Moab Web Services 7.0.4 Reference Guide

Table of Contents

1 Introduction
1.1 Moab Web Services Overview
1.2 Instalation Guide
1.3 Troubleshooting
1.4 Configuration
1.5 Security
1.6 Version and Build Information
2 API Documentation
2.1 DataFormat
2.2 Global URL Parameters
2.3 Responses and Return Codes
2.4 Error Messages
2.5 Pre and Post-Processing Hooks
2.6 API Security
3 Resources
3.1 Access Control Lists
3.2 Diagnostics
3.3 Images
3.4 Jobs
3.5 Job Templates
3.6 Nodes
3.7 Pending Actions
3.8 Plugins
3.9 Plugin Types
3.10 Reports
3.11 Reservations
3.12 Services
3.13 Service Templates
3.14 Standing Reservations
3.15 Virtual Containers
3.16 Virtual Machines
4 Reporting Framework

4.1 Overview

4.2 Example Report (CPU Utilization)
5 MWSPlugins (Beta)

5.1 Plugin Overview

5.2 Plugin Type Management

5.3 Plugin Management and Usage

1 Introduction

1.1 Moab® Web Services Overview

Moab Web Services (MWS) is acomponent of Adaptive Computing Suites that enables
programmatic interaction with Moab Workload Manager viaa RESTful interface. MWS allows
you to create and interact with Moab objects and properties such as jobs, nodes, virtual
machines, and reservations. MWS is the preferred method for those wishing to create custom
user interfaces for Moab and is the primary method by which Moab Viewpoint communicates
with Moab.

MWS communicates with the Moab Workload Manager (MWM) server using the same wire
protocol as the Moab command-line interface. By publishing a standard interface into Moab's
intelligence, MWS significantly reduces the amount of work required to integrate MWM into
your solution.

This documentation is intended for devel opers performing such integrations. If you are aMoab
administrator, and for conceptual information about MWM, see the Moab Administrator's Guide.

1.2 Installation Guide
These instructions describe how to install Moab® Web Services (MWYS).

1.2.1 Requirements

Hardware Requirements

® 64-bit dual-core processor
® Atleast 4 GB of RAM

Software Requirements

* Moab® Workload Manager (version must match exactly the version of MWYS)
Oracle® Java® 6 Runtime Environment

Apache Tomcat™ 6

MongoDB® 2.0.x, where x is 2 or greater

@ Oracle Java 6 Runtime Environment is the only supported Java environment.

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, cannot run Moab Web Services.

1.2.2 Quickstart Guide

1) Install MongoDB version 2.0.x, where x is 2 or greater.

& MWS does not yet support MongoDB 2.2.x. Be sureto install the 2.0.x
packages. As of thiswriting, the RPM package names are
nongo20- 10gen- 2. 0. 7- nongodb_1. x86_64. r pmand
nongo20- 10gen- server-2. 0. 7- nongodb_1. x86_64. r pm The
Ubuntu package nameisnongodb20- 10gen_2. 0. 7_and64. deb.

¢ |nstall MongoDB on RedHat Enterprise, CentOS, or Fedora Linux
¢ |nstall MongoDB on Debian or Ubuntu Linux

2) Start MongoDB.

Cent OS 6 exanple

chkconfi g nmongod on
servi ce nongod start

@ Theinstructions provided above for installing MongoDB describe a base
installation only. See the MongoDB section of the security page.

3) Install and configure Moab Workload Manager (MWM).

® You must deploy Moab Web Services (MWS) on the same server as
Moab Workload Manager (MWM).

® Theversion of MWS must match exactly the version of MWM. For
example, MWS 7.1.1 works only with MWM 7.1.1.

4) Generate a secret key to be used for communication between MWM and
MWS.

Al these steps are required. Do not skip any steps

service noab stop

dd i f=/dev/urandom count =18 bs=1 2>/dev/null | base64 > /opt/noab/etc/.noab. key
chown root /opt/noab/etc/.noab. key

chnod 400 /opt/ noab/ et c/. noab. key

I'n -f /opt/noab/etc/.noab. key /opt/noab/.npab. key

service noab start

5) Install Apache Tomcat 6.

Cent OS 6 exanple

yuminstall tontat6

6) Install the 64-bit version of the Oracle Java SE 6 JRE.

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-redhat-centos-or-fedora-linux
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian-or-ubuntu-linux
http://java.com/en/download/manual_v6.jsp

@ Oracle Java 6 Runtime Environment is the only supported Java environment.

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, cannot run Moab Web Services.

Cent OS 6 exanple

sh jre-6u37-1inux-x64-rpm bin

rm-f /usr/bin/java

In -s /etc/alternatives/java /usr/bin/java

alternatives --install /usr/bin/java java /usr/javaljrel.6.0_37/bin/java 500
alternatives --set java /usr/javal/jrel.6.0_37/bin/java

& Theal t ernati ves commandiscaled updat e-al t ernati ves on
some Linux distributions.

® You can verify the Javainstallation by running j ava -ver si on
® The output should look similar to this:

java version "1.6.0_37"
Java(TM SE Runtime Environnment (build 1.6.0_37-b06)
Java Hot Spot (TM) 64-Bit Server VM (build 20.12-b01, m xed nobde)

7) Create the MWS home directory and its subdirectories et c, hooks,
pl ugi ns, and | og.

& The default location for the MWS home directory is/ opt / mas. These
instructions assume the default location.

® Givethe Tomcat user read access to these directories and write access to the pl ugi ns
and | og directories.

® Hereisasample script for these steps:

nkdir -p /
chown -R tontat /opt/mws # Depending on your CS, the Tontat usernane m ght be tontat6.
chnod - R 555 /opt/ s

p /opt/ms/etc /opt/ mws/ hooks /opt/ mas/ plugins /opt/ms/| og
chnmod u+w / opt/ mas/ pl ugi ns /opt/ mas/ | og

8) Extract the contents of the MWS tarball into a temporary directory.

nkdir /tnp/ mws-install

cd /tnp/ mas-install

tar xvzf $HOVE/ Downl oads/ mas- <VERSI ON>. tar. gz
cd /tnp/ mas-instal |/ mas- <VERSI ON>

9) Set up the MWS configuration file.

® |n the extracted MWS directory is a sample configuration file:
mas- confi g. groovy. Copy thisfileto/ opt / mns/ et c.

® Givethe Tomcat user read accessto/ opt / mas/ et ¢/ mas- confi g. gr oovy.
®* Inthe/ opt/ mas/ et ¢/ mas- confi g. gr oovy file, change these settings:

®* noab. secr et Key: needs to match the MWM secret key you generated earlier

(containedin/ opt / noab/ et ¢/ . noab. key)

® aut h. def aul t User. user nane: any valueyou like, or leave asis
® aut h. def aul t User . passwor d: any value you like, but choose a good

password

vi [opt/ mws/etc/ mws-config. groovy

ﬁ't.)ab. secret Key = "<ENTER- KEY- HERE>"
noab. server = "l ocal host"
noab. port = 42559

/| Change these to be whatever you like.
aut h. def aul t User . usernane = "adni n"
aut h. def aul t User. password = "adni npw'

@

If you do not change aut h. def aul t User . passwor d, then your MWS
IS not secure, since anyone reading these instructions can log into your MWS.
Here are some tips for choosing a good password.

10) Set the following parameters in your Tomcat CATALINA_OPTS.

CATALI NA_OPTS="- DMW\5_HOVE=/ opt / mns - Xns256m - Xnx3g - XX: MaxPer nSi ze=384n{

",
[L]

Where you choose to store CATALI NA _OPTS depends on various factors,

including operating system and sysadmin preference. Here are some
suggestions.

® CentOS™ 5and 6:/ et c/ sysconfi g/tontat 6
® Red Hat® Enterprise Linux 5 and 6:
/ etc/tontat 6/tontat 6. conf

® SUSE® Linux Enterprise Server 11:
[/ etc/tontat 6/tontat 6. conf

® Ubuntu® 10.04:/ et c/ defaul t/tontat 6

11) Start Tomcat and deploy mns. war .

Cent OS 6 exanple

chkconfig tonctat6 on
service tontat6 stop
cp /tnp/ mas-install/ mvs-<VERSI ON>/ mas. war /var/ | ib/tontat 6/ webapps
service tontat6 start

http://www.us-cert.gov/cas/tips/ST04-002.html

12) Visit http://localhost:8080/mws/ in a web browser to verify that MWS is
running.

Y ou will see some sample queries and afew other actions.

13) Log into MWS to verify that the MWS credentials are working.

The credentials are the values of aut h. def aul t User . user nane and
aut h. def aul t User . passwor d that you set above.

Welcome

Moab°Web Services Documentation Log In

@ Moab Web Services

2 If you encounter problems, or if MWS does not seem to be running, see the
steps below in the Troubleshooting section.

1.3 Troubleshooting
If something goes wrong with MWS, look in the following files:

1. The MWSIog file. By default thisis/ opt / mns/ | og/ mns. | og.
2. TheTomcat cat al i na. out file, usualyin/var/| og/tontat 6 or
$CATALI NA HOVE/ | ogs.

% If you removethel og4j configuration from mas- confi g. gr oovy,
MWS will writeitslog filestoj ava. i 0. t npdi r . For Tomcat,
j ava.io. t npdir isgenerally set to $CATALI NA BASE/ t enp or
CATALI NA_ TMPDI R

Hereisalist of some errors and their fixes:

MongoDB Errors

If the application fails to start and gives error messages such as these:

Error creating bean with nane 'nongoDat ast ore'
can't say sonething; nested exception is com nbngodb. MongoExcepti on

MongoDB is most likely not running, or the host and port are mis-configured. Start MongoDB or
reconfigure MWS and restart MWS.

Out of semaphores to get db connection

http://localhost:8080/mws/

The default number of MongoDB connections allowed per host is 10. To increase this pool size,
addgrai | s. nongo. opti ons. connecti onsPer Host toyour mas- confi g. groovy.
Example:

grail s. nongo. opti ons. connecti onsPer Host = 50

See also the Configuration page under Moab Web Services in the Quick Reference menu.

java.lang.OutOfMemoryError: Java heap space

Increase the size of the heap using VM options - Xns and - Xnx. Here are the suggested values

from the Quickstart Guide:

CATALI NA_OPTS="- DMAE_HOVE=/ opt / mas - Xms256m - Xnmx3g - XX: MaxPer nSi ze=384nt

® - Xms: Setinitial Javaheap size.
® - Xnx: Set maximum Java heap size.

java.lang.OutOfMemoryError: PermGen space

Increase the size of the permanent generation using VM option - XX: MaxPer nSi ze. Here are
the suggested values from the Quickstart Guide:

CATALI NA_OPTS="- DMA5_HOVE=/ opt / mns - Xms256m - Xnmk3g - XX: MaxPer n5i ze=384n{'

SEVERE: Context [/mws] startup failed due to previous errors

If cat al i na. out containsthiserror, look in/ opt/ mas/ | og/ mns. | og and
/ opt/ mas/ | og/ st acktrace. | og for more details on the error.

Moab Reached Maximum Number of Concurrent Client Connections

When this error message is encountered, ssimply add anew lineto the noab. cf g file:

CLI ENTMAXCONNECTI ONS 256

Thiswill change the Moab configuration when Moab is restarted. Run the following command to
immediately use the new setting:

changepar am CLI ENTMAXCONNECTI ONS 256

&% The number 256 above may be substituted for the desired maximum number
of MWM client connections.

1.4 Configuration

This section describes where Moab Web Services searches for its configuration files. It also
shows some examples of how to configure logging.

& Toseeafull referenceto all configuration and logging parameters available
in MWS, see the Configuration page under Moab Web Services in the Quick
Reference menu.

Home Directory

The MWS home directory contains all configuration as well as other files that serve features of
MWS such as hooks and plugins. Thisistypically set by using the MAS _HOVE property as
explained in the Quickstart Guide. If MAE_HOME is not set as a Java property or as an
environment variable for the current application container (i.e. Tomcat), / opt / mas will be
used as the default MAS_HOME. If no configuration files are found in MAS_ HOVE,

MOABHOMEDI Rwill be used. If this property also does not exist, the home directory will default
to/ opt / noab.

& MAS_HOVE or MOABHOMEDI R can be set either as a Java property or as an
environment variable. See the Quickstart Guide for suggestions on how to set
MAS_HOME.

The home directory consists of several sub-directories:

® et c - Used for storing configuration files.

® hooks - Used for storing hook files. Thisis not required if hooks are not being used.

® pl ugi ns - Used for storing plugin types. Thisis not required if custom plugin types are
not being used.

& Thehooks and pl ugi ns directories should be writable by the application
container's user, such asthet ontat user.

Configuration File Locations

MWS searches the following directories for configuration files in the order shown below. As
soon as a configuration file is found in one of these directories, that file is loaded and searching
stops. If al og4j . properti es file existsin the same directory, it will be loaded as well.

* MAE HOMVE/ et ¢

* MAE_HOVE

® /opt/ mas/etc

¢ /opt/ ms

®* MOABHOMEDI R/ et c
* MOABHOVEDI R

® /opt/noab/etc
® /opt/ noab

® |neach directory, MWS looksfirst for mns- confi g. gr oovy and
then for mas- confi g. properti es. Ifitfinds
mas- confi g. groovy, it doesnot look for
mas- confi g. properties.

®* mws-confi g. groovy usesastylethat issimilar to a Java properties
file with some extensions from Groovy.

* mns-confi g. properti es isaregular Java propertiesfile.

Logging Configuration Using mas- confi g. gr oovy

Shown below is an example that logs all error messages and fatal messages to
[opt/ mas/ | og/ mns. | og. It alsologsall stack tracesto

[opt/ mas/ | og/ st acktrace. | og.

Minimal Logging Configuration

log4j = {
appenders {

rollingFile nane: 'stacktrace'
file: '/opt/ms/Iog/stacktrace. | og'
maxFi | eSi ze: ' 1GB

rollingFile nane: 'rootlLog'
file: '/opt/ms/Iog/ ms. | og'
threshol d: org. apache. | og4j . Level . ERROR,
maxFi | eSi ze: ' 1GB

root {
debug ' root Log

Alternatively, you may configure a console appender instead of arolling file as shown below.

Console Logging Configuration

log4j = {
appenders {
rollingFile nanme: 'stacktrace'
file: '/opt/ms/Iog/stacktrace. | og'
maxFi | eSi ze: ' 1GB
consol e nane: 'consol eLog'
t hreshol d: org. apache. | og4j . Level . ERROR

root {
debug ' consol eLog

® For the examples above, you must make sure that / opt / mas/ | og
exists and is writable by the application server.

® You may configure logging using either mas- conf i g. gr oovy or a
regular | og4j . properti es file. Thel og4j . properti es file
must be in the same directory asthe mas- conf i g. gr oovy file.

® |f youdo not defineany | og4j configuration, MWS will writeitslog
filestoj ava. i o.t npdi r. For Tomcat, j ava.i o. tnpdir is
generally set to SCATALI NA BASE/ t enp or CATALI NA TMPDI R.

For all possible configuration options, see the Configuration section in the reference guide.

1.5 Security

When running MWS in production environments, security isamajor concern. This section
focuses on securing the three kinds of connections with MWS:

1. The connection between MWS and Moab Workload Manager (MWM)
2. The connection between MWS and MongoDB
3. The connections between clients and MWS

Connection with MWM

MWS communicates with MWM viathe Moab Wire Protocol, which uses a direct connection
between the two applications. The communication over this connection uses a shared secret key,
which is discussed in the Quickstart Guide. However, the communication is not encrypted and is
therefore susceptible to eavesdropping and replay attacks. For this reason, MWS is supported
only when running on the same machine as MWM. This assures that any connections between
the two applications occur internally on the server and are not exposed to external users.

Connection with MongoDB

By default, the connection between MWS and MongoDB is not authenticated. To enable
authentication between them, see the instructions below.

* MWS Configuration: see the Configuration reference guide for information on the
grai | s. nongo propertiesto setinmas- conf i g. gr oovy.

®* MongoDB Configuration: see the MongoDB Security and Authentication guide.
Generally, the following steps are required:

® Add an administrative user to MongoDB in the adm n database.

® Start MongoDB with authentication activated (using the - - aut h command-line
option for example).

® | og in asthe administrative user to the adm n database.

® Addauser for MWSto use with full read and write access to the database specified in
the configuration file (mns by default).

® Change the proper configuration file properties with the created username and
password.

® Restart MWS by restarting the servlet container (Tomcat).

11

http://www.mongodb.org/display/DOCS/Security+and+Authentication

If authentication is activated on MongoDB, but the user was not properly created or configured
with MWS, MWS will not start. See the log file(s) for additional information in this case.

Client Connections to MWS

All connections to MWS, except those requesting the documentation or the main page, must be
authenticated properly. MWS uses a single-trusted-user authentication model, meaning asingle
user exists that has access to all aspects of MWS. The username and password for this user are
configured with theaut h. def aul t User propertiesin the configuration file. See the
Configuration reference guide for more information.

When using the MWS user interface in a browser, the user will be prompted for username and
password. For information on how to authenticate requests when not using a browser, see the
API Security section in the user guide.

% The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is strongly recommended that MWS be run
behind a proxy (like Apache) with SSL enabled. The instructions bel ow
provide an example of how to do this.

Encrypting Client Connections using Apache and SSL

This section shows how to encrypt client connections to MWS using Apache and SSL. These
instructions have been tested on CentOS™ 6.2 with the "Web Server" software set installed. The
same ideas are applicable to other operating systems, but the details might be different. As
shown in the diagram below, these instructions assume that Tomcat and Apache are running on
the same server.

12

Intra / Internet

Securi

i Secure 55L Connec
Netwaorking

Switch/Router

Secure !

Tomcat Server with MWS and Apache

® Createa self-signed certificate. See http://www.openssl.org/docsyHOWTO/certificates.txt
for more detailsif desired.

4 Instead of creating a self-signed certificate, you can buy a certificate from a
certificate vendor. If you do, then the vendor will provide instructions on how
to configure Apache with your certificate.

® Run these commands:

cd /etc/pki/tls/certs
cp -p make-dunmy-cert make-dummy-cert. bak
cp -p local host.crt |ocal host.crt. bak

® Edit make- dumry- cert andreplacetheanswer s() function with code similar to
this:

answers() {
echo US
echo Ut ah
echo Provo
echo Adaptive Conputing Enterprises, Inc
echo Engi neering
echo test 1. adaptiveconputing. com
echo

® Run this command:

13

http://www.openssl.org/docs/HOWTO/certificates.txt

./ make- dunmy-cert | ocal host.crt

® Configure Apacheto usethe new certificate and to redirect MWS requeststo Tomcat.
Todoso, edit/ etc/ httpd/ conf.d/ssl.conf.

® Comment out thisline:

SSLCertificateKeyFile /etc/pki/tls/privatel/local host.key

® Add these lines near the end, just above </ Vi r t ual Host >:

ProxyPass /mans http://127.0.0.1: 8080/ mas retry=5
ProxyPassReverse /mws http://127.0.0. 1: 8080/ mas

® Configure Apacheto use SSL for all MWS requests.
® Addtheselinestotheendof / et ¢/ htt pd/ conf/ htt pd. conf:

Rewri t eEngi ne On
Rewr i teCond % HTTPS} of f
RewiteRule (/mas.*) https://% HTTP_HOST} %4 REQUEST URI }

® Give Apache permission to connect to Tomcat.

set sebool -P httpd_can_network_connect 1

® Turn on Apache.

chkconfig httpd on
service httpd start

® Usingsystemconfig-firewall-tui,enable"Secure WWW (HTTPS)" and
"WWW (HTTP)" astrusted services.

14

D @@ root@localhost: ~
File Edit View Terminal Help
system-config-firewall

Trusted Services |

Here you can define which services are trusted. Trusted
services are accessible from all hosts and networks.

Secure Www (HTTPS)

TFTP

TFTP Client

Virtual Machine Management
Virtual Machine Management (TLS)

Forward

<Tab>/<Alt-Tab> between elements | <Space> selects | <F12> next screen

1.6 Version and Build Information
To get detailed version information about MWS, use one of the following three methods:

Browser

Using a browser, visit the MWS home page (for example, http://localhost:8080/mws/). At the
bottom of the page isthe MWS version information. See the screenshot below:

Migrate a VM:

VM: [vm1
{"node”: {"id™: “"hv1™}}

Migrate Wi

REST Request

15

Using aREST client or other HTTP client software, send a GET request to the
rest/ di ag/ about resource. Hereis an example:

curl -u usernane: password http://1ocal host: 8080/ mas/ rest/ di ag/ about

Thisresource is also described under Diagnostics.

MANIFEST.MF File

If MWSfailsto start, version and build information can be found in the
MVETA- | NF/ MANI FEST. MF fileinside the MWS WAR file. The version properties begin with
| mpl erent at i on. Below isan excerpt of a MANI FEST. M- file:

Mani f est-Version: 1.0

Ant - Ver si on: Apache Ant 1.7.1

Created-By: 20.4-b02 (Sun M crosystens |nc.)
Bundl e- Mani f est Versi on: 2

Bundl e- Nane: mns

Bundl e- Synbol i cNarme: nws

Bundl e- Version: 7.0.0

| npl ement ati on-Build: 4
| npl ement ati on-Bui | d-Date: 2012-02-07_17-01-39
| npl ement ati on- Revi si on: 9e109bh9a4289800a2c985082d7595d759807aca9

Nanme: Grails Application

I npl ementation-Title: nus

| npl emrent ati on-Version: 7.0.0
Gails-Version: 1.3.7

16

2 APl Documentation

| ntr oduction

The Moab® Web Services (MWS) provide a set of RESTful resources that can be used to create,
read, update, and delete various objects in the Moab® Workload Manager.

2.1 Data Format

JSON (JavaScript Object Notation) is the data format used for all communication with MWS,
This format makes use of two main structures: collections of key/value pairs called objects and
ordered lists of values called arrays . Objects are defined by using curly braces ({ }), and arrays
are defined by using square brackets ([]). A JSON object or array may contain several different
types of values including numbers, booleans (true/false), strings, objects, arrays, or the keyword
'null’ representing no value. For example, a simple JSON object might be defined as:

"nunber": 1,
"deci mal Number": 1.2
"bool ean": true,
"string": "Any string",
"object": {

"key": "val ue"
"array": [

"val uel",

"val ue2"

"nul | Val ue": nul

For more information on JSON, see json.org.
The dataformat of MWS is defined as follows:

® |nput for aPOST or PUT must be in JSON format. Set the Cont ent - Type header to
application/json.

® Qutput isin JISON format and always consists of an object with zero or more key/value
pairs.

® The output may also be "pretty-printed” or formatted for human viewing by sending a URL
parameter. See Global URL Parameters for more information.

2.2 Global URL Parameters

& All URL parameters are optional.

17

http://www.json.org/

Parameter |Valid Values Description

pretty true Controls pretty printing of output

fields Comma-Separated String Includes only specified fields in output
exclude-fields Comma-Separated String Excludes specified fields from output
max Integer The maximum number of items to return
offset Integer The index of thefirst item to return

Pretty (pretty)

By default, the output is easy for amachine to read but difficult for humansto read. The pretty
parameter formats the output so that it is easier to read.

Field Selection (fields)

The fields parameter will include only the specified fields in the output. For list queries, the field
selection acts on the objects in results and not on the total Count or results properties themselves.

The format of the fields parameter is a comma-separated list of properties that should be
included, asini d, st at e. Using periods, sub-objects may also be specified, and fields of these
objects may be included as well. Thisis done with the same syntax for both single sub-objects
and lists of sub-objects, asin

i d, requi rements. requi redNodeCount M ni num bl ockReason. nessage.

Example for a job query

Request

GET
/rest/jobs?fields=id,flags,requirenents.requiredProcessorCount M ni nrum schedul e. of f set

Response

"total Count": 1,
"resul t Count": 1,

"results": [{
"id": "job. 1,
“flags": ["RESTARTABLE"],
"requi rements": [{"requiredProcessorCount M ni munm': 4}],

"schedul e": {"offset": 100}
) }H

Field Exclusion (exclude-fields)

The exclude-fields parameter is the opposite of the fields parameter. All fields will be included in
the output except those that are specified. For list queries, the field exclusion acts on the objects
in results and not on the total Count or results properties themselves.

18

The format of the exclude-fields parameter is a comma-separated list of properties that should be
excluded from the output, asini d, st at e. Using periods, sub-objects may also be specified,
and fields of these objects may be excluded as well. Thisis done with the same syntax for both
single sub-objects and lists of sub-objects, asin

i d, requi rements. requi redNodeCount M ni mrum bl ockReason. nessage.

Example

Suppose a query returns the following JSON:

Request with No Field Exclusion

GET /objects

"idh "1t
"listOFStrings": [
"stringl",
"string2"

Il

"listOOpjects": [{
"iteml": "val uel",
"itenR": "val ue2"

H,

"singl eCbj ect": {
"id": "obj1".
"fieldl": "val uel"

The same query with exclude-fields would return the following output:

Request with Field Exclusion

GET /obj ect s?excl ude-fields=id,|istOCbjects.iten®, singleCbject.fieldl, listOStrings

Response

"listOFCbjects": [{"iteml": "valuel"}],
"singleCbject": {"id": "obj1"}
}

Sorting (sort)

Services, Service Templates, and Images support sorting based on MongoDB syntax by using the
sort parameter. To sort in ascending order, specify a 1 for the sorting field. To sort in descending
order, specify a- 1. Objects can also be sorted on nested fields by using dot notation to separate
the sub-fields, such asf i el d. subfi el d1. subfi el d2.

Examples

To sort servicesin ascending order by account:

19

http://www.mongodb.org/display/DOCS/Querying#Querying-Sorting

http://1ocal host/ mws/rest/services?sort={"account": 1}

To sort services in descending order by account:

http://1ocal host/ mas/rest/services?sort={"account": -1}

To sort services in descending order by processors:

http://1ocal host/ mas/rest/services?sort={"attri butes. noab.job.resources. procs": -1}

To sort service templates in ascending order by name:

http://1ocal host/ mws/rest/service-tenpl ates?sort={"nane": 1}

To sort service templates in descending order by name:

http://1ocal host/ mas/ rest/service-tenpl ates?sort ={"nane": -1}

To sort service templates in ascending order by the nested field template:

http://1ocal host/ mws/rest/service-tenpl ates?sort={"attributes. npab.job.tenplate": 1}

2.3 Responses and Return Codes

Various HTTP responses and return codes are generated from MWS operations. These are
documented below according to the operation that they are associated with.

Listing and Showing Resources

For any successful list or show operation (GET), a200 OK response code is aways returned.

No additional headers beyond those typical of aHTTP response are given in the response.

The body of this response consists of the results of the list or show operation. For alist
operation, the results are wrapped in metadata giving total and result counts. The result count
represents the number of resource records returned in the current request, and the total count
represents the number of all records available. These differ when querying or the max and
of f set parameters are used. The following is an example of alist operation response:

20

JSON List Response Body

"resul tCount": 1,
"total Count":5,
"resul ts":[

"id":"Moab. 1",

For a show operation, the result is given as a single object:

JSON Show Response Body

{
"id":"Moab. 1",

}

Creating Resources

A successful creation (POST) of aresource has two potential response codes:

® |f theresource was created immediately, a201 Cr eat ed response code is returned.
® |f theresourceis till being created, a202 Accept ed response codeis returned.

