
1

Moab Web Services 7.0.4 Reference Guide

Table of Contents

1 Introduction

1.1 Moab Web Services Overview

1.2 Installation Guide

1.3 Troubleshooting

1.4 Configuration

1.5 Security

1.6 Version and Build Information

2 API Documentation

2.1 Data Format

2.2 Global URL Parameters

2.3 Responses and Return Codes

2.4 Error Messages

2.5 Pre and Post-Processing Hooks

2.6 API Security

3 Resources

3.1 Access Control Lists

3.2 Diagnostics

3.3 Images

3.4 Jobs

3.5 Job Templates

3.6 Nodes

3.7 Pending Actions

3.8 Plugins

3.9 Plugin Types

3.10 Reports

3.11 Reservations

3.12 Services

3.13 Service Templates

3.14 Standing Reservations

3.15 Virtual Containers

3.16 Virtual Machines

4 Reporting Framework

2

4.1 Overview

4.2 Example Report (CPU Utilization)

5 MWS Plugins (Beta)

5.1 Plugin Overview

5.2 Plugin Type Management

5.3 Plugin Management and Usage

3

1 Introduction

1.1 Moab® Web Services Overview
Moab Web Services (MWS) is a component of Adaptive Computing Suites that enables
programmatic interaction with Moab Workload Manager via a RESTful interface. MWS allows
you to create and interact with Moab objects and properties such as jobs, nodes, virtual
machines, and reservations. MWS is the preferred method for those wishing to create custom
user interfaces for Moab and is the primary method by which Moab Viewpoint communicates
with Moab.

MWS communicates with the Moab Workload Manager (MWM) server using the same wire
protocol as the Moab command-line interface. By publishing a standard interface into Moab's
intelligence, MWS significantly reduces the amount of work required to integrate MWM into
your solution.

This documentation is intended for developers performing such integrations. If you are a Moab
administrator, and for conceptual information about MWM, see the Moab Administrator's Guide.

1.2 Installation Guide
These instructions describe how to install Moab® Web Services (MWS).

1.2.1 Requirements

Hardware Requirements

64-bit dual-core processor
At least 4 GB of RAM

Software Requirements

Moab® Workload Manager (version must match exactly the version of MWS)
Oracle® Java® 6 Runtime Environment
Apache Tomcat™ 6
MongoDB® 2.0.x, where x is 2 or greater

Oracle Java 6 Runtime Environment is the supported Java environment.only

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, run Moab Web Services.cannot

1.2.2 Quickstart Guide

1) Install MongoDB version 2.0.x, where x is 2 or greater.

4

MWS does not yet support MongoDB 2.2.x. Be sure to install the 2.0.x
packages. As of this writing, the RPM package names are

 and mongo20-10gen-2.0.7-mongodb_1.x86_64.rpm
. Themongo20-10gen-server-2.0.7-mongodb_1.x86_64.rpm

Ubuntu package name is .mongodb20-10gen_2.0.7_amd64.deb

Install MongoDB on RedHat Enterprise, CentOS, or Fedora Linux
Install MongoDB on Debian or Ubuntu Linux

2) Start MongoDB.

CentOS 6 example

chkconfig mongod on
service mongod start

The instructions provided above for installing MongoDB describe a base
installation only. See the MongoDB section of the page.security

3) Install and configure Moab Workload Manager (MWM).

You must deploy Moab Web Services (MWS) on the same server as
Moab Workload Manager (MWM).
The version of MWS must match exactly the version of MWM. For
example, MWS 7.1.1 works with MWM 7.1.1.only

4) Generate a secret key to be used for communication between MWM and
MWS.

All these steps are required. Do not skip any steps.

service moab stop
dd =/dev/urandom count=18 bs=1 2>/dev/ | base64 > /opt/moab/etc/.moab.keyif null
chown root /opt/moab/etc/.moab.key
chmod 400 /opt/moab/etc/.moab.key
ln -f /opt/moab/etc/.moab.key /opt/moab/.moab.key
service moab start

5) Install Apache Tomcat 6.

CentOS 6 example

yum install tomcat6

6) Install the 64-bit version of the .Oracle Java SE 6 JRE

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-redhat-centos-or-fedora-linux
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian-or-ubuntu-linux
http://java.com/en/download/manual_v6.jsp

5

Oracle Java 6 Runtime Environment is the supported Java environment.only

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, run Moab Web Services.cannot

CentOS 6 example

sh jre-6u37-linux-x64-rpm.bin
rm -f /usr/bin/java
ln -s /etc/alternatives/java /usr/bin/java
alternatives --install /usr/bin/java java /usr/java/jre1.6.0_37/bin/java 500
alternatives --set java /usr/java/jre1.6.0_37/bin/java

The command is called onalternatives update-alternatives
some Linux distributions.

You can verify the Java installation by running java -version
The output should look similar to this:

java version "1.6.0_37"
Java(TM) SE Environment (build 1.6.0_37-b06)Runtime
Java HotSpot(TM) 64-Bit Server VM (build 20.12-b01, mixed mode)

7) Create the and its subdirectories , , MWS home directory etc hooks
, and .plugins log

The default location for the MWS home directory is . These/opt/mws
instructions assume the default location.

Give the Tomcat user read access to these directories and write access to the plugins
and directories.log

Here is a sample script for these steps:

mkdir -p /opt/mws/etc /opt/mws/hooks /opt/mws/plugins /opt/mws/log
chown -R tomcat /opt/mws # Depending on your OS, the Tomcat username might be tomcat6.
chmod -R 555 /opt/mws
chmod u+w /opt/mws/plugins /opt/mws/log

8) Extract the contents of the MWS tarball into a temporary directory.

mkdir /tmp/mws-install
cd /tmp/mws-install
tar xvzf $HOME/Downloads/mws-<VERSION>.tar.gz
cd /tmp/mws-install/mws-<VERSION>

9) Set up the MWS configuration file.

6

In the extracted MWS directory is a sample configuration file:
. Copy this file to .mws-config.groovy /opt/mws/etc

Give the Tomcat user read access to ./opt/mws/etc/mws-config.groovy

In the file, change these settings:/opt/mws/etc/mws-config.groovy

moab.secretKey: needs to match the MWM secret key you generated earlier
(contained in)/opt/moab/etc/.moab.key

auth.defaultUser.username: any value you like, or leave as is
auth.defaultUser.password: any value you like, but choose a good
password

vi /opt/mws/etc/mws-config.groovy

…
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559

// Change these to be whatever you like.
auth.defaultUser.username = "admin"
auth.defaultUser.password = "adminpw"

If you do not change , then your MWSauth.defaultUser.password
is not secure, since anyone reading these instructions can log into your MWS.
Here are some for choosing a good password.tips

10) Set the following parameters in your Tomcat CATALINA_OPTS.

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

Where you choose to store depends on various factors,CATALINA_OPTS
including operating system and sysadmin preference. Here are some
suggestions:

CentOS™ 5 and 6: /etc/sysconfig/tomcat6
Red Hat® Enterprise Linux 5 and 6:
/etc/tomcat6/tomcat6.conf
SUSE® Linux Enterprise Server 11:
/etc/tomcat6/tomcat6.conf
Ubuntu® 10.04: /etc/default/tomcat6

11) Start Tomcat and deploy .mws.war

CentOS 6 example

chkconfig tomcat6 on
service tomcat6 stop
cp /tmp/mws-install/mws-<VERSION>/mws.war / /lib/tomcat6/webappsvar
service tomcat6 start

http://www.us-cert.gov/cas/tips/ST04-002.html

7

1.
2.

12) Visit in a web browser to verify that MWS ishttp://localhost:8080/mws/
running.

You will see some sample queries and a few other actions.

13) Log into MWS to verify that the MWS credentials are working.

The credentials are the values of and auth.defaultUser.username
 that you set above.auth.defaultUser.password

If you encounter problems, or if MWS does not seem to be running, see the
steps below in the Troubleshooting section.

1.3 Troubleshooting
If something goes wrong with MWS, look in the following files:

The MWS log file. By default this is ./opt/mws/log/mws.log

The Tomcat file, usually in or catalina.out /var/log/tomcat6
.$CATALINA_HOME/logs

If you remove the configuration from ,log4j mws-config.groovy
MWS will write its log files to . For Tomcat, java.io.tmpdir

 is generally set to or java.io.tmpdir $CATALINA_BASE/temp
.CATALINA_TMPDIR

Here is a list of some errors and their fixes:

MongoDB Errors

If the application fails to start and gives error messages such as these:

Error creating bean with name 'mongoDatastore'
can't say something; nested exception is com.mongodb.MongoException

MongoDB is most likely not running, or the host and port are mis-configured. Start MongoDB or
reconfigure MWS and restart MWS.

Out of semaphores to get db connection

http://localhost:8080/mws/

8

The default number of MongoDB connections allowed per host is 10. To increase this pool size,
add to your .grails.mongo.options.connectionsPerHost mws-config.groovy
Example:

grails.mongo.options.connectionsPerHost = 50

See also the page under Moab Web Services in the Quick Reference menu.Configuration

java.lang.OutOfMemoryError: Java heap space

Increase the size of the heap using JVM options and . Here are the suggested values-Xms -Xmx
from the :Quickstart Guide

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

-Xms: Set initial Java heap size.
-Xmx: Set maximum Java heap size.

java.lang.OutOfMemoryError: PermGen space

Increase the size of the permanent generation using JVM option . Here are-XX:MaxPermSize
the suggested values from the :Quickstart Guide

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

SEVERE: Context [/mws] startup failed due to previous errors

If contains this error, look in and catalina.out /opt/mws/log/mws.log
 for more details on the error./opt/mws/log/stacktrace.log

Moab Reached Maximum Number of Concurrent Client Connections

When this error message is encountered, simply add a new line to the file:moab.cfg

CLIENTMAXCONNECTIONS 256

This will change the Moab configuration when Moab is restarted. Run the following command to
immediately use the new setting:

changeparam CLIENTMAXCONNECTIONS 256

9

The number above may be substituted for the desired maximum number256
of MWM client connections.

1.4 Configuration
This section describes where Moab Web Services searches for its configuration files. It also
shows some examples of how to configure logging.

To see a full reference to all configuration and logging parameters available
in MWS, see the page under Moab Web Services in the QuickConfiguration
Reference menu.

Home Directory

The MWS home directory contains all configuration as well as other files that serve features of
MWS such as hooks and plugins. This is typically set by using the property asMWS_HOME
explained in the . If is not set as a Java property or as anQuickstart Guide MWS_HOME
environment variable for the current application container (i.e. Tomcat), will be/opt/mws
used as the default . If no configuration files are found in , MWS_HOME MWS_HOME

 will be used. If this property also does not exist, the home directory will defaultMOABHOMEDIR
to ./opt/moab

MWS_HOME or can be set either as a Java property or as anMOABHOMEDIR
environment variable. See the for suggestions on how to setQuickstart Guide

.MWS_HOME

The home directory consists of several sub-directories:

etc - Used for storing configuration files.
hooks - Used for storing . This is not required if hooks are not being used.hook files
plugins - Used for storing . This is not required if custom plugin types areplugin types
not being used.

The and directories should be writable by the applicationhooks plugins
container's user, such as the user.tomcat

Configuration File Locations

MWS searches the following directories for configuration files in the order shown below. As
soon as a configuration file is found in one of these directories, that file is loaded and searching
stops. If a file exists in the same directory, it will be loaded as well.log4j.properties

10

MWS_HOME/etc

MWS_HOME

/opt/mws/etc

/opt/mws

MOABHOMEDIR/etc

MOABHOMEDIR

/opt/moab/etc

/opt/moab

In each directory, MWS looks first for andmws-config.groovy
then for . If it finds mws-config.properties

, it does not look for mws-config.groovy
.mws-config.properties

mws-config.groovy uses a style that is similar to a Java properties
file with some extensions from Groovy.
mws-config.properties is a regular Java properties file.

Logging Configuration Using mws-config.groovy

Shown below is an example that logs all error messages and fatal messages to
. It also logs all stack traces to /opt/mws/log/mws.log

./opt/mws/log/stacktrace.log

Minimal Logging Configuration

log4j = {
 appenders {
 rollingFile name: 'stacktrace',
 file: '/opt/mws/log/stacktrace.log',
 maxFileSize: '1GB'
 rollingFile name: 'rootLog',
 file: '/opt/mws/log/mws.log',
 threshold: org.apache.log4j.Level.ERROR,
 maxFileSize: '1GB'
 }
 root {
 debug 'rootLog'
 }
}

Alternatively, you may configure a console appender instead of a rolling file as shown below.

Console Logging Configuration

log4j = {
 appenders {
 rollingFile name: 'stacktrace',
 file: '/opt/mws/log/stacktrace.log',
 maxFileSize: '1GB'
 console name: 'consoleLog',
 threshold: org.apache.log4j.Level.ERROR
 }
 root {
 debug 'consoleLog'
 }
}

11

1.
2.
3.

For the examples above, you must make sure that /opt/mws/log
exists and is writable by the application server.
You may configure logging using either or amws-config.groovy
regular file. The filelog4j.properties log4j.properties
must be in the same directory as the file.mws-config.groovy
If you do not define any configuration, MWS will write its loglog4j
files to . For Tomcat, isjava.io.tmpdir java.io.tmpdir
generally set to or .$CATALINA_BASE/temp CATALINA_TMPDIR

For all possible configuration options, see the section in the reference guide.Configuration

1.5 Security
When running MWS in production environments, security is a major concern. This section
focuses on securing the three kinds of connections with MWS:

The connection between MWS and Moab Workload Manager (MWM)
The connection between MWS and MongoDB
The connections between clients and MWS

Connection with MWM

MWS communicates with MWM via the Moab Wire Protocol, which uses a direct connection
between the two applications. The communication over this connection uses a shared secret key,
which is discussed in the . However, the communication is not encrypted and isQuickstart Guide
therefore susceptible to eavesdropping and replay attacks. For this reason, MWS is supported
only when running on the same machine as MWM. This assures that any connections between
the two applications occur internally on the server and are not exposed to external users.

Connection with MongoDB

By default, the connection between MWS and MongoDB is not authenticated. To enable
authentication between them, see the instructions below.

MWS Configuration: see the reference guide for information on the Configuration
 properties to set in .grails.mongo mws-config.groovy

MongoDB Configuration: see the MongoDB guide.Security and Authentication
Generally, the following steps are required:

Add an administrative user to MongoDB in the database.admin

Start MongoDB with authentication activated (using the command-line--auth
option for example).
Log in as the administrative user to the database.admin

Add a user for MWS to use with full read and write access to the database specified in
the configuration file (by default).mws

Change the proper configuration file properties with the created username and
password.
Restart MWS by restarting the servlet container (Tomcat).

http://www.mongodb.org/display/DOCS/Security+and+Authentication

12

If authentication is activated on MongoDB, but the user was not properly created or configured
with MWS, MWS will not start. See the log file(s) for additional information in this case.

Client Connections to MWS

All connections to MWS, except those requesting the documentation or the main page, must be
authenticated properly. MWS uses a single-trusted-user authentication model, meaning a single
user exists that has access to all aspects of MWS. The username and password for this user are
configured with the properties in the configuration file. See the auth.defaultUser

 reference guide for more information.Configuration

When using the MWS user interface in a browser, the user will be prompted for username and
password. For information on how to authenticate requests when not using a browser, see the

 section in the user guide.API Security

The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is recommended that MWS be runstrongly
behind a proxy (like Apache) with SSL enabled. The instructions below
provide an example of how to do this.

Encrypting Client Connections using Apache and SSL

This section shows how to encrypt client connections to MWS using Apache and SSL. These
instructions have been tested on CentOS™ 6.2 with the "Web Server" software set installed. The
same ideas are applicable to other operating systems, but the details might be different. As
shown in the diagram below, these instructions assume that Tomcat and Apache are running on
the same server.

13

Create a self-signed certificate. See http://www.openssl.org/docs/HOWTO/certificates.txt
for more details if desired.

Instead of creating a self-signed certificate, you can buy a certificate from a
certificate vendor. If you do, then the vendor will provide instructions on how
to configure Apache with your certificate.

Run these commands:

cd /etc/pki/tls/certs
cp -p make-dummy-cert make-dummy-cert.bak
cp -p localhost.crt localhost.crt.bak

Edit and replace the function with code similar tomake-dummy-cert answers()
this:

answers() {
 echo US
 echo Utah
 echo Provo
 echo Adaptive Computing Enterprises, Inc.
 echo Engineering
 echo test1.adaptivecomputing.com
 echo
}

Run this command:

http://www.openssl.org/docs/HOWTO/certificates.txt

14

./make-dummy-cert localhost.crt

Configure Apache to use the new certificate and to redirect MWS requests to Tomcat.
To do so, edit ./etc/httpd/conf.d/ssl.conf

Comment out this line:

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

Add these lines near the end, just above :</VirtualHost>

ProxyPass /mws http://127.0.0.1:8080/mws retry=5
ProxyPassReverse /mws http://127.0.0.1:8080/mws

Configure Apache to use SSL for all MWS requests.

Add these lines to the end of :/etc/httpd/conf/httpd.conf

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (/mws.*) https://%{HTTP_HOST}%{REQUEST_URI}

Give Apache permission to connect to Tomcat.

setsebool -P httpd_can_network_connect 1

Turn on Apache.

chkconfig httpd on
service httpd start

Using , enable "Secure WWW (HTTPS)" andsystem-config-firewall-tui
"WWW (HTTP)" as trusted services.

15

1.6 Version and Build Information
To get detailed version information about MWS, use one of the following three methods:

Browser

Using a browser, visit the MWS home page (for example, http://localhost:8080/mws/). At the
bottom of the page is the MWS version information. See the screenshot below:

REST Request

16

Using a REST client or other HTTP client software, send a GET request to the
 resource. Here is an example:rest/diag/about

curl -u username:password http://localhost:8080/mws/rest/diag/about

This resource is also described under .Diagnostics

MANIFEST.MF File

If MWS fails to start, version and build information can be found in the
 file inside the MWS WAR file. The version properties begin with META-INF/MANIFEST.MF

. Below is an excerpt of a file:Implementation MANIFEST.MF

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 20.4-b02 (Sun Microsystems Inc.)
Bundle-ManifestVersion: 2
Bundle-Name: mws
Bundle-SymbolicName: mws
Bundle-Version: 7.0.0

...

Implementation-Build: 4
Implementation-Build-Date: 2012-02-07_17-01-39
Implementation-Revision: 9e109b9a4289800a2c985082d7595d759807aca9

Name: Grails Application
Implementation-Title: mws
Implementation-Version: 7.0.0
Grails-Version: 1.3.7

17

2 API Documentation

Introduction

The Moab® Web Services (MWS) provide a set of RESTful resources that can be used to create,
read, update, and delete various objects in the Moab® Workload Manager.

2.1 Data Format
JSON (JavaScript Object Notation) is the data format used for all communication with MWS.
This format makes use of two main structures: collections of key/value pairs called andobjects
ordered lists of values called . Objects are defined by using curly braces (), and arraysarrays {}
are defined by using square brackets (). A JSON object or array may contain several different[]
types of values including numbers, booleans (true/false), strings, objects, arrays, or the keyword
'null' representing no value. For example, a simple JSON object might be defined as:

{
 : 1,"number"
 : 1.2,"decimalNumber"
 : ," "boolean true
 : ,"string" "Any string"
 : {"object"
 : "key" "value"
 },
 : ["array"
 ,"value1"
 "value2"
],
 : "nullValue" null
}

For more information on JSON, see .json.org

The data format of MWS is defined as follows:

Input for a POST or PUT must be in JSON format. Set the header to Content-Type
.application/json

Output is in JSON format and always consists of an object with zero or more key/value
pairs.
The output may also be "pretty-printed" or formatted for human viewing by sending a URL
parameter. See for more information.Global URL Parameters

2.2 Global URL Parameters

All URL parameters are optional.

http://www.json.org/

18

Parameter Valid Values Description

pretty true Controls pretty printing of output

fields Comma-Separated String Includes only specified fields in output

exclude-fields Comma-Separated String Excludes specified fields from output

max Integer The maximum number of items to return

offset Integer The index of the first item to return

Pretty (pretty)

By default, the output is easy for a machine to read but difficult for humans to read. The pretty
parameter formats the output so that it is easier to read.

Field Selection (fields)

The parameter will include the specified fields in the output. For list queries, the fieldfields only
selection acts on the objects in and not on the or properties themselves.results totalCount results

The format of the parameter is a comma-separated list of properties that should befields
included, as in . Using periods, sub-objects may also be specified, and fields of theseid,state
objects may be included as well. This is done with the same syntax for both single sub-objects
and lists of sub-objects, as in

.id,requirements.requiredNodeCountMinimum,blockReason.message

Example for a job query

Request

GET
/rest/jobs?fields=id,flags,requirements.requiredProcessorCountMinimum,schedule.offset

Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "job.1"
 : [],"flags" "RESTARTABLE"
 : [{ : 4}],"requirements" "requiredProcessorCountMinimum"
 : { : 100}"schedule" "offset"
 }]
}

Field Exclusion (exclude-fields)

The parameter is the opposite of the parameter. All fields will be included inexclude-fields fields
the output those that are specified. For list queries, the field exclusion acts on the objectsexcept
in and not on the or properties themselves.results totalCount results

19

The format of the parameter is a comma-separated list of properties that should beexclude-fields
excluded from the output, as in . Using periods, sub-objects may also be specified,id,state
and fields of these objects may be excluded as well. This is done with the same syntax for both
single sub-objects and lists of sub-objects, as in

.id,requirements.requiredNodeCountMinimum,blockReason.message

Example

Suppose a query returns the following JSON:

Request with No Field Exclusion

GET /objects

Response

{
 : ,"id" "1"
 : ["listOfStrings"
 ,"string1"
 "string2"
],
 : [{"listOfObjects"
 : ,"item1" "value1"
 : "item2" "value2"
 }],
 : {"singleObject"
 : ,"id" "obj1"
 : "field1" "value1"
 }
}

The same query with would return the following output:exclude-fields

Request with Field Exclusion

GET /objects?exclude-fields=id,listOfObjects.item2,singleObject.field1,listOfStrings

Response

{
 : [{ : }],"listOfObjects" "item1" "value1"
 : { : }"singleObject" "id" "obj1"
}

Sorting (sort)

, , and support sorting based on by using theServices Service Templates Images MongoDB syntax
 parameter. To sort in ascending order, specify a for the sorting field. To sort in descendingsort 1

order, specify a . Objects can also be sorted on nested fields by using dot notation to separate-1
the sub-fields, such as .field.subfield1.subfield2

Examples

To sort services in ascending order by account:

http://www.mongodb.org/display/DOCS/Querying#Querying-Sorting

20

http://localhost/mws/rest/services?sort={ :1}"account"

To sort services in descending order by account:

http://localhost/mws/rest/services?sort={ :-1}"account"

To sort services in descending order by processors:

http://localhost/mws/rest/services?sort={ :-1}"attributes.moab.job.resources.procs"

To sort service templates in ascending order by name:

http://localhost/mws/rest/service-templates?sort={ :1}"name"

To sort service templates in descending order by name:

http://localhost/mws/rest/service-templates?sort={ :-1}"name"

To sort service templates in ascending order by the nested field template:

http://localhost/mws/rest/service-templates?sort={ :1}"attributes.moab.job.template"

2.3 Responses and Return Codes
Various HTTP responses and return codes are generated from MWS operations. These are
documented below according to the operation that they are associated with.

Listing and Showing Resources

For any successful list or show operation (), a response code is always returned.GET 200 OK
No additional headers beyond those typical of a HTTP response are given in the response.

