Create the secret key by running make auth_key during configuration.

Monitor Mode

Gold can be enabled in an effective monitor-only mode where resource consumption is tracked but under no
cases are jobs blocked or delayed based on allocation status. In this mode, full Gold reporting and accounting
information is available.

1. Create an account that is valid for all projects, users, and machines.

AMCFG[local] SERVER=file://opt/moab/chargelog.txt  
CHARGEPOLICY=DEBITALLBLOCKED

NODEACCESSPOLICY          SINGLEJOB
...

AMCFG[bank] SERVER=gold://master.ufl.edu JOBFAILUREACTION=IGNORE 
TIMEOUT=15
...

CLIENTCFG[AM:bank] KEY=mysecr3t AUTHTYPE=HMAC64
...

[root]# make auth_key

http://www.adaptivecomputing.com/resources/docs/gold/c2802.php
http://www.adaptivecomputing.com/resources/docs/gold


2. Create an allocation with massive funds and no time bounds (using the account number created by the
previous command).

3. To prevent failures due to unknown users, users that don't belong to the specified projects, and so
forth, edit goldd.conf to automatically create users, projects, and machines.

6.4.3.2 Native Allocation Manager

The native allocation manager interface model has not been tested with HPC workload; it has only
been tested with VPC style clouds.

The native allocation manager permits Moab to interface with a separate allocation manager to perform
allocation management functions such as charging, billing, charge queries, and so forth so long as the
separate allocation manager uses a native Wiki interface.

The design for the native allocation manager interface (NAMI) is different from Gold. NAMI extracts logic from
Moab and places it in the native software. Moab acts as the event engine for the native software. That is,
Moab sends XML that defines an object to a variety of URLs that signify events. Moab currently supports the
following URLs:

Create
Delete
Quote
Reserve
Charge

A user runs the mshow command and Moab calls to NAMI to get the QUOTE for the requested resources. If
the TID is committed, then Moab calls the CREATE and RESERVE URLS for each object (reservation or job).
Depending on the flush interval Moab periodically calls out to the CHARGE URL. When the object has reached
its end of life Moab calls out to CHARGE and finally DELETE. Moab keeps track of the last time the object was
charged, but it does not re-create reservations when restarting nor for intermittent charging. If Moab is down
during a flush interval, then Moab does not attempt to catch up; it simply charges double the next flush
interval.

The following is sample XML for the life of a particular object from Quote to Delete:

URL XML

Quote

Create

> gmkaccount -n ANY -p ANY -u ANY -m ANY

Successfully created Account 5

> gdeposit -a 5 1000000000000

Successfully deposited 1000000000000 credits into account 5

user.autogen = true
project.autogen = true
machine.autogen = true

<Reservation>
  <ObjectID>cost</ObjectID>
  <Processors>1</Processors>
  <WallDuration>12960000</WallDuration>
  <ChargeDuration>12960000</ChargeDuration>
</Reservation>

<Reservation>
  <ObjectID>host.1</ObjectID>
  <User>test</User>



Reserve

Charge

Delete

Note that only the Quote URL should return any information. It should return nothing more than the cost of
the object—no words—just the cost.

The following is a representation of how you might set up the native allocation manager interface in the Moab
configuration file (moab.cfg):

To view URL output, run mdiag -R -v. The following shows sample output from running the mdiag

  <Processors>1</Processors>
  <WallDuration>12959999</WallDuration>
  <ChargeDuration>12959999</ChargeDuration>
</Reservation>

<Reservation>
  <ObjectID>host.1</ObjectID>
  <User>test</User>
  <Account>blue</Account>
  <Processors>1</Processors>
  <WallDuration>12959999</WallDuration>
  <ChargeDuration>12959999</ChargeDuration>
  <Var name="VPCHOSTLIST">n05</Var>
  <Var name="VPCID">vpc.1</Var>
</Reservation>

<Reservation>
  <ObjectID>host.2</ObjectID>
  <User>test</User>
  <Account>blue</Account>
  <WallDuration>12959999</WallDuration>
  <ChargeDuration>108</ChargeDuration>
  <Var name="blue">green</Var>
  <Var name="VPCHOSTLIST">n05,GLOBAL</Var>
  <Var name="VPCID">vpc.1</Var>
  <GRes name="storage">100</GRes>
</Reservation>

<Reservation>
  <ObjectID>host.2</ObjectID>
  <User>test</User>
  <Account>blue</Account>
  <WallDuration>12959999</WallDuration>
  <ChargeDuration>12959999</ChargeDuration>
  <Var name="blue">green</Var>
  <Var name="VPCHOSTLIST">n05,GLOBAL</Var>
  <Var name="VPCID">vpc.1</Var>
  <GRes name="storage">100</GRes>
</Reservation>

AMCFG[bank] TYPE=NATIVE
AMCFG[bank] ChargeURL=exec://$HOME/tools/bank.charge.pl
AMCFG[bank] DeleteURL=exec:///$HOME/tools/bank.delete.pl
AMCFG[bank] CreateURL=exec:///$HOME/tools/bank.create.pl
AMCFG[bank] ReserveURL=exec:///$HOME/tools/bank.reserve.pl
AMCFG[bank] QuoteURL=exec:///$HOME/tools/bank.quote.pl
AMCFG[bank] FLUSHINTERVAL=hour



command:

6.4.3.3 File Allocation Manager

The file allocation manager protocol allows a site to append job allocation records directly to a local file for
batch processing by local allocation management systems. These records are line delimited with whitespace
delimited attributes. Specifically, the file job usage record uses the following format:

WITHDRAWAL TYPE=job MACHINE=<MACHINENAME> ACCOUNT=<PROJECTNAME> USER=<USERNAME>
PROCS=<PROCCOUNT> PROCCRATE=<PROCRATE> RESOURCETYPE=<NODETYPE> DURATION=<WALLDURATION>
REQUESTID=<JOBID>

For example, the following record might be created:

To configure a file allocation manager interface, set the SERVER attribute to point to the local file pathname
as follows:

See Also
Internal Charging
Per Class DISABLEAM attribute
Charging for Reservations

AM[bank] Type: native State: 'Active'
  FlushPeriod: HOUR
  Charge URL: ChargeURL=exec:///$HOME/tools/charge.pl
  Delete URL: DeleteURL=exec:///$HOME/tools/delete.pl
  Quote URL: QuoteURL=exec:///$HOME/tools/quote.pl
  Reserve URL: ReserveURL=exec:///$HOME/tools/reserve.pl
  Create URL: CreateURL=exec:///$HOME/tools/create.pl

WITHDRAWAL TYPE=job MACHINE=ia; ACCOUNT=s USER=jb PROCS=64 
PROCCRATE=0.93 RESOURCETYPE=ia64 DURATION=60 REQUESTID=1632

AMCFG[local] SERVER=file:///opt/data/alloc.txt



6.5 Internal Charging Facilities
6.5.1 Internal Charging Overview
Moab provides internal support for a number of allocation management tasks and policies. In terms of
charging, these facilities include the ability to assign per resource, per user, and per QoS charging rates. For
resource allocation, it supports the ability to allocate fixed per user, group, project, and QoS allocations as
well as the ability to enable sliding window based resource allocations.

Per resource charging rates are specified using the CHARGERATE attribute of the NODECFG parameter. This
attribute is supported for both DEFAULT and specific node configurations.

Per QoS charging is covered in detail in the QoS Charging section.

Sliding window based resource allocations are enabled by configuring the fairshare facility and enabling cap
based targets as documented in the Fairshare Targets section.

Credits can be granted to accounts using the CREDITS attribute of the ACCOUNTCFG parameter
(ACCOUNTCFG[<name>] CREDITS=<FLOAT>). When a job finishes, its cost (determined by the per QoS charging
facility) is debited from the credits of the account under which it ran. This allows sites to allocate credits to
certain accounts.

Example

The following configuration highlights some of these capabilities. The first two lines define the charging policy.
In this case, jobs are charged based on wallclock time and requested quality of service. The next two lines
indicate that jobs requesting the special services available within the premium QoS are charged at a rate 10x
that of other jobs. The ACCOUNTCFG lines provide a number of consumable credits to the specified accounts.
Resources used by jobs associated with these accounts are charged against these credits. Finally, for auditing
purposes, the AMCFG file is added to cause Moab to report all charging based actions to an allocation manager
events file.

This setup charges each job 10.0 credits for each second it runs inside the QoS premium. After each job
runs, its cost is added to the total amount of credits used.

Unlike full allocation management systems, Moab's internal charging facility filters jobs to verify
adequate allocations exist before starting but to prevent oversubscription, does not create a true real-
time allocation reservation at job start time.

6.5.2 Managing Internal Charging
Current internal charging credit status can be viewed using the Moab Cluster Manager graphical administrator
tool or by issuing mdiag -a at a command line.

SCHEDCFG[sched] CHARGERATEPOLICY=QOSREQ
SCHEDCFG[sched] CHARGEMETRICPOLICY=DEBITALLWC

QOSCFG[premium] DEDRESCOST=10.0
QOSCFG[DEFAULT] DEDRESCOST=1.0

ACCOUNTCFG[marketing]   CREDITS=85000
ACCOUNTCFG[sales]       CREDITS=13500
ACCOUNTCFG[development] CREDITS=50000

AMCFG[local]    SERVER=FILE:///opt/moab/charging.log

> mdiag -a
evaluating acct information
Name         Priority        Flags         QDef      QOSList*        
PartitionList Target  Limits

http://www.adaptivecomputing.com/resources/docs/mcm


Both base credit and used credit values can be dynamically adjusted using the mschedctl -m command as in
the following example:

See Also
Allocation Management Overview

marketing           0            -            -            -                     
-   0.00       -
  Note:  36100.00 of 85000.00 credits available
development         0            -            -            -                     
-   0.00       -
  Note:  49650.00 of 50000.00 credits available
sales               0            -            -            -                     
-   0.00       -
  Note:  425.00 of 13500.00 credits available
...

# set available credits to 15K for sales
> mschedctl -m --flags=pers "ACCOUNTCFG[sales]     CREDITS=15000"

# give an additional 125K credits to marketing
> mschedctl -m --flags=pers "ACCOUNTCFG[marketing] CREDITS+=125000"

# give marketing a refund of 5K credits
> mschedctl -m --flags=pers "ACCOUNTCFG[marketing] USEDCREDITS-=5000"



7.0 Controlling Resource Access - Reservations,
Partitions, and QoS Facilities

7.1 Advance Reservations
7.2 Partitions
7.3 QoS Facilities



7.1 Advance Reservations
An advance reservation is the mechanism by which Moab guarantees the availability of a set of resources at a
particular time. Each reservation consists of three major components: (1) a set of resources, (2) a time
frame, and (3) an access control list. It is a scheduler role to ensure that the access control list is not violated
during the reservation's lifetime (that is, its time frame) on the resources listed. For example, a reservation
may specify that node002 is reserved for user Tom on Friday. The scheduler is thus constrained to make
certain that only Tom's jobs can use node002 at any time on Friday. Advance reservation technology enables
many features including backfill, deadline based scheduling, QOS support, and grid scheduling.

7.1.1 Reservation Overview
7.1.2 Administrative Reservations
7.1.3 Standing Reservations
7.1.4 Reservation Policies
7.1.5 Configuring and Managing Reservations
7.1.6 Enabling Reservations for End-users



7.1.1 Reservation Overview
7.1.1.1 Resources
7.1.1.2 TimeFrame
7.1.1.3 Access Control List
7.1.1.4 Job to Reservation Binding
7.1.1.5 Reservation Specification
7.1.1.6 Reservation Behavior
7.1.1.7 Reservation Group

Every reservation consists of 3 major components: (1) a set of resources, (2) a time frame, and (3) an
access control list. Additionally, a reservation may also have a number of optional attributes controlling its
behavior and interaction with other aspects of scheduling. Reservation attribute descriptions follow.

7.1.1.1 Resources
Under Moab, the resources specified for a reservation are specified by way of a task description.
Conceptually, a task can be thought of as an atomic, or indivisible, collection of resources. The resources may
include processors, memory, swap, local disk, and so forth. For example, a single task may consist of one
processor, 2 GB of memory, and 10 GB of local disk. A reservation consists of one or more tasks. In
attempting to locate the resources required for a particular reservation, Moab examines all feasible resources
and locates the needed resources in groups specified by the task description. An example may help clarify
this concept:

Reservation A requires four tasks. Each task is defined as 1 processor and 1 GB of memory.

Node X has 2 processors and 3 GB of memory available 
Node Y has 2 processors and 1 GB of memory available 
Node Z has 2 processors and 2 GB of memory available

When collecting the resources needed for the reservation, Moab examines each node in turn. Moab finds that
Node X can support 2 of the 4 tasks needed by reserving 2 processors and 2 GB of memory, leaving 1 GB of
memory unreserved. Analysis of Node Y shows that it can only support 1 task reserving 1 processor and 1
GB of memory, leaving 1 processor unreserved. Note that the unreserved memory on Node X cannot be
combined with the unreserved processor on Node Y to satisfy the needs of another task because a task
requires all resources to be located on the same node. Finally, analysis finds that node Z can support 2 tasks,
fully reserving all of its resources.

Both reservations and jobs use the concept of a task description in specifying how resources should be
allocated. It is important to note that although a task description is used to allocate resources to a
reservation, this description does not in any way constrain the use of those resources by a job. In the above
example, a job requesting resources simply sees 4 processors and 4 GB of memory available in reservation A.
If the job has access to the reserved resources and the resources meet the other requirements of the job,
the job could use these resources according to its own task description and needs.

Currently, the resources that can be associated with reservations include processors, memory, swap, local
disk, initiator classes, and any number of arbitrary resources. Arbitrary resources may include peripherals
such as tape drives, software licenses, or any other site specific resource.

7.1.1.2 Time Frame
Associated with each reservation is a time frame. This specifies when the resources will be reserved or
dedicated to jobs that meet the reservation's access control list (ACL). The time frame simply consists of a
start time and an end time. When configuring a reservation, this information may be specified as a start time
together with either an end time or a duration.

7.1.1.3 Access Control List
A reservation's access control list specifies which jobs can use a reservation. Only jobs that meet one or
more of a reservation's access criteria are allowed to use the reserved resources during the reservation time
frame. Currently, the reservation access criteria include the following: users, groups, accounts, classes, QOS,



job attributes, job duration, and job templates.

7.1.1.4 Job to Reservation Binding
While a reservation's ACL will allow particular jobs to use reserved resources, it does not force any job to use
these resources. With each job, Moab attempts to locate the best possible combination of available resources
whether these are reserved or unreserved. For example, in the following figure, note that job X, which meets
access criteria for both reservation A and B, allocates a portion of its resources from each reservation and
the remainder from resources outside of both reservations.

Although by default, reservations make resources available to jobs that meet particular criteria, Moab can be
configured to constrain jobs to only run within accessible reservations. This can be requested by the user on
a job by job basis using a resource manager extension flag, or it can be enabled administratively via a QoS
flag. For example, assume two reservations were created as follows:

If the user john, who happened to also be a member of the group staff, wanted to force a job to run within
a particular reservation, john could do so using the FLAGS resource manager extension. Specifically, in the
case of a PBS job, the following submission would force the job to run within the staff.1 reservation.

Note that for this to work, PBS needs to have resource manager extensions enabled as described in the PBS
Resource Manager Extension Overview. (TORQUE has resource manager extensions enabled by default.) If
the user wants the job to run on reserved resources but does not care which, the user could submit the job
with the following:

To enable job to reservation mapping via QoS, the QoS flag USERESERVED should be set in a similar
manner.

Use the reservation BYNAME flag to require explicit binding for reservation access.

7.1.1.5 Reservation Specification
There are two main types of reservations that sites typically deal with. The first, administrative reservations,
are typically one-time reservations created for special purposes and projects. These reservations are created

> mrsvctl -c -a GROUP==staff -d 8:00:00 -h 'node[1-4]'

reservation staff.1 created

> mrsvctl -c -a USER==john -t 2

reservation john.2 created

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES:staff.1 testjob.cmd

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES testjob.cmd

http://sempa/resources/docs/blanks/mwm/13.3.1pbsrmextensions.php
http://sempa/resources/docs/blanks/mwm/13.3.1pbsrmextensions.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


using the mrsvctl or setres commands. These reservations provide an integrated mechanism to allow graceful
management of unexpected system maintenance, temporary projects, and time critical demonstrations. This
command allows an administrator to select a particular set of resources or just specify the quantity of
resources needed. For example an administrator could use a regular expression to request a reservation be
created on the nodes blue0[1-9] or could simply request that the reservation locate the needed resources
by specifying a quantity based request such as TASKS==20.

The second type of reservation is called a standing reservation. It is specified using the SRCFG parameter
and is of use when there is a recurring need for a particular type of resource distribution. Standing
reservations are a powerful, flexible, and efficient means for enabling persistent or periodic policies such as
those often enabled using classes or queues. For example, a site could use a standing reservation to reserve
a subset of its compute resources for quick turnaround jobs during business hours on Monday thru Friday.
The Standing Reservation Overview provides more information about configuring and using these
reservations.

7.1.1.6 Reservation Behavior
As previously mentioned, a given reservation may have one or more access criteria. A job can use the
reserved resources if it meets at least one of these access criteria. It is possible to stack multiple reservations
on the same node. In such a situation, a job can only use the given node if it has access to each active
reservation on the node.

7.1.1.7 Reservation Group
Reservations groups are ways of associating multiple reservations. This association is useful for variable
namespace and reservation requests. The reservations in a group inherit the variables from the reservation
group head, but if the same variable is set locally on a reservation in the group, the local variable overrides
the inherited variable. Variable inheritance is useful for triggers and VPCs as it provides greater flexibility with
automating certain tasks and system behaviors.

Jobs may be bound to a reservation group (instead of a single reservation) by using the resource manager
extension ADVRES.

See Also
Reservation Allocation Policies
Reservation Re-Allocation Policies



7.1.2 Administrative Reservations
7.1.2.1 Annotating Administrative Reservations
7.1.2.2 Using Reservation Profiles
7.1.2.3 Optimizing Maintenance Reservations

Administrative reservations behave much like standing reservations but are generally created to address non-
periodic, one-time issues. All administrative reservations are created using the mrsvctl -c (or setres)
command and are persistent until they expire or are removed using the mrsvctl -r (or releaseres) command.

7.1.2.1 Annotating Administrative Reservations
Reservations can be labeled and annotated using comments allowing other administrators, local users, portals
and other services to obtain more detailed information regarding the reservations. Naming and annotations
are configured using the -n and -D options of the mrsvctl command respectively as in the following
example:

7.1.2.2 Using Reservation Profiles
You can set up reservation profiles to avoid manually and repetitively inputting standard reservation
attributes. Profiles can specify reservation names, descriptions, ACLs, durations, hostlists, triggers, flags, and
other aspects that are commonly used. With a reservation profile defined, a new administrative reservation
can be created that uses this profile by specifying the -P flag as in the following example:

Example 2: Non-Blocking System Reservations with Scheduler Pause

7.1.2.3 Optimizing Maintenance Reservations
Any reservation causes some negative impact on cluster performance as it further limits the scheduler's
ability to optimize scheduling decisions. You can mitigate this impact by using flexible ACLs and triggers.

In particular, a maintenance reservation can be configured to reduce its effective reservation shadow by
allowing overlap with checkpointable/preemptible jobs until the time the reservation becomes active. This can
be done using a series of triggers that perform the following actions:

Modify the reservation to disable preemption access.
Preempt jobs that may overlap the reservation.

> mrsvctl -c -D 'testing infiniband performance' -n nettest -h 
'r:agt[15-245]'

RSVPROFILE[mtn1] 
TRIGGER=AType=exec,Action="/tmp/trigger1.sh",EType=start
RSVPROFILE[mtn1] USERLIST=steve,marym
RSVPROFILE[mtn1] HOSTEXP="r:50-250"

> mrsvctl -c -P mtn1 -s 12:00:00_10/03 -d 2:00:00

RSVPROFILE[pause] 
TRIGGER=atype=exec,etype=start,action="/opt/moab/bin/mschedctl -p"
RSVPROFILE[pause] 
TRIGGER=atype=exec,etype=cancel,action="/opt/moab/bin/mschedctl -r"
RSVPROFILE[pause] 
TRIGGER=atype=exec,etype=end,action="/opt/moab/bin/mschedctl -r"

> mrsvctl -c -P pause -s 12:00:00_10/03 -d 2:00:00



Cancel any jobs that failed to properly checkpoint and exit.

The following example highlights one possible configuration:

This reservation reserves all nodes in the cluster for a period of eight hours. Five minutes before the
reservation starts, the reservation is modified to remove access to new preemptible jobs. Four minutes before
the reservation starts, preemptible jobs that overlap the reservation are checkpointed. One minute before the
reservation, all remaining jobs that overlap the reservation are canceled.

See Also
Backfill
Preemption
mrsvctl command

RSVPROFILE[adm1] JOBATTRLIST=PREEMPTEE
RSVPROFILE[adm1] DESCRIPTION="regular system maintenance"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
300,AType=internal,Action="rsv:-:modify:acl:jattr-=PREEMPTEE"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
240,AType=jobpreempt,Action="checkpoint"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
60,AType=jobpreempt,Action="cancel"

> mrsvctl -c -P adm1 -s 12:00:00_10/03 -d 8:00:00 -h ALL



7.1.3 Standing Reservations
Standing reservations build upon the capabilities of advance reservations to enable a site to enforce advanced
usage policies in an efficient manner. Standing reservations provide a superset of the capabilities typically
found in a batch queuing system's class or queue architecture. For example, queues can be used to allow
only particular types of jobs access to certain compute resources. Also, some batch systems allow these
queues to be configured so that they only allow this access during certain times of the day or week. Standing
reservations allow these same capabilities but with greater flexibility and efficiency than is typically found in a
normal queue management system.

Standing reservations provide a mechanism by which a site can dedicate a particular block of resources for a
special use on a regular daily or weekly basis. For example, node X could be dedicated to running jobs only
from users in the accounting group every Friday from 4 to 10 p.m. See the Reservation Overview for more
information about the use of reservations. The Managing Reservations section provides a detailed explanation
of the concepts and steps involved in the creation and configuration of standing reservations.

A standing reservation is a powerful means of doing the following:

Controlling local credential based access to resources.
Controlling external peer and grid based access to resources.
Controlling job responsiveness and turnaround.

See Also
SRCFG
Moab Workload Manager for Grids
mdiag -s (diagnose standing reservations)



7.1.4 Reservation Policies
7.1.4.1 Controlling Priority Reservation Creation
7.1.4.2 Managing Resource Failures
7.1.4.3 Resource Allocation Policy
7.1.4.4 Resource Re-Allocation Policy
7.1.4.5 Charging for Reserved Resources

7.1.4.1 Controlling Priority Reservation Creation
In addition to standing and administrative reservations, Moab can also create priority reservations. These
reservations are used to allow the benefits of out-of-order execution (such as is available with backfill)
without the side effect of job starvation. Starvation can occur in any system where the potential exists for a
job to be overlooked by the scheduler for an indefinite period. In the case of backfill, small jobs may continue
to run on available resources as they become available while a large job sits in the queue, never able to find
enough nodes available simultaneously on which to run.

To avoid such situations, priority reservations are created for high priority jobs that cannot run immediately.
When making these reservations, the scheduler determines the earliest time the job could start and then
reserves these resources for use by this job at that future time.

Priority Reservation Creation Policy

Organizations have the ability to control how priority reservations are created and maintained. Moab's
dynamic job prioritization allows sites to prioritize jobs so that their priority order can change over time. It is
possible that one job can be at the top of the priority queue for a time and then get bypassed by another job
submitted later. The parameter RESERVATIONPOLICY allows a site to determine how existing reservations
should be handled when new reservations are made.

Value Description

HIGHEST
All jobs that have ever received a priority reservation up to the RESERVATIONDEPTH
number will maintain that reservation until they run, even if other jobs later bypass
them in priority value.

For example, if there are four jobs with priorities of 8, 10,12, and 20 and

RESERVATIONPOLICY HIGHEST
RESERVATIONDEPTH 3

Only jobs 20, 12, and 10 get priority reservations. Later, if a job with priority higher
than 20 is submitted into the queue, it will also get a priority reservation along with
the jobs listed previously. If four jobs higher than 20 were to be submitted into the
queue, only three would get priority reservations, in accordance with the condition set
in the RESERVATIONDEPTH policy.

CURRENTHIGHEST Only the current top <RESERVATIONDEPTH> priority jobs receive reservations. If a job
had a reservation but has been bypassed in priority by another job so that it no longer
qualifies as being among the top <RESERVATIONDEPTH> jobs, it loses its reservation.

NEVER No priority reservations are made.

Priority Reservation Depth

By default, only the highest priority job receives a priority reservation. However, this behavior is configurable
via the RESERVATIONDEPTH policy. Moab's default behavior of only reserving the highest priority job allows
backfill to be used in a form known as liberal backfill. Liberal backfill tends to maximize system utilization
and minimize overall average job turnaround time. However, it does lead to the potential of some lower
priority jobs being indirectly delayed and may lead to greater variance in job turnaround time. The



RESERVATIONDEPTH parameter can be set to a very large value, essentially enabling what is called
conservative backfill where every job that cannot run is given a reservation. Most sites prefer the liberal
backfill approach associated with the default RESERVATIONDEPTH of 1 or else select a slightly higher
value. It is important to note that to prevent starvation in conjunction with reservations, monotonically
increasing priority factors such as queue time or job XFactor should be enabled. See the Prioritization
Overview for more information on priority factors.

Another important consequence of backfill and reservation depth is how they affect job priority. In Moab, all
jobs are prioritized. Backfill allows jobs to be run out of order and thus, to some extent, job priority to be
ignored. This effect, known as priority dilution, can cause many site policies implemented via Moab
prioritization policies to be ineffective. Setting the RESERVATIONDEPTH parameter to a higher value gives
job priority more teeth at the cost of slightly lower system utilization. This lower utilization results from the
constraints of these additional reservations, decreasing the scheduler's freedom and its ability to find
additional optimizing schedules. Anecdotal evidence indicates that these utilization losses are fairly minor,
rarely exceeding 8%.

It is difficult a-priori to know the right setting for the RESERVATIONDEPTH parameter. Surveys indicate
that the vast majority of sites use the default value of 1. Sites that do modify this value typically set it
somewhere in the range of 2 to 10. The following guidelines may be useful in determining if and how to
adjust this parameter:

Reasons to Increase RESERVATIONDEPTH

The estimated job start time information provided by the showstart command is heavily used and the
accuracy needs to be increased.
Priority dilution prevents certain key mission objectives from being fulfilled.
Users are more interested in knowing when their job will run than in having it run sooner.

Reasons to Decrease RESERVATIONDEPTH

Scheduling efficiency and job throughput need to be increased.

Assigning Per-QoS Reservation Creation Rules

QoS based reservation depths can be enabled via the RESERVATIONQOSLIST parameter. This parameter
allows varying reservation depths to be associated with different sets of job QoS's. For example, the following
configuration creates two reservation depth groupings:

This example causes that the top 8 jobs belonging to the aggregate group of highprio, interactive, and
debug QoS jobs will receive priority reservations. Additionally, the top two batch QoS jobs will also receive
priority reservations. Use of this feature allows sites to maintain high throughput for important jobs by
guaranteeing that a significant proportion of these jobs progress toward starting through use of the priority
reservation.

By default, the following parameters are set inside Moab:

This allows one job with the highest priority to get a reservation. These values can be overwritten by
modifying the DEFAULT policy.

7.1.4.2 Managing Resource Failures
Moab allows organizations to control how to best respond to a number of real-world issues. Occasionally
when a reservation becomes active and a job attempts to start, various resource manager race conditions or
corrupt state situations will prevent the job from starting. By default, Moab assumes the resource manager is
corrupt, releases the reservation, and attempts to re-create the reservation after a short timeout. However,

RESERVATIONDEPTH[0]   8
RESERVATIONQOSLIST[0] highprio,interactive,debug
RESERVATIONDEPTH[1]   2
RESERVATIONQOSLIST[1] batch

RESERVATIONDEPTH[DEFAULT]   1
RESERVATIONQOSLIST[DEFAULT] ALL



in the interval between the reservation release and the re-creation timeout, other priority reservations may
allocate the newly available resources, reserving them before the original reservation gets an opportunity to
reallocate them. Thus, when the original job reservation is re-established, its original resource may be
unavailable and the resulting new reservation may be delayed several hours from the earlier start time. The
parameter RESERVATIONRETRYTIME allows a site that is experiencing frequent resource manager race
conditions and/or corruption situations to tell Moab to hold on to the reserved resource for a period of time in
an attempt to allow the resource manager to correct its state.

7.1.4.3 Resource Allocation Policy
By default, when a standing or administrative reservation is created, Moab allocates nodes in accordance with
the specified taskcount, node expression, node constraints, and the MINRESOURCE node allocation policy.

7.1.4.4 Resource Re-Allocation Policy
Over time, Moab maintains the reservation on the initially allocated resources. However, in some cases, it is
best to allow Moab to be more flexible in the management of these resources. In these cases, the
RSVREALLOCPOLICY parameter can be used to specify the best behavior. This parameter supports the
following policies:

Policy Description

FAILURE Only replace allocated resources that have failed (marked down).

NEVER Do not dynamically reallocate resources to a reservation maintaining the collection of resources
allocated at reservation creation time.

OPTIMAL Dynamically reallocate reservation resources to minimize the reservation cost and maximize
reservation preferences (for Moab 5.0 and later).

REMAP Dynamically reallocate reservation resources to minimize the reservation footprint on idle nodes
by allocating nodes that are in use by consumers that match the reservation's ACL.

7.1.4.5 Charging for Reserved Resources
By default, resources consumed by jobs are tracked and charged to an allocation manager. However,
resources dedicated to a reservation are not charged although they are recorded within the reservation event
record. In particular, total processor-seconds reserved by the reservation are recorded as are total unused
processor-seconds reserved (processor-seconds not consumed by an active job). While this information is
available in real-time using the mdiag -r command (see the Active PH field), it is not written to the event
log until reservation completion.

To enable direct charging, accountable credentials should be associated with the reservation. If using
mrsvctl, the attributes aaccount, auser, aqos, and agroup can be set using the -S flag. If specified, these
credentials are charged for all unused cycles reserved by the reservation.

Example: Assigning Accountable Credentials to a Reservation

Moab allocation management interface allows charging for reserved idle resources to be exported in real-time
to peer services or to a file. To export this charge information to a file, use the file server type as in the
following example configuration:

Example: Setting up a File Based Allocation Management Interface

As mentioned, by default, Moab only writes out charge information upon completion of the reservation. If
more timely information is needed, the FLUSHINTERVAL attribute can be specified.

> mrsvctl -c -h node003 -a user=john,user=steve -S aaccount=jupiter

AMCFG[local] server=file://$HOME/charge.dat



See Also

Reservation Overview
Backfill



7.1.5 Configuring and Managing Reservations
7.1.5.1 Reservation Attributes

7.1.5.1.1 Start/End Time
7.1.5.1.2 Access Control List (ACL)
7.1.5.1.3 Selecting Resources
7.1.5.1.4 Flags

7.1.5.2 Configuring and Managing Standing Reservations
7.1.5.2.1 Standing Reservation Overview
7.1.5.2.2 Specifying Reservation Resources
7.1.5.2.3 Enforcing Policies Via Multiple Reservations
7.1.5.2.4 Affinity
7.1.5.2.5 ACL Modifiers
7.1.5.2.6 Reservation Ownership
7.1.5.2.7 Partitions
7.1.5.2.8 Resource Allocation Behavior
7.1.5.2.9 Rolling Reservations
7.1.5.2.10 Modifying Resources with Standing Reservations

7.1.5.3 Managing Administrative Reservations

7.1.5.1 Reservation Attributes
All reservations possess a time frame of activity, an access control list (ACL), and a list of resources to be
reserved. Additionally, reservations may also possess a number of extension attributes including epilog/prolog
specification, reservation ownership and accountability attributes, and special flags that modify the reservation's
behavior.

7.1.5.1.1 Start/End Time

All reservations possess a start and an end time that define the reservation's active time. During this active time,
the resources within the reservation may only be used as specified by the reservation access control list (ACL).
This active time may be specified as either a start/end pair or a start/duration pair. Reservations exist and are
visible from the time they are created until the active time ends at which point they are automatically removed.

7.1.5.1.2 Access Control List (ACL)

For a reservation to be useful, it must be able to limit who or what can access the resources it has reserved. This
is handled by way of an ACL. With reservations, ACLs can be based on credentials, resources requested, or
performance metrics. In particular, with a standing reservation, the attributes USERLIST, GROUPLIST,
ACCOUNTLIST, CLASSLIST, QOSLIST, JOBATTRLIST, PROCLIMIT, MAXTIME, or TIMELIMIT may be specified. (See
Affinity and Modifiers.)

Reservation access can be adjusted based on a job's requested node features by mapping node feature
requests to job attributes as in the following example:

7.1.5.1.3 Selecting Resources

When specifying which resources to reserve, the administrator has a number of options. These options allow
control over how many resources are reserved and where they are reserved. The following reservation attributes
allow the administrator to define resources.

NODECFG[DEFAULT]  FEATURES+=ia64

NODETOJOBATTRMAP  ia64,ia32

SRCFG[pgs]        JOBATTRLIST=ia32

> mrsvctl -c -a jattr=gpfs\! -h "r:13-500"       



Task Description

Moab uses the task concept extensively for its job and reservation management. A task is simply an atomic
collection of resources, such as processors, memory, or local disk, which must be found on the same node. For
example, if a task requires 4 processors and 2 GB of memory, the scheduler must find all processors AND
memory on the same node; it cannot allocate 3 processors and 1 GB on one node and 1 processor and 1 GB of
memory on another node to satisfy this task. Tasks constrain how the scheduler must collect resources for use in
a standing reservation; however, they do not constrain the way in which the scheduler makes these cumulative
resources available to jobs. A job can use the resources covered by an accessible reservation in whatever way it
needs. If reservation X allocates 6 tasks with 2 processors and 512 MB of memory each, it could support job Y
which requires 10 tasks of 1 processor and 128 MB of memory or job Z which requires 2 tasks of 4 processors
and 1 GB of memory each. The task constraints used to acquire a reservation's resources are transparent to a
job requesting use of these resources.

Example

Taskcount

Using the task description, the taskcount attribute defines how many tasks must be allocated to satisfy the
reservation request. To create a reservation, a taskcount and/or a hostlist must be specified.

Example

Hostlist

A hostlist constrains the set of resources available to a reservation. If no taskcount is specified, the reservation
attempts to reserve one task on each of the listed resources. If a taskcount is specified that requests fewer
resources than listed in the hostlist, the scheduler reserves only the number of tasks from the hostlist specified
by the taskcount attribute. If a taskcount is specified that requests more resources than listed in the hostlist, the
scheduler reserves the hostlist nodes first and then seeks additional resources outside of this list.

Example

Node Features

Node features can be specified to constrain which resources are considered.

Example

Partition

A partition may be specified to constrain which resources are considered.

Example

7.1.5.1.4 Flags

Reservation flags allow specification of special reservation attributes or behaviors. Supported flags are listed in
the following table:

Flag Name Description

ACLOVERLAP When reservations are first created, they will by default only allocate free
or idle nodes. If the ACLOVERLAP flag is set, a reservation may also

SRCFG[test] RESOURCES=PROCS:2,MEM:1024

SRCFG[test] TASKCOUNT=256

SRCFG[test] HOSTLIST=node01,node1[3-5]

SRCFG[test] NODEFEATURES=fastos

SRCFG[test] PARTITION=core3



reserve resources that possess credentials that meet the reservation's
ACL.

ADVRESJOBDESTROY All jobs that have an ADVRES matching this reservation are canceled
when the reservation is destroyed.

ALLOWPRSV Personal reservations can be created within the space of this standing
reservation (and ONLY this standing reservation); by default, when a
standing reservation is given the flag ALLOWPRSV it is given the ACL
USER==ALL+ allowing all jobs and all users access.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job ADVRES
flag. (See Job to Reservation Binding.)

DEDICATEDRESOURCE (aka
EXCLUSIVE)

Reservation only placed on resources that are not reserved by any other
reservation including jobs and other reservations.

The order that SRCFG reservations are listed in the configuration
are important when using DEDICATEDRESOURCE, because
reservations made afterwards can steal resources later. During
configuration, list DEDICATEDRESOURCE reservations last to
guarantee exclusiveness.

IGNRSV Request ignores existing resource reservations allowing the reservation to
be forced onto available resources even if this conflicts with other
reservations.

IGNJOBRSV Functions like IGNRSV but only ignores job reservations. User and
system reservation conflicts are still valid.

IGNSTATE Reservation ignores node state when assigning nodes.

NOCHARGE By default, Moab charges Gold for unused cycles in a standing
reservation. Setting the NOCHARGE flag prevents Moab from charging
Gold for standing reservations.

NOVMMIGRATION If set on a reservation, this prevents VMs from being migrated away from
the reservation. If there are multiple reservations on the hypervisor and
at least one reservation does not have the novmmigrations flag, then VMs
will be migrated.

OWNERPREEMPT Jobs by the reservation owner are allowed to preempt non-owner jobs
using reservation resources.

OWNERPREEMPTIGNOREMINTIME Allows the OWNERPREEMPT flag to "trump" the PREEMPTMINTIME
setting for jobs already running on a reservation when the owner of the
reservation submits a job. For example: without the
OWNERPREEMPTIGNOREMINTIME flag set, a job submitted by the owner
of a reservation will not preempt non-owner jobs already running on the
reservation until the PREEMPTMINTIME setting (if set) for those jobs is
passed. 

With the OWNERPREEMPTIGNOREMINTIME flag set, a job submitted
by the owner of a reservation immediately preempts non-owner jobs
already running on the reservation, regardless of whether
PREEMPTMINTIME is set for the non-owner jobs.

REQFULL Reservation is only created when all resources can be allocated.

SINGLEUSE Reservation is automatically removed after completion of the first job to
use the reserved resources.



SPACEFLEX Reservation is allowed to adjust resources allocated over time in an
attempt to optimize resource utilization*.

TIMEFLEX Reservation is allowed to adjust the reserved time frame in an attempt to
optimize resource utilization*.

VPC Reservation defines a virtual private cluster.

Reservations must explicitly request the ability to float for optimization purposes by using the SPACEFLEX
flag.

Except for SPACEFLEX, most flags can be associated with a reservation via the mrsvctl -c -F command or the
SRCFG parameter.

7.1.5.2 Configuring Standing Reservations
Standing reservations allow resources to be dedicated for particular uses. This dedication can be configured to be
permanent or periodic, recurring at a regular time of day and/or time of week. There is extensive applicability of
standing reservations for everything from daily dedicated job runs to improved use of resources on weekends. All
standing reservation attributes are specified via the SRCFG parameter using the attributes listed in the table
below.

Standing Reservation Attributes

 ACCESS

Format: DEDICATED or SHARED

Default: ---

Description: If set to SHARED, allows a standing reservation to use resources already allocated to other non-
job reservations. Otherwise, these other reservations block resource access.

Example:

Standing reservation test may access resources allocated to existing standing and administrative
reservations.

The order that SRCFG reservations are listed in the configuration are important when using
DEDICATED, because reservations made afterwards can steal resources later. During
configuration, list DEDICATED reservations last to guarantee exclusiveness.

  
ACCOUNTLIST

Format: List of valid, comma delimited account names (see ACL Modifiers).

Default: ---

Description: Specifies that jobs with the associated accounts may use the resources contained within this
reservation.

Example:

Jobs using the account ops or staff are granted access to the resources in standing reservation
test.

  
 CHARGEACCOUNT

Format: Any valid accountname.

SRCFG[test] ACCESS=SHARED

SRCFG[test] ACCOUNTLIST=ops,staff



Default: ---

Description: Specifies the account to which Moab will charge all idle cycles within the reservation (via the
allocation manager). 

CHARGEACCOUNT must be used in conjunction with CHARGEUSER.

Example:

Moab charges all idle cycles within reservations supporting standing reservation sr_gold1 to
account jupiter.

  
 CHARGEUSER

Format: Any valid username.

Default: ---

Description: Specifies the user to which Moab will charge all idle cycles within the reservation (via the allocation
manager). 

CHARGEUSER must be used in conjunction with CHARGEACCOUNT.

Example:

Moab charges all idle cycles within reservations supporting standing reservation sr_gold1 to user
john.

  
CLASSLIST

Format: List of valid, comma delimited classes/queues (see ACL Modifiers).

Default: ---

Description: Specifies that jobs with the associated classes/queues may use the resources contained within this
reservation.

Example:

Jobs not using the class interactive are granted access to the resources in standing reservation
test.

  
CLUSTERLIST

Format: List of valid, comma delimited peer clusters (see Moab Workload Manager for Grids).

Default: ---

SRCFG[sr_gold1] HOSTLIST=kula
SRCFG[sr_gold1] PERIOD=INFINITY
SRCFG[sr_gold1] OWNER=USER:admin
SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

SRCFG[sr_gold1] HOSTLIST=kula
SRCFG[sr_gold1] PERIOD=INFINITY
SRCFG[sr_gold1] OWNER=USER:admin
SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

SRCFG[test] CLASSLIST=!interactive



Description: Specifies that jobs originating within the listed clusters may use the resources contained within this
reservation.

Example:

Moab grants jobs from the listed peer clusters access to the reserved resources.

  
COMMENT

Format: <STRING> 

If the string contains whitespace, it should be enclosed in single (') or double quotes (").

Default: ---

Description: Specifies a descriptive message associated with the standing reservation and all child reservations.

Example:

Moab annotates the standing reservation test and all child reservations with the specified
message. These messages show up within Moab client commands, Moab web tools, and graphical
administrator tools.

  
DAYS

Format: One or more of the following (comma delimited): 
Mon, Tue, Wed, Thu, Fri, Sat, Sun or [ALL].

Default: [ALL]

Description: Specifies which days of the week the standing reservation is active.

Example:

Standing reservation test is active Monday through Friday.

  
DEPTH

Format: <INTEGER>

Default: 2

Description: Specifies the depth of standing reservations to be created, starting at depth 0 (one per period).

Example:

Specifies that seven (0 indexed) reservations will be created for standing reservation test.

  
DISABLE

Format: <BOOLEAN>

Default: FALSE

Description: Specifies that the standing reservation should no longer spawn child reservations.

SRCFG[test] CLUSTERLIST=orion2,orion7

SRCFG[test] COMMENT='rsv for network testing'

SRCFG[test] DAYS=Mon,Tue,Wed,Thu,Fri

SRCFG[test] PERIOD=DAY DEPTH=6



Example:

Specifies that reservations are created for standing reservation test for today and the next six
days.

  
ENDTIME

Format: [[[DD:]HH:]MM:]SS

Default: 24:00:00

Description Specifies the time of day the standing reservation period ends (end of day or end of week
depending on PERIOD).

Example:

Standing reservation test is active from 8:00 AM until 5:00 PM.

  
FLAGS

Format: Comma delimited list of zero or more flags listed in the reservation flags overview.

Default: ---

Description Specifies special reservation attributes. See Managing Reservations - Flags for details.

Example:

Jobs may only access the resources within this reservation if they explicitly request the reservation
by name. Further, the reservation is created to not overlap with other reservations.

  
GROUPLIST

Format: One or more comma delimited group names.

Default: [ALL]

Description Specifies the groups allowed access to this standing reservation (see ACL Modifiers).

Example:

Moab allows jobs with the listed group IDs or which request the job class interactive to use the
resources covered by the standing reservation.

  
HOSTLIST

Format: One or more comma delimited host names or host expressions or the string class:<classname>
(see note that follows).

Default: ---

Description Specifies the set of hosts that the scheduler can search for resources to satisfy the reservation. If
specified using the class:X format, Moab only selects hosts that support the specified class. If
TASKCOUNT is also specified, only TASKCOUNT tasks are reserved. Otherwise, all matching

SRCFG[test] PERIOD=DAY DEPTH=7 DISABLE=TRUE

SRCFG[test] STARTTIME=8:00:00 
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

SRCFG[test] FLAGS=BYNAME,DEDICATEDRESOURCE

SRCFG[test] GROUPLIST=staff,ops,special
SRCFG[test] CLASSLIST=interactive



hosts are reserved.

Example:

Moab reserves a total of two tasks with 2 processors and 512 MB each, using resources located on
node001, node002, and/or node003.

  
JOBATTRLIST

Format: Comma delimited list of one or more of the following job attributes:
PREEMPTEE, INTERACTIVE, or any generic attribute configured through NODECFG.

Default: ---

Description Specifies job attributes that grant a job access to the reservation. 

Values can be specified with a != assignment to only allow jobs NOT requesting a certain
feature inside the reservation.

To enable/disable reservation access based on requested node features, use the parameter
NODETOJOBATTRMAP.

Example:

Preemptible jobs can access the resources reserved within this reservation.

  
MAXJOB

Format: <INTEGER>

Default: ---

Description Specifies the maximum number of jobs that can run in the reservation.

Example:

Only one job will be allowed to run in this reservation.

  
MAXTIME

Format: [[[DD:]HH:]MM:]SS[+]

Default: ---

Description Specifies the maximum time for jobs allowable. Can be used with Affinity to attract jobs with same
MAXTIME.

Example:

Jobs with a time of 1:00:00 are attracted to this reservation.

  
NODEFEATURES

SRCFG[test] HOSTLIST=node001,node002,node003
SRCFG[test] RESOURCES=PROCS:2;MEM:512
SRCFG[test] TASKCOUNT=2

SRCFG[test] JOBATTRLIST=PREEMPTEE

SRCFG[test] MAXJOB=1

SRCFG[test] MAXTIME=1:00:00+



Format: Comma delimited list of node features.

Default: ---

Description Specifies the required node features for nodes that are part of the standing reservation.

Example:

All nodes allocated to the standing reservation must have both the wide and fddi node attributes.

  
OS

Format: Operating system.

Default: ---

Description Specifies the operating system that should be in place during the reservation. Moab provisions this
OS at reservation start and restores the original OS at reservation completion.

Example:

The resources allocated to the reservation are provisioned to SuSE 9.1 during the life of the
reservation and restored to their original OS at the end of the reservation.

  
OWNER

Format: <CREDTYPE>:<CREDID> where <CREDTYPE> is one of USER, GROUP, ACCT, QoS, CLASS or
CLUSTER and <CREDTYPE> is a valid credential id of that type.

Default: ---

Description Specifies the owner of the reservation. 

For sandbox reservations, sandboxes are applied to a specific peer only if OWNER is set to
CLUSTER:<PEERNAME>.

Example:

User jupiter owns the reservation and may be granted special privileges associated with that
ownership.

  
PARTITION

Format: Valid partition name.

Default: [ALL]

Description Specifies the partition in which to create the standing reservation.

Example:

The standing reservation will only select resources from partition OLD.

  
PERIOD

Format: One of DAY, WEEK, or INFINITY.

SRCFG[test] NODEFEATURES=wide,fddi

SRCFG[test] OS=SUSE91

SRCFG[test] OWNER=ACCT:jupiter

SRCFG[test] PARTITION=OLD



Default: DAY

Description Specifies the period of the standing reservation.

Example:

Each standing reservation covers a one week period.

  
PROCLIMIT

Format: <QUALIFIER><INTEGER>

<QUALIFIER> may be one of the following <, <=, ==, >=, >

Default: ---

Description: Specifies the processor limit for jobs requesting access to this standing reservation.

Example:

Jobs requesting 4 or fewer processors are allowed to run.

  
PSLIMIT

Format: <QUALIFIER><INTEGER>

<QUALIFIER> may be one of the following <, <=, ==, >=, >

Default: ---

Description Specifies the processor-second limit for jobs requesting access to this standing reservation.

Example:

Jobs requesting 40000 or fewer processor-seconds are allowed to run.

  
QOSLIST

Format: Zero or more valid, comma delimited QoS names.

Default: ---

Description Specifies that jobs with the listed QoS names can access the reserved resources.

Example:

Moab allows jobs using the listed QOS's access to the reserved resources.

  
RESOURCES

Format: Semicolon delimited <ATTR>:<VALUE> pairs where <ATTR> may be one of PROCS, MEM,
SWAP, or DISK.

Default: PROCS:-1  (All processors available on node)

Description Specifies what resources constitute a single standing reservation task. (Each task must be able to
obtain all of its resources as an atomic unit on a single node.) Supported resources currently

SRCFG[test] PERIOD=WEEK

SRCFG[test] PROCLIMIT<=4

SRCFG[test] PSLIMIT<=40000

SRCFG[test] QOSLIST=hi,low,special



include the following:

PROCS (number of processors)
MEM (real memory in MB)
DISK (local disk in MB)
SWAP (virtual memory in MB)

Example:

Each standing reservation task reserves one processor and 512 MB of real memory.

  
ROLLBACKOFFSET

Format: [[[DD:]HH:]MM:]SS

Default: ---

Description Specifies the minimum time in the future at which the reservation may start. This offset is rolling
meaning the start time of the reservation will continuously roll back into the future to maintain this
offset. Rollback offsets are a good way of providing guaranteed resource access to users under the
conditions that they must commit their resources in the future or lose dedicated access. See QoS
for more info about quality of service and service level agreements; also see Rollback Reservation
Overview.

Example:

  
RSVACCESSLIST

Format: <RESERVATION>[,...]

Default: ---

Description A list of reservations to which the specified reservation has access.

Example:

  
RSVGROUP

Format: <STRING>

Default: ---

Description See section 7.1.1.7 Reservation Group for a detailed description.

Example:

  
STARTTIME

Format: [[[DD:]HH:]MM:]SS

SRCFG[test] RESOURCES=PROCS:1;MEM:512

SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax
Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when
an idle reservation is created in the rollback reservation. For example:SRCFG[staff]
ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY

The standing reservation guarantees access to up to 32 processors within 24 hours to jobs from
the ajax account.

SRCFG[test] RSVACCESSLIST=rsv1,rsv2,rsv3

SRCFG[test] RSVGROUP=rsvgrp1
SRCFG[ajax] RSVGROUP=rsvgrp1



Default: 00:00:00:00 (midnight)

Description Specifies the time of day/week the standing reservation becomes active. Whether this indicates a
time of day or time of week depends on the setting of the PERIOD attribute. 

If specified within a reservation profile, a value of 0 indicates the reservation should start at
the earliest opportunity.

Example:

The standing reservation will be active from 8:00 a.m. until 5:00 p.m. each day.

  
TASKCOUNT

Format: <INTEGER>

Default: 0 (unlimited tasks)

Description Specifies how may tasks should be reserved for the reservation.

Example:

Standing reservation test reserves 16 tasks worth of resources; in this case, 16 processors and 4
GB of real memory.

  
TIMELIMIT

Format: [[[DD:]HH:]MM:]SS

Default: -1 (no time based access)

Description Specifies the maximum allowed overlap between the standing reservation and a job requesting
resource access.

Example:

Moab allows jobs to access up to one hour of resources in the standing reservation.

  
TIMELOGIC

Format: AND or OR

Default: OR

Description TIMELOGIC is not supported in Moab. Under Maui, this attribute specifies how TIMELIMIT
access status will be combined with other standing reservation access methods to determine
job access. If TIMELOGIC is set to OR, a job is granted access to the reserved resources if it
meets the TIMELIMIT criteria or any other access criteria (such as USERLIST). If TIMELOGIC
is set to AND, a job is granted access to the reserved resources only if it meets the
TIMELIMIT criteria and at least one other access criteria.

As TIMELOGIC is not supported in Moab, use the required ACL marker, * instead.
Equivalent functionality can be enabled by setting something like the following:
SRCFG[special] TIMELIMIT=1:00:00*.

SRCFG[test] STARTTIME=08:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

SRCFG[test] RESOURCES=PROCS:1;MEM:256
SRCFG[test] TASKCOUNT=16

SRCFG[test] TIMELIMIT=1:00:00



Example:

  
TPN (Tasks Per Node)

Format: <INTEGER>

Default: 0 (no TPN constraint)

Description Specifies the minimum number of tasks per node that must be available on eligible nodes.

Example:

Moab must locate at least four tasks on each node that is to be part of the reservation. That is,
each node included in standing reservation 2 must have at least 8 processors and 1 GB of memory
available.

  
TRIGGER

Format: See 19.1 Triggers for syntax.

Default: N/A

Description Specifies event triggers to be launched by the scheduler under the scheduler's ID. These triggers
can be used to conditionally cancel reservations, modify resources, or launch various actions at
specified event offsets. See 19.1 Triggers for more detail.

Example:

Moab launches the domail.pl script 5 hours after any fast reservation starts.

  
USERLIST

Format: Comma delimited list of users.

Default: ---

Description Specifies which users have access to the resources reserved by this reservation (see ACL
Modifiers).

Example:

Users bob, joe and mary can all access the resources reserved within this reservation.

The HOSTLIST attribute is treated as host regular expression so foo10 will map to foo10, foo101,
foo1006, and so forth. To request an exact host match, the expression can be bounded by the carat and
dollar symbol expression markers as in ^foo10$.

7.1.5.2.1 Standing Reservation Overview

A standing reservation is similar to a normal administrative reservation in that it also places an access control list
on a specified set of resources. Resources are specified on a per-task basis and currently include processors, local

SRCFG[special] TIMELIMIT=1:00:00
SRCFG[special] TIMELOGIC=AND
SRCFG[special] QOSLIST=high low special-
SRCFG[special] ACCCOUNTLIST=!projectX,!Y

SRCFG[2] TPN=4
SRCFG[2] RESOURCES=PROCS:2;MEM:256

SRCFG[fast] 
TRIGGER=EType=start,Offset=5:00:00,AType=exec,Action="/usr/local/domail

SRCFG[test] USERLIST=bob,joe,mary



disk, real memory, and swap. The access control list supported for standing reservations includes users, groups,
accounts, job classes, and QoS levels. Standing reservations can be configured to be permanent or periodic on a
daily or weekly basis and can accept a daily or weekly start and end time. Regardless of whether permanent or
recurring on a daily or weekly basis, standing reservations are enforced using a series of reservations, extending
a number of periods into the future as controlled by the DEPTH attribute of the SRCFG parameter.

The following examples demonstrate possible configurations specified with the SRCFG parameter.

Example 1 Basic Business Hour Standing Reservation

When using the SRCFG parameter, attribute lists must be delimited using the comma (,), pipe (|), or
colon (:) characters; they cannot be space delimited. For example, to specify a multi-class ACL, specify
SRCFG[test] CLASSLIST=classA,classB.

Only one STARTTIME and one ENDTIME value can be specified per reservation. If varied start and end
times are desired throughout the week, complementary standing reservations should be created. For
example, to establish a reservation from 8:00 p.m. until 6:00 a.m. the next day during business days, two
reservations should be created—one from 8:00 p.m. until midnight, and the other from midnight until 6:00
a.m. Jobs can run across reservation boundaries allowing these two reservations to function as a single
reservation that spans the night.

The preceding example fully specifies a reservation including the quantity of resources requested using the
TASKCOUNT and RESOURCES attributes. In all cases, resources are allocated to a reservation in units called
tasks where a task is a collection of resources that must be allocated together on a single node. The
TASKCOUNT attribute specifies the number of these tasks that should be reserved by the reservation. In
conjunction with this attribute, the RESOURCES attribute defines the reservation task by indicating what
resources must be included in each task. In this case, the scheduler must locate and reserve 1 processor and 512
MB of memory together on the same node for each task requested.

As mentioned previously, a standing reservation reserves resources over a given time frame. The PERIOD
attribute may be set to a value of DAY, WEEK, or INFINITY to indicate the period over which this reservation
should recur. If not specified, a standing reservation recurs on a daily basis. If a standing reservation is
configured to recur daily, the attribute DAYS may be specified to indicate which days of the week the reservation
should exist. This attribute takes a comma-delimited list of days where each day is specified as the first three
letters of the day in all capital letters: MON or FRI. The preceding example specifies that this reservation is
periodic on a daily basis and should only exist on business days.

The time of day during which the requested tasks are to be reserved is specified using the STARTTIME and
ENDTIME attributes. These attributes are specified in standard military time HH:MM:SS format and both
STARTTIME and ENDTIME specification is optional defaulting to midnight at the beginning and end of the day
respectively. In the preceding example, resources are reserved from 9:00 a.m. until 5:00 p.m. on business days.

The final aspect of any reservation is the access control list indicating who or what can use the reserved
resources. In the preceding example, the CLASSLIST attribute is used to indicate that jobs requesting the class
interactive should be allowed to use this reservation.

7.1.5.2.2 Specifying Reservation Resources

In most cases, only a small subset of standing reservation attributes must be specified in any given case. For
example, by default, RESOURCES is set to PROCS=-1 which indicates that each task should reserve all of the
processors on the node on which it is located. This, in essence, creates a one task equals one node mapping. In
many cases, particularly on uniprocessor systems, this default behavior may be easiest to work with. However, in
SMP environments, the RESOURCES attribute provides a powerful means of specifying an exact, multi-
dimensional resource set.

An examination of the parameters documentation show that the default value of PERIOD is DAYS. Thus,
specifying this parameter in the preceding above was unnecessary. It was used only to introduce this
parameter and indicate that other options exist beyond daily standing reservations.

Example 2: Host Constrained Standing Reservation

SRCFG[interactive] TASKCOUNT=6 RESOURCES=PROCS:1,MEM:512
SRCFG[interactive] PERIOD=DAY DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[interactive] CLASSLIST=interactive



Although the first example did specify a quantity of resources to reserve, it did not specify where the needed
tasks were to be located. If this information is not specified, Moab attempts to locate the needed resources
anywhere it can find them. The Example 1 reservation essentially discovers hosts where the needed resources
can be found. If the SPACEFLEX reservation flag is set, then the reservation continues to float to the best hosts
over the life of the reservation. Otherwise, it will be locked to the initial set of allocated hosts.

If a site wanted to constrain a reservation to a subset of available resources, this could be accomplished using
the HOSTLIST attribute. The HOSTLIST attribute is specified as a comma-separated list of hostnames and
constrains the scheduler to only select tasks from the specified list. This attribute can exactly specify hosts or
specify them using host regular expressions. The following example demonstrates a possible use of the
HOSTLIST attribute:

Note that the HOSTLIST attribute specifies a non-contiguous list of hosts. Any combination of hosts may be
specified and hosts may be specified in any order. In this example, the TASKCOUNT attribute is also specified.
These two attributes both apply constraints on the scheduler with HOSTLIST specifying where the tasks can be
located and TASKCOUNT indicating how many total tasks may be allocated. In this example, six tasks are
requested but only four hosts are specified. To handle this, if adequate resources are available, the scheduler may
attempt to allocate more than one task per host. For example, assume that each host is a quad-processor
system with 1 GB of memory. In such a case, the scheduler could allocate up to two tasks per host and even
satisfy the TASKCOUNT constraint without using all of the hosts in the hostlist.

It is important to note that even if there is a one to one mapping between the value of TASKCOUNT and
the number of hosts in HOSTLIST, the scheduler will not necessarily place one task on each host. If, for
example, node001 and node002 were 8 processor SMP hosts with 1 GB of memory, the scheduler could
locate up to four tasks on each of these hosts fully satisfying the reservation taskcount without even
partially using the remaining hosts. (Moab will place tasks on hosts according to the policy specified with
the NODEALLOCATIONPOLICY parameter.) If the hostlist provides more resources than what is required by
the reservation as specified via TASKCOUNT, the scheduler will simply select the needed resources within
the set of hosts listed.

7.1.5.2.3 Enforcing Policies Via Multiple Reservations

Single reservations enable multiple capabilities. Combinations of reservations can further extend a site's
capabilities to impose specific policies.

Example 3: Reservation Stacking

If HOSTLIST is specified but TASKCOUNT is not, the scheduler will pack as many tasks as possible onto all of
the listed hosts. For example, assume the site added a second standing reservation named debug to its
configuration that reserved resources for use by certain members of its staff using the following configuration:

The new standing reservation is quite simple. Since RESOURCES is not specified, it will allocate all processors on
each host that is allocated. Since TASKCOUNT is not specified, it will allocate every host listed in HOSTLIST.
Since PERIOD is set to INFINITY, the reservation is always in force and there is no need to specify

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive

SRCFG[debug]       HOSTLIST=node001,node002,node003,node004
SRCFG[debug]       USERLIST=helpdesk
SRCFG[debug]       GROUPLIST=operations,sysadmin
SRCFG[debug]       PERIOD=INFINITY



STARTTIME, ENDTIME, or DAYS.

The standing reservation has two access parameters set using the attributes USERLIST and GROUPLIST. This
configuration indicates that the reservation can be accessed if any one of the access lists specified is satisfied by
the job. In essence, reservation access is logically OR'd allowing access if the requester meets any of the access
constraints specified. In this example, jobs submitted by either user helpdesk or any member of the groups
operations or sysadmin can use the reserved resources. (See ACL Modifiers.)

Unless ACL Modifiers are specified, access is granted to the logical OR of access lists specified within a standing
reservation and granted to the logical AND of access lists across different standing reservations. A comparison of
the standing reservations interactive and debug in the preceding example indicates that they both can allocate
hosts node001 and node002. If node001 had both of these reservations in place simultaneously and a job
attempted to access this host during business hours when standing reservation interactive was active. The job
could only use the doubly reserved resources if it requests the run class interactive and it meets the
constraints of reservation debug—that is, that it is submitted by user helpdesk or by a member of the group
operations or sysadmin.

As a rule, the scheduler does not stack reservations unless it must. If adequate resources exist, it can allocate
reserved resources side by side in a single SMP host rather than on top of each other. In the case of a 16
processor SMP host with two 8 processor standing reservations, 8 of the processors on this host will be allocated
to the first reservation, and 8 to the next. Any configuration is possible. The 16 processor hosts can also have 4
processors reserved for user John, 10 processors reserved for group Staff, with the remaining 2 processors
available for use by any job.

Stacking reservations is not usually required but some site administrators choose to do it to enforce elaborate
policies. There is no problem with doing so as long as you can keep things straight. It really is not too difficult a
concept; it just takes a little getting used to. See the Reservation Overview section for a more detailed
description of reservation use and constraints.

As mentioned earlier, by default the scheduler enforces standing reservations by creating a number of
reservations where the number created is controlled by the DEPTH attribute. Each night at midnight, the
scheduler updates its periodic non-floating standing reservations. By default, DEPTH is set to 2, meaning when
the scheduler starts up, it will create two 24-hour reservations covering a total of two days worth of time—a
reservation for today and one for tomorrow. For daily reservations, at midnight, the reservations roll, meaning
today's reservation expires and is removed, tomorrow's reservation becomes today's, and the scheduler creates a
new reservation for the next day.

With this model, the scheduler continues creating new reservations in the future as time moves forward. Each
day, the needed resources are always reserved. At first, all appears automatic but the standing reservation
DEPTH attribute is in fact an important aspect of reservation rolling, which helps address certain site specific
environmental factors. This attribute remedies a situation that might occur when a job is submitted and cannot
run immediately because the system is backlogged with jobs. In such a case, available resources may not exist
for several days out and the scheduler must reserve these future resources for this job. With the default DEPTH
setting of two, when midnight arrives, the scheduler attempts to roll its standing reservations but a problem
arises in that the job has now allocated the resources needed for the standing reservation two days out. Moab
cannot reserve the resources for the standing reservation because they are already claimed by the job. The
standing reservation reserves what it can but because all needed resources are not available, the resulting
reservation is now smaller than it should be, or is possibly even empty.

If a standing reservation is smaller than it should be, the scheduler will attempt to add resources each iteration
until it is fully populated. However, in the case of this job, the job is not going to release its reserved resources
until it completes and the standing reservation cannot claim them until this time. The DEPTH attribute allows a
site to specify how deep into the future a standing reservation should reserve its resources allowing it to claim
the resources first and prevent this problem. If a partial standing reservation is detected on a system, it may be
an indication that the reservation's DEPTH attribute should be increased.

In Example 3, the PERIOD attribute is set to INFINITY. With this setting, a single, permanent standing
reservation is created and the issues of resource contention do not exist. While this eliminates the contention
issue, infinite length standing reservations cannot be made periodic.

Example 4: Multiple ACL Types

In most cases, access lists within a reservation are logically OR'd together to determine reservation access.
However, exceptions to this rule can be specified by using the required ACL marker—the asterisk (*). Any ACL
marked with this symbol is required and a job is only allowed to use a reservation if it meets all required ACLs
and at least one non-required ACL (if specified). A common use for this facility is in conjunction with the
TIMELIMIT attribute. This attribute controls the length of time a job may use the resources within a standing
reservation. This access mechanism can be AND'd or OR'd to the cumulative set of all other access lists as
specified by the required ACL marker. Consider the following example configuration:



The above configuration requests 32 tasks which translate to 32 nodes. The PERIOD attribute makes this
reservation periodic on a weekly basis while the attributes STARTTIME and ENDTIME specify the week offsets
when this reservation is to start and end. (Note that the specification format has changed to DD:HH:MM:SS.) In
this case, the reservation starts on Monday at 8:00 a.m. and runs until Friday at 5:00 p.m. The reservation is
enforced as a series of weekly reservations that only cover the specified time frame. The NODEFEATURES
attribute indicates that each of the reserved nodes must have the node feature largememory configured.

As described earlier, TIMELIMIT indicates that jobs using this reservation can only use it for one hour. This
means the job and the reservation can only overlap for one hour. Clearly jobs requiring an hour or less of
wallclock time meet this constraint. However, a four-hour job that starts on Monday at 5:00 a.m. or a 12-hour
job that starts on Friday at 4:00 p.m. also satisfy this constraint. Also, note the TIMELIMIT required ACL
marker, *; it is set indicating that jobs must not only meet the TIMELIMIT access constraint but must also meet
one or more of the other access constraints. In this example, the job can use this reservation if it can use the
access specified via QOSLIST or ACCOUNTLIST; that is, it is assigned a QoS of high, low, or special , or the
submitter of the job has an account that satisfies the !projectX and !projectY criteria. See the QoS Overview
for more info about QoS configuration and usage.

7.1.5.2.4 Affinity

Reservation ACLs allow or deny access to reserved resources but they may be configured to also impact a job's
affinity for a particular reservation. By default, jobs gravitate toward reservations through a mechanism known as
positive affinity. This mechanism allows jobs to run on the most constrained resources leaving other, unreserved
resources free for use by other jobs that may not be able to access the reserved resources. Normally this is a
desired behavior. However, sometimes, it is desirable to reserve resources for use only as a last resort—using the
reserved resources only when there are no other resources available. This last resort behavior is known as
negative affinity. Note the '-' (hyphen or negative sign) following the special in the QOSLIST values. This
special mark indicates that QoS special should be granted access to this reservation but should be assigned
negative affinity. Thus, the QOSLIST attribute specifies that QoS high and low should be granted access with
positive affinity (use the reservation first where possible) and QoS special granted access with negative affinity
(use the reservation only when no other resources are available).

Affinity status is granted on a per access object basis rather than a per access list basis and always defaults to
positive affinity. In addition to negative affinity, neutral affinity can also be specified using the equal sign (=) as
in QOSLIST[0] normal= high debug= low-.

7.1.5.2.5 ACL Modifiers

ACL modifiers allow a site to change the default behavior of ACL processing. By default, a reservation can be
accessed if one or more of its ACLs can be met by the requestor. This behavior can be changed using the deny
or required ACL modifier, as in the following table:

Not

Symbol: ! (exclamation point)

Description: If attribute is met, the requestor is denied access regardless of any other satisfied ACLs.

Example:

Allow access to all staff members other than Steve.

  
Required

Symbol: * (asterisk)

SRCFG[special] TASKCOUNT=32
SRCFG[special] PERIOD=WEEK
SRCFG[special] STARTTIME=1:08:00:00  
SRCFG[special] ENDTIME=5:17:00:00
SRCFG[special] NODEFEATURES=largememory
SRCFG[special] TIMELIMIT=1:00:00*
SRCFG[special] QOSLIST=high,low,special-
SRCFG[special] ACCCOUNTLIST=!projectX,!projectY

SRCFG[test] GROUPLIST=staff USERLIST=!steve



Description: All required ACLs must be satisfied for requestor access to be granted.

Example:

Only jobs in QoS high that request less than 2 hours of walltime are granted access.

  
XOR

Symbol: ^ (carat)

Description: All attributes of the type specified other than the ones listed in the ACL satisfy the ACL.

Example:

All jobs other than those requesting QoS high are granted access.

  
CredLock

Symbol: & (ampersand)

Description: Matching jobs will be required to run on the resources reserved by this reservation.

Example:

All of John's jobs must run in this reservation.

  
HPEnable (hard policy enable)

Symbol: ~ (tilde)

Description: ACLs marked with this modifier are ignored during soft policy scheduling and are only considered
for hard policy scheduling once all eligible soft policy jobs start.

Example:

All of John's jobs are allowed to run in the reservation at any time. Debug jobs are also allowed to
run in this reservation but are only considered after all of John's jobs are given an opportunity to
start. John's jobs are considered before debug jobs regardless of job priority.

If HPEnable and Not markers are used in conjunction, then specified credentials are
blocked-out of the reservation during soft-policy scheduling.

Note the ACCOUNTLIST values in Example 4 are preceded with an exclamation point, or NOT symbol. This
indicates that all jobs with accounts other than projectX and projectY meet the account ACL. Note that if a
!<X> value (!projectX) appears in an ACL line, that ACL is satisfied by any object not explicitly listed by a NOT
entry. Also, if an object matches a NOT entry, the associated job is excluded from the reservation even if it meets
other ACL requirements. For example, a QoS 3 job requesting account projectX is denied access to the
reservation even though the job QoS matches the QoS ACL.

Example 5: Binding Users to Reservations at Reservation Creation

7.1.5.2.6 Reservation Ownership

SRCFG[test] QOSLIST=*high MAXTIME=*2:00:00

SRCFG[test] QOSLIST=^high

SRCFG[test] USERLIST=&john

SRCFG[johnspace] USERLIST=john CLASSLIST=~debug

# create a 4 node reservation for john and bind all of john's jobs to 
that reservation

> mrsvctl -c -a user=&john -t 4              



Reservation ownership allows a site to control who owns the reserved resources during the reservation time
frame. Depending on needs, this ownership may be identical to, a subset of, or completely distinct from the
reservation ACL. By default, reservation ownership implies resource accountability and resources not consumed
by jobs are accounted against the reservation owner. In addition, ownership can also be associated with special
privileges within the reservation.

Ownership is specified using the OWNER attribute in the format <CREDTYPE>:<CREDID>, as in OWNER=USER:john.
To enable john's jobs to preempt other jobs using resources within the reservation, the SRCFG attribute FLAG
should be set to OWNERPREEMPT. In the example below, the jupiter project chooses to share resources with
the saturn project but only when it does not currently need them.

Example 6: Limited Shared Access

7.1.5.2.7 Partitions

A reservation can be used in conjunction with a partition. Configuring a standing reservation on a partition allows
constraints to be (indirectly) applied to a partition.

Example 7: Time Constraints by Partition

The following example places a 3-day wall-clock limit on two partitions and a 64 processor-hour limit on jobs
running on partition small.

7.1.5.2.8 Resource Allocation Behavior

As mentioned, standing reservations can operate in one of two modes, floating, or non-floating (essentially node-
locked). A floating reservation is created when the flag SPACEFLEX is specified. If a reservation is non-floating,
the scheduler allocates all resources specified by the HOSTLIST parameter regardless of node state, job load, or
even the presence of other standing reservations. Moab interprets the request for a non-floating reservation as, "I
want a reservation on these exact nodes, no matter what!"

If a reservation is configured to be floating, the scheduler takes a more relaxed stand, searching through all
possible nodes to find resources meeting standing reservation constraints. Only Idle, Running, or Busy nodes are
considered and further, only considered if no reservation conflict is detected. The reservation attribute ACCESS
modifies this behavior slightly and allows the reservation to allocate resources even if reservation conflicts exist.

If a TASKCOUNT is specified with or without a HOSTEXPRESSION, Moab will, by default, only consider
up nodes for allocation. To change this behavior, the reservation flag IGNSTATE can be specified as in the
following example:

Access to existing reservations can be controlled using the reservation flag IGNRSV.

Other standing reservation attributes not covered here include PARTITION and CHARGEACCOUNT. These
parameters are described in some detail in the parameters documentation.

ACCOUNTCFG[jupiter] PRIORITY=10000

SRCFG[jupiter] HOSTLIST=node0[1-9]
SRCFG[jupiter] PERIOD=INFINITY
SRCFG[jupiter] ACCOUNTLIST=jupiter,saturn-
SRCFG[jupiter] OWNER=ACCOUNT:jupiter
SRCFG[jupiter] FLAGS=OWNERPREEMPT

SRCFG[smallrsv] PARTITION=small MAXTIME=3:00:00:00 PSLIMIT<=230400 
HOSTLIST=ALL
SRCFG[bigrsv] PARTITION=big MAXTIME=3:00:00:00 HOSTLIST=ALL

SRCFG[nettest] GROUPLIST=sysadm
SRCFG[nettest] FLAGS=IGNSTATE
SRCFG[nettest] HOSTLIST=node1[3-8]
SRCFG[nettest] STARTTIME=9:00:00
SRCFG[nettest] ENDTIME=17:00:00



Example 8: Using Reservations to Guarantee Turnover

In some cases, it is desirable to make certain a portion of a cluster's resources are available within a specific time
frame. The following example creates a floating reservation belonging to the jupiter account that guarantees 16
tasks for use by jobs requesting up to one hour.

This reservation enables a capability similar to what was known in early Maui releases as shortpool. The
reservation covers every weekday from 9:00 a.m. to 5:00 p.m., reserving 16 tasks and allowing jobs to overlap
the reservation for up to one hour. The SPACEFLEX flag indicates that the reservation may be dynamically
modified—float—over time to re-locate to more optimal resources. In the case of a reservation with the
MAXTIME ACL, this would include migrating to resources that are in use but that free up within the MAXTIME
time frame. Additionally, because the MAXTIME ACL defaults to positive affinity, any jobs that fit the ACL
attempt to use available reserved resources first before looking elsewhere.

7.1.5.2.9 Rolling Reservations

Rolling reservations are enabled using the ROLLBACKOFFSET attribute and can be used to allow users guaranteed
access to resources, but the guaranteed access is limited to a time-window in the future. This functionality forces
users to commit their resources in the future or lose access.

SRCFG[shortpool] OWNER=ACCOUNT:jupiter
SRCFG[shortpool] FLAGS=SPACEFLEX
SRCFG[shortpool] MAXTIME=1:00:00
SRCFG[shortpool] TASKCOUNT=16
SRCFG[shortpool] STARTTIME=9:00:00
SRCFG[shortpool] ENDTIME=17:00:00
SRCFG[shortpool] DAYS=Mon,Tue,Wed,Thu,Fri



Example 9: Rollback Reservations

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when an idle reservation
is created in the rollback reservation. For example: SRCFG[staff] ROLLBACKOFFSET=18:00:00*
PERIOD=INFINITY.

7.1.5.2.10 Modifying Resources with Standing Reservations

Moab can customize compute resources associated with a reservation during the life of the reservation. This can
be done generally using the TRIGGER attribute, or it can be done for operating systems using the shortcut
attribute OS. If set, Moab dynamically reprovisions allocated reservation nodes to the requested operating system
as shown in the following example:

SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

SRCFG[provision] PERIOD=DAY DAY=MON,WED,FRI STARTTIME=7:00:00 
ENDTIME=10:00:00
SRCFG[provision] OS=rhel4  # provision nodes to use redhat during 
reservation, restore when done



7.1.5.3 Managing Administrative Reservations
A default reservation with no ACL is termed an administrative reservation, but is occasionally referred to as a
system reservation. It blocks access to all jobs because it possesses an empty access control list. It is often
useful when performing administrative tasks but cannot be used for enforcing resource usage policies.

Administrative reservations are created and managed using the mrsvctl command. With this command, all
aspects of reservation time frame, resource selection, and access control can be dynamically modified. The mdiag
-r command can be used to view configuration, state, allocated resource information as well as identify any
potential problems with the reservation. The following table briefly summarizes commands used for common
actions. More detailed information is available in the command summaries.

Action Command

create reservation mrsvctl -c <RSV_DESCRIPTION>

list reservations mrsvctl -l

release reservation mrsvctl -r <RSVID>

modify reservation mrsvctl -m <ATTR>=<VAL> <RSVID>

query reservation configuration mdiag -r <RSVID>

display reservation hostlist mrsvctl -q resources <RSVID>

See Also

SRCFG (configure standing reservations)
RSVPROFILE (create reservation profiles)



7.1.6 Personal Reservations (a.k.a User
Reservations) - Enabling Reservations for End
Users

7.1.6.1 Enabling Personal Reservation Management
7.1.6.2 Reservation Accountability and Defaults

7.1.6.2.1 Reservation Allocation and Charging
7.1.6.2.2 Setting Reservation Default Attributes

7.1.6.3 Reservation Limits
7.1.6.3.1 Reservation Usage Limits
7.1.6.3.2 Reservation Masks (a.k.a. Personal Reservation Sandbox)

7.1.6.4 Reservation and Job Binding
7.1.6.4.1 Constraining a job to only run in a particular reservation
7.1.6.4.2 Constraining a Reservation to Only Accept Certain Jobs

By default, advance reservations are only available to scheduler administrators. While administrators may
create and manage reservations to provide resource access to end-users, end-users cannot create, modify,
or destroy these reservations. Moab extends the ability to manage reservations to end-users and provides
control facilities to keep these features manageable. Reservations created by end-users are called personal
reservations or user reservations.

7.1.6.1 Enabling Personal Reservation Management
User, or personal reservations can be enabled on a per QoS basis by setting the ENABLEUSERRSV flag as in
the following example:

If set, end-users are allowed to create, modify, cancel, and query reservations they own. As with jobs, users
may associate a personal reservation with any QoS or account to which they have access. This is
accomplished by specifying per reservation accountable credentials as in the following example:

As in the preceding example, a non-administrator user who wants to create a reservation must ALWAYS
specify an accountable QoS with the mrsvctl -S flag. This specified QoS must have the ENABLEUSERRSV
flag. By default, a personal reservation is created with an ACL of only the user who created it.

Example: Allow All Users in Engineering Group to Create Personal Reservations

Example: Allow Specific Users to Create Personal Reservations

QOSCFG[titan]    QFLAGS=ENABLEUSERRSV # allow 'titan' QOS jobs to 
create user reservations
USERCFG[DEFAULT] QDEF=titan           # allow all users to access 
'titan' QOS
...

> mrsvctl -c -S AQOS=titan -h node01 -d 1:00:00 -s 1:30:00

Note:  reservation test.126 created

QOSCFG[rsv]     QFLAGS=ENABLEUSERRSV # allow 'rsv' QOS jobs to create 
user reservations
GROUPCFG[sales] QDEF=rsv             # allow all users in group sales 
to access 'rsv' QOS
...

# special qos has higher job priority and ability to create user 
reservations



7.1.6.2 Reservation Accountability
Personal reservations must be configured with a set of accountable credentials. These credentials (user,
group, account, and so forth) indicate who is responsible for the resources dedicated by the reservation. If
resources are dedicated by a reservation but not consumed by a job, these resources can be charged against
the specified accountable credentials. Administrators are allowed to create reservations and specify any
accountable credentials for that reservation. While end-users can also be allowed to create and otherwise
modify personal reservations, they are only allowed to create reservations with accountable credentials to
which they have access. Further, while administrators may manage any reservation, end-users may only
control reservations they own.

Like jobs, reservation accountable credentials specify which credentials are charged for reservation usage and
what policies are enforced as far as usage limits and allocation management is concerned. (See the mrsvctl
command documentation for more information on setting personal reservation credentials.) While similar to
jobs, personal reservations do have a separate set of usage limits and different allocation charging policies.

7.1.6.2.1 Reservation Allocation and Charging

If an allocation management system is used, Moab can be configured to charge users for both the creation of
the reservation and the reservation itself. Using the QoS RSVCREATIONCOST and DEDRESCOST attributes,
a site may specify a per-QoS cost for each reservation created. The RSVCREATIONCOST cost is a flat
charge in allocation units applied regardless of whether the reservation is used. The DEDRESCOST tracks
reserved (or dedicated) resources allowing sites to charge by the quantity of resources (in processor-
seconds) that are actually reserved. As with jobs, these charges are applied against the personal reservation
account.

7.1.6.2.2 Setting Reservation Default Attributes

Organizations can use reservation profiles to set default attributes for personal reservations. These attributes
can include reservation aspects such as management policies, charging credentials, ACLs, host constraints,
and time frame settings.

7.1.6.3 Reservation Limits
Allowing end-users the ability to create advance reservations can lead to potentially unfair and unproductive
resource usage. This results from the fact that by default, there is nothing to prevent a user from reserving
all resources in a given system or reserving resources during time slots that would greatly impede the
scheduler's ability to schedule jobs efficiently. Because of this, it is highly advised that sites initially place
either usage or allocation based constraints on the use of personal reservations.

While time spanning throttling policies are a significant step in the direction of end-user advance reservation
management, it is important to track actual site usage of the advance reservation facility. It is still likely that
further usage policies are required at each site to prevent reservation misuse and provide an optimally useful
system.

7.1.6.3.1 Reservation Usage Limits

Personal reservation usage limits may be enforced using the attributes specified in the following table. These
limits can be used to constrain the resources reserved in any single reservation as well as the total quantity
of resources that may be reserved cumulatively across all reservations.

Reservation usage limits are independent of job limits imposed on users, groups, and other credentials.

QOSCFG[special] QFLAGS=ENABLEUSERRSV
QOSCFG[special] PRIORITY=1000

# allow betty and steve to use the special qos
USERCFG[betty]  QDEF=special
USERCFG[steve]  QLIST=fast,special,basic QDEF=rsv
...



Limit Description

RMAXDURATION Limits the duration (in seconds) of any single personal reservation.

RMAXPROC Limits the size (in processors) of any single personal reservation.

RMAXPS Limits the size (in processor-seconds) of any single personal reservation.

RMAXCOUNT Limits the total number of personal reservations a credential may have active at
any given moment.

RMAXTOTALDURATION Limits the total duration of personal reservations a credential may have active at
any given moment.

RMAXTOTALPROC Limits the total number of processors a credential may reserve active at any given
moment.

RMAXTOTALPS Limits the total number of processor-seconds a credential may reserve active at
any given moment.

Example: Constrain Size/Duration of Personal Reservations

7.1.6.3.2 Reservation Masks (a.k.a. Personal Reservation Sandbox)

Additional control over when and where personal reservations can be created can be enabled through the use
of a mask reservation. To create a mask reservation, a standard standing reservation can be created with the
flag ALLOWPRSV set. If such a reservation exists, the scheduler constrains all personal reservation requests
to only use resources within this reservation. This effectively allows a site to constrain the times of the day
and days of the week during which a personal reservation can be created and limits the requests to a specific
subset of resources. Note that reservation masks can be used in conjunction with reservation usage limits to
provide a finer level of control. Also note that reservation masks still support the concept of the reservation
ACL, which can constrain exactly who or what may request the resources within the reservation mask. To
enable global access to a standing reservation with the flag ALLOWPRSV, the ACL USER==ALL+ is assigned
to the reservation by default.

Personal reservation masks/sandboxes only impact users who are not Moab administrators. Moab
administrators are allowed to create personal reservations on any resource they can normally access.

Example: Create Personal Reservation Sandbox

7.1.6.4 Reservation and Job Binding
Moab allows job-to-reservation binding to be configured at an administrator or end-user level. This binding
constrains how job to reservation mapping is allowed.

7.1.6.4.1 Constraining a job to only run in a particular reservation

Jobs may be bound to a particular reservation at submit time (using the RM extension ADVRES) or
dynamically using the mjobctl command. (See Job to Reservation Mapping.) In either case, once bound to a
reservation, a job may only run in that reservation even if other resources may be found outside of that
reservation. The mjobctl command may also be used to dynamically release a job from reservation binding.

Example 1: Bind job to reservation

# special qos can only make reservations up to 5 procs and 2 hours
QOSCFG[special] QFLAGS=ENABLEUSERRSV RMAXPROC=5 RMAXDURATION=2:00:00

# allow personal reservations to only reserve nodes 1-8 on Tues and 
Weds
SRCFG[sandbox] HOSTLIST=node0[1-8] FLAGS=ALLOWPRSV 
SRCFG[sandbox] PERIOD=DAY DAYS=TUE,WED



Example 2: Release job from reservation binding

7.1.6.4.2 Constraining a Reservation to Only Accept Certain Jobs

Binding a job to a reservation is independent of binding a reservation to a job. For example, a reservation
may be created for user steve. User steve may then submit a number of jobs including one that is bound to
that reservation using the ADVRES attribute. However, this binding simply forces that one job to use the
reservation, it does not prevent the reservation from accepting other jobs submitted by user steve. To
prevent these other jobs from using the reserved resources, reservation to job binding must occur. This
binding is accomplished by specifying either general job binding or specific job binding.

General job binding is the most flexible form of binding. Using the BYNAME attribute, a reservation may be
created that only accepts jobs specifically bound to it.

Specific job binding is more constraining. This form of binding causes the reservation to only accept specific
jobs, regardless of other job attributes and is set using the JOB reservation ACL.

Example 1: Configure a reservation to accept only jobs that are bound to it

Example 2: Remove general reservation to job binding

Example 3: Configure a reservation to accept a specific job

Example 4: Remove a specific reservation to job binding

> mjobctl -m flags+=advres:grid.3 job1352

> mjobctl -m flags-=advres job1352

> mrsvctl -m flags+=byname grid.3

> mrsvctl -m flags-=byname grid.3

> mrsvctl -m -a JOB=3456 grid.3

> mrsvctl -m -a JOB=3456 grid.3 --flags=unset



7.2 Partitions
7.2.1 Partition Overview
7.2.2 Defining Partitions
7.2.3 Managing Partition Access
7.2.4 Requesting Partitions
7.2.5 Per-Partition Settings
7.2.6 Miscellaneous Partition Issues

7.2.1 Partition Overview
Partitions are a logical construct that divide available resources. Any single resource (compute node) may
only belong to a single partition. Often, natural hardware or resource manager bounds delimit partitions such
as in the case of disjoint networks and diverse processor configurations within a cluster. For example, a
cluster may consist of 256 nodes containing four 64 port switches. This cluster may receive excellent
interprocess communication speeds for parallel job tasks located within the same switch but sub-stellar
performance for tasks that span switches. To handle this, the site may choose to create four partitions,
allowing jobs to run within any of the four partitions but not span them.

While partitions do have value, it is important to note that within Moab, the standing reservation facility
provides significantly improved flexibility and should be used in the vast majority of politically motivated
cases where partitions may be required under other resource management systems. Standing reservations
provide time flexibility, improved access control features, and more extended resource specification options.
Also, another Moab facility called Node Sets allows intelligent aggregation of resources to improve per job
node allocation decisions. In cases where system partitioning is considered for such reasons, node sets may
be able to provide a better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability to specify
partition specific policies, limits, priorities, and scheduling algorithms although this feature is rarely required.
An example of this need may be a cluster consisting of 48 nodes owned by the Astronomy Department and
16 nodes owned by the Mathematics Department. Each department may be willing to allow sharing of
resources but wants to specify how their partition will be used. As mentioned, many of Moab's scheduling
policies may be specified on a per partition basis allowing each department to control the scheduling goals
within their partition.

The partition associated with each node should be specified as indicated in the Node Location section. With
this done, partition access lists may be specified on a per job or per QoS basis to constrain which resources a
job may have access to. (See the QoS Overview for more information.) By default, QoS's and jobs allow
global partition access. Note that by default, a job may only use resources within a single partition.

If no partition is specified, Moab creates one partition per resource manager into which all resources
corresponding to that resource manager are placed. (This partition is given the same name as the resource
manager.)

A partition may not span multiple resource managers. In addition to these resource manager
partitions, a pseudo-partition named [ALL] is created that contains the aggregate resources of all
partitions.

While the resource manager partitions are real partitions containing resources not explicitly assigned to
other partitions, the [ALL] partition is only a convenience object and is not a real partition; thus it
cannot be requested by jobs or included in configuration ACLs.

7.2.2 Defining Partitions
Node to partition mappings can be established directly using the NODECFG parameter or indirectly using the
FEATUREPARTITIONHEADER parameter. If using direct mapping, this is accomplished as shown in the
example that follows.

NODECFG[node001]   PARTITION=astronomy
NODECFG[node002]   PARTITION=astronomy
...



By default, Moab creates two partitions, DEFAULT and [ALL]. These are used internally, and consume
spots in the 31-partition maximum defined in the MMAX_PAR parameter. If more partitions are
needed, you can adjust the maximum partition count. See Adjusting Default Limits for information on
increasing the maximum number of partitions.

7.2.3 Managing Partition Access
Partition access can be constrained by credential ACLs and by limits based on job resource requirements.

7.2.3.1 Credential Based Access

Determining who can use which partition is specified using the *CFG parameters (USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG). These parameters allow you to select a partition access
list on a credential or system wide basis using the PLIST attribute. By default, the access associated with
any given job is the logical OR of all partition access lists assigned to the job's credentials.

For example, assume a site with two partitions, general, and test. The site management would like
everybody to use the general partition by default. However, one user, Steve, needs to perform the majority
of his work on the test partition. Two special groups, staff and management will also need access to use the
test partition from time to time but will perform most of their work in the general partition. The following
example configuration enables the needed user and group access and defaults for this site:

By default, the system partition access list allows global access to all partitions. If using logical OR
based partition access lists, the system partition list should be explicitly constrained using the SYSCFG
parameter.

While using a logical OR approach allows sites to add access to certain jobs, some sites prefer to work the
other way around. In these cases, access is granted by default and certain credentials are then restricted
from accessing various partitions. To use this model, a system partition list must be specified as in the
following example:

In the preceding example, note the ampersand (&). This character, which can be located anywhere in the
PLIST line, indicates that the specified partition list should be logically ANDed with other partition access
lists. In this case, the configuration limits jobs from user demo to running in partition test and jobs from
group staff to running in partition general. All other jobs are allowed to run in either partition.

When using AND based partition access lists, the base system access list must be specified with
SYSCFG.

7.2.3.2 Per Job Resource Limits

Access to partitions can be constrained based on the resources requested on a per job basis with limits on
both minimum and maximum resources requested. All limits are specified using the PARCFG parameter as
described in the following table:

LIMIT DESCRIPTION

MAX.CPULIMIT Specifies maximum cpulimit required per job.

NODECFG[node049]   PARTITION=math
...

SYSCFG[base]     PLIST= 
USERCFG[DEFAULT] PLIST=general
USERCFG[steve]   PLIST=general:test PDEF=test
GROUPCFG[staff]  PLIST=general:test PDEF=general
GROUPCFG[mgmt]   PLIST=general:test PDEF=general

SYSCFG[base]    PLIST=general,test&
USERCFG[demo]   PLIST=test&
GROUPCFG[staff] PLIST=general&



MAX.NODE Specifies maximum nodes required per job.

MAX.PROC Specifies maximum processors required per job.

MAX.PS Specifies maximum nodes processor-seconds required per job.

MAX.WCLIMIT Specifies maximum walltime required per job (FORMAT: [[[DD:]HH:]MM:SS).

MIN.NODE Specifies minimum nodes required per job.

MIN.PROC Specifies minimum processors required per job.

MIN.WCLIMIT Specifies minimum walltime required per job (FORMAT: [[[DD:]HH:]MM:SS).

Examples

7.2.4 Requesting Partitions
Users may request to use any partition they have access to on a per job basis. This is accomplished using the
resource manager extensions since most native batch systems do not support the partition concept. For
example, on a TORQUE system, a job submitted by a member of the group staff could request that the job
run in the test partition by adding the line -l partition=test to the qsub command line. See the resource
manager extension overview for more information on configuring and using resource manager extensions.

 7.2.5 Per-Partition Settings
The following settings can be specified on a per-partition basis using the PARCFG parameter:

SETTING DESCRIPTION

JOBNODEMATCHPOLICY Specifies the JOBNODEMATCHPOLICY to be applied to jobs that run in the
specified partition.

NODEACCESSPOLICY Specifies the NODEACCESSPOLICY to be applied to jobs that run in the specified
partition.

USETTC Specifies whether TTC specified at submission should be used and displayed by
the scheduler.

VMCREATEDURATION Specifies the maximum amount of time VM creation can take before Moab
considers it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum
limit.

VMDELETEDURATION Specifies the maximum amount of time VM deletion can take before Moab
considers it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum
limit.

VMMIGRATEDURATION Specifies the maximum amount of time VM migration can take before Moab
considers it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum
limit.

 7.2.6 Miscellaneous Partition Issues
A brief caution: Use of partitions has been quite limited in recent years as other, more effective approaches
are selected for site scheduling policies. Consequently, some aspects of partitions have received only minor
testing. Still, note that partitions are fully supported and any problem found will be rectified.

PARCFG[amd]     MAX.PROC=16
PARCFG[pIII]    MAX.WCLIMIT=12:00:00 MIN.PROC=4
PARCFG[solaris] MIN.NODE=12

http://www.adaptivecomputing.com/resources/docs/torque/index.php


See Also
Standing Reservations
Node Sets
FEATUREPARTITIONHEADER parameter
PARCFG parameter



7.3 Quality of Service (QoS) Facilities
This section describes how to do the following:

Allow key projects access to special services (such as preemption, resource dedication, and advance
reservations).
Provide access to special resources by requested QoS.
Enable special treatment within priority and fairshare facilities by requested QoS.
Provide exemptions to usage limits and other policies by requested QoS.
Specify delivered service and response time targets.
Enable job deadline guarantees.
Control the list of QoS's available to each user and job.
Enable special charging rates based on requested or delivered QoS levels.
Enable limits on the extent of use for each defined QoS.
Monitor current and historical usage for each defined QoS.

7.3.1 QoS Overview
7.3.2 QoS Enabled Privileges

7.3.2.1 Special Prioritization
7.3.2.2 Service Access and Constraints
7.3.2.3 Usage Limits and Overrides
7.3.2.4 Service Access Thresholds
7.3.2.5 Preemption Management

7.3.3 Managing QoS Access
7.3.4 Configuring QoS Specific Charging
7.3.5 Requesting QoS Services at Job Submission
7.3.6 Restricting Access to Special Attributes

7.3.1 QoS Overview
Moab's QoS facility allows a site to give special treatment to various classes of jobs, users, groups, and so
forth. Each QoS object can be thought of as a container of special privileges ranging from fairness policy
exemptions, to special job prioritization, to special functionality access. Each QoS object also has an extensive
access list of users, groups, and accounts that can access these privileges.

Sites can configure various QoS's each with its own set of priorities, policy exemptions, and special resource
access settings. They can then configure user, group, account, and class access to these QoS's. A given job
will have a default QoS and may have access to several additional QoS's. When the job is submitted, the
submitter may request a specific QoS or just allow the default QoS to be used. Once a job is submitted, a
user may adjust the QoS of the job at any time using the setqos command. The setqos command will only
allow the user to modify the QoS of that user's jobs and only change the QoS to a QoS that this user has
access to. Moab administrators may change the QOS of any job to any value.

Jobs can be granted access to QoS privileges if the QoS is listed in the system default configuration QDEF
(QoS default) or QLIST (QoS access list), or if the QoS is specified in the QDEF or QLIST of a user, group,
account, or class associated with that job. Alternatively, a user may access QoS privileges if that user is listed
in the QoS's MEMBERULIST attribute.

The mdiag -q command can be used to obtain information about the current QoS configuration including
specified credential access.

7.3.2 QoS Enabled Privileges
The privileges enabled via QoS settings may be broken into the following categories:

Special Prioritization
Service Access and Constraints



Override Policies and Policy Exemptions

All privileges are managed via the QOSCFG parameter.

7.3.2.1 Special Prioritization

Attribute Name Description

FSTARGET Specifies QoS fairshare target.

FSWEIGHT Sets QoS fairshare weight offset affecting a job's fairshare priority component.

PRIORITY Assigns priority to all jobs requesting particular QoS.

QTTARGET Sets QoS queuetime target affecting a job's target priority component and QoS delivered.

QTWEIGHT Sets QoS queuetime weight offset affecting a job's service priority component.

XFTARGET Sets QoS XFactor target affecting a job's target priority component and QoS delivered.

XFWEIGHT Sets QoS XFactor weight offset affecting a job's service priority component.

Example

7.3.2.2 Service Access and Constraints

The QoS facility can be used to enable special services and to disable default services. These services are
enabled/disabled by setting the QoS QFLAGS attribute.

Flag Name Description

DEADLINE Job may request an absolute or relative completion deadline and Moab will
reserve resources to meet that deadline. (An alternative priority based
deadline behavior is discussed in the PRIORITY FACTORS section.)

DEDICATED Moab dedicates all resources of an allocated node to the job meaning that the
job will not share a node's compute resources with any other job.

DYNAMIC Moab allows jobs to dynamically allocate/de-allocate resources while the job is
actively running.

ENABLEUSERRSV Allow user or personal reservations to be created and managed.

IGNALL Scheduler ignores all resource usage policies for jobs associated with this QoS.

NOBF Job is not considered for backfill.

NORESERVATION Job should never reserve resources regardless of priority.

NTR Job is prioritized to run next.

PREEMPTCONFIG User jobs may specify options to alter how preemption impacts the job such as
minpreempttime.

PREEMPTEE Job may be preempted by higher priority PREEMPTOR jobs.

PREEMPTFSV Job may be preempted by higher priority PREEMPTOR jobs if it exceeds its
fairshare target when started.

PREEMPTOR Job may preempt lower priority PREEMPTEE jobs.

# assign priority for all qos geo jobs 

QOSCFG[geo]  PRIORITY=10000



PREEMPTSPV Job may be preempted by higher priority PREEMPTOR jobs if it currently
violates a soft usage policy limit.

PROVISION If the job cannot locate available resources with the needed OS or software,
the scheduler may provision a number of nodes to meet the needed OS or
software requirements.

RESERVEALWAYS Job should create resource reservation regardless of job priority.

RUNNOW Boosts a job's system priority and makes the job a preemptor.

RUNNOW overrides resource restrictions such as MAXJOB or MAXPROC.

TRIGGER The job is able to directly specify triggers.

USERESERVED[:<RSVID>] Job may only use resources within accessible reservations. If <RSVID> is
specified, job may only use resources within the specified reservation.

Example: For lowprio QoS job, disable backfill and make job preemptible

Example: Bind all jobs to chemistry reservation

Other QoS Attributes

In addition to the flags, there are attributes that alter service access.

Attribute Name Description

RSVCREATIONCOST The base cost to users when creating reservations.

SYSPRIO Sets the system priority on jobs associated with this QoS.

Example: All jobs submitted under a QoS sample receive a system priority of 1

Per QoS Required Reservations

If desired, jobs associated with a particular QoS can be locked into a reservation or reservation group using
the REQRID attribute. For example, to force jobs using QoS jasper to only use the resources within the
failsafe standing reservation, use the following:

Setting Per QoS Network Service Levels

Minimum network service levels can be specified using the MINBANDWIDTH attribute. If specified, Moab
does not allow a job to start until these criteria can be satisfied and allocates or reserves specific resources or
combinations of resources to fulfill these constraints. Further, if the Network Management System supports it,
Moab dynamically creates network fabric partitions with guaranteed service levels.

QOSCFG[lowprio]  QFLAGS=NOBF,PREEMPTEE

QOSCFG[chem-b]  QFLAGS=USERESERVED:chemistry

QOSCFG[sample]  SYSPRIO=1

QOSCFG[jasper] REQRID=failsafe
...

QOSCFG[highspeed] MINBANDWIDTH=1GB
...



7.3.2.3 Usage Limits and Overrides

All credentials, including QoS, allow specification of job usage limits as described in the Basic Fairness Policies
overview. In such cases, jobs are constrained by the most limiting of all applicable policies. With QoS's, an
override limit may also be specified and with this limit, jobs are constrained by the override, regardless of
other limits specified. In particular, the following policies may be overridden:

MAXJOB
MAXNODE
MAXPE
MAXPROC
MAXPS

Usage limits are overridden by specifying the QoS attribute O<LIMIT>, as in OMAXJOB or OMAXPROC. To
override system/job limits, use the OMAXJ<LIMIT>, as in OMAXJPS or OMAXJWC.

In addition to job usage limits, QoS's (as with other credentials), can also limit personal reservations.
Attributes such as RMAXDURATION, RMAXPROC, and RMAXTOTALPROC can be used to constrain
resources available to personal reservations. See Personal Reservation Usage Limits for more information.

Example

7.3.2.4 Service Access Thresholds

Jobs can be granted access to services such as preemption and reservation creation, and they can be granted
access to resource reservations. However, with QoS thresholds, this access can be made conditional on the
current queuetime and XFactor metrics of an idle job. The following table lists the available QoS service
thresholds:

Threshold Attribute Description

PREEMPTQTTHRESHOLD A job with this QoS becomes a preemptor if the specified queuetime threshold is
reached.

PREEMPTXFTHRESHOLD A job with this QoS becomes a preemptor if the specified XFactor threshold is
reached.

RSVQTTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if
the specified queuetime threshold is reached.

RSVXFTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if
the specified XFactor threshold is reached.

ACLQTTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if
the specified queuetime threshold is reached.

ACLXFTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if
the specified XFactor threshold is reached.

TRIGGERQTTHRESHOLD If a job with this QoS fails to run before this threshold is reached, any failure
triggers associated with this QoS will fire.

7.3.2.5 Preemption Management

Job preemption facilities can be controlled on a per-QoS basis using the PREEMPTEE and PREEMPTOR flags.
Jobs that are preemptible can optionally be constrained to only be preempted in a particular manner by
specifying the QoS PREEMPTPOLICY attribute as in the following example:

# staff QoS should have a limit of 48 jobs, ignoring the user limit 

USERCFG[DEFAULT]   MAXJOB=10
QOSCFG[staff]      OMAXJOB=48



For preemption to be effective, a job must be marked as a preemptee and must be enabled for the requested
preemption type. For example, if the PREEMPTIONPOLICY is set to suspend, a potential target job must be
both a preemptee and marked with the job flag SUSPENDABLE. (See suspension for more information.) If
the target job is not suspendable, it will be either requeued or canceled. Likewise, if the
PREEMPTIONPOLICY is set to requeue, the job will be requeued if it is marked restartable. Otherwise, it will
be canceled.

The minimum time a job must run before being considered eligible for preemption can also be configured on a
per-QoS basis using the PREEMPTMINTIME parameter, which is analogous to the
JOBPREEMPTMINACTIVETIME. Conversely, PREEMPTMAXTIME sets a threshold for which a job is no longer
eligible for preemption; see JOBPREEMPTMAXACTIVETIME for analogous details.

7.3.3 Managing QoS Access

Specifying Credential Based QoS Access

You can define the privileges allowed within a QoS by using the QOSCFG parameter; however, in most cases
access to the QoS is enabled via credential specific *CFG parameters, specifically the USERCFG, GROUPCFG,
ACCOUNTCFG, and CLASSCFG parameters, which allow defining QoS access lists and QoS defaults. Specify
credential specific QoS access by using the QLIST and/or QDEF attributes of the associated credential
parameter.

QOS Access via Logical OR

To enable QoS access, the QLIST and/or QDEF attributes of the appropriate user, group, account, or
class/queue should be specified as in the following example:

By default, jobs may request a QoS if access to that QoS is allowed by any of the job's credentials. (In the
previous example, a job from user john submitted to the class batch could request QoS's geo, chem, staff,
or normal).

QOS Access via Logical AND

If desired, QoS access can be masked or logically ANDed if the QoS access list is specified with a terminating
ampersand (&) as in the following example:

QOSCFG[special] QFLAGS=PREEMPTEE PREEMPTPOLICY=CHECKPOINT

# user john's jobs can access QOS geo, chem, or staff with geo as 
default
USERCFG[john]     QDEF=geo   QLIST=geo,chem,staff

# group system jobs can access the development qos
GROUPCFG[systems] QDEF=development

# class batch jobs can access the normal qos
CLASSCFG[batch]   QDEF=normal

# user john's jobs can access QOS geo, chem, or staff with geo as 
default
USERCFG[john]     QDEF=geo   QLIST=geo,chem,staff

# group system jobs can access the development qos
GROUPCFG[systems] QDEF=development

# class batch jobs can access the normal qos
CLASSCFG[batch]   QDEF=normal

# class debug jobs can only access the development or lowpri QoS's 
regardless of other credentials
CLASSCFG[debug]   QLIST=development,lowpri&



Specifying QoS Based Access

QoS access may also be specified from within the QoS object using the QoS MEMBERULIST attribute as in
the following example:

By default, if a job requests a QoS that it cannot access, Moab places a hold on that job. The
QOSREJECTPOLICY can be used to modify this behavior.

7.3.4 Configuring QoS-Specific Charging
Charging policies and rates may be configured on a per-QoS basis. This capability provides a powerful way of
allowing end-users to select the level of service they desire and the price they are willing to pay for that
service.

Several policies allow control over exactly how a job gets charged; these include CHARGERATEPOLICY and
CHARGEMETRICPOLICY. The first parameter, CHARGERATEPOLICY, allows a site to specify how jobs are
charged for the resources they use.

A job's total cost can be adjusted on a per QoS basis using the DEDRESCOST attribute:

QOS Attribute Description

DEDRESCOST Cost multiplier for dedicated resources associated with using the specified QoS.

Example

These charging parameters only impact internal charging job costs written to accounting records. They
do not currently affect charges sent to an external allocation manager.

7.3.5 Requesting QoS Services at Job Submission
By default, jobs inherit a default QoS based on the user, group, class, and account associated with the job. If
a job has access to multiple QoS levels, the submittor can explicitly request a particular QoS using the QoS
resource manager extension as in the following example:

7.3.6 Restricting Access to Special Attributes
By default, Moab allows all users access to special attributes such as node access policy. By enabling the QoS
facility SPECATTRS, the access to these policies can be restricted. For example, to enable the facility, in the
moab.cfg file, specify QOSCFG[DEFAULT] SPECATTRS=. Then, to allow access to the special attributes, indicate
which special attributes a specific QoS may access.

See Also

# define qos premiere and grant access to users steve and john
QOSCFG[premiere]  PRIORITY=1000  QFLAGS=PREEMPTOR  
MEMBERULIST=steve,john

QOSCFG[fast] DEDRESCOST=4.0
QOSCFG[slow] DEDRESCOST=0.5
...

> msub -l nodes=1,walltime=100,qos=special3 job.cmd

QOSCFG[DEFAULT] SPECATTRS=

QOSCFG[high]  SPECATTRS=NACCESSPOLICY



Credential Overview
Allocation Management Overview
Rollback Reservations
Job Deadlines



8.0 Optimizing Scheduling Behavior - Backfill,
Node Sets, and Preemption

8.1 Optimization Overview
8.2 Backfill
8.3 Node Sets
8.4 Preemption



8.1 Optimization Overview
Moab optimizes cluster performance. Every policy, limit, and feature is designed to allow maximum
scheduling flexibility while enforcing the required constraints. A driving responsibility of the scheduler is to do
all in its power to maximize system use and to minimize job response time while honoring the policies that
make up the site's mission goals.

However, as all jobs are not created equal, optimization must be abstracted slightly further to incorporate
this fact. Cluster optimization must also focus on targeted cycle delivery. In the scientific HPC community,
the true goal of a cluster is to maximize delivered research. For businesses and other organizations, the
purposes may be slightly different, but all organizations agree on the simple tenet that the cluster should
optimize the site's mission goals.

To obtain this goal, the scheduler has several levels of optimization it performs:

Workload Ordering - prioritizing workload and utilizing backfill
Intelligent Resource Allocation - selecting those resources that best meet the job's needs or best
enable future jobs to run (see node allocation)
Maximizing Intra-Job Efficiency - selecting the type of nodes, collection of nodes, and proximity of
nodes required to maximize job performance by minimizing both job compute and inter-process
communication time (see task distribution, node sets and node allocation)
Job Preemption - preempting jobs to allow the most important jobs to receive the best response
time (see preemption)
Utilizing Flexible Policies - using policies that minimize blocking and resource fragmentation while
enforcing needed constraints (see soft throttling policies and reservations)



8.2 Backfill
8.2.1 Backfill Overview
8.2.2 Backfill Algorithms
8.2.3 Configuring Backfill

8.2.1 Backfill Overview
Backfill is a scheduling optimization that allows a scheduler to make better use of available resources by
running jobs out of order. When Moab schedules, it prioritizes the jobs in the queue according to a number of
factors and then orders the jobs into a highest priority first (or priority FIFO) sorted list. It starts the jobs
one by one stepping through the priority list until it reaches a job it cannot start. Because all jobs and
reservations possess a start time and a wallclock limit, Moab can determine the completion time of all jobs in
the queue. Consequently, Moab can also determine the earliest the needed resources will become available
for the highest priority job to start.

Backfill operates based on this earliest job start information. Because Moab knows the earliest the highest
priority job can start, and which resources it will need at that time, it can also determine which jobs can be
started without delaying this job. Enabling backfill allows the scheduler to start other, lower-priority jobs so
long as they do not delay the highest priority job. If backfill is enabled, Moab, protects the highest priority
job's start time by creating a job reservation to reserve the needed resources at the appropriate time. Moab
then can start any job that will not interfere with this reservation.

Backfill offers significant scheduler performance improvement. In a typical large system, enabling backfill
increases system utilization by about 20% and improves turnaround time by an even greater amount.
Because of the way it works, essentially filling in holes in node space, backfill tends to favor smaller and
shorter running jobs more than larger and longer running ones. It is common to see over 90% of these small
and short jobs backfilled. Consequently, sites will see marked improvement in the level of service delivered to
the small, short jobs and moderate to little improvement for the larger, long ones.

With most algorithms and policies, there is a trade-off. Backfill is not an exception but the negative effects
are minor. Because backfill locates jobs to run from throughout the idle job queue, it tends to diminish the
influence of the job prioritization a site has chosen and thus may negate some desired workload steering
attempts through this prioritization. Although by default the start time of the highest priority job is protected
by a reservation, there is nothing to prevent the third priority job from starting early and possibly delaying
the start of the second priority job. This issue is addressed along with its trade-offs later in this section.

Another problem is a little more subtle. Consider the following scenario involving a two-processor cluster. Job
A has a four-hour wallclock limit and requires one processor. It started one hour ago (time zero) and will
reach its wallclock limit in three more hours. Job B is the highest priority idle job and requires two processors
for one hour. Job C is the next highest priority job and requires one processor for two hours. Moab examines
the jobs and correctly determines that job A must finish in three hours and thus, the earliest job B can start
is in three hours. Moab also determines that job C can start and finish in less than this amount of time.
Consequently, Moab starts job C on the idle processor at time one. One hour later (time two), job A
completes early. Apparently, the user overestimated the amount of time job A would need by a few hours.
Since job B is now the highest priority job, it should be able to run. However, job C, a lower priority job was
started an hour ago and the resources needed for job B are not available. Moab re-evaluates job B's
reservation and determines that it can slide forward an hour. At time three, job B starts.

In review, backfill provided positive benefits. Job A successfully ran to completion. Job C was started
immediately. Job B was able to start one hour sooner than its original target time, although, had backfill not
been enabled, job B would have been able to run two hours earlier.

The scenario just described occurs quite frequently because user estimates for job duration are generally
inaccurate. Job wallclock estimate accuracy, or wallclock accuracy, is defined as the ratio of wall time
required to actually run the job divided by the wall time requested for the job. Wallclock accuracy varies from
site to site but the site average is rarely better than 50%. Because the quality of the walltime estimate
provided by the user is so low, job reservations for high priority jobs are often later than they need to be.

Although there do exist some minor drawbacks with backfill, its net performance impact on a site's workload
is very positive. While a few of the highest priority jobs may get temporarily delayed, their position as
highest priority was most likely accelerated by the fact that jobs in front of them were able to start earlier
due to backfill. Studies have shown that only a very small number of jobs are truly delayed and when they



are, it is only by a fraction of their total queue time. At the same time, many jobs are started significantly
earlier than would have occurred without backfill.

8.2.2 Backfill Algorithms
The algorithm behind Moab backfill scheduling is straightforward, although there are a number of issues and
parameters that should be highlighted. First of all, Moab makes two backfill scheduling passes. For each pass,
Moab selects a list of jobs that are eligible for backfill. On the first pass, only those jobs that meet the
constraints of the soft fairness throttling policies are considered and scheduled. The second pass expands this
list of jobs to include those that meet the hard (less constrained) fairness throttling policies.

The second important concept regarding Moab backfill is the concept of backfill windows. The figure below
shows a simple batch environment containing two running jobs and a reservation for a third job. The present
time is represented by the leftmost end of the box with the future moving to the right. The light gray boxes
represent currently idle nodes that are eligible for backfill. For this example, lets assume that the space
represented covers 8 nodes and a 2 hour time frame. To determine backfill windows, Moab analyzes the idle
nodes essentially looking for largest node-time rectangles. It determines that there are two backfill windows.
The first window, Window 1, consists of 4 nodes that are available for only one hour (because some of the
nodes are blocked by the reservation for job C). The second window contains only one node but has no time
limit because this node is not blocked by the reservation for job C. It is important to note that these backfill
windows overlap.

Once the backfill windows have been determined, Moab begins to traverse them. The current behavior is to
traverse these windows widest window first (most nodes to fewest nodes). As each backfill window is
evaluated, Moab applies the backfill algorithm specified by the BACKFILLPOLICY parameter.

If the FIRSTFIT algorithm is applied, the following steps are taken:



1. The list of feasible backfill jobs is filtered, selecting only those that will actually fit in the current
backfill window.

2. The first job is started.
3. While backfill jobs and idle resources remain, repeat step 1.

If the BESTFIT algorithm is applied, the following steps are taken:

1. The list of feasible backfill jobs is filtered, selecting only those that actually fit in the current backfill
window.

2. The degree of fit of each job is determined based on the BACKFILLMETRIC parameter (processors,
seconds, processor-seconds).

3. The job with the best fit starts.
4. While backfill jobs and idle resources remain, repeat step 1.

If the GREEDY algorithm is applied, the following steps are taken:

1. The list of feasible backfill jobs is filtered, selecting only those that actually fit in the current backfill
window.

2. All possible combinations of jobs are evaluated, and the degree of fit of each combination is
determined based on the BACKFILLMETRIC parameter (processors, seconds, processor-seconds).

3. Each job in the combination with the best fit starts.
4. While backfill jobs and idle resources remain, repeat step 1.

If the PREEMPT algorithm is applied, the following steps are taken:

1. The list of feasible backfill jobs is filtered, selecting only those that actually fit in the current backfill
window.

2. Jobs are filtered according to the priority set by the BFPRIORITYPOLICY parameter.
3. The highest priority backfill job is started as a preemptee.
4. While backfill jobs and idle resources remain, repeat step 1.

If NONE is set, the backfill policy is disabled.

Other backfill policies behave in a generally similar manner. The parameters documentation provides further
details.

8.2.2.1 Liberal versus Conservative Backfill

By default, Moab reserves only the highest priority job resulting in a liberal and aggressive backfill. This
reservation guarantees that backfilled jobs will not delay the highest priority job, although they may delay
other jobs. The parameter RESERVATIONDEPTH controls how conservative or liberal the backfill policy is. This
parameter controls how deep down the queue priority reservations will be made. While increasing this
parameter improves guarantees that priority jobs will not be bypassed, it reduces the freedom of the
scheduler to backfill resulting in somewhat lower system utilization. The significance of the trade-offs should
be evaluated on a site by site basis.

8.2.3 Configuring Backfill

Backfill Policies

Backfill is enabled in Moab by specifying the BACKFILLPOLICY parameter. By default, backfill is enabled in
Moab using the FIRSTFIT algorithm. However, this parameter can also be set to BESTFIT, GREEDY,
PREEMPT or NONE (disabled).

Reservations

The number of reservations that protect the resources required by priority jobs can be controlled using
RESERVATIONDEPTH. This depth can be distributed across job QoS levels using RESERVATIONQOSLIST.

Backfill Chunking

In a batch environment saturated with serial jobs, serial jobs will, over time, dominate the resources
available for backfill at the expense of other jobs. This is due to the time-dimension fragmentation associated
with running serial jobs. For example, given an environment with an abundance of serial jobs, if a multi-



processor job completes freeing processors, one of three things will happen:

1. The freed resources are allocated to another job requiring the same number of processors.
2. Additional jobs may complete at the same time allowing a larger job to allocate the aggregate

resources.
3. The freed resources are allocated to one or more smaller jobs.

In environments where the scheduling iteration is much higher than the average time between completing
jobs, case 3 occurs far more often than case 2, leading to smaller and smaller jobs populating the system
over time.

To address this issue, the scheduler incorporates the concept of chunking. Chunking allows the scheduler to
favor case 2 maintaining a more controlled balance between large and small jobs. The idea of chunking
involves establishing a time-based threshold during which resources available for backfill are aggregated.
This threshold is set using the parameter BFCHUNKDURATION. When resources are freed, they are made
available only to jobs of a certain size (set using the parameter BFCHUNKSIZE) or larger. These resources
remain protected from smaller jobs until either additional resources are freed up and a larger job can use the
aggregate resources, or until the BFCHUNKDURATION threshold time expires.

Backfill chunking is only activated when a job of size BFCHUNKSIZE or larger is blocked in backfill
due to lack of resources.

It is important to note that the optimal settings for these parameters is very site specific and will depend on
the workload (including the average job turnaround time, job size, and mix of large to small jobs), cluster
resources, and other scheduling environmental factors. Setting too restrictive values needlessly reduces
utilization while settings that are too relaxed do not allowed the desired aggregation to occur.

Backfill chunking is only enabled in conjunction with the FIRSTFIT backfill policy.

Virtual Wallclock Time Scaling

In most environments, users submit jobs with rough estimations of the wallclock times. Within the HPC
industry, a job typically runs for 40% of its specified wallclock time. Virtual Wallclock Time Scaling takes
advantage of this fact to implement a form of optimistic backfilling. Jobs that are eligible for backfilling and
not restricted by other policies are virtually scaled by the BFVIRTUALWALLTIMESCALINGFACTOR (assuming
that the jobs finish before this new virtual wallclock limit). The scaled jobs are then compared to backfill
windows to see if there is space and time for them to be scheduled. The scaled jobs are only scheduled if
there is no possibility that it will conflict with a standing or administrator reservation. Conflicts with such
reservations occur if the virtual wallclock time overlaps a reservation, or if the original non-virtual wallclock
time overlaps a standing or administrator reservation. Jobs that can fit into an available backfill window
without having their walltime scaled are backfilled "as-is" (meaning, without virtually scaling the original
walltime).

Virtual Wallclock Time Scaling is only enabled when the BFVIRTUALWALLTIMESCALINGFACTOR
parameter is defined.

If a virtually scaled job fits into a window, and is backfilled, it will run until completion or until it comes within
one scheduling iteration (RMPOLLINTERVAL defines the exact time of an iteration) of the virtual wallclock time
expiration. In the latter case the job's wallclock time is restored to its original time and Moab checks and
resolves conflicts caused by this "expansion." Conflicts may occur when the backfilled job is restored to its full
duration resulting in reservation overlap. The BFVIRTUALWALLTIMECONFLICTPOLICY parameter controls how
Moab handles these conflicts. If set to PREEMPT, the virtually scaled job stops execution and re-queues.

If the BFVIRTUALWALLTIMECONFLICTPOLICY parameter is set to NONE or is not specified, the
overlapped job reservations are rescheduled.

See Also
BACKFILLDEPTH Parameter
BACKFILLMETRIC Parameter
BFMINVIRTUALWALLTIME
Reservation Policy Overview





8.3 Node Set Overview
8.3.1 Node Set Usage Overview
8.3.2 Node Set Configuration

8.3.2.1 Node Set Policy
8.3.2.2 Node Set Attribute
8.3.2.3 Node Set Constraint Handling
8.3.2.4 Node Set List
8.3.2.5 Node Set Tolerance
8.3.2.6 Node Set Priority
8.3.2.7 NODESETPLUS
8.3.2.8 Nested Node Sets

8.3.3 Requesting Node Sets for Job Submission
8.3.4 Configuring Node Sets for Classes

8.3.1 Node Set Usage Overview
While backfill improves the scheduler's performance, this is only half the battle. The efficiency of a cluster, in
terms of actual work accomplished, is a function of both scheduling performance and individual job efficiency.
In many clusters, job efficiency can vary from node to node as well as with the node mix allocated. Most
parallel jobs written in popular languages such as MPI or PVM do not internally load balance their workload
and thus run only as fast as the slowest node allocated. Consequently, these jobs run most effectively on
homogeneous sets of nodes. However, while many clusters start out as homogeneous, they quickly evolve as
new generations of compute nodes are integrated into the system. Research has shown that this integration,
while improving scheduling performance due to increased scheduler selection, can actually decrease average
job efficiency.

A feature called node sets allows jobs to request sets of common resources without specifying exactly what
resources are required. Node set policy can be specified globally or on a per-job basis and can be based on
node processor speed, memory, network interfaces, or locally defined node attributes. In addition to their use
in forcing jobs onto homogeneous nodes, these policies may also be used to guide jobs to one or more types
of nodes on which a particular job performs best, similar to job preferences available in other systems. For
example, an I/O intensive job may run best on a certain range of processor speeds, running slower on slower
nodes, while wasting cycles on faster nodes. A job may specify ANYOF:PROCSPEED:450,500,650 to request
nodes in the range of 450 to 650 MHz. Alternatively, if a simple procspeed-homogeneous node set is desired,
ONEOF:PROCSPEED may be specified. On the other hand, a communication sensitive job may request a
network based node set with the configuration ONEOF:NETWORK:via,myrinet,ethernet, in which case Moab
will first attempt to locate adequate nodes where all nodes contain via network interfaces. If such a set
cannot be found, Moab will look for sets of nodes containing the other specified network interfaces. In highly
heterogeneous clusters, the use of node sets improves job throughput by 10 to 15%.

Node sets can be requested on a system wide or per job basis. System wide configuration is accomplished via
the NODESET* parameters while per job specification occurs via the resource manager extensions. In all
cases, node sets are a dynamic construct, created on a per job basis and built only of nodes that meet all of
a job's requirements.

The GLOBAL node is included in all feature node sets.

8.3.2 Node Set Configuration
Global node sets are defined using the NODESETPOLICY, NODESETATTRIBUTE, NODESETLIST,
NODESETISOPTIONAL, and NODESETTOLERANCE parameters.

The use of these parameters may be best highlighted with an example. In this example, a large site
possesses a Myrinet based interconnect and wishes to, whenever possible, allocate nodes within Myrinet
switch boundaries. To accomplish this, they could assign node attributes to each node indicating which switch
it was associated with (switchA, switchB, and so forth) and then use the following system wide node set
configuration:



8.3.2.1 Node Set Policy

In the preceding example, the NODESETPOLICY parameter is set to the policy ONEOF and tells Moab to
allocate nodes within a single attribute set. Other nodeset policies are listed in the following table:

Policy Description

ANYOF Select resources from all sets contained in node set list.

FIRSTOF Select resources from first set to match specified constriants.

ONEOF Select all sets that contain adequate resources to support job.

8.3.2.2 Node Set Attribute

The example's NODESETATTRIBUTE parameter is set to FEATURE specifying that the node sets are to be
constructed along node feature boundaries.

Set Type Description

ARCH Base node set boundaries on node's architecture attribute.

CLASS Base node set boundaries on node's classes.

FEATURE Base node set boundaries on node's node feature attribute.

MEMORY Base node set boundaries on node's configured real memory.

PROCSPEED Base node set boundaries on node's reported processor speed.

8.3.2.3 Node Set Constraint Handling

The next parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start time of a job if
the desired node set is not available but adequate idle resources exist outside of the set. Setting this
parameter to TRUE basically tells Moab to attempt to use a node set if it is available, but if not, run the job
as soon as possible anyway.

Setting NODESETISOPTIONAL to FALSE will force the job to always run in a complete nodeset
regardless of any start delay this imposes.

8.3.2.4 Node Set List

Finally, the NODESETLIST value of switchA switchB... tells Moab to only use node sets based on the listed
feature values. This is necessary since sites will often use node features for many purposes and the resulting
node sets would be of little use for switch proximity if they were generated based on irrelevant node features
indicating things such as processor speed or node architecture.

8.3.2.5 Node Set Tolerance

On occasion, site administrators may want to allow a less strict interpretation of nodes sets. In particular,
many sites seek to enforce a more liberal PROCSPEED based node set policy, where almost balanced node
allocations are allowed but wildly varying node allocations are not. In such cases, the parameter
NODESETTOLERANCE may be used. This parameter allows specification of the percentage difference between
the fastest and slowest node that can be within a nodeset using the following calculation:

(Speed.Max - Speed.Min) / Speed.Min <= NODESETTOLERANCE

NODESETPOLICY     ONEOF
NODESETATTRIBUTE  FEATURE
NODESETISOPTIONAL TRUE
NODESETLIST       switchA,switchB,switchC,switchD
...



Thus setting NODESETTOLERANCE to 0.5 would allow the fastest node in a particular node set to be up to
50% faster than the slowest node in that set. With a 0.5 setting, a job may allocate a mix of 500 and 750
MHz nodes but not a mix of 500 and 900 MHz nodes. Currently, tolerances are only supported when the
NODESETATTRIBUTE parameter is set to PROCSPEED. The MAXBALANCE node allocation algorithm is
often used in conjunction with tolerance based node sets.

8.3.2.6 Node Set Priority

When resources are available in more than one resource set, the NODESETPRIORITYTYPE parameter allows
control over how the best resource set is selected. Legal values for this parameter are described in the
following table:

Priority Type Description Details

AFFINITY Select the resource set that does not have a
negative affinity reservation.

Jobs will avoid resource sets that
have a negative affinity.

BESTFIT Select the smallest resource set possible. Minimizes fragmentation of larger
resource sets.

BESTRESOURCE Select the resource set with the best nodes. Only supported when
NODESETATTRIBUTE is set to
PROCSPEED. Selects the fastest
possible nodes for the job.

MINLOSS Select the resource set that results in the minimal
wasted resources assuming no internal job load
balancing is available. (Assumes parallel jobs only
run as fast as the slowest allocated node.)

MINLOSS works only when using one
of the following configurations:

NODESETATTRIBUTE FEATURE

or

NODESETATTRIBUTE PROCSPEED
NODESETTOLERANCE is >0

This algorithm is highly
useful in environments
with mixed speed
compute nodes and a
non load-balancing
parallel workload.

WORSTFIT Select the largest resource set possible. Minimizes the creation of small
resource set fragments but fragments
larger resource sets.

8.3.2.7 NODESETPLUS

Moab supports additional NodeSet behavior by specifying the NODESETPLUS parameter. Possible values when
specifying this parameter are SPANEVENLY and DELAY.

SPANEVENLY

Moab attempts to fit all jobs within one node set, or it spans any number of node sets evenly. When a job
specifies a NODESETDELAY, Moab attempts to contain the job within a single node set; if unable to do so, it
spans node sets evenly, unless doing so would delay the job beyond the requested NODESETDELAY.

DELAY

Moab attempts to fit all jobs within the best possible SMP machine (when scheduling nodeboards in an Altix
environment) unless doing so delays the job beyond the requested NODESETDELAY.



8.3.2.8 Nested Node Sets

Moab attempts to fit jobs on node sets in the order they are specified in the NODESETLIST. You can create
nested node sets by listing your node sets in a specific order. Here is an example of a "smallest to largest"
nested node set:

The accompanying cluster would look like this:

Click to enlarge

In this example, Moab tries to fit the job on the nodes in the blade sets first. If that doesn't work, it moves
up to the nodes in the quad sets (a set of four blade sets). If the quads are insufficient, it tries the nodes in
the octet sets (a set of four quad node sets).

8.3.3 Requesting Node Sets for Job Submission
On a per job basis, each user can specify the equivalent of all parameters except NODESETDELAY. As
mentioned previously, this is accomplished using the resource manager extensions.

8.3.4 Configuring Node Sets for Classes
Classes can be configured with a default node set. In the configuration file, specify DEFAULT.NODESET with
the following syntax: DEFAULT.NODESET=<SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...]. For example,
in a heterogeneous cluster with two different types of processors, the following configuration confines jobs
assigned to the amd class to run on either ATHLON or OPTERON processors:

See Also
Resource Manager Extensions
CLASSCFG
Partition Overview

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL FALSE
NODESETLIST 
blade1a,blade1b,blade2a,blade2b,blade3a,blade3b,blade4a,blade4b,quad1a,

CLASSCFG[amd] DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON
...

http://sempa/resources/docs/blanks/mwm/images/nodesets.png


8.4 Preemption Management
8.4.1 Enabling Preemption

8.4.1.1 Manual Preemption with Admin Commands
8.4.1.2 QOS Based Preemption
8.4.1.3 Preemption Based Backfill
8.4.1.4 Trigger Based and Context Sensitive Job Preemption

8.4.2 Types of Preemption
8.4.2.1 Job Requeue
8.4.2.2 Job Suspend
8.4.2.3 Job Checkpoint
8.4.2.4 Job Cancel
8.4.2.5 Resource Manager Preemption Constraints

8.4.3 Testing and Troubleshooting Preemption

Many sites possess workloads of varying importance. While it may be critical that some jobs obtain resources
immediately, other jobs are less turnaround time sensitive but have an insatiable hunger for compute cycles,
consuming every available cycle. These latter jobs often have turnaround times on the order of weeks or
months. The concept of cycle stealing handles such situations well and enables systems to run low priority,
preemptible jobs whenever something more pressing is not running. These other systems are often employed
on compute farms of desktops where the jobs must vacate anytime interactive system use is detected.

8.4.1 Enabling Preemption
Preemption can be enabled in one of three ways. These include manual intervention, QoS based
configuration, and use of the preemption based backfill algorithm. Note that for all of these cases, a single
preemptor is limited to 32 preemptees.

8.4.1.1 Admin Preemption Commands

The mjobctl command can be used to preempt jobs. Specifically, the command can be used to modify a job's
execution state in the following ways:

Action Flag Details

Cancel -c Terminate and remove job from queue.

Checkpoint -C Terminate and checkpoint job leaving job in queue.

Requeue -R Terminate job leaving job in queue.

Resume -r Resume suspended job.

Start (execute) -x Start idle job.

Suspend -s Suspend active job.

In general, users are allowed to suspend or terminate jobs they own. Administrators are allowed to suspend,
terminate, resume, and execute any queued jobs.

8.4.1.2 QoS Based Preemption

Moab's QoS-based preemption system allows a site the ability to specify preemption rules and control access
to preemption privileges. These abilities can be used to increase system throughput, improve job response
time for specific classes of jobs, or enable various political policies. All policies are enabled by specifying some
QoS's with the flag PREEMPTOR, and others with the flag PREEMPTEE. For example, to enable a cycle
stealing high throughput cluster, a QoS can be created for high priority jobs and marked with the flag
PREEMPTOR; another QoS can be created for low priority jobs and marked with the flag PREEMPTEE.

If desired, the RESERVATIONPOLICY parameter can be set to NEVER. With this configuration, low priority,
preemptee jobs can be started whenever idle resources are available. These jobs are allowed to run until a



high priority job arrives, at which point the necessary low priority jobs are preempted and the needed
resources freed. This allows near immediate resource access for the high priority jobs. Using this approach, a
cluster can maintain near 100% system utilization while still delivering excellent turnaround time to the jobs
of greatest value.

To specify the desired type of preemption, use the PREEMPTPOLICY parameter.

It is important to note the rules of QoS based preemption. Preemption only occurs when the following 3
conditions are satisfied:

The preemptor job has the PREEMPTOR attribute set.
The preemptee job has the PREEMPTEE attribute set.
The preemptor job has a higher priority than the preemptee job.

Use of the preemption system need not be limited to controlling low priority jobs. Other uses include
optimistic scheduling and development job support.

Example:

In the below example, high priority jobs are configured to always be able to preempt low priority jobs but
not med or other high priority jobs.

As in the previous example, any class can be bound to a particular QoS using the QDEF attribute of the
CLASSCFG parameter with the & marker.

Preventing Thrashing

In environments where job checkpointing or job suspension incur significant overhead, it may be desirable to
constrain the rate at which job preemption is allowed. The parameter JOBPREEMPTMINACTIVETIME can be
used to throttle job preemption. In essence, this parameter prevents a newly started or newly resumed job
from being eligible for preemption until it has executed for the specified time frame. Conversely, jobs can be
excluded from preemption after running for a certain amount of time using the JOBPREEMPTMAXACTIVETIME
parameter.

8.4.1.3 Preemption Based Backfill

The PREEMPT backfill policy allows a site to take advantage of optimistic scheduling. By default, backfill only
allows jobs to run if they are guaranteed to have adequate time to run to completion. However, statistically,
most jobs do not use their full requested wallclock limit. The PREEMPT backfill policy allows the scheduler to
start backfill jobs even if required walltime is not available. If the job runs too long and interferes with
another job that was guaranteed a particular timeslot, the backfill job is preempted and the priority job is
allowed to run. When another potential timeslot becomes available, the preempted backfill job will again be
optimistically executed. In environments with checkpointing or with poor wallclock accuracies, this algorithm
has potential for significant savings. See the backfill section for more information.

8.4.1.4 Trigger and Context Based Preemption Policies

Rules regarding which jobs can be preemptors and which are preemptees can be configured to take into

PREEMPTPOLICY REQUEUE

# enable qos priority to make preemptors higher priority than 
preemptees

QOSWEIGHT 1   

QOSCFG[high] QFLAGS=PREEMPTOR  PRIORITY=1000
QOSCFG[med]
QOSCFG[low]  QFLAGS=PREEMPTEE

# associate class 'special' with QOS high

CLASSCFG[special] QDEF=high&



account aspects of the compute environment. Some of these context sensitive rules are listed here:

Mark a job a preemptor if its delivered or expected response time exceeds a specified threshold.
Mark a job preemptible if it violates soft policy usage limits or fairshare targets.
Mark a job a preemptor if it is running in a reservation it owns.
Preempt a job as the result of a specific user, node, job, reservation, or other object event using
object triggers.
Preempt a job as the result of an external generic event or generic metric.

8.4.2 Types of Preemption
How the scheduler preempts a job is controlled by the PREEMPTPOLICY parameter. This parameter allows
preemption to be enforced using one of the following methods: suspend, checkpoint, requeue, or cancel.

Moab uses preemption escalation to free up resources. This means if the PREEMPTPOLICY is set to
suspend, then Moab will use this method if available but will escalate to something potentially more
disruptive if necessary to preempt and free up resources. The precendence of preemption methods
from least to most distruptive is suspend, checkpoint, requeue, and cancel.

8.4.2.1 Job Requeue

Under this policy, active jobs are terminated and returned to the job queue in an idle state.

For a job to be requeued, it must be marked as restartable. If not, it will be canceled. If supported
by the resource manager, the job restartable flag can be set when the job is submitted by using the
msub -r option.. Otherwise, this can be accomplished using the FLAGS attribute of the associated class
or QoS credential.

8.4.2.2 Job Suspend

Suspend causes active jobs to stop executing but to remain in memory on the allocated compute nodes.
While a suspended job frees up processor resources, it may continue to consume swap and other resources.
Suspended jobs must be resumed to continue executing.

If suspend based preemption is selected, then the signal used to initiate the job suspend may be
specified by setting the SUSPENDSIG attribute of the RMCFG parameter.

For a job to be suspended, it must be marked as suspendable. If not, it will be requeued or canceled.
If supported by the resource manager, the job suspendable flag can be set when the job is submitted.
Otherwise, this can be accomplished using the JOBFLAGS attribute of the associated class credential as
in the following example:

8.4.2.3 Job Checkpoint

Systems that support job checkpointing allow a job to save off its current state and either terminate or
continue running. A checkpointed job may be restarted at any time and resume execution from its most
recent checkpoint.

Checkpointing behavior can be tuned on a per resource manager basis by setting the CHECKPOINTSIG and
CHECKPOINTTIMEOUT attributes of the RMCFG parameter.

See Checkpoint/Restart Facilities for more information.

8.4.2.4 Job Cancel

Under this policy, active jobs are canceled.

CLASSCFG[low] JOBFLAGS=RESTARTABLE

CLASSCFG[low] JOBFLAGS=SUSPENDABLE



8.4.2.5 RM Preemption Constraints

Moab is only able to use preemption if the underlying resource manager/OS combination supports this
capability. The following table displays current preemption limitations:

Table 8.4.2.5 Resource Manager Preemption Constraints

Resource
Manager

TORQUE 1.2+/OpenPBS
2.3+

PBSPro
(5.2)

Loadleveler
(3.1) LSF (5.2) SGE

(5.3)

Cancel yes yes yes yes ???

Requeue yes yes yes yes ???

Suspend yes yes yes yes ???

Checkpoint (yes on IRIX) (yes on IRIX) yes (OS
dependent)

???

8.4.3 Testing and TroubleShooting Preemption
There are multiple steps associated with setting up a working preemption policy. With preemption, issues
arise because it appears that Moab is not allowing preemptors to preempt preemptees in the right way. To
diagnose this, use the following checklist:

Are preemptor jobs marked with the PREEMPTOR flag (verify with checkjob <JOBID> | grep Flags)?
Are preemptee jobs marked with the PREEMPTEE flag (verify with checkjob <JOBID> | grep Flags)?
Is the start priority of the preemptor higher than the priority of the preemptee (verify with checkjob
<JOBID> | grep Priority)?
Do the resources allocated to the preemptee match those requested by the preemptor?
Is the preemptor within the 32-preemptee limit?
Are any policies preventing preemption from occuring (verify with checkjob -v -n <NODEID>
<JOBID>)?
Is the PREEMPTPOLICY parameter properly set?
Is the preemptee properly marked as restartable, suspendable, or checkpointable (verify with checkjob
<JOBID> | grep Flags)?
Is the resource manager properly responding to preemption requests (use mdiag -R)?
If there is a resource manager level race condition, is Moab properly holding target resources (verify
with mdiag -S and set RESERVATIONRETRYTIME if needed)?

See Also
QoS Overview
Managing QoS Access (control who can preempt)
JOBMAXPREEMPTPERITERATION parameter
Job Preemption with Reservation Triggers
Checkpoint Overview
ENABLESPVIOLATIONPREEMPTION parameter
PREEMPTPRIOJOBSELECTWEIGHT parameter (adjust cost of preemptable jobs)
PREEMPTSEARCHDEPTH parameter
USAGEEXECUTIONTIMEWEIGHT parameter (control priority of suspended jobs)
IGNOREPREEMPTPRIORITY parameter (relative job priority is ignored in preemption decisions)
DISABLESAMEQOSPREEMPTION parameter (jobs cannot preempt other jobs with the same QOS)
PREEMPTRTIMEWEIGHT parameter (add remaining time of jobs to preemption calculation)



9.0 Evaluating System Performance - Statistics,
Profiling, Testing, and Simulation

9.1 Moab Performance Evaluation Overview
9.2 Job and System Statistics
9.3 Testing New Versions and Configurations
9.4 Answering What If? Questions with the Simulator



9.1 Moab Performance Evaluation Overview
Moab Workload Manager tracks numerous performance statistics for jobs, accounting, users, groups,
accounts, classes, QoS, the system, and so forth. These statistics can be accessed through various
commands or Moab Cluster Manager/Monitor.

http://www.adaptivecomputing.com/resources/docs/mcm/index.php


9.2 Accounting: Job and System Statistics
Moab provides extensive accounting facilities that allow resource usage to be tracked by resources (compute
nodes), jobs, users, and other objects. The accounting facilities may be used in conjunction with, and
correlated with, the accounting records provided by the resource and allocation manager.

Moab maintains both raw persistent data and a large number of processed in memory statistics allowing
instant summaries of cycle delivery and system utilization. With this information, Moab can assist in
accomplishing any of the following tasks:

Determining cumulative cluster performance over a fixed time frame.
Graphing changes in cluster utilization and responsiveness over time.
Identifying which compute resources are most heavily used.
Charting resource usage distribution among users, groups, projects, and classes.
Determining allocated resources, responsiveness, and failure conditions for jobs completed in the past.
Providing real-time statistics updates to external accounting systems.

This section describes how to accomplish each of these tasks using Moab tools and accounting information.

9.2.1 Accounting Overview
9.2.2 Real-Time Statistics
9.2.3 FairShare Usage Statistics

9.2.1 Accounting Overview
Moab provides accounting data correlated to most major objects used within the cluster scheduling
environment. These records provide job and reservation accounting, resource accounting, and credential
based accounting.

9.2.1.1 Job and Reservation Accounting

As each job or reservation completes, Moab creates a complete persistent trace record containing information
about who ran, the time frame of all significant events, and what resources were allocated. In addition,
actual execution environment, failure reports, requested service levels, and other pieces of key information
are also recorded. A complete description of each accounting data field can be found within section 16.3.3
Workload Traces.

9.2.1.2 Resource Accounting

The load on any given node is available historically allowing identification of not only its usage at any point in
time, but the actual jobs which were running on it. Moab Cluster Manager can show load information
(assuming load is configured as a generic metric), but not the individual jobs that were running on a node at
some point in the past. For aggregated, historical statistics covering node usage and availability, the
showstats command may be run with the -n flag.

9.2.1.3 Credential Accounting

Current and historical usage for users, groups, account, QoS's, and classes are determined in a manner
similar to that available for evaluating nodes. For aggregated, historical statistics covering credential usage
and availability, the showstats command may be run with the corresponding credential flag.

If needed, detailed credential accounting can also be enabled globally or on a credential by credential basis.
With detailed credential accounting enabled, real-time information regarding per-credential usage over time
can be displayed. To enable detailed per credential accounting, the ENABLEPROFILING attribute must be
specified for credentials that are to be monitored. For example, to track detailed credentials, the following
should be used:

USERCFG[DEFAULT]     ENABLEPROFILING=TRUE

http://www.adaptivecomputing.com/resources/docs/mcm/index.php/reports.php
http://www.adaptivecomputing.com/resources/docs/mcm/index.php


Credential level profiling operates by maintaining a number of time-based statistical records for each
credential. The parameters PROFILECOUNT and PROFILEDURATION control the number and duration of the
statistical records.

9.2.2 Real-Time Statistics
Moab provides real-time statistical information about how the machine is running from a scheduling point of
view. The showstats command is actually a suite of commands providing detailed information on an overall
scheduling basis as well as a per user, group, account and node basis. This command gets its information
from in memory statistics that are loaded at scheduler start time from the scheduler checkpoint file. (See
Checkpoint/Restart for more information.) This checkpoint file is updated periodically and when the scheduler
is shut down allowing statistics to be collected over an extended time frame. At any time, real-time statistics
can be reset using the resetstats command.

In addition to the showstats command, the showstats -f command also obtains its information from the in
memory statistics and checkpoint file. This command displays a processor-time based matrix of scheduling
performance for a wide variety of metrics. Information such as backfill effectiveness or average job queue
time can be determined on a job size/duration basis.

9.2.3 FairShare Usage Statistics

Regardless of whether fairshare is enabled, detailed credential based fairshare statistics are maintained. Like
job traces, these statistics are stored in the directory pointed to by the STATDIR parameter. Fairshare stats
are maintained in a separate statistics file using the format FS.<EPOCHTIME> (FS.982713600, for example)
with one file created per fairshare window. (See the Fairshare Overview for more information.) These files are
also flat text and record credential based usage statistics. Information from these files can be seen via the
mdiag -f command.

See Also
Simulation Overview
Generic Consumable Resources
Object Variables
Generic Event Counters

QOSCFG[DEFAULT]      ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT]    ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT]    ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT]  ENABLEPROFILING=TRUE



9.3 Testing New Versions and Configurations
9.3.1 MONITOR Mode
9.3.2 INTERACTIVE Mode

9.3.1 MONITOR Mode
Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running in
NORMAL or production mode. Job are prioritized, reservations created, policies and limits enforced, and
administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in NORMAL
mode but its ability to actually impact the system is disabled. Using this mode, a site can quickly verify
correct resource manager configuration and scheduler operation. This mode can also be used to validate new
policies and constraints. In fact, Moab can be run in MONITOR mode on a production system while another
scheduler or even another version of Moab is running on the same system. This unique ability can allow new
versions and configurations to be fully tested without any exposure to potential failures and with no cluster
downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to MONITOR
and start Moab. Normal scheduler commands can be used to evaluate configuration and performance.
Diagnostic commands can be used to look for any potential issues. Further, the Moab log file can be used to
determine which jobs Moab attempted to start, and which resources Moab attempted to allocate.

If another instance of Moab is running in production and a site administrator wants to evaluate an alternate
configuration or new version, this is easily done but care should be taken to avoid conflicts with the primary
scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user interface ports. One of the
easiest ways to avoid these conflicts is to create a new test directory with its own log and stats
subdirectories. The new moab.cfg file can be created from scratch or based on the existing moab.cfg file
already in use. In either case, make certain that the PORT attribute of the SCHEDCFG parameter differs
from that used by the production scheduler by at least two ports. If testing with the production binary
executable, the MOABHOMEDIR environment variable should be set to point to the new test directory to
prevent Moab from loading the production moab.cfg file.

9.3.2 INTERACTIVE Mode
INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different from
MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired change
request to the screen and asks for permission to complete it. For example, before starting a job, Moab may
print something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets desired
site policies. Moab then executes the specified command. This mode is highly useful in validating scheduler
behavior and can be used until configuration is appropriately tuned and all parties are comfortable with the
scheduler's performance. In most cases, sites will want to set the scheduling mode to NORMAL after
verifying correct behavior.

See Also
Testing New Releases and Policies
Cluster Simulations
Side-by-Side Mode



9.4 Answering What If? Questions with the
Simulator
Moab Workload Manager can answer hypothetical situations through simulations. (See 16.0 Simulations.)
Once Resource and Workload Traces have been collected, any number of configurations can be tested
without disturbing the system.