In either case, aLocat i on header is added to the response with the full URL which can be

used to get more information about the newly created resource or the task associated with
creating the resource (if 2202 isreturned).

Additionally, the body of the response will contain the unique identifier of the newly created
resource or the unique identifier for the task associated with creating the resource (if a202 is
returned).

For example, during creation or submission of ajob, a201 response code is returned with the
following response headers and body:

Job Creation Response Headers

HTTP/ 1.1 201 Created

Server: Apache-Coyote/ 1.1

Location: /mas/rest/jobs/ Mbab. 21

X- Mbab- St at us: Success

X- Mbab- Code: 000

Cont ent - Type: application/json; charset=utf-8
Content - Lengt h: 16

Date: Wed, 21 Dec 2011 23:04: 47 GVIT

Job Creation Response Body

{"id":"Mab.21"}

21

For another resource that is not immediately created, such as virtual machines, the response
headers and body are shown below. In this case, ajob is submitted to track the progress of the
VM creation. Thisjob contains information pertaining to the VM that is being created.

VM Creation Response Headers

HTTP/ 1.1 202 Accepted

Server: Apache-Coyote/1.1

Location: /mas/rest/jobs/vntreate-1

X- Mbab- St at us: Success

X- Mbab- Code: 000

Cont ent - Type: application/json;charset=utf-8
Content - Length: 23

Date: Wed, 21 Dec 2011 23:12:50 GVII

VM Creation Response Body

{"jobld":"vncreate-1"}

As can be seen, the body of the response contains only ajob ID and not the ID of the virtual
machine.

Modifying Resources

For any successful resource modification operation (PUT), a200 OKor 202 Accept ed
response code is returned. A 200 response code signifies that the modification was immediately
completed. No additional headers are returned in this case. A 202 response code is used again to
signify that the modification is not yet complete and additional actions are taking place. In this
case, aLocat i on header is aso returned with the full URL of the resource describing the
additional actions.

In the case of a200 response code, the body of this response typically consists of an object with
asingle nessages property containing alist of statuses or results of the modification(s).
However, afew exceptions to this rule exist as documented in the Resources section. In the case
of a202 response code, the format is the same asfor a202 during a creation operation, in that
the body consists of an object with the unique identifier for the task associated with the
additional action(s).

For example, when modifying a job, several messages may be returned as follows with the
associated 200 response code.

Job Modification Response Headers

HTTP/ 1.1 200 K

Server: Apache-Coyote/ 1.1

X- Mbab- St at us: Success

X- Mbab- Code: 000

X- Mbab- Message:

Cont ent - Type: application/json;charset=utf-8
Content -Length: ...

Date: Thu, 22 Dec 2011 16:49:43 GMI

22

JSON Modify Response Body
{

"messages": [
"gevent processed",
"vari abl es successfully nodified"
]
}

When modifying avirtual machine, however, the action sometimes does not occur immediately,
such as when migrating the VM to another hypervisor as described in the VM documentation. In
this case, the headers and response body are as follows:

VM Modification Response Headers

HTTP/ 1.1 202 Accepted

Server: Apache-Coyote/ 1.1

Location: /mas/rest/jobs/vnm grate-1

X- Mbab- St at us: Success

X- Mbab- Code: 000

Cont ent - Type: application/json;charset=utf-8
Content - Length: 22

Date: Wed, 21 Dec 2011 23:12:50 GVII

VM Modification Response Body

{"jobld":"vmm grate-1"}

Deleting Resources

For any successful resource deletion operation (DELETE), a200 OKor 202 Accept ed
response code is returned. A 200 response code signifies that the deletion was immediately
completed. No additional headers are returned in this case. A 202 response code is used again to
signify that the deletion is not yet complete and additional actions are taking place. In this case, a
Locat i on header is also returned with the full URL of the resource describing the additional
actions.

In the case of a200 response code, the body of this response is empty. In the case of a202
response code, the format is the same asfor a202 during a creation operation, in that the body
consists of an object with the unique identifier for the task associated with the additional
action(s).

For example, when deleting ajob, a 200 response code is returned with an empty body as shown
below.

Job Deletion Response

HTTP/ 1.1 200 K

Server: Apache-Coyote/ 1.1

X- Mbab- St at us: Success

X- Mbab- Code: 000

X- Mbab- Message:

Cont ent - Type: application/json;charset=utf-8
Content-Length: O

Date: Thu, 22 Dec 2011 16:49:43 GMI

23

When deleting a virtual machine, however, the action does not occur immediately. In this case,
the headers and response body are as follows:

VM Deletion Response Headers

HTTP/ 1.1 202 Accepted

Server: Apache-Coyote/1.1

Location: /mws/rest/jobs/vndestroy-1

X- Mbab- St at us: Success

X- Mbab- Code: 000

Cont ent - Type: application/json;charset=utf-8
Content - Length: 22

Date: Wed, 21 Dec 2011 23:12:50 GVIT

VM Deletion Response Body

{"jobld":"vndestroy-1"}

Moab Response Headers

In addition to the typical HT TP headers and the Locat i on header described above, several
headers are returned if the operations directly interact with Moab. These headers are described in
the following table:

Name Description

Oneof Success, War ni ng, or Fai | ur e. Describes the overall status of

X-Moab-Stalus o Moab request.

A three digit code specifying the exact error encountered, used only in

X-Moab-Code debugging.

X-Moab-Message An optional message returned by Moab during the request.

2.4 Error Messages

Below is an explanation of what error message format to expect when an HTTP status code other
than 20x is returned. All error codes have a response code of 400 or greater.

400 Bad Request

This response code is returned when the request itself is at fault, such as when trying to modify a
resource with an empty PUT request body or when trying to create a new resource with invalid
parameters. The response body is as follows:

{
"messages": [
"Message describing error",
"Possi ble pronpt to take action"
]
}

401 Unauthorized

24

This response code is returned when authentication credentials are not supplied or areinvalid.
The response body is as follows:

{
"messages": [
"You are unauthorized to access this area"
]

}

404 Not Found

This response code is returned when the request specifies a resource that does not exist. The
response body is as follows:

{
"messages"”: [
"The resource with id 'uniqueld was not found"
]

}

405 Method Not Allowed

This response code is returned when a resource does not support the specified HTTP method as
an operation. The response body is as follows:

{
"messages": [
"The specified HITP nethod is not allowed for the requested resource"
]

}

500 Internal Server Error

Thisindicates that there was an internal server error while performing the request, or that an
operation failed in an unexpected manner. These are the most serious errors returned by MWS. 1
additional information is needed, the MWS log may contain further error data. The response
body isasfollows:

{
"messages": [
"A probl emoccurred while processing the request"
"A nessage describing the error"
]
}

2.5 Pre and Post-Processing Hooks

MWS provides functionality to intercept and modify data sent to and returned from web services
for al available resources. Thisis done by creating hooks in Groovy fileslocated in a
sub-directory of the MAE_HOVE directory (/ opt / mns/ hooks, MOABHOVEDI R/ hooks, or

/ opt / noab/ hooks if MAG_HOME is not set).

25

&y Thefull reference for available hooks and methods available to them can be
found on the Hooks page in the reference guide.

Configuring Hooks

The directory of the hooks folder may be changed by providing avalue for

mas. hooks. | ocat i on inthe configuration file. If the directory starts with a path separator
(ie/ pat h/ t o/ hooks), it will be treated as an absolute path. Otherwise, it will be used relative
to the location of the MWS home directory.

For example, if the MWS home directory isset to / opt / mas, the hooks directory by default
would bein/ opt / mas/ hooks. Changing the mas. hooks. | ocat i on property to
myhooks would result in the hooks directory being located at / opt / mns/ nyhooks. Dueto
the default location of the MWS home directory, the default directory of the hooks directory is
/ opt / noab/ hooks.

On startup, if the hooks directory does not exist, it will be created with asimple READVE. t xt
file with instructions on how to create hooks, the objects available, and the hooks available. If
the folder or fileis unable to be created, a message will be printed on the log with the full
location of a README file, copied into atemporary directory.

Defining Hooks for a Resource

Hooks are defined for resources by creating groovy class files in the hooks directory (
MAS_HOVE/ hooks by default). Each groovy file must be named by the resource URL it is
associated with and end in ".groovy". The following table shows some possible hook files that
may be created. Notice that the virtual machines hook fileis abbreviated as virs, just as the URL
for virtual machinesis/ rest / virs. In all cases, the hook file names will match the URLS.

Resource Hook Filename
Jobs jobs.groovy
Nodes nodes.groovy

Virtual Machines vms.groovy

Pending Actions pending-actions.groovy

url url.groovy

A complete example of ahook fileisasfollows:

26

Complete Hook File

/| Exanpl e before hook

def beforeList = {
/1 Perform actions here
/1 Return true to allow the APl call to execute normally
return true

def beforeShow = {
[/ Perform actions here
/1 Render nessages to the user with a 405 Method Not Al |l owed
I HTTP response code
render Messages(" Cust om nessage here", 405)
/] Return false to stop nornmal execution of the APl call
return fal se

}

/'l Exanpl e after hook
def afterList ={ o ->
if (lisSuccess()) {
/'l Handl e error here
return false

/1 Perform actions here
return o

Asthe specific format for the hooks for bef or e and af t er are different, each will be
explained separately.

Before Hooks

As shown above, bef or e hooks require no arguments. They can directly act on several
properties, objects, and methods as described in the Hooks reference guide. The return valueis
one of the most important aspects of abef or e hook. If itisf al se, ar ender Messages,
render Cbj ect, render Li st,render,orredirect method must first be called. This
signifies that the API call should be interrupted and the render or redirect action specified within
the hook isto be completed immediately.

A return value of t r ue signifiesthat the API call should continue normally. Parameters, session
variables, request and response variables may all be modified within abef or e hook.

& If no return value is explicitly given, the result of the last statement in the
bef or e hook to be executed will be returned. This may cause unexpected
behavior if the last statement resolvesto f al se.

For all methods available to bef or e hooks as well as specific examples, see the Hooks pagein
the reference guide.

After Hooks

Af t er hooks are always passed one argument: the object or list that is to be rendered as JSON.
This may be modified as desired, but note that the object or list valueis either a JSONArray or
JSONODbject. Therefore, it may not be accessed and modified as atypical groovy Map.

27

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

Unlike bef or e hooks, af t er hooks should not call ther ender * methods directly. This
method will automatically be called on the resulting object or list returned. Ther edi r ect and
r ender methods should also not be called at this point. Instead, if a custom object or listis
desired to be used, theseri al i zeCbj ect andseri al i zeLi st methods are available to
create suitable resultsto return.

Thereturn value of an af t er hook may be one of two possibilities:

1. The potentially modified object or list passed as the first argument to the hook. In this case,
this value will override the output object or list unlessit isnull.
2. Null or false. In this case, the original, unmodified object or list will be used in the output.

& Thereturn value of the af t er hook, if not null or false, must be the
modified object passed into the hook or an object or list created with the
seri al i ze* methods.

For all methods availableto af t er hooks as well as specific examples, see the Hooks page in
the reference guide.

Error Handling

Af t er hooks, unlike the bef or e hooks, have the possibility of handling errors encountered
during the course of the request. Handling errorsis as simple as adding a one-line check to the
hook as shown above or in the following code:

if (!'isSuccess()) {
/1l Handl e error
return fal se

It is recommended that each af t er hook contain at least these lines of code to prevent
confusion on what the input object or list represents or should look like.

Thei sSuccess() functionistrueif and only if the HTTP response code is 400 or higher,
such as a 404 Not Found, 400 Bad Request, or 500 Internal Server Error and the cause of the
error state was not in the associated bef or e hook. In other words, objects and lists rendered in
the bef or e hook with any HTTP response code will never run the associated af t er hook.

When handling errors, the passed in object will always contain anessages property containing
alist of Strings describing the error(s) encountered.

Defining Common Hooks

Sometimes it is beneficial to create hooks which are executed for all calls of a certain type, such
asabef or eLi st hook that is executed during the course of listing any resource. These are
possibleusinganal | . gr oovy file. The format of thisfileis exactly the same as other hook
files. The order of execution is asfollows:

28

. Bef or e common hook executed

. Bef or e resource-specific hook executed
. Normal API call executed

. Af t er resource-specific hook executed

. Af t er common hook executed

g b~ wWwDN P

2.6 API Security

MWS uses Basic Authentication for all REST API requests. This means that a username and
password must be provided for each call to resources. See the " Client Connectionsto MWS'
section in the Security section of the user guide for instructions on how to configure the
username and password.

To use Basic Authentication, each client request must contain a header that looks like this:

Aut hori zation: Basic YWRhcHRpdmJ6YzNVU3R1bk U=

The string after the word Basi ¢ isthe base64 encoding of username : password . In the
example above, YWRhc HRpdmU6 Yz NVU3R1bk U= is the base64 encoding of
adapti ve: c3USt unE. See section 2 of RFC 2617 for more details.

% The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is strongly recommended that MWS be run
behind a proxy (like Apache) with SSL enabled. Another approach would be
to enable SSL on the servlet container on which MWS is deployed.

29

http://www.ietf.org/rfc/rfc2617.txt

3 Resources

The sections below show the MWS resources and the HT TP methods defined on them. The
prefix for these resources depends on how the mas. war fileisdeployed. A typical prefix would
behttp://I1 ocal host: 8080/ mns. Using this example, one absolute resource URI would
behttp://I1 ocal host: 8080/ mns/ rest/ | obs.

3.1 Access Control Lists

This section describes behavior of the ACL Rules (Access Control List Rules) object in Moab
Web Services. It contains the URLSs, payloads, and responses delivered to and from Moab Web
Services.

& The ACL API contains the type and description of all fieldsin the ACL
Rules object. It also contains details regarding which fields are valid during
PUT and POST actions.

Supported Methods

&y ACLsare not directly manipulated through a single URL, but with sub-URLS
of the other objects such as Virtual Containers and Reservations.

Resour ce GET PUT POST [DELETE
[rest/reservations/r svl d/acl-rules/acll d Create or Update ACLs Delete ACL
[rest/ves/vel d/acl-rules/acl i d Create or Update ACLS Delete ACL

3.1.1 Getting ACLs

Although ACL Rules cannot be retrieved directly using the GET method on any of the

acl - r ul es resources, ACL Rules are attached to supported objects when querying for them.
Each supported object contains afield named acl Rul es, which isacollection of the ACL
Rules defined on that object.

Supported Objects

Thefollowing isalist of objects that will return ACL Rules when queried:

® Reservations

¢ Standing Reservations
® Virtual Containers

3.1.2 Creating or Updating ACLs

30

The HTTP PUT method is used to create or update ACL Rules. The payload can contain one or
more ACL Rules. If an ACL Rulewiththesamet ype and val ue exists, then it will be
overwritten.

Quick Reference

ttp://1 ocal host/ ms/rest/reservations/ <rsvld>/acl-rul es
PUT http://1ocal host/ mas/rest/ves/ <vcl d>/acl -rul es

3.1.2.1 Create or Update ACL

URLs and Parameters

PUT http://|ocal host/mws/rest/reservations/ <objectld>/acl-rul es
PUT http://|ocal host/mws/rest/vcs/ <object!d>/acl-rul es

Parameter Required Type Valid Values Description

objectld Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows all the fields that are available for the PUT method, along with some
sample values.

JSON Payload

{"acl Rul es": [{
"affinity": "PGCSITIVE",
"conparator": "LEXI GRAPH C_EQUAL",
"type": "USER',
"val ue": "ted"

'}

Sample Response

& This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{"nmessages":["Virtual container 'vcl' successfully nodified"]}

31

Samples

Create or update multiple ACLs on asingle object:

PUT http://local host/mws/rest/reservations/system.21/acl-rules

{"acl Rul es": [

"affinity": "POSITIVE",
"conparator": "LESS THAN OR EQUAL",
"type": "DURATI ON',
"val ue": "3600"

b

{

"affinity": "POSITIVE",
"conparator": "LEXI GRAPH C_EQUAL",
"type": "USER',

"val ue": "ted"

}
1}

Restrictions

®* ACL Rules cannot be added to or updated on Standing Reser vations.
® The affinity and comparator fields areignored for Virtual Containers.

3.1.3 Deleting ACLs
The HTTP DELETE method is used to remove ACL Rules.

Quick Reference

% ACL Rules cannot be removed from Standing Reser vations.

DELETE http://1ocal host/ mans/ rest/reservations/ <rsvld>/acl -rul es/ <acl | d>
DELETE http://1ocal host/ mas/ rest/vcs/ <vcl d>/ acl -rul es/ <acl | d>

3.1.3.1 Delete ACL

URLs and Parameters

cal host/ mns/ rest/reservations/ <obj ect|d>/acl -rul es/ <acl | d>
cal host/ mas/ rest/vces/ <obj ect | d>/ acl -rul es/ <acl | d>

o O

Parameter Required Type xa Description

The unique identifier of the object from which to

objectid Yes String - removethe ACL Rule.

A string representing the ACL Rule, with the format

aclld Yes String - type: val ue

32

See Global URL Parameters for available URL parameters.

Sample Response

4 This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{"messages":["Successfully nodified virtual container 'vcl' "]}

Restrictions

® ACL Rules cannot be removed from Standing Reservations.

3.2 Diagnostics

This section describes additional REST calls that are available for performing diagnostics on
Moab Web Services.

Supported Methods

Resour ce GET PUT POST DELETE
[rest/diag/about Get version information

3.2.1 Version and Build Information
The HTTP GET method is used to retrieve version and build information.

Quick Reference

GET http://1ocal host/ mas/rest/di ag/ about

URLs and Parameters

GET http://1ocal host/ mas/rest/di ag/ about

Sample Response

The response contains the application version, build number, build date, and revision.

33

"version":"7.0",

"buil d":"100",

"bui | dDat e":"2012-01-01_16- 00- 00",
"revision":"1000"

3.3 Images

This section describes behavior of the | mage resource in Moab Web Services. Animage
resource is used to track the different types of operating systems and hypervisors available in the
data center. It also tracks which virtual machines are available on the hypervisors. This section
describes the URLSs, payloads, and responses delivered to and from Moab Web Services.

%y Thelmage APl contains the type and description of all fields in the Image
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resour ce GET PUT POST DELETE
[rest/images Get All Images Create Image
[rest/images/id Get Specified Image Modify Image Delete Image
Irest/images/name Get Specified Image Modify Image Delete Image

3.3.1 Getting Images

The HTTP GET method is used to retrieve | mage information. Y ou can query all objectsor a
single object.

Quick Reference

cal host/ mas/ rest /i mages/ <i d>
cal host/ mas/ rest /i mages/ <name>
cal host/ mas/ rest /i mages[?2query={"field":"value"}&sort={"field":<1l|-1>}]

GET http://I
GET http://I
GET http://I

[eNeNe]

3.3.1.1 Get All Images

URLs and Parameters

GET http://1ocal host/ mas/rest/images[?query={"field":"value"}&sort={"field":<1l|-1>}]

Parameter Required Vi ;allld Description Example
Queriesfor P - S
guery No JSON specific results. query={"type":"stateful","osType":"linux"}
Sort the results.
sort No JSON Usel for sort={"name":-1
ascending and - 1 = 1
for descending.

It is possible to query images by one or more fields based on MongoDB query syntax.

See Global URL Parameters for available URL parameters.

Sample Response

GET http://localhost/mws/rest/images?ields=id,name

"total Count": 1,
"resul t Count": 1,

"results": [{
"id": "4fal97e68ca30f c605ddlcf 0",
"nane": "centosb5-stateful"

H
}

Sorting and Querying

See the sorting and querying sections of Global URL Parameters

3.3.1.2 Get Single Image

URLs and Parameters

CET http://1ocal host/ mas/rest/images/ <i d>
CET http://1ocal host/ mas/rest/i mages/ <name>

Parameter Required Type Valid Values Description
id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See Global URL Parameters for available URL parameters.

% You must specify either id or name, but you do not have to specify both.

35

http://www.mongodb.org/display/DOCS/Advanced+Queries

Sample Response

GET http://local host/mws/rest/images/centoss-compute-statef ul

"active":true,
"ext ensi ons": {
"xcat":{
"os":"centos",
"architecture":"x86_64",
"profile":"conpute"

"features":[],

"hypervisor":fal se,

"id":"4f al97e68ca30f c605ddicf 0",
"nane": " cent 0s5- conput e-stateful ",
"osType":"linux",

"suppor t sPhysi cal Machi ne": f al se,
"supportsVirtual Machi ne": true,
"tenpl at eNane": "",
"type":"stateful ",

"version":0,

"virtualizedl mages":[]

& Thever si on field contains the current version of the database entry and

does not reflect the version of the operating system. See Modify Image for
more information.

3.3.2 Creating Images
The HTTP POST method is used to submit | mages.

Quick Reference

POST http://1ocal host/ mas/rest/images

3.3.2.1 Create Single Image

URLs and Parameters

POST http://1ocal host/ mas/rest/i nmages

See Global URL Parameters for available URL parameters.

Request Body

Three fields are required to submit an image: name, hypervisor, and osType. Each image must
also support provisioning to either a physical machine or avirtua machine by using the
supportsPhysicalM achine or supportsVirtualMachine fields.

4 The name field must contain only letters, digits, periods, dashes, and
underscores.

The array of virtualized images are themselves objects that contain image 1Ds or names. For
more information on available fields and types, see the Image API.

The following is an example of the most basic image that can be created:

POST http://localhost/mws/rest/images

{

"name": "centos5-stateful ",
"osType": "linux",
"hypervisor": false,
"supportsVirtual Machi ne": true

Note that this example does not provide any information for a provisioning manager (such as
XCAT) to actually provision the machine. In order to provide this, you must add an entry to the
extensions field that contains provisioning manager-specific information. Each key in the
extensions field corresponds to the provisioning manager, and certain properties are required
based on this key. For example, the xCAT extension key must be named xcat and must contain
certain fields. These extension keys are documented in the Image API. See the following
examples of creating images with xCAT-specific provisioning information below.

Sample Response

If the request was successful, the response body is the new image that was created exactly as
shown in Get Single Image. On failure, the response is an error message.

Samples

The virtualizedl mages field only accepts input when the image is a hypervisor and expects an
array of image IDs or names, as shown in the following example:

Example payload of hypervisor with 2 vms

{

"hypervi sor":true,
"nane": "esx5-stateful ",
"osType":"linux",
"suppor t sPhysi cal Machi ne": true,
"type":"stateful ",
"virtualizedl nages": [
{"id": "4f al97e68ca30f c605ddlcf 0"},
{"nanme": "centos5-stateful"}

The following example shows how to create an image that utilizes a cloned template for a virtual
machine. (Note that the type must besetto | i nkedcl one in order to set the templateName
field.)

37

VM Utilizing a Cloned Template

"active": true,
"hypervisor": false,

"nane": "centosb5-conpute-stateful ",
"osType": "linux",
"type": "linkedclone",

"supportsVirtual Machi ne":true,
"t enpl at eNane": " cent 0s5- conput e"

The following are samples of avirtual machine and a hypervisor image that can be provisioned
with xCAT:

XCAT Virtual Machine Image

{

"active": true,

"features": [],

"hypervisor": false,

"nanme": "centos5-compute-stateful ",
"osType": "linux",

"type": "stateful",
"supportsVirtual Machi ne": true,
"extensions": {

"xcat":
"os": "centos",
"architecture": "x86_64",
"profile": "conpute"

}

}
}

XCAT Hypervisor Image

{

"active": true,

"features": [],

"hypervisor": true,

"nane": "esxi5-base-statel ess"”,

"osType": "linux",

"virtualizedl mages":

{"name": "centos5-conpute-statel ess"}

"type": "statel ess",

"suppor t sPhysi cal Machi ne": true,

"extensions": {

"xcat":
"os": "esxib5",
"architecture": "x86_64",
"profile": "base",
"hvType": "esx",
"hvG oupNane": "esx5hv",
"vn oupNane": "esx5vnt
}
}
}

3.3.3 Modifying Images
The HTTP PUT method is used to modify I mages.

Quick Reference

cal host/ mas/ rest /i mages/ <i d>
cal host/ mas/ rest /i mages/ <name>

=

=0

—- =
— -+
TT
—~—
—~—
o o

3.3.3.1 Modify Single Image

URLs and Parameters

cal host/ mas/ rest /i mage/ <i d>
cal host/ mas/ rest /i nage/ <name>

=

>

—
— —
TT
~—
~—
o o

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See Global URL Parameters for available URL parameters.

® You must specify either id or name, but you do not have to specify
both.

® The name field must contain only letters, digits, periods, dashes, and
underscores.

Example Request

PUT http://locahost/mws/rest/image/centoss-statef ul

{

"nane": "centosb5-stateful ",
"type": "stateful",
"hypervisor": false,
"osType": "linux",
"virtualizedl mages": []

& Theversion field contains the current version of the database entry and does
not reflect the version of the operating system. This field cannot be updated
directly. However, if version isincluded in the modify request, it will be
used to verify that another client did not update the object in between the
time the data was retrieved and the modify request was delivered.

Sample Response

If the request was successful, the response body is the modified image as shown in Get Single
Image. On failure, the response is an error message.

3.3.4 Deleting Images
The HTTP DELETE method is used to delete | mages.

39

Quick Reference

cal host/ mas/ rest /i mages/ <i d>
cal host/ mas/ rest /i mages/ <name>

[e}e)

3.3.4.1 Delete Single Image

URLs and Parameters

DELETE htt
DELETE htt

jehe]

o
o

~—

| ocal host/ mas/ rest /i mage/ <i d>
| ocal host/ mas/ rest /i nage/ <name>

Parameter Required Type Valid Values Description
id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See Global URL Parameters for available URL parameters.

% Only one of id or name are required.

Sample Response

JSON Response

{}

3.4 Jobs

This section describes behavior of the Job object in Moab Web Services. It contains the URLS,
payloads, and responses delivered to and from Moab Web Services.

2y The Job API contains the type and description of al fields in the Job object.
It also contains details regarding which fields are valid during PUT and
POST actions.

Supported Methods

40

Resour ce GET PUT POST DELETE

[rest/jobs Get all jobs Submit new job
Irest/jobs/active Get all active jobs

[rest/jobs/complete Get all complete jobs

[rest/jobs/id Get specified job Modify job Cancel job

Irest/jobs/activel/id Get specified active job
[rest/jobs/complete/id Get specified complete job

3.4.1 Getting Job Information

The HTTP GET method is used to retrieve Job information. Queries for all objects and asingle
object are available.

Quick Reference

GET http://1ocal host/ mavs/rest/jobs/<id>

3.4.1.1 Get All Jobs

URLs and Parameters

CET http://1ocal host/ mws/rest/jobs

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

"total Count": 1,

"resultCount": 1,

"results": [{
B0 L

o
}

Samples

41

GET http://localhost/mws/rest/jobs?fiel ds=id,state,flags

"total Count": 3,
"resultCount": 3,
"results": [

{
"id": "job.1",
"state": "IDLE",
"flags": ["PREEMPTABLE"]

{
"id": "job.2",
"state": "RUNNI NG',
"flags": []

"flags":
" PREEMPTABLE"
" RESTARTABLE"

Known Issues

®* Somejobsare not returned if Di spl ayFl ags UseBl ocki ngissetinthenoab. cfg
file.

