
1

Moab Web Services 7.2.9 Reference Guide

Table of Contents

1 Introduction

1.1 Moab Web Services Overview

1.2 Upgrading from Previous Versions

1.3 Installation Guide

1.4 Troubleshooting

1.5 Configuration

1.6 Security

1.7 Version and Build Information

2 Access Control

2.1 Application Accounts

3 API Documentation

3.1 RESTful Web Services

3.2 Data Format

3.3 Global URL Parameters

3.4 Requesting Specific API Versions

3.5 Responses and Return Codes

3.6 Error Messages

3.7 Pre and Post-Processing Hooks

3.8 Authentication

4 Resources

4.1 Access Control Lists

4.2 Accounts

4.3 Credentials

4.4 Diagnostics

4.5 Events

4.6 Funds

4.7 Images

4.8 Jobs

4.9 Job Arrays

4.10 Job Templates

4.11 Metric Types

4.12 Nodes

2

4.13 Pending Actions

4.14 Permissions

4.15 Plugins

4.16 Plugin Types

4.17 Policies

4.18 Principals

4.19 Quotes

4.20 Reports

4.21 Reservations

4.22 Resource Types

4.23 Roles

4.24 Services

4.25 Service Templates

4.26 Standing Reservations

4.27 Usage Records

4.28 Virtual Containers

4.29 Virtual Machines

5 Reporting Framework

5.1 Overview

5.2 Example Report (CPU Utilization)

6 MWS Plugins (Beta)

6.1 Plugin Overview

6.2 Plugin Developer's Guide

6.3 MWM Resource Manager Integration

6.4 Plugin Type Management

6.5 Plugin Management

3

1 Introduction

1.1 Moab® Web Services Overview
Moab Web Services (MWS) is a component of Adaptive Computing Suites that enables
programmatic interaction with Moab Workload Manager via a RESTful interface. MWS allows
you to create and interact with Moab objects and properties such as jobs, nodes, virtual
machines, and reservations. MWS is the preferred method for those wishing to create custom
user interfaces for Moab and is the primary method by which Moab Viewpoint communicates
with Moab.

MWS communicates with the Moab Workload Manager (MWM) server using the same wire
protocol as the Moab command-line interface. By publishing a standard interface into Moab's
intelligence, MWS significantly reduces the amount of work required to integrate MWM into
your solution.

This documentation is intended for developers performing such integrations. If you are a Moab
administrator, and for conceptual information about MWM, see the Moab Administrator's Guide.

1.2 Upgrading from Previous Versions
In order to upgrade from previous versions of MWS, the following steps must be completed.
MWS is capable of detecting and performing necessary database updates, but this process must
be triggered manually (see steps 3 and 4 below) by the admin user. It is not always necessary to
perform database updates even when MWS is upgraded to a new version.

It is recommended to perform a full database backup beforehighly
performing database updates. This may be done using the mongodump
utility documented in the .MongoDB documentation

1) Stop Tomcat, re-deploy mws.war, remove exploded mws directory, and
start Tomcat.

CentOS 6 example
service tomcat6 stop
cp /tmp/mws-install/mws-<VERSION>/mws.war / /lib/tomcat6/webappsvar
rm -rf / /lib/tomcat6/webapps/mwsvar
service tomcat6 start

2) Visit in a web browser to verify that MWS ishttp://localhost:8080/mws/
running again.

You will see some sample queries and a few other actions.

3) Log into MWS to verify configuration and check for required database
updates.

The credentials are the values of and auth.defaultUser.username
 set in the MWS configuration file.auth.defaultUser.password

http://www.mongodb.org/display/DOCS/Backups
http://localhost:8080/mws/

4

If you encounter problems, or if MWS does not seem to be running, see the
steps in the section.Troubleshooting

4) Perform database updates.

If database updates are required, a warning box will be shown at the top of the MWS home page.
Click "Please upgrade now" to continue.

A dialog will appear confirming if the upgrade should be applied or not.

When the upgrade is completed, a confirmation notice will be displayed. MWS is then ready for
normal usage.

1.3 Installation Guide
These instructions describe how to install Moab® Web Services (MWS).

1.3.1 Requirements

Hardware Requirements

5

Dual-core Intel/AMD x86-64 processor
At least 4 GB of RAM

Software Requirements

Moab® Workload Manager (version must match exactly the version of MWS)
Oracle® Java® 6 Runtime Environment
Apache Tomcat™ 6
MongoDB® 2.0.2 - 2.0.8

Oracle Java 6 Runtime Environment is the supported Java environment.only

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, are not supported.

Microsoft Active Directory or OpenLDAP (must support the LDAPv3
protocol) is required if you want the resource functionality inPrincipal
Moab Web Services, or if you are going to install Moab Viewpoint. For a
basic tutorial on how to set up OpenLDAP, see Setting up OpenLDAP on

 in the Viewpoint Management and User Guide.Centos 6

1.3.2 Quickstart Guide

1) Install MongoDB version 2.0.8.

MWS does not yet support MongoDB 2.2 or later. Be sure to install the 2.0.8
packages. The RPM package names are

 and mongo20-10gen-2.0.8-mongodb_1.x86_64.rpm
.mongo20-10gen-server-2.0.8-mongodb_1.x86_64.rpm

Install MongoDB on RedHat Enterprise, CentOS, or Fedora Linux
Install MongoDB on Debian or Ubuntu Linux

2) Start MongoDB.

CentOS 6 example

chkconfig mongod on
service mongod start

The instructions provided above for installing MongoDB describe a base
installation only. See the MongoDB section of the page.security

3) Install and configure Moab Workload Manager (MWM).

http://www.adaptivecomputing.com/resources/docs/viewpoint/cloud/help.htm#topics/1-setup/installSetup/settingUpOpenLDAPOnCentos6.htm
http://www.adaptivecomputing.com/resources/docs/viewpoint/cloud/help.htm#topics/1-setup/installSetup/settingUpOpenLDAPOnCentos6.htm
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-redhat-centos-or-fedora-linux
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian-or-ubuntu-linux

6

You must deploy Moab Web Services (MWS) on the same server as
Moab Workload Manager (MWM).
The version of MWS must match exactly the version of MWM. For
example, MWS 7.1.1 works with MWM 7.1.1.only

4) Generate a secret key to be used for communication between MWM and
MWS.

All these steps are required. Do not skip any steps.

service moab stop
dd =/dev/urandom count=18 bs=1 2>/dev/ | base64 > /opt/moab/etc/.moab.keyif null
chown root:root /opt/moab/etc/.moab.key
chmod 400 /opt/moab/etc/.moab.key
service moab start

5) Install Apache Tomcat 6.