10.0 Managing Shared Resources - Usage Based
Limits, Policies, and SMP Issues

10.1 Consumable Resource Handling
10.2 Load Balancing Features
10.3 Resource Usage Limits
10.4 General SMP Issues



10.1 Consumable Resource Handling
Moab is designed to inherently handle consumable resources. Nodes possess resources, and workload
consumes resources. Moab tracks any number of consumable resources on a per node and per job basis.
Floating cluster resources can be handled as well; see Managing Shared Cluster Resources. When a job is
started on a set of nodes, Moab tracks how much of each available resource must be dedicated to the tasks
of the job. This allows Moab to prevent per node over-subscription of any resource, be it CPU, memory,
swap, or local disk.

Recent resource managers (such as Loadleveler version 3.x) provide the ability to exercise this capability.
These capabilities allow a user to specify per task consumable resources and per node available resources.
For example, a job may be submitted requiring 20 tasks with 2 CPUs and 256 MB per task. Thus, Moab would
allow a node with 1 GB of memory and 16 processors to run 4 of these tasks because 4 tasks would consume
all of the available memory. Consumable resources allow more intelligent allocation of resources allowing
better management of shared node resources.

No scheduler level configuration is required to enable this capability as Moab detects the needed information
automatically from the underlying resource manager.

See Also
Managing Generic Consumable Resources
Floating Generic Resources



10.2 Load Balancing Features
Load balancing is generally defined as the incorporation of resource load information into scheduling
decisions. Moab supports load balancing in a number of ways allowing sites to use node load information to
both determine resource availability and to control job resource allocation.

10.2.1 Resource Availability
Moab only schedules jobs onto available nodes. Using Moab's node availability policies, a site can specify
exactly what criteria determine the node's availability. For load balancing purposes, site administrators may
want to configure availability criteria for processors, memory, and swap. Various settings can enable over-
committing resources if desired while others can constrain nodes to only accept jobs if resources exist to
meet the maximum needs of all concurrent job requests.

10.2.2 Prioritizing Node Allocation
The second major aspect of load balancing has to do with the selection of resources for new jobs. With Moab,
load information can be incorporated into the node allocation decision by using the PRIORITY node allocation
policy. This policy allows specification of which aspects of a node's configuration contribute to its allocation
priority. For load balancing purposes, a site would want to favor nodes with the most available processors
and the lowest load and job count. The node allocation priority function is set using the PRIORITYF attribute
of the NODECFG parameter as shown in the following example:

Other node aspects that may be of value in configuring load-balancing based node allocation include SPEED
and CPROCS.

See Also
NODEAVAILABILITYPOLICY parameter
NODEMAXLOAD parameter

NODEALLOCATIONPOLICY  PRIORITY
NODECFG[DEFAULT]      PRIORITYF='10 * APROCS - LOAD - JOBCOUNT'



10.3 Resource Usage Limits
10.3.1 Configuring Actions
10.3.2 Specifying Hard and Soft Policy Violations
10.3.3 Constraining Walltime Usage

Resource usage limits constrain the amount of resources a given job may consume. These limits are generally
proportional to the resources requested and may include walltime, any standard resource, or any specified generic
resource. The parameter RESOURCELIMITPOLICY controls which resources are limited, what limit policy is enforced
per resource, and what actions the scheduler should take in the event of a policy violation.

10.3.1 Configuring Actions
The RESOURCELIMITPOLICY parameter accepts a number of policies, resources, and actions using the format and
values defined below.

If walltime is the resource to be limited, be sure that the resource manager is configured to not interfere if a
job surpasses its given walltime. For TORQUE, this is done by using $ignwalltime in the configuration on each
MOM node.

Format

RESOURCELIMITPOLICY
<RESOURCE>:[<SPOLICY>,]<HPOLICY>:[<SACTION>,]<HACTION>[:[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

Resource Description

CPUTIME Maximum total job proc-seconds used by any single job (allows scheduler enforcement of cpulimit).

DISK Local disk space (in MB) used by any single job task.

JOBMEM Maximum real memory/RAM (in MB) used by any single job.

JOBPROC Maximum processor load associated with any single job.

MEM Maximum real memory/RAM (in MB) used by any single job task.

MINJOBPROC Minimum processor load associated with any single job (action taken if job is using 5% or less of
potential CPU usage).

NETWORK Maximum network load associated with any single job task.

PROC Maximum processor load associated with any single job task.

SWAP Maximum virtual memory/SWAP (in MB) used by any single job task.

WALLTIME Requested job walltime.

Policy Description

ALWAYS take action whenever a violation is detected

EXTENDEDVIOLATION take action only if a violation is detected and persists for greater than the specified
time limit

BLOCKEDWORKLOADONLY take action only if a violation is detected and the constrained resource is required by
another job

Action Description

CANCEL terminate the job

CHECKPOINT checkpoint and terminate job

MIGRATE requeue the job and require a different set of hosts for execution

NOTIFY notify admins and job owner regarding violation

http://www.adaptivecomputing.com/resources/docs/torque/a.cmomconfig.php


REQUEUE terminate and requeue the job

SUSPEND suspend the job and leave it suspended for an amount of time defined by the X parameter

Example - Notify and then cancel job if requested memory is exceeded

Example - Checkpoint job on walltime violations

Example - Cancel jobs that use 5% or less of potential CPU usage for more than 5 minutes

Example - Migrating a job when it blocks other workload

10.3.2 Specifying Hard and Soft Policy Violations
Moab is able to perform different actions for both hard and soft policy violations. In most resource management
systems, a mechanism does not exist to allow the user to specify both hard and soft limits. To address this, Moab
provides the RESOURCELIMITMULTIPLIER parameter that allows per partition and per resource multiplier factors to be
specified to generate the actual hard and soft limits to be used. If the factor is less than one, the soft limit will be
lower than the specified value and a Moab action will be taken before the specified limit is reached. If the factor is
greater than one, the hard limit will be set higher than the specified limit allowing a buffer space before the hard limit
action is taken.

In the following example, job owners will be notified by email when their memory reaches 100% of the target, and
the job will be canceled if it reaches 125% of the target. For wallclock usage, the job will be requeued when it reaches
90% of the specified limit if another job is waiting for its resources, and it will be checkpointed when it reaches the
full limit.

10.3.3 Constraining Walltime Usage
While Moab constrains walltime using the parameter RESOURCELIMITPOLICY like other resources, it also allows
walltime exception policies which are not available with other resources. In particular, Moab allows jobs to exceed the
requested wallclock limit by an amount specified on a global basis using the JOBMAXOVERRUN parameter or on a per
credential basis using the OVERRUN attribute of the *CFG credential parameters.

See Also

# if job exceeds memory usage, immediately notify owner
# if job exceeds memory usage for more than 5 minutes, cancel the job

RESOURCELIMITPOLICY 
MEM:ALWAYS,EXTENDEDVIOLATION:NOTIFY,CANCEL:00:05:00

# if job exceeds requested walltime, checkpoint job
RESOURCELIMITPOLICY WALLTIME:ALWAYS:CHECKPOINT

# when checkpointing, send term signal, followed by kill 1 minute 
later
RMCFG[base] TYPE=PBS CHECKPOINTTIMEOUT=00:01:00 CHECKPOINTSIG=SIGTERM

RESOURCELIMITPOLICY MINJOBPROC:EXTENDEDVIOLATION:CANCEL:5:00

RESOURCELIMITPOLICY JOBPROC:BLOCKEDWORKLOADONLY:MIGRATE

RESOURCELIMITPOLICY       MEM:ALWAYS,ALWAYS:NOTIFY,CANCEL
RESOURCELIMITPOLICY       
WALLTIME:BLOCKEDWORKLOADONLY,ALWAYS:REQUEUE,CHECKPOINT

RESOURCELIMITMULTIPLIER   MEM:1.25,WALLTIME:0.9

JOBMAXOVERRUN    00:10:00
CLASSCFG[debug]  overrun=00:00:30  



Usage Limits/Throttling Policies
JOBMAXOVERRUN parameter
WCVIOLATIONACTION parameter
RESOURCELIMITMULTIPLIER parameter



10.4 General SMP Issues
Shared vs Dedicated

SMP nodes are often used to run jobs that do not use all available resources on that node. How Moab handles
these unused resources is controlled by the parameter NODEACCESSPOLICY. If this parameter is set to
SHARED, Moab allows tasks of other jobs to use the resources.



11.0 General Job Administration
11.1 Job Holds
11.2 Job Priority Management
11.3 Suspend/Resume Handling
11.4 Checkpoint/Restart Facilities
11.5 Job Dependencies
11.6 Setting Job Defaults and Per Job Limits
11.7 General Job Policies
11.8 Using a Local Queue
11.9 Job Deadlines
11.10 Job Templates
11.11 Job Arrays

http://sempa/resources/docs/blanks/mwm/11.11jobarrays.php


11.1 Job Holds
11.1.1 Holds and Deferred Jobs
Moab supports job holds applied by users (user holds), administrators (system holds), and resource
managers (batch holds). There is also a temporary hold known as a job defer.

11.1.2 User Holds
User holds are very straightforward. Many, if not most, resource managers provide interfaces by which users
can place a hold on their own job that tells the scheduler not to run the job while the hold is in place. Users
may use this capability because the job's data is not yet ready, or they want to be present when the job runs
to monitor results. Such user holds are created by, and under the control of a non-privileged user and may
be removed at any time by that user. As would be expected, users can only place holds on their jobs. Jobs
with a user hold in place will have a Moab state of Hold or UserHold depending on the resource manager
being used.

11.1.3 System Holds
The system hold is put in place by a system administrator either manually or by way of an automated tool.
As with all holds, the job is not allowed to run so long as this hold is in place. A batch administrator can place
and release system holds on any job regardless of job ownership. However, unlike a user hold, normal users
cannot release a system hold even on their own jobs. System holds are often used during system
maintenance and to prevent particular jobs from running in accordance with current system needs. Jobs with
a system hold in place will have a Moab state of Hold or SystemHold depending on the resource manager
being used.

11.1.4 Batch Holds
Batch holds are placed on a job by the scheduler itself when it determines that a job cannot run. The reasons
for this vary but can be displayed by issuing the checkjob <JOBID> command. Possible reasons are
included in the following list:

No Resources — The job requests resources of a type or amount that do not exist on the system.
System Limits — The job is larger or longer than what is allowed by the specified system policies.
Bank Failure — The allocations bank is experiencing failures.
No Allocations — The job requests use of an account that is out of allocations and no fallback account
has been specified.
RM Reject — The resource manager refuses to start the job.
RM Failure — The resource manager is experiencing failures.
Policy Violation — The job violates certain throttling policies preventing it from running now and in the
future.
No QOS Access — The job does not have access to the QoS level it requests.

Jobs which are placed in a batch hold will show up within Moab in the state BatchHold.

11.1.5 Job Defer
In most cases, a job violating these policies is not placed into a batch hold immediately; rather, it is deferred.
The parameter DEFERTIME indicates how long it is deferred. At this time, it is allowed back into the idle
queue and again considered for scheduling. If it again is unable to run at that time or at any time in the
future, it is again deferred for the timeframe specified by DEFERTIME. A job is released and deferred up to
DEFERCOUNT times at which point the scheduler places a batch hold on the job and waits for a system
administrator to determine the correct course of action. Deferred jobs have a Moab state of Deferred. As
with jobs in the BatchHold state, the reason the job was deferred can be determined by use of the checkjob
command.

At any time, a job can be released from any hold or deferred state using the releasehold command. The Moab
logs should provide detailed information about the cause of any batch hold or job deferral.



Under Moab, the reason a job is deferred or placed in a batch hold is stored in memory but is not
checkpointed. Thus this information is available only until Moab is recycled at which point the checkjob
command no longer displays this reason information.

See Also
DEFERSTARTCOUNT - number of job start failures allowed before job is deferred



11.2 Job Priority Management
Job priority management is controlled via both configured and manual intervention mechanisms.

Priority Configuration - see Job Prioritization
Manual Intervention with setspri



11.3 Suspend/Resume Handling
When supported by the Resource Manager, Moab can suspend and resume jobs. By default, a job is
suspended for one minute before it can resume. You can modify this default time using the MINADMINSTIME
parameter.

Moab also supports both manual and automatic job preemption, topics covered in greater detail in the
following sections:

manual preemption with the mjobctl command
QoS based job preemption
Preemption based backfill



11.4 Checkpoint/Restart Facilities
Checkpointing records the state of a job, allowing for it to restart later without interruption to the job's
execution. Checkpointing can be performed manually, as the result of triggers or events, or in conjunction
with various QoS policies.

Moab's ability to checkpoint is dependent upon both the cluster's resource manager and operating system. In
most cases, two types of checkpoint are enabled, including (1) checkpoint and continue and (2) checkpoint
and terminate. While either checkpointing method can be activated using the mjobctl command, only the
checkpoint and terminate type is used by internal scheduling and event managements facilities.

Checkpointing behavior can be configured on a per-resource manager basis using various attributes of the
RMCFG parameter.

See Also
Job Preemption Overview
PREEMPTPOLICY Parameter
Resource Manager CHECKPOINTSIG Attribute
Resource Manager CHECKPOINTTIMEOUT Attribute



11.5 Job Dependencies
11.5.1 Basic Job Dependency Support

11.5.1.1 Job Dependency Syntax

11.5.1 Basic Job Dependency Support
By default, basic single step job dependencies are supported through completed/failed step evaluation. Basic
dependency support does not require special configuration and is activated by default. Dependent jobs are
only supported through a resource manager and therefore submission methods depend upon the specific
resource manager being used. For TORQUE's qsub and the Moab msub command, the semantics listed in the
section below can be used with the -W x=depend:<STRING> flag. For other resource managers, consult the
resource manager specific documentation.

Situations can arise where idle job limits are set and the dependee is blocked out. To avoid this, use
the BLOCKLIST DEPEND parameter.

11.5.1.1 Job Dependency Syntax

Dependency Format Description

after after:<job>[:<job>]... Job may start at any time after specified jobs have started
execution.

afterany afterany:<job>[:<job>]... Job may start at any time after all specified jobs have
completed regardless of completion status.

afterok afterok:<job>[:<job>]... Job may be start at any time after all specified jobs have
successfully completed.

afternotok afternotok:<job>[:<job>]... Job may start at any time after all specified jobs have
completed unsuccessfully.

before before:<job>[:<job>]... Job may start at any time before specified jobs have started
execution.

beforeany beforeany:<job>[:<job>]... Job may start at any time before all specified jobs have
completed regardless of completion status.

beforeok beforeok:<job>[:<job>]... Job may start at any time before all specified jobs have
successfully completed.

beforenotok beforenotok:<job>[:<job>]... Job may start at any time before any specified jobs have
completed unsuccessfully.

on on:<count> Job may start after <count> dependencies on other jobs have
been satisfied.

synccount and syncwith are not currently supported by Moab.

<job>={jobname|jobid}

The before dependencies do not work with jobs submitted with msub; they work only with qsub.

Any of the dependencies containing "before" must be used in conjunction with the "on" dependency. So, if
job A must run before job B, job B must be submitted with depend=on:1, as well as job A having
depend=before:A. This means job B cannot run until one dependency of another job on job B has been
fulfilled. This prevents job B from running until job A can be successfully submitted.

http://www.adaptivecomputing.com/resources/docs/torque
http://www.adaptivecomputing.com/resources/docs/torque/commands/qsub.php


See Also
Job Deadlines



11.6 Job Defaults and Per Job Limits
11.6.1 Job Defaults
Job defaults can be specified on a per queue basis. These defaults are specified using the CLASSCFG
parameter. The following table shows the applicable attributes:

Attribute Format Example

DEFAULT.FEATURES comma delimited list of
node features

CLASSCFG[batch] DEFAULT.FEATURES=fast,io
(jobs submitted to class batch will request nodes
features fast and io

DEFAULT.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] DEFAULT.WCLIMIT=1:00:00
(jobs submitted to class batch will request one hour of
walltime by default.)

11.6.2 Per Job Maximum Limits
Job maximum limits can be specified on a per queue basis. These defaults are specified using the CLASSCFG
parameter. The following table shows the applicable attributes:

Attribute Format Example

MAX.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] MAX.WCLIMIT=1:00:00
(jobs submitted to class batch can request no more than one hour of
walltime.)

11.6.3 Per Job Minimum Limits
Furthermore, minimum job defaults can be specified with the CLASSCFG parameter. The following table
shows the applicable attributes:

Attribute Format Example

MIN.PROC <integer> CLASSCFG[batch] MIN.PROC=10
(jobs submitted to class batch can request no less than ten processors.)

See Also
Resource Usage Limits



11.7 General Job Policies
11.7.1 Multi-Node Support
11.7.2 Multi-Req Support
11.7.3 Job Size Policy
11.7.4 Malleable Job Support
11.7.5 Enabling Job User Proxy

There are a number of configurable policies that help control advanced job functions. These policies help
determine allowable job sizes and structures.

11.7.1 Multi-Node Support
You can configure the ability to allocate resources from mutiple nodes to a job with the MAX.NODE limit.

11.7.2 Multi-Req Support
By default, jobs are only allowed to specify a single type of resource for allocation. For example, a job could
request 4 nodes with 256 MB of memory or 8 nodes with feature fast present. However, the default behavior
does not allow submission of a single job that requests both of these resource types. The parameter
ENABLEMULTIREQJOBS can be set to TRUE to remove this constraint.

11.7.3 Job Size Policy
Moab allows jobs to request resource ranges. Using this range information, the scheduler is able to maximize
the amount of resources available to the job while minimizing the amount of time the job is blocked waiting
for resources. The JOBSIZEPOLICY parameter can be used to set this behavior according to local site needs.

Job resource ranges may only be specified when using a local queue as described in the Using a Local
Queue section.

11.7.4 Malleable Job Support
A job can specify whether it is able to use more processors or less processors and what effect, if any, that
has on its wallclock time. For example, a job may run for 10 minutes on 1 processor, 5 minutes on 2
processors and 3 minutes on 3 processors. When a job is submitted with a task request list attached, Moab
determines which task request fits best and molds the job based on its specifications. To submit a job with a
task request list and allow Moab to mold it based on the current scheduler environment, use the TRL flag in
the Resource Manager Extension.

11.7.5 Enabling Job User Proxy
By default, user proxying is disabled. To be enabled, it must be authorized using the PROXYLIST attribute of
the USERCFG parameter. This parameter can be specified either as a comma-delimited list of users or as the
keyword validate. If the keyword validate is specified, the RMCFG attribute JOBVALIDATEURL should be
set and used to confirm that the job's owner can proxy to the job's execution user. An example script
performing this check for ssh-based systems is provided in the tools directory.

(See Job Validate Tool Overview.)

For some resource managers (RM), proxying must also be enabled at the RM level. The following example
shows how ssh-based proxying can be accomplished in a Moab+TORQUE with SSH environment.

To validate proxy users, Moab must be running as root.

SSH Proxy Settings



This feature supports qsub only.

In the example above, the validate tool, 'job.validate.sshproxy.pl', can verify proxying is allowed by
becoming the submit user and determining if the submit user can achieve passwordless access to the
specified execution user.  However, site-specific tools can use any method to determine proxy access
including a flat file look-up, database lookup, querying of an information service such as NIS or LDAP, or
other local or remote tests.   For example, if proxy validation is required but end-user accounts are not
available on the management node running Moab, the job validate service could perform the validation test
on a representative remote host such as a login host.

The job validate tool is highly flexible allowing any combination of job attributes to be evaluated and tested
using either local or remote validation tests.  The validate tool allows not only pass/fail responses but also
allows the job to be dynamic modified, or rejected in a custom manner depending on the site or the nature of
the failure.

See Also
Usage Limits

USERCFG[DEFAULT] PROXYLIST=validate
RMCFG[base]  TYPE=<resource manager>  
JOBVALIDATEURL=exec://$HOME/tools/job.validate.sshproxy.pl

> qmgr -c 's s allow_proxy_user=true'

> su - testuser

> qsub -I -u testuser2 
qsub: waiting for job 533.igt.org to start
qsub: job 533.igt.org ready

testuser2@igt:~$

http://sempa/resources/docs/blanks/torque/commands/qmgr.php
http://sempa/resources/docs/blanks/torque/a.bserverparameters.php#allow_proxy_user
http://sempa/resources/docs/blanks/torque/commands/qsub.php


11.8 Using a Local Queue
Moab allows jobs to be submitted directly to the scheduler. With a local queue, Moab is able to directly
manage the job or translate it for resubmission to a standard resource manager queue. There are multiple
advantages to using a local queue:

Jobs may be translated from one resource manager job submission language to another (such as
submitting a PBS job and running it on an LSF cluster).
Jobs may be migrated from one local resource manager to another.
Jobs may be migrated to remote systems using Moab peer-to-peer functionality.
Jobs may be dynamically modified and optimized by Moab to improve response time and system
utilization.
Jobs may be dynamically modified to account for system hardware failures or other issues.
Jobs may be dynamically modified to conform to site policies and constraints.
Grid jobs are supported.

11.8.1 Local Queue Configuration
A local queue is configured just like a standard resource manager queue. It may have defaults, limits,
resource mapping, and credential access constraints. The following table describes the most common
settings:

Default queue

Format: RMCFG[internal] DEFAULTCLASS=<CLASSID>

Description: The job class/queue assigned to the job if one is not explicitly requested by the submittor.

All jobs submitted directly to Moab are initially received by the pseudo-resource
manager internal. Therefore, default queue configuration may only be applied to it.

Example: RMCFG[internal] DEFAULTCLASS=batch

  
Class default resource requirements

Format: CLASSCFG[<CLASSID>] DEFAULT.FEATURES=<X>
CLASSCFG[<CLASSID>] DEFAULT.MEM=<X>
CLASSCFG[<CLASSID>] DEFAULT.NODE=<X>
CLASSCFG[<CLASSID>] DEFAULT.NODESET=<X>
CLASSCFG[<CLASSID>] DEFAULT.PROC=<X>
CLASSCFG[<CLASSID>] DEFAULT.WCLIMIT=<X>

Description: The settings assigned to the job if not explicitly set by the submittor. Default values are
available for node features, per task memory, node count, nodeset configuration, processor
count, and wallclock limit.

Example: CLASSCFG[batch] DEFAULT.WCLIMIT=4 DEFAULT.FEATURES=matlab

or

CLASSCFG[batch] DEFAULT.WCLIMIT=4
CLASSCFG[batch] DEFAULT.FEATURES=matlab

  
Class maximum resource limits

Format: CLASSCFG[<CLASSID>] MAX.FEATURES=<X>
CLASSCFG[<CLASSID>] MAX.NODE=<X>



CLASSCFG[<CLASSID>] MAX.PROC=<X>
CLASSCFG[<CLASSID>] MAX.WCLIMIT=<X>

Description: The maximum node features, node count, processor count, and wallclock limit allowed for a
job submitted to the class/queue. If these limits are not satisfied, the job is not accepted and
the submit request fails. MAX.FEATURES indicates that only the listed features may be
requested by a job.

Example: CLASSCFG[smalljob] MAX.PROC=4 MAX.FEATURES=slow,matlab

or

CLASSCFG[smalljob] MAX.PROC=4
CLASSCFG[smalljob] MAX.FEATURES=slow,matlab

  
Class minimum resource limits

Format: CLASSCFG[<CLASSID>] MIN.FEATURES=<X>
CLASSCFG[<CLASSID>] MIN.NODE=<X>
CLASSCFG[<CLASSID>] MIN.PROC=<X>
CLASSCFG[<CLASSID>] MIN.WCLIMIT=<X>

Description: The minimum node features, node count, processor count, and wallclock limit allowed for a job
submitted to the class/queue. If these limits are not satisfied, the job is not accepted and the
submit request fails. MIN.FEATURES indicates that only the listed features may be requested by
a job.

Example: CLASSCFG[bigjob] MIN.PROC=4 MIN.WCLIMIT=1:00:00

or

CLASSCFG[bigjob] MIN.PROC=4
CLASSCFG[bigjob] MIN.WCLIMIT=1:00:00

  
Class access

Format: CLASSCFG[<CLASSID>] REQUIREDUSERLIST=<USERID>[,<USERID>]...

Description: The list of users who may submit jobs to the queue.

Example: CLASSCFG[math] REQUIREDUSERLIST=john,steve

  
Available resources

Format: CLASSCFG[<CLASSID>] HOSTLIST=<HOSTID>[,<HOSTID>]...

Description: The list of nodes that jobs in the queue may use.

Example: CLASSCFG[special] HOSTLIST=node001,node003,node13

Class mapping between multiple sites is described in the section on Moab grid facilities.

If a job is submitted directly to the resource manager used by the local queue, the class default resource
requirements are not applied. Also, if the job violates a local queue limitation, the job is accepted by the
resource manager, but placed in the Blocked state.



11.9 Job Deadlines
11.9.1 Deadline Overview
11.9.2 Absolute Job Deadlines
11.9.3 Relative Job Deadlines
11.9.4 Job Termination Date
11.9.5 Conflict Policies

11.9.1 Deadline Overview
Job deadlines may be specified on a per job and per credential basis and are also supported using both
absolute and QoS based specifications. A job requesting a deadline is first evaluated to determine if the
deadline is acceptable. If so, Moab adds it to the list of deadline jobs and allocates resources to guarantee
that all accepted deadline jobs are able to complete on or before their requested deadline. Once the
scheduler confirms that all deadlines can be satisfied, it then optimizes resource allocation (in priority order)
attempting to execute all jobs at the earliest possible time.

11.9.2 Absolute Job Deadlines
A job may request a specific completion time if, and only if, it requests and is allowed to access a QoS with
the DEADLINE flag set. If so, a job's -l deadline attribute is honored. If such QOS access is not available,
or if resources do not exist at job submission time to allow the deadline to be satisfied, the job's deadline
request is ignored. For example, consider the following configuration which sets a deadline for a job to finish
by 8 a.m. on March 1st, 2008:

11.9.3 Relative Job Deadlines
QoS's may be set up with both the DEADLINE flag and a response time target. For job's requesting these
qualities of service, Moab identifies and sets job deadlines to satisfy the corresponding response time targets.
For example, consider the following configuration which sets a queue time response target of 1 hour:

Given this configuration, a two-hour job requesting QoS special has a completion time deadline set to 3
hours after the job's submission time.

11.9.4 Job Termination Date
In addition to job completion targets, jobs may also be submitted with a TERMTIME attribute. The scheduler
attempts to complete the job prior to the termination date, but if it is unsuccessful, it will terminate (cancel)
the job once the termination date is reached.

11.9.5 Conflict Policies
When a job cannot make a requested deadline Moab, by default, sets a hold on the job. The specific policy
can be configured using the DEADLINEPOLICY parameter.

Policy Description

CANCEL The job is canceled and the user is notified that the deadline could not be satisfied.

HOLD The job has a batch hold placed on it indefinitely. The administrator can then decide what action to
take.

RETRY The job continually retries each iteration to meet its deadline; note that when used with QTTARGET

msub -l deadline=08:00:00_03/01/08

QOSCFG[special] QFLAGS=DEADLINE QTTARGET=1:00:00



the job's deadline continues to slide with relative time.

IGNORE The job has its request ignored and is scheduled as normal.

See Also
QoS Facilities
Job Submission Eligible Start Time constraints



11.10 Job Templates
11.10.1 Job Template Overview
11.10.2 Applying Job Templates

11.10.2.1 Matching
11.10.2.2 Selecting

11.10.3 Job Template Extension Attributes
11.10.4 Resource Manager Based Templates
11.10.5 Job Template Examples
11.10.6 Managing Job Templates

11.10.1 Job Template Overview
Job templates are used for two primary purposes: (1) to provide a means of generically matching and
categorizing jobs, and (2) to provide a means of setting arbitrary default or forced attributes for certain jobs. Job
templates can be used in many aspects of scheduling but they are most commonly applied in the area of Peer
Based Grid usage policy. Job templates are defined using the JOBCFG configuration parameter.

11.10.2 Applying Job Templates

11.10.2.1 Matching

The JOBMATCHCFG parameter allows relationships to be established between a number of job templates. JMAX
and JMIN function as filters to determine whether a job is eligible for a subsequent template to be applied to the
job. If a job is eligible, JDEF and JSET templates apply attributes to the job. The table in section 11.10.3 Job
Template Extension Attributes indicates which job template types are compatible with which job template
extension attributes. The following types of templates can be specified with the JOBMATCHCFG parameter:

Attribute Description

JMAX A potential job is rejected if it has matching attributes set or has resource requests that exceed
those specified in this template.

JMIN A potential job is rejected if it does not have matching attributes set or has resource requests that
do not meet or exceed those specified in this template.

JDEF A matching job has the specified attributes set as defaults but all values can be overridden by the
user if the matching attribute is explicitly set at job submission time.

JSET A matching job has the specified attributes forced to these values and these values override any
values specified by the submittor at job submission time.

JSTAT A matching job has its usage statistics reported into this template.

For JMAX, a job template can specify only positive non-zero numbers as maximum limits for generic
resources. If a job requests a generic resource that is not limited by the template, then the template can
still be used.

# limit all users to a total of two non-interactive jobs

USERCFG[DEFAULT]  MAXJOB=2

# reservation configuration

SRCFG[test] DESCRIPTION="compute pool for interactive and short 
duration jobs"
SRCFG[test] JOBATTRLIST=INTERACTIVE
SRCFG[test] MAXTIME=1:00:00
SRCFG[test] HOSTLIST=R:atl[16-63]

# job template configuration



In the preceding example, a reservation called test is created. This reservation is only accessible by interactive
jobs and jobs that will take less than one hour to complete. Specifying MAXJOB=2 means that each user on the
system is only allowed to run two jobs simultaneously.

The job template configuration is signified by the JOBCFG parameter. The inter.min template (JMIN) determines
that if a job is marked as interactive it is eligible to have inter.set template applied to it. The JOBMATCHCFG
parameter establishes the relationship between inter.min and inter.set. The inter.set template forces the
ignpolicies flag on the job, which allows the job to ignore the MAXJOB policy. Also, the job automatically
requests the reservation named test. Any user submitting a job may have as many interactive jobs running as
resources permit, and the job runs inside the test reservation, which constrains the jobs to run on nodes
at1[16-63]. With this template, users do not need to know to which nodes to send interactive jobs; Moab
automatically sends interactive jobs to the nodes specified in the reservation.

11.10.2.2 Selecting

Rather than matching a job automatically based on job attributes, a specific template can be directly requested
by setting the SELECT attribute to TRUE. Attributes specified in the job template are applied to the job.

In the preceding example, instead of the interactive jobs automatically going to the reservation named test (as
in the Matching example), users can request the inter.set template for the ignpolicies flag and the requested
reservation test to be applied to the job.

Use the following to request the job template:

msub -l template=inter.set myjob.sh

Selecting a specific reservation is often used in creating workflows. See 11.10.7 Creating Workflows with Job
Templates for more information.

11.10.3 Job Template Extension Attributes
When creating a job template, any attribute acceptable within the WIKI workload query data format can be used.
In addition, job templates can use any of the extension attributes in the following table. Note that a checkmark in
the Template Type (JMIN, JMAX, JDEF, JSET) row indicates compatibility with the associated attribute.

ACCOUNT

Format: <ACCOUNT>[,<ACCOUNT>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: Account credentials associated with job. Used in job template matching.

Example:

  
ACTION

Format: HOLD or CANCEL

Template
Type:

JMIN JMAX JDEF JSET

   

JOBCFG[inter.min] FLAGS=interactive
JOBCFG[inter.set] FLAGS=ignpolicies REQRSV=test

JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

JOBCFG[inter.set] FLAGS=ignpolicies REQRSV=test SELECT=true

JOBCFG[public]      FLAGS=preemptee
JOBCFG[public.min]  ACCOUNT=public_acct
JOBMATCHCFG[public] JMIN=public.min JSET=public



Description: Describes an action that is done to the job if the set template is applied.

Example:

  
ALLOCSIZE

Format: <ALLOCSIZE>[,<DEALLOCSIZE>]

Type: JMIN JMAX JDEF JSET

  

Description: Number of application tasks to allocate/deallocate at each allocation adjustment.

Example:

  
ALLOCDELAY

Format: [[[DD]:HH]:MM]:SS

Template
Type:

JMIN JMAX JDEF JSET

  

Description: The amount of time to wait before trying to allocate a new resource. When you have a dynamic
service job—ones that grow and shrink—ALLOCDELAY is the minimum amount of time Moab
waits before allowing a change to the size of the service job. The size of the job should not change
too quickly, so ALLOCDELAY specifies an amount of time that must elapse before another size
change can occur.

Example:

  
ALLOCSYNCTIME

Format: [[[DD]:HH]:MM]:SS

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Time indicating maximum duration Moab waits before forcing allocation decisions via provisioning
or other steps. 

By default, when deallocating resources, Moab does not reassign resources from one
service to another until the service/job initially assigned the resources reports successful
de-allocation via the workload query response.

Example:

Moab forces the deallocation of resources assigned to webdb if the application does not release
them within four minutes of a deallocation request. For the sirius application, Moab forces
deallocation if not released by the application within twenty seconds of a deallocation request.

  

JOBCFG[test.min] QOS=high
JOBCFG[test.set] ACTION=CANCEL
JOBMATCHCFG[test] JMIN=test.min JSET=test.set

JOBCFG[webdb] ALLOCSIZE=4

JOBCFG[webdb] ALLOCDELAY=1:00

JOBCFG[webdb]  ALLOCSYNCTIME=00:04:00
JOBCFG[sirius] ALLOCSYNCTIME=00:00:20

http://kahuna/resources/docs/mwm/wiki/wikiinterface.php#getjobs


CLASS

Format: <CLASS>[,<CLASS>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: Class credentials associated with job. Used in job template matching.

Example:

  
CPULIMIT

Format: [[[DD]:HH]:MM]:SS

Template
Type:

JMIN JMAX JDEF JSET

Description: Maximum amount of CPU time used by all processes in the job.

Example:

  
DESCRIPTION

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Description of the job.

Example:

  
DPROCS

Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

 

Description: Number of processors dedicated per task. Default is 1.

Example:

  
EUSER

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

  

JOBCFG[night]      FLAGS=preemptor
JOBCFG[night.min]  CLASS=night_class
JOBMATCHCFG[night] JMIN=night.min JSET=night

JOBCFG[job.min]  CPULIMIT=1:00:00:00
JOBCFG[job.max]  CPULIMIT=2:00:00:00

JOBCFG[webdb] DESCRIPTION="Template job"

JOBCFG[job.min]  DPROCS=2
JOBCFG[job.max]  DPROCS=4



Description: In a job template, EUSER is the effective user, meaning that when a job starts it will change the
user running the job to the one on the template.

Example:

  
EXEC

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

   

Description: Sets what the job runs, regardless of what the user sets.

Example:

  
FLAGS

Format: <JOBFLAG>[,<JOBFLAG>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: One or more legal job flag values.

Example:

  
GNAME

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

   

Description: Group credential associated with job.

Example:

For matching the group, see the GROUP attribute.

  
GRES

Format: <generic resource>[:<COUNT>]

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Consumable generic attributes associated with individual nodes or the special pseudo-node global,
which provides shared cluster (floating) consumable resources. Use the NODECFG parameter to
configure such resources.

Example:

JOBCFG[batch]    EUSER=render

JOBCFG[setup.pre]    EXEC=nfs/tools/setup.pre.sh

JOBCFG[webdb] FLAGS=NORMSTART

JOBCFG[webserv] GNAME=service

JOBCFG[gres.set] GRES=abaqus:2



In this example, the gres.set template applies two Abaqus licenses per task to a matched job.

  
GROUP

Format: <GROUP>[,<GROUP>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: Group credentials associated with job. Used in job template matching.

Example:

For setting the group, see the GNAME attribute.

  
MEM

Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

Description: Maximum amount of physical memory per task used by the job. See Requesting Resources for
more information.

Example:

  
NODEACCESSPOLICY

Format: One of the following: SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK , SINGLEUSER, or
UNIQUEUSER

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Specifies how node resources will be shared by a job. See the Node Access Overview for more
information.

Example:

  
NODERANGE

Format: <MIN>[,<MAX>]

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Minimum and maximum nodes allowed to be allocated to job.

Example:

  
NODES

JOBCFG[webserv] GROUP=service

JOBCFG[smalljobs] MEM=25

JOBCFG[serverapp] NODEACCESSPOLICY=SINGLEJOB

JOBCFG[vizserver] NODERANGE=1,16

http://sempa/resources/docs/blanks/torque/2.1jobsubmission.php#resources


Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

 

Description: Number of nodes required by job. Default is 1. See Node Definition for more information.

Example:

  
PARTITION

Format: <PARTITION>[:<PARTITION>]...

Template
Type:

JMIN JMAX JDEF JSET

 

Description: Specifies the partition (or partitions) in which a job must run.

Example:

  
PREF

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Specifies which node features are preferred by the job and should be allocated if available. See
PREF for more information.

Example:

  
PRIORITY

Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Relative job priority.

Example:

  
PROCRANGE

Format: <MIN>[,<MAX>]

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Minimum and maximum processors allowed to be allocated to job.

Example:

JOBCFG[job.min]  NODES=2
JOBCFG[job.max]  NODES=4

JOBCFG[meis] PARTITION=math:geology

JOBCFG[meis] PREF=bigmem

JOBCFG[meis] PRIORITY=25000

JOBCFG[meis] PROCRANGE=2,64



  
QOS

Format: <QOS>[,<QOS>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: QoS credentials associated with job. Used in job template matching.

Example:

  
RARCH

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

   

Description: Architecture required by job.

Example:

  
RFEATURES

Format: <FEATURE>[,<FEATURE>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: List of features required by job.

Example:

  
RM

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Destination resource manager to be associated with job.

Example:

  
ROPSYS

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Operating system required by job.

JOBCFG[admin]      RFEATURES=bigmem
JOBCFG[admin.min]  QOS=admin_qos
JOBMATCHCFG[admin] JMIN=admin.min JSET=admin

JOBCFG[servapp] RARCH=i386

JOBCFG[servapp] RFEATURES=fast,bigmem

JOBCFG[webdb] RM=slurm



Example:

  
SELECT

Format: <BOOLEAN> : TRUE | FALSE

Template
Type:

JMIN JMAX JDEF JSET
    

Description: Job template can be directly requested by job at submission.

Example:

  
SOFTWARE

Format: <RESTYPE>[{+|:}<COUNT>][@<TIMEFRAME>]

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Indicates generic resources required by the job. See SOFTWARE for more information.

Example:

  
SYSTEMJOBTYPE

Format:  

Template
Type:

JMIN JMAX JDEF JSET

   

Description: System job type (ex. vmcreate).

Example:

  
TARGETBACKLOG

Format: [<MIN>,]<MAX>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Minimum and maximum backlog for application within job. In the case of dynamic jobs, Moab
allocates/deallocates resources as needed to keep the job within the target range.

Example:

  
TARGETLOAD

Format: [<MIN>,]<MAX>

Template
Type:

JMIN JMAX JDEF JSET

JOBCFG[test.set] ROPSYS=windows

JOBCFG[servapp] SELECT=TRUE

JOBCFG[servapp] SOFTWARE=matlab:2

JOBCFG[vmcreate.min] SYSTEMJOBTYPE=vmcreate
JOBCFG[vmcreate.set] TRIGGER=atype=reserve,action="00:05:00",etype=end
JOBMATCHCFG[vmcreate] JMIN=vmcreate.min JSET=vmcreate.set

JOBCFG[pdb] TARGETBACKLOG=0.5,2.0

http://sempa/resources/docs/blanks/mwm/21.3dynamicjobs.php


  

Description: Minimum and maximum load for application within job. In the case of dynamic jobs, Moab
allocates/deallocates resources as needed to keep the job within the target range.

Example:

  
TARGETRESPONSETIME

Format: [<MIN>,]<MAX>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Minimum and maximum response time for application within job. In the case of dynamic jobs,
Moab allocates/deallocates resources as needed to keep the job within the target range.

Example:

  
TARGETTHROUGHPUT

Format: [<MIN>,]<MAX>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Minimum and maximum throughput for application within job. In the case of dynamic jobs, Moab
allocates/deallocates resources as needed to keep the job within the target range.

Example:

  
TASKS

Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

 

Description: Number of tasks required by job. Default is 1. See Task Definition for more information.

Example:

  
TASKPERNODE

Format: <INTEGER>

Template
Type:

JMIN JMAX JDEF JSET

 

Description: Exact number of tasks required per node. Default is 0.

Example:

JOBCFG[pdb] TARGETLOAD=0.5,2.0

JOBCFG[pdb] TARGETRESPONSETIME=0.5,2.0

JOBCFG[pdb] TARGETTHROUGHPUT=0.5,2.0

JOBCFG[job.min]  TASKS=4
JOBCFG[job.max]  TASKS=8

JOBCFG[job.min]  TASKPERNODE=2
JOBCFG[job.max]  TASKPERNODE=4

http://sempa/resources/docs/blanks/mwm/21.3dynamicjobs.php
http://sempa/resources/docs/blanks/mwm/21.3dynamicjobs.php
http://sempa/resources/docs/blanks/mwm/21.3dynamicjobs.php


  
TEMPLATEDEPEND

Format: <TYPE>:<TEMPLATE_NAME>

Template
Type:

JMIN JMAX JDEF JSET
    

Description: Create another job from the TEMPLATE_NAME job template, on which any jobs using this template
will depend. This is used for dynamically creating workflows. See Job Dependencies for more
information.

Example:

  
UNAME

Format: <STRING>

Template
Type:

JMIN JMAX JDEF JSET

   

Description: User credential associated with job.

Example:

For matching the user, see the USER attribute.

  
USER

Format: <USER>[,<USER>]...

Template
Type:

JMIN JMAX JDEF JSET

Description: User credentials associated with job.

Example:

For setting the user, see the UNAME attribute.

  
WCLIMIT

Format: [[HH:]MM:]SS

Template
Type:

JMIN JMAX JDEF JSET

Description: Walltime required by job. Default is 864000 (100 hours).

Example:

  

JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre
JOBCFG[setup.pre]   SELECT=TRUE EXEC=/tools/setup.pre.sh

JOBCFG[webserv] UNAME=service

JOBCFG[webserv] USER=service

JOBCFG[job.min]  WCLIMIT=2:00:00
JOBCFG[job.max]  WCLIMIT=12:00:00



WORK

Format: <DOUBLE>

Template
Type:

JMIN JMAX JDEF JSET

  

Description: Unitless measure of work accomplished per task.

Example:

  

11.10.4 Resource Manager Templates
Job templates can also be applied to resource managers modifying attributes of jobs submitted to, migrated to,
or routed through specified resource manager interfaces. In particular the RMCFG attributes MAX.JOB, MIN.JOB,
SET.JOB, and DEFAULT.JOB can be used. However, the meanings of resource manager job templates are slightly
different than their JOBMATCHCFG counterparts as described in the following table.

Attribute Description

MAX.JOB A potential job is not allowed to access the resource manager if it has matching attributes set or
has resource requests that exceed those specified in this template.

MIN.JOB A potential job is not allowed to access the resource manager if it does not have matching
attributes set or has resource requests that do not meet or exceed those specified in this
template.

DEFAULT.JOB A job associated with this resource manager has the specified attributes set as defaults but all
values can be overridden by the user if the matching attribute is explicitly set at job submission
time.

SET.JOB A job associated with this resource manager has the specified attributes forced to these values
and these values override any values specified by the submittor at job submission time.

11.10.5 Job Template Examples
Job templates can be used for a wide range of purposes including enabling automated learning, setting up
custom application environments, imposing special account constraints, and applying group default settings. The
following examples highlight some of these uses:

11.10.5.1 Example 1: Setting Up Application-Specific Environments

11.10.5.2 Example 2: Applying Job Preferences and Defaults

11.10.5.3 Example 3: Applying Resource Constraints to Fuzzy Collections

In the following example, a job template match is set up. Using the JOBMATCHCFG parameter, Moab is
configured to apply all attributes of the inter.set job template to all jobs that match the constraints of the
inter.min job template. In this example, all interactive jobs are assigned the ignpolicies flag that allows them
to ignore active, idle, system, and partition level policies. Interactive jobs are also locked into the test standing
reservation and thus only allowed to run on the associated nodes.

JOBCFG[webserv] WORK=10.5

JOBCFG[xxx] EXEC=*app* JOBPROLOG=/usr/local/appprolog.x

JOBCFG[xxx] CLASS=appq EXEC=*app* PREF=clearspeed

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIOF=5.0*PREF



11.10.5.4 Example 4: Resource Manager Templates

In the following example, interactive jobs are not allowed to enter through this resource manager and any job
that does route in from this resource manager interface has the preemptee flag set.

11.10.6 Managing Job Templates

11.10.6.1 Dynamically Creating Job Templates

Job templates can be dynamically created while Moab is running using the mschedctl -m command.

Dynamically created job templates will only survive a Moab restart if the --flags=pers[istent] flag is used.

11.10.6.2 Removing Job Templates

Job templates cannot be dynamically removed. You can only remove job templates by commenting out (or
removing) the template definition (lines) in the moab.cfg file; then you must restart Moab.

11.10.6.3 Dynamically Modifying Job Templates

Job templates can be dynamically modified by using the mschedctl -m command.

Dynamic changes do not persist after a shutdown of the Moab server unless the --flags=pers[istent] flag is
used.

11.10.6.4 Viewing Job Templates

Job templates can be viewed by specifying "template:" before the template name in checkjob and also by using
the command mdiag -j as in the following example:

# limit all users to a total of two non-interactive jobs

USERCFG[DEFAULT]  MAXJOB=2

SRCFG[test] DESCRIPTION="compute pool for interactive and short 
duration jobs"
SRCFG[test] JOBATTRLIST=INTERACTIVE
SRCFG[test] MAXTIME=1:00:00
SRCFG[test] HOSTLIST=R:atl[16-63]

JOBCFG[inter.min] FLAGS=interactive
JOBCFG[inter.set] FLAGS=ignpolicies REQRSV=interactive

JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

JOBCFG[no_inter]    FLAGS=interactive
JOBCFG[preempt_job] FLAGS=preemptee

RMCFG[gridA.in] MAX.JOB=no_inter SET.JOB=preempt_job

> mschedctl -m --flags=pers "JOBCFG[preempt] FLAGS=PREEMPTOR"
> mschedctl -m --flags=pers "JOBCFG[preempt] SELECT=TRUE" 
> msub -l template=preempt mysjob.sh

> mschedctl -m "JOBCFG[single] NODEACCESSPOLICY=SINGLEJOB"

> mdiag -j --flags=policy

> checkjob -v template:match.min



See Also
Moab Workload Manager for Grids
Job Dependencies



12.0 General Node Administration
12.1 Node Location (Partitions, Frames, Queues, etc.)
12.2 Node Attributes (Node Features, Speed, etc.)
12.3 Node-Specific Policies (MaxJobPerNode, etc.)
12.4 Managing Shared Cluster Resources
12.5 Node State Management
12.6 Managing Consumable Generic Resources
12.7 Enabling Generic Metrics
12.8 Enabling Generic Events

Overview
Moab has a very flexible and generalized definition of a node. This flexible definition, together with the fact
that Moab must inter-operate with many resource managers of varying capacities, requires that Moab must
possess a complete set of mechanisms for managing nodes that in some cases may be redundant with
resource manager facilities. To accommodate all systems, Moab determines a node's configuration through
the following approaches:

Resource Manager Direct Specification

Some node attributes may be directly specified through the resource manager. For example, Loadleveler
allows a site to assign a MachineSpeed value to each node. If the site chooses to specify this value within the
Loadleveler configuration, Moab obtains this information via the Loadleveler scheduling API and uses it in
scheduling decisions. The list of node attributes supported in this manner varies from resource manager to
resource manager and should be determined by consulting resource manager documentation.

Resource Manager Specified 'Opaque' Attributes

Many resource managers support the concept of opaque node attributes, allowing a site to assign arbitrary
strings to a node. These strings are opaque in the sense that the resource manager passes them along to the
scheduler without assigning any meaning to them. Nodes possessing these opaque attributes can then be
requested by various jobs. Using certain Moab parameters, sites can assign a meaning within Moab to these
opaque node attributes and extract specific node information. For example, setting the parameter
FEATUREPROCSPEEDHEADER xps causes a node with the opaque string xps950 to be assigned a processor
speed of 950 MHz within Moab.

Scheduler Specified Default Node Attributes

Some default node attributes can be assigned on a rack or partition basis. In addition, many node attributes
can be specified globally by configuring the DEFAULT node template using the NODECFG parameter (i.e.,
NODECFG[DEFAULT] PROCSPEED=3200). Unless explicitly specified otherwise, nodes inherit node attributes from
the associated rack or partition or from the default node template. See the Partition Overview for more
information. Scheduler Specified Node Attributes

The NODECFG parameter also allows direct per-node specification of virtually all node attributes supported
via other mechanisms and also provides a number of additional attributes not found elsewhere. For example,
a site administrator may want to specify something like the following:

These approaches may be mixed and matched according to the site's local needs. Precedence for the
approaches generally follows the order listed earlier in cases where conflicting node configuration
information is specified through one or more mechanisms.

NODECFG[node031] MAXJOB=2 PROCSPEED=600 PARTITION=small



12.1 Node Location
Nodes can be assigned three types of location information based on partitions, racks, and queues.

12.1.1 Partitions
12.1.2 Racks
12.1.3 Queues

12.1.3.1 TORQUE/OpenPBS Queue to Node Mapping
12.1.4 Node Selection/Specification

12.1.1 Partitions
The first form of location assignment, the partition, allows nodes to be grouped according to physical resource
constraints or policy needs. By default, jobs are not allowed to span more than one partition so partition
boundaries are often valuable if a underlying network topology make certain resource allocations undesirable.
Additionally, per-partition policies can be specified to grant control over how scheduling is handled on a
partition by partition basis. See the Partition Overview for more information.

12.1.2 Racks
Rack based location information is orthogonal to the partition based configuration and is mainly an
organizational construct. In general rack based location usage, a node is assigned both a rack and a slot
number. This approach has descended from the IBM SP2 organizational approach in which a rack can contain
any number of slots but typically contains between 1 and 64. Using the rack and slot number combo,
individual compute nodes can be grouped and displayed in a more ordered manner in certain Moab
commands (i.e., showstate). Currently, rack information can only be specified directly by the system via the
SDR interface on SP2/Loadleveler systems. In all other systems, this information must be specified using an
information service or specified manually using the RACK, SLOT, and SIZE attributes of the NODECFG
parameter.

Sites may arbitrarily assign nodes to racks and rack slots without impacting scheduling behavior.
Neither rack numbers nor rack slot numbers need to be contiguous and their use is simply for
convenience purposes in displaying and analyzing compute resources.

Example:

When specifying node and rack information, slot values must be in the range of 1 to 64, and racks must be in
the range of 1 to 400.

12.1.3 Queues
Some resource managers allow queues (or classes) to be defined and then associated with a subset of
available compute resources. With systems such as Loadleveler or PBSPro these queue to node mappings are
automatically detected. On resource managers that do not provide this service, Moab provides alternative
mechanisms for enabling this feature.

12.1.3.1 TORQUE/OpenPBS Queue to Node Mapping

Under TORQUE, queue to node mapping can be accomplished by using the qmgr command to set the queue
acl_hosts parameter to the mapping hostlist desired. Further, the acl_host_enable parameter should be set
to False.

Setting acl_hosts and then setting acl_host_enable to True constrains the list of hosts from which

NODECFG[node024] RACK=1 SLOT=1
NODECFG[node025] RACK=1 SLOT=2
NODECFG[node026] RACK=2 SLOT=1 PARTITION=special
...

http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/commands/qmgr.php
http://www.adaptivecomputing.com/resources/docs/torque/a.bserverparameters.php#acl_hosts


jobs may be submitted to the queue.

The following example highlights this process and maps the queue debug to the nodes host14 through
host17.

All queues that do not have acl_hosts specified are global; that is, they show up on every node. To
constrain these queues to a subset of nodes, each queue requires its own acl_hosts parameter
setting.

12.1.4 Node Selection
When selecting or specifying nodes either via command line tools or via configuration file based lists, Moab
offers three types of node expressions that can be based on node lists, exact lists, node ranges, or regular
expressions.

Node Lists

Node lists can be specified as one or more comma or whitespace delimited node IDs. Specified node IDs can
be based on either short or fully qualified hostnames. Each element will be interpreted as a regular
expression.

Exact Lists

When Moab receives a list of nodes it will, by default, interpret each element as a regular expression. To
disable this and have each element interpreted as a string node name, the l: can be used as in the following
example:

Node Range

Node lists can be specified as one or more comma or whitespace delimited node ranges. Each node range can
be based using either <STARTINDEX>-<ENDINDEX> or <HEADER>[<STARTINDEX>-<ENDINDEX>] format.
To explicitly request a range, the node expression must be preceded with the string r: as in the following
example:

Only one expression is allowed with node ranges.

By default, Moab attempts to extract a node's node index assuming this information is built into the
node's naming convention. If needed, this information can be explicitly specified in the Moab
configuration file using NODECFG's NODEINDEX attribute, or it can be extracted from alternately
formatted node IDs by specifying the NODEIDFORMAT parameter.

Node Regular Expression

> qmgr
Max open servers: 4
Qmgr: set queue debug acl_hosts = "host14,host15,host16,host17"
Qmgr: set queue debug acl_host_enable = false
Qmgr: quit 

SRCFG[basic]  HOSTLIST=cl37.icluster,ax45,ax46
...

> setres l:n00,n01,n02

> setres r:37-472,513,516-855

CLASSCFG[long] HOSTLIST=r:anc-b[37-472]



Node lists may also be specified as one or more comma or whitespace delimited regular expressions. Each
node regular expression must be specified in a format acceptable by the standard C regular expression
libraries that allow support for wildcard and other special characters such as the following:

* (asterisk)
. (period)
[ ] (left and right bracket)
^ (caret)
$ (dollar)

Node lists are by default interpreted as a regular expression but can also be explicitly requested with the
string x: as in the following examples:

To control node selection search ordering, set the OBJECTELIST parameter to one of the following
options: exact, range, regex, rangere, or rerange.

# select nodes cl30 thru cl55

SRCFG[basic]  HOSTLIST=x:cl[34],cl5[0-5]
...

# select nodes cl30 thru cl55

SRCFG[basic]  HOSTLIST=cl[34],cl5[0-5]
...



12.2 Node Attributes
12.2.1 Configurable Node Attributes
12.2.2 Node Features/Node Properties

12.2.1 Configurable Node Attributes
Nodes can possess a large number of attributes describing their configuration which are specified using the
NODECFG parameter. The majority of these attributes such as operating system or configured network
interfaces can only be specified by the direct resource manager interface. However, the number and detail of
node attributes varies widely from resource manager to resource manager. Sites often have interest in
making scheduling decisions based on scheduling attributes not directly supplied by the resource manager.
Configurable node attributes are listed in the following table; click an attribute for more detailed information:

ACCESS
ARCH
CHARGERATE
COMMENT
ENABLEPROFILING
FEATURES
FLAGS
GRES
LOGLEVEL
MAXIOIN
MAXJOB
MAXJOBPERUSER
MAXPE
 

MAXPROC
MAXPROCPERCLASS
NETWORK
NODETYPE
OS
OSLIST
OVERCOMMIT
PARTITION
POOL
POWERPOLICY
PREEMPTMAXCPULOAD
PREEMPTMINMEMAVAIL
PREEMPTPOLICY
PRIORITY
 

PRIORITYF
PROCSPEED
PROVRM
RACK
RADISK
RCDISK
RCMEM
RCPROC
RCSWAP
SIZE
SLOT
SPEED
TRIGGER
VARIABLE

Attribute Description

ACCESS
Specifies the node access policy that can be one of SHARED, SHAREDONLY,
SINGLEJOB, SINGLETASK, or SINGLEUSER. See Node Access Policies for
more details.

ARCH Specifies the node's processor architecture.

CHARGERATE
Allows a site to assign specific charging rates to the usage of particular
resources. The CHARGERATE value may be specified as a floating point value
and is integrated into a job's total charge (as documented in the Charging and
Allocation Management section).

COMMENT
Allows an organization to annotate a node via the configuration file to indicate
special information regarding this node to both users and administrators. The

NODECFG[node013] ACCESS=singlejob

NODECFG[node013] ARCH=opteron

NODECFG[DEFAULT] CHARGERATE=1.0
NODECFG[node003] CHARGERATE=1.5
NODECFG[node022] CHARGERATE=2.5



COMMENT value may be specified as a quote delimited string as shown in the
example that follows. Comment information is visible using checknode, mdiag,
Moab Cluster Manager, and Moab Access Portal.

ENABLEPROFILING
Allows an organization to track node state over time. This information is
available using showstats -n.

FEATURES
Not all resource managers allow specification of opaque node features (also
known as node properties). For these systems, the NODECFG parameter can be
used to directly assign a list of node features to individual nodes. To
set/overwrite a node's features, use FEATURES=<X>; to append node features,
use FEATURES+=<X>.

The total number of supported node features is limited as described in the
Adjusting Default Limits section.

If supported by the resource manager, the resource manager specific
manner of requesting node features/properties within a job may be used.
(Within TORQUE, use qsub -l nodes=<NODECOUNT>:<NODEFEATURE>.)
However, if either not supported within the resource manager or if support
is limited, the Moab feature resource manager extension may be used.

FLAGS
Specifies various attributes of the NODECFG parameter.

The NoVMMigrations flag excludes VMs from migrations.

GRES
Many resource managers do not allow specification of consumable generic node
resources. For these systems, the NODECFG parameter can be used to directly
assign a list of consumable generic attributes to individual nodes or to the
special pseudo-node global, which provides shared cluster (floating) consumable
resources. To set/overwrite a node's generic resources, use
GRES=<NAME>[:<COUNT>]. (See Managing Consumable Generic Resources.)

LOGLEVEL Node specific loglevel allowing targetted log facility verbosity.

MAXIOIN Maximum input allowed on node before it is marked busy.

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXPE See Node Policies for details.

NODECFG[node013] COMMENT="Login Node"

NODECFG[DEFAULT] ENABLEPROFILING=TRUE

NODECFG[node013] FEATURES+=gpfs,fastio

NODECFG[node1] FLAGS=NoVMMigrations

NODECFG[node013] GRES=quickcalc:20

http://www.adaptivecomputing.com/resources/docs/mcm/index.php
http://www.adaptivecomputing.com/resources/docs/map/index.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


MAXPEPERJOB
Maximum allowed Processor Equivalent per job on this node. A job will not be
allowed to run on this node if its PE exceeds this number.

MAXPROC
Maximum dedicated processors allowed on this node. No jobs are scheduled on
this node when this number is reached. See Node Policies for more information.

MAXPROCPERCLASS
Maximum dedicated processors allowed per class on this node. No jobs are
scheduled on this node when this number is reached. See Node Policies for more
information.

NETWORK
The ability to specify which networks are available to a given node is limited to
only a few resource managers. Using the NETWORK attribute, administrators
can establish this node to network connection directly through the scheduler.
The NODECFG parameter allows this list to be specified in a comma delimited
list.

NODETYPE
The NODETYPE attribute is most commonly used in conjunction with an
allocation management system such as Gold. In these cases, each node is
assigned a node type and within the allocation management system, each node
type is assigned a charge rate. For example, a site administrator may want to
charge users more for using large memory nodes and may assign a node type of
BIGMEM to these nodes. The allocation management system would then charge
a premium rate for jobs using BIGMEM nodes. (See the Allocation Manager
Overview for more information.)

Node types are specified as simple strings. If no node type is explicitly set, the
node will possess the default node type of [DEFAULT]. Node type information
can be specified directly using NODECFG or through use of the
FEATURENODETYPEHEADER parameter.

OS
This attribute specifies the node's operating system.

NODECFG[node024] MAXPEPERJOB=10000
...

NODECFG[node024] MAXPROC=8
...

NODECFG[node024] MAXPROCPERCLASS=2
...

NODECFG[node024] NETWORK=GigE
...

NODECFG[node024] NODETYPE=BIGMEM

NODECFG[node013] OS=suse10



Because the TORQUE operating system overwrites the Moab operating
system, change the operating system with opsys instead of OS if you are
using TORQUE.

OSLIST
This attribute specifies the list of operating systems the node can run.

OVERCOMMIT
Allows overcommitting of specified attributes of a node. Possible attributes
include, DISK, MEM, PROCS, and SWAP. Usage is <attr>:<integer>.

PARTITION See Node Location for details.

POOL Specifies the associated node pool.

POWERPOLICY The POWERPOLICY can be set to OnDemand or STATIC. It defaults to STATIC if
not set. If set to STATIC, Moab will never automatically change the power status
of a node. If set to OnDemand, Moab will turn the machine off and on based on
workload and global settings. See Green Computing for further details.

PREEMPTMAXCPULOAD
If the node CPU load exceeds the specified value, any batch jobs running on the
node are preempted using the preemption policy specified with the node's
PREEMPTPOLICY attribute. If this attribute is not specified, the global default
policy specified with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

PREEMPTMINMEMAVAIL
If the available node memory drops below the specified value, any batch jobs
running on the node are preempted using the preemption policy specified with
the node's PREEMPTPOLICY attribute. If this attribute is not specified, the global
default policy specified with PREEMPTPOLICY parameter is used. See Sharing
Server Resources for further details.

PREEMPTPOLICY
If any node preemption policies are triggered (such as PREEMPTMAXCPULOAD or
PREEMPTMINMEMAVAIL) any batch jobs running on the node are preempted
using this preemption policy if specified. If not specified, the global default
preemption policy specified with PREEMPTPOLICY parameter is used. See Sharing
Server Resources for further details.

NODECFG[compute002] OSLIST=linux,windows

NODECFG[node012] OVERCOMMIT=PROCS:2 MEM:4

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL 
PREEMPTMAXCPULOAD=1.2
...

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL 
PREEMPTMINMEMAVAIL=1.2
...

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL 

http://sempa/resources/docs/blanks/torque/a.cmomconfig.php#opsys


PRIORITY
The PRIORITY attribute specifies the fixed node priority relative to other nodes.
It is only used if NODEALLOCATIONPOLICY is set to PRIORITY. The default
node priority is 0. A default cluster-wide node priority may be set by configuring
the PRIORITY attribute of the DEFAULT node. See Priority Node Allocation for
more details.

PRIORITYF
The PRIORITYF attribute specifies the function to use when calculating a node's
allocation priority specific to a particular job. It is only used if
NODEALLOCATIONPOLICY is set to PRIORITY. The default node priority function
sets a node's priority exactly equal to the configured node priority. The priority
function allows a site to indicate that various environmental considerations such
as node load, reservation affinity, and ownership be taken into account as well
using the following format:

<COEFFICIENT> * <ATTRIBUTE> [ + <COEFFICIENT> * <ATTRIBUTE> ]...

<ATTRIBUTE> is an attribute from the table found in the Priority Node Allocation
section.

A default cluster-wide node priority function may be set by configuring the
PRIORITYF attribute of the DEFAULT node. See Priority Node Allocation for
more details.

PROCSPEED
Knowing a node's processor speed can help the scheduler improve intra-job
efficiencies by allocating nodes of similar speeds together. This helps reduce
losses due to poor internal job load balancing. Moab's Node Set scheduling
policies allow a site to control processor speed based allocation behavior.

Processor speed information is specified in MHz and can be indicated directly
using NODECFG or through use of the FEATUREPROCSPEEDHEADER parameter.

PROVRM
Provisioning resource managers can be specified on a per node basis. This allows
flexibility in mixed environents. If the node does not have a provisioning
resource manager, the default provisioning resource manager will be used. The
default is always the first one listed in moab.cfg.

PREEMPTMAXCPULOAD=1.2
...

NODEALLOCATIONPOLICY  PRIORITY
NODECFG[node024] PRIORITY=120
...

NODEALLOCATIONPOLICY  PRIORITY
NODECFG[node024] PRIORITYF='SPEED + .01 * AMEM - 10 * 
JOBCOUNT'
...

RMCFG[prov] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[prov] PROVDURATION=10:00
RMCFG[prov] NODEMODIFYURL=exec://$HOME/tools/os.switch.pl
...
NODECFG[node024] PROVRM=prov



RACK The rack associated with the node's physical location. Valid values range from 1
to 400. See Node Location for details.

RADISK Jobs can request a certain amount of disk space through the RM Extension
String's DDISK parameter. When done this way, Moab can track the amount of
disk space available for other jobs. To set the total amount of disk space
available the RADISK parameter is used.

RCDISK Jobs can request a certain amount of disk space (in MB) through the RM
Extension String's DDISK parameter. When done this way, Moab can track the
amount of disk space available for other jobs. The RCDISK attribute constrains
the amount of disk reported by a resource manager while the RADISK attribute
specifies the amount of disk available to jobs. If the resource manager does not
report available disk, the RADISK attribute should be used.

RCMEM
Jobs can request a certain amount of real memory (RAM) in MB through the RM
Extension String's DMEM parameter. When done this way, Moab can track the
amount of memory available for other jobs. The RCMEM attribute constrains the
amount of RAM reported by a resource manager while the RAMEM attribute
specifies the amount of RAM available to jobs. If the resource manager does not
report available disk, the RAMEM attribute should be used.

Please note that memory reported by the resource manager will override the
configured value unless a trailing caret (^) is used.

If the resource manager does not report any memory, then Moab will assign
node024 2048 MB of memory.

Moab will assign 2048 MB of memory to node024 regardless of what the
resource manager reports.

RCPROC
The RCPROC specifies the number of processors available on a compute node.

RCSWAP
Jobs can request a certain amount of swap space in MB.

RCSWAP works similarly to RCMEM. Setting RCSWAP on a node will set
the swap but can be overridden by swap reported by the resource
manager. If the trailing caret (^) is used, Moab will ignore the swap
reported by the resource manager and use the configured amount.

NODECFG[node024] RCMEM=2048
...

NODECFG[node024] RCMEM=2048^
...

NODECFG[node024] RCPROC=8
...

NODECFG[node024] RCSWAP=2048
...



If the resource manager does not report any memory, Moab will assign node024
2048 MB of swap.

Moab will assign 2048 MB of swap to node024 regardless of what the resource
manager reports.

SIZE
The number of slots or size units consumed by the node. This value is used in
graphically representing the cluster using showstate or Moab Cluster Manager.
See Node Location for details. For display purposes, legal size values include 1, 2,
3, 4, 6, 8, 12, and 16.

SLOT The first slot in the rack associated with the node's physical location. Valid values
range from 1 to MMAX_RACKSIZE (default=64). See Node Location for details.

SPEED
A node's speed is very similar to its processor speed but is specified as a relative
value. In general use, the speed of a base node is determined and assigned a
speed of 1.0. A node that is 50% faster would be assigned a value of 1.5 while a
slower node may receive a value that is proportionally less than 1.0. Node
speeds do not have to be directly proportional to processor speeds and may take
into account factors such as memory size or networking interface. Generally,
node speed information is used to determine proper wallclock limit and CPU time
scaling adjustments.

Node speed information is specified as a unitless floating point ratio and can be
specified through the resource manager or with the NODECFG parameter.

The SPEED specification must be in the range of 0.01 to 100.0.

TRIGGER See Object Triggers for details

VARIABLE
Variables associated with the given node, which can be used in job scheduling.
See -l PREF.

12.2.2 Node Features/Node Properties
A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it, and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

Node features may be assigned by the resource manager, and this information may be imported by Moab or
node features may be specified within Moab directly. As a convenience feature, certain node attributes can be
specified via node features using the parameters listed in the following table:

NODECFG[node024] RCSWAP=2048^
...

NODECFG[node024] SIZE=2
...

NODECFG[node024] VARIABLE=var1
...
      

http://www.adaptivecomputing.com/resources/docs/mcm/index.php


PARAMETER DESCRIPTION

FEATURENODETYPEHEADER Set Node Type

FEATUREPARTITIONHEADER Set Partition

FEATUREPROCSPEEDHEADER Set Processor Speed

FEATURERACKHEADER Set Rack

FEATURESLOTHEADER Set Slot

Example

See Also
Job Preferences
Configuring Node Features in TORQUE
Configuring Node Features in Moab with NODECFG
Specifying Job Feature Requirements
Viewing Feature Availability Breakdown with mdiag -t
Differences between Node Features and Managing Consumable Generic Resources

FEATUREPARTITIONHEADER  par
FEATUREPROCSPEEDHEADER  cpu

http://www.adaptivecomputing.com/resources/docs/torque/nodeconfig.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


12.3 Node Specific Policies
Node policies within Moab allow specification of not only how the node's load should be managed, but who
can use the node, and how the node and jobs should respond to various events. These policies allow a site
administrator to specify on a node by node basis what the node will and will not support. Node policies may
be applied to specific nodes or applied system-wide using the specification NODECFG[DEFAULT] ....

12.3.1 Node Usage/Throttling Policies
MAXJOB

This policy constrains the number of total independent jobs a given node may run simultaneously. It can only
be specified via the NODECFG parameter.

If node pools are specified via the node's POOL attribute, the MAXJOB limit is applied across the
aggregate pool as in the following example:

MAXJOBPERUSER

This policy constrains the number of total independent jobs a given node may run simultaneously associated
with any single user. It can only be specified via the NODECFG parameter.

MAXJOBPERGROUP

This policy constrains the number of total independent jobs a given node may run simultaneously associated
with any single group. It can only be specified via the NODECFG parameter.

MAXLOAD

This policy constrains the CPU load the node will support as opposed to the number of jobs. If the node's load
exceeds the MAXLOAD limit and the NODELOADPOLICY parameter is set to ADJUSTSTATE, the node is
marked busy. This maximum load policy can also be applied system wide using the parameter
NODEMAXLOAD.

MAXPE

This policy constrains the number of total dedicated processor-equivalents a given node may support
simultaneously. It can only be specified via the NODECFG parameter.

MAXPROC

This policy constrains the number of total dedicated processors a given node may support simultaneously. It
can only be specified via the NODECFG parameter.

MAXPROCPERUSER

This policy constrains the number of total processors a given node may have dedicated to any single user. It
can only be specified via the NODECFG parameter.

NODECFG[node01-a] POOL=node01
NODECFG[node01-b] POOL=node01
NODECFG[node01-c] POOL=node01
NODECFG[node01-d] POOL=node01

NODECFG[node02-a] POOL=node02
NODECFG[node02-b] POOL=node02
NODECFG[node02-c] POOL=node02
NODECFG[node02-d] POOL=node02

# only allow one job to run per node pool
NODECFG[DEFAULT] MAXJOB=1



MAXPROCPERGROUP

This policy constrains the number of total processors a given node may have dedicated to any single group.
It can only be specified via the NODECFG parameter.

Node throttling policies are used strictly as constraints. If a node is defined as having a single
processor or the NODEACCESSPOLICY is set to SINGLETASK, and a MAXPROC policy of 4 is
specified, Moab will not run more than one task per node. A node's configured processors must be
specified so that multiple jobs may run and then the MAXJOB policy will be effective. The number of
configured processors per node is specified on a resource manager specific basis. PBS, for example,
allows this to be adjusted by setting the number of virtual processors with the np parameter for each
node in the PBS nodes file.

Example:

12.3.2 Desktop Management Policies (Desktop Harvesting)
KBDDETECTPOLICY, MINRESUMEKBDIDLETIME, and MINPREEMPTLOAD

Sometimes a site administrator would like to add normal desktops to their cluster but are afraid that jobs
might overrun normal desktop usage. Using these three parameters desktop support can be enabled and
configured based on a particular site administrator's needs. KBDDETECTPOLICY tells the scheduler what to
do when local keyboard usage is detected. When it is set to "DRAIN" any jobs currently running on the node
are allowed to finish but no new jobs will run on the node until MINRESUMEKBDIDLETIME is reached.
When KBDDETECTPOLICY is set to "PREEMPT" any jobs running on the system are preempted and the full
system reverts to desktop usage until no keyboard activity is detected for MINRESUMEKBDIDLETIME.
Desktop support can be further configured using MINPREEMPTLOAD. This parameter tells Moab to continue
scheduling jobs on a node even when local keyboard usage is detected as long as the total system load
remains below the specified value. These three parameters can be configured globally or for each particular
node.

Example:

OR:

NODECFG[node024] MAXJOB=4 MAXJOBPERUSER=2
NODECFG[node025] MAXJOB=2
NODECFG[node026] MAXJOBPERUSER=1
NODECFG[DEFAULT] MAXLOAD=2.5
...

NODECFG[node024] KBDDETECTPOLICY=DRAIN     # when local keyboard is 
active jobs will be allowed to finish
NODECFG[node024] MINRESUMEKBDIDLETIME=600  # no jobs will be scheduled 
on node until keyboard has been 
                                           # idle for 10 minutes
NODECFG[node024] MINPREEMPTLOAD=0.5        # as long as system load 
remains below 0.5 jobs will be scheduled, 
                                           # even if keyboard is active
...

NODECFG[DEFAULT] KBDDETECTPOLICY=PREEMPT   # any jobs running on any 
nodes will be preempted if local 
                                           # keyboard usage is detected
NODECFG[DEFAULT] MINRESUMEKBDIDLETIME=600  # no jobs will be scheduled 
any node until local keyboard has been 
                                           # idle for 10 minutes
NODECFG[DEFAULT] MINPREEMPTLOAD=0.5        # as long as the local 
system load remains below 0.5, jobs will be 
                                           # scheduled on the node, even 
if keyboard is active
...



12.3.3 Node Access Policies
While most sites require only a single cluster wide node access policy (commonly set using
NODEACCESSPOLICY), it is possible to specify this policy on a node by node basis using the ACCESS
attributes of the NODECFG parameter. This attribute may be set to any of the valid node access policy values
listed in the Node Access Policies section.

Example

To set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

See Also
mnodectl

# by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY  SINGLETASK

# allow nodes 13 and 14 to be shared
NODECFG[node13]   ACCESS=SHARED
NODECFG[node14]   ACCESS=SHARED



12.4 Managing Shared Cluster Resources
(Floating Resources)
This section describes how to configure, request, and reserve cluster file system space and bandwidth,
software licenses, and generic cluster resources.

12.4.1 Shared Cluster Resource Overview
Shared cluster resources such as file systems, networks, and licenses can be managed through creating a
pseudo-node. You can configure a pseudo-node via the NODECFG parameter much as a normal node would
be but additional information is required to allow the scheduler to contact and synchronize state with the
resource.

In the following example, a license manager is added as a cluster resource by defining the GLOBAL pseudo-
node and specifying how the scheduler should query and modify its state.

If defining a pseudo-node other than GLOBAL, the node name will need to be added to the
RESOURCELIST list.

In some cases, pseudo-node resources may be very comparable to node-locked generic resources however
there are a few fundamental differences which determine when one method of describing resources should be
used over the other. The following table contrasts the two resource types.

Attribute Pseudo-Node Generic Resource

Node-Locked No
Resources can be encapsulated as an
independent node.

Yes
Must be associated with an existing compute
node.

Requires exclusive
batch system
control over
resource

No
Resources (such as file systems and
licenses) may be consumed both inside
and outside of batch system workload.

Yes
Resources must only be consumed by batch
workload. Use outside of batch control results
in loss of resource synchronization.

Allows scheduler
level allocation of
resources

Yes
If required, the scheduler can take
external administrative action to
allocate the resource to the job.

No
The scheduler can only maintain logical
allocation information and cannot take any
external action to allocate resources to the
job.

12.4.2 Configuring Generic Consumable Floating Resources
Consumable floating resources are configured in the same way as node-locked generic resources with the
exception of using the GLOBAL node instead of a particular node.

In this setup, four resources of type tape and 2 of type matlab are floating and available across all nodes.

12.4.2.1 Requesting Consumable Floating Resources

Floating resources are requested on a per task basis using native resource manager job submission methods

NODECFG[GLOBAL] RMLIST=NATIVE
NODECFG[GLOBAL] QUERYCMD=/usr/local/bin/flquery.sh
NODECFG[GLOBAL] MODIFYCMD=/usr/local/bin/flmodify.sh

NODECFG[GLOBAL] GRES=tape:4,matlab:2
...



or using the GRES resource manager extensions.

12.4.3 Configuring Cluster File Systems
Moab allows both the file space and bandwidth attributes or a cluster file system to be tracked, reserved, and
scheduled. With this capability, a job or reservation may request a particular quantity of file space and a
required amount of I/O bandwidth to this file system. While file system resources are managed as a cluster
generic resource, they are specified using the FS attribute of the NODECFG parameter as in the following
example:

In this example, PV1 defines a 10 GB file system with a maximum throughput of 100 MB/s while PV2 defines
a 5 GB file system also possessing a maximum throughput of 100 MB/s.

A job may request cluster file system resources using the fs resource manager extension. For a TORQUE
based system, the following could be used:

>qsub -l nodes=1,walltime=1:00:00 -W x=fs:10@50

12.4.4 Configuring Cluster Licenses
Jobs may request and reserve software licenses using native methods or using the GRES resource manager
extension. If the cluster license manager does not support a query interface, license availability may be
specified within Moab using the GRES attribute of the NODECFG parameter.

Example

Configure Moab to support four floating quickcalc and two floating matlab licenses.

Submit a TORQUE job requesting a node-locked or floating quickcalc license.

See Also
Managing Resources Directly with the Native Interface
License Management

NODECFG[GLOBAL] FS=PV1:10000@100,PV2:5000@100
...

NODECFG[GLOBAL] GRES=quickcalc:4,matlab:2
...

> qsub -l nodes=1,software=quickcalc,walltime=72000 testjob.cmd

http://www.adaptivecomputing.com/resources/docs/torque/index.php


12.5 Managing Node State
There are multiple models in which Moab can operate allowing it to either honor the node state set by an
external service or locally determine and set the node state. This section covers the following:

identifying meanings of particular node states
specifying node states within locally developed services and resource managers
adjusting node state within Moab based on load, policies, and events

12.5.1 Node State Definitions

State Definition

Down Node is either not reporting status, is reporting status but failures are detected, or is reporting
status but has been marked down by an administrator.

Idle Node is reporting status, currently is not executing any workload, and is ready to accept additional
workload.

Busy Node is reporting status, currently is executing workload, and cannot accept additional workload
due to load.

Running Node is reporting status, currently is executing workload, and can accept additional workload.

Drained Node is reporting status, currently is not executing workload, and cannot accept additional
workload due to administrative action.

Draining Node is reporting status, currently is executing workload, and cannot accept additional workload
due to administrative action.

12.5.2 Specifying Node States within Native Resource Managers
Native resource managers can report node state implicitly and explicitly, using NODESTATE, LOAD, and
other attributes. See Managing Resources Directly with the Native Interface for more information.

12.5.3 Moab Based Node State Adjustment
Node state can be adjusted based on reported processor, memory, or other load factors. It can also be
adjusted based on reports of one or more resource managers in a multi-resource manager configuration.
Also, both generic events and generic metrics can be used to adjust node state.

TORQUE health scripts (allow compute nodes to detect and report site specific failures).

12.5.4 Adjusting Scheduling Behavior Based on Reported Node
State
Based on reported node state, Moab can support various policies to make better use of available resources.

12.5.4.1 Down State

JOBACTIONONNODEFAILURE parameter (cancel/requeue jobs if allocated nodes fail).
Triggers (take specified action if failure is detected).

See Also
Managing Resources Directly with the Native Interface
License Management

http://www.adaptivecomputing.com/resources/docs/torque/10.2healthcheck.php


Adjusting Node Availability
NODEMAXLOAD parameter



12.6 Managing Consumable Generic Resources
12.6.1 Configuring Node-Locked Consumable Generic Resources

12.6.1.1 Requesting Consumable Generic Resources
12.6.2 Managing Generic Resource Race Conditions

Each time a job is allocated to a compute node, it consumes one or more types of resources. Standard
resources such as CPU, memory, disk, network adapter bandwidth, and swap are automatically tracked and
consumed by Moab. However, in many cases, additional resources may be provided by nodes and consumed
by jobs that must be tracked. The purpose of this tracking may include accounting, billing, or the prevention
of resource over-subscription. Generic consumable resources may be used to manage software licenses, I/O
usage, bandwidth, application connections, or any other aspect of the larger compute environment; they may
be associated with compute nodes, networks, storage systems, or other real or virtual resources.

These additional resources can be managed within Moab by defining one or more generic resources. The first
step in defining a generic resource involves naming the resource. Generic resource availability can then be
associated with various compute nodes and generic resource usage requirements can be associated with
jobs.

Differences between Node Features and Consumable Resources

A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

12.6.1 Configuring Node-locked Consumable Generic Resources
Consumable generic resources are supported within Moab using either direct configuration or resource
manager auto-detect. For direct configuration, node-locked consumable generic resources (or generic
resources) are specified using the NODECFG parameter's GRES attribute. This attribute is specified using the
format <ATTR>:<COUNT> as in the following example:

By default, Moab supports up to 128 independent generic resource types.

12.6.1.1 Requesting Consumable Generic Resources

Generic resources can be requested on a per task or per job basis using the GRES resource manager
extension. If the generic resource is located on a compute node, requests are by default interpreted as a per
task request. If the generic resource is located on a shared, cluster-level resource (such as a network or
storage system), then the request defaults to a per job interpretation.

Generic resources are specified per task, not per node. When you submit a job, each processor
becomes a task. For example, a job asking for nodes=3:ppn=4,gres=test:5 asks for 60 gres of type
test ((3*4 processors)*5).

If using TORQUE, the GRES or software resource can be requested as in the following examples:

Example 1: Per Task Requests

NODECFG[titan001] GRES=tape:4
NODECFG[login32]  GRES=matlab:2,prime:4
NODECFG[login33]  GRES=matlab:2
...

NODECFG[compute001] GRES=dvd:2 SPEED=2200
NODECFG[compute002] GRES=dvd:2 SPEED=2200
NODECFG[compute003] GRES=dvd:2 SPEED=2200
NODECFG[compute004] GRES=dvd:2 SPEED=2200

http://www.adaptivecomputing.com/products/torque/docs/a.cmomconfig.php
http://www.adaptivecomputing.com/products/torque/docs/a.cmomconfig.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


In this example, Moab determines that compute nodes exist that possess the requested generic resource. A
compute node is a node object that possesses processors on which compute jobs actually execute. License
server, network, and storage resources are typically represented by non-compute nodes. Because compute
nodes exist with the requested generic resource, Moab interprets this job as requesting two compute nodes
each of which must also possess a DVD generic resource.

Example 2: Per Job Requests

In this example, Moab determines that there exist no compute nodes that also possess the generic resource
bandwidth so this job is translated into a multiple-requirement—multi-req—job. Moab creates a job that has
a requirement for two compute nodes and a second requirement for 10000 bandwidth generic resources.
Because this is a multi-req job, Moab knows that it can locate these needed resources separately.

Using Generic Resource Requests in Conjunction with other Constraints

Jobs can explicitly specify generic resource constraints. However, if a job also specifies a hostlist, the hostlist
constraint overrides the generic resource constraint if the request is for per task allocation. In Example 1:
Per Task Requests, if the job also specified a hostlist, the DVD request is ignored.

Requesting Resources with No Generic Resources

In some cases, it is valuable to allocate nodes that currently have no generic resources available. This can be
done using the special value none as in the following example:

In this case, the job only allocates compute nodes that have no generic resources associated with them.

Requesting Generic Resources Automatically within a Queue/Class

Generic resource constraints can be assigned to a queue or class and inherited by any jobs that do not have
a gres request. This allows targeting of specific resources, automation of co-allocation requests, and other
uses. To enable this, use the DEFAULT.GRES attribute of the CLASSCFG parameter as in the following
example:

For each node requested by a viz job, also request two graphics cards.

12.6.2 Managing Generic Resource Race Conditions
A software license race condition "window of opportunity" opens when Moab checks a license server for
sufficient available licenses and closes when the user's software actually checks out the software licenses.
The time between these two events can be seconds to many minutes depending on overhead factors such as
node OS provisioning, job startup, licensed software startup, and so forth.

NODECFG[compute005] SPEED=2200
NODECFG[compute006] SPEED=2200
NODECFG[compute007] SPEED=2200
NODECFG[compute008] SPEED=2200

# submit job which will allocate only from nodes 1 through 4 
requesting one dvd per task
> qsub -l nodes=2,walltime=100,gres=dvd job.cmd

NODECFG[network] PARTITION=shared GRES=bandwidth:2000000

# submit job which will allocate 2 nodes and 10000 units of network 
bandwidth
> qsub -l nodes=2,walltime=100,gres=bandwidth:10000 job.cmd

> qsub -l nodes=2,walltime=100,gres=none job.cmd

CLASSCFG[viz] DEFAULT.GRES=graphics:2



During this window, another Moab-scheduled job or a user or job external to the cluster or cloud can obtain
enough software licenses that by the time the job attempts to obtain its software licenses, there are an
insufficent quantity of available licenses. In such cases a job will sit and wait for the license, and while it
waits it occupies but does not use resources that another job could have used. Use the STARTDELAY
parameter to prevent such a situation.

With the STARTDELAY parameter enabled (on a per generic resource basis) Moab blocks any idle jobs
requesting the same generic resource from starting until the <window_of_opportunity> passes. The window
is defined by the customer on a per generic resource basis.

See Also
Consumable Resource Handling
GRESCFG parameter
Generic Metrics
Generic Events
General Node Attributes
Floating Generic Resources
Per Class Assignment of Generic Resource Consumption
mnodectl -m command to dynamically modify node resources
Favoring Jobs Based On Generic Resource Requirements

GRESCFG[<license>] STARTDELAY=<window_of_opportunity>



12.7 Enabling Generic Metrics
12.7.1 Configuring Generic Metrics
12.7.2 Example Generic Metric Usage

Moab allows organizations to enable generic performance metrics. These metrics allow decisions to be made
and reports to be generated based on site specific environmental factors. This increases Moab's awareness of
what is occurring within a given cluster environment, and allows arbitrary information to be associated with
resources and the workload within the cluster. Uses of these metrics are widespread and can cover anything
from tracking node temperature, to memory faults, to application effectiveness.

execute triggers when specified thresholds are reached
modify node allocation affinity for specific jobs
initiate automated notifications when thresholds are reached
display current, average, maximum, and minimum metrics values in reports and charts within Moab
Cluster Manager

12.7.1 Configuring Generic Metrics
A new generic metric is automatically created and tracked at the server level if it is reported by either a node
or a job.

To associate a generic metric with a job or node, a native resource manager must be set up and the
GMETRIC attribute must be specified. For example, to associate a generic metric of temp with each node in
a TORQUE cluster, the following could be reported by a native resource manager:

Generic metrics are tracked as floating point values allowing virtually any number to be reported.

In the preceding example, the new metric, temp, can now be used to monitor system usage and performance
or to allow the scheduler to take action should certain thresholds be reached. Some uses include the
following:

executing triggers based on generic metric thresholds
adjust a node's availability for accepting additional workload
adjust a node's allocation priority
initiate administrator notification of current, minimum, maximum, or average generic metric values
use metrics to report resource and job performance
use metrics to report resource and job failures
using job profiles to allow Moab to learn which resources best run which applications
tracking effective application efficiency to identify resource brown outs even when no node failure is
obvious
viewing current and historical cluster-wide generic metric values to identify failure, performance, and
usage
enable charging policies based on consumption of generic metrics patterns
view changes in generic metrics on nodes, jobs, and cluster wide over time
submit jobs with generic metric based node-allocation requirements

Generic metric values can be viewed using checkjob, checknode, mdiag -n,mdiag -j, or Moab Cluster
Manager Charting and Reporting Features.

Historical job and node generic metric statistics can be cleared using the mjobctl and mnodectl

# temperature output
node001 GMETRIC[temp]=113
node002 GMETRIC[temp]=107
node003 GMETRIC[temp]=83
node004 GMETRIC[temp]=85
...

http://sempa/resources/docs/mcm/index.php
http://sempa/resources/docs/mcm/index.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://sempa/resources/docs/mcm/index.php
http://sempa/resources/docs/mcm/index.php


commands.

12.7.2 Example Generic Metric Usage
As an example, consider a cluster with two primary purposes for generic metrics. The first purpose is to track
and adjust scheduling behavior based on node temperature to mitigate overheating nodes. The second
purpose is to track and charge for utilization of a locally developed data staging service.

The first step in enabling a generic metric is to create probes to monitor and report this information.
Depending on the environment, this information may be distributed or centralized. In the case of temperature
monitoring, this information is often centralized by a hardware monitoring service and available via command
line or an API. If monitoring a locally developed data staging service, this information may need to be
collected from multiple remote nodes and aggregated to a central location. The following are popular freely
available monitoring tools:

Tool Link

BigBrother http://www.bb4.org

Ganglia http://ganglia.sourceforge.net

Monit http://www.tildeslash.com/monit

Nagios http://www.nagios.org

Once the needed probes are in place, a native resource manager interface must be created to report this
information to Moab. Creating a native resource manager interface should be very simple, and in most cases
a script similar to those found in the $TOOLSDIR ($PREFIX/tools) directory can be used as a template. For
this example, we will assume centralized information and will use the RM script that follows:

With the script complete, the next step is to integrate this information into Moab. This is accomplished with
the following configuration line:

Moab can now be recycled and temperature and data staging usage information will be integrated into Moab
compute node reports. If the checknode command is run, output similar to the following is reported:

#!/usr/bin/perl

# 'hwctl outputs information in format '<NODEID> <TEMP>'

open(TQUERY,"/usr/sbin/hwctl -q temp |");

while (<TQUERY>)
  {
  my $nodeid,$temp = split /\w+/;

  $dstage=GetDSUsage($nodeid);

  print "$nodeid GMETRIC[temp]=$temp GMETRIC[dstage]=$dstage
";
  }

RMCFG[local] TYPE=NATIVE 
CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.local.pl
...

> checknode cluster013

...
Generic Metrics:  temp=113.2,dstage=23748
...

http://www.bb4.org/
http://ganglia.sourceforge.net/
http://www.tildeslash.com/monit
http://www.nagios.org/


Moab Cluster Manager reports full current and historical generic metric information in its visual cluster
overview screen.

The next step in configuring Moab is to inform Moab to take certain actions based on the new information it
is tracking. For this example, there are two purposes. The first purpose is to get jobs to avoid hot nodes
when possible. This is accomplished using the GMETRIC attribute of the Node Allocation Priority function as
in the following example:

This simple priority function reduces the priority of the hottest nodes making such less likely to be allocated.
See Node Allocation Priority Factors for a complete list of available priority factors.

The example cluster is also interested in notifying administrators if the temperature of a given node ever
exceeds a critical threshold. This is accomplished using a trigger. The following line will send email to
administrators any time the temperature of a node exceeds 120 degrees.

See Also
Simulation Overview
Generic Consumable Resources
Object Variables
Generic Event Counters

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=PRIORITY-10*GMETRIC[temp]
...

NODECFG[DEFAULT] 
TRIGGER=atype=mail,etype=threshold,threshold=gmetric[temp]>120,action='
node $OID temp high'
...

http://sempa/resources/docs/mcm/index.php


12.8 Enabling Generic Events
12.8.1 Configuring Generic Events

12.8.1.1 Action Types
12.8.1.2 Named Events
12.8.1.3 Generic Metric (GMetric) Events

12.8.2 Reporting Generic Events
12.8.3 Generic Events Attributes
12.8.4 Manually Creating Generic Events

Generic events are used to identify failures and other occurrences that Moab or other systems must be made
aware. This information may result in automated resource recovery, notifications, adjustments to statistics, or
changes in policy. Generic events also have the ability to carry an arbitrary human readable message that
may be attached to associated objects or passed to administrators or external systems. Generic events
typically signify the occurrence of a specific event as opposed to generic metrics which indicate a change in a
measured value.

Using generic events, Moab can be configured to automatically address many failures and environmental
changes improving the overall performance. Some sample events that sites may be interested in monitoring,
recording, and taking action on include:

Machine Room Status
Excessive Room Temperature
Power Failure or Power Fluctuation
Chiller Health

Network File Server Status
Failed Network Connectivity
Server Hardware Failure
Full Network File System

Compute Node Status
Machine Check Event (MCE)
Network Card (NIC) Failure
Excessive Motherboard/CPU Temperature
Hard Drive Failures

12.8.1 Configuring Generic Events
Generic events are defined in the moab.cfg file and have several different configuration options. The only
required option is action.

The full list of configurable options for generic events are listed in the following table:

Attribute Description

ACTION Comma-delimited list of actions to be processed when a new event is received.

ECOUNT Number of events that must occur before launching action. 

Action will be launched each <ECOUNT> event if rearm is set.

REARM Minimum time between events specified in [[[DD:]HH:]MM:]SS format.

SEVERITY An arbitrary severity level from 1 through 4, inclusive. SEVERITY appears in the output of mdiag
-n -v -v --xml.

The severity level will not be used for any other purpose.

12.8.1.1 Action Types



The impact of the event is controlled using the ACTION attribute of the GEVENTCFG parameter. The
ACTION attribute is comma-delimited and may include any combination of the actions in the following table:

Value Description

DISABLE[:<OTYPE>:<OID>] Marks event object (or specified object) down until event report is cleared.

EXECUTE Executes a script at the provided path. Arguments are allowed at the end of
the path and are separated by question marks (?). Trigger variables (such
as $OID) are allowed.

NOTIFY Notifies admininstrators of the event occurrence.

OFF Powers off node or resource.

ON Powers on node or resource.

PREEMPT[:<POLICY>] Preempts workload associated with object (valid for node, job, reservation,
partition, resource manager, user, group, account, class, QoS, and cluster
objects).

RECORD Records events to the event log. The record action causes a a line to be
added to the event log regardless of whether or not RECORDEVENTLIST
includes GEVENT.

RESERVE[:<DURATION>] Reserves node for specified duration (default: 24 hours).

RESET Resets object (valid for nodes - causes reboot).

SIGNAL[:<SIGNO>] Sends signal to associated jobs or services (valid for node, job, reservation,
partition, resource manager, user, group, account, class, QoS, and cluster
objects).

12.8.1.2 Named Events

In general, generic events are named, with the exception of those based on generic metrics. Names are used
primarily to differentiate between different events and do not have any intrinsic meaning to Moab. It is
suggested that the administrator choose names that denote specific meanings within the organization.

Example

12.8.1.3 Generic Metric (GMetric) Events

GMetric events are generic events based on generic metrics. They are used for executing an action when a
generic metric passes a defined threshold. Unlike named events, GMetric events are not named and use the
following format:

GEVENTCFG[GMETRIC<COMPARISON>VALUE] ACTION=...

# Note: cpu failures require admin attention, create maintenance 
reservation
GEVENTCFG[cpufail] action=notify,record,disable,reserve rearm=01:00:00

# Note: power failures are transient, minimize future use
GEVENTCFG[powerfail] action=notify,record, rearm=00:05:00

# Note: fs full can be automatically fixed
GEVENTCFG[fsfull] 
action=notify,execute:/home/jason/MyPython/cleartmp.py?$OID?nodefix

# Note: memory errors can cause invalid job results, clear node 
immediately 
GEVENTCFG[badmem] action=notify,record,preempt,disable,reserve



Example

This form of generic events uses the GMetric name, as returned by a GMETRIC attribute in a native Resource
Manager interface.

Only one generic event may be specified for any given generic metric.

Valid comparative operators are shows in the following table:

Type Comparison Notes

> greater than Numeric values only

> = greater than or equal to Numeric values only

= = equal to Numeric values only

< less than Numeric values only

< = less than or equal to Numeric values only

< > not equal Numeric values only

12.8.2 Reporting Generic Events
Unlike generic metrics, generic events can be optionally configured at the global level to adjust rearm
policies, and other behaviors. In all cases, this is accomplished using the GEVENTCFG parameter.

To report an event associated with a job or node, use the native Resource Manager interface or the mjobctl or
mnodectl commands.

If using the native Resource Manager interface, use the GEVENT attribute as in the following example:

The time at which the event occurred can be passed to Moab to prevent multiple processing of the
same event. This is accomplished by specifying the event type in the format
<GEVENTID>[:<EVENTTIME>] as in what follows:

The messages specified after GEVENT are routed to Moab Cluster Manager for graphical display and can be
used to dynamically adjust scheduling behavior.

12.8.3 Generic Events Attributes
Each node will record the following about reported generic events:

status - is event active
message - human readable message associated with event
count - number of event incidences reported since statistics were cleared
time - time of most recent event

Each event can be individually cleared, annotated, or deleted by cluster administrators using a mnodectl

GEVENTCFG[cputemp>150] action=off

node001 GEVENT[hitemp]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs]='/var/tmp is full'

node001 GEVENT[hitemp:1130325993]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs:1130325142]='/var/tmp is full'

http://sempa/resources/docs/mcm/index.php


command.

Generic events are only available in Moab 4.5.0 and later.

12.8.4 Manually Creating Generic Events
Generic events may be manually created on a physical node or VM.

To add GEVENT "event" with message "hello" to node02, do the following:

To add GEVENT "event" with message "hello" to myvm, do the following:

See Also
Simulation Overview
Generic Consumable Resources
Object Variables
Generic Event Counters

> mnodectl -m gevent=event:"hello" node02

> mvmctl -m gevent=event:"hello" myvm



13.0 Resource Managers and Interfaces
13.1 Resource Manager Overview
13.2 Resource Manager Configuration
13.3 Resource Manager Extensions
13.4 Adding Resource Manager Interfaces
13.5 Managing Resources Directly with the Native Interface
13.6 Utilizing Multiple Resource Managers
13.7 License Management
13.8 Provisioning Managers
13.9 Managing Networks
13.10 Intelligent Platform Management Interface (IPMI)
13.11 Enabling Resource Manager Translation

Moab provides a powerful resource management interface that enables significant flexibility in how resources
and workloads are managed. Highlights of this interface are listed in what follows:

Support for Multiple Standard Resource Manager Interface Protocols - Manage cluster
resources and workloads via PBS, Loadleveler, SGE, LSF, or BProc based resource managers.
Support for Generic Resource Manager Interfaces - Manage cluster resources securely via locally
developed or open source projects using simple flat text interfaces or XML over HTTP.
Support for Multiple Simultaneous Resource Managers - Integrate resource and workload
streams from multiple independent sources reporting disjoint sets of resources.
Independent Workload and Resource Management - Allow one system to manage your workload
(queue manager) and another to manage your resources.
Support for Rapid Development Interfaces - Load resource and workload information directly from
a file, a URL, or from the output of a configurable script or other executable.
Resource Extension Information - Integrate information from multiple sources to obtain a cohesive
view of a compute resource. (That is, mix information from NIM, OpenPBS, FLEXlm, and a cluster
performance monitor to obtain a single node image with a coordinated state and a more extensive list
of node configuration and utilization attributes.)



13.1 Resource Manager Overview
For most installations, the Moab Workload Manager uses the services of a resource manager to obtain
information about the state of compute resources (nodes) and workload (jobs). Moab also uses the resource
manager to manage jobs, passing instructions regarding when, where, and how to start or otherwise
manipulate jobs.

Moab can be configured to manage more than one resource manager simultaneously, even resource
managers of different types. Using a local queue, jobs may even be migrated from one resource manager to
another. However, there are currently limitations regarding jobs submitted directly to a resource manager
(not to the local queue.) In such cases, the job is constrained to only run within the bound of the resource
manager to which it was submitted.

13.1.1 Scheduler/Resource Manager Interactions
13.1.1.1 Resource Manager Commands
13.1.1.2 Resource Manager Flow

13.1.2 Resource Manager Specific Details (Limitations/Special Features)
13.1.3 Synchronizing Conflicting Information
13.1.4 Evaluating Resource Manager Availability and Performance

13.1.1 Scheduler/Resource Manager Interactions
Moab interacts with all resource managers using a common set of commands and objects. Each resource
manager interfaces, obtains, and translates Moab concepts regarding workload and resources into native
resource manager objects, attributes, and commands.

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

13.1.1.1 Resource Manager Commands

For many environments, Moab interaction with the resource manager is limited to the following objects and
functions:

Object Function Details

Job

Query Collect detailed state, requirement, and utilization information about jobs

Modify Change job state and/or attributes

Start Execute a job on a specified set of resource

Cancel Cancel an existing job

Preempt/Resume Suspend, resume, checkpoint, restart, or requeue a job

Node
Query Collect detailed state, configuration, and utilization information about compute

resources

Modify Change node state and/or attributes

Queue Query Collect detailed policy and configuration information from the resource manager

Using these functions, Moab is able to fully manage workload, resources, and cluster policies. More detailed
information about resource manager specific capabilities and limitations for each of these functions can be
found in the individual resource manager overviews. (LL, PBS, LSF, SGE, BProc, or WIKI).

Beyond these base functions, other commands exist to support advanced features such as dynamic job
support, provisioning, and cluster level resource management.

13.1.1.2 Resource Manager Flow

http://sempa/resources/docs/blanks/mwm/wiki


In general, Moab interacts with resource managers in a sequence of steps each scheduling iteration. These
steps are outlined in what follows:

1. load global resource information
2. load node specific information (optional)
3. load job information
4. load queue/policy information (optional)
5. cancel/preempt/modify jobs according to cluster policies
6. start jobs in accordance with available resources and policy constraints
7. handle user commands

Typically, each step completes before the next step is started. However, with current systems, size and
complexity mandate a more advanced parallel approach providing benefits in the areas of reliability,
concurrency, and responsiveness.

13.1.2 Resource Manager Specific Details (Limitations/Special
Features)

LoadLeveler
Loadleveler Integration Guide

TORQUE/OpenPBS
TORQUE Homepage
PBS Integration Guide

PBSPro
PBS Integration Guide

SGE 6.0+
SGE Integration Guide

SLURM/Wiki
SLURM Integration Guide
Wiki Overview

LSF
LSF Integration Guide

13.1.3 Synchronizing Conflicting Information
Moab does not trust resource manager information. Node, job, and policy information is reloaded on each
iteration and discrepancies are detected. Synchronization issues and allocation conflicts are logged and
handled where possible. To assist sites in minimizing stale information and conflicts, a number of policies and
parameters are available.

Node State Synchronization Policies (see NODESYNCTIME)
Job State Synchronization Policies (see JOBSYNCTIME)
Stale Data Purging (see JOBPURGETIME)
Thread Management (preventing resource manager failures from affecting scheduler operation)
Resource Manager Poll Interval (see RMPOLLINTERVAL)
Node Query Refresh Rate (see NODEPOLLFREQUENCY)

13.1.4 Evaluating Resource Manager Availability and Performance
Each resource manager is individually tracked and evaluated by Moab. Using the mdiag -R command, a site
can determine how a resource manager is configured, how heavily it is loaded, what failures, if any, have
occurred in the recent past, and how responsive it is to requests.

See Also
Resource Manager Configuration
Resource Manager Extensions

http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://sempa/resources/docs/blanks/mwm/wiki


13.2 Resource Manager Configuration
13.2.1 Defining and Configuring Resource Manager Interfaces

13.2.1.1 Resource Manager Attributes
13.2.2 Resource Manager Configuration Details

13.2.2.1 Resource Manager Types
13.2.2.2 Resource Manager Name
13.2.2.3 Resource Manager Location
13.2.2.4 Resource Manager Flags
13.2.2.5 Other Attributes

13.2.3 Scheduler/Resource Manager Interactions

13.2.1 Defining and Configuring Resource Manager Interfaces
Moab resource manager interfaces are defined using the RMCFG parameter. This parameter allows
specification of key aspects of the interface. In most cases, only the TYPE attribute needs to be specified and
Moab determines the needed defaults required to activate and use the selected interface. In the following
example, an interface to a Loadleveler resource manager is defined.

Note that the resource manager is given a label of orion. This label can be any arbitrary site-selected string
and is for local usage only. For sites with multiple active resource managers, the labels can be used to
distinguish between them for resource manager specific queries and commands.

13.2.1.1 Resource Manager Attributes

The following table lists the possible resource manager attributes that can be configured.

ADMINEXEC
AUTHTYPE
BANDWIDTH
CHECKPOINTSIG
CHECKPOINTTIMEOUT
CLIENT
CLUSTERQUERYURL
CONFIGFILE
DATARM
DEFAULTCLASS
DEFAULT.JOB
DEFAULTHIGHSPEEDADAPTER
DESCRIPTION
ENV
EPORT
FAILTIME
FLAGS
FLOWINTERVAL
FLOWLIMIT
FLOWMETRIC
FNLIST
HOST
IGNHNODES
JOBCANCELURL
JOBEXTENDDURATION
JOBMODIFYURL

JOBRSVRECREATE
JOBSTARTURL
JOBSUBMITURL
JOBSUSPENDURL
JOBVALIDATEURL
MAXDSOP
MAX.JOB
MAXJOBPERMINUTE
MAXJOBS
MINETIME
MIN.JOB
NMPORT
NODEFAILURERSVPROFILE
NODESTATEPOLICY
OMAP
POLLINTERVAL
POLLTIMEISRIGID
PORT
PTYSTRING
RESOURCECREATEURL
RESOURCETYPE
RMSTARTURL
RMSTOPURL
SBINDIR
SERVER
SET.JOB

SLURMFLAGS
SOFTTERMSIG
STAGETHRESHOLD
STARTCMD
SUBMITCMD
SUBMITPOLICY
SUSPENDSIG
SYNCJOBID
SYSTEMMODIFYURL
SYSTEMQUERYURL
TARGETUSAGE
TIMEOUT
TRANSLATIONSCRIPT
TRIGGER
TYPE
UCALLOCDURATION
UCALLOCSIZE
UCMAXSIZE
UCTHRESHOLD
UCTHRESHOLDDURATION
USEVNODES
VARIABLES
VERSION
VMOWNERRM
WORKLOADQUERYURL

ADMINEXEC

Format: "jobsubmit"

RMCFG[orion] TYPE=LL
...



Default: NONE

Description: Normally, when the JOBSUBMITURL is executed, Moab will drop to the UID and GID of the
user submitting the job. Specifying an ADMINEXEC of jobsubmit causes Moab to use its own
UID and GID instead (usually root). This is useful for some native resource managers where
the JOBSUBMITURL is not a user command (such as qsub) but a script that interfaces directly
with the resource manager.

Example:

Moab will not use the user's UID and GID for executing the JOBSUBMITURL.

  
AUTHTYPE

Format: one of CHECKSUM, OTHER, PKI, SECUREPORT, or NONE.

Default: CHECKSUM

Description: Specifies the security protocol to be used in scheduler-resource manager communication.

Only valid with WIKI based interfaces.

Example:

Moab requires a secret key based checksum associated with each resource manager message.

  
BANDWIDTH

Format: <FLOAT>[{M|G|T}]

Default: -1 (unlimited)

Description: Specifies the maximum deliverable bandwidth between the Moab server and the resource
manager for staging jobs and data. Bandwidth is specified in units per second and defaults to
a unit of MB/s. If a unit modifier is specified, the value is interpreted accordingly (M -
megabytes/sec, G - gigabytes/sec, T - terabytes/sec).

Example:

Moab will reserve up to 340 GB of network bandwidth when scheduling job and data staging
operations to and from this resource manager.

  
CHECKPOINTSIG

Format: one of suspend, <INTEGER>, or SIG<X>

Default: ---

Description: Specifies what signal to send the resource manager when a job is checkpointed. (See
Checkpoint Overview.)

Example:

Moab routes the signal SIGKILL through the resource manager to the job when a job is
checkpointed.

  
CHECKPOINTTIMEOUT

RMCFG[base] ADMINEXEC=jobsubmit

RMCFG[base] AUTHTYPE=CHECKSUM

RMCFG[base] BANDWIDTH=340G

RMCFG[base] CHECKPOINTSIG=SIGKILL



Format: [[[DD:]HH:]MM:]SS

Default: 0 (no timeout)

Description: Specifies how long Moab waits for a job to checkpoint before canceling it. If set to 0, Moab
does not cancel the job if it fails to checkpoint. (See Checkpoint Overview.)

Example:

Moab cancels any job that has not exited 5 minutes after receiving a checkpoint request.

  
CLIENT

Format: <PEER>

Default: use name of resource manager for peer client lookup

Description: If specified, the resource manager will use the peer value to authenticate remote connections.
(See configuring peers). If not specified, the resource manager will search for a CLIENTCFG
entry of RM:<RMNAME> in the moab-private.cfg file.

Example:

Moab will look up and use information for peer clusterB when authenticating the clusterBI
resource manager.

  
CLUSTERQUERYURL

Format: [file://<path> | http://<address> | <path>]
 
If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified,
Moab treats the destination as a hypertext transfer protocol file; if just a path is specified,
Moab treats the destination as an executable.

Default: ---

Description: Specifies how Moab queries the resource manager. (See Native RM, URL Notes, and interface
details.)

Example:

Moab reads /tmp/cluster.config when it queries base resource manager.

  
CONFIGFILE

Format: <STRING>

Default: N/A

Description: Specifies the resource manager specific configuration file that must be used to enable correct
API communication.

Only valid with LL- and SLURM-based interfaces.

Example:

The scheduler uses the specified file when establishing the resource manager/scheduler

RMCFG[base] CHECKPOINTTIMEOUT=5:00

RMCFG[clusterBI] CLIENT=clusterB

RMCFG[base] CLUSTERQUERYURL=file:///tmp/cluster.config

RMCFG[base] TYPE=LL CONFIGFILE=/home/loadl/loadl_config



interface connection.

  
DATARM

Format: <RM NAME>

Default: N/A

Description: If specified, the resource manager uses the given storage resource manager to handle staging
data in and out.

Example:

When data staging is required by jobs starting/completing on clusterB, Moab uses the
storage interface defined by clusterB_storage to stage and monitor the data.

  
DEFAULTCLASS

Format: <STRING>

Default: N/A

Description: Specifies the class to use if jobs submitted via this resource manager interface do not have an
associated class.

Example:

Moab assigns the class batch to all jobs from the resource manager internal that do not
have a class assigned.

If you are using PBS as the resource manager, a job will never come from PBS without
a class, and the default will never apply.

  
DEFAULT.JOB

Format: <STRING>

Default: N/A

Description: Specifies the job template to use to set various job attributes that are not specified by the
submitter.

Example:

Moab uses the defjob job template to identify and apply job attribute defaults.

  
DEFAULTHIGHSPEEDADAPTER

Format: <STRING>

Default: sn0

Description: Specifies the default high speed switch adapter to use when starting LoadLeveler jobs
(supported in version 4.2.2 and higher of Moab and 3.2 of LoadLeveler).

Example:

The scheduler will start jobs requesting a high speed adapter on sn1.

  

RMCFG[clusterB] DATARM=clusterB_storage

RMCFG[internal] DEFAULTCLASS=batch

RMCFG[base] DEFAULT.JOB=defjob

RMCFG[base]     DEFAULTHIGHSPEEDADAPTER=sn1



DESCRIPTION

Format: <STRING>

Default: N/A

Description: Specifies the human-readable description for the resource manager interface. If white space is
used, the description should be quoted.

Example:

Moab annotates the ganglia resource manager accordingly.

  
ENV

Format: Semi-colon delimited (;) list of <KEY>=<VALUE> pairs

Default: MOABHOMEDIR=<MOABHOMEDIR>

Description: Specifies a list of environment variables that will be passed to URL's of type 'exec://' for that
resource manager.

Example:

The environment variables HOST and RETRYTIME (with values 'node001' and '50' respectively)
are passed to the /opt/moab/tools/cluster.query.pl and
/opt/moab/tools/workload.query.pl when they are executed.

  
EPORT

Format: <INTEGER>

Default: N/A

Description: Specifies the event port to use to receive resource manager based scheduling events.

Example:

The scheduler will look for scheduling events from the resource manager host at port 15017.

  
FAILTIME

Format: <[[[DD:]HH:]MM:]SS

Default: N/A

Description: Specifies how long a resource manager must be down before any failure triggers associated
with the resource manager fire.

Example:

If the base resource manager is down for three minutes, any resource manager failure triggers
fire.

  
FLAGS

RMCFG[ganglia] TYPE=NATIVE:ganglia DESCRIPTION='resource monitor 
providing extended resource utilization stats'

RMCFG[base] ENV=HOST=node001;RETRYTIME=50
RMCFG[base] CLUSTERQUERYURL=exec:///opt/moab/tools/cluster.query.pl
RMCFG[base] 
WORKLOADQUERYURL=exec:///opt/moab/tools/workload.query.pl

RMCFG[base] EPORT=15017

RMCFG[base] FAILTIME=3:00



Format: comma delimited list of zero or more of the following: asyncstart, autostart, autosync,
client, fullcp, executionServer, grid, hostingCenter, ignqueuestate, private,
pushslavejobupdates, report, shared, slavepeer or static

Default: N/A

Description: Specifies various attributes of the resource manager. See Flag Details for more information.

Example:

Moab uses this resource manager to perform a single update of node and job objects reported
elsewhere.

  
FLOWINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 01:00:00 (one hour)

Description: Specifies the duration of the flow control sliding window.

Example:

The scheduler limits jobs running on this resource manager to no more than 30 jobs every 30
minutes.

  
FLOWLIMIT

Format: <INTEGER>

Default: 1

Description: Specifies the limit of flow metric consumption allowed within the sliding window.

Example:

The scheduler limits jobs running on this resource manager to no more than 30 jobs every 30
minutes.

  
FLOWMETRIC

Format: one of jobs, procs, nodes, procseconds, or peseconds

Default: jobs

Description: Specifies the metric of consumption of the flow control sliding window.

Example:

The scheduler limits jobs running on this resource manager to no more than 30 jobs every 30
minutes.

  
FNLIST

Format: comma delimited list of zero or more of the following: clusterquery, jobcancel,
jobrequeue, jobresume, jobstart, jobsuspend, queuequery, resourcequery or
workloadquery

Default: N/A

Description: By default, a resource manager utilizes all functions supported to query and control batch
objects. If this parameter is specified, only the listed functions are used.

RMCFG[base] FLAGS=static,slavepeer

RMCFG[base] FLOWINTERVAL=00:30:00 FLOWMETRIC=jobs FLOWLIMIT=30

RMCFG[base] FLOWINTERVAL=00:30:00 FLOWMETRIC=jobs FLOWLIMIT=30

RMCFG[base] FLOWINTERVAL=00:30:00 FLOWMETRIC=jobs FLOWLIMIT=30



Example:

Moab only uses this resource manager interface to load queue configuration information.

  
HOST

Format: <STRING>

Default: localhost

Description: The host name of the machine on which the resource manager server is running.

Example:

  
IGNHNODES

Format: <BOOLEAN>

Default: FALSE

Description: Specifies whether to read in the PBSPro host nodes. This parameter is used in conjunction with
USEVNODES. When both are set to TRUE, the host nodes are not queried.

Example:

  
JOBCANCELURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab cancels jobs via the resource manager. (See URL Notes below.)

Example:

Moab executes /opt/moab/job.cancel.lsf.pl to cancel specific jobs.

  
JOBEXTENDDURATION

Format: [[[DD:]HH:]MM:]SS[,[[[DD:]HH:]MM:]SS][!][<] (or <MIN TIME>[,<MAX TIME>][!])

Default: ---

Description: Specifies the minimum and maximum amount of time that can be added to a job's walltime if
it is possible for the job to be extended. (See MINWCLIMIT.) As the job runs longer than its
current specified minimum wallclock limit (-l minwclimit, for example), Moab attempts to
extend the job's limit by the minimum JOBEXTENDDURATION. This continues until either
the extension can no longer occur (it is blocked by a reservation or job), the maximum
JOBEXTENDDURATION is reached, or the user's specified wallclock limit (-l wallclock) is
reached. When a job is extended, it is marked as PREEMPTIBLE, unless the '!' is appended to
the end of the configuration string. If the '<' is at the end of the string, however, the job is
extended the maximum amount possible.

Example:

Moab extends a job's walltime by 30 seconds each time the job is about to run out of walltime
until it is bound by one hour, a reservation/job, or the job's original "maximum" wallclock
limit.

RMCFG[base] FNLIST=queuequery

RMCFG[base] host=server1

RMCFG[pbs] IGNHNODES=TRUE

RMCFG[base] JOBCANCELURL=exec:///opt/moab/job.cancel.lsf.pl

RMCFG[base] JOBEXTENDDURATION=30,1:00:00



  
JOBMODIFYURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab modifies jobs via the resource manager. (See URL Notes and interface
details.)

Example:

Moab executes /opt/moab/job.modify.dyn.pl to modify specific jobs.

JOBRSVRECREATE

Format: Boolean

Default: TRUE

Description: Specifies whether Moab will re-create a job reservation each time job information is updated
by a resource manager. (See Considerations for Large Clusters for more information.)

Example:

Moab only creates a job reservation once when the job first starts.

  
JOBSTARTURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab starts jobs via the resource manager. (See URL Notes below.)

Example:

Moab triggers the jobstart.cgi script via http to start specific jobs.

  
JOBSUBMITURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab submits jobs to the resource manager. (See URL Notes below.)

Example:

Moab submits jobs directly to the database located on host dbserver.flc.com.

  
JOBSUSPENDURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab suspends jobs via the resource manager. (See URL Notes below.)

RMCFG[base] JOBMODIFYURL=exec://$TOOLSDIR/job.modify.dyn.pl

RMCFG[base] JOBRSVRECREATE=FALSE

RMCFG[base] JOBSTARTURL=http://orion.bsu.edu:1322/moab/jobstart.cgi

RMCFG[base] JOBSUBMITURL=exec://$TOOLSDIR/job.submit.dyn.pl



Example:

Moab executes the job.suspend script when jobs are suspended.

  
JOBVALIDATEURL

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies how Moab validates newly submitted jobs. (See URL Notes below.) If the script
returns with a non-zero exit code, the job is rejected. (See User Proxying/Alternate
Credentials.)

Example:

Moab executes the 'job.validate.pl ' script when jobs are submitted to verify they are
acceptable.

  
MAXDSOP

Format: <INTEGER>

Default: -1 (unlimited)

Description: Specifies the maximum number of data staging operations that may be simultaneously active.

Example:

  
MAX.JOB

Format: <STRING>

Default: ---

Description: Specifies the job template to use to check various maximum/excluded job attributes that are
specified by the submitter.

Example:

Moab will use the maxjob job template to identify and enforce maximum/excluded job
attributes.

  
MAXJOBPERMINUTE

Format: <INTEGER>

Default: -1 (unlimited)

Description: Specifies the maximum number of jobs allowed to start per minute via the resource manager.

Example:

The scheduler only allows five jobs per minute to launch via the resource manager base.

  
MAXJOBS

RMCFG[base] JOBSUSPENDURL=EXEC://$HOME/scripts/job.suspend

RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl

RMCFG[ds] MAXDSOP=16

RMCFG[base] MAX.JOB=maxjob

RMCFG[base] MAXJOBPERMINUTE=5



Format: <INTEGER>

Default: 0 (limited only by the Moab MAXJOB setting)

Description: Specifies the maximum number of active jobs that this interface is allowed to load from the
resource manager.

Only works with Moab peer resource managers at this time.

Example:

The scheduler loads up to 200 active jobs from the remote Moab peer cluster1.

  
MINETIME

Format: <INTEGER>

Default: 1

Description: Specifies the minimum time in seconds between processing subsequent scheduling events.

Example:

The scheduler batch-processes scheduling events that occur less than five seconds apart.

  
MIN.JOB

Format: <STRING>

Default: ---

Description: Specifies the job template to use to check various minimum/required job attributes that are
specified by the submitter.

Example:

Moab uses the minjob job template to identify and enforce minimum/required job attributes.

  
NMPORT

Format: <INTEGER>

Default: (any valid port number)

Description: Allows specification of the resource manager's node manager port and is only required when
this port has been set to a non-default value.

Example:

The scheduler contacts the node manager located on each compute node at port 13001.

  
NODEFAILURERSVPROFILE

Format: <STRING>

Default: N/A

Description: Specifies the rsv template to use when placing a reservation onto failed nodes. (See also

RMCFG[cluster1] SERVER=moab://cluster1
MAXJOBS=200

RMCFG[base] MINETIME=5

RMCFG[base] MIN.JOB=minjob

RMCFG[base] NMPORT=13001



NODEFAILURERESERVETIME.)

Example: moab.cfg
RMCFG[base] NODEFAILURERSVPROFILE=long

RSVPROFILE[long]        DURATION=25:00
RSVPROFILE[long]        USERLIST=john

The scheduler will use the long rsv profile when creating reservations over failed nodes
belonging to base.

  
NODESTATEPOLICY

Format: one of OPTIMISTIC or PESSIMISTIC

Default: PESSIMISTIC

Description: Specifies how Moab should determine the state of a node when multiple resource managers
are reporting state.
OPTIMISTIC specifies that if any resource manager reports a state of up, that state will be
used.
PESSIMISTIC specifies that if any resource manager reports a state of down, that state will
be used.

Example: moab.cfg
RMCFG[ganglia] TYPE=NATIVE CLUSTERQUERYURL=ganglia://
RMCFG[ganglia] FLAGS=SLAVEPEER NODESTATEPOLICY=OPTIMISTIC

  
OMAP

Format: <protocol>://[<host>[:<port>]][<path>]

Default: ---

Description: Specifies an object map file that is used to map credentials and other objects when using this
resource manager peer. (See Grid Credential Management for full details.)

Example: moab.cfg
RMCFG[peer1] OMAP=file:///opt/moab/omap.dat
When communicating with the resource manager peer1, objects are mapped according to the
rules defined in the /opt/moab/omap.dat file.

  
POLLINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 30

Description: Specifies how often the scheduler will poll the resource manager for information.

Example:

Moab contacts resource manager base every minute for updates.

  
POLLTIMEISRIGID

Format: <BOOLEAN>

Default: FALSE

RMCFG[base] POLLINTERVAL=1:00



Description: Determines whether the POLLINTERVAL parameter is interpreted as an interval or a set time
for contacting.

Example:

Moab polls the resource manager at startup and on the hour.

  
PORT

Format: <INTEGER>

Default: 0

Description: Specifies the port on which the scheduler should contact the associated resource manager. The
value '0' specifies that the resource manager default port should be used.

Example:

Moab attempts to contact the PBS server daemon on host cws, port 20001.

  
PTYSTRING

Format: <STRING>

Default: srun -n1 -N1 --pty

Description:
When a SLURM interactive job is submitted, it builds an salloc command that gets the
requested resources and an srun command that creates a terminal session on one of the
nodes. The srun command is called the PTYString. PTYString is configured in moab.cfg.

There are two special things you can do with PTYString:

1. You can have PTYSTRING=$salloc which says to use the default salloc command
(SallocDefaultCommand, look in the slurm.conf man page) defined in slurm.conf.
Internally, Moab won't add a PTYString because SLURM will call the
SallocDefaultCommand.

2. As in the example below, you can add $SHELL. $SHELL will be expanded to either what
you request on the command line (such as msub -S /bin/tcsh -l) or to the value of
$SHELL in your current session.

PTYString works only with SLURM.

Example:

  
RESOURCECREATEURL

Format: [exec://<path> | http://<address> | <path>]
 
If exec:// is specified, Moab treats the destination as an executable file; if http:// is
specified, Moab treats the destination as a hypertext transfer protocol file.

Default: RESOURCECREATEURL has a default only when the RM type is declared as MSM (RMCFG[]
TYPE=Native:MSM). If this is the case, the default is:
exec://$TOOLSDIR/msm/contrib/node.create.pl

Description: Specifies a script or method that can be used by Moab to create resources dynamically, such
as creating a virtual machine on a hypervisor.

RMCFG[base] POLLTIMEISRIGID=TRUE POLLINTERVAL=1:00:00

RMCFG[base] TYPE=PBS HOST=cws PORT=20001

RMCFG[slurm] PTYSTRING="srun -n1 -N1 --pty --preserve-env $SHELL"



Example:

Moab invokes the vm.provision.py script, passing in data as command line arguments, to
request a creation of new resources.

  
RESOURCETYPE

Format: {COMPUTE|FS|LICENSE|NETWORK}

Default: ---

Description: Specifies which type of resource this resource manager is configured to control. See Native
Resource Managers for more information.

Example:

Resource manager base will function as a NATIVE resource manager and control file systems.

  
RMSTARTURL

Format: [exec://<path> | http://<address> | <path>]
 
If exec:// is specified, Moab treats the destination as an executable file; if http:// is
specified, Moab treats the destination as a hypertext transfer protocol file.

Default: ---

Description: Specifies how Moab starts the resource manager.

Example:

Moab executes /tmp/nat.start.pl to start the resource manager base.

  
RMSTOPURL

Format: [exec://<path> | http://<address> | <path>]
 
If exec:// is specified, Moab treats the destination as an executable file; if http:// is
specified, Moab treats the destination as a hypertext transfer protocol file.

Default: ---

Description: Specifies how Moab stops the resource manager.

Example:

Moab executes /tmp/nat.stop.pl to stop the resource manager base.

  
SBINDIR

Format: <PATH>

Default: N/A

Description: For use with TORQUE; specifies the location of the TORQUE system binaries (supported in
TORQUE 1.2.0p4 and higher).

Example:

RMCFG[base] RESOURCECREATEURL=exec:///opt/script/vm.provision.py

RMCFG[base] TYPE=NATIVE RESOURCETYPE=FS

RMCFG[base] RMSTARTURL=exec:///tmp/nat.start.pl

RMCFG[base] RMSTOPURL=exec:///tmp/nat.stop.pl

RMCFG[base] TYPE=pbs  SBINDIR=/usr/local/torque/sbin



Moab tells TORQUE that its system binaries are located in /usr/local/torque/sbin.

  
SERVER

Format: <URL>

Default: N/A

Description: Specifies the resource management service to use. If not specified, the scheduler locates the
resource manager via built-in defaults or, if available, with an information service.

Example:

Moab attempts to use the Loadleveler scheduling API at the specified location.

  
SET.JOB

Format: <STRING>

Default: N/A

Description: Specifies the job template to use to force various job attributes regardless of whether or not
they are specified by the submitter.

Example:

Moab uses the test job template to identify and enforce mandatory job attributes.

  
SLURMFLAGS

Format: <STRING>

Default: N/A

Description: Specifies characteristics of the SLURM resource manager interface.

Example:

Moab uses the specified flag to determine interface characteristics with SLURM. The
COMPRESSOUTPUT flag instructs Moab to use the compact hostlist format for job submissions
to SLURM. The flag NODEDELTAQUERY instructs Moab to request delta node updates when it
queries SLURM for node configuration.

  
SOFTTERMSIG

Format: <INTEGER> or SIG<X>

Default: ---

Description: Specifies what signal to send the resource manager when a job reaches its soft wallclock limit.
(See JOBMAXOVERRUN.)

Example:

Moab routes the signal SIGUSR1 through the resource manager to the job when a job reaches
its soft wallclock limit.

RMCFG[base] server=ll://supercluster.org:9705

RMCFG[internal] SET.JOB=test
RMCFG[pbs] SET.JOB=test
JOBCFG[test] CLASS=class1

RMCFG[slurm] SLURMFLAGS=COMPRESSOUTPUT

RMCFG[base] SOFTTERMSIG=SIGUSR1



  
STAGETHRESHOLD

Format: [[[DD:]HH:]MM:]SS

Default: N/A

Description: Specifies the maximum time a job waits to start locally before considering being migrated to a
remote peer. In other words, if a job's start time on a remote cluster is less than the start
time on the local cluster, but the difference between the two is less than STAGETHRESHOLD,
then the job is scheduled locally. The aim is to avoid job/data staging overhead if the
difference in start times is minimal.

If this attribute is used, backfill is disabled for the associated resource manager.

Example:

Moab only migrates jobs to remote_cluster if the jobs can start five minutes sooner on the
remote cluster than they could on the local cluster.

  
STARTCMD

Format: <STRING>

Default: N/A

Description: Specifies the full path to the resource manager job start client. If the resource manager API
fails, Moab executes the specified start command in a second attempt to start the job.

Moab calls the start command with the format '<CMD> <JOBID> -H <HOSTLIST>'
unless the environment variable 'MOABNOHOSTLIST' is set in which case Moab will only
pass the job ID.

Example:

Moab uses the specified start command if API failures occur when launching jobs.

  
SUBMITCMD

Format: <STRING>

Default: N/A

Description: Specifies the full path to the resource manager job submission client.

Example:

Moab uses the specified submit command when migrating jobs.

  
SUBMITPOLICY

Format: one of NODECENTRIC or PROCCENTRIC

Default: PROCCENTRIC

Description: If set to NODECENTRIC, each specified node requested by the job is interpreted as a true
compute host, not as a task or processor.

Example:

Moab uses the specified submit policy when migrating jobs.

RMCFG[remote_cluster] STAGETHRESHOLD=00:05:00

RMCFG[base] STARTCMD=/usr/local/bin/qrun

RMCFG[base] SUBMITCMD=/usr/local/bin/qsub

RMCFG[base] SUBMITPOLICY=NODECENTRIC



  
SUSPENDSIG

Format: <INTEGER> (valid Unix signal between 1 and 64)

Default: --- (resource manager specific default)

Description: If set, Moab sends the specified signal to a job when a job suspend request is issued.

Example:

Moab uses the specified suspend signal when suspending jobs within the base resource
manager.

SUSPENDSIG should not be used with TORQUE or other PBS-based resource
managers.

  
SYNCJOBID

Format: <BOOLEAN>

Default: ---

Description: Specifies that Moab should migrate jobs to the local resource manager queue with a job ID
matching the job's Moab-assigned job ID (only available with SLURM.)

Example:

Moab migrates jobs to the SLURM queue with a jobid matching the Moab-assigned job ID.

  
SYSTEMMODIFYURL

Format: [exec://<path> | http://<address> | <path>]
 
If exec:// is specified, Moab treats the destination as an executable file; if http:// is
specified, Moab treats the destination as a hypertext transfer protocol file.

Default: ---

Description: Specifies how Moab modifies attributes of the system. This interface is used in data staging.

Example:

Moab executes /tmp/system.modify.pl when it modifies system attributes in conjunction with
the resource manager base.

  
SYSTEMQUERYURL

Format: [file://<path> | http://<address> | <path>]
 
If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified,
Moab treats the destination as a hypertext transfer protocol file; if just a path is specified,
Moab treats the destination as an executable.

Default: ---

Description: Specifies how Moab queries attributes of the system. This interface is used in data staging.

Example:

RMCFG[base] SUSPENDSIG=19

RMCFG[base] TYPE=wiki:slurm SYNCJOBID=TRUE

RMCFG[base] SYSTEMMODIFYURL=exec:///tmp/system.modify.pl

RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

http://www.adaptivecomputing.com/resources/docs/torque/index.php


Moab reads /tmp/system.query when it queries the system in conjunction with base resource
manager.

  
TARGETUSAGE

Format: <INTEGER>[%]

Default: 90%

Description: Amount of resource manager resources to explicitly use. In the case of a storage resource
manager, indicates the target usage of data storage resources to dedicate to active data
migration requests. If the specified value contains a percent sign (%), the target value is a
percent of the configured value. Otherwise, the target value is considered to be an absolute
value measured in megabytes (MB).

Example:

Moab schedules data migration requests to never exceed 80% usage of the storage resource
manager's disk cache and network resources.

  
TIMEOUT

Format: <INTEGER>

Default: 30

Description: Time (in seconds) the scheduler waits for a response from the resource manager.

Example:

Moab waits 40 seconds to receive a response from the resource manager before timing out
and giving up. Moab tries again on the next iteration.

  
TRANSLATIONSCRIPT

Format: <STRING>

Default: ---

Description: Script to be inserted into user command file if migration involves translation from one resource
manager type to another. The script takes two arguments where the first is the source
resource manager type and the second is the destination resource manager type. Types can be
any of the following: PBS, SLURM, LSF, SGE, LOADLEVELER, or BPROC.

Example:

Moab inserts a line that will source the specified script into the start of each translated job
command file.

  
TRIGGER

Format: <TRIG_SPEC>

Default: ---

Description: A trigger specification indicating behaviors to enforce in the event of certain events associated
with the resource manager, including resource manager start, stop, and failure.

Example:

RMCFG[storage] TYPE=NATIVE RESOURCETYPE=storage
RMCFG[storage] TARGETUSAGE=80%

RMCFG[base] TIMEOUT=40

RMCFG[base] TRANSLATIONSCRIPT=/opt/moab/tools/tscript.sh

RMCFG[base] TRIGGER=<X>



  
TYPE

Format: <RMTYPE>[:<RMSUBTYPE>] where <RMTYPE> is one of the following: TORQUE, LL, LSF,
NATIVE, PBS, RMS, SGE, SSS, or WIKI and the optional <RMSUBTYPE> value is one of RMS.

Default: PBS

Description: Specifies type of resource manager to be contacted by the scheduler.
For TYPE WIKI, AUTHTYPE must be set to CHECKSUM. The <RMSUBTYPE> option is
currently only used to support Compaq's RMS resource manager in conjunction with
PBS. In this case, the value PBS:RMS should be specified.

Example:

Moab interfaces to two different PBS resource managers, one located on server clusterA at
port 15003 and one located on server clusterB at port 15005.

  
UCALLOCDURATION

Format: [[[DD:]HH:]MM:SS

Default: --- (no allocation duration)

Description: Specifies the minimum duration utility computing resources are allocated when the resource
manager's UCTHRESHOLD is satisfied. This feature is used when allocating automatic utility
computing resources.

Example:

The resource manager allocates two processors at a time for a period of at least 30 minutes if
the cluster maintains a 20-minute backlog for more than three minutes.

  
UCALLOCSIZE

Format: <INTEGER> (processors)

Default: 1

Description: Specifies the number of additional nodes to allocate each time a dynamic utility computing
threshold is reached. This feature is used primarily with utility computing resources.

Either UCMAXSIZE or UCALLOCSIZE must be specified to enable performance or
threshold based automatic utility computing usage.

Example:

The resource manager allocates four additional nodes each time the utility computing threshold
is reached.

  
UCMAXSIZE

Format: <INTEGER> (processors)

RMCFG[clusterA] TYPE=PBS HOST=clusterA PORT=15003
RMCFG[clusterB] TYPE=PBS HOST=clusterB PORT=15005

RMCFG[base] UCTHRESHOLD=00:20:00
RMCFG[base] UCALLOCDURATION=00:30:00
RMCFG[base] UCALLOCSIZE=2

RMCFG[base] UCTHRESHOLD=00:20:00
RMCFG[base] UCALLOCSIZE=4

http://www.adaptivecomputing.com/resources/docs/torque/index.php


Default: 1

Description: Specifies the maximum number of nodes the local cluster can allocate in response to utility
computing thresholds. This feature is used primarily with utility computing resources.

Either UCMAXSIZE or UCALLOCSIZE must be specified to enable performance or
threshold based automatic utility computing usage.

Example:

Moab may not allocate more than a total of 256 processors from the utility computing resource
even if the utility computing threshold is in violation.

  
UCTHRESHOLD

Format: [[[DD:]HH:]MM:SS

Default: --- (no activation threshold)

Description: Specifies the cluster backlog duration required before the resource manager automatically
activates. This feature is used primarily to activate utility computing resources.

This parameter is required to enable performance or threshold based automatic utility
computing usage.

Example:

The resource manager should be activated if the cluster obtains a 20 minute backlog.

  
UCTHRESHOLDDURATION

Format: [[[DD:]HH:]MM:SS

Default: --- (no threshold duration)

Description: Specifies how long the resource manager's UCTHRESHOLD must be satisfied before resource
manager activation is allowed. This parameter prevents statistical spikes from causing
unnecessary utility computing allocations. This feature is used primarily to activate utility
computing resources.

Example:

Utility computing resources should be allocated if the cluster maintains a 20 minute backlog
for more than three minutes.

USEVNODES

Format: <BOOLEAN>

Default: FALSE

Description: Specifies whether to schedule on PBS virtual nodes. When set to TRUE, Moab queries PBSPro
for vnodes and puts jobs on vnodes rather than "hosts." In some systems, such as PBS + Altix,
it may not be desirable to read in the host nodes; for such situations refer to the IGNHNODES
parameter.

RMCFG[base] UCMAXSIZE=256

RMCFG[base] UCTHRESHOLD=00:20:00

RMCFG[base] UCTHRESHOLD=00:20:00
RMCFG[base] UCTHRESHOLDDURATION=00:03:00



Example:

  
VARIABLES

Format: <VAR>=<VAL>[,VAR>=<VAL>]

Default: ---

Description: Opaque resource manager variables.

Example:

Moab associates the variable SCHEDDHOST with the value head1 on resource manager base.

  
VERSION

Format: <STRING>

Default: SLURM: 10200 (i.e., 1.2.0)

Description: Resource manager-specific version string.

Example:

Moab assumes that resource manager base has a version number of 1.1.24.

  
VMOWNERRM

Format: <STRING>

Default: ---

Description: Used with provisioning resource managers that can create VMs. It specifies the resource
manager that will own any VMs created by the resource manager.

Example:

  
WORKLOADQUERYURL

Format: [file://<path> | http://<address> | <path>]
 
If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified,
Moab treats the destination as a hypertext transfer protocol file; if just a path is specified,
Moab treats the destination as an executable.

Default: ---

Description: Specifies how Moab queries the resource manager for workload information. (See Native RM,
URL Notes, and interface details.)

Example:

Moab executes /opt/moab/tools/job.query.dyn.pl to obtain updated workload information
from resource manager dynamic_jobs.

URL notes

RMCFG[pbs] USEVNODES=TRUE

RMCFG[base] VARIABLES=SCHEDDHOST=head1

RMCFG[base] VERSION=10124

RMCFG[torque]
RMCFG[prov] RESOURCETYPE=PROV VMOWNERRM=torque

RMCFG[dynamic_jobs] 
WORKLOADQUERYURL=exec://$TOOLSDIR/job.query.dyn.pl



URL parameters can load files by using the file, exec, and http protocols.

For the protocol file, Moab loads the data directly from the text file pointed to by path.

For the protocol exec, Moab executes the file pointed to by path and loads the output written to STDOUT. If
the script requires arguments, you can use a question mark (?) between the script name and the arguments,
and an ampersand (&) for each space.

For the protocol http, Moab loads the data from the web based HTTP (hypertext transfer protocol)
destination.

13.2.2 Resource Manager Configuration Details
As with all scheduler parameters, RMCFG follows the syntax described within the Parameters Overview.

13.2.2.1 Resource Manager Types

The RMCFG parameter allows the scheduler to interface to multiple types of resource managers using the
TYPE or SERVER attributes. Specifying these attributes, any of the following listed resource managers may
be supported. To further assist in configuration, Integration Guides are provided for PBS, SGE, and
Loadleveler systems.

TYPE Resource Managers Details

LL Loadleveler version 2.x and 3.x N/A

LSF Platform's Load Sharing Facility,
version 5.1 and higher

N/A

Moab Moab Workload Manager Use the Moab peer-to-peer (grid) capabilities to enable grids and
other configurations. (See Grid Configuration.)

Native Moab Native Interface Used for connecting directly to scripts, files, databases, and web
services. (See Managing Resources Directly with the Native
Interface.)

PBS TORQUE (all versions), OpenPBS
(all versions), PBSPro (all
versions)

N/A

RMS RMS (for Quadrics based
systems)

For development use only; not production quality.

SGE Sun Grid Engine version 5.3 and
higher

N/A

SSS Scalable Systems Software
Project version 2.0 and higher

N/A

WIKI Wiki interface specification
version 1.0 and higher

Used for LRM, YRM, ClubMASK, BProc, SLURM, and others.

RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl
RMCFG[native] CLUSTERQUERYURL=exec://opt/moab/tools/cluster.query.pl?-
group=group1&-arch=x86

RMCFG[base] JOBSTARTURL=http://orion.bsu.edu:1322/moab/jobstart.cgi

http://sempa/resources/docs/blanks/mwm/wiki


13.2.2.2 Resource Manager Name

Moab can support more than one resource manager simultaneously. Consequently, the RMCFG parameter
takes an index value such as RMCFG[clusterA]. This index value essentially names the resource manager (as
done by the deprecated parameter RMNAME). The resource manager name is used by the scheduler in
diagnostic displays, logging, and in reporting resource consumption to the allocation manager. For most
environments, the selection of the resource manager name can be arbitrary.

13.2.2.3 Resource Manager Location

The HOST, PORT, and SERVER attributes can be used to specify how the resource manager should be
contacted. For many resource managers (such as OpenPBS, PBSPro, Loadleveler, SGE, and LSF) the interface
correctly establishes contact using default values. These parameters need only to be specified for resource
managers such as the WIKI interface (that do not include defaults) or with resources managers that can be
configured to run at non-standard locations (such as PBS). In all other cases, the resource manager is
automatically located.

13.2.2.4 Resource Manager Flags

The FLAGS attribute can be used to modify many aspects of a resources manager's behavior.

Flag Description

ASYNCSTART Jobs started on this resource manager start asynchronously. In this case,
the scheduler does not wait for confirmation that the job correctly starts
before proceeding. (See Large Cluster Tuning for more information.)

AUTOSTART Jobs staged to this resource manager do not need to be explicitly started
by the scheduler. The resource manager itself handles job launch.

AUTOSYNC Resource manager starts and stops together with Moab.
This requires that the resource manager support a resource manager
start and stop API or the RMSTARTURL and RMSTOPURL attributes
are set.

BECOMEMASTER Nodes reported by this resource manager will transfer ownership to this
resource manager if they are currently owned by another resource manager
that does not have this flag set.

CLIENT A client resource manager object is created for diagnostic/statistical
purposes or to configure Moab's interaction with this resource manager. It
represents an external entity that consumes server resources or services,
allows a local administrator to track this usage, and configures specific
policies related to that resource manager. A client resource manager object
loads no data and provides no services.

CLOCKSKEWCHECKING Setting CLOCKSKEWCHECKING allows you to configure clock skew
adjustments. Most of the time it is sufficient to use an NTP server to keep
the clocks in your system synchronized.

COLLAPSEDVIEW The resource manager masks details about local workload and resources
and presents only information relevant to the remote server.

DYNAMICCRED The resource manager creates credentials within the cluster as needed to
support workload. (See Identity Manager Overview.)

EXECUTIONSERVER The resource manager is capable of launching and executing batch
workload.

FSISREMOTE Add this flag if the working file system doesn't exist on the server to
prevent Moab from validating files and directories at migration.



FULLCP Always checkpoint full job information (useful with Native resource
managers).

HOSTINGCENTER The resource manager interface is used to negotiate an adjustment in
dynamic resource access.

IGNQUEUESTATE The queue state reported by the resource manager should be ignored. May
be used if queues must be disabled inside of a particular resource manager
to allow an external scheduler to properly operate.

IGNWORKLOADSTATE
When this flag is applied to a native resource manager, any jobs that are
reported via that resource manager's "workload query URL" have their
reported state ignored. For example, if an RM has the IgnWorkloadState
flag and it reports that a set of jobs have a state of "Running," this state is
ignored and the jobs will either have a default state set or will inherit the
state from another RM reporting on that same set of jobs.

This flag only changes the behavior of RMs of type "NATIVE".

LOCALRSVEXPORT When using Moab-type resource managers, Moab will export local
reservations when requested.

MIGRATEALLJOBATTRIBUTES When set, this flag causes additional job information to be migrated to the
resource manager; additional job information includes things such as node
features applied via CLASSCFG[name] DEFAULT.FEATURES, the account to
which the job was submitted, and job walltime limit.

NOAUTORES If the resource manager does not report CPU usage to Moab because CPU
usage is at 0%, Moab assumes full CPU usage. When set, Moab recognizes
the resource manager report as 0% usage. This is only valid for PBS.

NOCREATEALL RMs with this flag only update resources/jobs discovered by other non-
slave RMs.

Non-Moab slaves cannot report resources not seen by non-slave
RMs. Moab slaves can report resources not seen by non-slave RMs,
but cannot take independent scheduling action.

NOCREATERESOURCE RMs with this flag only update resources discovered by other non-slave
RMs.

PRIVATE The resources and workload reported by the resource manager are not
reported to non-administrator users.

PUSHSLAVEJOBUPDATES Enables job changes made on a grid slave to be pushed to the grid head or
master. Without this flag, jobs being reported to the grid head do not show
any changes made on the remote Moab server (via mjobctl and so forth).

REPORT N/A

ROOTPROXYJOBSUBMISSION Enables Admin proxy job submission, which means administrators may
submit jobs in behalf of other users.

SHARED Resources of this resource manager may be scheduled by multiple
independent sources and may not be assumed to be owned by any single
source.

SLAVEPEER Information from this resource manager may not be used to identify new
jobs or nodes. Instead, this information may only be used to update jobs
and nodes discovered and loaded from other non-slave resource managers.



STATIC This resource manager only provides partial object information and this
information does not change over time. Consequently, this resource
manager may only be called once per object to modify job and node
information.

Example

13.2.3 Scheduler/Resource Manager Interactions
In the simplest configuration, Moab interacts with the resource manager using the following four primary
functions:

GETJOBINFO

Collect detailed state and requirement information about idle, running, and recently completed jobs.

GETNODEINFO

Collect detailed state information about idle, busy, and defined nodes.

STARTJOB

Immediately start a specific job on a particular set of nodes.

CANCELJOB

Immediately cancel a specific job regardless of job state.

Using these four simple commands, Moab enables nearly its entire suite of scheduling functions. More
detailed information about resource manager specific requirements and semantics for each of these
commands can be found in the specific resource manager (LL, PBS, or WIKI) overviews.

In addition to these base commands, other commands are required to support advanced features such as
dynamic job support, suspend/resume, gang scheduling, and scheduler initiated checkpoint restart.

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

# resource manager 'torque' should use asynchronous job start 
# and report resources in 'grid' mode
RMCFG[torque] FLAGS=asyncstart,grid

http://sempa/resources/docs/blanks/mwm/wiki


13.3 Resource Manager Extensions
13.3.1 Resource Manager Extension Specification
13.3.2 Resource Manager Extension Values
13.3.3 Resource Manager Extension Examples

All resource managers are not created equal. There is a wide range in what capabilities are available from system
to system. Additionally, there is a large body of functionality that many, if not all, resource managers have no
concept of. A good example of this is job QoS. Since most resource managers do not have a concept of quality of
service, they do not provide a mechanism for users to specify this information. In many cases, Moab is able to
add capabilities at a global level. However, a number of features require a per job specification. Resource
manager extensions allow this information to be associated with the job.