3.4.1.2 Get All Active Jobs

URLs and Parameters

GET http://1ocal host/ mas/rest/jobs/active

See Global URL Parameters for available URL parameters.
Sample Response
Same as Get All.

3.4.1.3 Get All Complete Jobs

URLs and Parameters

GET http://1ocal host/ mas/ rest/jobs/ conplete

See Global URL Parameters for available URL parameters.

Sample Response

Same as Get All.

42

Known Issues

This query can take along time and slow down the Moab Workload Manager, especially on
systems with many completed jobs. Avoid this query if possible.

3.4.1.4 Get Single Job

URLs and Parameters

GET http://1ocal host/ mas/ rest/jobs/ <id>

Parameter Required Type Valid Values Description
id

Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response
{
"account": "account",
"activeDuration": 150,
"al | ocat edNodes": [{"id": "node01"}],
"al l ocatedVMs": [{"id": "vml"}],
"bl ockReason":
"message": "Check valid user",
"type": "BADUSER'
e
"bypass": 5,

"commandFile": "/tnp/test.sh",

"commandLi neArgunents": "-x -v",

"conpl eti onCode": O,

"conpl etionDate": "2011-11-08 13:18:47 MST",
"dedi cat edPr ocessor Seconds": 1.5,

"desti nati onRmJobl d": "1000011",

"earliestStartDate":

"2011-11-08 13:18:47 MST",

"earl i est Start Dat eRequest ed":

"2011-11-08 13:18:47 MsT",

"effectivePartitionAccessList":

"| at est Conpl et edDat eRequest ed":

"mast erHost": "master Host",
"menor yRequest ed": 1024,
"messages": [
"creationTinme": null,
"expireTime": null,
"i ndex": 0,
"message": "Message one",
"messageCount": O,
"aut hor": "npab",
"priority": O
.
"nane": "nyJob",
"os": "linux",
"partitionAccessList": ["ALL"],
"gos": "QOS1",
"gosRequested": "QOS1",

43

"effecti veQueueDuration": 600,
"emai | NotifyTypes": ["END'],
"emai | NotifyUsers": ["user @omai
"envi ronnent Vari abl es": {"var1":
"expectedState": "IDLE",

"flags": ["RESTARTABLE"],
"genericAttributes": ["attrl"],
"group": "group",

"hol ds": ["USER'],

"hosts": ["host1"],

"id": "Moab. 1",

"initial WrkingDirectory": "/tnp

["ALL'T,

n.com'],
"val 1"},

"2011-11- 08 13: 18: 47 MBT" ,

"queue": "BATCH',
"queueStatus": "ACTI VE",
"durationRequested": 300,
"requi renments": {
"al | ocat edNodes": [{"id": "node01"}],
"al | ocatedPartition": "",
"generi cResources": {
"resourcel": 10,
"resource2": 30

}

"nodeAccessPolicy": null,
"preferredNodeFeatures": [],
"requi redArchitecture": "",
"requi redd ass": "",

"requi redDi skPer Task": O,
"requi redMenor yPer Task": O,
"requi redNetwork": "",

"requi redNodeCount M ni nuni': 0,
"requi redNodeDi sk": O,

"requi redNodeFeatures": [],
"requi redNodeMenory": O,

"requi redNodePr ocessors": 0,
"requi redNodeSwap": O,

"requi redPartition": "",

"requi redProcessor Count M ni muni': 4,
"requi redProcessor sPer Task": 0,
"requi redSwapPer Task": 0,
"tasksPer Node": 0

"reservati onRequested": "rsv.1",
"reservationStartDate": "2011-11-08 13:18:47 MST",
"r mExt ensi on": "x=PROC=4",

"rmNane": "torque",

"rnttandardErrorFil ePath": "/tnp/error.out",
"rnStandardl nput Fil ePath": "/tnp/input.in”,
"rnBt andar dQut put Fi | ePat h": "/t np/ out put. out ™",
“runPriority": 5,

"sour ceRmJobl d": "1000011",

"standardErrorFil ePath": "/tnp/job.error.out",
"standar dQut put Fi | ePat h": "/tnp/job. out put.out",
"start Count": 1,

"startDate": "2011-11-08 13:18:47 MST",
"startPriority": 2,

"state": "COWLETED',

"subm tDate": "2011-11-08 13:18:47 MST",
"submi t Host": "adm n- node",

"suspendDuration": 60,

"systenPriority": 6,

"userPriority": 5,

"user": "saadm n",

"variables": {"varl": "val 1"},

"virtual Containers": [{"id":"vcl"}],
"vmsagePol i cy": " CREATEVM'

3.4.1.5 Get Single Active Job

URLs and Parameters

GET http://1ocal host/ mas/rest/jobs/activel <id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

Same as Get Single.

3.4.1.6 Get Single Active Job

URLs and Parameters

GET http://1ocal host/ mas/rest/jobs/conpl ete/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

Same as Get Single.

3.4.2 Submitting Jobs
The HTTP POST method is used to submit Jobs.

Quick Reference

PGOST http://1ocal host/ mas/rest/jobs[?proxy-user=<user name>]

45

Restrictions

® Theuser giveninuser must have read accessto thefile givenin conmandFi | e.

® No more than one virtual container can be specified in the request. The virtual container
must already exist.

® Theuser and gr oup properties are used to submit ajob as the specified user belonging to
the specified group.

® Jobvari abl es havethefollowing restrictions:

® vari abl e names cannot contain equals (=), semicolon (;), colon (:), plus (+),
guestion mark (?), caret (), backslash (\), or white space.
® vari abl e values cannot contain semicolon (;), colon (:), plus (+), or caret (V).

® When submitting jobs, the only supported hold type is USER.

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
nmoab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.4.2.1 Submit Job with Host List

URLs and Parameters

POST http://1ocal host/ mas/rest/jobs[?proxy- user=<user nanme>]

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

To submit ajob with a specified host list, only two fields are required: commandFi | e and
host s.

The payload below shows al the fields that are available during job submission.

46

JSON Payload (specified host list)
{

"account": "project nanme",
"commandFile": "/tnp/ nyscript.sh",
"commandLi neAr gunents": "-x",
"earliestStartDat eRequested": "2011-09-26 16:28:20 MOT",
"enmmi | NotifyTypes": ["END'],
"enmi | NotifyUsers": ["user @onain. coni'],
"envi ronnment Request ed": true,
"envi ronment Vari abl es": {
"SHELL": "/bin/bash",
"LC ALL": "en_US. utf8"

b
"flags": [
" SUSPENDABLE" ,
" BESTEFFORT"

]

roup": "wheel ",
"holds": ["USER'],
"hosts": [
"node2",
"node3"

1 ;

"initial WrkingDrectory": "/tnp",

"pane": "job nanme",

"os": "Ubuntu",

"gosRequested": "hi ghprio",

"queue": "priority",

"durationRequested": 3600,

"requirements": [{

"generi cResour ces":

"resourcel": 10,
"resource2": 30

I :
"nodeAccessPol i cy": "SHARED',
"requi redArchitecture": "x86_64",
"requi redDi skPer Task": 500,
"requi redMenor yPer Task": 1024,
"requi redNodeFeat ures": ["bluray"],
"requiredPartition": "cs",
"requi redProcessor sPer Task": 3,
"requi redSwapPer Task": 600,
"t asksPer Node": 8
"reservati onRequested": "grid.3",
"standardErrorFil ePath": "/home/jacob/err",
"standar dQut put Fi | ePat h": "/hone/jacob/out",
"subm t Host": "adm n-node",
"tenpl ateList": [
"tenpl atel",
"t enpl at e2"
]

ser": "jacob",
"userPriority": 25,
"vari abl es":
“var1": "val 1",
"var2": "val 2"

Ie
"virtual Containers": [{"id": "vcl"}],
"vmUsagePol i cy": " REQUI REPM'

Sample Response

The response of thistask is one of three possibilities:

® Anobject with asingle nessages property containing alist of error messages on failure

{"nmessages":["Coul d not create job - invalid requirenments"]}

47

®* Anobject withani d property containing the ID of the newly created job

{"id":"Mab.1"}

®* Anobject withani d property and avi r t ual Cont ai ner s list containing the ID of the
newly created virtual container

{"id":"Mab.1","virtual Containers":[{"id":"vcl"}]}

& Thevirtual container will only be reported when a new virtual container has
been created by Moab for the job.

3.4.2.2 Submit Job with Node Count

URLs and Parameters

POST http://1ocal host/ mas/rest/jobs[?proxy-user=<user name>]

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

To submit ajob with a specified node count, only two fields are required: commandFi | e and
requi r edPr ocessor Count M ni rum(inther equi r enent s array).

The payload below shows all the fields that are available during job submission.

JSON Payload (specified node count)

{

"account": "project nanme",
"commandFile": "/tnp/ nyscript.sh",
"commandLi neAr gunents": "-x",
"earliestStartDat eRequested": "2011-09-26 16:28:20 MOT",
"enmmi | NotifyTypes": ["END'],
"enmi | NotifyUsers": ["user @onain. coni'],
"envi ronnment Request ed": true,
"envi ronment Vari abl es": {
"SHELL": "/bin/bash",
"LC ALL": "en_US. utf8"

b

"flags": [
" SUSPENDABLE",
" BESTEFFORT"

I 5

"group": "wheel",

"holds": ["USER'],

"initial WrkingDrectory": "/tnp",

"nane": "job nanme",

"os": "Ubuntu",

"gosRequested": "hi ghprio",

"queue": "priority",

"durationRequested": 3600,

"requi rements": [{

"generi cResour ces":

"resourcel": 10,
"resource2": 30

I :

"nodeAccessPol i cy": "SHARED',
"requi redArchitecture": "x86_64",
"requi redDi skPer Task": 500,

"requi redMenor yPer Task": 1024,
"requi redNodeFeat ures": ["bluray"],
"requiredPartition": "cs",

"requi redProcessor Count M ni mun': 4,
"requi redProcessor sPer Task": 3,
"requi redSwapPer Task": 600,

"t asksPer Node": 8

"reservati onRequested": "grid.3",
"standardErrorFil ePath": "/home/jacob/err",
"standar dQut put Fi | ePat h": "/hone/jacob/out",
"subm t Host": "adm n-node",
"tenpl ateList": [

"tenpl atel",

"t enpl at e2"

]

ser": "jacob",
"userPriority": 25,
"vari abl es":
“var1": "val 1",
"var2": "val 2"

Ie
"virtual Containers": [{"id": "vcl"}],
"vmUsagePol i cy": " REQUI REPM'

Sample Response

The response of thistask isthe same as submitting a job with a host list.

3.4.2.3 Examples of Job Submission

This section includes some sample job submission requests.

Submit job to run on node2 and node3

49

POST http://localhost/mws/rest/jobs

{
"commandFi le": "/tnp/test.sh",
"group": "adaptive",
"hosts": ["node2", "node3"]
"initial WrkingDrectory": "/tnp",
"user": "adaptive",

}

Submit job that requires 20 processors

POST http://localhost/mws/rest/jobs

{
"commandFile": "/tnp/test.sh",
"group": "adaptive",
"initial WrkingDirectory": "/tnp",
"requi rements": [{"requiredProcessorCountM ni muni': "20"}]
"user": "adaptive",
}

Submit job to run after a certain time

POST http://localhost/mws/rest/jobs

{
"commandFile": "/tnp/test.sh",
"earliest StartDat eRequested": "2012-08-26 16:28: 20 MDT",
"group": "adaptive",
"initial WrkingDirectory": "/tnmp",
"requi renents": [{"requiredProcessor Count M ni muni: "20"}]
"user": "adaptive",

}

Submit job based on nsub example

Given thisnmsub command:

nsub -1 nodes=3: ppn=2, wal | ti ne=1: 00: 00, pnem=100 scri pt2. pbs. cnd

Hereisan equivalent MWS request:

POST http://localhost/mws/rest/jobs

{
"user": "adaptive",
"group": "adaptive",
"initial WrkingDrectory": "/hone/adaptive",
"commandFi | e": "/hone/ adaptive/script2. pbs.cnd",

"requi rements": [
"requi redProcessor Count M ni nuni': 6,
"tasksPer Node": 2,
"requi redvenor yPer Task": 100

M,
"durati onRequested": 3600

50

® Toemulate what msub does, make commandFi | e an absolute path,
and add user, group,andi ni ti al Wr ki ngDi rectory.

®* Asshown above, nodes=3: ppn=2 isequivaent to setting
requi r edPr ocessor Count M ni mrumto 6 andt asksPer Node
to 2.

3.4.3 Modifying Jobs
The HTTP PUT method is used to modify Jobs.

Quick Reference

PUT http://1ocal host/ mas/rest/jobs/<id>[/<nodifyActi on>][?proxy- user =<user nane>|

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
nmoab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.4.3.1 Modify Job Attributes

URLs and Parameters

PUT http://1ocal host/ mas/rest/jobs/ <i d>[?pr oxy-user =<user nane>]

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

51

JSON Payload

"account": "engineering",
"earliestStartDat eRequested": "2011-08-24 15:02: 00",
"flags":
" RESTARTABLE",
" SUSPENDABLE"
|
“hol ds": ["USER'],
"messages”:
{"nmessage": "First nmessage"},
{"message": "Second nessage"}
"name": "Engi neeringJob"

"gosRequest ed": " NORVAL",

"queue": "BATCH',

"durationRequested": 600

"requi rements": [{"requiredPartition": "msm'}],
"reservati onRequested": "rsv.1",

“"trigger": "triggerString",

"userPriority": 10

"vari abl es": {
"varl1": "val 1",
"var2": "val 2"

}

}

Sample Response

% These messages may not match the messages returned from Moab exactly,
but are given as an example of the structure of the response.

& Not all messages are shown for the above payload.

JSON Response

{

"messages": [
"Account nodified successfully",
"Messages nodi fied successfully",
"Vari abl es nodi fied successful | y"

Restrictions

® Old messages are not removed from jobs; only new messages are added.
® Jobvari abl es have the restrictions documented in Submitting Jobs

3.4.3.2 Perform Actions on Job

URLs and Parameters

PUT http://1ocal host/ ms/rest/jobs/<i d> <nmbdi f yActi on>[?pr oxy- user =<user nane>]

52

Parameter Required Type i Description

L

id Yes String - The unique identifier of the object.

modifyAction Yes String cancel Attempts to cancel the job.

Attempts to checkpoint the job. Note that the OS
must support checkpointing for this to work.

checkpoint

execute Executesthejob if possible.

Attempts to hold the job using the holds set in the
payload.

requeue Attemptsto requeue thejob.

hold

resume Attempsto resume the job.

suspend Attemptsto suspend the job.

unhold Attempts to release the holds set in the payload.

proxy-user No String - Perform the action as this user.

4, Performing a cancel function on ajob is equivalent to deleting a job.

See Global URL Parameters for available URL parameters.

Payload

Payloads are only required for holding or unholding jobs. All other actions do not require
payloads of any kind.

JSON Payload to Add Holds to a Job

"hol ds": ["USER']

JSON Payload to Remove Holds from a Job

"hol ds": ["USER']

2 If no holds are specified when unholding ajob, all holds will be removed.
Thisis equivaent to specifying hol ds asalist with asingle element of ALL

Sample Response

53

& This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{
"messages": [
"Job nodified successful ly"
]
}

3.4.4 Deleting (Canceling) Jobs
The HTTP DELETE method is used to cancel Jobs.

Quick Reference

DELETE http://1 ocal host/ mas/ rest/jobs/ <i d>[?pr oxy-user =<user nane>|

Restrictions

® The proxy-user parameter isignored unless you set ENABL EPROXY=TRUE in the
noab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.4.4.1 Cancel Job

URLs and Parameters

DELETE http://1 ocal host/ mas/ rest/jobs/ <i d>[?pr oxy-user =<user nane>|

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response for successful DELETE

{}

v Additional information about the DELETE can be found in the HTTP
response header X- MAG- Message.

3.5 Job Templates

This section describes behavior of the Job Template object in Moab Web Services. It contains
the URLSs, payloads, and responses delivered to and from Moab Web Services.

4 The Job Template API contains the type and description of all fieldsin the
Job Template object. It also contains details regarding which fields are valid
during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

rest/job-templates Get all job templates

Irest/job-templates/id Get specified job template

3.5.1 Getting Job Templates

The HTTP GET method is used to retrieve Job Template information. Queriesfor all objects
and asingle object are available.

Quick Reference

GET http://Iocal host/ ms/rest/job-tenpl ates/<id>

3.5.1.1 Get All Job Templates

URLs and Parameters

GET http://1ocal host/ mas/rest/job-tenplates

See Global URL Parameters for available URL parameters.

Sample Response

55

GET http://loca host/mws/rest/job-templates?fields=id

"total Count": 14,
"resul t Count": 14,
"results": [

"id": "DEFAULT"},

: "genericVM'},
"generi cVM setup"},
"generi cVM destroy"},
"generi cVM i grate"},
"generi cPM'},
"generi cPM setup"},
"generi cPM destroy"},
" OSSt or age"},
" OSSt or age- setup"},
" OSSt or age- destroy"},
"extraStorage"},
"extraSt orage-setup"},
"extraSt orage-destroy"}

=

aaaaaaaaaaag

3.5.1.2 Get Single Job Template

URLs and Parameters

GET http://1ocal host/ mas/rest/job-tenpl ates/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response
{

"account": "account",
"args": "argl arg2",
"commandFile": "/tnp/script",

"description": "description",

"generi cSystemlob": true,

"id": "genericVM',

"inheritResources": false,

"j obDependencies": [{
"nane": "genericVM setup",
"type": "JOBSUCCESSFULCOVPLETE"

Il

"] obFl ags": ["VMIRACKI NG'],

"] obTenpl at eFl ags": ["SELECT"],

"] obTenpl at eRequi rement s": [
"architecture": "x86_ 64",
"di skRequi rement": 500,
"generi cResources": {"tape": 3},
"nodeAccessPol i cy": "SINGEJOB",
"operatingSysteni: "Ubuntu 10.04. 3",
"requi redDi skPer Task": 200,
"requi redFeatures": ["dvd"],
"requi redvenor yPer Task": 1024,
"requi redProcessor sPer Task": 2,
"requi redSwapPer Task": 512,
"taskCount": 4

.

"priority": 20,

"gos": "qos",

"queue": "queue",
"durationRequested": 600,
"select": true,

"trigger": null,

"version": O,

"vmsagePol i cy": " REQUI REPM'

3.6 Nodes

This section describes behavior of the Node object in Moab Web Services. It contains the URLS,
payloads, and responses delivered to and from Moab Web Services.

& The Node API contains the type and description of al fields in the Node
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE
[rest/nodes Get all nodes

/rest/nodes/id Get specified node Modify node

3.6.1 Getting Nodes

The HTTP GET method is used to retrieve Node information. Queries for all objects and asingle
object are available.

Quick Reference

57

GET http://1ocal host/ ms/rest/nodes/ <i d>

3.6.1.1 Get All Nodes

URLs and Parameters

GET http://1ocal host/ mas/rest/ nodes

See Global URL Parameters for available URL parameters.

Sample Response

GET http://localhost/mws/rest/nodes?fields=id

"total Count": 3,
"resul t Count": 3,

"results": [
{"id": "nodel"},
"id": "node2"},
{"id": "node3"}

]
}

3.6.1.2 Get Single Node

URLs and Parameters

GET http://1ocal host/ ms/rest/nodes/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

58

"accessPolicy": null,
"aliases": [],
"architecture": "",
"avai | abl eCl asses": [],
"avai | abl eDi sk": -1,
"avai | abl eEndDate": null,

"avai | abl eGeneri cResour ces"

"avai | abl eMenory": -1,
"avai | abl eProcessors": -1,
"avail abl eStartDate": null,
"avai | abl eSwap": -1,
"bl ockReason": "",
"coments": "",
"configuredC asses": [],
"cpuLoad": O,
"dynami c": false,
"external Load": O,
"features": [],
"flags": [
"VM_CREATE_ENABLED",
" RM_DETECTED"
]

0l

eneri cEvents": [],
"genericMetrics": {},
"generi cResources": {},
"hypervi sor Type": ,
"i OLoad": O,

“idtso"t,

"index": -1,

"jobs": [{"id": "Mpab.1"}],
"| ast St at eUpdat eDat e": nul |
"| ast Updat eDate": null,
"maxl A n": O,

"max| OLoad": O,

"max| OQut ": O,
"maxJob": O,

"maxJobPer User": O,
"maxLoad": O,

" maxPEPer Job": O,
"maxPagel n": O,
"maxPageCQut": O,
"maxProc": O,
"maxProcPer d ass": 0,
"nmessages": [],
"network": "",

"net wor kAddress": "",
"net wor kLoad": O,
"nextQos": "",
"operations": [],

"os": "",

"osList": [],
"overconmt": null,
"partition": "",
"power": null,

"power Pol icy": null,
"power Sel ected": null,
"priority": O,
"priorityFunction": "",
"procSpeed": O,
"profilingEnabl ed": false,
"rack": 0,
"reservationCount": O,
"reservations": [],
"rmAccessList": "",
"size": 1,

"slot": O,

"speed": 1,

"speedWei ght": 1,
"state": null,
"substate": "",
"taskCount": -1,

"total Acti veTi me": O,
"total Avai | abl eTi ne": 0,
"total Di sk": -1,

"total Menory": -1,
"total Processors": -1,
"total StatsTine": O,
"total Swap": -1,

"total UpTi me": O,
“type": "",
"variables": {},
"version": O,

"virtual Machi nes": [{"id":
"vmOsList": []

- AL

"vi'}],

3.6.2 Modifying Nodes
The HTTP PUT method is used to modify Nodes.

Quick Reference

PUT http://1 ocal host/ mns/rest/ nodes/ <i d>[?pr oxy- user =<user nane>]

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
nmoab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.6.2.1 Modify Node

URLs and Parameters

PUT http://1ocal host/ ms/rest/ nodes/ <i d>[?pr oxy- user =<user nane>]

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

60

Sample JSON Payload to Modify a Node

"genericEvents": [{
"nane": "eventl",
"message": "Sanpl e nessage"

"géneri cMetrics": {
"metricl": 3,
"metric2": 5

! ’messages" : [
"messagel”,
"message?2"

"os": "linux",

"partition": "local",

"power": "off|on",

"state": "Busy",

"vari abl es": {
"varl1": "val 1",
"var2": "val 2"

}

}

Sample Response

& This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{"nessages": [
"Successfully nodified os to 'linux'",
"Successfully powered node of f"

1}

3.7 Pending Actions

This section describes behavior of the Pending Action object in Moab Web Services. It contains
the URLSs, payloads, and responses delivered to and from Moab Web Services.

& The Pending Action API contains the type and description of al fieldsin the
Pending Action object. It aso contains details regarding which fields are
valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

[rest/pending-actions Get all pending actions

3.7.1 Getting Pending Actions
The HTTP GET method is used to retrieve Pending Action information.

61

Quick Reference

GET http://1ocal host/ mas/rest/ pendi ng-acti ons

3.7.1.1 Get All Pending Actions

URLs and Parameters

GET http://1ocal host/ mas/rest/ pendi ng-acti ons

See Global URL Parameters for available URL parameters.

Sample Response

GET http://local host/mws/rest/pending-actions

"total Count": 1,

"resul tCount": 1,

"results": [{
"failureDetails": ""
"hosts": ["hv3"],
"id": "vncreate-27",
"maxDur ati onl nSeconds": 3600,
"mgrationDestination": ""
"mgrati onSource": "",
"motivation": "requested by root",
"pendi ngActionState": "RUNNI NG',
"pendi ngActi onType": "VMCREATE",
"requester": "root",
"serviceld": "Rhel 55Vm 200",
"startTime": "2011-11-15 21:57:55 MST",

"substate": "installing",
"targetCs': "',
"t opLevel Servicel d": "Lanp.132",
symdt: " vng”
H
}

Generic vs Non-Generic Types

If generic job templates are used in Moab, MWS may be configured to translate pending actions
with the generic type to the proper type such as VMCREATE. Thisis done in the configuration
file. The Quickstart Guide provides the default mappings for this feature, as well as an example
of adding a custom mapping from a custom template name to the correct type.

The default mappings are shown in the table below. The available pending action types may be

seen on the PendingActionType API page.

62

Template Name Mapped Type
genericVM-setup VMCREATE
genericVM-migrate VMMIGRATE
genericVM-destroy VMDESTROY
OSStorage-setup VMSTORAGE
OSStorage-destroy VM STORAGEDESTROY
extraStorage-setup STORAGE
extraStorage-destroy STORAGEDESTROY
genericPM-setup OSPROVISION

% When generic mappings are used, MWS will match the first template
mapping that the pending action ID ends with. For example, an ID of
Moab. 1. generi cVM set up will map the type to VMCREATE.

To enable mapping for a custom template name such as my Cust onVM set up, simply add the
following line to the MWS configuration file. The value of the pending action typeis case
insensitive.

mns. pendi ngAct i ons. mappi ngs[" myCust onVM set up"] = "vntreate"

MWS also provides the ability to enable or disable the display of generic pending actions (or
those pending actions that are not mapped). This behavior is controlled by the

mas. pendi ngAct i ons. di spl ayGener i ¢ setting as shown below. A f al se value will
prevent generic pending actions from being displayed, whileat r ue value will display all
pending actions. By default thisvalueist r ue.

mns. pendi ngAct i ons. di spl ayGeneric = fal se

3.8 Plugins

This section describes behavior of the Plugin object in Moab Web Services. It contains the
URLSs, payloads, and responses delivered to and from Moab Web Services.

& The Plugin API page contains the type and description of all fieldsin the
Plugin object. It also contains details regarding which fields are valid during
PUT and POST actions.

Supported Methods

63

Resource GET PUT POST DELETE

/rest/plugins Get all plugins Create new plugin
Irest/pluging/id Get specified plugin Modify plugin Delete plugin

3.8.1 Getting Plugins

The HTTP GET method is used to retrieve Plugin information. Queriesfor al objectsand a
single object are available.

Quick Reference

CET http://1ocal host/ mas/rest/ pl ugi ns/ <i d>

3.8.1.1 Get All Plugins

URLs and Parameters

GET http://1ocal host/ mas/rest/plugins

See Global URL Parameters for available URL parameters.

Sample Response

GET http://localhost/mws/rest/plugins?ields=id

"total Count": 3,

"resul tCount": 3,

"results": [
{"id": "pluginl"},
{"id": "plugin2"},
{"id": "plugin3"}

]

}

2 The plugin objects contain two additional fields that are not in the API
documentation: nextPollDate and lastPoll Date. These represent that next and
last date that polling will occur or has occurred. The values may also be null
if polling has not occurred or if the plugin isin the STOPPED state.