CentOS 6 example

yum install tomcat6

6) Install the 64-bit RPM version of the .Oracle Java SE 6 JRE

Oracle Java 6 Runtime Environment is the supported Java environment.only

All other versions of Java, including Oracle Java 7, OpenJDK/IcedTea, GNU
Compiler for Java, and so on, are not supported.

CentOS 6 example

sh jre-6u45-linux-x64-rpm.bin

7) Create the and its subdirectories , , MWS home directory etc hooks
, and .plugins log

The default location for the MWS home directory is . These/opt/mws
instructions assume the default location.

Give the Tomcat user read access to these directories and write access to the plugins
and directories.log

Here is a sample script for these steps:

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html#jre-6u45-oth-JPR

7

mkdir -p /opt/mws/etc /opt/mws/hooks /opt/mws/plugins /opt/mws/log
chown -R tomcat:tomcat /opt/mws # Depending on your OS, the Tomcat username might be
tomcat6.
chmod -R 555 /opt/mws
chmod u+w /opt/mws/plugins /opt/mws/log

8) Extract the contents of the MWS tarball into a temporary directory.

mkdir /tmp/mws-install
cd /tmp/mws-install
tar xvzf $HOME/Downloads/mws-<VERSION>.tar.gz
cd /tmp/mws-install/mws-<VERSION>

9) Set up the MWS configuration file.

In the extracted MWS directory are two sample configuration files:
 and .mws-config-cloud.groovy mws-config-hpc.groovy

mws-config-cloud.groovy provides sample configuration for the Moab
Cloud Suite.
mws-config-hpc.groovy provides sample configuration for the Moab HPC
Suites.

Choose the correct file for your suite, rename it to , and copymws-config.groovy
it to ./opt/mws/etc

Give the Tomcat user read access to ./opt/mws/etc/mws-config.groovy

In the file, change these settings:/opt/mws/etc/mws-config.groovy

moab.secretKey: needs to match the MWM secret key you generated earlier
(contained in)/opt/moab/etc/.moab.key

auth.defaultUser.username: any value you like, or leave as is
auth.defaultUser.password: any value you like, but choose a good
password

vi /opt/mws/etc/mws-config.groovy

…
moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559

// Change these to be whatever you like.
auth.defaultUser.username = "admin"
auth.defaultUser.password = "adminpw"

If you do not change , then your MWSauth.defaultUser.password
is not secure, since anyone reading these instructions can log into your MWS.
Here are some for choosing a good password.tips

10) Add the following lines to the end of :/etc/tomcat6/tomcat6.conf

http://www.us-cert.gov/cas/tips/ST04-002.html

8

1.
2.

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"
JAVA_HOME="/usr/java/latest"

Some Linux distributions use or /etc/default/tomcat6
 instead of /etc/sysconfig/tomcat6

./etc/tomcat6/tomcat6.conf

11) Start Tomcat and deploy .mws.war

CentOS 6 example

chkconfig tomcat6 on
service tomcat6 stop
cp /tmp/mws-install/mws-<VERSION>/mws.war / /lib/tomcat6/webappsvar
service tomcat6 start

12) Visit in a web browser to verify that MWS ishttp://localhost:8080/mws/
running.

You will see some sample queries and a few other actions.

13) Log into MWS to verify that the MWS credentials are working.

The credentials are the values of and auth.defaultUser.username
 that you set above.auth.defaultUser.password

If you encounter problems, or if MWS does not seem to be running, see the
steps below in the Troubleshooting section.

1.4 Troubleshooting
If something goes wrong with MWS, look in the following files:

The MWS log file. By default this is ./opt/mws/log/mws.log

The Tomcat file, usually in or catalina.out /var/log/tomcat6
.$CATALINA_HOME/logs

http://localhost:8080/mws/

9

If you remove the configuration from ,log4j mws-config.groovy
MWS will write its log files to . For Tomcat, java.io.tmpdir

 is generally set to or java.io.tmpdir $CATALINA_BASE/temp
.CATALINA_TMPDIR

Here is a list of some errors and their fixes:

MongoDB: Errors during MWS startup

If the application fails to start and gives error messages such as these:

Error creating bean with name 'mongoDatastore'
can't say something; nested exception is com.mongodb.MongoException

MongoDB is most likely not running, or the host and port are misconfigured. Start MongoDB or
reconfigure MWS and restart MWS.

MongoDB: Out of semaphores to get db connection

To resolve this error, adjust the values of or connectionsPerHost
 by adding them to threadsAllowedToBlockForConnectionMultiplier

. Example:mws-config.groovy

grails.mongo.options.connectionsPerHost = 60
grails.mongo.options.threadsAllowedToBlockForConnectionMultiplier = 10

For more information on these options, refer to these documents:

The page under Moab Web Services in the Quick Reference menu, whichConfiguration
briefly discusses a few MongoDB driver options.
The documentation, which contains full details on all MongoDB driverMongoOptions
options.

You must restart Tomcat after adding, removing, or changing
 parameters.grails.mongo.options

As shipped, does not contain any mws-config.groovy
 parameters. To adjust their values, yougrails.mongo.options

need to add them to .mws-config.groovy
The default value of is normally 10, butconnectionsPerHost
MWS sets it internally to 50.
The default value of

 is 5.threadsAllowedToBlockForConnectionMultiplier
Any of the options listed in can be specified in MongoOptions

. Just use the prefix mws-config.groovy
 as shown above.grails.mongo.options

http://api.mongodb.org/java/current/com/mongodb/MongoOptions.html
http://api.mongodb.org/java/current/com/mongodb/MongoOptions.html

10

MongoDB: Connection wait timeout after 120000 ms

See the section "MongoDB: Out of semaphores to get db connection" above.

java.lang.OutOfMemoryError: Java heap space

Increase the size of the heap using JVM options and . Here are the suggested values-Xms -Xmx
from the :Quickstart Guide

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

-Xms: Set initial Java heap size.
-Xmx: Set maximum Java heap size.

java.lang.OutOfMemoryError: PermGen space

Increase the size of the permanent generation using JVM option . Here are-XX:MaxPermSize
the suggested values from the :Quickstart Guide

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

SEVERE: Context [/mws] startup failed due to previous errors

If contains this error, look in and catalina.out /opt/mws/log/mws.log
 for more details on the error./opt/mws/log/stacktrace.log

Moab Reached Maximum Number of Concurrent Client Connections

When this error message is encountered, simply add a new line to the file:moab.cfg

CLIENTMAXCONNECTIONS 256

This will change the Moab configuration when Moab is restarted. Run the following command to
immediately use the new setting:

changeparam CLIENTMAXCONNECTIONS 256

The number above may be substituted for the desired maximum number256
of MWM client connections.