13.3.1 Resource Manager Extension Specification
Specifying resource manager extensions varies by resource manager. TORQUE, OpenPBS, PBSPro, Loadleveler,
LSF, S3, and Wiki each allow the specification of an extension field as described in the following table:

Resource
Manager Specification Method

TORQUE 2.0+
-l

TORQUE
1.x/OpenPBS -W x=

OpenPBS does not support this ability by default but can be patched as described in the
PBS Resource Manager Extension Overview.

Loadleveler
#@comment

LSF
-ext

PBSPro
-l

Use of PBSPro resources requires configuring the server_priv/resourcedef file to define
the needed extensions as in the following example:

Wiki
comment

> qsub -l nodes=3,qos=high sleepy.cmd

> qsub -l nodes=3 -W x=qos:high sleepy.cmd

#@nodes = 3
#@comment = qos:high

> bsub -ext advres:system.2

> qsub -l advres=system.2

advres type=string
qos    type=string
sid    type=string
sjid   type=string

http://sempa/resources/docs/blanks/mwm/13.3.1pbsrmextensions.php
http://sempa/resources/docs/blanks/mwm/wiki


13.3.2 Resource Manager Extension Values
Using the resource manager specific method, the following job extensions are currently available:

ADVRES
BANDWIDTH
DDISK
DEADLINE
DEPEND
DMEM
EPILOGUE
EXCLUDENODES
FEATURE
GATTR
GEOMETRY
GMETRIC
GPUs
GRES
HOSTLIST
JGROUP
JOBFLAGS
LOGLEVEL

MAXMEM
MAXPROC
MINPREEMPTTIME
MINPROCSPEED
MINWCLIMIT
MSTAGEIN
MSTAGEOUT
NACCESSPOLICY
NALLOCPOLICY
NCPUS
NMATCHPOLICY
NODESET
NODESETCOUNT
NODESETDELAY
NODESETISOPTIONAL
OPSYS
PARTITION
PREF

PROCS
PROLOGUE
QOS
QUEUEJOB
REQATTR
RESFAILPOLICY
RMTYPE
SIGNAL
SOFTWARE
SPRIORITY
TASKDISTPOLICY
TEMPLATE
TERMTIME
TPN
TRIG
TRL
TTC
VAR

ADVRES

Format: [<RSVID>]

Default: ---

Description:
Specifies that reserved resources are required to run the job. If <RSVID> is specified, then only
resources within the specified reservation may be allocated (see Job to Reservation Binding).

You can request to not use a specific reservation by using !advres.

Example:

Resources for the job must come from grid.3

Resources for the job must not come from grid.5

  
BANDWIDTH

Format: <DOUBLE> (in MB/s)

Default: ---

Description: Minimum available network bandwidth across allocated resources. (See Network Management.)

Example:

  
DDISK

Format: <INTEGER>

comment=qos:high

> qsub -l advres=grid.3

> qsub -l !advres=grid.5

> bsub -ext bandwidth=120 chemjob.txt



Default: 0

Description: Dedicated disk per task in MB.

Example:

  
DEADLINE

Format: [[[DD:]HH:]MM:]SS

Default: ---

Description: Relative completion deadline of job (from job submission time).

Example:

  
DEPEND

Format: [<DEPENDTYPE>:][{jobname|jobid}.]<ID>[:[{jobname|jobid}.]<ID>]...

Default: ---

Description: Allows specification of job dependencies for compute or system jobs. If no ID prefix (jobname or
jobid) is specified, the ID value is interpreted as a job ID.

Example:

  
DMEM

Format: <INTEGER>

Default: 0

Description: Dedicated memory per task in bytes.

Example:

Moab will dedicate 20 MB of memory to the task.

  
EPILOGUE

Format: <STRING>

Default: ---

Description: Specifies a user owned epilogue script which is run before the system epilogue and epilogue.user
scripts at the completion of a job. The syntax is epilogue=<file>. The file can be designated with
an absolute or relative path.

This parameter works only with TORQUE.

Example:

qsub -l ddisk=2000

> qsub -l deadline=2:00:00,nodes=4 /tmp/bio3.cmd

# submit job which will run after job 1301 and 1304 complete
> msub -l depend=orion.1301:orion.1304 test.cmd

orion.1322

# submit jobname-based dependency job
> msub -l depend=jobname.data1005 dataetl.cmd

orion.1428

msub -l DMEM=20480

msub -l epilogue=epilogue_script.sh job.sh  



  
EXCLUDENODES

Format: {<nodeid>|<node_range>}[:...]

Default: ---

Description: Specifies nodes that should not be considered for the given job.

Example:

  
FEATURE

Format: <FEATURE>[{:|}<FEATURE>]...

Default: ---

Description: Required list of node attribute/node features.
If the pipe (|) character is used as a delimiter, the features are logically OR'd together and
the associated job may use resources that match any of the specified features.

Example:

  
GATTR

Format: <STRING>

Default: ---

Description: Generic job attribute associated with job.

Example:

  
GEOMETRY

Format: {(<TASKID>[,<TASKID>[,...]])[(<TASKID>[,...])...]}

Default: ---

Description: Explicitly specified task geometry.

Example:

The job quanta2.cmd runs tasks 0, 1, 4, and 5 on one node, while tasks 2, 3, 6, and 7 run on
another node.

  
GMETRIC

Format: generic metric requirement for allocated nodes where the requirement is specified using the format
<GMNAME>[:{lt:,le:,eq:,ge:,gt:,ne:}<VALUE>]

Default: ---

Description: Indicates generic constraints that must be found on all allocated nodes. If a <VALUE> is not
specified, the node must simply possess the generic metric. (See Generic Metrics for more
information.)

msub -l excludenodes=k1:k2:k[5-8]
  
# Comma separated ranges work only with SLURM
msub -l excludenodes=k[1-2,5-8]

> qsub -l feature='fastos:bigio' testjob.cmd

> qsub -l gattr=bigjob

> qsub -l nodes=2:ppn=4 -W x=geometry:'{(0,1,4,5)(2,3,6,7)}' 
quanta2.cmd



Example:

  
GPUs

Format: msub -l nodes=<VALUE>:ppn=<VALUE>:gpus=<VALUE>
Moab does not support requesting GPUs as a GRES. Submitting msub -l gres=gpus:x does
not work.

Default: ---

Description: Moab schedules GPUs as a special type of node-locked generic resources. When TORQUE reports
GPUs to Moab, Moab can schedule jobs and correctly assign GPUs to ensure that jobs are
scheduled efficiently. To have Moab schedule GPUs, configure them in TORQUE then submit jobs
using the "gpu" attribute. Moab automatically parses the "gpu" attribute and assigns them in the
correct manner.

Examples:

Submits a job that requests 1 node, 2 processors and 1 gpu per node (2 gpus total).

Submits a job that requests 2 nodes, 2 processors and 1 gpu per node (4 gpus total).

Submits a job that requests 4 tasks, 1 processor and 1 gpu per task (4 gpus total).

Submits a job that requests 2 different types of tasks, the first is 1 task with 2 processors, the
second is 4 tasks, each with 1 processor and 2 gpus.

  
GRES and SOFTWARE

Format: Percent sign (%) delimited list of generic resources where each resource is specified using the
format <RESTYPE>[{+|:}<COUNT>]

Default: ---

Description: Indicates generic resources required by the job. If the generic resource is node-locked, it is a per-
task count. If a <COUNT> is not specified, the resource count defaults to 1.

Example:

When specifying more than one generic resource with -l, use the percent (%) character to
delimit them.

  
HOSTLIST

Format: '+' delimited list of hostnames; also, ranges and regular expressions

Default: ---

Description: Indicates an exact set, superset, or subset of nodes on which the job must run.
Use the caret (^) or asterisk (*) characters to specify a host list as superset or subset
respectively.

Examples:

> qsub -l gmetric=bioversion:ge:133244 testj.txt

> msub -l nodes=1:ppn=2:gpus=1

> msub -l nodes=2:ppn=2:gpus=1

> msub -l nodes=4:gpus=1

> msub -l nodes=4:gpus=2+1:ppn=2,walltime=600

> qsub -W x=GRES:tape+2%matlab+3 testj.txt

> qsub -l gres=tape+2%matlab+3 testj.txt

> qsub -l software=matlab:2 testj.txt

http://sempa/resources/docs/blanks/torque/3.7schedulinggpus.php
http://sempa/resources/docs/blanks/torque/3.7schedulinggpus.php


(foo1,foo2,...,foo5)

(foo1,foo3,foo4,...,foo9)

(same as previous example)

(foo1,foo2,foo3,bar72,bar73,...,bar79)

  
JGROUP

Format: <JOBGROUPID>

Default: ---

Description: ID of job group to which this job belongs (different from the GID of the user running the job).

Example:

  
JOBFLAGS (aka FLAGS)

Format: one or more of the following colon delimited job flags including ADVRES[:RSVID], NOQUEUE,
NORMSTART, PREEMPTEE, PREEMPTOR, RESTARTABLE, or SUSPENDABLE (see job flag
overview for a complete listing)

Default: ---

Description: Associates various flags with the job.

Example:

  
  
LOGLEVEL

Format: <INTEGER>

Default: ---

Description: Per job log verbosity.

Example:

Job events and analysis will be logged with level 5 verbosity.

  
MAXMEM

Format: <INTEGER> (in megabytes)

Default: ---

Description: Maximum amount of memory the job may consume across all tasks before the JOBMEM action is
taken.

Example:

> msub -l hostlist=nodeA+nodeB+nodeE

hostlist=foo[1-5]

hostlist=foo1+foo[3-9]

hostlist=foo[1,3-9]

hostlist=foo[1-3]+bar[72-79]

> msub -l JGROUP=bluegroup

> qsub -l nodes=1,walltime=3600,jobflags=advres myjob.py

> qsub -l -W x=loglevel:5 bw.cmd

> qsub -W x=MAXMEM:1000mb bw.cmd



If a RESOURCELIMITPOLICY is set for per-job memory utilization, its action will be taken when this
value is reached.

  
MAXPROC

Format: <INTEGER>

Default: ---

Description: Maximum CPU load the job may consume across all tasks before the JOBPROC action is taken.

Example:

If a RESOURCELIMITPOLICY is set for per-job processor utilization, its action will be taken when
this value is reached.

  
MINPREEMPTTIME

Format: [[DD:]HH:]MM:]SS

Default: ---

Description: Minimum time job must run before being eligible for preemption.
Can only be specified if associated QoS allows per-job preemption configuration by setting
the preemptconfig flag.

Example:

Job cannot be preempted until it has run for 15 minutes.

  
MINPROCSPEED

Format: <INTEGER>

Default: 0

Description: Minimum processor speed (in MHz) for every node that this job will run on.

Example:

Every node that runs this job must have a processor speed of at least 2000 MHz.

  
MINWCLIMIT

Format: [[DD:]HH:]MM:]SS

Default: 1:00:00

Description: Minimum wallclock limit job must run before being eligible for extension. (See
JOBEXTENDDURATION or JOBEXTENDSTARTWALLTIME.)

Example:

Job will run for at least 300 seconds but up to 16,000 seconds if possible (without interfering with
other jobs).

  
MSTAGEIN

Format: [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Default: ---

Description: Indicates a job has data staging requirements. The source URL(s) listed will be transfered to the

> qsub -W x=MAXPROC:4 bw.cmd

> qsub -l minpreempttime=900 bw.cmd

> qsub -W x=MINPROCSPEED:2000 bw.cmd

> qsub -l minwclimit=300,walltime=16000 bw.cmd



execution system for use by the job. If more than one source URL is specified, the destination URL
must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH] where the path is local.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]][/PATH] where the path is remote.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when
sending a single file and must be a directory when sending multiple files. If a directory is specified,
it must end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the use on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Example:

Copy datafile.txt and helperscript.sh from the local machine to /home/dev/ on host for use in
execution of script.sh. $HOME is a path containing a preceding / (i.e. /home/adaptive).

  
MSTAGEOUT

Format: [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Default: ---

Description: Indicates a job has data staging requirements. The source URL(s) listed will be transferred from
the execution system after the completion of the job. If more than one source URL is specified, the
destination URL must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH] where the path is remote.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]][/PATH] where the path is local.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when
sending a single file and must be a directory when sending multiple files. If a directory is specified,
it must end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from 
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

> msub -W 
x='mstagein=file://$HOME/helperscript.sh|file:///home/dev/datafile.txt%
script.sh



If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Example:

Copy resultfile1.txt and resultscript.sh from the execution system to /home/dev/ after the
execution of script.sh is complete. $HOME is a path containing a preceding / (i.e. /home/adaptive).

  
NACCESSPOLICY

Format: one of SHARED, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Default: ---

Description: Specifies how node resources should be accessed. (See Node Access Policies for more
information).

The naccesspolicy option can only be used to make node access more constraining than is
specified by the system, partition, or node policies. If the effective node access policy is
shared, naccesspolicy can be set to singleuser, if the effective node access policy is
singlejob, naccesspolicy can be set to singletask.

Example:

Job can only allocate free nodes or nodes running jobs by same user.

  
NALLOCPOLICY

Format: one of the valid settings for the parameter NODEALLOCATIONPOLICY

Default: ---

Description: Specifies how node resources should be selected and allocated to the job. (See Node Allocation
Policies for more information.)

Example:

Job should use the minresource node allocation policy.

  
NCPUS

Format: <INTEGER>

Default: ---

Description: The number of processors in one task where a task cannot span nodes. If NCPUS is used, then the
resource manager's SUBMITPOLICY should be set to NODECENTRIC to get correct behavior. -l
ncpus=<#> is equivalent to -l nodes=1:ppn=<#> when JOBNODEMATCHPOLICY is set to
EXACTNODE. NCPUS is used when submitting jobs to an SMP.

  
NMATCHPOLICY

Format: one of the valid settings for the parameter JOBNODEMATCHPOLICY

Default: ---

Description: Specifies how node resources should be selected and allocated to the job.

> msub -W 
x='mstageout=ssh://$DEST/$HOME/resultfile1.txt|ssh://host/home/dev/resu
script.sh

> qsub -l naccesspolicy=singleuser bw.cmd

> bsub -ext naccesspolicy=singleuser lancer.cmd

> qsub -l nallocpolicy=minresource bw.cmd



Example:

Job should use the EXACTNODE JOBNODEMATCHPOLICY.

  
NODESET

Format: <SETTYPE>:<SETATTR>[:<SETLIST>]

Default: ---

Description: Specifies nodeset constraints for job resource allocation. (See the NodeSet Overview for more
information.)

Example:

  
NODESETCOUNT

Format: <INTEGER>

Default: ---

Description: Specifies how many node sets a job uses. See the Node Set Overview for more information.

Example:

  
NODESETDELAY

Format: [[DD:]HH:]MM:]SS

Default: ---

Description: The maximum delay allowed when scheduling a job constrained by NODESETS until Moab discards
the NODESET request and schedules the job normally.

Example:

  
NODESETISOPTIONAL

Format: <BOOLEAN>

Default: ---

Description: Specifies whether the nodeset constraint is optional. (See the NodeSet Overview for more
information.)

Requires SCHEDCFG[] FLAGS=allowperjobnodesetisoptional.

Example:

  
OPSYS

Format: <OperatingSystem>

Default: ---

Description: Specifies the job's required operating system.

Example:

> qsub -l nodes=2 -W x=nmatchpolicy:exactnode bw.cmd

> qsub -l nodeset=ONEOF:PROCSPEED:350:400:450 bw.cmd

> msub -l nodesetcount=2

> qsub -l nodesetdelay=300,walltime=16000 bw.cmd

> msub -l nodesetisoptional=true bw.cmd

> qsub -l nodes=1,opsys=rh73 chem92.cmd



  
PARTITION

Format: <STRING>[{,|:}<STRING>]...

Default: ---

Description: Specifies the partition (or partitions) in which the job must run.
The job must have access to this partition based on system wide or credential based
partition access lists.

Example:

The job must only run in the math partition or the geology partition.

  
PREF

Format: [{feature|variable}:]<STRING>[:<STRING>]...

If feature or variable are not specified, then feature is assumed.

Default: ---

Description: Specifies which node features are preferred by the job and should be allocated if available. If
preferred node criteria are specified, Moab favors the allocation of matching resources but is not
bound to only consider these resources.

Preferences are not honored unless the node allocation policy is set to PRIORITY and the
PREF priority component is set within the node's PRIORITYF attribute.

Example:

The job may run on any nodes but prefers to allocate nodes with the bigmem feature.

  
PROCS

Format: <INTEGER>

Default: ---

Description:
Requests a specific amount of processors for the job. Instead of users trying to determine the
amount of nodes they need, they can instead decide how many processors they need and Moab
will automatically request the appropriate amount of nodes from the RM. This also works with
feature requests, such as procs=12[:feature1[:feature2[…]]].

Using this resource request overrides any other processor or node related request, such as
nodes=4.

Example:

Moab will request as many nodes as is necessary to meet the 32-processor requirement for the
job.

  
PROLOGUE

Format: <STRING>

Default: ---

Description: Specifies a user owned prologue script which will be run after the system prologue and

> qsub -l nodes=1,partition=math:geology

> qsub -l nodes=1,pref=bigmem

msub -l procs=32 myjob.pl



prologue.user scripts at the beginning of a job. The syntax is prologue=<file>. The file can be
designated with an absolute or relative path.

This parameter works only with TORQUE.

Example:

  
QoS

Format: <STRING>

Default: ---

Description: Requests the specified QoS for the job.

Example:

  
QUEUEJOB

Format:
<BOOLEAN>

Default: TRUE

Description:  Indicates whether or not the scheduler should queue the job if resources are not available to run
the job immediately

Example:

  
REQATTR

Format: Required node attributes with version number support:
<ATTRIBUTE>[{>=|>|<=|<|=}<VERSION>]

Default: ---

Description: Indicates required node attributes.

Example:

  
RESFAILPOLICY

Format: one of CANCEL, HOLD, IGNORE, NOTIFY, or REQUEUE

Default: ---

Description: Specifies the action to take on an executing job if one or more allocated nodes fail. This setting
overrides the global value specified with the NODEALLOCRESFAILUREPOLICY parameter.

Example:

For this particular job, ignore node failures.

  
RMTYPE

Format: <STRING>

Default: ---

msub -l prologue=prologue_script.sh job.s

> qsub -l walltime=1000,qos=highprio biojob.cmd

msub -l nodes=1,queuejob=false test.cmd

> qsub -l reqattr=matlab=7.1 testj.txt

msub -l resfailpolicy=ignore



Description: One of the resource manager types currently available within the cluster or grid. Typically, this is
one of PBS, LSF, LL, SGE, SLURM, BProc, and so forth.

Example:

Only run job on a Loadleveler destination resource manager.

  
SIGNAL

Format: <INTEGER>[@<OFFSET>]

Default: ---

Description: Specifies the pre-termination signal to be sent to a job prior to it reaching its walltime limit or
being terminated by Moab. The optional offset value specifies how long before job termination the
signal should be sent. By default, the pre-termination signal is sent one minute before a job is
terminated

Example:

  
SPRIORITY

Format: <INTEGER>

Default: 0

Description: Allows Moab administrators to set a system priority on a job (similar to setspri). This only works if
the job submitter is an administrator.

Example:

  
TASKDISTPOLICY

Format: RR or PACK

Default: ---

Description: Allows users to specify task distribution policies on a per job basis. (See Task Distribution
Overview)

Example:

  
TEMPLATE

Format: <STRING>

Default: ---

Description: Specifies a job template to be used as a set template. The requested template must have
SELECT=TRUE (See Job Templates.)

Example:

  
TERMTIME

Format: <TIMESPEC>

Default: 0

Description: Specifies the time at which Moab should cancel a queued or active job. (See Job Deadline

msub -l rmtype=ll

> msub -l signal=32@120 bio45.cmd

> qsub -l nodes=16,spriority=100 job.cmd

> qsub -l nodes=16,taskdistpolicy=rr job.cmd

> msub -l walltime=1000,nodes=16,template=biojob job.cmd



Support.)

Example:

  
TPN

Format: <INTEGER>[+]

Default: 0

Description: Tasks per node allowed on allocated hosts. If the plus (+) character is specified, the tasks per node
value is interpreted as a minimum tasks per node constraint; otherwise it is interpreted as an
exact tasks per node constraint.

Note on Differences between TPN and PPN:

There are two key differences between the following: (A) qsub -l nodes=12:ppn=3 and (B) qsub
-l nodes=12,tpn=3

The first difference is that ppn is interpreted as the minimum required tasks per node while tpn
defaults to exact tasks per node; case (B) executes the job with exactly 3 tasks on each allocated
node while case (A) executes the job with at least 3 tasks on each allocated node
—nodeA:4,nodeB:3,nodeC:5

The second major difference is that the line, nodes=X:ppn=Y actually requests X*Y tasks, whereas
nodes=X,tpn=Y requests only X tasks.

Example:

  
TRIG

Format: <TRIGSPEC>

Default: ---

Description: Adds trigger(s) to the job. (See the Trigger Specification Page for specific syntax.)

Job triggers can only be specified if allowed by the QoS flag trigger.

Example:

  
TRL (Format 1)

Format: <INTEGER>[@<INTEGER>][:<INTEGER>[@<INTEGER>]]...

Default: 0

Description: Specifies alternate task requests with their optional walltimes.

Example:

or

  
TRL (Format 2)

Format: <INTEGER>-<INTEGER>

> msub -l nodes=10,walltime=600,termtime=12:00_Jun/14 job.cmd

> msub -l nodes=10,walltime=600,tpn=4 job.cmd

> qsub -l trig=start:exec@/tmp/email.sh job.cmd

> msub -l trl=2@500:4@250:8@125:16@62 job.cmd

> qsub -l trl=2:3:4



Default: 0

Description: Specifies a range of task requests that require the same walltime.

Example:

For optimization purposes Moab does not perform an exhaustive search of all possible
values but will at least do the beginning, the end, and 4 equally distributed choices in
between.

  
TTC

Format: <INTEGER>

Default: 0

Description: Total tasks allowed across the number of hosts requested. TTC is supported in the Wiki resource
manager for SLURM. Compressed output must be enabled in the moab.cfg file. (See SLURMFLAGS
for more information). NODEACCESSPOLICY should be set to SINGLEJOB and
JOBNODEMATCHPOLICY should be set to EXACTNODE in the moab.cfg file.

Example:

In this example, assuming all the nodes are 8 processor nodes, the first allocated node will
have 10 tasks, the next node will have 2 tasks, and the remaining 8 nodes will have 1 task
each for a total task count of 20 tasks.

  
VAR

Format: <ATTR>:<VALUE>

Default: ---

Description: Adds a generic variable or variables to the job.

Example:

Single variable

Multiple variables

13.3.3 Resource Manager Extension Examples
If more than one extension is required in a given job, extensions can be concatenated with a semicolon separator
using the format <ATTR>:<VALUE>[;<ATTR>:<VALUE>]...

Example 1

Job must run on nodes node1 and node2 using the QoS special. The job is also associated with the system ID
silverA allowing the silver daemon to monitor and control the job.

Example 2

> msub -l trl=32-64 job.cmd

> msub -l nodes=10,walltime=600,ttc=20 job.cmd

VAR=testvar1:testvalue1

VAR=testvar1:testvalue1+testvar2:testvalue2+testvar3:testvalue3

#@comment="HOSTLIST:node1,node2;QOS:special;SID:silverA"

# PBS -W x=\"NODESET:ONEOF:NETWORK;DMEM:64\"



Job will have resources allocated subject to network based nodeset constraints. Further, each task will dedicate
64 MB of memory.

Example 3

Job will be forced to run within the john.1 reservation.

See Also
Resource Manager Overview

>  qsub -l nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES:john.1"



13.4 Adding New Resource Manager Interfaces
Moab interfaces with numerous resource management systems. Some of these interact through a resource
manager specific interface (OpenPBS/PBSPro, Loadleveler, LSF), while others interact through generalized
interfaces such as SSS or Wiki. (See the Wiki Overview). For most resource managers, either route is possible
depending on where it is easiest to focus development effort. Use of Wiki generally requires modifications on
the resource manager side while creation of a new resource manager specific Moab interface would require
more changes to Moab modules.

Regardless of the interface approach selected, adding support for a new resource manager is typically a
straightforward process for about 95% of all supported features. The final 5% of features usually requires a
bit more effort as each resource manager has a number of distinct concepts that must be addressed.

13.4.1 Resource Manager Specific Interfaces
13.4.2 Wiki Interface
13.4.3 SSS Interface

13.4.1 Resource Manager Specific Interfaces
If you require tighter integration and need additional instruction, see 13.5 Managing Resources Directly with
the Native Interface. If you would like consultation on support for a new resource manager type, please
contact the professional services group at Cluster Resources.

13.4.2 Wiki Interface
The Wiki interface is already defined as a resource manager type, so no modifications are required within
Moab. Additionally, no resource manager specific library or header file is required. However, within the
resource manager, internal job and node objects and attributes must be manipulated and placed within Wiki
based interface concepts as defined in the Wiki Overview. Additionally, resource manager parameters must be
created to allow a site to configure this interface appropriately.

13.4.3 SSS Interface
The SSS interface is an XML based generalized resource manager interface. It provides an extensible,
scalable, and secure method of querying and modifying general workload and resource information.

See Also
Creating New Tools within the Native Resource Manager Interface



13.5 Managing Resources Directly with the
Native Interface

13.5.1 Native Interface Overview
13.5.2 Configuring the Native Interface

13.5.2.1 Configuring the Resource Manager
13.5.2.2 Reporting Resources

13.5.3 Generating Cluster Query Data
13.5.3.1 Flat Cluster Query Data
13.5.3.2 Interfacing to Ganglia
13.5.3.3 Interfacing to FLEXlm
13.5.3.4 Interfacing to Nagios
13.5.3.5 Interfacing to Supermon
13.5.3.6 Interfacing via HTTP

13.5.4 Configuring Node Specific Query URLs
13.5.5 Configuring Resource Types
13.5.6 Creating New Tools to Manage the Cluster

13.5.1 Native Interface Overview

Holistic Scheduling - The Native Resource Manager is a video tutorial of a session offered at Moab Con
that offers further details for understanding the native resource manager.

The Native interface allows a site to augment or even fully replace a resource manager for managing
resources. In some situations, the full capabilities of the resource manager are not needed and a lower cost
or lower overhead alternative is preferred. In other cases, the nature of the environment may make use of a
resource manager impossible due to lack of support. Still, in other situations it is desirable to provide
information about additional resource attributes, constraints, or state from alternate sources.

In any case, Moab provides the ability to directly query and manage resources along side of or without the
use of a resource manager. This interface, called the NATIVE interface can also be used to launch, cancel,
and otherwise manage jobs. This NATIVE interface offers several advantages including the following:

no cost associated with purchasing a resource manager
no effort required to install or configure the resource manager
ability to support abstract resources
ability to support abstract jobs
ability to integrate node availability information from multiple sources
ability to augment node configuration and utilization information provided by a resource manager

However, the NATIVE interface may also have some drawbacks.

no support for standard job submission languages
limited default configured and utilized resource tracking (additional resource tracking available with
additional effort)

At a high level, the native interface works by launching threaded calls to perform standard resource manager
activities such as managing resources and jobs. The desired calls are configured within Moab and used
whenever an action or updated information is required.

13.5.2 Configuring the Native Interface
Using the native interface consists of defining the interface type and location.  As mentioned earlier, a single
object may be fully defined by multiple interfaces simultaneously with each interface updating a particular
aspect of the object.

13.5.2.1 Configuring the Resource Manager

http://www.clusterresources.com/moabcon/2008/videos/Holistic_Scheduling.php


The Native resource manager must be configured using the RMCFG parameter. To specify the native
interface, the TYPE attribute must be set to NATIVE.

13.5.2.2 Reporting Resources

To indicate the source of the resource information, the CLUSTERQUERYURL attribute of the RMCFG
parameter should be specified. This attribute is specified as a URL where the protocols FILE, EXEC, HTTP,
GANGLIA, and SQL are allowed. If a protocol is not specified, the protocol EXEC is assumed.

Format Description

EXEC Execute the script specified by the URL path. Use the script stdout as data.

FILE Load the file specified by the URL path. Use the file contents as data.

GANGLIA Query the Ganglia service located at the URL host and port. Directly process the query results
using native Ganglia data formatting.

HTTP Read the data specified by the URL. Use the raw data returned.

SQL Load data directly from an SQL database using the FULL format described below.

Moab considers a NativeRM script to have failed if it returns with a non-zero exit code, or if the
CHILDSTDERRCHECK parameter is set and its appropriate conditions are met. In addition, the NativeRM script
associated with a job submit URL will be considered as having failed if its standard output stream contains
the text, "ERROR".

This simple example queries a file on the server for information about every node in the cluster. This differs
from Moab remotely querying the status of each node individually.

13.5.3 Generating Cluster Query Data

13.5.3.1 Flat Cluster Query Data

If the EXEC, FILE, or HTTP protocol is specified in the CLUSTERQUERYURL attribute, the data should
provide flat text strings indicating the state and attributes of the node. The format follows the Wiki Interface
Specification where attributes are delimited by white space rather than ';':

describes any set of node attributes with format: <NAME> <ATTR>=<VAL> [<ATTR>=<VAL>]...
<NAME> - name of node <ATTR> - node attribute <VAL> - value of node attribute
(See Resource Data Format)
n17 CPROC=4 AMEMORY=100980 STATE=idle

13.5.3.2 Interfacing to Ganglia

Moab can use the information returned from Ganglia, a cluster or grid monitoring system. The information
returned from Ganglia is combined with the information reported from other resource managers. An example
configuration can be as follows:

<NodeName> is the name of a machine with Ganglia running on it. Also, <Port> is the xml port number to

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec:///tmp/query.sh

RMCFG[local]    TYPE=NATIVE
RMCFG[local]    CLUSTERQUERYURL=file:///tmp/query.txt

RMCFG[TORQUE]  TYPE=pbs

RMCFG[ganglia] TYPE=NATIVE CLUSTERQUERYURL=ganglia://<NodeName>:<Port>
RMCFG[ganglia] FLAGS=SLAVEPEER NODESTATEPOLICY=OPTIMISTIC

http://ganglia.sourceforge.net/


query Ganglia. If only ganglia:// is supplied as the CLUSTERQUERYURL, Moab will query the localhost on
Ganglia's default port, 8649.

If Ganglia and Moab are running on different machines, the machine running Moab needs to be specified as a
trusted host in Ganglia's configuration file.

Because Ganglia is not a real resource manager, in that it does not manage a job queue, Moab cannot control
it or manage it, it can only read in information. TORQUE is a real resource manager in that it reports nodes
and can start jobs on those nodes. The two can run concurrently without any issue, because their
"responsiblities" do not overlap. However, it is mostly true that if Ganglia and TORQUE report conflicting data,
you will want to trust TORQUE over Ganglia. For this reason you give the Ganglia RM the "slave" flag. Also,
Ganglia cannot report node "state" where state means "availability to run jobs."

To verify that Ganglia is correctly reporting information, issue the mdiag -R -v command or run
telnet localhost 8649 and verify that appropriate XML is displayed.

The following list of Ganglia metrics are supported up to Ganglia version 3.1.1:

bytes_in
bytes_out
cpu_num
cpu_speed
disk_free
disk_total
load_one
machine_type
mem_free
mem_total
os_name
os_release
swap_free
swap_total

Information reported by Ganglia can be used to prioritize nodes using the NODECFG[] PRIORITYF parameter
in conjunction with the NODEALLOCATIONPOLICY of PRIORITY.

13.5.3.3 Interfacing to FLEXlm
Moab can interface with FLEXlm to provide scheduling based on license availability. Informing Moab of license
dependencies can reduce the number of costly licenses required by your cluster by allowing Moab to
intelligently schedule around license limitations.

Provided with Moab in the tools directory is a Perl script, license.mon.flexLM.pl. This script queries a FLEXlm
license server and gathers data about available licenses. This script then formats this data for Moab to read
through a native interface. This script can easily be used by any site to help facilitate FLEXlm integration--the
only modification necessary to the script is setting the @FLEXlmCmd to specify the local command to query
FLEXlm. To make this change, edit license.mon.flexLM.pl and, near the top of the file, look for the line:

Set the '@FLEXlmCmd' to the appropriate value for your system to query a license server and license file (if
applicable). If lmutil is not in the PATH variable, specify its full path. Using lmutil's -a argument will cause
it to report all licenses. The -c option can be used to specify an optional license file.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

my @FLEXlmCmd = ("SETME");

> ./license.mon.flexLM.pl

GLOBAL UPDATETIME=1104688300 STATE=idle ARES=autoCAD:130,idl_mpeg:160 
CRES=autoCAD:200,idl_mpeg:330

http://sempa/resources/docs/blanks/mwm/moabscripts/license.mon.FLEXlm.txt


If the output looks incorrect, set the $LOGLEVEL variable inside of license.mon.flexLM.pl, run it again,
and address the reported failure.

Once the license interface script is properly configured, the next step is to add a license native resource
manager to Moab via the moab.cfg file:

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured and
utilized licenses can be viewed by issuing the mdiag -n. Floating licenses (non-node-locked) will be reported
as belonging to the GLOBAL node.

Due to the inherent conflict with the plus sign ("+"), the provided license manager script replaces
occurrences of the plus sign in license names with the underscore symbol ("_"). This replacement
requires that licenses with a plus sign in their names be requested with an underscore in place of any
plus signs.

Interfacing to Multiple License Managers Simultaneously

If multiple license managers are used within a cluster, Moab can interface to each of them to obtain the
needed license information. In the case of FLEXlm, this can be done by making one copy of the
license.mon.flexLM.pl script for each license manager and configuring each copy to point to a different
license manager. Then, within Moab, create one native resource manager interface for each license manager
and point it to the corresponding script as in the following example:

For an overview of license management, including job submission syntax, see Section 13.7, License
Management.

It may be necessary to increase the default limit, MMAX_GRES. See Appendix D for more
implementation details.

13.5.3.4 Interfacing to Nagios
Moab can interface with Nagios to provide scheduling based on network hosts and services availability.

Nagios installation and configuration documentation can be found at Nagios.org.

Provided with Moab in the tools directory is a Perl script, node.query.nagios.pl. This script reads the Nagios
status.dat file and gathers data about network hosts and services. This script then formats data for Moab to
read through a native interface. This script can be used by any site to help facilitate Nagios integration. To
customize the data that will be formatted for Moab, make the changes in this script.

You may need to customize the associated configuration file in the etc directory, config.nagios.pl. The
statusFile line in this script tells Moab where the Nagios status.dat file is located. Make sure that the path
name specified is correct for your site. Note that the interval which Nagios updates the Nagios status.dat file
is specified in the Nagios nagios.cfg file. Refer to Nagios documentation for further details.

RMCFG[FLEXlm]   TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm]   CLUSTERQUERYURL=exec://$TOOLSDIR/license.mon.flexLM.pl
...

RMCFG[FLEXlm1]   TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm1]   
CLUSTERQUERYURL=exec://$TOOLSDIR/license.mon.flexLM1.pl

RMCFG[FLEXlm2]   TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm2]   
CLUSTERQUERYURL=exec://$TOOLSDIR/license.mon.flexLM2.pl

RMCFG[FLEXlm3]   TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm3]   
CLUSTERQUERYURL=exec://$TOOLSDIR/license.mon.flexLM3.pl

...

http://www.nagios.org/


To make these changes, familiarize yourself with the format of the Nagios status.dat file and make the
appropriate additions to the script to include the desired Wiki Interface attributes in the Moab output.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

Once the Nagios interface script is properly configured, the next step is to add a Nagios native resource
manager to Moab via the moab.cfg file:

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured Nagios
node information can be viewed by issuing the mdiag -n -v.

13.5.3.5 Interfacing to Supermon
Moab can integrate with Supermon to gather additional information regarding the nodes in a cluster. A Perl
script is provided in the tools directory that allows Moab to connect to the Supermon server. By default the
Perl script assumes that Supermon has been started on port 2709 on localhost. These defaults can be
modified by editing the respective parameter in config.supermon.pl in the etc directory. An example setup is
shown below.

To confirm that Supermon is properly connected to Moab, issue "mdiag -R -v." The output should be similar
to the following example, specifically there are no errors about the CLUSTERQURYURL.

> ./node.query.nagios.pl

gateway STATE=Running
localhost STATE=Running CPULOAD=1.22 ADISK=75332

RMCFG[nagios] TYPE=NATIVE
RMCFG[nagios] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.nagios.pl

...

> mdiag -n -v
compute node summary
Name                    State   Procs      Memory         Disk          
Swap      Speed   Opsys   Arch Par   Load Rsv Classes                        
Network                        Features              

gateway               Running    0:0         0:0           0:0           
0:0       1.00       -      - dav   0.00   0 -                              
-                              -                   
  WARNING:  node 'gateway' is busy/running but not assigned to an 
active job
  WARNING:  node 'gateway' has no configured processors
localhost             Running    0:0         0:0       75343:75347       
0:0       1.00       -      - dav   0.48   0 -                              
-                              -                   
  WARNING:  node 'localhost' is busy/running but not assigned to an 
active job
  WARNING:  node 'localhost' has no configured processors
-----                     ---    3:8      1956:1956    75345:75349    
5309:6273  

Total Nodes: 2  (Active: 2  Idle: 0  Down: 0)

RMCFG[TORQUE]  TYPE=pbs

RMCFG[supermon] TYPE=NATIVE 
CLUSTERQUERYURL=exec://$HOME/tools/node.query.supermon.pl



Run the Perl script by itself. The script's results should look similar to this:

If the preceeding functioned properly, issue a checknode command on one of the nodes that Supermon is
gathering statistics for. The output should look similiar to below.

diagnosing resource managers

RM[TORQUE]  State: Active
  Type:               PBS  ResourceType: COMPUTE
  Server:             keche
  Version:            '2.2.0-snap.200707181818'
  Job Submit URL:     exec:///usr/local/bin/qsub
  Objects Reported:   Nodes=3 (6 procs)  Jobs=0
  Flags:              executionServer
  Partition:          TORQUE
  Event Management:   EPORT=15004  (no events received)
  Note:  SSS protocol enabled
  Submit Command:     /usr/local/bin/qsub
  DefaultClass:       batch
  RM Performance:     AvgTime=0.26s  MaxTime=1.04s  (4 samples)
  RM Languages:       PBS
  RM Sub-Languages:   -

RM[supermon]  State: Active
  Type:               NATIVE:AGFULL  ResourceType: COMPUTE
  Cluster Query URL:  exec://$HOME/node.query.supermon.pl
  Objects Reported:   Nodes=3 (0 procs)  Jobs=0
  Partition:          supermon
  Event Management:   (event interface disabled)
  RM Performance:     AvgTime=0.03s  MaxTime=0.11s  (4 samples)
  RM Languages:       NATIVE
  RM Sub-Languages:   -

vm01 GMETRIC[CPULOAD]=0.571428571428571 GMETRIC[NETIN]=133 
GMETRIC[NETOUT]=702 GMETRIC[NETUSAGE]=835
vm02 GMETRIC[CPULOAD]=0.428571428571429 GMETRIC[NETIN]=133 
GMETRIC[NETOUT]=687 GMETRIC[NETUSAGE]=820
keche GMETRIC[CPULOAD]=31 GMETRIC[NETIN]=5353 GMETRIC[NETOUT]=4937 
GMETRIC[NETUSAGE]=10290

node keche

State:      Idle  (in current state for 00:32:43)
Configured Resources: PROCS: 2  MEM: 1003M  SWAP: 3353M  DISK: 1M
Utilized   Resources: ---
Dedicated  Resources: ---
Generic Metrics:  
CPULOAD=33.38,NETIN=11749.00,NETOUT=9507.00,NETUSAGE=21256.00
  MTBF(longterm):   INFINITY  MTBF(24h):   INFINITY
Opsys:      linux     Arch:      ---   
Speed:      1.00      CPULoad:   0.500
Network Load: 0.87 kB/s
Flags:      rmdetected
Network:    DEFAULT
Classes:    [batch 2:2][interactive 2:2]
RM[TORQUE]: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 2:03:27  Up: 2:03:27 (100.00%)  Active: 00:00:00 (0.00%)

Reservations:  ---



13.5.3.6 Interfacing via HTTP
Native resource managers using HTTP URLs send and receive information using the standard HTTP 1.0
protocol. Information is sent using the HTTP GET method, while results are to be returned in the HTTP body
using the format described in the Flat Cluster Query Data section. Not all available native resource manager
query URLs are currently supported. Following is a chart showing the supported query URLs and the
parameters that will be provided by MOAB in the GET request.

Query URL Parameters

CLUSTERQUERYURL none

JOBCANCELURL jobname=<JOB_ID>

JOBMODIFYURL jobname=<JOB_ID>
attr=<Attribute_Name>
value=<Attribute_Value>

WORKLOADQUERYURL none

CGI scripts pointed to by the query URLs should always return at least one line of output on success to insure
that Moab does not consider empty result sets to be a failure.  In the case of empty result sets, this can be
accomplished by returning an empty comment line (i.e., the '#' character followed by a newline).

13.5.4 Configuring Node Specific Query URLs
It is possible to have a separate CLUSTERQUERYURL for each node. This is possible using the NODECFG
parameter for each node or for the DEFAULT node. Moab will look first on the specific node for
CLUSTERQUERYURL information. If no information is found on the specific node it will look for
CLUSTERQUERYURL information on the Resource Manager. If the Resource Manager has no query
information specified then it will use the CLUSTERQUERYURL command configured for the DEFAULT node.

The example configuration below demonstrates a possible setup.

In the example above, a four node cluster and a license manager are controlled via the native interface. The
state of the four compute nodes will be determined by running the /usr/local/bin/query.pl query
command (remotely on the node) specified within the DEFAULT NODECFG parameter while querying the
license manager will be accomplished using the /usr/local/bin/flquery.cgi script. For local executable
scripts, the launched script is either locally generated or taken from the library of contributed native scripts
included with the distribution file.

As above, an optional parameter, RESOURCELIST, may be specified to constrain which resources obtained
by the native interface should be processed. By default, all resources described by the interface data are
loaded. The RESOURCELIST parameter, if specified, acts as a filter eliminating either full or extension
resource information from being incorporated. If an environment exists where data is not aggregated, and the
native interface provides primary node information, the RESOURCELIST parameter is required to indicate to
Moab which resources should be in the cluster.

13.5.5 Configuring Resource Types
Native Resource managers can also perform special tasks when they are given a specific resource type. These
types are specified using the RESOURCETYPE attribute of the RMCFG parameter.

TYPE EXPLANATION

RMCFG[local]     TYPE=NATIVE

RESOURCELIST     node1,node2,node3,node4,flexlm1
NODECFG[DEFAULT] CLUSTERQUERYURL=exec:///usr/local/bin/query.pl
NODECFG[flexlm1] 
CLUSTERQUERYURL=http://supercluster.org/usr/local/flquery.cgi



COMPUTE normal compute resources (no special handling)

FS file system resource manager (see Multiple Resource Managers for an example)

LICENSE software license manager (see Interfacing with FLEXlm and License Management)

NETWORK network resource manager

13.5.6 Creating New Tools to Manage the Cluster
Using the scripts found in the $TOOLSDIR ($INSTDIR/tools) directory as a template, new tools can be quickly
created to monitor or manage most any resource. Each tool should be associated with a particular resource
manager service and specified using one of the following resource manager URL attributes.

CLUSTERQUERYURL

Description: Queries resource state, configuration, and utilization information for compute nodes, networks,
storage systems, software licenses, and other resources. For more details, see RM
configuration.

Input: ---

Output: Node status and configuration for one or more nodes. See Resource Data Format.

Example:

Moab will execute the storquery.pl script to obtain information about 'v-stor' resources. 

  
JOBMODIFYURL

Description: Modified a job or application. For more details, see RM configuration.

Input: [-j <JOBEXPR>] [--s[et]|--c[lear]|--i[ncrement]|--d[ecrement]] <ATTR>[=<VALUE>]
[<ATTR>[=<VALUE>]]...

Output: ---

Example:

Moab will execute the jobmodify.pl script to modify the specified job.

  
JOBRESUMEURL

Description: Resumes a suspended job or application.

Input: <JOBID>

Output: ---

Example:

Moab will execute the jobresume.pl script to resume suspended jobs.

  

RMCFG[v-stor] CLUSTERQUERYURL=exec://$HOME/storquery.pl

RMCFG[v-stor] JOBMODIFYURL=exec://$HOME/jobmodify.pl

RMCFG[v-stor] JOBRESUMEURL=exec://$HOME/jobresume.pl



JOBSTARTURL

Description: Launches a job or application on a specified set of resources.

Input: <JOBID> <TASKLIST> <USERNAME> [ARCH=<ARCH>] [OS=<OPSYS>]
[IDATA=<STAGEINFILEPATH>[,<STAGEINFILEPATH>]...] [EXEC=<EXECUTABLEPATH>]

Output: ---

Example:

Moab will execute the jobstart.pl script to execute jobs.

  
JOBSUBMITURL

Description: Submits a job to the resource manager, but it does not execute the job. The job executes
when the JOBSTARTURL is called.

Input: [ACCOUNT=<ACCOUNT>] [ERROR=<ERROR>] [GATTR=<GATTR>] [GNAME=<GNAME>]
[GRES=<GRES>:<Value>[,<GRES>:<Value>]*] [HOSTLIST=<HOSTLIST>]
[INPUT=<INPUT>] [IWD=<IWD>] [NAME=<NAME>] [OUTPUT=<OUTPUT>]
[RCLASS=<RCLASS>] [REQUEST=<REQUEST>] [RFEATURES=<RFEATURES>]
[RMFLAGS=<RMFLAGS>] [SHELL=<SHELL>] [TASKLIST=<TASKLIST>] [TASKS=<TASKS>]
[TEMPLATE=<TEMPLATE>] [UNAME=<UNAME>] [VARIABLE=<VARIABLE>]
[WCLIMIT=<WCLIMIT>] [ARGS=<Value>[ <Value>]*]

ARGS must be the last submitted attribute because there can be multiple space-
separated values for ARGS.

Output: ---

Example:

Moab submits the job to the jobsubmit.pl script for future job execution. 

  
JOBSUSPENDURL

Description: Suspends in memory an active job or application.

Input: <JOBID>

Output: ---

Example:

Moab will execute the jobsuspend.pl script to suspend active jobs.

  
NODEMODIFYURL

Description: Provide method to dynamically modify/provision compute resources including operating
system, applications, queues, node features, power states, etc.

RMCFG[v-stor] JOBSTARTURL=exec://$HOME/jobstart.pl

RMCFG[v-stor] JOBSUBMITURL=exec://$HOME/jobsubmit.pl

RMCFG[v-stor] JOBSUSPENDURL=exec://$HOME/jobsuspend.pl



Input: <NODEID>[,<NODEID>] [--force] {--set <ATTR>=<VAL>|--clear <ATTR>}
ATTR is one of the node attributes listed in Resource Data Format

Output: --

Example:

Moab will reprovision compute nodes using the provision.pl script. 

  
NODEPOWERURL

Description: Allows Moab to issue IPMI power commands.

Input: <NODEID>[,<NODEID>] ON | OFF

Output: ---

Example:

Moab will issue a power command contained in the ipmi.power.pl script. 

  
SYSTEMMODIFYURL

Description: Provide method to dynamically modify aspects of the compute environment which are directly
associated with cluster resources. For more details, see RM configuration.

  
SYSTEMQUERYURL

Description: Provide method to dynamically query aspects of the compute environment which are directly
associated with cluster resources. For more details, see RM configuration.

Input: default <ATTR>
ATTR is one of images

Output: <STRING>

Example:

Moab will load the list of images available from warewulf using the checkimage.pl script.

  
WORKLOADQUERYURL

Description: Provide method to dynamically query the system workload (jobs, services, etc) of the compute
environment which are associated with managed resources.

Job/workload information should be reported back from the URL (script, file,
webservice, etc) using the WIKI job description language.

For more details, see RM configuration.

Input: ---

Output: <STRING>

RMCFG[warewulf] NODEMODIFYURL=exec://$HOME/provision.pl

RMCFG[node17rm] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl

RMCFG[warewulf] SYSTEMQUERYURL=exec://$HOME/checkimage.pl



Example:

Moab will load job/workload information by executing the job.query.xt3.pl script.

See Also
mdiag -R command (evaluate resource managers)
License Management

RMCFG[xt] WORKLOADQUERYURL=exec://$HOME/job.query.xt3.pl



13.6 Utilizing Multiple Resource Managers
13.6.1 Multi-RM Overview
In many instances a site may have certain resources controlled by different resource managers. For example,
a site may use a particular resource manager for licensing software for jobs, another resource manager for
managing file systems, another resource manager for job control, and another for node monitoring. Moab can
be configured to communicate with each of these resource mangers, gathering all their data and incorporating
such into scheduling decisions. With a more distributed approach to resource handling, failures are more
contained and scheduling decisions can be more intelligent.

13.6.2 Configuring Multiple Independent Resource Manager
Partitions
Moab must know how to communicate with each resource manager. In most instances, this is simply done by
configuring a query command.

13.6.3 Migrating Jobs between Resource Managers
With multi-resource manager support, a job may be submitted either to a local resource manager queue or
to the Moab global queue. In most cases, submitting a job to a resource manager queue constrains the job to
only run within the resources controlled by that resource manager. However, if the job is submitted to the
Moab global queue, it can use resources of any active resource manager. This is accomplished through job
translation and staging.

When Moab evaluates resource availability, it determines the cost in terms of both data and job staging. If
staging a job's executable or input data requires a significant amount of time, Moab integrates data and
compute resource availability to determine a job's earliest potential start time on a per resource manager
basis and makes an optimal scheduling decision accordingly. If the optimal decision requires a data stage
operation, Moab reserves the required compute resources, stages the data, and then starts the job when the
required data and compute resources are available.

13.6.4 Aggregating Information into a Cohesive Node View
Using the native interface, Moab can actually perform most of these functions without the need for an
external resource manager. First, configure the native resource managers:

The network script can be as simple as the following:

The preceding script would output something like the following:

RESOURCELIST    node01,node02
...
RMCFG[base]     TYPE=PBS
RMCFG[network]  TYPE=NATIVE:AGFULL
RMCFG[network]  CLUSTERQUERYURL=/tmp/network.sh
RMCFG[fs]       TYPE=NATIVE:AGFULL
RMCFG[fs]       CLUSTERQUERYURL=/tmp/fs.sh

> _RX=`/sbin/ifconfig eth0 | grep "RX by" | cut -d: -f2 | cut -d' ' -
f1`; \
> _TX=`/sbin/ifconfig eth0 | grep "TX by" | cut -d: -f3 | cut -d' ' -
f1`; \
> echo `hostname` NETUSAGE=`echo "$_RX + $_TX" | bc`;

node01 NETUSAGE=10928374



Moab grabs information from each resource manager and includes its data in the final view of the node.

Notice that the Network Load is now being reported along with disk usage.

Example File System Utilization Tracker (per user)

The following configuration can be used to track file system usage on a per user basis:

Assuming that /tmp/fs.pl outputs something of the following format: DEFAULT STATE=idle AFS=<fs
id="user1" size="789456"></fs><fs id="user2" size="123456"></fs>

This will track disk usage for users user1 and user2 every 24 hours.

> checknode node01
node node01

State:   Running  (in current state for 00:00:20)
Configured Resources: PROCS: 2  MEM: 949M  SWAP: 2000M  disk: 1000000
Utilized   Resources: SWAP: 9M
Dedicated  Resources: PROCS: 1  disk: 1000
Opsys:      Linux-2.6.5-1.358  Arch:       linux
Speed:      1.00  CPULoad:       0.320
Location:   Partition: DEFAULT  Rack/Slot:  NA
Network Load: 464.11 b/s
Network:    DEFAULT
Features:   fast
Classes:    [batch 1:2][serial 2:2]

Total Time: 00:30:39  Up: 00:30:39 (100.00%)  Active: 00:09:57 
(32.46%)

Reservations:
  Job '5452'(x1)  -00:00:20 -> 00:09:40 (00:10:00)
JobList:  5452

.....
RMCFG[file]     POLLINTERVAL=24:00:00 POLLTIMEISRIGID=TRUE
RMCFG[file]     TYPE=NATIVE:AGFULL
RMCFG[file]     RESOURCETYPE=FS
RMCFG[file]     CLUSTERQUERYURL=/tmp/fs.pl
.....



13.7 License Management
13.7.1 License Management Overview
13.7.2 Controlling and Monitoring License Availability
13.7.3 Requesting Licenses w/in Jobs

13.7.1 License Management Overview
Software license management is typically enabled in one of two models: node-locked and floating. Under a
node-locked license, use of a given application is constrained to certain hosts. For example, node013 may
support up to two simultaneous jobs accessing application matlab. In a floating license model, a limited
number of software licenses are made available cluster wide, and these licenses may be used on any
combination of compute hosts. In each case, these licenses are consumable and application access is denied
once they are gone.

Moab supports both node-locked and floating license models and even allows mixing the two models
simultaneously. Moab monitors license usage and only launches an application when required software license
availability is guaranteed. In addition, Moab also reserves licenses in conjunction with future jobs to ensure
these jobs can run at the appropriate time.

By default, Moab supports up to 128 independent license types.

Identical licenses, regardless of case, are invalid because case recognition is insensitive. Thus, two
licenses spelled the same with different capitalization are still recognized as the same license, and are
thus invalid.

13.7.2 Controlling and Monitoring License Availability
Moab can use one of three methods to determine license availability. These methods include locally specifying
consumable generic resources, obtaining consumable generic resource information from the resource
manager, and interfacing directly with a license manager.

13.7.2.1 Local Consumable Resources

Both node-locked and floating licenses can be locally specified within Moab using the NODECFG parameter. In
all cases, this is accomplished by associating the license with a node using the GRES (or generic resource)
attribute. If floating, the total cluster-wide license count should be associated with the GLOBAL node. If node-
locked, the per node license count should be associated with each compute host (or globally using the
DEFAULT node). For example, if a site has two node-locked licenses for application EvalA and six floating
licenses for application EvalB, the following configuration could be used:

13.7.2.2 Resource Manager Based Consumable Resources

Some resource managers support the ability to define and track generic resource usage at a per node level.
In such cases, support for node-locked licenses may be enabled by specifying this information within the
resource manager. Moab automatically detects and schedules these resources. For example, in the case of
TORQUE, this can be accomplished by adding generic resource specification lines to the MOM configuration
file.

13.7.2.3 Interfacing to an External License Manager

Moab may also obtain live software license information from a running license manager. Direct interfaces to
supported license managers such as FlexLM may be created using the Native Resource Manager feature. A

NODECFG[node001]  GRES=EvalA:2
NODECFG[node002]  GRES=EvalA:2

NODECFG[GLOBAL]   GRES=EvalB:6
...

http://www.adaptivecomputing.com/resources/docs/torque
http://www.adaptivecomputing.com/resources/docs/torque/a.cmomconfig.php


complete example on interfacing to an external license manager is provided in the FLEXlm section of the
native resource manager overview.

Interfacing to Multiple License Managers

Moab may interface to multiple external license managers simultaneously simply by defining additional native
resource manager interfaces. See the FLEXlm Native Resource Manager Overview for more information.

13.7.3 Requesting Licenses within Jobs
Requesting use of software licenses within jobs is typically done in one of two ways. In most cases, the native
resource manager job submission language provides a direct method of license specification; for example, in
the case of TORQUE, OpenPBS, or PBSPro, the software argument could be specified using the format
<SOFTWARE_NAME>[+<LICENSE_COUNT>] as in the following example:

The license count is a job total, not a per task total, and the license count value defaults to 1.

An alternative to direct specification is the use of the Moab resource manager extensions. With these
extensions, licenses can be requested as generic resources, using the GRES attribute. The job in the
preceding example could also be requested using the following syntax:

In each case, Moab automatically determines if the software licenses are node-locked or floating and applies
resource requirements accordingly.

If a job requires multiple software licenses, whether of the same or different types, a user would use the
following syntax:

See Also
Native Resource Manager License Configuration
License Ownership with Advance Reservations
Multi-Cluster License Sharing with Moab Workload Manager for Grids Interfaces

> qsub -l nodes=2,software=blast cmdscript.txt

> qsub -l nodes=2 -W x=GRES:blast cmdscript.txt

> qsub -l nodes=2 -W x=GRES:blast+2 cmdscript.txt   # two 'blast' 
licenses required

> qsub -l nodes=2 -W x=GRES:blast+2%bkeep+3 cmdscript.txt   # two 
'blast' and three 'bkeep' licenses are required

http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/2.1jobsubmission.php#software


13.8 Resource Provisioning
13.8.1 Resource Provisioning Overview
13.8.2 Configuring Provisioning

13.8.1 Resource Provisioning Overview
When processing a resource request, Moab attempts to match the request to an existing available resource.
However, if the scheduler determines that the resource is not available or will not be available due to load or
policy for an appreciable amount of time, it can select a resource to modify to meet the needs of the current
requests. This process of modifying resources to meet existing needs is called provisioning.

Currently, there are two types of provisioning supported: (1) operating system (OS) and (2) application. As
its name suggests, OS provisioning allows the scheduler to modify the operating system of an existing
compute node while application level provisioning allows the scheduler to request that a software application
be made available on a given compute node. In each case, Moab evaluates the costs of making the change in
terms of time and other resources consumed before making the decision. Only if the benefits outweigh the
costs will the scheduler initiate the change required to support the current workload.

13.8.2 Configuring Provisioning
Enabling provisioning consists of configuring an interface to a provisioning manager, specifying which nodes
can take advantage of this service, and what the estimated cost and duration of each change will be. This
interface can be used to contact provisioning software such as xCat or HP's Server Automation tool.
Additionally, locally developed systems can be interfaced via a script or web service."

See Also
Native Resource Manager Overview
Appendix O: Resource Manager Integration

http://www.xcat.org/


13.9 Managing Networks
13.9.1 Network Management Overview
Network resources can be tightly integrated with the rest of a compute cluster using the Moab multi-resource
manager management interface. This interface has the following capabilities:

Dynamic per job and per partition VLAN creation and management
Monitoring and reporting of network health and failure events
Monitoring and reporting of network load
Creation of subnets with guaranteed performance criteria
Automated workload-aware configuration and router maintenance
Intelligent network-aware scheduling algorithms

13.9.2 Dynamic VLAN Creation
Most sites using dynamic VLAN's operate under the following assumptions:

Each compute node has access to two or more networks, one of which is the compute network, and
another which is the administrator network.
Each compute node may only access other compute nodes via the compute network.
Each compute node may only communicate with the head node via the administrator network.
Logins on the head node may not be requested from a compute node.

In this environment, organizations may choose to have VLANs automatically configured that encapsulate
individual jobs or VPC requests. These VLAN's essentially disconnect the job from either incoming or outgoing
communication with other compute nodes.

13.9.2.1 Configuring VLANs

Automated VLAN management can be enabled by setting up a network resource manager that supports
dynamic VLAN configuration and a QoS to request this feature. The example configuration highlights this
setup:

13.9.2.2 Requesting a VLAN

VLANs can be requested on a per job basis directly using the associated resource manager extension or
indirectly by requesting a QoS with a VLAN security requirement.

13.9.3 Network Load and Health Monitoring
Network-level load and health monitoring is enabled by supporting the cluster query action in the network
resource manager and specifying the appropriate CLUSTERQUERYURL attribute in the associated resource
manager interface. Node (virtual node) query commands (mnodectl,checknode) can be used to view this load
and health information that will also be correlated with associated workload and written to persistent
accounting records. Network load and health based event information can also be fed into generic events and

...
RMCFG[cisco] TYPE=NATIVE RESOURCETYPE=NETWORK FLAGS=VLAN
RMCFG[cisco] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.cisco.pl
RMCFG[cisco] SYSTEMMODIFYURL=exec://$TOOLSDIR/system.modify.cisco.pl

QOSCFG[netsecure] SECURITY=VLAN

> qsub -l nodes=256,walltime=24:00:00,qos=netsecure biojob.cmd

143325.umc.com submitted



used to drive appropriate event based triggers.

At present, load and health attributes such as fan speed, temperature, port failures, and various core switch
failures can be monitored and reported. Additional failure events are monitored and reported as support is
added within the network management system.

13.9.5 Providing Per-QoS and Per-Job Bandwidth Guarantees
Intra-job bandwidth guarantees can be requested on a per job and/or per QoS basis using the BANDWIDTH
resource manager extensions (for jobs) and the MINBANDWIDTH QoS attribute (for QoS limits). If
specified, Moab does not allow a job to start unless these criteria can be satisfied via proper resource
allocation or dynamic network partitions. As needed, Moab makes future resource reservations to be able to
guarantee required allocations.

Example

If dynamic network partitions are enabled, a NODEMODIFYURL attribute must be properly configured
to drive the network resource manager. See Native Resource Manager Overview for details.

13.9.6 Enabling Workload-Aware Network Maintenance
Network-aware maintenance is enabled by supporting the modify action in the network resource manager
and specifying the appropriate NODEMODIFYURL attribute in the associated resource manager interface.
Administrator resource management commands, (mnodectl and mrmctl), will then be routed directly through
the resource manager to the network management system. In addition, reservation and real-time generic
event and generic metric triggers can be configured to intelligently drive these facilities for maintenance and
auto-recovery purposes.

Maintenance actions can include powering on and off the switch as well as rebooting/recycling all or part of
the network. Additional operations are enabled as supported by the underlying networks.

13.9.7 Creating a Resource Management Interface for a New
Network
Many popular networks are supported using interfaces provided in the Moab tools directory. If a required
network interface is not available, a new one can be created using the following guidelines:

General Requirements

In all cases, a network resource manager should respond to a cluster query request by reporting a single
node with a node name that will not conflict with any existing compute nodes. This node should report as a
minimum the state attribute.

Monitoring Load

Network load is reported to Moab using the generic resource bandwidth. For greatest value, both configured
and used bandwidth (in megabytes per second) should be reported as in the following example:

Monitoring Failures

Network warning and failure events can be reported to Moab using the gevent metric. If automated
responses are enabled, embedded epochtime information should be included.

> qsub -l nodes=24,walltime=8:00:00,bandwidth=1000 hex3chem.cmd

job 44362.qjc submitted

force10 state=idle ares=bandwidth:5466 cres=bandwidth:10000

force10 state=idle gevent[checksum]='ECC failure detected on port 13'



Controlling Router State

Router power state can be controlled as a system modify interface is created that supports the commands
on, off, and reset.

Creating VLANs

VLAN creation, management, and reporting is more advanced requiring persistent VLAN ID tracking, global
pool creation, and other features. Use of existing routing interface tools as templates is highly advised. VLAN
management requires use of both the cluster query interface and the system modify interface.

13.9.8 Per-Job Network Monitoring
It is possible to gather network usage on a per job basis using the Native Interface. When the native
interface has been configured to report netin and netout Moab automatically gathers this data through the
life of a job and reports total usage statistics upon job completion.

This information is visible to users and administrators via command-line utilities, the web portal, and the
desktop graphical interfaces.

See Also
Native Resource Manager Overview
Network Utilization Statistics

...
node99  netin=78658 netout=1256  
...



13.10 Intelligent Platform Management Interface
13.10.1 IPMI Overview
13.10.2 Node IPMI Configuration
13.10.3 Installing IPMItool
13.10.4 Setting-up the BMC-Node Map File
13.10.5 Configuring Moab's IPMI Tools
13.10.6 Configuring Moab
13.10.7 Ensuring Proper Setup

13.10.1 IPMI Overview
The Intelligent Platform Management Interface (IPMI) specification defines a set of common interfaces
system administrators can use to monitor system health and manage the system. The IPMI interface can
monitor temperature and other sensor information, query platform status and power-on/power-off compute
nodes. As IPMI operates independently of the node's OS interaction with the node can happen even when
powered down. Moab can use IPMI to monitor temperature information, check power status, power-up,
power-down, and reboot compute nodes.

13.10.2 Node IPMI Configuration
IPMI must be enabled on each node in the compute cluster. This is usually done either through the node's
BIOS or by using a boot CD containing IPMI utilities provided by the manufacturer. With regard to configuring
IPMI on the nodes, be sure to enable IPMI-over-LAN and set a common login and password on all the nodes.
Additionally, you must set a unique IP address for each node's BMC. Take note of these addresses as you will
need them when reviewing the Creating the IPMI BMC-Node Map File section.

13.10.3 Installing IPMItool
IPMItool is an open-source tool used to retrieve sensor information from the IPMI Baseboard Management
Controller (BMC) or to send remote chassis power control commands. The IPMItool developer provides
Fedora Core binary packages as well as a source tarball on the IPMItool download page. Download and install
IPMItool on the Moab head node and make sure the ipmitool binary is in the current shell PATH.

Proper IPMI setup and IPMItool configuration can be confirmed by issuing the following command on the
Moab head node.

The output of this command should be similar to the following.

13.10.4 Creating the IPMI BMC-Node Map File [OPTIONAL]
Since the BMC can be controlled via LAN, it is possible for the BMC to have its own unique IP address. Since
this IP address is separate from the IP address of the node, a simple mapping file is required for Moab to

> ipmitool -I lan -U username -P password -H BMC IP chassis status

System Power         : off
Power Overload       : false
Power Interlock      : inactive
Main Power Fault     : false
Power Control Fault  : false
Power Restore Policy : previous
Last Power Event     :
Chassis Intrusion    : inactive
Front-Panel Lockout  : inactive
Drive Fault          : false
Cooling/Fan Fault    : false

http://ipmitool.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=95200


know each node's BMC address. The file is a flat text file and should be stored in the Moab home directory. If
a mapping file is needed, specify the name in the config.ipmi.pl configuration file in the etc/ directory. The
following is an example of the mapping file:

Note that only the nodes specified in this file are queried for IPMI information. Also note that the mapping file
is disabled by default and the nodes that are returned from Moab with mdiag -n are the ones that are
queried for IPMI sensor data.

13.10.5 Configuring the Moab IPMI Tools
The tools/ subdirectory in the install directory already contains the Perl scripts needed to interface with
IPMI. The following is a list of the Perl scripts that should be in the tools/ directory; confirm these are
present and executable.

Next, a few configuration settings need to be adjusted in the config.ipmi.pl file found in the etc subdirectory.
The IPMI-over-LAN username and password need to be set to the values that were set in the Node IPMI
Configuration section. Also, the IPMI query daemon's polling interval can be modified by adjusting
$pollInterval. This specifies how often the IPMI-enabled nodes are queried to retrieve sensor data.

13.10.6 Configuring Moab
To allow Moab to use the IPMI tools, a native resource manager is configured. To do this, the following lines
must be added to moab.cfg:

   Next, the following lines can be added to allow Moab to issue IPMI power commands.

Moab can be configured to perform actions based on sensor data. For example, Moab can shut down a
compute node if its CPU temperature exceeds 100 degrees Celsius, or it can power down idle compute nodes
if workload is low. Generic event thresholds are used to tell Moab to perform certain duties given certain
conditions. The following example is of a way for Moab to recognize it should power off a compute node if its
CPU0 temperature exceeds 100 degrees Celsius.

#<NodeID> <BMC IP>
node01  10.10.10.101
node02  10.10.10.102
node03  10.10.10.103
node04  10.10.10.104
node05  10.10.10.105
# NodeID = the name of the nodes returned with "mdiag -n"
# BMC IP = the IP address of the IPMI BMC network interface

ipmi.mon.pl     # The daemon front-end called by Moab
ipmi.power.pl   # The power control script called by Moab
__mon.ipmi.pl   # The IPMI monitor daemon that updates and caches IPMI 
data from nodes

...
# IPMI - Node monitor script
RMCFG[ipminative] TYPE=NATIVE 
CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi.mon.pl
...

...
# IPMI - Power on/off/reboot script
RMCFG[ipminative] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl
...

...



13.10.7 Ensuring Proper Setup
Once the preceding steps have been taken, Moab should be started as normal. The IPMI monitoring daemon
should start automatically, which can be confirmed with the following:

After a few minutes, IPMI data should be retrieved and cached. This can be confirmed with the following
command:

Finally, issue the following to ensure Moab is grabbing the IPMI data. Temperature data should be present in
the Generic Metrics row.

# IPMI - Power off compute node if its CPU0 temperature exceeds 100 
degrees Celsius.
GEVENTCFG[CPU0_TEMP>100] action=off
...

moab@headnode:~/$ ps aux | grep __mon
moab   11444  0.0  0.3   6204  3172 pts/3    S    10:54   0:00 
/usr/bin/perl -w /opt/moab/tools/_mon.ipmi.pl --start

moab@headnode:~/$ cat spool/ipmicache.gm
node01 GMETRIC[CPU0_TEMP]=49
node01 GMETRIC[CPU1_TEMP]=32
node01 GMETRIC[SYS_TEMP]=31
node01 POWER=ON

moab@headnode:~/$ checknode node01

node node01

State:      Idle  (in current state for 00:03:12)
Configured Resources: PROCS: 1  MEM: 2000M  SWAP: 3952M  DISK: 1M
Utilized   Resources: ---
Dedicated  Resources: ---
Generic Metrics:  CPU0_TEMP=42.00,CPU1_TEMP=30.00,SYS_TEMP=29.00
...



13.11 Resource Manager Translation
13.11.1 Translation Overview
13.11.2 Translation Enablement Steps

13.11.1 Translation Overview
Resource manager translation allows end-users to continue to use existing job command scripts and familiar
job management and resource query commands. This is accomplished by emulating external commands,
routing the underlying queries to Moab, and then formatting the responses in a familiar manner. Using
translation, job submission clients, job query clients, job control clients, and resource query clients can be
emulated making switching from one resource manager to another transparent and preserving investment in
legacy scripts, tools, and experience.

13.11.2 Translation Enablement Steps
To enable translation, you must:

edit the Moab tools configuration file.
copy/rename/link the emulation scripts to a shorter, easier-to-use name.

13.11.2.1 Configure Translation Tools

Located in the $MOABHOMEDIR/etc directory are tools-specific configuration files. For each resource manager
that has installed translation tools, edit the Moab tools configuration file in the etc directory. For example, if
enabling LSF translation, do the following:

13.11.2.2 Add Translation Tools

In a directory accesible to users, create links to (or copy) the emulation scripts you want your users to use.
For example, the emulation script tools/bjobs.lsf.pl could be copied to bin/bjobs, or, a symbolic link
could be created in bin/bjobs that points to tools/bjobs.lsf.pl.

> vi $MOABHOMEDIR/etc/config.moab.pl

# Set the PATH to include directories for moab client commands — 
mjobctl, etc.
$ENV{PATH} = "/opt/moab/bin:$ENV{PATH}";

> ln -s tools/bjobs.lsf.pl bin/bjobs
> ln -s tools/bhosts.lsf.pl bin/bhosts



14.0 Troubleshooting and System Maintenance
14.1 Internal Diagnostics
14.2 Logging Facilities
14.3 Using the Message Buffer
14.4 Notifying Administrators of Failures and Critical Events
14.5 Issues with Client Commands
14.6 Tracking System Failures
14.7 Problems with Individual Jobs
14.8 Diagnostic Scripts



14.1 Internal Diagnostics/Diagnosing System
Behavior and Problems
Moab provides a number of commands for diagnosing system behavior. These diagnostic commands present
detailed state information about various aspects of the scheduling problem, summarize performance, and
evaluate current operation reporting on any unexpected or potentially erroneous conditions found. Where
possible, Moab's diagnostic commands even correct detected problems if desired.

At a high level, the diagnostic commands are organized along functionality and object based delineations.
Diagnostic commands exist to help prioritize workload, evaluate fairness, and determine effectiveness of
scheduling optimizations. Commands are also available to evaluate reservations reporting state information,
potential reservation conflicts, and possible corruption issues. Scheduling is a complicated task. Failures and
unexpected conditions can occur as a result of resource failures, job failures, or conflicting policies.

Moab's diagnostics can intelligently organize information to help isolate these failures and allow them to be
resolved quickly. Another powerful use of the diagnostic commands is to address the situation in which there
are no hard failures. In these cases, the jobs, compute nodes, and scheduler are all functioning properly, but
the cluster is not behaving exactly as desired. Moab diagnostics can help a site determine how the current
configuration is performing and how it can be changed to obtain the desired behavior.

14.1.1 The mdiag Command
The cornerstone of Moab's diagnostics is the mdiag command. This command provides detailed information
about scheduler state and also performs a large number of internal sanity checks presenting problems it finds
as warning messages.

Currently, the mdiag command provides in-depth analysis of the following objects and subsystems:

Object/Subsystem mdiag
Flag Use

Account -a Shows detailed account configuration information.

Blocked -b Indicates why blocked (ineligible) jobs are not allowed to run.

Class -c Shows detailed class configuration information.

Config -C Shows configuration lines from moab.cfg and whether or not they are valid.

FairShare -f Shows detailed fairshare configuration information as well as current fairshare
usage.

Group -g Shows detailed group information.

Job -j Shows detailed job information. Reports corrupt job attributes, unexpected
states, and excessive job failures.

Frame/Rack -m Shows detailed frame/rack information.

Node -n Shows detailed node information. Reports unexpected node states and
resource allocation conditions.

Priority -p Shows detailed job priority information including priority factor contributions
to all idle jobs.

QoS -q Shows detailed QoS information.

Reservation -r Shows detailed reservation information. Reports reservation corruption and
unexpected reservation conditions.

Resource Manager
-R

Shows detailed resource manager information. Reports configured and
detected state, configuration, performance, and failures of all configured



resource manager interfaces.

Standing
Reservations -s Shows detailed standing reservation information. Reports reservation

corruption and unexpected reservation conditions.

Scheduler
-S

Shows detailed scheduler state information. Indicates if scheduler is stopped,
reports status of grid interface, identifies and reports high-level scheduler
failures.

Partition -t Shows detailed partition information.

User -u Shows detailed user information.

14.1.2 Other Diagnostic Commands
Beyond mdiag, the checkjob and checknode commands also provide detailed information and sanity checking
on individual jobs and nodes respectively. These commands can indicate why a job cannot start, which nodes
can be available, and information regarding the recent events impacting current job or nodes state.

14.1.3 Using Moab Logs for Troubleshooting
Moab logging is extremely useful in determining the cause of a problem. Where other systems may be cursed
for not providing adequate logging to diagnose a problem, Moab may be cursed for the opposite reason. If the
logging level is configured too high, huge volumes of log output may be recorded, potentially obscuring the
problems in a flood of data. Intelligent searching, combined with the use of the LOGLEVEL and LOGFACILITY
parameters can mine out the needed information. Key information associated with various problems is
generally marked with the keywords WARNING, ALERT, or ERROR. See the Logging Overview for further
information.

14.1.4 Automating Recovery Actions After a Failure
The RECOVERYACTION parameter of SCHEDCFG can be used to control scheduler action in the case of a
catastrophic internal failure. Valid actions include die, ignore, restart, and trap.

Recovery
Mode Description

die Moab will exit, and if core files are externally enabled, will create a core file for analysis. (This is
the default behavior.)

ignore Moab will ignore the signal and continue processing. This may cause Moab to continue running
with corrupt data which may be dangerous. Use this setting with caution.

restart When a SIGSEGV is received, Moab will relaunch using the current checkpoint file, the original
launch environment, and the original command line flags. The receipt of the signal will be logged
but Moab will continue scheduling. Because the scheduler is restarted with a new memory
image, no corrupt scheduler data should exist. One caution with this mode is that it may mask
underlying system failures by allowing Moab to overcome them. If used, the event log should be
checked occasionally to determine if failures are being detected.

trap When a SIGSEGV is received, Moab stays alive but enters diagnostic mode. In this mode,
Moab stops scheduling but responds to client requests allowing analysis of the failure to occur
using internal diagnostics available via the mdiag command.

14.1.5 Recovering from Server and VM Failures
When Moab runs a job with a compute resource manager, such as TORQUE, and a node fails, Moab continues
running the job by default. Typically the job aborts or runs past its walltime and fails. The
JOBACTIONONNODEFAILURE and JOBACTIONONNODEFAILUREDURATION parameters change this default
behavior.



With these settings, Moab waits 120 seconds after detecting a node is down before checking its status again.
If the node does not recover, Moab requeues the workload. In the case of on-demand VM jobs, Moab
attempts to destroy the underlying VMs and create new ones on either the same hypervisor or a new one,
depending on whether the hypervisor or VM failed. As a result, Moab makes recovery from VM and server
failures transparent and restarts the workload quickly.

To ensure a quick recovery, shorten some of the poll intervals, such as node_check_rate for pbs_server and
RMPOLLINTERVAL and JOBACTIONONNODEFAILUREDURATION for Moab. For example, setting
node_check_rate to 15, RMPOLLINTERVAL to 10, and JOBACTIONONNODEFAILUREDURATION to 30
causes Moab to recognize a node failure and a need to requeue in about 70 seconds.

See Also
Troubleshooting Individual Jobs

JOBACTIONONNODEFAILURE REQUEUE
JOBACTIONONNODEFAILUREDURATION 120

http://sempa/resources/docs/blanks/torque/a.bserverparameters.php#node_check_rate


14.2 Logging Facilities
The Moab Workload Manager provides the ability to produce detailed logging of all of its activities. This is
accomplished using verbose server logging, event logging, and system logging facilities.

14.2.1 Log Facility Configuration
14.2.2 Status Information
14.2.3 Scheduler Warnings
14.2.4 Scheduler Alerts
14.2.5 Scheduler Errors
14.2.6 Searching Moab Logs
14.2.7 Event Logs

14.2.7.1 Event Log Format
14.2.7.2 Exporting Events in Real-Time

14.2.8 Enabling Syslog
14.2.9 Managing Log Verbosity

14.2.1 Log Facility Configuration
The LOGFILE and/or LOGDIR parameters within the moab.cfg file specify the destination of this logging
information. Logging information will be written in the file <MOABHOMEDIR>/<LOGDIR><LOGFILE> unless
<LOGDIR> or <LOGFILE> is specified using an absolute path. If the log file is not specified or points to an
invalid file, all logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in production. By default,
LOGDIR and LOGFILE are set to log and moab.log respectively, resulting in scheduler logs being written to
<MOABHOMEDIR>/log/moab.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to become before it is rolled
and is set to 10 MB by default. When the log file reaches this specified size, the log file is rolled. The
parameter LOGFILEROLLDEPTH controls the number of old logs maintained and defaults to 3. Rolled log files
have a numeric suffix appended indicating their order.

The parameter LOGLEVEL controls the verbosity of the information. Currently, LOGLEVEL values between 0
and 9 are used to control the amount of information logged, with 0 being the most terse, logging only the
most severe problems detected, while 9 is the most verbose, commenting on just about everything. The
amount of information provided at each log level is approximately an order of magnitude greater than what is
provided at the log level immediately below it. A LOGLEVEL of 2 will record virtually all critical messages,
while a log level of 4 will provide general information describing all actions taken by the scheduler. If a
problem is detected, you may want to increase the LOGLEVEL value to get more details. However, doing so
will cause the logs to roll faster and will also cause a lot of possibly unrelated information to clutter up the
logs. Also be aware of the fact that high LOGLEVEL values results in large volumes of possibly unnecessary
file I/O to occur on the scheduling machine. Consequently, it is not recommended that high LOGLEVEL values
be used unless tracking a problem or similar circumstances warrant the I/O cost.

If high log levels are desired for an extended period of time and your Moab home directory is located
on a network file system, performance may be improved by moving your log directory to a local file
system using the LOGDIR parameter.

A final log related parameter is LOGFACILITY. This parameter can be used to focus logging on a subset of
scheduler activities. This parameter is specified as a list of one or more scheduling facilities as listed in the
parameters documentation.

Example

# moab.cfg

# allow up to 30 100MB logfiles
LOGLEVEL         5
LOGDIR           /var/tmp/moab
LOGFILEMAXSIZE   100000000



The logging that occurs is of the following major types: subroutine information, status information, scheduler
warnings, scheduler alerts, and scheduler errors.

14.2.2 Status Information
Critical internal status is indicated at low LOGLEVELs while less critical and more verbose status information is
logged at higher LOGLEVELs. For example:

14.2.3 Scheduler Warnings
Warnings are logged when the scheduler detects an unexpected value or receives an unexpected result from
a system call or subroutine. These messages are not necessarily indicative of problems and are not
catastrophic to the scheduler. Most warnings are reported at loglevel 0 to loglevel 3. For example:

14.2.4 Scheduler Alerts
Alerts are logged when the scheduler detects events of an unexpected nature that may indicate problems in
other systems or in objects. They are typically of a more severe nature than warnings and possibly should be
brought to the attention of scheduler administrators. Most alerts are reported at loglevel 0 to loglevel 2. For
example:

14.2.5 Scheduler Errors
Errors are logged when the scheduler detects problems of a nature that impacts the scheduler's ability to
properly schedule the cluster. Moab will try to remedy or mitigate the problem as best it can, but the problem
may be outside of its sphere of control. Errors should definitely be be monitored by administrators. Most
errors are reported at loglevel 0 to loglevel 1. For example:

14.2.6 Searching Moab Logs
While major failures are reported via the mdiag -S command, these failures can also be uncovered by
searching the logs using the grep command as in the following:

On a production system working normally, this list should usually turn up empty. The messages are usually
self-explanatory, but if not, viewing the log can give context to the message.

If a problem is occurring early when starting the Moab scheduler (before the configuration file is read) Moab
can be started up using the -L <LOGLEVEL> flag. If this is the first flag on the command line, then the
LOGLEVEL is set to the specified level immediately before any setup processing is done and additional
logging is recorded.

If problems are detected in the use of one of the client commands, the client command can be re-issued with
the --loglevel=<LOGLEVEL> command line argument specified. This argument causes log information to

LOGFILEROLLDEPTH 30

INFO:     job orion.4228 rejected (max user jobs)
INFO:     job fr4n01.923.0 rejected (maxjobperuser policy failure)

WARNING:  cannot open fairshare data file '/opt/moab/stats/FS.87000'

ALERT:    job orion.72 cannot run.  deferring job for 360 Seconds

ERROR:    cannot connect to Loadleveler API

> grep -E "WARNING|ALERT|ERROR" moab.log



be written to STDERR as the client command is running. As with the server, <LOGLEVEL> values from 0 to 9
are supported.

The LOGLEVEL can be changed dynamically by use of the mschedctl -m command, or by modifying the
moab.cfg file and restarting the scheduler. Also, if the scheduler appears to be hung or is not properly
responding, the log level can be incremented by one by sending a SIGUSR1 signal to the scheduler process.
Repeated SIGUSR1 signals continue to increase the log level. The SIGUSR2 signal can be used to decrease
the log level by one.

If an unexpected problem does occur, save the log file as it is often very helpful in isolating and correcting
the problem.

14.2.7 Event Logs
Major events are reported to both the Moab log file as well as the Moab event log. By default, the event log
is maintained in the statistics directory and rolls on a daily basis, using the naming convention
events.WWW_MMM_DD_YYYY as in events.Tue_Mar_18_2008.

14.2.7.1 Event Log Format

The event log contains information about major job, reservation, node, and scheduler events and failures and
reports this information in the following format:

Example

The parameter RECORDEVENTLIST can be used to control which events are reported to the event log. See
the sections on job and reservation trace format for more information regarding the values reported in the
details section for those records.

Record Type Specific Details Format

The format for each record type is unique and is described in the following table:

Record
Type Event Types Description

gevent See Enabling Generic Events for gevent
information. Generic events are included within node

records. See node detail format that follows.

job JOBCANCEL, JOBCHECKPOINT, JOBEND,
JOBHOLD, JOBMIGRATE, JOBMODIFY,
JOBPREEMPT, JOBREJECT, JOBRESUME,
JOBSTART, JOBSUBMIT

See Workload Accounting Records.

node NODEDOWN, NODEFAILURE, NODEUP <state> <partition> <disk> <memory> <maxprocs>
<swap> <os> <rm> <nodeaccesspolicy> <class>
<message>, where <state> is the node's current
state and <message> is a human readable message

<EVENTTIME> <EPOCHTIME>:<EID> <OBJECT> <OBJECTID> <EVENT> <DETAILS>

VERSION 500
07:03:21 110244322:0 sched clusterA   start
07:03:26 110244327:1 rsv   system.1   start   1124142432 1324142432 2 
2 0.0 2342155.3 node1|node2 NA RSV=%=system.1= 
07:03:54 110244355:2 job   1413       end     8 16 llw mcc 432000 
Completed [batch:1] 11 08708752 1108703981 ... 
07:04:59 110244410:3 rm    base       failure cannot connect to RM
07:05:20 110244431:4 sched clusterA   stop    admin
...



indicating reason for node state change.

rm RMDOWN, RMPOLLEND, RMPOLLSTART,
RMUP

Human readable message indicating reason for
resource manager state change.

RMUP and RMDOWN are only logged for PBS
resource managers.

rsv RSVCANCEL, RSVCREATE, RSVEND,
RSVMODIFY, RSVSTART

creationtime - epoch
starttime - epoch
endtime - epoch
alloc taskcount - integer
alloc nodecount - integer
total active proc-seconds - integer
total proc-seconds - integer
hostlist - comma-delimited list
owner - reservation owner
ACL - semicolon-delimited access control list
category - reservation usage category
comment - human-readable description
command - <command> <argument(s)>
human readable message - MSG='<message>'
(See Reservation Accounting Records.)

sched ALLSCHEDCOMMAND, SCHEDCOMMAND,
SCHEDCYCLEEND, SCHEDCYCLESTART,
SCHEDFAILURE, SCHEDMODIFY,
SCHEDPAUSE, SCHEDRECYCLE,
SCHEDRESUME, SCHEDSTART,
SCHEDSTOP

Human readable message indicating reason for
scheduler action.

For SCHEDCOMMAND, only create/modify
commands are recorded. No record is created
for general list/query commands.
ALLSCHEDCOMMAND does the same thing as
SCHEDCOMMAND, but it also logs info query
commands.

trigger TRIGEND, TRIGFAILURE, TRIGSTART <ATTR>="<VALUE>"[ <ATTR>="<VALUE>"]...
where <ATTR> is one of the following: actiondata,
actiontype, description, ebuf, eventtime,
eventtype, flags, name, objectid, objecttype,
obuf, offset, period, requires, sets, threshold,
timeout, and so forth.
See Object Trigger Overview for more information.

14.2.7.2 Exporting Events in Real-Time

Moab event information can be exported to external systems in real-time using the
ACCOUNTINGINTERFACEURL parameter. When set, Moab activates this URL each time one of the default
events or one of the events specified by the RECORDEVENTLIST occurs.

While various protocols can be used, the most common protocol is exec, which indicates that Moab should
launch the specified tool or script and pass in event information as command line arguments. This tool can
then select those events and fields of interest and re-direct them as appropriate providing significant
flexibility and control to the organization.

Exec Protocol Format

When a URL with an exec protocol is specified, the target is launched with the event fields passed in as
STDIN. These fields appear exactly as they do in the event logs with the same values and order.

The tools directory included with the Moab distribution contains event.create.sql.pl, a sample



accounting interface processing script that may be used as a template.

14.2.8 Enabling Syslog
In addition to the log file, the Moab scheduler can report events it determines to be critical to the Unix syslog
facility via the daemon facility using priorities ranging from INFO to ERROR. (See USESYSLOG). The verbosity
of this logging is not affected by the LOGLEVEL parameter. In addition to errors and critical events, user
commands that affect the state of the jobs, nodes, or the scheduler may also be logged to syslog. Moab
syslog messages are reported using the INFO, NOTICE, and ERR syslog priorities.

By default, messages are logged to syslog's user facility. However, using the USESYSLOG parameter, Moab
can be configured to use any of the following:

user
daemon
local0
local1
local2
local3
local4
local5
local6
local7

14.2.9 Managing Verbosity
In very large systems, a highly verbose log may roll too quickly to be of use in tracking specific targeted
behaviors. In these cases, one or more of the following approaches may be of use:

Use the LOGFACILITY parameter to log only functions and services of interest.
Use syslog to maintain a permanent record of critical events and failures.
Specify higher object loglevels on jobs, nodes, and reservations of interest (such as
NODECFG[orion13] LOGLEVEL=6).
Increase the range of events reported to the event log using the RECORDEVENTLIST parameter.
Review object messages for required details.
Run Moab in monitor mode using IGNOREUSERS, IGNOREJOBS, IGNORECLASSES, or IGNORENODES.

See Also
RECORDEVENTLIST parameter
USESYSLOG parameter
Notifying Admins
Simulation Workload Trace Overview
mschedctl -L command



14.3 Object Messages
14.3.1 Object Message Overview
Messages can be associated with the scheduler, jobs, and nodes. Their primary use is a line of
communication between resource managers, the scheduler, and end-users. When a node goes offline, or
when a job fails to run, both the resource manager and the scheduler will post messages to the object's
message buffer, giving the administrators and end-users a reason for the failure. They can also be used as a
way for different administrators and users to send messages associated with the various objects. For
example, an administrator can set the message, "Node going down for maintenance Apr/6/08 12pm," on
node node01, which would then be visible to other administrators.

14.3.2 Viewing Messages
To view messages associated with a job (either from users, the resource manager, or Moab), run the
checkjob command.

To view messages associated with a node (either from users, the resource manager, or Moab), run the
checknode command.

To view system messages, use the mschedctl -l message command.

To view the messages associated with a credential, run the mcredctl -c command.

14.3.2 Creating Messages
To create a message use the mschedctl -c message <STRING> [-o <OBJECTTYPE>:<OBJECTID>] [-w
<ATTRIBUTE>=<VALUE>[-w ...]] command.

The OBJECTTYPE can be one of the following:

node
job
rsv
user
acct
qos
class
group

The ATTRIBUTE can be one of the following:

owner
priority
expiretime
type

Valid types include:

annotation
other
hold
pendactionerror

14.3.2 Deleting Messages
Deleting, or removing, messages is straightforward. The commands used depend on the type of object to
which the message is attached:



Scheduler: Use the "mschedctl -d message:<INDEX>" command (where INDEX is the index of the
message you want to delete).

Node: Use the mnodectl <NODE> -d message:<INDEX> command.



14.4 Notifying Administrators of Failures
14.4.1 Enabling Administrator Email
In the case of certain events, Moab can automatically send email to administrators. To enable mail
notification, the MAILPROGRAM parameter must be set to DEFAULT or point to the locally available mail
client. With this set, policies such as JOBREJECTPOLICY will send email to administrators if set to a value of
MAIL.

14.4.2 Handling Events with the Notification Routine
Moab possesses a primitive event management system through the use of the notify program. The program
is called each time an event of interest occurs. Currently, most events are associated with failures of some
sort but use of this facility need not be limited in this way. The NOTIFICATIONPROGRAM parameter allows a
site to specify the name of the program to run. This program is most often locally developed and designed to
take action based on the event that has occurred. The location of the notification program may be specified
as a relative or absolute path. If a relative path is specified, Moab looks for the notification relative to the
$(INSTDIR)/tools directory. In all cases, Moab verifies the existence of the notification program at start up
and disables it if it cannot be found or is not executable.

The notification program's action may include steps such as reporting the event via email, adjusting
scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with command line arguments in a simple <EVENTTYPE>:
<MESSAGE> format. The following event types are currently enabled:

Event Type Format Description

JOBCORRUPTION <MESSAGE> An active job is in an unexpected state
or has one or more allocated nodes
that are in unexpected states.

JOBHOLD <MESSAGE> A job hold has been placed on a job.

JOBWCVIOLATION <MESSAGE> A job has exceeded its wallclock limit.

RESERVATIONCORRUPTION <MESSAGE> Reservation corruption has been
detected.

RESERVATIONCREATED <RSVNAME> <RSVTYPE> <NAME>
<PRESENTTIME> STARTTIME>
<ENDTIME> <NODECOUNT>

A new reservation has been created.

RESERVATIONDESTROYED <RSVNAME> <RSVTYPE>
<PRESENTTIME> <STARTTIME>
<ENDTIME> <NODECOUNT>

A reservation has been destroyed.

RMFAILURE <MESSAGE> The interface to the resource manager
has failed.

Perhaps the most valuable use of the notify program stems from the fact that additional notifications can be
easily inserted into Moab to handle site specific issues. To do this, locate the proper block routine, specify the
correct conditional statement, and add a call to the routine notify(<MESSAGE>);.

See Also
JOBREJECTPOLICY parameter
MAILPROGRAM parameter
Event Log Overview



14.5 Issues with Client Commands
14.5.1 Client Overview
14.5.2 Diagnosing Client Problems

14.5.1 Client Overview
Moab client commands are implemented as links to the executable mclient. When a Moab client command
runs, the client executable determines the name under which it runs and behaves accordingly. At the time
Moab was configured, a home directory was specified. The Moab client attempts to open the configuration
file, moab.cfg, in the etc/ folder of this home directory on the node where the client command executes.
This means that the home directory specified at configure time must be available on all hosts where the Moab
client commands are executed. This also means that a moab.cfg file must be available in the etc/ folder of
this home directory. When the clients open this file, they will try to load the SCHEDCFG parameter to
determine how to contact the Moab server.

The home directory value specified at configure time can be overridden by creating an /etc/moab.cfg
file or by setting the MOABHOMEDIR environment variable.

Once the client has determined where the Moab server is located, it creates a message, adds an encrypted
checksum, and sends the message to the server. The Moab client and Moab server must use a shared secret
key for this to work. When the Moab server receives the client request and verifies the message, it processes
the command and returns a reply.

14.5.2 Diagnosing Client Problems
The easiest way to determine where client failures are occurring is to use built-in Moab logging. On the client
side, use the --loglevel flag. For example:

If you're using a larger system, use -L7 instead. This creates a temporary log which will not overload
the large system over time.

This will display verbose logging information regarding the loading of the configuration file, connecting to the
Moab server, sending the request, and receiving a response. This information almost always reveals the
source of the problem. If it does not, the next step is to look at the Moab server side logs; this is done using
the following steps:

Stop Moab scheduling so that the only activity is handling Moab client requests.

set the logging level to very verbose

watch Moab activity

Now, in a second window, issue any failing client command, such as showq.

The moab.log file will record the client request and any reasons it was rejected.

If these steps do not reveal the source of the problem, the next steps may involve one or more of the
following:

Check with Adaptive Computing Enterprises, Inc.
Search the online documentation.
Search the online knowledge base inside the customer portal.

> showq --loglevel=7

> mschedctl -s

> mschedctl -m loglevel 7

> tail -f log/moab.log | more

http://www.adaptivecomputing.com/


14.6 Tracking System Failures
14.6.1 System Failures
The scheduler has a number of dependencies that may cause failures if not satisfied. These dependencies are
in the areas of disk space, network access, memory, and processor utilization.

14.6.1.1 Disk Space

The scheduler uses a number of files. If the file system is full or otherwise inaccessible, the following
behaviors might be noted:

Unavailable File Behavior

moab.pid Scheduler cannot perform single instance check.

moab.ck* Scheduler cannot store persistent record of reservations, jobs, policies, summary
statistics, and so forth.

moab.cfg/moab.dat Scheduler cannot load local configuration.

log/* Scheduler cannot log activities.

stats/* Scheduler cannot write job records.

When possible, configure Moab to use local disk space for configuration files, statistics files, and logs
files. If any of these files are located in a networked file system (such as NFS, DFS, or AFS) and the
network or file server experience heavy loads or failures, Moab server may appear sluggish or
unresponsive and client command may fail. Use of local disk space eliminates susceptibility to this
potential issue.

14.6.1.2 Network

The scheduler uses a number of socket connections to perform basic functions. Network failures may affect
the following facilities.

Network Connection Behavior

scheduler client Scheduler client commands fail.

resource manager Scheduler is unable to load/update information regarding nodes and jobs.

allocation manager Scheduler is unable to validate account access or reserve/debit account balances.

14.6.1.3 Memory

Depending on cluster size and configuration, the scheduler may require up to 120 MB of memory on the
server host. If inadequate memory is available, multiple aspects of scheduling may be negatively affected.
The scheduler log files should indicate if memory failures are detected and mark any such messages with the
ERROR or ALERT keywords.

14.6.1.4 Processor Utilization

On a heavily loaded system, the scheduler may appear sluggish and unresponsive. However, no direct
failures should result from this slowdown. Indirect failures may include timeouts of peer services (such as the
resource manager or allocation manager) or timeouts of client commands. All timeouts should be recorded in
the scheduler log files.

14.6.2 Internal Errors



The Moab scheduling system contains features to assist in diagnosing internal failures. If the scheduler exits
unexpectedly, the scheduler logs may provide information regarding the cause. If no reason can be
determined, use of a debugger may be required.

14.6.2.1 Logs

The first step in any exit failure is to check the last few lines of the scheduler log. In many cases, the
scheduler may have exited due to misconfiguration or detected system failures. The last few lines of the log
should indicate why the scheduler exited and what changes would be required to correct the situation. If the
scheduler did not intentionally exit, increasing the LOGLEVEL parameter to 7, or higher, may help isolate the
problem.

14.6.3 Reporting Failures
If an internal failure is detected on your system, the information of greatest value to developers in isolating
the problem will be the output of the gdb where subcommand and a printout of all variables associated with
the failure. In addition, a level 7 log covering the failure can also help in determining the environment that
caused the failure. If you encounter such and require assistance, please submit a ticket at the following
address:

http://support.adaptivecomputing.com/

If you do not already have a support username and password, please send an e-mail message to
info@adaptivecomputing.com to request one.

http://support.adaptivecomputing.com/


14.7 Problems with Individual Jobs
To determine why a particular job will not start, there are several helpful commands:

checkjob -v

Checkjob evaluates the ability of a job to start immediately. Tests include resource access, node state, job
constraints (such as startdate, taskspernode, and QoS). Additionally, command line flags may be specified to
provide further information.

-l <POLICYLEVEL>
Evaluates impact of throttling policies on job feasibility.

-n <NODENAME>
Evaluates resource access on specific node.

-r <RESERVATION_LIST>
Evaluates access to specified reservations.

checknode

Displays detailed status of node.

mdiag -b

Displays various reasons job is considered blocked or non-queued.

mdiag -j

Displays high level summary of job attributes and performs sanity check on job attributes/state.

showbf -v

Determines general resource availability subject to specified constraints.

See Also
Diagnosing System Behavior/Problems

http://sempa/resources/docs/blanks/mwm/troubleshooting.php


14.8 Diagnostic Scripts
Moab Workload Manager provides diagnostic scripts that can help aid in monitoring the state of the
scheduler, resource managers, and other important components of the cluster software stack. These scripts
can also be used to help diagnose issues that may need to be resolved with the help of Cluster Resources
support staff. This section introduces available diagnostic scripts.

14.8.1 The support.diag.pl Script
The tools/moab/support.diag.pl script has a two-fold purpose. First, it can be used by a Moab trigger or
cron job to create a regular snapshot of the state of Moab. The script captures the output of several Moab
diagnostic commands (such as showq, mdiag -n, and mdiag -S), gathers configuration/log files, and records
pertinent operating system information. This data is then compressed in a time-stamped tarball for easy
long-term storage.

The second purpose of the support.diag.pl script is to provide Cluster Resources support personnel with a
complete package of information that can be used to help diagnose configuration issues or system bugs.
After capturing the state of Moab, the resulting tarball could be sent to your Cluster Resources support
contact for further diagnosis.

The support.diag.pl will ask you for the trouble ticket number then guide you through the process of
uploading the data to Adaptive Computing Customer Support. The uploading and ticket number request may
be prevented using the --no-upload and --support-ticket=<SUPPORT_TICKET_ID> flags detailed in the
Arguments table that follows.

Synopsis

support.diag.pl [--include-log-lines=<NUM>] [--diag-torque]

Arguments

Argument Description

--include-log-lines=<NUM> Instead of including the entire moab.log file, only the last <NUM>
lines are captured in the diagnostics.

--diag-torque Diagnostic commands pertinent to the TORQUE resource manager are
included.

--no-upload Prevents the system from asking the user if they want to upload the
tarball to Adaptive Computing Customer Support.

--support-
ticket=<SUPPORT_TICKET_ID>

Prevents the system from asking the user for a support ticket number.



15.0 Improving User Effectiveness
15.1 User Feedback Loops
15.2 User Level Statistics
15.3 Job Start Time Estimates
15.4 Collecting Performance Information on Individual Jobs



15.1 User Feedback Loops
Almost invariably, real world systems outperform simulated systems, even when all policies, reservations,
workload, and resource distributions are fully captured and emulated. What is it about real world usage that
is not emulated via a simulation? The answer is the user feedback loop, the impact of users making decisions
to optimize their level of service based on real time information.

A user feedback loop is created any time information is provided to a user that modifies job submission or
job management behavior. As in a market economy, the cumulative effect of many users taking steps to
improve their individual scheduling performance results in better job packing, lower queue time, and better
overall system utilization. Because this behavior is beneficial to the system at large, system administrators
and management should encourage this behavior and provide the best possible information to them.

There are two primary types of information that help users make improved decisions: cluster wide resource
availability information and per job resource utilization information.

15.1.1 Improving Job Size/Duration Requests
Moab provides a number of informational commands that help users make improved job management
decisions based on real-time cluster wide resource availability information. These commands include showbf,
showstats -f, and showq. Using these commands, a user can determine what resources are available and
what job configurations statistically receive the best scheduling performance.

15.1.2 Improving Resource Requirement Specification
A job's resource requirement specification tells the scheduler what type of compute nodes are required to run
the job. These requirements may state that a certain amount of memory is required per node or that a node
has a minimum processor speed. At many sites, users will determine the resource requirements needed to
run an initial job. Then, for the next several years, they will use the same basic batch command file to run all
of their remaining jobs even though the resource requirements of their subsequent jobs may be very different
from their initial run. Users often do not update their batch command files even though these constraints may
be unnecessarily limiting the resources available to their jobs for two reasons: (1) users do not know how
much their performance will improve if better information were provided and (2) users do not know exactly
what resources their jobs are using and are afraid to lower their job's resource requirements since doing so
might cause their job to fail.

To help with determining accurate per job resource utilization information, Moab provides the
FEEDBACKPROGRAM facility. This tool allows sites to send detailed resource utilization information back to
users via email, to store it in a centralized database for report preparation, or use it in other ways to help
users refine their batch jobs.



15.2 User Level Statistics
Besides displaying job queues, end-users can display a number of their own statistics. The showstats -u
<USER_ID> command displays current and historical statistics for a user as seen in what follows:

Users can query available system resources with the showbf command. This can aid users in requesting node
configurations that are idle. Also, users can use the checkjob command to determine what parameter(s) are
restricting their job from running. Moab performs better with more accurate wall-clock estimates.

Moab must use an ODBC-compliant database to report statistics with Viewpoint reports.

$ showstats -u john
statistics initialized Wed Dec 31 17:00:00
 
         |------ Active ------|--------------------------------- 
Completed -----------------------------------|
user      Jobs Procs ProcHours Jobs    %    PHReq    %    PHDed    %   
FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
john         1     1     30.96    9   0.00  300.0   0.00  148.9   0.00 
-----   0.62   0.00   4.33 100.00  48.87



15.3 Job Start Time Estimates
Each user can use the showstart command to display estimated start and completion times. The following
example illustrates a typical response from issuing this command:

Estimation Types

Reservation Based Estimates

Reservation based start time estimation incorporates information regarding current administrative, user,
and job reservations to determine the earliest time the specified job can allocate the needed resources and
start running. In essence, this estimate indicates the earliest time the job will start, assuming this job is the
highest priority job in the queue.

For reservation based estimates, the information provided by this command is more highly accurate if
the job is highest priority, if the job has a reservation, or if the majority of the jobs that are of higher
priority have reservations. Consequently, site administrators wanting to make decisions based on this
information may want to consider using the RESERVATIONDEPTH parameter to increase the number of
priority based reservations. This can be set so that most, or even all, idle jobs receive priority
reservations and make the results of this command generally useful. The only caution of this approach
is that increasing the RESERVATIONDEPTH parameter more tightly constrains the decisions of the
scheduler and may result in slightly lower system utilization (typically less than 8% reduction).

Backlog/Priority Estimates

Priority based job start analysis determines when the queried job will fit in the queue and determines the
estimated amount of time required to complete the jobs currently running or scheduled to run before this job
can start.

In all cases, if the job is running, this command returns the time the job starts. If the job already has a
reservation, this command returns the start time of the reservation.

Historical Estimates

Historical analysis uses historical queue times for jobs that match a similar processor count and job
duration profile. This information is updated on a sliding window that is configurable within moab.cfg.

See Also
ENABLESTARTESTIMATESTATS parameter

> showstart orion.13762

job orion.13762 requires 2 procs for 0:33:20

Estimated Rsv based start in                 1:04:55 on Fri Jul 15 
12:53:40
Estimated Rsv based completion in            2:44:55 on Fri Jul 15 
14:33:40

Estimated Priority based start in            5:14:55 on Fri Jul 15 
17:03:40
Estimated Priority based completion in       6:54:55 on Fri Jul 15 
18:43:40

Estimated Historical based start in         00:00:00 on Fri Jul 15 
11:48:45
Estimated Historical based completion in     1:40:00 on Fri Jul 15 
13:28:45

Best Partition: fast



showstart command



15.4 Collecting Performance Information on
Individual Jobs
Individual job information can be collected from the statistics file in STATDIR, which contains start time, end
time, end state, QoS requested, QoS delivered, and so forth for different jobs. Also, Moab optionally provides
similar information to a site's feedback program. See section 21.1 User Feedback Overview for more
information about the feedback program.



16.0 Cluster Analysis, Testing, and Simulation
16.1 Evaluating New Releases and Policies
16.2 Testing New Middleware
16.3 Simulation Overview

Moab has a number of unique features that allow site administrators to visualize current cluster behavior and
performance, safely evaluate changes on production systems, and analyze probable future behaviors within a
variety of environments.

These capabilities are enabled through a number of Moab facilities that may not appear to be closely related
at first. However, taken together, these facilities allow organizations the ability to analyze their cluster
without the losses associated with policy conflicts, unnecessary downtime, and faulty systems middleware.

Simulations allow organizations to evaluate many scenarios that could not be properly evaluated in real-world
situations. In particular, these evaluations may be impossible due to time constraints, budgetary or personnel
limitations, hardware availability, or even policy issues. In such cases, simulations provide information in
countless scenarios and can help answer questions such as the following:

What is the impact of additional hardware on cluster utilization?
What delays to key projects can be expected with the addition of new users?
How will new prioritization weights alter cycle distribution among existing workload?
What total loss of compute resources will result from introducing a maintenance downtime?
Are the benefits of cycle stealing from non-dedicated desktop systems worth the effort?
How much will anticipated grid workload delay the average wait time of local jobs?



16.1 Testing New Releases and Policies
16.1.1 Moab Evaluation Modes

16.1.1.1 MONITOR Mode
16.1.1.2 TEST Mode
16.1.1.3 INTERACTIVE Mode

16.1.2 Testing New Releases
16.1.3 Testing New Policies

16.1.3.1 Verifying Correct Specification of New Policies
16.1.3.2 Verifying Correct Behavior of New Policies
16.1.3.3 Determining Long Term Impact of New Policies

16.1.4 Moab Side-by-Side

16.1.1 Moab Evaluation Modes

16.1.1.1 MONITOR Mode

Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running in
NORMAL or production mode. Jobs are prioritized, reservations created, policies and limits enforced, and
administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in NORMAL
mode, but its ability to actually impact the system is disabled. Using this mode, a site can quickly verify
correct resource manager configuration and scheduler operation. This mode can also be used to validate new
policies and constraints. In fact, Moab can be run in MONITOR mode on a production system while another
scheduler or even another version of Moab is running on the same system. This unique ability can allow new
versions and configurations to be fully tested without any exposure to potential failures and with no cluster
downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to MONITOR
and start Moab. Normal scheduler commands can be used to evaluate configuration and performance.
Diagnostic commands can be used to look for any potential issues. Further, the Moab log file can be used to
determine which jobs Moab attempted to start, and which resources Moab attempted to allocate.

If another instance of Moab is running in production and a site adminstrator wants to evaluate an alternate
configuration or new version, this is easily done but care should be taken to avoid conflicts with the primary
scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user interface ports. One of the
easiest ways to avoid these conflicts is to create a new test directory with its own log and statisticss
subdirectories. The new moab.cfg file can be created from scratch or based on the existing moab.cfg file
already in use. In either case, make certain that the PORT attribute of the SCHEDCFG parameter differs
from that used by the production scheduler by at least two ports. If testing with the production binary
executable, the MOABHOMEDIR environment variable should be set to point to the new test directory to
prevent Moab from loading the production moab.cfg file.

16.1.1.2 TEST Mode

TEST mode behaves much like MONITOR mode with the exception that Moab will log the scheduling actions
it would have taken to the stats/<DAY>.events file. Using this file, sites can determine the actions Moab
would have taken if running in NORMAL mode and verify all actions are in agreement with expected
behavior.

16.1.1.3 INTERACTIVE Mode

INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different from
MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired change
request to the screen and requests permission to complete it. For example, before starting a job, Moab may
print something like the following to the screen:

Command:  start job 1139.ncsa.edu on node list 



The administrator must specifically accept each command request after verifying it correctly meets desired
site policies. Moab will then execute the specified command. This mode is highly useful in validating scheduler
behavior and can be used until configuration is appropriately tuned and all parties are comfortable with the
scheduler's performance. In most cases, sites will want to set the scheduling mode to NORMAL after
verifying correct behavior.

16.1.2 Testing New Releases
By default, Moab runs in a mode called NORMAL, which indicates that it is responsible for the cluster. It
loads workload and resource information, and is responsible for managing that workload according to mission
objectives and policies. It starts, cancels, preempts, and modifies jobs according to these policies.

If Moab is configured to use a mode called TEST, it loads all information, performs all analysis, but, instead of
actually starting or modifying a job, it merely logs the fact that it would have done so. A test instance of
Moab can run at the same time as a production instance of Moab. A test instance of Moab can also run while
a production scheduler of another type (such as PBS, LSF, or SLURM) is simultaneously running. This multi-
scheduler ability allows stability and performance tests to be conducted that can help answer the following
questions:

What impact do Moab services have on network, processor, and memory load?
What impact do Moab services have on the underlying resource manager?
Is Moab able to correctly import resource, workload, policy, and credential information from the
underlying resource manager?
Are Moab's logged scheduling decisions in line with mission objectives?

In test mode, all of Moab's commands and services operate normally allowing the use of client commands to
perform analysis. In most cases, the mdiag command is of greatest value, displaying loaded values as well as
reporting detected failures, inconsistencies, and object corruption. The following table highlights the most
common diagnostics performed.

Command Object

mdiag -n Compute nodes, storage systems, network systems, and generic resources

mdiag -j Applications, dynamic and static jobs

mdiag -u
mdiag -g
mdiag -a

User, group, and account credentials

mdiag -c Queues and policies

mdiag -R Resource manager interface and performance

mdiag -S Scheduler/system level failures introduced by corrupt information

These commands will not only verify proper scheduling objects but will also analyze the behavior of each
resource manager, recording failures, and delivered performance. If any misconfiguration, corruption,
interface failure, or internal failure is detected, it can be addressed in the test mode instance of Moab with no
urgency or risk to production cluster activities.

16.1.3 Testing New Policies

16.1.3.1 Verifying Correct Specification of New Policies

The first aspect of verifying a new policy is verifying correct syntax and semantics. If using Moab Cluster
Manager, this step is not necessary as this tool automatically verifies proper policy specification. If manually
editing the moab.cfg file, the following command can be used for validation:

test013,test017,test018,test021
Accept:  (y/n) [default: n]?

http://www.adaptivecomputing.com/resources/docs/mcm
http://www.adaptivecomputing.com/resources/docs/mcm


This command will validate the configuration file and report any misconfiguration.

16.1.3.2 Verifying Correct Behavior of New Policies

If concern exists over the impact of a new policy, an administrator can babysit Moab by putting it into
INTERACTIVE mode. In this mode, Moab will schedule according to all mission objectives and policies, but
before taking any action, it will request that the administrator confirm the action. See the interactive mode
overview for more information.

In this mode, only actions approved by the administrator will be carried out. Once proper behavior is verified,
the Moab mode can be set to NORMAL.

16.1.3.3 Determining Long Term Impact of New Policies

If a new policy has the potential to impact long-term performance or resource distribution, it may be
desirable to run a Moab simulation to evaluate this change. Simulations allow locally recorded workload to be
translated into simulation jobs and execute on a virtual cluster that emulates local resources. Simulations
import all job and resource attributes that are loaded in a production environment as well as all policies
specified in any configuration file. While running, all Moab commands and statistics are fully supported.

Using simulation, a control run can be made using the original policies and the behavior of this run compared
to a second run that contains the specified change. Moab Cluster Manager's charting, graphing, and reporting
features can be used to report on and visualize the differences in these two runs. Typically, a two-month real-
time simulation can be completed in under an hour. For more information on simulations, see the Simulation
Overview.

16.1.4 Moab Side-by-Side
Moab provides an additional evaluation method that allows a production cluster or other resource to be
logically partitioned along resource and workload boundaries and allows different instances of Moab to
schedule different partitions. The parameters IGNORENODES, IGNORECLASSES, IGNOREJOBS, and
IGNOREUSERS are used to specify how the system is to be partitioned. In the following example, a small
portion of an existing cluster is partitioned for temporary grid testing so that there is no impact on the
production workload.

In the previous example, two completely independent Moab servers schedule the cluster. The first server
handles all jobs and nodes except for the ones involved in the test. The second server handles only test
nodes and test jobs. While both servers actively talk and interact with a single TORQUE resource manager,
the IGNORE* parameters cause them to not schedule, nor even see the other partition and its associated
workload.

When enabling Moab side-by-side, each Moab server should have an independent home directory to
prevent logging and statistics conflicts. Also, in this environment, each Moab server should
communicate with its client commands using a different port as shown in the previous example.

> mdiag -C

SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42020
RMCFG[TORQUE]  TYPE=PBS

IGNORENODES    node61,node62,node63,node64
IGNOREUSERS    gridtest1,gridtest2
...

SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42030
RMCFG[TORQUE]  TYPE=PBS

IGNORENODES    !node61,node62,node63,node64
IGNOREUSERS    !gridtest1,gridtest2
...



When specifying the IGNORENODES parameter, the exact node names, as returned by the resource
manager, should be specified.

See Also
Testing New Versions and Configurations



16.2 Testing New Middleware
Moab can be used to drive new middleware stress testing resource management systems, information
services, allocation services, security services, data staging services, and other aspects. Moab is unique when
compared to other stress testing tools as it can perform the tests in response to actual or recorded workload
traces, performing a playback of events and driving the underlying system as if it were part of the production
environment.

This feature can be used to identify scalability issues, pathological use cases, and accounting irregularities in
anything from LDAP, to NIS, and NFS.

Using Moab's time management facilities, Moab can drive the underlying systems in accordance with the real
recorded distribution of time, at a multiplier of real time, or as fast as possible.

The following table describes some aspects of cluster analysis that can be driven by Moab.

System Details

Allocation Manager Use test or simulation mode to drive scheduling queries, allocation debits, and
reservations to accounting packages. Verify synchronization of cluster statistics and
stress test interfaces and underlying databases. (Set environment variable
MOABAMTEST=yes to enable.)

On-
Demand/Provisioning
Services

Use simulation or native resource manager mode to drive triggers and resource
management interfaces to enable dynamic provisioning of hardware, operating
systems, application software, and services. Test reliability and scalability of data
servers, networks, and provisioning software as well as the interfaces and business
logic coordinating these changes.

Resource Monitoring Use test or native resource manager mode to actively load information from
compute, network, storage, and software license managers confirming validity
of data, availability during failures, and scalability.

With each evaluation, the following tests can be enabled:

functionality
reliability

hard failure
hardware failure - compute, network, and data failures
software failure - loss of software services (NIS, LDAP, NFS, database)
soft failure
network delays, full file system, dropped network packets

corrupt data
performance
determine peak responsiveness in seconds/request
determine peak throughput in requests/second
determine responsiveness under heavy load conditions
determine throughput under external load conditions

large user base (many users, groups, accounts)
large workload (many jobs)
large cluster (many nodes)

manageability
full accounting for all actions/events
actions/failures can be easily and fully diagnosed

If using a native resource manager and you do not want to actually submit real workload, you can set
the environment variable MFORCESUBMIT to allow virtual workload to be managed without ever
launching a real process.

General Analysis



For all middleware interfaces, Moab provides built-in performance analysis and failure reporting. Diagnostics
for these interfaces are available via the mdiag command.

Native Mode Analysis

Using native mode analysis, organizations can run Moab in normal mode with all facilities fully enabled, but
with the resource manager fully emulated. With a native resource manager interface, any arbitrary cluster
can be emulated with a simple script or flat text file. Artificial failures can be introduced, jobs can be virtually
running, and artificial performance information generated and reported.

In the simplest case, emulation can be accomplished using the following configuration:

The preceding configuration will load cluster resource information from the file cluster.dat. An example
resource information file follows:

In actual usage, any number of node attributes may be specified to customize these nodes, but in this
example, only the node state and node configured processors attributes are specified.

The RMCFG flag NORMSTART indicates that Moab should not actually issue a job start command to an
external entity to start the job, but rather start the job logically internally only.

If it is desirable to take an arbitrary action at the start of a job, end of a job, or anywhere in between, the
JOBCFG parameter can be used to create one or more arbitrary triggers to initiate internal or external
events. The triggers can do anything from executing a script, to updating a database, to using a web service.

Using native resource manager mode, jobs may be introduced using the msub command according to any
arbitrary schedule. Moab will load them, schedule them, and start them according to all site mission
objectives and policies and drive all interfaced services as if running in a full production environment.

SCHEDCFG[natcluster] MODE=NORMAL SERVER=test1.bbli.com

ADMINCFG[1] USERS=dev

RMCFG[natcluster] TYPE=NATIVE CLUSTERQUERYURL=file://$HOME/cluster.dat

node01 state=idle cproc=2
node02 state=idle cproc=2
node03 state=idle cproc=2
node04 state=idle cproc=2
node05 state=idle cproc=2
node06 state=idle cproc=2
node07 state=idle cproc=2
node08 state=idle cproc=2



16.3.0 Simulations
16.3.1 Simulation Overview
16.3.2 Resource Traces
16.3.3 Workload Traces
16.3.4 Simulation Specific Configuration

Simulations allow organizations to evaluate many scenarios that could not be properly evaluated in the real
world. In particular, these evaluations may be impossible due to time constraints, budgetary or man-power
limitations, hardware availability, or may even be impossible due to policy issues.

   

Figure 1: Traditional TORQUE/Moab setup. Figure 2: Moab simulation setup.

In such cases, simulation can help answer questions in countless scenarios and provide information such as
the following:

What is the impact of additional hardware on cluster utilization?
What delays to key projects can be expected with the addition of new users?
How will new prioritization weights alter cycle distribution among existing workload?
What total loss of compute resources will result from introducing a maintenance downtime?
Are the benefits of cycle stealing from non-dedicated desktop systems worth the effort?
How much will anticipated grid workload delay the average wait time of local jobs?



16.3.1 Simulation Overview
This section explains the following concepts:

Value of simulations
Specifying resources and workloads for simulation
Where to specify policies
Changing moab.cfg for simulation
Starting a simulation
Queue Status
Job status
Iteration control
Determining why jobs are not running
Dynamically changing parameters
Reservations applying to the queue
Fair scheduling
System for maintenance

16.3.1.1 Determining Performance Metrics
The first step of most simulations is to determine the primary purpose of the simulation. Purposes may
include identifying impact of certain resource or workload changes on current cluster performance.
Simulations may also focus on system utilization or workload distribution across resources or credentials.
Further, simulations may also be used for training purposes, allowing risk-free evaluation of behavior,
facilities, and commands. With the purpose known, metrics of success can be specified and a proper
simulation created. While performance metrics may not be critical to training based simulations, they are key
to successful evaluation in most other cases.

16.3.1.2 Selecting Resources
As in the real world, a simulation requires a set of resources (compute hosts) on which to run. In Moab, this
is specified using a resource trace file. This resource trace file may be obtained from specific hardware or
generated for the specific purpose.

16.3.1.3 Selecting Workload
In addition to resources, a simulation also requires a workload (batch jobs) to schedule onto the available
resources. This workload is specified within a workload trace file. Like the resource traces, this workload
information may be based on recorded data or generated to meet the need of the particular simulation.

16.3.1.4 Selecting Policies
The final aspect of a simulation is the set of policies and configuration to be used to determine how a
workload is to be scheduled onto the available resources. This configuration is placed in the moab.cfg file just
as would be done in production (or normal) mode operation.

16.3.1.5 Initial Configuration Using the Sample Traces
While mastering simulations may take some time, initial configuration is straightforward. To start, edit the
moab.cfg file and do the following:

Change the SCHEDCFG attribute MODE from NORMAL or MONITOR to SIMULATION.
Add the following lines:

SIMRESOURCETRACEFILE samples/resource.testcluster.txt
SIMWORKLOADTRACEFILE samples/workload.testcluster.txt
SIMSTOPITERATION     0



The preceding steps specify that the scheduler should run in simulation mode and use the referenced
resource and workload trace files. In addition, leaving the SIMSTOPITERATION parameter at zero
indicates that Moab should stop before the first scheduling iteration and wait for further instructions. If
you want the simulation to run as soon as you start Moab, remove (or comment out) this line. To
continue scheduling, run the mschedctl -r command.

You also may need to add these lines to the moab.cfg file:

The second set of parameters is helpful if you want to generate charts or reports from Moab Cluster
Manager. Since events in the workload trace may reference credentials that are not listed in your
moab.cfg file, set CREDDISCOVERY to true, which allows Moab to create simulated credentials for
credentials that do not yet exist. Setting SIMAUTOSHUTDOWN to false prevents Moab from
terminating after it has finished running all the jobs in the workload trace, and it allows you to
generate charts after all the simulated jobs have finished. Ensure that SIMSTARTTIME is set to the
epoch time (in seconds) of the first event in your workload trace file. This causes the internal clock in
Moab to be set to the workload trace's first event, which prevents issues caused by the difference
between the time the workload trace was created and the time reported by the CPU clock. Otherwise,
Moab thinks the current time is the time that the CPU clock reports, yet simulated jobs that are
reported by showq as currently running will really be running at the time the workload trace was
created. To avoid confusion, set the SIMSTARTTIME. The lines that specify ENABLEPROFILING=true
are necessary for Moab to keep track of the statistics generated by the simulated jobs. Not setting
these lines will cause charts and reports to contain all zero values.

16.3.1.6 Starting a Simulation
As in all cases, Moab should be started by issuing the command moab. It should be noted that in simulation
mode, Moab does not daemonize itself and so will not background itself. Verification of proper operation is
possible using any common user command such as showq. If the showq command is run, it will display the
number of jobs currently in the scheduler's queue. The jobs displayed by the showq command are taken
from the workload trace file specified earlier and those that are marked as running are running on resources
described in the resource trace file. At any point, a detailed summary of available resources may be obtained
by running the mdiag -n command.

16.3.1.7 Interactive Tutorial
The rest of this section provides an interactive tutorial to demonstrate the basics of the simulator's capacities
in Moab. The commands to issue are formatted as follows: > showq along with the expected output.

The following commands are used:

showq [-r] [-i]
showstats [-g] [-u] [-v]
mschedctl -l
mschedctl [{-s|-S} [I]] [-k]
checkjob
mschedctl -m
mdiag -n
showres [-n jobid]
setres

Start by running Moab:

CREDDISCOVERY           TRUE
SIMAUTOSHUTDOWN         false

SIMSTARTTIME            1196987696

USERCFG[DEFAULT]        ENABLEPROFILING=true 
GROUPCFG[DEFAULT]       ENABLEPROFILING=true
ACCOUNTCFG[DEFAULT]     ENABLEPROFILING=true
CLASSCFG[DEFAULT]       ENABLEPROFILING=true
QOSCFG[DEFAULT]         ENABLEPROFILING=true



Next, verify that Moab is running by executing showq:

Out of the thousands of jobs in the workload trace, only 16 jobs are either active or eligible because of the
default settings of the SIMINITIALQUEUEDEPTH parameter. Sixteen jobs are put in the idle queue, seven of
which immediately run. Issuing the command showq -r allows a more detailed look at the active (or
running) jobs. The output is sorted by job completion time and indicates that the first job will complete in
one day (1:00:00:00).

While showq details information about the queues, scheduler statistics may be viewed using the showstats
command. The field Current Active/Total Procs shows current system utilization, for example.

You might be wondering why there are only 140 of 196 Processors Active (as shown with showq) when

> moab&

> showq

active jobs------------------------
JOBNAME            USERNAME      STATE  PROC   REMAINING            
STARTTIME

fr8n01.187.0            570    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr8n01.189.0            570    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr8n01.190.0            570    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr8n01.191.0            570    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr8n01.276.0            550    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr1n04.369.0            550    Running    20  1:00:00:00  Mon Feb 16 
11:54:03
fr1n04.487.0            550    Running    20  1:00:00:00  Mon Feb 16 
11:54:03

     7 active jobs     140 of  196 Processors Active (71.43%)

eligible jobs----------------------
JOBNAME            USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

fr1n04.362.0            550       Idle    20  1:00:00:00  Mon Feb 16 
11:53:33

> showstats

moab active for      00:00:30  stats initialized on Mon Feb 16 
11:53:33

Eligible/Idle Jobs:                    9/9         (100.000%)
Active Jobs:                           0
Successful/Completed Jobs:             0/0         (0.000%)
Avg/Max QTime (Hours):              0.00/0.00
Avg/Max XFactor:                    0.00/0.00

Dedicated/Total ProcHours:          1.17/1.63      (71.429%)

Current Active/Total Procs:          140/196       (71.429%)

Avg WallClock Accuracy:             N/A
Avg Job Proc Efficiency:            N/A
Est/Avg Backlog (Hours):            N/A / N/A



the first job (fr1n04.362.0) in the queue only requires 20 processors. We will use the checkjob command,
which reports detailed job state information and diagnostic output for a particular job to determine why it is
not running:

Checkjob not only tells us the job's wallclock limit and the number of requested nodes (they're in the
ellipsis) but explains why the job was rejected from running. The Job Eligibility Analysis tells us that 48 of
the processors rejected this job due to memory limitations and that another 140 processors rejected it
because of their state (that is, they're running other jobs). Notice the >= 256 M(B) memory requirement.

If you run checkjob with the ID of a running job, it would also tell us exactly which nodes have been
allocated to this job. There is additional information that the checkjob command page describes in more
detail.

Advancing the simulator an iteration, the following happens:

The scheduler control command, mschedctl, controls various aspects of scheduling behavior. It can be used
to manage scheduling activity, kill the scheduler, and create resource trace files. The -S argument indicates
that the scheduler run for a single iteration and stop. Specifying a number, n, after -S causes the simulator
to advance n steps. You can determine what iteration you are currently on using showstats -v.

The line that starts with statistics for iteration <X> specifies the iteration you are currently on. Each
iteration advances the simulator RMPOLLINTERVAL seconds. To see what RMPOLLINTERVAL is set to, use
the showconfig command:

By default, RMPOLLINTERVAL is set to 30 seconds. Leaving the RMPOLLINTERVAL at the default will match
your actual iteration period, resulting in realtime simulation. For example, increasing this number by a factor
of 5 will run the simulations 5 times faster. With showconfig, you can see the current value of all
configurable parameters.

> checkjob fr1n04.362.0

job fr1n04.362.0

State: Idle
...
Network: hps_user  Memory >= 256M  Disk >= 0  Swap >= 0
...
Job Eligibility Analysis -------

job cannot run in partition DEFAULT (idle procs do not meet 
requirements : 8 of 20 procs found)
idle procs:  56  feasible procs:   8

Rejection Reasons: [Memory : 48][State : 140]

> mschedctl -S

scheduling will stop in 00:00:30 at iteration 1

> showstats -v

current scheduler time: Mon Feb 16 11:54:03 1998 (887655243)
moab active for      00:01:00  stats initialized on Mon Feb 16 
11:53:33
statistics for iteration     1  scheduler started on Wed Dec 31 
17:00:00
...

> showconfig | grep RMPOLLINTERVAL

RMPOLLINTERVAL                  00:00:30



The showq -r command can be used to display the running (active) jobs to see what happened in the last
iteration:

Notice that two new jobs started (without waiting in the eligible queue). Also notice that job fr8n01.187.0,
along with the rest that are summarized in the ellipsis, did NOT advance its REMAINING or STARTTIME. The
simulator needs one iteration to do a sanity check. Setting the parameter SIMSTOPITERATION to 1 causes
Moab to stop after the first scheduling iteration and wait for further instructions.

The showq -i command displays the idle (eligible) jobs.

Notice how none of the eligible jobs are requesting 19 or fewer jobs (the number of idle processors). Also
notice the * after the job id fr1n04.362.0. This means that this job now has a reservation. The showres
command shows all reservations currently on the system.

> showq -r

active jobs------------------------
JOBID               S PAR  EFFIC  XFACTOR  Q      USER    GROUP    
MHOST PROCS   REMAINING            STARTTIME

fr8n01.804.0        R   1 ------      1.0  -       529      519   
fr9n16     5    00:05:00  Mon Feb 16 11:54:03
fr8n01.187.0        R   1 ------      1.0  -       570      519   
fr7n15    20  1:00:00:00  Mon Feb 16 11:54:03
...
fr8n01.960.0        R   1 ------      1.0  -       588      519   
fr9n11    32  1:00:00:00  Mon Feb 16 11:54:03

     9 active jobs     177 of  196 Processors Active (90.31%)

Total jobs:  9

> showq -i

eligible jobs----------------------
JOBID                 PRIORITY  XFACTOR  Q      USER    GROUP  PROCS     
WCLIMIT     CLASS      SYSTEMQUEUETIME

fr1n04.362.0*                1      1.0  -       550      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.363.0                 1      1.0  -       550      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.365.0                 1      1.0  -       550      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.366.0                 1      1.0  -       550      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.501.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.580.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.597.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.598.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.602.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:53:33
fr1n04.743.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:54:03
fr1n04.744.0                 1      1.0  -       570      519     20  
1:00:00:00     batch  Mon Feb 16 11:54:03
fr1n04.746.0                 1      1.0  -       570      519     20  

> showres



Here, the S column is the job's state(R = running, I = idle). All the active jobs have a reservation along with
idle job fr1n04.362.0. This reservation was actually created by the backfill scheduler for the highest priority
idle job as a way to prevent starvation while lower priority jobs were being backfilled. (The backfill
documentation describes the mechanics of the backfill scheduling more fully.)

To display information about the nodes that job fr1n04.362.0 has reserved, use showres -n <JOBID>.

Now advance the simulator an iteration to allow some jobs to actually run.

Next, check the queues to see what happened.

ReservationID       Type S       Start         End    Duration    N/P    
StartTime

fr8n01.187.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr8n01.189.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr8n01.190.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr8n01.191.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr8n01.276.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr1n04.362.0         Job I  1:00:00:00  2:00:00:00  1:00:00:00   20/20   
Tue Feb 17 11:54:03
fr1n04.369.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr1n04.487.0         Job R    00:00:00  1:00:00:00  1:00:00:00   20/20   
Mon Feb 16 11:54:03
fr8n01.804.0         Job R    00:00:00    00:05:00    00:05:00    5/5    
Mon Feb 16 11:54:03
fr8n01.960.0         Job R    00:00:00  1:00:00:00  1:00:00:00   32/32   
Mon Feb 16 11:54:03

10 reservations located

> showres -n fr1n04.362.0

reservations on Mon Feb 16 11:54:03

NodeName                   Type      ReservationID   JobState Task       
Start    Duration  StartTime

fr5n09                      Job       fr1n04.362.0       Idle    1  
1:00:00:00  1:00:00:00  Tue Feb 17 11:54:03
...
fr7n15                      Job       fr1n04.362.0       Idle    1  
1:00:00:00  1:00:00:00  Tue Feb 17 11:54:03

20 nodes reserved

> mschedctl -S

scheduling will stop in 00:00:30 at iteration 2

> showq

active jobs------------------------
JOBNAME            USERNAME      STATE  PROC   REMAINING            
STARTTIME



Two new jobs, fr8n01.963.0 and fr8n01.1016.0, are in the eligible queue. Also, note that the first job will
now complete in 4 minutes 30 seconds rather than 5 minutes because we have just advanced now by 30
seconds, one RMPOLLINTERVAL. It is important to note that when the simulated jobs were created, both the
job's wallclock limit and its actual run time were recorded. The wallclock limit is specified by the user
indicating their best estimate of an upper bound on how long the job will run. The run time is how long the
job actually ran before completing and releasing its allocated resources. For example, a job with a wallclock
limit of 1 hour will be given the needed resources for up to an hour but may complete in only 20 minutes.

Stop the simulation at iteration 6.

The -s 6I argument indicates that the scheduler will stop at iteration 6 and will (I)gnore user input until it
gets there. This prevents the possibility of obtaining showq output from iteration 5 rather than iteration 6.

Job fr8n01.804.0 is still 2 minutes 30 seconds away from completing as expected but notice that both jobs
fr8n01.189.0 and fr8n01.191.0 have completed early. Although they had almost 24 hours remaining of
wallclock limit, they terminated. In reality, they probably failed on the real world system where the trace file
was being created. Their completion freed up 40 processors which the scheduler was able to immediately use
by starting several more jobs.

fr8n01.804.0            529    Running     5    00:04:30  Mon Feb 16 
11:54:03
fr8n01.187.0            570    Running    20    23:59:30  Mon Feb 16 
11:54:03
...

     9 active jobs     177 of  196 Processors Active (90.31%)

eligible jobs----------------------
JOBNAME            USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

...
fr8n01.963.0            586       Idle    32     9:00:00  Mon Feb 16 
11:54:33
fr8n01.1016.0           570       Idle    20  1:00:00:00  Mon Feb 16 
11:54:33

16 eligible jobs
...

> mschedctl -s 6I

scheduling will stop in 00:03:00 at iteration 6

> showq

active jobs------------------------
JOBNAME            USERNAME      STATE  PROC   REMAINING            
STARTTIME

fr8n01.804.0            529    Running     5    00:02:30  Mon Feb 16 
11:54:03
...
fr1n04.501.0            570    Running    20  1:00:00:00  Mon Feb 16 
11:56:33
fr8n01.388.0            550    Running    20  1:00:00:00  Mon Feb 16 
11:56:33

     9 active jobs     177 of  196 Processors Active (90.31%)
...
    14 eligible jobs
...



Note the system statistics:

A few more fields are filled in now that some jobs have completed providing information on which to
generate statistics.

Decrease the default LOGLEVEL with mschedctl -m to avoid unnecessary logging, and speed up the
simulation.

You can use mschedctl -m to immediately change the value of any parameter. The change is only made to
the currently running Moab server and is not propagated to the configuration file. Changes can also be made
by modifying the configuration file and restarting the scheduler.

Stop at iteration 580 and pull up the scheduler's statistics.

You may note that showq hangs a while as the scheduler simulates up to iteration 580. The output shows
that currently only 156 of the 196 nodes are busy, yet at first glance 3 jobs, fr8n01.963.0, fr8n01.1075.0,
and fr8n01.1076.0 appear to be ready to run.

> showstats

...
Successful/Completed Jobs:             0/2         (0.000%)
...
Avg WallClock Accuracy:           0.150%
Avg Job Proc Efficiency:        100.000%
Est/Avg Backlog (Hours):            0.00/3652178.74

> mschedctl -m LOGLEVEL 0

INFO:  parameter modified

> mschedctl -s 580I; showq

scheduling will stop in 4:47:00 at iteration 580

...
    11 active jobs     156 of  196 Processors Active (79.59%)

eligible jobs----------------------
JOBNAME            USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

fr8n01.963.0            586       Idle    32     9:00:00  Mon Feb 16 
11:54:33
fr8n01.1075.0           560       Idle    32    23:56:00  Mon Feb 16 
11:58:33
fr8n01.1076.0           560       Idle    16    23:56:00  Mon Feb 16 
11:59:33
fr1n04.1953.0           520       Idle    46     7:45:00  Mon Feb 16 
12:03:03
...
16 eligible jobs
...

> checkjob fr8n01.963.0; checkjob fr8n01.1075.0; checkjob 
fr8n01.1076.0

job fr8n01.963.0
...
Network: hps_user  Memory >= 256M  Disk >= 0  Swap >= 0
...



The checkjob command reveals that job fr8n01.963.0 only found 20 of 32 processors. The remaining 20
idle processors could not be used because the configured memory on the node did not meet the jobs
requirements. The other jobs cannot find enough nodes because of ReserveTime. This indicates that the
processors are idle, but that they have a reservation in place that will start before the job being checked
could complete.

Verify that the idle nodes do not have enough memory configured and they are already reserved with the
mdiag -n command, which provides detailed information about the state of nodes Moab is currently tracking.
The mdiag command can be used with various flags to obtain detailed information about accounts, fair
share, groups, jobs, nodes, QoS, queues, reservations, the resource manager, and users. The command
also performs a number of sanity checks on the data provided and will present warning messages if
discrepancies are detected.

Job Eligibility Analysis -------

job cannot run in partition DEFAULT (idle procs do not meet 
requirements : 20 of 32 procs found)
idle procs:  40  feasible procs:  20

Rejection Reasons: [Memory : 20][State : 156]

job fr8n01.1075.0
...
Network: hps_user  Memory >= 256M  Disk >= 0  Swap >= 0
...
job cannot run in partition DEFAULT (idle procs do not meet 
requirements : 0 of 32 procs found)
idle procs:  40  feasible procs:   0

Rejection Reasons: [Memory : 20][State : 156][ReserveTime : 20]

job fr8n01.1076.0
...
Network: hps_user  Memory >= 256M  Disk >= 0  Swap >= 0
...

> mdiag -n -v | grep -e Name -e Idle

Name      State  Procs Memory         Disk          Swap      Speed  
Opsys   Arch Par   Load Rsv  ...
fr10n09   Idle   1:1   256:256      9780:9780   411488:411488  1.00  
AIX43  R6000 DEF   0.00 001  .
fr10n11   Idle   1:1   256:256      8772:8772   425280:425280  1.00  
AIX43  R6000 DEF   0.00 001  . 
fr10n13   Idle   1:1   256:256      9272:9272   441124:441124  1.00  
AIX43  R6000 DEF   0.00 001  .
fr10n15   Idle   1:1   256:256      8652:8652   440776:440776  1.00  
AIX43  R6000 DEF   0.00 001  
fr11n01   Idle   1:1   256:256      7668:7668   438624:438624  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n03   Idle   1:1   256:256      9548:9548   424584:424584  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n05   Idle   1:1   256:256     11608:11608  454476:454476  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n07   Idle   1:1   256:256      9008:9008   425292:425292  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n09   Idle   1:1   256:256      8588:8588   424684:424684  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n11   Idle   1:1   256:256      9632:9632   424936:424936  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n13   Idle   1:1   256:256      9524:9524   425432:425432  1.00  
AIX43  R6000 DEF   0.00 001 
fr11n15   Idle   1:1   256:256      9388:9388   425728:425728  1.00  
AIX43  R6000 DEF   0.00 001 



The grep gets the command header and the idle nodes listed. All the idle nodes with 256 MB of memory
installed already have a reservation. (See the Rsv column.) The rest of the idle nodes only have 128 MB of
memory.

Using checknode revealed that Job fr8n01.963.0 has the reservation.

Moving ahead:

We now know that the scheduler is scheduling efficiently. So far, system utilization as reported by showstats
-v looks very good. An important and subjective question is whether the scheduler is scheduling fairly. Look
at the user and group statistics to see if there are any glaring problems.

fr14n01   Idle   1:1   256:256      6848:6848   424260:424260  1.00  

> checknode fr10n09

node fr10n09

State:      Idle  (in current state for 4:21:00)
Configured Resources: PROCS: 1  MEM: 256M  SWAP: 401G  DISK: 9780M
Utilized   Resources: [NONE]
Dedicated  Resources: [NONE]
..
Total Time: 4:50:00  Up: 4:50:00 (100.00%)  Active: 00:34:30 (11.90%)

Reservations:
  Job 'fr8n01.963.0'(x1)  3:25:00 -> 12:25:00 (9:00:00)

> mschedctl -S 500I;showstats -v

scheduling will stop in 4:10:00 at iteration 1080
...
Eligible/Idle Jobs:                   16/16        (100.000%)
Active Jobs:                          11
Successful/Completed Jobs:             2/25        (8.000%)
Preempt Jobs:                          0
Avg/Max QTime (Hours):              0.00/0.00
Avg/Max XFactor:                    0.00/1.04
Avg/Max Bypass:                     0.00/13.00

Dedicated/Total ProcHours:       1545.44/1765.63   (87.529%)
Preempt/Dedicated ProcHours:        0.00/1545.44   (0.000%)

Current Active/Total Procs:          156/196       (79.592%)

Avg WallClock Accuracy:           9.960%
Avg Job Proc Efficiency:        100.000%
Min System Utilization:          79.592% (on iteration 33)
Est/Avg Backlog (Hours):            0.00/20289.84

> showstats -u

statistics initialized Wed Dec 31 17:00:00
         |------ Active ------|--------------------------------- 
Completed -----------------------------------|
user      Jobs Procs ProcHours Jobs    %    PHReq    %    PHDed    %   
FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
520          1    46    172.88    1   0.00  356.5   0.00  541.3   0.00 
-----   1.04   0.00   0.35 100.00 100.00
550          1    20    301.83    7   0.00 3360.0   0.00  283.7   0.00 
-----   0.03   0.00   0.06 100.00   3.17
524          1    32    239.73 ---- ------ ------ ------  272.3   
0.00 ----- ------ ------ ------ 100.00 ------



Suppose you need to now take down the entire system for maintenance on Thursday from 2:00 to 8:00 a.m.
To do this, create a reservation with mrsvctl -c.

Shut down the scheduler.

570          1    20    301.00   14   0.00 6720.0   0.00  199.5   0.00 
-----   0.01   0.00   0.20 100.00   0.34
588          0     0      0.00    1   0.00  768.0   0.00  159.7   0.00 
-----   0.21   0.00   0.00 100.00  20.80
578          6     6    146.82 ---- ------ ------ ------   53.2   
0.00 ----- ------ ------ ------ 100.00 ------
586          1    32    265.07 ---- ------ ------ ------   22.9   
0.00 ----- ------ ------ ------ 100.00 ------
517          0     0      0.00    1   0.00  432.0   0.00    4.8   0.00 
-----   0.02   0.00   0.12 100.00   1.10
529          0     0      0.00    1   0.00    0.4   0.00    1.3   0.00 
-----   1.00   0.00   0.00 100.00 100.00

> showstats -g

statistics initialized Wed Dec 31 17:00:00

         |------ Active ------|--------------------------------- 
Completed -----------------------------------|
group     Jobs Procs ProcHours Jobs    %    PHReq    %    PHDed    %   
FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
503          1    32    239.73    1   0.00  432.0   0.00  277.1   0.00 
-----   0.02   0.00   0.12 100.00   1.10
501          1    32    265.07 ---- ------ ------ ------   22.9   
0.00 ----- ------ ------ ------ 100.00 ------
519          9    92    922.54   24   0.00 11204.9   0.00 1238.6   0.00 
-----   0.11   0.00   0.15 100.00  10.33

> mrsvctl -c -t ALL -s 2:00_02/17 -d 6:00:00

> mschedctl -k

moab will be shutdown immediately



16.3.2 Resource Traces
Resource traces fully describe all scheduling relevant aspects of a batch system's compute resources. In most
cases, each resource trace describes a single compute node providing information about configured
resources, node location, supported classes and queues, and so forth.

The mnodectl -q wiki ALL command will query all nodes and provide the proper output for the resource
trace file from your current system.

Sample Resource Trace:

node01 STATE=Idle PARTITION=native AMEMORY=32000 APROC=4 CMEMORY=32000 CPROC=4 OS=linux
GMETRIC[temp]=100.00 RM=native NODEACCESSPOLICY=SHARED CCLASS=[short:4]

node02 STATE=Idle PARTITION=native AMEMORY=32000 APROC=4 CMEMORY=32000 CPROC=4 OS=linux
GMETRIC[temp]=100.00 RM=native NODEACCESSPOLICY=SHARED FEATURE=[bigmem] CCLASS=[short:4]

node03 STATE=Idle PARTITION=native AMEMORY=32000 APROC=4 CMEMORY=32000 CPROC=4 OS=linux
GMETRIC[temp]=100.00 RM=native NODEACCESSPOLICY=SHARED FEATURE=[bigmem] CCLASS=[short:4]

node04 STATE=Idle PARTITION=native AMEMORY=32000 APROC=4 CMEMORY=32000 CPROC=4 OS=linux
GMETRIC[temp]=100.00 RM=native NODEACCESSPOLICY=SHARED FEATURE=[bigmem] CCLASS=[short:4]

For more information, see Appendix W: Wiki Interface Specification, version 1.2.

See Also
SIMRESOURCETRACEFILE
mnodectl -q wiki ALL



16.3.3 Workload Accounting Records
Moab workload accounting records fully describe all scheduling relevant aspects of batch jobs including resources requested and used,
time of all major scheduling events (such as submission time and start time), the job credentials used, and the job execution
environment. Each job trace is composed of a single line consisting of whitespace delimited fields as shown in the following table.

Moab can be configured to provide this information in flat text tabular form or in XML format conforming to the SSS 1.0 job
description specification.

16.3.3.1 Workload Event Record Format
16.3.3.2 Workload Event Record Format (v 6.0.0)
16.3.3.3 Creating New Workload Accounting Records/Traces
16.3.3.4 Reservation Records/Traces
16.3.3.5 Recording Job events

16.3.3.1 Workload Event Record Format (v 5.0.0)
All job events (JOBSUBMIT, JOBSTART, JOBEND, and so forth) provide job data in a standard format as described in the following
table:

Field Name Field
Index Data Format Default

Value Details

Event Time (Human
Readable) 1 HH:MM:SS - Specifies time event occurred.

Event Time (Epoch) 2 <epochtime> - Specifies time event occurred.

Object Type 3 job - Specifies record object type.

Object ID 4 <STRING> - Unique object identifier.

Object Event

5

one of jobcancel, jobcheckpoint,
jobend, jobfailure, jobhold,
jobmigrate, jobpreempt,
jobreject, jobresume, jobstart or
jobsubmit

-

Specifies record event type.