3.8.1.2 Get Single Plugin

URLs and Parameters

CET http://1ocal host/ mas/rest/ pl ugi ns/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

{
"id":"pluginl",
"plugi nType": "Native",
"pol 'l nterval ": 30,
"autoStart":true,
"config":{
"get Jobs": "exec:///opt/noab/tool s/ workl oad. query. pl "

" ’St ate": " STARTED",

"next Pol | Dat e": "2011-12-02 17:28:52 MST",

"l ast Pol | Date":"2011-12-02 17:28: 22 MST"
}

& The plugin object contains two additional fields that are not in the API
documentation: nextPollDate and lastPoll Date. These represent the next and
last date that polling will occur or has occurred. The values may also be null
if polling has not occurred or if the plugin isin the STOPPED state.

3.8.2 Creating Plugins
The HTTP POST method is used to create Plugins.

Quick Reference

POST http://1ocal host/ mas/rest/ pl ugi ns

3.8.2.1 Create Plugin

URLs and Parameters

POST http://1ocal host/ mas/rest/ plugins

See Global URL Parameters for available URL parameters.

Payload

When creating aplugin, thei d and pl ugi nType fields are required. The payload below shows
al fields that are available when creating a Plugin, along with some sample values.

65

JSON Payload

{
"id":"pluginl",
"plugi nType": "Native",
"pol | I nterval": 30
"autoStart":true,
"config":{
"getJobs": "exec:///opt/ moab/t ool s/ workl oad. query. pl "

& If ast at e isspecified for the new plugin, it will be ignored.

Sample Response

JSON Response for successful POST

{"id": "pluginl"}

Restrictions

Whileit is possible to create a plugin with arbitrary nested configuration, such as:

“config":{
"nest edoj ect": {
"propertyl":"val uel",
"property2":"val ue2"

"hestedList:["listltenﬂ", "listltenR"]

It isnot recommended if using the user interface to manage plugins as it does not support editing
or viewing any configuration data other than strings.

3.8.3 Modifying Plugins
The HTTP PUT method is used to modify Plugins.

Quick Reference

PUT http://1ocal host/ ms/rest/plugins/<i d>

3.8.3.1 Modify Plugin

URLs and Parameters

PUT http://1ocal host/ mas/rest/pl ugins/ <i d>

66

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows all the fields that are available when modifying a Plugin, along with
some sample values.

JSON Payload for Plugin Modification

"state":" STARTED",
"polllnterval":30
"autoStart":true,
"config":{
"get Jobs": "exec:///opt/npab/tool s/ workl oad. query. pl "

I
"state":" STARTED'

Sample Response

JSON Response

{"nmessages":["Plugin pluginl updated", "Started Plugin 'pluginl'"]}

3.8.4 Deleting Plugins
The HTTP DELETE method is used to delete Plugins.

Quick Reference

DELETE http://1 ocal host/ mas/rest/ pl ugi ns/ <i d>

3.8.4.1 Delete Plugin

URLs and Parameters

DELETE http://1 ocal host/ mas/rest/ pl ugi ns/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

67

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response for successful DELETE

{}

‘& Additiona information about a successful DELETE can be found in the
HTTP response header X- MAG- Message.

JSON Response for an unsuccessful DELETE

{"nmessages":["Plugin pluginl could not be deleted", "Error nmessage describing the
probl eni']}

3.9 Plugin Types

This section describes behavior of the Plugin Type object in Moab Web Services. It contains the
URLSs, payloads, and responses delivered to and from Moab Web Services.

. The Plugin Type API page contains the type and description of al fieldsin
the Plugin Type object. It also contains details regarding which fields are
valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

[rest/plugin-types Get all plugin types Create or update plugin type
Irest/plugin-types/id Get specified plugin type

3.9.1 Getting Plugin Types

The HTTP GET method is used to retrieve Plugin Type information. Queries for all objects and
asingle object are available.

Quick Reference

GET http://1ocal host/ mas/rest/plugin-types/<id>

3.9.1.1 Get All Plugin Types

URLs and Parameters

68

GET http://1ocal host/ mas/rest/plugin-types

See Global URL Parameters for available URL parameters.

Sample Response

GET http://local host/mws/rest/plugin-types?ields=id

"total Count": 2,
"resultCount": 2,
"results": [
{"id": "NBM},
{"id": "Native"}
]
}

3.9.1.2 Get Single Plugin Type

URLs and Parameters

GET http://1ocal host/ mas/rest/plugin-types/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

"id":"Native",
"aut hor": " Adapti ve Conputing",
"description":"Basic inplenmentation of a native plugin",
"instances": [
{"id":"pluginl"}

3.9.2 Creating or Updating Plugin Types

The HTTP POST method is used to create or update Plugin Types. The Cont ent - Type
HTTP header is used to determine if the request contains a single class file as plaintext or the
binary data of a JAR file. Each request is explained in the following sections.

Quick Reference

69

PUT http://1ocal host/ mas/rest/plugin-types

3.9.2.1 Update Plugin Type (File)

URLs and Parameters

PUT http://1ocal host/ mas/rest/plugin-types

See Global URL Parameters for available URL parameters.

Payload

This function isidempotent, meaning it will create the Plugin Type if it does not exist or update
itif it does. The payload is the actual contents of the classfile to upload. Thisweb serviceisan
exception to most as it requires a content type other than JSON. The preferred content type to
usefor thisrequest ist ext / pl ai n.

Plaintext upload

package test

i mport com ace. mns. pl ugi ns. *
i mport com ace. mas. pl ugi ns. exceptions. *

cl ass Upl oadPl ugi n {
static author = "Adaptive Conputing"
static description = "A sanple plugin class"
String id

public void verifyConfiguration() throws InvalidPlugi nConfigurati onException {
def nyConfig = config
def errors =[]
if (!'nyConfig.arbitraryKey)
errors << "M ssing arbitraryKey!"
if (errors)
t hrow new | nval i dPl ugi nConfi gurati onException("Invalid plugin ${id}
configuration", errors)

public def custonService(Map parans) {
return parans

}

&4 If using the curl library to perform plugin type uploading, the equivalent of
the command-line option - - dat a- bi nar y must be used to send the
payload. Otherwise compilation errors may be encountered when uploading
the plugin type.

Sample Response
The response of thistask isthe same as the get al plugin types task. The reason that the return of

thistask isalist is to accommodate the possibility of uploading multiple plugin typesin asingle
JAR file as explained in the next section.

3.9.2.2 Update Plugin Type (JAR)

70

http://curl.haxx.se/

URLs and Parameters

PUT http://1ocal host/ mas/rest/plugin-types

See Global URL Parameters for available URL parameters.

Payload

This function isidempotent, meaning it will create the Plugin Typesiif they do not exist or
update them if they do. The payload is the binary contents of the JAR file to upload. Thisweb
service is an exception to most asit requires a content type of appl i cati on/ x-j ar.

@ Iftheappl i cation/ x-j ar content typeis not used in the request, it will
be interpreted as asingle class file, resulting in afailure to compile.

4 If using the curl library to perform plugin type uploading, the equivalent of
the command-line option - - dat a- bi nar y must be used to send the
payload. Otherwise compilation errors may be encountered when uploading
the plugin type.

Sample Response

The response of thistask isthe same as the get al plugin types task. Note that when using aJJAR
file, multiple plugin types may be uploaded in the same request.

3.10 Reports

This section describes behavior of the reporting framework in Moab Web Services. It contains
the URLSs, payloads, and responses delivered to and from Moab Web Services.

& The Report, Sample, and Datapoint API contains the type and description of
al fieldsin the Report, Sample, and Datapoint objects. They also contains
details regarding which fields are valid during PUT and POST actions.

Supported Methods

71

http://curl.haxx.se/

Resource GET PUT POST DELETE

Deleting
€p Lredale RePOrts
[rest/reports Get all reports Create Reports ReOrtS
Get single report with
[rest/reports/name e
. Get single report with
[rest/reports/id data
[rest/reports/name Get datapoints for
/datapoints report
[rest/reports/id Get datapoints for
/datapoints report
[rest/reports/name Get samples for report Create sample(s) for
/samples report
. Cresate sample(s) for
[rest/reports/id/samples Get samples for report renort

3.10.1 Getting Reports

The HTTP GET method is used to retrieve Report information. Queries for all reports with no
attached data and a single report with associated data are available.

Quick Reference

cal host/ mas/ rest/reports/<id>

GET http://lo
GET http://1ocal host/ mas/rest/reports/<nanme>

3.10.1.1 Get All Reports (No Data Included)

URLs and Parameters

GET http://1ocal host/ mas/rest/reports

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

"total Count": 1,
"resul tCount": 1,

"results": [{
"id": "3efebc670be86ba8560397ff",
"name": "cpu-util"

-
}

& No datapoints are returned when querying for all reports. To view the
consolidated datapoints, the Get Single Report API call must be used.

Samples

GET http://localhost/mws/rest/reports?fiel ds=id,name

"total Count": 3,
"resul t Count": 3,
"resul ts": [

{
"id": "3efebc670be86ba8560397ff",
"name": "cpu-util"

h

{
"id": "3efeb5c670be86ba856039800"
"nane": "cpu-tenmp"

h

{
"id": "3efe5c670be86ba856039801"
"name": "cpu-| oad"
}
]
}

3.10.1.2 Get Single Report (Includes Data)

URLs and Parameters

GET http://1ocal host/ mas/rest/reports/<id>
GET http://1ocal host/ mas/rest/reports/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See Global URL Parameters for available URL parameters.

& Only one of id or name are required.

Sample Response

In the example below, the first datapoint hasanul | data element, which means that the
m ni munBanpl eSi ze configured for the report was not met when consolidating the
datapoint. The second datapoint contains actual data.

73

JSON Response

"consol i dati onFunction": "average",
"dat apoi nt Durati on": 15,
"dat apoi nts": [

{
"endDate": "2011-12-02 17:28:22 NMST",
"startDate": "2011-12-02 17:28:22 MST",
"firstSanpl eDate": null,
"l ast Sanpl eDate": null,

"data": null
Iz (
"endDat e": "2011-12-02 17:28:23 MST",
"startDate": "2011-12-02 17:28:37 MST",
"firstSanpl eDate": "2011-12-02 17:28:23 MST",
"l ast Sanpl eDate": "2011-12-02 17:28:30 MST",
"data": {
"utilization": 99.89,
"time": 27.433333333333337
}
}

]| -
"description": "Exanple of CPU utilization reporting”,
"id": "3efe5c670be86ba8560397ff",

"keepSanpl es": fal se,

"m ni nunBanpl eSi ze": 1,

"nanme": "cpu-util",

"report Size": 2

—

3.10.1.3 Get Datapoints For Single Report

URLs and Parameters

cal host/ mas/ rest/reports/<id> datapoints
cal host/ mas/ rest/reports/ <name>/ dat apoi nt's

o o

GET http://1
GET http://1

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See Global URL Parameters for available URL parameters.

& Only one of id or name are required.

Sample Response

This function is exactly the same as requesting a single report with only the datapoints returned.
No report metadata (i.e. description, minimumSampleSize, etc.) is returned.

74

JSON Response

"resul tCount": 1,
"total Count": 1,
"results": [

{
"endDate": "2011-12-02 17:28:22 NMST",
"startDate": "2011-12-02 17:28:22 MST",
"firstSanpl eDate": null,
"l ast Sanpl eDate": null,

"data": null
IE (
"endDate": "2011-12-02 17:28:37 MST",
"startDate": "2011-12-02 17:28:37 MST",
"firstSanpl eDate": "2011-12-02 17:28:23 MST",
"l ast Sanpl eDate": "2011-12-02 17:28:23 MST",
"data": {
"utilization": 99. 89,
"time": 27.433333333333337
}
}

]
}

3.10.2 Getting Samples For Reports
The HTTP GET method is used to retrieve Sample information.

Quick Reference

GET http://1ocal host/ mas/rest/reports/<id> sanpl es
GET http://1ocal host/ mas/rest/reports/<name>/ sanpl es

3.10.2.1 Get Samples For Report

URLs and Parameters

cal host/ mas/ rest/reports/<id>/ sanpl es

GET http://lo
GET http://1ocal host/ mas/rest/reports/<name>/ sanpl es

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See Global URL Parameters for available URL parameters.

2y Only one of id or name are required.

Sample Response

75

JSON Response

"total Count": 1,
"resultCount": 1,
"results": [{
"timestanp": "2011-12-02 17:28:37 MST"
"data":{
"cpul":
"cpu2":
"cpu3":
"cpud":

o &
.2,
. 0,

RPORFRN

2.1
b

0
}

3.10.3 Creating Reports

The HTTP POST method is used to create Reports. Operations are available to create reports
with or without historical datapoints.

Quick Reference

POST http://1ocal host/ mas/rest/reports

3.10.3.1 Create Report

URLs and Parameters

POST http://local host/ mas/rest/reports

See Global URL Parameters for available URL parameters.

Payload

To create areport, several fields are required as documented in the Report API.
The payload below shows all the fields that are available during report creation.

JSON Payload

{
"name": "cpu-util",
"description":"An exanple report on cpu utilization",
"consol I dati onFuncti on": "average",
"dat apoi nt Durati on": 15,
"m ni munmSanpl eSi ze": 1,
"reportSize": 2,
"keepSanpl es": true,
"dat apoi nts": [

"startDate":"2011-12-01 19: 16: 57 MST",
"endDate":"2011-12-01 19: 16: 57 MST",
"data":{
"time": 30,
"util":99.98
}
}
]
}

Sample Response

{
"messages":["Report cpu-util created"],
"id":"3ef e5c670be86ba8560397f f ",
"name": "cpu-util"

}

Samples

POST http://localhost/mws/rest/reports (Minimal report without datapoints)

"nanme":"cpu-util",
"dat apoi nt Durati on": 15,
"report Size": 2

3.10.4 Creating Samples
The HTTP POST method is used to create Samples for Reports.

Quick Reference

POST http://1ocal host/ mas/rest/reports

3.10.4.1 Create Samples For Report

URLs and Parameters

cal host/ mas/ rest/reports/<i d> sanpl es

GET http://lo
GET http://1ocal host/ mas/rest/reports/<name>/ sanpl es

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See Global URL Parameters for available URL parameters.

= Only one of id or name are required.

Payload
To create samples for areport, simply send data and an optional timestamp to the URL above.

77

The payload below shows all the fields that are available during sample creation. Note that the
dat a field can contain arbitrary JSON.

JSON Payload

"tinmestanp":"2011-12-01 19: 16: 57 MST",
"agent":"ny agent",
"data":{
"cpul": 2.3,
"cpu2": 1.2,
"cpu3d": 0.0,
"cpud":12.1
}
}

Sample Response

{"nmessages":["1 sanpl e(s) created for report cpu-util"]}

3.10.5 Deleting Reports
The HTTP DELETE method is used to delete Reports.

Quick Reference

cal host/ mas/rest/reports/<id>
cal host/ mas/ rest/reports/ <name>

o o

3.10.5.1 Delete Report

URLs and Parameters

cal host/ mns/ rest/reports/<id>
cal host/ mns/rest/reports/ <nanme>

o o

Parameter Required Type Valid Values Description
id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See Global URL Parameters for available URL parameters.

& Only one of id or name are required.

Sample Response

JSON Response

{"nmessages":["Report cpu-util deleted"]}

3.11 Reservations

This section describes behavior of the Reservation object in Moab Web Services. It contains the
URLSs, payloads, and responses delivered to and from Moab Web Services.

4y The Reservation APl contains the type and description of al fieldsin the
Reservation object. It aso contains details regarding which fields are valid
during PUT and POST actions.

Supported Methods

Resour ce GET PUT POST DELETE
[rest/reservations Get all reservations Creete .

reservation
Irest/reservations/ Get specified Modify Release
id reservation reservation reservation

3.11.1 Getting Reservations

The HTTP GET method is used to retrieve Reser vation information. Queries for all objects and
asingle object are available.

Quick Reference

GET http://1ocal host/ mas/rest/reservations/<i d>

Restrictions

® Only admin or user reservations are returned with this call.

3.11.1.1 Get All Reservations

URLs and Parameters

GET http://1ocal host/ mas/rest/reservations

See Global URL Parameters for available URL parameters.

79

Sample Response

GET http://localhost/mws/rest/reservations?ields=id

"total Count": 3,
"resultCount": 3,
"resul ts":
{"id": "system 1"},
{"id": "system 2"},
{"id": "system 3"}

3.11.1.2 Get Single Reservation

URLs and Parameters

GET http://local host/ mas/rest/reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

80

JSON Response

{

"accounti ngAccount": "",
"accountingG oup": "",
"accountingQos': "",
"accountingUser": "root",
"acl Rul es": {
"af finity": "NEUTRAL",
"conparator": "LEX GRAPHI C EQUAL",
"type": "RESERVATION_|ID',
"val ue": "system 43"

H,

"al | ocat edNodeCount ": 1,

"al | ocat edProcessor Count": 8,

"al | ocat edTaskCount": 1,

"al | ocat edNodes":
{"id":"node001"}

"coments": "",

"creationbDate": null,

“duration": 200000000,

"endDate": "2018-03-17 16:49:10 MDT",

"excl udeJobs": [

"jobl",

"] ob2"
“expireDate": null,
"flags":

" REQFULL",

" | SACTI VE",

" | SCLOSED"

P

"gl obal I d": "",

"host Li st Expression": "",
"id": "system 43",
"idPrefix": "",

"isActive": true,
"isTracked": fal se,
"l abel ": "",
"maxTasks": O,
"messages": [],
"owner":

"name": "adaptive",

"type": "USER'

"partitionld": "swtchB",

"profile": "",

"requi renments": {
"architecture": "",
"featureList": [

"featurel",
"feature2"

"featurelwode": "",
"menmory": O,
"nodeCount": O,
"nodel ds": ["node001:1"],
"os": "",
"taskCount": 1

}

reservati onG oup": "",
"resources": {"PROCS": 0},
"startDate": "2011-11-14 20: 15: 50 MST",

"statistics": {
"caps": O,
"cips": 2659.52,
"taps": O,
"tips": O

J ¢

"subType": "Oher",
"taskCount": O,
"trigger": null,
"triggerlds": [],
"uni quel ndex": "",
"variables": {}

3.11.2 Creating Reservations
The HTTP POST method is used to create Reser vations.

81

Quick Reference

POST http://1ocal host/ mas/rest/reservations

3.11.2.1 Create Reservation

URLs and Parameters

POST http://1ocal host/ mas/rest/reservations

See Global URL Parameters for available URL parameters.

Payload

The payload below shows all the fields that are available when creating a Reservation, along
with some sample values.

82

JSON Payload

{

"account i ngAccount
"accountingG oup":
"accountingQos": "
"accountingUser":

"acl Rul es":

n. onmn
nwn

"root",

"affinity":

{
"POSI TI VE',

"conparat or":

"{ype":
"val ue":

"comments": ""

"endDat e":
"excl udeJobs":
" ob1"
"] ob2"
I| 5
"flags": [
" SPACEFLEX",
" ACLOVERLAP" ,
" SI NGLEUSE"

"idPrefix": "",

"owner " :
"nanme":
"type":

wn

"profile": ,
"requi renents":

"featureList":

"LEXI GRAPHI C_EQUAL",

" GROUP" ,
"staff"

"duration”: 200000000,
"2018-03-17 16:49: 10 MDT",

[

|
"host Li st Expression": "",

"adaptive",
" USER"

"partitionld": "",

"architecture": ,

[

"featurel",

"feature2"
I| 5
"menory": O,
nost: n
"taskCount": 1

"reservati onG oup": "",
"resources": {

"Dl SK":
" SWAP" :
"ot her1":
"ot her 2":

1024,
1024,
17,
42

e
"startDate": "2011-11-14 20:15:50 MST",
"subType": "Other",
"trigger":
"event Type": " START",
"actionType":"EXEC',
"action":"date"

e
"vari abl es": {
"varl": "val 1",
"var2": "val 2"
}
}

Createreservation if no conflicting reservations are found.
Thisisequivaent to mrsvctl -¢ -h nodeO1 -E.

JSON Request Body

"flags": [
" DEDI CATEDRESOURCE"

|
"host Li st Expression": "nodeO1"

83

Sample Response

JSON Response for successful POST

{"id": "system 44"}

3.11.3 Modifying Reservations
The HTTP PUT method is used to modify Reservations.

Quick Reference

PUT http://1ocal host/ mas/rest/reservations/ <i d>?change- node=<add| r enove| set >

3.11.3.1 Modify Reservation

URLs and Parameters

PUT http://1ocal host/ mas/rest/reservations/ <i d>?change- nbde=<add| r enobve| set >

Parameter Required Type Vi ;allld Description
id Yes String - The unique identifier of the object.
: Add the given variables to the variables that
change-mode Yes String add already exist,
remove Delete the given variables from the variables that
aready exist.
Replace all existing variables with the given
set .
variables.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows all the fields that are available when modifying a Reservation, along
with some sample values.

JSON Payload for Reservation Modify

"vari abl es": {
"var1": "val 1",
"var2": "val 2"

}

}

Sample Response

4 This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{"messages":["reservation 'system 43" attribute 'Variable' changed."]}

Restrictions

® You can change the ACL Ruleson areservation, but not using this resource. See Create or
Update ACLSs.

3.11.4 Releasing Reservations
The HTTP DELETE method is used to release Reser vations.

Quick Reference

DELETE http://1ocal host/ mas/ rest/reservations/ <i d>

3.11.4.1 Release Reservation

URLs and Parameters

DELETE http://1 ocal host/ maxs/rest/reservations/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response for successful DELETE

{}

3.12 Services

85

This section describes the behavior of a Service (an interdependent collection of workflows). It
ispossible for a Service to be composed of multiple Services. This section describes the URLSs,
payloads, and responses delivered to and from Moab Web Services for each approach.

& The Service API contains the type and description of all fieldsin the Service
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE
[rest/services Get all Services Create Service
Irest/services/id Get specified Service Modify Service Delete Service

3.12.1 Getting Service Information

The HTTP GET method is used to retrieve Service information. Queriesfor al objectsand a
single object are available.

Quick Reference

GET http://1ocal host/ mas/rest/services[?query={"field":"value"}&sort={"field"
:<1] - 1>}[& show-recursi ve-vc| show vc] =t rue]]

GET http://1ocal host/ mas/rest/services/ <i d> ?[showrecursive-vc| show vc]=true]
GET http://1ocal host/ mas/rest/services/ <name>[?[show-recursi ve-vc| show vc] =t rue]

3.12.1.1 Get All Services

URLs and Parameters

GET http://1ocal host/ mas/rest/services[?query={"field":"value"}&sort={"field"
1 <1| - 1>} [& show-recursi ve-vc| show vc] =true]]

86

Parameter Required Y Description Example

Queriesfor
query No JSON specific query={"type":"storage","label":"exlabel"}
results.

Sort the

results. Use

1 for . "
sort No JSON . sort={"account":-1}

ascending

and - 1 for

descending.

Show
extended
details
about the
service's
virtual

show-recursive-vc NoO true container show-recursive-vc=true
including
nested
virtual
containers
and nested
jobs.

Show
details
show-vc No true abogt the show-vc=true
service's
virtua
container.

Sample Response

GET http://local host:8080/mws/rest/services?query={ user:"bob"}

"total Count": 9,
"resul t Count": 3,
"results": [

{
"dat eCreated": "2011-12-07 16: 03: 40 MST",
"l ast Updat ed": "2011-12-07 16:03:40 MST",
"nanme": "bobService. 1",
"version": 1,
"type": "container",
"l abel ": null,
"user": "bob",
"account": "banboo",
"status": "A custom status nessage",
"statusCode": 0,
"incl udedServi ces": [
"machi ne0. 1",
" 0SSt or emachi ne0. 1"

"parent": null,

"serviceTenpl ate": {
"id": "4f bd42cfcdaadcd44cch4112",
"nanme": "Cent osVnPl usSt or age"

87

B
"attributes": {"npab": {
"ve": o {"id": "vcb6"},
"dependenci es": [
"service": "machi ne0. 1",
. "dependency": ["OSStorenachi ne0. 1"]

1
"id": "4edff0Occ6852f709f a777826"

{
"dateCreated": "2011-12-07 16:03:40 MST",
"l ast Updat ed": "2011-12-07 16: 03:40 MST",
"nanme": "machi ne0. 1",
"version": 1,
"type": "vni,
"l abel ": "bobs nachi ne",
"user": "bob",
"account": "banboo",
"status": "A custom status nessage",
"statusCode": O,
"includedServices": [],
"parent": "bobService. 1",
"serviceTenpl ate": {
"id": "4f bd42cfcd4aadc444cc54113",
"name": "CentosVvni

B
"attributes": {"npab": {
"ve": o {"id": "wvcb7"},
"job":
"id": "Mbab. 24",
"tenpl ate": "genericVM',
"image": "centosb5.5-statel ess",
"features": ["vlan3"],
"variables": {"Q0S": "High"},
"resources": {
"ment': 2,
"procs": 2,
"disk": 2
}

1
"i1d": "4edff0cc6852f 709f a777827"

{
"dateCreated": "2011-12-07 16:03:40 MST",
"l ast Updat ed": "2011-12-07 16: 03: 40 MST",
"nane": " OSStorenachi ne0. 1",
"version": 1,
"type": "storage",
"l abel ": null,
"user": "bob",
"account": "banboo",
"status": "A custom status nessage",
"statusCode": O,
"includedServices": [],
"parent": "bobService. 1",
"serviceTenpl ate": {
"id": "4f bd42cfcd4aadcd44cc54114",
"name": "QpSysStorage"”

o
"attributes": {"npab": {
"ve's {"id": "vc58"},
"j ob": {
"id": "Mbab.23",
"tenpl ate": "OSStorage",
"resources": {"0OS": 200}

d": "4edffO0cc6852f 709f a777828"

88

Querying Services
It ispossible to query services by one or more fields based on MongoDB query syntax.

Simple Queries

To see only services that are associated with the user "bob" you can use a query such as the
following:

http://1ocal host/ mas/ rest/ servi ces?query={"user":"bob"}

To see only servicesthat are of type"vm":

http://1ocal host/ mas/rest/servi ces?query={"type":"vni'}

To see only bob's vm services:

http://1ocal host/ mas/ rest/ servi ces?query={"user":"bob","type":"vni'}

To see only services that are NOT associated with bob:

http:/ /1 ocal host/ mws/rest/services?query={"user":{"$ne":"bob"}}

More Complex Queries

When the field values of the desired services are afinite set, you can use the $i n operator. For
example, to see services that belong to either bob, alice, or charlie, you can do the following:

http:/ /1 ocal host/ mws/rest/services?query={"user":{"$in":["alice","bob","charlie"]}}

Y ou can also query on embedded JSON objects within the service JISON. For example, to see
Services requesting 3 processors you can Use:

http://1ocal host/ mas/rest/servi ces?query={"attributes. npab.job.resources. procs": 3}

Conditional Operators

Y ou can perform <, <=, >, >= comparisonsusing the $| t , $I t e, $gt , $gt e operators.