1.5 Configuration

11

This section describes the location of the Moab Web Services configuration files. It also shows
some examples of how to configure logging.

To see a full reference to all configuration and logging parameters available
in MWS, see the page under Moab Web Services in the QuickConfiguration
Reference menu.

Home Directory

The MWS home directory contains configuration files, log files, and files that serve features of
MWS such as hooks and plugins. You should set the location of the MWS home directory using
the property as shown in the . If you do not set as aMWS_HOME Quickstart Guide MWS_HOME
Java property or as an environment variable, then MWS will use as the default /opt/mws

.MWS_HOME

Configuration Files

The primary configuration file is . If this file isMWS_HOME/etc/mws-config.groovy
missing or contains errors, MWS will not start. If MWS_HOME/etc/log4j.properties
exists, MWS will load it as well.

Logging Configuration Using mws-config.groovy

Shown below is an example that logs all error messages and fatal messages to
. It also logs all stack traces to /opt/mws/log/mws.log

. Note that this example is not configured to log ./opt/mws/log/stacktrace.log events

Minimal Logging Configuration

log4j = {
 appenders {
 rollingFile name: 'stacktrace',
 file: '/opt/mws/log/stacktrace.log',
 maxFileSize: '1GB'
 rollingFile name: 'rootLog',
 file: '/opt/mws/log/mws.log',
 threshold: org.apache.log4j.Level.ERROR,
 maxFileSize: '1GB'
 }
 root {
 debug 'rootLog'
 }
}

Alternatively, you may configure a console appender instead of a rolling file as shown below.

12

Console Logging Configuration

log4j = {
 appenders {
 rollingFile name: 'stacktrace',
 file: '/opt/mws/log/stacktrace.log',
 maxFileSize: '1GB'
 console name: 'consoleLog',
 threshold: org.apache.log4j.Level.ERROR
 }
 root {
 debug 'consoleLog'
 }
}

You may configure logging using either
 or MWS_HOME/etc/mws-config.groovy

.MWS_HOME/etc/log4j.properties
If you do not define any configuration, MWS will write its loglog4j
files to . For Tomcat, isjava.io.tmpdir java.io.tmpdir
generally set to or .$CATALINA_BASE/temp CATALINA_TMPDIR

LDAP Configuration Using mws-config.groovy

Using a Supported LDAP Directory Type

To configure an MWS connection to an LDAP server, add the following parameters to
:mws-config.groovy

Throughout the following examples in this topic, you will see
dc=acme,dc=com. "acme" is only used as an example to illustrate what you
would use as your own domain controller if your domain name was
"acme.com." You should replace any references to "acme" with your own
organization's domain name.

ldap.server: The hostname or IP address of the LDAP server.
ldap.port: The port the LDAP server is listening on.
ldap.baseDNs: A list of distinguished names that are the root entries for LDAP searches.
ldap.bindUser: The distinguished name of the bind user.
ldap.password: The password of the ldap.bindUser.
ldap.directory.type: The type of LDAP directory (e.g. "Microsoft Active Directory").

The parameter can have the following values:ldap.directory.type

Microsoft Active Directory
OpenLDAP Using InetOrgPerson Schema
OpenLDAP Using NIS Schema
OpenLDAP Using Samba Schema

Here is a sample configuration for OpenLDAP.

13

If you followed the Adaptive Computing tutorial "Setting up OpenLDAP on
CentOS 6" your ldap.directory.type should be set to "OpenLDAP Using
InetOrgPerson Schema".

Sample OpenLDAP Configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = []"dc=acme,dc=com"
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

Here is a sample configuration for Microsoft Active Directory.

Sample Active Directory Configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = [,]"CN=Users,DC=acme,DC=com" "OU=Europe,DC=acme,DC=com"
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.directory.type = "Microsoft Active Directory"

To see how to configure a secure connection to the LDAP server, see
 in the section.Connection to LDAP Security

Using an Unsupported LDAP Directory Type

If you are not using one of the supported directory types, you can explicitly configure MWS to
work with your LDAP schema by using the following parameters:

14

ldap.user.objectClass: The name of the class used for the LDAP user object. Example:

user
person
inetOrgPerson
posixAccount

ldap.group.objectClass: The name of the class used for the LDAP group object. Example:

group
groupOfNames
posixGroup

ldap.ou.objectClass: The name of the class used for the LDAP organizational unit object.
Example:

organizationalUnit

ldap.user.membership.attribute: The attribute field in a user entry to use when loading
the user's groups (optional if is defined). Example:ldap.group.membership.attribute

memberOf

ldap.group.membership.attribute: The attribute field in a group entry to use when loading
the group's members (optional if is defined). Example:ldap.user.membership.attribute

member
memberUid

ldap.user.name.attribute: The attribute field to use when loading the username. This field
 uniquely identify a user. Example:must

sAMAccountName
uid

For example:

Advanced Active Directory Configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = [,]"CN=Users,DC=acme,DC=com" "OU=Europe,DC=acme,DC=com"
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.user.objectClass = "person"
ldap.group.objectClass = "group"
ldap.ou.objectClass = "organizationalUnit"
ldap.user.membership.attribute = "memberof"
ldap.group.membership.attribute = "member"
ldap.user.name.attribute = "sAMAccountName"

Here is a similar example for OpenLDAP. Note there is no user membership attribute in the
OpenLDAP InetOrgPerson schema and thus is set to null. Thisldap.user.membership.attribute
is allowable because the is set.ldap.group.membership.attribute

15

1.
2.
3.

Advanced OpenLDAP Configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = []"dc=acme,dc=com"
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.user.objectClass = "inetOrgPerson"
ldap.group.objectClass = "groupOfNames"
ldap.ou.objectClass = "organizationalUnit"
ldap.user.membership.attribute = null
ldap.group.membership.attribute = "memberUid"
ldap.user.name.attribute = "uid"

Overriding Attributes in a Supported LDAP Directory Type

You can also override attributes in supported directory types. For example, say you are using
OpenLDAP with an NIS Schema. The group objectClass for NIS defaults to "groupOfNames,"
but you want to use "groupOfUniqueNames" instead while retaining all other defaults for NIS.
You can do this by setting to "OpenLDAP Using NIS Schema" andldap.directory.type
overriding the attribute as follows:ldap.group.objectClass

Advanced OpenLDAP Configuration

ldap.directory.type = "OpenLDAP Using NIS Schema"
ldap.group.objectClass = "groupOfUniqueNames"

LDAP is currently used to authenticate users to MWS. LDAP isnot
only used to map principals to roles, as explained in .Principals
The user class in your LDAP schema must have an attribute that
uniquely identifies a user (e.g. uid, sAMAccountName).