Nodes Requested 6 <INTEGER> 0 Number of nodes requested (0 = no node request
count specified).

Tasks Requested 7 <INTEGER> 1 Number of tasks requested.

User Name 8 <STRING> - Name of user submitting job.

Group Name 9 <STRING> - Primary group of user submitting job.

Wallclock Limit 10 <INTEGER> 1 Maximum allowed job duration (in seconds).

Job Event State 11 <STRING> - Job state at time of event.

Required Class
12

<STRING>
[DEFAULT:1]

Class/queue required by job specified as square
bracket list of <QUEUE>[:<QUEUEINSTANCE>]
requirements. (For example: [batch:1]).

Submission Time 13 <INTEGER> 0 Epoch time when job was submitted.

Dispatch Time 14 <INTEGER> 0 Epoch time when scheduler requested job begin
executing.

Start Time 15 <INTEGER> 0 Epoch time when job began executing. This is
usually identical to Dispatch Time.

Completion Time 16 <INTEGER> 0 Epoch time when job completed execution.

Required Network
Adapter 17 <STRING> - Name of required network adapter if specified.

Required Node 
 Architecture 18 <STRING> - Required node architecture if specified.

Required Node 
 Operating System 19 <STRING> - Required node operating system if specified.

Required Node one of >, >=, =, <=, < Comparison for determining compliance with



 Memory 
 Comparison

20 >= required node memory.

Required Node 
 Memory 21 <INTEGER> 0 Amount of required configured RAM (in MB) on

each node.

Required Node Disk 
 Comparison 22 one of >, >=, =, <=, < >= Comparison for determining compliance with

required node disk.

Required Node Disk 23 <INTEGER> 0 Amount of required configured local disk (in MB)
on each node.

Required Node 
 Attributes/Features 24

<STRING>
-

Square bracket enclosed list of node features
required by job if specified. (For example:
[fast][ethernet])

System Queue 
 Time 25 <INTEGER> 0 Epoch time when job met all fairness policies.

Tasks Allocated

26

<INTEGER>

<TASKS
REQUESTED>

Number of tasks actually allocated to job.

In most cases, this field is identical to field
#3, Tasks Requested.

Required Tasks Per
Node 27 <INTEGER> -1 Number of Tasks Per Node required by job or '-1' if

no requirement specified.

QOS
28

<STRING>[:<STRING>]
-

QoS requested/assigned using the format
<QOS_REQUESTED>[:<QOS_DELIVERED>]. (For
example: hipriority:bottomfeeder)

JobFlags 29 <STRING>[:<STRING>]... - Square bracket delimited list of job attributes. (For
example: [BACKFILL][BENCHMARK][PREEMPTEE])

Account Name 30 <STRING> - Name of account associated with job if specified.

Executable 31 <STRING> - Name of job executable if specified.

Resource Manager
Extension String 32

<STRING>
-

Resource manager specific list of job attributes if
specified. See the Resource Manager Extension
Overview for more information.

Bypass Count 33 <INTEGER> -1 Number of times job was bypassed by lower
priority jobs via backfill or '-1' if not specified.

ProcSeconds 
 Utilized 34 <DOUBLE> 0 Number of processor seconds actually used by job.

Partition Name 35 <STRING> [DEFAULT] Name of partition in which job ran.

Dedicated
Processors per Task 36 <INTEGER> 1 Number of processors required per task.

Dedicated Memory
per Task 37 <INTEGER> 0 Amount of RAM (in MB) required per task.

Dedicated Disk per
Task 38 <INTEGER> 0 Amount of local disk (in MB) required per task.

Dedicated Swap per
Task 39 <INTEGER> 0 Amount of virtual memory (in MB) required per

task.

Start Date 40 <INTEGER> 0 Epoch time indicating earliest time job can start.

End Date 41 <INTEGER> 0 Epoch time indicating latest time by which job
must complete.

Allocated Host List 42 <hostname>[,<hostname>]... - Comma delimited list of hosts allocated to job. (For
example: node001,node004)

Resource Manager
Name 43 <STRING> - Name of resource manager if specified.

Required Host List

44

<hostname>[,<hostname>]...

-

List of hosts required by job. (If the job's
taskcount is greater than the specified number of
hosts, the scheduler must use these nodes in
addition to others; if the job's taskcount is less



than the specified number of hosts, the scheduler
must select needed hosts from this list.)

Reservation 45 <STRING> - Name of reservation required by job if specified.

Application
Simulator Data 46

<STRING>[:<STRING>]
-

Name of application simulator module and
associated configuration data. (For example:
HSM:IN=infile.txt:140000;OUT=outfile.txt:500000)

Set Description

47

<STRING>:<STRING>[:<STRING>]

-

Set constraints required by node in the form
<SetConstraint>:<SetType>[:<SetList>] where
SetConstraint is one of ONEOF, FIRSTOF, or
ANYOF, SetType is one of PROCSPEED,
FEATURE, or NETWORK, and SetList is an
optional colon delimited list of allowed set
attributes. (For example:
ONEOF:PROCSPEED:350:450:500)

Job Message 48 <STRING> - Job messages including resource manager,
scheduler, and administrator messages if specified.

Job Cost

49

<DOUBLE>

0.0

Cost of executing job incorporating resource
consumption metric, resource quantity consumed,
and credential, allocated resource, and delivered
QoS charge rates.

History

50

<STRING>

-

List of job events impacting resource allocation
(XML).

History information is only reported in Moab
5.1.0 and higher.

Utilization

51

Comma delimited list of one or
more of the following:
<ATTR>=<VALUE> pairs where
<VALUE> is a double and <ATTR>
is one of the following: network (in
MB transferred), license (in license-
seconds), storage (in MB-seconds
stored), or gmetric:<TYPE>.

-

Cumulative resources used over life of job.

Estimate Data 52 <STRING> - List of job estimate usage.

Completion Code 53 <INTEGER> - Job exit status/completion code.

Extended Memory
Load Information 54 <STRING> - Extended memory usage statistics (max, mem,

avg, and so forth).

Extended CPU Load
Information 55 <STRING> - Extended CPU usage statistics (max, mem, avg,

and so forth).

Generic Metric
Averages 56 <STRING> -1 Generic metric averages.

Effective Queue
Duration 57 <INTEGER> -1 The amount of time, in seconds, that the job was

eligible for scheduling.

If no applicable value is specified, the exact string - should be entered.

Fields that contain a description string such as Job Message use a packed string format. The packed string format replaces white
space characters such as spaces and carriage returns with a hex character representation. For example a blank space is
respresented as \20. Since fields in the event record are space delimited, this preserves the correct order and spacing of fields
in the record.

Sample Workload Trace

13:21:05 110244355 job 1413 JOBEND 20 20 josh staff 86400 Removed 
[batch:1] 887343658 889585185 \
889585185 889585411 ethernet R6000 AIX53 >= 256 >= 0 - 889584538 20 0 
0 2 0 test.cmd \
1001 6 678.08 0 1 0 0 0 0 0 - 0 - - - - - - - - 0.0 - - - 0 - -



16.3.3.2 Workload Event Record Format (v 6.0.0.0)
All job events (JOBSUBMIT, JOBSTART, JOBEND, and so forth) provide job data in the native wiki format (ATTR=VALUE). This is to
make events more readable and to allow format flexibility.

Examples

16.3.3.3 Creating New Workload Simulation Traces
Because workload event records and simulation workload traces use the same format, these event records can be used as a starting
point for generating a new simulation trace. In the Moab simple case, an event record or collection of event records can be used
directly as the value for the SIMWORKLOADTRACEFILE as in the following example:

In the preceding example, all non-JOBEND events were filtered out. This step is not required but only JOBEND events are used
in a simulation; other events are ignored by Moab.

Modifying Existing Job Event Records

When creating a new simulation workload, it is often valuable to start with workload traces representing a well-known or even local
workload. These traces preserve distribution information about job submission times, durations, processor count, users, groups,
projects, special resource requests, and numerous other factors that effectively represent an industry, user base, or organization.

When modifying records, a field or combination of fields can be altered, new jobs inserted, or certain jobs filtered out.

Because job event records are used for multiple purposes, some of the fields are valuable for statistics or auditing purposes but
are ignored in simulations. For the most part, fields representing resource utilization information are ignored while fields
representing resource requests are not.

Modifying Time Distribution Factors of a Workload Trace

In some cases, simulations focus on determining the effects of changing the quantities or types of jobs or on changing policies or job
ownership to see changes to system performance and resource utiliation. However, other times simulations tend to focus on response-
time metrics as job submission and job duration aspects of the workload are modified. Which time-based fields are important to modify
depend on the simulation purpose and the setting of the JOBSUBMISSIONPOLICY parameter.

JOBSUBMISSIONPOLICY Value Critical Time Based Fields

NORMAL WallClock Limit 
Submission Time 

09:26:40 1288279600:1 sched    Moab         SCHEDSTART   -
09:26:40 1288279600:2 rm       pbs          RMUP         initialized
09:26:40 1288279600:3 sched    Moab         RMPOLLSTART  -
09:26:40 1288279600:4 job      58           JOBSUBMIT    58   
REQUESTEDNC=1 REQUESTEDTC=3 UNAME=wightman 
GNAME=wightman WCLIMIT=60   STATE=Completed RCLASS=[batch:1] 
SUBMITTIME=1288279493 RMEMCMP=>= RDISKCMP=>= 
RFEATURES=[NONE]   SYSTEMQUEUETIME=1288279493 TASKS=1 
FLAGS=RESTARTABLE PARTITION=pbs   DPROCS=1 
ENDDATE=2140000000 TASKMAP=proxy,GLOBAL SRM=pbs   
MESSAGE="\STARTLabel\20\20\20CreateTime\20ExpireTime
\20\20\20\20Owner\20Prio\20Num\20Message\0a,\STARTcheckpoint\20record\2
EXITCODE=0 SID=2357 
NODEALLOCATIONPOLICY=SHARED

09:26:40 1288279600:5 job      58           JOBEND       58   
REQUESTEDNC=1 REQUESTEDTC=3 UNAME=wightman 
GNAME=wightman WCLIMIT=60   STATE=Completed RCLASS=[batch:1] 
SUBMITTIME=1288279493 RMEMCMP=>= RDISKCMP=>= 
RFEATURES=[NONE]   SYSTEMQUEUETIME=1288279493 TASKS=1 
FLAGS=RESTARTABLE PARTITION=pbs   DPROCS=1 
ENDDATE=2140000000 TASKMAP=proxy,GLOBAL SRM=pbs EXITCODE=0   SID=2357 
NODEALLOCATIONPOLICY=SHARED 
EFFECTIVEQUEUEDURATION=107

# collect all job records for December
> cat /opt/moab/stats/events.*Dec*2006 | grep JOBEND > 
/opt/moab/DecJobs.txt

# edit moab.cfg for use job records
> vi /opt/moab/etc/moab.cfg
  (add 'SIMWORKLOADTRACEFILE /opt/moab/DecJobs.txt')
  (set SIMRESOURCETRACEFILE, SCHEDCFG[] MODE and other simulation 
parameters as described in the Simulation Overview

# start the simulation
> moab

http://sempa/resources/docs/blanks/mwm/16.0simulation.php


StartTime 
Completion Time

CONSTANTJOBDEPTH 
CONSTANTPSDEPTH

WallClock Limit 
StartTime 
Completion Time

Note 1:  Dispatch Time should always be identical to Start Time 
Note 2:  In all cases, the difference of 'Completion Time - Start Time' is used to determine actual job run time. 
Note 3:  System Queue Time and Proc-Seconds Utilized are only used for statistics gathering purposes and will not alter the behavior
of the simulation. 
Note 4:  In all cases, relative time values are important, i.e., Start Time must be greater than or equal to Submission Time and less
than Completion Time.

Creating Workload Traces From Scratch

   There is nothing which prevents a completely new workload trace from being created from scratch.  To do this, simply create a file
whith fields matching the format described in the Workload Event Record Format section.

16.3.3.4  Reservation Records/Traces
All reservation events provide reservation data in a standard format as described in the following table:

Field Name Field
Index Data Format Default

Value Details

Event Time
(Human) 0 [HH:MM:SS] - Specifies time event occurred.

Event Time
(Epoch) 1 <epochtime> - Specifies time event occurred.

Object Type 2 rsv - Specifies record object type.

Object ID 3 <STRING> - Unique object identifier.

Object Event 4 one of rsvcreate, rsvstart,
rsvmodify, rsvfail or rsvend - Specifies record event type.

Creation Time 5 <EPOCHTIME> - Specifies epoch time of reservation start date.

Start Time 6 <EPOCHTIME> - Specifies epoch time of reservation start date.

End Time 7 <EPOCHTIME> - Specifies epoch time of reservation end date.

Tasks
Allocated 8 <INTEGER> - Specifies number of tasks allocated to reservation at event

time.

Nodes
Allocated 9 <INTEGER> - Specifies number of nodes allocated to reservation at event

time.

Total Active
Proc-Seconds 10 <INTEGER> - Specifies proc-seconds reserved resources were dedicated to

one or more job at event time.

Total Proc-
Seconds 11 <INTEGER> - Specifies proc-seconds resources were reserved at event time.

Hostlist 12 <comma delimited list of
hostnames> - Specifies list of hosts reserved at event time.

Owner 13 <STRING> - Specifies reservation ownership credentials.

ACL 14 <STRING> - Specifies reservation access control list.

Category 15 <STRING> - Specifies associated node category assigned to reservation.

Comment 16 <STRING> - Specifies general human readable event message.

Command Line 17 <STRING> - Displays the command line arguments used to create the
reservation (only shows on the rsvcreate event).

16.3.3.5 Recording Job Events
Job events occur when a job undergoes a definitive change in state. Job events include submission, starting, cancellation, migration,
and completion. Some site administrators do not want to use an external accounting system and use these logged events to determine
their clusters' accounting statistics. Moab can be configured to record these events in the appropriate event file found in the Moab
stats/ directory. To enable job event recording for both local and remotely staged jobs, use the RECORDEVENTLIST parameter. For



example:

This configuration records an event each time both remote and/or local jobs are canceled, run to completion, started, or submitted.
The Event Logs section details the format of these records.

See Also
Event Logging Overview
SIMWORKLOADTRACEFILE

RECORDEVENTLIST JOBCANCEL,JOBCOMPLETE,JOBSTART,JOBSUBMIT
...



16.3.4 Simulation Specific Configuration
View the Simulation configuration demo.

To use any Moab simulation parameter, the MODE attribute of SCHEDCFG must be set to SIMULATION.
Once set, the following parameters control the environment, behavior, and policies used within the
simulation:

Simulation Resources
SIMNODECONFIGURATION - Specifies node configuration policies.
SIMNODECOUNT - Limits number of nodes loaded.
SIMRESOURCETRACEFILE - Specifies source of node traces.

Simulation Workload Specification, Queuing, and Management
SIMCPUSCALINGPERCENT - Adjusts job walltime.
SIMDEFAULTJOBFLAGS - Sets default job flags.
SIMFLAGS - Adjusts processing of workload traces.
SIMIGNOREJOBFLAGS - Ignores specified job flags if specified in workload traces.
SIMINITIALQUEUEDEPTH - Specifies simulation backlog.
SIMJOBSUBMISSIONPOLICY - Specifies how simulation backlog is managed.
SIMPURGEBLOCKEDJOBS - Removes jobs that can never run.
SIMWORKLOADTRACEFILE - Specifies source of job traces.

Time/Iteration Management
SIMAUTOSHUTDOWN - Shuts down when all jobs have been scheduled.
SIMEXITITERATION - Exits simulation on specified iteration.
SIMSTARTTIME - Sets simulation clock to specified time.
SIMSTOPITERATION - Pauses simulation on specified iteration.
SIMTIMERATIO - Adjusts simulation time as a ratio of real time.

General Simulation Management
SIMRMRANDOMDELAY - Inserts artificial delays into simulation resource manager queries.

Special consideration should be made for large clusters.

http://www.clusterresources.com/services/Tutorials/MSim.html


17.0 Moab Workload Manager for Grids
Cluster Consolidation and Sovereign Grids is a video tutorial of a session offered at Moab Con that
offers further details for understanding cluster consolidation and sovereign grids.

Moab Grid Scheduler allows sites to establish relationships among multiple clusters. There are three types of
relationships you can implement within the grid: (1) centralized management, (2) source-destination
management, and (3) localized management. These relationships provide access to additional resources,
improve load-balancing, provide single system images, and offer other benefits. The grid interface is flexible
allowing sites to establish the needed relationship.

17.1 Grid Basics
17.2 Grid Configuration Basics
17.3 Centralized Grid Management
17.4 Source-Destination Grid Management
17.5 Localized Grid Management
17.6 Resource Control and Access
17.7 Workload Submission and Control
17.8 Reservations in the Grid
17.9 Grid Usage Policies
17.10 Grid Scheduling Policies
17.11 Grid Credential Management
17.12 Grid Data Management
17.13 Accounting and Allocation Management
17.14 Grid Security
17.15 Grid Information Services
17.15 Grid Diagnostics and Validation

http://www.clusterresources.com/moabcon/2008/videos/Cluster%20Consolidation%20and%20Sovereign%20Grids%20-%20Jonathan%20Ryskamp.php
http://sempa/resources/docs/blanks/mwm/17.15_grid_information_services.php


17.1 Grid Basics
17.1.1 Grid Overview
17.1.2 Grid Benefits
17.1.3 Scalability
17.1.4 Resource Access
17.1.5 Load-Balancing
17.1.6 Single System Image (SSI)
17.1.7 High Availability
17.1.8 Grid Relationships

17.1.8.1 Grid Relationships
17.1.8.2 Source-Destination Management
17.1.8.3 Local Management

17.1.9 Submitting Jobs to the Grid
17.1.10 Viewing Jobs and Resources

17.1.1 Grid Overview
A grid enables you to exchange workload and resource status information and to distribute jobs and data among
clusters in an established relationship. In addition, you can use resource reservations to mask reported resources,
coordinate requests for consumable resources, and quality of service guarantees.

In a grid, some servers running Moab are a source for jobs (that is, where users, portals, and other systems submit
jobs), while other servers running Moab are a destination for these jobs (that is, where the jobs execute). Thus,
jobs originate from a source server and move to a destination server. For a source server to make an intelligent
decision, though, resource availability information must flow from a destination server to that source server.

Because you can manage workload on both the source and destination side of a grid relationship, you have a high
degree of control over exactly when, how, and where to execute workload.

17.1.2 Grid Benefits
Moab's peer-to-peer capabilities can be used for multiple purposes, including any of the following:

manage access to external shared resources
enable cluster monitoring information services
enable massive-scalability clusters
enable distributed grid computing

Of these, the most common use is the creation of grids to join multiple centrally managed, partially autonomous, or
fully autonomous clusters. The purpose of this section is to highlight the most common uses of grid technology and
provide references to sections which further detail their configuration and management. Other sections cover the
standard aspects of grid creation including configuring peer relationships, enabling data staging, credential
management, usage policies, and other factors.

17.1.3 Management-Scalability



Much like a massive-scalability cluster, a massive-scalability grid allows organizations to overcome scalability
limitations in resource managers, networks, message passing libraries, security middleware, file systems, and other
forms of software and hardware infrastructure. Moab does this by allowing a single large set of resources to be
broken into multiple smaller, more manageable clusters, and then virtually re-assembling them using Moab. Moab
becomes responsible for integrating the seams between the cluster and presenting a single-system image back to
the end-users, administrators, and managers.

Jobs cannot span clusters.

17.1.4 Resource Access
In some cases, the primary motivation for creating a grid is to aggregate resources of different types into a single
system. This aggregation allows for multi-step jobs to run a portion of the job on one architecture, and a portion on
another.

A common example of a multi-architecture parameter-sweep job would be a batch regression test suite which
requires a portion of the tests running on Redhat 7.2, a portion on SuSE 9.1, a portion on Myrinet nodes, and a
portion on Infiniband nodes. While it would be very difficult to create and manage a single cluster which
simultaneously provided all of these configurations, Moab can be used to create and manage a single grid which
spans multiple clusters as needed.

17.1.5 Load-Balancing
While grids often have additional motivations, it is rare to have a grid created where increased total system
utilization is not an objective. By aggregating the total pool of jobs requesting resources and increasing the pool of
resources available to each job, Moab is able to improve overall system utilization, sometimes significantly. The
biggest difficulty in managing multiple clusters is preventing inter-cluster policies and the cost of migration from
overwhelming the benefits of decreased fragmentation losses. Even though remote resources may be available for
immediate usage, migration costs can occur in the form of credential, job, or data staging and impose a noticeable
loss in responsiveness on grid workload.

Moab provides tools to allow these costs to be monitored and managed and both cluster and grid level performance
to be reported.

17.1.6 Single System Image (SSI)
Another common benefit of grids is the simplicity associated with a single system image based resource pool. This
simplicity generally increases productivity for end-users, administrators, and managers.

An SSI environment tends to increase the efficiency of end-users by minimizing human errors associated with
porting a request from a known system to a less known system. Additionally, the single point of access grid reduces
human overhead associated with monitoring and managing workload within multiple independent systems.

For system administrators, a single system image can reduce overhead, training time, and diagnostic time
associated with managing a cluster. Furthermore, with Moab's peer-to-peer technology, no additional software layer
is required to enable the grid and no new tools must be learned. No additional layers mean no additional failure
points, and that is good for everyone involved.

Managers benefit from SSI by being able to pursue organization mission objectives globally in a more coordinated
and unified manner. They are also able to monitor progress toward those objectives and effectiveness of resources
in general.

17.1.7 High Availability
A final benefit of grids is their ability to decrease the impact of failures. Grids add anothe rlayer of high avaialablity
to the cluster-level high availability. For some organizations, this benefit is a primary motivation, pulling together
additional resources to allow workload to continue to be processed even in the event that some nodes, or even an
entire cluster, become unavailable. Whether the resource unavailability is based on node failures, network failures,
systems middleware, systems maintenance, or other factors, a properly configured grid can reroute priority
workload throughout the grid to execute on other compatible resources.

With grids, there are a number of important factors in high availability that should be considered:

enabling highly available job submission/job management interfaces
avoiding network failures with redundant routes to compute resources
handling partial failures



dynamically restarting failed jobs

17.1.8 Grid Relationships
There are three types of relationships you can implement within the grid:

centralized management
source-destination management
localized management

17.1.8.1 Centralized Management (Master/Slave)

The centralized management model (master/slave) allows users to submit jobs to a centralized source server
running Moab. The source Moab server obtains full resource information from all clusters and makes intelligent
scheduling decisions across all clusters. Jobs (and data when configured to do so) are distributed to the remote
clusters as needed. The centralized management model is recommended for intra-organization grid environments
when cluster autonomy is not as necessary.

In the centralized management (master-slave) configuration, roles are clear. In other configurations, individual
Moab servers may simultaneously act as sources to some clusters and destinations to others or as both a source
and a destination to another cluster.

Example of the Centralized Management Model

XYZ Research has three clusters—MOAB1, MOAB2, and MOAB3—running Moab and the TORQUE resource manager.
They would like to submit jobs at a single location (cluster MOAB1) and have the jobs run on whichever cluster can
provide the best responsiveness.

The desired behavior is essentially a master-slave relationship. MOAB1 is the central, or master, cluster. On MOAB1,
resource managers point to the local TORQUE resource manager and to the Moab servers on cluster MOAB2 and
cluster MOAB3. The Moab servers on MOAB2 and MOAB3 are configured to trust cluster MOAB1 and to execute in
slave mode.

With this configuration, XYZ Research may submit jobs to the master Moab server running on cluster MOAB1 and
may, as stated earlier, submit jobs from the slave nodes as well. However, only the master Moab server may
schedule jobs. For example, cluster MOAB2 and cluster MOAB3 cannot schedule a job, but they can accept a job
and retain it in an idle state until the master directs it to run.

You can turn off job submission on slave nodes by setting the DISABLESLAVEJOBSUBMIT parameter to TRUE.

http://www.adaptivecomputing.com/resources/docs/mwm/17.12_grid_data_management.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


The master Moab server obtains full resource information from all three clusters and makes intelligent scheduling
decisions and distributes jobs (and data when configured to do so) to the remote clusters. The Moab servers
running on clusters MOAB2 and MOAB3 are destinations behaving like a local resource manager. The Moab server
running on MOAB1 is a source, loading and using this resource information.

17.1.8.2 Source-Destination Management

As with the centralized management model (master/slave), the source-destination model allows users to submit
jobs to a centralized source server running Moab. However, in the source-destination model, clusters retain
sovereignty, allowing local job scheduling. Thus, if communication between the source and destination clusters is
interrupted, the destination cluster(s) can still run jobs locally.

In the source-destination model, the source Moab server obtains full resource information from all clusters and
makes intelligent scheduling decisions across all clusters. As needed, jobs and data are distributed to the remote
clusters. Or, if preferred, a destination cluster may also serve as its own source; however, a destination cluster may
not serve as a source to another destination cluster. The centralized management model is recommended for intra-
organization grid environments when cluster autonomy is not as necessary.

17.1.8.3 Localized Management

The localized management (peer-to-peer) model allows you to submit jobs on one cluster and schedule the jobs on
another cluster. For example, a job may be submitted on MOAB1 and run on MOAB3. Jobs can also migrate in the
opposite direction (that is, from MOAB3 to MOAB1). The source servers running Moab obtain full resource
information from all clusters and make intelligent scheduling decisions across all clusters. Jobs (and data when
configured to do so) are migrated to other clusters as needed.

http://www.adaptivecomputing.com/resources/docs/mwm/17.12_grid_data_management.php
http://www.adaptivecomputing.com/resources/docs/mwm/17.12_grid_data_management.php


Jobs will not migrate indefinitely. The localized management model limits them to one migration.

This model allows clusters to retain their autonomy while still allowing jobs to run on any cluster. No central location
for job submission is needed, and you do not need to submit jobs from different nodes based on resource needs.
You can submit a job from any location and it is either migrated to nodes on the least utilized cluster or the cluster
requested in the job submission. This model is recommended for grids in an inter-organization grid environment.

17.1.9 Submitting Jobs to the Grid
In any peer-to-peer or grid environment where jobs must be migrated between clusters, use the Moab msub
command. Once a job has been submitted to Moab using msub, Moab identifies potential destinations and migrates
the job to the destination cluster.

Using Moab's msub job submission command, jobs may be submitted using PBS or LSF command file syntax and be
run on any cluster using any of the resource managers. For example, a PBS job script may be submitted using msub
and depending on availability, Moab may translate a subset of the job's directives and execute it on an LSF cluster.

Moab can only stage/migrate jobs between resource managers (in between clusters) that have been
submitted using the msub command. If jobs are submitted directly to a low-level resource manager, such as
PBS, Moab will still be able to schedule them but only on resources directly managed by the resource
manager to which they were submitted.

Example 1

A small pharmaceutical company, BioGen, runs two clusters in a centralized relationship. The slave is an older IBM
cluster running Loadleveler, while the master manages the slave and also directly manages a large Linux cluster
running TORQUE. A new user familiar with LSF has multiple LSF job scripts he would like to continue using. To
enable this, the administrators make a symbolic link between the Moab msub client and the file bsub. The user
begins submitting his jobs via bsub and, according to availability, the jobs run on either the Loadleveler or TORQUE
clusters.

Example 2

A research lab wants to use spare cycles on its four clusters, each of which is running a local resource manager. In
addition to providing better site-wide load balancing, the goal is to also provide some of its users with single point



access to all compute resources. Various researchers have made it clear that this new multi-cluster load balancing
must not impose any changes on users who are currently using these clusters by submitting jobs locally to each
cluster.

In this example, the scheduler mode of the destination clusters should be set to NORMAL rather than SLAVE. In
SLAVE mode, Moab makes no local decisions—it simply follows the directions of remote trusted peers. In NORMAL
mode, each Moab is fully autonomous, scheduling all local workload and coordinating with remote peers when and
how to schedule migrated jobs.

From the perspective of a local cluster user, no new behaviors are seen. Remote jobs are migrated in from time to
time, but to the user each job looks as if it were locally submitted. The user continues to submit, view, and manage
jobs as before, using existing local jobs scripts.

17.1.10 Viewing Jobs and Resources
By default, each destination Moab server will report all compute nodes it finds back to the source Moab server.
These reported nodes appear within the source Moab as local nodes each within a partition associated with the
resource manager reporting them. If a source resource manager was named slave1, all nodes reported by it would
be associated with the slave1 partition. Users and administrators communicating with the source Moab via Moab
Cluster Manager, Moab Access Portal, or standard Moab command line tools would be able to view and analyze all
reported nodes.

The grid view will be displayed if either the source or the destination
server is configured with grid view.

For job information, the default behavior is to only report to the source Moab
information regarding jobs that originated at the source. If information about
other jobs is desired, this can be configured as shown in the Workload
Submission and Control section.

See Also
Resource Control and Access

http://www.adaptivecomputing.com/resources/docs/mcm
http://www.adaptivecomputing.com/resources/docs/mcm
http://www.adaptivecomputing.com/resources/docs/map


17.2 Grid Configuration Basics
17.2.1 Peer Configuration Overview
17.2.2 Initial Configuration
17.2.3 Viewing Jobs From Other Peers

17.2.1 Peer Configuration Overview
In the simplest case, establishing a peer relationship can be accomplished with as few as two configuration
lines: one line to indicate how to contact the peer and one line to indicate how to authenticate the server.
However, data migration issues, credential mapping, and usage policies must often be addressed in order to
make a peer-based grid effective.

To address these issues Moab provides facilities to control how peers inter-operate, enabling full autonomy
over both client and server ends of the peer relationship.

17.2.2 Initial Configuration
At a minimum, only two parameters must be specified to establish a peer relationship: RMCFG and
CLIENTCFG.  RMCFG allows a site to specify interface information directing Moab on how to contact and
inter-operate with the peer. For peer interfaces, a few guidelines must be followed with the RMCFG
parameter:

the TYPE attribute of the peer must be set to moab
the SERVER attribute must point to the host and user interface port of the remote Moab server
the name of the resource manager should match the name of the remote peer cluster as specified with
the SCHEDCFG parameter in the peer moab.cfg.

MoabServer01 moab.cfg

Configuring the CLIENTCFG parameter is mandatory. When specifying the CLIENTCFG parameter for peers,
the following guidelines must be followed:

the CLIENTCFG parameter must be specified in the moab-private.cfg file on both peers
an RM: prefix is required before the peer's name
if using default secret key based security, the value of the KEY attribute must match the KEY value
set on the corresponding remote peer
the AUTH attribute must be set to admin1 in the moab-private.cfg on the destination Moab

MoabServer01 moab-private.cfg

MoabServer02 moab-private.cfg

SCHEDCFG[MoabServer01] MODE=NORMAL SERVER=hpc-01:41111
RMCFG[MoabServer02]    TYPE=moab   SERVER=hpc-02:40559
...

CLIENTCFG[RM:MoabServer02] KEY=3esfv0=32re2-tdbne
....

CLIENTCFG[RM:MoabServer01] KEY=3esfv0=32re2-tdbne AUTH=admin1
...



17.3 Centralized Grid Management
(Master/Slave)
17.3.1 Master Configuration
The process of setting u[ the master configuration is the same as setting up a source Moab configuration.
The master/slave relationship is configured in each moab.cfg on the slave.

Master moab.cfg:

Master moab-private.cfg:

17.3.2 Slave Configuration
The slave's relationship with the master is determined by the MODE. Setting MODE to SLAVE notifies the
master to take control of starting jobs on the slave. The master starts the jobs on the slave.. In SLAVE
mode, jobs can be submitted locally to the slave, but are not seen or started by the master. When a job is
submitted locally to the slave the job is locked into the cluster and cannot migrate to other clusters.

Slave moab.cfg:

Slave moab-private.cfg:

SCHEDCFG[master] SERVER=master:42559 MODE=NORMAL
...

CLIENTCFG[RM:slave1]  KEY=3esfv0=32re2-tdbne
...

SCHEDCFG[slave1] SERVER=slave1:42559 MODE=SLAVE
...

CLIENTCFG[RM:master] KEY=3esfv0=32re2-tdbne  AUTH=admin1
...



17.4 Source-Destination Grid Management
17.4.1 Configuring a Peer Server (Source)

17.4.1.1 Simple Source-Destination Grid

17.4.1 Configuring a Peer Server (Source)
Peer relationships are enabled by creating and configuring a resource manager interface using the RMCFG
parameter. This interface defines how a given Moab will load resource and workload information and enforce
its scheduling decisions. In non-peer cases, the RMCFG parameter points to a resource manager such as
TORQUE, LSF, or SGE. However, if the TYPE attribute is set to Moab, the RMCFG parameter can be used
to configure and manage a peer relationship.

17.4.1.1 Simple Source-Destination Grid

The first step to create a new peer relationship is to configure an interface to a destination Moab server. In
the following example, cluster C1 is configured to be able to see and use resources from two other clusters.

In this example, C1 allows a global view of the underlying clusters. From C1, jobs can be viewed and
modified. C2 and C3 act as seperate scheduling entitites that can recieve jobs from C1. C1 migrates jobs to
C2 and C3 based oin available resources and policies of C1. Jobs migrated to C2 and C3 are scheduled
according to the polices on C2 and C3.

In this case, one RMCFG parameter is all that is required to configure each peer relationship if standard
secret key based authentication is being used and a shared default secret key exists between the source and
destination Moabs. However, if peer relationships with multiple clusters are to be established and a per-peer
secret key is to be used (highly recommended), then a CLIENTCFG parameter must be specified for the
authentication mechanism. Because the secret key must be kept secure, it must be specified in the moab-
private.cfg file. For the current example, a per-peer secret key could be set up by creating the following
moab-private.cfg file on the C1 cluster.

The key specified can be any alphanumeric value and can be locally generated or made up. The only
critical aspect is that the keys specified on each end of the peer relationship match.

Additional information can be found in the Grid Security section which provides detailed information on
designing, configuring, and troubleshooting peer security.

Continuing with the example, the initial source side configuration is now complete. On the destination
clusters, C2 and C3, the first step is to configure authentication. If a shared default secret key exists between
all three clusters, then configuration is complete and the clusters are ready to communicate. If per-peer
secret keys are used (recommended), then it will be necessary to create matching moab-private.cfg files
on each of the destination clusters. With this example, the following files would be required on C2 and C3
respectively:

Once peer security is established, a final optional step would be to configure scheduling behavior on the
destination clusters. By default, each destination cluster accepts jobs from each trusted peer. However, it will

SCHEDCFG[C1] MODE=NORMAL SERVER=head.C1.xyz.com:41111 
RMCFG[C2]    TYPE=moab   SERVER=head.C2.xyz.com:40559 
RMCFG[C3]    TYPE=moab   SERVER=head.C3.xyz.com:40559
...  

CLIENTCFG[RM:C2] KEY=fastclu3t3r  
CLIENTCFG[RM:C3] KEY=14436aaa 

CLIENTCFG[RM:C1] KEY=fastclu3t3r AUTH=admin1

CLIENTCFG[RM:C1] KEY=14436aaa AUTH=admin1



also be fully autonomous, accepting and scheduling locally submitted jobs and enforcing its own local policies
and optimizations. If this is the desired behavior, then configuration is complete.

In the current example, with no destination side scheduling configuration, jobs submitted to cluster C1 can
run locally, on cluster C2 or on cluster C3. However, the established configuration does not necessarily
enforce a strict master-slave relationship because each destination cluster (C2 and C3) has complete
autonomy over how, when, and where it schedules both local and remote jobs. Each cluster can potentially
receive jobs that are locally submitted and can also receive jobs from other source Moab servers. See Slave
Mode for more information on setting up a master-slave grid.

Further, each destination cluster will accept any and all jobs migrated to it from a trusted peer without
limitations on who can run, when and where they can run, or how many resources they can use. If this
behavior is either too restrictive or not restrictive enough, then destination side configuration will be
required.



17.5 Localized Grid Management
17.5.1 Enabling Bi-Directional Job Flow

17.5.1.1 True Peer-to-Peer Grid

17.5.1 Enabling Bi-Directional Job Flow

Figure 1: Bi-directional peer-to-peer setup.

For each peer interface, an RMCFG parameter is only required for the server (or source side of the interface).
If two peers are to share jobs in both directions, the relationship is considered to be bi-directional.

17.5.1.1 True Peer-to-Peer Grid

Previous examples involved grid masters that coordinated the activities of the grid and made it so direct
contact between peers was not required. However, if preferred, the master is not required and individual
clusters can interface directly with each other in a true peer manner. This configuration is highlighted in the
following example:

Cluster A

Cluster B

SCHEDCFG[clusterA] MODE=NORMAL SERVER=clusterA
RMCFG[clusterA]    TYPE=pbs
RMCFG[clusterB]    TYPE=moab   SERVER=clusterB:40559

CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=banana16

SCHEDCFG[clusterB] MODE=NORMAL SERVER=clusterB
RMCFG[clusterB]    TYPE=pbs
RMCFG[clusterA]    TYPE=moab   SERVER=clusterA:40559

CLIENTCFG[RM:clusterA] AUTH=admin1 KEY=banana16



17.6 Resource Control and Access
17.6.1 Controlling Resource Information

17.6.1.1 Direct Node View
17.6.1.2 Mapped Node View
17.6.1.3 Managing Queue Visibility over the Grid

17.6.2 Managing Resources with Grid Sandboxes
17.6.2.1 Controlling Access on a Per Cluster Basis
17.6.2.2 Access Control Lists/Granting Access to Local Jobs
17.6.2.3 Limiting Access To Peers (Source Side Limits)
17.6.2.4 Limiting Access From Peers (Destination Side Limits)

17.6.1 Controlling Resource Information
In a Moab peer-to-peer grid, resources can be viewed in one of two models:

Direct - nodes are reported to remote clusters exactly as they appear in the local cluster
Mapped - nodes are reported as individual nodes, but node names are mapped to a unique name when
imported into the remote cluster

17.6.1.1 Direct Node View

Direct node import is the default resource information mode. No additional configuration is required to enable
this mode.

17.6.1.2 Mapped Node View

In this mode, nodes are reported just as they appear locally by the exporting cluster. However, on the
importing cluster side, Moab maps the specified node names using the resource manager object map. In an
object map, node mapping is specified using the node keyword as in the following example:

In this example, all nodes reported by clusterB have the string 'b_'
prepended to prevent node name space conflicts with nodes from other
clusters. For example, if cluster clusterB reported the nodes node01,
node02, and node03, cluster gridmaster would report them as b_node01,
b_node02, and b_node03.

See object mapping for more information on creating an object map file.

17.6.1.3 Managing Queue Visibility over the Grid

Queue information and access can be managed directly using the RMLIST attribute. This attribute can contain
either a comma delimited list of resource managers which can view the queue or, if specified with a '!'
(exclamation point) character, a list of resource managers which cannot view or access the queue. The

SCHEDCFG[gridmaster] MODE=NORMAL
RMCFG[clusterB]      TYPE=moab OMAP=file://$HOME/clusterb.omap.dat
...

node:b_*,*



example below highlights the use of RMLIST.

If more advanced queue access/visibility management is required, consider using the resource
manager object map feature.

17.6.2 Managing Resources with Grid Sandboxes
A cluster may wish to participate in a grid
but may desire to dedicate only a set
amount of resources to external grid
workload or may only want certain peers
to have access to particular sets of
resources. With Moab, this can be
achieved by way of a grid sandbox which
must be configured at the destination
cluster. Grid sandboxes can both
constrain external resource access and
limit which resources are reported to
other peers. This allows a cluster to only
report a defined subset of its total
resources to source peers and restricts
peer workload to the sandbox. The
sandbox can be set aside for peer use
exclusively, or can allow local workload to
also run inside of it. Through the use of
multiple, possibly overlapping grid
sandboxes, a site may fully control
resource availability on a per peer basis.

A grid sandbox is created by configuring a standing reservation on a destination peer and then specifying the
ALLOWGRID flag on that reservation. This flag tells the Moab destination peer to treat the standing
reservation as a grid sandbox, and, by default, only the resources in the sandbox are visible to grid peers.
Also, the sandbox only allows workload from other peers to run on the contained resources.

Example 1: Dedicated Grid Sandbox

In the above example, the standing reservation sandbox1 creates a grid sandbox which always exists and
contains the nodes node01, node02, and node03. This sandbox will only allow grid workload to run within it
by default. This means that the scheduler will not consider the boxed resources for local workload.

Grid sandboxes inherit all of the same power and flexibility that standing reservations have. See Managing
Reservations for additional information.

The flag ALLOWGRID marks the reservation as a grid sandbox and as such, it precludes grid jobs
from running anywhere else. However, it does not enable access to the reserved resources. The
CLUSTERLIST attribute in the above example enables access to all remote jobs.

17.6.2.1 Controlling Access on a Per Cluster Basis

# every resource manager other than chemgrid and biogrid 
# may view/utilize the 'batch' queue
CLASSCFG[batch] RMLIST=!chemgrid,!biogrid

# only the local resource manager, pbs2, can view/utilize the staff 
queue 
CLASSCFG[staff] RMLIST=pbs2
...

SRCFG[sandbox1] PERIOD=INFINITY HOSTLIST=node01,node02,node03 
SRCFG[sandbox1] CLUSTERLIST=ALL FLAGS=ALLOWGRID
...



Often clusters may wish to control which peers are allowed to use certain sandboxes. For example, Cluster A
may have a special contract with Cluster B and will let overflow workload from Cluster B run on 60% of its
resources. A third peer in the grid, Cluster C, doesn't have the same contractual agreement, and is only
allowed 10% of Cluster A at any given time. Thus two separate sandboxes must be made to accommodate
the different policies.

The above sample configuration illustrates how cluster A could set up their sandboxes to follow a more
complicated policy. In this policy, sandbox1 provides exclusive access to nodes 1 through 5 to jobs coming
from peer ClusterB by including CLUSTERLIST=ClusterB in the definition. Reservation sandbox2 provides
shared access to node6 to local jobs and to jobs from clusters B, C, and D through use of the CLUSTERLIST
and USERLIST attributes.

With this setup, the following policies are enforced:

local jobs may see all nodes and run anywhere except nodes 1 through 5
jobs from cluster B may see and run only on nodes 1 through 6
jobs from clusters C and D may see and run only on node 6

As shown in the example above, sandboxes can be shared across multiple peers by listing all sharing peers in
the CLUSTERLIST attribute (comma delimited).

17.6.2.2 Access Control Lists/Granting Access to Local Jobs

It is not always desirable to have the grid sandbox reserve resources for grid consumption, exclusively. Many
clusters may want to use the grid sandbox when local workload is high and demand from the grid is relatively
low. Clusters may also wish to further restrict what kind of grid workload can run in a sandbox. This fine-
grained control can be achieved by attaching access control lists (ACLs) to grid sandboxes.

Since sandboxes are basically special standing reservations, the syntax and rules for specifying an ACL is
identical to those found in Managing Reservations.

Example

In the example above, a cluster decides to dedicate resources to a sandbox, but wishes local workload to
also run within it. An additional ACL is then associated with the definition. The reservation 'sandbox2', takes
advantage of this feature by allowing local jobs running with a QOS of 'high', or under the group 'engineer',
to also run on the sandboxed nodes node04, node05, and node06.

17.6.2.3 Limiting Access To Peers (Source Side Limits)

In some cases, a site may want to constrain which users, accounts, queues or QOS's can utilize remote
resources. Perhaps only certain users are trusted to participate in a special beta program or possibly only
jobs in a certain queue will be able to find the needed applications or environment on the remote side.

Regardless of purpose, peer-to-peer job migration can be controlled on the source side using the RMCFG
parameter's AUTHALIST, AUTHCLIST, AUTHGLIST, AUTHQLIST, and AUTHULIST attributes. These attributes
are comma delimited and constrain who can utilize resources within the peer resource manager regardless of
what authorization is allowed by the resource manager itself. Thus, even if a resource manager reports that it
will accept jobs from any user, if the AUTHULIST parameter is set to steve,bob, then only jobs from those
two users will be allowed to migrate to the peer cluster. If more than one authorized credential type is
specified, jobs which satisfy any of the listed credentials will be allowed to use the resources.

SRCFG[sandbox1] PERIOD=INFINITY 
HOSTLIST=node01,node02,node03,node04,node05
SRCFG[sandbox1] FLAGS=ALLOWGRID CLUSTERLIST=ClusterB

SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node06 FLAGS=ALLOWGRID
SRCFG[sandbox2] CLUSTERLIST=ClusterB,ClusterC,ClusterD USERLIST=ALL
...

SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node04,node05,node06 
SRCFG[sandbox2] FLAGS=ALLOWGRID QOSLIST=high GROUPLIST=engineer
...



17.6.2.4 Limiting Access From Peers (Destination Side Limits)

While source limits are set up on the source side of an interface and constrain which users can access remote
resources, destination limits are set up on the destination side of an interface and constrain which remote
workload requests will be accepted. These limits are useful when the remote peer is not under full local
administrative control or can otherwise not be fully trusted. Often a remote source peer may allow unfettered
access to peer resources while the destination may want to limit which jobs are allowed in locally.

Destination side credential limits are configured exactly like source side limits but are configured on the
destination side of the interface. As with source side peer limits, these limits are enabled using the RMCFG
parameter's AUTHALIST, AUTHCLIST, AUTHGLIST, AUTHQLIST, and AUTHULIST attributes.  These attributes
are comma delimited and constrain which remote peer jobs can utilize local resources within the peer
resource manager regardless of what authorization is allowed by the remote source resource manager itself.

SCHEDCFG SERVER=c1.hpc.org

# only allow staff or members of the research and demo account to use
# remote resources on c2

RMCFG[c2] SERVER=head.c2.hpc.org TYPE=moab
RMCFG[c2] AUTHGLIST=staff  AUTHALIST=research,demo
...

SCHEDCFG SERVER=c1.hpc.org FLAGS=client

# only allow jobs from remote cluster c1 with group credentials staff 
or 
# account research or demo to use local resources 

RMCFG[c2] SERVER=head.c2.hpc.org TYPE=moab
RMCFG[c2] AUTHGLIST=staff  AUTHALIST=research,demo
...



17.7 Workload Submission and Control
17.7.1 Controlling Peer Workload Information
17.7.2 Determining Resource Availability

17.7.1 Controlling Peer Workload Information
By default, a peer is only responsible for workload that is submitted via that particular peer. This means that
when a source peer communicates with destination peers it only receives information about workload it sent
to those destination peers. If desired, the destination peers can send information about all of its workload:
both jobs originating locally and remotely. This is called local workload exporting. This may help simplify
administration of different clusters by centralizing monitoring and management of jobs at one peer.

To implement local workload exporting, use the LOCALWORKLOADEXPORT resource manager flag. For
example:

The preceding example shows the configuration on a destination peer (ClusterB) that exports its local and
remote workload to the source peer (ClusterA).

LOCALWORDKLOADEXPORT does not need to be configured in master/slave grids.

See Also
Job Start Time Estimates

RMCFG[ClusterA.INBOUND] FLAGS=LOCALWORKLOADEXPORT   # source peer
...



17.8 Reservations in the Grid
17.8.1 Shared Resources
In some environments, globally shared resources may need to be managed to guarantee the full environment
required by a particular job. Resources such as networks, storage systems, and license managers may be
used only by batch workload but this workload may be distributed among multiple independent clusters.
Consequently, the jobs from one cluster may utilize resources required by jobs from another. Without a
method of coordinating the needs of the various cluster schedulers, resource reservations will not be
respected by other clusters and will be of only limited value.

Using the centralized model, Moab allows the importing and exporting of reservations from one peer server
to another. With this capability, a source peer can be set up for the shared resource to act as a clearinghouse
for other Moab cluster schedulers. This source peer Moab server reports configured and available resource
state and in essence possesses a global view of resource reservations for all clusters for the associated
resource.

To allow the destination peer to export reservation information to the source Moab, the RMCFG lines for all
client resource managers must include the flag RSVEXPORT. The source Moab should be configured with a
resource manager interface to the destination peer and include both the RSVEXPORT and RSVIMPORT
flags. For the destination peer, RSVEXPORT indicates that it should push information about newly created
reservations to the source Moab, while the RSVIMPORT flag indicates that the source Moab server should
import and locally enforce reservations detected on the destination peer server.



17.9 Grid Usage Policies
17.9.1 Grid Usage Policy Overview
17.9.2 Peer Job Resource Limits
17.9.3 Usage Limits via Peer Credentials
17.9.4 Using General Policies in a Grid Environment

17.9.4.1 Source Cluster Policies

17.9.1 Grid Usage Policy Overview
Moab allows extensive control over how peers interact. These controls allow the following:

Limiting which remote users, group, and accounts can utilize local compute resources
Limiting the total quantity of local resources made available to remote jobs at any given time
Limiting remote resource access to a specific subset of resources
Limiting timeframes during which local resources will be made available to remote jobs
Limiting the types of remote jobs which will be allowed to execute

17.9.2 Peer Job Resource Limits
Both source and destination peers can limit the types of jobs they will allow in terms of resources requested,
services provided, job duration, applications used, etc using Moab's job template feature. Using this method,
one or more job profiles can be created on either the source or destination side, and Moab can be configured
to allow or reject jobs based on whether or not the jobs meet the specified job profiles.

When using the ALLOWJOBLIST and REJECTJOBLIST attributes, the following rules apply:

All jobs that meet the job templates listed by ALLOWJOBLIST are allowed.
All jobs that do not meet ALLOWJOBLIST job templates and which do meet REJECTJOBLIST job
templates are rejected.
All jobs that meet no job templates in either list are allowed.

17.9.3 Usage Limits via Peer Credentials
With peer interfaces, destination clusters willing to accept remote jobs can map these jobs onto a select
subset of users, accounts, QoS's, and queues. With the ability to lock these jobs into certain credentials
comes the ability to apply any arbitrary credential constraints, priority adjustments, and resource limitations
normally available within cluster management. Specifically, the following can be accomplished:

limit number of active jobs simultaneously allowed
limit quantity of allocated compute resources simultaneously allowed
adjust job priority
control access to specific scheduling features (deadlines, reservations, preemption, etc)
adjust fairshare targets
limit resource access

17.9.4 Using General Policies in a Grid Environment
While Moab does provide a number of unique grid-based policies for use in a grid environment, the vast
majority of available management tools come from the transparent application of cluster policies. Cluster-
level policies such as job prioritization, node allocation, fairshare, usage limits, reservations, preemption, and
allocation management all just work and can be applied in a grid in exactly the same manner.

The one key concept to understand that is in a centralized based grid, these policies apply across the entire
grid, in a peer-based grid, these policies apply only to local workload and resources.

17.9.4.1 Source Cluster Policies



In many cases, organizations are interested in treating jobs differently based on their point of origin. This can
be accomplished by assigning and/or keying off of a unique credential associated with the remote workload.
For example, a site may wish to constrain jobs from a remote cluster to only a portion of the total available
cluster cycles. This could be accomplished using usage limits, fairshare targets, fairshare caps, reservations,
or allocation management based policies.

The examples below show three different approaches for constraining remote resource access.

Example 1: Constraining Remote Resource Access via Fairshare Caps

Example 2: Constraining Remote Resource Access via Fairshare Targets and Preemption

Example 3: Constraining Remote Resource Access via Priority and Usage Limits

# define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion

# configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100

# use fairshare cap to limit jobs from orion to 10% of cycles
ACCOUNTCFG[orion] FSCAP=10%

# define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion

# local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL

# configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100

# decrease priority of remote jobs and force jobs exceeding 10% usage 
to be preemptible
ACCOUNTCFG[orion] FSTARGET=10-
ENABLEFSVIOLATIONPREEMPTION TRUE

# define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] QOS=orion
USERCFG[DEFAULT] QDEF=orion

# local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL

# adjust remote jobs to have reduced priority
QOSCFG[orion] PRIORITY=-1000

# allow remote jobs to use up to 64 procs without being preemptible 
and up to 96 as preemptees
QOSCFG[orion] MAXPROC=64,96
ENABLESPVIOLATIONPREEMPTION TRUE



See Also
Grid Sandbox - control grid resource access



17.10 Grid Scheduling Policies
17.10.1 Peer-to-Peer Resource Affinity Overview
17.10.2 Peer Allocation Policies
17.10.3 Per-partition Scheduling

17.10.1 Peer-to-Peer Resource Affinity Overview
The concept of resource affinity stems from a number of facts:

Certain compute architectures are able to execute certain compute jobs more effectively than others.
From a given location, staging jobs to various clusters may require more expensive allocations, more
data and network resources, and more use of system services.
Certain compute resources are owned by external organizations and should be used sparingly.

Regardless of the reason, Moab servers allow the use of peer resource affinity to guide jobs to the clusters
that make the best fit according to a number of criteria.

At a high level, this is accomplished by creating a number of job templates and associating the profiles with
different peers with varying impacts on estimated execution time and peer affinity.

17.10.2 Peer Allocation Policies
A direct way to assign a peer allocation algorithm is with the PARALLOCATIONPOLICY parameter (does not
apply to Master/Slave grids). Legal values are listed in the following table:

Value Description

BestFit Allocates resources from the eligible peer with the fewest available resources; measured in
tasks (minimizes fragmentation of large resource blocks).

BestPFit Allocates resources from the eligible peer with the fewest available resources; measured in
percent of configured resources (minimizes fragmentation of large resource blocks).

FirstStart Allocates resources from the eligible peer that can start the job the soonest.

FirstCompletion Allocates resources from the eligible peer that can complete the job the soonest. (Takes
into account data staging time and job-specific machine speed.)

LoadBalance Allocates resources from the eligible peer with the most available resources; measured in
tasks (balances workload distribution across potential peers).

LoadBalanceP Allocates resources from the eligible peer with the most available resources; measured in
percent of configured resources (balances workload distribution across potential peers).

RoundRobin Allocates resources from the eligible peer that has been least recently allocated.

The mdiag -t -v command can be used to view current calculated partition priority values.

17.10.3 Per-partition Scheduling
Per-partition scheduling can be enabled by adding the following lines to moab.cfg:

To use per-partition scheduling, you must configure fairshare trees where particular users have higher
priorites on one partition, and other users have higher priorities on a different partition.

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME





17.11 Grid Credential Management
17.11.1 Peer User Credential Management Overview
17.11.2 Credential Mapping Files
17.11.3 Constraining Access via Default and Mandatory Queues and QoS

17.11.1 Peer Credential Management Overview
Moab provides a number of credential management features that allow sites to control which local users can
utilize remote resources and which remote users can utilize local resources and under what conditions this
access is granted.

17.11.2 Peer Credential Mapping
If two peers share a common user space (a given user has the same login on both clusters), then there is
often no need to enable credential mapping. When users, groups, classes, QoS's, and accounts are not the
same from one peer to another, Moab allows a site to specify an Object Map URL. This URL contains simple
one to one or expression based mapping for credentials and other objects. Using the RMCFG parameter's
OMAP attribute, a site can tell Moab where to find these mappings. The object map uses the following
format:

<OBJECTTYPE>:<SOURCE_OBJECTID>,<DESTINATION_OBJECTID>

where <SOURCE_OBJECT> can be a particular username or the special character '*' (asterisk) which is a
wildcard matching all credentials of the specified type which have not already been matched.

The object map file can be used to translate the following:

Keyword Objects

account accounts/projects

class classes/queues

file files/directories

group groups

node nodes

qos QoS

user users

The following moab.cfg and omap.dat files demonstrate a sample credential mapping.

In this example, a job that is being migrated from cluster master1 to the peer slave1 will have its
credentials mapped according to the contents of the omap.dat file. In this case, a job submitted by user joe
on master1 will be executed under the user account jsmith on peer slave1. Any credential that is not found
in the mapping file will be passed to the peer as submitted. In the case of the user credential, all users other

SCHEDCFG[master1] MODE=normal
RMCFG[slave1]     OMAP=file:///opt/moab/omap.dat
...

user:joe,jsmith
user:steve,sjohnson
group:test,staff
class:batch,serial
user:*,grid



than joe and steve will be remapped to the user grid due to the wildcard matching.

Because the OMAP attribute is specified as a URL, multiple methods can be used to obtain the mapping
information. In addition to the file protocol shown in the example above, exec may be used.

Note that there is no need to use the credential mapping facility to map all credentials. In some cases, a
common user space exists but it is used to map all classes/queues on the source side to a single queue on
the destination side. Likewise, for utilization tracking purposes, it may be desirable to map all source account
credentials to a single cluster-wide account.

Source and Destination Side Credential Mapping

Credential mapping can be implemented on the source cluster, destination cluster, or both. A source cluster
may want to map all user names for all outgoing jobs to the name generaluser for security purposes, and a
destination cluster may want to remap all incoming jobs from this particular user to the username cluster2
and the QoS grid.

Preventing User Space Collisions

In some cases, a cluster may receive jobs from two independent clusters where grid wide username
distinctiveness is not guaranteed. In this case, credential mapping can be used to ensure the uniqueness of
each name. With credential mapping files, this can be accomplished using the <DESTINATION_CREDENTIAL>
wildcard asterisk (*) character. If specified, this character will be replaced with the exact
<SOURCE_CREDENTIAL> when generating the destination credential string. For example, consider the
following configuration:

This configuration will remap the usernames of all jobs coming in from the peer slave1. The username john
will be remapped to c1_john, the group staff will be remapped to staff_grid and the account demo will be
remapped to temp_demo.

17.11.3 Constraining Access via Default and Mandatory Queues
and QoS
While credential mapping allows a source side peer to translate one credential to another, a destination side
peer may require control over this mapping as a prerequisite to participating in the peer relationship. For
example, a given cluster may select to join a peer grid only if they can map all remote jobs into a specific
class and apply limits constraining when and where this class is able to run.

In Moab, destination-side credential constraints are enabled using the RMCFG parameter's SET.JOB,
MIN.JOB, MAX.JOB, and DEFAULT.JOB attributes.

Set Job Attribute

If the resource manager's SET.JOB attribute is set, each credential attribute specified within the remap job
template will be used to overwrite values specified by the peer service. This is done regardless of whether the
source job attributes are set. For example, in the following configuration, the job's account and class
credentials will be remapped regardless of original values:

SCHEDCFG[master1] MODE=normal
RMCFG[slave1]     OMAP=file:///opt/moab/omap.dat  FLAGS=client
...

user:*,c1_*
group:*,*_grid
account:*,temp_*

# define connection to remote peer cluster 'clusterB'
RMCFG[clusterB.INBOUND] TYPE=moab SET.JOB=set1

# force jobs coming in from clusterB interface to use account 'peer' 
and class 'remote'
JOBCFG[set1] ACCOUNT=peer CLASS=remote



Minimum and Maximum Job Constraints

The MIN.JOB and MAX.JOB attributes can be used to link a particular job template to a resource manager
interface. If set, jobs that do not meet these criteria will be rejected.

Default Job Settings

If the resource manager's DEFAULT.JOB attribute is set, each credential attribute specified within the
default job template will be used to set job attribute values that are not explicitly set by the peer service. For
example, in the following configuration, the job's account and class credentials will be remapped if no original
values are specified:

...

JOBCFG[default-hq.INBOUND] TYPE=TEMPLATE ACCOUNT=peer CLASS=remote

RMCFG[hq] DEFAULT.JOB=default-hq
...



17.12 Grid Data Management
17.12.1 Grid Data Management Overview
17.12.2 Configuring Peer Data Staging
17.12.3 Diagnostics
17.12.4 Peer-to-Peer SCP Key Authentication

17.12.1 Grid Data Management Overview
Moab provides a highly generalized data manager interface that can allow both simple and advanced data
management services to be used to migrate data amongst peer clusters. Using a flexible script interface,
services such as scp, NFS, and gridftp can be used to address data staging needs. This feature enables a
Moab peer to push job data to a destination Moab peer.

17.12.2 Configuring Peer Data Staging
Moab offers a simple, automatic configuration, as well as advanced configuration options. At a high level,
configuring data staging across a peer-to-peer relationship consists of configuring one or more storage
managers, associating them with the appropriate peer resource managers, and then specifying data
requirements at the local level—when the job is submitted.

To use the data staging features, you must specify the --with-grid option at ./configure time. After
properly configuring data staging, you can submit a job to the peer with any user who has SSH keys set up
and Moab will automatically or implicitly stage back the standard out and standard error files created by the
job. Files can be implicitly staged in or out before a job runs by using the mstagein or mstageout options of
msub.

Automatic Configuration

Moab automatically does most of the data staging configuration based on a simplified set of parameters
(most common defaults) in the configuration file (moab.cfg).

Do the following to configure peer data staging:

1. Configure at least two Moab clusters to work in a grid. Please refer to information throughout 17.0
Moab Workload Manager for Grids for help on configuring Moab clusters to work together as peers in a
grid.

2. Set up SSH keys so that users on the source grid peer can SSH to destination peers without the need
for a password.

3. Make necessary changes to the moab.cfg file of the source grid peer to activate data staging, which
involves creating a new data resource manager definition within Moab. The resource manager provides
data staging services to existing peers in the grid. By defining the data resource manager within the
moab.cfg, Moab automatically sets up all of the necessary data staging auxiliary scripts.

Use the following syntax for defining a data resource manager:

<RMName>: Name of the RM (defined as a storage RM type by RESOURCETYPE=STORAGE).
<DataSpaceUser>: User used to SSH into <DataServer> to determine available space in
<DataSpaceDir>. Moab runs a command similar to the following:

ssh <DataServer> -l <DataSpaceUser> df <DataSpaceDir>
<DataSpaceDir>: Directory where staged data is stored.
<DataServer>: Name of the server where <DataSpaceDir> is located.

4. Associate the data resource manager with a peer resource manager.

RMCFG[<RMName>] TYPE=NATIVE RESOURCETYPE=STORAGE 
VARIABLES=DATASPACEUSER=<DataSpaceUser>,DATASPACEDIR=<DataSpaceDir> 
SERVER=<DataServer>



5. Restart Moab to finalize changes. You can use the mschedctl -R command to cause Moab to
automatically restart and load the changes.

When restarting, Moab recognizes the added configuration and runs a Perl script in the Moab tool
directory that configures the external scripts (also found in the tools directory) that Moab uses to
perform data staging. You can view the data staging configuration by looking at the config.dstage.pl
file in $MOABTOOLSDIR; this file is generated from the config.dstage.pl.dist file each time Moab
restarts. Moab replaces any strings of the form @...@ with appropriate values.

Advanced Configuration

If you need a more customized data staging setup, contact Moab support.

17.12.3 Diagnostics
Verify data staging is properly configured by using the following diagnostic commands:

mdiag -R -v: Displays the status of the storage manger. Notice that the automatic configuration sets
up the necessary *URLs.

checknode -v: Executing this on the storage node displays the data staging operations associated with
the node and its disk usage.

The number of bytes transferred for each file is currently not used.

RMCFG[remote_data] TYPE=NATIVE RESOURCETYPE=STORAGE 
VARIABLES=DATASPACEUSER=datauser,DATASPACEDIR=/tmp SERVER=clusterhead
RMCFG[remote_cluster] TYPE=MOAB SERVER=clusterhead:42559 
DATARM=remote_data

> mdiag -R -v data
diagnosing resource managers

RM[data]      State: Active  Type: NATIVE:AGFULL  ResourceType: 
STORAGE
  Server:             keche
  Timeout:            30000.00 ms
  Cluster Query URL:  exec://$TOOLSDIR/cluster.query.dstage.pl
  RM Initialize URL:  exec://$TOOLSDIR/setup.config.pl
  System Modify URL:  exec://$TOOLSDIR/system.modify.dstage.pl
  System Query URL:   exec://$TOOLSDIR/system.query.dstage.pl
  Nodes Reported:     1 (scp://keche//tmp/)
  Partition:          SHARED
  Event Management:   (event interface disabled)
  Variables:          DATASPACEUSER=root,DATASPACEDIR=/tmp
  RM Languages:       NATIVE
  RM Sub-Languages:   -

> checknode -v scp://keche//tmp/
node scp://keche//tmp/

State:      Idle  (in current state for 00:00:13)
Configured Resources: DISK: 578G
Utilized   Resources: DISK: 316G
Dedicated  Resources: ---
  MTBF(longterm):   INFINITY  MTBF(24h):   INFINITY
Active Data Staging Operations:  
  job         native.2  complete (1 bytes transferred)  
(/home/brian/stage.txt)
  job         native.3  pending (1 bytes)  (/home/brian/stage.txt)

http://sempa/resources/docs/support.php


mdiag -n: Displays the state of the storage node.

checkjob -v: Displays the status of the staging requrest.

The remaining time and size of the file information is currently not used. The information should
only be used to see file locations and whether the file has been staged or not.

17.12.4 Peer-to-Peer SCP Key Authentication
In order to use scp as the data staging protocol, we will need to create SSH keys which allow users to copy
files between the two peers, without the need for passwords. For example, if UserA is present on the source
peer, and his counterpart is UserB on the destination peer, then UserA will need to create an SSH key and
configure UserB to allow password-less copying. This will enable UserA to copy files to and from the
destination peer using Moab's data staging capabilities.

Another common scenario is that several users present on the source peer are mapped to a single user on
the destination peer. In this case, each user on the source peer will need to create keys and set them up
with the user at the destination peer. Below are steps that can be used to setup SSH keys among two (or
more) peers:

These instructions were written for OpenSSH version 3.6 and might not work correctly for older
versions.

Generate SSH Key on Source Peer

As the user who will be submitting jobs on the source peer, run the following command:

Dedicated Storage Manager Disk Usage:  0 of 592235 MB
Cluster Query URL:  exec://$TOOLSDIR/cluster.query.dstage.pl
Partition:  SHARED  Rack/Slot:  ---
Flags:      rmdetected
RM[data]:   TYPE=NATIVE:AGFULL
EffNodeAccessPolicy: SHARED

Total Time: 00:12:15  Up: 00:12:15 (100.00%)  Active: 00:00:00 (0.00%)

Reservations:  ---

> mdiag -n
compute node summary
Name                    State   Procs      Memory         Opsys

compute1                 Idle    4:4      3006:3006       linux
compute2                 Down    0:4      3006:3006       linux
scp://keche//tmp/        Idle    0:0         0:0              -
-----                     ---    4:8      6012:6012       -----

Total Nodes: 3  (Active: 0  Idle: 2  Down: 1)

> checkjob -v jobid

...

Stage-In Requirements:

  localhost:/home/brian/stage.txt => keche:/tmp/staged.txt  size:0B  
status:[NONE]  remaining:00:00:01
    Transfer URL: 
file:///home/brian/stage.txt,ssh://keche/tmp/staged.txt

...

http://www.openssh.org/


You will be prompted to give an optional key. Just hit return and ignore this or other settings. When finished,
this command will create two files id_rsa and id_rsa.pub located inside the user's ~/.ssh/ directory.

Copy the Public SSH Key to the Destination Peer

Transfer the newly created public key (id_rsa.pub) to the destination peer:

Disable Strict SSH Checking on Source Peer (Optional)

By appending the following to your ~/.ssh/config file you can disable SSH prompts which ask to add new
hosts to the "known hosts file." (These prompts can often cause problems with data staging functionality.)
Note that the ${DESTPEERHOST} should be the name of the host machine running the destination peer:

Configure Destination Peer User

Now, log in to the destination peer as the destination user and set up the newly created public key to be
trusted:

If multiple source users map to a single destination user, then repeat the above commands for each source
user's SSH public key.

Configure SSH Daemon on Destination Peer

Some configuration of the SSH daemon may be required on the destination peer. Typically, this is done by
editing the /etc/ssh/sshd_config file. To verify correct configuration, see that the following attributes are
set (not commented):

If configuration changes were required, the SSH daemon will need to be restarted:

Validate Correct SSH Configuration

If all is properly configured, if you issue the following command source peer it should succeed without
requiring a password:

ssh-keygen -t rsa

scp ~/.ssh/id_rsa.pub ${DESTPEERHOST}:~

Host ${DESTPEERHOST}
CheckHostIP no
StrictHostKeyChecking no
BatchMode yes

ssh ${DESTPEERUSER}@${DESTPEERHOST}
mkdir -p .ssh; chmod 700 .ssh
cat id_rsa.pub >> .ssh/authorized_keys
chmod 600 .ssh/authorized_keys
rm id_rsa.pub

---
RSAAuthentication    yes
PubkeyAuthentication yes
---

/etc/init.d/sshd restart

scp ${DESTPEERHOST}:/etc/motd /tmp/



17.13 Accounting and Allocation Management
17.13.1 Peer-to-Peer Accounting Overview
17.13.2 Peer-to-Peer Allocation Management

17.13.1 Peer-to-Peer Accounting Overview
When Moab is used to manage resources across multiple clusters, there is a greater need to track and
enforce the resource sharing agreements between the resource principals.

The Gold Allocation Manager is an open source accounting system that tracks resource usage on High
Performance Computers. It acts much like a bank in which accounts are established to pre-allocate which
users and projects can use resources on which machines and over which timeframes. Gold supports familiar
operations such as deposits, withdrawals, transfers, and refunds. It provides balance and usage feedback to
users, managers, and system administrators.

Gold can be used as a real-time debiting system in which jobs are charged at the moment of completion.
When used in a multi-site (grid) environment, Gold facilitates trust by allowing lending organizations to
manage what the costing rules are for usage of their resources and job submitters to determine how much
their job is going to cost them before they start, ensuring all parties can agree to the transaction and giving
each party a first-hand accounting record.

If the clusters are within a common administrative domain and have a common user space, then a single
Gold Allocation Manager will suffice to manage the project allocation and accounting. This works best in
Master/Slave grids.

17.13.2 Peer-to-Peer Allocation Management
The following steps provides an example of setting up the Gold Allocation Manager to manage the allocation
and accounting for a multiple cluster grid within a single administrative domain.

First you will need to install Gold and its database on one or more head nodes.

# Install Prerequisites (Perl with suidperl, PostgreSQL, libxml2, 
...)
[root]  yum install perl perl-suidperl postgresql postgresql-libs 
postgresql-devel postgresql-server libxml2

# Unpack the tarball
[root]  passwd gold
[gold]  mkdir ~/src
[gold]  cd ~/src
[gold]  gzip -cd gold-2.0.0.0.tar.gz | tar xvf -
[gold]  cd gold-2.0.0.0

# Install
[gold]  ./configure
[gold]  make
[root]  make deps
[root]  make install
[root]  make auth_key

# Configure, create and bootstrap the database
[postgres]  /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
[postgres]  echo "host    all         all         192.168.1.1    
255.255.255.255   trust" >>usr/local/pgsql/data/pg_hba.conf
[postgres]  /usr/local/pgsql/bin/postmaster -i -D 
/usr/local/pgsql/data >var/log/pgsql 2>&1 &
[postgres]  createuser gold
[gold]  /usr/local/pgsql/bin/createdb gold
[gold]  /usr/local/pgsql/bin/psql gold < bank.sql



See Also
Grid Credential Management



17.14 Grid Security
17.14.1 Secret Key Based Server Authentication
Secret key based security is required in order for the grid to work. It is enabled in the moab-private.cfg
file. Configuration of moab-private.cfg is covered throughout the grid configuration documentation, as well
as in Appendix E: Security.



17.15 Grid Diagnostics and Validation
17.15.1 Peer Management Overview
17.15.2 Peer Diagnostic Overview

17.15.1 Peer Management Overview
Use mdiag -R to view interface health and performance/usage statistics.
Use mrmctl to enable/disable peer interfaces.
Use mrmctl -m to dynamically modify/configure peer interfaces.
Use mdiag -x to view general grid configuration and system diagnostics.

17.15.2 Peer Diagnostic Overview
Use mdiag -R to diagnose general RM interfaces.
Use mdiag -S to diagnose general scheduler health.
Use mdiag -R -V job <RMID> to diagnose peer-to-peer job migration.

Use mdiag -R -V data <RMID> to diagnose peer-to-peer data staging.
Use mdiag -R -V cred <RMID> to diagnose peer-to-peer credential mapping.

> mdiag -R -V job peer1



18.0 Green Computing
18.1 Establishing Script Interaction between Moab and a Power Management Tool
18.2 Enabling Green Power Management
18.3 Allocating and Adjusting Green Pool Size
18.4 Miscellaneous Power Management Options

Green Computing Overview

Green Computing is a video tutorial that offers further details on green computing.

To conserve energy, Moab can turn off idle nodes that have no reservations on them. Conversely, Moab turns
on additional nodes when jobs require such. Using the MAXGREENSTANDBYPOOLSIZE parameter, you can
specify a "green pool," which is the number of nodes Moab keeps turned on and ready to run jobs (even if
some nodes are idle). Moab turns off idle nodes that exceed the number specified with the
MAXGREENSTANDBYPOOLSIZE parameter.

Example scenario:

Assume a cluster is empty and Moab starts. Moab turns off all nodes except those established by the green
pool size. As jobs are submitted, Moab uses the machines that are already turned on, and Moab turns on
additional nodes to keep the green pool at the configured size. As jobs complete, nodes turn off to keep the
green pool at the configured size.

Requirements:

A license for green computing.
Moab 5.3.5 or later.
A script that Moab can call to programatically turn nodes on and off.
A resource manager that can monitor and report power state.

http://www.adaptivecomputing.com/videos/812


18.1 Establishing Script Interaction between
Moab and a Power Management Tool
On the same node on which Moab is running, there must be a command for Moab to call to switch power on
or off. The command is usually a script that interacts with your preferred power management tool. Moab calls
the script as follows:

<Script Name> <Node Name/List> <ON|OFF>

<Node List> is a comma delimited list of nodes. To power off multiple nodes, try:

To enable script interaction between Moab and your preferred power management tool, configure the
NODEPOWERURL parameter on a per-resource manager basis.

Run mdiag -R -v to see if the provision resource manager configured successfully. The output will display a
number of nodes if Moab accessed the node power script and Cluster Query URL script properly. If a number
of nodes is not reported, the script is either not running properly or not reporting to Moab correctly. If the
script is not working correctly, verify that the script can be run manually and that no environment variables
are required for the script to run, such as:

The Cluster Query script can call out commands that are normally in the $PATH when they are not set.
When this occurs, the script fails and the commands may be difficult to find.

The scipt's purpose is to provide Moab information about whether power to nodes is on or off; such
information is relayed for each node with a POWER value of either "on" or "off." The actual state of nodes is
internally tracked by Moab. When Moab powers off a node, it is still eligible to run jobs, so even though it is
powered off, its state is idle. Thus, this script must report a STATE of "Unknown" to prevent Moab from
considering the node unavailable. When a node is powered off outside of a Moab action (such as a node
failure), then Moab recognizes the state being reported from its resource manager as down (rendering it
unavailable). To prevent Moab from considering a node unavailable, as previously mentioned, the STATE must
be reported as "Unknown." The following is sample output for cluster.query.pl:

Managing Resources Directly with the Native Interface

> /opt/moab/tools/node.power.pl node002 ON

> /opt/moab/tools/node.power.pl node002,node003,node004 OFF

RMCFG[prov]     TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[prov]     NODEPOWERURL=exec://$HOME/tools/prov/node.power.pl
RMCFG[prov]     
CLUSTERQUERYURL=exec://$HOME/tools/prov/cluster.query.pl

x01 POWER=on STATE=Unknown
x02 POWER=off STATE=Unknown
x03 POWER=off STATE=Unknown
x04 POWER=off STATE=Unknown
x05 POWER=off STATE=Unknown



18.2 Enabling Green Power Management
To enable green power management, modify the configuration file as follows:

Use the mdiag -G command to see which nodes are off. The following shows sample output from running
the mdiag -G command:

NODECFG[DEFAULT]     POWERPOLICY=OnDemand

$ mdiag -G
NOTE:  power management enabled for all nodes
 NodeID      State      Power   Watts   PWatts
  x01        Idle        On     200.00  200.00
  x02        Idle        Off     25.00  200.00  (powered off by Moab)
  x03        Idle        Off     25.00  200.00  (powered off by Moab)
  x04        Idle        Off     25.00  200.00  (powered off by Moab)
  x05        Idle        Off     25.00  200.00  (powered off by Moab)



18.3 Allocating and Adjusting Green Pool Size
The MAXGREENSTANDBYPOOLSIZE allows you to allocate the number of nodes to keep powered on in the
standby pool. Moab will make sure that MAXGREENSTANDBYPOOLSIZE nodes are turned on at all times
and available to run jobs. Additional nodes will be turned on as needed.

MAXGREENSTANDBYPOOLSIZE 1



18.4 Miscellaneous Power Management Options
18.4.1 Maximizing Scheduling Efficiency
18.4.2 Logging Power-Related Events
18.4.3 Enabling and Disabling Power Management for All Nodes

18.4.1 Maximizing Scheduling Efficiency
To facilitate more efficient scheduling, it is a good idea to specify the maximum amount of time a power on
or power off action takes to complete.

With the NODEIDLEPOWERTHRESHOLD parameter, Moab can turn nodes off after they've been idle for a
specific amount of seconds. The default value is 60 seconds.

18.4.2 Logging Power-Related Events
Power actions are considered NODEMODIFY events that are not, by default, recorded. Adding the following
line to your configuration file enables recording power-related actions in the events file.

18.4.3 Enabling and Disabling Power Management for All Nodes
You can enable or disable green power management for all nodes while Moab runs by using the
changeparam command. For example:

To enable green power management: changeparam NODECFG[DEFAULT] POWERPOLICY=OnDemand
To disable green power management: changeparam NODECFG[DEFAULT] POWERPOLICY=STATIC

The default POWERPOLICY setting is STATIC.

PARCFG[torque]     NODEPOWERONDURATION=2:00
PARCFG[torque]     NODEPOWEROFFDURATION=2:00

NODEIDLEPOWERTHRESHOLD 600

RECORDEVENTLIST +NODEMODIFY

NODECFG[DEFAULT]   POWERPOLICY=OnDemand



19.0 Object Triggers
19.1 Trigger Creation
19.2 Trigger Management
19.3 Trigger Components
19.4 Trigger Types
19.5 Trigger Variables
19.6 Trigger Examples

Moab can launch triggers based on certain events. For example, an administrator may want to send an email
to the owner of a particular reservation when the usage drops below a specific threshold. Or a user may want
to launch an evaluation script five minutes before a job is scheduled for completion. Triggers can be
associated with jobs, nodes, reservations, or the core scheduler, and they enable actions to be taken when
the specified event, offset, or threshold criteria are satisfied.



19.1 Trigger Creation
19.1.1 Trigger Creation Syntax
19.1.2 Creating Triggers
19.1.3 Naming Triggers
19.1.4 Associating the JOBTRIGGER Attribute with a Class

19.1.1 Trigger Creation Syntax
Use the following format to create triggers:

<ATTR>=<VALUE>[[{&,}<ATTR>=<VALUE>]...]

19.1.2 Creating Triggers
Triggers can be created from both the configuration file and the command line. Triggers can be associated
with an object such as a standing reservation, node, resource manager, or the scheduler when the object is
instantiated. To do this, use the TRIGGER attribute with the associated object parameter, such as SRCFG
(see Managing Reservations for more details), NODECFG, RMCFG, or SCHEDCFG.

To dynamically add a trigger to an existing object, use the mschedctl command. To add a trigger to an
administrative reservation, use the mrsvctl command. Triggers may be added to jobs by specifying the trig
resource manager extension when submitting the job through msub, as in the following example:

Example

Triggers can also be created on system jobs using the msub command, as shown in the following example.
The benefit of system job triggers is that system jobs do not have to require any system resources. System
jobs exist until manually cancelled or completed, a process that can be handled by scripts or trigger actions.
This provides one means for creating standing triggers that fire at a specified time or when certain external
dependencies are fulfilled.

Example

For security reasons, only QoS with the trigger flag can have jobs with attached triggers. This can be set up
by creating an appropriate QoS in the moab.cfg file.

Example

In this example, a QoS named triggerok is created with the trigger flag. The user user1 is then added to this
QoS. This user will then be able to attach triggers to jobs.

Please note that when creating job triggers via msub, "&" must be used to delimit the fields. All job triggers
are removed when the associated job is cancelled.

19.1.3 Naming Triggers
By default, triggers are assigned a numeric ID by Moab. However, in many cases, managing triggers can

msub my.job -l 
'trig=AType=exec\&Action="/jobs/my_trigger.pl"\&EType=create\&Offset=10

echo true | msub -l 
flags=NORMSTART:NORESOURCES,trig=AType=exec\&Action="/tmp/action.sh"\&E

QOSCFG[triggerok]  QFLAGS=trigger
USERCFG[user1]     QDEF=triggerok



become quite complicated if relying only on this ID. Therefore, users may assign an alphanumeric name up to
16 characters in length for each trigger. The Moab-assigned ID number is then appended to the end of the
user-supplied name. The trigger name is specified at creation or modification using the Name trigger
attribute.

Example

In this case, the new trigger attached to my.job will be named myTrigger.<TRIGID>, where <TRIGID> is
the ID assigned automatically by Moab. This name will appear in the output of the mdiag -T command.
Carefully chosen trigger names can greatly improve the readability of this output.

19.1.4 Associating the JOBTRIGGER Attribute with a Class
Job triggers can be directly associated with jobs submitted into a class using the JOBTRIGGER attribute. Job
triggers are described using the standard trigger description language specified in the Trigger overview
section. In the example that follows, users submitting jobs to the class debug will be notified with a
descriptive message any time their job is preempted.

See Also
Credential Overview
Generic Metrics
Generic Events

msub my.job -l 
'trig=Name=myTrigger\&AType=exec\&Action="/jobs/my_trigger.pl"\&EType=c

CLASSCFG[batch] 
JOBTRIGGER=atype=exec,etype=preempt,action
="$HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME"



19.2 Trigger Management
19.2.1 Viewing Triggers
19.2.2 Modifying Triggers
19.2.3 Checkpointing Triggers

19.2.1 Viewing Triggers
A condensed listing of triggers can be viewed using the mdiag -T [<TRIGID>|<OBJECTID>] command. This
will show all triggers to which the user has access, along with some basic information about the triggers.
Specific triggers or all triggers attached to a specific object can be viewed by including the ID of the trigger
or object.

Example

Additional infromation can be obtained using the verbose mode of the mdiag -T -v [<TRIGID>|<OBJECTID>]
command. As before, a subset can be obtained by specifying either a trigger or object ID.

Example

The mdiag -T -V command is another viewing mode that provides additional state information about triggers,
including reasons why triggers are currently blocked. This mode outputs information on a single line for each
trigger, as opposed to the multiline output of the mdiag -T -v [<TRIGID>|<OBJECTID>] command. However,
the mdiag -T -V command only operates in a global mode, showing all triggers available to the user.

Example

19.2.2 Modifying Triggers
Triggers may be modified using the mschedctl -m trigger:<TRIGID> <ATTR>=<VAL> command.

Example

In this example, Trigger 2's AType, Offset, and OID are changed to the new values shown.

19.2.3 Checkpointing Triggers
Checkpointing is the process of saving state information when Moab is shut down.

By default, triggers attached to objects including the scheduler, resource managers, credentials, and nodes
are not checkpointed but are re-created from specifications in the Moab configuration (moab.cfg) file when
Moab is restarted. If a trigger attached to one of these objects needs to be checkpointed because it was
created at the command line (as opposed to in the configuration file), the checkpoint flag must be attached
to the trigger. When creating a trigger using the mschedctl command, be sure to include the checkpoint flag.

> mdiag -T
> mdiag -T trigger.34
> mdiag -T job.493

> mdiag -T -v
> mdiag -T -v trigger.34
> mdiag -T -v job.493

> mdiag -T -V

> mschedctl -m trigger:2 AType=exec,Offset=200,OID=system.1



See Also
Generic Metrics
Generic Events



19.3 Trigger Components
19.3.1 Trigger Attributes
19.3.2 Trigger Flags

19.3.1 Trigger Attributes
Table1: Trigger Attributes

AType

Possible
Values:

cancel, changeparam, jobpreempt, mail, exec, internal

Description: Specifies what kind of action the trigger will take when it fires.

Usage
Notes:

jobpreempt indicates that the trigger should preempt all jobs currently allocating resources
assigned to the trigger's parent object.

cancel and jobpreempt only apply to reservation triggers.

  
Action

Possible
Values:

<STRING>

Description: For exec atype triggers, signifies executable and arguments. For jobpreempt atype triggers,
signifies PREEMPTPOLICY to apply to jobs that are running on allocated resources. For
changeparam atype triggers, specifies the parameter to change and its new value (using the
same syntax and behavior as the changeparam command).

Usage
Notes:

 

  
BlockTime

Possible
Values:

[[HH:]MM:]SS

Description: Time (in seconds) Moab will suspend normal operation to wait for trigger execution to finish.

Usage
Notes:

Use caution as Moab will completely stop normal operation until BlockTime expires.

  
Description

Possible
Values:

<STRING>

Description: Description of the trigger.

Usage
Notes:

 

  
ExpireTime

Possible
Values:

<INTEGER>



Description: Time at which trigger should be terminated if it has not already been activated.

Usage
Notes:

 

  
EType

Possible
Values:

cancel, checkpoint, create, end, epoch, fail, hold, migrate, modify, preempt,
standing, start, threshold

Description: The type of event that signals that the trigger can fire.

Usage
Notes:

The threshold value applies to reservation triggers and gmetrics on nodes. Cancel triggers
are the only triggers to fire when the parent object is either canceled or deleted (though its
dependencies, if any, must still be satisfied). Hold, preempt, and checkpoint only apply to
job triggers. Standing allows regular periodic triggers that fire at regular offsets (standing
triggers automatically set the interval and multifire attributes). Standing triggers can be used
with only the scheduler; they are not valid for any other object type.

  
FailOffset

Possible
Values:

[[HH:]MM:]SS

Description: Specifies the time (in seconds) that the threshold condition must exist before the trigger fires.

Usage
Notes:

 

  
Flags

Possible
Values:

(See Table 2.)

Description: Specifies various trigger behaviors and actions.

Usage
Notes:

 

  
Interval

Possible
Values:

<BOOLEAN>

Description: When used in conjunction with MultiFire and RearmTime trigger will fire at regular intervals.

Usage
Notes:

Can be used with EType epoch to create a Standing Trigger.

  
MaxRetry

Possible
Values:

<INTEGER>

Description: Specifies the number of times Action will be attempted before the trigger is designated a
failure.

Usage
Notes:

If Action fails, the trigger will be restarted immediately (up to MaxRetry times). If it fails
more than MaxRetry times, the trigger will be considered to have failed. This restart ignores
FailOffset and RearmTime. Multifire does not need to be specified in order to get this



behavior.

  
MultiFire

Possible
Values:

<BOOLEAN>

Description: Specifies whether this trigger can fire multiple times.

Usage
Notes:

 

  
Name

Possible
Values:

<STRING>

Description: Name of trigger

Usage
Notes:

Because Moab uses its own internal ID to distinguish triggers, the Name need not be unique.
Only the first 16 characters of Name are stored by Moab.

  
Offset

Possible
Values:

[-][[HH:]MM:]SS

Description: Relative time offset from event when trigger can fire.

Usage
Notes:

Offset cannot be used with cancel.

Only a negative Offset can be used with end triggers.

  
Period

Possible
Values:

Minute, Hour, Day, Week, Month

Description: Can be used in conjunction with Offset to have a trigger fire at the beginning of the specified
period.

Usage
Notes:

Can be used with EType epoch to create a standing trigger.

  
RearmTime

Possible
Values:

[[HH:]MM:]SS

Description: Time between MultiFire triggers; rearm time is enforced from the trigger event time.

Usage
Notes:

 

  
Requires

Possible
Values:

'.' delimited string



Description: Variables this trigger requires to be set or not set before it will fire.

Usage
Notes:

Preceding the string with an exclamation mark (!) indicates this variable must NOT be set.
Used in conjunction with Sets to create trigger dependencies.

  
Sets

Possible
Values:

'.' delimited string

Description: Variable values this trigger sets upon success or failure.

Usage
Notes:

Preceding the string with an exclamation mark (!) indicates this variable is set upon trigger
failure. Preceding the string with a caret (^) indicates this variable is to be exported to the
parent object when the current object is destroyed through a completion event. Used in
conjunction with Requires to create trigger dependencies.

  
UnSets

Possible
Values:

'.' delimited string

Description: Variable this trigger destroys upon success or failure.

Usage
Notes:

 

  
Threshold

Possible
Values:

{<METRIC>[<METRICNAME>]}{> >= < <= == !=}<FLOAT>
Where <METRIC> is one of:

usage
gmetric
availability
backlog
xfactor
queuetime

Description: Reservation usage threshold - When reservation usage drops below Threshold, trigger will
fire.

Usage
Notes:

Threshold usage support is only enabled for reservations and applies to percent processor
utilization. gmetric thresholds are supported with job, node, credential, and reservation
triggers. See 19.4.3 Threshold Triggers for more information.

  
Timeout

Possible
Values:

[+|-][[HH:]MM:]SS

Description: Time allotted to this trigger before it is marked as unsuccessful and its process (if any) killed.

Usage
Notes:

Specifying '+' or a '-' calculates the timeout relative to the parent object's duration.

  

19.3.2 Trigger Flags



Table 2: Trigger Flag Values
Flag Description

attacherror If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

cleanup If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

checkpoint Moab should always checkpoint this trigger. See Checkpointing Triggers for more
information.

globalvars The trigger will look in the name space of all nodes with the globalvars flag in addition to its
own name space. A specific node to search can be specified using the following format:
globalvars+node_id

interval Trigger is periodic.

multifire Trigger can fire multiple times.

objectxmlstdin Trigger passes its parent's object XML information into the trigger's stdin. This only works
for exec triggers with reservation type parents.

user The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

When specifying multiple flags, each flag can be delimited by colons (:) or with square brackets ([ and
]); for example:

Flags=[user][cleanup][probe] or Flags=user:cleanup:probe

See Also
Generic Metrics
Generic Events



19.4 Trigger Types
19.4.1 Mail Triggers
19.4.2 Internal Triggers
19.4.3 Threshold Triggers
19.4.4 Exec Triggers

19.4.1 Mail Triggers
When the mail option is used for the AType parameter, Moab will send mail (configurable using
MAILPROGRAM) to the primary administrator. When AType=mail, the Action parameter contains the
message body of the email. This can be configured to include certain variables. The following example sends
an email to the primary administrator containing the name of the trigger's object, and the time:

When this trigger launches, it will send an email with the variables (that begin with a $) filled in. Possible
variables that can be inserted into the Action parameter include the following:

OID: name of the object to which the trigger was attached.
TIME: time of the trigger launch.
HOSTLIST: HostList of the trigger's object (when applicable).
OWNER: owner of the trigger's object (when applicable).
USER: user (when applicable).

These mail triggers can be configured to launch for node failures, reservation creation or release, scheduler
failures, and even job events. In this way, site administrators can keep track of scheduler events through
email.

19.4.2 Internal Triggers
Triggers can be used to modify object internals using the following format:

action="<OBJECT_TYPE>:<OBJECT_ID>:<ACTION>:<CONTEXT_DATA>

Several different actions are valid depending on what type of object the internal trigger is acting upon. The
following table shows some of the different available actions:

Action Object Type Description

cancel Jobs Cancels job.

complete System Jobs Causes system job to exit as if it had completed successfully.

destroy VPC Destroys the specified VPC.

evacvms VM Evacuates all VMs from all nodes covered by a reservation.

modify All Allows modification of object internals.

Examples — Modifying scheduler internals

>mrsvctl -c -h node01 -T AType=mail,EType=start \
  Action="rsv $OID started on $TIME on nodes $HOSTLIST"

rsv 'system.1' created

SRCFG[provision] 
TRIGGER=atype=internal,etype=start,action="node:$(HOSTLIST):modify:os=r



19.4.3 Threshold Triggers
Threshold triggers allow sites to configure triggers to launch based on internal scheduler statistics, such as
the percentage of available nodes, the backlog of a particular QoS, or the xfactor of a particular group. For
example, a site may need to guarantee a particular account a certain level of service on the cluster. Should
the specified account have a backlog of over one hour, the administrators would like to receive an email, or
create a reservation, or perhaps contact a hosting utility to allocate more nodes. All of this can be done using
threshold triggers. The following sample configuration file contains a few examples:

19.4.4 Exec Triggers
Exec triggers will launch an external program or script when their dependencies are fulfilled. The following
example will submit job.cmd and then execute monitor.pl three minutes after the job is started.

See Also
Generic Metrics
Generic Events

$ msub -l  
qos=triggerok,walltime=60,trig=AType=internal\&Action=vpc:vpc.20:destro
testscript

RSVPROFILE[evac]TRIGGER=EType=start,AType=internal,action=node:$(HOSTLI

RMCFG[TORQUE]   
TRIGGER=atype=internal,action=RM:ODM:modify:nodes:1,etype=threshold,thr

CLASSCFG[batch] TRIGGER=atype=mail,action="batch has a lot of jobs 
waiting",etype=threshold,threshold=queuetime>100000,multifire=true
QOSCFG[high]    
TRIGGER=atype=exec,action=/tmp/reserve_high.sh,etype=threshold,threshol

USERCFG[jdoe]   TRIGGER=atype=mail,action="high xfactor on 
$OID",etype=threshold,threshold=xfactor>10.0,multifire=true,failoffset=

ACCTCFG[hyper]  TRIGGER=atype=exec,action="/tmp/notify.sh $TIME 
$OID",etype=threshold,threshold=xfactor>0.01,multifire=true,failoffset=

NODECFG[node04] TRIGGER=atype=exec,action="$HOME/hightemp.py 
$OID",etype=threshold,threshold=gmetric[TEMP]>70

> msub -l 
trig=atype=exec\&etype=start\&offset=03:00\&action="monitor.pl" 
job.cmd



19.5 Trigger Variables
19.5.1 Trigger Variables Overview
19.5.2 Default Internal Variables Available to Trigger Scripts
19.5.3 Externally Injecting Variables into Job Triggers
19.5.4 Exporting Variables to Parent Objects
19.5.5 Requiring Variables in Parent Objects

19.5.1 Trigger Variables Overview
Trigger variables can add greater flexibility and power to a site administrator who wants to automate certain
tasks and system behaviors. Variables allow triggers to launch based on another trigger's behavior, state,
and/or output.

Example

In this example, the first trigger sets two variables (separated by a '.'), which are received in the second
(separated by a ':'). As previously mentioned, those arguments could be accessed in the second trigger
through the variables $1 and $2.

It is also possible to have a trigger set a variable when it fails using the '!' symbol:

Example

In this example, the first trigger will set Var1 if it fails and Var2 if it succeeds. The second trigger will launch
if Var1 has been set (the first trigger failed). The third trigger will launch if Var2 is set (the first trigger
succeeded).

Variable requirements can be further refined to allow for the evaluation and comparison of the variable's
value. That is, triggers can have a dependency on a variable having (or not having) a certain value. The
format for this is as follows:

[*]<VARID>[:<TYPE>[:<VARVAL>]]

The optional * specifies that the dependencies are satisified by an external source that must be previously
registered. A number of valid comparison types exist:

Type Comparison Notes

set is set (exists) Default

notset not set (does not exits) Same as specifying '!' before a variable

eq equals  

ne not equal  

gt greater than Integer values only

lt less than Integer values only

ge greater than or equal to Integer values only

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=Var1.Var2 \
AType=exec,Action="/tmp/trigger2.sh $Var1 
$Var2",EType=start,Requires=Var1.Var2

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2 \
AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1 \
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2



le less than or equal to Integer values only

Following is an example of how these comparitive dependencies can be expressed when creating a trigger.

Example

In this example, the first trigger will fire if Var1 exists and has a value of 45. The second trigger will only fire
if Var2 is not the string failure1.

The following example shows how triggers can set variables as strings:

Example

The trigger sets Var1 to TRUE when it completes successfully. Because AType=exec, the script launched by
the trigger can set a string value for Var1. To do this, declare it on its own line in the trigger stdout. For
example:

EXITCODE=15
Var1=linux

Var1 has the value linux and, if defined with a caret (^), can be passed up to the job group. This is useful
for workflows in which a trigger may depend on the value given by a previous trigger.

19.5.2 Default Internal Variables Available to Trigger Scripts
Several internal variables are available for use in trigger scripts. These can be accessed using $<VARNAME>:

ETYPE is the type of event that signals that the trigger can fire; ETYPE values include cancel,
checkpoint, create, end, epoch, fail, hold, migrate, modify, preempt, standing, start, and
threshold.
HOSTLIST is the HostList of the trigger's object (when applicable).
OID is the name of the object to which the trigger was attached.
OTYPE is the type of object to which the trigger is attached; can be rsv, job, node, or sched.
OWNER is the owner of the trigger's object (when applicable).
OWNERMAIL is a variable that is populated only if the trigger's parent object has a user associated
with it and that user has an email address associated with it.
TIME is the time of the trigger launch.
USER is the user (when applicable).

Other unique variables are available to triggers attached to specific objects:

Jobs

MASTERHOST — The primary node for the job.
HOSTLIST — The entire hostlist of the job.

Reservations

GROUPHOSTLIST — The hostlist for the reservation and all of its peers. (In the case of VPCs, the
aggregate hostlist for all VPC reservations.)
HOSTLIST — The entire hostlist for the reservation.
OBJECTXML — The XML representation of an object. Output is the same as that generated by mdiag -
-xml.
OS — The operating system on the first node of the reservation.

These reserved names cannot be used as variables. For example, if an OS variable is added to a

AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1:eq:45 \
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2:ne:failu

AType=exec,Action="/tmp/trigger2.sh",EType=start,Sets=Var1



reservation and then accessed, it will contain information reported by the resource manager, not the
value that the user inserted.

VPCs

VPCID — The ID of the parent VPC.
VPCHOSTLIST The HostList for the entire VPC (which may or may not be dedicated).

By default, the reservation group master (first reservation created) of a VPC automatically imports the
variables of the parent VPC. Other non-master reservation children of the VPC do not automatically
import these VPC variables, and if this information is required by associated reservation triggers, it
must be explicitly imported as described later.

Example

In this example, the object ID ($OID) and hostlist ($HOSTLIST) will be passed to /tmp/trigger3.sh as
command line arguments when the trigger executes the script. The script can then process this information
as needed.

19.5.3 Externally Injecting Variables into Job Triggers
For triggers that are attached to job objects, another method for supplying variables exists. The trigger is
able to see the variables in the job object to which it is attached. Updating the job object's variables
effectively updates the variable for the trigger. This can be accomplished through the use of mjobctl using the
-m flag.

This sets the variable Flag1 to the value TRUE, creating Flag1, if necessary. This will be seen by any trigger
attached to job 1664.

19.5.4 Exporting Variables to Parent Objects
Variables used and created by triggers are stored in the namespace of the object to which the trigger is
attached. Sometimes it is desirable to make certain variables more accessible to triggers on other objects.
When using the Sets trigger attribute, you can specify that a variable, created either by a success or failure,
should be exported to the name space of the parent object when the current object is destroyed through a
completion event. This is done by placing the caret (^) symbol in front of the variable name when specifying
it.

Example

In this example, both Var1 and Var2 will be exported to the parent object when the trigger has completed.
They can also be used by triggers at their own level, just as in previous examples.

19.5.5 Requiring Variables in Parent Objects
By default, triggers will only look for variables to fulfill dependencies in the object to which they are directly
attached. In addition, if they are attached to a job object, they will also look in the job group, if defined.
However, it is not uncommon for objects to have multiple generations of parent objects. If the desired
behavior is to search through all generations of parent objects, the caret (^) symbol must be specified, as in
the following example:

Example

AType=exec,Action="/tmp/trigger3.sh $OID $HOSTLIST",EType=start

> mjobctl -m var=Flag1=TRUE 1664

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=^Var1.!^Var2 \
AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1 \
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2



See Also
Generic Metrics
Generic Events

AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=^Var1



19.6 Trigger Examples
19.6.1 Trigger on a Standing Reservation
19.6.2 Job Trigger that Launches Script Prior to Wallclock Limit
19.6.3 Admin Reservation with Two Triggers
19.6.4 Launch a Local Script Each Time a Node Goes Down
19.6.5 Sending Email on Scheduler or Node Failure
19.6.6 Resource Manager Failure Trigger
19.6.7 Running the Support Script on Job-hold
19.6.8 Creating a Periodic Standing Trigger
19.6.9 Fragmenting a diagnostic system job across the entire cluster
19.6.10 Successive Job Failure Trigger
19.6.11 Specifying an RSVPROFILE on an Internal Node Trigger
19.6.12 Greater scheduling flexibility with migration internal actions

19.6.1 Trigger on a Standing Reservation
Create standing reservation Mail2 with a trigger for the script /tmp/email.sh. Launch the script 200 seconds
after the start of the reservation.

19.6.2 Job Trigger that Launches Script Prior to Wallclock Limit
Create a trigger associated with the job job46 and 150 seconds before the job is scheduled to finish, launch
the /tmp/email.sh script with the command line argument Hello.

19.6.3 Admin Reservation with Two Triggers
This example includes the reservation, the two scripts, and the output of the scripts.

SRCFG[Mail2] 
TRIGGER=EType=start,Offset=200,AType=exec,Action="/tmp/email.sh"
...

> mschedctl -c trigger EType=end,offset=-
150,AType=exec,Action="/tmp/email.sh Hello" -o Job:job46

> mrsvctl -c -h keiko \
-T 'Sets=Var1.Var2,EType=start,AType=exec,Action="/tmp/trigs/trig1.sh 
ReservationStart NewReservation"' \
-T 
'Requires=Var1.Var2,EType=start,AType=exec,Action="/tmp/trigs/trig2.sh 
$Var1 stuff $Var2"'

#!/bin/sh
echo -e "$1, $2
$*" >> /tmp/trigs/trig1
echo "Var1=1"
echo "Var2=2"

exit 0

#!/bin/sh
echo -e "$1, $2, $3
$*" > /tmp/trigs/trig2



The preceding example creates the following output:

19.6.4 Launch a Local Script Each Time a Node Goes Down
This example places a trigger on all nodes and will fire when any node changes to a down state.

When any node changes its state to failure (from a non-failure state) Moab will execute the script
/tmp/nodedown.sh. The MultiFire attribute means this trigger will fire every time a node fails and the
RearmTime attribute means Moab will wait at least five minutes between firing the triggers in succession.
(This example can be easily modified to trigger for only one node by replacing DEFAULT with the node
name.)

The next example creates a diagnostic trigger that will fire when a node's state changes to down; then a
second trigger fires based on the diagnostic information obtained by the first trigger.

In this example the first trigger will run the script "node_diagnostics.sh" and will set a variable called
OUTPUT. The second trigger will use this OUTPUT information to decide what action to take.

19.6.5 Sending Email on Scheduler or Node Failure
This example places a mail trigger onto the scheduler that will fire whenever a failure is detected. In addition,
the example configuration will also place a trigger on each compute node that will fire if the node goes down.

19.6.6 Resource Manager Failure Trigger
The FAILTIME is set on the resource manager, along with a failure trigger. This trigger will fire if the resource
manager base goes down for more than three minutes.

exit 0

ReservationStart, NewReservation
ReservationStart NewReservation

1, stuff, 2
1 stuff 2

NODECFG[DEFAULT] TRIGGER=AType=exec,Action="/tmp/nodedown.sh 
$OID",EType=fail,MultiFire=TRUE,RearmTime=5:00

NODECFG[DEFAULT]        
TRIGGER=atype=exec,action="/tmp/node_diagnostics.sh 
$OID",etype=fail,multifire=true,rearmtime=5:00,sets=OUTPUT
NODECFG[DEFAULT]        
TRIGGER=atype=exec,action="/tmp/node_recovery.sh $OID 
$OUTPUT",etype=fail,requires=OUTPUT,multifire=true,rearmtime=5:00,unset

SCHEDCFG[MyCluster] TRIGGER=AType=mail,EType=fail,Action="scheduler 
failure detected on $TIME",MultiFire=TRUE,RearmTime=5:00
NODECFG[DEFAULT]    TRIGGER=AType=mail,EType=fail,Action="node $OID 
has failed on $TIME",MultiFire=TRUE,RearmTime=15:00
...

RMCFG[base] TYPE=PBS FAILTIME=3:00
RMCFG[base] TRIGGER=atype=exec,action="/opt/moab/tools/diagnose_rm.pl 
$OID",etype=failure



19.6.7 Running the Support Script on Job-hold
The Support Diagnostic Script can be used to save a scheduler snapshot based on particular events. To save
a system snapshot when the scheduler places a hold on a job, the following trigger can be configured:

19.6.8 Creating a Periodic Standing Trigger
Standing triggers can be created on the scheduler object using the SCHEDCFG parameter as in the following
example:

This example will launch the createjobs_hour.pl script at 5 minutes past every hour and will run the
createjobs_day.pl at 12:30 AM every morning.

19.6.9 Fragmenting a Diagnostic System Job Across the Entire
Cluster
In this example a system job is submitted requesting a specific set of nodes. The job is submitted with the
FRAGMENT flag, which will split the job up and run one job per distinct allocated host. Three triggers are then
attached to each of those jobs:

1. Run a diagnostic script.
2. Run a recovery script.
3. If recovery script was successful, complete the system job.

19.6.10 Successive Job Failure Trigger
Create a reservation on a node that has five successive job failures to block the node from running any other
jobs until the problem is resolved.

To reset the trigger and release the reservation, clear out the metric. This is done by either restarting Moab
with mschedctl -R or modifying the reservation to grant yourself access and running a job inside of it.

19.6.11 Specifying an RSVPROFILE on an Internal Node Trigger

CLASSCFG[batch] 
JOBTRIGGER=atype=exec,etype=hold,action="$HOME/tools/support.diag.pl"

SCHEDCFG[base] 
TRIGGER=atype=exec,name=jobsubmit_hour,etype=standing,action="/opt/moab

SCHEDCFG[base] 
TRIGGER=atype=exec,name=jobsubmit_day,etype=standing,action="/opt/moab/

#!/bin/sh
echo nothing | msub -l 
nodes=ALL,walltime=10:00,flags=NORMSTART:SYSTEMJOB:FRAGMENT,\
trig=atype=exec\&action=/tmp/diag.sh\ 
\$HOSTLIST\&etype=start\&sets=DIAG,\
trig=atype=exec\&action=/tmp/step.sh\ \$HOSTLIST\ 
\$DIAG\&etype=start\&requires=DIAG\&sets=good.\!bad,\
trig=atype=internal\&action=job:-:complete\&etype=start\&requires=good

NODECFG[DEFAULT] TRIGGER=atype=internal,action="node:-
:reserve",etype=threshold,threshold=statistic[successivejobfailures]>5,

http://www.adaptivecomputing.com/resources/docs/mwm/commands/mschedctl.php#RECYCLE


You can specify an RSVPROFILE on an internal node trigger reservation action.

19.6.12 Greater scheduling flexibility with migration internal
actions
Two new internal actions (for kicking off overcommit and green migrations) can be attached to triggers,
which allow for greater scheduling flexibility.

These three options still need to be enabled in moab.cfg and in moab.lic.

See Also
Generic Metrics
Generic Events

NODECFG[DEFAULT] TRIGGER=atype=internal,action="node:-
:reserve:rsvprofile=<rsvprofile_name>"

TRIGGER=atype=internal,etype=<whatever>,action=sched:-
:vmmigrate:[rsv|green|overcommit]



20.0 Virtual Private Clusters
20.1 Configuring VPC Profiles
20.2 VPC Commands

Virtual Private Clusters Overview
Within any organization, resources sometimes need to be set aside and configured for special projects or daily
workflows. Requests may come from many different departments, each with its own needs and timetables.
Set aside resources might include servers, databases, networks, or specialized hardware. Administrators can
configure Moab to automatically service these requests, including configuration and provisioning, through
Virtual Private Clusters (VPCs).

VPCs allow sites to group resources as a named package, which allows users to select the name of the
package they need instead of requesting each resource individually. When a user requests a package, Moab
schedules all of the resources required and lets the user know when the package is available for use.

Resources such as network, data, and security objects can be packaged together as a single VPC. Users must
then just request the primary resource needed, such as a compute node, and other pre-configured resources
such as storage and network are automatically added.

Additional setup and teardown steps can also be added to the VPC. Moab runs these extra steps automatically
without the need for administrator action. Users request a package, wait for notification that the package is
ready, and start using it while Moab, behind the scenes, takes care of scheduling, configuration and
provisioning.

Administrators can place limits on profiles and restrict who is allowed to use them. Charging and accounting
policies can also be configured to allow for automated billing.



20.1 Configuring VPC Profiles
20.1.1 Configuring VPC Profiles
20.1.2 Associating Resources with a VPC Profile
20.1.3 Using Reservation Profiles with VPCs
20.1.4 Coallocation of Additional Resources
20.1.5 Access Control
20.1.6 Charging for VPCs

20.1.1 Configuring VPC Profiles
Use the VCPROFILE parameter to configure a VPC profile. At its simplest, a VPC profile is a single line that
gives the profile a name. The profile can then be requested by name and the user can fill in any other details
required. The DESCRIPTION parameter is helpful, but not required. Users will be able to see the description in
the listing of VPCs.

Example: A simple VPC with a description

The VPC can then be requested on the command line or through Moab Access Portal. Moab Access Portal
provides a customizable portal where users can create, modify and manage VPCs. For more information, see
Creating VPCs.

ACL
DESCRIPTION
NODEHOURCHARGERATE
NODESETLIST
NODESETUPCOST

OPRSVPROFILE
QUERYDATA
REQENDPAD
REQSETATTR
REQSTARTPAD

ACL

Format: List of zero or more comma delimited <OTYPE>==<OID>[:<OID>] pairs where <OTYPE> is one
of the following: 
USER, GROUP, ACCT, CLASS, or QOS

Default: ---

Details: Specifies which credentials can view this profile and can create VPCs using this profile.

Example:

Users steve and john and any member of the group staff can use VPC resources.

Inputting USER==steve,USER==john will only allow john to use the virtual cluster (as
==john overwrites ==steve). For both to use resources, input USER==steve,USER+=john.

  
DESCRIPTION

Format: <STRING>

Default: ---

Details: Arbitrary human readable string describing VPC profile usage.

VCPROFILE[example1]  DESCRIPTION="A Dedicated Compute Node"

VCPROFILE[basic] ACL=USER==steve:john,GROUP==staff



This string will be provided to end users via application and web portals to help them select
the appropriate resources.)

Example:

End-users will see this description when specifying which VPC package to select.

  
NODEHOURCHARGERATE

Format: <DOUBLE>

Default: ---

Details: Per node chargerate multiplier associated with using resources and services in the specified VPC.
See the Allocation Management overview for more information.

Example:

Accounts associated with the creation of each data VPC will be charged for VPC utilization with the
associated charge multiplier.

  
NODESETLIST

Format: <FEATURE>[,<FEATURE>]...

Default: ---

Details: Nodeset constraints to be applied to explicitly specified reqs in format.

The VC profile NODESETLIST attribute only supports blocking node feature based node
sets with the ONEOF policy enforced.

Example:

Resources will either be allocated entirely from the fastio or the myrinet node set.

  
NODESETUPCOST

Format: <DOUBLE>

Default: ---

Details: Per node cost in credits associated with provisioning resources and services to enable the
associated VPC. See the Allocation Management overview for more information.

Example:

Accounts associated with the creation of a new VPC will be assessed a per-node charge for each

VCPROFILE[dataset3] DESCRIPTION="custom 1 TB data mining environment 
with level 3 security"

VCPROFILE[dataset1] NODEHOURCHARGERATE=1.5
VCPROFILE[dataset2] NODEHOURCHARGERATE=4.0
VCPROFILE[dataset3] NODEHOURCHARGERATE=6.0

VCPROFILE[dataset3] NODESETLIST=fastio,myrinet

VCPROFILE[dataset1] NODESETUPCOST=20.5
VCPROFILE[dataset2] NODESETUPCOST=20.5
VCPROFILE[dataset3] NODESETUPCOST=65.0



node in a newly created VPC associated with the overhead of setting up the needed environment.

  
OPRSVPROFILE

Format: <RSVPROFILEID>

Default: ---

Details: The default reservation profile for resource requirements that are explicitly specified by the user.

Example:

Resource requirements that are explicitly specified by the requestor and that do not have an
explicit reservation profile will use the fastp reservation profile.

  
QUERYDATA

Format: <RESOURCE_QUERY_STRING> (See mshow command usage.)

Default: ---

Details: List of requirements (reqs) to be co-allocated along with explicitly specified requirements.

Example:

One ionode will be allocated for the first 30 minutes of the VPC and one vlan generic resource
will be allocated for the first hour.

If a QUERYDATA attribute has a nodefeature constraint of $common, the co-allocation
query will import the nodefeature constraint of the first explicitly specified requirement.

  
REQENDPAD

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: Amount of additional time required after each explicitly specified requirement.

Example:

Five minutes of additional walltime will be appended to the end of each explicitly specified
requirement.

  
REQDEFATTR

Format: <RESOURCE_LIST>

Default: ---

Details: A list of comma-delimited resource requirements that are merged with the resource request
requirements in the corresponding mshow -a command.

VCPROFILE[dataset3] OPRSVPROFILE=fastp

VCPROFILE[pkgA] 
QUERYDATA=minprocs=1,nodefeature=ionodes,duration=00:30:00
VCPROFILE[pkgA] QUERYDATA=mintasks=1,gres=vlan:1,duration=01:00:00

VCPROFILE[premium] REQENDPAD=00:05:00



Example:

Indicates a database profile with a default duration of one day. User can specify a shorter or
longer duration when the VPC is requested.

  
REQSETATTR

Format: <RESOURCE_LIST>

Default: ---

Details: A list of comma-delimited resource requirements that are merged with the resource request
requirements in the corresponding mshow -a command.

Example:

A request for four tasks and two generic resources named tape are appended to the user-
specified resource request.

  
REQSTARTPAD

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: Amount of additional time required before each explicitly specified req.

Example:

Fifteen minutes of additional walltime will be prepended to the start of each explicitly specified
requirement.

The reservation profiles of the VPC set with the QUERYDATA or OPRSVPROFILE attributes can be used to
manage provisioning of VPC resources. This provisioning is generally enabled via the use of triggers although
it may also be enabled through a resource manager interface.

20.1.2 Associating Resources with a VPC Profile
Any number of resources or other attributes can be associated with a VPC profile. Examples include the
number of nodes required, the duration of the VPC, or required node features. Default attributes that can be
overridden when the VPC is requested are specified with REQDEFATTR. Required attributes that can not be
overridden are specified with REQSETATTR.

For resources that need to be allocated once per request (coallocation), see Coallocation of Additional
Resources.

Example: Database server that will only run on specific nodes

The preceding example indicates a database profile with a default duration of one day. The user can specify a
shorter or longer duration when the VPC is requested. The database profile will only run on nodes with the
fastio feature, which cannot be overridden by the user.

VCPROFILE[database]    REQDEFATTR=duration=1:00:00:00

VCPROFILE[Large]    REQSETATTR=mintasks=4,gres=tape:2

VCPROFILE[premium] REQSTARTPAD=00:15:00

VCPROFILE[database]     DESCRIPTION="Database Server with Fast IO"
VCPROFILE[database]     REQSETATTR=nodefeature=fastio
VCPROFILE[database]     REQDEFATTR=duration=1:00:00:00



20.1.3 Using Reservation Profiles with VPCs
When a VPC is created, a reservation is created on the cluster. A reservation profile can be specified for the
reservation. Setup and teardown actions, as well as other attributes, can be configured as part of the
reservation profile. Reservation profiles are specified using the OPRSVPROFILE parameter.

Setup and teardown actions are specified using triggers. Triggers allow actions ranging from simple
notification to complex workflows. If the setup time for the VPC is significant, the REQSTARTPAD and
REQENDPAD parameters can be used to compensate the user for lost time. For actions that take place when
the VPC is cancelled, a special variable (ACTIVE) can be passed to the trigger script. ACTIVE is set to the
string TRUE if the VPC is currently active, or UNDEFINED if it is not. For more information see trigger variables.

Reservation profiles also allow a variety of flags to be specified. For more information see 7.1.2.2 Using
Reservation Profiles.

Example: A VPC that provisions an operating system and logs information

In the preceding example, a logging script (logdate.pl) is called when the VPC starts, ends, or is cancelled. An
operating system is installed on all nodes in the VPC when it starts.

20.1.4 Coallocation of Additional Resources
Additional units of other resources can also be packaged with VPC on a per instance basis. For example, if a
user requests a four-node cluster, a head node (in addition to the four requested nodes) can be allocated
automatically. This is done using the QUERYDATA parameter.

Example: Database profile with a single server and multiple client nodes

In the preceding example, a database profile is configured that will give the user the number of database
clients that they request (the dbclient profile), plus a single database server.

Example: LAMP stack profile with multiple parts

VCPROFILE[test]     DESCRIPTION="Test Environment"
VCPROFILE[test]     OPRSVPROFILE=test

RSVPROFILE[test]     FLAGS=SYSTEMJOB
RSVPROFILE[test]     TRIGGER=ATYPE=exec,Action="$HOME/logdate.pl TEST 
START $VPCHOSTLIST $OID $HOSTLIST $ACTIVE",EType=start
RSVPROFILE[test]     TRIGGER=ATYPE=exec,Action="$HOME/installos.pl 
$HOSTLIST rhel",EType=start
RSVPROFILE[test]     TRIGGER=ATYPE=exec,Action="$HOME/logdate.pl TEST 
END $VPCHOSTLIST $OID $HOSTLIST $ACTIVE",EType=end
RSVPROFILE[test]     TRIGGER=ATYPE=exec,Action="$HOME/logdate.pl TEST 
CANCEL $VPCHOSTLIST $OID $HOSTLIST $ACTIVE",EType=cancel

VCPROFILE[database]  DESCRIPTION="Database client/server package"
VCPROFILE[database]  
QUERYDATA=minnodes=1,label=server,rsvprofile=dbserver
VCPROFILE[database]  OPRSVPROFILE=dbclient

VCPROFILE[lampstack]         DESCRIPTION="LAMP stack"

VCPROFILE[lampstack]         OPRSVPROFILE=lampstack
VCPROFILE[lampstack]         NODEHOURCHARGERATE=6.6 
NODESETUPCOST=66.6
VCPROFILE[lampstack]         FLAGS=AUTOACCESS

VCPROFILE[lampstack]         
QUERYDATA=minnodes=1,label=apache_lb,rsvprofile=apache_lb
VCPROFILE[lampstack]         



In the preceding example, a profile is configured that makes a request for a LAMP stack that is comprised of
an Apache load balancer, a pool of three Apache worker nodes, two nodes used to offload script-based
computing, a database load balancer, a pool of two database nodes, and a database backup node.

The example shows how to handle two failure conditions. First, a shepherd trigger—a trigger that check the
condition of a running job—is assigned to watch over the health of the lampstack in 5-minute intervals. If this
trigger fails (returns -1), Moab sends an email to the administrator indicating the VPCID of the culprit VPC.

The second form of failure is illustrated using the db_pool example. The db_pool_zero script runs at VPC
startup, resets the counter associated with the given VPCID (in this case stored in an SQLite3 database), and
sets a variable allowing the second db_pool trigger to fire. If this trigger is successful, normal workflow
conditions exist, and the rest of the VPC LAMP stack is created. If it fails, it sets a flag that the db_pool_retry
script responds to. The db_pool_retry script increments the counter associated with the current VPCID, and
resets the trigger variables to a state that allows the db_pool_ctl trigger to refire. If the db_pool_retry script
gets called more than a prescribed number of times, this trigger fails, setting a variable that destroys the
VPC.

20.1.5 Access Control
Administrators can specify the credentials that are allowed to create each VPC profile using the ACL
parameter. The ACL parameter uses the Moab ACL syntax.

Example: A VPC that can only be created by members of the test group

The preceding example specifies that only members of the test group may request the test profile.

When a VPC is requested, an ACL can be specified for the reservation associated with the VPC. This allows
users to give others access to their VPCs. This also allows users to submit batch jobs into the VPC that they
have created. This capability can be used to allow trusted users to create limited reservations on the system
and submit batch jobs into them. It also allows automatic charging for these reservations. If the
AUTOACCESS flag is specified on the VPC, the owner of that VPC is automatically added to the ACL of its
reservation.

Example: A profile that allows the owner and administrators to submit batch jobs into it

QUERYDATA=minnodes=3,label=apache_pool,rsvprofile=apache_pool
VCPROFILE[lampstack]         
QUERYDATA=minnodes=1,label=db_lb,rsvprofile=db_lb
VCPROFILE[lampstack]         
QUERYDATA=minnodes=2,label=db_pool,rsvprofile=db_pool
VCPROFILE[lampstack]         
QUERYDATA=minnodes=1,label=db_backup,rsvprofile=db_backup
VCPROFILE[lampstack]         
QUERYDATA=minnodes=2,label=script_compute,rsvprofile=script_compute

RSVPROFILE[lampstack]        FLAGS=EXCLUDEMYGROUP,SYSTEMJOB

RSVPROFILE[lampstack]        
TRIGGER=ATYPE=exec,Action="/opt/moab/tools/lamp/lampstack.py          
--etype=$ETYPE --vpcid=$VPCID  --
hostlist=$HOSTLIST",EType=start,sets=^lampstack,requires=apache_lb.db_

RSVPROFILE[lampstack]        

VCPROFILE[test]  DESCRIPTION="Testing Environment"
VCPROFILE[test]  OPRSVPROFILE=test
VCPROFILE[test]  ACL=GROUP:test

VCPROFILE[private] DESCRIPTION="Private cluster access"
VCPROFILE[private] 
REQSETATTR=nodefeature=dedicated,acl=group=administrators
VCPROFILE[private] FLAGS=AUTOACCESS



In the preceding example, the specified profile creates a reservation on the cluster that only administrators
and the owner of the VPC may access. Only nodes with the dedicated feature may be reserved in this way.

Example: A user creates a VPC and submits jobs into it

To submit a job, the user specifies the VPC's reservation on the command line using -l advres.

20.1.6 Charging for VPCs
VPC charging is configured with the NODECHARGERATE and NODESETUPCOST parameters.

Example: Charging

See Also
VCPROFILE parameter
mschedctl command

$ mshow -a -i -x -o --flags=tid,summary,future -p private -w 
minnodes=1,duration=10000 
Partition     Tasks  Nodes      Duration   StartOffset       
StartDate 
---------     -----  -----  ------------  ------------  ---------
----- 
ALL               2      1       2:46:40      00:00:00  
16:19:14_03/10  TID=13 
ALL               2      1       2:46:40       2:46:40  
19:05:54_03/10  TID=14 
ALL               2      1       2:46:40       5:33:20  
21:52:34_03/10  TID=15 
$ mschedctl -c vpc -a resources=13 

vpc.5 

$ mschedctl -l vpc:vpc.5 
 
VPC vpc.5 (active) --------- 
User:                  user1
Owner:                 user:user1 
Size:                  2 
Task Resources:        PROCS: [ALL] 
Available Time:        16:19:14_03/10 (-00:01:56) 
Available Duration:    2:46:40 
Provision Start Time:  16:19:22_03/10 (-00:01:48) 
Cleanup End Time:      19:05:54_03/10 (2:44:44) 
PurgeTime:             19:05:54_03/11 
Variables:             VPCHOSTLIST=node009;VPCID=vpc.5; 

VCPROFILE[dbclient]  NODEHOURCHARGERATE=25.0 NODESETUPCOST=50.0



20.2 VPC Commands
20.2.1 List Profiles
20.2.2 Querying for Resources
20.2.3 Creating VPCs
20.2.4 Listing Current VPCs
20.2.5 Modifying VPCs
20.2.6 Destroying VPCs

20.2.1 List Profiles
mschedctl

20.2.2 Querying for Resources
Use the mshow -a command to show available resources for the VPC, and to obtain a transactionID.

20.2.3 Creating VPCs
Use the mschedctl -c vpc command to create the virtual private cluster.

20.2.4 Listing Current VPCs
mschedctl

$ mschedctl -l vpcprofile

VPCPROFILE[private] ------- 
Description:  'Private cluster access'
ReqSetAttrs:  nodefeature=dedicated,acl=group=administrators 
Flags:        autoaccess

$ mshow -a -i -x -o --flags=tid,future,summary -p example1 -w 
minnodes=1,duration=3000 

Partition     Tasks  Nodes      Duration   StartOffset       StartDate  
---------     -----  -----  ------------  ------------  -----------
--- 
ALL               2      1      00:50:00      00:00:00  13:53:15_02/24  
TID=367 
ALL               2      1      00:50:00       1:27:28  15:20:43_02/24  
TID=368 
ALL               2      1      00:50:00       2:17:28  16:10:43_02/24  
TID=369 

$ mschedctl -c vpc -a resources=367 
 
vpc.79

$ mschedctl -l vpc 
 
VPC vpc.81 (completed) --------- 
 
Owner:                 user:user1
Available Time:        16:20:58_03/02 (-21:35:48) 
Available Duration:    2:46:40 



20.2.5 Modifying VPCs
mschedctl

20.2.6 Destroying VPCs
Destroy (cancel) VPCs via the mschedctl -d vpc command.

Example: Delete all VPCs

See Also
VCPROFILE parameter

Provision Start Time:  16:21:07_03/02 (-21:35:39) 
Cleanup End Time:      19:07:38_03/02 (-18:49:08) 
PurgeTime:             19:07:38_03/03 
 
VPC Profile:           DBCLIENT

mschedctl -m vpc:<vpcid> <attribute>=<value>

$ mschedctl -d vpc:vpc.82 

$ mschedctl -d vpc:ALL 



21.0 Miscellaneous
21.1 User Feedback Overview
21.2 Enabling High Availability Features
21.3 Identity Managers
21.4 Information Services for the Enterprise and Grid
21.5 Malleable Jobs



21.1 User Feedback Overview
The Feedback facility allows a site administrator to provide job performance information to users at job
completion time. When a job completes, the program pointed to by the FEEDBACKPROGRAM parameter is
called with a number of command line arguments. The site administrator is responsible for creating a
program capable of processing and acting upon the contents of the command line. The command line
arguments passed are as follows:

1. job id
2. user name
3. user email
4. final job state
5. QoS requested
6. epoch time job was submitted
7. epoch time job started
8. epoch time job completed
9. job XFactor

10. job wallclock limit
11. processors requested
12. memory requested
13. average per task cpu load
14. maximum per task cpu load
15. average per task memory usage
16. maximum per task memory usage
17. hostlist (comma delimited)

For many sites, the feedback script is useful as a means of letting users know the accuracy of their wallclock
limit estimate, as well as the CPU efficiency, and memory usage pattern of their job. The feedback script may
be used as a mechanism to do any of the following:

email users regarding statistics of all completed jobs
email users only when certain criteria are met (such as "Job 14991 has just completed which
requested 128 MB of memory per task. During execution, it used 253 MB of memory per task
potentially conflicting with other jobs. Please improve your resource usage estimates in future jobs.")
update system databases
take system actions based on job completion statistics

Some of these fields may be set to zero if the underlying OS/resource manager does not support the
necessary data collection.

Example

FEEDBACKPROGAM  /opt/moab/tools/fb.pl



21.2 Enabling High Availability Features
21.2.1 Moab High Availability Overview
21.2.2.1 Configuring High Availability via a Networked File System
21.2.2.2 Confirming High Availability on a Networked File System
21.2.3 Other High Availability Configuration

21.2.1 High Availability Overview
High availability allows Moab to run on two different machines: a primary and secondary server. The
configuration method to achieve this behavior takes advantage of a networked file system to configure two
Moab servers with only one operating at a time.

When configured to run on a networked file system — any networked file system that supports file locking is
supported — the first Moab server that starts locks a particular file. The second Moab server waits on that
lock and only begins scheduling when it gains control of the lock on the file. This method achieves near
instantaneous turnover between failures and eliminates the need for two Moab servers to synchronize
information periodically as the two Moab servers access the same database/checkpoint file.

Moab HA and TORQUE HA operate independently of each other. If a job is submitted with msub and the
primary Moab is down, msub tries to connect to the fallback Moab server. Once the job is given to TORQUE,
if TORQUE can't connect to the primary pbs_server, it tries to connecto the the fallback pbs_server. Below
are some examples:

A job is submitted with msub, but Moab is down on server01, so msub contacts Moab running on server02.

A job is submitted with msub and Moab hands it off to TORQUE, but pbs_server is down on server01, so qsub
contacts pbs_server running on server02.

21.2.2.1 Configuring High Availability on a Networked File System
Because the two Moab servers access the same files, configuration is only required in the moab.cfg file. The
two hosts that run Moab must be configured with the SERVER and FBSERVER parameters. File lock is
turned on using the FLAGS=filelockha parameter. Finally, the lock file is specifiled with the HALOCKFILE
parameter. The following example illustrates a possible configuration:

FBSERVER does not take a port number. The primary server's port is used for both the primary server
and the fallback server.

21.2.2.2 Confirming High Availability on a Networked File System
Adminstrators can run the mdiag -S -v command to view which Moab server is currently scheduling and
responding to client requests.

21.2.3 Other High Availability Configuration
Moab has many features to improve the availability of a cluster beyond the ability to automatically relocate
to another execution server. The following table describes some of these features.

Feature Description

JOBACTIONONNODEFAILURE If a node allocated to an active job fails, it is possible for the job to
continue running indefinitely even though the output it produces is of no

SCHEDCFG[Moab]  SERVER=host1:42559
SCHEDCFG[Moab]  FBSERVER=host2
SCHEDCFG[Moab]  FLAGS=filelockha

SCHEDCFG[Moab]  HALOCKFILE=/opt/moab/.moab_lock



value. Setting this parameter allows the scheduler to automatically preempt
these jobs when a node failure is detected, possibly allowing the job to run
elsewhere and also allowing other allocated nodes to be used by other jobs.

SCHEDCFG[]
RECOVERYACTION

If a catastrophic failure event occurs (SIGSEGV or SIGILL signal is
triggered), Moab can be configured to automatically restart, trap the
failure, ignore the failure, or behave in the default manner for the specified
signal. These actions are specified using the values RESTART, TRAP,
IGNORE, or DIE, as in the following example:

SCHEDCFG[bas] MODE=NORMAL RECOVERYACTION=RESTART



21.3 Identity Managers
21.3.1 Identity Manager Overview
21.3.2 Basic Configuration
21.3.3 Importing Credential Fairness Policies
21.3.4 Identity Manager Data Format
21.3.5 Identity Manager Conflicts
21.3.6 Refreshing Identity Manager Data
21.3.7 Exporting Data to Identity Managers
21.3.8 Creating External Credentials via an Identity Manager

The Moab identity manager interface can be used to coordinate global and local information regarding users,
groups, accounts, and classes associated with compute resources. The identity manager interface may also
be used to allow Moab to automatically and dynamically create and modify user accounts and credential
attributes according to current workload needs.

21.3.1 Identity Manager Overview
Moab allows sites extensive flexibility when it comes to defining credential access, attributes, and
relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, and QOSCFG
parameters is adequate to specify the needed configuration. However, in certain cases such as the following,
this approach may not be ideal or even adequate:

Environments with very large user sets
Environments with very dynamic credential configurations in terms of fairshare targets, priorities,
service access constraints, and credential relationships
Grid environments with external credential mapping information services
Enterprise environments with fairness policies based on multi-cluster usage

Moab addresses these and similar issues through the use of an identity manager. An identity manager is
configured with the IDCFG parameter and allows Moab to exchange information with an external identity
management service. As with Moab resource manager interfaces, this service can be a full commercial
package designed for this purpose, or something far simpler by which Moab obtains the needed information
for a web service, text file, or database.

21.3.2 Basic Configuration
Configuring an identity manager in basic read-only mode can be accomplished by simply setting the SERVER
attribute. If Moab is to interact with the identity manager in read/write mode, some additional configuration
may be required.

BLOCKCREDLIST

Format: One or more comma delimited object types from the following list: acct, group, or user

Details: If specified, Moab will block all jobs associated with credentials not explicitly reported in the most
recent identity manager update. If the credential appears on subsequent updates, resource access
will be immediately restored.

Jobs will only be blocked if fairshare is enabled. This can be accomplished by setting the
FSPOLICY parameter to any value such as in the following example:

  
CREATECRED

Format: <BOOLEAN> (default is FALSE)

Details: Specifies whether Moab should create credentials reported by the identity manager that have not
yet been locally discovered or loaded via the resource manager. By default, Moab will only load

FSPOLICY DEDICATEDPS



information for credentials which have been discovered outside of the identity manager.

  
CREATECREDURL

Format: <URL>

Details: Specifies the URL to use when creating a new credential.

  
REFRESHPERIOD

Format: minute, hour, day, or infinity (default is infinity)

Details: If specified, Moab refreshes identity manager information once every specified iteration. If infinity
is specifed, the information is updated only at Moab start up.

  
RESETCREDLIST

Format: One or more comma delimited object types from the following list: acct, group, or user

Details: If specified, Moab will reset the account access list and fairshare cap and target for all credentials
of the specified type(s) regardless of whether they are included in the current info manager report.
Moab will then load information for the specified credentials.

  
SERVER

Format: <URL>

Details: Specifies the protocol/interface to use to contact the identity manager.

  
UPDATEREFRESHONFAILURE

Format: <BOOLEAN> (default is FALSE)

Details: When an IDCFG script fails, it retries almost immediately and continuously until it succeeds. When
UPDATEREFRESHONFAILURE is set to TRUE, a failed script does not attempt to rerun immediately,
but instead follows the specified REFRESHPERIOD schedule. When set to TRUE,
UPDATEREFRESHONFAILURE updates the script execution timestamp, even if the script does not
end successfully.

  

21.3.3 Importing Credential Fairness Policies
One common use for an identity manager is to import fairness data from a global external information
service. As an example, assume a site needed to coordinate Moab group level fairshare targets with an
allocation database that constrains total allocations available to any given group. To enable this, a
configuration like the following might be used:

The tools/idquery.pl script could be set up to query a local database and report its results to Moab. Each
iteration, Moab will then import this information, adjust its internal configuration, and immediately respect
the new fairness policies.

21.3.4 Identity Manager Data Format

IDIDCFG[info] SERVER=exec:///tmp/bad_script.pl REFRESHPERIOD=hour 
UPDATEREFRESHONFAILURE=TRUE

IDCFG[alloc] SERVER=exec://$TOOLSDIR/idquery.pl



When an identity manager outputs credential information either through an exec or file based interface, the
data should be organized in the following format:

<CREDTYPE>:<CREDID> <ATTR>=<VALUE>

where

<CREDTYPE> is one of user, group, acct, class, or qos.
<CREDID> is the name of the credential.
<ATTR> is one of adminlevel, alist, chargerate, comment, emailaddress, fstarget, gfstarget,
gfsusage, maxjob, maxmem, maxnode, maxpe, maxproc, maxps, maxwc, plist, pref, priority,
qlist, or role.
<VALUE> is the value for the specified attribute.

To clear a comment, set its value to ""; for example: comment="".

Example

The following output may be generated by an exec based identity manager:

21.3.5 Identity Manager Conflicts
When local credential configuration (as specified via moab.cfg) conflicts with identity manager configuration,
the identity manager value takes precedence and the local values are overwritten.

21.3.6 Refreshing Identity Manager Data
By default, Moab only loads identity manager information once when it is first started up. If the identity
manager data is dynamic, then you may want Moab to periodically update its information. To do this, set the
REFRESHPERIOD attribute of the IDCFG parameter. Legal values are documented in the following table:

Value Description

minute update identity information once per minute

hour update identity information once per hour

day update identity information once per day

infinity update identity information only at start-up (default)

Example

Job credential feasibility is evaluated at job submission and start time.

21.3.7 Exporting Data to Identity Managers
Local usage information can be exported to an identity manager. One possible use of this feature is for
multiple clusters to export local usage to an identity manager and import global usage for usage and
fairshare policies.

group:financial fstarget=16.3 alist=project2
group:marketing fstarget=2.5
group:engineering fstarget=36.7
group:dm fstarget=42.5
user:jason adminlevel=3
account:sales maxnode=128 maxjob=8,16

IDCFG[hq] SERVER=exec://$TOOLSDIR/updatepolicy.sh REFRESHPERIOD=hour



21.3.8 Creating External Credentials via an Identity Manager
To create or modify an external credential such as a user or group, the identity manager's CREDCREATEURL
attribute must be specified. This URL can point to a database, a script, or a service and indicates the method
to use to create a new external credential. If enabled, this method is called to create credentials on remote
compute hosts if the credential is not currently defined on the master host. To enable Moab to automatically
use this capability in a utility computing, grid, or cluster environment, the DYNAMICCRED flag must be set
on the appropriate destination resource manager.

One or more user.create.* tools may already exist in the $TOOLSDIR ($PREFIX/tools) directory.
These can be used as is or customized appropriately for use in the local environment.

See Also
3.5 Credential Overview
6.2 Usage Limits/Throttling Policies

RMCFG[local] TYPE=PBS FLAGS=DYNAMICCRED

IDCFG[cred]  CREATECREDURL=exec://$TOOLSDIR/user.create.nat.sh



21.4 Information Services for Enterprises and
Grids
Moab can be used to collect information from multiple scattered resources. Beyond information collection,
Moab can also be set up to perform automated diagnostics, produce summary reports, and initiate
automated resource recovery, event, and threshold based reprovisioning. Managed resources can include
compute clusters, network resources, storage resources, license resources, system services, applications, and
even databases.

21.4.1 General Collection Infrastructure
While significant flexibility is possible, a simple approach for monitoring and managing resources involves
setting up a Moab Information Daemon (minfod) to access each of the resources to be monitored. These
minfod daemons collect configuration, state, load, and other usage information and report it back to one or
more central moab daemons. The central Moab is responsible for assembling this information, handling
conflict resolution, identifying critical events, generating reports, and performing various automated actions.

The minfod daemon can be configured to import information from most existing HPC information sources,
including both specialized application APIs and general communication standards. These interfaces include
IPMI, Ganglia, SQL, Nagios, HTTP Services, Web/Soap based services, flat files, LSF, TORQUE/PBS,
Loadleveler, SLURM, locally developed scripts, network routers, license managers, and so forth.

The information service feature takes advantage of the Moab peer-to-peer communication facility, identity
management interface, generic event/metric facilities, generalized resource management infrastructure, and
advanced accounting/reporting capabilities. With these technologies, solutions ranging from pure information
services to more active systems that perform resource healing and automated load-balancing can be created.

With the flexibility of Moab, hybrid solutions anywhere along the active monitoring spectrum can be enabled.
Services and resources associated with both open source/open standard protocols and vendor-specific
protocols can be integrated and simultaneously managed by Moab. In real-time, the information gathered by
Moab can be exported to a database, as HTML, or as a Web service. This flexibility allows the information to
be of immediate use via human-readable and machine-readable interfaces.

21.4.2 Sample Uses
Organizations use this capability for multiple purposes including the following:

Monitoring performance statistics of multiple independent clusters
Detecting and diagnosing failures from geographically distributed clusters
Tracking cluster, storage, network, service, and application resources
Generating load-balancing and resource state information for users and middleware services

21.4.3 General Configuration Guidelines
1. Establish peer relationships between information service daemons (minfod or moab).
2. (optional) Enable Starttime Estimation Reporting if manual or automated load-balancing is to occur.

Set ENABLESTARTESTIMATESTATS to generate local start estimation statistics.
Set REPORTPEERSTARTINFO to report start estimate information to peers.

3. (optional) Enable Generic Event/Generic Metric Triggers if automated resource recovery or alerts are to
be used.

4. (optional) Enable automated periodic reporting.
5. (optional) Enable automated data/job staging and environmental translation.
6. (optional) Enable automated load/event based resource provisioning.

21.4.4 Examples

21.4.4.1 Grid Resource Availability Information Service



The objective of this project is to create a centralized service that can assist users in better utilizing
geographically distributed resources within a loosely coupled-grid. In this grid, many independent clusters
exist, but many jobs may only be able to use a portion of the available resources due to architectural and
environmental differences from cluster to cluster. The information service must provide information to both
users and services to allow improved decisions regarding job to resource mapping.

To address this, a centralized Moab information service is created that collects information from each of the
participating grids. On each cluster where Moab is already managing the local workload, the existing cluster-
level Moab is configured to report the needed information to the central Moab daemon. On each cluster
where another system is managing local cluster workload, a Moab Information Service Daemon (minfod) is
started.

Because load-balancing information is required, the Moab daemon running on each cluster is configured to
report backlog and start estimate information using the REPORTPEERSTARTINFO parameter.

To make information available via a Web service, on the master Moab node, the cluster.mon.ws.pl service
is started, allowing Moab to receive Web service based requests and report responses in XML over SOAP. To
allow human-readable browser access to the same information and services, the local Web service is
configured to use the moab.is.cgi script to drive the Web service interface and report results via a standard
Web page.

Due to the broad array of users within the grid, many types of information are provided. This information
includes the following:

Per cluster configuration (operating system, architecture, node count, processor count, cumulative
memory)
Per cluster state (active, maintenance, down states)
Per cluster messages (local admin-specified cluster messages)
Per cluster usage (currently up and currently available node count, processor count, and cumulative
memory)
Per cluster backlog (in terms of processor seconds and estimated time to completion)
Per cluster responsiveness matrix (job size/duration matrix of historical average queue time and
xfactor)
Per cluster starttime estimate matrix for generic workload (job size/duration matrix of estimated
absolute and relative starttime for generic jobs based on priority, policy, backlog, reservation, system
efficiency, resource failures, wallclock accuracy, and other factors)
Per cluster starttime estimate for specific resource request (based on all factors listed plus job
credentials and specific resource requests including memory, features, licenses, and so forth)
Per cluster estimate accuracy statistics (indicate how accurate starttime estimates have been in the
past)
Adjusted starttime estimates (starttime estimates for both specific and generic job requests with
estimate accuracy and composite estimate information integrated via an automated learning feedback
algorithm)
Best destination matrix for generic workload request (composite matrix representing best grid value
and best target cluster for each cell)
Prioritized best destination cluster report (list of potential destination clusters prioritized in order of
best probable responsiveness first)

With these queries, users/services can obtain and process raw resource information or can ask a question as
simple as What is the best cluster for this request?.

ENABLESTARTESTIMATESTATS TRUE
REPORTPEERSTARTINFO      TRUE
...

RMCFG[clusterA] SERVER=moab://clusterA.bnl.gov
RMCFG[clusterB] SERVER=moab://clusterB.qrnl.gov
RMCFG[clusterC] SERVER=moab://clusterC.ocsa.edu
RMCFG[clusterD] SERVER=moab://clusterD.ocsa.edu
...



See Also
Identity Managers
Grid Basics

> mdiag -t -v
Partition Status

System Partition Settings:  PList: clusterA,clusterB  

Name                    Procs

ALL                      1400
clusterA                  800
  RM=clusterA
clusterB                  600
  RM=clusterB

Partition    Configured         Up     U/C  Dedicated     D/U     
Active     A/U

Nodes ----------------------------------------------------------
------------------
ALL                 700        700 100.00%        650  86.67%        
647  85.39%
clusterA            400        400 100.00%          0   0.00%          
0   0.00%
clusterB            300        300 100.00%          1 100.00%          
1 100.00%

Processors -----------------------------------------------------
-----------------------
ALL                1400       1400  84.21%          2  12.50%          
2  12.50%



21.5 Malleable Jobs
Malleable jobs are jobs that can be adjusted in terms of resources and duration required, and which allow the
scheduler to maximize job responsiveness by selecting a job's resource shape or footprint prior to job
execution. Once a job has started, however, its resource footprint is fixed until job completion.

To enable malleable jobs, the underlying resource manager must support dynamic modification of resource
requirements prior to execution (i.e., TORQUE) and the jobs must be submitted using the TRL (task request
list) resource manager extension string. With the TRL attribute specified, Moab will attempt to select a start
time and resource footprint to minimize job completion time and maximize overall effective system utilization
(i.e., <AverageJobEfficiency> * <AverageSystemUtilization>).

Example

With the following job submission, Moab will execute the job in one of the following configurations: 1 node for
1 hour, 2 nodes for 30 minutes, or 4 nodes for 15 minutes.

> qsub -l nodes=1,trl=1@3600:2@1800:4@900 testjob.cmd

job 72436.orion submitted

http://www.adaptivecomputing.com/resources/docs/torque/index.php


22.0 Database Configuration
Moab supports connecting to a database via native SQLite3, and it can also connect to other databases using
the ODBC driver. The SQLite3 connection is for storing statistics. Consider reviewing the SQLite web page
Appropriate Uses for SQLite for information regarding the suitability of using SQLite3 on your system.

While the ODBC connection is useful for storing statistics, it also stores events, nodes, and jobs. You can
further configure Moab to store checkpoint information to a database rather than to the flat text file
(.moab.ck) if you set the CHECKPOINTWITHDATABASE parameter to TRUE.

Moab must use an ODBC-compliant database to report statistics with Viewpoint reports.

22.1 SQLite3
22.2 Connecting to a MySQL Database with an ODBC Driver

http://www.sqlite.org/whentouse.html


22.1 SQLite3
Moab supports connecting to a database via native SQLite3. Database installation and configuration occurs
automatically during normal Moab installation (configure, make install). If you did not follow the normal
process to install Moab and need to install the database, do the following to manually install and configure
Moab database support:

1. Create the database file moab.db in your Moab home directory by running the following command from
the root of your unzipped Moab build directory:

perl buildutils/install.sqlite3.pl ‹moab-home-directory›

Verify that the command worked by running lib/sqlite3 ‹moab-home-directory›/moab.db;
at the resulting prompt, type .tables and press ENTER. You should see several tables such as
mcheckpoint listed. Exit from this program with the .quit command.

The perl buildutils/install.sqlite3.pl ‹moab-home-directory› command may fail if
your operating system cannot find the SQLite3 libraries. Also, Moab fails if unable to identify the
libraries. To temporarily force the libraries to be found, run the following command:

export LD_LIBRARY_PATH=‹location where libraries were copied›

2. In the moab.cfg file in the etc/ folder of the home directory, add the following line:

To verify that Moab is running with SQLite3 support, start Moab and run the mdiag -S -v command. If there
are no database-related error messages displayed, then Moab should be successfully connected to a
database.

> moabd is a safe and recommended method of starting Moab if things are not installed in their default
locations.