89

http://www.mongodb.org/display/DOCS/Advanced+Queries

Operator Comparison
St <

Slte <=

St >

$gte >=

To see services requesting < 2 processors:

http://1ocal host/ mas/ rest/servi ces?query={"attributes. npab.job.resources.procs": {"$lt"

©2}}

To see services requesting >= 1024 memory:

http://1ocal host/ mas/ rest/ servi ces?query={"attri butes. nbab. | ob. resources. neni': {" $gt e"
: 1024} }

Querying Services by Date

To seeall services created after Febuary 8, 2012 at 1:00 PM Mountain Standard Time (MST):

http://1ocal host/ mas/ rest/ servi ces?query={"dateCreated": {"$gt":"2012-02-08 13: 00: 00
MBT"} }

To see services created before or on Febuary 8, 2012 at 1:00 PM Pacific Standard Time (PST):

http://1ocal host/ mas/ rest/servi ces?query={"dateCreated":{"$lte":"2012-02-08 13: 00: 00
PST"}}

To see services created between 12:00 PM and 1:00 PM Eastern Standard Time (EST) on
Febuary 8, 2012:

http://1ocal host/ mas/ rest/servi ces?query={"dateCreated":{"$lte":"2012-02-08 13: 00: 00
EST", "$gte": "2012-02- 08 12: 00: 00 EST"}}

Querying Services by Containing Service

Services can contain other services. When a service is contained within another service, you can
find out what its container is by looking at the parent field. A service that is not contained in any
other serviceiscaled atop level service. If you want to see only top level services you need to
query for services with anull parent.

In MongoDB syntax you query for services whose parent field have a $t ype of 10 (with 10
representing null). The following query shows all of bob's top level services:

90

http:/ /1 ocal host/ mws/rest/services?query={"user":"bob", "parent": {"$type": 10}}

Once you have the top level service, you can find the direct child services:

http://1ocal host/ mas/rest/servi ces?query={"user":"bob", "parent": "bobService.1"}

Once you have the direct children, you can find the children of those children with asimilar
query.

Sorting

See the sorting section of Global URL Parameters

Limiting the Number of Results

If you want to limit the number of results of services you can use the max parameter. For
example, to see only 10 of bob's services:

http://1ocal host/ mas/ rest/servi ces?query={"user":"bob"}&sort={"nane": 1} &max=10

To see bob's services 91-100 when sorted by name in ascending order you can combine max
with of f set asfollows:

http://1ocal host/ mas/rest/servi ces?query={"user":"bob"}&sort={"nane"
: 1} &max=10&of f set =90

Retrieving a Subset of Fields

To cause only certain fields to return for each service, usethef i el ds parameter. For example,
to show only the name field for each service:

http://1ocal host/ mas/ rest/services?fiel ds=nanme

This returns;

"total Count": 9,
"resul tCount": 3,

"resul ts": [
{"nanme": "aliceService.1"},
{"name": "machine0. 1"},
{"name": "(OSStorenachi ne0. 1"}

To show the name, type, and user:

91

http://1ocal host/ mas/ rest/services?fiel ds=nane, type, user

Thisreturns:
"total Count": 9,
"resul t Count": 3,
"resul ts": [
{
"nanme": "aliceService.1",
"type": "container",
"user": "alice"
b
{ .
"name": "machi ne0. 1",
"type": "vnt,
"user": "alice"
b (
"nanme": " OSStorenmachi ne0. 1",
"type": "storage",
"user": "alice"
}
]
}

3.12.1.2 Get Single Service

URLs and Parameters

cal host/ mas/ rest/ services/ <i d>[?[show-recursi ve-vc| show vc] =t rue]
cal host/ mns/ rest/ servi ces/ <name>[?[show- r ecur si ve-vc| show vc] =t r ue]

[eNe]

GET http://1
GET http://1

Parameter Required Vi ;al||d Description Example
id Yes String The.unlqueldentlfler of the
service.

name Yes String The name of the service.

Show extended details about
: the service's virtual container . B
show-recursive-vc No true . . : show-recursive-vc=true
including nested virtua

containers and nested jobs.
Show details about the

show-vc No true show-vc=true

service'svirtual container.

Parameter Required Type Valid Values Description

See Global URL Parameters for available URL parameters.

% Only oneof id or name are required.

92

Samples

GET http://local host/mws/rest/services/bobService.1?
{
"dateCreated": "2011-12-07 16: 03:40 MST",
"l ast Updat ed": "2011-12-07 16: 03: 40 MST",
"nane": "bobService.1",
"version": 1,
"type": "container",
"l abel": null,
"user": "bob",
"account": "banmboo",
"status": "A custom status nessage”,
"statusCode": O,
"includedServi ces": [
"machi ne0. 1",
" OSSt or enachi ne0. 1"
"parent": null,
"servi ceTenpl ate": {
"id": "4f bd42cfc4aadcd444cc54112",
"nanme": "Cent osVnPl usSt or age"
"attributes": {"npab": {
"vec": {"id": "vch6"},
"dependenci es": [{
"service": "machine0. 1",
"dependency": ["OSStorenmachi ne0. 1"]
}H
"id": "4dedff0cc6852f 709f a777826"
}

3.12.2 Creating Services
The HTTP POST method is used to create a Service.

Quick Reference

POST http://1ocal host/ mas/rest/services

3.12.2.1 Create Service From Service Template

URLs and Parameters

POST http://1ocal host/ mas/rest/services[?proxy-user =bob]

Parameter Required ad Description Example

The name of the user creating the

proxy-user No String sarvice

proxy-user=bob

Simple Case

To create a service from the template named "Rhel 54V mPlusStorage':

93

POST http://localhost/mws/rest/services

{

"user": "steve",

"account": "cloud",

"earliestStartDat eRequested": "2011-11-08 13:18:47 MST",
"durationRequested": 86400,

"data": [

"nanme": "M/Rhel 54VnPl usSt or age",
"serviceTenpl ate": "Rhel 54VnPl usSt or age",

Alternatively you can submit:

POST http://localhost/mws/rest/services

{
"user": "steve",
"account": "cloud",
"data": [

"name": " My/Rhel 54VnPl usSt or age",
"serviceTenpl ate": {
"nanme": " Rhel 54VnPl| usSt or age”
}
}
]
}

To create a service based on the service template with id "4fbd2d90c4aa4996400bsabm”

POST http://localhost/mws/rest/services

"user": "steve",
"account": "cloud",
"data": [

"name": " My/Rhel 54VnPl usSt or age”,
"serviceTenpl ate": {
"id":"4f bd2d90c4aa4996400bsa5nt
}
}
]
}

Extending a Service Template

If you want to create a service from a service template, but wish to extend the service template
with some additional variables or generic resources, you can use the extends field. Extending a
service template is also helpful when you wish to override certain values, such as the amount of
memory or processors the service requires.

To extend a service template, you will need to determine the extends path for the service you
wish to override. The extends path is the name of the top level service, followed by one or more
localNames as described in the includedServices field. All but the last <localName> are nested
containersinside the top level container. For example:

<top | evel service nanme>::<l| ocal Name>[: <l ocal Name>] +

For example, suppose you want to create a new service from the "Rhel 54V mPlusStorage”
service template, and you want to name this new service "MyRhel54V mPlusStorage”. In this
example, "Rhel54V mPlusStorage”" contains a service template named " SubContainerl". The
localName for "SubContainerl” in the "Rhel 54V mPlusStorage" includedServicesfield is"scl".

Rhel 54V mPlusStorage Service Template

{
"nanme": " Rhel 54VnPl usSt or age",

"type":"container",
"i ncl udedSer vi ces": [

"l ocal Nane": "sc1",
"servi ceTenpl at e": " SubCont ai ner 1"

}

]
}

The extends path for the instance of "SubContainerl" in your "MyRhel54V mPlusStorage” is.

MyRhel 54VnPl usSt or age: : scl

Let'ssay inside "SubContainerl" is another service template called "SubContainer2”. The
localName for "SubContainer2" as defined in the includedServices field for "SubContainerl" is

"sc2".

SubContainerl Service Template

{

"nane": " SubCont ai ner 1",
"type":"container",

"i ncl udedSer vi ces": [

"l ocal Nane": "sc2",
"servi ceTenpl at e": " SubCont ai ner 2"
}

]
}

The extends path for the instance of "SubContainer2" in "MyRhel 54V mPlusStorage” is:

MyRhel 54VnPl usSt or age: : scl: sc2

Now let's say that "SubContainer2" contains two service templates, "Rhel54Vm" and
"OpsysStorage" with localNames "rvm" and "0ss" respectively.

95

SubContainerl Service Template

{
"nane": " SubCont ai ner 2",
"type":"container",
"i ncl udedSer vi ces": [
"l ocal Nanme": "rvni,
"servi ceTenpl at e": " Rhel 54V’
o
{
"l ocal Name": "oss",
"servi ceTenpl ate": " OpSysSt or age"
}
]
}

The extends paths for the instances of "Rhel54VM" and "OpSysStorage” in
"MyRhel54VmPlusStorage” are:

MyRhel 54VnPl usSt or age: : scl:sc2:rvm
MyRhel 54VnP| usSt or age: : scl: sc2: 0ss

Now that we have the extends paths for al the services that will be created from the
"Rhel54VmPlusStorage” template, we can add variables to these services that were not in the
service templates.

POST http://localhost/mws/rest/services

{
"user": "steve",
"account": "cloud",
"data": [

{
"nanme": " M/Rhel 54VnPl usSt or age",
"serviceTenpl ate": "Rhel 54VnPl usSt or age",
"attributes": {
"sharedData":{ "extraAttribute":"some attribute not in the Rhel 54VnPl usSt or age
t enpl aie" }

%,
"nanme": "M/Rhel 54Vni,
"extends": "MRhel 54VnP| usSt orage: : scl:sc2:rvni,
"attributes":
"moab": {"job": {"variables": {"extraVar": "An additional variable not in the
Rhel 54Vm t enpl ate"}}},
"sharedData":{ "extraAttribute":"some attribute not in the Rhel 54Vm t enpl at e"
}
}
b

"name": "MyOsStorage”,
"extends": "M/Rhel 54VnPl usSt or age: : scl: sc2: oss",
"attributes": {
"moab": {"job": {"variables": {"extraVar2": "An additional variable not in
the OpSysStorage tenplate"}}},
"sharedData":{ "extraAttribute":"sonme attribute not in the OpSysStorage
tenpl ate" }
}

}
]
}

96

When the "MyRhel54Vm" serviceis created, it will have a variable named "extravar" even
though this variable was not defined in the "Rhel54Vm" service template. Likewise, when the
"MyQOsStorage" serviceis created, it will have avariable named "extravar2”, even though no
such variable was defined in the "OsStorage" service template. All three services will have an
attribute named "extraAttribute” in their attributes.sharedData sections though "extraAttribute"
does not appear in any service template.

Extending Services and Dependencies in a Container Service

To add a services to a container service that were not in the container's service template you first
define the new servicesin the service request. Then you extend the includedServices field of the
container with the newly defined services. Thiswill add the new services to any that are already
in the container as defined in the service template. It is only possible to add servicesto a
container. It is not possible to remove services from a container that were defined in the
container's service template.

For example, say the CentosV mPlusStorage service template contains an OpSysStorage service
template and a CentosVm service template.

CentosVmPlusStorage Service Template

{

"nanme": " Cent osVnPl usSt or age",
"type":"container",

"i ncl udedSer vi ces": [

"l ocal Name": "oss",
"servi ceTenpl ate": " OpSysSt or age"

~———

"l ocal Nane": "cvni',
"servi ceTenpl at e": " Cent osVn!'

To add two storage services to the service created from the CentosV mPlusStorage service
template submit the following service request:

POST http://localhost/mws/rest/services

{

"user":"bob",
"account":"cl oud",
"data": [

"nanme": " BobsCent osVnPl usSt or age",
"servi ceTenpl at e": " Cent osVnPl usSt or age",
"includedServices": [

" NewSt or ageToAdd1",

" NewSt or ageToAdd2"

]

~———

"nanme": " NewSt or ageToAdd1",
"serviceTenpl ate": " ExtraSt or age"

~———

"nanme": " NewSt or ageToAdd2",
"serviceTenpl ate": "ExtraSt or age"

97

The resulting service BobsCentosV mPlusStorage will contain NewStorageToAdd1,
NewStorageToAdd2, a service created from the OpSysStorage template, and a service created
from the CentosVm template. To add a dependency such that the CentosV m service will not be
able to start until both NewStorageToAdd1 and NewStorageToAdd2 have been set up:

POST http://localhost/mws/rest/services

"user":"bob",
"account":"cl oud",
"data":[

"nane": " BobsCent osVnPl usSt or age",
"servi ceTenpl at e": " Cent osVnP| usSt or age",
"includedServices": [

" NewSt or ageToAdd1",

"NewSt or ageToAdd2"

"attri but es": {
"nmoab": {
"dependenci es": [

"service":"BobsCent osVni',
"dependency": [

"NewSt or ageToAdd1",

" NewSt or ageToAdd2"

]

}
]
}

}
%,

"name": " BobsCent osVni',

"extends": " Cent osVnPl usSt or age: cvnt'
%,

"nane": " NewSt or ageToAdd1",

"serviceTenpl ate": "ExtraSt orage"
%,

"nane": " NewSt or ageToAdd2" ,

"serviceTenpl ate": "ExtraSt orage"
}

Extendable Fields

Y ou can only extend certain fields. Below is atable of fields that can be extended:

Extendable Fields Notes

Dependencies can be added but not removed. Only
applicable to containers.

attributes.moab.job.features Features can be added but not removed.
attributes.moab.job.requestedHosts Hosts can be added but not removed.

attributes.moab.dependencies

attributes.moab.job.resources Including procs, mem, disk, and any generic resource.

Can either change the value of variablesin the template or

attributes.moab.job.variables add new variables.

attributes.sharedData A placefor arbitrary, site-specific data.

image

includedServices Serw_ces can be added but not removed. Only applicable to
containers.

label

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{"name": " MyRhel 54VnP| usSt or age. 1"}

3.12.2.2 Create Custom Service

URLs and Parameters

POST http://1ocal host/ mas/rest/services[?proxy-user =bob]

Parameter Required yad Description Example

The name of the user creating the

proxy-user No String ervice

proxy-user=bob

Payload

The payload below shows all the fields that are available during service submission.

POST http://localhost/mws/rest/services

99

"user":"adaptive",
"account": "cl oud",
"earliestStartDat eRequested”: "2011-11-08 13:18: 47 MST",
"durationRequested": 86400,
"data":[
{
"nanme": " nyNewSer vi ce",
"type":"container",
"l abel ": "My New Service",
"incl udedServi ces": [
"nyVnCont ai ner",
"myNet wor kSt or ageWor kf | ow",
" myPnCont ai ner"

Il
"attributes":{
"moab": {
"dependenci es": [

"dependency": [
"myNet wor kSt or ageWor kf | ow"
]

"Sservice": " my Vmor kf | ow!
}
]

Do

"shar edDat a": {
"extraAttribute":"Sone arbitrary val ue",
"extraAttribute2":"Another arbitrary val ue"

"nanme": " nyVntCont ai ner",
"type":"container",
"incl udedServi ces": [
"y VmAbr kf | ow" ,
"nyGsSt or ageWor kf | ow'

Il
"attributes":{
"moab": {
"dependenci es": [

"dependency": [
"myCsSt or ageVr kf | ow'
]

"Sservice": " my Vmor kf | ow!

"nanme": " nyVmhor kf | ow',
"type": "vnt
"incl udedServi ces": [

"attributes":{
"moab": {
" ob": {
"resources": {
"procs": 2,
"mem': 2048,
"di sk": 80

o
"vari abl es": {

"QOSs": " Prem unt
o
"image": "cent 0s5. 5-stat el ess"”,
"tenpl ate": "generi cVM',
"request edHosts":["i 16"],
"features":["vl an3"]

~———

"nane": " nyCsSt or ageVor kf | ow',
"type":"storage",
"includedServices": [

100

"attributes":{
"moab": {
"job":{
"tenpl ate": " OSSt or age",
"resources": {
"0s": 2500
}

}
}
}

~———

"nanme": " nyNet wor kSt or ageWor kf | ow",
"type":"storage",
"includedServices": [

"attributes":{
"moab": {
" ob": {
"tenpl ate": "extraStorage",
"resources": {
"gol d": 500

"vari abl es": {
"mount": "/ pat h/to/ nount"
}

}
}
}

~———

"nane": " myPnCont ai ner",
"type":"container",
"includedServices": [

" my PmAbr kf | ow'
]

b
{

"nane": " myPmAor kf | ow",
"type": " pnf,
"includedServices": [

"attributes":{
"moab": {
"job":{

"resources": {
"procs": 2,
"ment' : 2048,
"di sk": 100

"variabl es": {
"QOS": "Prem unt

}

i mage": "cent 0s5. 5- st at el ess",
"tenpl ate": "generi cPM

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{"name": " myNewServi ce. 1"}

3.12.3 Modifying Services
The HTTP PUT method is used to modify Services.

101

Quick Reference

PUT htt
PUT htt

| ocal host/ mns/ rest/ services/ <i d>

p://
p:/ /1 ocal host/ mws/rest/services/ <name>

3.12.3.1 Modify Service

URLs and Parameters

cal host/ mns/ rest/services/ <i d>
cal host/ mns/ rest/ servi ces/ <name>

=

>

—
— —
TT
—~—
~—
o o

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Service.

name Yes String - The name of the Service.

See Global URL Parameters for available URL parameters.

& Only one of id or name are required.

Example Request

Only theat t ri but es, st at us, and st at usCode fields may be modified in services. Note
that the st at us field must be avalid string, and the st at usCode field must be avalid
number (long). Any arbitrary string and number may be used to represent the current state of the
servicethrough st at us and st at usCode respectively.

PUT http://local host:8080/mws/rest/services/myStorageService

"status": "Done provisioning!",
"statusCode": 200,
"attributes": {
"mount": "/ mmt/nyMunt",
"size": "2500",
"shar edDat a": {
"extraAttribute":"Sone arbitrary val ue",
"extraAttribute2":"Another arbitrary val ue"
}
}
}

& Thenpab element of attributes cannot be modified. An error will be returned
if thisis attempted.

Sample Response

102

JSON Response
{ .
"name": "nyStorageService"
"dat eCreated": "2012-02-01 14:54:52 MST",
"l ast Updated": "2012-02-01 14:54:5 2 MST",
"type": "storage",
"l abel": null,
"user": "john",
"account": "corp",
"status": "Done provisioning!",
"statusCode": 200,
"includedServices": [],
"parent": "nmyVmWthSt orage",
"attributes": {
"moab": {
"ve "]
"id": "wvc3"
¥
"j ob":
"id": "Moab. 1",
"tenpl ate": "extraStorage",
"resources": {
"gol d": 2500
}

"shar edDat a": {
"extraAttribute":"Some arbitrary val ue"
"extraAttribute2":"Another arbitrary val ue"

e

"mount": "/ mmt/ nmyMunt"

"size": "2500"

I
"id": "4f 29b4abed4b03c2f 8e3ala40"
}

3.12.4 Deleting Services
The HTTP DELETE method is used to delete Services.

Quick Reference

DELETE ht

tp:/ cal host/ mas/ rest/ servi ces/ <i d>
DELETE http:/

cal host/ mas/ rest/ servi ces/ <name>

~—

o o

3.12.4.1 Delete Service

URLs and Parameters

DELETE htt
DELETE htt

cal host/ mns/ rest/servi ces/ <i d>[?pr oxy- user =bob]
cal host/ mns/ rest/ servi ces/ <nanme>[?pr oxy- user =bob]

—_——

/1o
/1o

T O

103

Parameter Required Type Valid Values

Description

If true MWS will not check service

force-delete No Boolean - dependencies before deleting it.
id Yes String - The unique identifier of the Service.
name Yes String - The name of the Service.

proxy-user No

Strin The name of the user
9 delet ng the service.

proxy-user=bob

See Global URL Parameters for available URL parameters.

& Only one of id or name are required.

Sample Response

JSON Response

{}

3.13 Service Templates

This section describes the behavior of the Service Template object in Moab Web Services. It
contains the URLs, payloads, and responses delivered to and from Moab Web Services.

& The Service Template API contains the type and description of all fieldsin

the ServiceT emplate object. It also contains details regarding which fields
arevalid during PUT and POST actions.

4 See Create Service From Service Template to create Services from Service

Templates.

& The Service Template name has the following constraints:

® |t must contain only letters, digits, spaces, and these special characters:
underscore, comma, hyphen, period, question mark, at sign, tilde, pound
sign, square brackets, angle brackets, vertical bar, equals sign,
ampersand, parentheses, asterisk, curly braces, grave accent, and dollar

sign.

® |t cannot have the same form asaMongoDB ID (24 characters of 0-9
and a-f)
® |t must be unique in the database.

104

Supported Methods

Resour ce GET PUT POST DELETE

) Get all Service Create
Irestfservice-templates Templates ServiceTemplate

. e) Cancel
Irest/service-templates/ Get specified Modify ;
.) . Service
id or name Service Template ServiceTemplate

Template

3.13.1 Getting Service Templates

The HTTP GET method is used to retrieve Service Template information. Queries for all
objects and a single object are available.

Quick Reference

GET http://1ocal host/ mas/rest/service-tenpl ates[?query={"field":"val ue"}&sort={"field"

: <1]-1>}]
GET http://1ocal host/ mas/rest/service-tenpl ates/ <i d>
GET http://1ocal host/ mas/rest/service-tenpl at es/ <nanme>

3.13.1.1 Get All Service Templates

URLs and Parameters

GET http://1ocal host/ mas/rest/service-tenpl ates[?query={"field":"val ue"}&sort={"field"
D <1 -1>}]
: Valid i
Parameter Required Description Example
uer No JSON Queries for uery={"type":"vm","createdBy":"name"}
query specific results. query=ttype-. ’ v
Sort the results.
Usel for ., .
sort No JSON . sort={"name":1}
ascending and - 1
for descending.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

"total Count": 5,
"resul t Count": 5,

105

"results": [

~———

"id": "4f04a93f 84ael7912ae2763e",
"l abel ": "Linux ESA",
"type": "vnt,
"name": "LinEsaTenpl ate",
"nmodi fied": "2011-07-04 00: 00: 00 MDT"
"createdBy": "TenpNane",
"includedServices": [],
"tags": [
"tag0",
"t agl”

1| o
"attributes": {
"dependenci es": {
"service": "tid. 1",
"dependency": [
"tid. 2",
"tid. 3"
]
¥
"job":
"image": "rhel 54-statel ess",
"resources": {
"procs": 1,
"ment': 1024,
"i paddress": 1

I
"tenplate": "new vni,
"variabl es": {
"“foo": "bar"
}

i ewpoi nt": {
"nane": "",
"service-description": ""
"forn':

"fo": "zero"

"f1": "one"

}

Ie
"access": {}

"id": "4f05dd1484ae18e002b22d92"

"l abel ": "Linux ESA"

"type": "vni

"nanme": "LinEsa004"

"modi fied": "2011-07-04 00: 00: 00 MDT"
"createdBy": "TenpNane",
"includedServices": [

"l ocal Nane": "SQ.Serv004",
"serviceTenpl ate": "LinEsaTenpl at e"

Il

"tags":
"Tago"
"t agl”

I| o
"attributes": {
"dependenci es": {
"service": "tid.1",
"dependency": [
"tid. 2",
"tid. 3"

]
b
"l ob":
"image": "rhel 54-statel ess",
"resources": {
"procs": 1,
"meni': 1024,
"i paddress": 1

o
"tenpl ate": "newvni,
"variabl es": {

"f00": "bar"

}

i ewpoi nt": {
"name": "
"service-description": ""
"forni:

"£0" "zero",

"f1": "one"

}

Jic
"access": {}

106

107

"id": "4f05dd7484ae18e002b22d93",

"l abel ": "Linux ESA",

"type": "vnt,

"hame": "R’

"nmodi fied": "2011-07-04 00: 00: 00 MDT"
"createdBy": "TenpNane",
"includedServices": [

"l ocal Nane": "SQ.Serv004",
"serviceTenpl ate": "LinEsaTenpl at e"

}

|

"tags": [
"tag0",
"tagl"

1| o
"attributes": {
"dependenci es": {
"service": "tid. 1",
"dependency": [
"tid. 2",
"tid. 3"
]
¥
"job":
"image": "rhel 54-statel ess",
"resources": {
"procs": 1,
"ment': 1024,
"i paddress": 1

b
"tenplate": "new vni,
"variabl es": {
"“foo": "bar"
}
1 :
"viewpoi nt": {
"name': "
"service-description": "",
"fornm':
"f0" "zero"
“f1" "one”

Ie
"access": {}

"id": "4f05e41f84ael8e002b22d94"

"l abel ": "Linux ESA"

"type": "vnt,

“name": 5",

"modi fied": "2011-07-04 00: 00: 00 MDT"
"createdBy": "TenpNane",
"includedServices": [

"l ocal Nane": "SQ.Serv004",
"serviceTenpl ate": "LinEsaTenpl at e"

}
1,

"tags": [
"Tago"
"t agl”

g
"attributes":
"dependenci es": {
"service": "tid.1",
"dependency": [
"tid. 2",

'j ob":
"image": "rhel 54-statel ess",
"resources": {

"procs": 1,

"meni': 1024,

"i paddress": 1

"femﬂat@ﬁ "new v,
"variabl es": {
"f00": "bar"

}
b .
"vi ewpoi nt": {
"name": "
"service-description": "",
"forni:
"£0" "zero",

"f1": "one"

l:access": {}

"id": "4f 05e4a284ae18e002b22d95"

"l abel ": "Linux ESA"

"type": "vni,

"nane": "LinEsaServ001"

"nmodi fied": "2011-07-04 00: 00: 00 MDT",
"createdBy": "TenpNane",
"includedServices": [

"l ocal Nane": "SQ.Serv004",
"serviceTenpl ate": "LinEsaTenpl at e"

],
"tags": [
"tag0"
"t agl”

1| o
"attributes": {
"dependenci es": {
"service": "tid.1",
"dependency": [
"tid. 2",
"tid. 3"
]
¥
"job":
"image": "rhel 54-statel ess",
"resources": {
"procs": 1,
"meni': 1024,
"i paddress": 1

”femﬂateH "new v,
"variabl es": {
"“foo": "bar"

}

o
"viewpoi nt": {
"name': "
"service-description": "",
"formi': {
"f0" "zero"
“f1" "one”

Ie
"access": {}

108

Querying Service Templates

It is possible to query service templates by one or more fields based on the MongoDB query
syntax.

Simple Queries

To see only service templates that are associated with the user "bob", use a query like the
following:

http://1ocal host/ mas/ rest/service-tenpl at es?query={"user": "bob"}

To see only service templates that are of type "vm":

http://1ocal host/ mas/ rest/service-tenpl ates?query={"type":"vni'}

To see only bob's vm service templates:

http://1ocal host/ mas/ rest/service-tenpl at es?query={"user": "bob", "type":"vni}

To see only service templates that are NOT associated with bob:

http:/ /1 ocal host/ mws/rest/service-tenpl ates?query={"user":{"$ne":"bob"}}

More Complex Queries

When the field values of the desired service templates are a finite set, use the $i n operator. For
example, to see service templates that belong to either bob, alice, or charlie, do the following:

http:/ /| ocal host/ mws/rest/service-tenpl ates?query={"user":{"$in":["alice", "bob",
“charlie"]}}

Y ou can also query on embedded JSON objects within the service template JSON. For example,
to see service templates requesting 3 processors, do the following:

http://1ocal host/ mas/ rest/ service-tenpl at es?quer y={
"attributes. noab.job. resources. procs": 3}

Conditional Operators

109

http://www.mongodb.org/display/DOCS/Advanced+Queries
http://www.mongodb.org/display/DOCS/Advanced+Queries

Y ou can perform <, <=, >, >= comparisonsusing the $| t , $I t e, $gt , $gt e operators.