The body of this response consists of the results of the list or show operation. For a list
operation, the results are wrapped in metadata giving total and result counts. The result count
represents the number of resource records returned in the current request, and the total count
represents the number of all records available. These differ when querying or the and max

 parameters are used. The following is an example of a list operation response:offset

21

JSON List Response Body

{
 :1,"resultCount"
 :5,"totalCount"
 :["results"
 {
 : ,"id" "Moab.1"
 …
 }
]
}

For a show operation, the result is given as a single object:

JSON Show Response Body

{
 : ,"id" "Moab.1"
 …
}

Creating Resources

A successful creation () of a resource has two potential response codes:POST

If the resource was created immediately, a response code is returned.201 Created

If the resource is still being created, a response code is returned.202 Accepted

In either case, a header is added to the response with the full URL which can beLocation
used to get more information about the newly created resource or the task associated with
creating the resource (if a is returned).202

Additionally, the body of the response will contain the unique identifier of the newly created
resource or the unique identifier for the task associated with creating the resource (if a is202
returned).

For example, during creation or submission of a job, a response code is returned with the201
following response headers and body:

Job Creation Response Headers

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/Moab.21rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 16
Date: Wed, 21 Dec 2011 23:04:47 GMT

Job Creation Response Body

{ : }"id" "Moab.21"

22

For another resource that is not immediately created, such as virtual machines, the response
headers and body are shown below. In this case, a job is submitted to track the progress of the
VM creation. This job contains information pertaining to the VM that is being created.

VM Creation Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmcreate-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 23
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Creation Response Body

{ : }"jobId" "vmcreate-1"

As can be seen, the body of the response contains only a job ID and not the ID of the virtual
machine.

Modifying Resources

For any successful resource modification operation (), a or PUT 200 OK 202 Accepted
response code is returned. A response code signifies that the modification was immediately200
completed. No additional headers are returned in this case. A response code is used again to202
signify that the modification is not yet complete and additional actions are taking place. In this
case, a header is also returned with the full URL of the resource describing theLocation
additional actions.

In the case of a response code, the body of this response typically consists of an object with200
a single property containing a list of statuses or results of the modification(s).messages
However, a few exceptions to this rule exist as documented in the section. In the caseResources
of a response code, the format is the same as for a during a creation operation, in that202 202
the body consists of an object with the unique identifier for the task associated with the
additional action(s).

For example, when modifying a job, several messages may be returned as follows with the
associated response code.200

Job Modification Response Headers

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: …
Date: Thu, 22 Dec 2011 16:49:43 GMT

23

JSON Modify Response Body

{
 :["messages"
 ,"gevent processed"
 "variables successfully modified"
]
}

When modifying a virtual machine, however, the action sometimes does not occur immediately,
such as when migrating the VM to another hypervisor as described in the . InVM documentation
this case, the headers and response body are as follows:

VM Modification Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmmigrate-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 22
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Modification Response Body

{ : }"jobId" "vmmigrate-1"

Deleting Resources

For any successful resource deletion operation (), a or DELETE 200 OK 202 Accepted
response code is returned. A response code signifies that the deletion was immediately200
completed. No additional headers are returned in this case. A response code is used again to202
signify that the deletion is not yet complete and additional actions are taking place. In this case, a

 header is also returned with the full URL of the resource describing the additionalLocation
actions.

In the case of a response code, the body of this response is empty. In the case of a 200 202
response code, the format is the same as for a during a creation operation, in that the body202
consists of an object with the unique identifier for the task associated with the additional
action(s).

For example, when deleting a job, a response code is returned with an empty body as shown200
below.

Job Deletion Response

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: 0
Date: Thu, 22 Dec 2011 16:49:43 GMT

24

When deleting a virtual machine, however, the action does not occur immediately. In this case,
the headers and response body are as follows:

VM Deletion Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmdestroy-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 22
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Deletion Response Body

{ : }"jobId" "vmdestroy-1"

Moab Response Headers

In addition to the typical HTTP headers and the header described above, severalLocation
headers are returned if the operations directly interact with Moab. These headers are described in
the following table:

Name Description

X-Moab-Status
One of , , or . Describes the overall status ofSuccess Warning Failure
the Moab request.

X-Moab-Code
A three digit code specifying the exact error encountered, used only in
debugging.

X-Moab-Message An optional message returned by Moab during the request.

2.4 Error Messages
Below is an explanation of what error message format to expect when an HTTP status code other
than 20x is returned. All error codes have a response code of 400 or greater.

400 Bad Request

This response code is returned when the request itself is at fault, such as when trying to modify a
resource with an empty request body or when trying to create a new resource with invalidPUT
parameters. The response body is as follows:

{
 :["messages"
 ,"Message describing error"
 "Possible prompt to take action"
]
}

401 Unauthorized

25

This response code is returned when authentication credentials are not supplied or are invalid.
The response body is as follows:

{
 :["messages"
 "You are unauthorized to access area"this
]
}

404 Not Found

This response code is returned when the request specifies a resource that does not exist. The
response body is as follows:

{
 :["messages"
 "The resource with id 'uniqueId' was not found"
]
}

405 Method Not Allowed

This response code is returned when a resource does not support the specified HTTP method as
an operation. The response body is as follows:

{
 :["messages"
 "The specified HTTP method is not allowed the requested resource"for
]
}

500 Internal Server Error

This indicates that there was an internal server error while performing the request, or that an
operation failed in an unexpected manner. These are the most serious errors returned by MWS. If
additional information is needed, the MWS log may contain further error data. The response
body is as follows:

{
 :["messages"
 ,"A problem occurred processing the request"while
 "A message describing the error"
]
}

2.5 Pre and Post-Processing Hooks
MWS provides functionality to intercept and modify data sent to and returned from web services
for all available resources. This is done by creating hooks in Groovy files located in a
sub-directory of the directory (, , or MWS_HOME /opt/mws/hooks MOABHOMEDIR/hooks

 if is not set)./opt/moab/hooks MWS_HOME

26

The full reference for available hooks and methods available to them can be
found on the page in the reference guide.Hooks

Configuring Hooks

The directory of the hooks folder may be changed by providing a value for
 in the configuration file. If the directory starts with a path separatormws.hooks.location

(ie), it will be treated as an absolute path. Otherwise, it will be used relative/path/to/hooks
to the location of the .MWS home directory

For example, if the MWS home directory is set to , the hooks directory by default/opt/mws
would be in . Changing the property to /opt/mws/hooks mws.hooks.location

 would result in the hooks directory being located at . Due tomyhooks /opt/mws/myhooks
the default location of the MWS home directory, the default directory of the hooks directory is

./opt/moab/hooks

On startup, if the hooks directory does not exist, it will be created with a simple README.txt
file with instructions on how to create hooks, the objects available, and the hooks available. If
the folder or file is unable to be created, a message will be printed on the log with the full
location of a README file, copied into a temporary directory.

Defining Hooks for a Resource

Hooks are defined for resources by creating groovy class files in the hooks directory (
 by default). Each groovy file must be named by the resource URL it isMWS_HOME/hooks

associated with and end in ".groovy". The following table shows some possible hook files that
may be created. Notice that the virtual machines hook file is abbreviated as , just as the URLvms
for virtual machines is . In all cases, the hook file names will match the URLs./rest/vms

Resource Hook Filename

Jobs jobs.groovy

Nodes nodes.groovy

Virtual Machines vms.groovy

Pending Actions pending-actions.groovy

url url.groovy

A complete example of a hook file is as follows:

27

Complete Hook File

// Example before hook
def beforeList = {
 // Perform actions here
 // Return to allow the API call to execute normallytrue
 return true
}

def beforeShow = {
 // Perform actions here
 // Render messages to the user with a 405 Method Not Allowed
 // HTTP response code
 renderMessages(, 405)"Custom message here"
 // Return to stop normal execution of the API callfalse
 return false
}

// Example after hook
def afterList = { o ->
 (!isSuccess()) {if
 // Handle error here
 return false
 }
 // Perform actions here
 oreturn
}

As the specific format for the hooks for and are different, each will bebefore after
explained separately.

Before Hooks

As shown above, hooks require no arguments. They can directly act on severalbefore
properties, objects, and methods as described in the reference guide. The return value isHooks
one of the most important aspects of a hook. If it is , a , before false renderMessages

, , , or method first be called. ThisrenderObject renderList render redirect must
signifies that the API call should be interrupted and the render or redirect action specified within
the hook is to be completed immediately.

A return value of signifies that the API call should continue normally. Parameters, sessiontrue
variables, request and response variables may all be modified within a hook.before

If no return value is explicitly given, the result of the last statement in the
 hook to be executed will be returned. This may cause unexpectedbefore

behavior if the last statement resolves to .false

For all methods available to hooks as well as specific examples, see the page inbefore Hooks
the reference guide.

After Hooks

 hooks are always passed one argument: the object or list that is to be rendered as JSON.After
This may be modified as desired, but note that the object or list value is either a or JSONArray

. Therefore, it may not be accessed and modified as a typical groovy Map.JSONObject

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

28

1.

2.

Unlike hooks, hooks should not call the methods directly. Thisbefore after render*
method will automatically be called on the resulting object or list returned. The and redirect

 methods should also not be called at this point. Instead, if a custom object or list isrender
desired to be used, the and methods are available toserializeObject serializeList
create suitable results to return.

The return value of an hook may be one of two possibilities:after

The potentially modified object or list passed as the first argument to the hook. In this case,
this value will override the output object or list unless it is null.
Null or false. In this case, the original, unmodified object or list will be used in the output.

The return value of the hook, if not null or false, be theafter must
modified object passed into the hook or an object or list created with the

 methods.serialize*

For all methods available to hooks as well as specific examples, see the page inafter Hooks
the reference guide.

Error Handling

 hooks, unlike the hooks, have the possibility of handling errors encounteredAfter before
during the course of the request. Handling errors is as simple as adding a one-line check to the
hook as shown above or in the following code:

if (!isSuccess()) {
 // Handle error
 return false
}

It is recommended that each hook contain at least these lines of code to preventafter
confusion on what the input object or list represents or should look like.

The function is true if and only if the HTTP response code is 400 or higher,isSuccess()
such as a 404 Not Found, 400 Bad Request, or 500 Internal Server Error and the cause of the
error state was not in the associated hook. In other words, objects and lists rendered inbefore
the hook with any HTTP response code will never run the associated hook.before after

When handling errors, the passed in object will always contain a property containingmessages
a list of Strings describing the error(s) encountered.

Defining Common Hooks

Sometimes it is beneficial to create hooks which are executed for all calls of a certain type, such
as a hook that is executed during the course of listing any resource. These arebeforeList
possible using an file. The format of this file is exactly the same as other hookall.groovy
files. The order of execution is as follows:

29

1.
2.
3.
4.
5.

Before common hook executed
Before resource-specific hook executed
Normal API call executed
After resource-specific hook executed
After common hook executed

2.6 API Security
MWS uses Basic Authentication for all REST API requests. This means that a username and
password must be provided for each call to resources. See the "Client Connections to MWS"
section in the section of the user guide for instructions on how to configure theSecurity
username and password.

To use Basic Authentication, each client request must contain a header that looks like this:

Authorization: Basic YWRhcHRpdmU6YzNVU3R1bkU=

The string after the word is the base64 encoding of : . In theBasic username password
example above, is the base64 encoding of YWRhcHRpdmU6YzNVU3R1bkU=

. See section 2 of for more details.adaptive:c3UStunE RFC 2617

The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is recommended that MWS be runstrongly
behind a proxy (like Apache) with SSL enabled. Another approach would be
to enable SSL on the servlet container on which MWS is deployed.

http://www.ietf.org/rfc/rfc2617.txt

30

3 Resources
The sections below show the MWS resources and the HTTP methods defined on them. The
prefix for these resources depends on how the file is deployed. A typical prefix wouldmws.war
be . Using this example, one absolute resource URI wouldhttp://localhost:8080/mws
be .http://localhost:8080/mws/rest/jobs

3.1 Access Control Lists
This section describes behavior of the (Access Control List Rules) object in MoabACL Rules
Web Services. It contains the URLs, payloads, and responses delivered to and from Moab Web
Services.

The contains the type and description of all fields in the ACL API ACL
 object. It also contains details regarding which fields are valid duringRules

PUT and POST actions.

Supported Methods

ACLs are not directly manipulated through a single URL, but with sub-URLs
of the other objects such as Virtual Containers and Reservations.

Resource GET PUT POST DELETE

/rest/reservations/ /acl-rules/rsvId aclId Create or Update ACLs Delete ACL

/rest/vcs/ /acl-rules/vcId aclId Create or Update ACLs Delete ACL

3.1.1 Getting ACLs
Although cannot be retrieved directly using the GET method on any of the ACL Rules

 resources, are attached to supported objects when querying for them.acl-rules ACL Rules
Each supported object contains a field named , which is a collection of the aclRules ACL

 defined on that object.Rules

Supported Objects

The following is a list of objects that will return when queried:ACL Rules

Reservations
Standing Reservations
Virtual Containers

3.1.2 Creating or Updating ACLs

31

The HTTP PUT method is used to create or update . The payload can contain one orACL Rules
more . If an with the same and exists, then it will beACL Rules ACL Rule type value
overwritten.

Quick Reference

PUT http://localhost/mws/rest/reservations/ /acl-rules<rsvId>
PUT http://localhost/mws/rest/vcs/ /acl-rules<vcId>

3.1.2.1 Create or Update ACL

URLs and Parameters

PUT http://localhost/mws/rest/reservations/ /acl-rules<objectId>
PUT http://localhost/mws/rest/vcs/ /acl-rules<objectId>

Parameter Required Type Valid Values Description

objectId Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available for the PUT method, along with some
sample values.

JSON Payload

{ : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "ted"
}]}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "Virtual container 'vc1' successfully modified"

Samples

32

Samples

Create or update multiple ACLs on a single object:

PUT http://localhost/mws/rest/reservations/system.21/acl-rules

{ : ["aclRules"
 {
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LESS_THAN_OR_EQUAL"
 : ,"type" "DURATION"
 : "value" "3600"
 },
 {
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "ted"
 }
]}

Restrictions

ACL Rules cannot be added to or updated on .Standing Reservations
The and fields are ignored for .affinity comparator Virtual Containers

3.1.3 Deleting ACLs
The HTTP DELETE method is used to remove .ACL Rules

Quick Reference

ACL Rules cannot be removed from .Standing Reservations

DELETE http://localhost/mws/rest/reservations/ /acl-rules/<rsvId> <aclId>
DELETE http://localhost/mws/rest/vcs/ /acl-rules/<vcId> <aclId>

3.1.3.1 Delete ACL

URLs and Parameters

DELETE http://localhost/mws/rest/reservations/ /acl-rules/<objectId> <aclId>
DELETE http://localhost/mws/rest/vcs/ /acl-rules/<objectId> <aclId>

Parameter Required Type
Valid
Values

Description

objectId Yes String -
The unique identifier of the object from which to
remove the .ACL Rule

aclId Yes String -
A string representing the , with the format ACL Rule

.type:value

33

See for available URL parameters.Global URL Parameters

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "Successfully modified virtual container 'vc1'"

Restrictions

ACL Rules cannot be removed from .Standing Reservations

3.2 Diagnostics
This section describes additional REST calls that are available for performing diagnostics on
Moab Web Services.

Supported Methods

Resource GET PUT POST DELETE

/rest/diag/about Get version information

3.2.1 Version and Build Information
The HTTP GET method is used to retrieve version and build information.

Quick Reference

GET http://localhost/mws/rest/diag/about

URLs and Parameters

GET http://localhost/mws/rest/diag/about

Sample Response

The response contains the application version, build number, build date, and revision.

34

{
 : ,"version" "7.0"
 : ,"build" "100"
 : ,"buildDate" "2012-01-01_16-00-00"
 :"revision" "1000"
}

3.3 Images
This section describes behavior of the resource in Moab Web Services. An imageImage
resource is used to track the different types of operating systems and hypervisors available in the
data center. It also tracks which virtual machines are available on the hypervisors. This section
describes the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Image API Image
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/images Get All Images Create Image

/rest/images/id Get Specified Image Modify Image Delete Image

/rest/images/name Get Specified Image Modify Image Delete Image

3.3.1 Getting Images
The HTTP GET method is used to retrieve information. You can query all objects or aImage
single object.

Quick Reference

GET http://localhost/mws/rest/images/<id>
GET http://localhost/mws/rest/images/<name>
GET http://localhost/mws/rest/images[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

3.3.1.1 Get All Images

URLs and Parameters

GET http://localhost/mws/rest/images[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

35

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for
specific results.

query={"type":"stateful","osType":"linux"}

sort No JSON

Sort the results.
Use for1
ascending and -1
for descending.

sort={"name":-1}

It is possible to query images by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/images?fields=id,name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : "name" "centos5-stateful"
 }]
}

Sorting and Querying

See the sorting and querying sections of Global URL Parameters

3.3.1.2 Get Single Image

URLs and Parameters

GET http://localhost/mws/rest/images/<id>
GET http://localhost/mws/rest/images/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specify both.id name

http://www.mongodb.org/display/DOCS/Advanced+Queries

36

Sample Response

GET http://localhost/mws/rest/images/centos5-compute-stateful

{
 : ,"active" true
 :{"extensions"
 :{"xcat"
 : ,"os" "centos"
 : ,"architecture" "x86_64"
 :"profile" "compute"
 }
 },
 :[],"features"
 : ,"hypervisor" false
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"supportsPhysicalMachine" false
 : ,"supportsVirtualMachine" true
 : ,"templateName" ""
 : ,"type" "stateful"
 :0,"version"
 :[]"virtualizedImages"
}

The field contains the current version of the database entry andversion
does reflect the version of the operating system. See fornot Modify Image
more information.

3.3.2 Creating Images
The HTTP POST method is used to submit .Images

Quick Reference

POST http://localhost/mws/rest/images

3.3.2.1 Create Single Image

URLs and Parameters

POST http://localhost/mws/rest/images

See for available URL parameters.Global URL Parameters

Request Body

Three fields are required to submit an image: , , and . Each image mustname hypervisor osType
also support provisioning to either a physical machine or a virtual machine by using the

 or fields.supportsPhysicalMachine supportsVirtualMachine

37

The field must contain only letters, digits, periods, dashes, andname
underscores.

The array of virtualized images are themselves objects that contain image IDs or names. For
more information on available fields and types, see the .Image API

The following is an example of the most basic image that can be created:

POST http://localhost/mws/rest/images

{
 : ,"name" "centos5-stateful"
 : ,"osType" "linux"
 : ,"hypervisor" false
 :"supportsVirtualMachine" true
}

Note that this example does not provide any information for a provisioning manager (such as
xCAT) to actually provision the machine. In order to provide this, you must add an entry to the

 field that contains provisioning manager-specific information. Each key in theextensions
extensions field corresponds to the provisioning manager, and certain properties are required
based on this key. For example, the xCAT extension key must be named and must containxcat
certain fields. These extension keys are documented in the . See the followingImage API
examples of creating images with xCAT-specific provisioning information below.

Sample Response

If the request was successful, the response body is the new image that was created exactly as
shown in . On failure, the response is an error message.Get Single Image

Samples

The field only accepts input when the image is a hypervisor and expects anvirtualizedImages
array of image IDs names, as shown in the following example:or

Example payload of hypervisor with 2 vms

{
 : ,"hypervisor" true
 : ,"name" "esx5-stateful"
 : ,"osType" "linux"
 : ,"supportsPhysicalMachine" true
 : ,"type" "stateful"
 : ["virtualizedImages"
 { : },"id" "4fa197e68ca30fc605dd1cf0"
 { : }"name" "centos5-stateful"
]
}

The following example shows how to create an image that utilizes a cloned template for a virtual
machine. (Note that the must be set to in order to set the type linkedclone templateName
field.)

38

VM Utilizing a Cloned Template

{
 : ,"active" true
 : ,"hypervisor" false
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"type" "linkedclone"
 : ,"supportsVirtualMachine" true
 :"templateName" "centos5-compute"
}

The following are samples of a virtual machine and a hypervisor image that can be provisioned
with xCAT:

xCAT Virtual Machine Image

{
 : ,"active" true
 : [],"features"
 : ,"hypervisor" false
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"type" "stateful"
 : ,"supportsVirtualMachine" true
 : { "extensions"
 : { "xcat"
 : ,"os" "centos"
 : ,"architecture" "x86_64"
 : "profile" "compute"
 }
 }
}

xCAT Hypervisor Image

{
 : ,"active" true
 : [],"features"
 : ,"hypervisor" true
 : ,"name" "esxi5-base-stateless"
 : ,"osType" "linux"
 : ["virtualizedImages"
 { : }"name" "centos5-compute-stateless"
],
 : ,"type" "stateless"
 : ,"supportsPhysicalMachine" true
 : { "extensions"
 : { "xcat"
 : ,"os" "esxi5"
 : ,"architecture" "x86_64"
 : ,"profile" "base"
 : ,"hvType" "esx"
 : ,"hvGroupName" "esx5hv"
 : "vmGroupName" "esx5vm"
 }
 }
}

3.3.3 Modifying Images
The HTTP PUT method is used to modify .Images

Quick Reference

PUT http://localhost/mws/rest/images/<id>
PUT http://localhost/mws/rest/images/<name>

39

3.3.3.1 Modify Single Image

URLs and Parameters

PUT http://localhost/mws/rest/image/<id>
PUT http://localhost/mws/rest/image/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specifyid name
both.
The field must contain only letters, digits, periods, dashes, andname
underscores.

Example Request

PUT http://locahost/mws/rest/image/centos5-stateful

{
 : ,"name" "centos5-stateful"
 : ,"type" "stateful"
 : ,"hypervisor" false
 : ,"osType" "linux"
 : []"virtualizedImages"
}

The field contains the current version of the database entry and does version
 reflect the version of the operating system. This field cannot be updatednot

directly. However, if is included in the modify request, it will beversion
used to verify that another client did not update the object in between the
time the data was retrieved and the modify request was delivered.

Sample Response

If the request was successful, the response body is the modified image as shown in Get Single
. On failure, the response is an error message.Image

3.3.4 Deleting Images
The HTTP DELETE method is used to delete .Images

40

Quick Reference

DELETE http://localhost/mws/rest/images/<id>
DELETE http://localhost/mws/rest/images/<name>

3.3.4.1 Delete Single Image

URLs and Parameters

DELETE http://localhost/mws/rest/image/<id>
DELETE http://localhost/mws/rest/image/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{}

3.4 Jobs
This section describes behavior of the object in Moab Web Services. It contains the URLs,Job
payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the object.Job API Job
It also contains details regarding which fields are valid during PUT and
POST actions.

Supported Methods

41

Resource GET PUT POST DELETE

/rest/jobs Get all jobs Submit new job

/rest/jobs/active Get all active jobs

/rest/jobs/complete Get all complete jobs

/rest/jobs/id Get specified job Modify job Cancel job

/rest/jobs/active/id Get specified active job

/rest/jobs/complete/id Get specified complete job

3.4.1 Getting Job Information
The HTTP GET method is used to retrieve information. Queries for all objects and a singleJob
object are available.

Quick Reference

GET http://localhost/mws/rest/jobs/<id>

3.4.1.1 Get All Jobs

URLs and Parameters

GET http://localhost/mws/rest/jobs

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "..."
 …
 }]
}

Samples

42

GET http://localhost/mws/rest/jobs?fields=id,state,flags

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"id" "job.1"
 : ,"state" "IDLE"
 : []"flags" "PREEMPTABLE"
 },
 {
 : ,"id" "job.2"
 : ,"state" "RUNNING"
 : []"flags"
 },
 {
 : ,"id" "job.3"
 : ,"state" "REMOVED"
 : ["flags"
 ,"PREEMPTABLE"
 "RESTARTABLE"
]
 }
]
}

Known Issues

Some jobs are not returned if is set in the DisplayFlags UseBlocking moab.cfg
file.

3.4.1.2 Get All Active Jobs

URLs and Parameters

GET http://localhost/mws/rest/jobs/active

See for available URL parameters.Global URL Parameters

Sample Response

Same as .Get All

3.4.1.3 Get All Complete Jobs

URLs and Parameters

GET http://localhost/mws/rest/jobs/complete

See for available URL parameters.Global URL Parameters

Sample Response

Same as .Get All

43

Known Issues

This query can take a long time and slow down the Moab Workload Manager, especially on
systems with many completed jobs. Avoid this query if possible.