USEDATABASE     INTERNAL



22.2 Connecting to a MySQL Database with an
ODBC Driver
This documentation shows how to set up and configure Moab to connect to a MySQL database using an ODBC
driver. This document assumes the necessary MySQL and ODBC drivers have already been installed and
configured.

To set up and configure Moab to connect to a MySQL database using the MySQL ODBC driver, do the
following:

This solution has been tested and works with these file versions:
libmyodbc - 5.1.6
unixodbc - 2.2.14

For a Debian-based system, unixodbc-dev is required, but it may not be for Red Hat
flavors (such as CentOS andRHEL).

1. Download and install the ODBC version of Moab. Install and configure Moab as normal but add the
following in the Moab configuration file (moab.cfg):

2. Create the database in MySQL using the MySQL database dump contained in the moab-db.sql file. This
file is located in the contrib/sql directory in the root of the binaries.

Run the following command:

3. Configure the MySQL and ODBC driver. The /etc/odbcinst.ini file should contain content similar to
what follows:

4. Configure Moab to use the MySQL ODBC driver. Moab uses an ODBC datastore file to connect to
MySQL using ODBC. This file must be located in the Moab home directory (/opt/moab by default) and
be named dsninfo.dsn, which is used by Moab. If the following content, which follows the standard
ODBC driver file syntax, is not already included in the /etc/odbc.ini file, make sure that you include
it. Also, include the same content in the dsninfo.dsn file.

USEDATABASE             ODBC

# Turn on stat profiling
USERCFG[DEFAULT]        ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT]       ENABLEPROFILING=TRUE
QOSCFG[DEFAULT]         ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT]       ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT]     ENABLEPROFILING=TRUE
NODECFG[DEFAULT]        ENABLEPROFILING=TRUE

mysql -u root -p < moab-db.sql

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so

[ODBC]
Driver = MySQL
USER = <username>
PASSWORD = <password>
Server = localhost
Database = Moab
Port = 3306

http://www.unixodbc.org/


The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the MySQL driver, username user, mypassword
password, and to connect to MySQL running on the localhost on port 3306. ODBC uses this information
and connects to the database called Moab.

5. Test the ODBC to MySQL connection by running the isql command, which reads the /etc/odbc.ini
file:

If you encounter any errors using the isql command, then there were problems setting up the ODBC
to MySQL connection.

6. With the ODBC driver configured, the database created, and Moab configured to use the database,
start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

Importing Statistics from stats/DAY.* to the Moab Database
The contrib/stat_converter folder contains the files to build mstat_converter, an executable that reads
file-based statistics in a Moab stats directory and dumps them into a database. It also reads the Moab
checkpoint file (.moab.ck) and dumps that to the database as well. It uses the
$MOABHOMEDIR/etc/moab.cfg file to connect to the appropriate database and reads the statistics files from
$MOABHOMEDIR/stats.

To run, execute the program mstat_converter with no arguments.

The statistics converter program does not clear the database before converting. However, if there are
statistics in the database and the statistics files from the same period, the converter overwrites the database
information with the information from the statistics files.

$ isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> show tables;
+--------------------------------------------------------------
---+
| Tables_in_Moab |
+--------------------------------------------------------------
---+
| EventType |
| Events |
| GeneralStats |
| GenericMetrics |
| Moab |
| NodeStats |
| NodeStatsGenericResources |
| ObjectType |
| mcheckpoint |
+--------------------------------------------------------------
---+
SQLRowCount returns 10
10 rows fetched
SQL>



Appendix D: Adjusting Default Limits
Moab is distributed in a configuration capable of supporting multiple architectures and systems ranging from
a few processors to several thousand processors. However, in spite of its flexibility, for performance reasons,
it still contains a number of default object limits parameters and static structures defined in header files.
These limits constrain such things as the maximum number of jobs, reservations, and nodes that Moab can
handle and are set to values that provide a reasonable compromise between capability and memory
consumption for most sites. However, many site administrators want to increase some of these settings to
extend functionality, or decrease them to save consumed memory. The most common parameters are listed
in what follows. Parameters listed in the Moab configuration file (moab.cfg) can be modified by restarting
Moab. To change parameters listed in moab.h, please contact technical support.

Parameter Location Default Max
Tested Description

CLIENTMAXCONNECTIONS moab.cfg
(dynamic
parameter)

128  
Maximum number of connections that can
simultaneously connect to Moab.

JOBMAXNODECOUNT moab.cfg
(dynamic
parameter) 1024 8192

Maximum number of compute nodes that can
be allocated to a job. (Can also be specified
within configure using --with-
maxjobsize=<NODECOUNT>.)

MAXGRES moab.cfg
(dynamic
parameter)

  
Total number of distinct generic resources that
can be managed.

MAXJOB moab.cfg
(dynamic
parameter) 4096 50000

Maximum number of jobs that can be evaluated
simultaneously. (Can also be specified within
configure using --with-
maxjobs=<JOBCOUNT>.)

MAXRSVPERNODE moab.cfg
(dynamic
parameter)

24 1024
Maximum number of reservations a node can
simultaneously support.

MMAX_ATTR moab.h
128 512

Total number of distinct node attributes (PBS
node attributes/LL node features) that can be
tracked.

MMAX_CLASS moab.h 24 64 Total number of distinct job classes/queues
available.

MMAX_FSDEPTH moab.h 24 32 Number of active fairshare windows.

MMAX_NODE moab.h
5120 160000

Maximum number of compute nodes supported.
(Can be specified within configure using --
with-maxnodes=<NODECOUNT>.)

MMAX_PAR moab.h 16 16 Maximum number of partitions supported.

MMAX_QOS moab.h 128 128 Total number of distinct QoS objects available
to jobs.

MMAX_RACK moab.h 200 200 Total number of distinct rack objects available
within cluster.

MMAX_RANGE moab.h Total number of distinct timeframes evaluated.

Note: This is proportional to the size of the



256 1500

cluster and the number of simultaneously active
jobs in the cluster. (Can be specified within
configure using --with-
maxrange=<RANGECOUNT>.) Increasing
this value will not increase the size of total
memory consumed by Moab but may result in
minor slowdowns in the evaluation and
optimization of reservations.

MMAX_RSV moab.h
1024 8192

Total number of distinct reservations allowed
per cluster. (Can be specified within configure
using --with-maxrsv=<RSVCOUNT>.)

MMAX_TASK moab.h
4096 16000

Total number of tasks allowed per job. (Can be
specified within configure using --with-
maxtasks=<TASKCOUNT>.)

Moab currently possesses hooks to allow sites to create local algorithms for handling site specific needs in
several areas. The contrib directory contains a number of sample local algorithms for various purposes. The
MLocal.c module incorporates the algorithm of interest into the main code. The following scheduling areas
are currently handled via the MLocal.c hooks.

Local Job Attributes
Local Node Allocation Policies
Local Job Priorities
Local Fairness Policies

See Also
Appendix I: Considerations for Large Clusters
5.5 Task Distribution Policies

http://www.adaptivecomputing.com/resources/docs/mwm/5.5taskdistribution.php


Appendix E: Security
Moab provides role and host based authorization, encryption*, and DES, HMAC, and MD5 based
authentication. The following sections describe these features in more detail.

E.1 Authorization
E.1.1 Role Based Authorization Security Configuration
E.1.2 Host Based Authorization (Administrative Hosts)

E.2 Authentication
E.2.1 Mauth Authentication
E.2.2 Munge Authentication
E.2.3 Server Response Control
E.2.4 Interface Development Notes

E.3 Host Security
E.3.1 Minimal Host Security Enforcement
E.3.2 Medium Host Security Enforcement
E.3.3 Strict Host Security Enforcement

E.4 Access Portal Security

E.1 Authorization

E.1.1 Role Based Authorization Security Configuration

Moab provides access control mechanisms to limit how the scheduling environment is managed. The primary
means of accomplishing this is through limiting the users and hosts that are trusted and have access to
privileged commands and data.

With regard to users, Moab breaks access into three distinct levels.

E.1.1.1 Level 1 Moab Admin (Administrator Access)

Level 1 Moab administrators have global access to information and unlimited control over scheduling
operations. By default, they are allowed to control scheduler configuration, policies, jobs, reservations, and all
scheduling functions. They are also granted access to all available statistics and state information. Level 1
administrators are specified using the ADMINCFG[1] parameter.

E.1.1.2 Level 2 Moab Admin (Operator Access)

Level 2 Moab administrators are specified using the ADMINCFG[2] parameter. By default, the users listed
under this parameter are allowed to change all job attributes and are granted access to all informational
Moab commands.

E.1.1.3 Level 3 Moab Admin (Help Desk Access)

Level 3 administrators are specified via the ADMINCFG[3] parameter. By default, they are allowed access to
all informational Moab commands. They cannot change scheduler or job attributes.

E.1.1.4 Configuring Role Based Access

Moab allows site specific tuning of exactly which functions are available to each administrator level. Moab
also provides two additional administrator levels (ADMINCFG[4] and ADMINCFG[5]) that may be used for
site specific needs.

To configure Moab role based access, use the ADMINCFG parameter.

ADMINCFG[1]     USERS=root,john SERVICES=ALL NAME=admin
ADMINCFG[3]     USERS=joe,mary  SERVICES=mdiag,mrsvctl,mcredctl 
NAME=power
ADMINCFG[5]     USERS=joy,blake SERVICES=NONE NAME=users



A NONE in services will still allow users to run showq and checkjob on their own jobs.

To determine the role of system users and what commands they can run, use the mcredctl -q role
user:<USERID> command.

Using the SERVICES attribute of the ADMINCFG parameter, access to an arbitrary selection of services can
be enabled on a per administrator-level basis. Possible services include the following:

Service Description

changeparam Change any scheduling policy or parameter (This command is deprecated. Use mschedctl -m
instead).

checkjob View detailed information for any job.

checknode View detailed information for any node.

mbal Perform real-time load-balancing of interactive commands.

mcredctl View and modify credential attributes.

mdiag Provide diagnostic reports for resources, workload, and scheduling.

mjobctl Modify, control, and view jobs.
Allows subcommand specification using subcommands cancel (you can also use canceljob),
checkpoint, diagnose, modify, query, requeue, resume, signal, submit, suspend,
adjusthold, and adjustprio.

mnodectl Modify, control, and view nodes.

mrmctl Modify, control, and view resource managers.

mrsvctl Modify, control, and view reservations.

mschedctl Modify, control, and view scheduler behavior.

mshow View existing configuration and predicted resource availability.

showstats View all scheduler and credential statistics.

releaseres Release reservations (This command is deprecated. Use mrsvctl -r instead).

resetstats Clear/reset all scheduler statistics.

runjob Immediately execute any job (see mjobctl -x).

setqos Set QoS on any job (This command is deprecated. Use mjobctl -m instead).

setres Create a reservation (This command is deprecated. Use mrsvctl -c instead).

setspri Set system priority on any job (This command is deprecated. Use mjobctl -p instead).

showconfig Show all scheduler configuration parameters (This command is deprecated. Use mschedctl -l
instead).

showres Show detailed information for any reservation.

E.1.1.5 Account and Class/Queue Admins

While the ADMINCFG parameter allows organizations to provide controlled access to scheduling objects, it
does not allow for distribution along organizational boundaries. For example, a site may set up a level 3

...



administrator to be able to view statistics, diagnose jobs, and modify job priorities; it does not provide a way
to differentiate one type of job from another. If a site adminsitrator wanted to allow control based on the
queue or account associated with a job, they would best accomplish this using the credential MANAGERS
feature.

A credential manager allows a user to be trusted to administer workload and policies for an associated
subgroup of jobs. For example, in the configuration below, a number of queue and account managers are
configured.

By default, the specified managers can do anything to a job that the actual job owner could do, including
viewing cumulative and per job statistics, seeing job details, modifying job priorities and holds, cancelling and
preempting jobs, and otherwise adjusting policies and constraints within the associated credential.

E.1.2 Host Based Authorization (Administrative Hosts)

If specified, the ADMINHOSTS parameter allows a site to specify a subset of trusted hosts. All administrative
commands (level 1-3) will be rejected unless they are received from one of the hosts listed.

E.2 Authentication (Interface Security)
Moab supports password-challenge, DES, HMAC, and MD5 based authentication. Authentication protocols
may be specified on a per interface basis allowing independent realms of trust with per realm secret keys and
even per realm authentication protocols.

E.2.1 Mauth Authentication

Mauth is a tool provided with Moab that provides client authentication services. With mauth enabled, each
client request is packaged with the client ID, a timestamp, and an encrypted key of the entire request
generated using the shared secret key.

This tool is enabled by providing a secret key. A random key is selected when the Moab configure script is
run and may be regenerated at any time by rerunning configure and rebuilding Moab.  If desired, this
random key may be overridden by specifying a new key in the protected .moab.key file as in the example
below:

If .moab.key is used, this protected file will need to be on each host that is authorized to run Moab
client commands.

By default, this file will be owned by the user root and its contents will be read by the mauth tool
which provides client authorization services. If desired, the ownership of this file can be changed so
long as this file is readable by the Moab server and the mauth tool. This can be accomplished if the
Moab primary administrator, the owner of mauth, and the owner of .moab.key are the same.

By default, it is up to the individual cluster administrators to determine whether to use the .moab.key

CLASSCFG[orion] MANAGERS=johns
CLASSCFG[xray]  MANAGERS=steve2
CLASSCFG[gamma] MANAGERS=steve2,jpw

ACCOUNTCFG[bio] MANAGERS=charles

> vi /opt/moab/.moab.key
(insert key)
> cat /opt/moab/.moab.key
XXXXXXXX
# secure file by setting owner read-only permissions
> chmod 400 /opt/moab/.moab.key
# verify file is owned by root and permissions allow only root to read 
file
> ls -l /opt/moab/.moab.key
-r-------- 1 root root 15 2007-04-05 03:47 /opt/moab/.moab.key



file. For sites with source code, the use of .moab.key can be mandated by using configure --with-
keyfile.

By default, mauth is located in the install bin directory. If an alternate name or alternate file location
is desired, this can be specified by setting the AUTHCMD attribute of the CLIENTCFG parameter within
the moab.cfg file as in the following example.

E.2.1.1 Configuring Peer-Specific Secret Keys

Peer-specific secret keys can be specified using the CLIENTCFG parameter. This key information must be
kept secret and consequently can only be specified in the moab-private.cfg file. With regard to security,
there are two key attributes that can be set. Other resource managers or clients such as Gold or a
SLURM/Wiki interface can also use the attributes to configure their authentication algorithms. The default,
unless otherwise stated, is always DES. These attributes are listed in the table below:

Attribute Format Default Description Example

AUTH one of
ADMIN1,
ADMIN2,
or ADMIN3

--- Specifies the level of control/information
available to requests coming from this
source/peer.

AUTHTYPE one of
DES,
HMAC,
HMAC64,
or MD5.

DES Specifies the encryption algorithm to
use when generating the message
checksum.

HOST STRING --- Specifies the hostname of the remote
peer. Peer requests coming from this
host will be authenticated using the
specified mechanism. This parameter is
optional.

KEY STRING --- Specifies the shared secret key to be
used to generate the message
checksum.

The CLIENTCFG parameter takes a string index indicating which peer service will use the specified attributes.
In most cases, this string is simply the defined name of the peer service. However, for the special cases of
resource and allocation managers, the peer name should be prepended with the prefix RM: or AM:
respectively, as in CLIENTCFG[AM:bank] or CLIENTCFG[RM:devcluster].

The first character of any secret key can be viewed by trusted administrators using specific diagnostic
commands to analyze Moab interfaces. If needed, increase the length of the secret keys to maintain
the desired security level.

E.2.2 Munge Authentication

Moab also integrates with MUNGE, an open source authentication service created by Lawrence Livermore
National Laboratory (http://home.gna.org/munge/). MUNGE works with Moab to authenticate user
credentials being passed between the Moab client and the Moab server or from Moab server to Moab server.

To set up MUNGE in a cluster or grid, download and install MUNGE on every node in the cluster or grid by
following the installation steps found at http://home.gna.org/munge/. The MUNGE secret key must reside on
each node in the cluster or grid. Before starting the Moab daemon, the MUNGE daemon must be running on
all nodes.

CLIENTCFG  AUTHCMD=/opt/sbin/mauth

CLIENTCFG[RM:clusterB] 
AUTH=admin1 
KEY=14335443

CLIENTCFG[AM:bio3] 
AUTHTYPE=HMAC64

CLIENTCFG[RM:clusterA] 
HOST=orx.pb13.com  
KEY=banana6

CLIENTCFG[RM:clusterA] 
KEY=banana6

http://home.gna.org/munge/


To enable Moab to use MUNGE for authentication purposes, specify the MUNGE executable path in the
moab.cfg file using CLIENTCFG and AUTHCMD as in the following example. The MUNGE executable path
must reside in each client's moab.cfg file as well.

Moab requires that the MUNGE and UNMUNGE executable names be "munge" and "unmunge"
respectively. It also assumes that the UNMUNGE executable resides in the same directory as the
MUNGE executable.

E.2.2.1 Configuring Munge Command Options

Moab also integrates with MUNGE command line options. For example, to set up Moab to use a specific
socket that was created when the MUNGE daemon was started, use CLIENTCFG and AUTHCMDOPTIONS
to specify the newly created socket. The AUTHCMDOPTIONS command, like AUTHCMD, must also reside in
the client's moab.cfg file.

E.2.3 Server Response Control

If a request is received that is corrupt or cannot be authenticated, Moab will report some limited information
to the client indicating the source of the failure, such as "bad key," "malformed header," and so forth. In the
case of highly secure environments, or to minimize the impact of sniffing or denial of service attacks, Moab
can be configured to simply drop invalid requests. This is accomplished by adding the DROPBADREQUEST
attribute to the CLIENTCFG parameter in the moab-private.cfg file as in the following example:

E.2.4 Interface Development Notes

Sample checksum generation algorithm code can be found in the Socket Protocol Description document.

E.3 Host Security for Compute Resources
Host level security can vary widely from one site to another with everything from pure on-your-honor based
clusters to complete encrypted VLAN based network security and government approved per job scrubbing
procedures being used. The following documentation describes some best practices in use throughout the
industry.

E.3.1 Minimal Host Security Enforcement

For minimal host security, no additional configuration is required.

E.3.2 Medium Host Security Enforcement

Login Access
PAM — Enable/disable access by modifying /etc/security/access.conf.

Processes
Kill all processes associated with job user (dedicated).
Kill all processes associated with job session (dedicated/shared). Use ps -ju or ps -js
<SESSID>.

IPC (Inter-Process Communication)
Remove shared memory, semaphores, and message queues (use ipcs/ipcrm).
Remove named pipes.

Network/Global Filesystem Access
Explicitly unmount user home and global file systems.

Local Temporary Filesystems

CLIENTCFG     AUTHCMD=/usr/bin/munge 

CLIENTCFG     AUTHCMD=/usr/bin/munge 
CLIENTCFG     AUTHCMDOPTIONS="-S /var/run/munge/munge.socket.2"

CLIENTCFG[DEFAULT] DROPBADREQUEST=TRUE



Where possible, mount local file systems read-only.
Clear /tmp, /scratch and other publicly available local file systems.
Remove user files with shred; shred is a Linux command that first overwrites files completely
before removing them, preventing remnant data from surviving on the hard drive.

E.3.3 Strict Host Security Enforcement

VLAN creation
Host rebuild

U.S Dept of Energy Disk/File Sanitization (SCRUB)
U.S Dept of Defense Scrubbing Software (DOD-5520)

E.4 Moab Access Portal Security Overview

The Moab Access Portal (MAP) security model is composed of several different components. First, users will
use a Web browser to log in and interact with the Web server running MAP. This communication can be
encrypted using industry standard SSL to protect usernames/passwords and other sensitive information that
may be accessed by the user. (Instructions on how to set up SSL connections with popular Web servers and
servlet engines are readily available on the Internet. A guide for setting up SSL with Apache is available in
the MAP documentation.)

When a user logs in via their Web browser, the JSP interface passes this request to a back-end Java
infrastructure that then uses an encrypted SSH connection to authenticate the user's credentials at the
cluster/grid head node. After the credentials are authenticated and the SSH connection established, further
communication between MAP and the cluster/grid head node occurs over the encrypted SSH connection.
These three components provide an end-to-end security solution for Web-based job submission and workload
management.

http://www.doecirc.energy.gov/documents/CIRC-2325-Sanitizing-Disks.pdf
http://www.dss.mil/isp/fac_clear/download_nispom.html
http://www.adaptivecomputing.com/resources/docs/map/1.6tomcatinstall.php#ssl


Appendix F: Moab Parameters
See the Parameters Overview in the Moab Admin Manual for further information about specifying parameters.

Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ACCOUNTCFG[<ACCOUNTID>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
General Credential Flags, CHARGERATE, PRIORITY, ENABLEPROFILING, MEMBERULIST,
TRIGGER, PDEF, PLIST, QDEF, QLIST, usage limit, or a fairness usage limit specification
(FSCAP, FSTARGET, and FSWEIGHT).

Default: ---

Details: Specifies account specific attributes. See the account overview for general information and the
job flag overview for a description of legal flag values.

Example:

Up to 50 jobs submitted under the account ID projectX will be allowed to execute
simultaneously and will be assigned the QOS highprio by default.

  
ACCOUNTINGINTERFACEURL

Format: <URL> where protocol can be one of exec or file

Default: ---

Details: Specifies the interface to use for real-time export of Moab accounting/auditing information. See
Exporting Events in Real-Time for more information.

Example:

  
ACCOUNTWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the priority weight to be applied to the specified account priority. See Credential
(CRED) Factor.

Example:

  
ADMIN1, ADMIN2, ADMIN3

Format: Space delimited list of user names

Default: root

Details: Deprecated. Use ADMINCFG. Users listed under the parameter ADMIN1 are allowed to perform
any scheduling function. They have full control over the scheduler and access to all data. The
first user listed in the ADMIN1 user list is considered to be the 'primary admin' and is the ID
under which Moab must be started and run.  Valid values include user names or the keyword
'ALL'. Again, these parameters are deprecated; use ADMINCFG.

ACCOUNTCFG[projectX] MAXJOB=50 QDEF=highprio

ACCOUNTINGINTERFACEURL exec:///$TOOLSDIR/dumpacc.pl

ACCOUNTWEIGHT 100



Example:

All users listed have full access to Moab control commands and Moab data. Moab must be
started by and run under the 'moabuser' user id since moabuser is the primary admin.

  
ADMINCFG[X]

Format: One or more <ATTR>=<VALUE> pairs where <ATTR> is one of the following: ENABLEPROXY,
USERS, SERVICES, or NAME

Default: ---

Details: Allows a site to configure which services and users belong to a particular level of administration.
Note: The first user listed in the ADMINCFG[1] users list is considered to be the 'primary
admin'.

Example:

Members of the batchadmin admin role are allowed to run all commands. Members of the
helpdesk role are allowed to cancel jobs, adjust job priority, and adjust job holds. They are also
able to view and modify credential objects (ie, users, groups, accounts, etc) See the security
overview for more details.

  
ADMINHOSTS

Format: Space delimited list of host names.

Default: ---

Details: If specified, the ADMINHOSTS parameter allows a site to specify a subset of trusted hosts. All
administrative commands (level 1-3) will be rejected unless they are received from one of the
hosts listed.

Example:

  
 AGGREGATENODEACTIONS

Format: <BOOLEAN>

Default: FALSE

Details: Consolidates queued node actions into as few actions as possible to reduce communication
burden with resource manager. Node actions are queued until the
AGGREGATENODEACTIONSTIME setting.

This may delay some node actions. When reprovisioning, the system job may expire
before the provision action occurs; while the action will still occur, the job will not show it.

Example:

ADMIN1 moabuser steve scott jenny

ADMINCFG[1] USERS=root,john 
ADMINCFG[1] SERVICES=ALL 
ADMINCFG[1] NAME=batchadmin

ADMINCFG[3] USERS=bob,carol,smoore 
ADMINCFG[3] 
SERVICES=mjobctl:cancel:adjustprio:adjusthold,mcredctl,runjob
ADMINCFG[3] NAME=helpdesk

ADMINHOSTS hostA hostB

AGGREGATENODEACTIONS TRUE



Queues node actions together when possible.

  
 AGGREGATENODEACTIONSTIME

Format: <SECONDS>

Default: 60

Details: The delay time for the AGGREGATENODEACTIONS parameter to aggregate requests before
sending job batches.

Example:

Sets the AGGREGATENODEACTIONS delay to two minutes..

  
 ALLOWROOTJOBS

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether batch jobs from the root user (UID=0) are allowed to be execute. Note: The
resource manager must also support root jobs.

Example:

Jobs from the root user can execute.

  
 ALLOWVMMIGRATION

Format: <BOOLEAN>

Default: FALSE

Details: Enables Moab to migrate VMs.

Example:

  
 ALWAYSEVALUATEALLJOBS

Format: <BOOLEAN>

Default: FALSE

Details: When scheduling priority jobs, Moab stops scheduling when it encounters the first job that
cannot run and cannot get a reservation. ALWAYSEVALUATEALLJOBS directs Moab to
continue scheduling until all priority jobs (jobs that do not violate any limits) are evaluated.

Example:

  
 AMCFG

Format: One or more key-value pairs as described in the Allocation Manager Configuration Overview.

Default: N/A

AGGREGATENODEACTIONSTIME 120

ALLOWROOTJOBS TRUE

ALLOWVMMIGRATION TRUE

ALWAYSEVALUATEALLJOBS TRUE



Details: Specifies the interface and policy configuration for the scheduler-allocation manager interface.
Described in detail in the Allocation Manager Configuration Overview.

Example:

  
 APPLICATIONLIST

Format: Space delimited list of generic resources.

Default: N/A

Details: Specifies which generic resources represent actual applications on the cluster/grid. See 12.4
Managing Consumable Generic Resources for more information.

Example:

The generic resources 'calclab' and 'powerhouse' will now be recognized and treated as
application software.

  
ASSIGNVLANFEATURES

Format: <BOOLEAN>

Default: FALSE

Details: When set to TRUE, this forces all VMs to be contained in VLANs.

Example:

If a VLAN is not requested when a VM is created, the VM is assigned to one.

  
ATTRATTRWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to jobs with the specified job attribute. See Attribute
(ATTR) Factor.

Example:

  
 ATTRGRESWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to jobs requesting the specified generic resource. See
Attribute (ATTR) Factor.

Example:

AMCFG[bank] SERVER=gold://master.ufl.edu JOBFAILUREACTION=IGNORE 
TIMEOUT=15

NODECFG[node01] GRES=calclab:1,powerhouse:1 
RCSOFTWARE=calclab:1,powerhouse:1
NODECFG[node02] GRES=calclab:1,powerhouse:1 
RCSOFTWARE=calclab:1,powerhouse:1
APPLICATIONLIST calclab,powerhouse

ASSIGNVLANFEATURES TRUE

ATTRATTRWEIGHT 100

ATTRGRESWEIGHT 200



  
 ATTRSTATEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to jobs with the specified job state. See Attribute
(ATTR) Factor.

Example:

  
ATTRWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the priority component weight to be applied to the ATTR subcomponents. See Attribute
(ATTR) Factor.

Example:

  
 BACKFILLDEPTH

Format: <INTEGER>

Default: 0 (no limit)

Details: Specifies the number of idle jobs to evaluate for backfill. The backfill algorithm will evaluate the
top <X> priority jobs for scheduling. By default, all jobs are evaluated.

Example:

Evaluate only the top 128 highest priority idle jobs for consideration for backfill.

  
BACKFILLMETRIC

Format: One of the following: PROCS, PROCSECONDS, SECONDS, or NODES

Default: PROCS

Details: Specifies the criteria used by the backfill algorithm to determine the 'best' jobs to backfill. Only
applicable when using BESTFIT or GREEDY backfill algorithms.

Example:

  
 BACKFILLPOLICY

Format: One of the following: FIRSTFIT, BESTFIT, GREEDY, PREEMPT, or NONE

Default: FIRSTFIT

Details: Specifies which backfill algorithm will be used. See Configuring Backfill for more information.

Example:

  

ATTRSTATEWEIGHT 200

ATTRWEIGHT      2
ATTRSTATEWEIGHT 200

BACKFILLDEPTH 128

BACKFILLMETRIC PROCSECONDS

BACKFILLPOLICY  BESTFIT



 BFCHUNKDURATION

Format: [[[DD:]HH:]MM:]SS

Default: 0 (chunking disabled)

Details: Specifies the duration during which freed resources will be aggregated for use by larger jobs.
Used in conjunction with BFCHUNKSIZE. See Configuring Backfill for more information.

Example:

Aggregate backfillable resources for up to 5 minutes, making resources available only to jobs of
size 4 or larger.

  
 BFCHUNKSIZE

Format: <INTEGER>

Default: 0 (chunking disabled)

Details: Specifies the minimum job size which can utilize chunked resources. Used in conjunction with
BFCHUNKDURATION. See Configuring Backfill for more information.

Example:

Aggregate backfillable resources for up to 5 minutes, making resources available only to jobs of
size 4 or larger.

  
 BFMINVIRTUALWALLTIME

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details:
Specifies the minimum job wallclock time for virtual scaling (optimistic-like backfilling.) Any job
with a wallclock time less than this setting will not be virtually scaled. The value specified relates
to a job's original walltime and not its virtually-scaled walltime.

Example:

  
 BFPRIORITYPOLICY

Format: One of RANDOM, DURATION, or HWDURATION

Default: ---

Details: Specifies policy to use when prioritizing backfill jobs for preemption

Example:

Use length of job in determining which backfill job to preempt.

  
 BFVIRTUALWALLTIMECONFLICTPOLICY

Format: One of the following: PREEMPT

BFCHUNKDURATION 00:05:00
BFCHUNKSIZE     4

BFCHUNKDURATION 00:05:00
BFCHUNKSIZE     4

BFMINVIRTUALWALLTIME  00:01:30

BFPRIORITYPOLICY  DURATION



Default: ---

Details: Specifies how to handle scheduling conflicts when a virtually scaled job "expands" to its original
wallclock time. This occurs when the job is within one scheduling iteration - RMPOLLINTERVAL
- of its virtually scaled wallclock time expiring.

Example:

  
 BFVIRTUALWALLTIMESCALINGFACTOR

Format: <DOUBLE>

Default: 0 (virtual scaling disabled)

Details: Specifies the factor by which eligible jobs' wallclock time is virtually scaled (optimistic-like
backfilling).

Example:

  
 BLOCKLIST

Format: DEPEND

Default: NONE

Details: Specifies the additional non-default criteria which are used to determine if a job should be
filtered out before idle usage is updated and idle usage policies are enforced.

Example:

  
BYPASSCAP

Format: <INTEGER>

Default: 0

Details: Specifies the max weighted value allowed from the bypass count subfactor when determining a
job's priority (see Priority Factors for more information).

Example:

  
BYPASSWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight to be applied to a job's backfill bypass count when determining a job's
priority (see Priority Factors for more information).

Example:

  
CHECKPOINTDIR

Format: <STRING>

BFVIRTUALWALLTIMECONFLICTPOLICY  PREEMPT

BFVIRTUALWALLTIMESCALINGFACTOR .4

BLOCKLIST DEPEND

BYPASSWEIGHT 5000
BYPASSCAP    30000

BYPASSWEIGHT 5000



Default: ---

Details: Specifies the directory for temporary job checkpoint files (usually of the form "jobid.cp"). This is
not the directory for Moab's checkpoint file (.moab.ck).

Example:

  
CHECKPOINTEXPIRATIONTIME

Format: [[[DD:]HH:]MM:]SS or UNLIMITED

Default: 3,000,000 seconds

Details: Specifies how 'stale' checkpoint data can be before it is ignored and purged.

Example:

Expire checkpoint data which has been stale for over one day.

  
 CHECKPOINTFILE

Format: <STRING>

Default: moab.ck

Details: Name (absolute or relative) of the Moab checkpoint file.

Example:

Maintain the Moab checkpoint file in the file specified.

  
 CHECKPOINTINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 00:05:00

Details: Time between automatic Moab checkpoints.

Example:

Moab should checkpoint state information every 15 minutes.

  
 CHECKPOINTWITHDATABASE

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab stores checkpoint information to a database rather than to the .moab.ck
flat text file.

Example:

  
 CHILDSTDERRCHECK

Format: <BOOLEAN>

Default: FALSE

CHECKPOINTDIR  /tmp/moabcheckpoint

CHECKPOINTEXPIRATIONTIME 1:00:00:00

CHECKPOINTFILE /var/adm/moab/moab.ck

CHECKPOINTINTERVAL 00:15:00

CHECKPOINTWITHDATABASE    TRUE



Details: If set to TRUE, child processes Moab executes are considered failed if their standard error
stream contains the text "ERROR".

Example:

  
 CLASSCFG[<CLASSID>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
General Credential Flags, DEFAULT.ATTR, DEFAULT.DISK, DEFAULT.FEATURES, DEFAULT.GRES,
DEFAULT.MEM, DEFAULT.NODESET, DEFAULT.PROC, ENABLEPROFILING, EXCL.FEATURES,
EXCLUDEUSERLIST, HOSTLIST, JOBEPILOG, JOBPROLOG, JOBTRIGGER, MAXPROCPERNODE,
MAX.NODE, MAX.PROC, MAXPROC, MAX.WCLIMIT, MIN.NODE, MIN.PROC, MIN.TPN,
MIN.WCLIMIT, PARTITION, PRIORITY, PRIORITYF, QDEF, QLIST, REQ.FEATURES,
REQUIREDACCOUNTLIST, REQUIREDUSERLIST, RESFAILPOLICY, SYSPRIO, TRIGGER,
WCOVERRUN, usage limit, or fairshare usage limit specification.

Default: ---

Details: Specifies class specific attributes (see Credential Overview for details).

Example:

Up to 50 jobs submitted to the class batch will be allowed to execute simultaneously and will be
assigned the QOS highprio by default.

  
CLASSWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the weight to be applied to the class priority of each job (see Credential (CRED) Factor
and credential priority).

Example:

  
CLIENTCFG[<X>]

Format: One or more of <ATTR>-<VALUE> pairs where <X> indicates the specified peer and <ATTR> is
one of the following: AUTH, AUTHCMD, AUTHTYPE, HOST, KEY, or
DEFAULTSUBMITPARTITION.

Default: ---

Details: Specifies the shared secret key and authentication method which Moab will use to communicate
with the named peer daemon. See Security Overview for more information. Note: The
AUTHTYPE and KEY attributes of this parameter may only be specified in the moab-
private.cfg config file.

Example:

Moab will use the session key apple7 for peer authentication and for encrypting and decrypting
messages sent from silverB. Also, client connections from this interface will be authorized at an
admin 1 level.

  
CLIENTMAXCONNECTIONS

CHILDSTDERRCHECK    TRUE

CLASSCFG[batch] MAXJOB=50 QDEF=highprio

CLASSWEIGHT 10

CLIENTCFG[silverB] KEY=apple7 AUTH=admin1



Format: <INTEGER>

Default: 128

Details: Changes the maximum number of connections that can simultaneously connect to Moab. The
value can be increased during runtime, but it cannot be decreased. The value cannot be reduced
below the default value of 128.

Example:

Doubles the maximum number of connections.

  
CLIENTMAXPRIMARYRETRY

Format: <integer> or INFINITY

Default: 1

Details: Specifies how many times the client will attempt to retry its connection to the primary server if
Moab is not available.

Example:

The client will attempt to retry its connection to the primary server 5 times with 1 second
intervals before giving up. Note: If INFINITY is specified, Moab will attempt 2140000000 times.

  
CLIENTMAXPRIMARYRETRYTIMEOUT

Format: <integer> (milliseconds)

Default: 2 seconds

Details: Specifies how much time to wait until the client will attempt to retry its connection to the
primary server if Moab is not available.

Example:

The client will attempt to retry its connection to the primary server 3 times with 1/2 second
intervals before giving up.

  
CLIENTTIMEOUT

Format: [[[DD:]HH:]MM:]SS

Default: 00:00:30

Details: Time which Moab client commands will wait for a response from the Moab server. See Client
Configuration for more information. Note: May also be specified as an environment variable.

Example:

Moab clients will wait up to 15 minutes for a response from the server before timing out.

  
 CREDDISCOVERY

Format: TRUE

Default: FALSE

CLIENTMAXCONNECTIONS 256

CLIENTMAXPRIMARYRETRY 5
CLIENTMAXPRIMARYRETRYTIMEOUT 1000

CLIENTMAXPRIMARYRETRY 3
CLIENTMAXPRIMARYRETRYTIMEOUT 500

CLIENTTIMEOUT 00:15:00



Details: Specifies that Moab should create otherwise unknown credentials when it discovers them in the
statistics files.

Example:

  
 CREDWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the credential component weight associated with the credential priority. See Credential
(CRED) Factor for more information.

Example:

  
DATASTAGEHOLDTYPE

Format: Any Job Hold type

Default: DEFER

Details: Specifies what to do if a job's data staging operations fail.

Example:

  
DEADLINEPOLICY

Format: One of CANCEL, HOLD, IGNORE, or RETRY

Default: HOLD

Details: Specifies what to do when a requested deadline cannot be reached (see Job Deadlines).

Example:

  
DEFAULTCLASSLIST

Format: Space delimited list of one or more <STRING>'s.

Default: ---

Details: Specifies the default classes supported on each node for RM systems which do not provide this
information.

Example:

  
DEFAULTSUBMITLANGUAGE

Format: One of LSF, PBS, LL or SLURM.

Default: PBS

Details: Specifies the default job language to use when interpreting commandline arguments and
command file scripts associated with the msub command.

Example:

CREDDISCOVERY TRUE

CREDWEIGHT 2

DATASTAGEHOLDTYPE  BATCH

DEADLINEPOLICY  IGNORE

DEFAULTCLASSLIST serial parallel



  
DEFAULTSUBMITPARTITION

Format: See parameter CLIENTCFG[].

Default: ---

Details: If a user submits a job using msub which does not specify host, feature, or partition constraints,
then the msub client will insert the specified default submit partition into the newly submitted
job as a hard requirement.

Example:

  
DEFERCOUNT

Format: <INTEGER>

Default: 24

Details: Specifies the number of times a job can be deferred before it will be placed in batch hold.

Example:

  
DEFERSTARTCOUNT

Format: <INTEGER>

Default: 1

Details: Specifies the number of times a job will be allowed to fail in its start attempts before being
deferred. JOBRETRYTIME overrides DEFERSTARTCOUNT; DEFERSTARTCOUNT only begins
when the JOBRETRYTIME window elapses. Note: A job's startcount will increase each time a
start request is made to the resource manager regardless of whether or not this request
succeeded. This means start count increases if job starts fail or if jobs are started and then
rejected by the resource manager.

Example:

  
DEFERTIME

Format: [[[DD:]HH:]MM:]SS

Default: 1:00:00

Details: Specifies the amount of time a job will be held in the deferred state before being released back
to the Idle job queue. Note: A job's defer time will be restarted if Moab is restarted.

Example:

  
DELETESTAGEOUTFILES

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether the scheduler should delete explicitly specified stageout files after they are

DEFAULTSUBMITLANGUAGE LSF

CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=partition1

DEFERCOUNT 12

DEFERSTARTCOUNT 3

DEFERTIME 0:05:00



successfully staged. By default, such files are not deleted but are left on the nodes where the job
ran.

Example:

With this parameter set to true, /tmp/file on source_node is deleted after it is copied to the
specified destination (file:///results_folder). If the parameter is not set, or if it is set to
false, /tmp/file remains on source_node after the job terminates.

  
DEPENDFAILUREPOLICY

Format: HOLD or CANCEL

Default: HOLD

Details: Specifies what happens to a job if its dependencies cannot be fulfilled; that is, what happens
when a job depends on another job to complete successfully but the other job fails.

Example:

If job A is submitted with depend=afterok:B and job B fails, job A is cancelled.

  
DIRECTORYSERVER

Format: <HOST>[:<PORT>]

Default: ---

Details: Specifies the interface for the directory server.

Example:

  
DISABLEEXCHLIST

Format: <BOOLEAN>

Default: FALSE

Details: If the resource manager rejects a job and the value is set to TRUE, then the node is not added to
the job's exclude host list.

Example:

  
DISABLEINTERACTIVEJOBS

Format: <BOOLEAN>

Default: FALSE

Details: Disallows interactive jobs submitted with musb -I.

Example:

DELETESTAGEOUTFILES TRUE

Example of an explicit stageout request

msub x=MSTAGEOUT:ssh://source_node/tmp/file,file:///results_folder
job.cmd

DEPENDFAILUREPOLICY CANCEL

DIRECTORYSERVER calli3.icluster.org:4702

DISABLEEXCHLIST TRUE

DISABLEINTERACTIVEJOBS TRUE



Note: It is possible for users to submit interactive jobs directly to a resource manager, which
can bypass the DISABLEINTERACTIVEJOBS parameter. However, some resource managers (such
as TORQUE) will check with Moab before allowing an interactive job.

  
DISABLEREGEXCACHING

Format: <BOOLEAN>

Default: FALSE

Details: Turns off regular expression caching. Turning off regular expression caching preserves memory
with hostlist reservations and speeds up start time.

Example:

  
DISABLESAMECREDPREEMPTION

Format: Comma delimited list of one or more credentials: ACCT, CLASS, GROUP, QOS, or USER

Default: ---

Details: This parameter prevents specified credentials from preempting its own jobs.

Example:

  
DISABLESAMEQOSPREEMPTION

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not a preemptor job can preempt a preemptee job which possesses the
same QoS.

Example:

  
DISABLESCHEDULING

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not the scheduler will schedule jobs. If set to TRUE, Moab will continue to
update node and job state but will not start, preempt, or otherwise modify jobs. The command
mschedctl -r will clear this parameter and resume normal scheduling.

Example:

  
DISABLESLAVEJOBSUBMIT

Format: <BOOLEAN>

Default: TRUE

Details: This parameter can be added to the moab.cfg file on a slave Moab server (in a grid
configuration) to prevent users from submitting jobs to the master Moab server from the slave

DISABLEREGEXCACHING TRUE

DISABLESAMECREDPREEMPTION  QOS,USER

DISABLESAMEQOSPREEMPTION TRUE

DISABLESCHEDULING FALSE



Moab server. Some grid configurations allow the user to submit jobs on the slave that are
migrated to the master and submitted from the master. Other grid configurations do not allow
the jobs to be migrated to the master from the slave, in which case, jobs submitted from the
slave remain idle on the slave and never run. This parameter will reject the job submissions on
the slave to prevent the submission of jobs that will never run.

Example:

  
DISABLETHRESHOLDTRIGGERS

Format: <BOOLEAN>

Default: FALSE

Details: This makes Moab not fire threshold-based triggers, but will log the intended action to the event
logs. Similar to DISABLEVMDECISIONS.

Example:

  
DISABLEVMDECISIONS

Format: <BOOLEAN>

Default: FALSE

Details: This makes Moab not take any automatic decisions with respect to VM's, namely powering on/off
nodes and migrating VMs. Intended actions will instead be logged in the event logs. Similar to
DISABLETHRESHOLDTRIGGERS.

Example:

  
DISKWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to the amount of dedicated disk space required per
task by a job (in MB).

Example:

If a job requires 12 tasks and 512 MB per task of dedicated local disk space, Moab will increase
the job's priority by 10 * 100 * 12 * 512

  
DISPLAYFLAGS

Format: One or more of the following values (space delimited):

ACCOUNTCENTRIC, HIDEBLOCKED, NODECENTRIC, or USEBLOCKING

DISABLESLAVEJOBSUBMIT TRUE

example (node04 is a slave and node06 is the master)

[test@node04 moab-slurm]$ echo sleep 100 | msub
ERROR:    cannot submit job from slave

DISABLETHRESHOLDTRIGGERS TRUE

DISABLEVMDECISIONS TRUE

RESWEIGHT  10
DISKWEIGHT 100



Default: ---

Details: Specifies flags that control how Moab client commands display various information.
ACCOUNTCENTRIC will display account information in showq, rather than group information.
HIDEBLOCKED will prevent showq from listing information about blocked jobs which are not
owned by the user if the user is not an admin.
NODECENTRIC will display node allocation information instead of processor allocation
information in showq.
USEBLOCKING disables threading for commands that support it; those commands include
showq, mdiag -n, and mdiag -j.

Example:

  
DISPLAYPROXYUSERASUSER

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab shows the proxy users instead of the real user on some queries of system
jobs that have proxy users. Commands affected include mjobctl -q diag and checkjob.

Example:

  
DONTCANCELINTERACTIVEHJOBS

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab does not cancel interactive jobs that are held.

Example:

  
DONTENFORCEPEERJOBLIMITS

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, only the scheduler that is running the job can cancel the job or enforce other
limits.

Example:

  
EMULATIONMODE

Format: { SLURM }

Default: ---

Details: Specifies whether or not the scheduler will perform the automatic setup of a particular resource
manager environment.

Example:

DISPLAYFLAGS NODECENTRIC

DISPLAYPROXYUSERASUSER TRUE

DONTCANCELINTERACTIVEHJOBS TRUE

DONTENFORCEPEERJOBLIMITS TRUE

EMULATIONMODE SLURM



Moab will perform the automated setup steps as if it were interfacing with a slurm resource
manager (automatic QOS creation).

  
ENABLEFSVIOLATIONPREEMPTION

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a fairshare target and the preemptor is not.

Example:

  
ENABLEHIGHTHROUGHPUT

Format: <BOOLEAN>

Default: FALSE

Details: Configures Moab so that it will accept msub submissions, start jobs, process triggers, etc., in a
manner which minimizes their processing time. The downside is that Moab will return minimal
information about these jobs at submit time (no job ID is returned). It is recommended that jobs
be submitted with a "-N <JOBNAME>" argument so users can keep track of their jobs.

Example:

Moab can now accept hundreds of jobs per second using msub instead of 20-30.

  
ENABLEJOBARRAYS

Format: <BOOLEAN>

Default: True

Details: If set to TRUE, job arrays will be enabled.

Example:

  
ENABLEMULTIREQJOBS

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not the scheduler will allow jobs to specify multiple independent resource
requests (i.e., PBS jobs with resource specifications such as '-l nodes=3:fast+1:io').

Example:

  
ENABLENEGJOBPRIORITY

Format: <BOOLEAN>

Default: FALSE

ENABLEFSVIOLATIONPREEMPTION TRUE

ENABLEHIGHTROUGHPUT TRUE

ENABLEJOBARRAYS TRUE

ENABLEMULTIREQJOBS TRUE



Details: If set to TRUE, the scheduler allows job priority value to range from -INFINITY to MMAX_PRIO;
otherwise, job priority values are given a lower bound of '1'. For more information, see
REJECTNEGPRIOJOBS.

Example:

Job priority may range from -INFINITY to MMAX_PRIO.

  
ENABLENODEADDRLOOKUP

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, the scheduler will use the default host name service lookup mechanism (i.e.,
/etc/hosts, DNS, NIS, etc) to determine the IP address of the nodes reported by the resource
manager. This information is used to correlate information reported by multi-homed hosts.

Example:

  
ENABLEPOSUSERPRIORITY

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, the scheduler will allow users to specify positive job priority values which will be
honored. In other words, users can specify a priority that falls in the range of -1024 to +1023,
inclusive. If set to FALSE (the default), user priority values are given an upper bound of '0'
when users request a positive priority.

Example:

Users may now specify positive job priorities and have them take effect (e.g. msub -p 100
job.cmd).

  
ENABLESPVIOLATIONPREEMPTION

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a soft usage policy and the preemptor is not.

Example:

  
ENABLESTARTESTIMATESTATS

Format: <BOOLEAN>

Default: FALSE

Details: If set to TRUE, Moab will collect job start time estimation stats for all submitted jobs and will
use those statistics to improve future estimates. Resource availability queries which can utilize
this info can be made using the showstart command. Current estimation statistics can be viewed

ENABLENEGJOBPRIORITY TRUE

ENABLENODEADDRLOOKUP TRUE

ENABLEPOSUSERPRIORITY TRUE

ENABLESPVIOLATIONPREEMPTION TRUE



using the mdiag -S command. To flush current statistics, use the mschedctl -f command. Note:
This parameter can be resource intensive so sites with large job queues (>10,000 jobs) may
want to consider leaving this set to FALSE. See Considerations for Large Clusters for more
details.

Example:

  
ENFORCEACCOUNTACCESS

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not Moab will enforce account access constraints without an allocation
manager.

Example:

  
ENFORCEGRESACCESS

Format: <BOOLEAN>

Default: FALSE

Details: If a user submits a job with a non-existent gres (e.g. in the case of a typo) and
ENFORCEGREACCESS is not set in moab.cfg, or is set to FALSE, then the requested gres will be
created (but will not exist on any nodes) and the job will be deferred (similar to
ENFORCEACCOUNTACCESS).

Example:

  
ENFORCEINTERNALCHARGING

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not the scheduler will enforce internal credit tracking (see Internal
Charging).

Example:

  
EVENTSERVER

Format: <HOST>[:<PORT>]

Default: ---

Details: Specifies the interface for the event server.

Example:

  
FEATURENODETYPEHEADER

Format: <STRING>

Default: ---

ENABLESTARTESTIMATESTATS TRUE

ENFORCEACCOUNTACCESS TRUE

ENFORCEGRESACCESS TRUE

ENFORCEINTERNALCHARGING TRUE

EVENTSERVER  calli3.icluster.org:4702



Details: Specifies the header used to specify node type via node features (ie, LL features or PBS node
attributes).

Example:

Moab will interpret all node features with the leading string xnt as a nodetype specification - as
used by Gold and other allocation managers, and assign the associated value to the node. i.e.,
xntFast.

  
FEATUREPARTITIONHEADER

Format: <STRING>

Default: ---

Details: Specifies the header used to specify node partition via node features (ie, LL features or PBS
node attributes).

Example:

Moab will interpret all node features with the leading string xpt as a partition specification and
assign the associated value to the node. i.e., xptGold.

  
FEATUREPROCSPEEDHEADER

Format: <STRING>

Default: ---

Details: Specifies the header used to extract node processor speed via node features (i.e., LL features or
PBS node attributes). Note: Adding a trailing '$' character will specifies that only features with a
trailing number be interpreted. For example, the header 'sp$' will match 'sp450' but not 'sport'.

Example:

Moab will interpret all node features with the leading string xps as a processor speed
specification and assign the associated value to the node. i.e., xps950.

  
FEATURERACKHEADER

Format: <STRING>

Default: ---

Details: Specifies the header used to extract node rack index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specifies that only features with a
trailing number be interpreted. For example, the header 'rack$' will match 'rack4' but not
'racket'.

Example:

Moab will interpret all node features with the leading string rack as a rack index specification
and assign the associated value to the node. i.e., rack16.

FEATURENODETYPEHEADER xnt

FEATUREPARTITIONHEADER xpt

FEATUREPROCSPEEDHEADER xps

FEATURERACKHEADER rack



  
FEATURESLOTHEADER

Format: <STRING>

Default: ---

Details: Specifies the header used to extract node slot index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specifies that only features with a
trailing number be interpreted. For example, the header 'slot$' will match 'slot12' but not
'slotted'.

Example:

Moab will interpret all node features with the leading string slot as a slot index specification and
assign the associated value to the node. i.e., slot16.

  
 FEEDBACKPROGRAM

Format: <STRING>

Default: ---

Details: Specifies the name of the program to be run at the completion of each job. If not fully qualified,
Moab will attempt to locate this program in the 'tools' subdirectory.

Example:

Moab will run the specified program at the completion of each job.

  
FILEREQUESTISJOBCENTRIC

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether a job's file request is a total request for the job or a per task request.

Example:

Moab will treat file requests as a total request per job.

  
FILTERCMDFILE

Format: <BOOLEAN>

Default: TRUE

Details: Running the msub command performs the following operations on the submission script:

Replace all comments with spaces (excludes Resource Manager directives)
Strip empty lines
Replace \r with \n
Lock job to a PBS resource manager if $PBS is found in the script

Include the FILTERCMDFILE parameter in the moab.cfg file that resides on the clients.

FEATURESLOTHEADER slot

FEEDBACKPROGRAM /var/moab/fb.pl

FILEREQUESTISJOBCENTRIC TRUE



Example:

Running the msub command does not perform the actions detailed earlier.

  
FORCERSVSUBTYPE

Format: <BOOLEAN>

Default: FALSE

Details: Specifies that admin reservations must have a subtype associated with them.

Example:

Moab will require all admin reservations to include a subtype.

  
 FSACCOUNTWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to the account subcomponent of the fairshare component of
priority.

Example:

  
FSCAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum allowed absolute value for a job's total pre-weighted fairshare
component.

Example:

Moab will bound a job's pre-weighted fairshare component by the range +/- 10.0.

  
FSCLASSWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to the class subcomponent of the fairshare component of priority.

Example:

  
FSDECAY

Format: <DOUBLE>

FILTERCMDFILE FALSE

FORCERSVSUBTYPE TRUE

FSACCOUNTWEIGHT 10

FSCAP 10.0

FSCLASSWEIGHT 10



Default: 1.0

Details: Specifies decay rate applied to past fairshare interval when computing effective fairshare usage.
Values may be in the range of 0.01 to 1.0. A smaller value causes more rapid decay causing
aged usage to contribute less to the overall effective fairshare usage. A value of 1.0 indicates
that no decay will occur and all fairshare intervals will be weighted equally when determining
effective fairshare usage. See Fairshare Overview.

Example:

Moab will apply a decay rate of 0.8 to all fairshare windows.

  
FSDEPTH

Format: <INTEGER>

Default: 8

Details: Note: The number of available fairshare windows is bounded by the MAX_FSDEPTH value (32
in Moab). See Fairshare Overview.

Example:

  
FSENABLECAPPRIORITY

Format: <BOOLEAN>

Default: FALSE

Details: Fairshare priority will increase to target and stop.

Example:

  
FSGROUPWEIGHT

Format: <INTEGER>

Default: 0

Details:  

Example:

  
 FSINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 12:00:00

Details: Specifies the length of each fairshare window.

Example:

Track fairshare usage in 12 hour blocks.

  
FSJPUWEIGHT

FSPOLICY   DEDICATEDPS
FSDECAY    0.8
FSDEPTH    8

FSDEPTH 12

FSENABLECAPPRIORITY TRUE

FSGROUPWEIGHT 4

FSINTERVAL 12:00:00



Format: <INTEGER>

Default: 0

Details: Specifies the fairshare weight assigned to jobs per user.

Example:

  
FSMOSTSPECIFICLIMIT

Format: <BOOLEAN>

Default: FALSE

Details: When checking policy usage limits in a fairshare tree, if the most specific policy limit is passed
then do not check the same policy again at higher levels in the tree. For example, if a user has a
MaxProc policy limit then do not check the MaxProc policy limit on the account for this same
user.

Example:

  
FSPOLICY

Format: <POLICY>[*] where <POLICY> is one of the following: DEDICATEDPS, DEDICATEDPES,
UTILIZEDPS, PDEDICATEDPS, or SDEDICATEDPES.

Default: ---

Details: Specifies the unit of tracking fairshare usage. DEDICATEDPS tracks dedicated processor
seconds. DEDICATEDPES tracks dedicated processor-equivalent seconds. UTILIZEDPS tracks
the number of utilized processor seconds. SDEDICATEDPES tracks dedicated processor-
equivalent seconds scaled by the speed of the node. PDEDICATEDPS tracks dedicated
processor seconds scaled by the processor speed of the node. If the optional '%' (percentage)
character is specified, percentage based fairshare will be used. See Fairshare Overview and
Fairshare Consumption Metrics or more information.

Example:

Moab will track fairshare usage by dedicated process-equivalent seconds.

  
FSPPUWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the fairshare weight assigned to processors per user.

Example:

  
FSPSPUWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the fairshare weight assigned to processor-seconds per user.

FSJPUWEIGHT 10

FSMOSTSPECIFICLIMIT  TRUE

FSPOLICY DEDICATEDPES

FSPPUWEIGHT 10



Example:

  
FSQOSWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight assigned to the QOS fairshare subcomponent.

Example:

  
FSTARGETISABSOLUTE

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether Moab should base fairshare targets off of delivered cycles or up/available
cycles.

Example:

  
FSTREE

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
SHARES or MEMBERLIST

Default: ---

Details: Specifies the share tree distribution for job fairshare prioritization (see Hierarchical Share Tree
Overview).

Example:

  
FSTREEACLPOLICY

Format: OFF, PARENT, or FULL

Default: FULL

Details: Specifies how Moab should interpret credential membership when building the FSTREE (see
Hierarchical Share Tree Overview).

Example:

Credentials will be given access to their parent node when applicable.

  
FSTREEISREQUIRED

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether a job must have an applicable node in the partition's FSTREE in order to

FSPSPUWEIGHT 10

FSQOSWEIGHT 16

FSTARGETISABSOLUTE TRUE

FSTREE[geo]  SHARES=16  MEMBERLIST=geo103,geo313,geo422

FSTREEACLPOLICY PARENT



execute within that partition (see Hierarchical Share Tree Overview).

Example:

Jobs must have an applicable node in the FSTREE in order to execute.

  
FSTREEUSERISREQUIRED

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether the user must be given explicit access to a branch in the FSTREE (see
Hierarchical Share Tree Overview).

Example:

Users must be given explicit access to FSTREE nodes in order to gain access to the FSTREE.

  
FSUSERWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight assigned to the user fairshare subfactor.

Example:

  
 FSWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the priority weight assigned to the summation of the fairshare subfactors (see Priority
Factor and Fairshare overviews).

Example:

  
GEVENTCFG[<GEVENT>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is ACTION,
ECOUNT, REARM, or SEVERITY. See Responding to Generic Events for details on values you
can assign to each attribute.

Default: ---

Details: Specifies how the scheduler should behave when various cluster events are detected. See the
Generic Events Overview for more information.

Example:

If a hitemp event is detected, Moab adjusts the node allocation policy to minimize the allocation
of the node. Moab also sends emails to cluster administrators and reports the event in the Moab

FSTREEISREQUIRED TRUE

FSTREEUSERISREQUIRED TRUE

FSUSERWEIGHT 8

FSWEIGHT 500

GEVENTCFG[hitemp] ACTION=avoid,record,notify  REARM=00:10:00
GEVENT[nodeerror] SEVERITY=3



event log.

  
GRESCFG[<GRES>]

Format: List of zero or more space delimited <ATTR >=<VALUE> pairs where <ATTR> is one of the
following:
TYPE or STARTDELAY

Default: ---

Details: Specifies associations of generic resources into resource groups. See 12.6 Managing Consumable
Generic Resources for more information.

Example:

The generic resources scsi1, scsi2, and scsi3 are all associated with the generic resource
type fastio.

  
GRESTOJOBATTRMAP

Format: Comma delimited list of generic resources

Default: ---

Details: The list of generic resources will also be interpreted as JOB features. See 7.1.5 Managing
Reservations.

Example:

Jobs which request the generic resources matlab or ccs will have a corresponding job attribute
assigned to them.

  
GROUPCFG[<GROUPID>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
General Credential Flags, PRIORITY, ENABLEPROFILING, TRIGGER, QLIST, QDEF, PLIST,
PDEF, FLAGS, usage limits, or a fairshare usage limit specification.

Default: ---

Details: Specifies group specific attributes. See the flag overview for a description of legal flag values.

Example:

Up to 50 jobs submitted by members of the group staff will be allowed to execute
simultaneously and will be assigned the QOS highprio by default.

  
GROUPWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the priority weight assigned to the specified group priority (See Credential (CRED)
Factor).

GRESCFG[scsi1] TYPE=fastio
GRESCFG[scsi2] TYPE=fastio
GRESCFG[scsi3] TYPE=fastio

GRESTOJOBATTRMAP  matlab,ccs

GROUPCFG[staff] MAXJOB=50 QDEF=highprio



Example:

  
GUARANTEEDPREEMPTION

Format: <BOOLEAN>

Default: FALSE

Details: Moab locks preemptors onto preempted nodes for JOBRETRYTIME. When JOBRETRYTIME
expires, Moab attempts to run the job elsewhere.

Example:

  
HAPOLLINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: 30

Details: Specifies the amount of time between subsequent high availability pings. See High Availability
Overview for more info.

Example:

The Moab fallback server will check the health of the Moab primary every 15 seconds.

  
HIDEVIRTUALNODES

Format: <BOOLEAN>

Default: ---

Details: Enables VM management; also used to reveal hypervisors.

Example:

  
IDCFG[X]

Format: One or more of the following attribute/value pairs: BLOCKEDCREDLIST, CREATECRED,
CREATECREDURL, REFRESHPERIOD, RESETCREDLIST, SERVER or UPDATEREFRESHONFAILURE.

Default: ---

Details: This parameter enables the identity manager interface allowing credential, policy, and usage
information to be shared with an external information service.

Example:

Moab will refresh credential info every hour using the specified script.

  
IGNOREMDATASTAGING

Format: <BOOLEAN>

Default: FALSE

Details: When set to TRUE, Moab will ignore any resource manager specific data staging on a job and

GROUPWEIGHT 20

GUARANTEEDPREEMPTION TRUE

HAPOLLINTERVAL 00:00:15

HIDEVIRTUALNODES TRANSPARENT

IDCFG[info] SERVER=exec:///opt/moab/dbquery.pl REFRESHPERIOD=hour



assume the resource manager is processing the request. Currently, this only applies to PBS.

Example:

  
IGNORECLASSES

Format: [!]<CLASS>[,<CLASS>]...

Default: ---

Details: By default, if using the TORQUE resource manager, jobs from all listed classes are ignored and
not scheduled, tracked, or otherwise processed by Moab. If the not (i.e., '!') character is
specified, only jobs from listed classes are processed. See the Moab Side-by-Side Analysis for
more information.

Example:

Moab will ignore jobs from classes dque and batch.

  
IGNOREJOBS

Format: [!]<JOBID>[,<JOBID>]...

Default: ---

Details: By default, listed jobs are ignored and not scheduled, tracked, or otherwise processed by Moab.
If the not (i.e., '!') character is specified, only listed jobs are processed. See the Moab Side-by-
Side Analysis for more information.

Example:

Moab will ignore jobs all classes except 14221 and 14223.

  
IGNORENODES

Format: [!]<NODE>[,<NODE>]...

Default: ---

Details: By default, all listed nodes are ignored and not scheduled, tracked, or otherwise processed by
Moab. If the not (i.e., '!') character is specified, only listed nodes are processed. See the Moab
Side-by-Side Analysis for more information.

Example:

Moab will only process nodes host3 and host4.

  
IGNOREPREEMPTEEPRIORITY

Format: <BOOLEAN>

Default: FALSE

Details: By default, preemptor jobs can only preempt preemptee jobs if the preemptor has a higher job
priority than the preemptee. When this parameter is set to true, the priority constraint is

IGNORERMDATASTAGING TRUE

IGNORECLASSES dque,batch

IGNOREJOBS !14221,14223

IGNORENODES !host3,host4



removed allowing any preemptor to preempt any preemptee.

Example:

All preemptor job can preempt any preemptee jobs.

  
IGNOREUSERS

Format: [!]<USERNAME>[,<USERNAME>]...

Default: ---

Details: By default, if using the TORQUE resource manager, jobs from all listed users are ignored and not
scheduled, tracked, or otherwise processed by Moab. If the not (i.e., '!') character is specified,
only jobs from listed users are processed. (See the Moab Side-by-Side Analysis for more
information.)

Example:

Moab will ignore jobs from users testuser1 and annapolis.

  
#INCLUDE

Format: <STRING>

Default: ---

Details: Specifies another file which contains more configuration parameters. If <STRING> is not an
absolute path, Moab will search its home directory for the file.

Example:

 Moab will process the parameters in moab.acct as well as moab.cfg

  
INSTANTSTAGE

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether Moab should instantly stage jobs to the underlying resource manager when a
job is submitted through msub.

Example:

  
INVALIDFSTREEMSG

Format: "<STRING>"

Default: "no valid fstree node found"

Details: Specifies the error message that should be attached to jobs that cannot run because of a
fairshare tree configuration violation.

Example:

IGNOREPREEMPTEEPRIORITY TRUE

IGNOREUSERS testuser1,annapolis

#INCLUDE moab.acct

INSTANTSTAGE TRUE

INVALIDFSTREEMSG        "account is invalid for requested partition"



  
JOBACTIONONNODEFAILURE

Format: CANCEL, FAIL, HOLD, IGNORE, NOTIFY, or REQUEUE

Default: ---

Details: Specifies the action to take if Moab detects that a node allocated to an active job has failed
(state is down). By default, Moab only reports this information via diagnostic commands. If this
parameter is set, Moab will cancel or requeue the active job. See Reallocating Resources When
Failures Occur for more information.

Note: The HOLD value is only applicable when using checkpointing.

Example:

Moab will requeue active jobs which have allocated nodes which have failed during the execution
of the job.

  
JOBACTIONONNODEFAILUREDURATION

Format: <INTEGER>

Default: 300

Details: Specifies how long a node must be marked as down before Moab performs the failure action. It
eliminates failure actions resulting from short-lived network failures or glitches that cause nodes
to appear down briefly when they are functional.

Example:

Moab waits for a node to be down for 60 seconds before performing the failure action.

  
JOBAGGREGATIONTIME

Format: [[[DD:]HH:]MM:]SS

Default: 0

Details: Specifies the minimum amount of time the scheduler should wait after receiving a job event until
it should process that event. This parameter allows sites with bursty job submissions to process
job events in groups decreasing total job scheduling cycles and allowing the scheduler to make
more intelligent choices by aggregating job submissions and choosing between the jobs. See
Considerations for Large Clusters.

Example:

Moab will wait 4 seconds between scheduling cycles when job events have been received and
will wait 30 seconds between scheduling cycles otherwise

  
JOBCFG

Format: <ATTR>=<VAL> where <ATTR> is one of FLAGS, GRES, NODERANGE, PRIORITYF,
PROCRANGE, QOS, RARCH, REQFEATURES, ROPSYS, or SELECT

JOBACTIONONNODEFAILURE REQUEUE

JOBACTIONONNODEFAILUREDURATION 60

JOBAGGREGATIONTIME 00:00:04
RMPOLLINTERVAL     00:00:30



Default: ---

Details: Specifies attributes for jobs which satisfy the specified profile. The SELECT attribute allows
users to specify the job template by using msub -l template=.

The JOBCFG parameter supports the following attributes:
NONE, ACCOUNT, ACTION, AUTOSIZE, CLASS, CPULIMIT, DESCRIPTION, DGRES,
FAILUREPOLICY, GROUP, IFLAGS, JOBSCRIPT MEM (for MEM=<value>), MEMORY (for
MEMORY=$LEARN), NODEACCESSPOLICY, NODEMOD, PARTITION, PREF, QOS, RESTARTABLE, RM,
RMSERVICEJOB, SELECT, STAGEIN, SOFTWARE, SRM, TEMPLIMIT, TFLAGS, USER, VMUSAGE,
WALLTIME, WORK

It also supports the following Wiki attributes: 
ARGS, DMEM, DDISK, DWAP, ERROR, EXEC, EXITCODE, GATTR, GEVENT, IWD, JNAME, NAME,
PARTITIONMASK, PRIORITYF, RDISK, RSWAP, RAGRES, RCGRES, TASKPERNODE, TRIGGER,
VARIABLE, NULL

Note: The index to the JOBCFG parameter can either be an admin-chosen job template name
or the exact name of the job reported by one or more workload queries. See Wiki Attributes and
Job Template Extensions.

Example:

When the sql job is detected, it will have the specified default qos and node feature attributes
set.

  
JOBCPURGETIME

Format: [[[DD:]HH:]MM:]SS

Default: 00:05:00

Details: Specifies the amount of time Moab will preserve detailed information about a completed job (see
JOBPURGETIME, showq -c and checkjob).

Example:

Moab will maintain detailed job information for two hours after a job has completed.

  
JOBCTRUNCATENLCP

Format: <BOOLEAN>

Default: TRUE

Details: Specifies whether Moab will store only the first node of the node list for a completed job in the
checkpoint file.

Example:

JOBCTRUNCATENLCP reduces the amount of memory Moab uses to store completed job
information.

  
JOBEXTENDSTARTWALLTIME

JOBCFG[sql] REQFEATURES=sqlnode QOS=service

JOBCPURGETIME 02:00:00

JOBCTRUNCATENLCP TRUE



Format: <BOOLEAN>

Default: ---

Details: Extends the job walltime when Moab starts the job up to the lesser of the maximum or the next
reservation (rounded down to the nearest minute).

Example:

Submit job with a minimum wallclock limit and a walltime; for example:

At job start, Moab recognizes the nodes assigned to the specified job and extends the walltime
for the job (one time at job start) up to the lesser of the maximum walltime requested or the
least amount of time available for any of the nodes until the next reservation on that node.

  
JOBFAILRETRYCOUNT

Format: <INTEGER>

Default: 0

Details:
Specifies the number of times a job is requeued and restarted by Moab if the job fails (if the job
itself returns a non-zero exit code). Some types of jobs may succeed if automatically retried
several times in short succession. This parameter was created with these types of jobs in mind.
Note that the job in question must also be restartable (the job needs to have the
"RESTARTABLE" flag set on it) and the RM managing the job must support requeuing and
starting completed jobs.

If a job fails too many times, and reaches the number of retries given by JobFailRetryCount,
then a UserHold is placed on the job and a message is attached to it signifying that the job has
a "restart count violation."

Example:

Any job with a RESTARTABLE flag is requeued, if it fails, up to 7 times before a UserHold is
placed on it.

  
JOBIDWEIGHT

Format: <INTEGER>

Default: ---

Details: Specifies the weight to be applied to the job's id. See Attribute (ATTR) Factor.

Example:

Later jobs' priority will be negatively affected.

  
JOBMATCHCFG

Format: <ATTR>=<VAL> where <ATTR> is one of JMIN, JMAX, JDEF, JSET, or JSTAT

Default: ---

JOBEXTENDSTARTWALLTIME TRUE

echo sleep 500 | msub -A ee -l
nodes=5,minwclimit=5:00,walltime=30:00,partition=g02

JOBFAILRETRYCOUNT  7

JOBIDWEIGHT -1



Details: Specifies the job templates which must be matched and which will be applied in the case of a
match.

Example:

  
JOBMAXHOLDTIME

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: Specifies the amount of time a job can be held before it is canceled automatically.

Example:

Moab will keep jobs in any HOLD state for 2 hours before canceling them.

  
JOBMAXNODECOUNT

Format: <INTEGER>

Default: 1024

Details: Specifies the maximum number of nodes which can be allocated to a job. After changing this
parameter, Moab must be restarted.  Note: This value cannot exceed either MMAX_NODE or
MMAX_TASK_PER_JOB. If larger values are required, these values must also be increased.
Moab must be restarted before changes to this command will take affect. The command mdiag -
S will indicate if any job node count overflows have occurred. See Consideration for Large
Clusters.

Example:

  
JOBMAXOVERRUN

Format: [[[[DD:]HH:]MM:]SS,][[[DD:]HH:]MM:]SS

Default: (no soft limit), 10 minutes (hard limit)

Details: Soft and hard limit of the amount of time Moab will allow a job to exceed its wallclock limit
before it first sends a mail to the primary admin (soft limit) and then terminates the job (hard
limit). See WCVIOLATIONACTION or Resource Usage Limit Overview.

Example:

Jobs may exceed their wallclock limit by up to 1 hour, but Moab will send an email to the
primary administrator when a job exceeds its walltime by 15 minutes.

  
JOBMAXPREEMPTPERITERATION

Format: <INTEGER>

Default: 0 (No Limit)

Details: Maximum number of jobs allowed to be preempted per iteration.

Example:

JOBMATCHCFG[sql] JMIN=interactive JSTAT=istat

JOBMAXHOLDTIME 02:00:00

JOBMAXNODECOUNT 4000

JOBMAXOVERRUN 15:00,1:00:00

JOBMAXPREEMPTPERITERATION 10



  
JOBMAXSTARTPERITERATION

Format: <INTEGER>

Default: 0 (No Limit)

Details: Maximum number of jobs allowed to start per iteration.

Example:

  
JOBMAXSTARTTIME

Format: [[[DD:]HH:]MM:]SS

Default: -1 (NO LIMIT)

Details: length of time a job is allowed to remain in a 'starting' state. If a 'started' job does not transition
to a running state within this amount of time, Moab will cancel the job, believing a system
failure has occurred. 

Example:

Jobs may attempt to start for up to 2 hours before being canceled by the scheduler

  
JOBMIGRATEPOLICY

Format: One of the following: IMMEDIATE, JUSTINTIME, or AUTO

Default: AUTO

Details: Upon using the msub command to submit a job, you can allocate the job to immediately
(IMMEDIATE) migrate to the resource manager, or you can instruct Moab to only migrate the
job to the resource manager when it is ready to run (JUSTINTIME). Specifying AUTO allows
MOAB to determine on a per-job basis whether to use IMMEDIATE or JUSTINTIME.

Example:

  
JOBNAMEWEIGHT

Format: <INTEGER>

Default: ---

Details: Specifies the weight to be applied to the job's name if the Name contains an integer. See
Attribute (ATTR) Factor.

Example:

  
JOBNODEMATCHPOLICY

Format: EXACTNODE or EXACTPROC

Default: ---

Details: Specifies additional constraints on how compute nodes are to be selected. EXACTNODE
indicates that Moab should select as many nodes as requested even if it could pack multiple

JOBMAXSTARTPERITERATION  10

JOBMAXSTARTTIME 2:00:00

JOBMIGRATEPOLICY JUSTINTIME

JOBNAMEWEIGHT 1



tasks onto the same node. EXACTPROC indicates that Moab should select only nodes with
exactly the number of processors configured as are requested per node even if nodes with
excess processors are available.

Example:

In a PBS/Native job with resource specification 'nodes=<x>:ppn=<y>', Moab will allocate
exactly <y> task on each of <x> distinct nodes.

  
JOBPREEMPTMAXACTIVETIME

Format: [[[DD:]HH:]MM:]SS

Default: 0

Details: The amount of time in which a job may be eligible for preemption. See Job Preemption.

Example:

A job is preemptable for the first 5 minutes of its run time.

  
JOBPREEMPTMINACTIVETIME

Format: [[[DD:]HH:]MM:]SS

Default: 0

Details: The minimum amount of time a job must be active before being considered eligible for
preemption. See Job Preemption.

Example:

A job must execute for 5 minutes before Moab will consider it eligible for preemption.

  
JOBPRIOACCRUALPOLICY

Format: ACCRUE or RESET

Default: ACCRUE

Details: Specifies how Moab should track the dynamic aspects of a job's priority. ACCRUE indicates that
the job will accrue queuetime based priority from the time it is submitted unless it violates any
of the policies not specified in JOBPRIOEXCEPTIONS. RESET indicates that it will accrue priority
from the time it is submitted unless it violates any of the JOBPRIOEXCEPTIONS. However, with
RESET, if the job does violate JOBPRIOEXCEPTIONS then its queuetime based priority will be
reset to 0.

Note: the following old JOBPRIOACCRUALPOLICY values have been deprecated and should be
adjusted to the following values:

QUEUEPOLICY = ACCRUE and JOBPRIOEXCEPTIONS SOFTPOLICY,HARDPOLICY
QUEUEPOLICYRESET = RESET and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY
ALWAYS = ACCRUE and JOBPRIOEXCEPTIONS ALL
FULLPOLICY = ACCRUE and JOBPRIOEXCEPTIONS NONE

JOBNODEMATCHPOLICY EXACTNODE

JOBPREEMPTMAXACTIVETIME 00:05:00

JOBPREEMPTMINACTIVETIME 00:05:00



FULLPOLICYRESET = RESET and JOBPRIOEXCEPTIONS NONE

Example:

Moab will adjust the job's dynamic priority subcomponents, i.e., QUEUETIME, XFACTOR, and
TARGETQUEUETIME, etc. each iteration that the job does not violate any JOBPRIOEXCEPTIONS,
if it is found in violation, its queuetime will be reset to 0.

  
JOBPRIOEXCEPTIONS

Format: Comma delimited list of any of the following: DEFER, DEPENDS, SOFTPOLICY,
HARDPOLICY, IDLEPOLICY, USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE
can also be specified on their own)

Default: NONE

Details: Specifies exceptions for calculating a job's dynamic priority (QUEUETIME, XFACTOR,
TARGETQUEUETIME). Normally, when a job violates a policy, is placed on hold, or has an
unsatisfied dependency, it will not accrue priority. Exceptions can be configured to allow a job to
accrue priority inspite of any of these violations. With DEPENDS a job will increase in priority
even if there exists an unsatisfied dependency. With SOFTPOLICY, HARDPOLICY, or
IDLEPOLICY a job can accrue priority despite violating a specific limit. With DEFER,
USERHOLD, BATCHHOLD, or SYSTEMHOLD a job can accrue priority despite being on hold.

Example:

Jobs will accrue priority in spite of batchholds, systemholds, or unsatisfied dependencies.

  
JOBPRIOF

Format: <ATTRIBUTE>[<VALUE>]=<PRIORITY> where <ATTRIBUTE> is one of ATTR, GRES or STATE

Default: ---

Details: Specifies attribute priority weights for jobs with specific attributes, generic resource requests, or
states. State values must be one of the standard Moab job states. See Attribute-Based Job
Prioritization.

Example:

Moab will adjust the job's dynamic priority subcomponents.

  
JOBPURGETIME

Format: [[[DD:]HH:]MM:]SS

Default: 0 (purge immediately if the resource manager does not report the job)

Details: The amount of time Moab will keep a job record which is no longer reported by the resource
manager. Useful when using a resource manager which drops information about a job due to
internal failures. See JOBCPURGETIME.

Example:

JOBPRIOACCRUALPOLICY   RESET

JOBPRIOEXCEPTIONS BATCHHOLD,SYSTEMHOLD,DEPENDS

JOBPRIOF         STATE[Running]=100  STATE[Suspended]=1000  
ATTR[PREEMPTEE]=200  GRES[biocalc]=5
ATTRATTRWEIGHT   1
ATTRSTATEWEIGHT  1

JOBPURGETIME 00:05:00



Moab will maintain a job record for 5 minutes after the last update regarding that object
received from the resource manager.

  
JOBREJECTPOLICY

Format: One or more of CANCEL, HOLD, IGNORE (beta), MAIL, or RETRY

Default: HOLD

Details: Specifies the action to take when the scheduler determines that a job can never run. CANCEL
issues a call to the resource manager to cancel the job. HOLD places a batch hold on the job
preventing the job from being further evaluated until released by an administrator. (Note:
Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.)
With IGNORE (currently in beta), the scheduler will allow the job to exist within the resource
manager queue but will neither process it nor report it. MAIL will send email to both the admin
and the user when rejected jobs are detected. If RETRY is set, then Moab will allow the job to
remain idle and will only attempt to start the job when the policy violation is resolved.  Any
combination of attributes may be specified. See QOSREJECTPOLICY.

Example:

  
JOBREMOVEENVVARLIST

Format: Comma-delimited list of strings

Default: ---

Details:
Moab will remove the specified environment variables from the job's environment before
migrating the job to its destination resource manager. This is useful when jobs submit
themselves from one cluster to another with the full environment.

This parameter is currently only supported with torque resource managers.

Example:

Moab will remove the environment variables PBS_SERVER and TZ before submitting jobs.

  
JOBRETRYTIME

Format: [[[DD:]HH:]MM:]SS

Default: 60 seconds

Details: Period of time Moab will continue to attempt to start a job which has failed to start due to
transient failures or which has successfully started and was then rejected by the resource
manager due to transient failures. See Reservation Policies, RESERVATIONRETRYTIME, and
JOBRETRYTIME for more information.

Example:

Moab will try for up to 5 minutes to restart jobs if the job start has failed due to transient
errors.

  

JOBREJECTPOLICY  MAIL,CANCEL

JOBREMOVEENVVARLIST PBS_SERVER,TZ

JOBRETRYTIME   00:05:00



JOBSYNCTIME

Format: [[[DD:]HH:]MM:]:SS

Default: 00:10:00

Details: Specifies the length of time after which Moab will synchronize a job's expected state with an
unexpected reported state. IMPORTANT Note: Moab will not allow a job to run while its
expected state does not match the state reported by the resource manager.

Example:

  
LIMITEDJOBCP

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether there should be limited job checkpointing (see Consideration for Large
Clusters).

Example:

Moab will only maintain scheduler checkpoint information for jobs with explicitly modified job
attributes. Some minor job performance and usage statistics may be lost.

  
LIMITEDNODECP

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether there should be limited node checkpointing (see Consideration for Large
Clusters).

Example:

Moab will only maintain scheduler checkpoint information for nodes with explicitly modified job
attributes. (some minor node performance and usage statistics may be lost)

  
LOADALLJOBCP

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether Moab should load, during startup, all non-completed jobs in the checkpoint
files regardless of whether or not their corresponding resource managers are active. For
example, this allows source peers to continue showing remote jobs in the queue based on
checkpointed info, even though the destination peer is offline.

Example:

Moab will load, at startup, all non-completed jobs from all checkpoint files.

  

JOBSYNCTIME 00:01:00

LIMITEDJOBCP TRUE

LIMITEDNODECP TRUE

LOADALLJOBCP TRUE



LOCKFILE

Format: <STRING>

Default: ---

Details: Specifies the path for the lock (pid) file used by Moab.

Example:

  
LOGDIR

Format: <STRING>

Default: log

Details: Specifies the directory in which log files will be maintained. If specified as a relative path,
LOGDIR will be relative to $(MOABHOMEDIR) See Logging Overview for more information.

Example:

Moab will record its log files directly into the /var/spool/moab directory

  
 LOGFACILITY

Format: Colon delimited list of one or more of the following:  fCORE, fSCHED, fSOCK, fUI, fLL,
fCONFIG, fSTAT, fSIM, fSTRUCT, fFS, fCKPT, fBANK, fRM, fPBS, fWIKI, fALL

Default: fALL

Details: Specifies which types of events to log (see Logging Overview).

Example:

Moab will log only events involving general resource manager or PBS interface activities.

  
 LOGFILE

Format: <STRING>

Default: moab.log

Details: Name of the Moab log file. This file is maintained in the directory pointed to by <LOGDIR>
unless <LOGFILE> is an absolute path (see Logging Overview)

Example:

Log information will be written to the file moab.test.log located in the directory pointed to by
the LOGDIR parameter.

  
 LOGFILEMAXSIZE

Format: <INTEGER>

Default: 10000000

Details: Maximum allowed size (in bytes) of the log file before it will be rolled (see Logging Overview).

LOCKFILE /var/spool/moab/lock

LOGDIR /var/spool/moab

LOGFACILITY fRM:fPBS

LOGFILE moab.test.log



Example:

Log files will be rolled when they reach 50 MB in size

  
 LOGFILEROLLDEPTH

Format: <INTEGER>

Default: 3

Details: Number of old log files to maintain (i.e., when full, moab.log will be renamed moab.log.1,
moab.log.1 will be renamed moab.log.2, ...). See Logging Overview.

Example:

Moab will maintain and roll the last 5 log files.

  
LOGLEVEL

Format: <INTEGER> (0-9)

Default: 0

Details: Specifies the verbosity of Moab logging where 9 is the most verbose (Note: each logging level is
approximately an order of magnitude more verbose than the previous level). See Logging
Overview.

Example:

Moab will write all Moab log messages with a threshold of 4 or lower to the moab.log file.

  
LOGLEVELOVERRIDE

Format: <BOOLEAN>

Default: FALSE

Details: When this parameter is on, if someone runs a command with --loglevel=<x>, that loglevel, if
higher than the current loglevel, is used on the scheduler side for the duration of the command.
All logs produced during that time are put into a separate log file (this creates a "gap" in the
normal logs). This can be very useful for debugging, but it is recommend that this be used only
when diagnosing a specific problem so that users can't affect performance by submitting
multiple --loglevel commands.

This parameter does not work with threaded commands (such as showq, mdiag -n, and
mdiag -j).

Example:

  
LOGROLLACTION

Format: <STRING>

Default: ---

LOGFILEMAXSIZE 50000000

LOGFILEROLLDEPTH 5

LOGLEVEL 4

LOGLEVELOVERRIDE    TRUE



Details: Specifies a script to run when the logs roll. The script is run as a trigger and can be viewed
using mdiag -T. For example, a script can be specified that always moves the first rolled log file,
moab.log.1, to an archive directory for longer term storage.

Example:

  
MAILPROGRAM

Format: [ <Full_Path_To_Mail_Command> | DEFAULT | NONE ][@<DEFAULTMAILDOMAIN>]

Default: NONE

Details: If set to NONE, no mail will be sent.  If set to Default:, the default mail program,
/usr/bin/sendmail, will be used. Note: By default, Moab mail notification is disabled. To
enable, MAILPROGRAM must be set to Default: or to the locally available mail program. If the
default mail domain is set, emails will be routed to this domain unless a per-user domain is
specified using the EMAILADDRESS attribute of the USERCFG parameter. See Notify Admins.

Example:

  
MAXGMETRIC

Format: <INTEGER>

Default: NONE

Details: Specifies how many generic metrics Moab should manage.

Example:

  
MAXGRES

Format: <INTEGER>

Default: NONE

Details: Specifies how many generic resources Moab should manage.

Example:

  
MAXJOB

Format: <INTEGER>

Default: 4096

Details: Specifies the maximum number of simultaneous jobs which can be evaluated by the scheduler.
If additional jobs are submitted to the resource manager, Moab will ignore these jobs until
previously submitted jobs complete. Note: Moab must be restarted for any changes to this
parameter to take affect. The command mdiag -S will indicate if any job overflows have
occurred.

Example:

  
MAXRSVPERNODE

LOGROLLACTION /usr/local/tools/logroll.pl

MAILPROGRAM /usr/local/bin/sendmail

MAXGMETRIC 20

MAXGRES 1024

MAXJOB 45000



Format: <INTEGER>

Default: 24

Details: Specifies the maximum number of reservations on a node.

For large SMP systems (>512 processors/node), Adaptive Computing advises adjusting the value
to approximately twice the average sum of admin, standing, and job reservations present.

A second number, led by a comma, can also be specified to set a maximum number of
reservations for nodes that are part of the SHARED partition.

Moab must be restarted for any changes to this parameter to take effect. The command mdiag -
S indicates whether any node reservation overflows have occurred. See Considerations for Large
Clusters.

Do not lower the MAXRSVPERNODE value while there are active jobs in the queue. This
can lead to queue instability and certain jobs could become stuck or disconnected from
the system.

Example:

64 is the maximum number of reservations on a single node.

100 is the maximum number of reservations on a single node, and 7000 is the maximum
number of reservations for global nodes.

  

  
 MEMREFRESHINTERVAL

Format: [[[DD:]HH:]MM:]:SS | job:<COUNT>

Default: ---

Details: Specifies the time interval or total job query count at which Moab will perform garbage collection
to free memory associated with resource manager API's which possess memory leaks (i.e.,
Loadleveler, etc).

Example:

MAXRSVPERNODE 64

MAXRSVPERNODE 100,7000

http://www.adaptivecomputing.com/resources/docs/torque/commands/qsub.php


Moab will perform garbage collection once a day.

  
 MEMWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the coefficient to be multiplied by a job's MEM (dedicated memory in MB) factor. See
Resource Priority Overview.

Example:

Each job's priority will be increased by 10 * 1000 * <request memory>.

  
MINADMINSTIME

Format: <INTEGER>

Default: 60 seconds

Details: Specifies the minimum time a job will be suspended if suspended by an administrator or by a
scheduler policy.

Example:

Each job suspended by administrators or policies will stay in the suspended state for at least 10
minutes .

  
MISSINGDEPENDENCYACTION

Format: CANCEL, HOLD, or RUN

Default: HOLD

Details: Controls what Moab does with a dependent job when its dependency job cannot be found when
Moab evaluates the dependent job for scheduling. This only affects jobs whose dependent job
cannot be found.

Example:

Any job that has a dependent job that cannot be found is cancelled.

  
MSUBQUERYINTERVAL

Format: <INTEGER>

Default: 5 seconds

Details:
Specifies the length of the interval (in seconds) between job queries when using msub -K. Jobs
submitted with the -K option query the scheduler every MSUBQUERYINTERVAL seconds until
the job is completed.

MSUBQUERYINTERVAL can exist as an environment variable. Any value in moab.cfg overrides

# free memory associated with leaky RM API
MEMREFRESHINTERVAL 24:00:00

RESWEIGHT 10
MEMWEIGHT 1000

MINADMINSTIME 00:10:00

MISSINGDEPENDENCYACTION CANCEL



the environment variable.

Note: If MSUBQUERYINTERVAL is set to 0, the -K option will be disabled. Jobs will still submit
correctly, but the client will not continue to check on the job.

Example:

If a user uses the msub -K command, the client remains open and queries the server every 60
seconds until the job completes.

  
NODEACCESSPOLICY

Format: One of the following: SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK , SINGLEUSER, or
UNIQUEUSER

Default: SHARED

Details: Specifies how node resources will be shared by various tasks (See the Node Access Overview for
more information).

Example:

Moab will allow resources on a node to be used by more than one job provided that the job's are
all owned by the same user.

  
NODEALLOCATIONPOLICY

Format: One of the following: FIRSTAVAILABLE,
LASTAVAILABLE, MINRESOURCE, CPULOAD, LOCAL, CONTIGUOUS, MAXBALANCE,
PRIORITY, or FASTEST

Default: LASTAVAILABLE

Details: Specifies how Moab should allocate available resources to jobs. See Node Allocation Overview for
more information.

Example:

Moab will apply the node allocation policy MINRESOURCE to all jobs by default.

  
NODEALLOCRESFAILUREPOLICY

Format: One of the following: CANCEL, HOLD, IGNORE, MIGRATE, NOTIFY, or REQUEUE

Default: NONE

Details: Specifies how Moab should handle active jobs which experience node failures during execution.
See the RESFAILPOLICY resource manager extension or the Node Availability Overview.

Example:

Moab will requeue jobs which have allocated nodes fail during execution.

  

MSUBQUERYINTERVAL  60

NODEACCESSPOLICY SINGLEUSER

NODEALLOCATIONPOLICY MINRESOURCE

NODEALLOCRESFAILUREPOLICY REQUEUE



NODEAVAILABILITYPOLICY

Format: <POLICY>[:<RESOURCETYPE>] ...

where POLICY is one of COMBINED, DEDICATED, or UTILIZED
and RESOURCETYPE is one of PROC, MEM, SWAP, or DISK

Default: COMBINED

Details: Specifies how available node resources are reported. Moab uses the following calculations to
determine the amount of available resources:

Dedicated (use what Moab has scheduled to be used):
   Available = Configured - Dedicated
Utilized (use what the resource manager is reporting is being used):
   Available = Configured - Utilized
Combined (use the larger of dedicated and utilized):
   Available = Configured - (MAX(Dedicated,Utilized))

Moab marks a node as busy when it has no available processors, so
NODEAVAILABILTYPOLICY, by affecting how many processors are reported as available, also
affects node state. See Node Availability Policies for more information.

Example:

Moab will ignore resource utilization information in locating available processors for jobs but will
use both dedicated and utilized memory information in determining memory availability.

  
NODEBUSYSTATEDELAYTIME

Format: [[[DD:]HH:]MM:]SS

Default: 0:01:00 (one minute)

Details: Length of time Moab will assume busy nodes will remain unavailable for scheduling if a system
reservation is not explicitly created for the node.

Example:

Moab will assume busy nodes are not available for scheduling for at least 30 minutes from the
current time. Thus, these nodes will never be allocated to starting jobs. Also, these nodes will
only be available for reservations starting more than 30 minutes in the future.

  
NODECATCREDLIST

Format:
<LABEL>=<NODECAT>[,<NODECAT>]...[ <LABEL>=<NODECAT>[,<NODECAT>]...]... where
<LABEL> is any string and <NODECAT> is one of the defined node categories.

Default: ---

Details: If specified, Moab will generate node category groupings and each iteration will assign usage of
matching resources to pseudo-credentials with a name matching the specified label. See the
Node Categorization section of the Admin manual for more information.

Example:

NODEAVAILABILITYPOLICY DEDICATED:PROCS COMBINED:MEM

NODEBUSYSTATEDELAYTIME 0:30:00

NODECATCREDLIST down=BatchFailure,HardwareFailure,NetworkFailure 



Moab will create a down user, group, account, class, and QoS and will associate BatchFailure,
HardwareFailure, and NetworkFailure resources with these credentials. Additionally, Moab will
assign all Idle resources to matching idle credentials.

  
 NODECFG[X]

Format: List of space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
ACCESS, CHARGERATE, FEATURES, FLAGS, GRES, LOGLEVEL, MAXJOB, MAXJOBPERUSER,
MAXLOAD, MAXPE, NODETYPE, OSLIST, PARTITION, POOL, POWERPOLICY, PRIORITY,
PRIORITYF, PROCSPEED, RACK, RADISK, SLOT, SPEED, or TRIGGER

Default: ---

Details: Specifies node-specific attributes for the node indicated in the array field. See the General Node
Administration Overview for more information.

Example:

Moab will only allow two simultaneous jobs to run on node nodeA and will assign a relative
machine speed of 1.2 to this node.

  
NODEDOWNSTATEDELAYTIME

Format: [[[DD:]HH:]MM:]SS

Default: -1 (never)

Details: Length of time Moab will assume down, drained (offline), or corrupt nodes will remain
unavailable for scheduling if a system reservation is not explicitly created for the node. The
default specification of "-1" causes Moab to never create job reservations on down nodes. See
Node Availability for more information.

Example:

Moab will assume down, drained, and corrupt nodes are not available for scheduling for at least
30 minutes from the current time. Thus, these nodes will never be allocated to starting jobs.
Also, these nodes will only be available for reservations starting more than 30 minutes in the
future.

  
NODEDOWNTIME

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: The maximum time a previously reported node remains unreported by a resource manager
before the node is considered to be in the down state. This can happen if communication with a
resource manager or a peer server is lost for more than the specified length of time, or if there
is communication with the resource manager but it fails to report the node status.

Example:

If Moab loses communication with the resource manager for more than ten minutes, it sets the

idle=Idle

NODECFG[nodeA] MAXJOB=2 SPEED=1.2

NODEDOWNSTATEDELAYTIME 0:30:00

NODEDOWNTIME 10:00



state of all nodes belonging to that resource manager to DOWN.

  
NODEDRAINSTATEDELAYTIME

Format: [[[DD:]HH:]MM:]SS

Default: 3:00:00 (three hours)

Details: Length of time Moab will assume drained nodes will remain unavailable for scheduling if a
system reservation is not explicitly created for the node. Specifying "-1" will cause Moab to
never create job reservations on drained nodes. See Node Availability for more information.

Example:

Moab will assume down, drained, and corrupt nodes are not available for scheduling for at least
30 minutes from the current time. Thus, these nodes will never be allocated to starting jobs.
Also, these nodes will only be available for reservations starting more than 30 minutes in the
future.

  
NODEFAILURERESERVETIME

Format: [[[DD:]HH:]MM:]SS

Default: 0:05:00

Details: Duration of reservation Moab will place on any node in which it detects a failure from the
resource manager (0 indicates no reservation will be placed on the node). See Node Availability
for more information. See also RMCFG[] NODEFAILURERSVPROFILE.

Example:

Moab will reserve failed nodes for 10:00

  
NODEIDFORMAT

Format: <STRING>

Default: *$N*

Details: Specifies how a node id can be processed to extract possible node, rack, slot, and cluster index
information. The value of the parameter may include the markers '$C' (cluster index), '$N'
(node index), '$R' (rack index), or '$S' (slot index) separated by '* (asterisk - representing any
number of non-numeric characters) or other characters to indicate this encoding. See Node
Selection for more information on use of node, rack, and slot indices.

Example:

Moab will extract rack and slot information from the cluster node ids (ie, tg-13s08).

  
NODELOADPOLICY

Format: One of the following: ADJUSTSTATE or ADJUSTPROCS

Default: ADJUSTSTATE

NODEDRAINSTATEDELAYTIME 0:30:00

NODEFAILURERESERVETIME 10:00

NODEIDFORMAT *$R*$S



Details: Specifies whether a node's load affects its state or its available processors. The ADJUSTSTATE
policy specifies that Moab should mark the node busy when the node's maximum load is
reached. The ADJUSTPROCS policy causes the node's available procs to be equivalent to
MIN(ConfiguredProcs - DedicatedProcs,MaxLoad - CurrentLoad) Note: NODELOADPOLICY only
affects a node if MAXLOAD has been set.

Example:

Moab will mark a node busy if its measured load exceeds its maximum cpu load limit.

  
NODEMAXLOAD

Format: <DOUBLE>

Default: 0.0

Details: Specifies that maximum cpu load on a idle or running node. If the node's load reaches or
exceeds this value, Moab will mark the node busy (See Load Balancing Features)

Example:

Moab will adjust the state of all idle and running nodes with a load >= .75 to the state busy.

  
NODEMEMOVERCOMMITFACTOR

Format: <DOUBLE>

Default: ---

Details: The parameter overcommits available and configured memory and swap on a node by the
specified factor (for example: mem/swap * factor). Used to show that the node has more mem
and swap than it really does. Only works for PBS RM types.

Example:

Moab will overcommit the memory and swap of the node by a factor of 0.5.

  
NODEPOLLFREQUENCY

Format: <INTEGER>

Default: 0 (Poll Always)

Details: Specifies the number of scheduling iterations between scheduler initiated node manager queries.
If set to '-2, Moab will never query the node manager daemons. If set to '-1', Moab will only
query on the first iteration. Note: this parameter is most often used with OpenPBS and PBSPro.
It is not required when using TORQUE, LoadLeveler, LSF, or SGE as the resource managers.

Example:

Moab will update node manager based information every 5 scheduling iterations.

  
NODEPURGETIME

NODELOADPOLICY ADJUSTSTATE

NODEMAXLOAD 0.75

NODEMEMOVERCOMMITFACTOR .5

NODEPOLLFREQUENCY 5



Format: [[[DD:]HH:]MM:]SS

Default: --- (never purge node info)

Details: The amount of time Moab will keep a node record which is no longer reported by the resource
manager. Useful when using a resource manager which drops information about a node due to
internal failures.

Example:

Moab will maintain a node record for 5 minutes after the last update regarding that object
received from the resource manager.

  
NODESETATTRIBUTE

Format: one of ARCH, CLASS, FEATURE, MEMORY, or PROCSPEED

Default: ---

Details: Specifies the type of node attribute by which node set boundaries will be established. See Node
Set Overview.

Example:

Moab will create node sets containing nodes with common processor speeds

  
NODESETDELAY

Format: [[[DD:]HH:]MM:]SS

Default: 0:00:00

Details: Specifies the length of time Moab will delay a job if adequate idle resources are available but are
not available within node set constraints. Setting NODESETDELAY to any non-zero value will
force Moab to always use nodesets. A value of zero will cause Moab to use nodesets on a best
effort basis. Note: This attribute is deprecated - use NODESETISOPTIONAL instead. See Node
Set Overview for more information.

Example:

Moab will create node sets containing nodes with common processor speeds. Moab will allocate
resources within the nodeset if possible. If no resources exist within a single nodeset, Moab will
attempt to run the job using any available resources.

  
NODESETISOPTIONAL

Format: <BOOLEAN>

Default: TRUE

Details: Specifies whether or not Moab will start a job if a requested node set cannot be satisfied. See
Node Set Overview.

Example:

NODEPURGETIME 00:05:00

NODESETPOLICY     ONEOF
NODESETATTRIBUTE  PROCSPEED

NODESETATTRIBUTE PROCSPEED
NODESETDELAY     0:00:00

NODESETISOPTIONAL TRUE



Moab will not block a job from running if its node set cannot be satisfied.

  
NODESETLIST

Format: <ATTR>[{ :,|}<ATTR>]...

Default: ---

Details: Specifies the list of node attribute values which will be considered for establishing node sets. See
Node Set Overview.

Example:

Moab will allocate nodes to jobs either using only nodes with the switchA feature or using only
nodes with the switchB feature.

  
NODESETPLUS

Format: <STRING>

Default: ---

Details: Specifies how Moab distributes jobs among nodesets. The two values for this parameter are
DELAY and SPANEVENLY. See Node Set Overview.

Example:

Moab attempts to fit all jobs on a single nodeset or to span them evenly across a number of
nodesets, unless doing so would delay a job beyond the requested NODESETDELAY.

  
NODESETPOLICY

Format: ANYOF, FIRSTOF, or ONEOF

Default: ---

Details: Specifies how nodes will be allocated to the job from the various node set generated. See Node
Set Overview.

Example:

Moab will create node sets containing nodes with common network interfaces.

  
NODESETPRIORITYTYPE

Format: one of AFFINITY, BESTFIT, WORSTFIT, BESTRESOURCE, or MINLOSS

Default: MINLOSS

Details: Specifies how resource sets will be selected when more than one feasible resource can can be
found. See Node Set Overview.

NODESETPOLICY     ONEOF
NODESETATTRIBUTE  FEATURE
NODESETLIST       switchA,switchB

NODESETPLUS SPANEVENLY

NODESETPOLICY     ONEOF
NODESETATTRIBUTE  NETWORK



Example:

Moab will select the resource set containing the fastest nodes available.

  
NODESETTOLERANCE

Format: <FLOAT>

Default: 0.0 (Exact match only)

Details: Specifies the tolerance for selection of mixed processor speed nodes. A tolerance of X allows a
range of processors to be selected subject to the constraint .

(Speed.Max - Speed.Min) / Speed.Min <= X

Note: Tolerances are only applicable when NODESETATTRIBUTE is set to PROCSPEED.
See Node Set Overview.

Example:

Moab will only allocate nodes with up to a 50% procspeed difference.

  
NODESYNCTIME

Format: [[[DD:]HH:]MM:]SS

Default: 00:10:00

Details: Specifies the length of time after which Moab will sync up a node's expected state with an
unexpected reported state. IMPORTANT Note: Moab will not start new jobs on a node with an
expected state which does not match the state reported by the resource manager. 

Example:

  
NODETOJOBATTRMAP

Format: Comma delimited list of node features

Default: ---

Details: Job requesting the listed node features will be assigned a corresponding job attribute. These job
attributes can be used to enable reservation access, adjust job priority or enable other
capabilities.

Example:

Jobs requesting node feature fast or big will be assigned a corresponding job attribute.

  
NODEUNTRACKEDRESDELAYTIME

Format: [[[DD:]HH:]MM:]SS

Default: 0:00:00

NODESETPRIORITYTYPE BESTRESOURCE
NODESETATTRIBUTE    PROCSPEED

NODESETATTRIBUTE PROCSPEED
NODESETTOLERANCE 0.5

NODESYNCTIME 1:00:00

NODETOJOBATTRMAP  fast,big



Details: Length of time Moab will assume untracked generic resources will remain unavailable for
scheduling if a system reservation is not explicitly created for the node.

Example:

Moab will assume untracked generic resources are not available for scheduling for at least 30
minutes from the current time. Thus, these nodes will never be allocated to starting jobs. Also,
these nodes will only be available for reservations starting more than 30 minutes in the future.

If NODEUNTRACKEDRESDELAYTIME is enabled and there is an untracked resource preventing a
job from running, then the job remains in the idle queue instead of being deferred.

  
NODEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight which will be applied to a job's requested node count before this value is
added to the job's cumulative priority. Note : this weight currently only applies when a
nodecount is specified by the user job. If the job only specifies tasks or processors, no node
factor will be applied to the job's total priority. This will be rectified in future versions.

Example:

  
NOJOBHOLDNORESOURCES

Format: <BOOLEAN>

Default: FALSE

Details: If TRUE, Moab does not place a hold on jobs that don't have feasible resources. For example,
suppose there are 20 processors available for ClassA and 50 processors for the entire system. If
a job requests 21 or more processors from ClassA, or 51 or more processors from the entire
system, Moab idles the job (instead of putting a hold on it) until the resources become available.

Example:

  
NOTIFICATIONPROGRAM

Format: <STRING>

Default: ---

Details: Specifies the name of the program to handle all notification call-outs.

Example:

  
NOWAITPREEMPTION

Format: <BOOLEAN>

Default: ---

Details: Generally when a job is trying to preempt another, it just waits for the original jobs that it chose
to preempt to end. If this parameter is on, the preemptor will continue trying to preempt jobs

NODEUNTRACKEDRESDELAYTIME 0:30:00

NODEWEIGHT 1000

NOJOBHOLDNORESOURCES TRUE

NOTIFICATIONPROGRAM   tools/notifyme.pl



until it can get in.

Example:

  
OPTIMIZEDCHECKPOINTING

Format: <BOOLEAN>

Default: FALSE

Details: If TRUE, Moab checkpoints VPCs on creation, modification and shutdown only, instead of in its
normal checkpointing interval. OPTIMIZEDCHECKPOINTING only works when using a
database.

Example:

  
OSCREDLOOKUP

Format: NEVER

Default: ---

Details: Disables all Moab OS credential lookups, including UID, GID, user to group mappings, and any
other OS specific information.

Example:

  
PARALLOCATIONPOLICY

Format: One of BestFit, BestFitP, FirstStart, FirstCompletion, LoadBalance, LoadBalanceP, or
RoundRobin

Default: FirstStart

Details: Specifies the approach to use to allocate resources when more than one eligible partition can be
found. See Grid Scheduling Policies for more information.

Example:

New jobs will be started on the most lightly allocated partition.

  
 PARCFG

Format: NODEPOWEROFFDURATION, NODEPOWERONDURATION, or one or more key-value pairs as
described in the Partition Overview.

Default: ---

Details: Specifies the attributes, policies, and constraints for the given partition.

Example:

Moab will not allow jobs to run on the oldcluster partition which has a wallclock limit in excess
of 12 hours.

  

NOWAITPREEMPTION   TRUE

OPTIMIZEDCHECKPOINTING TRUE

OSCREDLOOKUP NEVER

PARALLOCATIONPOLICY  LOADBALANCE

PARCFG[oldcluster] MAX.WCLIMIT=12:00:00



PBSACCOUNTINGDIR

Format: <PATH>

Default: ---

Details: When specified, Moab will write out job events in standard PBS/TORQUE tracejob format to the
specified directory using the standard PBS/TORQUE log file naming convention.

Example:

Job events will be written to the specified directory (can be consumed by PBS's tracejob
command).

  
PEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the coefficient to be multiplied by a job's PE (processor equivalent) priority factor.

Example:

Each job's priority will be increased by 10 * 100 * its PE factor.

  
PREEMPTPOLICY

Format: one of the following:
CANCEL, REQUEUE, SUSPEND, or CHECKPOINT

Default: REQUEUE

Details: Specifies how preemptable jobs will be preempted.

Note: If this policy is set to REQUEUE, preemptible jobs should be marked as RESTARTABLE. If
this policy is set to SUSPEND, preemptible jobs shold be marked as SUSPENDABLE. Note:
Moab uses preemption escalation to preempt resources if the specified preemption facility is not
applicable. This means if the policy is set to SUSPEND and the job is not SUSPENDABLE, Moab
may attempt to requeue or even cancel the job.

Example:

Jobs that are to be preempted will be checkpointed and restarted at a later time.

  
PREEMPTPRIOJOBSELECTWEIGHT

Format: <DOUBLE>

Default: 256.0

Details: Adjusts the impact of job run priority versus job size in selecting which jobs to preempt. Setting
the value higher increases the impact of priority; setting it lower decreases the impact.

If set to 0, the cost of the job is the job's size.

PBSACCOUNTINGDIR /var/spool/torque/sched_logs/

RESWEIGHT 10
PEWEIGHT  100

PREEMPTPOLICY CHECKPOINT

http://www.adaptivecomputing.com/resources/docs/torque/index.php
http://www.adaptivecomputing.com/resources/docs/torque/11.1troubleshooting.php#tracejob


If set to -1, the cost of the job is the wasted resource percentage.

Example:

  
PREEMPTRTIMEWEIGHT

Format: <DOUBLE>

Default: 0

Details: If set to to anything other than 0, a job's remaining time is added into the calculation of which
jobs will be preempted. If a positive weight is specified, jobs with a longer remaining time are
favored. If a negative weight is specified, jobs with a shorter remaining time are favored.

Example:

  
PREEMPTSEARCHDEPTH

Format: <INTEGER>

Default: unlimited

Details: Specifies how many preemptible jobs will be evaluated as potential targets for serial job
preemptors. See Preemption Overview for more information.

Example:

Serial job preemptors will only consider the first 8 feasible preemptee jobs when determining the
best action to take.

  
PRIORITYTARGETDURATION

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: Specifies the ideal job duration which will maximize the value of the WALLTIMEWEIGHT priority
factor. If specified, this factor will be calculated as the distance from the ideal. Consequently, in
most cases, the associated subcomponent weight should be set to a negative value.

Example:

  
PRIORITYTARGETPROCCOUNT

Format: <INTEGER>{+|-|%}

Default: ---

Details: Specifies the ideal job requested proc count which will maximize the value of the PROCWEIGHT
priority factor. If specified, this factor will be calculated as the distance from the ideal (proc
count - ideal = coefficient of PROCWEIGHT). Consequently, in most cases, the associated
subcomponent weight should be set to a negative value.

Example:

PREEMPTPRIOJOBSELECTWEIGHT 220.5

PREEMPTRTWEIGHT 1

PREEMPTSEARCHDEPTH 8

WALLTIMEWEIGHT         -2500
PRIORITYTARGETDURATION  1:00:00

PROCWEIGHT               -1000
PRIORITYTARGETPROCCOUNT  64



  
PROCWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the coefficient to be multiplied by a job's requested processor count priority factor.

Example:

  
PROFILECOUNT

Format: <INTEGER>

Default: 600

Details: Specifies the number of statistical profiles to maintain.

Example:

  
PROFILEDURATION

Format: [[[DD:]HH:]MM:]SS

Default: 00:30:00

Details: Specifies the duration of each statistical profile. The duration cannot be more than 24 hours,
and any specified duration must be a factor of 24. For example, factors of 1/4, 1/2, 1, 2, 3, 4, 6,
8, 12, and 24 are acceptable durations.

Example:

  
PURGETIME

Format: [[[DD:]HH:]MM:]SS

Default: 0

Details: The amount of time Moab will keep a job or node record for an object no longer reported by the
resource manager. Useful when using a resource manager which 'drops' information about a
node or job due to internal failures.Note: This parameter is superseded by JOBPURGETIME
and NODEPURGETIME.

Example:

Moab will maintain a job or node record for 5 minutes after the last update regarding that object
received from the resource manager.

  
QOSCFG[<QOSID>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
General Credential Flags, PRIORITY, ENABLEPROFILING, FSTARGET, MEMBERULIST,
QTWEIGHT, QTTARGET, XFWEIGHT, XFTARGET, PREEMPTMINTIME, PREEMPTMAXTIME,
PREEMPTQTTHRESHOLD, PREEMPTXFTHRESHOLD, RMAXPROC, RMAXDURATION

PROCWEIGHT 2500

PROFILECOUNT 300

PROFILEDURATION 24:00:00

PURGETIME 00:05:00



RSVQTTHRESHOLD, RSVXFTHRESHOLD, ACLBLTHRESHOLD, ACLQTTHRESHOLD,
ACLXFTHRESHOLD, PLIST, PDEF, QFLAGS, TRIGGER, or a usage limit.

Default: ---

Details: Specifies QOS specific attributes. See the flag overview for a description of legal flag values.See
the QOS Overview section for further details.

Example:

Moab will increase the priority of jobs using QOS commercial, and will allow up to 4
simultaneous QOS commercial jobs with up to 80 total allocated processors.

  
QOSISOPTIONAL

Format: <BOOLEAN>

Default: FALSE

Details: An entity's default QOS will be the first QOS specified in the QLIST parameter. When this
parameter is set to TRUE the default QOS for the associated credential (user, account, class,
etc.) will not be automatically set to the first QOS specified in the QLIST.

Example:

Moab will set the QOSList for user "bob" to high and low but will not set the QDEF. Should "bob"
decide to submit to a particular QOS he will have to do so manually.

  
QOSREJECTPOLICY

Format: One or more of CANCEL, HOLD, IGNORE, or MAIL

Default: HOLD

Details: Specifies the action to take when Moab determines that a job cannot access a requested QoS.
CANCEL issues a call to the resource manager to cancel the job. HOLD places a batch hold on
the job preventing the job from being further evaluated until released by an administrator.
(Note: Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -
m.) With IGNORE, Moab will ignore the QoS request and schedule the job using the default QoS
for that job. MAIL will send email to both the admin and the user when QoS request violations
are detected. Any combination of attributes may be specified. (see JOBREJECTPOLICY).

Example:

  
QOSWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the weight to be applied to the qos priority of each job (see Credential (CRED) Factor).

Example:

  

QOSCFG[commercial] PRIORITY=1000 MAXJOB=4 MAXPROC=80

QOSISOPTIONAL TRUE
USERCFG[bob]  QLIST=high,low

QOSREJECTPOLICY  MAIL,CANCEL

QOSWEIGHT 10



QUEUETIMECAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum allowed absolute pre-weighted queuetime priority factor.

Example:

A job that has been queued for 40 minutes will have its queuetime priority factor calculated as
'Priority = QUEUETIMEWEIGHT * MIN(10000,40)'.

  
 QUEUETIMEWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies multiplier applied to a job's queue time (in minutes) to determine the job's queuetime
priority factor.

Example:

A job that has been queued for 4:20:00 will have a queuetime priority factor of 20 * 260.

  
RECORDEVENTLIST

Format: One or more comma (',') or plus ('+') separated events of GEVENT, ALLSCHEDCOMMAND,
JOBCANCEL, JOBCHECKPOINT, JOBEND, JOBFAILURE, JOBMIGRATE, JOBMODIFY,
JOBPREEMPT, JOBREJECT, JOBRESUME, JOBSTART, JOBSUBMIT, NODEDOWN,
NODEFAILURE, NODEUP, QOSVIOLATION, RMDOWN, RMPOLLEND, RMPOLLSTART,
RMUP, RSVCANCEL, RSVCREATE, RSVEND, RSVMODIFY, RSVSTART, SCHEDCOMMAND,
SCHEDCYCLEEND, SCHEDCYCLESTART, SCHEDPAUSE, SCHEDSTART, SCHEDSTOP or ALL

Default: JOBSTART, JOBCANCEL, JOBEND, JOBFAILURE, SCHEDPAUSE, SCHEDSTART,
SCHEDSTOP, TRIGEND, TRIGFAILURE, TRIGSTART

Details: Specifies which events should be recorded in the appropriate event file found in Moab's stats/
directory. These events are recorded for both local and remotely staged jobs. (See Event Log
Overview) Note: If a plus character is included in the list, the specified events will be added to
the default list; otherwise, the specified list will replace the default list.

Example:

When a local and/or remote job starts, is canceled, or ends, the respective event will be
recorded.

  
REJECTINFEASIBLEJOBS

Format: <BOOLEAN>

Default: FALSE

Details: If zero feasible nodes are found for a job among the currently available nodes on the cluster, the
scheduler rejects the job. See JOBREJECTPOLICY for more information.

QUEUETIMECAP    10000
QUEUETIMEWEIGHT 10

QUEUETIMEWEIGHT 20

RECORDEVENTLIST JOBSTART,JOBCANCEL,JOBEND



Example:

Any job with zero feasible nodes for execution will be rejected.

  
REJECTNEGPRIOJOBS

Format: <BOOLEAN>

Default: TRUE

Details: If enabled, the scheduler will refuse to start any job with a negative priority. See Job Priority
Overview and ENABLENEGJOBPRIORITY for more information.

Example:

Any job with a priority less than zero will be rejected.

  
REMAPCLASS

Format: <ClassID>

Default: ---

Details: Specifies which class/queue will be remapped based on the processors, nodes, and node features
requested and the resource limits of each class. See Remap Class Overview for more
information.

Example:

Class batch will be remapped based on the number of processors requested.

  
REMAPCLASSLIST

Format: Comma delimited list of class names

Default: ---

Details: Specifies the order in which classes will be searched when attempting to remap a class. Only
classes included in the list will be searched and Moab will select the first class with matches.
 Note: If no REMAPCLASSLIST is specified, Moab will search all classes and will search them in
the order they are discovered. See Remap Class Overview for more information.

Example:

Class batch will be re-mapped to one of the listed classes.

  
REMOTEFAILTRANSIENT

REJECTINFEASIBLEJOBS TRUE
JOBREJECTPOLICY      MAIL,CANCEL

ENABLENEGJOBPRIORITY TRUE 
REJECTNEGPRIOJOBS    TRUE

REMAPCLASS batch
CLASSCFG[small]  MAX.PROC=2
CLASSCFG[medium] MAX.PROC=16
CLASSCFG[large]  MAX.PROC=1024

REMAPCLASS     batch
REMAPCLASSLIST short,medium,long



Format: <BOOLEAN>

Default: FALSE

Details: Only applicable to Moab configurations with multiple resource managers able to run jobs (such
as in a grid environment). When Moab attempts to migrate a job to one of these resource
managers, a remote failure may occur. For example, a destination peer in a grid that has an
error accepting a job results in a remote error, and the job is rejected.
REMOTEFAILTRANSIENT controls how Moab reacts to remote errors. By default, Moab
considers such an error permanent and does not try to migrate the same job to that resource
manager again. If REMOTEFAILTRANSIENT is set to TRUE, then Moab considers such an error
as transient and will not exclude the erring resource manager in future migration attempts.

Example:

  
REMOVETRIGOUTPUTFILES

Format: <BOOLEAN>

Default: FALSE

Details: When Moab launches external trigger actions, the standard output and error of those trigger
actions are redirected to files located in Moab's spool directory. By default, these files are
cleaned every 24 hours. (Files older than 24 hours are removed.) If, however, you wish to have
Moab immediately remove the spool files after they are no longer needed, set
RemoveTrigOutputFiles to TRUE.

Example:

  
RESCAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum allowed absolute pre-weighted job resource priority factor.

Example:

The total resource priority factor component of a job will be bound by +/- 1000

  
RESERVATIONDEPTH[X]

Format: <INTEGER>

Default: 1

Details: Specifies the number of priority reservations which are allowed in the associated reservation
bucket. Note: The array index, X, is the bucket label and can be any string up to 64 characters.
This label should be synchronized with the RESERVATIONQOSLIST parameter. See Reservation
Policies.

Example:

Jobs with QOS's of special, fast, or joshua can have a cumulative total of up to 4 priority
reservations.

REMOTEFAILTRANSIENT    TRUE

REMOVETRIGOUTPUTFILES  TRUE

RESCAP 1000

RESERVATIONDEPTH[bigmem]   4
RESERVATIONQOSLIST[bigmem] special,fast,joshua



  
RESERVATIONPOLICY

Format: One of the following: CURRENTHIGHEST, HIGHEST, NEVER

Default: CURRENTHIGHEST

Details: Specifies how Moab reservations will be handled. (See also RESERVATIONDEPTH) See
Reservation Policies.

Example:

Moab will maintain reservations for only the two currently highest priority jobs.

  
RESERVATIONQOSLIST[X]

Format: One or more QOS values or [ALL]

Default: [ALL]

Details: Specifies which QOS credentials have access to the associated reservation bucket Note: The
array index, X, is the bucket label and can be any string up to 64 characters. This label should
be synchronized with the RESERVATIONDEPTH parameter.  See Reservation Policies.

Example:

Jobs with QOS's of hi, low, or med can have a cumulative total of up to 4 priority reservations.

  
RESERVATIONRETRYTIME

Format: [[[DD:]HH:]MM:]SS

Default: 60 seconds

Details: Period of time Moab will continue to attempt to allocate resources to start a job after the time
resources should be made available. This parameter takes into account resource manager node
state race conditions, nodes with residual high load, network glitches, etc. See Reservation
Policies and JOBRETRYTIME.

Example:

Moab will try for up to 5 minutes to maintain immediate reservations if the reservations are
blocked due to node state, network, or batch system based race conditions.

  
RESOURCELIMITMULTIPLIER[<PARID>]

Format: <RESOURCE>:<MULTIPLIER>[,...]

Where <RESOURCE> is one of the following:
NODE, PROC, JOBPROC, MEM, JOBMEM, SWAP, DISK, or WALLTIME

Default: 1.0

RESERVATIONPOLICY          CURRENTHIGHEST
RESERVATIONDEPTH[DEFAULT]  2

RESERVATIONDEPTH[big]   4
RESERVATIONQOSLIST[big] hi,low,med

RESERVATIONRETRYTIME   00:05:00



Details: If set to less than one, then the hard limit will be the specified limit and the soft limit will be the
specified limit multiplied by the multiplier. If set to a value greater than one, then the specified
limit will be the soft limit and the hard limit will be the specified limit multiplied by the multiplier.
See Resource Usage Limits.

Example:

Sets hard limit for PROC at 1.1 times the PROC soft limit, and the hard limit of MEM to 2.0 times
the MEM soft limit.

  
RESOURCELIMITPOLICY

Format: <RESOURCE>:[<SPOLICY>,]<HPOLICY>
:[<SACTION>,]<HACTION>
[:[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

Where RESOURCE is one of PROC, JOBPROC, JOBMEM, DISK, SWAP, MEM or WALLTIME,
where *POLICY is one of ALWAYS, EXTENDEDVIOLATION, or BLOCKEDWORKLOADONLY
and where *ACTION is one of CANCEL, CHECKPOINT, NOTIFY, REQUEUE, SIGNAL, or
SUSPEND.

Default: No limit enforcement.

Details: Specifies how the scheduler should handle jobs which utilize more resources than they request.
See Resource Usage Limits.

Example:

Moab will cancel all jobs which exceed their requested memory limits.

  
RESOURCELIST

Format: <node>[[,<node>]...]

Default: ---

Details: Specifies which resources will have their information gathered from the NATIVE RM interface.

Example:

Moab will query the native rm for information about nodes node01, node05, and node06.

  
RESTARTINTERVAL

Format: [[[DD:]HH:]MM:]SS

Default: ---

Details: Causes Moab daemon to recycle/restart when the given interval of time has transpired.

Example:

Moab daemon will automatically restart every 20 hours.

RESOURCELIMITMULTIPLER  PROC:1.1,MEM:2.0

RESOURCELIMITPOLICY  MEM:ALWAYS,BLOCKEDWORKLOADONLY:REQUEUE,CANCEL

RESOURCELIST  node01,node05,node06

RESTARTINTERVAL  20:00:00



  
RESOURCEQUERYDEPTH

Format: <INTEGER>

Default: 3

Details: Maximum number of options which will be returned in response to an mshow -a resource query.

Example:

The 'mshow -a' command will return at most one valid collection of resources.

  
RESWEIGHT

Format: <INTEGER>

Default: 1

Details: All resource priority components are multiplied by this value before being added to the total job
priority. See Job Prioritization.

Example:

The job priority resource factor will be calculated as MIN(2000,5 * (10 * JobMemory + 100 *
JobProc)).

  
 RMCFG

Format: One or more key-value pairs as described in the Resource Manager Configuration Overview

Default: N/A

Details: Specifies the interface and policy configuration for the scheduler-resource manager interface.
Described in detail in the Resource Manager Configuration Overview.

Example:

The PBS server will be used for resource management.

  
 RMMSGIGNORE

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not Moab should adjust node state based on generic resource manager
failure messages. See RM Health Check for more info.

Example:

Moab will load and report resource manager failure messages but will not adjust node state as a
result of them.

RESOURCEQUERYDEPTH  1

RESWEIGHT  5
MEMWEIGHT  10
PROCWEIGHT 100
SWAPWEIGHT 0
RESCAP     2000

RMCFG[TORQUE3] TYPE=PBS

RMMSGIGNORE TRUE

http://www.adaptivecomputing.com/resources/docs/torque/11.2healthcheck.php


  
 RMPOLLINTERVAL

Format: [<MINPOLLTIME>,]<MAXPOLLTIME> where poll time is specified as [[[DD:]HH:]MM:]SS

Default: 00:00:30

Details: Specifies interval between RM polls. The poll interval will be no less than MINPOLLTIME and no
more than MAXPOLLTIME. A single interval interval (interpreted by Moab as the maximum
interval) can be used, or you can specify a minimum and maximum interval. If using a single
interval, Moab sometimes has iterations of less than the specified interval.

Example:

Moab will refresh its resource manager information between a minimum of 30 seconds and a
maximum of 45 seconds. Note: This parameter specifies the default global poll interval for all
resource managers.

  
RMRETRYTIMECAP

Format: [[[DD:]HH:]MM:]SS

Default: 1:00:00

Details:
Moab attempts to contact RMs that are in state 'corrupt' (not down). If the attempt is
unsuccessful, Moab tries again later. If the second attempt is unsuccessful, Moab increases the
gap (the gap grows exponentially) between communication attempts. RMRETRYTIMECAP puts a
cap on the length between connection attempts.

Example:

Moab stops increasing the gap between connection attempts once the retry gap reaches 24
hours.

  
RSVCTLPOLICY

Format: ADMINONLY or ANY

Default: ADMINONLY

Details: Specifies who can create admin reservations.

Example:

Any valid user can create an arbitrary admin reservation.

  
RSVLIMITPOLICY

Format: HARD or SOFT

Default: ---

Details: Specifies what limits should be enforced when creating reservations.

Example:

Moab will limit reservation creation based on the HARD limits configured.

  

RMPOLLINTERVAL 30,45

RMRETRYTIMECAP 24:00:00

RSVCTLPOLICY ANY

RSVLIMITPOLICY  HARD



RSVPROFILE[X]

Format: One or more of the following <ATTR>=<VALUE> pairs
ACCESS, ACCOUNTLIST, CHARGEACCOUNT, CLASSLIST, CLUSTERLIST, DAYS, DEPTH,
ENDTIME, FLAGS, GROUPLIST, HOSTLIST, JOBATTRLIST, MAXTIME, NODEFEATURES,
OWNER, PARTITION, PERIOD, PRIORITY, QOSLIST, RESOURCES, RSVACCESSLIST,
STARTTIME, TASKCOUNT, TIMELIMIT, TPN, TRIGGER, or USERLIST.
Note: Lists of more than one ACL value cannot be whitespace delimited. Such lists must be
delimited with either the comma, pipe, or colon characters.

Default: ---

Details: Specifies attributes of a reservation profile using syntax similar to that for specifying a standing
reservation. See Using Reservation Profiles for details.

Example:

Moab will create a reservation profile including trigger and ACL information.

  
RSVREALLOCPOLICY

Format: One of FAILURE, NEVER, OPTIMAL, PRESTARTFAILURE, PRESTARTOPTIMAL, or REMAP

Default: NEVER

Details: Specifies the policy Moab uses to dynamically reallocate nodes to an existing reservation. See
Reservation Resource Allocation Policy for more information.

Example:

Should any node go down within a reservation Moab will attempt to allocate a replacement.
Moab will NOT allocate a busy or otherwise conflicting node. If Moab should allocate any node for
replacement the IGNRSV flag must be used when creating the reservation.

  
 SCHEDCFG

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following: CHARGEMETRICPOLICY, CHARGERATEPOLICY, FBSERVER, FLAGS,
MAXRECORDEDCJOBID, MINJOBID, HTTPSERVERPORT, MODE, RECOVERYACTION, SERVER,
or TRIGGER

Default: ---

Details: Specifies scheduler policy and interface configuration

Example:

Moab will execute in NORMAL mode on the host geronimo.scc.com.

  
 SERVERHOST

Format: <HOSTNAME>

Default: ---

RSVPROFILE[fast] USERLIST=john,steve
RSVPROFILE[fast] QOSLIST=high,low
RSVPROFILE[fast] 
TRIGGER=ETYPE=start,OFFSET=5:00,ATYPE=exec,ACTION="/opt/moab/rp.pl"

RSVREALLOCPOLICY failure

SCHEDCFG[zylem3] SERVER=geronimo.scc.com:3422 MODE=NORMAL



Details: Deprecated. Hostname of machine on which moab will run. See SCHEDCFG for replacement
parameter.

Example:

Moab will execute on the host geronimo.scc.edu.

  
 SERVERMODE

Format: One of the following:
INTERACTIVE, MONITOR, NORMAL, SIMULATION, or SLAVE

Default: NORMAL

Details: Deprecated. Specifies how Moab interacts with the outside world. See SCHEDCFG for
replacement parameter.

Example:

  
SERVERNAME

Format: <STRING>

Default: <SERVERHOST>

Details: Specifies the name the scheduler will use to refer to itself in communication with peer daemons.
See SCHEDCFG for replacement parameter.

Example:

  
SERVERPORT

Format: <INTEGER> (range: 1-64000)

Default: 40559

Details: Port on which Moab will open its user interface socket. See SCHEDCFG for replacement
parameter.

Example:

Moab will listen for client socket connections on port 30003.

  
SERVICEWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the service component weight associated with the service factors. See Service (SERV)
Factor for more information.

Example:

  
SHOWMIGRATEDJOBSASIDLE

Format: <BOOLEAN>

Default: FALSE

SERVERHOST geronimo.scc.edu

SERVERMODE SIMULATION

SERVERNAME moabA

SERVERPORT 30003

SERVICEWEIGHT 2



Details: By default, migrated jobs in the grid will show as blocked. This is to prevent jobs from counting
against the idle policies of multiple clusters rather than just the cluster to which the job was
migrated.

Example:

When set to TRUE, migrated jobs will show as idle and will count against the idle policies of the
cluster showing the job as migrated.

  
SIMAUTOSHUTDOWN

Format: <BOOLEAN>

Default: TRUE

Details: If TRUE, the scheduler will end simulations when the active queue and idle queue become
empty.

Example:

The simulation will end as soon as there are no jobs running and no idle jobs which could run.

  
SIMCPUSCALINGPERCENT

Format: <INTEGER>

Default: 100 (no scaling)

Details: Specifies whether to increase or decrease the runtime and wallclock limit of each job in the
workload trace file.

Example:

  
SIMDEFAULTJOBFLAGS

Format: One or more of the following:
ADVRES, HOSTLIST, RESTARTABLE, PREEMPTEE , DEDICATED, PREEMPTOR

Default: ---

Details: Cause Moab to force the specified job flags on all jobs supplied in the workload trace file.

Example:

Moab will set the DEDICATED job flag on all jobs loaded from the workload trace file.

  
SIMEXITITERATION

Format: <INTEGER>

Default: 0 (no exit iteration)

Details: Iteration on which a Moab simulation will create a simulation summary and exit.

Example:

SHOWMIGRATEDJOBSASIDLE TRUE

SIMAUTOSHUTDOWN TRUE

SIMDEFAULTJOBFLAGS DEDICATED

SIMEXITITERATION 36000



  
SIMFLAGS

Format: Comma delimited list of zero or more of the following:
IGNHOSTLIST, IGNCLASS, IGNQOS, IGNMODE, IGNFEATURES, IGNGRES

Default: ---

Details: Controls how Moab handles trace based simulation information (see Simulation Overview).

Example:

Moab will ignore hostlist and qos requests specified in the workload trace file.

  
SIMIGNOREJOBFLAGS

Format: One or more of the following:
ADVRES, HOSTLIST, RESTARTABLE, PREEMPTEE , DEDICATED, PREEMPTOR

Default: ---

Details: Moab will ignore specified job flags if supplied in the workload trace file (see Simulation
Overview).

Example:

Moab will ignore the DEDICATED job flag if specified in any job trace.

  
SIMINITIALQUEUEDEPTH

Format: <INTEGER>

Default: 16

Details: Specifies how many jobs the simulator will initially place in the idle job queue (see Simulation
Overview).

Example:

Moab will initially place 64 idle jobs in the queue and, because of the specified queue policy, will
attempt to maintain this many jobs in the idle queue throughout the duration of the simulation.

  
SIMJOBSUBMISSIONPOLICY

Format: One of the following:
NORMAL, CONSTANTJOBDEPTH, CONSTANTPSDEPTH, or REPLAY

Default: CONSTANTJOBDEPTH

Details: Specifies how the simulator will submit new jobs into the idle queue. NORMAL mode causes
jobs to be submitted at the time recorded in the workload trace file, CONSTANTJOBDEPTH and
CONSTANTPSDEPTH attempt to maintain an idle queue of SIMINITIALQUEUEDEPTH jobs and
procseconds respectively. REPLAY will force jobs to execute at the exactly the time specified in
the simulation job trace file. This mode is most often used to generate detailed profile statistics
for analysis in Moab Cluster Manager (see Simulation Overview).

SIMFLAGS IGNHOSTLIST,IGNQOS

SIMIGNOREJOBFLAGS DEDICATED

SCHEDCFG[sim1]         MODE=SIMULATION
SIMINITIALQUEUEDEPTH   64
SIMJOBSUBMISSIONPOLICY CONSTANTJOBDEPTH

http://sempa/resources/docs/mcm/index.php


Example:

Moab will submit jobs with the relative time distribution specified in the workload trace file.

  
SIMNODECONFIGURATION

Format: UNIFORM or NORMAL

Default: NORMAL

Details: Specifies whether or not Moab will filter nodes based on resource configuration while running a
simulation.

Example:

  
SIMNODECOUNT

Format: <INTEGER>

Default: 0 (no limit)

Details: Specifies the maximum number of nodes Moab will load from the simulation resource file.

Example:

  
SIMPURGEBLOCKEDJOBS

Format: <BOOLEAN>

Default: TRUE

Details: Specifies whether Moab should remove jobs which can never execute (see Simulation
Overview).

Example:

  
SIMRESOURCETRACEFILE

Format: <STRING>

Default: Traces/resource.trace

Details: Specifies the file from which Moab will obtain node information when running in simulation
mode. Moab will attempt to locate the file relative to <MOABHOMEDIR> unless specified as an
absolute path. See Simulation Overview and Resource Trace Format.

Example:

Moab will obtain resource traces when running in simulation mode from the
<MOABHOMEDIR>/traces/nodes.1 file.

  
SIMRMRANDOMDELAY

Format: <INTEGER>

SIMJOBSUBMISSIONPOLICY NORMAL

SIMNODECONFIGURATION  UNIFORM

SIMNODECOUNT  256

SIMPURGEBLOCKEDJOBS  FALSE

SIMRESOURCETRACEFILE traces/nodes.1



Default: 0

Details: Specifies the random delay added to the RM command base delay accumulated when making
any resource manager call in simulation mode.

Example:

Moab will add a random delay of between 0 and 5 seconds to the simulated time delay of all RM
calls.

  
SIMSTARTTIME

Format: [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default: ---

Details: Specifies the time when the simulation starts.

Example:

Moab will set its clock to January 1, 2000 at 12:00:00 in the morning before starting the
simulation

  
 SIMSTOPITERATION

Format: <INTEGER>

Default: -1 (don't stop)

Details: Specifies on which scheduling iteration a Moab simulation will stop and wait for a command to
resume scheduling. See Simulation Overview for more information.

Example:

Moab should pause after iteration 10 of simulated scheduling and wait for administrator
commands.

  
SIMSTOPTIME

Format: [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default: ---

Details: Specifies the time when the simulation should pause.

Example:

Moab will stop scheduling when its internal simulation time reaches January 1, 2004.

  
SIMTIMEPOLICY

Format: REAL or NONE

Default: ---

Details: Determines simulation time management policy (see SIMTIMERATIO).

Example:

Moab simulation time will advance in line with real time.

  

SIMRMRANDOMDELAY  5

SIMSTARTTIME 00:00:00_01/01/00

SIMSTOPITERATION 10

SIMSTOPTIME 00:00:00_01/01/04

SIMTIMEPOLICY REAL



SIMTIMERATIO

Format: <INTEGER>

Default: 0 (no time ratio)

Details: Determines wall time speedup. Simulated Moab time will advance <SIMTIMERATIO> * faster
than real wall time (see SIMTIMEPOLICY).

Example:

Moab simulation time will advance 10 times faster than real world wall time. For example, in 1
hour, Moab will process 10 hours of simulated workload.

  
SIMWORKLOADTRACEFILE

Format: <STRING>

Default: Traces/workload.trace

Details: Specifies the file from which Moab will obtain job information when running in simulation mode.
Moab will attempt to locate the file relative to <MOABHOMEDIR> unless specified as an absolute
path. See Simulation Overview and Workload Accounting Records.

Example:

Moab will obtain job traces when running in simulation mode from the
<MOABHOMEDIR>/traces/jobs.2 file.

  
SPOOLDIR

Format: <STRING>

Default: ---

Details: Specifies the directory for temporary spool files created by Moab while submitting a job to the
RM.

Example:

  
SPVIOLATIONWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight to be applied to a job which violates soft usage limit policies (see Service
Priority Component Overview).

Example:

  
SRCFG[X]

Format: One or more of the following <ATTR>=<VALUE> pairs
ACCESS, ACCOUNTLIST, CHARGEACCOUNT, CHARGEUSER, CLASSLIST, CLUSTERLIST,
COMMENT, DAYS, DEPTH, DISABLE, ENDTIME, FLAGS, GROUPLIST, HOSTLIST,
JOBATTRLIST, MAXTIME, NODEFEATURES, OWNER, PARTITION, PERIOD, PRIORITY,

SIMTIMERATIO  10
SIMTIMEPOLICY REAL

SIMWORKLOADTRACEFILE traces/jobs.2

SPOOLDIR /tmp/moab/spool

SPVIOLATIONWEIGHT 5000



QOSLIST, RESOURCES, ROLLBACKOFFSET, RSVACCESSLIST, RSVGROUP, STARTTIME,
TASKCOUNT, TIMELIMIT, TPN, TRIGGER, or USERLIST

Note: HOSTLIST and ACL list values must be comma delimited. For example:
HOSTLIST=nodeA,nodeB

Default: ---

Details: Specifies attributes of a standing reservation. See Managing Reservations for details.

Example:

Moab will create a standing reservation running from 9:00 AM to 3:00 PM on nodes 1 through 4
accessible by jobs with QOS high or low.

  
STARTCOUNTCAP

Format: <INTEGER>

Default: 0

Details: Specifies the max weighted value allowed from the startcount subfactor when determining a
job's priority (see Priority Factors for more information).

Example:

  
STARTCOUNTWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight to be applied to a job's startcount when determining a job's priority (see
Priority Factors for more information).

Example:

  
STATDIR

Format: <STRING>

Default: stats

Details: Specifies the directory in which Moab statistics will be maintained.

Example:

  
 STATPROCMAX

Format: <INTEGER>

Default: 1

Details:

SRCFG[fast] STARTTIME=9:00:00 ENDTIME=15:00:00
SRCFG[fast] HOSTLIST=node0[1-4]$
SRCFG[fast] QOSLIST=high,low

STARTCOUNTWEIGHT 5000
STARTCOUNTCAP    30000

STARTCOUNTWEIGHT 5000

STATDIR /var/adm/moab/stats



Specifies the maximum number of processors requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in rows for jobs requesting between 4 and 256 processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

 STATPROCMIN

Format: <INTEGER>

Default: 1

Details:
Specifies the minimum number of processors requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in rows for jobs requesting between 4 and 256 processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

  
 STATPROCSTEPCOUNT

Format: <INTEGER>

Default: 5

Details:
Specifies the number of rows of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

STATPROCMAX     256
STATPROCSTEPCOUNT 4 
STATPROCSTEPSIZE  4

STATPROCMIN       4
STATPROCSTEPCOUNT 4 
STATPROCSTEPSIZE  4

STATPROCMIN       4



Each matrix output will display data in rows for jobs requesting between 4 and 256 processors.

  
 STATPROCSTEPSIZE

Format: <INTEGER>

Default: 4

Details:
Specifies the processor count multiplier for rows of processors requested by jobs to be displayed
in matrix outputs (as displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in rows for jobs requesting between 4 and 256 processors.

  
 STATTIMEMAX

Format: [[DD:]HH:]MM:]SS

Default: 00:15:00

Details:
Specifies the maximum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in columns for jobs requesting between 2 and 128 minutes.

  
 STATTIMEMIN

Format: [[DD:]HH:]MM:]SS

Default: 00:15:00

Details:
Specifies the minimum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE  4

STATPROCMIN       4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE  4

STATTIMEMAX       02:08:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE  4



Example:

Each matrix output will display data in columns for jobs requesting between 2 and 128 minutes.

  
 STATTIMESTEPCOUNT

Format: <INTEGER>

Default: 6

Details:
Specifies the number of columns of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in columns for jobs requesting between 2 and 128 minutes.

  
 STATTIMESTEPSIZE

Format: <INTEGER>

Default: 4

Details:
Specifies the time multiplier for columns of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

 It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past data
and will start the collection over.

Example:

Each matrix output will display data in columns for jobs requesting between 2 and 128 minutes.

  
 STRICTPROTOCOLCHECK

Format: <BOOLEAN>

Default: FALSE

Details: Specifies how Moab reacts to differences in XML protocols when communicating with other Moab
peers. If set to TRUE, Moab will reject any communication that does not strictly conform to the
expected protocol. If set to FALSE (the default), Moab will not reject XML that has extra or
unknown attributes.

Example:

STATTIMEMIN       00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE  4

STATTIMEMIN       00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE  4

STATTIMEMIN       00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE  4

STRICTPROTOCOLCHECK TRUE



Moab will reject any XML communication that does not strictly conform to the expected protocol
definition.

  
SUBMITFILTER

Format: <STRING>

Default: ---

Details: Specifies the directory of a given submit filter script.

Example:

  
SUBMITHOSTS

Format: space delimited list of host names

Default: ---

Details: If specified, SUBMITHOSTS specifies an explicit list of hosts where jobs can be submitted.

Example:

  
SUSPENDRESOURCES[<PARID>]

Format: <RESOURCE>[,...]

Where <RESOURCE> is one of the following:
NODE, PROC, MEM, SWAP, DISK

Default: ---

Details: List of resources to dedicate while a job is suspended (available in Moab version 4.5.1 and
higher).

Example:

While a job is suspended in partition base, the memory, swap and disk for that job will remain
dedicated to the job.

  
SYSCFG

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:
PRIORITY, FSTARGET, QLIST, QDEF, PLIST, PDEF, FLAGS, or a fairness policy
specification.

Default: ---

Details: Specifies system-wide default attributes.  See the Attribute/Flag Overview for more information.

Example:

by default, all jobs will have access to partition Partition1 and will use the QOS highprio.

  
SWAPWEIGHT

SUBMITFILTER /home/submitfilter/filter.pl

SUBMITHOSTS hostA hostB

SUSPENDRESOURCES[base]  MEM,SWAP,DISK

SYSCFG PLIST=Partition1 QDEF=highprio



Format: <INTEGER>

Default: 0

Details: Specifies the priority weight assigned to the virtual memory request of a job.

Example:

  
SYSTEMMAXPROCPERJOB

Format: <INTEGER>

Default: -1 (NO LIMIT)

Details: Specifies the maximum number of processors that can be requested by any single job.

Example:

Moab will reject jobs requesting more than 256 processors.

  
SYSTEMMAXPROCSECONDPERJOB

Format: <INTEGER>

Default: -1 (NO LIMIT)

Details: Specifies the maximum number of proc-seconds that can be requested by any single job.

Example:

Moab will reject jobs requesting more than 86400 procs seconds. i.e., 64 processors * 30
minutes will be rejected, while a 2 processor * 12 hour job will be allowed to run.

  
 SYSTEMMAXJOBWALLTIME

Format: [[[DD:]HH:]MM:]SS

Default: -1 (NO LIMIT)

Details: Specifies the maximum amount of wallclock time that can be requested by any single job.

Example:

Moab will reject jobs requesting more than one day of walltime.

  
TARGETQUEUETIMEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to the time remaining until the queuetime is reached.

Example:

  
TARGETWEIGHT

SWAPWEIGHT 10

SYSTEMMAXPROCPERJOB 256

SYSTEMMAXJOBPROCSECOND 86400

SYSTEMMAXJOBWALLTIME 1:00:00:00

TARGETQUEUETIMEWEIGHT 10



Format: <INTEGER>

Default: 1

Details: Specifies the weight to be applied to a job's queuetime and expansion factor target components
(see Job Prioritization).

Example:

  
TARGETXFACTORWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to the distance to the target expansion factor.

Example:

  
TASKDISTRIBUTIONPOLICY

Format: One of DEFAULT, PACK, RR (round-robin), or LOCAL

Default: ---

Details: Specifies how job tasks should be mapped to allocated resources. See Task Distribution Overview
for more information.

Example:

Moab should use standard task distribution algorithms.

  
 TOOLSDIR

Format: <STRING>

Default: Tools

Details: Specifies the directory in which Moab tools will be maintained (commonly used in conjunction
with Native Resource Managers, and Triggers).

Example:

  
TRAPFUNCTION

Format: <STRING>

Default: ---

Details: Specifies the functions to be trapped.

Example:

  
TRAPJOB

Format: <STRING>

Default: ---

TARGETWEIGHT 1000

TARGETXFACTORWEIGHT  10

TASKDISTRIBUTIONPOLICY DEFAULT

TOOLSDIR /var/adm/moab/tools

TRAPFUNCTION UpdateNodeUtilization|GetNodeSResTime



Details: Specifies the jobs to be trapped.

Example:

  
 TRAPNODE

Format: <STRING>

Default: ---

Details: Specifies the nodes to be trapped.

Example:

  
TRAPRES

Format: <STRING>

Default: ---

Details: Specifies the reservations to be trapped.

Example:

  
TRIGCHECKTIME

Format: <INTEGER> (milliseconds)

Default: 2000

Details: Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. Usually this only takes a fraction of a
second, but if the number of triggers are large it could take up substantially more time (up to
several seconds). While Moab is evaluating triggers, it doesn't respond to UI commands. This
makes Moab feel sluggish and unresponsive. To remedy this, use the parameter
"TrigCheckTime." This parameter tells Moab to only spend up to X milliseconds processing
triggers during the UI phase. After X milliseconds has gone by, Moab will pause the evaluating of
triggers, handle any pending UI events, and then restart the trigger evaluations where it last left
off.

Example:

  
TRIGEVALLIMIT

Format: <INTEGER>

Default: 1

Details: Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. The number of times Moab evaluates
all triggers in the system is controlled by the "TrigEvalLimit" parameter. By default, this is set to
1. This means that Moab will evaluate all triggers at most once during the UI phase. Moab will
not leave the UI phase and start other scheduling tasks until ALL triggers are evaluated at least
one time. If TrigEvalLimit is set to 5, then Moab will wait until all triggers are evaluated five
times.