1.6 Security
When running MWS in production environments, security is a major concern. This section
focuses on securing the three kinds of connections with MWS:

The connection between MWS and Moab Workload Manager (MWM)
The connection between MWS and MongoDB
The connections between clients and MWS

Connection with MWM

MWS communicates with MWM via the Moab Wire Protocol, which uses a direct connection
between the two applications. The communication over this connection uses a shared secret key,
which is discussed in the . However, the communication is not encrypted and isQuickstart Guide
therefore susceptible to eavesdropping and replay attacks. For this reason, MWS is supported
only when running on the same machine as MWM. This assures that any connections between
the two applications occur internally on the server and are not exposed to external users.

Connection with MongoDB

16

By default, the connection between MWS and MongoDB is not authenticated. To enable
authentication, follow the instructions below. For further reading, see the MongoDB tutorial

.Control Access to MongoDB Instances with Authentication

Add an administrative user to the database.admin

Add an MWS user to the database.mws

To support MWS API version 2, add an MWS user with read-only rights to the moab
database.

Here is an example of how to create all the required users. The users in the moab
database are required only for MWS API version 2.

[root]# service mongod start
[root]# mongo
> use admin;
> db.addUser(,);"admin_user" "secret1"
> use moab;
> db.addUser(,);"moab_user" "secret2"
> db.addUser(, ,);"mws_user" "secret3" true
> use mws;
> db.addUser(,);"mws_user" "secret3"
> exit;

Add the MWS user credentials (the ones you just created) to the mws-config.groovy
file. Example:

grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

Enable authentication in the MongoDB configuration file.

The file is called on many Linux distributions./etc/mongodb.conf

In that file, look for and uncomment it.#auth = true

Restart MongoDB.
Restart Tomcat.

The passwords used here (secret1, secret2, and secret3) are examples. Choose
your own passwords for these users.

If authentication is enabled in MongoDB, but the MWS user was not properly created or
configured, MWS will not start. See the log file(s) for additional information in this case.

Client Connections to MWS

All connections to MWS, except those requesting the documentation or the main page, must be
authenticated properly. MWS uses a single-trusted-user authentication model, meaning a single
user exists that has access to all aspects of MWS. The username and password for this user are
configured with the properties in the configuration file. See the auth.defaultUser

 reference guide for more information.Configuration

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication

17

When using the MWS user interface in a browser, the user will be prompted for username and
password. For information on how to authenticate requests when not using a browser, see the

 section in the user guide.Authentication

The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is recommended that MWS be runstrongly
behind a proxy (like Apache) with SSL enabled. The instructions below
provide an example of how to do this.

Encrypting Client Connections using Apache and SSL

This section shows how to encrypt client connections to MWS using Apache and SSL. These
instructions have been tested on CentOS™ 6.2 with the "Web Server" software set installed. The
same ideas are applicable to other operating systems, but the details might be different. As
shown in the diagram below, these instructions assume that Tomcat and Apache are running on
the same server.

Create a self-signed certificate. See http://www.openssl.org/docs/HOWTO/certificates.txt
for more details if desired.

Instead of creating a self-signed certificate, you can buy a certificate from a
certificate vendor. If you do, then the vendor will provide instructions on how
to configure Apache with your certificate.

Run these commands:

http://www.openssl.org/docs/HOWTO/certificates.txt

18

cd /etc/pki/tls/certs
cp -p make-dummy-cert make-dummy-cert.bak
cp -p localhost.crt localhost.crt.bak

Edit and replace the function with code similar tomake-dummy-cert answers()
this:

answers() {
 echo US
 echo Utah
 echo Provo
 echo Adaptive Computing Enterprises, Inc.
 echo Engineering
 echo test1.adaptivecomputing.com
 echo
}

Run this command:

./make-dummy-cert localhost.crt

Configure Apache to use the new certificate and to redirect MWS requests to Tomcat.
To do so, edit ./etc/httpd/conf.d/ssl.conf

Comment out this line:

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

Add these lines near the end, just above :</VirtualHost>

ProxyPass /mws http://127.0.0.1:8080/mws retry=5
ProxyPassReverse /mws http://127.0.0.1:8080/mws

Configure Apache to use SSL for all MWS requests.

Add these lines to the end of :/etc/httpd/conf/httpd.conf

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (/mws.*) https://%{HTTP_HOST}%{REQUEST_URI}

Give Apache permission to connect to Tomcat.

setsebool -P httpd_can_network_connect 1

Turn on Apache.

19

chkconfig httpd on
service httpd start

Using , enable "Secure WWW (HTTPS)" andsystem-config-firewall-tui
"WWW (HTTP)" as trusted services.

Encrypting Client Connections using Tomcat and SSL

This section shows how to encrypt client connections to MWS using Tomcat and SSL but
without requiring the use of Apache. These instructions have been tested on CentOS™ 6.2 with
Tomcat 6.0.

Generate a Certificate

First you must generate a certificate. To do so, use the keytool utility that is shipped with the
Oracle Java Runtime Environment. As the Tomcat user, run the following

keytool -genkey -alias tomcat -keyalg RSA

Specify a password value of "changeit". This will create a .keystore file that contains the new
certificate in the user's home directory.

Enable the Tomcat SSL Connector

20

Open the server.xml file, usually located in $CATALINA_HOME/conf/ ($CATALINA_HOME
represents the directory where Tomcat is installed). Verify the SSL HTTP/1.1 Connector entry is
enabled. To do so locate the SSL HTTP/1.1 Connector entry and uncomment it.

<Connector port= protocol= SSLEnabled= maxThreads= scheme="8443" "HTTP/1.1" "true" "150"
 secure= clientAuth= sslProtocol= />"https" "true" "false" "TLS"

Save the server.xml file.

The code above enables SSL access on port 8443. The default for HTTPS is
443, but just as Tomcat uses 8080 instead of 80 to avoid conflicts, 8443 is
used instead of 443.

Verify that server.xml is owned by the Tomcat user.

chown -R tomcat:tomcat server.xml

Next modify the MWS web.xml file. Add a security-constraint section to the
$CATALINA_HOME/webapps/mws/WEB-INF/web.xml file found in your Tomcat directory.