3.4.1.4 Get Single Job

URLs and Parameters

GET http://localhost/mws/rest/jobs/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"account" "account"
 : 150,"activeDuration"
 : [{ : }],"allocatedNodes" "id" "node01"
 : [{ : }],"allocatedVMs" "id" "vm1"
 : {"blockReason"
 : ,"message" "Check valid user"
 : "type" "BADUSER"
 },
 : 5,"bypass"
 : ,"commandFile" "/tmp/test.sh"
 : ,"commandLineArguments" "-x -v"
 : 0,"completionCode"
 : ,"completionDate" "2011-11-08 13:18:47 MST"
 : 1.5,"dedicatedProcessorSeconds"
 : ,"destinationRmJobId" "1000011"
 : ,"earliestStartDate" "2011-11-08 13:18:47 MST"
 : ,"earliestStartDateRequested" "2011-11-08 13:18:47 MST"
 : [],"effectivePartitionAccessList" "ALL"
 : 600,"effectiveQueueDuration"
 : [],"emailNotifyTypes" "END"
 : [],"emailNotifyUsers" "user@domain.com"
 : { : },"environmentVariables" "var1" "val1"
 : ,"expectedState" "IDLE"
 : [],"flags" "RESTARTABLE"
 : [],"genericAttributes" "attr1"
 : ,"group" "group"
 : [],"holds" "USER"
 : [],"hosts" "host1"
 : ,"id" "Moab.1"
 : ,"initialWorkingDirectory" "/tmp"
 : ,"latestCompletedDateRequested" "2011-11-08 13:18:47 MST"
 : ,"masterHost" "masterHost"
 : 1024,"memoryRequested"
 : [{"messages"
 : ,"creationTime" null
 : ,"expireTime" null
 : 0,"index"
 : ,"message" "Message one"
 : 0,"messageCount"
 : ,"author" "moab"
 : 0"priority"
 }],
 : ,"name" "myJob"
 : ,"os" "linux"
 : [],"partitionAccessList" "ALL"
 : ,"qos" "QOS1"
 : ,"qosRequested" "QOS1"

44

 : ,"queue" "BATCH"
 : ,"queueStatus" "ACTIVE"
 : 300,"durationRequested"
 : [{"requirements"
 : [{ : }],"allocatedNodes" "id" "node01"
 : ,"allocatedPartition" ""
 : {"genericResources"
 : 10,"resource1"
 : 30"resource2"
 },
 : ,"nodeAccessPolicy" null
 : [],"preferredNodeFeatures"
 : ,"requiredArchitecture" ""
 : ,"requiredClass" ""
 : 0,"requiredDiskPerTask"
 : 0,"requiredMemoryPerTask"
 : ,"requiredNetwork" ""
 : 0,"requiredNodeCountMinimum"
 : 0,"requiredNodeDisk"
 : [],"requiredNodeFeatures"
 : 0,"requiredNodeMemory"
 : 0,"requiredNodeProcessors"
 : 0,"requiredNodeSwap"
 : ,"requiredPartition" ""
 : 4,"requiredProcessorCountMinimum"
 : 0,"requiredProcessorsPerTask"
 : 0,"requiredSwapPerTask"
 : 0"tasksPerNode"
 }],
 : ,"reservationRequested" "rsv.1"
 : ,"reservationStartDate" "2011-11-08 13:18:47 MST"
 : ,"rmExtension" "x=PROC=4"
 : ,"rmName" "torque"
 : ,"rmStandardErrorFilePath" "/tmp/error.out"
 : ,"rmStandardInputFilePath" "/tmp/input.in"
 : ,"rmStandardOutputFilePath" "/tmp/output.out"
 : 5,"runPriority"
 : ,"sourceRmJobId" "1000011"
 : ,"standardErrorFilePath" "/tmp/job.error.out"
 : ,"standardOutputFilePath" "/tmp/job.output.out"
 : 1,"startCount"
 : ,"startDate" "2011-11-08 13:18:47 MST"
 : 2,"startPriority"
 : ,"state" "COMPLETED"
 : ,"submitDate" "2011-11-08 13:18:47 MST"
 : ,"submitHost" "admin-node"
 : 60,"suspendDuration"
 : 6,"systemPriority"
 : 5,"userPriority"
 : ,"user" "saadmin"
 : { : },"variables" "var1" "val1"

45

 : [{ : }],"virtualContainers" "id" "vc1"
 : "vmUsagePolicy" "CREATEVM"
}

3.4.1.5 Get Single Active Job

URLs and Parameters

GET http://localhost/mws/rest/jobs/active/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

Same as .Get Single

3.4.1.6 Get Single Active Job

URLs and Parameters

GET http://localhost/mws/rest/jobs/complete/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

Same as .Get Single

3.4.2 Submitting Jobs
The HTTP POST method is used to submit .Jobs

Quick Reference

POST http://localhost/mws/rest/jobs[?proxy-user=]<username>

46

Restrictions

The user given in must have read access to the file given in .user commandFile

No more than one virtual container can be specified in the request. The virtual container
must already exist.
The and properties are used to submit a job as the specified user belonging touser group
the specified group.
Job have the following restrictions:variables

variable names cannot contain equals (=), semicolon (;), colon (:), plus (+),
question mark (?), caret (^), backslash (\), or white space.
variable values cannot contain semicolon (;), colon (:), plus (+), or caret (^).

When submitting jobs, the only supported hold type is .USER

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.4.2.1 Submit Job with Host List

URLs and Parameters

POST http://localhost/mws/rest/jobs[?proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

To submit a job with a specified host list, only two fields are required: and commandFile
.hosts

The payload below shows all the fields that are available during job submission.

47

JSON Payload (specified host list)

{
 : ,"account" "project name"
 : ,"commandFile" "/tmp/myscript.sh"
 : ,"commandLineArguments" "-x"
 : ,"earliestStartDateRequested" "2011-09-26 16:28:20 MDT"
 : [],"emailNotifyTypes" "END"
 : [],"emailNotifyUsers" "user@domain.com"
 : ,"environmentRequested" true
 : {"environmentVariables"
 : ,"SHELL" "/bin/bash"
 : "LC_ALL" "en_US.utf8"
 },
 : ["flags"
 ,"SUSPENDABLE"
 "BESTEFFORT"
],
 : ,"group" "wheel"
 : [],"holds" "USER"
 : ["hosts"
 ,"node2"
 "node3"
],
 : ,"initialWorkingDirectory" "/tmp"
 : ,"name" "job name"
 : ,"os" "Ubuntu"
 : ,"qosRequested" "highprio"
 : ,"queue" "priority"
 : 3600,"durationRequested"
 : [{"requirements"
 : {"genericResources"
 : 10,"resource1"
 : 30"resource2"
 },
 : ,"nodeAccessPolicy" "SHARED"
 : ,"requiredArchitecture" "x86_64"
 : 500,"requiredDiskPerTask"
 : 1024,"requiredMemoryPerTask"
 : [],"requiredNodeFeatures" "bluray"
 : ,"requiredPartition" "cs"
 : 3,"requiredProcessorsPerTask"
 : 600,"requiredSwapPerTask"
 : 8"tasksPerNode"
 }],
 : ,"reservationRequested" "grid.3"
 : ,"standardErrorFilePath" "/home/jacob/err"
 : ,"standardOutputFilePath" "/home/jacob/out"
 : ,"submitHost" "admin-node"
 : ["templateList"
 ,"template1"
 "template2"
],
 : ,"user" "jacob"
 : 25,"userPriority"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 },
 : [{ : }],"virtualContainers" "id" "vc1"
 : "vmUsagePolicy" "REQUIREPM"
}

Sample Response

The response of this task is one of three possibilities:

An object with a single property containing a list of error messages on failuremessages

{ :[]}"messages" "Could not create job - invalid requirements"

An object with an property containing the ID of the newly created jobid

48

{ : }"id" "Moab.1"

An object with an property and a list containing the ID of theid virtualContainers
newly created virtual container

{ : , :[{ : }]}"id" "Moab.1" "virtualContainers" "id" "vc1"

The virtual container will only be reported when a virtual container hasnew
been created by Moab for the job.

3.4.2.2 Submit Job with Node Count

URLs and Parameters

POST http://localhost/mws/rest/jobs[?proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

To submit a job with a specified node count, only two fields are required: and commandFile
 (in the array).requiredProcessorCountMinimum requirements

The payload below shows all the fields that are available during job submission.

49

JSON Payload (specified node count)

{
 : ,"account" "project name"
 : ,"commandFile" "/tmp/myscript.sh"
 : ,"commandLineArguments" "-x"
 : ,"earliestStartDateRequested" "2011-09-26 16:28:20 MDT"
 : [],"emailNotifyTypes" "END"
 : [],"emailNotifyUsers" "user@domain.com"
 : ,"environmentRequested" true
 : {"environmentVariables"
 : ,"SHELL" "/bin/bash"
 : "LC_ALL" "en_US.utf8"
 },
 : ["flags"
 ,"SUSPENDABLE"
 "BESTEFFORT"
],
 : ,"group" "wheel"
 : [],"holds" "USER"
 : ,"initialWorkingDirectory" "/tmp"
 : ,"name" "job name"
 : ,"os" "Ubuntu"
 : ,"qosRequested" "highprio"
 : ,"queue" "priority"
 : 3600,"durationRequested"
 : [{"requirements"
 : {"genericResources"
 : 10,"resource1"
 : 30"resource2"
 },
 : ,"nodeAccessPolicy" "SHARED"
 : ,"requiredArchitecture" "x86_64"
 : 500,"requiredDiskPerTask"
 : 1024,"requiredMemoryPerTask"
 : [],"requiredNodeFeatures" "bluray"
 : ,"requiredPartition" "cs"
 : 4,"requiredProcessorCountMinimum"
 : 3,"requiredProcessorsPerTask"
 : 600,"requiredSwapPerTask"
 : 8"tasksPerNode"
 }],
 : ,"reservationRequested" "grid.3"
 : ,"standardErrorFilePath" "/home/jacob/err"
 : ,"standardOutputFilePath" "/home/jacob/out"
 : ,"submitHost" "admin-node"
 : ["templateList"
 ,"template1"
 "template2"
],
 : ,"user" "jacob"
 : 25,"userPriority"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 },
 : [{ : }],"virtualContainers" "id" "vc1"
 : "vmUsagePolicy" "REQUIREPM"
}

Sample Response

The response of this task is the same as submitting a job with a .host list

3.4.2.3 Examples of Job Submission
This section includes some sample job submission requests.

Submit job to run on node2 and node3

50

POST http://localhost/mws/rest/jobs

{
 : ,"commandFile" "/tmp/test.sh"
 : ,"group" "adaptive"
 : [,]"hosts" "node2" "node3"
 : ,"initialWorkingDirectory" "/tmp"
 : ,"user" "adaptive"
}

Submit job that requires 20 processors

POST http://localhost/mws/rest/jobs

{
 : ,"commandFile" "/tmp/test.sh"
 : ,"group" "adaptive"
 : ,"initialWorkingDirectory" "/tmp"
 : [{ : }]"requirements" "requiredProcessorCountMinimum" "20"
 : ,"user" "adaptive"
}

Submit job to run after a certain time

POST http://localhost/mws/rest/jobs

{
 : ,"commandFile" "/tmp/test.sh"
 : ,"earliestStartDateRequested" "2012-08-26 16:28:20 MDT"
 : ,"group" "adaptive"
 : ,"initialWorkingDirectory" "/tmp"
 : [{ : }]"requirements" "requiredProcessorCountMinimum" "20"
 : ,"user" "adaptive"
}

Submit job based on examplemsub

Given this command:msub

msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100 script2.pbs.cmd

Here is an equivalent MWS request:

POST http://localhost/mws/rest/jobs

{
 : ,"user" "adaptive"
 : ,"group" "adaptive"
 : ,"initialWorkingDirectory" "/home/adaptive"
 : ,"commandFile" "/home/adaptive/script2.pbs.cmd"
 : [{"requirements"
 : 6,"requiredProcessorCountMinimum"
 : 2,"tasksPerNode"
 : 100"requiredMemoryPerTask"
 }],
 : 3600"durationRequested"
}

51

To emulate what does, make an absolute path,msub commandFile
and add , , and .user group initialWorkingDirectory
As shown above, is equivalent to setting nodes=3:ppn=2

 to 6 and requiredProcessorCountMinimum tasksPerNode
to 2.

3.4.3 Modifying Jobs
The HTTP PUT method is used to modify .Jobs

Quick Reference

PUT http://localhost/mws/rest/jobs/ [/][?proxy-user=]<id> <modifyAction> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.4.3.1 Modify Job Attributes

URLs and Parameters

PUT http://localhost/mws/rest/jobs/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

52

JSON Payload

{
 : ,"account" "engineering"
 : ,"earliestStartDateRequested" "2011-08-24 15:02:00"
 : ["flags"
 ,"RESTARTABLE"
 "SUSPENDABLE"
],
 : [],"holds" "USER"
 : ["messages"
 { : },"message" "First message"
 { : }"message" "Second message"
],
 : ,"name" "EngineeringJob"
 : ,"qosRequested" "NORMAL"
 : ,"queue" "BATCH"
 : 600,"durationRequested"
 : [{ : }],"requirements" "requiredPartition" "msm"
 : ,"reservationRequested" "rsv.1"
 : ,"trigger" "triggerString"
 : 10,"userPriority"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Sample Response

These messages may not match the messages returned from Moab exactly,
but are given as an example of the structure of the response.

Not all messages are shown for the above payload.

JSON Response

{
 :["messages"
 ,"Account modified successfully"
 ,"Messages modified successfully"
 "Variables modified successfully"
]
}

Restrictions

Old messages are not removed from jobs; only new messages are added.
Job have the restrictions documented in variables Submitting Jobs

3.4.3.2 Perform Actions on Job

URLs and Parameters

PUT http://localhost/mws/rest/jobs/ / [?proxy-user=]<id> <modifyAction> <username>

53

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

modifyAction Yes String cancel Attempts to cancel the job.

 checkpoint
Attempts to checkpoint the job. Note that the OS
must support checkpointing for this to work.

 execute Executes the job if possible.

 hold
Attempts to hold the job using the holds set in the
payload.

 requeue Attempts to requeue the job.

 resume Attemps to resume the job.

 suspend Attempts to suspend the job.

 unhold Attempts to release the holds set in the payload.

proxy-user No String - Perform the action as this user.

Performing a cancel function on a job is equivalent to deleting a job.

See for available URL parameters.Global URL Parameters

Payload

Payloads are only required for holding or unholding jobs. All other actions do not require
payloads of any kind.

JSON Payload to Add Holds to a Job

{
 : []"holds" "USER"
}

JSON Payload to Remove Holds from a Job

{
 : []"holds" "USER"
}

If no holds are specified when unholding a job, all holds will be removed.
This is equivalent to specifying as a list with a single element of holds ALL
.

Sample Response

54

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{
 :["messages"
 "Job modified successfully"
]
}

3.4.4 Deleting (Canceling) Jobs
The HTTP DELETE method is used to cancel .Jobs

Quick Reference

DELETE http://localhost/mws/rest/jobs/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.4.4.1 Cancel Job

URLs and Parameters

DELETE http://localhost/mws/rest/jobs/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

55

JSON Response for successful DELETE

{}

Additional information about the DELETE can be found in the HTTP
response header .X-MWS-Message

3.5 Job Templates
This section describes behavior of the object in Moab Web Services. It containsJob Template
the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Job Template API
 object. It also contains details regarding which fields are validJob Template

during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/job-templates Get all job templates

/rest/job-templates/id Get specified job template

3.5.1 Getting Job Templates
The HTTP GET method is used to retrieve information. Queries for all objectsJob Template
and a single object are available.

Quick Reference

GET http://localhost/mws/rest/job-templates/<id>

3.5.1.1 Get All Job Templates

URLs and Parameters

GET http://localhost/mws/rest/job-templates

See for available URL parameters.Global URL Parameters

Sample Response

56

GET http://localhost/mws/rest/job-templates?fields=id

{
 : 14,"totalCount"
 : 14,"resultCount"
 : ["results"
 { : },"id" "DEFAULT"
 { : },"id" "genericVM"
 { : },"id" "genericVM-setup"
 { : },"id" "genericVM-destroy"
 { : },"id" "genericVM-migrate"
 { : },"id" "genericPM"
 { : },"id" "genericPM-setup"
 { : },"id" "genericPM-destroy"
 { : },"id" "OSStorage"
 { : },"id" "OSStorage-setup"
 { : },"id" "OSStorage-destroy"
 { : },"id" "extraStorage"
 { : },"id" "extraStorage-setup"
 { : }"id" "extraStorage-destroy"
]
}

3.5.1.2 Get Single Job Template

URLs and Parameters

GET http://localhost/mws/rest/job-templates/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

57

JSON Response

{
 : ,"account" "account"
 : ,"args" "arg1 arg2"
 : ,"commandFile" "/tmp/script"
 : ,"description" "description"
 : ,"genericSystemJob" true
 : ,"id" "genericVM"
 : ,"inheritResources" false
 : [{"jobDependencies"
 : ,"name" "genericVM-setup"
 : "type" "JOBSUCCESSFULCOMPLETE"
 }],
 : [],"jobFlags" "VMTRACKING"
 : [],"jobTemplateFlags" "SELECT"
 : [{"jobTemplateRequirements"
 : ,"architecture" "x86_64"
 : 500,"diskRequirement"
 : { : 3},"genericResources" "tape"
 : ,"nodeAccessPolicy" "SINGLEJOB"
 : ,"operatingSystem" "Ubuntu 10.04.3"
 : 200,"requiredDiskPerTask"
 : [],"requiredFeatures" "dvd"
 : 1024,"requiredMemoryPerTask"
 : 2,"requiredProcessorsPerTask"
 : 512,"requiredSwapPerTask"
 : 4"taskCount"
 }],
 : 20,"priority"
 : ,"qos" "qos"
 : ,"queue" "queue"
 : 600,"durationRequested"
 : ,"select" true
 : ,"trigger" null
 : 0,"version"
 : "vmUsagePolicy" "REQUIREPM"
}

3.6 Nodes
This section describes behavior of the object in Moab Web Services. It contains the URLs,Node
payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Node API Node
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/nodes Get all nodes

/rest/nodes/id Get specified node Modify node

3.6.1 Getting Nodes
The HTTP GET method is used to retrieve information. Queries for all objects and a singleNode
object are available.

Quick Reference

58

GET http://localhost/mws/rest/nodes/<id>

3.6.1.1 Get All Nodes

URLs and Parameters

GET http://localhost/mws/rest/nodes

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/nodes?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "node1"
 { : },"id" "node2"
 { : }"id" "node3"
]
}

3.6.1.2 Get Single Node

URLs and Parameters

GET http://localhost/mws/rest/nodes/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

59

{
 : ,"accessPolicy" null
 : [],"aliases"
 : ,"architecture" ""
 : [],"availableClasses"
 : -1,"availableDisk"
 : ,"availableEndDate" null
 : {},"availableGenericResources"
 : -1,"availableMemory"
 : -1,"availableProcessors"
 : ,"availableStartDate" null
 : -1,"availableSwap"
 : ,"blockReason" ""
 : ,"comments" ""
 : [],"configuredClasses"
 : 0,"cpuLoad"
 : ,"dynamic" false
 : 0,"externalLoad"
 : [],"features"
 : ["flags"
 ,"VM_CREATE_ENABLED"
 "RM_DETECTED"
],
 : [],"genericEvents"
 : {},"genericMetrics"
 : {},"genericResources"
 : ,"hypervisorType" ""
 : 0,"iOLoad"
 : ,"id" ""
 : -1,"index"
 : [{ : }],"jobs" "id" "Moab.1"
 : ,"lastStateUpdateDate" null
 : ,"lastUpdateDate" null
 : 0,"maxIOIn"
 : 0,"maxIOLoad"
 : 0,"maxIOOut"
 : 0,"maxJob"
 : 0,"maxJobPerUser"
 : 0,"maxLoad"
 : 0,"maxPEPerJob"
 : 0,"maxPageIn"
 : 0,"maxPageOut"
 : 0,"maxProc"
 : 0,"maxProcPerClass"
 : [],"messages"
 : ,"network" ""
 : ,"networkAddress" ""
 : 0,"networkLoad"
 : ,"nextOS" ""
 : [],"operations"
 : ,"os" ""
 : [],"osList"
 : ,"overcommit" null
 : ,"partition" ""
 : ,"power" null
 : ,"powerPolicy" null
 : ,"powerSelected" null
 : 0,"priority"
 : ,"priorityFunction" ""
 : 0,"procSpeed"
 : ,"profilingEnabled" false
 : 0,"rack"
 : 0,"reservationCount"
 : [],"reservations"
 : ,"rmAccessList" ""
 : 1,"size"
 : 0,"slot"
 : 1,"speed"
 : 1,"speedWeight"
 : ,"state" null
 : ,"substate" ""
 : -1,"taskCount"
 : 0,"totalActiveTime"
 : 0,"totalAvailableTime"
 : -1,"totalDisk"
 : -1,"totalMemory"
 : -1,"totalProcessors"
 : 0,"totalStatsTime"
 : -1,"totalSwap"
 : 0,"totalUpTime"
 : ,"type" ""
 : {},"variables"
 : 0,"version"
 : [{ : }],"virtualMachines" "id" "vm1"
 : []"vmOsList"
}

60

3.6.2 Modifying Nodes
The HTTP PUT method is used to modify .Nodes

Quick Reference

PUT http://localhost/mws/rest/nodes/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.6.2.1 Modify Node

URLs and Parameters

PUT http://localhost/mws/rest/nodes/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

61

Sample JSON Payload to Modify a Node

{
 : [{"genericEvents"
 : ,"name" "event1"
 : "message" "Sample message"
 }],
 : {"genericMetrics"
 : 3,"metric1"
 : 5"metric2"
 },
 : ["messages"
 ,"message1"
 "message2"
],
 : ,"os" "linux"
 : ,"partition" "local"
 : ,"power" "off|on"
 : ,"state" "Busy"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :["messages"
 ,"Successfully modified os to 'linux'"
 "Successfully powered node off"
]}

3.7 Pending Actions
This section describes behavior of the object in Moab Web Services. It containsPending Action
the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Pending Action API
 object. It also contains details regarding which fields arePending Action

valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/pending-actions Get all pending actions

3.7.1 Getting Pending Actions
The HTTP GET method is used to retrieve information.Pending Action

62

Quick Reference

GET http://localhost/mws/rest/pending-actions

3.7.1.1 Get All Pending Actions

URLs and Parameters

GET http://localhost/mws/rest/pending-actions

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/pending-actions

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"failureDetails" ""
 : [],"hosts" "hv3"
 : ,"id" "vmcreate-27"
 : 3600,"maxDurationInSeconds"
 : ,"migrationDestination" ""
 : ,"migrationSource" ""
 : ,"motivation" "requested by root"
 : ,"pendingActionState" "RUNNING"
 : ,"pendingActionType" "VMCREATE"
 : ,"requester" "root"
 : ,"serviceId" "Rhel55Vm.200"
 : ,"startTime" "2011-11-15 21:57:55 MST"
 : ,"substate" "installing"
 : ,"targetOS" ""
 : ,"topLevelServiceId" "Lamp.132"
 : "vmId" "vm8"
 }]
}

Generic vs Non-Generic Types

If generic job templates are used in Moab, MWS may be configured to translate pending actions
with the generic type to the proper type such as . This is done in the configurationVMCREATE
file. The provides the default mappings for this feature, as well as an exampleQuickstart Guide
of adding a custom mapping from a custom template name to the correct type.