TRAPJOB pros23.0023.0

TRAPNODE node001|node004|node005

TRAPRES interactive.0.1

TRIGCHECKTIME 4000



Example:

  
UJOBWEIGHT

Format: <INTEGER>

Default: 0

Details: Weight assigned by jobs per user. -1 will reduce priority by number of active jobs owned by
user.

Example:

  
UMASK

Format: <INTEGER>

Default: 0022 (octal) (produces 0644 permssions)

Details: Specifies the file permission mask to use when creating new fairshare, stats, and event files. See
the umask man page for more details.

Example:

Create statistics and event files which are 'read-write' by owner and 'read' by group only.

  
UNSUPPORTEDDEPENDENCIES

Format: Comma delimited string

Default: ---

Details: Specifies dependencies that are not supported and should not be accepted by job submissions. A
maximum of 30 dependencies is supported.

Example: moab.cfg:

Example:

  
UPROCWEIGHT

Format: <INTEGER>

Default: 0

Details: Weight assigned by processors per user. -1 will reduce priority by number of active procs owned
by user.

Example:

  

TRIGEVALLIMIT   3

UJOBWEIGHT 10

UMASK 0127

UNSUPPORTEDDEPENDENCIES before,beforeok,beforenotok,on

> msub -l depend=before:105 cmd.sh

ERROR: cannot submit job - error in extension string

UPROCWEIGHT 10



USAGECONSUMEDWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to per job processor second consumption.

Example:

  
USAGEEXECUTIONTIMEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight assigned to the total job execution time (measured in seconds since
job start). See Preemption Overview.

Example:

  
USAGEPERCENTWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to total requested resources consumed.

Example:

  
USAGEREMAININGWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight assigned to remaining usage.

Example:

  
 USAGEWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the weight assigned to the percent and total job usage subfactors.

Example:

  
USEANYPARTITIONPRIO

Format: <BOOLEAN>

Default: FALSE

Details: The FSTREE data from the first feasible FSTREE will be used when determining a job's start

USAGECONSUMEDWEIGHT 10

USAGEEXECUTIONTIMEWEIGHT 10

USAGEPERCENTWEIGHT 5

USAGEREMAININGWEIGHT 10

USAGEWEIGHT 100



priority, rather than having no FSTREE data considered.

Example:

  
USECPRSVNODELIST

Format: <BOOLEAN>

Default: TRUE

Details: Specifies whether Moab should use the checkpointed reservation node list when rebuilding
reservations on startup. If this is not used then Moab will use the reservation's specified host
expression during rebuilding.

Example:

  
USEDATABASE

Format: INTERNAL

Default: -

Details: Specifies whether Moab should store profile statistics, checkpoint information, and event
information in an integrated database. See Layout of Scheduler Components with Integrated
Database Enabled for more information.

Example:

  
USEMACHINESPEED

Format: <BOOLEAN>

Default: TRUE

Details: Specifies whether or not job wallclock limits should be scaled by the machine speed of the
node(s) they are running on.

Example:

Job <X> specifying a wallclock limit of 1:00:00 would be given only 40 minutes to run if started
on a node with a machine speed of 1.5.

  
USEMOABCTIME

Format: <BOOLEAN>

Default: FALSE

Details: When Moab finds new jobs on the resource manager, it creates a job inside of Moab for each job
in the resource manager. By default, when Moab creates a new job, it uses the time the job was
submitted to the resource manager to calculate how long the job has been in the queue (Moab
processing time - job creation in resource manager), which is then used in determining the job's
priority.

In a system where more jobs are submitted to a resource manager than Moab can handle in one
iteration, there is the possibility of jobs running out of order. For example, two jobs are both
submitted at time 5. The first submitted job is processed first at time 6. So the first job's
effective queue duration would be 1 (6-5). On the next iteration, the second job is processed at

USEANYPARTITIONPRIO TRUE

USECPRSVNODELIST FALSE

USEDATABASE INTERNAL

USEMACHINESPEED TRUE



time 8. So the second job's effective queue duration would be 3 (8-5), indicating that it has
been in the queue longer than the other job. Since the later job has a higher effective queue
duration it will get a higher priority and could be scheduled to run before earlier submitted jobs.

Setting USEMOABCTIME to TRUE tells Moab to use the creation time of the job in Moab rather
than the creation time in the resource manager. This corrects the possible problem of having
later submitted jobs having higher priorities and starting before earlier submitted jobs.

Example:

  
USEMOABJOBID

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether to use the Moab job ID, or the resource manager's job ID.

Example:

  
USENEWXMLVARIABLES

Format: <BOOLEAN>

Default: FALSE

Details: Reports variables as child elements in node XML.

Example:

  
USERCFG[<USERID>]

Format: List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the
following:

General Credential Flags, CDEF, DEFAULT.TPN, DEFAULT.WCLIMIT, EMAILADDRESS,
ENABLEPROFILING, FSCAP, FSTARGET, JOBFLAGS, MAX.WCLIMIT, QLIST, QDEF,
NOEMAIL, OVERRUN, PDEF, PLIST, PREF, PRIORITY, TRIGGER, or a usage limit.
VIEWPOINTPROXY is an option available to those using Viewpoint as the front-end user
interface. More information on VIEWPOINTPROXY is available in the Viewpoint documentation.

Default: ---

Details: Specifies user specific attributes.  For general user attribute information, See the Credential
Overview. For a description of legal flag values, see flag overview.

Example:

Up to 50 jobs submitted under the user ID john will be allowed to execute simultaneously and
will be assigned the QOS highprio.

  
 USERPRIOCAP

Format: <INTEGER>

Default: -

USEMOABCTIME TRUE

USEMOABJOBID TRUE

USENEWXMLVARIABLES TRUE

USERCFG[john] MAXJOB=50 QDEF=highprio
USERCFG[john] EMAILADDRESS=john@company.com

http://www.adaptivecomputing.com/resources/docs/viewpoint/configuring_the_connection_to_moab.php


Details: Specifies the priority cap to be applied to the user specified job priority factor. Under Moab, only
negative user priorities may be specified. See Credential (Service) Factor.

Example:

  
 USERPRIOWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight to be applied to the user specified job priority. Under Moab, only negative
user priorities may be specified. If this weight is set, users may reduce the priority of some of
their jobs to allow other jobs to run earlier. See Credential (Service) Factor.

Example:

  
 USERWEIGHT

Format: <INTEGER>

Default: 1

Details: Specifies the weight to be applied to the user priority of each job. See Credential (CRED) Factor.

Example:

  
USESYSLOG

Format: <BOOLEAN>[<FACILITY>]

Default: FALSE:daemon

Details: Specifies whether or not the scheduler will report key events to the system syslog facility. If the
FACILITY is specified, Moab will report events to this syslog facility. See Logging Facilities for
more information.

Example:

Moab will report key events, commands, and failures to syslog using the local3 facility.

  
USESYSTEMQUEUETIME

Format: <BOOLEAN>

Default: FALSE

Details: Specifies whether or not job prioritization should be based on the time the job has been eligible
to run, i.e., idle and meets all fairness policies (TRUE) or the time the job has been idle (FALSE).
See Priority Factors for more info. Note: This parameter has been superseded by the
JOBPRIOACCRUALPOLICY parameter.

Example:

The queuetime and expansion factor components of a job's priority will be calculated based on

USERPRIOWEIGHT 10
USERPRIOCAP    -10000

USERPRIOWEIGHT 10

USERWEIGHT 10

USESYSLOG TRUE:local3

USESYSTEMQUEUETIME FALSE



the length of time the job has been in the idle state.

  
USEUSERHASH

Format: <BOOLEAN>

Default: FALSE

Details: Enables searching of the user buffer using the user hash key instead of doing sequential
searches of the user buffer.

Example:

  
VCPROFILE

Format: Comma delimited list of one or more of the following:
ACL, DEFAULTRSVPROFILE, DESCRIPTION, NODESETLIST, OPRSVPROFILE, QUERYDATA,
REQENDPAD, REQSETATTR or REQSTARTPAD

Default: ---

Details: Defines virtual cluster attributes (see VPC Overview).

Example:

All pkgA VPC's will allocate an additional 10 minutes of time at the end to account for
provisioning overhead.

  
VMCALCULATELOADBYVMSUM

Format: <BOOLEAN>

Default: False

Details: When false, vmmigrate using overcommits uses the CPU load from the node to determine if VM's
need to be migrated off the hypervisor. When true, overcommit vmmigrates calculates the total
node load using the total sum reported by each VM on the hypervisor.

Example:

  
VMCREATETHROTTLE

Format: <INTEGER>

Default: ---

Details: Sets the maximum allowable 'VM create' jobs at any given time.

Example:

Only 25 VM creation jobs are allowed in the system at any given time.

  
VMMIGRATETHROTTLE

Format: <INTEGER>

Default: ---

USEUSERHASH TRUE

VCPROFILE[pkgA] REQENDPAD=0:10:00

VMCALCULATELOADBYVMSUM  TRUE

VMCREATETHROTTLE  25



Details: Sets the maximum allowable 'VM migrate' jobs at any given time.

Example:

Only 20 VM migrate jobs are allowed in the system at any given time.

  
VMMIGRATIONPOLICY

Format: <STRING>; values include RSV, GREEN, and OVERCOMMIT

Default: NONE

Details:
RSV - If RSV flag is set, vacates VMs on a node for a reservation to run.
GREEN - If GREEN flag is set, Moab consolidates VMs to allow nodes to go idle.
OVERCOMMIT - The OVERCOMMIT flag must be set for the VMOCTHRESHOLD parameter
to function.

Example:

  
VMMINOPDELAY

Format: [HH[:MM[:SS]

Default: --

Details: The minimum time between automatic VM node operations, such as creating, modifying, and
destroying VMs. May prevent thrashing.

Example:

  
VMOCTHRESHOLD

Format: MEM:<0-1>,PROCS:<0-1>,DISK:<0-1>,SWAP:<0-1>

Default:  

Details: Percentage threshold at which Moab begins to migrate virtual machines to other nodes.
VMMIGRATIONPOLICY must be set to OVERCOMMIT for this to occur.

Example:

When a node surpasses .7 (70%) load of CPU or .9 (90%) of memory, Moab begins to migrate
virtual machines to other nodes.

  
VMPROVISIONSTATUSREADYVALUE

Format: <INTEGER>

Default: ---

Details: Checks a VM for a special value or values (which Moab gets from the resource manager) and,
based on the value, tells Moab that a VM was created..

Examples:

VMMIGRATETHROTTLE  20

VMMIGRATIONPOLICY GREEN,OVERCOMMIT

VMMINOPDELAY 30

VMOCTHRESHOLD PROC:0.7,MEM:0.9

VMProvisionStatusReadyValue 2

VMProvisionStatusReadyValue 1-4,6,16



  
VMSARESTATIC

Format: <BOOLEAN>

Default: FALSE

Details: When set to true, informs Moab that it can schedule under the assumption that no VMs will be
migrated and no new VMs will be created, and disables Moab from scheduling any VM creations
or migrations.

Example:

  
VMSTORAGEMOUNTDIR

Format: <PATH>

Default: ---

Details: The specified path is used as the default location for storage mounts in all newly created VMs
(created via the mvmctl command). This parameter defines the default storage mount directory
if one is not specified.

Example:

Moab uses /var/spool as a storage mount directory if a storage directory is not submitted (but
additional storage is requested) at VM creation.

  
VMTRACKING

Format: <BOOLEAN>

Default: FALSE

Details: When set to TRUE, VMTracking jobs are used to represent VMs in the queue.

Example:

  
VPCFLAGS

Format: Comma delimited list of one or more of the following:
CREDS, JOBS, NODES, or STATS

Default: ---

Details: Virtual private cluster flags that specify the attributes to restrict to the users in a virtual private
cluster.

Example:

Moab will restrict the viewing of credentials, jobs and nodes to only within a virtual private
cluster.

  
WALLTIMECAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum total pre-weighted absolute contribution to job priority which can be

VMSARESTATIC   TRUE

VMSTORAGEMOUTDIR   /var/spool

VMTRACKING TRUE

VPCFLAGS=CREDS,JOBS,NODES



contributed by the walltime component. This value is specified as an absolute priority value, not
as a percent.

Example:

Moab will bound a job's pre-weighted walltime priority component within the range +/- 10000.

  
WALLTIMEWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to the amount of walltime requested by a job (in
seconds) (see Resource (RES) Factor).

Example:

Increase the priority of longer duration jobs.

  
WCACCURACYCAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum total pre-weighted absolute contribution to job priority which can be
contributed by the wallclock accuracy component. This value is specified as an absolute priority
value, not as a percent.

Example:

Moab will bound a job's pre-weighted wallclock accuracy priority component within the range +/-
10000.

  
WCACCURACYWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the priority weight to be applied to the job's historical user wallclock accuracy (range
0.0 to 1.0) (see Fairshare (FS) Factor).

Example:

Favor jobs with good wallclock accuracies by giving them a priority increase.

  
WCVIOLATIONACTION

Format: one of CANCEL or PREEMPT

Default: CANCEL

Details: Specifies the action to take when a job exceeds its wallclock limit. If set to CANCEL, the job will
be terminated. If set to PREEMPT, the action defined by PREEMPTPOLICY parameter will be
taken. See JOBMAXOVERRUN or Resource Usage Limit Overview.

Example:

WALLTIMECAP 10000

RESWEIGHT      10
WALLTIMEWEIGHT 100

WCACCURACYCAP 10000

FSWEIGHT         10
WCACCURACYWEIGHT 100

WCVIOLATIONACTION   PREEMPT



Moab will requeue jobs which exceed their wallclock limit.

  
WIKIEVENTS

Format: <BOOLEAN>

Default: TRUE

Details: When set to true, Moab events are set to native wiki format (ATTR=VALUE pairs) to facilitate
easier readability .

Example:

  
XFACTORCAP

Format: <DOUBLE>

Default: 0 (NO CAP)

Details: Specifies the maximum total pre-weighted absolute contribution to job priority which can be
contributed by the expansion factor component. This value is specified as an absolute priority
value, not as a percent.

Example:

Moab will bound a job's pre-weighted XFactor priority component within the range +/- 10000.

  
 XFACTORWEIGHT

Format: <INTEGER>

Default: 0

Details: Specifies the weight to be applied to a job's minimum expansion factor before it is added to the
job's cumulative priority.

Example:

Moab will multiply a job's XFactor value by 1000 and then add this value to its total priority.

  
 XFMINWCLIMIT

Format: [[[DD:]HH:]MM:]SS

Default: -1 (NO LIMIT)

Details: Specifies the minimum job wallclock limit that will be considered in job expansion factor priority
calculations.

PREEMPTPOLICY       REQUEUE

09:26:40 1288279600:5 job 58 JOBEND 58 REQUESTEDNC=1 REQUESTEDTC=3 
UNAME=wightman GNAME=wightman 
WCLIMIT=60 STATE=Completed RCLASS=[batch:1] SUBMITTIME=1288279493 
RMEMCMP=>= RDISKCMP=>= 
RFEATURES=[NONE] SYSTEMQUEUETIME=1288279493 TASKS=1 
FLAGS=RESTARTABLE PARTITION=pbs DPROCS=1 
ENDDATE=2140000000 TASKMAP=proxy,GLOBAL SRM=pbs EXITCODE=0   
SID=2357 NODEALLOCATIONPOLICY=SHARED 
EFFECTIVEQUEUEDURATION=107

XFACTORCAP 10000

XFACTORWEIGHT 1000



Example:

Jobs requesting less than one minute of wallclock time will be treated as if their wallclock limit
was set to one minute when determining expansion factor for priority calculations.

XFMINWCLIMIT 0:01:00



Appendix G: Commands Overview
Command Description

checkjob provide detailed status report for specified job

checknode provide detailed status report for specified node

mcredctl controls various aspects about the credential objects within Moab

mdiag provide diagnostic reports for resources, workload, and scheduling

mjobctl control and modify job

mnodectl control and modify nodes

moab control the Moab daemon

mrmctl query and control resource managers

mrsvctl create, control and modify reservations

mschedctl modify scheduler state and behavior

mshow displays various diagnostic messages about the system and job queues

mshow -a query and show available system resources

msub scheduler job submission

mvmctl create, control and modify VMs

resetstats reset scheduler statistics

showbf show current resource availability

showq show queued jobs

showres show existing reservations

showstart show estimates of when job can/will start

showstate show current state of resources

showstats show usage statistics

showstats -f show various tables of scheduling/system performance

Commands Providing Maui Compatibility

The following commands are deprecated. Click the link for respective deprecated commands to see the
updated replacement command for each.

Command Description

canceljob cancel job

changeparam change in memory parameter settings

diagnose provide diagnostic report for various aspects of resources, workload, and scheduling

releasehold release job defers and holds

releaseres release reservations



runjob force a job to run immediately

sethold set job holds

setqos modify job QOS settings

setres set an admin/user reservation

setspri adjust job/system priority of job

showconfig show current scheduler configuration



checkjob
(Check Job)

Synopsis
checkjob [-A] [-l policylevel] [-n nodeid] [-q qosid] [-r reservationid]
         [-v] [--flags=future] jobid 

Overview

   checkjob displays detailed job state information and diagnostic output for a specified job.  Detailed
information is available for queued, blocked, active, and recently completed jobs.

Access

   This command can be run by level 1-3 Moab administrators for any job.  Also, end users can use checkjob
to view the status of their own jobs.

Arguments

-A (Attribute-Value pair)

Format:  

Default: ---

Description: Provides output in the form of parsable Attribute-Value pairs.

Example:

Moab will display job information in the following format: <ATTRIBUTE>=<VALUE>;.

  
--flags

Format: --flags=future

Default: ---

Description: Evaluates future eligibility of job (ignore current resource state and usage limitations).

Example:

Display reasons why idle job is blocked ignoring node state and current node utilization
constraints.

  
-l (Policy level)

Format: <POLICYLEVEL>

HARD, SOFT, or OFF

Default: ---

Description: Reports job start eligibility subject to specified throttling policy level.

Example:

> checkjob -A 6235

> checkjob -v --flags=future 6235

> checkjob -l SOFT 6235
> checkjob -l HARD 6235



  
-n (NodeID)

Format: <NODEID>

Default: ---

Description: Checks job access to specified node and preemption status with regards to jobs located on that
node.

Example:

  
-q (QoS)

Format: <QOSID>

Default: ---

Description: Checks job access to specified QoS <QOSID>.

Example:

  
-r (Reservation)

Format: <RSVID>

Default: ---

Description: Checks job access to specified reservation <RSVID>.

Example:

  
-v [-v] (Verbose)

Format:  

Default: N/A

Description:
Sets verbose mode.

-v

Shows why nodes are available or unavailable
Shows array information (see Example 2).

-v -v

Shows timestamps to error messages
Shows job script
Shows priority calculation

Example:

Details

   This command allows any Moab administrator to check the detailed status and resource requirements of a

> checkjob -n node113 6235

> checkjob -q special 6235

> checkjob -r orion.1 6235

> checkjob -v 6235
> checkjob -v -v 6326



active, queued, or recently completed job.  Additionally, this command performs numerous diagnostic checks
and determines if and where the job could potentially run.  Diagnostic checks include policy violations,
reservation constraints, preemption status, and job to resource mapping.  If a job cannot run, a text reason is
provided along with a summary of how many nodes are and are not available.  If the -v flag is specified, a
node by node summary of resource availability will be displayed for idle jobs.

Job Eligibility

   If a job cannot run, a text reason is provided along with a summary of how many nodes are and are not
available.  If the -v flag is specified, a node by node summary of resource availability will be displayed for idle
jobs.  For job level eligibility issues, one of the following reasons will be given:
 

Reason Description

job has hold in place one or more job holds are currently in place

insufficient idle procs there are currently not adequate processor resources available to start
the job

idle procs do not meet
requirements

adequate idle processors are available but these do not meet job
requirements

start date not reached job has specified a minimum start date which is still in the future

expected state is not idle job is in an unexpected state

state is not idle job is not in the idle state

dependency is not met job depends on another job reaching a certain state

rejected by policy job start is prevented by a throttling policy 

   If a job cannot run on a particular node, one of the following 'per node' reasons will be given:
 

Class Node does not allow required job class/queue

CPU Node does not possess required processors

Disk Node does not possess required local disk

Features Node does not possess required node features

Memory Node does not possess required real memory

Network Node does not possess required network interface 

State Node is not Idle or Running

Reservation Access

   The -r flag can be used to provide detailed information about job access to a specific reservation

Preemption Status

   If a job is marked as a preemptor and the -v and -n flags are specified, checkjob will perform a job by job
analysis for all jobs on the specified node to determine if they can be preempted.

Output

   The checkjob command displays the following job attributes:
 

Attribute Value Description

Account <STRING> Name of account associated with job



Actual Run
Time

[[[DD:]HH:]MM:]SS Length of time job actually ran.

This info is only displayed in simulation mode.

Allocated
Nodes

Square bracket delimited
list of node and processor
ids

List of nodes and processors allocated to job

Arch <STRING> Node architecture required by job

Attr square bracket delimited
list of job attributes

Job Attributes (i.e. [BACKFILL][BENCHMARK][PREEMPTEE])

Average
Utilized
Procs*

<FLOAT> Average load balance for a job

Avg Util
Resources Per
Task*

<FLOAT>  

Bypass <INTEGER> Number of times a lower priority job with a later submit time
ran before the job

Class [<CLASS NAME> <CLASS
COUNT>]

Name of class/queue required by job and number of class
initiators required per task.

Dedicated
Resources Per
Task*

<INTEGER>  

Disk <INTEGER> Amount of local disk required by job (in MB)

Estimated
Walltime

[[[DD:]HH:]MM:]SS The scheduler's estimated walltime.

In simulation mode, it is the actual walltime.

Exec Size* <INTEGER> Size of job executable (in MB)

Executable <STRING> Name of command to run

Features Square bracket delimited
list of <STRING>s

Node features required by job

Flags   

Group <STRING> Name of Unix group associated with job

Holds Zero or more of User,
System, and Batch

Types of job holds currently applied to job

Image Size <INTEGER> Size of job data (in MB)

IWD (Initial
Working
Directory)

<DIR> Directory to run the executable in

Memory <INTEGER> Amount of real memory required per node (in MB)

Max Util
Resources Per
Task*

<FLOAT>  



Network <STRING Type of network adapter required by job

NodeAccess*   

Nodecount <INTEGER Number of nodes required by job

Opsys <STRING Node operating system required by job

Partition Mask ALL or colon delimited list
of partitions

List of partitions the job has access to

PE <FLOAT> Number of processor-equivalents requested by job

QOS <STRING> Quality of Service associated with job

Reservation <RSVID  ( <TIME1  - 
<TIME2> Duration:
<TIME3>)

RESID specifies the reservation id, TIME1 is the relative start
time, TIME2 the relative end time, TIME3 the duration of the
reservation

Req [<INTEGER>] TaskCount:
<INTEGER> Partition:
<partition>

A job requirement for a single type of resource followed by the
number of tasks instances required and the appropriate
partition

StartCount <INTEGER> Number of times job has been started by Moab

StartPriority <INTEGER> Start priority of job

StartTime <TIME> Time job was started by the resource management system

State One of Idle, Starting,
Running, etc

Current Job State

SubmitTime <TIME> Time job was submitted to resource management system

Swap <INTEGER> Amount of swap disk required by job (in MB)

Task
Distribution*

Square bracket delimited
list of nodes

 

Time Queued

Total Nodes* <INTEGER> Number of nodes requested by job

Total Tasks <INTEGER> Number of tasks requested by job

User <STRING> Name of user submitting job

Utilized
Resources Per
Task*

<FLOAT>  

WallTime [[[DD:]HH:]MM:]SS of
[[[DD:]HH:]MM:]SS

Length of time job has been running out of the specified limit

In the above table, fields marked with an asterisk (*) are only displayed when set or when the -v flag is
specified.
 

Example 1

  checkjob 717

> checkjob 717
job 717

State: Idle



The example job cannot be started for two different reasons.

It is temporarily blocked from partition base because of node state and node reservation
conflicts.
It is permanently blocked from partition GM because the requested class batch is not supported
in that partition.

Example 2

  checkjob -v

Creds:  user:jacksond  group:jacksond  class:batch
WallTime: 00:00:00 of 00:01:40
SubmitTime: Mon Aug 15 20:49:41
  (Time Queued  Total: 3:12:23:13  Eligible: 3:12:23:11)

TerminationDate:   INFINITY  Sat Oct 24 06:26:40
Total Tasks: 1

Req[0]  TaskCount: 1  Partition: ALL
Network: ---  Memory >= 0  Disk >= 0  Swap >= 0
Opsys: ---  Arch: ---  Features: ---

IWD:            /home/jacksond/moab/moab-4.2.3
Executable:     STDIN
Flags:          RESTARTABLE,NORMSTART
StartPriority:  5063
Reservation '717' (  INFINITY ->   INFINITY  Duration: 00:01:40)
Note:  job cannot run in partition base (idle procs do not meet 
requirements : 0 of 1 procs found)
idle procs:   4  feasible procs:   0

Rejection Reasons: [State        :    3][ReserveTime  :    1]

cannot select job 717 for partition GM (partition GM does not 

> checkjob -v medsec.1.1
job medsec.1.1 (RM job 'g01.1')

AName: medsec               #  
Job Array Info:             #  This information is provided only 
when
Name: medsec.1.1            #  the job is part of a job array.
1 : medsec.1.1 : Running    #  
2 : medsec.1.2 : Running    #  
                            #  
Totals:                     #  If not part of a job array, this
Active: 2                   #  information is not displayed.
Idle: 0                     #  
Migrated: 0                 #  
Complete: 0                 #  

State: Running 
Creds: user:testuser1 group:testgroup1
WallTime: 00:21:53 of 00:05:00
SubmitTime: Tue Mar 1 11:54:50
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Tue Mar 1 11:54:50
Total Requested Tasks: 1
Total Requested Nodes: 1

Req[0] TaskCount: 1 Partition: g01 
Average Utilized Procs: 0.08



See Also
Moab Client Installation - explains how to distribute this command to client nodes
mdiag -j command - display additional detailed information regarding jobs
showq command - showq high-level job summaries
JOBCPURGETIME parameter - specify how long information regarding completed jobs is maintained
diagnosing job preemption

NodeCount: 1



checknode
(Check Node)

Synopsis
checknode nodeID

Overview

This command shows detailed state information and statistics for nodes that run jobs.

The following information is returned by this command:

Disk Disk space available

Memory Memory available

Swap Swap space available

State Node state

Opsys Operating system

Arch Architecture

Adapters Network adapters available

Features Features available

Classes Classes available

StateTime Time node has been in current state in HH:MM:SS notation

Downtime Displayed only if downtime is scheduled

Load CPU Load (Berkley one-minute load average)

TotalTime Total time node has been detected since statistics initialization expressed in HH:MM:SS notation

UpTime Total time node has been in an available (Non-Down) state since statistics initialization
expressed in HH:MM:SS notation (percent of time up: UpTime/TotalTime)

BusyTime Total time node has been busy (allocated to active jobs) since statistics initialization expressed
in HH:MM:SS notation (percent of time busy: BusyTime/TotalTime)

After displaying this information, some analysis is performed and any unusual conditions are reported.

Access

By default, this command can be run by any Moab Administrator (see ADMINCFG).

Parameters

NODE Node name you want to check.

Flags

-h Help for this command.

-v Returns verbose output.

--xml Output in XML format. Same as mdiag -n --xml.



Example

See Also
Moab Client Installation - explains how to distribute this command to client nodes
mdiag -n
showstate

> checknode P690-032
node P690-032
 
State:      Busy  (in current state for 11:31:10)
Configured Resources: PROCS: 1  MEM: 16G  SWAP: 2000M  DISK: 500G
Utilized   Resources: PROCS: 1
Dedicated  Resources: PROCS: 1
Opsys:      AIX       Arch:      P690
Speed:      1.00      CPULoad:   1.000
Network:    InfiniBand,Myrinet
Features:   Myrinet
Attributes: [Batch]
Classes:    [batch 0:1]
 
Total Time: 5:23:28:36  Up: 5:23:28:36 (100.00%)  Active: 5:19:44:22 
(97.40%)
 
Reservations:
  Job '13678'(x1)  10:16:12:22 -> 12:16:12:22 (2:00:00:00)
  Job '13186'(x1)  -11:31:10 -> 1:12:28:50 (2:00:00:00)
JobList:  13186



mcredctl
(Moab Credential Control)

Synopsis
mcredctl [-d credtype[:credid]]
         [-h credtype:credid] [-l credtype]
         [-q {role|limit|profile|accessfrom|accessto} 
             credtype[:credid]][--format=xml]
         [-r {stats|credits} credtype[:credid]]

Overview

The mcredctl command controls various aspects about the credential objects within Moab.  It can be used to
display configuration, limits, roles, and relationships for various Moab credential objects.

Arguments

In all cases <CREDTYPE> is one of acct, group, user, class, or qos.

In most cases it is necessary to use the --format=xml flag in order to print the output (see examples
below for specific syntax requirements).

-d — DESTROY

Format: <TYPE>:<VAL>

Default: ---

Description: Purge a credential from moab.cfg (does not delete credential from memory).

Example:

All references to USERCFG[john] will be commented out of moab.cfg)

  
-l — LIST

Format: <TYPE>

Default: ---

Description: List the various sub-objects of the specified credential (format in XML).

Example:

List all users within Moab in XML)

List all groups within Moab in XML)

  
-q — QUERY

Format: { role | accessfrom | accessto | limit | profile | policies}

    limit  <TYPE>
    policies  <TYPE>

> mcredctl -d user:john

> mcredctl -l user --format=xml

> mcredctl -l group --format=xml



    role  USER:<USERID>
    profile  <TYPE>[;<VAL>]
    accessfrom  <TYPE>[:<VAL>]
    accessto  <TYPE>[:<VAL>]

Default: ---

Description: Display various aspects of a credential (formatted in XML).

Example:

View user bob's administrative role within Moab in XML)

Display limits for all accounts in XML)

Credential Statistics XML Output

Credential statistics can be requested as XML (via the --format=xml argument) and will be written to
STDOUT in the following format:

Example 1

Example 2

Example 3

See Also
Moab Client Installation - explains how to distribute this command to client nodes

> mcredctl -q role user:bob --format=xml

> mcredctl -q limit acct --format=xml

> mcredctl -q profile user --format=xml -o time:1182927600,1183013999

<Data>
  <user ...> 
    <Profile ...>
    </Profile>
  </user>
</Data>

> mcredctl -d group:john

GROUPCFG[john] Successfully purged from config files

> mcredctl -l user --format=xml

<Data><user ID="john"</user><user ID="john"></user><user 
ID="root"></user><user ID="dev"></user></Data>

> mcredctl -q role user:john --format=xml

<Data><user ID="test" role="admin5"></user></Data>



mdiag
(Moab Diagnostics)

Synopsis

mdiag -a [accountid]
mdiag -b [-l policylevel] [-t partition]
mdiag -c [classid]
mdiag -C [configfile]  // diagnose config file syntax
mdiag -e [-w <starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>]  
mdiag -f [-o user|group|acct|qos|class] [-v]
mdiag -g [groupid]
mdiag -G [Green]
mdiag -j [jobid] [-t <partition>] [-v]
mdiag -L [-v]  // diagnose usage limits
mdiag -m [rackid]
mdiag -n [-A <creds>] [-t partition] [nodeid] [-v]
mdiag -p [-t partition] [-v] // diagnose job priority
mdiag -q [qosid]
mdiag -r [reservationid] [-v] [-w type=<type>]
mdiag -R [resourcemanagername] [-v]
mdiag -s [standingreservationid]
mdiag -S [-v] // diagnose scheduler
mdiag -t [-v] // diagnose partitions
mdiag -T [triggerid] [-v]
mdiag -u [userid]
mdiag -x
mdiag [--format=xml]

Overview

The mdiag command is used to display information about various aspects of the cluster and the results of
internal diagnostic tests.  In summary, it provides the following:

current object health and state information
current object configuration (resources, policies, attributes, etc)
current and historical performance/utilization information
reports on recent failure
object messages

Arguments

Argument Description

-a [accountid] display account information

-b display information on jobs blocked by policies, holds, or other factors.

If blocked job diagnostics are specified, the '-t' option is also available to
constrain the report to analysis of particular partition.  Also, with blocked job
diagnosis, the '-l' option can be used to specify the analysis policy level.

-c [classid] display class information

-C [file] analyze configuration file for errors including use of invalid parameters, deprecated
parameters, and illegal values. (If you start Moab with the -e flag, Moab evaluates the
configuration file at startup and quits if an error exists.)

-e
Moab will do a query for all events whose eventtime is between <starttime> and
<endtime> and that match the search criteria. This works only when Moab is
configured with ODBC. The syntax is: 
mdiag -e [-w
<starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>]

starttime default is -



endtime default is INFINITY
eventtypes default is command delimited, the default is all event types (possible
values can be found in the EventType table in the Moab database)
oidlist is a comma delimited list of object ids, the default is all objects ids
eidlist is a comma delimited list of specific event ids, the default is all event ids
objectlist is a comma delimited list of object types, the default is all object types
(possible values can be found in the ObjectType table in the Moab database)

-f display fairshare information

-g [groupid] display group information

-G [Green] display power management information

-j [jobid] display job information

-L display limits

-m rackid display rack/frame information

-n [nodeid] display nodes.

If node diagnostics are specified, the '-t' option is also available to constrain
the report to a particular partition.

-o
<OTYPE>[:<OID>]

organize information by specified object type

-p display job priority.

If priority diagnostics are specified, the '-t' option is also available to constrain
the report to a particular partition.

-q [qosid] display qos information

-r [reservationid] display reservation information

-R [rmid] display resource manager information

-s [srsv] display standing reservation information

-S display general scheduler information

-T [triggerid] display trigger information

-u [userid] display user information

-x display advanced system information

--format=xml display output in XML format

See Also
Moab Client Installation - explains how to distribute this command to client nodes
checkjob
checknode



mdiag -a
(Moab Account Diagnostics)

Synopsis
mdiag -a [accountid]

Overview

   The mdiag -a command provides detailed information about the accounts (aka projects) Moab is currently
tracking.  This command also allows an administrator to verify correct throttling policies and access provided
to and from other credentials.

Example 1

See Also
Account credential

> mdiag -a
evaluating acct information
Name         Priority        Flags         QDef      QOSList*                 
PartitionList Target  Limits

engineering       100            -         high      high,urgent,low             
[A][B]      30.00  MAXJOB=50,75  MAXPROC=400,500 
marketing           1            -          low      low                         
[A]          5.00  MAXJOB=100,110  MAXPS=54000,54500
it                 10            -      DEFAULT      
DEFAULT,high,urgent,low     [A]        100.00  MAXPROC=100,1250 
MAXPS=12000,12500
  FSWEIGHT=1000
development       100            -        high       high,urgent,low             
[A][B]      30.00  MAXJOB=50,75 MAXNODE=100,120 
research          100            -        high       DEFAULT,high,low            
[A][B]      30.00  MAXNODE=400,500 MAXPS=900000,1000000
DEFAULT             0            -           -       -                           
-            0.00  - 



mdiag -b
(Moab Queues Diagnostics)

Synopsis
mdiag -b [-l policylevel] [-t partition]

Overview

The mdiag -b command returns information about blocked jobs.



mdiag -c
(Moab Class Diagnostics)

Synopsis
mdiag -c [-v] [classid] [--format=xml]

Overview

The mdiag -c command provides detailed information about the classes Moab is currently tracking. This
command also allows an administrator to verify correct throttling policies and access provided to and from
other credentials.

The term class is used interchangeably with the term queue and generally refers to resource manager
queue.

XML Output

mdiag -c information can be reported as XML as well. This is done with the command "mdiag -c
<CLASS_ID> --format=xml". XML based class information will be written to STDOUT in the following format:

In addition to the attributes listed below, mdiag -c's XML children describe its general statistics information
(stats XML Element) and profile based statistics (Profile XML element).

XML Attributes

Name Description

ADEF Accounts a class has access to.

CAPACITY Number of procs available to the class.

DEFAULT.ATTR Default attributes attached to a job.

DEFAULT.DISK Default required disk attached to a job.

DEFAULT.FEATURES Default required node features attached to a job.

DEFAULT.GRES Default generic resources attached to a job.

DEFAULT.MEM Default required memeory attached to a job.

DEFAULT.NODESET Default specified nodeset attached to a job.

DEFAULT.WCLIMIT Default wallclock limit attached to a job.

EXCL.FEATURES List of excluded (disallowed) node features.

EXCL.FLAGS List of excluded (disallowed) job flags.

<Data>
  <class <ATTR>="<VAL>" ... >
    <stats <ATTR>="<VAL>" ... >
      <Profile <ATTR>="<VAL>" ... >
      </Profile>
    </stats>
  </class>
<Data>

  ...
</Data>

http://sempa/resources/docs/blanks/mwm/xml/Profile.php


FSTARGET The class' fairshare target.

HOLD If TRUE this credential has a hold on it, FALSE otherwise.

HOSTLIST The list of hosts in this class.

JOBEPILOG Scheduler level job epilog to be run after job is completed by resource manager
(script path).

JOBFLAGS Default flags attached to jobs in the class.

JOBPROLOG Scheduler level job prolog to be run before job is started by resource manager
(script path).

ID The unique ID of this class.

LOGLEVEL The log level attached to jobs in the class.

MAX.PROC The max processors per job in the class.

MAX.PS The max processor-seconds per job in the class.

MAX.WCLIMIT The max wallclock limit per job in the class.

MAXIJOB The max idle jobs in the class.

MAXIPROC The max idle processors in the class.

MAXJOBPERUSER The max jobs per user.

MAXNODEPERJOB The max nodes per job.

MAXNODEPERUSER The max nodes per user.

MAXPROCPERJOB The max processors per job.

MAXPROCPERNODE The max processors per node.

MAXPROCPERUSER The max processors per user.

MIN.NODE The minimum nodes per job in the class.

MIN.PROC The minimum processors per job in the class.

MIN.WCLIMIT The minimum wallclock limit per job in the class.

NODEACCESSPOLICY The node access policy associated with jobs in the class.

OCDPROCFACTOR Dedicated processor factor.

OCNODE Overcommit node.

PRIORITY The class' associated priority.

PRIORITYF Priority calculation function.

REQ.FEATURES Required features for a job to be considered in the class.

REQ.FLAGS Required flags for a job to be considered in the class.

REQ.IMAGE Required image for a job to be considered in the class.

REQUIREDUSERLIST The list of users who have access to the class.

RM The resouce manager reporting the class.

RMLIST The list of resource managers who have access to the class.



STATE The class' state.

WCOVERRUN Tolerated amount of time beyond the specified wall clock limit.

Example 1

The Limits column will display limits in the following format:

<USAGE>:<HARDLIMIT>[,<SOFTLIMIT>]

In the example above, class fast has MAXJOB soft and hard limits of 100 and 150 respectively and is
currently running 8 jobs.

See Also
showstats command - display general statistics

> mdiag -c

Class/Queue Status

ClassID        Priority Flags        QDef              QOSList* 
PartitionList        Target Limits

DEFAULT               0 ---          ---                   ---  ---                   
0.00  ---
batch                 1 ---          ---                   ---  [A][B]               
70.00  MAXJOB=33:200,250
  MAX.WCLIMIT=10:00:00  MAXPROCPERJOB=128
long                  1 ---          low                   low  [A]                  
10.00  MAXJOB=3:100,200
  MAX.WCLIMIT=1:00:00:00  MAXPROCPERJOB=128
fast                100 ---          high                 high  [B]                  
10.00  MAXJOB=8:100,150
  MAX.WCLIMIT=00:30:00  MAXPROCPERJOB=128
bigmem                1 ---          low,high              low  ---                  
10.00  MAXJOB=1:100,200
  MAXPROCPERJOB=128



mdiag -f
(Moab Fairshare Diagnostics)

Synopsis
mdiag -f [-o user|group|acct|qos|class] [--flags=relative] [-w par=<PARTITIONID>]

Overview:

The mdiag -f command is used to display at a glance information about the fairshare configuration and
historic resource utilization. The fairshare usage may impact job prioritization, job eligibility, or both based on
the credential FSTARGET and FSCAP attributes and by the fairshare priority weights as described in the Job
Prioritization Overview. The information presented by this command includes fairshare configuration and
credential fairshare usage over time.

The command hides information about credentials which have no fairshare target and no fairshare cap.

If an object type (<OTYPE>) is specified, then only information for that credential type (user, group, acct,
class, or qos) will be displayed. If the relative flag is set, then per user fairshare usage will be displayed
relative to each non-user credential (see Example 2 below). Note: Relative output is only displayed for
credentials which have user mappings. For example, if there is no association between classes and users, no
relative per user fairshare usage class breakdown will be provided.

Example 1

Standard Fairshare Output

Example 2

Grouping User Output by Account

mdiag -f -o acct --flags=relative

> mdiag -f

FairShare Information

Depth: 6 intervals   Interval Length: 00:20:00   Decay Rate: 0.50

FS Policy: SDEDICATEDPES
System FS Settings:  Target Usage: 0.00    Flags: 0

FSInterval        %     Target       0       1       2       3       4       
5
FSWeight       ------- -------  1.0000  0.5000  0.2500  0.1250  
0.0625  0.0312
TotalUsage      100.00 -------    85.3   476.1   478.9   478.5   
475.5   482.8

USER
-------------
mattp             2.51 -------    2.20    2.69    2.21    2.65    
2.65    3.01
jsmith           12.82 -------   12.66   15.36   10.96    8.74    
8.15   13.85
kyliem            3.44 -------    3.93    2.78    4.36    3.11    
3.94    4.25
tgh               4.94 -------    4.44    5.12    5.52    3.95    
4.66    4.76
walex             1.51 -------    3.14    1.15    1.05    1.61    
1.22    1.60
jimf              4.73 -------    4.67    4.31    5.67    4.49    



See Also:
Fairshare Overview

> mdiag -f -o acct --flags=relative

FairShare Information

Depth: 6 intervals   Interval Length: 00:20:00   Decay Rate: 0.50

FS Policy: SDEDICATEDPES
System FS Settings:  Target Usage: 0.00    Flags: 0

FSInterval        %     Target       0       1       2       3       4       
5
FSWeight       ------- -------  1.0000  0.5000  0.2500  0.1250  
0.0625  0.0312
TotalUsage      100.00 -------    23.8   476.1   478.9   478.5   
475.5   482.8

ACCOUNT
-------------
dallas           13.12  15.00    15.42   12.41   13.19   13.29   
15.37   15.09
  mattp          19.47 -------   15.00   21.66   16.75   19.93   
17.26   19.95
  walex           9.93 -------   20.91    9.28    7.97   12.14    
7.91   10.59
  stevei         12.19 -------    9.09   10.78   15.85    5.64   
21.46   14.28
  anna           14.77 -------   16.36   13.54   17.18   13.55   
15.44   14.37
  susieb         43.64 -------   38.64   44.74   42.25   48.74   



mdiag -g
(Moab Group Diagnostics)

Synopsis
mdiag -g [groupid]

Overview

The mdiag -g command is used to present information about groups.



mdiag -j
(Moab Job Diagnostics)

Synopsis
mdiag -j [jobid] [-t <partition>] [-v] [-w] [--flags=policy] [--format=xml]

Overview

The mdiag -j command provides detailed information about the state of jobs Moab is currently tracking. This
command also performs a large number of sanity and state checks. The job configuration and status
information, as well as the results of the various checks, are presented by this command. If the -v (verbose)
flag is specified, additional information about less common job attributes is displayed. If --flags=policy is
specified, information about job templates is displayed.

If used with the -t <partition> option on a running job, the only thing mdiag -j shows is if the job is
running on the specified partition. If used on job that is not running, it shows if the job is able to run on the
specified partition.

The -w flag enables you to select only jobs associated with a given credential (user, acct, class, group, qos).
For example:

Output from the preceding example displays only the user named David's jobs.

XML Output

If XML output is requested (via the --format=xml argument), XML based node information will be written to
STDOUT in the following format:

For information about legal attributes, refer to the XML Attributes table.

See Also
checkjob
mdiag

mdiag -j -w user=david

<Data>
  <job ATTR="VALUE" ... > </job>
  ...
</Data>



mdiag -n
(Moab Node Diagnostics)

Synopsis
mdiag -n [-t partitionid] [-A creds] [-v] [--format=xml] [nodeid]

Overview

The mdiag -n command provides detailed information about the state of nodes Moab is currently tracking.
This command also performs a large number of sanity and state checks. The node configuration and status
information as well as the results of the various checks are presented by this command.

Arguments

Flag Argument Description

[-A] {user|group|account|qos|class|job}:<OBJECTID> report if each node is accessible by requested job
or credential

[-t] <partitionid> report only nodes from specified partition

[-v] - show verbose output (do not truncate columns and
add columns for additional node attributes)

Output

This command presents detailed node information in whitespace delineated fields.

The output of this command can be extensive and the values for a number of fields may be truncated. If
truncated, the '-v flag can be used to display full field content.

Column Format

Name <NODE NAME

State <NODE STATE

Procs <AVAILABLE PROCS>:<CONFIGURED PROCS>

Memory <AVAILABLE MEMORY>:<CONFIGURED MEMORY>

Disk <AVAILABLE DISK>:<CONFIGURED DISK>

Swap <AVAILABLE SWAP>:<CONFIGURED SWAP>

Speed <RELATIVE MACHINE SPEED>

Opsys <NODE OPERATING SYSTEM>

Arch <NODE HARDWARE ARCHITECTURE>

Par <PARTITION NODE IS ASSIGNED TO>

Load <CURRENT 1 MINUTE BSD LOAD>

Rsv <NUMBER OF RESERVATIONS ON NODE>

Classes <CLASS NAME><CLASS INSTANCES AVAILABLE>:<CLASS INSTANCES CONFIGURED>...

Network <NETWORK NAME>...

Features <NODE FEATURE>...



Example 1

Note: Warning messages are interspersed with the node configuration information with all warnings preceded
by the keyword 'WARNING'.

XML Output

If XML output is requested (via the --format=xml argument), XML based node information will be written to
STDOUT in the following format:

mdiag -n --format=xml

In addition to the attributes listed below, mdiag -n's node element XML has children that describe a node's
messages (Messages XML element).

XML Attributes

Name Description

AGRES Available generic resources

ALLOCRES Special allocated resources (like vlans)

ARCH The node's processor architecture.

AVLCLASS Classes available on the node

AVLETIME Time when the node will no longer be availble (used in Utility centers)

> mdiag -n

compute node summary
Name                    State   Procs      Memory         Opsys
 
opt-001                  Busy    0:2      2048:2048        SuSE
opt-002                  Busy    0:2      2048:2048        SuSE
opt-003                  Busy    0:2      2048:2048        SuSE
opt-004                  Busy    0:2      2048:2048        SuSE
opt-005                  Busy    0:2      2048:2048        SuSE
opt-006                  Busy    0:2      2048:2048        SuSE
WARNING:   swap is low on node opt-006
opt-007                  Busy    0:2      2048:2048        SuSE
opt-008                  Busy    0:2      2048:2048        SuSE
opt-009                  Busy    0:2      2048:2048        SuSE
opt-010                  Busy    0:2      2048:2048        SuSE
opt-011                  Busy    0:2      2048:2048        SuSE
opt-012                  Busy    0:2      2048:2048        SuSE
opt-013                  Busy    0:2      2048:2048        SuSE
opt-014                  Busy    0:2      2048:2048        SuSE
opt-015                  Busy    0:2      2048:2048        SuSE
opt-016                  Busy    0:2      2048:2048        SuSE
x86-001                  Busy    0:1       512:512       Redhat
x86-002                  Busy    0:1       512:512       Redhat
x86-003                  Busy    0:1       512:512       Redhat
x86-004                  Busy    0:1       512:512       Redhat
x86-005                  Idle    1:1       512:512       Redhat
x86-006                  Idle    1:1       512:512       Redhat
x86-007                  Idle    1:1       512:512       Redhat

<Data>
  <node> <ATTR>="<VAL>" ... </node>
  ...
</Data>

http://sempa/resources/docs/blanks/mwm/xml/Messages.php


AVLSTIME Time when the node will be available (used in Utility centers)

CFGCLASS Classes configured on the node

GRES generic resources on the node

ENABLEPROFILING If true, a node's state and usage is tracked over time.

FEATURES A list of comma separated custom features describing a node.

GMETRIC A list of comma separated consumable resources associated with a node.

HOPCOUNT How many hops the node took to reach this Moab (used in hierarchical grids)

ISDELETED Node has been deleted

ISDYNAMIC Node is dynamic (used in Utility centers)

JOBLIST The list of jobs currently running on a node.

LOAD current load as reported by the resource manager

LOADWEIGHT load weight used when calculating node priority

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPROC See Node Policies for details.

MAXPROCPERUSER See Node Policies for details.

NETWORK The ability to specify which networks are available to a given node is limited to only a
few resource manager. Using the NETWORK attribute, administrators can establish
this node to network connection directly through the scheduler. The NODECFG
parameter allows this list to be specified in a comma delimited list.

NODEID The unique identifier for a node.

NODESTATE The state of a node.

OS A node's operating system.

OSLIST Operating systems the node can run

OSMODACTION URL for changing the operating system

OWNER Credential type and name of owner

PARTITION The partition a node belongs to. See Node Location for details.

POWER The state of the node's power. Either ON or OFF.

PRIORITY The fixed node priority relative to other nodes.

PROCSPEED A node's processsor speed information specified in MHz.

RACK The rack associated with a node's physical location.

RADISK The total available disk on a node.

RAMEM The total available memory available on a node.<

RAPROC The total number of processors available on a node.



RASWAP The total available swap on a node.

RCMEM The total configured memory on a node.

RCPROC The total configured processors on a node.

RCSWAP The total configured swap on a node.

RESCOUNT Number of reservations on the node

RSVLIST List of reservations on the node

RESOURCES Deprecated (use GRES)

RMACCESSLIST A comma separated list of resource managers who have access to a node.

SIZE The number of slots or size units consumed by the node.

SLOT The first slot in the rack associated with the node's physical location.

SPEED A node's relative speed.

SPEEDWEIGHT speed weight used to calculate node's priority

STATACTIVETIME Time node was active

STATMODIFYTIME Time node's state was modified

STATTOTALTIME Time node has been monitored

STATUPTIME Time node has been up

TASKCOUNT The number of tasks on a node.

See Also
checknode



mdiag -p
(Moab Priority Diagnostics)

Synopsis

mdiag -p [-t partition] [-v]

Overview

   The 'mdiag -p' command is used to display at a glance information about the job priority configuration and
its effects on the current eligible jobs.  The information presented by this command includes priority weights,
priority components, and the percentage contribution of each component to the total job priority.

   The command hides information about priority components which have been deactivated (ie, by setting the
corresponding component priority weight to 0).  For each displayed priority component, this command gives
a small amount of context sensitive information.  The following table documents this information.  In all
cases, the output is of the form <PERCENT>(<CONTEXT INFO>) where <PERCENT> is the percentage
contribution of the associated priority component to the job's total priority.

Note: By default, this command only shows information for jobs which are eligible for immediate execution.
 Jobs which violate soft or hard policies, or have holds, job dependencies, or other job constraints in place will
not be displayed.  If priority information is needed for any of these jobs, use the '-v flag or the checkjob
command.

Format

Flag Name Format Default Description Example
-v VERBOSE --- --- display verbose priority information.  If specified, display

priority breakdown information for blocked, eligible, and
active jobs.  Note: By default, only information for
eligible jobs is displayed. To view blocked jobs in addition
to eligible, run mdiag -p -v -v.

mdiag -p -v 
> mdiag -p
-v 
display
priority
summary
information
for eligible
and active
jobs

Output

Priority
Component Format Description

Target <PERCENT>()

QOS <PERCENT>(<QOS>:<QOSPRI>)
QOS:         QOS associated with job 
QOSPRI:  Priority assigned to the
QOS

FairShare <PERCENT>(<USR>:<GRP>:<ACC>:<QOS>:<CLS>)

USR:          user fs usage - user fs
target 
GRP:          group fs usage - group fs
target 
ACC:         account fs usage - account
fs target 
QOS:         QOS fs usage - QOS fs
target 
CLS:         class fs usage - class fs
target
QTime:          job queue time which is
applicable towards priority (in
minutes) 



Service <PERCENT>(<QT>:<XF>:<Byp>)
XF:          current theoretical
minimum XFactor is job were to start
immediately 
Byp:          number of times job was
bypassed by lower priority jobs via
backfill

Resource <PERCENT>(<NDE>:<PE>:<PRC>:<MEM>)

NDE:         nodes requested by job 
PE:             Processor Equivalents as
calculated by all resources requested
by job 
PRC:          processors requested by
job 
MEM:       real memory requested by
job

Example 1

mdiag -p

   The mdiag -p command only displays information for priority components actually utilized.  In the above
example, QOS, Account Fairshare, and QueueTime components are utilized in determining a job's priority. 
Other components, such as Service Targets, and Bypass are not used and thus are not displayed.  (See the
'Priority Overview' for more information)  The output consists of a header, a job by job analysis of jobs, and
a summary section.

   The header provides column labeling and provides configured priority component and subcomponent
weights.  In the above example, QOSWEIGHT is set to 1000 and FSWEIGHT is set to 100.  When configuring
fairshare, a site also has the option of weighting the individual components of a job's overall fairshare,
including its user, group, and account fairshare components.  In this output, the user, group, and account
fairshare weights are set to 5, 1, and 1 respectively.

   The job by job analysis displays a job's total priority and the percentage contribution to that priority of
each of the priority components.  In this example, job 13019 has a total priority of 8699.  Both QOS and
Fairshare contribute to the job's total priority although these factors are quite small, contributing 0.6% and

diagnosing job priority information (partition: ALL)
 
Job                    PRIORITY*   Cred(  QOS)    FS(Accnt)  
Serv(QTime)
             Weights   --------       1(    1)     1(    1)     1(    
1)
 
13678                      1321*    7.6(100.0)   0.2(  2.7)  
92.2(1218.)
13698                       235*   42.6(100.0)   1.1(  2.7)  
56.3(132.3)
13019                      8699     0.6( 50.0)   0.3( 25.4)  
99.1(8674.)
13030                      8699     0.6( 50.0)   0.3( 25.4)  
99.1(8674.)
13099                      8537     0.6( 50.0)   0.3( 25.4)  
99.1(8512.)
13141                      8438     0.6( 50.0)   0.2( 17.6)  
99.2(8370.)
13146                      8428     0.6( 50.0)   0.2( 17.6)  
99.2(8360.)
13153                      8360     0.0(  1.0)   0.1( 11.6)  
99.8(8347.)
13177                      8216     0.0(  1.0)   0.1( 11.6)  
99.8(8203.)
13203                      8127     0.6( 50.0)   0.3( 25.4)  
99.1(8102.)
13211                      8098     0.0(  1.0)   0.1( 11.6)  
99.8(8085.)



0.3% respectively with the fairshare factor being contributed by an account fairshare target.  For this job, the
dominant factor is the service subcomponent qtime which is contributing 99.1% of the total priority since the
job has been in the queue for approximately 8600 minutes.

   At the end of the job by job description, a 'Totals' line is displayed which documents the average
percentage contributions of each priority component to the current idle jobs.  In this example, the QOS,
Fairshare, and Service components contributed an average of 0.9%, 0.4%, and 98.7% to the jobs' total
priorities.

See Also

Job Priority Overview
Moab Cluster Manager - Priority Manager

http://sempa/resources/docs/blanks/mcm/index.php


mdiag -q
(Moab QoS Diagnostics)

Synopsis
mdiag -q [qosid]

Overview

The 'mdiag -q' command is used to present information about each QOS maintained by Moab. The
information presented includes QOS name, membership, scheduling priority, weights and flags.

Example 1: Standard QOS Diagnostics

> mdiag -q
QOS Status

System QOS Settings:  QList: DEFAULT (Def: DEFAULT)  Flags: 0

Name                * Priority QTWeight QTTarget XFWeight XFTarget     
QFlags   JobFlags Limits

DEFAULT                      1        1        3        1     5.00  
PREEMPTEE     [NONE] [NONE]
  Accounts:  it research
  Classes:  batch
[ALL]                        0        0        0        0     0.00     
[NONE]     [NONE] [NONE]
high                      1000        1        2        1    10.00  
PREEMPTOR     [NONE] [NONE]
  Accounts:  engineering it development research
  Classes:  fast
urgent                   10000        1        1        1     7.00  
PREEMPTOR     [NONE] [NONE]
  Accounts:  engineering it development
low                        100        1        5        1     1.00  
PREEMPTEE     [NONE] [NONE]
  Accounts:  engineering marketing it development research
  Classes:  long bigmem



mdiag -r
(Moab Reservation Diagnostics)

Synopsis
 
mdiag -r [reservationid] [-v] [-w type=<type>]

Overview

The mdiag -r command allows administrators to look at detailed reservation information. It provides the
name, type, partition, starttime and endtime, proc and node counts, as well as actual utilization figures. It
also provides detailed information about which resources are being used, how many nodes, how much
memory, swap, and processors are being associated with each task. Administrators can also view the Access
Control Lists for each reservation as well as any flags that may be active in the reservation.

The -w flag filters the output according to the type of reservation. The allowable reservation types are,
None, Job, User, and Meta. The None type means there is no filtering performed.

Example 1

> mdiag -r

Diagnosing Reservations
RsvID                      Type Par   StartTime     EndTime     
Duration Node Task Proc
-----                      ---- ---   ---------     -------     ---
----- ---- ---- ----
engineer.0.1               User   A    -6:29:00    INFINITY     
INFINITY    0    0    7
    Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
    ACL:   CLASS==batch+:==long+:==fast+:==bigmem+ QOS==low-:==high+ 
JATTR==PREEMPTEE+
    CL:    RSV==engineer.0.1
    Task Resources: PROCS: [ALL]
    Attributes (HostExp='fr10n01 fr10n03 fr10n05 fr10n07 fr10n09 
fr10n11 fr10n13 fr10n15')
    Active PH: 43.77/45.44 (96.31%)
    SRAttributes (TaskCount: 0  StartTime: 00:00:00  EndTime: 
1:00:00:00  Days: ALL)

research.0.2               User   A    -6:29:00    INFINITY     
INFINITY    0    0    8
    Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
    ACL:   CLASS==batch+:==long+:==fast+:==bigmem+ QOS==high+:==low- 
JATTR==PREEMPTEE+
    CL:    RSV==research.0.2
    Task Resources: PROCS: [ALL]
    Attributes (HostExp='fr3n01 fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 
fr3n11 fr3n13 fr3n15')



mdiag -R
(Moab Resource Manager Diagnostics)

Synopsis
mdiag -R [-v] [-V job] [resourcemanagerid]

Overview

The 'mdiag -R' command is used to present information about configured resource managers. The
information presented includes name, host, port, state, type, performance statistics and failure notifications.

Example 1

> mdiag -R -v

RM[base]  Type: PBS  State: Active  ResourceType: COMPUTE
  Version:            '1.2.0p6-snap.1124480497'
  Nodes Reported:     4
  Flags:              executionServer,noTaskOrdering,typeIsExplicit
  Partition:          base
  Event Management:   EPORT=15004
  Note:  SSS protocol enabled
  Submit Policy:      NODECENTRIC
  DefaultClass:       batch
  Variables:          DefaultApp=MPICHG2,GridNet=Infiniband
  RM Performance:     AvgTime=0.00s  MaxTime=1.03s  (1330 samples)

RM[base] Failures:
  Mon May  3 09:15:16  clusterquery     'cannot get node info (rm is 
unavailable)'
  Mon May  3 10:25:46  workloadquery    'cannot get job info 
(request timed out)'

RM[Boeing]  Type: NATIVE  State: Active  ResourceType: LICENSE
  Cluster Query URL:  file://$HOME/lic.dat
  Licenses Reported:  3 types (3 of 6 available)
  Partition:          SHARED
  License Stats:      Avg License Avail:   0.00  (438 iterations)
  Iteration Summary:  Idle: 0.00  Active: 100.00  Busy: 0.00
  RM Performance:     AvgTime=0.00s  MaxTime=0.00s  (877 samples)

RM[GM]  Type: NATIVE  State: Active  ResourceType: COMPUTE



mdiag -S
(Moab Scheduler Diagnostics)

Synopsis
 
mdiag -S [-v]

Overview

The 'mdiag -S' command is used to present information about the status of the scheduler and grid interface.

This command will report on the following aspects of scheduling:

General Scheduler Configuration
Reports short and long term scheduler load
Reports detected overflows of node, job, reservation, partition, and other scheduler object
tables

High Availability
Configuration
Reports health of HA primary
Reports health of HA backup

Scheduling Status
Reports if scheduling is paused
Reports if scheduling is stopped

System Reservation Status
Reports if global system reservation is active

Message Profiling/Statistics Status

Example 1

> mdiag -S

Moab Server running on orion-1:43225  (Mode: NORMAL)
  Load(5m)  Sched: 12.27%  RMAction: 1.16%  RMQuery: 75.30%  User: 
0.29%  Idle: 10.98%
  Load(24h) Sched: 10.14%  RMAction: 0.93%  RMQuery: 74.02%  User: 
0.11%  Idle: 13.80%

  HA Fallback Server:  orion-2:43225  (Fallback is Ready)

  Note:  system reservation blocking all nodes

  Message:  profiling enabled (531 of 600 samples/5:00 interval)



mdiag -t
(Moab Partition Diagnostics)

Synopsis
mdiag -t [-v] [-v] [partitionid]

Overview

The 'mdiag -t' command is used to present configuration, usage, health, and diagnostic information about
partitions maintained by Moab. The information presented includes partition name, limits, configured and
available resources, allocation weights and policies.

Example 1: Standard Partition Diagnostics

> mdiag -t
Partition Status
...



mdiag -T
(Moab Trigger Diagnostics)

Synopsis
mdiag -T [triggerid]

Overview

The 'mdiag -T' command is used to present information about each Trigger. The information presented
includes Name, State, Action, Event Time.

Example 1

> mdiag -T
[test@node01 moab]$ mdiag -T
TrigID    Event  MFire   Offset Thresh  AType           ActionDate       
State  Launchtime
------ -------- ------ -------- ------ ------ -------------------- 
----------- -----------
9         start  FALSE        -      -   exec            -00:00:02      
Active   -00:00:01
  Object:           rsv:test.1
  PID:              23786
  Timeout:          00:01:00
  Action Data:      $HOME/bin/1.sh
  Sets on Success:  Initialized
  Output Buffer:    /opt/moab/spool/1.sh.oWo5APo
  Error Buffer:     /opt/moab/spool/1.sh.epbq65C

10        start  FALSE        -      -   exec            -00:00:02    
Inactive           -
  Object:           rsv:test.1
  Action Data:      $HOME/bin/2.sh
  Sets on Success:  COLOR
  Requires:         Initialized

11       cancel  FALSE        -      -   exec                    -    
Inactive           -
  Object:           rsv:test.1
  Action Data:      $HOME/bin/cancel.email $USERNAME
  Requires:         USERNAME



mdiag -u
(Moab User Diagnostics)

Synopsis
 
mdiag -u [userid]

Overview

The mdiag -u command is used to present information about user records maintained by Moab. The
information presented includes user name, UID, scheduling priority, default job flags, default QOS level, List
of accessible QOS levels, and list of accessible partitions.

Example 1

Note that only users which have jobs which are currently queued or have been queued since Moab was most
recently started are listed.

See Also
showstats command (display user statistics)

> mdiag -u
evaluating user information
Name         Priority        Flags         QDef      QOSList*        
PartitionList Target  Limits
 
jvella              0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
  ALIST=Engineering
  Message:  profiling enabled (597 of 3000 samples/00:15:00 interval)
[NONE]              0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
reynolds            0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
  ALIST=Administration
  Message:  profiling enabled (597 of 3000 samples/00:15:00 interval)
mshaw               0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
  ALIST=Test
  Message:  profiling enabled (584 of 3000 samples/00:15:00 interval)
kforbes             0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
  ALIST=Shared
  Message:  profiling enabled (597 of 3000 samples/00:15:00 interval)
gastor              0       [NONE]       [NONE]       [NONE]                
[NONE]   0.00  [NONE]
  ALIST=Engineering
  Message:  profiling enabled (597 of 3000 samples/00:15:00 interval)



mjobctl
(Moab Job Control)

Synopsis

mjobctl -c jobexp
mjobctl -c -w attr=val
mjobctl -C jobexp
mjobctl -h [User|System|Batch|Defer|All] jobexp
mjobctl -m attr{+=|=|-=}val jobexp
mjobctl -N [<SIGNO>] jobexp
mjobctl -n <JOBNAME>
mjobctl -p <PRIORITY> jobexp
mjobctl -q {diag|starttime|hostlist} jobexp
mjobctl -r jobexp
mjobctl -R jobexp
mjobctl -s jobexp 
mjobctl -u [User|System|Batch|Defer|All] jobexp
mjobctl -w attr{+=|=|-=}val jobexp
mjobctl -x [-w flags=val] jobexp

Overview

The mjobctl command controls various aspects of jobs. It is used to submit, cancel, execute, and checkpoint
jobs. It can also display diagnostic information about each job. The mjobctl command enables the Moab
administrator to control almost all aspects of job behavior. See 11.0 General Job Administration for more
details on jobs and their attributes.

Format

-c — Cancel

Format: JOBEXP

Default: ---

Description: Cancel a job.

Use -w (following a -c flag) to specify job cancellation according to given credentials or
job attributes. See -c -w for more information.

Example:

Cancel job job1045.

  
-c -w — Cancel Where

Format: <ATTR>=<VALUE>

where <ATTR>=[ user | account | qos | class | reqreservation (RsvName) | state
(JobState) | jobname (JobName, not job ID)] | partition

Default: ---

Description: Cancel a job based on a given credential or job attribute.

Use -w following a -c flag to specify job cancellation according to credentials or job attributes.
(See examples.)

Also, you can cancel jobs from given partitions using -w partition=<PAR1>[<PAR2>...]];
however, you must also either use another -w flag to specify a job or use the standard job
expression.

> mjobctl -c job1045

http://www.adaptivecomputing.com/resources/docs/mwm/commands/mjobctl.php#cancelwhere
http://www.adaptivecomputing.com/resources/docs/mwm/commands/mjobctl.php#cancelwhere
http://www.adaptivecomputing.com/resources/docs/mwm/commands/mjobctl.php#cancel


Example:

Cancels all jobs that currently have a USERHOLD on them.

Cancels all jobs assigned to user1 or acct1.

  
-C — Checkpoint

Format: JOBEXP

Default: ---

Description: Checkpoint a job

Example:

Checkpoint job job1045.

  
-h — Hold

Format: <HOLDTYPE> JOBEXP
 
<HOLDTYPE> = { user | batch | system | defer | ALL }

Default: user

Description: Set or release a job hold

See Section 11.1, Job Holds for more information

Example:

Set a user hold on job job1045.

Unset all holds on job job1045.

  
-m — Modify

Format: <ATTR>{ += | = | -= } <VAL> JOBEXP

  <ATTR>={ account | awduration | class | deadline | depend | eeduration | env |
features | feature | flags | gres | group | hold | hostlist | jobdisk | jobmem | jobname
| jobswap | loglevel | messages | minstarttime | nodecount | notificationaddress |
partition | priority | proccount | queue | qos | reqreservation | rmxstring |
reqawduration | sysprio | trig | trigvar | userprio | var | wclimit }

Default: ---

Description:
Modify a specific job attribute.

For priority, use the '-p' flag.

Modification of the job dependency is also communicated to the resource manager in the case
of SLURM and PBS/Torque.

> mjobctl -c -w state=USERHOLD

> mjobctl -c -w user=user1 -w acct=acct1

> mjobctl -C job1045

> mjobctl -h user job1045

> mjobctl -u all job1045

http://www.adaptivecomputing.com/resources/docs/mwm/11.1jobholds.php


Adding --flags=warnifcompleted causes a warning message to print when a job completes.

To define values for awduration, eeduration, minstarttime, reqawduration, and wclimit,
use the time spec format. 

A non-active job's partition list can be modified by adding or subtracting partitions. Note,
though, that when adding or subtracting multiple partitions, each partition must have its own
-m partition{+= | = | -=}name on the command line. (See example for adding multiple
partitions.)

Example:

Add 10 minutes to the job walltime.

Reset job's effective queue time.

Set the job variable Flag1 to TRUE.

Sets the notification e-mail address associated with a job to name@server.com.

Adds multiple partitions (p3 and p4) to job Moab.5.

  
-N — Notify

Format: [signal=]<SIGID> JOBEXP

Default: ---

Description: Send a signal to all jobs matching the job expression.

Example:

Send an interrupt signal to job 1664.

Send signal 47 to job 1664.

  
-n — Name

Format:  

Default: ---

Description: Select jobs by job name.

Example:  

  
-p — Priority

Format: [+|+=|-=]<VAL> JOBEXP [--flags=relative]

> mjobctl -m reqawduration+=600 1664

> mjobctl -m eeduration=-1 1664

> mjobctl -m var=Flag1=TRUE 1664

> mjobctl -m notificationaddress="name@server.com"

> mjobctl -m partition+=p3 -m partition+=p4 Moab.5

> mjobctl -N INT 1664

> mjobctl -N 47 1664



Default: ---

Description: Modify a job's system priority.

Example: The use of different operands with this command produces different results. Using the format
'<VAL> <JOBID>' or '+<VAL> <JOBID>' will produce the same results: the '+' does not
increase priority. Additionally, '+=<VAL> <JOBID>' and '<VAL> <JOBID> --flags=relative'
will produce the same results of relatively increasing the job's priority (not the system's).
Using the format '-=<VAL> <JOBID>' sets the job priority to 0, and will not change based on
<VAL> (it will not decrease priority by that number).

Adds 1000 points to the max system priority, ensuring that this job will be higher priority than
all normal jobs. The new priority of job1045 is 1000001000. The system priority has not
changed.

Adds 1000 points to what the priority of the job would be from normal calculation. The new
priority for job1045 is 1250. The system priority has been set to 1000.

  
-q — Query

Format: [ diag | hostlist | starttime ] JOBEXP

Default: ---

Description: Query a job.

Example:

Query job job1045.

Query starttime of job job1045.

Query a job with the output displayed in a WIKI string. The job's name may be replaced with
ALL.

--flags=completed will only work with the diag option.

  
-r — Resume

Format: JOBEXP

Default: ---

Description: Resume a job.

Example:

Resume job job1045.

  
-R — Requeue

> mjobctl -p +1000 job1045

> mjobctl -p 1000 job1045 --flags=relative

> mjobctl -q diag job1045

> mjobctl -q starttime job1045

> mjobctl -q wiki <jobName>

> mjobctl -r job1045



Format: JOBEXP

Default: ---

Description: Requeue a job.

Example:

Requeue job job1045.

  
-s — Suspend

Format: JOBEXP

Default: ---

Description: Suspend a job.

Example:

Suspend job job1045.

  
-S — Submit

Format: JOBEXP

Default: ---

Description: Submit a job.

Example:

Submit job job1045.

  
-u — Unhold

Format: [<TYPE>[,<TYPE>]] JOBEXP
  
<TYPE> = [ user | system | batch | defer | ALL ]

Default: ALL

Description: Release a hold on a job

See Section 11.1, Job Holds for more information.

Example:

Release user and system holds on job scrib.1045.

  
-w — Where

Format: [CompletionTime | StartTime][<= | = | >=]<EPOCH_TIME>

Default: ---

Description: Add a where constraint clause to the current command. As it pertains to CompletionTime |
StartTime, the where constraint only works for completed jobs. CompletionTime filters
according to the completed jobs' completion times; StartTime filters according to the
completed jobs' start times.

Example:

> mjobctl -R job1045

> mjobctl -s job1045

> mjobctl -S job1045

> mjobctl -u user,system scrib.1045

> mjobctl -q diag ALL --flags=COMPLETED --format=xml 

http://www.adaptivecomputing.com/resources/docs/mwm/11.1jobholds.php


Prints all completed jobs still in memory that completed between July 1, 2009 and October 1,
2009.

  
-x — Execute

Format: JOBEXP

Default: ---

Description: Execute a job. The -w option allows flags to be set for the job. Allowable flags are,
ignorepolicies, ignorenodestate, and ignorersv.

Example:

Execute job job1045.

Execute job job1046 and ignore policies, such as MaxJobPerUser.

Parameters

JOB EXPRESSION

Format: <STRING>

Default: ---

Description: The name of a job or a regular expression for several jobs. The flags that support job
expressions can use node expression syntax as described in Node Selection. Using "x:"
indicates the following string is to be interpreted as a regular expression, and using "r:"
indicates the following string is to be interpreted as a range.

Moab uses regular expressions conforming to the POSIX 1003.2 standard. This standard
is somewhat different than the regular expressions commonly used for filename
matching in Unix environments (see 'man 7 regex'). To interpret a job expression as a
regular expression, either specify the expression using a designated expression or
wildcard character (one of '[]*?^$') or in the Moab configuration file (moab.cfg), set the
parameter USEJOBREGEX to TRUE (and take note of the following caution).

If you set USEJOBREGEX to TRUE, treat all mjobctl job expressions as regular
expressions regardless of whether wildcards are specified. This should be used with
extreme caution since there is high potential for unintended consequences. For example,
specifying canceljob m.1 will not only cancel m.1, but also m.11,m.12,m13, and so on.

In most cases, it is necessary to quote the job expression (i.e. "job13[5-9]") to prevent
the shell from intercepting and interpreting the special characters.

The mjobctl command accepts a comma delimited list of job expressions. Example
usage might be mjobctl -c job[1-2],job4 or mjobctl -c job1,job2,job4.

Example:

-w CompletionTime>=1246428000 -w CompletionTime<=1254376800

> mjobctl -x job1045

> mjobctl -x -w flags=ignorepolicies job1046

> mjobctl -c "80.*"

job '802' cancelled



Cancel all jobs starting with '80'.

XML Output

mjobctl information can be reported as XML as well. This is done with the command "mjobctl -q diag
<JOB_ID>". In addition to the attributes listed below, mjobctl's XML children describe a job's requirements
(req XML element) and messages (Messages XML element).

XML Attributes

Name Description

Account the account assigned to the job

AllocNodeList the nodes allocated to the job

Args the job's executable arguments

AWDuration the active wall time consumed

BlockReason the block message index for the reason the job is not eligible

Bypass Number of times the job has been bypassed by other jobs

Calendar the job's timeframe constraint calendar

Class the class assigned to the job

CmdFile the command file path

CompletionCode the return code of the job as extracted from the RM

CompletionTime the time of the job's completion

Cost the cost of executing the job relative to an allocation manager

CPULimit the CPU limit for the job

job '803' cancelled
job '804' cancelled
job '805' cancelled
job '806' cancelled
job '807' cancelled
job '808' cancelled
job '809' cancelled

> mjobctl -m priority+=200 "74[3-5]" 

job '743' system priority modified
job '744' system priority modified
job '745' system priority modified

> mjobctl -h x:17.*
# This puts a hold on any job that has a 17 that is followed by an 
unlimited amount of any
# character and includes jobs 1701, 17mjk10, and 17DjN_JW-07

> mjobctl -h r:1-17
# This puts a hold on jobs 1 through 17.

http://sempa/resources/docs/blanks/mwm/xml/req.php
http://sempa/resources/docs/blanks/mwm/xml/Messages.php


Depend any dependencies on the status of other jobs

DRM the master destination RM

DRMJID the master destination RM job ID

EEDuration the duration of time the job has been eligible for scheduling

EFile the stderr file

Env the job's environment variables set for execution

EnvOverride the job's overriding environment variables set for execution

EState the expected state of the job

EstHistStartTime the estimated historical start time

EstPrioStartTime the estimated priority start time

EstRsvStartTime the estimated reservation start time

EstWCTime the estimated walltime the job will execute

ExcHList the excluded host list

Flags Command delimited list of Moab flags on the jo

GAttr the requested generic attributes

GJID the global job ID

Group the group assigned to the job

Hold the hold list

Holdtime the time the job was put on hold

HopCount the hop count between the job's peers

HostList the requested host list

IFlags the internal flags for the job

IsInteractive if set, the job is interactive

IsRestartable if set, the job is restartable

IsSuspendable if set, the job is suspendable

IWD the directory where the job is executed

JobID the job's batch ID.

JobName the user-specifed name for the job

JobGroup the job ID relative to its group

LogLevel the individual log level for the job

MasterHost the specified host to run primary tasks on

Messages any messages reported by Moab regarding the job

MinPreemptTime the minimum amount of time the job must run before being eligible for preemption

Notification any events generated to notify the job's user



OFile the stdout file

OldMessages any messages reported by Moab in the old message style regarding the job

OWCLimit the original wallclock limit

PAL the partition access list relative to the job

QueueStatus the job's queue status as generated this iteration

QOS the QOS assigned to the job

QOSReq the requested QOS for the job

ReqAWDuration the requested active walltime duration

ReqCMaxTime the requested latest allowed completion time

ReqMem the total memory requested/dedicated to the job

ReqNodes the number of requested nodes for the job

ReqProcs the number of requested procs for the job

ReqReservation the required reservation for the job

ReqRMType the required RM type

ReqSMinTime the requested earliest start time

RM the master source resource manager

RMXString the resource manager extension string

RsvAccess the list of reservations accessible by the job

RsvStartTime the reservation start time

RunPriority the effective job priority

Shell the execution shell's output

SID the job's system ID (parent cluster)

Size the job's computational size

STotCPU the average CPU load tracked across all nodes

SMaxCPU the max CPU load tracked across all nodes

STotMem the average memory usage tracked across all nodes

SMaxMem the max memory usage tracked across all nodes

SRMJID the source RM's ID for the job

StartCount the number of the times the job has tried to start

StartPriority the effective job priority

StartTime the most recent time the job started executing

State the state of the job as reported by Moab

StatMSUtl the total number of memory seconds utilized

StatPSDed the total number of processor seconds dedicated to the job



StatPSUtl the total number of processor seconds utilized by the job

StdErr the path to the stderr file

StdIn the path to the stdin file

StdOut the path to the stdout file

StepID StepID of the job (used with LoadLeveler systems)

SubmitHost the host where the job was submitted

SubmitLanguage the RM langauge that the submission request was performed

SubmitString the string containing the entire submission request

SubmissionTime the time the job was submitted

SuspendDuration the amount of time the job has been suspended

SysPrio the admin specified job priority

SysSMinTime the system specified min. start time

TaskMap the allocation taskmap for the job

TermTime the time the job was terminated

User the user assigned to the job

UserPrio the user specified job priority

UtlMem the utilized memory of the job

UtlProcs the number of utilized processors by the job

Variable

VWCTime the virtual wallclock limit

Example 1

> mjobctl -q diag ALL --format=xml

<Data><job AWDuration="346" Class="batch" CmdFile="jobsleep.sh" 
EEDuration="0" 
EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test" 
JobID="11578" QOS="high" 
RMJID="11578.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1" 
ReqProcs="1" StartCount="1" 
StartPriority="1" StartTime="1083861225" StatMSUtl="903.570" 
StatPSDed="364.610" StatPSUtl="364.610" 
State="Running" SubmissionTime="1083861225" SuspendDuration="0" 
SysPrio="0" SysSMinTime="00:00:00" 
User="test"><req AllocNodeList="hana" AllocPartition="access" 
ReqNodeFeature="[NONE]" 
ReqPartition="access"></req></job><job AWDuration="346" Class="batch" 
CmdFile="jobsleep.sh" 
EEDuration="0" EState="Running" Flags="RESTARTABLE" Group="test" 
IWD="/home/test" JobID="11579" 
QOS="high" RMJID="11579.lolo.icluster.org" ReqAWDuration="00:10:00" 
ReqNodes="1" ReqProcs="1" 
StartCount="1" StartPriority="1" StartTime="1083861225" 
StatMSUtl="602.380" StatPSDed="364.610" 



See Also

Moab Client Installation - explains how to distribute this command to client
nodes
setspri
canceljob
runjob

StatPSUtl="364.610" State="Running" SubmissionTime="1083861225" 
SuspendDuration="0" SysPrio="0" 
SysSMinTime="00:00:00" User="test"><req AllocNodeList="lolo" 
AllocPartition="access" 
ReqNodeFeature="[NONE]" ReqPartition="access"></req></job></Data>



TIMESPEC

Relative Time Format
  The relative time format specifies a time by using the current time as a reference and specifying a time
offset.

Format

+[[[DD:]HH:]MM:]SS

Examples

Two days, three hours and fifty-seven seconds in the future:

+02:03:0:57

Three weeks in the future:

+21:0:0:0

Thirty seconds in the future:

+30

Absolute Time Format
  The absolute time format specifies a specific time in the future.

Format:

[HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 14:30_06/20)

Examples:

1 PM, March 1 (this year)

13:00_03/01



mnodectl
(Moab Node Control)

Synopsis
mnodectl -d message:<index> nodeexp
mnodectl -m attr=val nodeexp
mnodectl -q [cat|diag|profile|wiki] nodeexp

Overview

Change specified attributes for a given node expression.

Access

By default, this command can be run by level 1 and 2 Moab administrators (see ADMINCFG).

Format

-d — Destroy

Format: message:<INDEX>

Default: N/A

Description:
With message:<INDEX> argument: Remove the message with the given index from the
node.

Example:

The admin2 message on node001 is removed.

  
-m — Modify

Format: <ATTR>=<VAL>

Where <ATTR> is one of the following: 
    GEVENT,
    GMETRIC,
    MESSAGE,
    OS,
    POWER, 
    STATE, 
    VARIABLE

Default: ---

Description: Modify the state or attribute of specified node(s)

Example:

  

> mnodectl node001 -d message:admin2

> mnodectl -m gevent=cpufail:'cpu02 has failed w/ec:0317' node1 
> mnodectl -m gmetric=temp:131.2 node1 
> mnodectl -m message='cpufailure:cpu02 has failed w/ec:0317' 
node1 
> mnodectl -m OS=RHAS30 node1 
> mnodectl -m power=off node1 
> mnodectl -m state=Drain node1 
> mnodectl -m variable=IP=10.10.10.100,Location=R1S2 node1 



-q — Query

Format: {cat | diag | profile | wiki}

Default: ---

Description: Query node categories or node profile information (see ENABLEPROFILING for nodes).

Example:

Query a node with the output displayed in a WIKI string. The node's name may be replaced
with ALL.

Parameters

GEVENT

Format: <EVENT>:<MESSAGE>

Default: ---

Description: Creates a generic event on the node to which Moab may respond. (see Enabling Generic
Events)

Example:

  
GMETRIC

Format: <ATTR>:<VALUE>

Default: ---

> mnodectl -q cat ALL
node categorization stats from Mon Jul 10 00:00:00 to Mon Jul 10 
15:30:00
Node: moab
 Categories:
                     busy: 96.88%
                     idle: 3.12%
Node: maka
 Categories:
                     busy: 96.88%
                     idle: 3.12%
Node: pau
 Categories:
                     busy: 96.88%
                     idle: 3.12%
Node: maowu
 Categories:
                     busy: 96.88%
                  down-hw: 3.12%
Cluster Summary:
                     busy: 96.88%
                  down-hw: 0.78%
                     idle: 2.34%

> mnodectl -v -q profile
...

> mnodectl -q wiki <nodeName>
        

mnodectl -m gevent=powerfail:'power has failed' node1



Description: Sets the value for a generic metric on the node. (see Enabling Generic Metrics)

Example:

  
MESSAGE

Format: '<MESSAGE>'

Default: ---

Description: Sets a message to be displayed on the node.

Example:

  
NODEEXP

Format: <STRING>
Where <NODEEXP> is a node name, regex or "ALL"

Default: ---

Description: Identifies one or more nodes.

Example: node1 - applies only to node1
fr10n* - all nodes starting with "fr10n"
ALL - all known nodes

  
OS

Format: <STRING>

Default: ---

Description: Operating System (see Resource Provisioning)

Example:

  
POWER

Format: {off|on}

Default: ---

Description: Set the power state of a node. Action will NOT be taken if the node is already in the specified
state.

Example:

  
STATE

Format: <NODE_STATE>
Where <NODE_STATE> is one of the following:
    Busy,
    Down,
    Drain,
    Drained,
    Flush,

mnodectl -m gmetric=temp:120 node1

mnodectl -m message='powerfailure: power has failed' node1

mnodectl node1 -m OS=RHELAS30

> mnodectl node1 -m power=off



    Idle,
    Running,
    Reserved,
    Unknown

Default: ---

Description: Sets the state of the specified node(s).

Not all resource managers support all of these states.

Example:

  
VARIABLE

Format: <name>[=<value>],<name[=<value]]...

Default: ---

Description: Set a list of variables for a node.

Example:

See Also

Moab Client Installation - explains how to distribute this command to client nodes
mdiag -n
showres -n
checknode
showstats -n --- report current and historical node statistics

> mnodectl node1 -m state=Drain 

> mnodectl node1 -m variable=IP=10.10.10.100,Location=R1S2
      



moab
(moab server)

Synopsis
moab --about
     --help
     --loglevel=<LOGLEVEL>
     --version
     [-c <CONFIG_FILE>] [-C] [-d] [-e] [-h] 
     [-P [<PAUSEDURATION>]] [-R <RECYCLEDURATION>]
     [-s] [-S [<STOPITERATION>]] [-v]

Parameters

Parameter Description

--about Displays build environment and version information.

--loglevel Sets the server loglevel to the specified value.

--version Displays version information.

-c Configuration file the server should use.

-C Clears checkpoint files (.moab.ck, .moab.ck.1).

-d Debug mode (does not background itself).

-e Forces Moab to exit if there are any errors in the configuration file, or if it can't find these
directories:

statdir
logdir
spooldir
toolsdir

-P Starts Moab in a paused state for the duration specified.

-R Causes Moab to automatically recycle every time the specified duration transpires.

-s Starts Moab in the state that was most recently checkpointed.

-S Suspends/stops scheduling at specified iteration (or at startup if no iteration is specified).

-v Same as --version.



mrmctl
(Moab Resource Manager Control)

Synopsis

mrmctl -f [fobject] {rmName|am:[amid]}
mrmctl -l [rmid|am:[amid]]
mrmctl -m <attr>=<value> [rmid|am:[amid]] [-w <subobjtype>=<value>]
mrmctl -p {rmid|am:[amid]}
mrmctl -R {am|id}[:rmid]}}

Overview

mrmctl allows an admin to query, list, modify, and ping the resource managers and allocation managers in
Moab. mrmctl also allows for a queue (often referred to as a class) to be created for a resource manager.

Access

By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-f — Flush Statistics

Format: [<fobject>] where fobject is optional and one of messages or stats.

Default: If no fobject is specified, then reported failures and performance data will be flushed.  If no
resource manager id is specified, the first resource manager will be flushed.

Description: Clears resource manager statistics.  If messages is specified, then reported failures,
performance data, and messages will be flushed.

Example:

Moab will clear the statistics for RM base.

  
-l — List

Format: N/A

Default: All RMs and AMs (when no RM/AM is specified)

Description: List Resource and Allocation Manager(s)

Example:

Moab will list all resource and allocation managers.

  
-m — Modify

Format: N/A

Default: All RMs and AMs (when no RM/AM is specified).

Description: Modify Resource and Allocation Manager(s).

Example:

> mrmctl -f base

> mrmctl -l

> mrmctl -m state=disabled peer13



Moab will disable the queue batch within the resource manager base.

  
-p — Ping

Format: N/A

Default: First RM configured.

Description: Ping Resource Manager.

Example:

Moab will ping RM base.

  
-R — Reload

Format: {am|id}[:rmid]}}

Default: ---

Description: Dynamically reloads server information for the identity manager service if id is specified; if am
is specified, reloads the allocation manager service.

Example:

Reloads the identity manager on demand.

  
-w — Where

Format: {starttime=<TIME>}

Default: now

Description: Starttime for allocated resources.

Example:

Moab will allocate 2 more resources in 4 hours.

Resource manager interfaces can be enabled/disabled using the modify operation to change the
resource manager state as in the following example:

See Also

> mrmctl -m state=disabled -w queue=batch base

> mrmctl -p base

> mrmctl -R id

> mrmctl -x 2 -w starttime=+4:00:00

# disable active resource manager interface

> mrmctl -m state=disabled torque

# restore disabled resource manager interface

> mrmctl -m state=enabled torque

http://sempa/resources/docs/blanks/mwm/21.4idmanager.php


Moab Client Installation - explains how to distribute this command to client nodes
mdiag -R
mdiag -c



mrsvctl
(Moab Reservation Control)

Synopsis

mrsvctl -c [-a acl] [-b subtype] [-d duration] [-D description] [-e endtime]
           [-E] [-f features] [-F flags] [-g rsvgroup] [-h hostexp] 
           [-I {cancel|end|failure|start}] [-n name] [-0 owner}
           [-p partition] [-P profile] [-R resources] [-s starttime]
           [-S setvalue] [-t tasks] [-T trigger] [-V variable] [-x joblist]
mrsvctl -l [{reservationid | -i index}]
mrsvctl -C [-g standing_reservationid]
mrsvctl -m {reservationid | -i index} [-d duration] [-e endtime] [-h hostexp]
           [-s starttime] [--flags=force]
mrsvctl -q {reservationid | -i index} 
mrsvctl -r {reservationid | -i index}
mrsvctl -C {reservationid}

Overview

mrsvctl controls the creation, modification, querying, and releasing of reservations.

The timeframe covered by the reservation can be specified on either an absolute or relative basis. Only jobs with
credentials listed in the reservation's access control list can utilize the reserved resources. However, these jobs
still have the freedom to utilize resources outside of the reservation. The reservation will be assigned a name
derived from the ACL specified. If no reservation ACL is specified, the reservation is created as a system
reservation and no jobs will be allowed access to the resources during the specified timeframe (valuable for
system maintenance, etc). See the Reservation Overview for more information.

Reservations can be viewed using the -q flag and can be released using the -r flag.

By default, reservations are not exclusive and may overlap with other reservations and jobs. Use the '-E'
flag to adjust this behavior.

Access

By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-a

Name: ACL

Format: <TYPE>==<VAL>[,<TYPE>==<VAL>]...

Where <TYPE> is one of the following: 
    ACCT, 
    CLASS, 
    GROUP, 
    JATTR, 
    QOS, 
    RSV, or 
    USER

Default: ---

Description: List of credentials with access to the reserved resources (See also: ACL Modifiers)

Example:

Moab will make a reservation on node01 allowing access to user john and restricting access from
class batch when other resources are available to class batch

> mrsvctl -c -h node01 -a USER==john+,CLASS==batch-



Moab will remove user john from the system.1 reservation

Notes:
There are three different assignment operators that can be used for modifying credentials in
the ACL. The operator '==' will reassess the list for that particular credential type. The '+='
operator will append to the list for that credential type, and '-=' will remove from the list.
To add multiple credentials of the same type with one command, use a colon to separate
them. To separate lists of different credential types, use commas. For example, to reassign
the user list to consist of users Joe and Bob, and to append the group MyGroup to the
groups list on the system.1 reservation, you could use the command "mrsvctl -m -a
USER==Joe:Bob,GROUP+=MyGroup system.1".
Any of the ACL modifiers may be used. When using them, it is often useful to put single
quotes on either side of the assignment command. For example, "mrsvctl -m -a
'USER==&Joe' system.1".
Some flags are mutually exclusive. For example, the ! modifier means that the credential is
blocked from the reservation and the & modifier means that the credential must run on that
reservation. Moab will take the most recently parsed modifier. Modifiers may be placed on
either the left or the right of the argument, so "USER==&JOE" and "USER==JOE&" are
equivalent. Moab parses each argument starting from right to left on the right side of the
argument, then from left to right on the left side. So, if the command was
"USER==&!Joe&", Moab would keep the equivalent of "USER==!Joe" because the ! would be
the last one parsed.
You can set a reservation to have a time limit for submitted jobs using DURATION and the
* modifier. For example, "mrsvctl -m -a 'DURATION<=*1:00:00' system.1" would cause the
system.1 reservation to not accept any jobs with a walltime greater than one hour.
You can verify the ACL of a reservation using the "mdiag -r" command.

Moab will reassign the USER list to be Joe and Bob, will remove BadGroup from the GROUP list,
append GoodAccount to the ACCT list, and only allow jobs that have a submitted walltime of an
hour or less on the system.1 reservation.

Moab will assign the USER list to Joe, and then reassign it again to Bob. The final result will be
that the USER list will just be Bob. To add Joe and Bob, use "mrsvctl -m -a USER==Joe:Bob
system.1" or "mrsvctl -m -a USER==Joe,USER+=Bob system.1".

  
-b

Name: SUBTYPE

Format: One of the node category values or node category shortcuts.

Default: ---

Description: Add subtype to reservation.

Example:

Moab will associate the reserved nodes with the node category swmain.

  
-c

Name: CREATE

> mrsvctl -m -a USER-=john system.1

mrsvctl -m -a 'USER==Joe:Bob,GROUP-
=BadGroup,ACCT+=GoodAccount,DURATION<=*1:00:00' system.1

mrsvctl -m -a 'USER==Joe,USER==Bob' system.1

> mrsvctl -c -b swmain -t ALL



Format: <ARGUMENTS>

Default: ---

Description:
Creates a reservation.

Note: The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude certain
nodes from being part of the reservation because they are running specific jobs. The -F flag
instructs mrsvctl to still consider nodes with current running jobs.

Examples:

Moab will create a reservation across all system resources.

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5 and moab6
will not be assigned to the reservation.

  
-C

Name: CLEAR

Format: <RSVID> | -g <SRSVID>

Default: ---

Description: Clears any disabled time slots from standing reservations and allows the recreation of disabled
reservations

Example:

Moab will clear any disabled timeslots from the standing reservation testing.

  
-d

Name: DURATION

Format: [[[DD:]HH:]MM:]SS

Default: INFINITY

Description: Duration of the reservation (not needed if ENDTIME is specified)

Example:

Moab will create a reservation on node01 lasting 5 hours.

  
-D

Name: DESCRIPTION

Format: <STRING>

Default: ---

Description: Human-readable description of reservation or purpose

Example:

> mrsvctl -c -t ALL

> mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

> mrsvctl -C -g testing

> mrsvctl -c -h node01 -d 5:00:00

> mrsvctl -c -h node01 -d 5:00:00 -D 'system maintenance to test 
network'



Moab will create a reservation on node01 lasting 5 hours.

  
-e

Name: ENDTIME

Format: [HH[:MM[:SS]]][_MO[/DD[/YY]]]  
or  
+[[[DD:]HH:]MM:]SS

Default: INFINITY

Description: Absolute or relative time reservation will end (not required if Duration specified). ENDTIME also
supports an epoch timestamp.

Example:

Moab will create a reservation on node01 ending in 3 hours.

  
-E

Name: EXCLUSIVE

Format: N/A

Default: ---

Description: When specified, Moab will only create a reservation if there are no other reservations (exclusive or
otherwise) which would conflict with the time and space constraints of this reservation.  If
exceptions are desired, the rsvaccesslist attribute can be set or the ignrsv flag can be used.

Example:

Moab will only create a reservation on node01 if no conflicting reservations are found.

This flag is only used at the time of reservation creation. Once the reservation is created,
Moab allows jobs into the reservation based on the ACL. Also, once the exclusive
reservation is created, it is possible that Moab will overlap it with jobs that match the ACL.

  
-f

Name: FEATURES

Format: <STRING>[:<STRING>]...

Default: ---

Description: List of node features which must be possessed by the reserved resources

Example:

Moab will create a reservation on nodes matching the expression and which also have the feature
fast.

  
-F

Name: FLAGS

Format: <flag>[[,<flag>]...]

Default: ---

Description: Comma-delimited list of flags to set for the reservation (see Managing Reservations for flags).

> mrsvctl -c -h node01 -e +3:00:00

> mrsvctl -c -h node01 -E

> mrsvctl -c -h node[0-9] -f fast



Example:

Moab will create a reservation on node01 ignoring any conflicting node states.

  
-g

Name: RSVGROUP

Format: <STRING>

Default: ---

Description: For a create operation, create a reservation in this reservation group. For list and modify
operations, take actions on all reservations in the specified reservation group. The -g option can
also be used in conjunction with the -r option to release a reservation associated with a specified
group. See Reservation Group for more information.

Example:

Moab will create a reservation on nodes matching the expression given and assign it to the
reservation group staff.

  
-h

Name: HOSTLIST

Format: <STRING> 
or
ALL

Default: ---

Description: Host list (comma delimited), host regular expression, host range, or class mapping indicating the
nodes which the reservation will allocate.

The HOSTLIST attribute is always treated as a regular expression. foo10 will map to foo10,
foo101, foo1006, etc. To request an exact host match, the expression can be bounded by
the carat and dollar op expression markers as in ^foo10$.

Example:

Moab will create a reservation on nodes matching the expression given.

Moab will create a reservation on all nodes which support class/queue batch.

  
-i

Name: INDEX

Format: <STRING>

Default: ---

Description: Use the reservation index instead of full reservation ID.

Example:

Moab will modify the reservation with the index of 1 to start in 5 minutes.

  

> mrsvctl -c -h node01 -F ignstate

> mrsvctl -c -g staff -h 'node0[1-9]'

> mrsvctl -c -h 'node0[1-9]'

> mrsvctl -c -h class:batch

> mrsvctl -m -i 1 starttime=+5:00



-I

Name: SIGNAL

Format: {cancel|end|failure|start}

Default: ---

Description: Send signals under the specified event conditions.

Example:

Moab will send a signal when the start event occurs.

  
-l

Name: LIST

Format: <RSV_ID> or ALL 

RSV_ID can the name of a reservation or a regular expression.

Default: ALL

Description: List reservation(s).

Example:

Moab will list all of the reservations whose names start with system.

  
-m

Name: MODIFY

Format: <ATTR>=<VAL>[-m <ATTR2>=<VAL2>]...

Where <ATTR> is one of the following:

flags  

duration duration{+=|-=|=}<RELTIME>

endtime endtime{+=|-=}<RELTIME> or endtime=<ABSTIME>

hostexp hostexp[+=|-=]<node>[,<node>]

label label=<LABEL>

modify variable{+=key1=val1|-=key_to_remove}

reqtaskcount reqtaskcount{+=|-=|=}<TASKCOUNT>

rsvgroup  

starttime starttime{+=|-=}<RELTIME> or starttime=<ABSTIME>

Default: ---

Description: Modify aspects of a reservation.

Example:

Moab sets the duration of reservation system.1 to be exactly two hours, thus modifying the
endtime of the reservation.

> mrsvctl -m -I start starttime=+5:00

> mrsvctl -l system*

> mrsvctl -m duration=2:00:00 system.1



Moab advances the starttime of system.1 five hours from its current starttime (without modifying
the duration of the reservation).

Moab moves the endtime of reservation system.1 ahead five hours from its current endtime
(without modifying the starttime; thus, this action is equivalent to modifying the duration of the
reservation).

Moab sets the starttime of reservation system.1 to 3:00 p.m. on July 6, 2008.

Moab moves the starttime of reservation system.1 ahead five hours.

Moab moves the starttime of reservation system.1 five hours from the current time.

Moab extends the duration of system.1 by five hours.

Moab adds the flag ADVRES to reservation system.1.

Moab adds the variable key1 with the value val1 to system.1.

Moab adds the variable key1 with the value val1, and variable key2 with val2 to system.1. (Note
that each variable flag requires a distinct -m entry.)

Moab deletes the variable key1 from system.1.

Moab deletes the variables key1 and key2 from system.1.

Notes:
When the label is assigned for a reservation, the reservation can then be referenced by that
label as well as by the reservation name. The reservation name cannot be modified.
The starttime of a reservation can be modified by using starttime or -s. Modifing the
starttime does not change the duration of the reservation, so the endtime changes as well.
The starttime can be changed to be before the current time, but if the change causes the
endtime to be before the current time, the change is not allowed.
The endtime of a reservation can be modified by using endtime or -e. Modifying the
endtime changes the duration of the reservation as well (and vice versa). An endtime
cannot be placed before the starttime or before the current time.
The duration can be changed by using duration or -d. Duration cannot be negative.
The += and -= operators operate on the time of the reservation (starttime+=5 adds five

> mrsvctl -m starttime+=5:00:00 system.1

> mrsvctl -m endtime-=5:00:00 system.1

> mrsvctl -m -s 15:00:00_7/6/08 system.1

> mrsvctl -m -s -=5:00:00 system.1

> mrsvctl -m -s +5:00:00 system.1

> mrsvctl -m -d +=5:00:00 system.1

> mrsvctl -m flags+=ADVRES system.1

> mrsvctl -m variable+key1=val1 system.1

> mrsvctl -m variable+=key1=val1 -m variable+=key2=val2 system.1

> mrsvctl -m variable-=key1 system.1

> mrsvctl -m variable-=key1 -m variable-=key2 system.1



seconds to the current reservation starttime), while + and - operate on the current time
(starttime+5 sets the starttime to five seconds from now). The + and - operators can be
used on -s, and + can be used on -e as well.
If the starttime or endtime specified is before the current time without a date specified, it is
set to the next time that fits the command. To force the date, add the date as well. For the
following examples, assume that the current time is 9:00 a.m. on March 1, 2007.

Moab moves system.1's starttime to 8:00 a.m., March 1.

Moab moves system.1's starttime to 8:00 a.m., March 2.

Moab moves system.1's endtime to 7:00 a.m., March 3. This happens because the endtime must
also be after the starttime, so Moab continues searching until it has found a valid time that is in
the future and after the starttime.

Moab will return an error because the endtime cannot be before the starttime.

  
-n

Name: NAME

Format: <STRING>

Default: ---

Description: Name for new reservation.

If no name is specified, the reservation name is set to first name listed in ACL or SYSTEM if
no ACL is specified.

Reservation names may not contain whitespace.

Example:

Moab will create a reservation on node01 with the name John.

  
-o

Name: OWNER

Format: <STRING>

Default: ---

Description: Specifies the owner of a reservation. See Reservation Ownership for more information.

Example:

Moab creates a reservation on node01 owned by user1.

  
-p

> mrsvctl -m -s 8:00:00_3/1/07 system.1

> mrsvctl -m -s 8:00:00 system.1

> mrsvctl -m -e 7:00:00 system.1

> mrsvctl -m -e 7:00:00_3/2/07 system.1

mrsvctl -c -h node01 -n John

mrsvctl -c -h node01 -o user1

http://www.adaptivecomputing.com/resources/docs/mwm/7.1.5managingreservations.php#owner


Name: PARTITION

Format: <STRING>

Default: ---

Description: Only allocate resources from the specified partition

Example:

Moab will allocate 14 tasks from the switchB partition.

  
-P

Name: PROFILE

Format: <STRING>

Default: ---

Description: Indicates the reservation profile to load when creating this reservation

Example:

Moab will allocate 14 tasks to a reservation defined by the testing2 reservation profile.

  
-q

Name: QUERY

Format: <RSV_ID> - The -q option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well),
or
ALL --flags=COMPLETED

Default: ---

Description: Get diagnostic information or list all completed reservations.

Example:

Moab will query completed reservations.

Moab will query the reservation system.1.

  
-r

Name: RELEASE

Format: <RSV_ID> - The -r option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well).

Default: ---

Description: Releases the specified reservation.

Example:

Moab will release reservation system.1.

mrsvctl -c -p switchB -t 14

mrsvctl -c -P testing2 -t 14

mrsvctl -q ALL --flags=COMPLETED

mrsvctl -q system.1

> mrsvctl -r system.1



Moab will release all idle job reservations.

  
-R

Name: RESOURCES

Format: <tid> or 
<RES>=<VAL>[{,|+|;}<RES>=<VAL>]... 

Where <RES> is one of the following: 
    PROCS, 
    MEM, 
    DISK, 
    SWAP 
    GRES

Default: PROCS=-1

Description: Specifies the resources to be reserved per task. (-1 indicates all resources on node)

For GRES resources, <VAL> is specified in the format <GRESNAME>[:<COUNT>]

Example:

Moab will create a reservation for two tasks with the specified resources

  
-s

Name: STARTTIME

Format: [HH[:MM[:SS]]][_MO[/DD[/YY]]]  
or  
+[[[DD:]HH:]MM:]SS

Default: [NOW]

Description: Absolute or relative time reservation will start. STARTTIME also supports an epoch timestamp.

Example:

Moab will create a reservation on all system resources at 3:00 am on April 4, 2004

Moab will create a reservation in 5 minutes on node01

  
-S

Name: SET ATTRIBUTE

Format: <ATTR>=<VALUE> where <ATTR> is one of 
aaccount (accountable account), 
agroup (accountable group), 
aqos (accountable QoS), 
auser (accountable user), 
reqarch (required architecture), 
reqmemory (required node memory - in MB), 
reqnetwork (required network), 
reqos (required operating system), or 

> mrsvctl -r -g idle

> mrsvctl -c -R MEM=100;PROCS=2 -t 2

> mrsvctl -c -t ALL -s 3:00:00_4/4/04

> mrsvctl -c -h node01 -s +5:00



rsvaccesslist (comma delimited list of reservations or reservation groups which can be accessed
by this reservation request)

Default: ---

Description: Specifies a reservation attribute will be used to create this reservation

Example:

Moab will create a reservation on node01 and will use the QOS high as the accountable credential

  
-t

Name: TASKS

Format: <INTEGER>[-<INTEGER>] 

Default: ---

Description: Specifies the number of tasks to reserve. ALL indicates all resources available should be reserved.

If the task value is set to ALL, Moab applies the reservation regardless of existing
reservations and exclusive issues. If an integer is used, Moab only allocates accessible
resources. If a range is specified Moab attempts to reserve the maximum number of tasks,
or at least the minimum.

Example:

Moab will create a reservation on all resources.

Moab will create a reservation for three tasks.

Moab will attempt to reserve 10 tasks but will fail if it cannot get at least three.

  
-T

Name: TRIGGER

Format: <STRING>

Default: N/A

Description: Comma-delimited reservation trigger list following format described in the trigger format section of
the reservation configuration overview. See Trigger Creation for more information.

Example:

Moab will create a reservation on node01 and fire the script /tmp/email.sh 200 seconds after it
starts

  
-V

Name: VARIABLE

Format: <name>[=<value>][[;<name>[=<value>]]...]

Default: N/A

> mrsvctl -c -h node01 -S aqos=high

> mrsvctl -c -t ALL

> mrsvctl -c -t 3

> mrsvctl -c -t 3-10 -E

> mrsvctl -c -h node01 -T 
offset=200,etype=start,atype=exec,action=/opt/moab/tools/support.diag.p



Description: Semicolon-delimited list of variables that will be set when the reservation is created (see 19.5
Trigger Variables). Names with no values will simply be set to TRUE.

Example:

Moab will create a reservation on node01 and set $T1 to mac and var2 to 18.19.

For information on modifying a variable on a reservation, see MODIFY.

  
-x

Name: JOBLIST

Format: -x <jobs to be excluded>

Default: N/A

Description: The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude certain nodes
that are running the listed jobs. The -F flag instructs mrsvctl to still consider nodes with current
running jobs. The nodes are not listed directly.

Example:

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5 and moab6
will not be assigned to the reservation.

Parameters

RESERVATION ID

Format: <STRING>

Default: ---

Description: The name of a reservation or a regular expression for several reservations.

Example:

Specifies all reservations starting with 'system'.

Resource Allocation Details

When allocating resources, the following rules apply:

When specifying tasks, a each task defaults to one full compute node unless otherwise specified using the -
R specification
When specifying tasks, the reservation will not be created unless all requested resources can be allocated.
(This behavior can be changed by specifying '-F besteffort')
When specifying tasks or hosts, only nodes in an idle or running state will be considered. (This behavior
can be changed by specifying '-F ignstate')

Reservation Timeframe Modification

Moab supports dynamically modifying the timeframe of existing reservations. This can be accomplished using the
mrsvctl -m flag. By default, Moab will perform advanced boundary and resource access to verify that the
modification does not result in an invalid scheduler state. However, in certain circumstances administrators may
wish to FORCE the modification in spite of any access violations. This can be done using the switch mrsvctl -m --
flags=force which forces Moab to bypass any access verification and force the change through.

Extending a reservation by modifying the endtime

> mrsvctl -c -h node01 -V $T1=mac;var2=18.19

> mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

system*



The following increases the endtime of a reservation using the "+=" tag:

The following increases the endtime of a reservation by setting the endtime to an absolute time:

Extending a reservation by modifying the duration

The following increases the duration of a reservation using the "+=" tag:

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:35:57  1:11:35:57  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m endtime+=24:00:00 system.1
endtime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:35:22  2:11:35:22  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:33:18  1:11:33:18  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m endtime=0_11/20 system.1
endtime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:33:05  2:11:33:05  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:28:46  1:11:28:46  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m duration+=24:00:00 system.1
duration for rsv 'system.1' changed

>$ showres

ReservationID       Type S       Start         End    Duration    N/P    



The following increases the duration of a reservation by setting the duration to an absolute time:

Shortening a reservation by modifying the endtime

The following modifies the endtime of a reservation using the "-=" tag:

The following modifies the endtime of a reservation by setting the endtime to an absolute time:

StartTime
system.1            User -    11:28:42  2:11:28:42  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:26:41  1:11:26:41  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m duration=48:00:00 system.1
duration for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:26:33  2:11:26:33  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:15:51  2:11:15:51  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m endtime-=24:00:00 system.1
endtime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:15:48  1:11:15:48  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$ showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:14:00  2:11:14:00  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located



Shortening a reservation by modifying the duration

The following modifies the duration of a reservation using the "-=" tag:

The following modifies the duration of a reservation by setting the duration to an absolute time:

Modifying the starttime of a reservation

The following increases the starttime of a reservation using the "+=" tag:

$> mrsvctl -m endtime=0_11/19 system.1
endtime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:13:48  1:11:13:48  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:12:20  2:11:12:20  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m duration-=24:00:00 system.1
duration for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:12:07  1:11:12:07  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:10:57  2:11:10:57  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m duration=24:00:00 system.1
duration for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:10:50  1:11:10:50  1:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located



The following decreases the starttime of a reservation using the "-=" tag:

The following modifies the starttime of a reservation using an absolute time:

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:08:30  2:11:08:30  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m starttime+=24:00:00 system.1
starttime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -  1:11:08:22  3:11:08:22  2:00:00:00    1/2    
Sun Nov 19 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:07:04  2:11:07:04  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m starttime-=24:00:00 system.1
starttime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -   -12:53:04  1:11:06:56  2:00:00:00    1/2    
Fri Nov 17 00:00:00

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:05:31  2:11:05:31  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m starttime=0_11/19 system.1
starttime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -  1:11:05:18  3:11:05:18  2:00:00:00    1/2    
Sun Nov 19 00:00:00



The following modifies the starttime of a reservation using an absolute time:

Examples

Example 1: Basic Reservation
Example 2: System Maintenance Reservation
Example 3: Explicit Task Description
Example 4: Dynamic Reservation Modification
Example 5: Adding a Reservation Trigger
Example 6: Index-based Reservation Release
Example 7: Reservation Modification
Example 8: Allocating Reserved Resources
Example 9: Modifying an Existing Reservation

Example 1: Basic Reservation

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

Example 2: System Maintenance Reservation

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00 PM.

Example 3: Explicit Task Description

Reserve one processor and 512 MB of memory on nodes node003 through node 006 for members of the group
staff and jobs in the interactive class

1 reservation located

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -    11:04:04  2:11:04:04  2:00:00:00    1/2    
Sat Nov 18 00:00:00

1 reservation located

$> mrsvctl -m starttime=0_11/17 system.1
starttime for rsv 'system.1' changed

$> showres

ReservationID       Type S       Start         End    Duration    N/P    
StartTime
system.1            User -   -12:56:02  1:11:03:58  2:00:00:00    1/2    
Fri Nov 17 00:00:00

1 reservation located

> mrsvctl -c -a USER=john,USER=mary -s +24:00:00 -d 8:00:00 -t 2

reservation 'system.1' created

% mrsvctl -c -s 8:00:00_06/20 -e 17:00:00_06/22 -h ALL

reservation 'system.1' created

> mrsvctl -c -R PROCS=1,MEM=512 -a GROUP=staff,CLASS=interactive -h 
'node00[3-6]'



Example 4: Dynamic Reservation Modification

Modify reservation john.1 to start in 2 hours, run for 2 hours, and include node02 in the hostlist.

Example 5: Adding a Reservation Trigger

Add a trigger to reservation system.1

Example 6: Index-based Reservation Release

Release reservation system.1 using its index.

Example 7: Reservation Modification

Remove user John's access to reservation system.1

Example 8: Allocating Reserved Resources

Allocate resources for group dev which are exclusive except for resources found within reservations myrinet.3 or
john.6

Create exclusive network reservation on racks 3 and 4

Allocate 64 nodes for 2 hours to new reservation and grant access to reservation system.3 and all reservations in
the reservation group network

reservation 'system.1' created

> mrsvctl -m starttime=+2:00:00,duration=2:00:00,HostExp+=node02

Note:  hosts added to rsv system.3

> mrsvctl -m TRIGGER=X

Note:  trigger added to rsv system.1

> mrsvctl -r -i 1

reservation 'system.1' successfully released

> mrsvctl -m -a USER=John system.1 --flags=unset

successfully changed ACL for rsv system.1

> mrsvctl -c -E -a group=dev,rsv=myrinet.3,rsv=john.6 -h 'node00[3-
6]'

reservation 'dev.14' created

> mrsvctl -c -E -a group=ops -g network -f rack3 -h ALL 

reservation 'ops.1' created

> mrsvctl -c -E -a group=ops -g network -f rack4 -h ALL

reservation 'ops.2' created

> mrsvctl -c -E -d 2:00:00 -a group=dev -t 64 -S 
rsvaccesslist=system.3,network 



Allocate 4 nodes for 1 hour to new reservation and grant access to idle job reservations

Example 9: Modifying an Existing Reservation

Remove user john from reservation ACL

Change reservation group

See Also
Moab Client Installation - explains how to distribute this command to client nodes
Admin Reservation Overview
showres
mdiag -r
mshow -a command to identify available resources
job to rsv binding

reservation 'system.23' created

> mrsvctl -c -E -d 1:00:00 -t 4 -S rsvaccesslist=idle

reservation 'system.24' created

> mrsvctl -m -a USER=john system.1 --flags=unset

successfully changed ACL for rsv system.1

> mrsvctl -m RSVGROUP=network ops.4

successfully changed RSVGROUP for rsv ops.4



mschedctl
(Moab Scheduler Control)

Synopsis

mschedctl -A '<MESSAGE>'
mschedctl -c message messagestring [-o type:val]
mschedctl -c trigger triggerid -o type:val
mschedctl -d trigger triggerid
mschedctl -d vpc:vpcid
mschedctl -d message:index

mschedctl -f {all|estimates|fairshare|usage}

mschedctl -k
mschedctl -l {config|message|trigger|trans|vpc|vpcprofile} [--flags=verbose] [--xml]
mschedctl -L [LOGLEVEL]
mschedctl -m config string [-e] [--flags=persistent]
mschedctl -m trigger triggerid attr=val[,attr=val...]
mschedctl -m vpc vpcid attr=val[,attr=val...]

mschedctl -p
mschedctl -r [resumetime]
mschedctl -R
mschedctl -q
mschedctl -s [STOPITERATION]
mschedctl -S [STEPITERATION]

Overview

The mschedctl command controls various aspects of scheduling behavior. It is used to manage scheduling
activity, shutdown the scheduler, and create resource trace files.  It can also evaluate, modify, and create
parameters, triggers, and messages.

With many flags, the '--msg=<MSG>' option can be specified to annotate the action in the event log.

Format

-A — ANNOTATE

Format: <STRING>

Default: ---

Description: Report the specified parameter modification to the event log and annotate it with the specified
message.

Example:

Adjust the LOGLEVEL parameter and record an associated message.

  
-c — CREATE

Format: One of:

 message <STRING> [-o <TYPE>:<VAL>]
 trigger <TRIGSPEC> -o <OBJECTTYPE>:<OBJECTID>
 vpc [-a <ATTR>=<VAL>]...
 
where <ATTR> is one of account, duration, messages, profile, reqresources,
resources, rsvprofile, starttime, user, or variables

Default: ---

> mschedctl --flags=pers -A 'increase logging' -m 'LOGLEVEL 6'  



Description: Create a message or trigger and attach it to the specified object, or create a Virtual Private
Cluster (VPC). To create a trigger on a default object, use the Moab configuration file
(moab.cfg) rather than the mschedctl command.

Example:

Create a message on the system table.

Create a trigger linked to system.1

Creating triggers on default objects via mschedctl -c trigger does not propagate the
triggers to individual objects. To propagate triggers to all objects, the triggers must be
created within the moab.cfg file; for example: NODECFG[DEFAULT] TRIGGER.

Create a vpc using TID's 6, 7, and 8 and based on profile packageA

VPC commands (such as mschedctl -c vpc) are only enabled on hosting center builds.

Additional VPC attributes: -a

  
-d — DESTROY

Format: One of:

trigger <TRIGID>
message:<INDEX>
vpc:<VPCID>[:{soft|hard}]

Default: ---

Description: Delete a trigger, message, or VPC.

Example:

Delete trigger 3.

Delete message with index 5.

Delete vpc.5. Soft destruction causes Moab to launch the end triggers attached to the
reservations before deleting the VPC. Hard destruction causes Moab to launch the cancel
triggers.

Delete all VPCs.

  

mschedctl -c message tell the admin to be nice

mschedctl -c trigger EType=start,AType=exec,Action="/tmp/email 
$OWNER $TIME" -o rsv:system.1

mschedctl -c vpc -a resources=6,7,8 -a profile=packageA

mschedctl -d trigger 3

mschedctl -d message:5

mschedctl -d vpc:vpc.5:soft

mschedctl -d vpc:ALL



-f — FLUSH

Format: {all|estimates|fairshare|usage}

Default: ---

Description: Flush (clear out) specified statistics

Example:

Flush usage statistics.

  
-k — KILL

Format: ---

Default: ---

Description: Stop scheduling and exit the scheduler

Example:

Kill the scheduler.

  
-l — LIST

Format: {config | gres | message | trans | trigger | vpc | vpcprofile} [--flags=verbose] [--xml]
Using the --xml argument with the trans option returns XML that states if the queuried
TID is valid or not.

Default: config

Description: List the generic resources, scheduler configuration, system messages, triggers, transactions,
virtual private clusters or VPC profiles.

Example:

List system parameters.

List all configured generic resources.

List transaction id 1.

List triggers.

List VPCs.

List VPC vpc.1.

  

mschedctl -f usage

mschedctl -k

mschedctl -l config

mschedctl -l gres

mschedctl -l trans 1

mschedctl -l trigger

mschedctl -l vpc

mschedctl -l vpc:vpc.1



-L — LOG

Format: <INTEGER>

Default: 7

Description: Create a temporary log file with the specified loglevel.

Example:

Create temporary log file with naming convention '<logfile>.YYYYMMDDHHMMSS'.

  
-m — MODIFY

Format: One of:

config [<STRING>] 
[-e] 
[--flags=pers] 
<STRING> is any string which would be acceptable in moab.cfg>

If no string is specified, <STRING> is read from STDIN.
If '-e' is specified, the configuration string will be evaluated for correctness but no
configuration changes will take place.  Any issues with the provided string will be
reported to STDERR.
If '--flags=persistent' is specified, the Moab configuration files (moab.cfg and
moab.dat) are modified.

trigger:<TRIGID> <ATTR>=<VAL>
 
where <ATTR> is one of action, atype, etype, iscomplete, oid, otype, offset, or
threshold
vpc:<VPCID> <ATTR>=<VAL>
 
where <ATTR> is one of variables, or <user|group|owner|qos|account>

Changing the VPC user does not change the VPC owner, and vice versa.
Additionally, the credential you want to change to must already exist in order to
make the change. In other words, you cannot set user to a user that Moab
doesn't know about.

Default: ---

Description: Modify a system parameter, trigger, or VPC.

Example:

Change the system loglevel to 9.

Change aspects of trigger 2.

Change aspects of vpc packageA.1.

> mschedctl -L 7  

> mschedctl -m config LOGLEVEL 9

> mschedctl -m trigger:2 AType=exec,Offset=200,OID=system.1

> mschedctl -m vpc:packageA.1 variables=blue=dog

> mschedctl -m vpc:vpc.10 user=craig
          
vpc USER set to craig



Changes the user of vpc.10 to 'craig'

  
-p — PAUSE

Format: ---

Default: ---

Description: Disable scheduling but allow the scheduler to update its cluster and workload state
information.

Example:

  
-q — QUERY

Format:
Comma delimited list of one or more of the following:

acl, ALL, am, cjob, class, cluster, cp, depend, event, fs, fsc, green, gres, group, hybrid, image,
job, limits, node, nodefeature, pactions, par, priority, qos, queue, rack, range, req, rm, rsv,
sched, sim, srsv, stats, sys, task, tasksperjob, tjob, tnode, trans, trig, tx, user, vm, vpc

Default: ---

Description: Query scheduler attributes

Example:

  
-R — RECYCLE

Format: ---

Default: ---

Description: Recycle scheduler immediately (shut it down and restart it using the original execution
environment and command line arguments).

Example:

Recycle scheduler immediately.

To restart Moab with its last known scheduler state, use:
mschedctl -R savestate

  
-r — RESUME

Format: <INTEGER>

Default: 0

Description: Resume scheduling at the specified time (or immediately if none is specified).

Example:

> mschedctl -p

> mschedctl -q pactions --format=xml  

> mschedctl -R

> mschedctl -r



Resume scheduling immediately.

  
-s — STOP

Format: <INTEGER>

Default: 0

Description: Suspend/stop scheduling at specified iteration (or at the end of the current iteration if none is
specified). If the letter 'I' follows <ITERATION>, Moab will not process client requests until this
iteration is reached.

Example:

Stop scheduling at iteration 100 and ignore all client requests until then.

  
-S — STEP

Format: <INTEGER>

Default: 0

Description: Step the specified number of iterations (or to the next iteration if none is specified) and
suspend scheduling If the letter 'I' follows <ITERATION>, Moab will not process client requests
until this iteration is reached.

Example:

Step to the next iteration and stop scheduling.

Example 1

Shutting down the Scheduler:

Example 2

Creating a virtual private cluster:

See Also
Moab Client Installation - explains how to distribute this command to client nodes

> mschedctl -s 100I

> mschedctl -S

> mschedctl -k

scheduler will be shutdown immediately

> mschedctl -c vpc -a resources=14332 -a variables=os=rhel3

vpc.98



mshow
(Moab Show)

Synopsis
mshow [-a]  [-q jobqueue] 

Overview

The mshow command displays various diagnostic messages about the system and job queues.

Arguments

Flag Description

-a AVAILABLE RESOURCES

-q [<QUEUENAME>] JOB QUEUE

Format

AVAILABLE RESOURCES

Format: Can be combined with --flags=[tid|verbose|future] --format=xml and/or -w

Default: ---

Description: Display available resources.

Example:

Show resources available to john in XML format with a transaction id. See mshow -a for
details

  
JOB QUEUE

Format: ---

Default: ---

Description: Show the job queue.

Example:

  

See Also
Moab Client Installation - explains how to distribute this command to client nodes
mshow -a command to show available resources

> mshow -a -w user=john --flags=tid --format=xml

> mshow -q
    [information about all queues]
...



mshow -a
(Moab Show Available Resources)

Synopsis

mshow -a [-i] [-o] [-p profile] [-T] [-w where] [-x] [--xml]

Overview

The mshow -a command allows for querying of available system resources.

Arguments

[-i] INTERSECTION

[-o] NO AGGREGATE

[-p] PROFILE

[-T] TIMELOCK

[-w] WHERE

[-x] EXCLUSIVE

Table 1: Argument Format

--flags

Name: Flags

Format: --flags=[ future | policy | tid | timeflex | summary | verbose ]

Description: future will return resources available immediately and available in the future.
policy will apply charging policies to determine the total cost of each reported solution (only
enabled for XML responses).
summary will assign all jointly allocated transactions as dependencies of the first transaction
reported.
tid will associate a transaction id with the reported results.
timeflex allows the reservation to move in time (but not space) in order to start at an earlier
time, if able.
verbose will return diagnostic information.

Example:

Show resources available to john in XML format with a transaction ID.

  
--xml

Name: XML

Format: --xml

Description: Report results in XML format.

Example:

Show resources available to john in XML format with a transaction ID.

> mshow -a -w user=john --flags=tid --xml  

> mshow -a -w user=john --flags=tid --xml  



  
-i

Name: INTERSECTION

Format: ---

Description: Specifies that an intersection should be performed during an mshow -a command with multiple
requirements.

Example:  

  
-o

Name: NO AGGREGATE

Format: ---

Description: Specifies that the results of the command mshow -a with multiple requirements should not be
aggregated together.

Example:  

  
-p

Name: PROFILE

Format: <VPCPROFILEID>

Description: Specifies which virtual private cluster profile should be used to adjust the explicit constraints
of the request.

Example:  

  
-T

Name: TIMELOCK

Format: ---

Description: Specifies that the multiple requirements of an mshow -a command should be timelocked.

Example:

  
-w

Name: WHERE

Format: <ATTR>=<VAL> [,<ATTR>=<VAL>]... 
  
Attributes are listed below in table 2.

Description: Add a "Where" clause to the current command (currently supports up to six co-allocation
clauses).

Example:

  

> mshow -a -w minprocs=1,os=linux,duration=1:00:00 \
  -w minprocs=1,os=aix,duration=10:00 \
  --flags=tid,future -x -T

> mshow -a -w minprocs=2,duration=1:00:00 -w 
nodemem=512,duration=1:00:00



-x

Name: EXCLUSIVE

Format: ---

Description: Specifies that the multiple requirements of an mshow -a command should be exclusive (ie.
each node may only be allocated to a single requirement)

Example:

Table 2: Request Attributes

Name Description

account the account credential of the requestor

acl ACL to attach to the reservation associated with the VPC

This ACL must be enclosed in quotation marks. For example:
$ mshow -a ... -w acl=\"user=john\" ...

arch select only nodes with the specified architecture

cal select resources subject to the constraints of the specified global calendar

class the class credential of the requestor

coalloc the co-allocation group of the specific Where request (can be any string but must match
co-allocation group of at least one other Where request)

The number of tasks requested in each Where request must be equal whether this
taskcount is specified via minprocs, mintasks, or gres.

count the number of profiles to apply to the resource request

displaymode Possible value is future. (Example: displaymode=future). Constrains how results are
presented; setting future evaluates which resources are available now and which
resources will be available in the future that match the requested attributes.

duration the duration for which the resources will be required in format [[[DD:]HH:]MM:]SS

excludehostlist do not select any nodes from the given list

gres select only nodes which possess the specified generic resource

group the group credential of the requestor

hostlist select only the specified resources

job use the resource, duration, and credential information for the job specified as a resource
request template

jobfeature select only resources which would allow access to jobs with the specified job features

jobflags select only resources which would allow access to jobs with the specified job flags. The
jobflags attribute accepts a colon delimited list of multiple flags.

> mshow -a -w minprocs=1,os=linux -w minprocs=1,os=aix --flags=tid 
-x



label associate the specified label with all results matching this request

minnodes return only results with at least the number of nodes specified.  If used with TID's, return
only solutions with exactly minnodes nodes available

minprocs return only results with at least the number of processors specified.  If used with TID's,
return only solutions with exactly minprocs processors available

mintasks FORMAT: <TASKCOUNT>[@<RESTYPE>:<COUNT>[+<RESTYPE>:<COUNT>]...] where
<RESTYPE> is one of procs, mem, disk, or swap.   Return only results with at least the
number of tasks specified.  If used with TID's, return only solutions with exactly mintasks
available

nodedisk select only nodes with at least nodedisk MB of local disk configured

nodefeature select only nodes with all specified features present using format <feature>[:<feature>]...

nodemem select only nodes with at least nodemem MB of memory configured

offset select only resources which can be co-allocated with the specified time offset where offset
is specified in the format [[[DD:]HH:]MM:]SS

os select only nodes with have, or can be provisioned to have, the specified operating system

partition the partition in which the resources must be located

policylevel enable policy enforcement at the specified policy constraint level

qos the qos credential of the requestor

rsvprofile use the specified profile if committing a resulting transaction id directly to a reservation

starttime constrain the timeframe for the returned results by specifying one or more ranges using
the format <STIME>[-<ENDTIME>][;<STIME>[-<ENDTIME>]] where each time is
specified in the format in absolute, relative, or epoch time format
([HH[:MM[:SS]]][_MO[/DD[/YY]]] or +[[[DD:]HH:]MM:]SS or <EPOCHTIME>).

The starttime specified is not the exact time at which the returned range must start,
but is rather the earliest possible time the range may start.

taskmem require taskmem MB of memory per task located

tpn require exactly tpn tasks per node on all discovered resources

user the user credential of the requestor

var use associated variables in generating per transaction charging quotes

variables takes a string of the format variables='var[=attr]'[;'var[=attr]' and passes the
variables onto the reservation when used in conjunction with --flags=tid and mrsvctl -
c -R <tid>.

Usage Notes

The mshow -a command allows for querying of available system resources.  When combined with the --
flags=tid option these available resources can then be placed into a "packaged" reservation (using mrsvctl -c
-R) or vpc (using mschedctl -c vpc -R).  This allows system administrators to grab and reserve available
resources for whatever reason, without conflicting with jobs or reservations that may holding certain
resources.

There are a few restrictions on which <ATTR> from the -w command can be placed in the same req:
minprocs, minnodes, and gres are all mutually exclusive, only one may be used per -w request.



The allocation of available nodes will follow the global NODEALLOCATIONPOLICY.

When the '-o' flag is not used, multi-request results will be aggregated.  This aggregation will negate the use
of offsets and request-specific starttimes.

The config parameter RESOURCEQUERYDEPTH controls the maximum number of options that will be returned
in response to a resource query.

Example 1: Basic Compute Node Query and Reservation

Example 2: Mixed Processor and License Query

Select one node with 4 processors and 1 matlab license where the matlab license is only available for the last
hour of the reservation.  Also, select 16 additional processors which are available during the same timeframe
but which can be located anywhere in the cluster.  Group the resulting transactions together using transaction
dependencies so only the first transaction needs to be committed to reserve all associated resources.

Example 3: Request for Generic Resources

Query for a generic resource on a specific host (no processors, only a generic resource).

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobfeature=shared 
--flags=tid,future

Partition     Tasks  Nodes      Duration   StartOffset       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL               1      1      10:00:00      00:00:00  13:28:09_04/27  
TID=4  ReqID=0
ALL               1      1      10:00:00      10:00:00  17:14:48_04/28  
TID=5  ReqID=0
ALL               1      1      10:00:00      20:00:00  21:01:27_04/29  
TID=6  ReqID=0

> mrsvctl -c -R 4

Note:  reservation system.2 created

> mshow -a -i -o -x -w mintasks=1@PROCS:4,duration=10:00:00,coalloc=a 
\
                    -w 
gres=matlab,offset=9:00:00,duration=1:00:00,coalloc=a \
                    -w minprocs=16,duration=10:00:00 --
flags=tid,future,summary

Partition     Tasks  Nodes      Duration   StartOffset       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL               1      1      10:00:00      00:00:00  13:28:09_04/27  
TID=4  ReqID=0
ALL               1      1      10:00:00      10:00:00  17:14:48_04/28  
TID=5  ReqID=0
ALL               1      1      10:00:00      20:00:00  21:01:27_04/29  
TID=6  ReqID=0

> mrsvctl -c -R 4

Note:  reservation system.2 created
Note:  reservation system.3 created
Note:  reservation system.4 created



Example 4: Allocation of Shared Resources

This example walks through a relatively complicated example in which a set of resources can be reserved to
be allocated for shared requests.  In the example below, the first mshow query looks for resources within an
existing shared reservation.  In the example, this first query fails because there is now existing reservation.
 The second mshow requests asks for resources outside of a shared reservation and finds the desired
resources.  These resources are then reserved as a shared pool.  The third mshow request again asks for
resources inside of a shared reservation and this time finds the desired resources.

> mshow -a -i -x -o -w gres=dvd,duration=10:00,hostlist=node03 --
flags=tid,future

Partition     Tasks  Nodes   StartOffset      Duration       
StartDate
---------     -----  -----  ------------  ------------  ---------
-----
ALL               1      1      00:00:00      00:10:00  
11:33:25_07/27  TID=16  ReqID=0
ALL               1      1      00:10:00      00:10:00  
11:43:25_07/27  TID=17  ReqID=0
ALL               1      1      00:20:00      00:10:00  
11:53:25_07/27  TID=18  ReqID=0

> mrsvctl -c -R 16

Note:  reservation system.6 created

> mdiag -r system.6
Diagnosing Reservations
RsvID                      Type Par   StartTime     EndTime     
Duration Node Task Proc
-----                      ---- ---   ---------     -------     ---
----- ---- ---- ----
system.6                   User loc   -00:01:02    00:08:35     
00:09:37    1    1    0
    Flags: ISCLOSED
    ACL:   RSV==system.6=
    CL:    RSV==system.6

> mshow -a -w 
duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature
=shared --flags=tid

Partition     Tasks  Nodes      Duration   StartOffset       
StartDate
---------     -----  -----  ------------  ------------  ---------
-----

> mshow -a -w 
duration=100:00:00,minprocs=1,os=AIX53,jobfeature=shared --flags=tid

Partition     Tasks  Nodes      Duration   StartOffset       
StartDate
---------     -----  -----  ------------  ------------  ---------
-----
ALL               1      1     100:00:00      00:00:00  
13:20:23_04/27  TID=1  ReqID=0

> mrsvctl -c -R 1

Note:  reservation system.1 created

> mshow -a -w 
duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shar



Example 5: Full Resource Query in XML Format

The following command will report information on all available resources which meet at least the minimum
specified processor and walltime constraints and which are available to the specified user.  The results will be
reported in XML to allow for easy system processing.

This command reports the original query, and the timeframe, resource size, and hostlist associated
with each possible time slot.

Example 6: Create a Virtual Private Cluster

Request an exclusive five-node virtual private cluster using the Apache profile.

--flags=tid

Partition     Tasks  Nodes      Duration   StartOffset       
StartDate

> mshow -a -w class=grid,minprocs=8,duration=20:00 --format=xml -
-flags=future,verbose
<Data>
  <Object>cluster</Object>
  <job User="john" time="1162407604"></job>
  <par Name="template">
    <range duration="Duration" nodecount="Nodes" proccount="Procs" 
starttime="StartTime"></range>
    </par>
  <par Name="ALL" feasibleNodeCount="131" feasibleTaskCount="163">
    <range duration="1200" hostlist="opt-001:1,opt-024:1,opt-
025:1,opt-027:2,opt-041:1,opt-042:1,x86-001:1,P690-001:1,P690-
021:1,P690-022:1" 
        index="0" nodecount="10" proccount="8" reqid="0" 
starttime="1162407604"></range>
    <range duration="1200" hostlist="opt-001:1,opt-024:1,opt-
025:1,opt-027:2,opt-039:1,opt-041:1,opt-042:1,x86-001:1,P690-
001:1,P690-021:1,P690-022:1" 
        index="0" nodecount="11" proccount="8"reqid="0" 
starttime="1162411204"></range>
    <range duration="1200" hostlist="opt-001:1,opt-024:1,opt-
025:1,opt-027:2,opt-039:1,opt-041:1,opt-042:1,x86-001:1,x86-
002:1,x86-004:1,
        x86-006:1,x86-013:1,x86-014:1,x86-015:1,x86-016:1,x86-
037:1,P690-001:1,P690-021:1,P690-022:1" 
        index="0" nodecount="19" proccount="8" reqid="0" 
starttime="1162425519"></range>
    </par>
  <par Name="SharedMem">

> mshow -a -i -x -o --flags=summary,tid,future,timeflex -p apache -w
> duration=3000,minnodes=5

Partition     Tasks  Nodes   StartOffset      Duration       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL               5      5      00:00:00      00:50:00  09:59:07_07/03   
TID=265
ALL               5      5      00:50:00      00:50:00  10:49:07_07/03   
TID=266
ALL               5      5       1:40:00      00:50:00  11:39:07_07/03   
TID=267

> mschedctl -c vpc -a resources=265



See Also
Moab Client Installation - explains how to distribute this command to client nodes
mshow in a hosting environment

vpc.69



mshow -a
(Moab Show Available Resources)

Basic Current and Future Requests
The mshow command can report information on many aspects of the scheduling environment. To request
information on available resources, the '-a ' flag should be used. By default, the mshow command resource
availability query only reports resources that are immediately available. To request information on specific
resources, the type of resources required can be specified using the '-w' flag as in the following example:

> mshow -a -w taskmem=1500,duration=600 ...

To view current and future resource availability, the 'future flag should be set as in the following example: >
mshow -a -w taskmem=1500,duration=600 --flags=future ...

Co-allocation Resources Queries
In many cases, a particular request will need simultaneous access to resources of different types. The
mshow command supports a co-allocation request specified by using multiple '-w' arguments. For example,
to request 16 nodes with feature fastcpu and 2 nodes with feature fastio, the following request might be
used:

The mshow -a documentation contains a list of the different resources that may be queried as well as
examples on using mshow.

Using Transaction IDs
By default, the mshow command reports simply when and where the requested resources are available.
However, when the 'tid' flag is specified, the mshow command returns both resource availability information
and a handle to these resources called a Transaction ID as in the following example:

In the preceding example, the returned transaction id (TID) may then be used to reserve the available
resources using the mrsvctl -c -R command:

> mrsvctl -c -R 26

reservation system.1 successfully created

Any TID can be printed out using the mschedctl -l trans command:

> mshow -a -w minprocs=16,duration=1:00:00,nodefeature=fastcpu -w 
minprocs=2,nodefeature=fastio,duration=1:00:00 --flags=future

Partition     Procs  Nodes   StartOffset      Duration       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL              16      8      00:00:00       1:00:00  13:00:18_08/25  
ReqID=0
ALL               2      1      00:00:00       1:00:00  13:00:18_08/25  
ReqID=1

> mshow -a -w minprocs=16,nodefeature=fastcpu,duration=2:00:00 --
flags=future,tid

Partition     Procs  Nodes   StartOffset      Duration       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL              16     16      00:00:00       2:00:00  13:00:18_08/25  
TID=26 ReqID=0



Where A1 is the hostlist, A2 is the duration, A3 is the starttime, A4 are any flags, and A5 are any features.

Using Reservation Profiles
Reservation profiles (RSVPROFILE) stand as templates against which reservations can be created. They can
contain a hostlist, startime, endtime, duration, access-control list, flags, triggers, variables, and most other
attributes of an Administrative Reservation. The following example illustrates how to create a reservation with
the exact same trigger-set.

To create a reservation with this profile the mrsvctl -c -P command is used:

Using Reservation Groups
Reservation groups are a way for Moab to tie reservations together. When a reservation is created using
multiple Transaction IDs, these transactions and their resulting reservations are tied together into one group.

In the preceding example, these three reservations would be tied together into a single group. The mdiag -r
command can be used to see which group a reservation belongs to. The mrsvctl -q diag -g command can
also be used to print out a specific group of reservations. The mrsvctl -c -g command can also be used to
release a group of reservations.

See Also

> mschedctl -l trans 26

TID[26]  A1='node01'  A2='600'  A3='1093465728'  A4='ADVRES'  
A5='fastio'

-----
# moab.cfg
-----

RSVPROFILE[test1] 
TRIGGER=Sets=$Var1.$Var2.$Var3.!Net,EType=start,AType=exec,Action=/tmp/

RSVPROFILE[test1] 
TRIGGER=Requires=$Var1.$Var2.$Var3,Sets=$Var4.$Var5,EType=start,AType=e

RSVPROFILE[test1] 
TRIGGER=Requires=$Var1.$Var2.$Var3.$Var4.$Var5,Sets=!NOOSinit.OSinit,Et

RSVPROFILE[test1] TRIGGER=Requires=NOOSini,AType=cancel,EType=start
RSVPROFILE[test1] 
TRIGGER=EType=start,Requires=OSinit,AType=exec,Action=/tmp/host/trigger

...
-----

> mrsvctl -c -P test1

reservation system.1 successfully created

> mrsvctl -c -R 34,35,36

reservation system.99 successfully created
reservation system.100 successfully created
reservation system.101 successfully created



mshow



msub
(Moab Job Submit)

Synopsis

msub  [-a datetime][-A account][-c interval][-C directive_prefix][-d path]
      [-e path][-E][-h][-I][-j join][-k keep][-K][-l resourcelist]
      [-m mailoptions][-M user_list][-N name][-o path][-p priority]
      [-q destination][-r][-S pathlist][-u userlist][-t jobarrays]]
      [-v variablelist][-V][-W additionalattributes][-x][-z][script]

Overview

msub allows users to submit jobs directly to Moab. When a job is submitted directly to a resource manager
(such as TORQUE), it is constrained to run on only those nodes that the resource manager is directly
monitoring. In many instances, a site may be controlling multiple resource managers. When a job is
submitted to Moab rather than to a specific resource manager, it is not constrained as to what nodes it is
executed on. msub can accept command line arguments (with the same syntax as qsub), job scripts (in
either PBS or LoadLeveler syntax), or the SSS Job XML specification.

Submitted jobs can then be viewed and controlled via the mjobctl command.

Flags specified in the following table are not necessarily supported by all resource managers.

Access

When Moab is configured to run as root, any user may submit jobs via msub.

Flags

-a

Name: Eligible Date

Format: [[[[CC]YY]MM]DD]hhmm[.SS]

Default: ---

Description: Declares the time after which the job is eligible for execution.

Example:

Moab will not schedule the job until 1:00 pm on December 4, of the current year.

  
-A

Name: Account

Format: <ACCOUNT NAME>

Default: ---

Description: Defines the account associated with the job.

Example:

Moab will associate this job with account research.

  
-c

Name: Checkpoint Interval

> msub -a 12041300 cmd.pbs

> msub -A research cmd.pbs

http://www.adaptivecomputing.com/products/torque/docs/commands/qsub.php


Format: [n|s|c|c=<minutes>]

Default: ---

Description: Checkpoint of the will occur at the specified interval.

n — No Checkpoint is to be performed.
s — Checkpointing is to be performed only when the server executing the job is shut down.
c — Checkpoint is to be performed at the default minimum time for the server executing the
job.
c=<minutes> — Checkpoint is to be performed at an interval of minutes.

Example:

The job will be checkpointed every 12 minutes.

  
-C

Name: Directive Prefix

Format: '<PREFIX NAME>'

Default: First known prefix (#PBS, #@, #BSUB, #!, #MOAB, #MSUB)

Description: Specifies which directive prefix should be used from a job script.

It is best to submit with single quotes. '#PBS'
An empty prefix will cause Moab to not search for any prefix. -C ''
Command line arguments have precedence over script arguments.
Custom prefixes can be used with the -C flag. -C '#MYPREFIX'
Custom directive prefixes must use PBS syntax.
If the -C flag is not given, Moab will take the first default prefix found. Once a directive
is found, others are ignored.

Example:

Moab will use the #MYPREFIX directive specified in cmd.pbs, setting the wallclock limit to five
hours.

  
-d

Name: Execution Directory

Format: <path>

Default: Depends on the RM being used. If using TORQUE, the default is $HOME. If using SLURM, the
default is the submission directory.

Description: Specifies which directory the job should execute in.

Example:

The job will begin execution in the /home/test/job12 directory.

  
-e

Name: Error Path

> msub -c c=12 cmd.pbs

> msub -C '#MYPREFIX' cmd.pbs

#MYPREFIX -l walltime=5:00:00 (in cmd.pbs)

> msub -d /home/test/job12 cmd.pbs



Format: [<hostname>:]<path>

Default: $SUBMISSIONDIR/$JOBNAME.e$JOBID

Description: Defines the path to be used for the standard error stream of the batch job.

Example:

The STDERR stream of the job will be placed in the relative (to execution) directory specified.

  
-E

Name: Environment Variables

Format: ---

Default: ---

Description: Moab adds the following variables, if populated, to the job's environment:

MOAB_ACCOUNT: Account name.
MOAB_BATCH: Set if a batch job (non-interactive).
MOAB_CLASS: Class name.
MOAB_DEPEND: Job dependency string.
MOAB_GROUP: Group name.
MOAB_JOBID: Job ID. If submitted from the grid, grid jobid.
MOAB_JOBNAME: Job name.
MOAB_MACHINE: Name of the machine (ie. Destination RM) that the job is running
on.
MOAB_NODECOUNT: Number of nodes allocated to job.
MOAB_NODELIST: Comma-separated list of nodes (listed singly with no ppn info).
MOAB_PARTITION: Partition name the job is running in. If grid job, cluster
scheduler's name.
MOAB_PROCCOUNT: Number of processors allocated to job.
MOAB_QOS: QOS name.
MOAB_TASKMAP: Node list with procs per node listed. <nodename>.<procs>
MOAB_USER: User name.

In SLURM environments, not all variables will be populated since the variables are added at
submission (such as NODELIST). With TORQUE/PBS, the variables are added just before the
job is started.

This feature only works with SLURM and TORQUE/PBS.

Example:

The job mySim will be submitted with extra environment variables.

  
-h

Name: Hold

Format: N/A

Default: ---

Description: Specifies that a user hold be applied to the job at submission time.

Example:

> msub -e test12/stderr.txt

> msub -E mySim.cmd



The job will be submitted with a user hold on it.

  
-I

Name: Interactive

Format: N/A

Default: ---

Description: Declares the the job is to be run interactively.

Example:

The job will be submitted in interactive mode.

  
-j

Name: Join

Format: [oe|n]

Default: n (not merged)

Description: Declares if the standard error stream of the job will be merged with the standard output
stream of the job. If "oe" is specified, the error and output streams will be merged into the
output stream.

Example:

STDOUT and STDERR will be merged into one file.