<web-app>
 …
 <security-constraint>
 <web-resource-collection>
 MWS Secure URLs<web-resource-name> </web-resource-name>
 /*<url-pattern> </url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 CONFIDENTIAL<transport-guarantee> </transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

Now restart tomcat.

Connection to LDAP

MWS supports using SSL/TLS to secure connections to an LDAP server. Typically, LDAP
servers reserve port 636 for SSL/TLS connections. In order to use SSL/TLS you need to place
the PEM-encoded LDAP server security certificate in the folder,MWS_HOME/etc/ssl.crt
and make sure the user running Tomcat either owns or has permission to read this certificate.

mkdir $MWS_HOME/etc/ssl.crt
cp ldapServerCert.pem $MWS_HOME/etc/ssl.crt
cd $MWS_HOME/etc/ssl.crt
chown tomcat:tomcat ldapServerCert.pem

To configure MWS to use SSL/TLS add the following to . (Note that mws-config.groovy
 is the filename of a server certificate found inldap.security.server.certificate

the folder.)MWS_HOME/etc/ssl.crt

21

Configuring an SSL/TLS connection to LDAP

ldap.port = 636
ldap.security.type = "SSL"
ldap.security.server.certificate = "ldapServerCert.pem"

Many LDAP servers also support the StartTLS protocol. StartTLS allows a client to connect to
the standard insecure port, usually 389, and upgrade to a secure SSL/TLS connection. To
configure StartTLS, set the parameter to as follows:ldap.security.type StartTLS

Configuring a StartTLS connection to LDAP

ldap.port = 389
ldap.security.type = "StartTLS"
ldap.security.server.certificate = "ldapServerCert.pem"

The following table lists the possible values for .ldap.security.type

ldap.security.type
Default
Port

Notes

None 389
This is the default if no security type is configured. All data is
sent in plain text.

SSL 636 Requires server certificate. All data is encrypted.

StartTLS 389
Starts as an insecure connection and is upgraded to an SSL/TLS
connection. Requires server certificate. After upgrade all data is
encrypted.

By default, MWS looks for SSL certificates in the folder. You canMWS_HOME/etc/ssl.crt
change this location by setting the parameter in mws.certificates.location

. If the path specified is relative, MWS will resolve this path relative tomws-config.groovy
the directory. For example, if you set the toMWS_HOME mws.certificates.location
"etc/someOtherCertsFolder" MWS will look for certificates in

.MWS_HOME/etc/someOtherCertsFolder

Changing the SSL/TLS security certificates location

mws.certificates.location = "etc/someOtherCertsFolder

1.7 Version and Build Information
To get detailed version information about MWS, use one of the following three methods:

Browser

Using a browser, visit the MWS home page (for example, http://localhost:8080/mws/). At the
bottom of the page is the MWS version information. See the screenshot below:

22

REST Request

Using a REST client or other HTTP client software, send a GET request to the
 resource. Here is an example:rest/diag/about

curl -u username:password http://localhost:8080/mws/rest/diag/about

This resource is also described under .Diagnostics

MANIFEST.MF File

If MWS fails to start, version and build information can be found in the
 file inside the MWS WAR file. The version properties begin with META-INF/MANIFEST.MF

. Below is an excerpt of a file:Implementation MANIFEST.MF

Implementation-Build: 26
Implementation-Build-Date: 2012-06-19_14-18-59
Implementation-Revision: 376079a5e5f552f2fe25e6070fd2e84c646a98fd

Name: Grails Application
Implementation-Title: mws
Implementation-Version: 7.1.0-rc2
Grails-Version: 2.0.3

23

2 Access Control
This section describes how to manage access control in Moab Web Services.

2.1 Application Accounts
Applications are the consumers of MWS. They include Moab Viewpoint and other applications
that need the resources provided by MWS. An application account consists of four editable fields
and resource specific access control settings:

Field Required
Default
Value

Value
Type

Maximum
Length

Description

Application
Name

Yes - String 32

The name of the application. Must
start with a letter and may contain
letters, digits, underscores, periods,
hyphens, apostrophes, and spaces.

Username Yes - String 32

Used for authentication. Must start
with a letter and may contain letters,
digits, underscores, periods, and
hyphens.

Description No - String 1000 The description of the application.

Enabled - true Boolean -
Controls whether the application is
allowed to access MWS.

Access
Control
Settings

Yes
All
Permissions

- -

The permissions granted to the
application. This is controlled by
selecting specific check boxes in a
grid.

An application account also contains an auto-generated password that is visible only when
creating the account or when resetting its password. Whenever an application sends a REST
request to MWS, it needs to pass its credentials (username and password) in a Basic
Authentication header. See the section for more information.Authentication

The is a human-friendly way to identify an application account, but MWSApplication Name
does not use it during authentication (or at any other time, for that matter).

The field is set to true automatically when an application account is created. To changeEnabled
the value of this field, see .Modifying an Application Account

Here is an example of how you might set the fields when creating an application account:

Application Name: Moab Viewpoint
Username: viewpoint
Description: This application account grants access to Moab Viewpoint for Moab Cloud
Suite.

The permissions granted to an application account may be customized while creating or
modifying the account. See and Creating an Application Account Modifying an Application

.Account

24

2.1.1 Managing Application Accounts
Application accounts are used to grant access to MWS. Every application with an application
account must be granted at least one access control permission to a resource in MWS. To
manage application accounts, start with .Listing Application Accounts

2.1.2 Listing Application Accounts
To list all applications accounts, browse to the MWS home page (

 for example). Log in as the admin user, then click andhttps://servername/mws Admin
then .Application Accounts

Each column (except Password) can be sorted in ascending or descending order by clicking on
the column heading.

2.1.3 Creating an Application Account
To create an application account, go to the page and click .Application List Add Application
The and are required fields. See for moreApplication Name Username Application Accounts
information on the fields.

Access to specific resources and plugin custom web services is granted or revoked by checking
or unchecking the check boxes in the respective resources or plugin web services access control
sections. For each resource, access may be granted to a resource for each method supported by
MWS, including GET, POST, PUT, and DELETE. See the figure below for an example.

In this example, the application has access to all available methods for the Access Control Lists
and Accounts resources as well as to retrieve the Events resource through the GET method, but
is denied the permission to create new events through the POST method.

Access may also be granted to each plugin type's custom web service(s). When new plugin types
or plugin web services are added to MWS, applications must be updated with the new access
control settings. See below for an example.

In this example, the application has access to all the custom web services defined for the "Test"
plugin type. Note that though Unsecured Web Services are listed, access to them cannot be
denied (see for more information).Exposing Web Services

2.1.4 Displaying an Application Account

25

To show information about an application account, go to the page and click theApplication List
desired application name.