The default mappings are shown in the table below. The available pending action types may be
seen on the page.PendingActionType API

63

Template Name Mapped Type

genericVM-setup VMCREATE

genericVM-migrate VMMIGRATE

genericVM-destroy VMDESTROY

OSStorage-setup VMSTORAGE

OSStorage-destroy VMSTORAGEDESTROY

extraStorage-setup STORAGE

extraStorage-destroy STORAGEDESTROY

genericPM-setup OSPROVISION

When generic mappings are used, MWS will match the first template
mapping that the pending action ID ends with. For example, an ID of

 will map the type to .Moab.1.genericVM-setup VMCREATE

To enable mapping for a custom template name such as , simply add themyCustomVM-setup
following line to the MWS configuration file. The value of the pending action type is case
insensitive.

mws.pendingActions.mappings[] = "myCustomVM-setup" "vmcreate"

MWS also provides the ability to enable or disable the display of generic pending actions (or
those pending actions that are not mapped). This behavior is controlled by the

 setting as shown below. A value willmws.pendingActions.displayGeneric false
prevent generic pending actions from being displayed, while a value will display alltrue
pending actions. By default this value is .true

mws.pendingActions.displayGeneric = false

3.8 Plugins
This section describes behavior of the object in Moab Web Services. It contains thePlugin
URLs, payloads, and responses delivered to and from Moab Web Services.

The page contains the type and description of all fields in the Plugin API
 object. It also contains details regarding which fields are valid duringPlugin

PUT and POST actions.

Supported Methods

64

Resource GET PUT POST DELETE

/rest/plugins Get all plugins Create new plugin

/rest/plugins/id Get specified plugin Modify plugin Delete plugin

3.8.1 Getting Plugins
The HTTP GET method is used to retrieve information. Queries for all objects and aPlugin
single object are available.

Quick Reference

GET http://localhost/mws/rest/plugins/<id>

3.8.1.1 Get All Plugins

URLs and Parameters

GET http://localhost/mws/rest/plugins

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/plugins?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "plugin1"
 { : },"id" "plugin2"
 { : }"id" "plugin3"
]
}

The plugin objects contain two additional fields that are not in the API
documentation: nextPollDate and lastPollDate. These represent that next and
last date that polling will occur or has occurred. The values may also be null
if polling has not occurred or if the plugin is in the state.STOPPED

3.8.1.2 Get Single Plugin

URLs and Parameters

GET http://localhost/mws/rest/plugins/<id>

65

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"id" "plugin1"
 : ,"pluginType" "Native"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 },
 : ,"state" "STARTED"
 : ,"nextPollDate" "2011-12-02 17:28:52 MST"
 :"lastPollDate" "2011-12-02 17:28:22 MST"
}

The plugin object contains two additional fields that are not in the API
documentation: nextPollDate and lastPollDate. These represent the next and
last date that polling will occur or has occurred. The values may also be null
if polling has not occurred or if the plugin is in the state.STOPPED

3.8.2 Creating Plugins
The HTTP POST method is used to create .Plugins

Quick Reference

POST http://localhost/mws/rest/plugins

3.8.2.1 Create Plugin

URLs and Parameters

POST http://localhost/mws/rest/plugins

See for available URL parameters.Global URL Parameters

Payload

When creating a plugin, the and fields are required. The payload below showsid pluginType
all fields that are available when creating a Plugin, along with some sample values.

66

JSON Payload

{
 : ,"id" "plugin1"
 : ,"pluginType" "Native"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 }
}

If a is specified for the new plugin, it will be ignored.state

Sample Response

JSON Response for successful POST

{ : }"id" "plugin1"

Restrictions

While it is possible to create a plugin with arbitrary nested configuration, such as:

…
:{"config"

 :{"nestedObject"
 : ,"property1" "value1"
 :"property2" "value2"
 },
 listItem1 listItem2"]"nestedList:[" ", "
}

It is recommended if using the to manage plugins as it does not support editingnot user interface
or viewing any configuration data other than strings.

3.8.3 Modifying Plugins
The HTTP PUT method is used to modify .Plugins

Quick Reference

PUT http://localhost/mws/rest/plugins/<id>

3.8.3.1 Modify Plugin

URLs and Parameters

PUT http://localhost/mws/rest/plugins/<id>

67

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when modifying a Plugin, along with
some sample values.

JSON Payload for Plugin Modification

{
 : ,"state" "STARTED"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 },
 :"state" "STARTED"
}

Sample Response

JSON Response

{ :[,]}"messages" "Plugin plugin1 updated" "Started Plugin 'plugin1'"

3.8.4 Deleting Plugins
The HTTP DELETE method is used to delete .Plugins

Quick Reference

DELETE http://localhost/mws/rest/plugins/<id>

3.8.4.1 Delete Plugin

URLs and Parameters

DELETE http://localhost/mws/rest/plugins/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

68

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

Additional information about a successful DELETE can be found in the
HTTP response header .X-MWS-Message

JSON Response for an unsuccessful DELETE

{ :[, "messages" "Plugin plugin1 could not be deleted" "Error message describing the
]}problem"

3.9 Plugin Types
This section describes behavior of the object in Moab Web Services. It contains thePlugin Type
URLs, payloads, and responses delivered to and from Moab Web Services.

The page contains the type and description of all fields inPlugin Type API
the object. It also contains details regarding which fields arePlugin Type
valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/plugin-types Get all plugin types Create or update plugin type

/rest/plugin-types/id Get specified plugin type

3.9.1 Getting Plugin Types
The HTTP GET method is used to retrieve information. Queries for all objects andPlugin Type
a single object are available.

Quick Reference

GET http://localhost/mws/rest/plugin-types/<id>

3.9.1.1 Get All Plugin Types

URLs and Parameters

69

GET http://localhost/mws/rest/plugin-types

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/plugin-types?fields=id

{
 : 2,"totalCount"
 : 2,"resultCount"
 : ["results"
 { : },"id" "MSM"
 { : }"id" "Native"
]
}

3.9.1.2 Get Single Plugin Type

URLs and Parameters

GET http://localhost/mws/rest/plugin-types/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"id" "Native"
 : ,"author" "Adaptive Computing"
 : ,"description" "Basic implementation of a plugin"native
 :["instances"
 { : }"id" "plugin1"
]
}

3.9.2 Creating or Updating Plugin Types
The HTTP POST method is used to create or update . The Plugin Types Content-Type
HTTP header is used to determine if the request contains a single class file as plaintext or the
binary data of a JAR file. Each request is explained in the following sections.

Quick Reference

70

PUT http://localhost/mws/rest/plugin-types

3.9.2.1 Update Plugin Type (File)

URLs and Parameters

PUT http://localhost/mws/rest/plugin-types

See for available URL parameters.Global URL Parameters

Payload

This function is idempotent, meaning it will create the Plugin Type if it does not exist or update
it if it does. The payload is the actual contents of the class file to upload. This web service is an
exception to most as it requires a content type other than JSON. The preferred content type to
use for this request is .text/plain

Plaintext upload

package test

 com.ace.mws.plugins.*import
 com.ace.mws.plugins.exceptions.*import

class UploadPlugin {
 author = static "Adaptive Computing"
 description = static "A sample plugin class"
 idString

 void verifyConfiguration() InvalidPluginConfigurationException {public throws
 def myConfig = config
 def errors = []
 (!myConfig.arbitraryKey)if
 errors << "Missing arbitraryKey!"
 (errors)if
 InvalidPluginConfigurationException(throw new "Invalid plugin ${id}

, errors)configuration"
 }

 def customService(Map params) {public
 paramsreturn
 }
}

If using the library to perform plugin type uploading, the equivalent ofcurl
the command-line option must be used to send the--data-binary
payload. Otherwise compilation errors may be encountered when uploading
the plugin type.

Sample Response

The response of this task is the same as the task. The reason that the return ofget all plugin types
this task is a list is to accommodate the possibility of uploading multiple plugin types in a single
JAR file as explained in the next section.

3.9.2.2 Update Plugin Type (JAR)

http://curl.haxx.se/

71

URLs and Parameters

PUT http://localhost/mws/rest/plugin-types

See for available URL parameters.Global URL Parameters

Payload

This function is idempotent, meaning it will create the Plugin Types if they do not exist or
update them if they do. The payload is the binary contents of the JAR file to upload. This web
service is an exception to most as it a content type of .requires application/x-jar

If the content type is not used in the request, it willapplication/x-jar
be interpreted as a single class file, resulting in a failure to compile.

If using the library to perform plugin type uploading, the equivalent ofcurl
the command-line option must be used to send the--data-binary
payload. Otherwise compilation errors may be encountered when uploading
the plugin type.

Sample Response

The response of this task is the same as the task. Note that when using a JARget all plugin types
file, multiple plugin types may be uploaded in the same request.

3.10 Reports
This section describes behavior of the reporting framework in Moab Web Services. It contains
the URLs, payloads, and responses delivered to and from Moab Web Services.

The , , and API contains the type and description ofReport Sample Datapoint
all fields in the , , and objects. They also containsReport Sample Datapoint
details regarding which fields are valid during PUT and POST actions.

Supported Methods

http://curl.haxx.se/

72

Resource GET PUT POST DELETE

/rest/reports Get all reports Create Reports
Deleting
Reports

/rest/reports/name
Get single report with
data

/rest/reports/id
Get single report with
data

/rest/reports/name
/datapoints

Get datapoints for
report

/rest/reports/id
/datapoints

Get datapoints for
report

/rest/reports/name
/samples

Get samples for report
Create sample(s) for
report

/rest/reports/ /samplesid Get samples for report
Create sample(s) for
report

3.10.1 Getting Reports
The HTTP GET method is used to retrieve information. Queries for all reports with noReport
attached data and a single report with associated data are available.

Quick Reference

GET http://localhost/mws/rest/reports/<id>
GET http://localhost/mws/rest/reports/<name>

3.10.1.1 Get All Reports (No Data Included)

URLs and Parameters

GET http://localhost/mws/rest/reports

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "3efe5c670be86ba8560397ff"
 : "name" "cpu-util"
 …
 }]
}

73

No datapoints are returned when querying for all reports. To view the
consolidated datapoints, the API call must be used.Get Single Report

Samples

GET http://localhost/mws/rest/reports?fields=id,name

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"id" "3efe5c670be86ba8560397ff"
 : "name" "cpu-util"
 },
 {
 : ,"id" "3efe5c670be86ba856039800"
 : "name" "cpu-temp"
 },
 {
 : ,"id" "3efe5c670be86ba856039801"
 : "name" "cpu-load"
 }
]
}

3.10.1.2 Get Single Report (Includes Data)

URLs and Parameters

GET http://localhost/mws/rest/reports/<id>
GET http://localhost/mws/rest/reports/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

In the example below, the first datapoint has a data element, which means that the null
 configured for the report was not met when consolidating theminimumSampleSize

datapoint. The second datapoint contains actual data.

74

JSON Response

{
 : ,"consolidationFunction" "average"
 : 15,"datapointDuration"
 : ["datapoints"
 {
 : ,"endDate" "2011-12-02 17:28:22 MST"
 : ,"startDate" "2011-12-02 17:28:22 MST"
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : "data" null
 },
 {
 : ,"endDate" "2011-12-02 17:28:23 MST"
 : ,"startDate" "2011-12-02 17:28:37 MST"
 : ,"firstSampleDate" "2011-12-02 17:28:23 MST"
 : ,"lastSampleDate" "2011-12-02 17:28:30 MST"
 : {"data"
 : 99.89,"utilization"
 : 27.433333333333337"time"
 }
 }
],
 : ,"description" "Example of CPU utilization reporting"
 : ,"id" "3efe5c670be86ba8560397ff"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 2"reportSize"
}

3.10.1.3 Get Datapoints For Single Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /datapoints<id>
GET http://localhost/mws/rest/reports/ /datapoints<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

This function is exactly the same as requesting a with only the datapoints returned.single report
No report metadata (i.e. description, minimumSampleSize, etc.) is returned.

75

JSON Response

{
 :1,"resultCount"
 :1,"totalCount"
 :["results"
 {
 : ,"endDate" "2011-12-02 17:28:22 MST"
 : ,"startDate" "2011-12-02 17:28:22 MST"
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : "data" null
 },
 {
 : ,"endDate" "2011-12-02 17:28:37 MST"
 : ,"startDate" "2011-12-02 17:28:37 MST"
 : ,"firstSampleDate" "2011-12-02 17:28:23 MST"
 : ,"lastSampleDate" "2011-12-02 17:28:23 MST"
 : {"data"
 : 99.89,"utilization"
 : 27.433333333333337"time"
 }
 }
]
}

3.10.2 Getting Samples For Reports
The HTTP GET method is used to retrieve information.Sample

Quick Reference

GET http://localhost/mws/rest/reports/ /samples<id>
GET http://localhost/mws/rest/reports/ /samples<name>

3.10.2.1 Get Samples For Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /samples<id>
GET http://localhost/mws/rest/reports/ /samples<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

76

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : "timestamp" "2011-12-02 17:28:37 MST"
 :{"data"
 :2.3,"cpu1"
 :1.2,"cpu2"
 :0.0,"cpu3"
 :12.1"cpu4"
 },
 …
 }]
}

3.10.3 Creating Reports
The HTTP POST method is used to create . Operations are available to create reportsReports
with or without historical datapoints.

Quick Reference

POST http://localhost/mws/rest/reports

3.10.3.1 Create Report

URLs and Parameters

POST http://localhost/mws/rest/reports

See for available URL parameters.Global URL Parameters

Payload

To create a report, several fields are required as documented in the .Report API

The payload below shows all the fields that are available during report creation.

JSON Payload

{
 : ,"name" "cpu-util"
 : ,"description" "An example report on cpu utilization"
 : ,"consolidationFunction" "average"
 :15,"datapointDuration"
 :1,"minimumSampleSize"
 :2,"reportSize"
 : ,"keepSamples" true
 :["datapoints"
 {
 : ,"startDate" "2011-12-01 19:16:57 MST"
 : ,"endDate" "2011-12-01 19:16:57 MST"
 :{"data"
 :30,"time"
 :99.98"util"
 }
 }
]
}

77

Sample Response

{
 :[],"messages" "Report cpu-util created"
 : ,"id" "3efe5c670be86ba8560397ff"
 :"name" "cpu-util"
}

Samples

POST http://localhost/mws/rest/reports (Minimal report without datapoints)

{
 : ,"name" "cpu-util"
 :15,"datapointDuration"
 :2"reportSize"
}

3.10.4 Creating Samples
The HTTP POST method is used to create for Reports.Samples

Quick Reference

POST http://localhost/mws/rest/reports

3.10.4.1 Create Samples For Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /samples<id>
GET http://localhost/mws/rest/reports/ /samples<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Payload

To create samples for a report, simply send data and an optional timestamp to the URL above.

78

The payload below shows all the fields that are available during sample creation. Note that the
 field can contain arbitrary JSON.data

JSON Payload

{
 : ,"timestamp" "2011-12-01 19:16:57 MST"
 : ,"agent" "my agent"
 :{"data"
 :2.3,"cpu1"
 :1.2,"cpu2"
 :0.0,"cpu3"
 :12.1"cpu4"
 }
}

Sample Response

{ :[]}"messages" "1 sample(s) created report cpu-util"for

3.10.5 Deleting Reports
The HTTP DELETE method is used to delete .Reports

Quick Reference

DELETE http://localhost/mws/rest/reports/<id>
DELETE http://localhost/mws/rest/reports/<name>

3.10.5.1 Delete Report

URLs and Parameters

DELETE http://localhost/mws/rest/reports/<id>
DELETE http://localhost/mws/rest/reports/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

79

JSON Response

{ :[]}"messages" "Report cpu-util deleted"

3.11 Reservations
This section describes behavior of the object in Moab Web Services. It contains theReservation
URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Reservation API
 object. It also contains details regarding which fields are validReservation

during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/reservations Get all reservations
Create
reservation

/rest/reservations/
id

Get specified
reservation

Modify
reservation

Release
reservation

3.11.1 Getting Reservations
The HTTP GET method is used to retrieve information. Queries for all objects andReservation
a single object are available.

Quick Reference

GET http://localhost/mws/rest/reservations/<id>

Restrictions

Only admin or user reservations are returned with this call.

3.11.1.1 Get All Reservations

URLs and Parameters

GET http://localhost/mws/rest/reservations

See for available URL parameters.Global URL Parameters

80

Sample Response

GET http://localhost/mws/rest/reservations?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "system.1"
 { : },"id" "system.2"
 { : }"id" "system.3"
]
}

3.11.1.2 Get Single Reservation

URLs and Parameters

GET http://localhost/mws/rest/reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

81

JSON Response

{
 : ,"accountingAccount" ""
 : ,"accountingGroup" ""
 : ,"accountingQOS" ""
 : ,"accountingUser" "root"
 : [{"aclRules"
 : ,"affinity" "NEUTRAL"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "RESERVATION_ID"
 : "value" "system.43"
 }],
 : 1,"allocatedNodeCount"
 : 8,"allocatedProcessorCount"
 : 1,"allocatedTaskCount"
 : ["allocatedNodes"
 { : }"id" "node001"
],
 : ,"comments" ""
 : ,"creationDate" null
 : 200000000,"duration"
 : ,"endDate" "2018-03-17 16:49:10 MDT"
 : ["excludeJobs"
 ,"job1"
 "job2"
],
 : ,"expireDate" null
 : ["flags"
 ,"REQFULL"
 ,"ISACTIVE"
 "ISCLOSED"
],
 : ,"globalId" ""
 : ,"hostListExpression" ""
 : ,"id" "system.43"
 : ,"idPrefix" ""
 : ,"isActive" true
 : ,"isTracked" false
 : ,"label" ""
 : 0,"maxTasks"
 : [],"messages"
 : {"owner"
 : ,"name" "adaptive"
 : "type" "USER"
 },
 : ,"partitionId" "switchB"
 : ,"profile" ""
 : {"requirements"
 : ,"architecture" ""
 : ["featureList"
 ,"feature1"
 "feature2"
],
 : ,"featureMode" ""
 : 0,"memory"
 : 0,"nodeCount"
 : [],"nodeIds" "node001:1"
 : ,"os" ""
 : 1"taskCount"
 },
 : ,"reservationGroup" ""
 : { : 0},"resources" "PROCS"
 : ,"startDate" "2011-11-14 20:15:50 MST"
 : {"statistics"
 : 0,"caps"
 : 2659.52,"cips"
 : 0,"taps"
 : 0"tips"
 },
 : ,"subType" "Other"
 : 0,"taskCount"
 : ,"trigger" null
 : [],"triggerIds"
 : ,"uniqueIndex" ""
 : {}"variables"
}

3.11.2 Creating Reservations
The HTTP POST method is used to create .Reservations

82

Quick Reference

POST http://localhost/mws/rest/reservations

3.11.2.1 Create Reservation

URLs and Parameters

POST http://localhost/mws/rest/reservations

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when creating a Reservation, along
with some sample values.

83

JSON Payload

{
 : ,"accountingAccount" ""
 : ,"accountingGroup" ""
 : ,"accountingQOS" ""
 : ,"accountingUser" "root"
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "GROUP"
 : "value" "staff"
 }],
 : ,"comments" ""
 : 200000000,"duration"
 : ,"endDate" "2018-03-17 16:49:10 MDT"
 : ["excludeJobs"
 ,"job1"
 "job2"
],
 : ["flags"
 ,"SPACEFLEX"
 ,"ACLOVERLAP"
 "SINGLEUSE"
],
 : ,"hostListExpression" ""
 : ,"idPrefix" ""
 : {"owner"
 : ,"name" "adaptive"
 : "type" "USER"
 },
 : ,"partitionId" ""
 : ,"profile" ""
 : {"requirements"
 : ,"architecture" ""
 : ["featureList"
 ,"feature1"
 "feature2"
],
 : 0,"memory"
 : ,"os" ""
 : 1"taskCount"
 },
 : ,"reservationGroup" ""
 : {"resources"
 : 2,"PROCS"
 : 1024,"MEM"
 : 1024,"DISK"
 : 1024,"SWAP"
 : 17,"other1"
 : 42"other2"
 },
 : ,"startDate" "2011-11-14 20:15:50 MST"
 : ,"subType" "Other"
 : {"trigger"
 : ,"eventType" "START"
 : ,"actionType" "EXEC"
 :"action" "date"
 },
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Create reservation if no conflicting reservations are found.

This is equivalent to mrsvctl -c -h node01 -E.

JSON Request Body

{
 : ["flags"
 "DEDICATEDRESOURCE"
],
 : "hostListExpression" "node01"
}

84

Sample Response

JSON Response for successful POST

{ : }"id" "system.44"

3.11.3 Modifying Reservations
The HTTP PUT method is used to modify .Reservations

Quick Reference

PUT http://localhost/mws/rest/reservations/ ?change-mode=<id> <add|remove|set>

3.11.3.1 Modify Reservation

URLs and Parameters

PUT http://localhost/mws/rest/reservations/ ?change-mode=<id> <add|remove|set>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

change-mode Yes String add
Add the given variables to the variables that
already exist.

 remove
Delete the given variables from the variables that
already exist.

 set
Replace all existing variables with the given
variables.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when modifying a Reservation, along
with some sample values.

JSON Payload for Reservation Modify

{
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

85

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "reservation 'system.43' attribute 'Variable' changed."

Restrictions

You can change the ACL Rules on a reservation, but not using this resource. See Create or
.Update ACLs

3.11.4 Releasing Reservations
The HTTP DELETE method is used to release .Reservations

Quick Reference

DELETE http://localhost/mws/rest/reservations/<id>

3.11.4.1 Release Reservation

URLs and Parameters

DELETE http://localhost/mws/rest/reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

3.12 Services

86

This section describes the behavior of a (an interdependent collection of workflows). ItService
is possible for a to be composed of multiple Services. This section describes the URLs,Service
payloads, and responses delivered to and from Moab Web Services for each approach.

The contains the type and description of all fields in the Service API Service
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/services Get all Services Create Service

/rest/services/id Get specified Service Modify Service Delete Service

3.12.1 Getting Service Information
The HTTP GET method is used to retrieve information. Queries for all objects and aService
single object are available.