Operator Comparison
$lt <

Slte <=

St >

$gte >=

To see service templates requesting < 2 processors:

http://1 ocal host/ mas/ rest/ service-tenpl at es?quer y={
"attributes.npab.job.resources.procs": {"$lt":2}}

To see service templates requesting >= 1024 memory:

http://1 ocal host/ mas/ rest/ servi ce-tenpl at es?query={"attri butes. noab.j ob.resources. nent
:{"$gte": 1024}}

Querying Service Templates by Date

To seedll service templates modified after July 4, 2011 at 10:30:00 PM Mountain Standard Time
(MST):

http://1ocal host/ mas/ rest/ service-tenpl at es?query={"nodi fied": {"$gt":"2011-07-04
22:30: 00 MST"}}

To see service templates modified before July 6, 2011 at 12:00 AM Pacific Standard Time
(PST):

http://1ocal host/ mas/ rest/service-tenpl at es?query={"nodi fied":{"$lt":"2011-07-06
00: 00: 00 PST"}}

To see service templates modified between 12:00 AM and 11:59 PM (inclusive) Eastern
Standard Time (EST) on July 5, 2011

http://1ocal host/ mas/ rest/service-tenpl at es?query={"nodi fied": {"$gte":"2011-07-05
00: 00: 00 EST","$lte":"2011-07-05 23:59: 00 EST"}}

Sorting

See the sorting section in Global URL Parameters.

Limiting the Number of Results

110

To limit the size of the result set, use the max parameter. For example, to see only 10 of bob's
services:

http://1ocal host/ mas/ rest/service-tenpl at es?query={"user": "bob"}&sort={"name": 1} &max=10

To see bob's service templates 91-100 when sorted by name in ascending order, combine max
with of f set asfollows:

http://1ocal host/ mas/ rest/service-tenpl at es?query={"user": "bob"}&sort={"nane"
. 1} &max=10&of f set =90

Retrieving a Subset of Fields

Toretrieve only certain fields, usethef i el ds parameter. For example, to show only the nane
field for each service:

http://1ocal host/ mws/rest/service-tenpl ates?fi el ds=nane

This returns:

"total Count": 9,
"resul t Count": 3,

"results": [
{"name": "aliceService.1"},
{"name": "machine0. 1"},
{"nanme": "OSStorenmachi ne0. 1"}

To show the name, type, and user:

http://1ocal host/ mas/ rest/service-tenpl at es?fi el ds=nane, type, user

This returns:

111

"total Count": 9,
"resul t Count": 3,
"resul ts": [
"nanme": "aliceService.1",
"type": "container",
"user": "alice"
b
{ .
"name": "machi ne0. 1",
"type" "vni
"user": "alice"
) (
"nane": " OSStorenmachi ne0. 1",
"type": "storage",
"user": "alice"
}
]
}

3.13.1.2 Get Single Service Template

URLs and Parameters

cal host/ mas/ rest/ servi ce-tenpl at es/ <i d>

GET http://lo
GET http://1ocal host/ mas/rest/service-tenpl at es/ <nanme>

Parameter Required Valid Values

Description

String (24 character

d ves alphanumeric)

The unique identifier of the service
template.

name Yes

The name of the service template.

String

See Global URL Parameters for available URL parameters.

% Only one of id or nameisrequired.

Response

JSON Response

"total Count": 1,

"resul t Count": 1,

"results": [{
B

-
}

3.13.2 Creating Service Templates
The HTTP POST method is used to create Service Templates.

112

Quick Reference

POST http://1ocal host/ mas/rest/service-tenpl ates

3.13.2.1 Create Service Template

URLs and Parameters

POST http://1ocal host/ mas/rest/service-tenpl ates

See Global URL Parameters for available URL parameters.

Payload

The payload below shows some of the fields that are available when creating a Service
Template, along with some sample values.

113

JSON Payload

"attributes": {
"nmoab" :
"dependencies": [

"dependency": [
"0ss"
"ns"

Il 5
"l ocal Nane": "rvni
}
Il g

"job":
"features": [

"vl an3"
|5

"image": "centosb.5-statel ess"”,
"request edHosts": [

"i 16"
]

"resources": {
"di sk": 80,
"mem': 2048
"procs": 1

"tenpl ate": "genericVM',
"vari abl es": {
"QOs": "Prem unt
}
}
}

o
"createdBy": "bob",
"includedServices": [

"l ocal Nane": "rvni,
"serviceTenpl ate": "Rhel 54vni
o
{
"l ocal Name": "oss",
"serviceTenpl ate": "OpSysStorage"
o
{
"l ocal Name": "ns",
"serviceTenpl ate": "Networ kSt orage"
] }
"[abel ": "Redhat Ent erprise Linux 5.4 VM Plus OS and Network Storage",

"nodi fied": "2011-07-04 00: 00: 00 MDT",
"name": "Rhel 54VPl usSt or age”,

"tags": [],

"type": "container"

& includedServices is a key-value pair of the internal service name and the
serviceTemplate. The service name is unique for each service container.

Sample Response

JSON Response for successful POST

{"id":"4f06111184ae2bbf a31fad4c7"}

If the Service Template nameis not unique:

114

JSON Response

{
"nmessages": [
"Service tenplate Rhel 54Vm coul d not be created"
"Request has a non-uni que service tenplate nane ' Rhel 54Vm ",
"Pl ease correct the request and try again"
]
}

If the Service Template included service local nameisnot uniqueto this service template:

JSON Response
{

"messages": [
"Service tenplate Cent OS5 coul d not be created",
"Service tenplate request has a non-uni que included service tenplate |ocal nane
([SQ.Serv05])",

]

"Pl ease correct the request and try again"

———

If the Service Template depends on a non-existent included service:

JSON Response

{

"messages": [
"Servi ce tenpl ate NSStor34 could not be created",
"Service tenplate requires service tenplate(s) [hwahel54Vn] whi ch do not
exist",

"Pl ease correct the request and try again"
]

If the Service Template depends on mor e than one non-existent included service:

JSON Response
{

"messages": [
"Service tenplate NSStor34 could not be created"

"Service tenplate requires service tenplate(s) [ﬁwaheI54Vn1 St or age003] whi ch
do not exist",

"Pl ease correct the request and try again"
]

If the Service Template name contains a colon:

JSON Response

{
b .
messages": [
"Service tenplate Rhel 54Vm C coul d not be created",

"Request contains a colon (:) in the service tenplate name 'Rhel 54Vm C ",
"Pl ease correct the request and try again"

115

If the Service Template name hasthe same format asa MongoDB |D (Service Template | D):

JSON Response

{
"messages": [
"Service tenpl ate 4f2049a684ae6eld4f 09bd71 coul d not be created"
"Request has a MongoDB Cbject ID fornat for the service tenplate nanme
' 4f 2049a684ae6el1d4f 09bd71" ",
"Pl ease correct the request and try again"
]

}

3.13.3 Modifying Service Templates
The HTTP PUT method is used to modify Service Templates.

& Thenodi fi ed field is not automatically updated. It will need to be changed
by the user.

Quick Reference

PUT ht
PUT ht

——

| ocal host/ mas/ rest/ servi ce-tenpl at es/ <i d>
I

tp:/
tp://1ocal host/ mas/ rest/servi ce-tenpl at es/ <nanme>

3.13.3.1 Modify Service Template

URLs and Parameters

cal host/ mas/ rest/ servi ce-tenpl at es/ <i d>
cal host/ mas/ rest/ servi ce-tenpl at es/ <nane>

o o

Parameter Required Valid Values Description
. String (24 character The unique identifier of the service
id Yes .
alphanumeric) template.
name Yes String The name of the service template.

See Global URL Parameters for available URL parameters.

& Only one of id or name isrequired.

Payload

Thisissimilar to create, except you change the payload to what you need modified.

116

The payload below shows some of the fields that are available when modifying a Service
Template, along with some sample values.

"attributes": {
"dependenci es": {
"dependency": [
"tid. 2",
"tid. 3"

"service": "tid.1"
b
"job":
"image": "rhel 54-statel ess",
"resources": {

"i paddress": 1,

"meni: 1024,

"procs": 1

o
"tenpl ate": "newvni,
"variabl es": {
"f00": "bar"
}

"Vi ewpoi nt": {
"access": {},

"forni': {
“£0": "zero",
"f1": "one"
}

“nane": , o
"service-description":

"createdBy": "Newnane",
"includedServices": [],
"modi fied": "2011-07-04 00: 00: 00 MDT",
"name": "A",
"tags": [

"dat abase",

"el e45",

"tag56"

P
"type": "RhCs"

Sample Response

117

JSON Response for successful PUT

"resul tCount": 1,
"results": [

"attributes": {
"dependenci es":
"dependency": [

"tid. 2",
"tid. 3"
"service": "tid. 1"
b
"} ob":
"image": "rhel 54-statel ess",
"resources":
"i paddress": 1,
"ment: 1024,
"procs": 1
"’ten'pl ate": "new vni,
"vari abl es":
"f00": "bar"

}

b,
"viewpoint": {
"access": {},

"fornt:
"F0": "zero",
"f£1"1 "one”
nanme" :
"servi ce descrl ption": ""
}
"creat edBy": " Newnane"

"id": "4af 0746f 684ae23bbd6726852"
"includedServices": [],
"l abel ": "Linux ESA",
nodi fied": "2011-07-04 00: 00: 00 MDT",
"name": "RhGs004",
"tags": [
"dat abase",
"el e45",
"tag56"

I 5

"type": "RhGCs"
I, }
"total Count": 1

If the Service Template depends on a non-existent included service:

JSON Response

{
"messages": [
"Service tenplate NewR coul d not be updated",
“Service tenplate requires service tenpl at e(s) [RnGs045] which do not exist"
"Pl ease correct the request and try again"

If the Service Template depends on mor e than one non-existent included service:

118

JSON Response

{
"messages": [
"Service tenplate NewR coul d not be updated",
"Service tenplate requires service tenplate(s) [Stor45, Storl12] which do not
exist",
"Pl ease correct the request and try again"
]
}

An attempt to modify the Service Template name to an existing template name:

JSON Response

{
"messages": [
"Service tenplate NewR coul d not be updated",
"Request has a non-uni que service tenplate nane ' Stor44'"

3.13.4 Deleting (Canceling) Service Templates
The HTTP DELETE method is used to delete Service Templates.

Quick Reference

DELETE http://1ocal host/ mas/ rest/ servi ce-tenpl at es/ <i d>
DELETE http://1ocal host/ mas/ rest/ servi ce-tenpl at es/ <nane>

3.13.4.1 Cancel Service Template

URLs and Parameters

DELETE http://1ocal host/ mas/ rest/ servi ce-tenpl at es/ <i d| name>

Parameter Required Valid Values Description
. String (24 character The unique identifier of the service
id Yes .
alphanumeric) template.
name Yes String The name of the service template.

See Global URL Parameters for available URL parameters.

2. Only one of id or name isrequired.

Response

119

A successful deletion

JSON Response

{}

If the Service Template ID does not exist

JSON Response

{
"messages": [
"Service tenplate not found with | D '4f2049a684ae6eld4f 09bd71" "
]

}

If the Service Template name does not exist

JSON Response
{

"messages": [
"Service tenplate not found with ID "' Stor44""
]

}

If other Service Templates depend on the one being deleted

JSON Response
{

"messages": [
"Service tenplate Cent5 could not be del eted",
"Service tenplate 'Cent5 cannot be del eted because Service tenplate '[Cent5]"’
depends on it "

}

3.14 Standing Reservations

This section describes behavior of the Standing Reservation object in Moab Web Services. It
contains the URLSs, payloads, and responses delivered to and from Moab Web Services.

& The Standing Reservation API contains the type and description of all fields
in the Standing Reservation object. It al'so contains details regarding which
fieldsare valid during PUT and POST actions.

Supported Methods

120

Resource GET PUT POST DELETE

[rest/standing-reservations Get al standing reservations

Irest/standing-reservations/id Get specified standing reservation

3.14.1 Getting Standing Reservations

The HTTP GET method is used to retrieve Standing Reser vation information. Queriesfor all
objects and a single object are available.

Quick Reference

CET http://1ocal host/ mas/rest/standi ng-reservations/ <i d>

3.14.1.1 Get All Standing Reservations

URLs and Parameters

GET http://1ocal host/ mas/rest/standi ng-reservations

See Global URL Parameters for available URL parameters.

Sample Response

GET http://local host/mws/rest/standing-reservations?fiel ds=id

"total Count": 3,
"resul tCount": 3,
"results": [
{"id": "sri'},
{"id": "sr2"}.
{"id": "sr3"}
]
}

3.14.1.2 Get Single Standing Reservation

URLs and Parameters

GET http://1ocal host/ mas/rest/standi ng-reservations/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

121

Sample Response

JSON Response

{
"access": "DEDI CATED",

"accounts": ["account1"],
"acl Rul es":
"affinity": "POSITIVE"
"conparator": "EQUAL",
"type": "USER',
"val ue": "adaptive",
3
"char geAccount": "account2",
"chargeUser": "user2",
"classes": ["class1l"],
"clusters": ["clusterl"],

"coment": "conmment",
"days": ["Monday"],
"depth": 2

"di sabl ed": fal se,
"endTi me": 86415,
"flags": ["ALLOMOBOVERLAP'],
"groups": ["groupl"],
"hosts": ["host1"],
"jid": "fast",
"jobAttributes": ["TEMPLATESAPPLIED'],
"maxJob": 2,
"maxTi me": O,
"messages": ["nmessagel"],
"nodeFeatures": ["featurel"],
"os": "Ubuntu 10.04. 3",
"owner": {

"nanme": "root",

"type": "USER'

"partition': "ALL",
" per iod": "DAY" y

"procLimt": {
"qualifier": "<=",
"value": 5

B

"psLimt": {
"qualifier": "<=",

"val ue": 60

"doses": [*gos1"],
"reservationAccessList": [],

"reservationG oup": "group2",
"resources": {

"PROCS': -1,

"tapes": 1

}

"rol |l backOr fset": 43200,
"start Ti ne": 347040,
"taskCount": O,

"t asksPer Node": O,
"timeLimt": -1,
“triggers": [],

"type": "typel",
"users": ["userl"]

3.15 Virtual Containers

This section describes behavior of the Virtual Container object in Moab Web Services. It
contains the URL s, payloads, and responses delivered to and from Moab Web Services.

& The Virtual Container API contains the type and description of al fieldsin
the Virtual Container object. It also contains details regarding which fields
arevalid during PUT and POST actions.

Supported Methods

122

Resource| GET PUT POST DELETE
Get all Virtua Create Virtua
[rest/ves . -
Containers Container
Irest/ves/ Get specified Virtual ~ Modify Virtual Destroy Virtual
id Container Container Container

3.15.1 Getting Virtual Containers

The HTTP GET method is used to retrieve Virtual Container information. Queriesfor all
objects and a single object are available.

Quick Reference

GET http://1ocal host/ mas/rest/vcs/ <i d>

3.15.1.1 Get All Virtual Containers

URLs and Parameters

GET http://1ocal host/ mas/rest/vces

See Global URL Parameters for available URL parameters.

Sample Response

GET http://localhost/mws/rest/ves?fields=id

{
"total Count": 5,
"resultCount": 5,

"resul ts": [
{"id": "vec3"},
{"id": "vcl"},
{"id": "vc4"},
{"id": "vcb"},
{"id": "vc2"}

3.15.1.2 Get Single Virtual Container

URLs and Parameters

GET http://1ocal host/ mas/rest/vcs/ <i d>

123

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

"aclRules": [{
"affinity": "PGSITIVE",
"conparator": "LEXI GRAPH C_EQUAL",
"type": "USER',
"val ue": "root"

o
"createDate": "2011-11-15 14:01:40 MsST",
“creator": "root",

"description": "vc2",

"flags": ["DESTROYWHENEMPTY"],
nidt o tve2”,

"j obs":

[
{"id":"Mab. 1"}
"nodes" : [
{"id":"nodel"}
" 6wner":
"nanme": "root",
"type": "USER'

"reservations": [
{"id":"system 1"}

"vari abl es": {
"att tpt
mons mgn

"Vi rt ual Cont ai ners": [
{"id":"ve3")

"Vi rtual Machi nes": [
{"id":"vml"}

3.15.2 Creating Virtual Containers
The HTTP POST method is used to create Virtual Containers.

Quick Reference

POST http://1ocal host/ mas/rest/ves[?proxy-user =<user nane>]

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
nmoab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

124

3.15.2.1 Create Virtual Container

URLs and Parameters

POST http://1ocal host/ mas/rest/ves[?proxy-user =<user name>]

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows al the fields that are available when creating a Virtual Container,
along with some sample values.

JSON Payload

"description": "ted's vc",
"owner " :

"name": "ted",

"type": "USER'

Sample Response

JSON Response for successful POST

{"i d": "VC8"}

Restrictions

® When creating a Virtual Container, thecr eat or fieldis set to the value of pr oxy- user
(if set) or owner . nane (if set), with pr oxy- user taking precedence. However, setting
thecr eat or field worksonly if you set ENABLEPROXY=TRUE in the noab. cf g file.
Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

® Youcan setthecr eat or field as shown above, but you can never changeit.

3.15.3 Modifying Virtual Containers

125

The HTTP PUT method is used to modify Virtual Containers.

Quick Reference

PUT http://Iocal host/ mws/rest/vcs/ <i d>?change- node=<add| r enpve| set >[&r oxy- user =
<user name>]

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
noab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.15.3.1 Modify Virtual Container

URLs and Parameters

PUT http://1ocal host/ mws/rest/vcs/ <i d>?change- node=<add| r enpve| set >[&r oxy- user =
<user name>]

Valid

Parameter Required Type il | Description
id Yes String - The unique identifier of the object.
. Add the given aobjects (jobs, VMs, etc) to the objects
change-mode Yes String add that already exist
remove Delete the given objects from the objects that
already exist.
- Modify the attributes of the virtual container itself
and not the associated objects.
proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

Here are three examples of Virtual Container updates. add objects, remove objects, and update
attributes.

126

Add objects with /rest/vcs/vel?change-mode=add

{
"jobs": [
{"id": "Mpab.37"},
{"id": "Mbab.38"}
"nhodes" : [
{"id": "nodel"},
{"id": "node2"}
"reservations": [
{"id": "system 48"},
{"id": "system 49"}
"Vi rt ual Cont ai ners": [
{"id": "vc93"},
{"id": "vc94"}
"Vi rt ual Machi nes": [
{"id": "vnR"},
{"id": "vm"}
]
}

Remove objects with /rest/vcs/vcl?change-mode=remove

{
jobs": [

{"id": "Moab.37"},
{"id": "Mab.38"}

Il

"nodes": [
{"id": "nodel"},
{"id": "node2"}

”’reservati ons": [
{"id": "system 48"},
{"id": "system 49"}

Il

"virtual Cont ai ners": [
{"id": "vc93"},
{"id": "vc94"}

Il

"virtual Machi nes": [
{"id": "vnR"},
{"id": "vm"}

]

}

Modify VC attributes with /rest/vcs/vel?change-mode=set

"description": "This is a new description.",
"flags": ["HOLDIOBS'],
"owner": {
"nanme": "ted",
"type": "USER'
"vari abl es": {
"a": "b",
et o td”
}

}

Sample Responses

% These messages may not match the messages returned from Moab exactly,
but they are given as examples of the structure of the responses.

127

JSON response for adding objects

"messages": [
"job '147" added to VC 'vc3'",
"job 'Mab.1l" added to VC 'vc3'"
]
}

JSON response for removing objects

"messages": [
"job '147" renoved fromVC 'vc3'"
"job 'Mab.1" renoved fromVC 'vc3' "
]
}

JSON response for updating attributes

{"messages":["VC 'vc3" successfully nodified"]}

Restrictions

® You can change the ACL Ruleson aVirtual Container, but not using this resource. See
Create or Update ACLSs.

3.15.4 Destroying Virtual Containers
The HTTP DELETE method is used to destroy Virtual Containers.

Quick Reference

DELETE http://1ocal host/ mas/ rest/ vcs/ <i d>[?pr oxy- user =<user nanme>|

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
nmoab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.15.4.1 Destroy Virtual Container

URLs and Parameters

128

DELETE http://1ocal host/ mas/ rest/ ves/ <i d>[?pr oxy- user =<user nanme>|

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response for successful DELETE

{}

3.16 Virtual Machines

This section describes behavior of the Virtual M achine object in Moab Web Services. It
contains the URLSs, payloads, and responses delivered to and from Moab Web Services.

% The Virtual Machine API contains the type and description of al fieldsin the
Virtual Machine object. It also contains details regarding which fields are
valid during PUT and POST actions.

Supported Methods

Resour ce GET PUT POST DELETE
[rest/vms Get al VMs Create VM

Irest/vms/id Get specified VM Modify VM Destroy VM
/rest/nodes/nodel d/vms Get all VMs on a Node

3.16.1 Getting Virtual Machines

The HTTP GET method is used to retrieve Virtual M achine information. Queriesfor al objects
and asingle object are available.

Quick Reference

ocal host/ mns/ rest/vns/ <i d>

GET http://
GET http://1ocal host/ mas/rest/ nodes/ <nodel d>/ virs

3.16.1.1 Get All Virtual Machines

129

URLs and Parameters

GET http://1ocal host/ mas/rest/vis

See Global URL Parameters for available URL parameters.

Sample Response

GET http://local host/mws/rest/vms?fields=id

"total Count": 3,

"resul tCount": 3,

"results": [
{"id": "vmi'},
{"id" "vnp"}.
{"id"" "vng8"}

]

}

3.16.1.2 Get All Virtual Machines On Node

URLs and Parameters

GET http://1ocal host/ mas/rest/ nodes/ <nodel d>/ virs

Parameter Required Type Valid Values Description
nodeld Yes String - The ID of the node of interest.

See Global URL Parameters for available URL parameters.

Sample Response

GET http://local host/mws/rest/nodes/hvl/vms?fields=id

"total Count": 3,

"resul tCount": 3,

"results": [
{"id": "vml"},
{"id": "vm2"},
{"id": "vnB"}

]

}

3.16.1.3 Get Single Virtual Machine

URLs and Parameters

130

GET http://1ocal host/ mas/rest/vms/ <i d>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response

{

"aliases": [],
"avai | abl eDi sk": 1024,
"avai | abl eMenory": 512,
"avai | abl eProcessors": 0,
"cpuLoad": 0.823,
"description":
"ef fectiveTi meToLi ve": O,
"flags": [

" CREATI ON_COWPLETED" ,

" CAN_M GRATE"

"genericEvents": [],
"genericMetrics": {"watts": 250},
"id": "vnB",

"job": {"id": "Moab.1"},

"lastM grationDate": null,

"| ast Substate": "",

"| ast Subst at eModi fi cati onDate": null,
"| ast Updat eDate": null,

"m grationCount": O,

"net wor kAddr ess": "10.0.0.5",
"node": {"id": "hv2"},

"osList": [],

"os": "statel essl",

"power Sel ect State": "NONE",
"power State": "ON',

"rack": 0,
"request edTi meToLi ve": O,
"slot": O,

"startDate": null,

"state": "BUSY",

"substate": "",

"total Disk": 1024,

"total Menory": 512,

"total Processors": 1,

"tracki ngdob": {"id": "Mab.5"},
"triggers": [],

"variables": {}

3.16.2 Creating Virtual Machines
The HTTP POST method is used to create Virtual M achines.

Quick Reference

POST http://1ocal host/ mas/rest/vis[?pr oxy-user =<user nane>]

Restrictions

131

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
noab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.16.2.1 Create Virtual Machine

URLs and Parameters

POST http://1ocal host/ mas/rest/vins[?pr oxy-user =<user nanme>]

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows al the fields that are available when creating a Virtual Machine, along
with some sample values. Note that you can passin an ID for the Virtual Machine. If you do not,
Moab will choose an ID for you.

JSON Payload

{
"total Di sk": 1024,

"total Menory": 512,
"total Processors": 1,

"id": "vnB",
"node": {"id": "hv2"},
"os": "statel essl”,

"sovereign":true,
"storage":"os:5'c' %s: 10'd' ",
"tenpl ate": " Cust onTenpl ate",
"request edTi meToLi ve": 10000,
"triggers": [],
"vari abl es": {

"var1l": "val 1",

"var2": "val 2"

}
}

Sample Response

JSON Response for successful POST

{"jobld": "vncreate-25"}

132

& Thejobld in the response identifies the job that will create the virtual
machine.

3.16.3 Modifying Virtual Machines
The HTTP PUT method is used to modify Virtual M achines.

Quick Reference

PUT http://1ocal host/ mas/rest/vis/ <i d>[?pr oxy- user =<user name>]

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
noab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.16.3.1 Modify Virtual Machine

URLs and Parameters

PUT http://1ocal host/ maxs/ rest/vis/ <i d>[?pr oxy- user =<user nane>|

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Payload

The payload below shows all the fields that are available when modifying a Virtual Machine,
along with some sample values.

133

JSON Payload for VM Modify
{

"genericEvents": [],
"genericMetrics": {"watts": 250},
"os": "statel essl”,

"power State": "ON',

"state": "BUSY",

"triggers": [],

"vari abl es": {
"varl1": "val 1",
"var2": "val 2"

}
}

Sample Response

& This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{"nmessages":["successful |y updated VM vari abl es"]}

3.16.3.2 Migrate Virtual Machine

URLs and Parameters

PUT http://1ocal host/ mas/rest/vis/ <i d>[?pr oxy- user =<user nanme>|

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Request Body

The request body below shows how to migrate a Virtual Machine to a node with ID "hv2".

JSON Request Body for VM Migrate to a specific node

{"node": {"id": "hv2"}}

The request body below shows how to migrate a Virtual Machine to any available node by using
the destination ID of ANY, which for this operation is areserved word.

JSON Request Body for VM Migrate to any available node

{"node": {"id": "ANY"}}

Sample Response

& The HTTP response code for this operation is 202 Accepted. See the
responses section for more information.

JSON Response

{"jobld": "vmm gratel"}

Restrictions

® |f amigration isrequested by setting the node as shown in the above examples, any other
properties in the same request body will be ignored.

3.16.4 Destroying Virtual Machines
The HTTP DELETE method is used to destroy Virtual Machines.

Quick Reference

DELETE http://1ocal host/ mas/ rest/ vis/ <i d>[?pr oxy- user =<user nanme>|

Restrictions

® The proxy-user parameter isignored unless you set ENABLEPROXY=TRUE in the
noab. cf g file. Example:

ADM NCF(1] USERS=r oot , t ed ENABLEPROXY=TRUE

3.16.4.1 Destroy Virtual Machine

URLs and Parameters

DELETE http://1ocal host/ mas/ rest/ vis/ <i d>[?pr oxy- user =<user nanme>]

135

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See Global URL Parameters for available URL parameters.