In addition to displaying the values for fields, grids are also displayed which represent the
application's access control permissions defined for resources and plugin custom web services.
Examples of the resources and the plugin web services access control displays are shown below.

2.1.5 Modifying an Application Account
To modify an application account, go to the page, click the desired applicationApplication List
name, and then click . See for more information onEdit Creating an Application Account
available fields and access control settings.

2.1.6 Resetting an Application Password
To reset an application password, go to the page and click the link forApplication List Reset
the desired application. Alternatively, go to the page for the desiredDisplay Application
application and click the link.Reset

2.1.7 Deleting an Application Account
To delete an application account, go to the page, click the desired applicationApplication List
name, and then click . A confirmation message is shown. If the button is clicked, theDelete OK
application account is deleted from the system and cannot be recovered.

26

3 API Documentation

Introduction

The Moab® Web Services (MWS) provide a set of RESTful resources that can be used to create,
read, update, and delete various objects in the Moab® Workload Manager.

3.1 RESTful Web Services
In order to understand how to use Moab Web Services, it is first necessary to give a brief
introduction to REST. REST (Representational State Transfer) is a set of guidelines which
utilizes the full HTTP (Hypertext Transfer Protocol) specification along with endpoint URLs that
describe . The HTTP methods used in REST are composed of the following:resources

Method Description

GET Query for a list or a single resource.

POST Creating a resource.

PUT Modifying a resource.

DELETE Deleting a resource.

In comparison to other architectures of web services which use a single HTTP method and
service endpoint to perform multiple types of operations (such as a POST operation to a URL),
REST utilizes all of the available HTTP methods and URLs that directly correlate to resources.
For example, RESTful web services for books in a library may expose many URL endpoints and
the HTTP methods available for each such as GET, POST, PUT, and DELETE. The list below
gives the methods, URLs, and descriptions for a sample set of services. The number represents1
a unique identifier for books in each case.

Method URL Description

GET /books Retrieves a list of all books in the library.

POST /books Creates a new book.

GET /books/1 Retrieves a single book.

PUT /books/1 Modifies a single book.

DELETE /books/1 Deletes a single book.

Note that in the cases of the POST and PUT operations, additional
information may be needed to describe the resource to be created or the fields
that should be modified.

Moab Web Services provides RESTful web services for many resources. The methods and URLs
available are documented in the section.Resources

27

3.2 Data Format
JSON (JavaScript Object Notation) is the data format used for all communication with MWS.
This format makes use of two main structures: collections of key/value pairs called andobjects
ordered lists of values called . Objects are defined by using curly braces (), and arraysarrays {}
are defined by using square brackets (). A JSON object or array may contain several different[]
types of values including numbers, booleans (true/false), strings, objects, arrays, or the keyword
'null' representing no value. For example, a simple JSON object might be defined as:

{
 : 1,"number"
 : 1.2,"decimalNumber"
 : ," "boolean true
 : ,"string" "Any string"
 : ,"dateString" "2013-05-23 17:32:02 UTC"
 : {"object"
 : "key" "value"
 },
 : ["array"
 ,"value1"
 "value2"
],
 : "nullValue" null
}

Dates in MWS, for both input and output, use the pattern ."yyyy-MM-dd HH:mm:ss ZZZ"
For more details on that pattern, see . For a list of valid time zoneJoda-Time DateTimeFormat
IDs, see .Joda-Time Available Time Zones

For more information on JSON, see .json.org

The data format of MWS is defined as follows:

Input for a POST or PUT must be in JSON format. Set the header to Content-Type
.application/json

Output is in JSON format and always consists of an object with zero or more key/value
pairs.
The output may also be "pretty-printed" or formatted for human viewing by sending a URL
parameter. See for more information.Global URL Parameters

3.3 Global URL Parameters

All URL parameters are optional.

Parameter Valid Values Description

api-version Integer Requests a specific API version

pretty true Controls pretty printing of output

fields Comma-Separated String Includes only specified fields in output

exclude-fields Comma-Separated String Excludes specified fields from output

max Integer The maximum number of items to return

offset Integer The index of the first item to return

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/timezones.html
http://www.json.org/

28

API Version (api-version)

See for information on this parameter and how it should beRequesting Specific API Versions
used.

Pretty (pretty)

By default, the output is easy for a machine to read but difficult for humans to read. The pretty
parameter formats the output so that it is easier to read.

Field Selection (fields)

The parameter will include the specified fields in the output. For list queries, the fieldfields only
selection acts on the objects in and not on the or properties themselves.results totalCount results

The format of the parameter is a comma-separated list of properties that should befields
included, as in . Using periods, sub-objects may also be specified, and fields of theseid,state
objects may be included as well. This is done with the same syntax for both single sub-objects
and lists of sub-objects, as in

.id,requirements.requiredNodeCountMinimum,blockReason.message

Example for a job query

Request

GET /rest/jobs?api-version=2&fields=name,flags,requirements.taskCount,dates.createdDate

Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : { : },"dates" "createdDate" "2012-10-17 01:11:54 UTC"
 : [],"flags" "GLOBALQUEUE"
 : ,"name" "Moab.24"
 : [{ : 1}]"requirements" "taskCount"
 }]
}

Field Exclusion (exclude-fields)

The parameter is the opposite of the parameter. All fields will be included inexclude-fields fields
the output those that are specified. For list queries, the field exclusion acts on the objectsexcept
in and not on the or properties themselves.results totalCount results

The format of the parameter is a comma-separated list of properties that should beexclude-fields
excluded from the output, as in . Using periods, sub-objects may also be specified,id,state
and fields of these objects may be excluded as well. This is done with the same syntax for both
single sub-objects and lists of sub-objects, as in

.id,requirements.requiredNodeCountMinimum,blockReason.message

29

Example

Suppose a query returns the following JSON:

Request with No Field Exclusion

GET /objects

Response

{
 : ,"id" "1"
 : ["listOfStrings"
 ,"string1"
 "string2"
],
 : [{"listOfObjects"
 : ,"item1" "value1"
 : "item2" "value2"
 }],
 : {"singleObject"
 : ,"id" "obj1"
 : "field1" "value1"
 }
}

The same query with would return the following output:exclude-fields

Request with Field Exclusion

GET /objects?exclude-fields=id,listOfObjects.item2,singleObject.field1,listOfStrings

Response

{
 : [{ : }],"listOfObjects" "item1" "value1"
 : { : }"singleObject" "id" "obj1"
}

Sorting (sort)