Quick Reference

GET http://localhost/mws/rest/services[?query={ : }&sort={"field" "value" "field"
:<1|-1>}[&[show-recursive-vc|show-vc]=true]]
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<id>
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<name>

3.12.1.1 Get All Services

URLs and Parameters

GET http://localhost/mws/rest/services[?query={ : }&sort={"field" "value" "field"
:<1|-1>}[&[show-recursive-vc|show-vc]=true]]

87

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for
specific
results.

query={"type":"storage","label":"exlabel"}

sort No JSON

Sort the
results. Use

 for1
ascending
and for-1
descending.

sort={"account":-1}

show-recursive-vc No true

Show
extended
details
about the
service's
virtual
container
including
nested
virtual
containers
and nested
jobs.

show-recursive-vc=true

show-vc No true

Show
details
about the
service's
virtual
container.

show-vc=true

Sample Response

GET http://localhost:8080/mws/rest/services?query={user:"bob"}

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"dateCreated" "2011-12-07 16:03:40 MST"
 : ,"lastUpdated" "2011-12-07 16:03:40 MST"
 : ,"name" "bobService.1"
 : 1,"version"
 : ,"type" "container"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : ["includedServices"
 ,"machine0.1"
 "OSStoremachine0.1"
],
 : ,"parent" null
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54112"
 : "name" "CentosVmPlusStorage"

88

 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc56"
 : [{"dependencies"
 : ,"service" "machine0.1"
 : []"dependency" "OSStoremachine0.1"
 }]
 }},
 : "id" "4edff0cc6852f709fa777826"
 },
 {
 : ,"dateCreated" "2011-12-07 16:03:40 MST"
 : ,"lastUpdated" "2011-12-07 16:03:40 MST"
 : ,"name" "machine0.1"
 : 1,"version"
 : ,"type" "vm"
 : ,"label" "bobs machine"
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : [],"includedServices"
 : ,"parent" "bobService.1"
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54113"
 : "name" "CentosVm"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc57"
 : {"job"
 : ,"id" "Moab.24"
 : ,"template" "genericVM"
 : ,"image" "centos5.5-stateless"
 : [],"features" "vlan3"
 : { : },"variables" "QOS" "High"
 : {"resources"
 : 2,"mem"
 : 2,"procs"
 : 2"disk"
 }
 }
 }},
 : "id" "4edff0cc6852f709fa777827"
 },
 {
 : ,"dateCreated" "2011-12-07 16:03:40 MST"
 : ,"lastUpdated" "2011-12-07 16:03:40 MST"
 : ,"name" "OSStoremachine0.1"
 : 1,"version"
 : ,"type" "storage"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : [],"includedServices"
 : ,"parent" "bobService.1"
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54114"
 : "name" "OpSysStorage"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc58"
 : {"job"
 : ,"id" "Moab.23"
 : ,"template" "OSStorage"
 : { : 200}"resources" "OS"
 }
 }},
 : "id" "4edff0cc6852f709fa777828"

89

 }
]
}

Querying Services

It is possible to query services by one or more fields based on .MongoDB query syntax

Simple Queries

To see only services that are associated with the user "bob" you can use a query such as the
following:

http://localhost/mws/rest/services?query={ : }"user" "bob"

To see only services that are of type "vm":

http://localhost/mws/rest/services?query={ : }"type" "vm"

To see only bob's vm services:

http://localhost/mws/rest/services?query={ : , : }"user" "bob" "type" "vm"

To see only services that are NOT associated with bob:

http://localhost/mws/rest/services?query={ :{ : }}"user" "$ne" "bob"

More Complex Queries

When the field values of the desired services are a finite set, you can use the operator. For$in
example, to see services that belong to either bob, alice, or charlie, you can do the following:

http://localhost/mws/rest/services?query={ :{ :[, ,]}}"user" "$in" "alice" "bob" "charlie"

You can also query on embedded JSON objects within the service JSON. For example, to see
services requesting 3 processors you can use:

http://localhost/mws/rest/services?query={ :3}"attributes.moab.job.resources.procs"

Conditional Operators

You can perform , , , comparisons using the , , , operators.< <= > >= $lt $lte $gt $gte

http://www.mongodb.org/display/DOCS/Advanced+Queries

90

Operator Comparison

$lt <

$lte <=

$gt >

$gte >=

To see services requesting 2 processors:<

http://localhost/mws/rest/services?query={ :{"attributes.moab.job.resources.procs" "$lt"
:2}}

To see services requesting 1024 memory:>=

http://localhost/mws/rest/services?query={ :{"attributes.moab.job.resources.mem" "$gte"
:1024}}

Querying Services by Date

To see all services created after Febuary 8, 2012 at 1:00 PM Mountain Standard Time (MST):

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$gt" "2012-02-08 13:00:00
}}MST"

To see services created before or on Febuary 8, 2012 at 1:00 PM Pacific Standard Time (PST):

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$lte" "2012-02-08 13:00:00
}}PST"

To see services created between 12:00 PM and 1:00 PM Eastern Standard Time (EST) on
Febuary 8, 2012:

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$lte" "2012-02-08 13:00:00
, : }}EST" "$gte" "2012-02-08 12:00:00 EST"

Querying Services by Containing Service

Services can contain other services. When a service is contained within another service, you can
find out what its container is by looking at the parent field. A service that is not contained in any
other service is called a top level service. If you want to see only top level services you need to
query for services with a null parent.

In MongoDB syntax you query for services whose parent field have a of (with 10$type 10
representing null). The following query shows all of bob's top level services:

91

http://localhost/mws/rest/services?query={ : , :{ :10}}"user" "bob" "parent" "$type"

Once you have the top level service, you can find the direct child services:

http://localhost/mws/rest/services?query={ : , : }"user" "bob" "parent" "bobService.1"

Once you have the direct children, you can find the children of those children with a similar
query.

Sorting

See the sorting section of Global URL Parameters

Limiting the Number of Results

If you want to limit the number of results of services you can use the parameter. Formax
example, to see only 10 of bob's services:

http://localhost/mws/rest/services?query={ : }&sort={ :1}&max=10"user" "bob" "name"

To see bob's services 91-100 when sorted by name in ascending order you can combine max
with as follows:offset

http://localhost/mws/rest/services?query={ : }&sort={"user" "bob" "name"
:1}&max=10&offset=90

Retrieving a Subset of Fields

To cause only certain fields to return for each service, use the parameter. For example,fields
to show only the name field for each service:

http://localhost/mws/rest/services?fields=name

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "aliceService.1"
 { : },"name" "machine0.1"
 { : }"name" "OSStoremachine0.1"
]
}

To show the name, type, and user:

92

http://localhost/mws/rest/services?fields=name,type,user

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"name" "aliceService.1"
 : ,"type" "container"
 : "user" "alice"
 },
 {
 : ,"name" "machine0.1"
 : ,"type" "vm"
 : "user" "alice"
 },
 {
 : ,"name" "OSStoremachine0.1"
 : ,"type" "storage"
 : "user" "alice"
 }
]
}

3.12.1.2 Get Single Service

URLs and Parameters

GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<id>
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<name>

Parameter Required
Valid
Values

Description Example

id Yes String
The unique identifier of the
service.

name Yes String The name of the service.

show-recursive-vc No true

Show extended details about
the service's virtual container
including nested virtual
containers and nested jobs.

show-recursive-vc=true

show-vc No true
Show details about the
service's virtual container.

show-vc=true

Parameter Required Type Valid Values Description

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

93

Samples

GET http://localhost/mws/rest/services/bobService.1?

{
 : ,"dateCreated" "2011-12-07 16:03:40 MST"
 : ,"lastUpdated" "2011-12-07 16:03:40 MST"
 : ,"name" "bobService.1"
 : 1,"version"
 : ,"type" "container"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : ["includedServices"
 ,"machine0.1"
 "OSStoremachine0.1"
],
 : ,"parent" null
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54112"
 : "name" "CentosVmPlusStorage"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc56"
 : [{"dependencies"
 : ,"service" "machine0.1"
 : []"dependency" "OSStoremachine0.1"
 }]
 }},
 : "id" "4edff0cc6852f709fa777826"
}

3.12.2 Creating Services
The HTTP POST method is used to create a .Service

Quick Reference

POST http://localhost/mws/rest/services

3.12.2.1 Create Service From Service Template

URLs and Parameters

POST http://localhost/mws/rest/services[?proxy-user=bob]

Parameter Required
Valid
Values

Description Example

proxy-user No String
The name of the user creating the
service.

proxy-user=bob

Simple Case

To create a service from the template named "Rhel54VmPlusStorage":

94

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ,"earliestStartDateRequested" "2011-11-08 13:18:47 MST"
 : 86400,"durationRequested"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : ,"serviceTemplate" "Rhel54VmPlusStorage"
 }
]
}

Alternatively you can submit:

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : {"serviceTemplate"
 :"name" "Rhel54VmPlusStorage"
 }
 }
]
}

To create a service based on the service template with id "4fbd2d90c4aa4996400bsa5m"

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : {"serviceTemplate"
 :"id" "4fbd2d90c4aa4996400bsa5m"
 }
 }
]
}

Extending a Service Template

If you want to create a service from a service template, but wish to extend the service template
with some additional variables or generic resources, you can use the field. Extending aextends
service template is also helpful when you wish to override certain values, such as the amount of
memory or processors the service requires.

To extend a service template, you will need to determine the extends path for the service you
wish to override. The extends path is the name of the top level service, followed by one or more
localNames as described in the includedServices field. All but the last <localName> are nested
containers inside the top level container. For example:

<top level service name>:: [:]+<localName> <localName>

95

For example, suppose you want to create a new service from the "Rhel54VmPlusStorage"
service template, and you want to name this new service "MyRhel54VmPlusStorage". In this
example, "Rhel54VmPlusStorage" contains a service template named "SubContainer1". The
localName for "SubContainer1" in the "Rhel54VmPlusStorage" field is "sc1".includedServices

Rhel54VmPlusStorage Service Template

{
 : ,"name" "Rhel54VmPlusStorage"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "sc1"
 :"serviceTemplate" "SubContainer1"
 }
]
}

The extends path for the instance of "SubContainer1" in your "MyRhel54VmPlusStorage" is:

MyRhel54VmPlusStorage::sc1

Let's say inside "SubContainer1" is another service template called "SubContainer2". The
localName for "SubContainer2" as defined in the includedServices field for "SubContainer1" is
"sc2".

SubContainer1 Service Template

{
 : ,"name" "SubContainer1"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "sc2"
 :"serviceTemplate" "SubContainer2"
 }
]
}

The extends path for the instance of "SubContainer2" in "MyRhel54VmPlusStorage" is:

MyRhel54VmPlusStorage::sc1:sc2

Now let's say that "SubContainer2" contains two service templates, "Rhel54Vm" and
"OpsysStorage" with localNames "rvm" and "oss" respectively.

96

SubContainer1 Service Template

{
 : ,"name" "SubContainer2"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "rvm"
 :"serviceTemplate" "Rhel54Vm"
 },
 {
 : ,"localName" "oss"
 :"serviceTemplate" "OpSysStorage"
 }
]
}

The extends paths for the instances of "Rhel54VM" and "OpSysStorage" in
"MyRhel54VmPlusStorage" are:

MyRhel54VmPlusStorage::sc1:sc2:rvm
MyRhel54VmPlusStorage::sc1:sc2:oss

Now that we have the extends paths for all the services that will be created from the
"Rhel54VmPlusStorage" template, we can add variables to these services that were not in the
service templates.

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : ,"serviceTemplate" "Rhel54VmPlusStorage"
 : {"attributes"
 :{ :"sharedData" "extraAttribute" "some attribute not in the Rhel54VmPlusStorage

 }template"
 }
 },
 {
 : ,"name" "MyRhel54Vm"
 : ," "extends "MyRhel54VmPlusStorage::sc1:sc2:rvm"
 : {"attributes"
 : { : { : { : "moab" "job" "variables" "extraVar" "An additional variable not in the

}}},Rhel54Vm template"
 :{ :"sharedData" "extraAttribute" "some attribute not in the Rhel54Vm template"
}
 }

},
 {
 : ,"name" "MyOsStorage"
 : ," "extends "MyRhel54VmPlusStorage::sc1:sc2:oss"
 : {"attributes"
 : { : { : { : "moab" "job" "variables" "extraVar2" "An additional variable not in

}}},the OpSysStorage template"
 :{ :"sharedData" "extraAttribute" "some attribute not in the OpSysStorage

 } template"
 }
 }
]
}

97

When the "MyRhel54Vm" service is created, it will have a variable named "extraVar" even
though this variable was not defined in the "Rhel54Vm" service template. Likewise, when the
"MyOsStorage" service is created, it will have a variable named "extraVar2", even though no
such variable was defined in the "OsStorage" service template. All three services will have an
attribute named "extraAttribute" in their attributes.sharedData sections though "extraAttribute"
does not appear in any service template.

Extending Services and Dependencies in a Container Service

To add a services to a container service that were not in the container's service template you first
define the new services in the service request. Then you extend the includedServices field of the
container with the newly defined services. This will add the new services to any that are already
in the container as defined in the service template. It is only possible to add services to a
container. It is not possible to remove services from a container that were defined in the
container's service template.

For example, say the CentosVmPlusStorage service template contains an OpSysStorage service
template and a CentosVm service template.

CentosVmPlusStorage Service Template

{
 : ,"name" "CentosVmPlusStorage"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "oss"
 :"serviceTemplate" "OpSysStorage"
 },
 {
 : ,"localName" "cvm"
 :"serviceTemplate" "CentosVm"
 }
]
}

To add two storage services to the service created from the CentosVmPlusStorage service
template submit the following service request:

POST http://localhost/mws/rest/services

{
 : ,"user" "bob"
 : ,"account" "cloud"
 :["data"
 {
 : ,"name" "BobsCentosVmPlusStorage"
 : ,"serviceTemplate" "CentosVmPlusStorage"
 :["includedServices"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
]
 },
 {
 : ,"name" "NewStorageToAdd1"
 :"serviceTemplate" "ExtraStorage"
 },
 {
 : ,"name" "NewStorageToAdd2"
 :"serviceTemplate" "ExtraStorage"
 }
]
}

98

The resulting service BobsCentosVmPlusStorage will contain NewStorageToAdd1,
NewStorageToAdd2, a service created from the OpSysStorage template, and a service created
from the CentosVm template. To add a dependency such that the CentosVm service will not be
able to start until both NewStorageToAdd1 and NewStorageToAdd2 have been set up:

POST http://localhost/mws/rest/services

{
 : ,"user" "bob"
 : ,"account" "cloud"
 :["data"
 {
 : ,"name" "BobsCentosVmPlusStorage"
 : ,"serviceTemplate" "CentosVmPlusStorage"
 :["includedServices"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 : ,"service" "BobsCentosVm"
 :["dependency"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
]
 }
]
 }
 }
 },
 {
 : ,"name" "BobsCentosVm"
 :" "extends "CentosVmPlusStorage:cvm"
 },
 {
 : ,"name" "NewStorageToAdd1"
 :"serviceTemplate" "ExtraStorage"
 },
 {
 : ,"name" "NewStorageToAdd2"
 :"serviceTemplate" "ExtraStorage"
 }
]
}

Extendable Fields

You can only extend certain fields. Below is a table of fields that can be extended:

99

Extendable Fields Notes

attributes.moab.dependencies
Dependencies can be added but not removed. Only
applicable to containers.

attributes.moab.job.features Features can be added but not removed.

attributes.moab.job.requestedHosts Hosts can be added but not removed.

attributes.moab.job.resources Including procs, mem, disk, and any generic resource.

attributes.moab.job.variables
Can either change the value of variables in the template or
add new variables.

attributes.sharedData A place for arbitrary, site-specific data.

image

includedServices
Services can be added but not removed. Only applicable to
containers.

label

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{ : }"name" "MyRhel54VmPlusStorage.1"

3.12.2.2 Create Custom Service

URLs and Parameters

POST http://localhost/mws/rest/services[?proxy-user=bob]

Parameter Required
Valid
Values

Description Example

proxy-user No String
The name of the user creating the
service.

proxy-user=bob

Payload

The payload below shows all the fields that are available during service submission.

POST http://localhost/mws/rest/services

100

{
 : ,"user" "adaptive"
 : ,"account" "cloud"
 : ,"earliestStartDateRequested" "2011-11-08 13:18:47 MST"
 : 86400,"durationRequested"
 :["data"
 {
 : ,"name" "myNewService"
 : ,"type" "container"
 : ,"label" "My New Service"
 :["includedServices"
 ,"myVmContainer"
 ,"myNetworkStorageWorkflow"
 "myPmContainer"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 :["dependency"
 "myNetworkStorageWorkflow"
],
 :"service" "myVmWorkflow"
 }
]
 },
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 :"extraAttribute2" "Another arbitrary value"
 }
 }
 },
 {
 : ,"name" "myVmContainer"
 : ,"type" "container"
 :["includedServices"
 ,"myVmWorkflow"
 "myOsStorageWorkflow"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 :["dependency"
 "myOsStorageWorkflow"
],
 :"service" "myVmWorkflow"
 }
]
 }
 }
 },
 {
 : ,"name" "myVmWorkflow"
 : ,"type" "vm"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :2,"procs"
 :2048,"mem"
 :80"disk"
 },
 :{"variables"
 :"QOS" "Premium"
 },
 : ,"image" "centos5.5-stateless"
 : ,"template" "genericVM"
 :[],"requestedHosts" "i16"
 :[]"features" "vlan3"
 }
 }
 }
 },
 {
 : ,"name" "myOsStorageWorkflow"
 : ,"type" "storage"
 :["includedServices"

101

],
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"template" "OSStorage"
 :{"resources"
 :2500"OS"
 }
 }
 }
 }
 },
 {
 : ,"name" "myNetworkStorageWorkflow"
 : ,"type" "storage"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"template" "extraStorage"
 :{"resources"
 :500"gold"
 },
 :{"variables"
 :"mount" "/path/to/mount"
 }
 }
 }
 }
 },
 {
 : ,"name" "myPmContainer"
 : ,"type" "container"
 :["includedServices"
 "myPmWorkflow"
]
 },
 {
 : ,"name" "myPmWorkflow"
 : ,"type" "pm"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :2, "procs"
 :2048,"mem"
 :100"disk"
 },
 :{"variables"
 :"QOS" "Premium"
 },
 : ,"image" "centos5.5-stateless"
 :"template" "genericPM"
 }
 }
 }
 }
]
}

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{ : }"name" "myNewService.1"

3.12.3 Modifying Services
The HTTP PUT method is used to modify .Services

102

Quick Reference

PUT http://localhost/mws/rest/services/<id>
PUT http://localhost/mws/rest/services/<name>

3.12.3.1 Modify Service

URLs and Parameters

PUT http://localhost/mws/rest/services/<id>
PUT http://localhost/mws/rest/services/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Service.

name Yes String - The name of the Service .

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Example Request

Only the , , and fields may be modified in services. Noteattributes status statusCode
that the field must be a valid string, and the field must be a validstatus statusCode
number (long). Any arbitrary string and number may be used to represent the current state of the
service through and respectively.status statusCode

PUT http://localhost:8080/mws/rest/services/myStorageService

{
 : ,"status" "Done provisioning!"
 : 200,"statusCode"
 : {"attributes"
 : ,"mount" "/mnt/myMount"
 : ,"size" "2500"
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 : "extraAttribute2" "Another arbitrary value"
 }
 }
}

The element of attributes cannot be modified. An error will be returnedmoab
if this is attempted.

Sample Response

103

JSON Response

{
 : ,"name" "myStorageService"
 : ,"dateCreated" "2012-02-01 14:54:52 MST"
 : ,"lastUpdated" "2012-02-01 14:54:5 2 MST"
 : ,"type" "storage"
 : ,"label" null
 : ,"user" "john"
 : ,"account" "corp"
 : ,"status" "Done provisioning!"
 : 200,"statusCode"
 : [],"includedServices"
 : ,"parent" "myVmWithStorage"
 : {"attributes"
 : {"moab"
 : {"vc "
 : "id" "vc3"
 },
 : {"job"
 : ,"id" "Moab.1"
 : ,"template" "extraStorage"
 : {"resources"
 : 2500"gold"
 }
 }
 },
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 : "extraAttribute2" "Another arbitrary value"
 },
 : ,"mount" "/mnt/myMount"
 : "size" "2500"
 },
 : "id" "4f29b4abe4b03c2f8e3a1a40"
}

3.12.4 Deleting Services
The HTTP DELETE method is used to delete .Services

Quick Reference

DELETE http://localhost/mws/rest/services/<id>
DELETE http://localhost/mws/rest/services/<name>

3.12.4.1 Delete Service

URLs and Parameters

DELETE http://localhost/mws/rest/services/ [?proxy-user=bob]<id>
DELETE http://localhost/mws/rest/services/ [?proxy-user=bob]<name>

104

Parameter Required Type Valid Values Description

force-delete No Boolean -
If true MWS will not check service
dependencies before deleting it.

id Yes String - The unique identifier of the Service.

name Yes String - The name of the Service.

proxy-user No String
The name of the user
deleting the service.

proxy-user=bob

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{}

3.13 Service Templates
This section describes the behavior of the object in Moab Web Services. ItService Template
contains the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields inService Template API
the object. It also contains details regarding which fieldsServiceTemplate
are valid during PUT and POST actions.

See to create Services from ServiceCreate Service From Service Template
Templates.

The Service Template name has the following constraints:

It must contain only letters, digits, spaces, and these special characters:
underscore, comma, hyphen, period, question mark, at sign, tilde, pound
sign, square brackets, angle brackets, vertical bar, equals sign,
ampersand, parentheses, asterisk, curly braces, grave accent, and dollar
sign.
It cannot have the same form as a MongoDB ID (24 characters of 0-9
and a-f)
It must be unique in the database.

105

Supported Methods

Resource GET PUT POST DELETE

/rest/service-templates
Get all Service
Templates

Create
ServiceTemplate

/rest/service-templates/
id or name

Get specified
Service Template

Modify
ServiceTemplate

Cancel
Service
Template

3.13.1 Getting Service Templates
The HTTP GET method is used to retrieve information. Queries for allService Template
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/service-templates[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]
GET http://localhost/mws/rest/service-templates/<id>
GET http://localhost/mws/rest/service-templates/<name>

3.13.1.1 Get All Service Templates

URLs and Parameters

GET http://localhost/mws/rest/service-templates[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for
specific results.

query={"type":"vm","createdBy":"name"}

sort No JSON

Sort the results.
Use for1
ascending and -1
for descending.

sort={"name":1}

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : 5,"totalCount"
 : 5,"resultCount"

106

 : ["results"
 {
 : ,"id" "4f04a93f84ae17912ae2763e"
 : ,"label" "Linux ESA"
 : ,"type" "vm"
 : ,"name" "LinEsaTemplate"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"createdBy" "TempName"
 : [],"includedServices"
 : ["tags"
 ,"tag0"
 "tag1"
],
 : {"attributes"
 : {"dependencies"
 : ,"service" "tid.1"
 : ["dependency"
 ,"tid.2"
 "tid.3"
]
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 1"ipaddress"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : ,"name" ""
 : ,"service-description" ""
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : {}"access"
 }
 }
 },
 {
 : ,"id" "4f05dd1484ae18e002b22d92"
 : ,"label" "Linux ESA"
 : ,"type" "vm"
 : ,"name" "LinEsa004"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"createdBy" "TempName"
 : ["includedServices"
 {
 : ,"localName" "SQLServ004"
 : "serviceTemplate" "LinEsaTemplate"
 }
],
 : ["tags"
 ,"tag0"
 "tag1"
],
 : {"attributes"
 : {"dependencies"
 : ,"service" "tid.1"
 : ["dependency"
 ,"tid.2"
 "tid.3"
]
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 1"ipaddress"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : ,"name" ""
 : ,"service-description" ""
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : {}"access"
 }
 }

107

 },
 {
 : ,"id" "4f05dd7484ae18e002b22d93"
 : ,"label" "Linux ESA"
 : ,"type" "vm"
 : ,"name" "R"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"createdBy" "TempName"
 : ["includedServices"
 {
 : ,"localName" "SQLServ004"
 : "serviceTemplate" "LinEsaTemplate"
 }
],
 : ["tags"
 ,"tag0"
 "tag1"
],
 : {"attributes"
 : {"dependencies"
 : ,"service" "tid.1"
 : ["dependency"
 ,"tid.2"
 "tid.3"
]
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 1"ipaddress"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : ,"name" ""
 : ,"service-description" ""
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : {}"access"
 }
 }
 },
 {
 : ,"id" "4f05e41f84ae18e002b22d94"
 : ,"label" "Linux ESA"
 : ,"type" "vm"
 : ,"name" "5"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"createdBy" "TempName"
 : ["includedServices"
 {
 : ,"localName" "SQLServ004"
 : "serviceTemplate" "LinEsaTemplate"
 }
],
 : ["tags"
 ,"tag0"
 "tag1"
],
 : {"attributes"
 : {"dependencies"
 : ,"service" "tid.1"
 : ["dependency"
 ,"tid.2"
 "tid.3"
]
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 1"ipaddress"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : ,"name" ""
 : ,"service-description" ""
 : {"form"
 : ,"f0" "zero"

108

 : "f1" "one"
 },
 : {}"access"
 }
 }
 },
 {
 : ,"id" "4f05e4a284ae18e002b22d95"
 : ,"label" "Linux ESA"
 : ,"type" "vm"
 : ,"name" "LinEsaServ001"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"createdBy" "TempName"
 : ["includedServices"
 {
 : ,"localName" "SQLServ004"
 : "serviceTemplate" "LinEsaTemplate"
 }
],
 : ["tags"
 ,"tag0"
 "tag1"
],
 : {"attributes"
 : {"dependencies"
 : ,"service" "tid.1"
 : ["dependency"
 ,"tid.2"
 "tid.3"
]
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 1"ipaddress"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : ,"name" ""
 : ,"service-description" ""
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : {}"access"
 }
 }

109

 }
]
}

Querying Service Templates

It is possible to query service templates by one or more fields based on the MongoDB query
.syntax

Simple Queries

To see only service templates that are associated with the user "bob", use a query like the
following:

http://localhost/mws/rest/service-templates?query={ : }"user" "bob"

To see only service templates that are of type "vm":

http://localhost/mws/rest/service-templates?query={ : }"type" "vm"