  
-k

Name: Keep

Format: [e|o|eo|oe|n]

Default: n (not retained)

Description: Defines which (if either) of output and error streams will be retained on the execution host
(overrides path for stream). It is only for PBS resource managers.

Example:

STDOUT and STDERR for the job will be retained on the execution host.

  
-K

Name: Continue Running

Format: N/A

Default: ---

Description: Tells the client to continue running until the submitted job is completed. The client will query
the status of the job every 5 seconds. The time interval between queries can be specified or
disabled via MSUBQUERYINTERVAL.

Use the -K option SPARINGLY (if at all) as it slows down the Moab scheduler with

> msub -h cmd.ll

> msub -I job117.sh

> msub -j oe cmd.sh

> msub -k oe myjob.sh



frequent queries. Running ten jobs with the -K option creates an additional fifty queries
per minute for the scheduler.

Example:

*Only shows up after job completion.

  
-l

Name: Resource List

Format: <STRING> (either standard PBS/TORQUE options or resource manager extensions)

Default: ---

Description:
Defines the resources that are required by the job and establishes a limit to the amount of
resource that can be consumed. Either resources native to the resource manager (see
PBS/TORQUE resources) or scheduler resource manager extensions may be specified. Note
that resource lists are dependent on the resource manager in use.

Example:

The job requires 32 nodes with 2 processors each, 1800 MB per task, a walltime of 3600
seconds, and a variable named testvar with a value of myvalue.

 

  
-m

Name: Mail Options

Format: <STRING> (either n or one or more of the characters a, b, and e)

Default: ---

Description: Defines the set of conditions (abort,begin,end) when the server will send a mail message
about the job to the user.

Example:

Mail notifications will be sent when the job begins and ends.

  
-M

Name: Mail List

Format: <user>[@<host>][,<user>[@<host>],...]

Default: $JOBOWNER

Description: Specifies the list of users to whom mail is sent by the execution server.

Example:

> msub -K newjob.sh

3
Job 3 completed*

> msub -l 
nodes=32:ppn=2,pmem=1800mb,walltime=3600,VAR=testvar:myvalue cmd.sh

> msub -m be cmd.sh

> msub -M jon@node01,bill@node01,jill@node02 cmd.sh

http://www.adaptivecomputing.com/resources/docs/torque/2.1jobsubmission.php#resources
http://www.adaptivecomputing.com/resources/docs/torque/2.1jobsubmission.php#resources


Mail will be sent to the specified users if the job is aborted.

  
-N

Name: Name

Format: <STRING>

Default: STDIN or name of job script

Description: Specifies the user-specified job name attribute.

Example:

Job will be associated with the name chemjob3.

  
-o

Name: Output Path

Format: [<hostname>:]<path>

Default: $SUBMISSIONDIR/$JOBNAME.o$JOBID

Description: Defines the path to be used for the standard output stream of the batch job.

Example:

The STDOUT stream of the job will be placed in the relative (to execution) directory specified.

  
-p

Name: Priority

Format: <INTEGER> (between -1024 and 0)

Default: 0

Description: Defines the priority of the job.
To enable priority range from -1024 to +1023, see ENABLEPOSUSERPRIORITY.

Example:

The job will have a user priority of 25.

  
-q

Name: Destination Queue (Class)

Format: [<queue>][@<server>]

Default: [<DEFAULT>]

Description: Defines the destination of the job.

Example:

The job will be submitted to the priority queue.

  
-r

Name: Rerunable

> msub -N chemjob3 cmd.sh

> msub -o test12/stdout.txt

> msub -p 25 cmd.sh

> msub -q priority cmd.sh



Format: [y|n]

Default: n

Description: Declares whether the job is rerunable.

Example:

The job cannot be rerun.

  
-S

Name: Shell Path

Format: <path>[@<host>][,<path>[@<host>],...]

Default: $SHELL

Description: Declares the shell that interprets the job script.

Example:

The job script will be interpreted by the /bin/bash shell.

  
-t

Name: Job Arrays

Format: <name>.[<indexlist>]%<limit>

Default: ---

Description: Starts a job array with the jobs in the index list. The limit variable specifies how many jobs
may run at a time. For more information, see Submitting Job Arrays.

Example:

  
-u

Name: User List

Format: <user>[@<host>[,<user>[@<host>],...]

Default: UID of msub command

Description: Defines the user name under which the job is to run on the execution system.

Example:

On node01 the job will run under Bill's UID, if permitted.

  
-v

Name: Variable List

Format: <string>[,<string>,...]

Default: ---

Description: Expands the list the environment variables that are exported to the job (taken from the msub
command environment).

> msub -r n cmd.sh

> msub -S /bin/bash

> msub -t myarray.[1-1000]%4

> msub -u bill@node01 cmd.sh

http://sempa/resources/docs/blanks/mwm/11.11jobarrays.php#submittingArrays


Example:

The DEBUG environment variable will be defined for the job.

  
-V

Name: All Variables

Format: N/A

Default: N/A

Description: Declares that all environment variables in the msub environment are exported to the batch job

Example:

All environment variables will be exported to the job.

  
-W

Name: Additional Attributes

Format: <string>

Default: ---

Description: Allows the for the specification of additional job attributes (See Resource Manager Extension)

Example:

The job requires one resource of "matlab".

  
-x

Name: ---

Format: <script> or <command>

Default: ---

Description: When running an interactive job, the -x flag makes it so that the corresponding script won't be
parsed for PBS directives, but is instead a command that is launched once the interactive job
has started. The job terminates at the completion of this command. This option works only
when using TORQUE.

The -x option for msub differs from qsub in that qsub does not require the script name
to come directly after the flag. The msub command requires a script or command
immediately after the -x declaration.

Example:

  
-z

Name: Silent Mode

Format: N/A

Default: N/A

> msub -v DEBUG cmd.sh

> msub -V cmd.sh

> msub -W x=GRES:matlab:1 cmd.sh

> msub -I -x ./script.pl

> msub -I -x /tmp/command



Description: The job's identifier will not be printed to stdout upon submission.

Example:

No job identifier will be printout the stdout upon successful submission.

Job Script

   The msub command supports job scripts written in any one of the following languages:

Language Notes

PBS/TORQUE Job
Submission Language

---

LoadLeveler Job Submission
Language

Use the INSTANTSTAGE parameter as only a subset of the command file
keywords are interpreted by Moab.

SSS XML Job Object
Specification

---

LSF Job Submission
Language

enabled in Moab 4.2.4 and higher

/etc/msubrc

Sites that wish to automatically add parameters to every job submission can populate the file '/etc/msubrc'
with global parameters that every job submission will inherit.

For example, if a site wished every job to request a particular generic resource they could use the following
/etc/msubrc:

Usage Notes

msub is designed to be as flexible as possible, allowing users accustomed to PBS, LSF, or LoadLeveler
syntax, to continue submitting jobs as they normally would. It is not recommended that different styles be
mixed together in the same msub command.

When only one resource manager is configured inside of Moab, all jobs are immediately staged to the only
resource manager available. However, when multiple resource managers are configured Moab will determine
which resource manager can run the job soonest. Once this has been determined, Moab will stage the job to
the resource manager.

It is possible to have Moab take a "best effort" approach at submission time using the forward flag. When
this flag is specified, Moab will do a quick check and make an intelligent guess as to which resource manager
can run the job soonest and then immediately stage the job.

Moab can be configured to instantly stage a job to the underlying resource manager (like
TORQUE/LOADLEVELER) through the parameter INSTANTSTAGE. When set inside moab.cfg, Moab will
migrate the job instantly to an appropriate resource manager. Once migrated, Moab will destroy all
knowledge of the job and refresh itself based on the information given to it from the underlying resource
manager.

In most instances Moab can determine what syntax style the job belongs to (PBS or LoadLeveler); if Moab is
unable to make a guess, it will default the style to whatever resource manager was configured at compile
time. If LoadLeveler and PBS were both compiled then LoadLeveler takes precedence.

Moab can translate a subset of job attributes from one syntax to another. It is therefore possible to submit a
PBS style job to a LoadLeveler resource manager, and vice versa, though not all job attributes will be
translated.

> msub -z cmd.sh

-W x=GRES:matlab:2

http://www.adaptivecomputing.com/resources/docs/torque//commands/qsub.php
http://www.adaptivecomputing.com/resources/docs/torque//commands/qsub.php
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html
http://sempa/resources/docs/blanks/mwm/sssjobobject3.doc
http://sempa/resources/docs/blanks/mwm/sssjobobject3.doc


Example 1

Example 2

Example 2 is the XML-formatted version of Example 1. See Submitting Jobs via msub in XML for more
information.

See Also

Moab Client Installation - explains how to distribute this command to client nodes
mjobctl command to view, modify, and cancel jobs
checkjob command to view detailed information about the job
mshow command to view all jobs in the queue
DEFAULTSUBMITLANGUAGE parameter
MSUBQUERYINTERVAL parameter
SUBMITFILTER parameter
Applying the msub Submit Filter for job script sample

> msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100kb script2.pbs.cmd

4364.orion

<job>
  
<InitialWorkingDirectory>/home/user/test/perlAPI</InitialWorkingDirecto

  <Executable>/home/user/test/perlAPI/script2.pbs.cmd</Executable>
  <SubmitLanguage>PBS</SubmitLanguage>
  <Requested>
    <Feature>ppn2</Feature>
    <Processors>3</Processors>
    <WallclockDuration>3600</WallclockDuration>
  </Requested>
</job>



Applying the msub Submit Filter
When using msub to submit a job by specifying a job script, msub processes that script and then sends an
XML representation of the job to the Moab scheduler. It is possible to change the job XML before it is sent to
Moab via an msub submission filter.

The filter gives administrators the ability to customize the submission process. Customization may be helpful
if jobs should have certain defaults assigned to them, if an administrator wants to keep detailed submission
statistics, or if an administrator wants to change job requests based on custom needs.

The submit filter, which must be written by an administrator, is a simple executable or script that receives
XML via its standard input and then returns the modified XML in its standard output. To see the schema for
job submission XML, please refer to Submitting Jobs via msub in XML.

Sample Submit Filter Script

The script is executed by the user running msub.

To configure msub to use the submit filter, each submission host must have access to the submit filter
script. Also, you must add a SUBMITFILTER parameter to the Moab configuration file (moab.cfg) on each
submission host. The following exemplifies how you might modify the moab.cfg file:

If you experience problems with your submit filter and want to debug its interaction with msub, enter msub
--loglevel=9, which causes msub to print verbose log messages to the terminal.

#!/usr/bin/perl
use strict;

## Simple filter example that re-directs the output to a file.

my $file = "xmllog.out";

open FILE,">>$file" or die "Couldn't open $file: $!";
while (<>)
{
print FILE;
print;
}
close FILE;  

SUBMITFILTER /home/submitfilter/filter.pl



Submitting Jobs via msub in XML
The following describes the XML format used with the msub command to submit a job to a Moab server. This information can be used to
implement a filter and modify the XML normally generated by the msub command. The XML format described in what follows is based on a
variant of the Scalable Systems Software Job Object Specification.

Overall XML Format

The overall format of an XML request to submit a job can be shown through the following example:

<job> **job attribute children** </job>

An example of a simple job element with all the required children for a job submission is as follows:

<job> <Owner>user</Owner> <UserId>user</UserId> <GroupId>group</GroupId>
<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory> <UMask>18</UMask>
<Executable>/full/path/to/script/or/first/line/of/stdin</Executable> <SubmitLanguage>Resource Manager Type</SubmitLanguage>
<SubmitString>\START\23!/usr/bin/ruby\0contents\20of\20script</SubmitString> </job>

The section that follows entitled Job Element Format describes the possible attributes and their meanings in detail. In actuality, all that is
needed to run a job in Moab is something similar to the following:

<job> <SubmitString>\START\23!/bin/sh\0asleep\201000</SubmitString> </job>

This piece of XML requests Moab to submit a job using the contents of the SubmitString tag as a script, which is in this case a simple sh script
to sleep for 1000 seconds. The msub command will create default values for all other needed attributes.

Job Element Format

The job element of the submission request contains a list of children and string values inside the children that represent the attribute/value
pairs for the job. The earlier section, Overall XML Format, gives an example of this format. This section explains these attributes in detail.

Arguments: The arguments to be passed to the program are normally specified as arguments after the first argument specifying the script to
be executed.

EligibleTime: The minimum time after which the job is eligible. This is the equivalent of the -a option in msub. Format:
[[[[CC]YY]MM]DD]hhmm[.SS]

Environment: The semi-colon list of environment variables that are exported to the job (taken from the msub command environment). The
-V msub flag, for example, adds all the environment variables present at the time msub is invoked. Environment variables are delimited by
the ~rs; characters. Following is an example of the results of the msub -v arg1=1,arg2=2 command:

<Environment>arg1=1~rs;arg2=2~rs;</Environment>

ErrorFile: Defines the path to be used for the standard error stream of the batch job. This is equivalent to the -e flag in msub.

Executable: This is normally either the name of the script to be executed, or the first line of the script if it is passed to msub through
standard input.

Extension: The resource manager extension string. This can be specified via the command line in a number of ways, including the -W x=
directive. Some other requests, such as some extensions used in the -l flag, are also converted to an extension string. The element has the
following format:

<Extension>x=extension</Extension>

See Using the Extension Element to Submit Triggers for additional informaton on the extension element.

GroupId: The string name of the group of the user submitting the job. This will correspond to the user's primary group on the operating
system.

Hold: Specifies that a user hold be applied to the job at submission time. This is the equivalent to the msub flag -h. It will have the form:

<Hold>User</Hold>

InitialWorkingDirectory: Specifies in which directory the job should begin executing. This is equivalent to the -d flag in the msub
command.

<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>

Interactive: Specifies that the job is to be interactive. This is the equivalent of the -I flag in msub.

<Interactive>TRUE</Interactive>

JobName: Specifies the user-specified job name attribute. This is equivalent to the -N flag in msub.

NotificationList: Specifies the job states after which an email should be sent and also specifies the users to be emailed. This is the equivalent
of the -m and -M options in msub.

<NotificationList URI=user1:user2>JobFail,JobStart,JobEnd</NotificationList>

In this example, the command msub -m abe -M user1:user2 ran indicating that emails should be sent when a job fails, starts, or ends, and
that they should be sent to user1 and user2.

OutputFile: Defines the path to be used for the standard output stream of the batch job. This is the equivalent of the -o flag in msub.

Priority: A user-requested priority value. This is the equivalent to the msub -p flag.

http://sempa/resources/docs/blanks/mwm/SSSJobObject_3.0.9.pdf


ProjectId: Defines the account associated with the job. This is equivalent to the -A msub flag.

QueueName: The requested class of the job. This is the equivalent of the msub -q flag.

Requested: Specifies resources and attributes the job specifically requests and has the following form:

<Requested> <... requested attributes> </Requested>

See the section dedicated to requestable attributes in this element.

RMFlags: Flags that will get passed directly to the resource manager on job submission. This is equivalent to any arguments listed after the -l
msub flag.

<RMFlags>arg1 arg2 arg3</RMFlags>

ShellName: Declares the shell that interprets the job script. This is equivalent to the msub flag -S.

SubmitLanguage: Resource manager whose language the job is using. Use TORQUE to specify a TORQUE resource manager.

SubmitString: Contains the contents of the script to be run, retrieved either from an actual script or from standard input. This also includes
all resource manager specific directives that may have been in the script already or added as a result of other command line arguments.

TaskGroup: Groups a set of requested resources together. It does so by encapsulating a Requested element. For example, the command
msub -l nodes=2+nodes=3:ppn=2 generates the following XML:

<TaskGroup> <Requested> <Processors>2</Processors> <TPN>2</TPN> </Requested> </TaskGroup> <TaskGroup> <Requested>
<Processors>2</Processors> </Requested> </TaskGroup>

UserId: The string value of the user ID of the job owner. This will correspond to the user's name on the operating system.

Using the Extension Element to Submit Triggers

Use the Extension element to submit triggers. With the exception of certain characters, the syntax for trigger creation is the same for non-XML
trigger submission. See 19.0 Triggers for detailed information on triggers. The ampersand (&) and less than sign (<) characters must be
replaced for the XML to be valid. The following example shows how the Extension element is used to submit multiple triggers (separated by a
semi-colon). Note that ampersand characters are replaced with &amp; in the example:

<Job> <UserId>user1</UserId> <GroupId>user1</GroupId> <Arguments>60</Arguments> <Executable>/bin/sleep</Executable>
<Extension>x=trig:AType=exec&amp;Action="env"&amp;EType=start;trig:AType=exec&amp;Action="trig2.sh"&amp;EType=end</Extension>
<Processors>3</Processors> <Disk>500</Disk> <Memory>1024</Memory> <Swap>600</Swap>
<WallclockDuration>300</WallclockDuration> <Environment>PERL5LIB=/perl5:</Environment> </Job>

Elements Found in Requested Element

The following describes the tags that can be found in the Requested sub-element of the job element in a job submission request.

Nodes: A list of nodes that the job requests to be run on. This is the equivalent of the -l hosts=<host-list> msub directive.

<Requested> <Nodes> <Node>n1:n2</Node> </Nodes> </Requested>

In this example, the users requested the hosts n1 and n2 with the command msub -l host=n1:n2.

Processors: The number of processors requested by the job. The following example was generated with the command msub -l nodes=5:

<Requested> <Processors>5</Processors> </Requested>

TPN: Tasks per node. This is generated using the ppn resource manager extensions. For example, from msub -l nodes=3:ppn=2, the
following results:

<Requested> <Processors>6</Processors> <TPN>2</TPN> </Requested>

WallclockDuration: The requested wall clock duration of the job. This attribute is specified in the Requested element.

<Requested> <WallclockDuration>3600</WallclockDuration> </Requested>

See Also

Applying the msub Submit Filter
SUBMITFILTER parameter



mvmctl
(Moab Virtual Machine Control)

Synopsis

mvmctl -c [<options>] <vmid>
mvmctl -d <vmid>
mvmctl -m [<options>] <vmid>
mvmctl -M dsthost=<newhost> <vmid>
mvmctl -q <vmid> [--xml]

Overview

mvmctl controls the creation, modification, querying, migration, and destruction of virtual machines (VMs).

Format

-c

Name: Create

Format: [<options>] [<vmid>]

The <options> variable is a comma-separated list of <attr>=<value> pairs.

Where the <attr> attribute is one of the following:

image - The VM type/image to use for the new VM.
hypervisor - The node on which the new VM resides.
disk - Disk space for the VM OS.
mem - Amount of memory to use.
procs - Number of processors for the VM.
sovereign - Boolean.
template - Job template for the VM.
variable - User-defined VM variables (of the form
<varname>:<value>[+<varname>:<value>] — must be a name/value pair).
storage - Storage request (not OS disk storage). Only viable at create time; cannot be
modified. Storage is a percent sign-delimited list of storage requests with the following
form:

ttl - Time-to-live (walltime) of the VM. Can be in seconds or a time string (125:00:00:00
for 125 days, and so forth). Only viable at create time; cannot be modified.
trigger - A trigger to attach to a job. To implement multiple triggers, input mvmctl -c
trigger=x&y,trigger=a&b. The syntax is like other command line trigger definitions. Note
that some escaping may be required on the command line.

Note that the vmid must be unique; Moab returns an error if the name is already taken.

Default: ---

Description: Creates a VM.

Example:

<type>:<size>[@<mountPoint>]

> mvmctl -c image=stateful,hypervisor=node03,mem=512,procs=2 myNewVM 

> mvmctl -c 
image=rhel51,hypervisor=n4,storage=gold:3%silver:5@/home/jason/silver%g



  
-d

Name: Destroy

Format: <vmid>

Default: ---

Description: Destroys the specified VM.

Example:

  
-m

Name: Modify

Format: [<options>] <vmid>

The <options> parameter is a comma-separated list of <attr>=<value> pairs.

Default: ---

Description: Modifies the VM.

Example:

Gevents can be set using gevent.

Gmetrics can be set using gmetric.

Reprovisioning is done by changing os.

Power management is done by modifying powerstate.

The modify variable uses the same syntax as Create.

Notes:
The variable option is a set-only operation. Previous variables will be over-written.

MyTestVM 

> mvmctl -c variable=var1:value1+var2=value2,image=rhel51 

> mvmctl -d oldVM

> mvmctl -m gevent=hitemp:'mymessage' myNewVM 

> mvmctl -m gmetric=bob:5.6 myNewVM 

> mvmctl -m os=compute myNewVM 

> mvmctl -m powerstate=off myNewVM 

> mvmctl -m trigger=etype=start\&atype=exec\&action='trig.py $OID 
$HOSTLIST' myNewVM 

> mvmctl -m variable=user:bob+purpose:myVM myNewVM 



  
-M

Name: Migrate

Format: dsthost=<newhost> <vmid>

Default: ---

Description: Migrate the given VM to the destination host.

Example:

  
-q

Name: Query

Format: <vmid> [--xml]

Default: ---

Description: Queries the specified VM; that is, it returns detailed information about the given VM. May be used
with or without the --xml flag. "ALL" may also be used to display information about all VMs.

Example:

> mvmctl -M dsthost=node05 myNewVM 

< mvmctl -q myNewVM

< mvmctl -q ALL --xml 



resetstats
(Reset Stats)

Synopsis

resetstats

Overview

This command resets all internally-stored Moab Scheduler statistics to the initial start-up state as of the time
the command was executed.

Access

By default, this command can be run by level 1 scheduler administrators.

Example 1

See Also
Moab Client Installation - explains how to distribute this command to client nodes

> resetstats

Statistics Reset at time Wed Feb 25 23:24:55 2004



showbf
(Show Available Resources)

Synopsis

showbf [-A] [-a account] [-c class] [-d duration] [-D] [-f features]
       [-g group] [-L] [-m [==|>|>=|<|<=] memory] [-n nodecount]
       [-p partition] [-q qos] [-u user] [-v]

Overview

Shows what resources are available for immediate use.

This command can be used by any user to find out how many processors are available for immediate use on
the system. It is anticipated that users will use this information to submit jobs that meet these criteria and
thus obtain quick job turnaround times. This command incorporates down time, reservations, and node state
information in determining the available backfill window.

If specific information is not specified, showbf will return information for the user and group running
but with global access for other credentials. For example, if '-q qos' is not specified, Moab will return
resource availability information for a job as if it were entitled to access all QOS based resources (i.e.,
resources covered by reservations with a QOS based ACL), if '-c class' is not specified, the command
will return information for resources accessible by any class.

The showbf command incorporates node configuration, node utilization, node state, and node
reservation information into the results it reports. This command does not incorporate constraints
imposed by credential based fairness policies on the results it reports.

Access

By default, this command can be used by any user or administrator.

Parameters

Parameter Description

ACCOUNT Account name.

CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in [DD:]HH:MM:SS notation.

FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signs are >, >=, ==, <=, and <.

MEMORY Specifies the amount of required real memory configured on the node, (in MB), used with
the -m flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.

PARTITION Specify partition to check with -p flag.

QOS Specify QOS to check with -q flag.

USER Specify particular user to check with -u flag.

Flags



Flag Description

-A Show resource availability information for all users, groups, and accounts. By default, showbf uses
the default user, group, and account ID of the user issuing the command.

-a Show resource availability information only for specified account.

-d Show resource availability information for specified duration.

-D Display current and future resource availability notation.

-g Show resource availability information only for specified group.

-h Help for this command.

-L Enforce Hard limits when showing available resources.

-m Allows user to specify the memory requirements for the backfill nodes of interest. It is important to
note that if the optional MEMCMP and MEMORY parameters are used, they MUST be enclosed in single
ticks (') to avoid interpretation by the shell. For example, enter showbf -m '==256' to request nodes
with 256 MB memory.

-n Show resource availability information for a specified number of nodes. That is, this flag can be used
to force showbf to display only blocks of resources with at least this many nodes available.

-p Show resource availability information for the specified partition.

-q Show information for the specified QOS.

-u Show resource availability information only for specified user.

Example 1

In this example, a job requiring up to 2 processors could be submitted for immediate execution in partition
ClusterA for any duration. Additionally, a job requiring 1 processor could be submitted for immediate
execution in partition ClusterB. Note that by default, each task is tracked and reported as a request for a
single processor.

Example 2

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour runtime and at
least 16 processors. Specifying job duration is of value when time based access is assigned to reservations
(i.e., using the SRCFG TIMELIMIT ACL)

> showbf

Partition     Tasks  Nodes   StartOffset      Duration       StartDate
---------     -----  -----  ------------  ------------  -----------
---
ALL               3      3      00:00:00      INFINITY  11:32:38_08/19
ReqID=0
ClusterA          1      1      00:00:00      INFINITY  11:32:38_08/19
ReqID=0
ClusterB          2      2      00:00:00      INFINITY  11:32:38_08/19
ReqID=0

> showbf -r 16 -d 3:00:00

backFill window (user: 'john' group: 'staff' partition: ALL) Mon Feb 
16 08:28:54

partition ALL:
  33 procs available with no time limit



Example 3

In this example, a resource availability window is requested for processors located only on nodes with at least
512 MB of memory. In the example above, the command output reports that no processors are available for
immediate use which meet this constraint.

See Also
Moab Client Installation - explains how to distribute this command to client nodes
showq
mdiag -t

> showbf -m ' =512'

backfill window (user: 'john' group: 'staff' partition: ALL) Thu Jun 
18 16:03:04

no procs available



showq
(Show Queue)

Synopsis

showq [-b] [-g] [-l] [-c|-i|-r] [-n] [-p partition] [-R rsvid]
      [-v] [-w <CONSTRAINT>]

Overview

Displays information about active, eligible, blocked, and/or recently completed jobs.  Since the resource
manager is not actually scheduling jobs, the job ordering it displays is not valid. The showq command
displays the actual job ordering under the Moab Workload Manager.  When used without flags, this command
displays all jobs in active, idle, and non-queued states.

Access

By default, this command can be run by any user.  However, the -c, -i, and -r flags can only be used by
level 1, 2, or 3 Moab administrators.

Flags

Flag Description

-b display blocked jobs only

-c display details about recently completed jobs (see example, JOBCPURGETIME).

-g display grid job and system id's for all jobs.

-i display extended details about idle jobs. (see example)

-l display local/remote view. For use in a Grid environment, displays job usage of both local and remote
compute resources.

-n displays normal showq output, but lists job names under JOBID

-p display only jobs assigned to the specified partition.

-r display extended details about active (running) jobs. (see example)

-R display only jobs which overlap the specified reservation.

-v Display local and full resource manager job IDs as well as partitions. If specified with the '-i' option,
will display job reservation time. .

-w display only jobs associated with the specified constraint. Valid constraints include user, group,
acct, class, and qos. (see showq -w example.)

Details

   Beyond job information, the showq command will also report if the scheduler is stopped or paused or if a
system reservation is in place. Further, the showq command will also report public system messages.

Examples

Example 1: Default Report
Example 2: Detailed Active/Running Job Report
Example 3: Detailed Eligible/Idle Job Report
Example 4: Detailed Completed Job Report
Example 5: Filtered Job Report

http://sempa/resources/docs/blanks/mwm/17.0peertopeer.php


Example 1: Default Report

   The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and Blocked Jobs.

The fields are as follows:

Column Description

JOBID job identifier.

USERNAME User owning job.

STATE Job State.  Current batch state of the job.

PROC Number of processors being used by the job.

REMAINING/WCLIMIT For active jobs, the time the job has until it has reached its wall clock limit or for
idle/blocked jobs, the amount of time requested by the job. Time specified in
[DD:]HH:MM:SS notation.

STARTTIME Time job started running.

Active Jobs

Active jobs are those that are Running or Starting and consuming resources. Displayed are the job id*, the
job's owner, and the job state.  Also displayed are the number of processors allocated to the job, the amount
of time remaining until the job completes (given in HH:MM:SS notation), and the time the job started. All
active jobs are sorted in "Earliest Completion Time First" order.

*Job id's may be marked with a single character to to specify the following conditions:

Character Description

> showq
 
active jobs------------------------
JOBID              USERNAME      STATE  PROC   REMAINING            
STARTTIME
 
12941               sartois    Running    25     2:44:11  Thu Sep  1 
15:02:50
12954                tgates    Running     4     2:57:33  Thu Sep  1 
15:02:52
12944                 eval1    Running    16     6:37:31  Thu Sep  1 
15:02:50
12946                tgates    Running     2  1:05:57:31  Thu Sep  1 
15:02:50
 
4 active jobs             47 of 48 processors active (97.92%)
                          32 of 32 nodes active      (100.00%)
 
eligible jobs----------------------
JOBID              USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME
 
12956              cfosdyke       Idle    32     6:40:00  Thu Sep  1 
15:02:50
12969              cfosdyke       Idle     4     6:40:00  Thu Sep  1 
15:03:23
12939                 eval1       Idle    16     3:00:00  Thu Sep  1 
15:02:50
12940               mwillis       Idle     2     3:00:00  Thu Sep  1 



_ (underbar) job violates usage limit

* (asterisk) job is backfilled AND is preemptible

+ (plus) job is backfilled AND is NOT preemptible

- (hyphen) job is NOT backfilled AND is preemptible

Detailed active job information can be obtained using the '-r' flag.

Eligible Jobs

Eligible Jobs are those that are queued and eligible to be scheduled. They are all in the Idle job state and do
not violate any fairness policies or have any job holds in place. The jobs in the Idle section display the same
information as the Active Jobs section except that the wall clock CPULIMIT is specified rather than job time
REMAINING, and job QUEUETIME is displayed rather than job STARTTIME. The jobs in this section are
ordered by job priority. Jobs in this queue are considered eligible for both scheduling and backfilling.

Detailed eligible job information can be obtained using the '-i' flag.

Blocked Jobs

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a number of states
for the following reasons:

State Description

Idle Job violates a fairness policy. Use diagnose -q for more information.

UserHold A user hold is in place.

SystemHold An administrative or system hold is in place.

BatchHold A scheduler batch hold is in place (used when the job cannot be run because the requested
resources are not available in the system or because the resource manager has repeatedly
failed in attempts to start the job).

Deferred A scheduler defer hold is in place (a temporary hold used when a job has been unable to start
after a specified number of attempts. This hold is automatically removed after a short period of
time).

NotQueued Job is in the resource manager state NQ (indicating the job's controlling scheduling daemon in
unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 2: Detailed Active/Running Job Report

> showq -r
 
active jobs------------------------
JOBID               S CCODE PAR  EFFIC  XFACTOR  Q      USER    GROUP        
MHOST PROCS   REMAINING            STARTTIME
 
12941               R     -   3 100.00      1.0  -   sartois   Arches       
G5-014 25     2:43:31  Thu Sep  1 15:02:50
12954               R     -   3 100.00      1.0 Hi    tgates   Arches       
G5-016  4     2:56:54  Thu Sep  1 15:02:52
12944               R     -   2 100.00      1.0 De     eval1  RedRock     
P690-016 16     6:36:51  Thu Sep  1 15:02:50
12946               R     -   3 100.00      1.0  -    tgates   Arches       



The fields are as follows:

Column Description

JOBID Name of active job.

S Job State. Either "R" for Running or "S" for Starting.

PAR Partition in which job is running.

EFFIC CPU efficiency of job.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) /
WallClockLimit

Q Quality Of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host running primary task of job.

PROC Number of processors being used by the job.

REMAINING Time the job has until it has reached its wall clock limit. Time specified in HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the running jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

Column Description

JobName Name of active job.

S Job State. Either "R" for Running or "S" for Starting.

CCode Completion Code. The return/completion code given when a job completes. (Only applicable to
completed jobs.)

Par Partition in which job is running.

Effic CPU efficiency of job.

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) /
WallClockLimit

Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Number of processors being used by the job.

Remaining Time the job has until it has reached its wall clock limit. Time specified in HH:MM:SS notation.

G5-001  2  1:05:56:51  Thu Sep  1 15:02:50
 
4 active jobs             47 of 48 processors active (97.92%)
                          32 of 32 nodes active      (100.00%)
 
Total jobs:  4



StartTime Time job started running.

The fields are as follows:

Column Description

JOBID Name of job.

PRIORITY Calculated job priority.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) /
WallClockLimit

Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

PROCS Minimum number of processors required to run job.

WCLIMIT Wall clock limit specified for job. Time specified in HH:MM:SS notation.

CLASS Class requested by job.

SYSTEMQUEUETIME Time job was admitted into the system queue.

An asterisk at the end of a job (job 12956* in this example) indicates that the job has a job
reservation created for it. The details of this reservation can be displayed using the checkjob
command.

Example 4: Detailed Completed Job Report

> showq -i
 
eligible jobs----------------------
JOBID                 PRIORITY  XFACTOR  Q      USER    GROUP  PROCS     
WCLIMIT     CLASS      SYSTEMQUEUETIME
 
12956*                      20      1.0  -  cfosdyke  RedRock     32     
6:40:00     batch  Thu Sep  1 15:02:50
12969*                      19      1.0  -  cfosdyke  RedRock      4     
6:40:00     batch  Thu Sep  1 15:03:23
12939                       16      1.0  -     eval1  RedRock     16     
3:00:00     batch  Thu Sep  1 15:02:50
12940                       16      1.0  -   mwillis   Arches      2     
3:00:00     batch  Thu Sep  1 15:02:50
12947                       16      1.0  -   mwillis   Arches      2     
3:00:00     batch  Thu Sep  1 15:02:50
12949                       16      1.0  -     eval1  RedRock      2     
3:00:00     batch  Thu Sep  1 15:02:50
12953                       16      1.0  -    tgates   Arches     10     
4:26:40     batch  Thu Sep  1 15:02:50
12955                       16      1.0  -     eval1  RedRock      2     
4:26:40     batch  Thu Sep  1 15:02:50
12957                       16      1.0  -    tgates   Arches     16     
3:00:00     batch  Thu Sep  1 15:02:50
12963                       16      1.0  -     eval1  RedRock     16  
1:06:00:00     batch  Thu Sep  1 15:02:52
12964                       16      1.0  -    tgates   Arches     16  
1:00:00:00     batch  Thu Sep  1 15:02:52
12937                        1      1.0  -   allendr  RedRock      9  



The fields are as follows:

Column Description

JOBID job id for completed job.

S Job State. Either "C" for Completed or "V" for Vacated.

CCODE Completion code reported by the job.

PAR Partition in which job ran.

EFFIC CPU efficiency of job.

XFACTOR Expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host which ran the primary task of job.

PROC Number of processors being used by the job.

WALLTIME Wallclock time used by the job.  Time specified in [DD:]HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the active jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

If the DISPLAYFLAGS parameter is set to ACCOUNTCENTRIC, job group information will be replaced
with job account information.

Example 5: Filtered Job Report

   Show only jobs associated with user john and class benchmark

See Also

> showq -c

completed jobs------------------------
JOBID               S CCODE  PAR  EFFIC  XFACTOR  Q  USERNAME    GROUP        
MHOST PROC    WALLTIME            STARTTIME

13098               C     0  bas  93.17      1.0  -   sartois   Arches       
G5-014    25    2:43:31  Thu Sep  1 15:02:50
13102               C     0  bas  99.55      2.2 Hi    tgates   Arches       
G5-016     4    2:56:54  Thu Sep  1 15:02:52
13103               C     2  tes  99.30      2.9 De     eval1  RedRock     
P690-016    16    6:36:51  Thu Sep  1 15:02:50
13115               C     0  tes  97.04      1.0  -    tgates   Arches       
G5-001     2 1:05:56:51  Thu Sep  1 15:02:50

3 completed jobs

> showq -w class=benchmark -w user=john

...



Moab Client Installation - explains how to distribute this command to client nodes
showbf - command to display resource availability.
mdiag -j - command to display detailed job diagnostics.
checkjob - command to check the status of a particular job.
JOBCPURGETIME - parameter to adjust the duration of time Moab preserves information about
completed jobs
DISPLAYFLAGS - parameter to control what job information is displayed



showres
(Show Reservation)

Synopsis

showres [-f] [-n [-g]] [-o] [-r] [reservationid]

Overview

This command displays all reservations currently in place within Moab. The default behavior is to display
reservations on a reservation-by-reservation basis.

Access

By default, this command can be run by any Moab administrator, or by any valid user if the parameter
RSVCTLPOLICY is set to ANY.

Flag Description

-f show free (unreserved) resources rather than reserved resources.  The '-f' flag cannot be used in
conjunction with the any other flag

-g when used with the '-n' flag, shows 'grep'-able output with nodename on every line

-n display information regarding all nodes reserved by <RSVID>

-o display all reservations which overlap <RSVID> (in time and space)  Note: not supported with '-n'
flag

-r display reservation timeframes in relative time mode

-v show verbose output. If used with the '-n' flag, the command will display all reservations found on
nodes contained in <RSVID>. Otherwise, it will show long reservation start dates including the
reservation year.

Parameter Description

RSVID ID of reservation of interest - optional

Example 1

> showres
 
ReservationID       Type S       Start         End    Duration    N/P    
StartTime
 
12941                Job R   -00:05:01     2:41:39     2:46:40   13/25   
Thu Sep  1 15:02:50
12944                Job R   -00:05:01     6:34:59     6:40:00   16/16   
Thu Sep  1 15:02:50
12946                Job R   -00:05:01  1:05:54:59  1:06:00:00    1/2    
Thu Sep  1 15:02:50
12954                Job R   -00:04:59     2:55:01     3:00:00    2/4    
Thu Sep  1 15:02:52
12956                Job I  1:05:54:59  1:12:34:59     6:40:00   16/32   
Fri Sep  2 21:02:50
12969                Job I     6:34:59    13:14:59     6:40:00    4/4    
Thu Sep  1 21:42:50
 
6 reservations located



The above example shows all reservations on the system. The fields are as follows:

Column Description

Type Reservation Type. This will be one of the following: Job, User, Group, Account, or System.

ReservationID This is the name of the reservation. Job reservation names are identical to the job name.
User, Group, or Account reservations are the user, group, or account name followed by a
number. System reservations are given the name SYSTEM followed by a number.

S State. This field is valid only for job reservations. It indicates whether the job is (S)tarting,
(R)unning, or (I)dle.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is
relative to the present time.

End Relative end time of the reservation. Time is displayed in HH:MM:SS notation and is relative
to the present time. Reservation that will not complete in 1,000 hours are marked with the
keyword INFINITY.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1,000
hours are marked with the keyword INFINITY.

Nodes Number of nodes involved in reservation.

StartTime Time Reservation became active.

Example 2

This example shows reservations for nodes. The fields are as follows:

 

> showres -n
reservations on Thu Sep  1 16:49:59
 
NodeName        Type      ReservationID   JobState Task       Start    
Duration  StartTime
 
G5-001           Job              12946    Running    2    -1:47:09  
1:06:00:00  Thu Sep  1 15:02:50
G5-001           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-002           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-002           Job              12953    Running    2   -00:29:37     
4:26:40  Thu Sep  1 16:20:22
G5-003           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-003           Job              12953    Running    2   -00:29:37     
4:26:40  Thu Sep  1 16:20:22
G5-004           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-004           Job              12953    Running    2   -00:29:37     
4:26:40  Thu Sep  1 16:20:22
G5-005           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-005           Job              12953    Running    2   -00:29:37     
4:26:40  Thu Sep  1 16:20:22
G5-006           Job              12956       Idle    2  1:04:12:51     
6:40:00  Fri Sep  2 21:02:50
G5-006           Job              12953    Running    2   -00:29:37     



Column Description

NodeName Node on which reservation is placed.

Type Reservation Type. This will be one of the following: Job, User, Group, Account, or System.

ReservationID This is the name of the reservation. Job reservation names are identical to the job name.
User, Group, or Account reservations are the user, group, or account name followed by a
number. System reservations are given the name SYSTEM followed by a number.

JobState This field is valid only for job reservations. It indicates the state of the job associated with
the reservation.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is
relative to the present time.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1000
hours are marked with the keyword INFINITY.

StartTime Time Reservation became active.

Example 3

In this example, information for a specific reservation (job) is displayed.

See Also:
Moab Client Installation - explains how to distribute this command to client nodes
mrsvctl -c - create new reservations.
mrsvctl -r - release existing reservations.
mdiag -r - diagnose/view the state of existing reservations.
Reservation Overview - description of reservations and their use.

> showres 12956
 
ReservationID       Type S       Start         End    Duration    N/P    
StartTime
 
12956                Job I  1:04:09:32  1:10:49:32     6:40:00   16/32   
Fri Sep  2 21:02:50
 
1 reservation located
 



showstart
(Show Start Estimate)

Synopsis

showstart {jobid|proccount[@duration]|s3jobspec} [-e {all|hist|prio|rsv}]
          [-f] [-g [peer]] [-l qos=<QOS>] [--format=xml]

Overview

This command displays the estimated start time of a job based a number of analysis types. This analysis may
include information based on historical usage, earliest available reservable resources, and priority based
backlog analysis. Each type of analysis will provide somewhat different estimates base on current cluster
environmental conditions. By default, only reservation based analysis is performed.

Historical analysis utilizes historical queue times for jobs which match a similiar processor count and job
duration profile. This information is updated on a sliding window which is configurable within moab.cfg

Reservation based start time estimation incorporates information regarding current administrative, user,
and job reservations to determine the earliest time the specified job could allocate the needed resources and
start running. In essence, this estimate will indicate the earliest time the job would start assuming this job
was the highest priority job in the queue.

Priority based job start analysis determines when the queried job would fit in the queue and determines the
estimated amount of time required to complete the jobs which are currently running or scheduled to run
before this job can start.

In all cases, if the job is running, this command will return the time the job started. If the job already has a
reservation, this command will return the start time of the reservation.

Access

By default, this command can be run by any user.

Parameters

Parameter Description

DURATION duration of pseudo-job to be checked in format [[[DD:]HH:]MM:]SS (default duration is 1
second)

-e estimate method. By default, Moab will use the reservation based estimation method.

-f use feedback. If specified, Moab will apply historical accuracy information to improve the
quality of the estimate. See ENABLESTARTESTIMATESTATS for more information.

-g grid mode. Obtain showstart information from remote resource managers. If -g is not used
and Moab determines that job is already migrated, Moab obtains showstart information form
the remote Moab where the job was migrated to. All resource managers can be queried by
using the keyword "all" which returns all information in a table.

-l
qos=<QOS>

Specifies what QOS the job must start under, using the same syntax as the msub command.
Currently, no other resource manager extensions are supported. This flag only applies to

$ showstart -g all head.1

Estimated Start Times

[ Remote RM ] [ Reservation ] [ Priority ] [ Historical ]
[ c1 ] [ 00:15:35 ] [ ] [ ]
[ c2 ] [ 3:15:38 ] [ ] [ ]



hypothetical jobs by using the proccount[@duration] syntax.

JOBID job to be checked

PROCCOUNT number of processors in pseudo-job to be checked

S3JOBSPEC XML describing the job according to the Dept. of Energy Scalable Systems Software/S3 job
specification.

Example 1

Example 2

You cannot specify job flags when running showstart, and since a job by default can only run on one
partition, showstart fails when querying for a job requiring more nodes than the largest partition
available.

Additional Information

For reservation based estimates, the information provided by this command is more highly accurate if the job
is highest priority, if the job has a reservation, or if the majority of the jobs which are of higher priority have
reservations.  Consequently, sites wishing to make decisions based on this information may want to consider
using the RESERVATIONDEPTH parameter to increase the number of priority based reservations.  This can be
set so that most, or even all idle jobs receive priority reservations and make the results of this command
generally useful.  The only caution of this approach is that increasing the RESERVATIONDEPTH parameter
more tightly constrains the decisions of the scheduler and may resulting in slightly lower system utilization
(typically less than 8% reduction). 

See Also
Moab Client Installation - explains how to distribute this command to client nodes
checkjob

> showstart orion.13762

job orion.13762 requires 2 procs for 0:33:20

Estimated Rsv based start in                 1:04:55 on Fri Jul 15 
12:53:40
Estimated Rsv based completion in            2:44:55 on Fri Jul 15 
14:33:40

Estimated Priority based start in            5:14:55 on Fri Jul 15 
17:03:40
Estimated Priority based completion in       6:54:55 on Fri Jul 15 
18:43:40

Estimated Historical based start in         00:00:00 on Fri Jul 15 
11:48:45
Estimated Historical based completion in     1:40:00 on Fri Jul 15 
13:28:45

Best Partition: fast

> showstart 12@3600

job 12@3600 requires 12 procs for 1:00:00
Earliest start in         00:01:39 on Wed Aug 31 16:30:45
Earliest completion in     1:01:39 on Wed Aug 31 17:30:45
Best Partition: 32Bit

http://sempa/resources/docs/blanks/mwm/SSSWireProtocol_3.0.3.php


showres
showstats -f eststarttime
showstats -f avgqtime
Job Start Estimates



showstate
(Show State)

Synopsis

showstate

Overview

This command provides a summary of the state of the system. It displays a list of all active jobs and a text-
based map of the status of all nodes and the jobs they are servicing. Basic diagnostic tests are also
performed and any problems found are reported.

Access

By default, this command can be run by any Moab Administrator.

Example 1

In this example, nine active jobs are running on the system. Each job listed in the top of the output is
associated with a letter. For example, job fr17n11.942.0 is associated with the letter "A". This letter can now
be used to determine where the job is currently running. By looking at the system "map," it can be found
that job fr17n11.942.0 (job "A") is running on nodes fr2n10, fr2n13, fr2n16, fr3n06 ...

The key at the bottom of the system map can be used to determine unusual node states. For example,
fr7n15 is currently in the state down.

After the key, a series of warning messages may be displayed indicating possible system problems. In this
case, warning message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09.
Also, warning messages indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 is in state
BUSY but has no job assigned to it (it possibly has a runaway job running on it).

> showstate

cluster state summary for Wed Nov 23 12:00:21

    JobID              S      User    Group Procs   Remaining            
StartTime
    ------------------ - --------- -------- ----- -----------  --
-----------------

(A)      fr17n11.942.0 R     johns    staff    16    13:21:15      
Nov 22 12:00:21
(B)      fr17n11.942.0 S     johns    staff    32    13:07:11      
Nov 22 12:00:21
(C)      fr17n11.942.0 R     johns    staff     8    11:22:25      
Nov 22 12:00:21
(D)      fr17n11.942.0 S     johns    staff     8    10:43:43      
Nov 22 12:01:21
(E)      fr17n11.942.0 S     johns    staff     8     9:19:25      
Nov 22 12:01:21
(F)      fr17n11.942.0 R     johns    staff     8     9:01:16      
Nov 22 12:01:21
(G)      fr17n11.942.0 R     johns    staff     1     7:28:25      
Nov 22 12:03:22
(H)      fr17n11.942.0 R     johns    staff     1     3:05:17      
Nov 22 12:04:22
(I)      fr17n11.942.0 S     johns    staff    24     0:54:38      
Nov 22 12:00:22

Usage Summary:  9 Active Jobs  106 Active Nodes



See Also
Moab Client Installation - explains how to distribute this command to client nodes
Specifying Node Rack/Slot Location



showstats
(Show Statistics)

Synopsis

showstats 
showstats -a [accountid] [-v] [-t <TIMESPEC>]
showstats -c [classid] [-v] [-t <TIMESPEC>]
showstats -f
showstats -g [groupid] [-v] [-t <TIMESPEC>]
showstats -j [jobtemplate] [-t <TIMESPEC>]
showstats -n [nodeid] [-t <TIMESPEC>]
showstats -q [qosid] [-v] [-t <TIMESPEC>]
showstats -s
showstats -T [leafid | tree-level]
showstats -u [userid] [-v] [-t <TIMESPEC>]

Overview

This command shows various accounting and resource usage statistics for the system. Historical statistics
cover the timeframe from the most recent execution of the resetstats command.

It is not recommended to query for timeframes larger than one month if Moab is configured without a
database. Doing so may cause Moab to slow down significantly or stop responding. For large queries,
configure Moab with a database connection.

Access

By default, this command can be run by any Moab level 1, 2, or 3 Administrator.

Parameters

Flag Description

-a
[<ACCOUNTID>]

display account statistics

-c [<CLASSID>] display class statistics

-f display full matrix statistics (see showstats -f for full details)

-g [<GROUPID>] display group statistics

-j
[<JOBTEMPLATE>]

display template statistics

-n [<NODEID>] display node statistics (ENABLEPROFILING must be set)

-q [<QOSID>] display QoS statistics

-s display general scheduler statistics

-t display statistical information from the specified timeframe:

Profiling must be enabled for the credential type you want statistics for. See
Credential Statistics for information on how to enable profiling. Also, -t is not a
stand-alone option. It must be used in conjuction with the -a, -c, -g, -n, -q,
or -u flag.

<TIME>[,<TIME>]
        (ABSTIME: [HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 
14:30_06/20)
        (RELTIME: +[[[DD:]HH:]MM:]SS)



-T display fairshare tree statistics

-u [<USERID>] display user statistics

-v display verbose information

Example 1

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of
the output indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical
information from both running and completed jobs.

The fields are as follows:

Column Description

Account Account Number.

Jobs Number of running jobs.

Procs Number of processors allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by account.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by account.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are
calculated by multiplying the number of allocated procs by the length of time the procs were
allocated, regardless of the job's CPU usage.

> showstats -a

Account Statistics Initialized Tue Aug 26 14:32:39

              |----- Running ------|-------------------------------
-- Completed ----------------------------------|
  Account     Jobs Procs ProcHours Jobs    %   PHReq    %    PHDed    
%   FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
   137651       16    92   1394.52  229  39.15 18486  45.26 7003.5  
41.54 40.00   0.77   8.15   5.21  90.70  34.69
   462212       11    63    855.27   43   7.35  6028  14.76 3448.4  
20.45  6.25   0.71   5.40   3.14  98.64  40.83
   462213        6    72    728.12   90  15.38  5974  14.63 3170.7  
18.81  6.25   0.37   4.88   0.52  82.01  24.14
   005810        3    24    220.72   77  13.16  2537   6.21 1526.6   
9.06 -----   1.53  14.81   0.42  98.73  28.40
   175436        0     0      0.00   12   2.05  6013  14.72  958.6   
5.69  2.50   1.78   8.61   5.60  83.64  17.04
   000102        0     0      0.00    1   0.17    64   0.16    5.1   
0.03 -----  10.85  10.85  10.77  27.90   7.40
   000023        0     0      0.00    1   0.17    12   0.03    0.2   
0.00 -----   0.04   0.04   0.19  21.21   1.20



% Percentage of total proc-hours dedicated that were dedicated by account.

FSTgt Fairshare target. An account's fairshare target is specified in the fs.cfg file. This value should
be compared to the account's node-hour dedicated percentage to determine if the target is
being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by
the following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing a
job's actual run time by its specified wall clock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested
walltime it will report an accuracy of 100%.

* These fields are empty until an account has completed at least one job.

Example 2

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the
output indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical

> showstats -g

Group Statistics Initialized Tue Aug 26 14:32:39

              |----- Running ------|------------------------------
--- Completed ----------------------------------|
GroupName  GID Jobs Procs ProcHours Jobs    %   PHReq    %    PHDed    
%   FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
     univ  214   16    92   1394.52  229  39.15 18486  45.26 7003.5  
41.54 40.00   0.77   8.15   5.21  90.70  34.69
      daf  204   11    63    855.27   43   7.35  6028  14.76 3448.4  
20.45  6.25   0.71   5.40   3.14  98.64  40.83
    dnavy  207    6    72    728.12   90  15.38  5974  14.63 3170.7  
18.81  6.25   0.37   4.88   0.52  82.01  24.14
     govt  232    3    24    220.72   77  13.16  2537   6.21 1526.6   
9.06 -----   1.53  14.81   0.42  98.73  28.40
      asp  227    0     0      0.00   12   2.05  6013  14.72  958.6   
5.69  2.50   1.78   8.61   5.60  83.64  17.04
    derim  229    0     0      0.00   74  12.65   669   1.64  352.5   
2.09 -----   0.50   1.93   0.51  96.03  32.60
   dchall  274    0     0      0.00    3   0.51   447   1.10  169.2   
1.00 25.00   0.52   0.88   2.49  95.82  33.67
      nih  239    0     0      0.00   17   2.91   170   0.42  148.1   
0.88 -----   0.95   1.83   0.14  97.59  84.31
    darmy  205    0     0      0.00   31   5.30   366   0.90   53.9   
0.32  6.25   0.14   0.59   0.07  81.33  12.73
  systems   80    0     0      0.00    6   1.03    67   0.16   22.4   
0.13 -----   4.07   8.49   1.23  28.68  37.34
      pdc  252    0     0      0.00    1   0.17    64   0.16    5.1   



information from both running and completed jobs.

The fields are as follows:

Column Description

GroupName Name of group.

GID Group ID of group.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by group.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job
are calculated by multiplying the number of allocated procs by the length of time the procs
were allocated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by group.

FSTgt Fairshare target. A group's fairshare target is specified in the fs.cfg file. This value should be
compared to the group's node-hour dedicated percentage to determine if the target is being
met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated
by the following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU
time used by the job by the node-hours allocated to the job.

WCAcc* Average wall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing a
job's actual run time by its specified wall clock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested
walltime it will report an accuracy of 100%.

* These fields are empty until a group has completed at least one job.

Example 3

> showstats -n
node stats from Mon Jul 10 00:00:00 to Mon Jul 10 16:30:00

node      CfgMem MinMem MaxMem AvgMem | CfgProcs MinLoad MaxLoad 
AvgLoad
node01     58368      0  21122   5841       32    0.00   32.76   
27.62



Example 4

This example shows a concise summary of the system scheduling state. Note that showstats and showstats
-s are equivalent.

The first line of output indicates the number of scheduling iterations performed by the current scheduling
process, followed by the time the scheduler started. The second line indicates the amount of time the Moab
Scheduler has been scheduling in HH:MM:SS notation followed by the statistics initialization time.

The fields are as follows:

Column Description

Active Jobs Number of jobs currently active (Running or Starting).

node02    122880      0  19466    220       30    0.00   33.98   
29.54
node03     18432      0   9533   2135       24    0.00   25.10   
18.64
node04     60440      0  17531   4468       32    0.00   30.55   
24.61
node05     13312      0   2597   1189        8    0.00    9.85    
8.45
node06     13312      0   3800   1112        8    0.00    8.66    
5.27
node07     13312      0   2179   1210        8    0.00    9.62    
8.27
node08     13312      0   3243   1995        8    0.00   11.71    
8.02
node09     13312      0   2287   1943        8    0.00   10.26    
7.58
node10     13312      0   2183   1505        8    0.00   13.12    
9.28
node11     13312      0   3269   2448        8    0.00    8.93    
6.71
node12     13312      0  10114   6900        8    0.00   13.13    
8.44

> showstats -v

current scheduler time: Sat Aug 18 18:23:02 2007

moab active for      00:00:01   started on Wed Dec 31 17:00:00
statistics for iteration     0  initialized on Sat Aug 11 23:55:25

Eligible/Idle Jobs:                 6/8      (75.000%)
Active Jobs:                       13
Successful/Completed Jobs:        167/167    (100.000%)
Preempt Jobs:                       0
Avg/Max QTime (Hours):           0.34/2.07
Avg/Max XFactor:                 1.165/3.26
Avg/Max Bypass:                  0.40/8.00

Dedicated/Total ProcHours:      4.46K/4.47K  (99.789%)
Preempt/Dedicated ProcHours:     0.00/4.46K  (0.000%)

Current Active/Total Procs:        32/32     (100.0%)
Current Active/Total Nodes:        16/16      (100.0%)

Avg WallClock Accuracy:          64.919%
Avg Job Proc Efficiency:         99.683%
Min System Utilization:          87.323% (on iteration 46)
Est/Avg Backlog:                02:14:06/03:02:567



Eligible Jobs Number of jobs in the system queue (jobs that are considered when scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the LoadLeveler Idle
state.

Completed Jobs Number of jobs completed since statistics were initialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max XFactor Maximum expansion factor of completed jobs.

Max Bypass Maximum bypass of completed jobs.

Available
ProcHours

Total proc-hours available to the scheduler.

Dedicated
ProcHours

Total proc-hours made available to jobs.

Effic Scheduling efficiency (DedicatedProcHours / Available ProcHours).

Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.

Iteration Iteration on which the minimum scheduling efficiency occurred.

Available Procs Number of procs currently available.

Busy Procs Number of procs currently busy.

Effic Current system efficiency (BusyProcs/AvailableProcs).

WallClock Accuracy Average wall clock accuracy of completed jobs (job-weighted average).

Job Efficiency Average job efficiency (UtilizedTime / DedicatedTime).

Est Backlog Estimated backlog of queued work in hours.

Avg Backlog Average backlog of queued work in hours.

Example 5

> showstats -u

User Statistics Initialized Tue Aug 26 14:32:39

              |----- Running ------|------------------------------
--- Completed ----------------------------------|
 UserName  UID Jobs Procs ProcHours Jobs    %   PHReq    %    PHDed    
%   FSTgt  AvgXF  MaxXF  AvgQH  Effic  WCAcc
  moorejt 2617    1    16     58.80    2   0.34   221   0.54 1896.6  
11.25 -----   1.02   1.04   0.14  99.52 100.00
    zhong 1767    3    24    220.72   20   3.42  2306   5.65 1511.3   
8.96 -----   0.71   0.96   0.49  99.37  67.48
      lui 2467    0     0      0.00   16   2.74  1970   4.82 1505.1   
8.93 -----   1.02   6.33   0.25  98.96  57.72
    evans 3092    0     0      0.00   62  10.60  4960  12.14 1464.3   
8.69   5.0   0.62   1.64   5.04  87.64  30.62
   wengel 2430    2    64    824.90    1   0.17   767   1.88  630.3   
3.74 -----   0.18   0.18   4.26  99.63   0.40
    mukho 2961    2    16     71.06    6   1.03   776   1.90  563.5   
3.34 -----   0.31   0.82   0.20  93.15  30.28
  jimenez 1449    1    16    302.29    2   0.34   768   1.88  458.3   



This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the
output indicates the timeframe covered by the displayed statistics.

The statistical output is divided into two statistics categories, Running and Completed. Running statistics
include information about jobs that are currently running. Completed statistics are compiled using historical
information from both running and completed jobs.

The fields are as follows:

Column Description

UserName Name of user.

UID User ID of user.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are
calculated by multiplying the number of allocated procs by the length of time the procs were
allocated, regardless of the job's CPU usage.

% Percentage of total prochours dedicated that were dedicated by user.

FSTgt Fairshare target. A user's fairshare target is specified in the fs.cfg file. This value should be
compared to the user's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by
the following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a
job's actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested
walltime it will report an accuracy of 100%.

2.72 -----   0.80   0.98   2.31  97.99  70.30
     neff 3194    0     0      0.00   74  12.65   669   1.64  352.5   
2.09  10.0   0.50   1.93   0.51  96.03  32.60
   cholik 1303    0     0      0.00    2   0.34   552   1.35  281.9   
1.67 -----   1.72   3.07  25.35  99.69  66.70
 jshoemak 2508    1    24    572.22    1   0.17   576   1.41  229.1   
1.36 -----   0.55   0.55   3.74  99.20  39.20
     kudo 2324    1     8    163.35    6   1.03  1152   2.82  211.1   



* These fields are empty until a user has completed at least one job.

Example 6

See Also
Moab Client Installation - explains how to distribute this command to client nodes
resetstats command - re-initialize statistics
showstats -f command - display full matrix statistics

> showstats -T
statistics initialized Mon Jul 10 15:29:41

              |-------- Active ---------|-------------------------
--------- Completed -----------------------------------|
user           Jobs Procs ProcHours  Mem Jobs    %    PHReq    %    
PHDed    %   FSTgt   AvgXF  MaxXF  AvgQH  Effic  WCAcc
root              0     0      0.00    0   56 100.00  2.47K 100.00  
1.58K  48.87 -----    1.22   0.00   0.24 100.00  58.84
 l1.1             0     0      0.00    0   25  44.64 845.77  34.31 
730.25  22.54 -----    1.97   0.00   0.20 100.00  65.50
  Administrati    0     0      0.00    0   10  17.86 433.57  17.59 
197.17   6.09 -----    3.67   0.00   0.25 100.00  62.74
  Engineering     0     0      0.00    0   15  26.79 412.20  16.72 
533.08  16.45 -----    0.83   0.00   0.17 100.00  67.35
 l1.2             0     0      0.00    0   31  55.36  1.62K  65.69 
853.00  26.33 -----    0.62   0.00   0.27 100.00  53.46
  Shared          0     0      0.00    0    3   5.36  97.17   3.94  
44.92   1.39 -----    0.58   0.00   0.56 100.00  31.73
  Test            0     0      0.00    0    3   5.36  14.44   0.59  
14.58   0.45 -----    0.43   0.00   0.17 100.00  30.57
  Research        0     0      0.00    0   25  44.64  1.51K  61.16 
793.50  24.49 -----    0.65   0.00   0.24 100.00  58.82

> showstats -T 2
statistics initialized Mon Jul 10 15:29:41

              |-------- Active ---------|-------------------------



showstats -f
(showstats -f)

Synopsis

showstats -f statistictype

Overview

Shows table of various scheduler statistics.

This command displays a table of the selected Moab Scheduler statistics, such as expansion factor, bypass
count, jobs, proc-hours, wall clock accuracy, and backfill information.

Access

This command can be run by any Moab Scheduler Administrator.

Parameters

Parameter Description

AVGBYPASS Average bypass count. Includes summary of job-weighted expansion bypass and total
samples.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and total samples.

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion factor, processor-
weighted expansion factor, processor-hour-weighted expansion factor, and total number
of samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job percent and
total samples.

BFPHRUN Number of proc-hours backfilled. Includes summary of job-weighted backfill proc-hour
percentage and total samples.

ESTSTARTTIME Job start time estimate for jobs meeting specified processor/duration criteria. This
estimate is based on the reservation start time analysis algorithm.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

JOBEFFICIENCY Job efficiency. Includes summary of job-weighted job efficiency percent and total samples.

MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and total samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum expansion factor and
total samples.

PHREQUEST proc-hours requested. Includes summary of total proc-hours requested and total samples.

PHRUN proc-hours run. Includes summary of total proc-hours run and total samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of service success
rate and total samples.

WCACCURACY Wall clock accuracy. Includes summary of overall wall clock accuracy and total samples.

Example 1

> showstats -f AVGXFACTOR



The showstats -f command returns a table with data for the specified STATISTICTYPE parameter. The left-
most column shows the maximum number of processors required by the jobs shown in the other columns.
The column headers indicate the maximum wall clock time (in HH:MM:SS notation) requested by the jobs
shown in the columns. The data returned in the table varies by the STATISTICTYPE requested. For table
entries with one number, it is of the data requested. For table entries with two numbers, the left number is
the data requested and the right number is the number of jobs used to calculate the average. Table entries
that contain only dashes (-------) indicate no job has completed that matches the profile associated for this
inquiry. The bottom row shows the totals for each column. Following each table is a summary, which varies
by the STATISTICTYPE requested.

The column and row break down can be adjusted using the STATPROC* and STATTIME* parameters
respectively.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of
information -- the average expansion factor for all jobs that meet this slot's profile and the number of jobs
that were used to calculate this average. For example, the XFactors of two jobs were averaged to obtain an
average XFactor of 1.24 for jobs requiring over 2 hours 8 minutes, but not more than 4 hours 16 minutes
and between 5 and 8 processors. Totals along the bottom provide overall XFactor averages weighted by job,
processors, and processor-hours.

See Also
Moab Client Installation - explains how to distribute this command to client nodes
resetstats command
showstats command
STATPROCMIN parameter
STATPROCSTEPCOUNT parameter
STATPROCSTEPSIZE parameter
STATTIMEMIN parameter
STATTIMESTEPCOUNT parameter
STATTIMESTEPSIZE parameter

Average XFactor Grid

[ NODES ][ 00:02:00 ][ 00:04:00 ][ 00:08:00 ][ 00:16:00 ][ 00:32:00 
][ 01:04:00 ][ 02:08:00 ][ 04:16:00 ][ 08:32:00 ][ 17:04:00 ][ 
34:08:00 ][   TOTAL  ]
[    1  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][ -------- ][ -------- ][ -------- ][ -------- ][ 
-------- ][ -------- ]
[    2  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][ -------- ][ -------- ][ -------- ][ -------- ][ 
-------- ][ -------- ]
[    4  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][  1.00   1][ -------- ][  1.12   2][ -------- ][ --
------ ][  1.10   3]
[    8  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][  1.00   2][  1.24   2][ -------- ][ -------- ][ --
------ ][  1.15   4]
[   16  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][  1.01   2][ -------- ][ -------- ][ -------- ][ -------- ][ -
------- ][  1.01   2]
[   32  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][ -------- ][ -------- ][ -------- ][ -------- ][ 
-------- ][ -------- ]
[   64  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------
- ][ -------- ][ -------- ][ -------- ][ -------- ][ -------- ][ 
-------- ][ -------- ]
[  128  ][ -------- ][ -------- ][ -------- ][ -------- ][ -------



canceljob
(Cancel Job)

This command is deprecated. Use mjobctl -c instead.

Synopsis

canceljob jobid [jobid]...

Overview

The canceljob command is used to selectively cancel the specified job(s) (active, idle, or non-queued) from
the queue.

Access

This command can be run by any Moab Administrator and by the owner of the job (see ADMINCFG).
Flag Name Format Default Description Example
-h HELP  N/A Display usage information > canceljob -h

 JOB
ID

<STRING> --- a jobid, a job expression, or the keyword
'ALL'

> canceljob 13001
13003

Example 1

  Cancel job 6397

> canceljob 6397



changeparam
(Change Parameter)

This command is deprecated. Use mschedctl -m instead.

Synopsis

changeparam parameter value

Overview

   The changeparam command is used to dynamically change the value of any parameter which can be
specified in the moab.cfg file. The changes take affect at the beginning of the next scheduling iteration. They
are not persistent, only lasting until Moab is shutdown.

   changeparam is a compact command of mschedctl -m.

Access

   This command can be run by a level 1 Moab administrator.

Format

Flag Name Format Default Description Example
 PARAMETER <STRING> [NONE] The name a Moab configuration parameter  
 VALUE <STRING> [NONE] any valid value for <PARAMETER>  

Example 1

   Set Moab's LOGLEVEL to 6 for the current run:

changeparam

Example 2

   Set Moab's ADMIN1 userlist to sys, mike and peter

changeparam

> changeparam LOGLEVEL 6

parameters changed

> changeparam ADMIN1 sys mike peter

parameters changed



diagnose
(Diagnostics)

This command is deprecated. Use mdiag instead.

Synopsis

diagnose -a [accountid]
diagnose -b [-l policylevel] [-t partition]
diagnose -c [classid]
diagnose -C [configfile]
diagnose -f [-o user|group|account|qos|class]
diagnose -g [groupid]
diagnose -j [jobid]
diagnose -L
diagnose -m [rackid]
diagnose -n [-t partition] [nodeid]
diagnose -p [-t partition]
diagnose -q [qosid]
diagnose -r [reservationid]
diagnose -R [resourcemanagername]
diagnose -s [standingreservationid]
diagnose -S
diagnose -u [userid]
diagnose -v
diagnose -x

Overview

The diagnose command is used to display information about various aspects of scheduling and the results of
internal diagnostic tests.



releasehold
(Release Hold)

This command is deprecated. Use mjobctl -u instead.

Synopsis

releasehold [-a|-b] jobexp

Overview

Release hold on specified job(s).

This command allows you to release batch holds or all holds (system, user, and batch) on specified jobs. Any
number of jobs may be released with this command.

Access

By default, this command can be run by any Moab Scheduler Administrator.

Parameters

JOBEXP Job expression of job(s) to release.

Flags

-a Release all types of holds (user, system, batch) for specified job(s).

-b Release batch hold from specified job(s).

-h Help for this command.

Example 1

releasehold -b

   In this example, a batch hold was released from this one job.

Example 2

releasehold -a

   In this example, all holds were released from the specified jobs.

See Also

sethold

> releasehold -b 6443

batch hold released for job 6443

> releasehold -a "81[1-6]"

holds modified for job 811
holds modified for job 812
holds modified for job 813
holds modified for job 814
holds modified for job 815
holds modified for job 816



mjobctl



releaseres
(Release Reservation)

This command is deprecated. Use mrsvctl -r instead.

Synopsis

releaseres [arguments] reservationid [reservationid...]

Overview

Release existing reservation.

This command allows Moab Scheduler Administrators to release any user, group, account, job, or system
reservation. Users are allowed to release reservations on jobs they own. Note that releasing a reservation on
an active job has no effect since the reservation will be automatically recreated.

Access

Users can use this command to release any reservation they own.  Level 1 and level 2 Moab administrators
may use this command to release any reservation.

Parameters 
 

RESERVATION ID                            Name of reservation to release.

Example 1

   Release two existing reservations.

> releaseres system.1 bob.2 released User reservation 'system.1' released User reservation 'bob.2'



runjob
(Run Job)

This command is deprecated. Use mjobctl -x instead.

Synopsis

runjob [-c|-f|-n nodelist|-p partition|-s|-x] jobid

Overview

This command will attempt to immediately start the specified job.

runjob is a deprecated command, replaced by mjobctl

Access

By default, this command can be run by any Moab administrator.

Parameters

JOBID Name of the job to run.

 

Args Description

-c Clear job parameters from previous runs (used to clear PBS neednodes attribute after
PBS job launch failure) 

-f Attempt to force the job to run, ignoring throttling policies

-n
<NODELIST>

Attempt to start the job using the specified nodelist where nodenames are comma or
colon delimited

-p
<PARTITION>

Attempt to start the job in the specified partition

-s Attempt to suspend the job

-x Attempt to force the job to run, ignoring throttling policies, QoS constraints, and
reservations

Example

   This example attempts to run job cluster.231.

> runjob cluster.231 job cluster.231 successfully started

See Also:

mjobctl
canceljob - cancel a job.
checkjob - show detailed status of a job.
showq - list queued jobs.



sethold
(Set Hold)

This command is deprecated. Use mjobctl -h instead.

Synopsis

sethold [-b] jobid [jobid...]

Overview

Set hold on specified job(s).

Permissions

This command can be run by any Moab Scheduler Administrator. Parameters

JOB Job number of job to hold.

Flags

-
b

Set a batch hold. Typically, only the scheduler places batch holds. This flag allows an administrator to
manually set a batch hold.

-
h

Help for this command.

Example 1

   In this example, a batch hold is placed on job fr17n02.1072.0 and job fr15n03.1017.0.

> sethold -b fr17n02.1072.0 fr15n03.1017.0 Batch Hold Placed on All Specified Jobs



setqos
(Set QoS)

This command is deprecated. Use mjobctl -m instead.

Synopsis

setqos qosid jobid

Overview

Set Quality Of Service for a specified job.

This command allows users to change the QOS of their own jobs.

Access

This command can be run by any user.

Parameters

JOBID Job name.

QOSID QOS name.

Example 1

   This example sets the Quality Of Service to a value of high_priority for job moab.3.

> setqos high_priority moab.3 Job QOS Adjusted



setres
(Set Reservation)

This command is deprecated. Use mrsvctl -c instead.

Synopsis

setres [arguments] resourceexpression

Overview

Reserve resources for use by jobs with particular credentials or attributes.

ARGUMENTS:

                [ -a <ACCOUNT_LIST ] 
                [ -b <SUBTYPE ] 
                [ -c <CHARGE_SPEC> ] 
                [ -d <DURATION> ] 
                [ -e <ENDTIME> ] 
                [ -E ]   // EXCLUSIVE 
                [ -f <FEATURE_LIST> ] 
                [ -g <GROUP_LIST> ] 
                [ -n <NAME> ] 
                [ -o <OWNER> ] 
                [ -p <PARTITION> ] 
                [ -q <QUEUE_LIST> ]   // (ie CLASS_LIST) 
                [ -Q <QOSLIST> ] 
                [ -r <RESOURCE_DESCRIPTION> ] 
                [ -R <RESERVATION_PROFILE> ] 
                [ -s <STARTTIME> ] 
                [ -T <TRIGGER> ] 
                [ -u <USER_LIST> ] 
                [ -x <FLAGS> ] 

Access

   This command can be run by level 1 and level 2 Moab administrators.

Parameters

Name Format Default Description

ACCOUNT_LIST <STRING>[:<STRING>]... --- list of accounts that will be allowed
access to the reserved resources

SUBTYPE <STRING> --- specify the subtype for a reservation

CHARGE_SPEC <ACCOUNT>[,<GROUP>[,<USER>]] ---
specifies which credentials will be
accountable for unused resources
dedicated to the reservation

CLASS_LIST <STRING>[:<STRING>]... --- list of classes that will be allowed
access to the reserved resource

DURATION [[[DD:]HH:]MM:]SS INFINITY duration of the reservation (not
needed if ENDTIME is specified)

ENDTIME
[HH[:MM[:SS]]][_MO[/DD[/YY]]]  
or  
+[[[DD:]HH:]MM:]SS

INFINITY
absolute or relative time reservation
will end (not required if Duration
specified)

EXCLUSIVE N/A N/A requests exclusive access to resources

FEATURE_LIST <STRING>[:<STRING>]... --- list of node features which must be



possessed by the reserved resources

FLAGS <STRING>[:<STRING>]... --- list of reservation flags (See Managing
Reservations for details)

GROUP_LIST <STRING>[:<STRING>]... --- list of groups that will be allowed
access to the reserved resources

NAME <STRING>

name set to
first name
listed in
ACL or
SYSTEM if no
ACL
specified

name for new reservation

OWNER
<CREDTYPE>:<CREDID> where
CREDTYPE is one of user, group,
acct, class, or qos

N/A specifies which credential is granted
reservation ownership privileges

PARTITION <STRING> [ANY] partition in which resources must be
located

QOS_LIST <STRING>[:<STRING>]... --- list of QOS's that will be allowed
access to the reserved resource

RESERVATION_

PROFILE
existing reservation profile ID N/A

requests that default reservation
attributes be loaded from the specified
reservation profile (see RSVPROFILE)

RESOURCE_ 
DESCRIPTION

colon delimited list of zero or more
of the following <ATTR>=<VALUE>
pairs 
PROCS=<INTEGER> 
MEM=<INTEGER> 
DISK=<INTEGER> 
SWAP=<INTEGER>
GRES=<STRING>

PROCS=-1
specifies the resources to be reserved
per task.  (-1 indicates all resources
on node)

RESOURCE_ 
EXPRESSION

ALL  
or 
TASKS{==|>=}<TASKCOUNT>  
or  
<HOST_REGEX>

Required
Field.  No
Default

specifies the tasks to reserve.  ALL
indicates all resources available should
be reserved. 
Note:   If ALL or a host expression is
specified, Moab will apply the
reservation regardless of existing
reservations and exclusive issues. If
TASKS is used, Moab will only allocate
accessible resources.

STARTTIME
[HH[:MM[:SS]]][_MO[/DD[/YY]]]  
or  
+[[[DD:]HH:]MM:]SS

NOW absolute or relative time reservation
will start

TRIGGER <STRING> N/A

comma delimited reservation trigger
list following format described in the
trigger format section of the
reservation configuration overview.

USER_LIST <STRING>[:<STRING>]... --- list of users that will be allowed access
to the reserved resources

Description

   The setres command allows an arbitrary block of resources to be reserved for use by jobs which meet the
specified access constraints.  The timeframe covered by the reservation can be specified on either an absolute
or relative basis.  Only jobs with credentials listed in the reservation ACL (i.e., USERLIST, GROUPLIST,...)
can utilize the reserved resources.  However, these jobs still have the freedom to utilize resources outside of
the reservation.  The reservation will be assigned a name derived from the ACL specified.  If no reservation
ACL is specified, the reservation is created as a system reservation and no jobs will be allowed access to the
resources during the specified timeframe (valuable for system maintenance, etc).  See the Reservation
Overview for more information.



   Reservations can be viewed using the showres command and can be released using the releaseres
command.

Example 1

   Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

Example 2

   Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00
PM.

Example 3

   Reserve one processor and 512 MB of memory on nodes node003 through node 006 for members of the
group staff and jobs in the interactive class.

> setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2

reservation 'john.1' created on 2 nodes (2 tasks)

node001:1
node005:1

> setres -s 8:00:00_06/20 -e 17:00:00_06/22 ALL

reservation 'system.1' created on 8 nodes (8 tasks)

node001:1
node002:1
node003:1
node004:1
node005:1
node006:1
node007:1
node008:1

> setres -r PROCS=1:MEM=512 -g staff -l interactive 'node00[3-6]'

reservation 'staff.1' created on 4 nodes (4 tasks)

node003:1
node004:1
node005:1
node006:1



setspri
(Set System Priorities)

This command is deprecated. Use mjobctl -p instead.

Synopsis

setspri [-r] priority jobid

Overview

(This command is deprecated by the mjobctl command)

Set or remove absolute or relative system priorities for a specified job.

This command allows you to set or remove a system priority level for a specified job. Any job with a system
priority level set is guaranteed a higher priority than jobs without a system priority. Jobs with higher system
priority settings have priority over jobs with lower system priority settings.

Access

This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Name of job.

PRIORITY
System priority level. By default, this priority is an absolute priority overriding the policy
generated priority value. Range is 0 to clear, 1 for lowest, 1000 for highest. The given value is
added onto the system priority (see 32-bit and 64-bit values below), except for a given value
of zero. If the '-r' flag is specified, the system priority is relative, adding or subtracting the
specified value from the policy generated priority.

If a relative priority is specified, any value in the range +/- 1,000,000,000 is acceptable.

Flags

-r Set relative system priority on job.

Example 1

   In this example, a system priority of 10 is set for job orion.4752

Example 2

   In this example, system priority is cleared for job clusterB.1102

Example 3

> setspri 10 orion.4752 

job system priority adjusted

> setspri 0 clusterB.1102

job system priority adjusted



   In this example, the job's priority will be increased by 100000 over the value determine by configured
priority policy.

Note: This command is deprecated.  Use mjobctl instead.

> setspri -r 100000 job.00001

job system priority adjusted



showconfig
(Show Configuration)

This command is deprecated. Use mschedctl -l

Synopsis

showconfig [-v]

Overview

View the current configurable parameters of the Moab Scheduler.

   The showconfig command shows the current scheduler version and the settings of all 'in memory'
parameters.  These parameters are set via internal defaults, command line arguments, environment variable
settings, parameters in the moab.cfg file, and via the mschedctl -m command.  Because of the many sources
of configuration settings, the output may differ from the contents of the moab.cfg file.  The output is such
that it can be saved and used as the contents of the moab.cfg file if desired.

Access

This command can be run by a level 1, 2, or 3 Moab administrator.

Flags

-
h

Help for this command.

-
v

This optional flag turns on verbose mode, which shows all possible Moab Scheduler parameters and
their current settings. If this flag is not used, this command operates in context-sensitive terse mode,
which shows only relevant parameter settings. 

Example 1

showconfig

IMPORTANT Note:  The showconfig flag without the '-v' flag does not show the settings of all parameters. 
It does show all major parameters and all parameters which are in effect and have been set to non-default
values.  However, it hides other rarely used parameters and those which currently have no effect or are set
to default values.  To show the settings of all parameters, use the '-v' (verbose) flag.  This will provide an
extended output.  This output is often best used in conjunction with the 'grep' command as the output can be
voluminous.

See Also:

Use the mschedctl -m command to change the various Moab Scheduler parameters.
See the Parameters document for details about configurable parameters.

> showconfig

# moab scheduler version 4.2.4 (PID: 11080)

BACKFILLPOLICY                  FIRSTFIT
BACKFILLMETRIC                  NODES

ALLOCATIONPOLICY                MINRESOURCE
RESERVATIONPOLICY               CURRENTHIGHEST
...



Appendix H: Interfacing with Moab (APIs)
Moab provides numerous interfaces allowing it to monitor and manage most services and resources. It also
possesses flexible interfaces to allow it to interact with peer services and applications as both a broker and an
information service. This appendix is designed to provide a general overview and links to more detailed
interface documentation.

H.1 Moab Query and Control APIs
Allow external portals and services to obtain information about compute resources, workload,
and usage statistics.

H.2 Resource Management Interfaces
Allow Moab to monitor, schedule, and control services and resources.

H.3 Identity and Credential Management Interfaces
Allow monitoring and active management of user configuration, credentials, policies, and usage
information.

H.4 Accounting and Event Interfaces
Allow import/export of accounting and event information to external entities.

H.5 Grid Services API
Provide and use information, data, job, and resource management services in a distributed
environment.

H.6 Discovery/Directory Services
H.7 Job Submission and Management Interface

Query resource availability, submit, modify, and manage jobs, and query the status of active
and completed jobs.

Moab interfaces to systems providing various services and using various protocols. This appendix is designed
to assist users who want to enable Moab in new environments using one of the existing interfaces. It does
not cover the steps required to create a new interface.

H.1 Query and Control APIs
The Moab Cluster and Grid Suites provide a (Moab) workload manager server that supports a broad array of
client services. These services can either be directly accessed via Moab client commands or by way of a
number of APIs. Which approach is best will depend on the particular use case.

Java API
C API
CLI/XML API

H.1.1 Java API

The Moab-API is a Java library that allows Java developers to easily communicate with and interact with the
Moab Workload Manager. The API handles the details of creating a secure connection, reporting information
about workload and resources, and creating basic commands.

New users are encouraged to view the Moab Java API Quick Start Guide for details on interfacing with this
API. The complete Javadocs are also available for review.

H.1.2 C API

The Moab C API provides access to all Moab information and services. This API consists of both easy to use
high-level calls and powerful and flexible low-level calls.

High-Level C API Calls

free
initialize
jobcancel
jobcheckpoint
jobgetres
jobgettime

http://www.adaptivecomputing.com/resources/docs/blanks/javadocs/index.html


joblistres
jobmigrate
jobmodify
jobquery
jobrequeue
jobresume
jobsignal
jobstart
jobsubmit
jobsuspend
nodemodify

MCCInitialize(Host,Port,&C)

Args: Host: (char *) optional server hostname or NULL
Port: (int) optional server port or 0
C: (void **) opaque interface handle

Return
Code:

Returns 0 on success or -1 on failure

Description: This call initializes the interface between the client and the server. It must be called once
before attempting to issue any Moab client calls.

  
MCCJobCancel(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to cancel (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will cancel the specified job. If failures occur and EMsg is provided, this buffer will be
populated with a human-readable error message.

  
MCCJobCheckpoint(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to cancel (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will checkpoint the specified job. If failures occur and EMsg is provided, this buffer
will be populated with a human-readable error message.

  
MCCJobGetNumAllocRes(C,JID,Count,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to query (optional)
Count: (int *) output value (number of allocated hosts)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will return the number of allocated hosts for the specified job. If failures occur and
EMsg is provided, this buffer will be populated with a human-readable error message.



  
MCCJobGetRemainingTime(C,JID,Time,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to query (optional)
Time: (long *) output value (remaining time in seconds)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will return the remaining wallclock duration/time for the specified job. If failures occur
and EMsg is provided, this buffer will be populated with a human-readable error message.

Note: This call can be made to cache data for performance reasons by setting the
MCCCACHETIME #define to the desired cache duration (in seconds) at build time.

  
MCCJobListAllocRes(C,JID,OBuf,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to query (optional)
OBuf: (char **) output response string (comma delimited host list)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will return a list of allocated hosts for the specified job. If failures occur and EMsg is
provided, this buffer will be populated with a human-readable error message.

  
MCCJobMigrate(C,JID,Dest,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to migrate (optional)
Dest: (char *) destination cluster or list of hosts (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will migrate the specified job. If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCJobModify(C,JID,Attr,Val,Op,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) id of job to modify (optional - if not specified, modify job in current context)
Attr: (char *) job attribute to modify (see mjobctl)
Val:(char *) value to use when modifying specified attribute
Op:(char *) operation to perform on attribute (one of set, unset, incr, or decr)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will modify the attributes of either the specified job (if JID is populated) or the job in
the current context (if JID is empty). If failures occur and EMsg is provided, this buffer will be
populated with a human-readable error message.

  
MCCJobQuery(C,JID,OBuf,EMsg)



Args: C: (void **) address of interface handle
JID: (char *) job id to query (optional - if not specified, report all jobs)
OBuf: (char **) output response string (reported in XML)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will suspend the specified job. If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCJobRequeue(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to requeue (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will requeue the specified job. If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCJobResume(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to resume (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will resume the specified job. If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCJobSignal(C,JID,Signo,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to resume (optional)
Signo: (int) job signal to send to job
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will signal the specified job. If failures occur and EMsg is provided, this buffer will be
populated with a human-readable error message.

  
MCCJobStart(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to start/run (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will immediately run/execute the specified job ignoring policies and dependencies
provided that adequate idle resources are available. If failures occur and EMsg is provided,
this buffer will be populated with a human-readable error message.



  
MCCJobSubmit(C,JDesc,JID,EMsg)

Args: C: (void **) address of interface handle
JDesc: (char *) XML job description (Scalable Systems Software Job Object Specification)
JID: (char **) job id of new job (JID is populated on success only)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will submit the specified job. If failures occur and EMsg is provided, this buffer will be
populated with a human-readable error message. On success, memory is allocated for JID.
JID is then populated with a new job's ID (which can then be used in calls such as
MCCJobQuery and MCCJobCancel). The client is responsible for freeing the space allocated for
JID.

  
MCCJobSuspend(C,JID,EMsg)

Args: C: (void **) address of interface handle
JID: (char *) job id to suspend (optional)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will suspend the specified job. If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCNodeQuery(C,NID,OBuf,EMsg)

Args: C: (void **) address of interface handle
NID: (char *) node id to query (optional - if not specified, report all nodes)
OBuf: (char **) output response string (reported in XML)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will suspend the specified job.  If failures occur and EMsg is provided, this buffer will
be populated with a human-readable error message.

  
MCCNodeModify(C,NID,Attr,Val,Op,EMsg)

Args: C: (void **) address of interface handle
NID: (char *) id of node to modify (optional - if not specified, modify job in current context)
Attr: (char *) node attribute to modify (see mnodectl)
Val:(char *) value to use when modifying specified attribute
Op:(char *) operation to perform on attribute (one of set, unset, incr, or decr)
EMsg: (char *) optional error message

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will modify the attributes of either the specified node (if NID is populated) or the
local node (if NID is empty). If failures occur and EMsg is provided, this buffer will be
populated with a human-readable error message.

  
MCCFree(C)

http://sempa/resources/docs/blanks/mwm/SSSJobObject_3.0.3.php


Args: C: (void **) address of interface handle

Return
Code:

Returns 0 on success or -1 on failure

Description: This call will free allocated interface handle memory

Example 1 - Interfacing to an Explicitly Specified Moab Server

Example 2 - Interface to Monitor Remaining Time w/in a Batch Job

#include <stdio.h>
#include <stdlib.h>
#include "mapi.h"

int main(

  int   ArgC,
  char *ArgV[],
  char *EnvP[])

  {
  void *C;

  char  EMsg[1024];
  char *OBuf;

  char JobID[32];

  char *JobDescription = "<Job><Arguments>600</Arguments>
<Executable>/bin/sleep</Executable><InitialWorkingDirectory>/home/wig

<NodeCount>1</NodeCount><GroupId>wightman</GroupId><UserId>wightman</

<Requested></Requested><Processors>1</Processors></Job>";

  if (MCCInitialize("sn-master03",14522,&C) < 0)
    {

#include <stdio.h>
#include <stdlib.h>
#include "mapi.h"

int main(

  int   ArgC,
  char *ArgV[],
  char *EnvP[])

  {
  mulong Time;

  /* from inside a batch job, API will auto allocate the interface 
and
     discover the appropriate jobid */

  /* monitor time, clean-up and exit if less then 300 seconds remain 
*/

  while (1)
    {
    MCCJobGetRemainingTime(NULL,NULL,&Time,NULL);



Low-Level C API

The Moab low-level C API allows direct access to all Moab client services. This API uses the MCCExecute
routine and takes as an argument an XML request string. This interface provides a high-speed interface
directly into the server and provides very broad and flexible cluster, workload, and resource control. This
routine creates a direct socket connection to provides the following services:

socket creation
client authentication
server discovery via built-in, configfile, and environment settings
command request and response encryption
marshalling and de-marshalling of requests and data

Requests are sent using native XML request strings and, depending on the command used, responses are
returned in unformatted native XML or pretty-print human-readable format. The commands that do not
return XML can be configured to return XML with the --format=xml option. The commands that do not
natively return XML are:

setspri
setres
releaseres
runjob
checkjob
showconfig
mdiag
mjobctl

Use of Cluster Resources Consulting Services is recommended for organizations using this interface.

MCCInitialize(Host,Port,&C)

Args: Host: (char *) optional server hostname or NULL
Port: (int) optional server port or 0
C: (void **) opaque interface handle

Return
Code:

Returns 0 on success or -1 on failure

Description: This call initializes the interface between the client and the server. It should be called once
before attempting to issue any Moab client calls if connecting to a server at a non-default
location. If connecting to the default server, client commands will automatically initialize the
interface handle.

  
MCCExecute(C,RCmd,RBuf,&OBuf,EMsg)

Args: C: (void **) address of interface handle
RCmd: (char *) request client command
RBuf: (char *) request command XML
OBuf: (char **) output response string
EMsg: (char *) optional error message

Return Returns 0 on success or -1 on failure

    if (Time < 300)
      exit(0);
      
    sleep(1);
    }

gcc client.c -I/opt/moab-5.1.0/include/ -L/opt/moab-5.1.0/lib/ -
lcmoab -lmoab -lpthread -lm -lmcom -lminit -o client



Code:

Description: This call executes the requested command specified by the RBuf string using the client
command specified by RCmd. Command output is placed in the OBuf buffer. This buffer is
allocated and must be freed after use. The EMsg parameter is a 1024 character array and is
optional. If failures occur and EMsg is provided, this buffer will be populated with a human-
readable error message.

H.1.3 CLI (Command Line Interface) XML API

All Moab client commands can report results in XML format to allow the information to be easily integrated
into peer services, portals, databases, and other applications. To request that a client command report its
output in XML, specify the --format=xml flag as in the following example:

Common Query/Control Services

jobs
query status - mdiag -j (XML details)
submit - msub (XML format)
cancel - mjobctl -c

nodes
query status - mdiag -n (XML details)
create resource reservation - mrsvctl -c
destroy resource reservation - mrsvctl -r

H.2 Resource Management Interfaces
   Moab can monitor, schedule, and control services and resources using multiple protocols.  These protocols
include the following:

HTTP
LDAP
SQL
script/flat file

> showq --format=xml

<Data>
<Object>queue</Object>
<cluster LocalActiveNodes="1" LocalAllocProcs="1" LocalIdleNodes="0" 
LocalIdleProcs="3" LocalUpNodes="1" 
  LocalUpProcs="4" RemoteActiveNodes="0" RemoteAllocProcs="0" 
RemoteIdleNodes="0" RemoteIdleProcs="0" 
  RemoteUpNodes="0" RemoteUpProcs="0" time="1128451812"></cluster>
<queue count="1" option="active">
<job AWDuration="11672" EEDuration="1128451812" Group="[DEFAULT]" 
JobID="Moab.2" MasterHost="cw2" PAL="2" 
  QOS="bug3" ReqAWDuration="54000" ReqNodes="1" ReqProcs="1" 
RsvStartTime="1128451812" RunPriority="0" 
  StartPriority="1" StartTime="1128451812" StatPSDed="11886.580000" 
StatPSUtl="11886.580000" State="Running" 
  SubmissionTime="1128451812" SuspendDuration="0" User="smith"></job>
</queue>
<queue count="1" option="eligible">
<job EEDuration="1128451812" Group="jacksond" JobID="customer.35" 
QOS="bug" ReqAWDuration="3600" 
  ReqProcs="1" StartPriority="1" StartTime="0" State="Idle" 
SubmissionTime="1128451812" SuspendDuration="0" 
  User="johnson"></job>
<queue><queue count="0" option="blocked"></queue>
</Data>



Resource Manager Specific Interfaces - LSF, SGE, TORQUE, PBSPro, Loadleveler, and so forth

Using the resource manager interfaces, Moab can do the following:

monitor resources (compute host, network, storage, and software license based resources)
load configuration, architecture, and feature information
load state, utilization, and workload information
load policy and ownership information

manage resources
dynamically reconfigure and reprovision resource hardware (processors, memory, etc.)
dynamically reconfigure and reprovision resource software (operating system, application
software, filesystem mounts, etc.)
dynamically reconfigure and reprovision resource security (VPN's, VLAN's, host security, etc.)

monitor workload (batch jobs, interactive jobs, persistent services, dynamic services, distributed
services)

load state, resource requirement, and required environment information
load user, group, and credential information
load utilization, resource allocation, and policy information

manage workload
migrate jobs from one resource to another (intra-cluster and inter-cluster)
modify jobs for translation and optimization purposes
suspend, resume, checkpoint, restart, and cancel jobs

query cluster policies and configuration

H.3 Identity and Credential Management Interfaces
Moab's identity and credential management interfaces allow Moab to exchange credential and user
configuration, access, policy, and usage information.

Identity Manager
Allocation Manager
Moab Workload Manager for Grids

H.4 Accounting Interfaces
Moab accounting interfaces allow Moab to export local utilization statistics, events, and accounting
information to site specific scripts.

Accounting Interface

H.5 Grid Interfaces
Moab provides interfaces to allow interaction with various grid brokers and services. These interfaces allow
Moab to provide services as well as utilize services.

Services Utilized

Information Services (import and utilize information service data in making scheduling decisions)
Job Migration
Data Migration
Credential Mapping
Security and Delegation

See Moab Workload Manager for Grids for more information on utilized services.

Services Provided

Information Services (provide resource, workload, and credential information)
Job Migration
Data Migration
Credential Mapping



See Moab Workload Manager for Grids for more information on provided services.

H.6 Discovery/Directory Services
Moab can import and export key event information regarding workload, cluster resources, cluster and grid
services, and other components of hardware and software infrastructure.

By default, these clients communicate with the scheduler using the U.S. Department of Energy (DOE)
Scalable Systems Software socket and wire protocols. These protocols are largely HTML- and XML-based,
using PKI, 3DES, MD5, challenge, and other security protocols and are documented within the SSS project
pages.

As part of this initiative, the scheduler/client protocol has been extended to support multiple socket level
protocol standards in communicating with its clients and peer services. These include SingleUseTCP, SSS-
HALF, and HTTP. The client socket protocol can be specified by setting the MCSOCKETPROTOCOL parameter
to SUTCP, SSS-HALF, or HTTP. Further protocols are being defined and standardized over time and
backwards compatibility will be maintained. Documentation on the SSS-HALF implementation can be found
within the DOE's SSS Project Notebooks.

H.7 Job Submission and Management Interface
Moab provides interfaces to enable the following services:

Resource Availability Query
Determine quantity, state, and configuration of configured resources (idle, busy, and down
nodes)
Determine quantity and configuration of all available resources (idle nodes)
Determine resources available subject now and in the future for potential job
Determine best target cluster destination for potential job
Determine largest/longest job which could start immediately
Determine estimated start time for potential job
Determine earliest guaranteed start time for potential job

Reserve Resources
Reserve specific resources for desired time frame

Submit Job (XML format)
Submit job to specific cluster
Submit job to global job queue

Manage Job
Hold job
Adjust job priority
Modify job executable, args, data requirements, job dependencies, duration, hostcount, or other
attributes
Suspend/resume job
Checkpoint/requeue job
Cancel job
Migrate job
Adjust job quality of service (QoS)

Query Job
Determine job state, utilization, or output results for idle, active, or completed job
Determine estimated start time
Determine guaranteed start time

http://www.scidac.org/ScalableSystems


Moab Java API Quick Start Guide
Introduction
The Moab Java API is a Java library that allows Java developers to easily communicate with and interact with
the Moab Workload Manager. The API handles the details of creating a secure connection, reporting
information about workload and resources, and creating basic commands.

Throughout this guide there are simple examples on how to use the various classes. The full code for these
examples is included in the API in the com.ace.moab.example package. Please review these files for more
detailed information on the various classes.

Also, note that the client is the program that will use the Moab Java API.

Requirements
This guide is intended to show how to begin using the Moab Java API for any Java based application. It
assumes users have a basic knowledge of Moab and its commands. It is recommended that users consult
other reference and tutorial resources for information about Moab and its use and purpose.

Basic Usage
The communication process from the client's point of view can be simplified in the following 3-step process:

1. Client creates a secure connection to the Moab Workload Manager.
2. Client queries Moab for system information such as jobs or reservations.
3. Client may create commands to manipulate these objects or create new commands in Moab.

The purpose of this API is to simplify each of the three steps in this process.

Note: In the documentation, request and command may be used interchangeably when speaking about a
request to the Moab server.

Create a Connection to the Moab Workload Manager
In this API, there are two types of supported connections to the Moab Workload Manager:

Local connections for instances of Moab running on the local machine. (See LocalConnection.java for
more information.)

SSH connections for instances of Moab running on any other host. (See SSHConnection.java for more
information.)

Both of the connection types implement the same interface that provides the necessary functions to
communicate with Moab. All Moab queries require an IMoabConnection object to execute commands and
return the results. Typically, there only needs to be one IMoabConnection per Java application.

The IMoabConnection object allows users to not only create a connection, but to also run commands over
this connection. However, in most cases the client will rarely have to call the executeCommand method
directly; this will be called by the various query commands explained in the next section.

Example SSH Connection

Querying Moab

//Setup connection with the server called "myServer"
SSHConnection connection = new SSHConnection("myServer", 22);
//Attempt to connected with user bob. Returns true if successful.
boolean result = connection.connectWithPassword("bob", password);



As previously stated, the Moab API uses commands to communicate with the Moab Workload Manager, and it
parses the server's response. The client runs any necessary command and gets the response through the
MoabInputStream object. However, this API greatly simplifies the process of querying Moab using the various
Query objects. These objects create the appropriate commands, sends them over the connection, parses the
response from Moab, and returns to the caller the appropriate Java objects.

Job Queries (JobQuery.java)

There are five basic job queries in this version of the API:

getActiveJobs: Returns a list of all the jobs currently active—not completed.
getCompletedJobs: Returns all completed jobs still left in Moab's completed job buffer.
getCompleteJobSummary: Gets the job summary information for all users from Moab.
getSpecificJob: Gets a specific job from Moab.
getUserJobSummary: Gets the job summary information for a certain user.

A job in Moab is represented in the API as a MoabJob object. For more information on these classes, please
review the Java documentation under the JobQuery and MoabJob classes.

Node (or Server) Queries (NodeQuery.java)

There are four node queries in this version of the API:

getAllNodes: Returns all nodes reported to Moab.
getUserSpecificNodes: Returns all the nodes to which the given user has access.
getSpecificNode: Gets a specific node from Moab.
getNodeSummary: Returns a node summary either for all nodes or just the nodes accessible by a
specified user.

A node or server in Moab is represented in the API as a MoabNode object. For more information on these
classes, please review the Java documentation under the NodeQuery and MoabNode classes.

Reservation Queries (ReservationQuery.java)

There are three basic reservation queries in this version of the API:

GetReservationByName: Returns the reservation corresponding to a specific reservation ID.
getAllReservations: Queries Moab for all of the reservations in the system.
getStandingReservations: Returns a list of all standing reservations in Moab.

A reservation in Moab is represented in the API as a Reservation object. Standing reservations (also known
as reoccurring reservations) are represented as a StandingReservation object. For more information on
these classes, please review the Java documentation under the ReservationQuery, Reservation, and
StandingReservation classes.

Credential Queries (CredentialQuery.java)

There are two credential queries in this version of the API:

getAllCredentialsOfType: Returns a list of all credentials of a given type (such as user or account).
getAllCredentials: Returns a list of all standard credentials that this user can see.

All credential types in Moab are represented in the API as a Credential object. This includes users, groups,
accounts, classes, and quality of service (QoS) objects. For more information on these classes, please review
the Java documentation under the CredentialQuery and Credential classes.

Sending Requests to Modify or Create Objects in Moab
The Moab API not only enables Java clients to query Moab and parse the results, but it also allows clients the
option to create simple Java objects and then use these objects to create identical objects in Moab. This
greatly simplifies the process of submitting jobs and reservations as clients do not need to determine the
Moab commands necessary to create objects inside Moab. Instead, clients create simple Java objects and
then use the Request interface to get the commands necessary to create these same objects in Moab. For



example, a client may create a MoabJob object with a command file, a node list, and certain credentials
specified. Instead of determining the Moab commands necessary to duplicate this job's attributes for
submission, the client can use the SubmitJobRequest object to retrieve the commands necessary to submit
this job to Moab.

As of this version of the API, the two supported objects that use the Request interface are jobs and
reservations. For jobs, clients should use SubmitJobRequest for job submission and ModifyJobRequest to
modify an existing job in Moab. For reservations, clients may use the ModifyReservationRequest,
CreateOneTimeRsvRequest, and CreateStandingRsvRequest objects.

Submit Job Request (SubmitJobRequest.java)

The SubmitJobRequest object uses data from a MoabJob object to create a job submit command. Clients
create a MoabJob object, populate this object with various attributes to be set at job submission, then use
the Request interface to get the commands to submit the job. However, not all attributes inside the MoabJob
object make sense for job submission. For example, a MoabJob contains an attribute called
"suspendDuration" that represents the number of seconds a job is suspended. Obviously a user cannot
submit a job with a suspend duration greater than 0 as this does not make sense. Likewise setting a job's
state at submission doesn't make sense as Moab determines job state.

The following are supported attributes for the submit job request:

Generic resources: type,quantity, and (optionally) the time frame
Job dependencies
Specified credentials (such as Account or QoS requested)
Email notifications
File operations (such as specifying the stdout file)
Host list
Job flags
Job requirements including:

Processors per task
Node features (both required and preferred)
Operating system
Architecture
Node memory
Node swap space
Partition
Required reservation

Job name
Initial working directory
User priority
Template list
Requested wall time
Earliest start date requested

Example Submit Job Request

//Create the job as a Java object
MoabJob job = new MoabJob();
                
//Set the various attributes for the Job upon submission
job.setJobName("myFirstJob");
job.setCommandFile("/path/to/command/file");
job.setAccount("Engineering");
job.setWallclockRequested(18000); //Job should run for 5 hours
job.setNodeCountRequested(15);
        
SubmitJobRequest request = new SubmitJobRequest(job);

List<String> moabCommands = request.getMoabCommands();
//Execute moabCommands
...



Modify Job Request (ModifyJobRequest.java)

There are many ways to modify an existing Moab job. Other than the job attributes like account or wall time,
jobs can be canceled, suspended, and re-queued. For a complete list of modification types, see the
ModifyJobType enum.

The modify job request is like the submit job request: clients manipulate Java objects and then use these
objects to create Moab commands necessary to cause these changes. Many of the job modifications only
require one MoabJob object (such as cancel, resume, or checkpoint). However, to modify job attributes, two
separate MoabJob objects must be created. The ModifyJobRequest class will then find the differences
between these two objects and determine the Moab commands necessary to modify the first object to have
the same attributes as the second.

Example Modify Job Request

Like the submit job request, many job attributes cannot be modified using this class. The following is a list of
supported attributes for the modify job request:

Job holds
Credential changes (such as Account or QoS)
Job name
Adding messages (but not removing messages)
Requested node count
System priority
Requested reservation
The job's partition access list
Variables
Requested wall time

Create Reservation Request (CreateOneTimeRsvRequest.java,
CreateStandingRsvRequest.java)

In Moab, there are two types of reservations: (1) one-time reservations and (2) reoccurring (or standing)
reservations. Because of the core differences between these reservation types, the Moab Java API has split
these reservations into separate objects, Reservation and StandingReservation. The request classes used
to create Moab commands for these objects are also different classes, but they are used the same way.

The attributes that can be set on a Reservation or StandingReservation object that will be used for
reservation creation are listed below:

All reservation requirements including
Task specification (and task count)
Architecture
Any node features
Network
Operating system
Node count

//Load the job from Moab
MoabJob newJob = JobQuery.getSpecificJob(...);
MoabJob oldJob = JobQuery.getSpecificJob(...);

newJob.setNodeCountRequested(10); //Set a different node count here

ModifyJobRequest request = new ModifyJobRequest(originalJob, newJob, 
        ModifyJobType.JOB_ATTRIBUTES,moabConnection);

List<String> moabCommands = request.getMoabCommands();
//The moabCommands now contains the command to modify the node count 
to 10.



Host list
Reservation owner
The DEDICATEDRESOURCE flag
Partition
Start and end dates
Trigger list
Host list expression
An access control list (ACL)

A valid reservation must have a host list expression specified or a positive number of tasks assigned to it. If
task count is positive, the required task must be specified as well. Clients may verify a valid reservation
before attempting to create the Moab commands by calling the verifyReservation method on the respective
create reservation request object.

Modify Reservation Request (ModifyReservationRequest.java)

Modifying a reservation is very similar to the way clients may modify a job in Moab. The client passes two
reservations into the ModifyReservationRequest object, the original and the reservation which contains the
modifications. The request then compares the differences between the two reservations and creates Moab
commands based on the differences between the reservations.

There are a limited number of attributes that can be modified after a reservation is created. The following is a
list of supported attribute changes included in the API:

Reservation duration
Start time
End time
Any flags set (including the ability to unset flags)
Host list expression

For more information, please review the Moab documentation about modifying reservation attributes.

Example Modify Job Request

Additional Notes
All classes released in the API are either in the com.ace.moab.* package or the com.moab.* package. All
classes and packages in the com.ace.* package structure are a standard part of the Moab Java API and will
be supported in the future. All other packages outside of com.ace can change at any time without notice and
are not officially supported. These classes are included in the API only because they provide some "behind
the scenes" functionality for various methods. Clients that use these other packages must understand they
are using code that may not be tested and may not function correctly. For these reasons, there is no
documentation available for the com.moab.* classes.

//Load the reservation from Moab
Reservation originalRsv = ReservationQuery.getReservationByName(...);
Reservation modifiedRsv = ReservationQuery.getReservationByName(...);
                
//Change the flags and the start date
ReservationFlags flags = modifiedRsv.getFlags();
flags.removeAll();
flags.addFlag(ReservationFlag.ADVRES);
flags.addFlag(ReservationFlag.ALLOWPRSV);
                
modifiedRsv.setStartDate(new Date(modifiedRsv.getStartDate().getTime() 
+ 360000));

//Create the modification request and get the commands
ModifyReservationRequest request = new 
ModifyReservationRequest(originalRsv, modifiedRsv);
List<String> moabCommands = request.getMoabCommands();



The examples included in this guide are simplified versions of examples included in the
com.ace.moab.example package. They will not necessarily compile "as is" and may require additional setup
such as establishing an IMoabConnection or surrounding method calls in a try catch block. Please view the
code examples included in the API for more details.



Appendix I: Considerations for Large Clusters
I.1 Resource Manager Scaling
I.2 Handling Large Numbers of Jobs
I.3 Handling Large Numbers of Nodes
I.4 Handling Large Jobs
I.5 Handling Large SMP Systems
I.6 Server Sizing

There are several key considerations in getting a batch system to scale.

I.1 Resource Manager Scaling

Proper Resource Manager Configuration

TORQUE
General Scaling Overview

OpenPBS/PBSPro
Manage Direct Node Communication with NODEPOLLFREQUENCY

I.2 Handling Large Numbers of Jobs

Aggregating Scheduling Cycles - JOBAGGREGATIONTIME

With event driven resource manager interfaces (such as TORQUE, PBS, and SGE), each time a job is
submitted, the resource manager notifies the scheduler of this fact. In an attempt to minimize response time,
the scheduler will start a new scheduling cycle to determine if the newly submitted job can run. In systems
with large numbers of jobs submitted at once, this may not result in the desired behavior for two reasons.
First, by scheduling at every job submission, Moab will schedule newly submitted jobs onto available
resources in a first come, first served basis rather than evaluating the entire group of new jobs at once and
optimizing the placement accordingly. Second, by launching a scheduling iteration for every job submitted,
Moab may place a heavy load on the resource manager. For example, if a user were to submit 1000 new
jobs simultaneously, for each job submitted, the resource manager would contact the scheduler, the
scheduler would start a new iteration, and in this iteration, the scheduler would contact the resource manager
requesting updated information on all jobs and resources available.

The JOBAGGREGATIONTIME parameter works by informing the scheduler to not process jobs as quickly as
they are submitted, but rather to process these new jobs in groups.

Limited Job Checkpointing - LIMITEDJOBCP

By default, Moab will checkpoint information about every job it reads from its resource managers. When a
cluster routinely runs more than 15000 jobs, they may see some speed-ups by limiting which jobs are
checkpointed. When LIMITEDJOBCP is set to TRUE, Moab will only checkpoint jobs that have a hold, a
system priority, jobs that have had their QoS modified, and a few other limited attributes. Some minimal
statistical information is lost for jobs that are not checkpointed.

Reducing Job Start Time - RMCFG ASYNCSTART flag value.

By default, Moab will launch one job at a time and verify that each job successfully started before launching a
subsequent job. For organizations with large numbers of very short jobs (less than 2 minutes in duration),
the delay associated with confirming successful job start can lead to productivity losses. If tens or hundreds
of jobs must be started per minute, and especially if the workload is composed primarily of serial jobs, then
the resource manager ASYNCSTART flag may be set. When set, Moab will launch jobs optimistically and
confirm success or failure of the job start on the subsequent scheduling iteration.

Reducing Job Reservation Creation Time - RMCFG JOBRSVRECREATE attribute.

By default, Moab destroys and re-creates job reservations each time a resource manager updates any aspect
of a job. Historically, this stems from the fact that certain resource managers would inadvertently or
intentionally migrate job tasks from originally requested nodes to other nodes. To maintain synchronization,
Moab would re-create reservations each iteration thus incorporating these changes. On most modern
resource managers, these changes never occur, but the effort required to handle this case grows with the size

http://www.adaptivecomputing.com/resources/docs/torque/
http://www.adaptivecomputing.com/resources/docs/torque/a.flargeclusters.php
http://www.adaptivecomputing.com/resources/docs/torque/index.php


of the cluster and the size of the queue. Consequently, on very large systems with thousands of nodes and
thousands of jobs, a noticeable delay is present. By setting JOBRSVRECREATE to FALSE on resource
managers that do not exhibit this behavior, significant time savings per iteration can be obtained.

Minimizing Compute Intensive Operations - ENABLESTARTESTIMATESTATS

Where possible, these parameters should be disabled as they are expensive per job operations.

Buffering Log Output - MOABENABLELOGBUFFERING environment variable

When large or verbose logs are required, setting this environment variable to true will allow Moab to buffer
its logs and speed up log writing. This capability is primarily useful when writing to remote file systems and
is only of limited value with local file systems.

Constraining Preemption - PREEMPTSEARCHDEPTH parameter

When a large number of active serial jobs are present in a system, Moab may unnecessarily consider
additional jobs even after an adequate number of feasible preemptible jobs have been located. Setting this
parameter will cause Moab to cease its search after the specified number of target preemptees has been
located.

Note: Setting this parameter only impacts searches for serial preemptor jobs.

Handling Transient Resource Manager Failures - MOABMAXRMFAILCOUNT=<INTEGER>

Disable Job Feasibility Analysis - MOABDISABLEFEASIBILITYCHECK

Constrain the number of jobs started per iteration - JOBMAXSTARTPERITERATION parameter. (Some
resource managers can take in excess of two seconds per job start.) Because Moab must serialize job launch,
a system where many jobs are started each iteration may appear sluggish from the point of view of client
commands. Setting this parameter will reduce the maximum duration of a scheduling cycle and thus the
maximum duration a client command will wait for processing.

Constrain the number of jobs preempted per iteration - JOBMAXPREEMPTPERITERATION
parameter

Note: For very large job count systems, configuration options controlling the maximum supported limits may
need to be adjusted including the maximum number of reservations and the maximum number of supported
evaluation ranges.

I.3 Handling Large Numbers of Nodes

For very large clusters (>= 10,000 processors) default scheduling behavior may not scale as desired. To
address this, the following parameters should be considered:

Parameter Recommended Settings

RMPOLLINTERVAL

In large node environments with large and long jobs, scheduling overhead can be
minimized by increasing RMPOLLINTERVAL above its default setting. If an event-driven
resource management interface is available, values of two minutes or higher may be
used. Scheduling overhead can be determined by looking at the scheduling load reported
by mdiag -S.

LIMITEDNODECP Startup/shutdown time can be minimized by disabling full node state checkpointing that
includes some statistics covering node availability.

--with-maxnodes (special builds only - contact support) *
--with-maxtasks (special builds only - contact support) *

* For clusters where the number of nodes or processors exceeds 50,000, the maximum stack size for the
shell in which Moab is started may need to be increased (as Moab may crash if the stack size is too small).
On most Unix/Linux based systems, the command ulimit -s unlimited may be used to increase the stack
size limit before starting Moab. This may be placed in your Moab startup script.

Other considerations include using grid based resource reporting when using peers and enabling virtual nodes
to collapse scheduling decisions.



Note: See Appendix D for further information on default and supported object limits.

I.4 Handling Large Jobs

For large jobs, additional parameters beyond those specified for large node systems may be required. These
include settings for the maximum number of tasks per job, and the maximum number of nodes per job.

I.5 Handling Large SMP Systems

For large-way SMP systems (> 512 processors/node) Moab defaults may need adjustment.

Parameter Recommended Settings

MAXRSVPERNODE
By default, Moab does not expect more than 24 jobs per node to be running or have
future reservations. Increasing this parameter to a value larger than the expected
maximum number of jobs per node is advised.

--with-maxrange (special builds only - contact support)

I.6 Server Sizing

See Hardware and Software Requirements for recommendations.

See Also

Appendix D: Adjusting Default Limits



Appendix J: Configuring Moab as a Service
Scripts that follow can be used to start up Moab services automatically upon a reboot. To enable a service
script, copy the script to /etc/rc.d/init.d/S97moab, edit the file to make needed localization changes
(adjust binary paths, execution user, etc), and add links to the rc3.d and rc5.d directories as in the
example that follows:

J.1 Moab Workload Manager Service Scripts

Moab Workload Manager Script
Moab Workload Manager + TORQUE Script

J.2 Moab Grid Scheduler Service Script

sample script

> cp mwm.service /etc/rc.d/init.d/S97moab
> vi /etc/rc.d/init.d/S97moab
    (make needed localizations)
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc3.d
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc5.d

http://sempa/resources/docs/blanks/mwm/moabscripts/mwm.service
http://sempa/resources/docs/blanks/mwm/moabscripts/mwmt.service
http://sempa/resources/docs/blanks/mwm/moabscripts/mgs.service


Appendix K: Migrating from Maui 3.2

Overview

This guide is intended to help facilitate migrating from Maui to Moab. If you do not have Moab yet, you can
download a free evaluation version. At a high level, migrating from Maui 3.2 to Moab involves minimal effort.
In fact, Moab fully supports all Maui parameters and commands. Migration can consist of nothing more than
renaming maui.cfg to moab.cfg and launching Moab using the Moab command. With this migration, the
biggest single issue is becoming aware of all the new facilities and capabilities available within Moab. Beyond
this, migration consists of a few minor issues that may require attention such as some statistics and
priorities.

Another approach of migrating from Maui to Moab is to configure Moab in Monitor mode and run it beside
Maui. Maui will continue to perform the scheduling and control workload. Moab will simply monitor the cluster
environment using the policies configured in moab.cfg. Moab will not have the ability to affect workload,
providing a safe and risk-free environment to evaluate Moab without affecting your production environment.
You can also have Moab capture resource and workload trace files and allow Moab to simulate what it would
have done if it controlled workload. When you feel comfortable with and want to run Moab live on your
cluster, all you need to do is change the mode to NORMAL, stop Maui, and restart Moab. Current jobs will
remain running and Moab will take over control of scheduling.

As with any migration, we suggest that you back up important files such as the following: maui.cfg,
maui.log and maui.ck.

View the Flash demo of migrating from Maui to Moab.

Migrating from Maui to Moab

1. Install Moab Workload Manager. (Installation Instructions)
2. Copy your maui.cfg file to the MOABHOMEDIR (/opt/moab) and rename it moab.cfg.
3. Stop Maui.
4. Start Moab.
5. If Applicable: Re-apply those configurations found in the Statistics and Checkpointing section that need

adjustment after migration as well as any parameters in moab.cfg that point to a Maui file like
maui.log.

Running Maui and Moab Side-By-Side

1. Install Moab Workload Manager on your cluster. (Installation steps will differ slightly from a typical
installation.)

a. Run ./configure.
b. Run make.
c. You will need to set your MOABHOMEDIR environment variable to the location where you built

Moab by typing export MOABHOMDIR=[make directory].
2. To have Moab use all the same policies as Maui, copy maui.cfg to the MOABHOMEDIR and rename it

moab.cfg.
You can also start your moab.cfg file from scratch. Just use the moab.cfg already in the
MOABHOMEDIR.

3. Make sure that the port in moab.cfg is different than the port used in maui.cfg.
4. In the moab.cfg file, add the parameter, SERVERMODE=MONITOR.

If you used the moab.cfg from scratch, on the SCHEDCFG line add MODE=MONITOR.
5. You will need to either put the Moab commands in your environment path (located in

MOABHOMEDIR/bin) or run the commands from their location if you still want to use the Maui
commands in your environment path.

6. Run Moab Workload Manager using the moab command located in MOABHOMEDIR/bin.

Other Notes

The following are minor differences between Maui and Moab and changes you may need to make:

File Naming

http://www.adaptivecomputing.com/resources/support.php
http://www.clusterresources.com/services/Tutorials/MPortDemo.shtml
http://www.adaptivecomputing.com/resources/docs/mwm/2.2installation.php
http://www.adaptivecomputing.com/pages/resources/documentation/mauitomoab.php#stats
http://www.adaptivecomputing.com/resources/docs/mwm/2.2installation.php
http://www.adaptivecomputing.com/resources/docs/mwm/2.2installation.php


Moab uses slightly different naming than Maui. The following table displays these changes:

File Maui Moab
executable maui moab
logs maui.log moab.log
configuration file maui.cfg moab.cfg

Statistics and Checkpointing

Moab supports Maui version 3.2 or higher workload traces (statistics) allowing it to process historical
statistics based on these traces as well as generate simulations based on them. No changes are required to
use these statistics. See the Simulation Specific Configuration documentation for more information on trace
files. You can also view a flash demonstration of the simulation mode.

Moab does not support the Maui 3.2 checkpointing format. Because of this, state information checkpointed
under Maui will not be available at the time of the migration. The loss of this information will have the
following impact:

Admin reservations, if any, will need to be re-created.
Processed credential and scheduler statistics (displayed by showstats) will be lost.
Admin job system priority configured by the setspri command and QoS assignments configured by the
setqos command, if any, will be lost.

Verify Configuration File Compatibility

The command mdiag -C will perform diagnostics on your new configuration file and may prove helpful in
identifying any issues.

Environment Variables

Scheduler environment variables are supported under Moab with obvious naming changes. Sample
environment variables follow:

Maui Moab
MAUIHOMEDIR MOABHOMEDIR
MAUIDEBUG MOABDEBUG
MAUICRASHVARIBALE MOABCRASHVARIABLE
MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING
MAUIRECOVERYACTION MOABRECOVERYACTION
MAUIAMTEST MOABAMTEST
MAUI-COMMANDS-PATH MOAB-COMMANDS-PATH
MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

http://www.clusterresources.com/services/Tutorials/MSimDemo.shtml
http://sempa/resources/docs/mwm/commands/mdiag.php


Appendix O: Integrating Other Resources with Moab
Moab can interface with most popular resource managers, many cluster services, and numerous general
protocols. The following links provide additional information.

O.1 Compute Resource Managers

LoadLeveler - Integration Guide, http://www.ibm.com
TORQUE/OpenPBS - Integration Guide, http://supercluster.org/torque
PBS Pro - Integration Guide, http://www.altair.com/
SGE 6.0+ - Integration Guide (html, pdf), http://www.sun.com
SLURM - Integration Guide, http://www.llnl.gov/linux/slurm
WIKI - WIKI Integration Guide
LSF - Integration Guide, http://platform.com
Cray XT/Torque - Integration Guide (html, pdf), http://www.cray.com

O.2 Provisioning Resource Managers

xCAT - Validating an xCAT Installation for Use with Moab
xCAT - Integrating an xCAT Physical Provisioning Resource Manager with Moab
SystemImager - Enabling Moab Provisioning with SystemImager

O.3 Hardware Integration

NUMA - Integration Guide

http://www.ibm.com/
http://supercluster.org/torque
http://www.altair.com/
http://sempa/resources/docs/blanks/mwm/pdf/sgeintegration.pdf
http://www.sun.com/
http://www.llnl.gov/linux/slurm
http://sempa/resources/docs/blanks/mwm/wiki
http://platform.com/
http://sempa/resources/docs/blanks/mwm/pdf/xtinstall.pdf
http://www.cray.com/


Moab-Loadleveler Integration Guide
Overview

   Moab can be used as an external scheduler for Loadleveler.  In this configuration, Loadleveler manages the
job queue and the compute resources while Moab queries the Loadleveler negotiator via the Loadleveler data
API to obtain up to date job and node information.  Using this information, Moab directs Loadleveler to
manage jobs in accordance with specified Moab policies, priorities, and reservations. 

LoadLeveler Configuration

   Moab drives LL via the Loadleveler scheduling API.  To enable this API and thus the external scheduler, the
following steps must be taken:

   -   set 'SCHEDULER_API=yes' in the 'LoadL_config' file typically located in the user 'loadl' home directory.

   -   set the 'NEGOTIATOR_REMOVE_COMPLETED' parameter (also located in the 'LoadL_config' file) to a
value of at least 5 minutes, ie 'NEGOTIATOR_REMOVE_COMPLETED=300'. (This allows Moab to obtain job
info from LL required to maintain accurate job statistics)

   -   AGGREGATE_ADAPTERS should be set to NO in the LoadL_config file.

   -   recycle negotiator using the command 'llctl recycle' on the central manager node.

Moab Configuration

   To enable Moab to communicate with the Loadleveler negotiator daemon, the RMCFG parameter must be
set with a TYPE of LL.  By default, this should already be done for you automatically by the configure
script.

   Because only a subset of LoadLeveler command file keywords can be interpreted by Moab, the parameter
INSTANTSTAGE should be used when jobs are submitted through msub.

Issues

   The Loadleveler scheduling API is not event driven so Moab has no way of knowing when a new job is
submitted.  Under these conditions, it will not evaluate a newly submitted job until its next scheduling
iteration, typically within 15 to 30 seconds.  This lag can be removed by utilizing Loadleveler's
'SUBMITFILTER'.  The Moab command mschedctl -r 2 can be added as the last statement in this filter
causing Moab to 'wake-up' and attempt to schedule new jobs immediately.  The mschedctl command is a
administrative command and so may need an suid wrapper in order to allow use by non-privileged users. 
(see example).

Note:  Do NOT use the above submit filter when jobs will be submitted using msub or via Moab Access
Portal.

Note:  You can return to Loadleveler default scheduling at any time by setting 'SCHEDULER_API=no' in the
LoadL_config file and re-issuing the 'llctl recycle' command.

   Moab supports interactive job hostlists but these hostlists must currently be specified using the network
interface Loadleveler utilizes.  For example, an SP node may have two names, node001e and node001sw
representing its ethernet and switch interfaces respectively.  Loadleveler is configured to communicate with
the nodes on one of these interfaces.  (This can be determined by issuing 'llstatus' and observing the name
used to specify each node.)  Interactive job hostlists must be specified using the same interface that
Loadleveler is configured to use.  Efforts are underway to extend Moab interface tracking to remedy this.

Note:  The LoadLeveler API is not thread safe, therefore, do not build Moab with __MTHREAD enabled.

Note:  Some releases of Loadleveler will requeue all active jobs when reconfigured to use the external
scheduler interface.  In such cases, it may be best to drain the queue before enabling Moab.

Note:  If using Loadleveler with Moab Access Portal or with a Moab Peer Based Grid, the parameter
INSTANTSTAGE must be set.

http://sempa/resources/docs/blanks/mwm/schedctlwrapper.php
http://www.adaptivecomputing.com/map




Moab-TORQUE/PBS Integration Guide
1.0 Overview
2.0 Integration Steps

2.1 Install TORQUE/PBS
2.2 Install Moab
2.3 Configure TORQUE/PBS
2.4 Configure Moab

3.0 Current Limitations
4.0 Trouble-shooting

1.0 Overview
Moab can be used as an external scheduler for the PBS resource management system. In this configuration,
PBS manages the job queue and the compute resources while Moab queries the PBS Server and the PBS
MOM's to obtain up to date job and node information. Using this information, Moab directs PBS to manage
jobs in accordance with specified Moab policies, priorities, and reservations.

2.0 Integration Steps
Moab manages PBS via the PBS scheduling API. The steps below describe the process for enabling Moab
scheduling using this API.

2.1 Install TORQUE/PBS

Install TORQUE/PBS

 Keep track of the PBS target directory, $PBSTARGDIR

2.2 Install Moab

Untar the Moab distribution file.
Change the directory to the moab-<X> directory.
Run ./configure.
Specify the PBS target directory ($PBSTARGDIR from step 2.1) when queried by configure.

Moab interfaces to PBS by utilizing a few PBS libraries and include files. If you have a non-standard PBS
installation, you may need to modify Makefile and change PBSIP and PBSLP values and references as
necessary for your local site configuration.

The configure script automatically sets up Moab so that the user running configure will become the default
Primary Moab Administrator ($MOABADMIN). This can be changed by modifying the 'ADMINCFG[1]
USERS= <USERNAME>' line in the Moab configuration file (moab.cfg). The primary administrator is the
first user listed in the USERS attribute and is the ID under which the Moab daemon runs.

Some Tru64 and IRIX systems have a local libnet library that conflicts with PBS's libnet library. To resolve
this, try setting PBSLIB to '${PBSLIBDIR}/libnet.a -lpbs' in the Moab Makefile.

Moab is 64-bit compatible. If PBS/TORQUE is running in 64-bit mode, Moab likewise needs to be built in this
manner to use the PBS scheduling API (i.e., for IRIX compilers, add '-64' to OSCCFLAGS and OSLDFLAGS
variables in the Makefile).

2.3 General Configuration For All Versions of TORQUE/PBS

Make $MOABADMIN a PBS admin.
By default, Moab only communicates with the pbs_server daemons and the $MOABADMIN
should be authorized to talk to this daemon. (See suggestions for more information.)

(OPTIONAL) Set default PBS queue, nodecount, and walltime attributes. ( See suggestions for more
information.)

http://www.adaptivecomputing.com/resources/docs/torque/pbsack.php
http://www.adaptivecomputing.com/resources/docs/torque//1.1installation.php


(OPTIONAL - TORQUE Only) Configure TORQUE to report completed job information by setting the
qmgr keep_completed parameter:

moab.cfg

 PBS nodes can be configured as time shared or space shared according to local needs. In almost all
cases, space shared nodes provide the desired behavior.

 PBS/TORQUE supports the concept of virtual nodes. Using this feature, Moab can individually schedule
processors on SMP nodes. The online TORQUE documentation describes how to set up the
'$PBS_HOME/server_priv/nodes' file to enable this capability. (For example, <NODENAME> np=<VIRTUAL
NODE COUNT>)

2.3.1 Version-Specific Configuration for TORQUE, OpenPBS or PBSPro 6.x or earlier

Do not start the pbs_sched daemon. This is the default scheduler for PBS/TORQUE; Moab provides this
service.

 Moab uses PBS's scheduling port to obtain real-time event information from PBS regarding job and node
transitions. Leaving the default qmgr setting of 'set server scheduling=True ' allows Moab to receive and
process this real-time information.

2.3.2 Version-Specific Configuration for PBSPro 7.1 and higher

PBSPro 7.x, 8.x, and higher require that the pbs_sched daemon execute for proper operation, but PBS must
be configured to take no indpenedent action that conflicts with Moab. With these PBSPro releases, sites
should allow pbs_sched to run after putting the following PBS configuration in place:

qmgr configuration

sched_priv/sched_config

2.4 Configure Moab

By default, Moab automatically interfaces with TORQUE/PBS when it is installed. Consequently, in most cases,
the following steps are not required:

Specify PBS as the primary resource manager by setting RMCFG[base] TYPE=PBS in the Moab
configuration file (moab.cfg).

If a non-standard PBS installation/configuration is being used, additional Moab parameters may be required
to enable the Moab/PBS interface as in the line RMCFG[base] HOST=$PBSSERVERHOST PORT=$PBSSERVERPORT.
See the Resource Manager Overview for more information.

 Moab's user interface port is set using the SCHEDCFG parameter and is used for user-scheduler
communication. This port must be different from the PBS scheduler port used for resource manager-scheduler
communication.

3.0 Current Limitations

> qmgr -c 'set server keep_completed = 300'

> qmgr -c 'set server scheduling = false'
> qmgr -c 'set server scheduler_iteration = 100000000'
> qmgr -c 'unset server node_fail_requeue' 

preemptive_sched: false ALL

http://www.adaptivecomputing.com/resources/docs/torque//1.2basicconfig.php#nodes
http://www.adaptivecomputing.com/resources/docs/torque/index.php


PBS Features Not Supported by Moab

Moab supports basic scheduling of all PBS node specifications.

 Moab is, by default, liberal in its interpretation of <NODECOUNT>:PPN=<X>. In its standard
configuration, Moab interprets this as 'give the job <NODECOUNT>*<X> tasks with AT LEAST <X> tasks per
node'. Set the JOBNODEMATCHPOLICY parameter to EXACTNODE to have Moab support PBS's default
allocation behavior of <NODECOUNT> nodes with exactly <X> tasks per node.

Moab Features Not Supported by PBS

PBS does not support the concept of a job QoS or other extended scheduling features by default. This can be
handled using the techniques described in the PBS Resource Manager Extensions section. See the Resource
Manager Extensions Overview for more information.

Some Versions of PBS Do Not Maintain Job Completion Information

An external scheduler cannot determine if the job completed successfully or if internal PBS problems occurred
preventing the job from being properly updated. This problem will not in any way affect proper scheduling of
jobs but may potentially affect scheduler statistics. If your site is prone to frequent PBS hangs, you may want
to set the Moab JOBPURGETIME parameter to allow Moab to hold job information in memory for a period of
time until PBS recovers. (Note: It is not recommended that PURGETIME be set to over 2:00).

4.0 Troubleshooting
On TRU64 systems, the PBS 'libpbs' library does not properly export a number of symbols required by Moab.
This can be worked around by modifying the Moab Makefile to link the PBS 'rm.o' object file directly into
Moab.

http://sempa/resources/docs/blanks/mwm/13.3.1pbsrmextensions.php


TORQUE/PBS Integration Guide - RM Access
Control
Server Configuration
   Using the PBS qmgr command, add the Moab administrator as both a manager and operator.

> qmgr Qmgr: set server managers += <MOABADMIN>@*.<YOURDOMAIN> Qmgr: set server operators +=
<MOABADMIN>@*.<YOURDOMAIN> Qmgr: quit

   For example:

> qmgr Qmgr: set server managers += staff@*.ucsd.edu Qmgr: set operators += staff@*.ucsd.edu Qmgr:
quit

  If desired, the Moab administrator can be enabled as a manager and operator only on the host on which
Moab is running by replacing "*.<YOURDOMAIN>" with "<MOABSERVERHOSTNAME>".

Mom Configuration (optional)
  If direct Moab to pbs_mom communication is required, the mom_priv/config file on each compute node
where pbs_mom runs should be set as in the following example:

$restricted *.<YOURDOMAIN>
$clienthost <MOABSERVERHOSTNAME>

  For security purposes, sites may want to run Moab under a non-root user id.  If so, and Moab-
pbs_mom communication is required, the mom_priv/config files must be world-readable and contain the line
'$restricted *.<YOURDOMAIN>'. (i.e., '$restricted *.uconn.edu')

http://www.adaptivecomputing.com/resources/docs/torque/commands/qmgr.php


TORQUE/PBS Config - Default Queue Settings
Default Queue
   To set the default queue (the queue used by jobs if a queue is not explicitly specified by the user), issue the
following:

> qmgr

Qmgr: set system default_queue = <QUEUENAME>
Qmgr: quit

Queue Default Node and Walltime Attributes
   To set a default of one node and 15 minutes of walltime for a particular queue, issue the
following:

> qmgr

Qmgr: set queue <QUEUENAME> resources_default.nodect = 1
Qmgr: set queue <QUEUENAME> resources_default.walltime = 00:15:00
Qmgr: quit

Default System Wide Node and Walltime Attributes
   To set system wide defaults, set the following:

> qmgr

Qmgr: set server resources_default.nodect = 1
Qmgr: set server resources_default.walltime = 00:15:00
Qmgr: quit



Moab-SGE Integration Notes
Copyright © 2011 Adaptive Computing Enterprises, Inc.

This document provides information on the steps to integrate Moab with an existing functional installation of
SGE.

Notice
Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited
without prior written consent from Adaptive Computing Enterprises, Inc.

Overview
Moab's native resource manager interface can be used to manage an SGE resource manager. The integration
steps simply involve the creation of a complex variable and a default request definition. The Moab tools
directory contains a collection of customizable scripts which are used to interact with sge. This directory also
contains a configuration file for the sge tools.

Moab Integration Steps
You should follow the regular steps for installing Moab with the following exceptions:

Run Configure with the --with-sge option

When running the configure command, use the --with-sge option to specify the use of the native resource
manager interface with the sge resource manager subtype. This will place a line similar to the following in the
Moab configuration file (moab.cfg):

RMCFG[clustername]      TYPE=NATIVE:sge     

Example 1. Running configure

$ ./configure --prefix=/opt/moab --with-homedir=/var/moab --with-sge

Customize the moab configuration file

In order to allow the specification of a parallel environment (-l pe) via msub, you will need to tell Moab to
pass through arbitrary resource types.

Example 2. Edit moab.cfg

# vi /var/moab/moab.cfg

# Transmit arbitrary resource types (ie. pe) from msub into the job-start script
CLIENTCFG[Moab] FLAGS=AllowUnknownResource

# Allow regular users to awaken the scheduler for responsive msubs
ADMINCFG[5] USERS=ALL SERVICES=mschedctl:resume
       

Customize the sge tools configuration file

You may need to customize the $MOABHOMEDIR/etc/config.sge.pl file to include the correct SGE_ROOT and
PATH, and set other configuration parameters.

Example 3. Edit config.sge.pl

# vi /var/moab/etc/config.sge.pl

# Set the SGE_ROOT environment variable
$ENV{SGE_ROOT} = "/opt/sge-root";

# Set the PATH to include directories for sge commands -- qhost, etc.
$ENV{PATH} = "$ENV{SGE_ROOT}/bin/lx24-x86:$ENV{PATH}";
       



SGE Integration Steps
After installing SGE on your cluster and verifying that it is running serial and parallel jobs satisfactorily, you
should perform the following steps:

Define a new complex variable named nodelist

Use the qconf -mc command to edit the complex variable list and add a new requestable variable of the
name nodelist and the type RESTRING.

# qconf -mc

nodelist          nodelist     RESTRING    ==    YES         NO         NONE  0

Add a default nodelist request definition

This step will set the nodelist complex variable for all jobs to the unassigned state until they are ready to
run, at which time the job will be assigned a nodelist directing which nodes it can run on.

Example 4. Edit sge_request

# vi /opt/sge-root/default/common/sge_request

# Set the job's nodelist variable to the unassigned state until it is ready to
# start at which time it will be reset to the list of nodes it is designated to
# run on
-l nodelist=unassigned
       

Populate the node's nodelist variable

This step will set the nodelist complex variable for all exec hosts to their own short hostnames. This will allow
jobs to start when their nodelist value matches up with a set of nodes.

Example 5. qconf -rattr exechost complex_values nodelist=$hostname $hostname

# for i in `qconf -sel | sed 's/\..*//'`; do echo $i; qconf -rattr exechost complex_values
nodelist=$i $i; done

Shorten the scheduler interval

Use the qconf -msconf command to edit the schedule_interval setting to be less than or equal to one half the
time of the Moab RMPOLLINTERVAL (seen with showconfig | grep RMPOLLINTERVAL).

# qconf -msconf

schedule_interval                 0:0:15
     

Add the sge ports to the services file

In order for the sge client commands to know what port to use when communicating with the sge qmaster,
the ports should be listed in the /etc/services file. (Alternatively, the SGE_QMASTER_PORT environment
variable must be set in the config.sge.pl file).

Example 6. Edit /etc/services

# vi /etc/services

sge_qmaster     536/tcp                 # SGE QMaster
sge_execd       537/tcp                 # SGE Execd
       



Moab-SLURM Integration Guide
S.1 Overview
S.2 SLURM Configuration Steps
S.3 Moab Configuration Steps

S.3.1 Configuration for Standby and Expedite
S.3.2 Configuration for the Quadrics Switch
S.3.3 Authentication
S.3.4 Queue/Class Support
S.3.5 Policies
S.3.6 Moab Queue and RM Emulation
S.3.7 SLURM High Availability

S.1 Overview

   Moab can be used as the scheduler for the SLURM resource manager.  In this configuration, the SLURM
handles the job queue and the compute resources while Moab determines when, where and how jobs should
be executed according to current cluster state and site mission objectives.

   The documentation below describes how to configure Moab to interface with SLURM.

For Moab-SLURM integration, Moab 6.0 or higher and SLURM 2.2 or higher are recommended. From
the downloads page, the generic version is needed to install SLURM.

S.2 SLURM Configuration Steps

   To configure SLURM to utilize Moab as the scheduler, the SchedulerType parameters must be set in the
slurm.conf config file located in the SLURM etc directory (/usr/local/etc by default)

slurm.conf

   The SchedulerType parameter controls the communication protocol used between Moab and SLURM.  This
interface can be customized using the wiki.conf configuration file located in the same directory and further
documented in the SLURM Admin Manual.

   Note: To allow sharing of nodes, the SLURM partition should be configured with 'Shared=yes' attribute.

S.3 Moab Configuration Steps

   By default, Moab is built with WIKI interface support (which is used to interface with SLURM) when running
the standard 'configure' and 'make' process.

   To configure Moab to use SLURM, the parameter 'RMCFG' should be set to use the WIKI:SLURM protocol
as in the example below.

moab.cfg

Note: The RMCFG index (set to base in the example above) can be any value chosen by the site.  Also, if
SLURM is running on a node other than the one on which Moab is running, then the SERVER attribute of the
RMCFG parameter should be set.

SchedulerType=sched/wiki2

SCHEDCFG[base] MODE=NORMAL

RMCFG[base] TYPE=WIKI:SLURM
...

http://www.llnl.gov/linux/slurm
https://www.adaptivecomputing.com/myaccount/login.php?url=/resources/downloads/index.php?#moab
http://www.llnl.gov/linux/slurm/moab.html#wiki.conf
http://www.llnl.gov/linux/slurm/moab.html


Note: SLURM possesses a SchedulerPort parameter which is used to communicate with the scheduler.
 Moab will auto-detect this port and communicate with SLURM automatically with no explicit configuration
required.  Do NOT set Moab's SCHEDCFG[] PORT attribute to this value, this port controls Moab client
communication and setting it to match the SchedulerPort value will cause conflicts.  With no changes, the
default configuration will work fine.

Note: If the SLURM client commands/executables are not available on the machine running Moab, SLURM
partition and other certain configuration information will not be automatically imported from SLURM, thereby
requiring a manual setup of this information in Moab. In addition, the SLURM VERSION should be set as an
attribute on the RMCFG parameter.  If it is not set, the default is version 1.2.0.  The following example shows
how to set this line if SLURM v1.1.24 is running on a host named Node01 (set using the SERVER attribute).

moab.cfg with SLURM on Host Node01

S.3.1 Configuration for Standby and Expedite Support

   SLURM's 'Standby' and 'Expedite' options are mapped to the Moab QOS feature.  By default, when a SLURM
interface is detected, Moab will automatically create a 'standby' and an 'expedite' QoS.  By default, the
'standby' QoS will be globally accessible to all users and on all nodes and will have a lower than normal
priority.  Also by default, the 'expedite' QoS will not be accessible by any user, will have no node constraints,
and will have a higher than normal priority.

Authorizing Users to Use 'Expedite'

   To allow users to request 'expedite' jobs, the user will need to be added to the 'expedite' QoS.  This can be
accomplished using the MEMBERULIST attribute as in the following example:

MEMBERULIST

Excluding Nodes for 'Expedite' and 'Standby' Usage

   Both 'expedite' and 'standby' jobs can be independently excluded from certain nodes by creating a QoS-
based standing reservation.  Specifically, this is accomplished by creating a reservation with a logical-not QoS
ACL and a hostlist indicating which nodes are to be exempted as in the following example:

MEMBERULIST

S.3.2 Quadrics Integration

   If managing a cluster with a Quadrics high speed network, significant performance improvement can be
obtained by instructing Moab to allocate contiguous collections of nodes.  This can be accomplished by setting
the NODEALLOCATIONPOLICY parameter to CONTIGUOUS as in the example below:

moab.cfg

RMCFG[base] TYPE=WIKI:SLURM SERVER=Node01 VERSION=10124
...

# allow josh, steve, and user c1443 to submit 'expedite' jobs
QOSCFG[expedite] MEMBERULIST=josh,steve,c1443
...

# block expedite jobs from reserved nodes
SRCFG[expedite-blocker] QOSLIST=!expedite
SRCFG[expedite-blocker] HOSTLIST=c001[3-7],c200
SRCFG[expedite-blocker] PERIOD=INFINITY

# block standby jobs from rack 13 
SRCFG[standby-blocker] QOSLIST=!standby
SRCFG[standby-blocker] HOSTLIST=R:r13-[0-13]
SRCFG[standby-blocker] PERIOD=INFINITY
...



S.3.3 Setting Up Authentication

   By default, Moab will not require server authentication.  However, if SLURM's wiki.conf file (default
location is /usr/local/etc) contains the AuthKey parameter or a secret key is specified via SLURM's
configure using the --with-key option, Moab must be configured to honor this setting.  Moab configuration
is specified by setting the resource manager AUTHTYPE attribute to CHECKSUM and the KEY value in the
moab-private.cfg file to the secret key as in the example below.

/usr/local/etc/wiki.conf

moab.cfg

moab-private.cfg

Note: For the CHECKSUM authorization method, the key value specified in the moab-private.cfg file must be
a decimal, octal, or hexadecimal value, it cannot be an arbitrary non-numeric string.

S.3.4 Queue/Class Support

   While SLURM supports the concept of classes and queues, Moab provides a flexible alternative queue
interface system.  In most cases, sites can create and manage queues by defining partitions within SLURM.
 Internally, these SLURM partitions are mapped to Moab classes which can then be managed and configured
using Moab's CLASSCFG parameter and mdiag -c command.

S.3.5 Policies

   By default, SLURM systems only allow tasks from a single job to utilize the resources of a compute node.
 Consequently, when a SLURM interface is detected, Moab will automatically set the NODEACCESSPOLICY
parameter to SINGLEJOB.  To allow node sharing, the SLURM partition parameter 'Shared' should be set to
FORCE in the slurm.conf as in the example below:

slurm.conf

S.3.6 Moab Queue and RM Emulation

   With a SLURM system, jobs can be submitted either to SLURM or to Moab.  If submitted to SLURM, the
standard SLURM job submission language must be used.  If jobs are submitted to Moab using the msub
command, then either LSF*, PBS, or Loadleveler* job submission syntax can be used.  These jobs will be
translated by Moab and migrated to SLURM using its native job language.

S.3.7 SLURM High Availability

SCHEDCFG[cluster1]   MODE=NORMAL SERVER=head.cluster1.org

RMCFG[slurm]         TYPE=wiki:slurm

NODEALLOCATIONPOLICY CONTIGUOUS
...

AuthKey=4322953
...

RMCFG[slurm]         TYPE=wiki:slurm AUTHTYPE=CHECKSUM
...

CLIENTCFG[RM:slurm]  KEY=4322953
...

PartitionName=batch Nodes=node[1-64] Default=YES MaxTime=INFINITE 
State=UP Shared=FORCE



   If SLURM high availability mode is enabled, Moab will automatically detect the presence of the SLURM
BackupController and utilize it if the primary fails.  To verify SLURM is properly configured, issue the SLURM
command 'scontrol show config | grep Backup'.  To verify Moab properly detects this information, run
'mdiag -R -v | grep FallBack'.

Note: To use SLURM high availability, the SLURM parameter StateSaveLocation must point to a shared
directory which is readable and writable by both the primary and backup hosts.  See the slurm.conf man
page for additional information.

See Also

SLURM Admin Manual
SLURM's Moab Integration Guide
Additional SLURM Documentation
Wiki Overview

http://www.llnl.gov/linux/slurm/quickstart_admin.html
http://www.llnl.gov/linux/slurm/moab.html
http://www.llnl.gov/linux/slurm/documentation.html
http://sempa/resources/docs/blanks/mwm/wiki


Wiki Interface Overview

Wiki Interface
Socket Level Interface
Configuring Wiki



Appendix W: Wiki Interface Specification, version 1.2
W.1.1   Commands

W.1.1.1   Resource Query
W.1.1.1.1   Query Resources Request Format
W.1.1.1.2   Query Resources Response Format
W.1.1.1.3   Query Resources Example
W.1.1.1.4   Query Resources Data Format

W.1.1.2   Workload Query
W.1.1.2.1   Query Workload Request Format
W.1.1.2.2   Query Workload Response Format
W.1.1.2.3   Query Workload Example
W.1.1.2.4   Query Workload Data Format

W.1.1.3   Start Job
W.1.1.4   Cancel Job
W.1.1.5   Suspend Job
W.1.1.6   Resume Job
W.1.1.7   Requeue Job
W.1.1.8   Signal Job
W.1.1.9   Modify Job
W.1.1.10   JobAddTask
W.1.1.11   JobRemoveTask

W.1.2   Rejection Codes

W.1.1   COMMANDS

   All commands are requested via a socket interface, one command per socket connection. All fields and values are specified in ASCII text. 
Moab is configured to communicate via the wiki interface by specifying the following parameters in the moab.cfg file:

moab.cfg

   Field values must backslash escape the following characters if specified:

        '#'  ';'  ':'      (i.e.  '\#')

    Supported Commands are:

Query Resources
Query Workload
Start Job
Cancel Job
Suspend Job
Resume Job
Requeue Job
JOBADDTASK
JOBRELEASETASK

W.1.1.1   Wiki Query Resources

W.1.1.1.1   Wiki Query Resources Request Format

   CMD=GETNODES ARG={<UPDATETIME>:<NODEID>[:<NODEID>]... | <UPDATETIME>:ALL}

   Only nodes updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is specified as the epoch time of
interest.  Setting <UPDATETIME> to '0' will return information for all nodes.  Specify a colon delimited list of NODEID's if specific nodes are
desired or use the keyword 'ALL' to receive information for all nodes.