, , , and support sorting based on byServices Service Templates Images Events MongoDB syntax
using the parameter. To sort in ascending order, specify a for the sorting field. To sort insort 1
descending order, specify a . Objects can also be sorted on nested fields by using dot notation-1
to separate the sub-fields, such as .field.subfield1.subfield2

Examples

To sort services in ascending order by account:

http://localhost/mws/rest/services?sort={ :1}"account"

http://www.mongodb.org/display/DOCS/Querying#Querying-Sorting

30

To sort services in descending order by account:

http://localhost/mws/rest/services?sort={ :-1}"account"

To sort services in descending order by processors:

http://localhost/mws/rest/services?sort={ :-1}"attributes.moab.job.resources.procs"

To sort service templates in ascending order by name:

http://localhost/mws/rest/service-templates?sort={ :1}"name"

To sort service templates in descending order by name:

http://localhost/mws/rest/service-templates?sort={ :-1}"name"

To sort service templates in ascending order by the nested field template:

http://localhost/mws/rest/service-templates?sort={ :1}"attributes.moab.job.template"

3.4 Requesting Specific API Versions
Because of significant changes in the API introduced in 7.2, MWS possesses a versioned API.
The URL parameter may be used to change the requested API version for anyapi-version
call to MWS. The current valid API versions with their corresponding MWS versions are shown
in the table below:

API Version MWS Version Documentation

1 7.0 and 7.1 MWS 7.1.1 Documentation

2 7.2 Contained within this document

latest Latest Contained within this document

Additionally, several points should be noted:

If no API version is requested, it will default to version .1
The documentation contains information for the latest API version. ForResources
documentation of previous API versions, please see the table above.
When the API version is requested, it resolves to the latest API version of MWS,latest
such as for MWS 7.2.2

Examples

http://www.adaptivecomputing.com/resources/docs/mws/7-1-1/index.html

31

GET http://localhost:8080/mws/ /nodesrest
// Data returned uses API version 1

GET http://localhost:8080/mws/ /nodes?api-version=1rest
// Data returned uses API version 1

GET http://localhost:8080/mws/ /nodes?api-version=2rest
// Data returned uses API version 2

GET http://localhost:8080/mws/ /nodes?api-version=latestrest
// Data returned uses API version 2

3.5 Responses and Return Codes
Various HTTP responses and return codes are generated from MWS operations. These are
documented below according to the operation that they are associated with.

Listing and Showing Resources

For any successful list or show operation (), a response code is always returned.GET 200 OK
No additional headers beyond those typical of a HTTP response are given in the response.

The body of this response consists of the results of the list or show operation. For a list
operation, the results are wrapped in metadata giving total and result counts. The result count
represents the number of resource records returned in the current request, and the total count
represents the number of all records available. These differ when querying or the and max

 parameters are used. The following is an example of a list operation response:offset

JSON List Response Body

{
 :1,"resultCount"
 :5,"totalCount"
 :["results"
 {
 : ,"id" "Moab.1"
 …
 }
]
}

For a show operation, the result is given as a single object:

JSON Show Response Body

{
 : ,"id" "Moab.1"
 …
}

Creating Resources

A successful creation () of a resource has two potential response codes:POST

If the resource was created immediately, a response code is returned.201 Created

If the resource is still being created, a response code is returned.202 Accepted

32

In either case, a header is added to the response with the full URL which can beLocation
used to get more information about the newly created resource or the task associated with
creating the resource (if a is returned).202

Additionally, the body of the response will contain the unique identifier of the newly created
resource or the unique identifier for the task associated with creating the resource (if a is202
returned).

For example, during creation or submission of a job, a response code is returned with the201
following response headers and body:

Job Creation Response Headers

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/Moab.21rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 16
Date: Wed, 21 Dec 2011 23:04:47 GMT

Job Creation Response Body

{ : }"id" "Moab.21"

For another resource that is not immediately created, such as virtual machines, the response
headers and body are shown below. In this case, a job is submitted to track the progress of the
VM creation. This job contains information pertaining to the VM that is being created.

VM Creation Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmcreate-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 23
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Creation Response Body

{ : }"jobId" "vmcreate-1"

As can be seen, the body of the response contains only a job ID and not the ID of the virtual
machine.

Modifying Resources

33

For any successful resource modification operation (), a or PUT 200 OK 202 Accepted
response code is returned. A response code signifies that the modification was immediately200
completed. No additional headers are returned in this case. A response code is used again to202
signify that the modification is not yet complete and additional actions are taking place. In this
case, a header is also returned with the full URL of the resource describing theLocation
additional actions.

In the case of a response code, the body of this response typically consists of an object with200
a single property containing a list of statuses or results of the modification(s).messages
However, a few exceptions to this rule exist as documented in the section. In the caseResources
of a response code, the format is the same as for a during a creation operation, in that202 202
the body consists of an object with the unique identifier for the task associated with the
additional action(s).

For example, when modifying a job, several messages may be returned as follows with the
associated response code.200

Job Modification Response Headers

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: …
Date: Thu, 22 Dec 2011 16:49:43 GMT

JSON Modify Response Body

{
 :["messages"
 ,"gevent processed"
 "variables successfully modified"
]
}

When modifying a virtual machine, however, the action sometimes does not occur immediately,
such as when migrating the VM to another hypervisor as described in the . InVM documentation
this case, the headers and response body are as follows:

VM Modification Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmmigrate-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 22
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Modification Response Body

{ : }"jobId" "vmmigrate-1"

Deleting Resources

34

For any successful resource deletion operation (), a or DELETE 200 OK 202 Accepted
response code is returned. A response code signifies that the deletion was immediately200
completed. No additional headers are returned in this case. A response code is used again to202
signify that the deletion is not yet complete and additional actions are taking place. In this case, a

 header is also returned with the full URL of the resource describing the additionalLocation
actions.

In the case of a response code, the body of this response is empty. In the case of a 200 202
response code, the format is the same as for a during a creation operation, in that the body202
consists of an object with the unique identifier for the task associated with the additional
action(s).

For example, when deleting a job, a response code is returned with an empty body as shown200
below.

Job Deletion Response

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: 0
Date: Thu, 22 Dec 2011 16:49:43 GMT

When deleting a virtual machine, however, the action does not occur immediately. In this case,
the headers and response body are as follows:

VM Deletion Response Headers

HTTP/1.1 202 Accepted
Server: Apache-Coyote/1.1
Location: /mws/ /jobs/vmdestroy-1rest
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 22
Date: Wed, 21 Dec 2011 23:12:50 GMT

VM Deletion Response Body

{ : }"jobId" "vmdestroy-1"

Moab Response Headers

In addition to the typical HTTP headers and the header described above, severalLocation
headers are returned if the operations directly interact with Moab. These headers are described in
the following table:

35

Name Description

X-Moab-Status
One of , , or . Describes the overall status ofSuccess Warning Failure
the Moab request.