Sample Response

JSON Response for successful DELETE

{"jobld": "vndestroy-26"}

& Thejobld in the response identifies the job that will destroy the virtual
machine.

136

4 Reporting Framework

The reporting framework is a set of tools to make time-based reports from numerical data. The
following sections will (1) provide an overview of the framework and the concepts related to it,
and (2) work through an example report (CPU Utilization) with details regarding which web
servicesto use and with what data.

The REST API referenceis located in the Report Resource section.
4.1 Overview

4.1.1 Concepts

The reporting framework uses 3 core concepts: reports, datapoints, and samples.

® Report - A report isatime-based view of numerical data
* Datapaint - A datapoint is a consolidated set of datafor a certain time period.
® Sample- A sampleisasnapshot of acertain set of data at a particular point in time.

To illustrate, consider the memory utilization of avirtual machine: at any given point in time,
you can get the memory utilization by using your operating system's performance utilities (top
for Linux, Task Manager for Windows):

2400/ 12040MB

By recording the memory utilization and time constantly for 1 minute, you could gather the
following data:

Time Memory Utilization
3:53:55 PM 2400/12040 MB
3:54:13 PM 2410/12040 MB
3:54:27 PM 2406/12040 MB
3:54:39 PM 2402/12040 MB
3:54:50 PM 2409/12040 MB

Each of the rows in the table above represent a sample of data. By averaging the rows we can
consolidate them into one or more datapoints:

Start time End Time |Memory Utilization
3:53:30 PM 3:54:00 PM 2400/12040 MB
3:54:00 PM 3:54:30 PM 2408/12040 MB
3:54:30 PM 3:55:00 PM 2406/12040 MB

% Note that each datapoint covers exactly the same amount of time, and
averages all samples within that period of time.

A report, then, issimply alist of datapoints with some additional configuration information:

137

Field Value

Name Memory Utilization Report

Datapoint Duration 30 seconds

Report Size 3 datapoints

Datapoints:

Start time End Time |Memory Utilization
3:563:30 PM 3:54:00 PM 2400/12040 MB
3:54:00 PM 3:54:30 PM 2408/12040 MB
3:54:30 PM 3:55:00 PM 2406/12040 MB

4.1.2 Capabilities

While storing simple information like memory utilization is nice, the reporting framework is
built to automatically handle much more complex information.

Consolidating Samples

Samples are JISON documents which are pushed into the report using the samples API. Samples
are then stored until the consolidation operation creates a datapoint out of them. The table below
shows how different data types are handled in this operation:

Type Consolidation Function Handling

Numbers Numerical datais averaged

Strings Strings are aggregated into an array

Objects The consolidation function recursively consolidates sub-objects

Lists Lists are combined into asingleflat list containing al elements

If samples have different types of datafor the same field, the values are aggregated

Mixed .
into an array.

These values will beignored unless all values for a sample field are set to null,

UL resulting in anull result.

2 If the mixed data types contains at least one number, it will be treated as
numerical data. The non-numerical datawill be ignored and the result will be
averaged.

Below is an example of how the consolidation function works:

138

Samples:

Time NumberEx StringEx ListEx MixedEx MixedNumber Ex
3:53:55 2400 "str1” ["eleml"] "strl” "str1”

PM

3:54:13 S ["elem2", " R "

PM 2410 str2 "dlem3'] ["elem1"] ["eleml"]

ﬁ’,ﬁ“ﬂ? 2405 "str3' ["dlemd’] null 5

Resulting Datapoint after consolidation:

Time NumberEx Stringex ListEx MixedEx MixedNumber Ex
weten ["eleml”,
. . [grl) n 11} [1] n
3:55:00 2405 . ”elem2", [strl ' g
PM "<tr3'] eem3", eleml”]
"dlemd"]

Minimum Number of Samples

If your dataset is highly variable (i.e. values contained in samples are not very close together),
converting a single sample into a datapoint may provide misleading information. It may be better
to have a datapoint with an "Unknown" value. This can be accomplished by setting the minimum
number of samples for a datapoint in the report.

Them ni nunBSanpl eSi ze field in the Report APl explainsthat if the specified size of
samplesis not met when the consolidation function is performed, the datapoint is considered
"null" and no datais available for it. When this occurs, the sample datais discarded and the
dat a field of the datapoint is set to "null".

For information on how to set this option, see the REST API Report Resource section in the
documentation.

Report Size

Reports have a predetermined number of datapoints, or size, which sets alimit on the amount of
data that can be stored. After the report size has been reached, as newly created datapoints are
pushed into the report, the oldest datapoints will automatically be deleted. Thisisto aid in
managing the storage capacity of the server hosting MWS.

& On report creation, aMongo collection will beinitialized that is the
maximum size of asingle entry (currently 16 MB) multiplied by the report
size. Be careful in setting alarge report size as thiswill quickly allocate the
entire disk if many reports with large report sizes are created.

4.2 Example Report (CPU Utilization)

139

To understand how the behavior and usage of the reporting framework, a sample report covering
CPU Utilization will be shown in this section. It will not cover how to gather or display datafor
reports, but will cover some basic operations that are available with Moab Web Servicesto
facilitate reporting.

4.2.1 Creating A Report

Before any datais sent to Moab Web Services, areport must first be created. A JSON payload
with aHTTP method of POST must be used to do this.

POST /rest/reports
{

"nanme": "cpu-util",

"description":"An exanple report for cpu utilization",
"consol I dati onFuncti on": "average",

"dat apoi nt Durati on": 600,

"reportSize": 288

Thiswill result in areport being created which can then be retrieved by sending a GET request
to/rest/reports/cpu-util.Thedat apoi nt Durati on of 600 signifiesthat the
datapoint consolidation should occur once every 10 minutes, whilether eport Si ze (i.e.
number of the datapoints) shows that the report will retain up to 2 days worth of the latest
datapoints.

GET /rest/reports/cpu-util

{

"consol i dati onFunction": "average",

"dat apoi nt Duration": 600,

"datapoints": [],

"description": "An exanple report for cpu utilization",
"id": "aef6f6a3a0bz7bf 6449537¢c¢9d",

"keepSanpl es": fal se,

"m ni munSanpl eSi ze": 1,

"nanme": "cpu-util",

"reportSize": 288,

"version": 0

Note that an ID has been generated automatically and that no datapoints are associated with the
report.

4.2.2 Adding Samples

Until samples are added and associated with the report, datapoint consolidation will generate
datapoints with adat a field equal to nul | . Once samples are added, however, they will be
averaged and inserted into the next datapoint.

Create samplesfor thecpu- uti | by sending a POST request as follows:

140

POST /rest/reports/cpu-util/samples

[

"agent": "cpu-nonitor",
"tinmestanp":"2012-01-01 12: 00: 00 MST",
"data": {

"m nutesl": 0.5,
"m nutes5": O,
"m nutesl5": 0O

}
b
{)
"agent": "cpu-nonitor",
"timestanp":"2012-01-01 12: 01: 00 MST",
"data": {
"m nutesl": 1,
"m nutes5": 0.5,
"m nut es15": 0.05
}
b
{)
"agent": "cpu-nonitor",
"timestanp":"2012-01-01 12: 02: 00 MST",
"data": {
"m nutesl": 1,
"m nutes5": 0.5,
"m nutesl5": 0.1
}
b
{)
"agent": "cpu-nonitor",
"timestanp":"2012-01-01 12: 03: 00 MST",
"data": {
"m nutesl": 0.75,
"m nutesb": 1,
"m nut es15": 0.25
}
b
{)
"agent": "cpu-nonitor",
"timestanp":"2012-01-01 12: 04: 00 MST",
"data": {
"m nutesl": O,
"m nutes5": 1,
"m nut es15": 0.85
}
}

This sample data contains average load for the last 1, 5, and 15 minute intervals. The samples
were recorded at one-minute intervals starting at noon on January 1st, 2012.

4.2.3 Consolidating Data

A consolidation function must run to generate datapoints from the given samples. This scheduled
consolidation will occur at intervals of dat apoi nt Dur at i on seconds. For each field in the
dat a object in samples, all values will be averaged. If non-numeric values are included, the
following strategies will be followed:

1.

2.
3.

141

All fields which contain a single numeric value in any included sample will be averaged and
the non-numeric or null values will be ignored.

All fields which contain alist will be consolidated into asingle, flat list.

All fields which contain only non-numeric or null values will be consolidated into asingle,
flat list.

If no historical datapoints are provided in the creation of areport as in this example, the next
consolidation will be scheduled for the current time plusthe dat apoi nt Dur at i on. Inthis
example, the scheduled consolidation is at 10 minutes from the creation date. If historical
datapoints are included in the report creation, the latest datapoint's endDat e plusthe

dat apoi nt Dur at i on will be used as the scheduled time. If this date was in the past, the next
scheduled consolidation will occur at the appropriate interval from the last endDat e.

4.2.4 Retrieving Report Data

To retrieve the consolidated datapoints, smply perform a GET request on the report once again.
Alternatively, the GET for areport's datapoints may be used.

GET /rest/reports/cpu-util
{

"consol i dati onFunction": "average",
"dat apoi nt Duration": 600,
"datapoi nts": [

"firstSanpl eDate": null,

"l ast Sanpl eDate": null,

"data": null,

"startDate": "2012-01-01 11:49: 00 MST",
"endDate": "2012-01-01 11:59:00 MST"

~———

"firstSanpl eDate": "2012-01-01 12:00: 00 MST",
"| ast Sanpl eDate": "2012-01-01 12:04: 00 MST",
"data": {

"m nutesl": O0.65,

"m nut es15": 0. 25,

"m nutes5": 0.6

b
"startDate": "2012-01-01 11:59:00 MsST",
"endDate": "2012-01-01 12:09:00 MST"

}

"description": "An exanple report for cpu utilization",
"id": "aef6f6a3albz7bf 6449537c9d",

"keepSanpl es": fal se,

"m ni nunBanpl eSi ze": 1,

"nanme": "cpu-util",

"reportSize": 288,

"version": 0O

Note that of the two datapoints above, only the second actually contains data, while the other is
set to nul | . Only samples lying within the datapoint's duration, or from the st ar t Dat e to the
endDat e, are included in the consolidation. Therefore the first datapoint, which covered the 10
minute period just before the samples' recorded timestamps, contained no data. The second,
which covers the 10 minute period matching that of the samples, contains the averaged sample
data. Thisdata could be used to display consolidated report datain a custom interface.

4.2.5 Possible Configurations

Configuration options may be changed to affect the process of report generation. These are
documented in the API for the Report object and the Sample object.

142

5 MWS Plugins (Beta)

This section describes MWS Plugins, their use, and their creation in Moab Web Services.

& MWS Plugins are currently in beta. Interfaces may change significantly in
future releases.

5.1 Plugin Overview

This section provides an overview of the plugin layer in web services. The following areas will
be covered:

® Anintroduction to the concept of MWS plugins

® How to configure Moab Workload Manager to interact with MWS plugins
® A description of the plugin lifecycle

®* How plugins are driven by events

® How to expose web services from aplugin

® How data collisions between plugins are resolved

® How callsfrom Moab are routed to MWS plugins

5.1.1 Introduction

Moab Web Services plugins provide a highly extensible interface to interact with Moab, MWS,
and external resources. Plugins can perform some of the same functions as Moab Resource
Managers, while also providing many other features not available to RMs. This section will
discuss the main features of plugins, some basic terminology, and how MWS plugins can
interact with Moab.

Features

Plugins can

® be created, modified, and deleted without restarting Moab or MWS.

® bedefined in Groovy and uploaded to MWS without restarting.

® haveindividual data storage space and configuration.

® bepolled at aregular interval (configured on a per-plugin basis)

® beinformed of important system events.

® beindividually stopped, started, paused, and resumed.

® expose custom web services for external use.

® bemanipulated viaafull RESTful API (see Resources for more information).

Terminology

There are two distinct termsin the plugin layer: plugin types and plugins (or plugin instances).

Plugin Types

143

Plugin Types can be considered plugin templates with built-in logic. In object-oriented
programming languages, this relates to the concept of a class. They possess certain abilities, or
methods, that can be called by Moab Web Services to query information about a certain
resource. They aso can define methods which will be exposed to external clients as web
services. They do not contain any configuration or current data, but they are often tied to a type
of component, such as components that communicate with Moab's WIKI Protocol or those that
are built on acertain product.

They define several types of methods:

1. Query methods such asget Nodes, get Vi rt ual Machi nes, and get Nodes that
retrieve the current state of the resources that the plugin monitors.

2. The poll method (optional) that is called at a configured interval.

3. Instance methods that return information about the current plugin, such asget St at e.
While these are defined in the plugin type, the plugin type itself does not have a state.

4. Lifecycle methods of plugins created from the plugin type, such asbef oreSt art and
afterStart.

5. Web service methods that expose custom functionality as public web services.

Some examples of plugin types include the Native plugin type, the MSM plugin type, and the
CSA plugin type.

Plugins (Instances)

Plugins (also called plugin instances) are created from plugin types. They contain current data or
configuration and use the plugin type methods to interact with resources.

Interactions with Moab as a Resource Manager

The plugin layer in MWS s integrated with Moab via the Native Resource Manager (RM)
interface. When utilizing plugins, MWSis configured as a RM in Moab as explained in the next
section. Events from Moab are pushed through the RM interface to MWS which is then pushed
to each plugin in turn. The relationship between Moab Web Services, Moab, and pluginsis
shown in the following image:

144

Moab Web Services
Plugin Plugin Plugin Plugin
Instance Instance Instance Instance
Resource Resource Resource Resource

& Inthe diagram above, the MWS RM signifies that MWS s configured as a
Moab Resource Manager.

5.1.2 Configuring Moab

To use the full functionality of MWS plugins, Moab must be configured to use MWS as a
resource manager. The following lines must beinthe/ opt / noab/ et ¢/ noab. cf g fileor
one of itsincluded files:

RMCFE nws TYPE=NATI VE

RMCFE mws FLAGS=User Spacel sSepar at e

RMCFE nws CLUSTERQUERYURL=exec: / / $TOOLSDI R/ mas/ cl ust er . query. mas. pl
RMCFE mws WORKL OADQUERYURL=exec: / / $TOOLSDI R/ mas/ wor kI oad. query. mas. pl
RMCFE nws JOBCANCELURL=exec: // $TOOLSDI R mns/ j ob. cancel . mas. pl

RMCFE mws JOBM GRATEURL=exec: // $TOOLSDI R mns/ vim i gr at e. ms. pl

RMCFE mws JOBMODI FYURL=exec: / / $TOOLSDI R/ nws/ j ob. nodi fy. mws. pl

RMCFE nws JOBREQUEUEURL=exec: / / $TOOLSDI R/ mas/ j ob. requeue. mas. pl
RMCFE nws JOBRESUMEURL=exec: // $TOOLSDI R/ mas/ j ob. resume. mas. pl

RMCFE nws JOBSTARTURL=exec: // $TOOLSDI R/ mas/ j ob. start. mas. pl

RMCFE nws JOBSUBM TURL=exec: // $TOOLSDI R/ mas/ j ob. submi t. mas. pl

RMCFE nws JOBSUSPENDURL=exec: / / $TOOLSDI R/ mas/ j ob. suspend. mas. pl
RMCFE mws NODEMODI FYURL=exec: / / $TOOLSDI R/ nws/ node. nodi fy. mns. pl
RMCFE nws NODEPOWERURL=exec: / / $TOOLSDI R/ mas/ node. power . mas. pl

RMCFE nws RESOURCECREATEURL=exec: / / $TOOLSDI R mws/ r esour ce. cr eat e. mas. pl
RMCFE mws SYSTEMMODI FYURL=exec: / / $TOOLSDI R/ mas/ syst em nodi fy. mas. pl
RMCFE nws SYSTEMQUERYURL=exec: / / $TOOLSDI R/ mas/ syst em query. mas. pl

The next step isto edit the MWS valuesin/ opt / noab/ et ¢/ cl oud. cf g. Hereare the
default values:

CONFI (def aul t] MAS_URL=htt p: / /| ocal host : 8080/ nws
CONFI 4 def aul t] MAE_USERNAME=admi n
CONFI 4 def aul t] MAE_PASSWORD=adm npw

145

& MA5S_ USERNAME and MAS PASSWORD must match the values of
aut h. def aul t User . user nane and
aut h. def aul t User . passwor d, respectively, found in
[opt/ mas/ et c/ mas- confi g. groovy.

The*. mns. pl scripts should be located inthet ool s/ mas of the Moab home directory. The
Moab/ WebSer vi ces. pmmodule must also be available to the scripts. All of these files may
befoundinthet ool s/ mas and | i b/ per | 5 directories of the Moab tar file. They are
automatically installed if Moab is configured with the - - wi t h- mns flag or they can be copied
directly from thereto thet ool s folder in your Moab home directory.

To enable such actions as submitting jobs as different users, the ENABL EPROXY=TRUE option
must be present in the ADM NCFG configuration line and the OSCREDL OOKUP option must be
set to NEVER as follows:

ADM NCF(1] USERS=r oot ENABL EPROXY=TRUE
OSCREDL OOKUP NEVER

5.1.3 Lifecycle States

During the course of a plugin's use, the state of the plugin may change many times. Plugins have
four possible states. St opped, St art ed, Paused, and Er r or ed. The flow of aplugin
through the states is shown in the following image:

—>(stopped J€——starusiop—>{ Started J€—
J

Clear Error \ {MW5 Only) Error

y Start
)_/

(Errored
Pause
Stop/Pause Pause/Resume
)(Paused)(

To see descriptions of each state, see the PluginState API.

Events that occur during lifecycle state changes may be found in the Events section.

5.1.4 Events

Plugins use an event based model in that methods are called on the plugin when certain criteria
are met or situations arise. Plugin types may be created to handle certain events by implementing
or not implementing certain methods. Events currently exist for polling and certain lifecycle state
changes.

The Polling Event

146

To maintain current information, each plugin is polled for node, job, and virtual machine
information at a specified time interval. By default, thisinterval is set to 30 seconds, but can be
modified for al or individual plugins as explained in Plugin M anagement.

When a polling event occurs, the pol | method on the target plugin is called. This method may
perform any function desired and should typically make callsto the Plugin Persistence Service to
make updated to nodes, jobs, or virtua machines. For example, the pol | method in the Native
plugin type isimplemented as follows:

&y Thisisan extremely simplified version of what is actually implemented in
the Native plugin type.

public void poll () {
get Pl ugi nPer si st enceSer vi ce() . updat eNodes(get Nodes()
get Pl ugi nPer si st enceSer vi ce() . updat eVi rt ual Machi nes(
get Pl ugi nPer si st enceSer vi ce() . updat eJobs(get Jobs());

)
get Vi rtual Machi nes());

This simple poll method calls three other helper methods called get Nodes,

get Vi rt ual Machi nes, and get Jobs to retrieve node, job, and virtual machine objects.
These results are each sent to the appropriate method in the plugin persistence service. While the
specific details of the plugin persistence service are not important to understand at this point, the
objective of this example isto demonstrate one possible use of the poll event handler. The CSA
plugin type, on the other hand, uses the poll event to retrieve update internal data from its
pertinent resources and to update node and virtual machine information. It does not query or
persist any job information.

Lifecycle Events

Events are also triggered for certain lifecycle state changes. These are documented in the table
below with the associated method that must be implemented on a plugin type to handle the event.

State Change Event Description

Start beforeStart Triggered just before starting a plugin.

Start afterStart Triggered just after a plugin has been started.
Stop beforeStop Triggered just before stopping a plugin.

Stop afterStop Triggered just after stopping a plugin.

Currently, no events are triggered for pausing, resuming, erroring, or clearing errors for plugins.

5.1.5 Custom Web Services

Although the events interface typically serves most cases, there are some instances where an
event is not supported that isdesired. Thisis especialy true when an external resource isthe
source of the event. To address these issues, plugins can expose custom web services to external
resources. These web services may be named freely and do anything they wish in the plugin
framework.

147

For example, suppose a resource needs to notify a plugin that provisioning of avirtual machine
has been completed. Instead of having the plugin poll the resource to verify that the provisioning
was finished, the plugin could expose a custom web service to handle notification from the
resource itself.

Sample custom web service

def vnProvi si onFi ni shed(Map parans) {
/1 Handl e event
return [nmessages: ["Event successfully processed"]]

A full explanation of the syntax and creation of custom web services may be seen on the Plugin
Type Guidelines page under "Exposing Web Services'.

For information how resources can access plugin web services, see Accessing Plugin Web
Services.

5.1.6 Data Collision Detection

At times, plugins can report differing or even contradictory data for nodes, jobs, and virtual
machines. Thisis called adata"collision". Currently, when data from one plugin "collides" with
another, the last plugin to report (or persist using the plugin persistence service) the data will be
considered the authoritative source for information.

For example, suppose two plugins exist, pl ugi nAand pl ugi nB. These plugins both report
datafor anode with an ID of nodel. However, each reports a different node power state. Plugin
A reports the power as ON, while plugin B reports the power as OFF. The data collision that
occurs due to these two plugins persistence contradictory datais resolved by the timing of their
polling. If plugin A is polled first and plugin B second, the node will be reported as OFF until
plugin A is polled again and vice versa.

The ssimple workaround for thisissue isto ensure that no two plugins report the same resource or
that they report different properties of the same resource. For example, if plugin A only modified
the power state and plugin B only modified the available disk, these two plugins would work in
harmony to provide a consistent view of the node resource.

5.1.7 Routing

Dueto the fact that Moab Web Servicesis configured as a Resource Manager (RM) in Moab
Workload Manager, events are sometimes triggered by Moab through the RM interface. These
actions could be migrating a virtual machine, starting ajob, submitting ajob, modifying a node,
and so forth. The decisions of which plugins are affected and notified is termed routing .

Currently al plugins receive all commands from Moab. This means that each plugin will receive
the command to start ajob if sent from Moab, even if that plugin does not handle the job. This
means that plugins must ensure they handle only actions or commands for resources which they
report or handle.

5.2 Plugin Type Management

Plugin types comprise the methods by which Moab may communicate with resource managers or
other external components. They define all operations that can be performed for a"type" or
"class' of plugins.

148

Several plugin types are provided with web services, but it is easy to create additional plugin
types and add their functionality to web services.

5.2.1 Bundled Plugin Types

Several plugin types are provided by Adaptive Computing for usein Moab Web Services.
Examples of these include the Native and MSM plugin types.

& Please see the Bundled Plugin Typesitem in the Quick Reference menu for
all bundled types.

5.2.2 Creating Plugin Types

Creating a plugin type involves using Groovy, which is based on the Java programming
language. This section describes the general guidelines and specifics of implementing asimple

plugin.

5.2.2.1 Plugin Type Guidelines

The com.ace.mws.plugins.AbstractPlugin abstract class is provided to assist in creating plugin
types. However, this class need not be extended to provide afully functional plugin type. In fact,
there are only two methods that must be implemented to provide aworking plugin type:

® public String getld();
® public void setld(String id);

These may be stored in whichever way desired, but will most likely be implemented as follows:
& Inthefollowing Groovy example, St ri ng i d will be expanded by the

compiler to the full method definitions given above. Thus no explicit method
definitions are actually needed.

Basic Groovy Implementation

cl ass BasicPlugin {
String id

To pass the checks to be able to add the class as a plugin, there are two requirements:

1. ThelID getter and setter must be fully implemented (as described above).
2. Theclass name must end in "Plugin”.

Dynamic Methods on Plugins

Several methods are dynamically inserted onto each plugin. These methods do not need to be
included in the plugin class, and in fact are preferred not to as they will simply be overwritten.

These methods are shown below:

149

http://groovy.codehaus.org/
http://en.wikipedia.org/wiki/Java_(programming_language)

/1 Defined in comace. ms. pl ugi ns. Abstract Pl ugi n

public void start() throws Pl uginStartException; /1 Equivalent to
[pl ugi nControl Service.start(String id)]|guide:pluginControl Lifecycl e]
public void stop() throws Pl ugi nStopException; // Equivalent to

[pl ugi nControl Service.stop(String id)]|guide:pluginControl Lifecycle]

/] Defined in comace. mws. pl ugi ns. Abst ract Pl ugi nl nf o

public String getPluginType(); /| Equivalent to

[pl ugi nConfi gurati onServi ce. get Pl ugi nType(String id)|guide:plugi nConfigurati onService]
public PluginState getState(); /1 Equivalent to

[pl ugi nConfi gurati onService.getState(String id)|guide:plugi nConfigurationService]
public Integer getPolllnterval (); /1 Equival ent to

[pl ugi nConfi gurati onService. getPol | I nterval (String
i d) | gui de: pl ugi nConf i gur ati onSer vi ce]

publ i c Bool ean get AutoStart(); /] Equivalent to
[pl ugi nConfi gurati onServi ce. get AutoStart(String id)|guide:plugi nConfigurationService]
public Map<String, Object> getConfig(); /1 Equivalent to

[pl ugi nConfi gurati onServi ce. get Config(String id)]|guide:plugi nConfigurati onService]

Plugin Metadata

M etadata may be included in plugin classes by defining static properties on the classes.
Currently, the metadata availableisaut hor anddescr i pti on. These may be defined in the
following manner:

&y The following example does not implement the ID property and therefore
would not pass as avalid plugin.

Groovy plugin with Metadata

cl ass Exanpl ePl ugin {
static author = "Adaptive Conputing"
static description = "A basic exanple for a plugin with netadata"

Exposing Web Services

Any number of methods may be exposed as public web services by following two simple rules:

1. The method must return alist, map, or a complex object.
2. It must define a single argument of a Map.

The argument will contain all parameters passed into the web service by the client. See
Accessing Plugin Services for additional details.

Parameters may be passed into the web service call as normal URL parameters such as

?par anrval ue&par anR=val ue2, askey-value pairsin the POST body of arequest, or as
JSON in the body. For thefirst two cases, the parameters will be available on the Map argument
passed into the web service call as key value pairs matching those of the request. Note that in
these cases all keys and values will be interpreted as strings.

GET PLUG N_SERVI CE_URL?key=val ue&key2=t r ue&key3=5

def servi ceMet hod(Map parans) {
assert parans. key=="val ue"
assert parans. key2=="true"
assert parans. key3=="5"

150

In the latter case, the parsed JSON properties will be available within a parameter called body
in the Map argument. In this scenario, the types of the values are preserved by the JSON format.

POST PLUG N _SERVI CE_URL Wi th JSON body of
{"key":"val ue", "key2":true, "key3": 5}

def servi ceMet hod(Map parans) {
assert parans. body. key=="val ue"
assert parans. body. key2==true
assert parans. body. key3==5

Events

For events that trigger method calls on plugins, these methods may be implemented on custom
plugin types to handle the event. For more information, see the Plugin Events section.

External Dependencies

External dependencies (e.g. JAR files) may be included and referenced in custom plugin types.
However, certain rules must be followed in order to have these load correctly:

1. The plugin type must be bundled and uploaded as a JAR file.

2. The plugin type must bundle all external dependency JARsin the root of the plugin type
JAR file.

3. Anentry must be included in the MANI FEST. MF file that references each of these bundled
JAR files as a space separated list:

Cl ass- Pat h: dependencyl.jar dependency2.jar dependency3.jar

Assuming that these rules are followed, and that the plugin type is uploaded using the REST API
or the User Interface, the dependent JARs will first be loaded and then the new plugin type and
associated fileswill be loaded.