W.1.1.1.2   Query Resources Response Format

The query resources response format is one or more line of the following format (separated with a newline, " "):

<NODEID> <ATTR>=<VALUE>[;<ATTR>=<VALUE>]...

<ATTR> is one of the names in the table below and the format of <VALUE> is dependent on <ATTR>.

W.1.1.1.3   Wiki Query Resources Example

request:

wiki resource query

RMCFG[base] TYPE=WIKI SERVER=<HOSTNAME>[:<PORT>]
...



response:

wiki resource query response

W.1.1.1.4   Wiki Query Resources Data Format

NAME FORMAT DEFAULT DESCRIPTION

ACLASS
one or more bracket enclosed
<NAME>:<COUNT> pairs (ie,
[batch:5][sge:3])

--- run classes currently available on node.  If not specified, scheduler
will attempt to determine actual ACLASS value.

ADISK <INTEGER> 0 available local disk on node (in MB)

AFS <fs id="X" size="X" io="Y" rcount="X"
wcount="X" ocount="X"></fs>[...] 0 available filesystem state

AMEMORY <INTEGER> 0 available/free RAM on node (in MB)

ANET one or more colon delimited <STRING>'s
(ie, ETHER:ATM) --- Available network interfaces on node.  Available interfaces are

those which are 'up' and not already dedicated to a job.
APROC <INTEGER> 1 available processors on node
ARCH <STRING> --- compute architecture of node

ARES
one or more comma delimited
<NAME>:<VALUE> pairs (ie,
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources currently available on the node

ASWAP <INTEGER> 0 available swap on node (in MB)

CCLASS
one or more bracket enclosed
<NAME>:<COUNT> pairs (ie,
[batch:5][sge:3])

---
Run classes supported by node.  Typically, one class is 'consumed'
per task.  Thus, an 8 processor node may have 8 instances of
each class it supports present, ie [batch:8][interactive:8]

CDISK <INTEGER> 0 configured local disk on node (in MB)
CFS <STRING> 0 configured filesystem state
CMEMORY <INTEGER> 0 configured RAM on node (in MB)

CNET one or more colon delimited <STRING>'s
(ie, ETHER:FDDI:ATM) --- configured network interfaces on node

CPROC <INTEGER> 1 configured processors on node
CPULOAD <DOUBLE> 0.0 one minute BSD load average

CRES
one or more comma delimited
<NAME>:<VALUE> pairs (ie,
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources supported and tracked on the
node, ie software licenses or tape drives.

CSWAP <INTEGER> 0 configured swap on node (in MB)
CURRENTTASK <INTEGER> 0 Number of tasks currently active on the node
EVENT <STRING> --- Event or exception which occurred on the node

FEATURE one or more colon delimited <STRING>'s
(ie, WIDE:HSM) --- generic attributes, often describing hardware or software features,

associated with the node.

GCOUNTER <INTEGER> --- current total number of gevent event occurrences since epoch.
 This value should be monotonically increasing.

GEVENT GEVENT[<EVENTNAME>]=<STRING> --- generic event occurrence and context data.
GMETRIC GMETRIC[<METRICNAME>]=<DOUBLE> --- current value of generic metric, i.e., 'GMETRIC[temp]=103.5'.

IDLETIME <INTEGER> --- number of seconds since last detected keyboard or mouse activity
(often used with desktop harvesting)

MAXTASK <INTEGER> <CPROC> Maximum number of tasks allowed on the node at any given time
OS <STRING> --- operating system running on node
OSLIST <STRING> --- operating systems accepted by node
OTHER <ATTR>=<VALUE>[,<ATTR>=<VALUE>]... --- opaque node attributes assigned to node
PARTITION <STRING> DEFAULT partition to which node belongs
RACK <INTEGER> 0 Rack location of the node
SLOT <INTEGER> 0 Slot location of the node
SPEED <DOUBLE> 1.0 Relative processor speed of the node

STATE*
one of the following: Idle, Running,
Busy, Unknown, Drained, Draining, or
Down

Down state of the node

UPDATETIME* <EPOCHTIME> 0 time node information was last updated
VARIABLE* <ATTR>=<VAL> --- generic variables to be associated with node

* indicates required field

Note:  node states have the following definitions:

Busy: Node is running some jobs and will not accept additional jobs

CMD=GETNODES ARG=0:node001:node002:node003

node001 UPDATETIME=963004212;STATE=Busy;OS=AIX43;ARCH=RS6000...
node002 UPDATETIME=963004213;STATE=Busy;OS=AIX43;ARCH=RS6000...
...



Down: Resource Manager problems have been detected.  Node is incapable of running jobs.
Draining: Node is responding but will not accept new jobs
Idle: Node is ready to run jobs but currently is not running any.
Running: Node is running some jobs and will accept additional jobs
Unknown: Node is capable of running jobs but the scheduler will need to determine if the node state is actually Idle, Running, or Busy.

W.1.1.2   Wiki Query Workload

W.1.1.2.1   Wiki Query Workload Request Format

   CMD=GETJOBS ARG={<UPDATETIME>:<JOBID>[:<JOBID>]... | <UPDATETIME>:ALL }

   Only jobs updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is specified as the epoch time of interest. 
Setting <UPDATETIME> to '0' will return information for all jobs.  Specify a colon delimited list of JOBID's if information for specific jobs is
desired or use the keyword 'ALL' to receive information about all jobs.

W.1.1.2.2   Wiki Query Workload Response Format

   SC=<STATUSCODE>
ARG=<JOBCOUNT>#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...[#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...]...

        or

        SC=<STATUSCODE> RESPONSE=<RESPONSE>

        FIELD      is either the text name listed below or 'A<FIELDNUM>' 
                      (ie, 'UPDATETIME' or 'A2')

        STATUSCODE values:

             0   SUCCESS 
            -1   INTERNAL ERROR

        RESPONSE   is a statuscode sensitive message describing error or state details

W.1.1.2.3   Wiki Query Workload Example

request syntax

response syntax

W.1.1.2.4   Wiki Query Workload Data Format

NAME FORMAT DEFAULT DESCRIPTION
ACCOUNT <STRING> --- AccountID associated with job

ALLOCSIZE <INTEGER> --- number of application tasks to allocate at each
allocation adjustment.

APPBACKLOG <DOUBLE> ---
backlogged quantity of workload for associated
application (units are opaque), value may be
compared against TARGETBACKLOG

APPLOAD <DOUBLE> ---
load of workload for associated application (units
are opaque), value may be compared against
TARGETLOAD

APPRESPONSETIME <DOUBLE> ---
response time of workload for associated
application (units are opaque), value may be
compared against TARGETRESPONSETIME

APPTHROUGHPUT <DOUBLE> ---
throughput of workload for associated application
(units are opaque), value may be compared
against TARGETTHROUGHPUT

ARGS <STRING> --- job command-line arguments

COMMENT <STRING> 0
job resource manager extension arguments
including qos, dependencies, reservation
constraints, etc

COMPLETETIME* <EPOCHTIME> 0 time job completed execution

DDISK <INTEGER> 0 quantity of local disk space (in MB) which must
be dedicated to each task of the job

DGRES name:value[,name:value] --- Dedicated generic resources per task.
DPROCS <INTEGER> 1 number of processors dedicated per task
DNETWORK <STRING> --- network adapter which must be dedicated to job

CMD=GETJOBS ARG=0:ALL

ARG=2#nebo3001.0:UPDATETIME=9780000320;STATE=Idle;WCLIMIT=3600;...



DSWAP <INTEGER> 0 quantity of virtual memory (swap, in MB) which
must be dedicated to each task of the job

ENDDATE <EPOCHTIME> [ANY] time by which job must complete
ENV <STRING> --- job environment variables
EVENT <EVENT> --- event or exception experienced by job
ERROR <STRING> --- file to contain STDERR
EXEC <STRING> --- job executable command
EXITCODE <INTEGER> --- job exit code
FLAGS <STRING> --- job flags
GEOMETRY <STRING> --- String describing task geometry required by job
GNAME* <STRING> --- GroupID under which job will run

HOSTLIST

comma or colon delimited list of hostnames -
suffix the hostlist with a carat (^) to mean
superset; suffix with an asterisk (*) to mean
subset; otherwise, the hostlist is interpreted as
an exact set

[ANY] list of required hosts on which job must run.
 (see TASKLIST)

INPUT <STRING> --- file containing STDIN
IWD <STRING> --- job's initial working directory
NAME <STRING> --- User specified name of job

NODERANGE <INTEGER>[,<INTEGER>] --- Minimum and maximum nodes allowed to be
allocated to job.

NODES <INTEGER> 1 Number of nodes required by job (See Node
Definition for more info)

OUTPUT <STRING> --- file to contain STDOUT
PARTITIONMASK one or more colon delimited <STRING>s [ANY] list of partitions in which job can run

PREF colon delimited list of <STRING>s --- List of preferred node features or variables. (See
PREF for more information.)

PRIORITY <INTEGER> --- system priority (absolute or relative - use '+' and
'-' to specify relative)

QOS <INTEGER> 0 quality of service requested
QUEUETIME* <EPOCHTIME> 0 time job was submitted to resource manager
RARCH <STRING> --- architecture required by job

RCLASS list of bracket enclosed <STRING>:<INTEGER>
pairs ---

list of <CLASSNAME>:<COUNT> pairs indicating
type and number of class instances required per
task.  (ie, '[batch:1]' or '[batch:2][tape:1]')

RDISK <INTEGER> 0 local disk space (in MB) required to be configured
on nodes allocated to the job 

RDISKCMP one of '>=', '>', '==', '<', or '<=' >= local disk comparison (ie, node must have >
2048 MB local disk)

REJCODE <INTEGER> 0 reason job was rejected
REJCOUNT <INTEGER> 0 number of times job was rejected
REJMESSAGE <STRING> --- text description of reason job was rejected
REQRSV <STRING> --- Name of reservation in which job must run
RESACCESS <STRING> --- List of reservations in which job can run
RFEATURES colon delimited list <STRING>'s --- List of features required on nodes

RMEM <INTEGER> 0 real memory (RAM, in MB) required to be
configured on nodes allocated to the job

RMEMCMP one of '>=', '>', '==', '<', or '<=' >= real memory comparison (ie, node must have >=
512MB RAM)

RNETWORK <STRING> --- network adapter required by job
ROPSYS <STRING> --- operating system required by job
RSOFTWARE <RESTYPE>[{+|:}<COUNT>][@<TIMEFRAME>] --- software required by job

RSWAP <INTEGER> 0 virtual memory (swap, in MB) required to be
configured on nodes allocated to the job

RSWAPCMP one of '>=', '>', '==', '<', or '<=' >= virtual memory comparison (ie, node must have
==4096 MB virtual memory) 

SID <STRING> --- system id (global job system owner)
SJID <STRING> --- system job id (global job id)
STARTDATE <EPOCHTIME> 0 earliest time job should be allowed to start
STARTTIME* <EPOCHTIME> 0 time job was started by the resource manager

STATE* one of Idle, Running, Hold, Suspended,
Completed, or Removed Idle State of job

SUSPENDTIME <INTEGER> 0 Number of seconds job has been suspended



TARGETBACKLOG <DOUBLE>[,<DOUBLE>] --- Minimum and maximum backlog for application
within job.

TARGETLOAD <DOUBLE>[,<DOUBLE>] --- Minimum and maximum load for application
within job.

TARGETRESPONSETIME <DOUBLE>[,<DOUBLE>] --- Minimum and maximum response time for
application within job.

TARGETTHROUGHPUT <DOUBLE>[,<DOUBLE>] --- Minimum and maximum throughput for
application within job.

TARGETVIOLATIONTIME
<ALLOCATIONTIME>[,<DEALLOCATIONTIME>]
where values are specified using the format
[[[DD:]HH:]MM:]SS

---
By default, Moab allocates/deallocates resources
as soon as a performance target violation is
detected.

TASKLIST one or more comma-delimited <STRING>'s ---

list of allocated tasks, or in other words,
comma-delimited list of node ID's associated
with each active task of job (i.e., cl01, cl02, cl01,
cl02, cl03)  The tasklist is initially selected by the
scheduler at the time the StartJob command is
issued.  The resource manager is then
responsible for starting the job on these nodes
and maintaining this task distribution information
throughout the life of the job.  (see HOSTLIST)

TASKS* <INTEGER> 1 Number of tasks required by job (See Task
Definition for more info)

TASKPERNODE <INTEGER> 0 exact number of tasks required per node
UNAME* <STRING> --- UserID under which job will run
UPDATETIME* <EPOCHTIME> 0 Time job was last updated
WCLIMIT* [[HH:]MM:]SS 864000 walltime required by job

* indicates required field

Note:  Job states have the following definitions:

Completed: Job has completed
Hold: Job is in the queue but is not allowed to run
Idle: Job is ready to run
Removed: Job has been canceled or otherwise terminated externally
Running: Job is currently executing
Suspended: job has started but execution has temporarily been suspended

Note:  Completed and canceled jobs should be maintained by the resource manager for a brief time, perhaps 1 to 5 minutes, before being
purged.  This provides the scheduler time to obtain all final job state information for scheduler statistics.

1.1.3 StartJob

   The 'StartJob' command may only be applied to jobs in the 'Idle' state.  It causes the job to begin running using the resources listed in
the NodeID list.

    send     CMD=STARTJOB ARG=<JOBID> TASKLIST=<NODEID>[:<NODEID>]...

    receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message possibly further describing an error or state

job start example

1.1.4 CancelJob

   The 'CancelJob' command, if applied to an active job, will terminate its execution.  If applied to an idle or active job, the CancelJob
command will change the job's state to 'Canceled'.

    send     CMD=CANCELJOB ARG=<JOBID> TYPE=<CANCELTYPE>

    <CANCELTYPE> is one of the following:

    ADMIN               (command initiated by scheduler administrator) 
    WALLCLOCK (command initiated by scheduler because job exceeded its specified wallclock limit)

    receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

# Start job nebo.1 on nodes cluster001 and cluster002
send 'CMD=STARTJOB ARG=nebo.1 TASKLIST=cluster001:cluster002'
receive 'SC=0;RESPONSE=job nebo.1 started with 2 tasks'



           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job cancel example

1.1.5 SuspendJob

   The 'SuspendJob' command can only be issued against a job in the state 'Running'.  This command suspends job execution and results in
the job changing to the 'Suspended' state.

    send     CMD=SUSPENDJOB ARG=<JOBID>

    receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message possibly further describing an error or state

job suspend example

1.1.6 ResumeJob

   The 'ResumeJob' command can only be issued against a job in the state 'Suspended'.  This command resumes a suspended job returning
it to the 'Running' state.

  send     CMD=RESUMEJOB ARG=<JOBID>

  receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job resume example

1.1.7 RequeueJob

   The 'RequeueJob' command can only be issued against an active job in the state 'Starting' or 'Running'.  This command requeues the job,
stopping execution and returning the job to an idle state in the queue.  The requeued job will be eligible for execution the next time
resources are available.

  send     CMD=REQUEUEJOB ARG=<JOBID>

  receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job requeue example

1.1.8 SignalJob

   The 'SignalJob' command can only be issued against an active job in the state 'Starting' or 'Running'.  This command signals the job,
sending the specified signal to the master process.  The signalled job will be remain in the same state it was before the signal was issued.

  send     CMD=SIGNALJOB ARG=<JOBID> ACTION=signal VALUE=<SIGNAL>

# Cancel job nebo.2
send 'CMD=CANCELJOB ARG=nebo.2 TYPE=ADMIN'
receive 'SC=0 RESPONSE=job nebo.2 canceled'

# Suspend job nebo.3
send 'CMD=SUSPENDJOB ARG=nebo.3'
receive 'SC=0 RESPONSE=job nebo.3 suspended'

# Resume job nebo.3
send 'CMD=RESUMEJOB ARG=nebo.3'
receive 'SC=0 RESPONSE=job nebo.3 resumed'

# Requeue job nebo.3
send 'CMD=REQUEUEJOB ARG=nebo.3'
receive 'SC=0 RESPONSE=job nebo.3 requeued'



  receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job signal example

1.1.9 ModifyJob

   The 'ModifyJob' command can be issued against any active or queued job.  This command modifies specified attributes of the job.

  send     CMD=MODIFYJOB ARG=<JOBID> [BANK=name] [NODES=num] [PARTITION=name] [TIMELIMIT=minutes]

  receive  SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job modify example

1.1.10 JobAddTask

   The 'JobAddTask' command allocates additional tasks to an active job.

    send

        CMD=JOBADDTASK ARG=<JOBID> <NODEID> [<NODEID>]...

    receive

        SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message possibly further describing an error or state

job addtask example

1.1.11 JobRemoveTask

   The 'JobRemoveTask' command removes tasks from an active job.

    send

        CMD=JOBREMOVETASK ARG=<JOBID> <TASKID> [<TASKID>]...

    receive

        SC=<STATUSCODE> RESPONSE=<RESPONSE>

           STATUSCODE >= 0 indicates SUCCESS 
           STATUSCODE <  0 indicates FAILURE 
           RESPONSE   is a text message further describing an error or state

job removetask example

# Signal job nebo.3
send 'CMD=SIGNALJOB ARG=nebo.3 ACTION=signal VALUE=13'
receive 'SC=0 RESPONSE=job nebo.3 signalled'

# Signal job nebo.3
send 'CMD=MODIFYJOB ARG=nebo.3 TIMELIMIT=9600'
receive 'SC=0 RESPONSE=job nebo.3 modified'

# Add 3 default tasks to job nebo30023.0 using resources located on 
nodes cluster002, cluster016, and cluster112.
send 'CMD=JOBADDTASK ARG=nebo30023.0 DEFAULT cluster002 cluster016 
cluster112'
receive 'SC=0 RESPONSE=3 tasks added'

# Free resources allocated to tasks 14, 15, and 16 of job nebo30023.0
send 'CMD=JOBREMOVETASK ARG=nebo30023.0 14 15 16'
receive 'SC=0 RESPONSE=3 tasks removed'



1.2 Rejection Codes

0xx - success - no error
00x - success

000 - success
01x - usage/help reply

010 - usage/help reply
02x - status reply

020 - general status reply
1xx - warning

10x - general warning
100 - general warning

11x - no content
110 - general wire protocol or network warning
112 - redirect
114 - protocol warning

12x - no matching results
120 - general message format warning
122 - incomplete specification (best guess action/response applied)

13x - security warning
130 - general security warning
132 - insecure request
134 - insufficient privileges (response was censored/action reduced in scope)

14x - content or action warning
140 - general content/action warning
142 - no content (server has processed the request but there is no data to be returned)
144 - no action (no object to act upon)
146 - partial content
148 - partial action

15x - component defined
18x - application defined

2xx - wire protocol/network failure
20x - protocol failure

200 - general protocol/network failure
21x - network failure

210 - general network failure
212 - cannot resolve host
214 - cannot resolve port
216 - cannot create socket
218 - cannot bind socket

22x - connection failure
220 - general connection failure
222 - cannot connect to service
224 - cannot send data
226 - cannot receive data

23x - connection rejected
230 - general connection failure
232 - connection timed-out
234 - connection rejected - too busy
236 - connection rejected - message too big

24x - malformed framing
240 - general framing failure
242 - malformed framing protocol
244 - invalid message size
246 - unexpected end of file

25x - component defined
28x - application defined

3xx - messaging format error
30x - general messaging format error

300 - general messaging format error
31x - malformed XML document

310 - general malformed XML error
32x - XML schema validation error

320 - general XML schema validation
33x - general syntax error in request

330 - general syntax error in response
332 - object incorrectly specified
334 - action incorrectly specified
336 - option/parameter incorrectly specified

34x - general syntax error in response
340 - general response syntax error
342 - object incorrectly specified
344 - action incorrectly specified



346 - option/parameter incorrectly specified
35x - synchronization failure

350 - general synchronization failure
352 - request identifier is not unique
354 - request id values do not match
356 - request id count does not match

4xx - security error occurred
40x - authentication failure - client signature

400 - general client signature failure
402 - invalid authentication type
404 - cannot generate security token key - inadequate information
406 - cannot canonicalize request
408 - cannot sign request

41x - negotiation failure
410 - general negotiation failure
412 - negotiation request malformed
414 - negotiation request not understood
416 - negotiation request not supported

42x - authentication failure
420 - general authentication failure
422 - client signature failure
424 - server authentication failure
426 - server signature failure
428 - client authentication failure

43x - encryption failure
430 - general encryption failure
432 - client encryption failure
434 - server decryption failure
436 - server encryption failure
438 - client decryption failure

44x - authorization failure
440 - general authorization failure
442 - client authorization failure
444 - server authorization failure

45x - component defined failure
48x - application defined failure

5xx - event management request failure
50x - reserved

500 - reserved
6xx - reserved for future use

60x - reserved
600 - reserved

7xx - server side error occurred
70x - server side error

700 - general server side error
71x - server does not support requested function

710 - server does not support requested function
72x - internal server error

720 - general internal server error
73x - resource unavailable

730 - general resource unavailable error
732 - software resource unavailable error
734 - hardware resource unavailable error

74x - request violates policy
740 - general policy violation

75x - component-defined failure
78x - application-defined failure

8xx - client side error occurred
80x - general client side error

800 - general client side error
81x - request not supported

810 - request not supported
82x - application specific failure

820 - general application specific failure
9xx - miscellaneous

90x - general miscellaneous error
900 - general miscellaneous error

91x - general insufficient resources error
910 - general insufficient resources error

99x - general unknown error
999 - unknown error



Wiki Socket Protocol Description
The Moab scheduler uses a simple protocol for socket connections to the user client and the resource
manager as described below:

<SIZE><CHAR>CK=<CKSUM><WS>TS=<TIMESTAMP><WS>AUTH=<AUTH><WS>DT=<DATA>

<SIZE>
8 character decimal ASCII representation of the size of the packet following
'<SIZE><CHAR>' Leading zeroes must be used to pad this value to 8 characters if
necessary.

<CHAR> A single ASCII character

<CKSUM>
A 16 character hexadecimal ASCII DES-based checksum calculated using the algorithm
below* and <SEED> selected and kept secret by the site admins. The checksum is
performed on the line from 'TS=' to the end of the message including <DATA>.

<WS> a series of 'white space' characters consisting of either 'tabs' and/or 'space' characters.
<TIMESTAMP> ASCII representation of epoch time
<AUTH> Identifier of user requesting service (i.e., USERNAME)
<DT> Data to be sent

An example header follows:

00001057 CK=cdf6d7a7ad45026f TS=922401962 AUTH=sched DT=<DATA>

where '<DATA>' is replaced by actual message data.

Checksum Algorithm ('C' version)

#define MAX_CKSUM_ITERATION 4

int GetChecksum(

  char *Buf,
  int   BufSize,
  char *Checksum,
  char *CSKey)      /* Note:  pass in secret key */

  {
  unsigned int crc;
  unsigned int lword;
  unsigned int irword;

  int          index;

  unsigned int Seed;

  Seed = (unsigned int)strtoul(CSKey,NULL,0);

  crc = 0;

  for (index = 0;index < BufSize;index++)
    {
    crc = (unsigned int)DoCRC((unsigned short)crc,Buf[index]);
    }

  lword  = crc;
  irword = Seed;

  PSDES(&lword,&irword);

  sprintf(Checksum,"%08x%08x",
    lword,
    irword);

  return(SUCCESS);
  }

unsigned short DoCRC(

  unsigned short crc,



  unsigned char  onech)

  {
  int            index;

  unsigned int ans;

  ans = (crc ^ onech << 8);

  for (index = 0;index < 8;index++)
    {
    if (ans & 0x8000)
      ans = (ans <<= 1) ^ 4129;
    else
      ans <<= 1;
    }

  return((unsigned short)ans);
  }

int PSDES(

  unsigned int *lword,
  unsigned int *irword)

  {
  int index;

  unsigned int ia;
  unsigned int ib;
  unsigned int iswap;
  unsigned int itmph;
  unsigned int itmpl;

  static unsigned int c1[MAX_CKSUM_ITERATION] = {
    0xcba4e531, 0x537158eb, 0x145cdc3c, 0x0d3fdeb2 };
  static unsigned int c2[MAX_CKSUM_ITERATION] = {
    0x12be4590, 0xab54ce58, 0x6954c7a6, 0x15a2ca46 };

  itmph = 0;
  itmpl = 0;

  for (index = 0;index < MAX_CKSUM_ITERATION;index++)
    {
    iswap = *irword;

    ia = iswap ^ c1[index];

    itmpl = ia & 0xffff;
    itmph = ia >> 16;

    ib = (itmpl * itmpl) + ~(itmph*itmph);
    ia = (ib >> 16) | ((ib & 0xffff) << 16);

    *irword = (*lword) ^ ((ia ^ c2[index]) + (itmpl * itmph));

    *lword = iswap;
    }

  return(SUCCESS);
  }

Header Creation (PERL code)

(taken from PNNL's QBank client code)

################################################################################
#
# subroutine wiki($COMMAND)
#
# Sends command to Moab server and returns the parsed result and status
#
################################################################################

sub wiki
{
  my($COMMAND,$REQUEST,$result);
  my($sockaddr,$hostname);
  my($name,$aliases,$proto,$port,$type,$len,$thisaddr);
  my($thisport,$thatport,$response,$result);



  $COMMAND = shift;

  #
  # Establish socket connection
  #
  $sockaddr = 'S n a4 x8';
  chop ($hostname = `hostname`);
  ($name,$aliases,$proto)=getprotobyname('tcp');
  ($name,$aliases,$type,$len,$thisaddr)=gethostbyname($hostname);
  ($name,$aliases,$type,$len,$thataddr)=gethostbyname($BANKHOST);
  $thisport=pack($sockaddr, &AF_INET,0,$thisaddr);
  $thatport=pack($sockaddr, &AF_INET,$BANKPORT,$thataddr);
  socket(S, &PF_INET,&SOCK_STREAM,$proto) || die "cannot create socket\n";
  bind(S,$thisport) || die "cannot bind socket\n";
  connect(S,$thatport) || die "cannot connect socket\n";

  select(S); $| = 1;              # Turn on autoflushing
  select(stdout); $| = 1;         # Select STDOUT as default output

  #
  # Build  and send command
  #
  $REQUEST="COMMAND=$COMMAND AUTH=$AUTH";
  chomp($CHECKSUM = `$QSUM "$REQUEST"`);
  $REQUEST .= " CHECKSUM=$CHECKSUM";
  my $command=pack "a8 a1 A*",sprintf("%08d",length($REQUEST))," ",$REQUEST;
  print S "$command";             # Send Command to server
  @REPLY=();
  while (<S>) { push(@REPLY,$_); }        # Listen for Reply
  $STATUS=grep(/STATUSCODE=(\d*)/&&$1,@REPLY);    # STATUSCODE stored in $STATUS
  grep(s/.*RESULT=//,@REPLY);             # Parse out the RESULT
  return @REPLY;
}

Header Processing (PERL code)

sysread(NS,$length,8);                          # Read length string
sysread(NS,$delimiter,1);                       # Read delimiter byte
$DEBUG && print STDERR "length=[$length]\tdelimiter=[$delimiter]\n";

while($length) {
        $DEBUG && print STDERR "Awaiting $length bytes -- ".`date`;
        $length-=sysread(NS,$request,$length);  # Read request
        sleep 1;
        }

%REQUEST=();
chomp($request);
foreach (@REQUEST=&shellwords($request))        # Parse arguments into array
        {
        ($key,$value)=split(/=/,$_);
        $REQUEST{$key}=$value unless defined $REQUEST{$key};
        }

$request =~ s/\s+CHECKSUM=.*//;         # Strip off the checksum
print STDERR "REQUEST=$request\n";
chomp($checksum=`$QSUM "$request"`);
$me=$REQUEST{AUTH};
$command=$REQUEST{COMMAND};

if (!grep($command eq $_,@VALIDCMDS))
        { $REPLY = "STATUSCODE=0 RESULT=$command is not a valid command\n";}
elsif ($checksum ne $REQUEST{CHECKSUM})
        { $REPLY = "STATUSCODE=0 RESULT=Invalid Checksum\n";}
else
        { $REPLY = do $command(@REQUEST); }

$len=sprintf("%08d",length($REPLY)-1);
$delim=' ';
$DEBUG && print STDERR "REPLY=${len}${delim}$REPLY\n";
$buf="$len"."$delim"."$REPLY";
syswrite(NS,$buf,length($buf));
close NS;



Wiki Configuration
   Configuring the WIKI interface requires setting the following attributes of the RMCFG parameter to be
specified.
 
Attribute Value Details
AUTHTYPE CHECKSUM
SERVER <URL> Must be specified
TYPE WIKI



Moab-LSF Integration Guide
Overview

   Moab can be used as an external scheduler for LSF and significantly increase the cluster's capabilities in
terms of cluster management, grid integration, accounting, and optimization services.  In this configuration,
LSF manages the job queue and the compute resources while Moab queries the LSF daemons via the LSF
scheduling API (only available in LSF 5.1 and higher) to obtain up-to-date job and node information.  Using
this information, Moab directs LSF to manage jobs in accordance with specified Moab policies, priorities, and
reservations.

Installing Moab

   To install Moab for LSF, from the Moab source code root directory, source the LSF environment file
'$LSF_ENVDIR/lsf.conf', run 'configure', and then execute 'make install'.

Note: With LSF 5.x and earlier, use $LSF_CONFDIR in place of $LSF_ENVDIR.

Configuring Moab

   The 'configure' command should have already properly configured Moab to use LSF.  However, to verify
this, edit the moab.cfg file and confirm that the following line is specified:

moab.cfg

   The resource manager flag ignqueuestate informs Moab to utilize queues which are disabled for usage by
the LSF scheduler.

Note: Moab can pull information directly from the LSF API or can obtain it indirectly by parsing the output of
LSF commands. See LSF Integration via the Native Interface for more information.

Configuring LSF

  Moab must be run as an LSF admin user.  To enable a user as an LSF admin, edit the ClusterAdmins
stanza in the '$LSF_CONFDIR/lsf.cluster.<CLUSTER>' file as in the example below:

conf/lsf.cluster.<CLUSTER>

  Additionally, LSF must be configured to use Moab as its external scheduler.  This can be done by adding the
following line to the lsf.conf file and restarting the LSF head-node daemons:

lsf.conf

Disabling LSF Scheduler

   To disable LSF scheduling for all queues, issue the following command:

disable LSF queues

RMCFG[base] TYPE=LSF FLAGS=ignqueuestate

Begin   ClusterAdmins
Administrators = lsfadmin john steve
End    ClusterAdmins

LSF_ENABLE_EXTSCHEDULER=Y

> badmin qinact all



Starting Moab

   To start Moab, source the LSF environment file, 'lsf.conf' into the current environment and then start the
Moab daemon:

starting moab

> moabd is a safe and recommended method of starting Moab if things are not installed in their default
locations.

It may also be necessary to add the path to your LSF libraries to the LD_LIBRARY_PATH variable as in
'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lsf/6.0/linux2.4-glibc2.3-x86/lib'.

Troubleshooting

For LSF to function correctly, the mbatchd daemon must be running.  If Moab reports 'batch system
daemon not responding ... still trying', check this process.

> source /usr/lsf/conf/lsf.conf
> moab



moab.cfg

node.query.lsf.pl - script to provide information about LSF nodes

------
# moab.cfg

# Using the native interface to run query commands.
RMCFG[native]       TYPE=NATIVE FLAGS=queueisprivate
RMCFG[native]       CLUSTERQUERYURL=/usr/local/etc/node.query.lsf.pl 
TIMEOUT=30
RMCFG[native]       PARTITION=lsf

# Only use some features from the LSF (non-native) interface.
RMCFG[lsf]          TYPE=LSF FLAGS=executionserver,ignqueuestate
RMCFG[lsf]          FNLIST=queuequery,workloadquery,jobstart
------

------
#!/usr/bin/perl
use strict;

# Extract node data from LSF and pass it to Moab.

# Note: Should pay attention to command line,
#   but currently doesn't.

# Note: Other node information can be passed along,
#   for now this is the bare minimum required.

my $command = "bhosts -w |";
my $current_time = time();
my %job_state;
my $num_nodes;
my $node_id;
my $state;

open (DATA, $command);
for (<DATA>) 
  {
  if (/^HOST_NAME/) 
    {
    # NO-OP
    } 
  elsif (/(\S+)\s+(\S+)/) 
    {
    $job state{$1} = $2;



Installation Notes for Moab and Torque on the
Cray XT
Copyright © 2011 Adaptive Computing Enterprises, Inc.

This document provides information on the steps to install Moab and Torque on a Cray XT system.

Overview
Moab and Torque can be used to manage the batch system for a Cray XT4, XT5 or later supercomputers. This
document describes how Moab can be configured to use Torque and Moab's native resource manager
interface to bring Moab's unmatched scheduling capabilities to the Cray XT4/XT5.

Note: For clarity this document assumes that your SDB node is mounting a persistent /var filesystem from
the bootnode. If you have chosen not to use persistent /var filesystems please be aware that the instructions
below would have to be modified for your situation.

Torque Installation Notes

Perform the following steps from the boot node as root:

Download the latest Torque release

Download the latest Torque release.

Example 1. Download Torque

Unpack the Torque tarball in an xtopview session

Using xtopview, unpack the Torque tarball into the software directory in the shared root.

Example 2. Unpack Torque

Configure Torque

While still in xtopview, run configure with the options set appropriately for your installation. Run ./configure —
help to see a list of configure options. Adaptive Computing recommends installing the Torque binaries into
/opt/torque/$version and establishing a symbolic link to it from /opt/torque/default. At a minimum, you will
need to specify the hostname where the Torque server will run (--with-default-server) if it is different from
the host it is being compiled on. The Torque server host will normally be the SDB node for XT installations.

Example 3. Run configure

# cd /rr/current/software
# wget http://www.adaptivecomputing.com/downloads/torque/torque-
2.2.0.tar.gz

# xtopview
default/:/ # cd /software
default/:/software # tar -zxvf torque-2.2.0.tar.gz

default/:/software # cd torque-2.2.0
default/:/software/torque-2.2.0 # ./configure --

http://www.clusterresources.com/downloads/torque/


Note: The —enable-maxdefault is a change from Torque 2.4.5 onwards. This will enforce max_default queue
and server settings the same way previous versions of Torque did by default. Your site may choose not to
follow this configuration setting and get the new behavior. See Job Submission for more information.

Compile and Install Torque

While still in xtopview, compile and install Torque into the shared root. You may also need to link
/opt/torque/default to this installation. Exit xtopview.

Example 4. Make and Make Install

Copy your Torque server directory to your Moab server host

In this example we assume the Torque server will be running on the SDB node. Torque's home directory on
the SDB will be /var/spool/torque which is mounted from the bootnode (persistent var). The SDB is usually
nid00003 but you will need to confirm this by logging into the SDB and running 'cat /proc/cray_xt/nid'. Use
the numeric nodeid from this command in the following example.

Example 5. On the boot node, copy the Torque home directory to the SDB node's persistant /var
filesystem (as exported from the bootnode)

Stage out MOM dirs to login nodes

Stage out the MOM dirs and client server info on all login nodes. This example assumes you are using a
persistent /var filesystems mounted from /snv on the boot node. Alternatively, a ram var filesystem must be
populated by a skeleton tarball on the bootnode (/rr/current/.shared/var-skel.tgz) into which these files must
be added. The example below assumes that you have 3 login nodes with nids of 4, 64 and 68. Place the
hostname of the SDB node in the server_name file.

Example 6. Copy out MOM dirs and client server info

Perform the following steps from the Torque server node (sdb) as root:

prefix=/opt/torque/2.2.0 --with-server-home=/var/spool/torque --with-
default-server=sdb --enable-syslog --disable-gcc-warnings --enable-
maxdefault --with-modulefiles=/opt/modulefiles

default/:/software/torque-2.2.0 # make
default/:/software/torque-2.2.0 # make packages
default/:/software/torque-2.2.0 # make install
default/:/software/torque-2.2.0 # ln -sf /opt/torque/2.2.0/ 
/opt/torque/default
default/:/software/torque-2.2.0 # exit

# cd /rr/current/var/spool
# cp -pr torque /snv/3/var/spool

# cd /rr/current/software/torque-2.2.0/tpackages/mom/var/spool
# for i in 4 64 68

     > do cp -pr torque /snv/$i/var/spool
     > echo nid00003 > /snv/$i/var/spool/torque/server_name
     > # Uncomment the following if userids are not resolvable from 
the pbs_server host
     > # echo "QSUBSENDUID true" > /snv/$i/var/spool/torque/torque.cfg
     > done   

http://www.adaptivecomputing.com/resources/docs/torque/2.1jobsubmission.php


Setup the Torque server on the sdb node

Configure the Torque server by informing it of its hostname and running the Torque.setup script.

Example 7. Set the server name and run torque.setup

Customize the server parameters

Add access and submit permission from your login nodes. You will need to enable host access by setting
acl_host_enable to true and adding the nid hostnames of your login nodes to acl_hosts. In order to be able to
submit from these same login nodes, you need to add them as submit_hosts and this time use their
hostnames as returned from the hostname command.

Example 8. Customize server settings

Enable scheduling to allow Torque events to be sent to Moab. Note: If this is not set, Moab will automatically
set it on startup.

Keep information about completed jobs around for a time so that Moab can detect and record their
completion status. Note: If this is not set, Moab will automatically set it on startup.

Remove the default nodes setting

Set resources_available.nodes equal to the maximum number of procs that can be requested in a job.

Do this for each queue individually as well.

Only allow jobs submitted from hosts specified by the acl_hosts parameter.

Define your login nodes to Torque.

Define your login nodes to Torque. You should set np to the maximum number of concurrent jobs for your

# hostname > /var/spool/torque/server_name
# export PATH=/opt/torque/default/sbin:/opt/torque/default/bin:$PATH
# cd /software/torque-2.2.0
# ./torque.setup root

# qmgr -c "set server scheduling = true"

# qmgr -c "set server keep_completed = 300"

# qmgr -c "unset queue batch resources_default.nodes"

# qmgr -c "set server resources_available.nodes = 1250"

# qmgr -c "set queue batch resources_available.nodes = 1250"

# qmgr -c "set server acl_host_enable = true"
# qmgr -c "set server acl_hosts += nid00004"
# qmgr -c "set server acl_hosts += nid00064"
# qmgr -c "set server acl_hosts += nid00068"
# qmgr -c "set server submit_hosts += login1"
# qmgr -c "set server submit_hosts += login2"
# qmgr -c "set server submit_hosts += login3"



system. A value of 128 is suggested as a typical setting.

Example 9. Populate the nodes file

In this example we have defined three execution hosts in Torque. Additionally, we assigned specific properties
to a couple of the nodes so that particular workload can be directed to these hosts (moms).

Install the pbs_server init.d script on the server (Optional)

Torque provides an init.d script for starting pbs_server as a service.

Example 10. Copy in init.d script

Edit the init.d file as necessary -- i.e. change PBS_DAEMON and PBS_HOME as appropriate.

Uncomment the following line to retain core dump files:

ulimit -c unlimited # Uncomment this to preserve core files 

Install the pbs_mom init.d script on the login nodes (Optional)

Torque provides an init.d script for starting pbs_mom as a service.

Example 11. Copy in init.d script

Edit the init.d file as necessary -- i.e. change PBS_DAEMON and PBS_HOME as appropriate, retain core files,
etc.

Uncomment the following line to retain core dump files:

ulimit -c unlimited # Uncomment this to preserve core files 

Stop the Torque server

# vi /var/spool/torque/server_priv/nodes

    login1 np=128 login2 np=128 mom_himem login3 np=128 mom_netpipe

# cd /rr/current/software/torque-2.2.0
# cp contrib/init.d/pbs_server /etc/init.d
# chmod +x /etc/init.d/pbs_server

# vi /etc/init.d/pbs_server

    PBS_DAEMON=/opt/torque/default/sbin/pbs_server 
PBS_HOME=/var/spool/torque

# cd /rr/current/software/torque-2.2.0

# vi contrib/init.d/pbs_mom

    PBS_DAEMON=/opt/torque/default/sbin/pbs_mom 
PBS_HOME=/var/spool/torque
    



Example 12. Stop Torque

Alternatively, if you installed the init.d script, you may run:

Update the Torque MOM config file on each MOM node

Edit the MOM config file so job output is copied to locally mounted directories.

Example 13. Edit the MOM config file

Note: It may be acceptable to use a $usecp *:/ / in place of the sample above. Consult with the site.

Startup the Torque Mom Daemons

On the boot node as root:

Example 14. Start up the pbs_moms on the login nodes.

Alternatively, if you installed the init.d script, you may run:

Startup the Torque Server

On the Torque server host as root:

Example 15. Start pbs_server

Alternatively, if you installed the init.d script, you may run:

Moab Install Notes

Install Torque

If Torque is not already installed on your system, follow the Torque-XT Installation Notes to install Torque on
the SDB node.

Perform the following steps from the boot node as root:

Download the latest Moab release

# /opt/torque/default/bin/qterm

# service pbs_server stop

# vi var/spool/torque/mom_priv/config

    $usecp *:/home/users /home/users $usecp *:/scratch /scratch

# pdsh -w login1,login2,login3 /opt/torque/default/sbin/pbs_mom

# pdsh -w login1,login2,login3 /sbin/service pbs_mom start

# /opt/torque/default/sbin/pbs_server

# service pbs_server start



Download the latest Moab release from Cluster Resources, Inc.

Note: The correct tarball type can be recognized by the xt4 tag in its name. The xt4 tarball will be used when
it is a Cray XT4, XT5 or later.

Example 16. Download Moab

Unpack the Moab tarball

Using xtopview, unpack the Moab tarball into the software directory in the shared root.

Example 17. Unpack Moab

Configure Moab

While still in xtopview, run configure with the options set appropriately for your installation. Run ./configure —
help to see a list of configure options. Adaptive Computing recommends installing the Moab binaries into
/opt/moab/$version and establishing a symbolic link to it from /opt/moab/default. Since the Moab home
directory must be read-write by root, Adaptive Computing recommends you specify the homedir in a location
such as /var/spool/moab.

Moab no longer installs XT4 scripts by default. Use --with-xt4 when running ./configure to install
them.

Example 18. Run configure

Compile and Install Moab

While still in xtopview, install Moab into the shared root. You may also need to link /opt/moab/default to this
installation.

Example 19. Make Install

Install the module files (Optional)

Moab provides a module file that can be used to establish the proper Moab environment. You may also want
to install these module files onto the login nodes.

# cd /rr/current/software
# wget --http-user=user --http-passwd=passwd 
http://www.adaptivecomputing.com/download/mwm/moab-5.4.1-linux-
x86_64-torque2-xt4.tar.gz

# xtopview
default/:/ # cd /software
default/:/software # tar -zxvf moab-5.4.1-linux-x86_64-torque2-
xt4.tar.gz

default/:/software # cd moab-5.4.1
default/:/software/moab-5.4.1 # ./configure --prefix=/opt/moab/5.4.1 
--with-homedir=/var/spool/moab --with-torque=/opt/torque/default --
with-modulefiles=/opt/modulefiles --with-xt4

default/:/software/moab-5.4.1 # make install
default/:/software/moab-5.4.1 # ln -sf /opt/moab/5.4.1/ 
/opt/moab/default



Example 20. make modulefiles

Install the Perl XML Modules and exit xtopview

Moab's native resource manager interface scripts require a Perl XML Module to communicate via the basil
interface. The Perl XML::LibXML module should be installed. The default method is to use the perldeps make
target to install a bundled version of the module into a local Moab lib directory. This module may also be
downloaded and installed from Perl's CPAN directory. Exit xtopview.

Example 21. make perldeps

Customize the Moab configuration file for your Moab server host

The moab.cfg file should be customized for your scheduling environment. We will use
/rr/current/var/spool/moab as a temporary staging area before copying them out to their final destinations.
See the Moab Admin Guide for more details about Moab configuration parameters.

Example 22. Edit the Moab configuration file

Customize the XT4 native resource manager interface configuration file

Edit the configuration file ($MOABHOMEDIR/etc/config.xt4.pl) used by the xt tools.

Example 23. Edit the XT4 configuration file

Copy your Moab home directory to your Moab server host

In this example we assume the Moab server will be running on the SDB node. If you are installing Moab with
its server home in /var as in this example and assuming that your var filesystem is being served from your
boot node under /snv, you will need to login to SDB and determine the nid with 'cat /proc/cray_xt/nid'.

Example 24. Copy out Moab home directory

default/:/software/moab-5.4.1 # make modulefiles

default/:/software/moab-5.4.1 # make perldeps
default/:/software/moab-5.4.1 # exit

# cd /rr/current/var/spool/moab
# vi moab.cfg
    SCHEDCFG[moab] SERVER=sdb:42559 TOOLSDIR /opt/moab/default/tools 
RMCFG[clustername] TYPE=NATIVE:XT4 NODECFG[DEFAULT] OS=linux ARCH=XT 
NODEACCESSPOLICY SINGLEJOB JOBMIGRATEPOLICY IMMEDIATE CLIENTCFG[msub] 
FLAGS=AllowUnknownResource

# cd /rr/current/var/spool/moab/etc
# vi config.xt4.pl

$ENV{PATH} = "/opt/torque/default/bin:/usr/bin:$ENV{PATH}";
$batchPattern = "^login|xt1|xt2|nid00008\b|nid00011\b"; # Non-
interactive jobs run here only
# The following two lines may also modified or uncommented to support
# interactive job launch. This allows the jobs to roam in the event
# the local MOM on the login node is down.
%loginReplaceTable = (nid00008 => login1, nid00011 => login2);
$allowInteractiveJobsToRoam = "True"



Copy the Moab configuration files to all of the login nodes

Both the Moab configuration file (moab.cfg) and the configuration file for the xt4 scripts (config.xt4.pl) must
be copied out to the /var filesystem on the login nodes. The only essential parameter that must be in the
moab.cfg on the login nodes is the SCHEDCFG line so the clients can find the server.

Example 25. Copy out the configuration files

Install the Moab init.d script (Optional)

Moab provides an init.d script for starting Moab as a service. Using xtopview into the SDB node, copy the init
script into /etc/init.d.

Example 26. Copy in init.d script to the SDB node from the shared root.

Edit the init.d file as necessary -- i.e. retain core files, etc.

Uncomment the following line to retain core dump files

ulimit -c unlimited # Uncomment to preserve core files 

Perform the following steps from the Moab server node (sdb) as root:

Set the proper environment

The MOABHOMEDIR environment variable must be set in your environment when starting Moab or using
Moab commands. If you are on a system with a large number of nodes (thousands), you will need to increase
your stack limit to unlimited. You will also want to adjust your path to include the Moab and Torque bin and
sbin directories. The proper environment can be established by loading the appropriate Moab module, by
sourcing properly edited login files, or by directly modifying your environment variables.

Example 27. Loading the Moab module

Example 28. Exporting the environment variables by hand (in bash)

# cd /rr/current/var/spool
# cp -pr moab /snv/3/var/spool

# cd /rr/current/var/spool/moab
# for i in 4 64 68; do mkdir -p /snv/$i/var/spool/moab/etc 
/snv/$i/var/spool/moab/log; cp moab.cfg /snv/$i/var/spool/moab; cp 
etc/config.xt4.pl /snv/$i/var/spool/moab/etc; done

# xtopview -n 3
node/3:/ # cp /software/moab/moab-5.1.0/contrib/init.d/moab 
/etc/init.d/

node/3:/ # xtspec /etc/init.d/moab
node/3:/ # exit

# module load moab

# export MOABHOMEDIR=/var/spool/moab
# export 
PATH=$PATH:/opt/moab/default/bin:/opt/moab/default/sbin:/opt/torque/def



Example 29. Setting the stack limit to unlimited

If you are running on a system with large numbers of nodes (thousands), you may need to increase the stack
size user limit to unlimited. This should be set in the shell from which Moab is launched. If you start Moab via
an init script, this should be set in the script, otherwise it would be recommended to put this in the
appropriate shell startup file for root.

Apply an orphan cleanup policy

Occasionally, Moab can encounter an orphaned ALPS partition -- that is a partition which is no longer
associated with an active job. These orphans can occur under different circumstances, such as manually
created alps partitions, partitions created by a different resource manager, or as a result of jobs that have
been lost to Moab's memory by a catastrophic outage. By setting the MOABPARCLEANUP environment
variable, you can set Moab's policy for handling orphaned ALPS partitions. If MOABPARCLEANUP is unset,
Moab will not attempt to cleanup orphaned ALPS partitions. If MOABPARCLEANUP is set to Full, Moab will
aggressively clean up any orphan it encounters, whether it was the creator of the partition or not. If
MOABPARCLEANUP is set to anything else (such as 1, yes, TRUE, etc.), Moab will attempt to clean up only
those orphans that it knows that it had a hand in creating. This environment variable must be set in the
environment when starting Moab to take effect. This can be accomplished by including it in the appropriate
module, init script, or via a manual setenv or export command.

Example 30. Activate aggressive ALPS partition cleanup in the optional Moab startup script

Customize Moab to use alps topology ordering (Optional)

Communication performance within parallel jobs may be improved by customizing Moab to allocate nodes
according to a serialized alps XYZ topology ordering. There are two main methods for doing this -- by
presenting the nodes to Moab in the serialized topology order, or by prioritizing the nodes in the serialized
topology order. By default, Moab will allocate nodes according to an lexicographical (alphanumeric) ordering.

Option A -- Prioritizing the nodes in serialized topology order. This approach requires that you tell Moab to
allocate its nodes according to a priority function based on an explicit priority for each node, which we set
based on the alps XYZ ordering. An advantage of this method is that the mdiag -n output will remain in
lexicographical ordering. If the apstat -no command is not supported in your version, you may build up the
priority list by hand by using the XYZ topology information in the alps database. The example will show how
to do this by running a script that uses apstat -no to populate a Moab configuration include file according to
the XYZ topology ordering. If your current version of alps does not support the XYZ topology ordering, you
may build up the nodeprio.cfg file yourself based on XYZ topology information obtained from alps.

Example 31. Populate a Moab configuration node priority file

Option B -- Presenting the nodes in serialized topology order. This approach requires that the nodes are
reported to Moab in the alps XYZ ordering. Moab will, by default, allocate nodes in the reverse order from
which they are reported. This method requires alps support for the XYZ ordering. Its implementation is simple
and dynamic but will cause mdiag -n to report the nodes in the serialized topology order. The example will
show how to do this by setting a configuration option in the config.xt4.pl file (which was discussed in the
previous section).

Example 32. Uncomment the topologyOrdering parameter

# ulimit -s unlimited

# vi /etc/init.d/moab
export MOABPARCLEANUP=Full

# /opt/moab/default/tools/node.prioritize.xt.pl 
>/var/spool/moab/nodeprio.cfg
# echo "#INCLUDE /var/spool/moab/nodeprio.cfg" >> 
/var/spool/moab/moab.cfg



Enable steering of jobs to designated execution hosts (Optional)

It is possible to direct a job to launch from an execution host having a job-specified feature. Assigning
features to the MOM nodes and declaring these features to be momFeatures allows you to indicate which job
features will effect the steering of a job's master task to certain moms as opposed to steering the job's
parallel tasks to certain compute nodes.

Example 33. Declaring MOM features

Indicates that when a feature of mom_himem or mom_netpipe are specified for a job, this will be used to
steer the job to an execution_host (mom) having this feature as opposed to scheduling the parallel tasks on
compute nodes having this feature.

Startup the Moab Workload Manager

Start up the Moab daemon.

Example 34. Start Moab

Alternatively, if you installed the init.d script, you may run:

Torque Upgrade Notes

Quiesce the system.

It is preferable to have no running jobs during the upgrade. This can be done by closing all queues in Torque
or setting a system reservation in Moab and waiting for all jobs to complete. Often, it is possible to upgrade
Torque with running jobs in the system, but you may risk problems associated with Torque being down when
the jobs complete and incompatibilities between the new and old file formats and job states.

Perform the following steps from the torque server node (sdb) as root:

Shutdown the Torque Mom Daemons

On the boot node as root:

Example 35. Shut down the pbs_moms on the login nodes.

Alternatively, if you installed the init.d script, you may run:

# vi /var/spool/moab/etc/config.xt4.pl

    $topologyOrdering = 1;

# vi /var/spool/moab/etc/config.xt4.pl

# Setting momFeatures allows you to indicate which job features will 
effect
# the steering of jobs to certain moms as opposed to steering to 
compute nodes
@momFeatures = ("mom_himem", "mom_netpipe");

# /opt/moab/default/sbin/moab

# service moab start

# pdsh -w login1,login2,login3 /opt/torque/default/sbin/momctl -s



Stop the Torque server

Example 36. Stop Torque

Alternatively, if you installed the init.d script, you may run:

Perform the following steps from the boot node as root:

Download the latest Torque release.

Download the latest Torque release from Cluster Resources, Inc.

Example 37. Download Torque

Unpack the Torque tarball

Using xtopview, unpack the Torque tarball into the software directory in the shared root.

Example 38. Unpack Torque

Configure Torque

While still in xtopview, run configure with the options set appropriately for your installation. Run ./configure —
help to see a list of configure options. Adaptive Computing recommends installing the torque binaries into
/opt/torque/$version and establishing a symbolic link to it from /opt/torque/default. At a minimum, you will
need to specify the hostname where the torque server will run (--with-default-server) if it is different from
the host it is being compiled on. The torque server host will normally be the sdb node for XT installations.

Example 39. Run configure

Compile and Install Torque

While still in xtopview, compile and install torque into the shared root. You may also need to link
/opt/torque/default to this installation. Exit xtopview.

# pdsh -w login1,login2,login3 /sbin/service pbs_mom stop

# /opt/torque/default/bin/qterm

# service pbs_server stop

# cd /rr/current/software
# wget http://www.adaptivecomputing.com/downloads/torque/torque-
2.2.0.tar.gz

# xtopview
default/:/ # cd /software
default/:/software # tar -zxvf torque-2.2.0.tar.gz

default/:/software # cd torque-2.2.0
default/:/software/torque-2.2.0 # ./configure --
prefix=/opt/torque/2.2.0 --with-server-home=/var/spool/torque --with-
default-server=nid00003 --enable-syslog



Example 40. Make and Make Install

Startup the Torque Mom Daemons

Note: If you have still have running jobs, you will want to start pbs_mom with the -p flag to preserve
running jobs. By default, the init.d startup script will not preserve running jobs unless altered to start
pbs_mom with the -p flag.

On the boot node as root:

Example 41. Start up the pbs_moms on the login nodes.

Startup the Torque Server

On the torque server host as root:

Example 42. Start pbs_server

Alternatively, if you installed the init.d script, you may run:

Moab Upgrade Notes

Quiesce the system.

It is preferable to have no running jobs during the upgrade. This can be done by setting a system reservation
in Moab and waiting for all jobs to complete. Often, it is possible to upgrade Moab with running jobs in the
system, but you may risk problems associated with Moab being down when the jobs complete.

Shutdown the Moab Workload Manager

Shut down the Moab daemon.

Example 43. Stop Moab

Alternatively, if you installed the init.d script, you may run:

Perform the following steps from the boot node as root:

default/:/software/torque-2.2.0 # make
default/:/software/torque-2.2.0 # make packages
default/:/software/torque-2.2.0 # make install
default/:/software/torque-2.2.0 # rm /opt/torque/default
default/:/software/torque-2.2.0 # ln -sf /opt/torque/2.2.0/ 
/opt/torque/default
default/:/software/torque-2.2.0 # exit

# pdsh -w login1,login2,login3 /opt/torque/default/sbin/pbs_mom -p

# /opt/torque/default/sbin/pbs_server

# service pbs_server start

# /opt/moab/default/sbin/mschedctl -k

# service moab stop



Download the latest Moab release

Download the latest Moab release from Cluster Resources, Inc.

Note: The correct tarball type can be recognized by the xt4 tag in its name.

Example 44. Download Moab

Unpack the Moab tarball

Using xtopview, unpack the Moab tarball into the software directory in the shared root.

Example 45. Unpack Moab

Configure Moab

While still in xtopview, run configure with the options set appropriately for your installation. Run ./configure —
help to see a list of configure options. Adaptive Computing recommends installing the Moab binaries into
/opt/moab/$version and establishing a symbolic link to it from /opt/moab/default. Since the Moab home
directory must be read-write by root, Adaptive Computing recommends you specify the homedir in a location
such as /var/spool/moab.

Example 46. Run configure

Compile and Install Moab

While still in xtopview, install Moab into the shared root. You may also need to link /opt/moab/default to this
installation.

Example 47. Make Install

Install the Perl XML Modules and exit xtopview

If you have previously installed the perl modules in the perl site directories (configure --with-perl-libs=site),
you should not need to remake the perl modules. However, the default is to install the perl modules local to
the Moab install directory and since it is normal practice to configure the Moab upgrade to use a new install
directory (configure --prefix), it will generally be necessary to reinstall the perl modules. Exit xtopview when

# cd /rr/current/software
# wget --http-user=user --http-passwd=passwd 
http://www.adaptivecomputing.com/downloads/mwm/temp/moab-5.2.2.s10021-
linux-x86_64-torque2-xt4.tar.gz

# xtopview
default/:/ # cd /software
default/:/software # tar -zxvf moab-5.2.2.s10021-linux-x86_64-
torque2-xt4.tar.gz

default/:/software # cd moab-5.2.2.s10021
default/:/software/moab-5.2.2.s10021 # autoconf
default/:/software/moab-5.2.2.s10021 # ./configure --
prefix=/opt/moab/5.2.2.s10021 --with-homedir=/var/spool/moab --with-
torque

default/:/software/moab-5.2.2.s10021 # make install
default/:/software/moab-5.2.2.s10021 # ln -sf /opt/moab/5.2.2.s10021/ 
/opt/moab/default



done with this step.

Example 48. make perldeps

Manually merge any changes from the new XT4 native resource manager interface
configuration file

If the upgrade brings in new changes to the config.xt4.pl file, you will need to edit the file and manually
merge in the changes from the config.xt4.pl.dist file. One way to discover if new changes have been
introduced is to diff the config.xt4.pl.dist from the old and new etc directories. This is rare, but does happen
on occasion. One will generally discover quite quickly if necessary changes were not made because the xt4
scripts will usually fail if the config file has not been updated.

Example 49. Merge any updates into the XT4 configuration file

Reload the new environment

Example 50. Swapping in the new Moab module

Startup the Moab Workload Manager

Start up the Moab daemon.

Example 51. Start Moab

Alternatively, if you installed the init.d script, you may run:

Special Moab Configurations

Maintenance Reservations

For systems using a standing reservation method to block off time for system maintenance, the following
examples show two standing reservations which are required.

The first standing reservations is for the compute nodes in the cluster. Set TASKCOUNT to the total number
of procs in your cluster:

default/:/software/moab-5.2.2.s10021 # make perldeps
default/:/software/moab-5.2.2.s10021 # exit

# diff /snv/3/var/spool/moab/etc/config.xt4.pl.dist 
/rr/current/software/moab-5.2.2.s10021/etc/config.xt4.pl.dist
# vi /snv/3/var/spool/moab/etc/config.xt4.pl

# module swap moab/5.2.2.s10021

# /opt/moab/default/sbin/moab

# service moab start

SRCFG[PM] TASKCOUNT=7832 NODEFEATURES=compute
SRCFG[PM] PERIOD=DAY DAYS=TUE
SRCFG[PM] FLAGS=OWNERPREEMPT
SRCFG[PM] STARTTIME=8:00:00 ENDTIME=14:00:00
SRCFG[PM] JOBATTRLIST=PREEMPTEE



The second standing reservation is for the login/mom nodes that do not have procs, but execute size 0 jobs
using the GRES method. Set TASKCOUNT to the total number of GRES resources on those nodes:

SRCFG[PM] TRIGGER=EType=start, 
Offset=300,AType=internal,Action="rsv::modify:acl:jattr-=PREEMPTEE"
SRCFG[PM] TRIGGER=EType=start,Offset=-
60,AType=jobpreempt,Action="cancel"

SRCFG[PMsvc] TASKCOUNT=16
SRCFG[PMsvc] RESOURCES=GRES=master:100
SRCFG[PMsvc] PERIOD=DAY DAYS=TUE
SRCFG[PMsvc] FLAGS=OWNERPREEMPT
SRCFG[PMsvc] STARTTIME=8:00:00 ENDTIME=14:00:00
SRCFG[PMsvc] JOBATTRLIST=PREEMPTEE
SRCFG[PMsvc] 
TRIGGER=EType=start,Offset=300,AType=internal,Action="rsv::modify:acl:j
=PREEMPTEE"
SRCFG[PMsvc] TRIGGER=EType=start,Offset=-
60,AType=jobpreempt,Action="cancel"



Validating an xCAT Installation for Use with
Moab

Introduction to Validating xCAT Configuration
Verifying Node List
Reporting Node Status
Verifying Hardware Management Configuration
Verifying Provisioning Images
Verifying VM Migration

Introduction to Validating xCAT Configuration

This document describes a series of steps to validate xCAT configuration prior to configuring Moab to manage
hardware via xCAT. It is assumed the reader is familiar with xCAT and the xCAT configuration on the target
site. This document does not provide xCAT configuration documentation or troubleshooting information;
please refer to the xCAT documentation for such information.

Verifying Node List

Verify that all nodes that Moab will manage are known to xCAT with the xCAT nodels command. Ensure that
all expected (and no unexpected) nodes are listed. You may find it useful to create new group names to
identify Moab managed nodes.

[root@h0 moab]# nodels hyper,compute 
h1 
h2
h3 
h4 
h5 
h7 
kvmm1 
kvmm10 
kvmm2 
kvmm3 
kvmm4 
kvmm5 
kvmm6 
kvmm7 
kvmm8
[root@h0 moab]#

Reporting Node Status

Verify that all nodes report their status correctly using the xCAT nodestat command. Ensure that all nodes
show the correct status (sshd, installing, noping, and so forth); there should not be any timeouts or error
messages.

[root@h0 moab]# nodestat hyper,compute |sort 
h1: pbs,sshd 
h2: pbs,sshd 
h3: pbs,sshd 
h4: pbs,sshd 
h5: pbs,sshd 
h7: noping 
kvmm10: noping 
kvmm1: pbs,sshd 
kvmm2: pbs,sshd 
kvmm3: pbs,sshd 
kvmm4: pbs,sshd 
kvmm5: pbs,sshd 
kvmm6: pbs,sshd 
kvmm7: pbs,sshd 
kvmm8: noping 
kvmm9: noping
[root@h0 moab]#

Verifying Hardware Management Configuration

https://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk/xCAT-client/share/doc/


Verify that all nodes that Moab will manage have hardware management interfaces correctly configured using
the xCAT nodels and rpower commands. After each of the rpower commands, verify the requested state
was achieved with rpower stat.

[root@h0 moab]# nodels h1,kvmm1 nodehm.mgt nodehm.power 
h1: nodehm.power: ilo 
h1: nodehm.mgt: ilo 
kvmm1: nodehm.power: kvm 
kvmm1: nodehm.mgt: kvm 
[root@h0 moab]# rpower h1,kvmm1 off
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 stat
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 boot
h1: on reset
kvmm1: on reset
[root@h0 moab]# rpower h1,kvmm1 stat
h1: on
kvmm1: on
[root@h0 moab]#

Verifying Provisioning Images

Verify that all operating system images that Moab uses are configured correctly in xCAT. For stateful images,
test that all combinations of operating system, architecture, and profile install correctly.

[root@h0 moab]# rinstall -o centos5.3 -a x86_64 -p hyper h1 h1: install centos3.2-x86_64-hyper h1: on
reset [root@n100 ~]# sleep 15 && nodestat n05 n05: ping install centos5.3-x86_64-hyper [root@h0
moab]#

For stateless images, test that nodes are able to network boot the images.

[root@h0 moab]# nodech h5 nodetype.os=centos5.3 nodetype.arch=x86_64 nodetype.profile=hyper 
[root@h0 moab]# nodeset h5 netboot 
h5: netboot centos5.3-x86_64-hyper 
[root@h0 moab]# rpower h5 boot 
h5: on reset 
[root@h0 moab]# sleep 60 && nodestat h5 
h5: pbs, sshd
[root@h0 moab]#

Verifying VM Migration

If you use VM migration, verify that xCAT can successfully perform migrations using the rmigrate command.

[root@h0 moab]# rmigrate kvmm7 h1 
kvmm7: migrated to h1 
[root@h0 moab]# ssh h1 virsh list 
Id Name State 
---------------------------------- 
33 kvmm1 running 
34 kvmm2 running 
35 kvmm7 running

See Also

Native Resource Manager Overview
Resource Provisioning



Integrating an xCAT Physical Provisioning
Resource Manager with Moab

xCAT Configuration Requirements
MSM Installation
Integrating MSM and xCAT
MSM Configuration
Configuration Validation
Troubleshooting
Deploying Images with TORQUE
Installing Moab on the Management Node
Moab Configuration File Example
Verifying the Installation
xCAT Plug-in Configuration Parameters

Introduction
Moab can dynamically provision compute machines to requested operating systems and power off compute
machines when not in use. Moab can intelligently control xCAT and use its advanced system configuration
mechanisms to adapt systems to current workload requirements. Moab communicates with xCAT using the
Moab Service Manager (MSM). MSM is a translation utility that resides between Moab and xCAT and acts as
aggregator and interpreter. The Moab Workload Manager will query MSM, which in turn queries xCAT, about
system resources, configurations, images, and metrics. After learning about these resources from MSM, Moab
then makes intelligent decisions about the best way to maximize system utilization.

In this model Moab gathers system information from two resource managers. The first is TORQUE, which
handles the workload on the system; the second is MSM, which relays information gathered by xCAT. By
leveraging these software packages, Moab intelligently adapts clusters to deliver on-site goals.

This document assumes that xCAT has been installed and configured. It describes the process of getting MSM
and xCAT communicating, and it offers troubleshooting guidance for basic integration. This document offers a
description for how to get Moab communicating with MSM and the final steps in verifying a complete software
stack.

xCAT Configuration Requirements
Observe the following xCAT configuration requirements before installing MSM:

Configure xCAT normally for your site.
Test the following commands to verify proper function:

rpower
nodeset
makedhcp
makedns
nodestat
rvitals

If MSM will run on a different machine than the one on which xCAT runs, install the xCAT client
packages on that machine, and test the previously listed commands on that machine as well.
Configure and test all stateful/stateless images you intend to use.

Configure xCAT to use either PostgreSQL or MySQL. Note that the default of SQLite may not function
properly when MSM drives xCAT.

PostgreSQL: See xCATSetupPostgreSQL.pdf for more information.
MySQL: See xCAT2.SetupMySQL.pdf for more information.

You must have a valid Moab license file (moab.lic) with provisioning and green enabled. For
information on acquiring an evaluation license, please contact info@adaptivecomputing.com.

http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCATSetupPostgreSQL.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2.SetupMySQL.pdf
mailto:info@adaptivecomputing.com


MSM Installation
Determine the installation directory (usually /opt/moab/tools/msm)
Untar the MSM tarball into the specified directory (making it the MSM home directory, or
$MSMHOMEDIR)
Verify the required Perl modules and version are available

perl -e 'use Storable 2.18'
perl -MXML::Simple -e 'exit'
perl -MProc::Daemon -e 'exit'
perl -MDBD::SQLite -e 'exit'

Integrating MSM and xCAT
Copy the x_msm table schema to the xCAT schema directory:

Restart xcatd and check the x_msm table is correctly created:

Prepare xCAT images and ensure they provision correctly (see xCAT documentation)

Populate the x_msm table with your image definitions:

flavorname - A user specified name for the image and settings; also an xCAT group name, nodes are
added to this group when provisioned
arch - Architecture as used by xCAT
profile - Profile as used by xCAT
os - Operating system as used by xCAT
nodeset - One of netboot|install|statelite
features - Names of xCAT groups that identify special hardware features ('torque' and 'paravirt' are
special cases)
vmoslist - Note: Not used. List of flavorname's this image may host as VMs (hypervisor images only)
hvtype - Note: Not used. One of esx|xen|kvm (hypervisor images only)
hvgroupname - Note: Not used. Name of xCAT group nodes will be added to when provisioned to this
image
vmgroupname - Note: Not used. Name of xCAT group VMs will be added to when hosted on a
hypervisor of this image
comments - User specified comments
disable - Flag to temporarily disable use of this image

Ensure all xCAT group names in the x_msm table exist in the xCAT nodegroup table

Edit as necessary to simulate the following example:

> cp $MSMHOMEDIR/contrib/xcat/MSM.pm $XCATROOT/lib/perl/xCAT_schema

> service xcatd restart

> tabdump x_msm

> tabedit x_msm

  
#flavorname,arch,profile,os,nodeset,features,vmoslist,hvtype,hvgroupnam

  "compute","x86_64","compute","centos5.3","netboot","torque",,,,,,
  
"science","x86","compute","scientific_linux","netboot","torque",,,,,,

> tabedit nodegroup



After making any necessary edits, run the following command:

MSM Configuration
Edit $MSMHOMEDIR/msm.cfg and configure the xCAT plug-in. Below is a generic example for use with
TORQUE without virtualization. See the section on configuration parameters for a complete list of parameters
and descriptions.

Configuration Validation
Set up environment to manually call MSM commands:

Verify that MSM starts without errors:

> msmd

Verify that the expected nodes are listed, without errors, using the value of _NODERANGE from msm.cfg.

Verify that the expected nodes, are listed in the cluster query output from MSM:

  #groupname,grouptype,members,wherevals,comments,disable
  "compute",,,,,
  "esxi4",,,,,
  "esxhv",,,,,
  "esxvmmgt",,,,,

> nodels compute,esxi4,esxhv,esxvmmgt

  # should complete without error, ok if doesn't return anything

  # MSM configuration options
  RMCFG[msm]        PORT=24603
  RMCFG[msm]        POLLINTERVAL=45
  RMCFG[msm]        LOGFILE=/opt/moab/log/msm.log
  RMCFG[msm]        LOGLEVEL=8
  RMCFG[msm]        DEFAULTNODEAPP=xcat
  
  # xCAT plugin specific options
  APPCFG[xcat]      DESCRIPTION="xCAT plugin"
  APPCFG[xcat]      MODULE=Moab::MSM::App::xCAT
  APPCFG[xcat]      LOGLEVEL=3
  APPCFG[xcat]      POLLINTERVAL=45
  APPCFG[xcat]      TIMEOUT=3600
  APPCFG[xcat]      _USEOPIDS=0
  APPCFG[xcat]      _NODERANGE=moab,esxcompute
  APPCFG[xcat]      _USESTATES=boot,netboot,install
  APPCFG[xcat]      _LIMITCLUSTERQUERY=1
  APPCFG[xcat]      _RPOWERTIMEOUT=120
  APPCFG[xcat]      _DONODESTAT=1
  APPCFG[xcat]      _REPORTNETADDR=1
  APPCFG[xcat]      _CQXCATSESSIONS=4

  # substitute appropriate value(s) for path(s)
  export MSMHOMEDIR=/opt/moab/tools/msm
  export MSMLIBDIR=/opt/moab/tools/msm
  export PATH=$PATH:/$MSMLIBDIR/contrib:$MSMLIBDIR/bin

> nodels <_NODERANGE>



Provision all nodes through MSM for the first time (pick and image name from x_msm):

Verify the nodes correctly provision and that the correct OS is reported (which may take some time after the
provisioning requests are made):

Troubleshooting
msmctl -a does not report the xCAT plugin - Check the log file (path specified in msm.cfg) for
error messages. A common cause is missing Perl modules (Storable, DBD::SQLite, xCAT::Client).
cluster.query.pl does not report any nodes - Check that the xCAT command 'nodels
<noderange>', where <noderange> is the value configured for _NODERANGE in msm.cfg, outputs the
nodes expected.
cluster.query.pl does not report OS - MSM must provision a node to recognize what the current
operating system is. It is not sufficient to look up the values in the nodetype table because MSM has no
way of recognizing whether nodeset and rpower were run with the current values in the nodetype
table.
cluster.query.pl does not report OSLIST, or does not report the expected OSLIST for a node -
Check that the node belongs to the appropriate groups, particularly any listed in the features field of
the x_msm table for the missing image name.

Deploying Images with TORQUE
When using MSM + xCAT to deploy images with TORQUE, there are some special configuration
considerations. Most of these also apply to other workload resource managers.

Note that while the MSM xCAT plugin contains support for manipulating TORQUE directly, this is not an ideal
solution. If you are using a version of xCAT that supports prescripts, it is more appropriate to write prescripts
that manipulate TORQUE based on the state of the xCAT tables. This approach is also applicable to other
workload resource managers, while the xCAT plugin only deals with TORQUE.

Several use cases and configuration choices are discussed in what follows.

Each image should be configured to report its image name through TORQUE. In the TORQUE pbs_mom
mom_config file the "opsys" value should mirror the name of the image. See Node Manager (MOM)
Configuration in the TORQUE Administrator's Guide for more information.

Installing Moab on the Management Node
Moab is the intelligence engine that coordinates the capabilities of xCAT and TORQUE to dynamically provision
compute nodes to the requested operating system. Moab also schedules workload on the system and powers
off idle nodes. Download and install Moab.

Moab Configuration File Example
Moab stores its configuration in the moab.cfg file: /opt/moab/moab.cfg. A sample configuration file, set up
and optimized for adaptive computing follows:

> cluster.query.pl

> for i in `nodels <_NODERANGE>; do node.modify.pl $i --set 
os=<image_name>;done

> cluster.query.pl

# Example moab.cfg

SCHEDCFG[Moab]          SERVER=gpc-sched:42559
ADMINCFG[1]             USERS=root,egan

http://www.adaptivecomputing.com/products/torque/docs/a.cmomconfig.php
http://www.adaptivecomputing.com/products/torque/docs/a.cmomconfig.php
http://www.adaptivecomputing.com/product/mwm/index.php
http://www.adaptivecomputing.com/moabdocs/2.0installation.php


Verifying the Installation
When Moab starts it immediately communicates with its configured resource managers. In this case Moab
communicates with TORQUE to get compute node and job queue information. It then communicates with MSM
to determine the state of the nodes according to xCAT. It aggregates this information and processes the jobs
discovered from TORQUE.

When a job is submitted, Moab determines whether nodes need to be provisioned to a particular operating
system to satisfy the requirements of the job. If any nodes need to be provisioned Moab performs this action
by creating a provisioning system job (a job that is internal to Moab). This system job communicates with
xCAT to provision the nodes and remain active while the nodes are provisioning. Once the system job has
provisioned the nodes it informs the user’s job that the nodes are ready at which time the user’s job starts
running on the newly provisioned nodes.

When a node has been idle for a specified amount of time (see NODEIDLEPOWERTHRESHOLD), Moab creates
a power-off system job. This job communicates with xCAT to power off the nodes and remain active in the
job queue until the nodes have powered off. Then the system job informs Moab that the nodes are powered
off but are still available to run jobs. The power off system job then exits.

To verify correct communication between Moab and MSM run the mdiag -R –v msm command.

LOGLEVEL                7

# How often (in seconds) to refresh information from Torque and MSM
RMPOLLINTERVAL           60

RESERVATIONDEPTH        10
DEFERTIME               0

###################################################################
# Location of msm directory                                       #
# www.adaptivecomputing.com/moabdocs/a.fparameters.php#toolsdir  #
###################################################################

TOOLSDIR                /opt/moab/tools

#####################################################################

# TORQUE and MSM configuration                                                
#
# 
http://www.adaptivecomputing.com/resources/docs/mwm/a.fparameters.php
#
#####################################################################

$ mdiag -R -v msm
diagnosing resource managers

RM[msm]       State: Active  Type: NATIVE:MSM  ResourceType: PROV
  Timeout:            30000.00 ms
  Cluster Query URL:  $HOME/tools/msm/contrib/cluster.query.xcat.pl
  Workload Query URL: exec://$TOOLSDIR/msm/contrib/workload.query.pl
  Job Start URL:      exec://$TOOLSDIR/msm/contrib/job.start.pl
  Job Cancel URL:     exec://$TOOLSDIR/msm/contrib/job.modify.pl
  Job Migrate URL:    exec://$TOOLSDIR/msm/contrib/job.migrate.pl
  Job Submit URL:     exec://$TOOLSDIR/msm/contrib/job.submit.pl
  Node Modify URL:    exec://$TOOLSDIR/msm/contrib/node.modify.pl
  Node Power URL:     exec://$TOOLSDIR/msm/contrib/node.power.pl
  RM Start URL:       exec://$TOOLSDIR/msm/bin/msmd
  RM Stop URL:        exec://$TOOLSDIR/msm/bin/msmctl?-k
  System Modify URL:  exec://$TOOLSDIR/msm/contrib/node.modify.pl
  Environment:        
MSMHOMEDIR=/home/wightman/test/scinet/tools//msm;MSMLIBDIR=/home/wightm

http://www.adaptivecomputing.com/resources/docs/mwm/18.4miscellaneousgreen.php#scheduling


To verify nodes are configured to provision use the checknode -v command. Each node will have a list of
available operating systems.

To verify nodes are configured for Green power management, run the mdiag –G command. Each node will
show its power state.

  Objects Reported:   Nodes=10 (0 procs)  Jobs=0
  Flags:              autosync
  Partition:          SHARED
  Event Management:   (event interface disabled)
  RM Performance:     AvgTime=0.10s  MaxTime=0.25s  (38 samples)
  RM Languages:       NATIVE
  RM Sub-Languages:   -

$ checknode n01
node n01

State:      Idle  (in current state for 00:00:00)
Configured Resources: PROCS: 4  MEM: 1024G  SWAP: 4096M  DISK: 1024G
Utilized   Resources: ---
Dedicated  Resources: ---
Generic Metrics:    watts=25.00,temp=40.00
Power Policy:       Green (global policy)   Selected Power State: Off
Power State:   Off
Power:      Off
  MTBF(longterm):   INFINITY  MTBF(24h):   INFINITY
Opsys:      compute   Arch:      ---
  OS Option: compute
  OS Option: computea
  OS Option: gpfscompute
  OS Option: gpfscomputea
Speed:      1.00      CPULoad:   0.000
Flags:      rmdetected
RM[msm]:    TYPE=NATIVE:MSM  ATTRO=POWER
EffNodeAccessPolicy: SINGLEJOB

Total Time: 00:02:30  Up: 00:02:19 (92.67%)  Active: 00:00:11 (7.33%)

$ mdiag -G
NOTE:  power management enabled for all nodes
Partition ALL:  power management enabled
  Partition NodeList:
Partition local:  power management enabled
  Partition NodeList:
  node n01 is in state Idle, power state On (green powerpolicy 
enabled)
  node n02 is in state Idle, power state On (green powerpolicy 
enabled)
  node n03 is in state Idle, power state On (green powerpolicy 
enabled)
  node n04 is in state Idle, power state On (green powerpolicy 
enabled)
  node n05 is in state Idle, power state On (green powerpolicy 
enabled)
  node n06 is in state Idle, power state On (green powerpolicy 
enabled)
  node n07 is in state Idle, power state On (green powerpolicy 
enabled)
  node n08 is in state Idle, power state On (green powerpolicy 
enabled)
  node n09 is in state Idle, power state On (green powerpolicy 
enabled)



To submit a job that dynamically provisions compute nodes, run the msub –l os=<image> command.

Notice that Moab created a provisioning system job named provision-4 to provision the nodes. When
provision-4 detects that the nodes are correctly provisioned to the requested OS, the submitted job yuby.3
runs:

  node n10 is in state Idle, power state On (green powerpolicy 
enabled)
Partition SHARED:  power management enabled

$ msub -l os=computea job.sh

yuby.3
$ showq

active jobs------------------------
JOBID              USERNAME      STATE PROCS   REMAINING            
STARTTIME

provision-4            root    Running     8    00:01:00  Fri Jun 19 
09:12:56

1 active job               8 of 40 processors in use by local jobs 
(20.00%)
                           2 of 10 nodes active      (20.00%)

eligible jobs----------------------
JOBID              USERNAME      STATE PROCS     WCLIMIT            
QUEUETIME

yuby.3             wightman       Idle     8    00:10:00  Fri Jun 19 
09:12:55

1 eligible job

blocked jobs-----------------------
JOBID              USERNAME      STATE PROCS     WCLIMIT            
QUEUETIME

$ showq

active jobs------------------------
JOBID              USERNAME      STATE PROCS   REMAINING            
STARTTIME

yuby.3             wightman    Running     8    00:08:49  Fri Jun 19 
09:13:29

1 active job               8 of 40 processors in use by local jobs 
(20.00%)
                           2 of 10 nodes active      (20.00%)

eligible jobs----------------------
JOBID              USERNAME      STATE PROCS     WCLIMIT            
QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID              USERNAME      STATE PROCS     WCLIMIT            
QUEUETIME



The checkjob command shows information about the provisioning job as well as the submitted job. If any
errors occur, run the checkjob –v <jobid> command to diagnose failures.

xCAT Plug-in Configuration Parameters
Description
Module
LogLevel
PollInterval
TimeOut
_NodeRange
_CQxCATSessions
_DORVitals
_PowerString
_DoNodeStat
_DoxCATStats
_LockDir

_HVxCATPasswdKey
_FeatureGroups
_DefaultVMCProc
_DefaultVMDisk
_DefaultVMCMemory
_KVMStoragePath
_ESXStore
_ESXCFGPath
_VMInterfaces
_XenHostInterfaces
_KVMHostInterfaces
_VMSovereign

_UseStates
_ImagesTabName
_VerifyRPower
_RPowerTimeOut
_QueueRPower
_RPowerQueueAge
_RPowerQueueSize
_MaskOSWhenOff
_ModifyTORQUE
_ReportNETADDR
_UseOpIDs
_VMIPRange
_xCATHost

Plugin parameters that begin with an underscore character are specific to the xCAT plug-in; others are
common to all plug-ins and may either be set in the RMCFG[msm] for all plug-ins, or per plug-in in the
APPCFG[<plugin_name>].

Description

Default
Value:

None

Valid
Value:

Double quoted string containing brief description of plugin.

Comments: This information is not visible in Moab, but shows up in 'msmctl -a'.

  
Module

Default
Value:

None

Valid
Value:

Moab::MSM::App::xCAT

Comments: Name of the plugin module to load.

  
LogLevel

Default
Value:

5

Valid
Value:

1-9

Comments: Used to control the verbosity of logging, 1 being the lowest (least information logged) and 9
being the highest ( most information logged ). For initial setup and testing, 8 is recommended,
then lowering to 3 (only errors logged) for normal operation. Use 9 for debugging, or when
submitting a log file for support.

0 blocked jobs

Total job:  1



  
PollInterval

Default
Value:

60

Valid
Value:

Integer > 0

Comments:
MSM will query xCAT every POLLINTERVAL seconds to update general node status. This number
will likely require tuning for each specific system. In general, to develop this number, you
should pick a fraction of the total nodes MSM will be managing ( 1/_CQXCATSESSIONS ), and
time how long it takes run nodestat, rpower stat, and optionally rvitals on these nodes, and add
~15%.

Increasing the POLLINTERVAL will lower the overall load on the xCAT headnode, but decrease
the responsiveness to provisioning and power operations.

  
TimeOut

Default
Value:

300

Valid
Value:

Integer value > POLLINTERVAL

Comments: This parameter controls how long MSM will wait for child processed to complete (all xCAT
commands are run in child processes). After TIMEOUT seconds, if a child has not returned it will
be killed, and an error reported for the operation.

  
_NodeRange

Default
Value:

All

Valid
Value:

Any valid noderange (see the xCAT noderange manpage).

Comments: When MSM queries xCAT this is the noderange it will use. At sites where xCAT manages other
hardware that Moab is not intended to control, it is important to change this.

  
_CQxCATSessions

Default
Value:

10

Valid
Value:

Positive integer > 1

Comments: MSM will divide the node list generated by 'nodels ' into this many groups and simulataneously
query xCAT for each group. The value may need tuning for large installations, higher values will
cause the time to complete a single cluster query to go down, but cause a higher load on the
xCAT headnode.

  
_DORVitals

Default
Value:

0



Valid
Value:

0|1

Comments: When set to 1, MSM will poll rvitals power and led status (see the xCAT rvitals manpage). This
only works with IBM BMCs currently. In order to use this, xCAT should respond without error to
the 'rvitals <noderange> watts' and 'rvitals <noderange> leds' commands. Status is reported
as GMETRTIC[watts] and GMETRIC[leds]. See also the _POWERSTRING configuration
parameter.

  
_PowerString

Default
Value:

'AC Avg Power'

Valid
Value:

single quote delimited string

Comments: Only meaningful when used with _DORVITALS=1. Some BMCs return multiple responses to the
rvitals command, or use slightly different text to describe the power metrics. Use this
parameter to control what is reported to Moab. You can use
'$MSMLIBDIR/contrib/xcat/dump.xcat.cmd.pl rvitals <node_name> power' and examine the
output to determine what the appropriate value of this string is.

  
_DoNodeStat

Default
Value:

1

Valid
Value:

0|1

Comments: If set to 0, MSM will not call nodestat to generated a substate. This can be used to speed up
the time it takes to query xCAT, and you do not need the substate visible to Moab.

  
_DoxCATStats

Default
Value:

0

Valid
Value:

0|1

Comments: If Set to 1, MSM will track performance statistics about calls to xCAT, and the performance of
higher level operations. The information is available via the script
$MSMHOMEDIR/contrib/xcat/xcatstats.pl. This parameter is useful for tuning the POLLINTERVAL
and _CQXCATSESSIONS configuration parameters.

  
_LockDir

Default
Value:

$MSMHOMEDIR/lck

Valid
Value:

Existing path on MSM host

Comments: This is a path to where MSM maintains lock files to control concurrency with some Xen and KVM
operations.

  
_HVxCATPasswdKey



Default
Value:

vmware

Valid
Value:

key value in the xCAT passwd table

Comments: This is where MSM gets the user/password to communicate with ESX hypervisors.

  
_FeatureGroups

Default
Value:

N/A

Valid
Value:

Comma delimited string of xCAT group names.

Comments: MSM builds the OSLIST for a node as the intersection of _FEATUREGROUPS, features specified
in x_msm for that image, and the nodes group membership. The value 'torque' is special, and
indicates that the image uses TORQUE, and the node should be added/removed from torque
during provisioning when used in conjunction with the _MODIFYTORQUE parameter.

  
_DefaultVMCProc

Default
Value:

1

Valid
Value:

1-?

Comments: If not explicitly specified in the create request, MSM will create VMs with this many processors.

  
_DefaultVMDisk

Default
Value:

4096

Valid
Value:

Positive integer values, minimum is determined by your vm image needs

Comments: If not explicitly specified in the create request, MSM will create VMs with this much disk
allocated.

  
_DefaultVMCMemory

Default
Value:

512

Valid
Value:

Positive integer values, minimum is determined by your vm image needs

Comments: If not specified, MSM will create VMs with this much memory allocated.

  
_KVMStoragePath

Default
Value:

/vms

Valid
Value:

Existing path on MSM host

Comments: File backed disk location for stateful KVM VMS will be placed here.



  
_ESXStore

Default
Value:

N/A

Valid
Value:

Mountable NFS Path

Comments: Location of ESX stores.

  
_ESXCFGPath

Default
Value:

ESXStore

Valid
Value:

Mountable NFS Path

Comments: Location of ESX VM configuration files.

  
_VMInterfaces

Default
Value:

br0

Valid
Value:

Name of bridge device in your VM image

Comments: Bridge device name passed to libvirt for network configration of VMs (overrides
_XENHOSTINTERFACES and _KVMHOSTINTERFACES if specified).

  
_XenHostInterfaces

Default
Value:

xenbr0

Valid
Value:

Name of bridge device in your VM image

Comments: Bridge device name passed to libvirt for network configration of Xen VMs.

  
_KVMHostInterfaces

Default
Value:

br0

Valid
Value:

Name of bridge device in your VM image

Comments: Bridge device name passed to libvirt for network configration of KVM VMs.

  
_VMSovereign

Default
Value:

0

Valid
Value:

0|1

Comments: Setting this attribute will cause VMs to be reported to Moab with SOVEREIGN=1 in the



VARATTR Flag. Setting this causes Moab to reserve VMs memory and procs on the hypervisor,
and treat the VM as the workload - additional workload cannot be scheduled on the VMs.

  
_UseStates

Default
Value:

boot,netboot,install

Valid
Value:

Valid xCAT chain.currstate values (see the xCAT chain manpage)

Comments: Nodes that do not have one of these values in the xCAT chain.currstate field will reported with
STATE=Updating. Use this configuration parameter to prevent Moab from scheduling nodes that
are updating firmware, etc.

  
_ImagesTabName

Default
Value:

x_msm

Valid
Value:

Existing xCAT table that contains your image definitions.

Comments: This table specifies the images that may be presented to Moab in a nodes OSLIST. The xCAT
schema for this table is defined in $MSMHOMEDIR/contrib/xcat/MSM.pm, which needs to be
copied to the $XCATROOT/lib/perl/xCAT_schema directory.

  
_VerifyRPower

Default
Value:

0

Valid
Value:

0|1

Comments:
If set, MSM will attempt to confirm that rpower requests were successful by polling the power
state with rpower stat until the node reports the expected state, or _RPOWERTIMEOUT is
reached.

NOTE: This can create significant load on the xCAT headnode.

  
_RPowerTimeOut

Default
Value:

60

Valid
Value:

Positive integer values

Comments: Only meaningful when used with _VerifyRPower. If nodes do not report the expected power
state in this amount of time, a GEVENT will be produced on the node (or system job).

  
_QueueRPower

Default
Value:

0

Valid
Value:

0|1



Comments:
When set, this parameter will cause MSM to aggregate rpower requests to xCAT into batches.
The timing and size of these batches is controlled with the _RPOWERQUEUEAGE and
_RPOWERQUEUESIZE parameters.

NOTE: This can significantly reduce load on the xCAT headnode, but will cause the power
commands to take longer, and MSM shutdown to take longer.

  
_RPowerQueueAge

Default
Value:

30

Valid
Value:

Positive integer values

Comments: Only meaningful when used with _QUEUERPOWER. MSM will send any pending rpower requests
when the oldest request in the queue exceeds this value (seconds).

  
_RPowerQueueSize

Default
Value:

200

Valid
Value:

Positive integer values

Comments: Only meaningful when used with _QUEUERPOWER. MSM will send any pending rpower requests
when the queue depth exceeds this value.

  
_MaskOSWhenOff

Default
Value:

0

Valid
Value:

0|1

Comments: When set, this parameter will cause MSM to report OS=None for nodes that are powered off.
This may be useful when mixing stateless and stateful images, forcing Moab to request
provisioning instead of just powering on a node.

  
_ModifyTORQUE

Default
Value:

0

Valid
Value:

0|1

Comments: When set, this parameter will cause MSM to add and removes nodes and VMs from TORQUE as
required by provisioning. See the _FEATUREGROUPS parameter as well.

  
_ReportNETADDR

Default
Value:

0

Valid 0|1



Value:

Comments: When set, this parameter will cause MSM to report NETADDR=<hosts.ip from xCAT>.

  
_UseOpIDs

Default
Value:

0

Valid
Value:

0|1

Comments: When set, this parameter will cause errors to be reported as GEVENTs on the provided system
job, instead of a node (Moab 5.4 only, with appropriate Moab CFG)

  
_VMIPRange

Default
Value:

None

Valid
Value:

Comma separated list of dynamic ranges for VM (ex '10.10.23.100-200,10.10.24.1-255')

Comments: Use this parameter to specify a pool of IPs that MSM should assign to VMs at creation time. IPs
are selected sequentially from this list as available. Ommit this configuration parameter if an
external service is managing IP assignment, or if they are all previously statically assigned.

  
_xCATHost

Default
Value:

localhost:3001

Valid
Value:

<xcat_headnode>:<xcatd_port>

Comments: Use to configure MSM to communicate with xCAT on another host.



Enabling Moab Provisioning with SystemImager
The SystemImager tool is a widely used open source tool that allows flexible automated installation or
provisioning of compute hosts within a cluster. Interfacing Moab with SystemImager can be done in one of
two ways: (1) using triggers and (2) using a native resource manager interface.

Trigger Based Provisioning Interface

When a job or reservation becomes active, Moab can custom tailor its environment including changing the
operating system of the allocated nodes through the use of triggers. In the case of a job trigger, You can use
something like the following:

moab.cfg

In the preceding example, any reservation that uses the rhel3 profile will reinstall all nodes to use the rhel3
operating system for the duration of the reservation. The second and third trigger makes certain that when
the reservation ends or if it is canceled, the nodes are restored to their default operating system.

Resource Manager Based Provisioning Interface

With a resource manager based provisioning interface, Moab uses the provisioning manager to create the
nodes needed by various jobs. In this model, the provisioning manager can be set up, users can submit jobs
requiring any available operating system, and Moab can dynamically reprovision compute nodes to meet
current workload needs.

moab.cfg

With this configuration, Moab can automatically load-balance resources to meet the needs of submitted jobs.
Correct operation of the interface's querying capabilities can be verified by issuing mdiag -R and mdiag -n to
look at resource manager and node configuration respectively.

To verify that Moab can correctly drive SystemImager to install a node, use the mnodectl -m command as
demonstrated in the following example:

mnodectl -m > mnodectl -m os=rhel3 node002

See Also

Native Resource Manager Overview
Resource Provisioning

RSVPROFILE[rhel3] 
TRIGGER=etype=start,atype=exec,action='/usr/local/tools/nodeinstall.si.
$REQOS $HOSTLIST' 
RSVPROFILE[rhel3] 
TRIGGER=etype=end,atype=exec,action='/usr/local/tools/nodeinstall.si.pl
$DEFOS $HOSTLIST'
RSVPROFILE[rhel3] 
TRIGGER=etype=cancel,atype=exec,action='/usr/local/tools/nodeinstall.si
$DEFOS $HOSTLIST'
...

RMCFG[torque] TYPE=PBS
RMCFG[si]     TYPE=native RTYPE=provision
RMCFG[si]     CLUSTERQUERYURL=exec://$TOOLSDIR/clusterquery.si.pl
RMCFG[si]     SYSTEMQUERYURL=exec://$TOOLSDIR/systemquery.si.pl
RMCFG[si]     SYSTEMMODIFYURL=exec://$TOOLSDIR/systemmodify.si.pl
...



Moab-NUMA Integration Guide
Scheduling a NUMA type system requires some special configuration. Moab uses NODESETs and
NODEAVAILABILITYPOLICY to determine when and where jobs can run in a NUMA environment.

This guide assumes Moab is scheduling a single NUMA system. Each node in the system must be configured
with the same feature.

To integrate Moab and NUMA, follow these steps:

1. Configure the NODESETs to use the node features.

2. Configure Moab to use the "PRIORITY" NODEALLOCATIONPOLICY.

3. Configure Moab so that any job that runs on the NUMA partition requests SharedMem.

If Moab is scheduling a single partition the following flag can be used:

Jobs requesting shared memory should be submitted using the "-l flags=sharedmem" option.

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL FALSE
NODESETPRIORITYTYPE MINLOSS
NODESETLIST uv

NODEALLOCATIONPOLICY PRIORITY

RMCFG[base] TYPE=PBS
PARCFG[base] FLAGS=SharedMem

PARCFG[ALL] FLAGS=SharedMem



Appendix Q: Moab in the Data Center
Moab provides support for today's data centers, a hybrid of traditional data center workflows and dynamic,
service-oriented processes.  The sections below describe how a data center can best take advantage of
Moab's capabilities.

Q.1 Introduction
Q.1.1 The Traditional Data Center
Q.1.2 Moab Utility/Hosting Suite

Q.2 Installation
Q.2.1 Moab
Q.2.2 Resource Managers
Q.2.3 Checking the Install

Q.3 Transitioning Workflow
Q.3.1 Defining the Workflow
Q.3.2 Inventory of Resources

Q.3.2.1 Moab Node Structure
Q.3.2.2 Defining Nodes in Moab
Q.3.2.3 Mapping Workflow Requirements to Resources

Q.3.3 Defining Job Groups
Q.3.4 Setting the Schedule

Q.3.4.1 Determining Scheduling Requirements
Q.3.4.2 Creating Standing Reservations
Q.3.4.3 Submitting a Job to a Standing Reservation

Q.3.5 Workflow Dependencies
Q.3.5.1 Converting Compute Jobs
Q.3.5.2 Introduction to Triggers
Q.3.5.3 Internal Dependencies
Q.3.5.4 External Dependencies
Q.3.5.5 Cascading Triggers

Q.4 Dynamic Workload
Q.5 Supporting SLAs and Other Commitments
Q.CS Case Studies

Q.CS.1 Cascading Triggers

Q.1 Introduction

 Note: The Intersection of HPC & the Data Center is a video tutorial of a session offered at Moab Con that
offers further details for understanding High Performance Computing (HPC) and data centers.

 Note: Adaptive Data Center is a video tutorial that offers further details for understanding adaptive data
centers.

Welcome to Moab in the Data Center. Widely used in the HPC sector, Moab provides many unique solutions
to the problems faced by today's data center administrators on a daily basis. In addition to supporting the
traditional data center workload model, Moab leverages more than ten years of experience in HPC to provide
the dynamic scheduling needed in today's data center where Web services and other ad hoc, service-oriented
processes are becoming more prevalent. This document outlines the easy process of evolving to this new
paradigm—a world where the data center and service-oriented computing intertwine.

Q.1.1 The Traditional Data Center

Data centers often view compute resources differently than traditional HPC centers. The flow of data and
computation within many data centers is fairly static in nature, with each new day being very similar to the
last. Workload may vary throughout the day and week to match standard business hours. Month-end,
quarter-end and year-end create predictable spikes in work. So, while workload may vacillate, there is a
predictable ebb and flow.

http://www.clusterresources.com/moabcon/2008/videos/The%20Intersection%20of%20HPC%20and%20the%20Data%20Center%20-%20Trev%20Harmon.php
http://www.adaptivecomputing.com/videos/820


Table 1: Data Center vs. HPC Comparison

Data Center HPC

Data-Centric Jobs
Standardized/Static Workload
Short Jobs
Many Dependencies
Specific Resources for Specific Jobs

Compute-Centric Jobs
Dynamic Workload
Long Jobs
Few Dependencies
Non-Specific Resources for All Jobs

Table 1 is an overly-simplified, overly-generalized view of the differences between the traditional Data
Centers and HPC models. However, in most cases, this description is fairly accurate. However, this is
changing within the industry. Recently, many data centers have begun to offer additional, on-demand,
service-oriented products to their clients, such as Web services support and database searches, thus creating
a hybrid model somewhere between traditional data center and traditional HPC.

The infusion of these dynamic jobs into the data center have put new demands on the system and its
administrators. The new dynamic jobs must be handled in such a way as to protect the core business
processes, while still providing the contracted dynamic services to clients and meeting SLAs. The
sophistication required in the management software has stretched many current data center solutions to or
past the breaking point, prompting administrators to search for new solutions.

Q.1.2 Moab Utility/Hosting Suite

Moab Utility/Hosting Suite is a professional cluster workload management solution that integrates the
scheduling, managing, monitoring and reporting of cluster workloads. Moab Utility/Hosting Suite simplifies
and unifies management across one or multiple hardware, operating system, storage, network, license and
resource manager environments. Its task-oriented management and the industry's most flexible policy engine
ensure service levels are delivered and workload is processed faster. This enables organizations to
accomplish more work resulting in improved cluster ROI.

The power is in the software. Moab will run on today's common hardware solutions. There isn't a need to
replace or make changes to the data center's underlying architecture, in most cases. Moab can interface with
many different types of resource management software, including in-house solutions, to learn about its
environment. With the gathered information, Moab dynamically schedules resources and plans for the future.
So, the system is optimized not only for the moment, but also for the future.

With its state-of-the-art scheduling engine, Moab can empower today's data centers to handle tomorrow's
workload. Relying on technology and techniques developed over the last decade, Moab's three-dimensional
scheduling algorithms provide an environment where static workloads and dynamic jobs can peacefully
coexist, each receiving the proper resources at the proper time. The fully-customizable policy control
mechanism allows data centers to enforce any needed policy, whether technical, financial, or political. Both
GUI and CLI tools exist for administration.

Q.2 Installation

The installation process for a Moab system is straightforward. However, it is accomplished in two separate
steps: Moab and the resource managers.

Q.2.1 Moab

In most cases, Moab is distributed as a binary tarball. Builds are readily available for all major architectures
and operating systems. These packages are available to those with a valid full or evaluation license.

Example 1: Moab install process

Example 1 shows the commands to do a basic installation from the command line for Moab. In this case, the
install package for Moab 5.1.0 (patch 2) needs to be in the current directory.

> tar xvzf moab-5.1.0-i386-libtorque-p2.tar.gz
> ./configure
> make
> make install

http://www.adaptivecomputing.com/resources/downloads/mwm/
http://www.adaptivecomputing.com/resources/downloads/eval


Example 2: Default contents of /opt/moab

By default, Moab installs to the /opt/moab directory. Example 2 shows a sample ls -l output in /opt/moab.

The binary installation creates a default moab.cfg file in the etc/ folder. This file contains the global
configuration for Moab that is loaded each time Moab is started. The definitions for users, groups, nodes,
resource manager, quality of services and standing reservations are placed in this file. While there are many
settings for Moab, only a few will be discussed here. The default moab.cfg that is provided with a binary
installation is very simple. The installation process defines several important default values, but the majority
of configuration needs to be done by the administrator, either through directly editing the file or using one of
the provided administrative tools such as Moab Cluster Manager (MCM).

Example 3: Default moab.cfg file

Example 3 shows the default moab.cfg file sans-comments. The first line defines a new scheduler named
Moab. In this case, it is located on a host named allbe and listening on port 42559 for client commands.
These values are added by the installation process, and should be kept in most cases.

The second line, however, requires some editing by the administrator. This line defines what users on the
system have Level 1 Administrative rights. These are users who have global access to information and
unlimited control over scheduling operations in Moab. There are five default administrative levels defined by
Moab, each of which is fully customizable. In Example 3, this line needs to be updated. The second root
entry needs to be changed to the username of the administrator(s) of the system. The first root entry needs
to remain, as Moab needs to run as root in order to submit jobs to the resource managers as the original
owner.

The final line in this example is the configuration for the default resource manager. This particular binary
distribution is for the TORQUE resource manager. Because TORQUE follows the PBS style of job handling, the
resource manager is given a type of PBS. To differentiate it from other resource managers that may be added
in the future, it is also given the name base. Resource managers will be discussed in the next section.

This constitutes the basic installation of Moab. Many additional parameters can be added to the moab.cfg file
in order to fully adapt Moab to the needs of your particular data center. A more detailed installation guide is
available.

Q.2.2 Resource Managers

The job of Moab is to schedule resources. In fact, Moab views the world as a vast collection of resources that
can be scheduled for different purposes. It is not, however, responsible for the direct manipulation of these
resources. Instead, Moab relies on resource managers to handle the fine details in this area. Moab makes
decisions and sends the necessary commands to the resource managers, which execute the commands and
return state information back to Moab. This decoupling of Moab from the actual resources allows Moab to
support all possible resource types, as it doesn't need specific knowledge about the resources, only a
knowledge of how to communicate with the resource manager.

Moab natively supports a wide range of resource managers. For several of these, Moab interacts directly with
the resource manager's API. These include TORQUE, LSF and PBS. For these resource managers, a specific
binary build is required to take advantage of the API calls. For other resource managers, Moab supports a

drwxr-xr-x 2 root root 4096 2010-04-02 12:24 bin
drwxr-xr-x 2 root root 4096 2010-04-02 12:24 etc
drwxr-xr-x 2 root root 4096 2010-04-02 12:24 include
drwxr-xr-x 2 root root 4096 2010-04-02 12:26 log
drwxr-xr-x 2 root root 4096 2010-04-02 12:24 sbin
drwxrwxrwt 2 root root 4096 2010-04-02 12:42 spool
drwxr-xr-x 2 root root 4096 2010-04-02 12:26 stats
drwxr-xr-x 2 root root 4096 2010-04-02 12:24 traces

SCHEDCFG[Moab]    SERVER=allbe:42559
ADMINCFG[1]       USERS=root,root
RMCFG[base]       TYPE=PBS

http://www.adaptivecomputing.com/resources/docs/mcm
http://www.adaptivecomputing.com/resources/docs/torque


generic interface known as the Native Interface. This allows interfaces to be built for any given type of
resource manager, including those developed in-house. Cluster Resources supplies a large number of pre-
built interfaces for the most common resource managers. They also provide information on building custom
interfaces, as well as contract services for specialized development.

The setup of each individual resource manager is beyond the scope of this document. However, most
resource managers come with ample instructions and/or wizards to aid in their installation. TORQUE, an
open-source resource manager under the auspice of Cluster Resources, has a documentation WIKI. This
includes instructions on installing and testing TORQUE. Please note that special SSH or NFS configuration may
also be required in order to get data staging to work correctly.

Once the resource manager(s) are installed and configured, the moab.cfg file will need to be updated if new
or different resource managers have been added. Valid resource manager types include: LL, LSF, PBS, SGE,
SSS and WIKI. General information on resource managers is found in Chapter 13. Integration guides for
specific resource managers are also available.

Q.2.3 Checking the Installation

Once Moab and the resource managers have been installed, there are several steps that should be followed
to check the installation.

1. Start the Resource Manager — See resource manager's documentation
2. Start Moab — Run Moab from the command line as root

> moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

3. Run Resource Manager Tests — See resource manager's documentation
4. Check Moab Install — See below

Checking the Moab installation is a fairly straightforward process. The first test is to run the program showq.
This displays the Moab queue information. Example 4 shows a sample output from showq. In this case, the
system shown is a single node, which is a 64-processor SMP machine. Also, there are currently no jobs
running or queued. So, there are no active processors or nodes.

Example 4: Sample showq

The important thing to look for at this point is the total number of processors and nodes. If either the total
number of processors or nodes is 0, there is a problem. Generally, this is would be caused by a
communication problem between Moab and the resource manager, assuming the resource manager is

active jobs------------------------
JOBID              USERNAME      STATE  PROC   REMAINING            
STARTTIME

0 active jobs              0 of 64 processors in use by local jobs 
(0.00%)
                            0 of 1 nodes active      (0.00%)

eligible jobs----------------------
JOBID              USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID              USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

0 blocked jobs

Total jobs:  0

http://www.adaptivecomputing.com/resources/docs/torque
http://www.adaptivecomputing.com/resources/docs/mwm/wiki
http://www.adaptivecomputing.com/wiki/doku.php?id=torque:1.1_installation
http://www.adaptivecomputing.com/wiki/doku.php?id=torque:1.4_testing
http://www.adaptivecomputing.com/wiki/doku.php?id=torque:6.1_scp_rcp_setup
http://www.adaptivecomputing.com/wiki/doku.php?id=torque:6.2_nfs_and_other_networked_filesystems


configured correctly and actively communicating with each of the nodes for which it has responsibility.

The current state of the communication links between Moab and the resource managers can be viewed using
the mdiag -R -v command. This gives a verbose listing of the resource managers configured in Moab,
including current state, statistics, and any error messages.

Example 5: Sample mdiag -R -v output

In Example 5, two different resource managers are listed: base and internal. The base resource manager is
the TORQUE resource manager that was defined in Example 3. It is currently showing that it is healthy and
there are no communication problems. The internal resource manager is used internally by Moab for a
number of procedures. If there were any problems with either resource manager, messages would be
displayed here. Where possible, error messages include suggested fixes for the noted problem.

Another command that can be very helpful when testing Moab is mdiag -C, which does a format check on
the moab.cfg file to ensure that each line has a recognizable format.

Example 6: Sample mdiag -C output

The state of individual nodes can be checked using the mdiag -n command. Verbose reporting of the same
information is available through mdiag -n -v.

Example 7: Sample mdiag -n output

diagnosing resource managers

RM[base]  State: Active
  Type:               PBS  ResourceType: COMPUTE
  Version:            '2.2.0'
  Objects Reported:   Nodes=1 (64 procs)  Jobs=0
  Flags:              executionServer,noTaskOrdering
  Partition:          base
  Event Management:   EPORT=15004  (last event: 00:01:46)
  Note:  SSS protocol enabled
  Submit Command:     /usr/local/bin/qsub
  DefaultClass:       batch
  Total Jobs Started: 3
  RM Performance:     AvgTime=0.00s  MaxTime=1.45s  (8140 samples)
  RM Languages:       PBS
  RM Sub-Languages:   -

RM[internal]  State: ---
  Type:               SSS
  Max Failure Per Iteration:          0
  JobCounter:                         5
  Version:            'SSS4.0'
  Flags:              localQueue
  Event Management:   (event interface disabled)
  RM Performance:     AvgTime=0.00s  MaxTime=0.00s  (5418 samples)
  RM Languages:       -
  RM Sub-Languages:   -

INFO:  line #15 is valid:  'SCHEDCFG[Moab]  SERVER=allbe:42559'
INFO:  line #16 is valid:  'ADMINCFG[1]     USERS=root,guest2'
INFO:  line #23 is valid:  'RMCFG[base]     TYPE=PBS'

compute node summary
Name                    State   Procs      Memory         Opsys



In this case (Example 7), there is only a single compute node, allbe. This node has 64 processors and is
currently idle, meaning it is ready to run jobs, but is not currently doing anything. If a job or jobs had been
running on the node, the node would be noted as active, and the Procs and Memory column would indicate
not only the total number configured, but also the number currently available.

The next test is to run a simple job using Moab and the configured resource manager. This can be done
either through the command line or an administrative tool like MCM. This document will show how this is
done utilizing the command line.

Example 8: Simple sleep job

The command in Example 8 submits a job that simply sleeps for 60 seconds and returns. While this may
appear to have little or no point, it allows for the testing of the job submission procedures. As the root user
is not allowed to submit jobs, this command needs to be run as a different user. When this command is run
successfully, it will return the Job ID of the new job. The job should also appear in showq as running
(assuming the queue was empty), seen in Example 9.

Example 9: Sample showq output with running job

If showq indicated a problem with the job, such as it being blocked, additional information regarding the job
can be gained using checkjob job_id. Example 10 shows some sample output of this command. More
verbose information can be gathered using checkjob -v job_id.

Example 10: Sample checkjob output

allbe                    Idle   64:64     1010:1010       linux
-----                     ---   64:64     1010:1010       -----

Total Nodes: 1  (Active: 0  Idle: 1  Down: 0)

> echo "sleep 60" | msub

active jobs------------------------
JOBID              USERNAME      STATE  PROC   REMAINING            
STARTTIME

40277                 user1    Running     1    00:59:59  Tue Apr  3 
11:23:33

1 active job               1 of 64 processors in use by local jobs 
(1.56%)
                            1 of 1 nodes active      (100.00%)
eligible jobs----------------------
JOBID              USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID              USERNAME      STATE  PROC     WCLIMIT            
QUEUETIME

0 blocked jobs

Total jobs:  1

job 40277

http://www.adaptivecomputing.com/pages/products/moab-cluster-suite/cluster-manager.php


If jobs can be submitted and run properly, the system is configured for basic use. As the transition to a
Moab-centric system continues, additional items will be placed in the moab.cfg file. After each change to the
moab.cfg file, it is necessary to restart Moab for the changes to take effect. This simple process is shown in
Example 11.

Example 11: Restarting Moab

Other commands administrators will find useful are shown below.

Example 12: Shutting down Moab

Example 13: Show server statistics

Example 14: Show completed jobs (last 5 minutes)

Q.3   Transitioning Workflow

With its advanced scheduling capabilities, Moab can easily handle all the scheduling needs of data centers.
Core resources can be protected while still optimizing the workload to get the highest efficiency, productivity,
and ROI possible. Almost all of the Data Center's existing structure and architecture is maintained. Additional
steps must be made to describe the workflow and related policies to Moab, which will then intelligently
schedule the resources to meet the organization's goals. Transitioning to Moab follows some important steps:

AName: STDIN
State: Running
Creds:  user:user1  group:user1  class:batch
WallTime:   00:01:32 of 1:00:00
SubmitTime: Tue Apr  3 11:23:32
  (Time Queued  Total: 00:00:01  Eligible: 00:00:01)

StartTime: Tue Apr  3 11:23:33
Total Requested Tasks: 1

Req[0]  TaskCount: 1  Partition: base
Memory >= 0  Disk >= 0  Swap >= 0
Opsys:   ---  Arch: ---  Features: ---
NodesRequested:  1

Allocated Nodes:
[allbe:1]

IWD:            /opt/moab
Executable:     /opt/moab/spool/moab.job.A6wPSf

StartCount:     1
Partition Mask: [base]
Flags:          RESTARTABLE,GLOBALQUEUE
Attr:           checkpoint
StartPriority:  1

> mschedctl -R

> mschedctl -k

> mdiag -S

> showq -c



1. Determine existing business processes and related resources and policies.
2. For each business process, determine and chart the process, making sure to include all required

resources, start times, deadlines, internal dependencies, external dependencies, decision points and
critical paths.

3. Where possible, divide processes into functional groups that represent parts of the overall process that
should be considered atomic or closely related.

4. Translate functional groups and larger processes into programmatic units that will be scheduled by
Moab.

5. Build control infrastructure to manage programmatic units to form processes.
6. Identify on-demand services and related resources and policies.
7. Implement system-wide policies to support static and dynamic workloads.

Most data centers have already done many, if not all, of these steps in the normal management of their
system. The other major part of the transition is the taking of these steps and applying them to Moab to gain
the desired results. The remainder of this section covers approaches and techniques you can use to
accomplish these tasks.

Q.3.1 Defining the Workflow

Workflow is the flow of data and processing through a dynamic series of tasks controlled by internal and
external dependencies to accomplish a larger business process. As one begins the transition to Moab, it is
important to have a clear understanding of the needed workflow and the underlying business processes it
supports. Figure 1 shows a simple workflow diagram with multiple processing paths and external data
dependencies.

Figure 1: Sample workflow diagram

It is important to create one or more diagrams such as this to document the workflow through one's system.
This diagram provides a visual representation of the system, which clearly shows how data flows through the
processing jobs, as well as all dependencies.

In this diagram, External Data is a type of external dependency. An external dependency is a dependency
that is fulfilled external to the workflow (and maybe even the system). It is not uncommon for external



dependencies to be fulfilled by processes completely external to the cluster on which Moab is running.
Consequently, it is very important to clearly identify such dependencies, as special steps must be taken for
Moab to be alerted when these dependencies are fulfilled.

Once all of the business processes have been succinctly described and diagrammed, it is possible to continue
with the conversion process. The next step is to inventory the available resources. It is also at this point that
the pairing of resources and workflow tasks is done.

Q.3.2 Inventory of Resources

At the most basic level, Moab views the world as a group of resources onto which reservations are placed,
managed, and optimized. It is aware of a large number of resource types, including a customizable generic
resource that can be used to meet the needs of even the most complex data center or HPC center. Resources
can be defined as software licenses, database connections, network bandwidth, specialized test equipment or
even office space. However, the most common resource is a compute node.

Q.3.2.1 Moab Node Structure

During the transition to Moab, the administrator must make an inventory of all relevant resources and then
describe them to Moab. Because the approach with Moab is different than the traditional data center
paradigm, this section will focus on the configuration of compute nodes. Figure 2 shows a basic view of Moab
node structure.

Figure 2: Moab node structure

All clusters have a head node, which is where Moab resides. It is from this node that all compute jobs are
farmed out to the compute nodes. These compute nodes need not be homogeneous. Figure 2 depicts a
heterogeneous cluster where the different colors represent different compute node types (architecture,
processors, memory, software, and so forth).

Q.3.2.2 Defining Nodes in Moab

Moab interacts with the nodes through one or more resource managers. Common resource managers include
TORQUE, SLURM, LSF, LoadLeveler and PBS. In general, the resource manager will provide Moab with most
of the basic information about each node for which it has responsibility. This basic information includes
number of processors, memory, disk space, swap space and current usage statistics. In addition to the
information provided by the resource manager, the administrator can specify additional node information in
the moab.cfg file. Following is an extract from the moab.cfg file section on nodes. Because this is a simple
example, only a few node attributes are shown. However, a large number of possible attributes, including
customizable features are available. Additional node configuration documentation is available.

Example 15: Sample node configuration

NODECFG[Node01] ARCH=ppc OS=osx
NODECFG[Node02] ARCH=ppc OS=osx
NODECFG[Node07] ARCH=i386 OS=suse10
NODECFG[Node08] ARCH=i386 OS=suse10
NODECFG[Node18] ARCH=opteron OS=centos CHARGERATE=2.0



In Example 15, we see six nodes. The architecture and operating system is specified on all of these.
However, the administrator has enabled a double charge rate for jobs that are launched on the last two. This
is used for accounting purposes.

Node attributes are considered when a job is scheduled by Moab. For example, if a specific architecture is
requested, the job will only be scheduled on those nodes that have the required architecture.

Q.3.2.3 Mapping Workflow Requirements to Resources

Once relevant resources have been configured in Moab, it is necessary to map the different stages of the
workflow to the appropriate resources. Each compute stage in the workflow diagrams needs to be mapped to
one or more required resource. In some cases, specifying "No Preference" is also valid, meaning it does not
matter what resources are used for the computation. This step also provides the opportunity to review the
workflow diagrams to ensure that all required resources have an appropriate mapping in Moab.

Q.3.3 Defining Job Groups

With the completed workflow diagrams, it is possible to identify functional groups. Functional groups can be
demarcated along many different lines. The most important consideration is whether the jobs will need to
share information amongst themselves or represent internal dependencies. These functional groups are
known as job groups. Job groups share a common name space wherein variables can be created, allowing for
communication among the different processes.

Often job groups will be defined along business process lines. In addition, subgroups can also be defined to
allow the workflow to be viewed in more manageable sections.

Q.3.4 Setting the Schedule

As was previously mentioned, Moab views the world as a set of resources that can be scheduled. Scheduling
of resources is accomplished by creating a reservation. Some reservations are created automatically, such as
when a job is scheduled for launch. Other reservations can be created manually by the administrator. Manual
reservations can either be static, meaning they are part of Moab's configuration (moab.cfg) or ad hoc,
created as needed via the command line or the MCM tool.

Q.3.4.1 Determining Scheduling Requirements

Within any data center, some jobs are high priority, while others are low priority. It is necessary to make
sure resources are available to the high priority jobs, especially when these jobs are part of an SLA or part of
a time-critical business process. Moab supports a number of configuration options and parameters to support
these scheduling goals.

In this section we will look at the situation where part of the cluster needs to be reserved for certain
processes during the day. Figure 3 shows a ten node cluster and its daily scheduling requirements. There are
four service areas that must have sole access to their associated nodes during specific times of the day. All
other jobs are allowed to float freely among the free processors. This example is typical of many data centers
where workload is dependent on the time of day or day of week.

Figure 3: Daily standing reservations

  Node01
 

  Node02
 

  Node03
 

  Node04
 

  Node05
 

  Node06
 

  Node07
 

  Node08
 

  Node09
 

  Node10
 

12:00 AM           
1:00 AM           
2:00 AM           
3:00 AM           
4:00 AM           
5:00 AM           
6:00 AM           

NODECFG[Node19] ARCH=opteron OS=centos CHARGERATE=2.0

http://www.adaptivecomputing.com/pages/products/moab-cluster-suite/cluster-manager.php


7:00 AM           
8:00 AM           
9:00 AM           
10:00 AM           
11:00 AM           
12:00 PM           
1:00 PM           
2:00 PM           
3:00 PM           
4:00 PM           
5:00 PM           
6:00 PM           
7:00 PM           
8:00 PM           
9:00 PM           

10:00 PM           
11:00 PM           

Nightly Batch Processing Web Services

Daily Business Processes Contracted Service Access

It is important to have a clear understanding of what jobs require hard reservations such as the ones shown
here and those that are more forgiving. A particular strength of Moab is its ability to schedule in a dynamic
environment while still being able to support many scheduling goals. The standing reservation approach limits
the ability for Moab to dynamically schedule, as it limits what can be scheduled on certain nodes during
certain times. Cycles lost in a standing reservation because the jobs for which the reservation was made do
not use the entire time block cannot be reclaimed by Moab. However, standing reservations are a powerful
way to guarantee resources for mission-critical processes and jobs.

Q.3.4.2 Creating Standing Reservations

If it is determined that standing reservations are appropriate, they must be created in Moab. Standing
reservations are created in the moab.cfg file. However, before the standing reservation can be defined, a
quality of service (QoS) should be created that will specify which users are allowed to submit jobs that will
run in the new standing reservations.

QoS is a powerful concept in Moab, often used to control access to resources, instigate different billing rates,
and control certain administrative privileges. Additional information on QoS and standing reservations is
available.

Like the standing reservations, QoS is defined in the moab.cfg file. Example 16 shows how to create the
four QoS options that are required to implement the standing reservations shown in Figure 3. This example
assumes the noted users (admin, datacenter, web, apache and customer1) have been previously defined in
the moab.cfg file.

Example 16: Sample QoS configuration

QOSCFG[nightly]   QFLAGS=DEADLINE,TRIGGER
QOSCFG[nightly]   MEMBERULIST=admin,datacenter

QOSCFG[daily]     QFLAGS=DEADLINE,TRIGGER
QOSCFG[daily]     MEMBERULIST=admin,datacenter

QOSCFG[web]       MEMBERULIST=web,apache

QOSCFG[contract1] QFLAGS=DEADLINE MEMBERULIST=customer1



Example 16 shows that four QoS options have been defined. The first and second QoS (nightly and daily)
have special flags that allow the jobs to contain triggers and to have a hard deadline. All the QoS options
contain a user list of those users who have access to submit to the QoS. Notice that multiple configuration
lines are allowed for each QoS.

Once the QoS options have been created, the associated standing reservations must also be created.
Example 17 shows how this is done in the moab.cfg file.

Example 17: Sample standing reservation configuration

Example 17 shows the creation of the different standing reservations. Each of the standing reservations has a
start and end time, as well as the host list and the associated QoS. Three separate standing reservations
were used for the web services because of the different nodes and time period sets. This setup works fine
here because Web services is going to be small, serial jobs. In other circumstances, a different reservation
structure would be needed for maximum performance.

Q.3.4.3 Submitting a Job to a Standing Reservation

It is not uncommon for a particular user to have access to multiple QoS options. For instance, Example 16
shows the user datacenter has access to both the nightly and daily QoS options. Consequently, it is
necessary to denote which QoS option is to be used when a job is submitted.

Example 18: Specifying a QoS option at job submission

In Example 18, the script nightly.job.cmd is being submitted using the QoS option nightly. Consequently,
it will be able to run using the nodes reserved for that QoS option in Example 17.

Q.3.5 Workflow Dependencies

With the different standing reservations and associated QoSs configured in Moab, the process of converting
the workflow can continue. The next steps are to convert the compute jobs and build the dependency tree to
support the workflow.

Q.3.5.1 Converting Compute Jobs

Most compute jobs will require few, if any, changes to run under the new paradigm. All jobs will be submitted
to Moab running on the head node. (See Figure 2.) Moab will then schedule the job based on a number of
criteria, including user, QoS, standing reservations, dependencies and other job requirements. While the
scheduling is dynamic, proper use of QoS and other policies will ensure the desired execution of jobs on the
cluster.

Jobs may read and write files from a network drive. In addition, Moab will return all information written to

SRCFG[dc_night] STARTTIME=00:00:00 ENDTIME=04:00:00
SRCFG[dc_night] HOSTLIST=Node0[1-8]$ QOSLIST=nightly

SRCFG[dc_day]   STARTTIME=06:00:00 ENDTIME=19:00:00
SRCFG[dc_day]   HOSTLIST=Node0[1-5]$ QOSLIST=daily

SRCFG[websrv1]  STARTTIME=08:00:00 ENDTIME=16:59:59
SRCFG[websrv1]  HOSTLIST=Node0[7-8]$ QOSLIST=web
SRCFG[websrv2]  STARTTIME=06:00:00 ENDTIME=19:00:00
SRCFG[websrv2]  HOSTLIST=Node09 QOSLIST=web
SRCFG[websrv3]  STARTTIME=00:00:00 ENDTIME=23:59:59
SRCFH[websrv3]  HOSTLIST=Node10 QOSLIST=web

SRCFG[cust1]    STARTTIME=17:00:00 ENDTIME=23:59:59
SRCFG[cust1]    HOSTLIST=NODE0[6-8]$ QOSLIST=contract1

> msub -l qos=nightly nightly.job.cmd



STDOUT and STDERR in files denoted by the Job ID to the user who submitted the job.

Example 19: Staging of STDERR and STDOUT

Example 19 shows the created output files. The user user1 submitted the env program to Moab, which will
return the environment of the compute node on which it runs. As can be seen, two output files are created:
STDIN.e40278 and STDIN.o40278 (representing the output on STDERR and STDOUT, respectively). The Job ID
(40278) is used to denote which output files belong to which job. The first part of the file names, STDIN, is
the name of the job script. In this case, because the job was submitted to msub's STDIN via a pipe, STDIN
was used.

Q.3.5.2 Introduction to Triggers

Triggers are one way to handle dependencies in Moab. This section introduces triggers and several of their
key concepts. Additional trigger information is available.

In its simplest form, a trigger has three basic parts:

1. An object
2. An event
3. An action

The concept of resources in Moab has already been introduced. In addition to resources, Moab is aware of a
number of other entities, including the scheduler, resource managers, nodes and jobs. Each of these are
represented in Moab as an object. Triggers may be attached to any of these object types. Also an object
instance can have multiple triggers attached to it.

In addition to an object, each trigger must have an event specified. This event determines when the trigger's
action will take place. In Moab terminology, this is known as an event type. Some popular event types include
cancel, create, end, start and threshold.

An action consists of two parts: (1) the action type and (2) the action command. The action type specifies
what type of an action is to occur. Some examples include exec, internal and mail. The format of the
action command is determined by the action type. For example, exec requires a command line, while mail
needs an email address.

While triggers can be placed on any object type within Moab, the job object is the most useful for creating
workflows. A trigger can be attached to an object at submission time through the use of msub and the -l
flag.

Example 20: Submitting a job with a basic trigger from the command line

In Example 20, the job Job.cmd is submitted with one trigger. This trigger will execute the job_check.pl
script when the compute job starts on the compute node. It is important to note that all triggers are run on
the head node, even those attached to compute jobs.

Often, triggers are attached to special jobs known as system jobs. System jobs are simply an instantiation of
a job object that does not require any resources by default. In addition, it also runs on the head node.

Example 21: Creating a system job with a trigger from the command line

> echo env | msub

40278

> ls -l

-rw------- 1 user1 user1   0 2007-04-03 13:28 STDIN.e40278
-rw------- 1 user1 user1 683 2007-04-03 13:28 STDIN.o40278

> msub -l trig=AType=exec\&EType=start\&Action="job_check.pl" Job.cmd



Just like normal jobs, system jobs can serve as a job group. In other words, when forming job groups, one is
associating one job with another. The job to which all others attach is known as the job group, and its
variable name space can be used as a common repository for each of the child jobs.

Example 22: Creating a job group and associating two jobs with the group

In Example 22, a system job is created and given the name MyJobGroup to simplify later use of the job
group. Then two compute jobs, Job1 and Job2, are submitted. They are made part of the MyJobGroup job
group, meaning they will have access to the variable name space of the first job.

As a security measure, only jobs submitted to QoS with the trigger flag can have triggers attached. An
example of the configuration for this can be seen in Example 16.

Another important point with triggers is that they are event-driven. This means that they operate outside of
the normal Moab batch scheduling process. During each scheduling iteration, Moab evaluates all triggers to
see if their event has occurred and if all dependencies are fulfilled. If this is the case, the trigger is executed,
regardless of the priority of the job to which it is attached. This provides the administrator with another
degree of control over the system.

By combining compute jobs, system jobs, and triggers, one can build fairly complex workflows. The next few
sections cover additional information on how to map the previously created workflow diagram to these
concepts.

Q.3.5.3 Internal Dependencies

Internal dependencies are those that can be fulfilled by other jobs within the workflow. For example, if Job1
must complete before Job2, then Job1 is an internal dependency of Job2. Another possibility is that Job1
may also stage some data that Job3 requires, which is another type of internal dependency.

Internal dependencies are often handled through variables. Each trigger can see all the variables in the
object to which it is attached. In the case of the object being a job, the trigger can also see the variables in
any of the job's job group hierarchy. Triggers may require that certain variables simply exist or have a
specific value in order to launch. Upon completion, triggers can set variables depending on the success or
failure of the operation. In some instances, triggers are able to consume variables that already exist when
they launch, removing them from the name space.

Figure 4: Jobs, job group and variables

Figure 4 shows a simple setup where there is a job group (MyJobGroup) with two compute jobs associated
with it (Job1 and Job2). In addition to their own variables, both Job1 and Job2 can see var1 and var2
because they are in MyJobGroup. However, Job1 cannot see var5 and var6, nor can Job2 see var3 and var4.

> msub -l 
flags=NORESOURCES,trig=AType=exec\&EType=start\&Action="job_check.pl" 
Job

> echo true | msub -N MyJobGroup -l flags=NORESOURCES
> msub -W x=JGroup:MyJobGroup Job1
> msub -W x=JGroup:MyJobGroup Job2



Also, MyJobGroup cannot see var3, var4, var5 and var6. One can only see up the hierarchy tree.

Notice that var3 has a caret symbol (^) attached to the front. This means that when Job1 completes, var3 is
going to be exported to the job group, MyJobGroup in this case. This can be seen in Figure 5, which shows
the state of things after Job1 has completed.

Figure 5: Jobs, job group and variables after complete

With the completion of Job1, var3 has been exported to MyJobGroup. However, var4, which was not set to
export, has been destroyed. At this point, Job2 can now see var3. If a trigger attached to Job2 required
var3, it would now be able to run because its dependency is now fulfilled.

This is a very simple example of how variables can be used in conjunction with triggers. Detailed information
on the interaction between triggers and variables is available.

Q.3.5.4 External Dependencies

There are instances where dependencies must be fulfilled by entities external to the cluster. This may occur
when external entities are staging in data from a remote source or when a job is waiting for the output of
specialized test equipment. In instances such as these, Moab provides a method for injecting a variable into a
job's name space from the command line. The mjobctl command is used.

Example 23: Injecting variables into objects from the command line

In this example, the variable newvar1 with a value of 1 is injected into MyJobGroup, which was created in
Example 22. This provides a simple method for allowing external entities to notify Moab when an external
dependency has been fulfilled.

Q.3.5.5 Cascading Triggers

Another approach that can be used when converting a workflow is the idea of dynamic workflow. A dynamic
workflow is one in which sections of the workflow are created on-the-fly through the use of triggers or other
means. The technique of using triggers to accomplish this is known as cascading triggers. This is where
triggers dynamically create other jobs and triggers, which handle parts of the overall work flow.

Cascading triggers reduces the number of triggers and jobs in the system, thereby reducing administrative
overhead. While not the perfect solution in every case, they provide a great tool for those using Moab in the
data center. See the Case Studies for an example of their benefits.

Q.4 Dynamic Workload

A dynamic workload is a non-static workload that changes over the course of a day, week, month or year.
Moab supports this through the use of traditional HPC techniques. As jobs are submitted to Moab, they are
evaluated for execution. This evaluation is based on a number of factors including policies, QoS, and standing
reservations and assigns a priority to the job. These priorities are used when scheduling the job.

Where possible, Moab will backfill empty sections of the schedule with lower priority jobs if it will not affect

> mjobctl -m var=newvar1=1 MyJobGroup



the higher priority jobs. This scheduling occurs every scheduling iteration, allowing Moab to take advantage
of changing situations. Because of the dynamic nature of Moab scheduling, it is able to handle the changing
workload in a data center—providing services and resources for ad hoc jobs, as well as the normal, static
workflow.

Q.5 Supporting SLAs and Other Commitments

When SLAs are in place, it is requisite that the workflow support these agreements. Contracted work must be
accomplished accurately and on time. A number of Moab policies exist to ensure these goals can be met.

Moab has a number of different credential types which allow for the grouping of users in a large number of
ways. Access rights can be given to each credential, and limits on system usage for each credential can be
defined. Users are allowed to have multiple credentials, thereby providing a rich set of access control
mechanisms to the administrator.

Moab's scheduling algorithms are customizable on a number of different levels, allowing administrators to
determine when and where certain jobs are allowed to run. The dynamic nature of the scheduling engine
allows Moab to react to changing circumstances.

Moab's scheduling engine takes multiple circumstances and priorities into consideration when ordering jobs.
Because Moab considers the future when scheduling, jobs may be scheduled to start at or complete by
specific times. In addition, resources can be statically or dynamically allocated for jobs submitted via certain
credentials. Policies can be put in place to describe Moab behavior with jobs that are not abiding by the
imposed restrictions.

In combination, all these features allow the administrator to customize Moab behavior to perfectly match
their data center's needs.

Additional resources:

Prioritizing Jobs and Allocating Resources
Controlling Resource Access
Managing Shared Resources
Job Administration
Node Administration

Q.CS Case Studies

This section illustrates Moab functionality in the data center. All company names presented in this section are
fictitious.

Q.CS.1 Cascading Triggers

A data collection company handles a large amount of incoming information each day. New information is
available every five minutes for processing. The information is processed by their cluster in a series of steps.
Each step consolidates the information from the previous steps and then generates a report for the given
time period, as shown in what follows:

Every 5 Minutes – Information gathered and "5 Minute" report generated
Every 15 Minutes – All new "5 Minute" data handled
Every Hour – All new "15 Minute" data handled
Every 3 Hours – All new "1 Hour" data handled
Every Day – All new "3 Hour" data handled

The original approach was to create the entire workflow structure for the entire day with a standing trigger
that fired every night at midnight. However, this produced a large number of triggers that made management
of the system more difficult. For every "5 Minute" task requiring a trigger, 288 triggers are required. This
quickly made the output of mdiag -T very difficult to parse for a human, as multiple tasks, and therefore
triggers, were required for each step.

To address this issue, the cascading triggers approach was adopted. With this approach, triggers were only
created as needed. For example, each "3 Hour" trigger created its underlying "1 Hour" triggers when it was
its time to run.



The resulting reduction of triggers in the system was very impressive. Figure 6 shows the difference between
the two approaches in the number of triggers when only one trigger is needed per step. The difference is
even greater when more than one trigger is needed per step.

Figure 6: Cascading triggers comparison graphs

Click to enlarge

The charts show the number of triggers over the full day that would be required if all jobs were generated at
the beginning of the day versus a dynamic approach where jobs and their associated triggers were created
only as needed. The difference in the two approaches is clear.

http://sempa/resources/docs/blanks/mwm/images/q.cascade.png


SCHEDCFG Flags
Flag Description

ALLOWMULTICOMPUTE ALLOWMULTICOMPUTE tells Moab how to resolve conflicting information
from different resource managers. If ALLOWMULTICOMPUTE is specified,
Moab will use the STATE and OS information from the resource manager
that reports the node as online.

DISABLEPERJOBNODESETS Disables a job's ability to override the system specified node set. See
13.3 Resource Manager Extensions for more information.

FASTGROUPLOOKUP Moab will use the system call getgrouplist to gather group information.
This can significantly improve performance on some LDAP systems.

FASTRSVSTARTUP
Speeds up start time if there are existing reservations.

On very large systems, if there is a reservation in the checkpoint file on
all the nodes, it would take a really long time for Moab to start up. For
every node in the reservation, Moab checks every other node. With this
flag, Moab just uses the nodelist that was checkpointed to create the
reservation. It speeds up the startup process because it doesn't have to
check every node. Where Moab would take 8 - 10 minutes to start up
with an 18,000 node reservation without the flag, Moab can start up in
2-3 minutes with the flag.

With the flag you will see one difference in checknode. A reservation
that uses all the procs on a node initially shows that all the procs are
blocked. Without the flag, and as jobs fill on the node, the blocked
resources will be configured - dedicated (ex. 5/6). With the flag, the
blocked resources will always be what the reservation is blocking and
won't change when jobs fill on the node.

Without flag:
Reservations:
brian.1x1 User -00:12:52 -> INFINITY ( INFINITY)
Blocked Resources@-00:00:02 Procs: 5/6 (83.33%) Mem: 0/5000
(0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
m.2x1 Job:Running -00:00:02 -> 00:04:58 (00:05:00)
Jobs: m.2

With flag:
Reservations:
brian.1x1 User -00:00:15 -> INFINITY ( INFINITY)
Blocked Resources@-00:00:02 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
m.1x1 Job:Running -00:00:02 -> 00:04:58 (00:05:00)
Jobs: m.1

FILELOCKHA This is a High Availability feature. FILELOCKHA prevents scheduling
conflicts between multiple Moab servers.

JOBSUSERSVWALLTIME Allows jobs submitted without a walltime request or default walltime



received from a class or queue but with an ADVRES:reservation to
inherit their walltime limit from the reservation instead of the Moab
default. The job walltime limit is then the remaining time of the
reservation to which the job was submitted.

NORMALIZETASKDEFINITIONS
Instructs Moab to normalize all tasks that it receives via an mshow -a
command. Moab normalizes the task definition to one processor and
then changes the tasks requested to the number of processors
requested. For example, when the following is received by Moab:

It is changed to this:

SHOWREQUESTEDPROCS Shows requested processors regardless of NodeAccessPolicy in showq.
When SINGLEJOB NODEACCESSPOLICY is used and the job requests one
processor, showq displays the job with one processor.

STRICTSPOOLDIRPERMISSIONS Enforces at least a 511 permission on the Moab spool directory.

USELOCALUSERGROUP This enables the mapping of a job's GROUP to become the user's
GROUP upon receiving a job from a remote Moab instance. The job is
then in the GROUP of the user who owns the job during execution. If
not enabled, the job is rejected if the GROUP is not valid on the
executing Moab instance.

When the source Moab instance queries the destination job
status, the job reflects the GROUP value of the job on the
destination.

mshow -a -w mintasks=1@procs:4+mem:4096

mshow -a -w mintasks=4@procs:1+,mem:1024,tpn=4


	Moab Workload Manager Administrator's Guide
	Table of Contents
	Legal Notices
	1.0 Philosophy
	Value of a Batch System
	Philosophy and Goals
	Workload

	2.0 Installation and Initial Configuration
	Hardware and Software Requirements
	Building and Installing Moab
	Upgrading Moab
	Initial Moab Configuration
	Initial Moab Testing

	3.0 Scheduler Basics
	Layout of Scheduler Components
	Scheduling Environment
	Scheduling Dictionary
	Scheduling Iterations and Job Flow
	Configuring the Scheduler
	Credential Overview
	Job Attributes/Flags Overview


	4.0 Scheduler Commands
	Client Overview
	Status Commands
	Job Management Commands
	Reservation Management Commands
	Policy/Configuration Management Commands
	End-User Commands

	5.0 Prioritizing Jobs and Allocating Resources
	Job Prioritization
	Priority Overview
	Job Priority Factors
	Fairshare Job Priority Example

	Common Priority Usage
	Prioritization Strategies
	Manual Job Priority Adjustment

	Node Allocation Policies
	Node Access Policies
	Node Availability Policies
	Task Distribution Policies
	Scheduling Jobs When VMs Exist

	6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management
	Fairness Overview
	Usage Limits/Throttling Policies
	Fairshare
	Sample FairShare Data File

	Charging and Allocation Management
	Internal Charging Facilities

	7.0 Controlling Resource Access - Reservation, Partitions, and QoS Facilities
	Advance Reservations
	Reservation Overview
	Administrative Reservations
	Standing Reservations
	Reservation Policies
	Configuring and Managing Reservation
	Personal Reservations (a.k.a. User Reservations) - Enabling Reservations for End Users

	Partitions
	Quality of Service (QoS) Facilities

	8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption
	Optimization Overview
	Backfill
	Node Set Overview
	Preemption Management

	9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation
	Moab Performance Evaluation Overview
	Accounting: Job and System Statistics
	Testing New Versions and Configurations
	Answering What If? Questions with the Simulator

	10.0 Managing Shared Resources - Usage Based Limits, Policies, and SMP Issues
	Consumable Resource Handling
	Load Balancing Features
	Resource Usage Limits
	General SMP Issues

	11.0 General Job Administration
	Job Holds
	Job Priority Management
	Suspend/Resume Handling
	Checkpoint/Restart Facilities
	Job Dependencies
	Job Defaults and Per Job Limits
	General Job Policies
	Using a Local Queue
	Job Deadlines
	Job Templates

	12.0 General Node Administration
	Node Location
	Node Attributes
	Node Specific Policies
	Managing Shared Cluster Resources (Floating Resources)
	Managing Node State
	Managing Consumable Generic Resources
	Enabling Generic Metrics
	Enabling Generic Events

	13.0 Resource Managers and Interfaces
	Resource Manager Overview
	Resource Manager Configuration
	Resource Manager Extensions
	Adding New Resource Manager Interfaces
	Managing Resources Directly with the Native Interface
	Utilizing Multiple Resource Managers
	License Management
	Resource Provisioning
	Managing Networks
	Intelligent Platform Management Interface
	Resource Manager Translation

	14.0 Troubleshooting and System Maintenance
	Internal Diagnostics/Diagnosing System Behavior and Problems
	Logging Facilities
	Object Messages
	Notifying Administrators of Failures
	Issues with Client Commands
	Tracking System Failures
	Problems with Individual Jobs
	Diagnostic Scripts

	15.0 Improving User Effectiveness
	User Feedback Loops
	User Level Statistics
	Job Start Time Estimates
	Collecting Performance Information on Individual Jobs

	16.0 Cluster Analysis, Testing, and Simulation
	Testing New Releases and Policies
	Testing New Middleware
	Simulations
	Simulation Overview
	Resource Traces
	Workload Accounting Records
	Simulation Specific Configuration


	17.0 Moab Workload Manager for Grids
	Grid Basics
	Grid Configuration Basics
	Centralized Grid Management (Master/Slave)
	Source-Destination Grid Management
	Localized Grid Management
	Resource Control and Access
	Workload Submission and Control
	Reservations in the Grid
	Grid Usage Policies
	Grid Scheduling Policies
	Grid Credential Management
	Grid Data Management
	Accounting and Allocation Management
	Grid Security
	Grid Diagnostics and Validation

	18.0 Green Computing
	Establishing Script Interaction between Moab and a Power Management Tool
	Enabling Green Power Management
	Allocating and Adjusting Green Pool Size
	Miscellaneous Power Management Options

	19.0 Object Triggers
	Trigger Creation
	Trigger Management
	Trigger Components
	Trigger Types
	Trigger Variables
	Trigger Examples

	20.0 Virtual Private Clusters
	Configuring VPC Profiles
	VPC Commands

	21.0 Miscellaneous
	User Feedback Overview
	Enabling High Availability Features
	Identity Managers
	Information Services for Enterprises and Grids
	Malleable Jobs

	22.0 Database Configuration
	SQLite3
	ODBC

	Appendix D: Adjusting Default Limits
	Appendix E: Security
	Appendix F: Moab Parameters
	Appendix G: Commands Overview
	Commands - checkjob
	Commands - checknode
	Commands - mcredctl
	Commands - mdiag
	Commands - mdiag -a
	Commands - mdiag -b
	Commands - mdiag -c
	Commands - mdiag -f
	Commands - mdiag -g
	Commands - mdiag -j
	Commands - mdiag -n
	Commands - mdiag -p
	Commands - mdiag -q
	Commands - mdiag -r
	Commands - mdiag -R
	Commands - mdiag -S
	Commands - mdiag -t
	Commands - mdiag -T
	Commands - mdiag -u

	Commands - mjobctl
	TIMESPEC - Relative Time Format

	Commands - mnodectl
	Commands - moab
	Commands - mrmctl
	Commands - mrsvctl
	Commands - mschedctl
	Commands - mshow
	Commands - mshow -a (Available Resources) 
	Commands - mshow -a (Hosting Usage)

	Commands - msub
	Applying the msub Submit Filter
	Submitting Jobs via msub in XML

	Commands - mvmctl
	Commands - resetstats
	Commands - showbf
	Commands - showq
	Commands - showres
	Commands - showstart
	Commands - showstate
	Commands - showstats
	Commands - showstats -f
	Commands Providing Maui Compatibility
	Commands - canceljob
	Commands - changeparam
	Commands - diagnose
	Commands - releasehold
	Commands - releaseres
	Commands - runjob
	Commands - sethold
	Commands - setqos
	Commands - setres
	Commands - setspri
	Commands - showconfig


	Appendix H: Interfacing with Moab (APIs)
	Moab Java API Quick Start Guide

	Appendix I: Considerations for Large Clusters
	Appendix J: Configuring Moab as a Service
	Appendix K: Migrating from Maui 3.2
	Appendix O: Integrating Other Resources with Moab
	Compute Resource Managers
	Moab-Loadleveler Integration Guide
	Moab-TORQUE/PBS Integration Guide
	RM Access Control
	Default Queue Settings

	Moab-SGE Integration Notes
	Moab-SLURM Integration Guide
	Wiki Interface Overview
	Appendix W: Wiki Interface Specification, version 1.2
	Wiki Socket Protocol Description
	Wiki Configuration

	Moab-LSF Integration Guide
	LSF Integration via the Native Interface

	Installation Notes for Moab and TORQUE on the Cray XT

	Provisioning Resource Manager Integration
	Validating an xCAT Installation for Use with Moab
	Integrating an xCAT Physical Provisioning Resource Manager with Moab
	Enabling Moab Provisioning with SystemImager

	Hardware Integration
	Moab-NUMA Integration Guide

	Appendix Q: Moab in the Data Center
	SCHEDCFG Flags