To see only bob's vm service templates:

http://localhost/mws/rest/service-templates?query={ : , : }"user" "bob" "type" "vm"

To see only service templates that are NOT associated with bob:

http://localhost/mws/rest/service-templates?query={ :{ : }}"user" "$ne" "bob"

More Complex Queries

When the field values of the desired service templates are a finite set, use the operator. For$in
example, to see service templates that belong to either bob, alice, or charlie, do the following:

http://localhost/mws/rest/service-templates?query={ :{ :[, ,"user" "$in" "alice" "bob"
]}}"charlie"

You can also query on embedded JSON objects within the service template JSON. For example,
to see service templates requesting 3 processors, do the following:

http://localhost/mws/rest/service-templates?query={
:3}"attributes.moab.job.resources.procs"

Conditional Operators

http://www.mongodb.org/display/DOCS/Advanced+Queries
http://www.mongodb.org/display/DOCS/Advanced+Queries

110

You can perform , , , comparisons using the , , , operators.< <= > >= $lt $lte $gt $gte

Operator Comparison

$lt <

$lte <=

$gt >

$gte >=

To see service templates requesting < 2 processors:

http://localhost/mws/rest/service-templates?query={
:{ :2}}"attributes.moab.job.resources.procs" "$lt"

To see service templates requesting >= 1024 memory:

http://localhost/mws/rest/service-templates?query={"attributes.moab.job.resources.mem"
:{ :1024}}"$gte"

Querying Service Templates by Date

To see all service templates modified after July 4, 2011 at 10:30:00 PM Mountain Standard Time
(MST):

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$gt" "2011-07-04
}}22:30:00 MST"

To see service templates modified before July 6, 2011 at 12:00 AM Pacific Standard Time
(PST):

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$lt" "2011-07-06
}}00:00:00 PST"

To see service templates modified between 12:00 AM and 11:59 PM (inclusive) Eastern
Standard Time (EST) on July 5, 2011

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$gte" "2011-07-05
, : }}00:00:00 EST" "$lte" "2011-07-05 23:59:00 EST"

Sorting

See the sorting section in .Global URL Parameters

Limiting the Number of Results

111

To limit the size of the result set, use the parameter. For example, to see only 10 of bob'smax
services:

http://localhost/mws/rest/service-templates?query={ : }&sort={ :1}&max=10"user" "bob" "name"

To see bob's service templates 91-100 when sorted by name in ascending order, combine max
with as follows:offset

http://localhost/mws/rest/service-templates?query={ : }&sort={"user" "bob" "name"
:1}&max=10&offset=90

Retrieving a Subset of Fields

To retrieve only certain fields, use the parameter. For example, to show only the fields name
field for each service:

http://localhost/mws/rest/service-templates?fields=name

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "aliceService.1"
 { : },"name" "machine0.1"
 { : }"name" "OSStoremachine0.1"
]
}

To show the name, type, and user:

http://localhost/mws/rest/service-templates?fields=name,type,user

This returns:

112

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"name" "aliceService.1"
 : ,"type" "container"
 : "user" "alice"
 },
 {
 : ,"name" "machine0.1"
 : ,"type" "vm"
 : "user" "alice"
 },
 {
 : ,"name" "OSStoremachine0.1"
 : ,"type" "storage"
 : "user" "alice"
 }
]
}

3.13.1.2 Get Single Service Template

URLs and Parameters

GET http://localhost/mws/rest/service-templates/<id>
GET http://localhost/mws/rest/service-templates/<name>

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Response

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "..."
 …
 }]
}

3.13.2 Creating Service Templates
The HTTP POST method is used to create .Service Templates

113

Quick Reference

POST http://localhost/mws/rest/service-templates

3.13.2.1 Create Service Template

URLs and Parameters

POST http://localhost/mws/rest/service-templates

See for available URL parameters.Global URL Parameters

Payload

The payload below shows some of the fields that are available when creating a Service
Template, along with some sample values.

114

JSON Payload

{
 : {"attributes"
 : {"moab"
 : ["dependencies"
 {
 : ["dependency"
 , "oss"
 "ns"
],
 : "localName" "rvm"
 }
],
 : {"job"
 : ["features"
 "vlan3"
],
 : , "image" "centos5.5-stateless"
 : ["requestedHosts"
 "i16"
],
 : {"resources"
 : 80, "disk"
 : 2048, "mem"
 : 1"procs"
 },
 : , "template" "genericVM"
 : {"variables"
 : "QOS" "Premium"
 }
 }
 }
 },
 : , "createdBy" "bob"
 : ["includedServices"
 {
 : , "localName" "rvm"
 : "serviceTemplate" "Rhel54Vm"
 },
 {
 : , "localName" "oss"
 : "serviceTemplate" "OpSysStorage"
 },
 {
 : , "localName" "ns"
 : "serviceTemplate" "NetworkStorage"
 }
],
 : , "label" "Redhat Enterprise Linux 5.4 VM Plus OS and Network Storage"
 : , "modified" "2011-07-04 00:00:00 MDT"
 : , "name" "Rhel54VmPlusStorage"
 : [], "tags"
 : "type" "container"
}

includedServices is a key-value pair of the internal service name and the
serviceTemplate. The service name is unique for each service container.

Sample Response

JSON Response for successful POST

{ : }"id" "4f06111184ae2bbfa31fa4c7"

If the Service Template name is not unique:

115

JSON Response

{
 : ["messages"
 , "Service template Rhel54Vm could not be created"
 , "Request has a non-unique service template name 'Rhel54Vm'"
 "Please correct the request and again"try
]
}

If the Service Template included service local name is not unique to this service template:

JSON Response

{
 : ["messages"
 , "Service template CentOS5 could not be created"
 "Service template request has a non-unique included service template local name

, ([SQLServ05])"
 "Please correct the request and again"try
]
}
}

If the Service Template depends on a non-existent included service:

JSON Response

{
 : ["messages"
 , "Service template NSStor34 could not be created"
 "Service template requires service template(s) [NewRhel54Vm] which notdo

, exist"
 "Please correct the request and again"try
]
}

If the Service Template depends on more than one non-existent included service:

JSON Response

{
 : ["messages"
 , "Service template NSStor34 could not be created"
 "Service template requires service template(s) [NewRhel54Vm, Storage003] which

, not exist"do
 "Please correct the request and again"try
]
}

If the Service Template name contains a colon:

JSON Response

{
{
 : ["messages"
 , "Service template Rhel54Vm:C could not be created"
 , "Request contains a colon (:) in the service template name 'Rhel54Vm:C'"
 "Please correct the request and again"try
]
}

116

If the Service Template name has the same format as a MongoDB ID (Service Template ID):

JSON Response

{
 : ["messages"
 , "Service template 4f2049a684ae6e1d4f09bd71 could not be created"
 "Request has a MongoDB ID format the service template nameObject for

, '4f2049a684ae6e1d4f09bd71'"
 "Please correct the request and again"try
]
}

3.13.3 Modifying Service Templates
The HTTP PUT method is used to modify .Service Templates

The field is not automatically updated. It will need to be changedmodified
by the user.

Quick Reference

PUT http://localhost/mws/rest/service-templates/<id>
PUT http://localhost/mws/rest/service-templates/<name>

3.13.3.1 Modify Service Template

URLs and Parameters

PUT http://localhost/mws/ /service-templates/<id>rest
PUT http://localhost/mws/ /service-templates/<name>rest

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Payload

This is similar to create, except you change the payload to what you need modified.

117

The payload below shows some of the fields that are available when modifying a Service
Template, along with some sample values.

{
 : {"attributes"
 : {"dependencies"
 : ["dependency"
 ,"tid.2"
 "tid.3"
],
 : "service" "tid.1"
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"ipaddress"
 : 1024,"mem"
 : 1"procs"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : {},"access"
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : ,"name" ""
 : "service-description" ""
 }
 },
 : ,"createdBy" "Newname"
 : [],"includedServices"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"name" "A"
 : ["tags"
 ,"database"
 ,"ele45"
 "tag56"
],
 : "type" "RhOs"
}

Sample Response

118

JSON Response for successful PUT

{
 : 1,"resultCount"
 : ["results"
 {
 : {"attributes"
 : {"dependencies"
 : ["dependency"
 ,"tid.2"
 "tid.3"
],
 : "service" "tid.1"
 },
 : {"job"
 : ,"image" "rhel54-stateless"
 : {"resources"
 : 1,"ipaddress"
 : 1024,"mem"
 : 1"procs"
 },
 : ,"template" " -vm"new
 : {"variables"
 : "foo" "bar"
 }
 },
 : {"viewpoint"
 : {},"access"
 : {"form"
 : ,"f0" "zero"
 : "f1" "one"
 },
 : ,"name" ""
 : "service-description" ""
 }
 },
 : ,"createdBy" "Newname"
 : ,"id" "4f0746f684ae23bbd6726852"
 : [],"includedServices"
 : ,"label" "Linux ESA"
 : ,"modified" "2011-07-04 00:00:00 MDT"
 : ,"name" "RhOs004"
 : ["tags"
 ,"database"
 ,"ele45"
 "tag56"
],
 : "type" "RhOs"
 }
],
 : 1"totalCount"
}

If the Service Template depends on a non-existent included service:

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 ,"Service template requires service template(s) [RhOs045] which not exist"do
 "Please correct the request and again"try
]
}

If the Service Template depends on more than one non-existent included service:

119

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 "Service template requires service template(s) [Stor45, Stor12] which notdo

,exist"
 "Please correct the request and again"try
]
}

An attempt to modify the Service Template name to an existing template name:

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 "Request has a non-unique service template name 'Stor44'"
]
}

3.13.4 Deleting (Canceling) Service Templates
The HTTP DELETE method is used to delete .Service Templates

Quick Reference

DELETE http://localhost/mws/rest/service-templates/<id>
DELETE http://localhost/mws/rest/service-templates/<name>

3.13.4.1 Cancel Service Template

URLs and Parameters

DELETE http://localhost/mws/ /service-templates/<id|name>rest

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Response

120

A successful deletion

JSON Response

{}

If the Service Template ID does not exist

JSON Response

{
 : ["messages"
 "Service template not found with ID '4f2049a684ae6e1d4f09bd71'"
]
}

If the Service Template name does not exist

JSON Response

{
 : ["messages"
 "Service template not found with ID 'Stor44'"
]
}

If other Service Templates depend on the one being deleted

JSON Response

{
 : ["messages"
 , "Service template Cent5 could not be deleted"
 "Service template 'Cent5' cannot be deleted because Service template '[Cent5]'
depends on it "
]
}

3.14 Standing Reservations
This section describes behavior of the object in Moab Web Services. ItStanding Reservation
contains the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fieldsStanding Reservation API
in the object. It also contains details regarding whichStanding Reservation
fields are valid during PUT and POST actions.

Supported Methods

121

Resource GET PUT POST DELETE

/rest/standing-reservations Get all standing reservations

/rest/standing-reservations/id Get specified standing reservation

3.14.1 Getting Standing Reservations
The HTTP GET method is used to retrieve information. Queries for allStanding Reservation
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/standing-reservations/<id>

3.14.1.1 Get All Standing Reservations

URLs and Parameters

GET http://localhost/mws/rest/standing-reservations

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/standing-reservations?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "sr1"
 { : },"id" "sr2"
 { : }"id" "sr3"
]
}

3.14.1.2 Get Single Standing Reservation

URLs and Parameters

GET http://localhost/mws/rest/standing-reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

122

Sample Response

JSON Response

{
 : ,"access" "DEDICATED"
 : [],"accounts" "account1"
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "EQUAL"
 : ,"type" "USER"
 : ,"value" "adaptive"
 }],
 : ,"chargeAccount" "account2"
 : ,"chargeUser" "user2"
 : [],"classes" "class1"
 : [],"clusters" "cluster1"
 : ,"comment" "comment"
 : [],"days" "Monday"
 : 2,"depth"
 : ,"disabled" false
 : 86415,"endTime"
 : [],"flags" "ALLOWJOBOVERLAP"
 : [],"groups" "group1"
 : [],"hosts" "host1"
 : ,"id" "fast"
 : [],"jobAttributes" "TEMPLATESAPPLIED"
 : 2,"maxJob"
 : 0,"maxTime"
 : [],"messages" "message1"
 : [],"nodeFeatures" "feature1"
 : ,"os" "Ubuntu 10.04.3"
 : {"owner"
 : ,"name" "root"
 : "type" "USER"
 },
 : ,"partition" "ALL"
 : ,"period" "DAY"
 : {"procLimit"
 : ,"qualifier" "<="
 : 5"value"
 },
 : {"psLimit"
 : ,"qualifier" "<="
 : 60"value"
 },
 : [],"qoses" "qos1"
 : [],"reservationAccessList"
 : ,"reservationGroup" "group2"
 : {"resources"
 : -1,"PROCS"
 : 1"tapes"
 },
 : 43200,"rollbackOffset"
 : 347040,"startTime"
 : 0,"taskCount"
 : 0,"tasksPerNode"
 : -1,"timeLimit"
 : [],"triggers"
 : ,"type" "type1"
 : []"users" "user1"
}

3.15 Virtual Containers
This section describes behavior of the object in Moab Web Services. ItVirtual Container
contains the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields inVirtual Container API
the object. It also contains details regarding which fieldsVirtual Container
are valid during PUT and POST actions.

Supported Methods

123

Resource GET PUT POST DELETE

/rest/vcs
Get all Virtual
Containers

Create Virtual
Container

/rest/vcs/
id

Get specified Virtual
Container

Modify Virtual
Container

Destroy Virtual
Container

3.15.1 Getting Virtual Containers
The HTTP GET method is used to retrieve information. Queries for allVirtual Container
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/vcs/<id>

3.15.1.1 Get All Virtual Containers

URLs and Parameters

GET http://localhost/mws/rest/vcs

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/vcs?fields=id

{
 : 5,"totalCount"
 : 5,"resultCount"
 : ["results"
 { : },"id" "vc3"
 { : },"id" "vc1"
 { : },"id" "vc4"
 { : },"id" "vc5"
 { : }"id" "vc2"
]
}

3.15.1.2 Get Single Virtual Container

URLs and Parameters

GET http://localhost/mws/rest/vcs/<id>

124

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "root"
 }],
 : ,"createDate" "2011-11-15 14:01:40 MST"
 : ,"creator" "root"
 : ,"description" "vc2"
 : [],"flags" "DESTROYWHENEMPTY"
 : ,"id" "vc2"
 : ["jobs"
 { : }"id" "Moab.1"
],
 : ["nodes"
 { : }"id" "node1"
],
 : {"owner"
 : ,"name" "root"
 : "type" "USER"
 },
 : ["reservations"
 { : }"id" "system.1"
],
 : {"variables"
 : ,"a" "b"
 : "c" "d"
 },
 : ["virtualContainers"
 { : }"id" "vc3"
],
 : ["virtualMachines"
 { : }"id" "vm1"
]
}

3.15.2 Creating Virtual Containers
The HTTP POST method is used to create .Virtual Containers

Quick Reference

POST http://localhost/mws/rest/vcs[?proxy-user=]<username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

125

3.15.2.1 Create Virtual Container

URLs and Parameters

POST http://localhost/mws/rest/vcs[?proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when creating a Virtual Container,
along with some sample values.

JSON Payload

{
 : ,"description" "ted's vc"
 : {"owner"
 : ,"name" "ted"
 : "type" "USER"
 }
}

Sample Response

JSON Response for successful POST

{ : }"id" "vc8"

Restrictions

When creating a Virtual Container, the field is set to the value of creator proxy-user
(if set) or (if set), with taking precedence. However, settingowner.name proxy-user
the field works only if you set in the file.creator ENABLEPROXY=TRUE moab.cfg
Example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

You can set the field as shown above, but you can never change it.creator

3.15.3 Modifying Virtual Containers

126

The HTTP PUT method is used to modify .Virtual Containers

Quick Reference

PUT http://localhost/mws/rest/vcs/ ?change-mode= [&proxy-user=<id> <add|remove|set>
]<username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.15.3.1 Modify Virtual Container

URLs and Parameters

PUT http://localhost/mws/rest/vcs/ ?change-mode= [&proxy-user=<id> <add|remove|set>
]<username>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

change-mode Yes String add
Add the given objects (jobs, VMs, etc) to the objects
that already exist.

 remove
Delete the given objects from the objects that
already exist.

 set
Modify the attributes of the virtual container itself
and the associated objects.not

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

Here are three examples of Virtual Container updates: add objects, remove objects, and update
attributes.

127

Add objects with /rest/vcs/vc1?change-mode=add

{
 : ["jobs"
 { : },"id" "Moab.37"
 { : }"id" "Moab.38"
],
 : ["nodes"
 { : },"id" "node1"
 { : }"id" "node2"
],
 : ["reservations"
 { : },"id" "system.48"
 { : }"id" "system.49"
],
 : ["virtualContainers"
 { : },"id" "vc93"
 { : }"id" "vc94"
],
 : ["virtualMachines"
 { : },"id" "vm2"
 { : }"id" "vm4"
]
}

Remove objects with /rest/vcs/vc1?change-mode=remove

{
 : ["jobs"
 { : },"id" "Moab.37"
 { : }"id" "Moab.38"
],
 : ["nodes"
 { : },"id" "node1"
 { : }"id" "node2"
],
 : ["reservations"
 { : },"id" "system.48"
 { : }"id" "system.49"
],
 : ["virtualContainers"
 { : },"id" "vc93"
 { : }"id" "vc94"
],
 : ["virtualMachines"
 { : },"id" "vm2"
 { : }"id" "vm4"
]
}

Modify VC attributes with /rest/vcs/vc1?change-mode=set

{
 : ,"description" "This is a description."new
 : [],"flags" "HOLDJOBS"
 : {"owner"
 : ,"name" "ted"
 : "type" "USER"
 },
 : {"variables"
 : ,"a" "b"
 : "c" "d"
 }
}

Sample Responses

These messages may not match the messages returned from Moab exactly,
but they are given as examples of the structure of the responses.

128

JSON response for adding objects

{
 :["messages"
 ,"job '147' added to VC 'vc3'"
 "job 'Moab.1' added to VC 'vc3'"
]
}

JSON response for removing objects

{
 :["messages"
 ,"job '147' removed from VC 'vc3'"
 "job 'Moab.1' removed from VC 'vc3'"
]
}

JSON response for updating attributes

{ :[]}"messages" "VC 'vc3' successfully modified"

Restrictions

You can change the ACL Rules on a Virtual Container, but not using this resource. See
.Create or Update ACLs

3.15.4 Destroying Virtual Containers
The HTTP DELETE method is used to destroy .Virtual Containers

Quick Reference

DELETE http://localhost/mws/rest/vcs/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.15.4.1 Destroy Virtual Container

URLs and Parameters

129

DELETE http://localhost/mws/rest/vcs/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

3.16 Virtual Machines
This section describes behavior of the object in Moab Web Services. ItVirtual Machine
contains the URLs, payloads, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in theVirtual Machine API
 object. It also contains details regarding which fields areVirtual Machine

valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/vms Get all VMs Create VM

/rest/vms/id Get specified VM Modify VM Destroy VM

/rest/nodes/ /vmsnodeId Get all VMs on a Node

3.16.1 Getting Virtual Machines
The HTTP GET method is used to retrieve information. Queries for all objectsVirtual Machine
and a single object are available.

Quick Reference

GET http://localhost/mws/rest/vms/<id>
GET http://localhost/mws/rest/nodes/ /vms<nodeId>

3.16.1.1 Get All Virtual Machines

130

URLs and Parameters

GET http://localhost/mws/rest/vms

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/vms?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "vm1"
 { : },"id" "vm2"
 { : }"id" "vm3"
]
}

3.16.1.2 Get All Virtual Machines On Node

URLs and Parameters

GET http://localhost/mws/rest/nodes/ /vms<nodeId>

Parameter Required Type Valid Values Description

nodeId Yes String - The ID of the node of interest.

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/nodes/hv1/vms?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "vm1"
 { : },"id" "vm2"
 { : }"id" "vm3"
]
}

3.16.1.3 Get Single Virtual Machine

URLs and Parameters

131

GET http://localhost/mws/rest/vms/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : [],"aliases"
 : 1024,"availableDisk"
 : 512,"availableMemory"
 : 0,"availableProcessors"
 : 0.823,"cpuLoad"
 : ,"description" ""
 : 0,"effectiveTimeToLive"
 : ["flags"
 ,"CREATION_COMPLETED"
 "CAN_MIGRATE"
],
 : [],"genericEvents"
 : { : 250},"genericMetrics" "watts"
 : ,"id" "vm3"
 : { : },"job" "id" "Moab.1"
 : ,"lastMigrationDate" null
 : ,"lastSubstate" ""
 : ,"lastSubstateModificationDate" null
 : ,"lastUpdateDate" null
 : 0,"migrationCount"
 : ,"networkAddress" "10.0.0.5"
 : { : },"node" "id" "hv2"
 : [],"osList"
 : ,"os" "stateless1"
 : ,"powerSelectState" "NONE"
 : ,"powerState" "ON"
 : 0,"rack"
 : 0,"requestedTimeToLive"
 : 0,"slot"
 : ,"startDate" null
 : ,"state" "BUSY"
 : ,"substate" ""
 : 1024,"totalDisk"
 : 512,"totalMemory"
 : 1,"totalProcessors"
 : { : },"trackingJob" "id" "Moab.5"
 : [],"triggers"
 : {}"variables"
}

3.16.2 Creating Virtual Machines
The HTTP POST method is used to create .Virtual Machines

Quick Reference

POST http://localhost/mws/rest/vms[?proxy-user=]<username>

Restrictions

132

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.16.2.1 Create Virtual Machine

URLs and Parameters

POST http://localhost/mws/rest/vms[?proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when creating a Virtual Machine, along
with some sample values. Note that you can pass in an ID for the Virtual Machine. If you do not,
Moab will choose an ID for you.

JSON Payload

{
 : 1024,"totalDisk"
 : 512,"totalMemory"
 : 1,"totalProcessors"
 : ,"id" "vm3"
 : { : },"node" "id" "hv2"
 : ,"os" "stateless1"
 : ,"sovereign" true
 : ,"storage" "os:5 'd'"'c'%os:10
 : ,"template" "CustomTemplate"
 :10000,"requestedTimeToLive"
 : [],"triggers"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Sample Response

JSON Response for successful POST

{ : }"jobId" "vmcreate-25"

133

The jobId in the response identifies the job that will create the virtual
machine.

3.16.3 Modifying Virtual Machines
The HTTP PUT method is used to modify .Virtual Machines

Quick Reference

PUT http://localhost/mws/rest/vms/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.16.3.1 Modify Virtual Machine

URLs and Parameters

PUT http://localhost/mws/rest/vms/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Payload

The payload below shows all the fields that are available when modifying a Virtual Machine,
along with some sample values.

134

JSON Payload for VM Modify

{
 : [],"genericEvents"
 : { : 250},"genericMetrics" "watts"
 : ,"os" "stateless1"
 : ,"powerState" "ON"
 : ,"state" "BUSY"
 : [],"triggers"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "successfully updated VM variables"

3.16.3.2 Migrate Virtual Machine

URLs and Parameters

PUT http://localhost/mws/rest/vms/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows how to migrate a Virtual Machine to a node with ID "hv2".

JSON Request Body for VM Migrate to a specific node

{ : { : }}"node" "id" "hv2"

The request body below shows how to migrate a Virtual Machine to any available node by using
the destination ID of ANY, which for this operation is a reserved word.

135

JSON Request Body for VM Migrate to any available node

{ : { : }}"node" "id" "ANY"

Sample Response

The HTTP response code for this operation is 202 Accepted. See the
 section for more information.responses

JSON Response

{ : }"jobId" "vm-migrate1"

Restrictions

If a migration is requested by setting the node as shown in the above examples, any other
properties in the same request body will be ignored.