5.2.2.2 API Classes and Interfaces

There are several packages and classes available to assist in creating plugin types. These can all
be found in the APl documentation under thecom ace. mas. pl ugi ns package.

Hereisabrief synopsis of the classes that can and should be used:

Interfaces

The com.ace.mws.plugins package contains the interfaces AbstractPlugininfo and
AbstractPlugin that should form the basis of any new plugin type.

& Onlytheget1d() andset | d() functions must be implemented for afully

operational plugin. All other methods will be inserted dynamically if they do
not exist on startup.

151

Services

The com.ace.mws.plugins.services package contains interfaces for all services available to
plugin types. These may be used as discussed in Services.

Exceptions

The com.ace.mws.plugins.exceptions package contains several exceptions that may be used and
in some cases, should be caught.

5.2.2.3 Plugin Type Example

A sample plugin typein Groovy would resemble the following:

package test

i nport com ace. mas. pl ugi ns. *)
i nport com ace. mas. pl ugi ns. exceptions. *

cl ass Upl oadTest Pl ugi n {
static author = "Adaptive Conputing"
static description = "A sinple plugin in groovy"

String id

public void verifyConfiguration() throws |nvalidPlugi nConfigurati onException {
def nyConfig = config
def errors = |
if (!nyConfig.arbitraryKey)
errors << "M ssing arbitraryKey!"
if (errors)
t hrow new | nval i dPl ugi nConfi gurati onException("Invalid plugin ${id}
configuration", errors)

}

5.2.3 Plugin Services

Several services are available for use by any plugin type. To use services, they must be declared
within the class of the plugin type. For example, to use the plugin control service, a

pl ugi nCont r ol Ser vi ce property of type IPluginControlService or "def" must be declared
on the plugin type. The actual service will be inserted or injected into the plugin class when the
pluginis used.

Injected typed service

package exanpl e
i nport com ace. mws. pl ugi ns. servi ces. | Pl ugi nCont rol Servi ce

public class Exanpl ePl ugin {
| Pl ugi nControl Servi ce plugi nControl Service

public void someMet hod() {
/] Use the control service
pl ugi nCont rol Servi ce. [net hod] () ;

152

Injected untyped service

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nControl Service

public void sonmeMet hod() {
/] Use the control service
pl ugi nCont r ol Servi ce. [net hod] () ;

@ Do not attempt to create a new instance of the services before use, such asin
aconstructor. The services will be automatically injected before any methods
are called on the plugin.

& Theinjected service property must be named correctly to use it, regardless of
the type used.

5.2.3.1 Configuration Service

The configuration service controls all configuration options for plugins. Typically this service
does not need to be called directly as methods are provided on all plugins which are routed to the
configuration service as explained in the guidelines under Dynamic Methods.

Thepl ugi nConfi gurati onSer vi ce property will be injected with a class of type
I PluginConfigurationService.

5.2.3.2 Control Service

The control service allows lifecycle management operations to be performed on plugins. It also
provides methods to create and retrieve plugins. Note that the plugin control service may be used
by other plugins, allowing one plugin to dynamically create, retrieve, start, or stop plugins. The
CSA plugin does exactly this by creating a new plugin (SA for example) for each supported
provider in CSA.

Thepl ugi nCont r ol Ser vi ce property will be injected with a class of type
[PluginControl Service.

Creating Plugins

Several methods are provided to allow on-the-fly creation of new plugins. Generaly, they allow
aplugin with a specific ID and plugin type (as a string or as a Groovy Class) to be created with
optional configuration properties. These properties should match the fieldsin the Plugin API. If
specific or al configuration properties are omitted, the defaults will be used as described in the
Plugin Management with Configuration file section.

In each case, a boolean value is returned indicating whether the creation succeeded or not.
Additionally, the cr eat ePl ugi n methods will initialize the plugin for retrieval or usage and
attempt to start the plugin if the aut oSt ar t property istrue.

153

Create plugin with default configuration

try {
i f (pluginControl Servi ce. createPl ugi n("nyPlugin", "Native"))
println "nyPlugin was created successful ly!"
el se
println "There was an error creating nyPl ugin"
} catch(Pl ugi nStartException e) {
println "There was a problemstarting the new plugin: ${e.nessage}"
} catch(lnvalidPl ugi nConfi gurati onException e) {
println "There were errors with the plugin's configuration: ${e.errors}"

Create plugin with custom configuration

i f (pluginControl Service. createPl ugi n("nyPlugin", "Native", [autoStart:false
pol I I nterval : 600]))

println "nmyPlugin was created successfully!"
el se

println "There was an error creating nmyPlugin"

Retrieving Plugins

Retrieving plugins requires either a unique identifier or the type and configuration option(s).

Retrieving by Unique Identifier

Get plugin by ID

| Plugi n plugin = pluginControl Service. get Pl ugi nByl d("pl ugi n1");

Retrieving by Type and Configuration Properties

The second method of retrieving Plugins involves sending a type and configuration properties as
amap. Both parameters are required; however, the configuration map may be empty asin the
following example.

Get plugin by Type Only

Map<String, String> config = new HashMap<String, String>()
| Plugi n plugin = pluginControl Service. get Pl ugi n("Native", config);

In this case, the first plugin with atype of Native will be returned. If no Plugins of thistype
exist, nul | isreturned.

If the configuration properties map isfilled with any properties, all keys and valuesin it must be
matched for a plugin to be successfully retrieved. For example, if the current plugin list looks
like the following:

154

test {
pl ugi nType = "Native"
config = [test:"true"]

}

test2 {
pl ugi nType = "Native"
config = [test2:"true"]

Then the following calls would result:

| Pl ugi n plugin;
Map<String, String> config = new HashMap<String, String>();

config.put("test", "true");
pl ugi n = plugi nControl Service. get Pl ugi n("Native", config)
assert "test"==plugin.getld()

config.put("test2", "true");
pl ugi n = pl ugi nCont rol Servi ce. get Pl ugi n("Native", config);
assert plugi n==nul |

config.renove("test");
pl ugi n = plugi nControl Service. get Pl ugi n("Native", config);
assert "test2"==plugin.getld();

Starting or Stopping Plugins

Plugins may be started or stopped on demand. These two methods are exposed directly as
st art and st op onthe plugin control service. Although each method does not return any data,
exceptions are thrown if errors are encountered.

@ These methods correctly handle lifecycle events and changing plugin state.
These should never be modified directly!

Start Plugin

try {
pl ugi nCont r ol Service. start ("nmyPl ugi n")
} catch(Plugi nStartException e) {
println "There was a problem starting the plugin: ${e. message}"
} catch(lnvalidPl ugi nException) {
println "The plugin '"myPlugin' is invalid"
} catch(lnvalidPl ugi nConfi gurati onException e) {
println "The plugin has an invalid configuration: ${e.errors}"

Stop Plugin

try {

pl ugi nCont r ol Servi ce. st op("nyPl ugi n")
} catch(Pl ugi nSt opException e) {

println "There was a probl em stoppi ng the plugin: ${e. nessage}"
} catch(lnvalidPl ugi nException) {

println "The plugin 'nmyPlugin' is invalid"

Verifying Plugin Configuration

155

Finally, the plugin control service may be used to verify plugin configuration at any point instead
of just when the plugin is started or modified. This may be useful to attempt to modify plugin
configuration directly through the Configuration Service and then verify that the new
configuration isvalid for the plugin. Exceptions are thrown if the plugin or the configuration is
invalid.

Verify plugin configuration

try {
pl ugi nCont r ol Servi ce. veri fyConfiguration("nyPl ugin")
} catch(lnvalidPl ugi nException) {
println "The plugin '"myPlugin' is invalid"
} catch(lnvalidPl ugi nConfi gurati onException e) {
println "The plugin has an invalid configuration: ${e.errors}"

5.2.3.3 Data Persistence Service

The data persistence serviceis provided to ease the storage of Moab state data such as nodes,
jobs, and virtual machines. Objects passed to the service are saved to the Moab Web Services
database. It also handles data collisions as explained in the Overview.

If the plugin usesthe get Nodes, get Jobs, or get Vi r t ual Machi nes methods exclusively
for handling polling, the service will likely never be used directly. Thisis dueto the fact that the
default Abst r act Pl ugi n implementation of the pol | method uses the persistence service
with the results from these methods. The persistence service, however, isused in al plugins that
persist job, node, or virtual machine data.

Thepl ugi nPer si st enceSer vi ce property will be injected with a class of type
| PluginPersistenceService.

All examples use a custom web service to create events.

& Notethat in al cases, the Node, Job, and VirtualMachine objects are
intentionally not saved before being passed to the persistence service.

Persisting Data to the Database

In thismost typical use case of the persistence service, it may be used to persist node, job, and
virtual machine data to the database.

Persisting Nodes

156

Persisting Nodes in Groovy

package exanpl e
i mport com ace. mas. nodes. Node

public class Exanpl ePl ugin {
def pl ugi nPer si st enceServi ce

publ i c def updateNodesService(Map parans) {
def nodes = ...// create Node objects here
if (pluginPersistenceService. updat eNodes(nodes))
| 0og.info("Nodes successfully updated")
el se

| og.info("There was an error updating nodes")

Persisting Jobs

Persisting Jobs in Groovy

package exanpl e
i mport com ace. mns. j obs. Job

public class Exanpl ePl ugin {
def pl ugi nPer si st enceServi ce

publ i c def updateJobsService(Map parans) {
def jobs = ...// create Job objects here
if (pluginPersistenceService. updateJobs(jobs))
| 0og.info("Jobs successfully updated")
el se

| og.info("There was an error updating jobs")

Persisting Virtual Machines

Persisting Virtual Machines in Groovy

package exanpl e
i mport com ace. mas. vins. Vi rtual Machi ne

public class Exanpl ePl ugin {
def pl ugi nPersi stenceService

publ i c def updateVirtual Machi nesServi ce(Map parans) {
def vms = ...// create Virtual Mchi ne objects here
if (pluginPersistenceService. updateVirtual Machi nes(vns))

| og.info("VMs successfully updated")
el se

| og.info("There was an error updating VM")

Removing Data from the Database

On the other hand, the plugin persistence service may also be used to remove state data from the
database by using ther enove* methods.

Removing Nodes

157

Removing Nodes in Groovy

package exanpl e
i mport com ace. mas. nodes. Node

public class Exanpl ePl ugin {
def pl ugi nPer si st enceServi ce

public def renmoveNodesService(Map parans) {
def nodes = ...// | oad Node objects here

i f (pluginPersistenceService.renpveNodes(nodes))
| 0og.info("Nodes successfully renoved")
el se

| og.info("There was an error renoving nodes")

Removing Jobs

Removing Jobs in Groovy

package exanpl e
i mport com ace. mns. j obs. Job

public class Exanpl ePl ugin {
def pl ugi nPersi stenceService

public def renpbveJobsService(Map parans) {
def jobs = ...// load Job objects here

i f (pluginPersistenceService.renovelobs(jobs))

| og.info("Jobs successfully renpved")
el se

| og.info("There was an error renoving jobs")

Removing Virtual Machines

Removing Virtual Machinesin Groovy

package exanpl e
i mport com ace. mns. vis. Vi rt ual Machi ne

public class Exanpl ePl ugin {
def pl ugi nPersi stenceService

public def renoveVirtual Machi nesServi ce(Map parans) {
def vms = ...// load Virtual Machi ne objects here

i f (pluginPersistenceService.renoveVirtual Machi nes(vns))

| og.info("Virtual machi nes successfully renoved")
el se

| og.info("There was an error renoving virtual machines")

5.2.3.4 Individual Datastore Service

Theindividual datastore serviceis provided to allow aplugin to persist data to the database that
isisolated from all other persistent data. It is not designed to store Moab data such as nodes,
jobs, or virtual machines, but custom, arbitrary data pertinent only to the individual plugin.

The pl ugi nDat ast or eSer vi ce property will be injected with a class of type
| PluginDatastoreService.

158

Persisting Custom Data

The datastore service may be used to persist custom, arbitrary data to the database. Multiple
collections may be used by a single plugin and can be named arbitrarily. Although

non-al phanumeric characters may be used, it is not recommended as it could cause loss of data
between collections.

@ Alwaysusethei d of the current plugin when calling the
pl ugi nDat ast or eSer vi ce methods. Failure to do so will cause issues
with other plugins.

Adding A Single Entry

Persisting Custom Entry in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def addDataEntryService(Map parans) {

def collectionName = "collectionl”

def data = [:]

/] Add data here to the Map

if (pluginDatastoreService.addData(id, collectionNane, data))
| og.info("Data successfully added")

el se
| og.info("There was an error addi ng the data")

Adding Multiple Entries

Persisting Multiple Entries in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

public def addDataEntriesServi ce(Map parans) {

def collectionName = "collectionl”

def dataList = []

dataLi st.add(/* Custom Map of data here */)

datalLi st << // Custom Map of data here

if (pluginDatastoreService.addData(id, collectionNane, datalList))
| og.info("Data entries successfully added")

el se
| og.info("There was an error adding the data entries")

Updating A Single Entry

159

Updating Entry in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def updateDataEntryServi ce(Map parans) {
def collectionName = "col |l ecti onl”
def data = [:]
/1 Add data here to the Ma

p
if (pluginDatastoreService. updateDat a(id, collectionNang,

"key", "val ue"
data))

| og.info("Data successfully updated")
el se

I og.info("There was an error updating the data")

Querying Data

The datastore service may also be used to query for collections and specific entries in each
collection.

Find If A Collection Exists

Collection Exists in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def addDataEntryService(Map parans) {
def collectionNanme = "collectionl"
if (pluginDatastoreService.exists(id, collectionNane))
| og.info("Collection exists")
el se

| og.info("The collection does not exist")

Get Contents Of A Collection

Get Collection in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def addDataEntriesServi ce(Map parans) {

def collectionNanme = "collectionl”
def dataList = plugi nDatastoreService.getCollection(id, collectionNane)
if (dataList!=null)

| og.info("Collection successfully queried")
el se

| og.info("There was an error querying the collection")

Get A Single Entry From A Collection

160

Get Single Entry in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def updateDataEntryServi ce(Map parans) {
def collectionName = "col |l ectionl"

def data = pl ugi nDat ast oreServi ce. getData(id, collectionNane,
if (data!=null)

| og.info("Data successfully retrieved")

"key", "value")

el se
| og.info("There was an error retrieving the data")

Removing Data

The datain the individual datastore may also be cleared out or removed on a collection or single
entry basis.

Removing A Collection

Removing Collection in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def addDataEntryService(Map parans) {
def collectionNane = "col |l ectionl"
def data = pl ugi nDat ast oreServi ce. cl ear Col | ection(id
/] Data now contains the collection that was cleared
if (data!=null)

| og.info("Collection successfully cleared")

col | ecti onNane)

el se
| og.info("There was an error clearing the collection")

Removing A Single Entry

Remove Single Entry in Groovy

package exanpl e

public class Exanpl ePl ugin {
def pl ugi nDat ast oreServi ce

publ i c def addDataEntriesServi ce(Map parans) {
def collectionNane = "col |l ectionl"

if (pluginDatastoreService.renoveData(id, collectionNane,

"key", "value"))
| og.info("Data entry successfully renoved")

el se
| og.info("There was an error renoving the data entry")

5.2.4 Uploading Plugin Types
Plugin types can be uploaded into Moab Web Services using the user interface or REST API.

161

5.2.4.1 Upload with the User Interface

The user interface may be used to upload plugins using afile, a Java Archive (JAR) file, or
pasted Groovy code.

Single Class File

Groovy files containing a single plugin class may be uploaded at the
/mws/admin/plugin-types/create URL.

@ Create Plugin Type

+ Add files... © start upload @ Cancel upload T Clear files

Tvype or Paste Code

Simply click Add files...,seectthe. groovy classfile, andclicktheSt art upl oad
button. If the plugin type was successfully uploaded and initialized, the size of the file uploaded
will be displayed.

@ Create Plugin Type

+ Add files... © start upload @ Cancel upload T Clear files

UploadTest 0.53 KB)

Type or Paste Code

If the upload failed or an error occurred during initialization of the plugin, an error message will
be displayed. See the log file for additional details and error messages.

162

http://en.wikipedia.org/wiki/Jar_file

@ Create Plugin Type

@ Plugin Type with ID "test.UploadTest3 is an invalid plugin: Class name does not end with Plugin

“ + Add files... © start upload @ Cancel upload T Clear files

‘ UploadTestPlugin3.groowvy 0.52 KB

Type or Paste Code

JAR File

A JAR file containing one or more plugins may also be uploaded using the same process as the
Groovy file.

Navigate to the /mws/admin/plugin-types/create URL. Click Add files..., seectthe.jar
classfile, and click the St art upl oad button. If the upload failed or an error occurred during

initialization of the plugin(s), an error message will be displayed. See the log file for additional
details and error messages.

The JAR upload process differs from the single file in that if successful, the name of each
successfully loaded plugin class will be displayed.

@ Create Plugin Type

‘ + Add files... © start upload @ Cancel upload T Clear files ‘

‘ UploadTest 0.00 KB (]

Twpe or Paste Code

There are two ways that the plugins are extracted from the JAR file: the manifest file and
autodetection.

Manifest File

The manifest file, located at META- | NF/ MANI FEST. MF, will be loaded and an attribute
named MAS- Pl ugi n- Types will be used. This attribute's value should be a comma-separated
list of full class names of all plugin types, including the package.

163

examplejar/META-INF/MANIFEST.MF Example

Mani f est - Version: 1.0
MAB- Pl ugi ns: exanpl e. package. Exanpl ePl ugi n, exanpl e. package. Anot her Exanpl ePl ugi n

Autodetect

If no manifest attribute is specified, or the manifest file does not exist, then MWS will search in
the JAR for file names that end with Pl ugi n. If it finds any, it will attempt to load them as
plugin classes.

Code

Code may also be written dynamically in the browser which is then uploaded and compiled as

Groovy code. Make sure to refer to the plugin type Guidelines before finishing the upload
process.

Navigate to the /mws/admin/plugin-types/create URL and click Past e Sour ce Code to
open the text area where code should be placed.

@ Create Plugin Type

Upload File(s)

Code

164

@ Create Plugin Type

Upload File(s)

Code
package test

13

m, |

import com.ace.moab.plugin.®

static author = “Adaptive Computing

Paste or type the code into the field and click Cr eat e. If the upload succeeded, the user
interface will be redirected to the plugin type show page. If the upload failed or an error occurred
during initialization of the plugin, an error message will be displayed. See the log file for
additional details and error messages.

5.2.4.2 Uploading with REST API

Alternatively, the same file formats may be uploaded to Moab Web Services using aREST API.
The URLSs, payloads, and responses are fully documented in the Updating Plugin Types section.

When using the REST API, the code and single Class files use the same operation.

5.2.5 Listing Plugin Types

Finally, it is possible to list the available plugin types with their associated authors and
descriptions through either the REST API or the user interface.

Listing in REST API

Retrieving al or specific plugin typesis fully documented in the Getting Plugin Types resource
section.

Listing in User Interface

Toretrieve alist of al plugin types, navigate to /mws/admin/plugin-types/list.

165

@ Plugin Type List

Id Author Description

C5A Adaptive Computing Controls integration with HF CSA

MSM Adaptive Computing Flugin for integration with MSM

Mative Adaptive Computing Basic implementation of a native plugin
SA Adaptive Computing Queries for resources from HF S4
UploadTest Adaptive Computing A plugin for testing file uploads

The ID of each plugin type may be clicked to navigate to a page with more information
concerning the type, including the current instances using it. A link is also provided to create a
new plugin from the currently displayed type.

@ Show Plugin Type

Id MNative
Author Adaptive Computing

Description Basic implementation of a native plugin

rugins (=
myPlugin Started
Add Plugin

5.3 Plugin Management and Usage

Plugins may be managed and accessed with Moab Web Services dynamically, even while
running. This includes plugin instance configuration, controlling plugin lifecycle, and accessing
custom web services.

5.3.1 Configuring Plugins
Configuring plugins may be done by any of these methods:

1. Using the MWS configuration file which is read during the MWS startup process.
2. Using the user interface through aweb browser.
3. Using the REST API through scripts or other web client utilities.

5.3.1.1 Managing with Configuration File

& Only new plugins (those with IDs that do not exist in the database) are |oaded
on startup. The database is considered the authoritative source for all current
plugin configuration.

166

Configuration of pluginswith afile involves setting the Configuration fields in the Moab Web
Services configuration file. See the MWS configuration guide for more information on the
configuration file.

Two areas can be configured within the file: default values and plugin configuration.

Changing Default Values

Configuration may be specified for default values for al new plugins as follows:

& All settings are optional for the default configuration. If no values are
specified, the default values will be used as shown in the Configuration
reference guide.

Default plugin configuration

pl ugi ns {
pol I I nterval = 30
pol | Enabl ed = true
autoStart = true

config {
arbitraryKey = "arbitrary val ue"
usernane = "admin"
password = "pass"

With these settings, any new plugins would be created with polling enabled, auto start enabled, a
polling interval of 30 seconds, and three conf i g entries.

Additionally, the pl ugi nType andi d fields may be given a default value that will be used in
the User Interface for creating new plugins as follows:

Setting Ul Defaults

pl ugi ns {
id = "conpanyl dOO"
pl ugi nType = "Native"

Instance Configuration

New plugins can be created by using the configuration file. Please note, however, that if aplugin
already existsin the database with the same ID when the configuration file is read, the
configuration file settings will be ignored. In other words, the database data is taken over all
configuration file data.

To define plugins, smply includean i nst ances block in the configuration file. Each new
block withini nst ances isthe D of anew plugin and contains all desired configuration for it.

167

Sample plugin 'nativel'

pl ugins {
i nstances {
nativel {
pl ugi nType = "Native"
pol I'I nterval = 25

autoStart = fal se

It should be reiterated that all configuration entries for aplugin, excluding thei d and
pl ugi nType, are optional.

Default vs Instance Config

Any conf i g entriesdefined inthei nst ances block will be merged with the default
conf i g entries with the plugin entries taking precedence. For example, for the following
configuration:

Config Entries

pl ugi ns {
config {
key = "def aul t Key"
def aul t Key = "defaul t Val ue"

i nstances {
nativel {
pl ugi nType = "Native"
config {
key = "pl ugi nKey"
pl ugi nKey = "pl ugi nval ue"

A plugin would be configured with a combined configuration of:

config {
key = "pl ugi nKey"
def aul t Key = "def aul t Val ue"

pl ugi nKey = "pl ugi nVval ue"

5.3.1.2 Managing with User Interface
Plugins may be listed, created, modified, and deleted by navigating to /mws/admin/plugins.

New plugins may be created by navigating to /mws/admin/plugins/create. This interface exposes
the same configuration options that are in the External File configuration. The same validation
occurs through the user interface for required and optional fields.

5.3.1.3 Managing with REST API

The URLSs, payloads, and responses of managing plugins through the REST API are fully
documented in the Plugins Resource sections.

168

5.3.2 Controlling Plugin Lifecycle

Monitoring and lifecycle control of plugins may be performed on a single page located at
/mws/admin/plugins/control/list. This page displays the current state of all plugins aswell as
thelir polling status.

@ Plugin Monitoring

Reload when poll occcurs

Wednesday, February 1, 2012

Active Plugins

Id Type Last Poll Next Poll Acti
myFlugin Mative 00:00:07 00:00:22 .1

Disabled Plugins

Id Type State Actions
test UploadTest Errored w .

Active Plugins

Active plugins are those which are in the Started or Paused states. These are available to receive
events such as polling. If paused, a plugin will not receive events but is not actually stopped,
therefore no stop events are triggered.

The following images demonstrate the status of pluginsin the active states.

Active Plugins

Id Type Last Poll MNext Poll Actions
myFlugin Native 00:00:04 00:00:25 . @ [;

A started plugin which includes the relative time of the last poll as well as the time of the next
poll in acountdown format. Action buttons are available to stop or pause the plugin as well as
trigger an immediate poll event.

169

Active Plugins

Id Type Last Poll Next Poll Actions

myPlugin Mative 00:00:03 .@E

A paused plugin which includes only the last polling time. Action buttons are available to stop or
resume the plugin, as well astrigger an immediate poll event.

Disabled Plugins

Disabled plugins are those which are in the Stopped or Errored states. These plugins do not
receive events such as polling. If errored, aplugin may either be stopped, which represents a
"clearing” of the error, or started normally. However, if no action is taken on an errored plugin, it
likely will not start due to the fact that most plugins are put into the errored state during startup
of the plugin.

The following images demonstrate the representation of pluginsin the disabled states.

Disabled Plugins
Id Type State Actions

test UploadTest Stopped "\:!"

A stopped plugin. A single action button is available to attempt to start the plugin.

Disabled Plugins

Id Type State Actions
test UploadTest Errored '\:J' .

An errored plugin. As mentioned previously, action buttons are available to stop the plugin or
clear the error as well as attempt to start the plugin. If the start fails, an error message will be

displayed.
5.3.3 Accessing Web Services

As mentioned in the Overview, custom web services may be available in plugins. These web
services may be called externally by resources and arbitrary consumers or internally by other
plugins.

Access Web Services Externally

To access the custom web services defined by the plugin, navigate to or call /mws/rest/pluginsg/
ID /services SERVICE_METHOD where | Disthe unique identifier for the plugin, and
SERVI CE_METHOD is the method name of the exposed service.

Parameters may be passed into the web service call as norma URL parameters such as
?par am=val ue&par ank=val ue2, inthe POST body of arequest, or as JSON in the body.

170

Additionally, trandlation is done to map Camel Case service names to dash-separated namesin
the URL. For example, aweb service method named not i f yEvent on aplugin with an ID of
noti fi cati ons canbe called with the following URLS.

/1 Camel case

/ mns/ rest/ plugins/notifications/services/notifyEvent
/| Dash separated

/ mns/ rest/ plugins/notifications/services/notify-event

Web Service Calls from Internal Plugins

In some cases, it may be desirable to access the custom web services from another plugin
internally. To do so, smply retrieve the plugin using the plugin control service and call the
desired method directly.

For example, if aplugin exists with an ID of "yourPlugin”, and another plugin identified as
"myPlugin” wants to access a custom web service defined as the following:

yourPlugin web service

def notifyEvent(Map parans) {
/1 Handling of the event
return [processed: true]

The plugin "myPlugin” would simply retrieve "yourPlugin” using the plugin control service and
call the method. The return value can be used directly without any translation to or from JSON.

Call plugin's custom service

| Pl ugi nControl Servi ce plugi nControl Servi ce

void poll () {
/] This plugin is "nyPlugin"
assert id=="myPl ugi n"

/] Retrieve "yourPlugin"
def your Pl ugin = plugi nControl Servi ce. get Pl ugi nByl d("your Pl ugi n")
assert your Pl ugi n.id=="your Pl ugi n"

/1 Call customweb service internally
def result = yourPlugin.notifyEvent([:])
assert result.processed==true

}

Copyright © 2012 by Adaptive Computing Enterprises, Inc. All Rights Reserved. Moab® Web
Services

171

http://en.wikipedia.org/wiki/Camel_case