3.16.4 Destroying Virtual Machines
The HTTP DELETE method is used to destroy .Virtual Machines

Quick Reference

DELETE http://localhost/mws/rest/vms/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

3.16.4.1 Destroy Virtual Machine

URLs and Parameters

DELETE http://localhost/mws/rest/vms/ [?proxy-user=]<id> <username>

136

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{ : }"jobId" "vmdestroy-26"

The jobId in the response identifies the job that will destroy the virtual
machine.

137

4 Reporting Framework
The reporting framework is a set of tools to make time-based reports from numerical data. The
following sections will (1) provide an overview of the framework and the concepts related to it,
and (2) work through an example report (CPU Utilization) with details regarding which web
services to use and with what data.

The REST API reference is located in the section.Report Resource

4.1 Overview

4.1.1 Concepts
The reporting framework uses 3 core concepts: reports, datapoints, and samples.

Report - A report is a time-based view of numerical data.
Datapoint - A datapoint is a consolidated set of data for a certain time period.
Sample - A sample is a snapshot of a certain set of data at a particular point in time.

To illustrate, consider the memory utilization of a virtual machine: at any given point in time,
you can get the memory utilization by using your operating system's performance utilities (top
for Linux, Task Manager for Windows):

2400/12040MB

By recording the memory utilization and time constantly for 1 minute, you could gather the
following data:

Time Memory Utilization

3:53:55 PM 2400/12040 MB

3:54:13 PM 2410/12040 MB

3:54:27 PM 2406/12040 MB

3:54:39 PM 2402/12040 MB

3:54:50 PM 2409/12040 MB

Each of the rows in the table above represent a of data. By averaging the rows we cansample
consolidate them into one or more :datapoints

Start time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

Note that each datapoint covers exactly the same amount of time, and
averages all samples within that period of time.

A , then, is simply a list of datapoints with some additional configuration information:report

138

Field Value

Name Memory Utilization Report

Datapoint Duration 30 seconds

Report Size 3 datapoints

Datapoints:

Start time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

4.1.2 Capabilities
While storing simple information like memory utilization is nice, the reporting framework is
built to automatically handle much more complex information.

Consolidating Samples

Samples are JSON documents which are pushed into the report using the . Samplessamples API
are then stored until the consolidation operation creates a datapoint out of them. The table below
shows how different data types are handled in this operation:

Type Consolidation Function Handling

Numbers Numerical data is averaged

Strings Strings are aggregated into an array

Objects The consolidation function recursively consolidates sub-objects

Lists Lists are combined into a single flat list containing all elements

Mixed
If samples have different types of data for the same field, the values are aggregated
into an array.

Null
These values will be ignored unless all values for a sample field are set to null,
resulting in a null result.

If the mixed data types contains at least one number, it will be treated as
numerical data. The non-numerical data will be ignored and the result will be
averaged.

Below is an example of how the consolidation function works:

139

Samples:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:53:55
PM

2400 "str1" ["elem1"] "str1" "str1"

3:54:13
PM

2410 "str2"
["elem2",
"elem3"]

["elem1"] ["elem1"]

3:54:27
PM

2405 "str3" ["elem4"] null 5

Resulting Datapoint after consolidation:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:55:00
PM

2405
["str1",
"str2",
"str3"]

["elem1",
"elem2",
"elem3",
"elem4"]

["str1",
"elem1"]

5

Minimum Number of Samples

If your dataset is highly variable (i.e. values contained in samples are not very close together),
converting a single sample into a datapoint may provide misleading information. It may be better
to have a datapoint with an "Unknown" value. This can be accomplished by setting the minimum
number of samples for a datapoint in the report.

The field in the explains that if the specified size ofminimumSampleSize Report API
samples is not met when the consolidation function is performed, the datapoint is considered
"null" and no data is available for it. When this occurs, the sample data is discarded and the

 field of the datapoint is set to "null".data

For information on how to set this option, see the REST API section in theReport Resource
documentation.

Report Size

Reports have a predetermined number of datapoints, or size, which sets a limit on the amount of
data that can be stored. After the report size has been reached, as newly created datapoints are
pushed into the report, the oldest datapoints will automatically be deleted. This is to aid in
managing the storage capacity of the server hosting MWS.

On report creation, a Mongo collection will be initialized that is the
maximum size of a single entry (currently 16 MB) multiplied by the report
size. Be careful in setting a large report size as this will quickly allocate the
entire disk if many reports with large report sizes are created.

4.2 Example Report (CPU Utilization)

140

To understand how the behavior and usage of the reporting framework, a sample report covering
CPU Utilization will be shown in this section. It will not cover how to gather or display data for
reports, but will cover some basic operations that are available with Moab Web Services to
facilitate reporting.

4.2.1 Creating A Report
Before any data is sent to Moab Web Services, a report must first be created. A JSON payload
with a HTTP method of POST must be used to do this.

POST /rest/reports

{
 : ,"name" "cpu-util"
 : ,"description" "An example report cpu utilization"for
 : ,"consolidationFunction" "average"
 :600,"datapointDuration"
 :288"reportSize"
}

This will result in a report being created which can then be retrieved by sending a GET request
to . The of signifies that the/rest/reports/cpu-util datapointDuration 600
datapoint consolidation should occur once every 10 minutes, while the (i.e.reportSize
number of the datapoints) shows that the report will retain up to 2 days worth of the latest
datapoints.

GET /rest/reports/cpu-util

{
 : ,"consolidationFunction" "average"
 : 600,"datapointDuration"
 : [],"datapoints"
 : ,"description" "An example report cpu utilization"for
 : ,"id" "aef6f6a3a0bz7bf6449537c9d"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 288,"reportSize"
 : 0"version"
}

Note that an ID has been generated automatically and that no datapoints are associated with the
report.

4.2.2 Adding Samples
Until samples are added and associated with the report, datapoint consolidation will generate
datapoints with a field equal to . Once samples are added, however, they will bedata null
averaged and inserted into the next datapoint.

Create samples for the by sending a POST request as follows:cpu-util

141

1.

2.
3.

POST /rest/reports/cpu-util/samples

[
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:00:00 MST"
 : {"data"
 : 0.5,"minutes1"
 : 0,"minutes5"
 : 0"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:01:00 MST"
 : {"data"
 : 1,"minutes1"
 : 0.5,"minutes5"
 : 0.05"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:02:00 MST"
 : {"data"
 : 1,"minutes1"
 : 0.5,"minutes5"
 : 0.1"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:03:00 MST"
 : {"data"
 : 0.75,"minutes1"
 : 1,"minutes5"
 : 0.25"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:04:00 MST"
 : {"data"
 : 0,"minutes1"
 : 1,"minutes5"
 : 0.85"minutes15"
 }
 }
]

This sample data contains average load for the last 1, 5, and 15 minute intervals. The samples
were recorded at one-minute intervals starting at noon on January 1st, 2012.

4.2.3 Consolidating Data
A consolidation function must run to generate datapoints from the given samples. This scheduled
consolidation will occur at intervals of seconds. For each field in the datapointDuration

 object in samples, all values will be averaged. If non-numeric values are included, thedata
following strategies will be followed:

All fields which contain a single numeric value in any included sample will be averaged and
the non-numeric or null values will be ignored.
All fields which contain a list will be consolidated into a single, flat list.
All fields which contain only non-numeric or null values will be consolidated into a single,
flat list.

142

If no historical datapoints are provided in the creation of a report as in this example, the next
consolidation will be scheduled for the current time plus the . In thisdatapointDuration
example, the scheduled consolidation is at 10 minutes from the creation date. If historical
datapoints are included in the report creation, the latest datapoint's plus the endDate

 will be used as the scheduled time. If this date was in the past, the nextdatapointDuration
scheduled consolidation will occur at the appropriate interval from the last .endDate

4.2.4 Retrieving Report Data
To retrieve the consolidated datapoints, simply perform a GET request on the report once again.
Alternatively, the GET for a report's may be used.datapoints

GET /rest/reports/cpu-util

{
 : ,"consolidationFunction" "average"
 : 600,"datapointDuration"
 : ["datapoints"
 {
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : ,"data" null
 : ,"startDate" "2012-01-01 11:49:00 MST"
 : "endDate" "2012-01-01 11:59:00 MST"
 },
 {
 : ,"firstSampleDate" "2012-01-01 12:00:00 MST"
 : ,"lastSampleDate" "2012-01-01 12:04:00 MST"
 : {"data"
 : 0.65,"minutes1"
 : 0.25,"minutes15"
 : 0.6"minutes5"
 },
 : ,"startDate" "2012-01-01 11:59:00 MST"
 : "endDate" "2012-01-01 12:09:00 MST"
 }
],
 : ,"description" "An example report cpu utilization"for
 : ,"id" "aef6f6a3a0bz7bf6449537c9d"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 288,"reportSize"
 : 0"version"
}

Note that of the two datapoints above, only the second actually contains data, while the other is
set to . Only samples lying within the datapoint's duration, or from the to the null startDate

, are included in the consolidation. Therefore the first datapoint, which covered the 10endDate
minute period just before the samples' recorded timestamps, contained no data. The second,
which covers the 10 minute period matching that of the samples, contains the averaged sample
data. This data could be used to display consolidated report data in a custom interface.

4.2.5 Possible Configurations
Configuration options may be changed to affect the process of report generation. These are
documented in the API for the object and the object.Report Sample

143

5 MWS Plugins (Beta)
This section describes MWS Plugins, their use, and their creation in Moab Web Services.

MWS Plugins are currently in beta. Interfaces may change significantly in
future releases.

5.1 Plugin Overview
This section provides an overview of the plugin layer in web services. The following areas will
be covered:

An to the concept of MWS pluginsintroduction
How to Moab Workload Manager to interact with MWS pluginsconfigure
A description of the plugin lifecycle
How plugins are driven by events
How to expose from a pluginweb services
How data between plugins are resolvedcollisions
How calls from Moab are to MWS pluginsrouted

5.1.1 Introduction
Moab Web Services plugins provide a highly extensible interface to interact with Moab, MWS,
and external resources. Plugins can perform some of the same functions as Moab Resource
Managers, while also providing many other features not available to RMs. This section will
discuss the main features of plugins, some basic terminology, and how MWS plugins can
interact with Moab.

Features

Plugins can

be created, modified, and deleted without restarting Moab or MWS.
be defined in Groovy and uploaded to MWS without restarting.
have individual data storage space and configuration.
be polled at a regular interval (configured on a per-plugin basis)
be informed of important system events.
be individually stopped, started, paused, and resumed.
expose custom web services for external use.
be manipulated via a full RESTful API (see for more information).Resources

Terminology

There are two distinct terms in the plugin layer: plugin types and plugins (or plugin instances).

Plugin Types

144

1.

2.
3.

4.

5.

Plugin Types can be considered plugin templates with built-in logic. In object-oriented
programming languages, this relates to the concept of a class. They possess certain abilities, or
methods, that can be called by Moab Web Services to query information about a certain
resource. They also can define methods which will be exposed to external clients as web
services. They do not contain any configuration or current data, but they are often tied to a type
of component, such as components that communicate with Moab's WIKI Protocol or those that
are built on a certain product.

They define several types of methods:

Query methods such as , , and thatgetNodes getVirtualMachines getNodes
retrieve the current state of the resources that the plugin monitors.
The (optional) that is called at a configured interval.poll method
Instance methods that return information about the current plugin, such as .getState
While these are defined in the plugin type, the plugin type itself does not have a state.
Lifecycle methods of plugins created from the plugin type, such as and beforeStart

.afterStart

Web service methods that expose custom functionality as public web services.

Some examples of plugin types include the plugin type, the plugin type, and the Native MSM
 plugin type.CSA

Plugins (Instances)

Plugins (also called plugin instances) are created from plugin types. They contain current data or
configuration and use the plugin type methods to interact with resources.

Interactions with Moab as a Resource Manager

The plugin layer in MWS is integrated with Moab via the Native Resource Manager (RM)
interface. When utilizing plugins, MWS is configured as a RM in Moab as explained in the next
section. Events from Moab are pushed through the RM interface to MWS which is then pushed
to each plugin in turn. The relationship between Moab Web Services, Moab, and plugins is
shown in the following image:

145

In the diagram above, the MWS RM signifies that MWS is configured as a
Moab Resource Manager.

5.1.2 Configuring Moab
To use the full functionality of MWS plugins, Moab must be configured to use MWS as a
resource manager. The following lines must be in the file or/opt/moab/etc/moab.cfg
one of its included files:

RMCFG[mws] TYPE=NATIVE
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] CLUSTERQUERYURL=exec://$TOOLSDIR/mws/cluster.query.mws.pl
RMCFG[mws] WORKLOADQUERYURL=exec://$TOOLSDIR/mws/workload.query.mws.pl
RMCFG[mws] JOBCANCELURL=exec://$TOOLSDIR/mws/job.cancel.mws.pl
RMCFG[mws] JOBMIGRATEURL=exec://$TOOLSDIR/mws/vm.migrate.mws.pl
RMCFG[mws] JOBMODIFYURL=exec://$TOOLSDIR/mws/job.modify.mws.pl
RMCFG[mws] JOBREQUEUEURL=exec://$TOOLSDIR/mws/job.requeue.mws.pl
RMCFG[mws] JOBRESUMEURL=exec://$TOOLSDIR/mws/job.resume.mws.pl
RMCFG[mws] JOBSTARTURL=exec://$TOOLSDIR/mws/job.start.mws.pl
RMCFG[mws] JOBSUBMITURL=exec://$TOOLSDIR/mws/job.submit.mws.pl
RMCFG[mws] JOBSUSPENDURL=exec://$TOOLSDIR/mws/job.suspend.mws.pl
RMCFG[mws] NODEMODIFYURL=exec://$TOOLSDIR/mws/node.modify.mws.pl
RMCFG[mws] NODEPOWERURL=exec://$TOOLSDIR/mws/node.power.mws.pl
RMCFG[mws] RESOURCECREATEURL=exec://$TOOLSDIR/mws/resource.create.mws.pl
RMCFG[mws] SYSTEMMODIFYURL=exec://$TOOLSDIR/mws/system.modify.mws.pl
RMCFG[mws] SYSTEMQUERYURL=exec://$TOOLSDIR/mws/system.query.mws.pl

The next step is to edit the MWS values in . Here are the/opt/moab/etc/cloud.cfg
default values:

CONFIG[] MWS_URL=http://localhost:8080/mwsdefault
CONFIG[] MWS_USERNAME=admindefault
CONFIG[] MWS_PASSWORD=adminpwdefault

146

 and must match the values of MWS_USERNAME MWS_PASSWORD
 and auth.defaultUser.username
, respectively, found in auth.defaultUser.password

./opt/mws/etc/mws-config.groovy

The scripts should be located in the of the Moab home directory. The *.mws.pl tools/mws
 module must also be available to the scripts. All of these files mayMoab/WebServices.pm

be found in the and directories of the Moab tar file. They aretools/mws lib/perl5
automatically installed if Moab is configured with the flag or they can be copied--with-mws
directly from there to the folder in your Moab home directory.tools

To enable such actions as submitting jobs as different users, the optionENABLEPROXY=TRUE
must be present in the configuration line and the option must beADMINCFG OSCREDLOOKUP
set to as follows:NEVER

ADMINCFG[1] USERS=root ENABLEPROXY=TRUE
OSCREDLOOKUP NEVER

5.1.3 Lifecycle States
During the course of a plugin's use, the state of the plugin may change many times. Plugins have
four possible states: , , , and . The flow of a pluginStopped Started Paused Errored
through the states is shown in the following image:

To see descriptions of each state, see the .PluginState API

Events that occur during lifecycle state changes may be found in the section.Events

5.1.4 Events
Plugins use an event based model in that methods are called on the plugin when certain criteria
are met or situations arise. Plugin types may be created to handle certain events by implementing
or not implementing certain methods. Events currently exist for polling and certain lifecycle state
changes.

The Polling Event

147

To maintain current information, each plugin is polled for node, job, and virtual machine
information at a specified time interval. By default, this interval is set to 30 seconds, but can be
modified for all or individual plugins as explained in .Plugin Management

When a polling event occurs, the method on the target plugin is called. This method maypoll
perform any function desired and should typically make calls to the toPlugin Persistence Service
make updated to nodes, jobs, or virtual machines. For example, the method in the poll Native
plugin type is implemented as follows:

This is an extremely simplified version of what is actually implemented in
the Native plugin type.

public void poll() {
 getPluginPersistenceService().updateNodes(getNodes());
 getPluginPersistenceService().updateVirtualMachines(getVirtualMachines());
 getPluginPersistenceService().updateJobs(getJobs());
}

This simple poll method calls three other helper methods called , getNodes
, and to retrieve node, job, and virtual machine objects.getVirtualMachines getJobs

These results are each sent to the appropriate method in the plugin persistence service. While the
specific details of the plugin persistence service are not important to understand at this point, the
objective of this example is to demonstrate one possible use of the poll event handler. The CSA
plugin type, on the other hand, uses the poll event to retrieve update internal data from its
pertinent resources and to update node and virtual machine information. It does not query or
persist any job information.

Lifecycle Events

Events are also triggered for certain lifecycle state changes. These are documented in the table
below with the associated method that must be implemented on a plugin type to handle the event.

State Change Event Description

Start beforeStart Triggered just before starting a plugin.

Start afterStart Triggered just after a plugin has been started.

Stop beforeStop Triggered just before stopping a plugin.

Stop afterStop Triggered just after stopping a plugin.

Currently, no events are triggered for pausing, resuming, erroring, or clearing errors for plugins.

5.1.5 Custom Web Services
Although the events interface typically serves most cases, there are some instances where an
event is not supported that is desired. This is especially true when an external resource is the
source of the event. To address these issues, plugins can expose custom web services to external
resources. These web services may be named freely and do anything they wish in the plugin
framework.

148

For example, suppose a resource needs to notify a plugin that provisioning of a virtual machine
has been completed. Instead of having the plugin poll the resource to verify that the provisioning
was finished, the plugin could expose a custom web service to handle notification from the
resource itself.

Sample custom web service

def vmProvisionFinished(Map params) {
 // Handle event
 [messages:[]]return "Event successfully processed"
}

A full explanation of the syntax and creation of custom web services may be seen on the Plugin
 page under "Exposing Web Services".Type Guidelines

For information how resources can access plugin web services, see Accessing Plugin Web
.Services

5.1.6 Data Collision Detection
At times, plugins can report differing or even contradictory data for nodes, jobs, and virtual
machines. This is called a data "collision". Currently, when data from one plugin "collides" with
another, the last plugin to report (or persist using the plugin persistence service) the data will be
considered the authoritative source for information.

For example, suppose two plugins exist, and . These plugins both reportpluginA pluginB
data for a node with an ID of . However, each reports a different node power state. Pluginnode1
A reports the power as , while plugin B reports the power as . The data collision thatON OFF
occurs due to these two plugins persistence contradictory data is resolved by the timing of their
polling. If plugin A is polled first and plugin B second, the node will be reported as untilOFF
plugin A is polled again and vice versa.

The simple workaround for this issue is to ensure that no two plugins report the same resource or
that they report different properties of the same resource. For example, if plugin A only modified
the power state and plugin B only modified the available disk, these two plugins would work in
harmony to provide a consistent view of the node resource.

5.1.7 Routing
Due to the fact that Moab Web Services is configured as a Resource Manager (RM) in Moab
Workload Manager, events are sometimes triggered by Moab through the RM interface. These
actions could be migrating a virtual machine, starting a job, submitting a job, modifying a node,
and so forth. The decisions of which plugins are affected and notified is termed .routing

Currently all plugins receive all commands from Moab. This means that each plugin will receive
the command to start a job if sent from Moab, even if that plugin does not handle the job. This
means that plugins must ensure they handle only actions or commands for resources which they
report or handle.

5.2 Plugin Type Management
Plugin types comprise the methods by which Moab may communicate with resource managers or
other external components. They define all operations that can be performed for a "type" or
"class" of plugins.

149

1.
2.

Several plugin types are provided with web services, but it is easy to create additional plugin
types and add their functionality to web services.

5.2.1 Bundled Plugin Types
Several plugin types are provided by Adaptive Computing for use in Moab Web Services.
Examples of these include the and plugin types.Native MSM

Please see the Bundled Plugin Types item in the Quick Reference menu for
all bundled types.

5.2.2 Creating Plugin Types
Creating a plugin type involves using , which is based on the programmingGroovy Java
language. This section describes the general guidelines and specifics of implementing a simple
plugin.

5.2.2.1 Plugin Type Guidelines
The abstract class is provided to assist in creating plugincom.ace.mws.plugins.AbstractPlugin
types. However, this class need not be extended to provide a fully functional plugin type. In fact,
there are only two methods that be implemented to provide a working plugin type:must

public String getId();

public void setId(String id);

These may be stored in whichever way desired, but will most likely be implemented as follows:

In the following Groovy example, will be expanded by theString id
compiler to the full method definitions given above. Thus no explicit method
definitions are actually needed.

Basic Groovy Implementation

class BasicPlugin {
 idString
}

To pass the checks to be able to add the class as a plugin, there are two requirements:

The ID getter and setter must be fully implemented (as described above).
The class name must end in "Plugin".

Dynamic Methods on Plugins

Several methods are dynamically inserted onto each plugin. These methods do not need to be
included in the plugin class, and in fact are preferred not to as they will simply be overwritten.

These methods are shown below:

http://groovy.codehaus.org/
http://en.wikipedia.org/wiki/Java_(programming_language)

150

1.
2.

// Defined in com.ace.mws.plugins.AbstractPlugin
 void start() PluginStartException; // Equivalent topublic throws

[pluginControlService.start(id)|guide:pluginControlLifecycle]String
 void stop() PluginStopException; // Equivalent topublic throws

[pluginControlService.stop(id)|guide:pluginControlLifecycle]String

// Defined in com.ace.mws.plugins.AbstractPluginInfo
 getPluginType(); // Equivalent topublic String

[pluginConfigurationService.getPluginType(id)|guide:pluginConfigurationService]String
 PluginState getState(); // Equivalent topublic

[pluginConfigurationService.getState(id)|guide:pluginConfigurationService]String
 getPollInterval(); // Equivalent topublic Integer

[pluginConfigurationService.getPollInterval(String
id)|guide:pluginConfigurationService]

 getAutoStart(); // Equivalent topublic Boolean
[pluginConfigurationService.getAutoStart(id)|guide:pluginConfigurationService]String

 Map< , > getConfig(); // Equivalent topublic String Object
[pluginConfigurationService.getConfig(id)|guide:pluginConfigurationService]String

Plugin Metadata

Metadata may be included in plugin classes by defining static properties on the classes.
Currently, the metadata available is and . These may be defined in theauthor description
following manner:

The following example does not implement the ID property and therefore
would not pass as a valid plugin.

Groovy plugin with Metadata

class ExamplePlugin {
 author = static "Adaptive Computing"
 description = static "A basic example a plugin with metadata"for
}

Exposing Web Services

Any number of methods may be exposed as public web services by following two simple rules:

The method must return a list, map, or a complex object.
It must define a single argument of a Map.

The argument will contain all parameters passed into the web service by the client. See
 for additional details.Accessing Plugin Services

Parameters may be passed into the web service call as normal URL parameters such as
, as key-value pairs in the POST body of a request, or as?param=value¶m2=value2

JSON in the body. For the first two cases, the parameters will be available on the Map argument
passed into the web service call as key value pairs matching those of the request. Note that in
these cases all keys and values will be interpreted as strings.

GET PLUGIN_SERVICE_URL?key=value&key2= &key3=5true

def serviceMethod(Map params) {
 assert params.key=="value"
 assert params.key2==" "true
 assert params.key3=="5"
}

151

1.
2.

3.

In the latter case, the parsed JSON properties will be available within a parameter called body
in the Map argument. In this scenario, the types of the values are preserved by the JSON format.

POST PLUGIN_SERVICE_URL with JSON body of
{ : , : , :5}"key" "value" "key2" true "key3"

def serviceMethod(Map params) {
 assert params.body.key=="value"
 assert params.body.key2==true
 assert params.body.key3==5
}

Events

For events that trigger method calls on plugins, these methods may be implemented on custom
plugin types to handle the event. For more information, see the section.Plugin Events

External Dependencies

External dependencies (e.g. JAR files) may be included and referenced in custom plugin types.
However, certain rules must be followed in order to have these load correctly:

The plugin type must be bundled and uploaded as a JAR file.
The plugin type must bundle all external dependency JARs in the root of the plugin type
JAR file.
An entry must be included in the file that references each of these bundledMANIFEST.MF
JAR files as a space separated list:

Class-Path: dependency1.jar dependency2.jar dependency3.jar

Assuming that these rules are followed, and that the plugin type is uploaded using the REST API
or the User Interface, the dependent JARs will first be loaded and then the new plugin type and
associated files will be loaded.

5.2.2.2 API Classes and Interfaces
There are several packages and classes available to assist in creating plugin types. These can all
be found in the under the package.API documentation com.ace.mws.plugins

Here is a brief synopsis of the classes that can and should be used:

Interfaces

The package contains the interfaces and com.ace.mws.plugins AbstractPluginInfo
 that should form the basis of any new plugin type.AbstractPlugin

Only the and functions must be implemented for a fullygetId() setId()
operational plugin. All other methods will be inserted dynamically if they do
not exist on startup.

152

Services

The package contains interfaces for all services available tocom.ace.mws.plugins.services
plugin types. These may be used as discussed in .Services

Exceptions

The package contains several exceptions that may be used andcom.ace.mws.plugins.exceptions
in some cases, should be caught.

5.2.2.3 Plugin Type Example
A sample plugin type in Groovy would resemble the following:

package test

 com.ace.mws.plugins.*import
 com.ace.mws.plugins.exceptions.*import

class UploadTestPlugin {
 author = static "Adaptive Computing"
 description = static "A simple plugin in groovy"

 idString

 void verifyConfiguration() InvalidPluginConfigurationException {public throws
 def myConfig = config
 def errors = []
 (!myConfig.arbitraryKey)if
 errors << "Missing arbitraryKey!"
 (errors)if
 InvalidPluginConfigurationException(throw new "Invalid plugin ${id}

, errors)configuration"
 }
}

5.2.3 Plugin Services
Several services are available for use by any plugin type. To use services, they must be declared
within the class of the plugin type. For example, to use the plugin control service, a

 property of type or "def" must be declaredpluginControlService IPluginControlService
on the plugin type. The actual service will be inserted or injected into the plugin class when the
plugin is used.

Injected typed service

package example

 com.ace.mws.plugins.services.IPluginControlServiceimport

 class ExamplePlugin {public
 IPluginControlService pluginControlService

 void someMethod() {public
 // Use the control service
 pluginControlService.[method]();
 }
}

153

Injected untyped service

package example

 class ExamplePlugin {public
 def pluginControlService

 void someMethod() {public
 // Use the control service
 pluginControlService.[method]();
 }
}

Do attempt to create a new instance of the services before use, such as innot
a constructor. The services will be automatically injected before any methods
are called on the plugin.

The injected service property be named correctly to use it, regardless ofmust
the type used.

5.2.3.1 Configuration Service
The configuration service controls all configuration options for plugins. Typically this service
does not need to be called directly as methods are provided on all plugins which are routed to the
configuration service as explained in the guidelines under .Dynamic Methods

The property will be injected with a class of type pluginConfigurationService
.IPluginConfigurationService

5.2.3.2 Control Service
The control service allows lifecycle management operations to be performed on plugins. It also
provides methods to create and retrieve plugins. Note that the plugin control service may be used
by other plugins, allowing one plugin to dynamically create, retrieve, start, or stop plugins. The

 plugin does exactly this by creating a new plugin (for example) for each supportedCSA SA
provider in CSA.

The property will be injected with a class of type pluginControlService
.IPluginControlService

Creating Plugins

Several methods are provided to allow on-the-fly creation of new plugins. Generally, they allow
a plugin with a specific ID and plugin type (as a string or as a Groovy Class) to be created with
optional configuration properties. These properties should match the fields in the . IfPlugin API
specific or all configuration properties are omitted, the defaults will be used as described in the

 section.Plugin Management with Configuration file

In each case, a boolean value is returned indicating whether the creation succeeded or not.
Additionally, the methods will initialize the plugin for retrieval or usage andcreatePlugin
attempt to start the plugin if the property is true.autoStart

154

Create plugin with default configuration

try {
 (pluginControlService.createPlugin(,))if "myPlugin" "Native"
 println "myPlugin was created successfully!"
 else
 println "There was an error creating myPlugin"
} (PluginStartException e) {catch
 println "There was a problem starting the plugin: ${e.message}"new
} (InvalidPluginConfigurationException e) {catch
 println "There were errors with the plugin's configuration: ${e.errors}"
}

Create plugin with custom configuration

if (pluginControlService.createPlugin(, , [autoStart: ,"myPlugin" "Native" false
pollInterval:600]))
 println "myPlugin was created successfully!"
else
 println "There was an error creating myPlugin"

Retrieving Plugins

Retrieving plugins requires either a unique identifier or the type and configuration option(s).

Retrieving by Unique Identifier

Get plugin by ID

IPlugin plugin = pluginControlService.getPluginById();"plugin1"

Retrieving by Type and Configuration Properties

The second method of retrieving Plugins involves sending a type and configuration properties as
a map. Both parameters are required; however, the configuration map may be empty as in the
following example.

Get plugin by Type Only

Map< , > config = HashMap< , >();String String new String String
IPlugin plugin = pluginControlService.getPlugin(, config);"Native"

In this case, the first plugin with a type of will be returned. If no Plugins of this typeNative
exist, is returned.null

If the configuration properties map is filled with any properties, all keys and values in it must be
matched for a plugin to be successfully retrieved. For example, if the current plugin list looks
like the following:

155

test {
 pluginType = "Native"
 config = [test:]" "true
}
test2 {
 pluginType = "Native"
 config = [test2:]" "true
}

Then the following calls would result:

IPlugin plugin;
Map< , > config = HashMap< , >();String String new String String

config.put(,);"test" " "true
plugin = pluginControlService.getPlugin(, config);"Native"
assert ==plugin.getId();"test"

config.put(,);"test2" " "true
plugin = pluginControlService.getPlugin(, config);"Native"
assert plugin== ;null

config.remove();"test"
plugin = pluginControlService.getPlugin(, config);"Native"
assert ==plugin.getId();"test2"

Starting or Stopping Plugins

Plugins may be started or stopped on demand. These two methods are exposed directly as
 and on the plugin control service. Although each method does not return any data,start stop

exceptions are thrown if errors are encountered.

These methods correctly handle lifecycle events and changing plugin state.
These should never be modified directly!

Start Plugin

try {
 pluginControlService.start()"myPlugin"
} (PluginStartException e) {catch
 println "There was a problem starting the plugin: ${e.message}"
} (InvalidPluginException) {catch
 println "The plugin 'myPlugin' is invalid"
} (InvalidPluginConfigurationException e) {catch
 println "The plugin has an invalid configuration: ${e.errors}"
}

Stop Plugin

try {
 pluginControlService.stop()"myPlugin"
} (PluginStopException e) {catch
 println "There was a problem stopping the plugin: ${e.message}"
} (InvalidPluginException) {catch
 println "The plugin 'myPlugin' is invalid"
}

Verifying Plugin Configuration

156

Finally, the plugin control service may be used to verify plugin configuration at any point instead
of just when the plugin is started or modified. This may be useful to attempt to modify plugin
configuration directly through the and then verify that the newConfiguration Service
configuration is valid for the plugin. Exceptions are thrown if the plugin or the configuration is
invalid.

Verify plugin configuration

try {
 pluginControlService.verifyConfiguration()"myPlugin"
} (InvalidPluginException) {catch
 println "The plugin 'myPlugin' is invalid"
} (InvalidPluginConfigurationException e) {catch
 println "The plugin has an invalid configuration: ${e.errors}"
}

5.2.3.3 Data Persistence Service
The data persistence service is provided to ease the storage of Moab state data such as nodes,
jobs, and virtual machines. Objects passed to the service are saved to the Moab Web Services
database. It also handles data collisions as explained in the .Overview

If the plugin uses the , , or methods exclusivelygetNodes getJobs getVirtualMachines
for handling polling, the service will likely never be used directly. This is due to the fact that the
default implementation of the method uses the persistence serviceAbstractPlugin poll
with the results from these methods. The persistence service, however, is used in all plugins that
persist job, node, or virtual machine data.

The property will be injected with a class of type pluginPersistenceService
.IPluginPersistenceService

All examples use a custom web service to create events.

Note that in all cases, the Node, Job, and VirtualMachine objects are
intentionally saved before being passed to the persistence service.not

Persisting Data to the Database

In this most typical use case of the persistence service, it may be used to persist node, job, and
virtual machine data to the database.

Persisting Nodes

157

Persisting Nodes in Groovy

package example

 com.ace.mws.nodes.Nodeimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def updateNodesService(Map params) {public
 def nodes = ...// create Node objects here
 (pluginPersistenceService.updateNodes(nodes))if
 log.info()"Nodes successfully updated"
 else
 log.info()"There was an error updating nodes"
 }
}

Persisting Jobs

Persisting Jobs in Groovy

package example

 com.ace.mws.jobs.Jobimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def updateJobsService(Map params) {public
 def jobs = ...// create Job objects here
 (pluginPersistenceService.updateJobs(jobs))if
 log.info()"Jobs successfully updated"
 else
 log.info()"There was an error updating jobs"
 }
}

Persisting Virtual Machines

Persisting Virtual Machines in Groovy

package example

 com.ace.mws.vms.VirtualMachineimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def updateVirtualMachinesService(Map params) {public
 def vms = ...// create Virtual Machine objects here
 (pluginPersistenceService.updateVirtualMachines(vms))if
 log.info()"VMs successfully updated"
 else
 log.info()"There was an error updating VMs"
 }
}

Removing Data from the Database

On the other hand, the plugin persistence service may also be used to remove state data from the
database by using the methods.remove*

Removing Nodes

158

Removing Nodes in Groovy

package example

 com.ace.mws.nodes.Nodeimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def removeNodesService(Map params) {public
 def nodes = ...// load Node objects here

 (pluginPersistenceService.removeNodes(nodes))if
 log.info()"Nodes successfully removed"
 else
 log.info()"There was an error removing nodes"
 }
}

Removing Jobs

Removing Jobs in Groovy

package example

 com.ace.mws.jobs.Jobimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def removeJobsService(Map params) {public
 def jobs = ...// load Job objects here

 (pluginPersistenceService.removeJobs(jobs))if
 log.info()"Jobs successfully removed"
 else
 log.info()"There was an error removing jobs"
 }
}

Removing Virtual Machines

Removing Virtual Machines in Groovy

package example

 com.ace.mws.vms.VirtualMachineimport

 class ExamplePlugin {public
 def pluginPersistenceService

 def removeVirtualMachinesService(Map params) {public
 def vms = ...// load VirtualMachine objects here

 (pluginPersistenceService.removeVirtualMachines(vms))if
 log.info()"Virtual machines successfully removed"
 else
 log.info()"There was an error removing virtual machines"
 }
}

5.2.3.4 Individual Datastore Service
The individual datastore service is provided to allow a plugin to persist data to the database that
is isolated from all other persistent data. It is not designed to store Moab data such as nodes,
jobs, or virtual machines, but custom, arbitrary data pertinent only to the individual plugin.

The property will be injected with a class of type pluginDatastoreService
.IPluginDatastoreService

159

Persisting Custom Data

The datastore service may be used to persist custom, arbitrary data to the database. Multiple
collections may be used by a single plugin and can be named arbitrarily. Although
non-alphanumeric characters may be used, it is not recommended as it could cause loss of data
between collections.

Always use the of the current plugin when calling the id
 methods. Failure to do so will cause issuespluginDatastoreService

with other plugins.

Adding A Single Entry

Persisting Custom Entry in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntryService(Map params) {public
 def collectionName = "collection1"
 def data = [:]
 // Add data here to the Map
 (pluginDatastoreService.addData(id, collectionName, data))if
 log.info()"Data successfully added"
 else
 log.info()"There was an error adding the data"
 }
}

Adding Multiple Entries

Persisting Multiple Entries in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntriesService(Map params) {public
 def collectionName = "collection1"
 def dataList = []
 dataList.add(/* Custom Map of data here */)
 dataList << // Custom Map of data here
 (pluginDatastoreService.addData(id, collectionName, dataList))if
 log.info()"Data entries successfully added"
 else
 log.info()"There was an error adding the data entries"
 }
}

Updating A Single Entry

160

Updating Entry in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def updateDataEntryService(Map params) {public
 def collectionName = "collection1"
 def data = [:]
 // Add data here to the Map
 (pluginDatastoreService.updateData(id, collectionName, , ,if "key" "value"
data))
 log.info()"Data successfully updated"
 else
 log.info()"There was an error updating the data"
 }
}

Querying Data

The datastore service may also be used to query for collections and specific entries in each
collection.

Find If A Collection Exists

Collection Exists in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntryService(Map params) {public
 def collectionName = "collection1"
 (pluginDatastoreService.exists(id, collectionName))if
 log.info()"Collection exists"
 else
 log.info()"The collection does not exist"
 }
}

Get Contents Of A Collection

Get Collection in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntriesService(Map params) {public
 def collectionName = "collection1"
 def dataList = pluginDatastoreService.getCollection(id, collectionName)
 (dataList!=)if null
 log.info()"Collection successfully queried"
 else
 log.info()"There was an error querying the collection"
 }
}

Get A Single Entry From A Collection

161

Get Single Entry in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def updateDataEntryService(Map params) {public
 def collectionName = "collection1"
 def data = pluginDatastoreService.getData(id, collectionName, ,)"key" "value"
 (data!=)if null
 log.info()"Data successfully retrieved"
 else
 log.info()"There was an error retrieving the data"
 }
}

Removing Data

The data in the individual datastore may also be cleared out or removed on a collection or single
entry basis.

Removing A Collection

Removing Collection in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntryService(Map params) {public
 def collectionName = "collection1"
 def data = pluginDatastoreService.clearCollection(id, collectionName)
 // Data now contains the collection that was cleared
 (data!=)if null
 log.info()"Collection successfully cleared"
 else
 log.info()"There was an error clearing the collection"
 }
}

Removing A Single Entry

Remove Single Entry in Groovy

package example

 class ExamplePlugin {public
 def pluginDatastoreService

 def addDataEntriesService(Map params) {public
 def collectionName = "collection1"
 (pluginDatastoreService.removeData(id, collectionName, ,))if "key" "value"
 log.info()"Data entry successfully removed"
 else
 log.info()"There was an error removing the data entry"
 }
}

5.2.4 Uploading Plugin Types
Plugin types can be uploaded into Moab Web Services using the user interface or REST API.

162

5.2.4.1 Upload with the User Interface
The user interface may be used to upload plugins using a file, a Java Archive () file, orJAR
pasted Groovy code.

Single Class File

Groovy files containing a single may be uploaded at theplugin class
/mws/admin/plugin-types/create URL.

Simply click , select the class file, and click the Add files... .groovy Start upload
button. If the plugin type was successfully uploaded and initialized, the size of the file uploaded
will be displayed.

If the upload failed or an error occurred during initialization of the plugin, an error message will
be displayed. See the log file for additional details and error messages.

http://en.wikipedia.org/wiki/Jar_file

163

JAR File

A JAR file containing one or more plugins may also be uploaded using the same process as the
Groovy file.

Navigate to the /mws/admin/plugin-types/create URL. Click , select the Add files... .jar
class file, and click the button. If the upload failed or an error occurred duringStart upload
initialization of the plugin(s), an error message will be displayed. See the log file for additional
details and error messages.

The JAR upload process differs from the single file in that if successful, the name of each
successfully loaded plugin class will be displayed.

There are two ways that the plugins are extracted from the JAR file: the manifest file and
autodetection.

Manifest File

The manifest file, located at , will be loaded and an attributeMETA-INF/MANIFEST.MF
named will be used. This attribute's value should be a comma-separatedMWS-Plugin-Types
list of full class names of all plugin types, including the package.

164

example.jar/META-INF/MANIFEST.MF Example

Manifest-Version: 1.0
MWS-Plugins: example. .ExamplePlugin, example. .AnotherExamplePluginpackage package

Autodetect

If no manifest attribute is specified, or the manifest file does not exist, then MWS will search in
the JAR for file names that end with . If it finds any, it will attempt to load them asPlugin
plugin classes.

Code

Code may also be written dynamically in the browser which is then uploaded and compiled as
Groovy code. Make sure to refer to the plugin type before finishing the uploadGuidelines
process.

Navigate to the /mws/admin/plugin-types/create URL and click toPaste Source Code
open the text area where code should be placed.

165

Paste or type the code into the field and click . If the upload succeeded, the userCreate
interface will be redirected to the plugin type show page. If the upload failed or an error occurred
during initialization of the plugin, an error message will be displayed. See the log file for
additional details and error messages.

5.2.4.2 Uploading with REST API
Alternatively, the same file formats may be uploaded to Moab Web Services using a REST API.
The URLs, payloads, and responses are fully documented in the section.Updating Plugin Types

When using the REST API, the code and single Class files use the .same operation

5.2.5 Listing Plugin Types
Finally, it is possible to list the available plugin types with their associated authors and
descriptions through either the REST API or the user interface.

Listing in REST API

Retrieving all or specific plugin types is fully documented in the resourceGetting Plugin Types
section.

Listing in User Interface

To retrieve a list of all plugin types, navigate to /mws/admin/plugin-types/list.

166

1.
2.
3.

The ID of each plugin type may be clicked to navigate to a page with more information
concerning the type, including the current instances using it. A link is also provided to create a
new plugin from the currently displayed type.

5.3 Plugin Management and Usage
Plugins may be managed and accessed with Moab Web Services dynamically, even while
running. This includes plugin instance configuration, controlling plugin lifecycle, and accessing
custom web services.

5.3.1 Configuring Plugins
Configuring plugins may be done by any of these methods:

Using the MWS configuration file which is read during the MWS startup process.
Using the user interface through a web browser.
Using the REST API through scripts or other web client utilities.

5.3.1.1 Managing with Configuration File

Only new plugins (those with IDs that do not exist in the database) are loaded
on startup. The database is considered the authoritative source for all current
plugin configuration.

167

Configuration of plugins with a file involves setting the fields in the Moab WebConfiguration
Services configuration file. See the for more information on theMWS configuration guide
configuration file.

Two areas can be configured within the file: default values and plugin configuration.

Changing Default Values

Configuration may be specified for default values for all new plugins as follows:

All settings are optional for the default configuration. If no values are
specified, the default values will be used as shown in the Configuration
reference guide.

Default plugin configuration

plugins {
 pollInterval = 30
 pollEnabled = true
 autoStart = true
 config {
 arbitraryKey = "arbitrary value"
 username = "admin"
 password = "pass"
 }
}

With these settings, any new plugins would be created with polling enabled, auto start enabled, a
polling interval of 30 seconds, and three entries.config

Additionally, the and fields may be given a default value that will be used inpluginType id
the for creating new plugins as follows:User Interface

Setting UI Defaults

plugins {
 id = "companyId00"
 pluginType = "Native"
}

Instance Configuration

New plugins can be created by using the configuration file. Please note, however, that if a plugin
already exists in the database with the same ID when the configuration file is read, the
configuration file settings will be ignored. In other words, the database data is taken over all
configuration file data.

To define plugins, simply include an block in the configuration file. Each newinstances
block within is the ID of a new plugin and contains all desired configuration for it.instances

168

Sample plugin 'native1'

plugins {
 instances {
 native1 {
 pluginType = "Native"
 pollInterval = 25
 autoStart = false
 }
 }
}

It should be reiterated that all configuration entries for a plugin, excluding the and id
, are optional.pluginType

Default vs Instance Config

Any entries defined in the block will be merged with the default config instances
 entries with the plugin entries taking precedence. For example, for the followingconfig

configuration:

Config Entries

plugins {
 config {
 key = "defaultKey"
 defaultKey = "defaultValue"
 }
 instances {
 native1 {
 pluginType = "Native"
 config {
 key = "pluginKey"
 pluginKey = "pluginValue"
 }
 }
 }
}

A plugin would be configured with a combined configuration of:

config {
 key = "pluginKey"
 defaultKey = "defaultValue"
 pluginKey = "pluginValue"
}

5.3.1.2 Managing with User Interface
Plugins may be listed, created, modified, and deleted by navigating to /mws/admin/plugins.

New plugins may be created by navigating to /mws/admin/plugins/create. This interface exposes
the same configuration options that are in the configuration. The same validationExternal File
occurs through the user interface for required and optional fields.

5.3.1.3 Managing with REST API
The URLs, payloads, and responses of managing plugins through the REST API are fully
documented in the sections.Plugins Resource

169

5.3.2 Controlling Plugin Lifecycle
Monitoring and lifecycle control of plugins may be performed on a single page located at
/mws/admin/plugins/control/list. This page displays the current state of all plugins as well as
their polling status.

Active Plugins

Active plugins are those which are in the Started or Paused states. These are available to receive
events such as polling. If paused, a plugin will not receive events but is not actually stopped,
therefore no stop events are triggered.

The following images demonstrate the status of plugins in the active states.

A started plugin which includes the relative time of the last poll as well as the time of the next
poll in a countdown format. Action buttons are available to stop or pause the plugin as well as
trigger an immediate poll event.

170

A paused plugin which includes only the last polling time. Action buttons are available to stop or
resume the plugin, as well as trigger an immediate poll event.

Disabled Plugins

Disabled plugins are those which are in the Stopped or Errored states. These plugins do not
receive events such as polling. If errored, a plugin may either be stopped, which represents a
"clearing" of the error, or started normally. However, if no action is taken on an errored plugin, it
likely will not start due to the fact that most plugins are put into the errored state during startup
of the plugin.

The following images demonstrate the representation of plugins in the disabled states.

A stopped plugin. A single action button is available to attempt to start the plugin.

An errored plugin. As mentioned previously, action buttons are available to stop the plugin or
clear the error as well as attempt to start the plugin. If the start fails, an error message will be
displayed.

5.3.3 Accessing Web Services
As mentioned in the , custom web services may be available in plugins. These webOverview
services may be called externally by resources and arbitrary consumers or internally by other
plugins.

Access Web Services Externally

To access the custom web services defined by the plugin, navigate to or call /mws/rest/plugins/
 /services/ where is the unique identifier for the plugin, and ID SERVICE_METHOD ID

 is the method name of the exposed service.SERVICE_METHOD

Parameters may be passed into the web service call as normal URL parameters such as
, in the POST body of a request, or as JSON in the body.?param=value¶m2=value2

171

Additionally, translation is done to map service names to dash-separated names inCamelCase
the URL. For example, a web service method named on a plugin with an ID of notifyEvent

 can be called with the following URLs.notifications

// Camel case
/mws/ /plugins/notifications/services/notifyEventrest
// Dash separated
/mws/ /plugins/notifications/services/notify-eventrest

Web Service Calls from Internal Plugins

In some cases, it may be desirable to access the custom web services from another plugin
internally. To do so, simply retrieve the plugin using the and call theplugin control service
desired method directly.

For example, if a plugin exists with an ID of "yourPlugin", and another plugin identified as
"myPlugin" wants to access a custom web service defined as the following:

yourPlugin web service

def notifyEvent(Map params) {
 // Handling of the event
 [processed:]return true
}

The plugin "myPlugin" would simply retrieve "yourPlugin" using the plugin control service and
call the method. The return value can be used directly without any translation to or from JSON.

Call plugin's custom service

IPluginControlService pluginControlService

void poll() {
 // This plugin is "myPlugin"
 assert id=="myPlugin"

// Retrieve "yourPlugin"
 def yourPlugin = pluginControlService.getPluginById()"yourPlugin"
 assert yourPlugin.id=="yourPlugin"

// Call custom web service internally
 def result = yourPlugin.notifyEvent([:])
 assert result.processed==true
}

Copyright © 2012 by Adaptive Computing Enterprises, Inc. All Rights Reserved. Moab® Web
Services

http://en.wikipedia.org/wiki/Camel_case