X-Moab-Code
A three digit code specifying the exact error encountered, used only in
debugging.

X-Moab-Message An optional message returned by Moab during the request.

3.6 Error Messages
Below is an explanation of what error message format to expect when an HTTP status code other
than 20x is returned. All error codes have a response code of 400 or greater.

400 Bad Request

This response code is returned when the request itself is at fault, such as when trying to modify a
resource with an empty request body or when trying to create a new resource with invalidPUT
parameters. The response body is as follows:

{
 :["messages"
 ,"Message describing error"
 "Possible prompt to take action"
]
}

401 Unauthorized

This response code is returned when authentication credentials are not supplied or are invalid.
The response body is as follows:

{
 :["messages"
 "You must be authenticated to access area"this
]
}

403 Forbidden

This response code is returned when the credentials supplied are valid, but the permissions
granted are insufficient for the operation. This occurs when using withApplication Accounts
limited access.

{
 :["messages"
 "You are not authorized to access area"this
]
}

36

404 Not Found

This response code is returned when the request specifies a resource that does not exist. The
response body is as follows:

{
 :["messages"
 "The resource with id 'uniqueId' was not found"
]
}

405 Method Not Allowed

This response code is returned when a resource does not support the specified HTTP method as
an operation. The response body is as follows:

{
 :["messages"
 "The specified HTTP method is not allowed the requested resource"for
]
}

500 Internal Server Error

This indicates that there was an internal server error while performing the request, or that an
operation failed in an unexpected manner. These are the most serious errors returned by MWS. If
additional information is needed, the MWS log may contain further error data. The response
body is as follows:

{
 :["messages"
 ,"A problem occurred processing the request"while
 "A message describing the error"
]
}

3.7 Pre and Post-Processing Hooks
MWS provides functionality to intercept and modify data sent to and returned from web services
for all available resources. This is done by creating hooks in Groovy files located in a
sub-directory of the directory (by default).MWS_HOME /opt/mws/hooks

The full reference for available hooks and methods available to them can be
found on the page in the reference guide.Hooks

Configuring Hooks

37

The directory of the hooks folder may be changed by providing a value for
 in the configuration file. If the directory starts with a path separatormws.hooks.location

(ie), it will be treated as an absolute path. Otherwise, it will be used relative/path/to/hooks
to the location of the .MWS home directory

For example, if the MWS home directory is set to , the hooks directory by default/opt/mws
would be in . Changing the property to /opt/mws/hooks mws.hooks.location

 would result in the hooks directory being located at . Due tomyhooks /opt/mws/myhooks
the default location of the MWS home directory, the default directory of the hooks directory is

./opt/mws/hooks

On startup, if the hooks directory does not exist, it will be created with a simple README.txt
file with instructions on how to create hooks, the objects available, and the hooks available. If
the folder or file is unable to be created, a message will be printed on the log with the full
location of a README file, copied into a temporary directory.

Defining Hooks for a Resource

Hooks are defined for resources by creating groovy class files in the hooks directory (
 by default). Each groovy file must be named by the resource URL it isMWS_HOME/hooks

associated with and end in ".groovy". The following table shows some possible hook files that
may be created. Notice that the virtual machines hook file is abbreviated as , just as the URLvms
for virtual machines is . In all cases, the hook file names will match the URLs./rest/vms

Resource Hook Filename

Jobs jobs.groovy

Nodes nodes.groovy

Virtual Machines vms.groovy

Pending Actions pending-actions.groovy

url url.groovy

A complete example of a hook file is as follows:

38

Complete Hook File

// Example before hook
def beforeList = {
 // Perform actions here
 // Return to allow the API call to execute normallytrue
 return true
}

def beforeShow = {
 // Perform actions here
 // Render messages to the user with a 405 Method Not Allowed
 // HTTP response code
 renderMessages(, 405)"Custom message here"
 // Return to stop normal execution of the API callfalse
 return false
}

// Example after hook
def afterList = { o ->
 (!isSuccess()) {if
 // Handle error here
 return false
 }
 // Perform actions here
 oreturn
}

As the specific format for the hooks for and are different, each will bebefore after
explained separately.

Before Hooks

As shown above, hooks require no arguments. They can directly act on severalbefore
properties, objects, and methods as described in the reference guide. The return value isHooks
one of the most important aspects of a hook. If it is , a , before false renderMessages

, , , or method first be called. ThisrenderObject renderList render redirect must
signifies that the API call should be interrupted and the render or redirect action specified within
the hook is to be completed immediately.

A return value of signifies that the API call should continue normally. Parameters, sessiontrue
variables, request and response variables may all be modified within a hook.before

If no return value is explicitly given, the result of the last statement in the
 hook to be executed will be returned. This may cause unexpectedbefore

behavior if the last statement resolves to .false

For all methods available to hooks as well as specific examples, see the page inbefore Hooks
the reference guide.

After Hooks

 hooks are always passed one argument: the object or list that is to be rendered as JSON.After
This may be modified as desired, but note that the object or list value is either a or JSONArray

. Therefore, it may not be accessed and modified as a typical groovy Map.JSONObject

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

39

1.

2.

Unlike hooks, hooks should not call the methods directly. Thisbefore after render*
method will automatically be called on the resulting object or list returned. The and redirect

 methods should also not be called at this point. Instead, if a custom object or list isrender
desired to be used, the and methods are available toserializeObject serializeList
create suitable results to return.

The return value of an hook may be one of two possibilities:after

The potentially modified object or list passed as the first argument to the hook. In this case,
this value will override the output object or list unless it is null.
Null or false. In this case, the original, unmodified object or list will be used in the output.

The return value of the hook, if not null or false, be theafter must
modified object passed into the hook or an object or list created with the

 methods.serialize*

For all methods available to hooks as well as specific examples, see the page inafter Hooks
the reference guide.

Error Handling

 hooks, unlike the hooks, have the possibility of handling errors encounteredAfter before
during the course of the request. Handling errors is as simple as adding a one-line check to the
hook as shown above or in the following code:

if (!isSuccess()) {
 // Handle error
 return false
}

It is recommended that each hook contain at least these lines of code to preventafter
confusion on what the input object or list represents or should look like.

The function is false if and only if the HTTP response code is 400 or higher,isSuccess()
such as a 404 Not Found, 400 Bad Request, or 500 Internal Server Error and the cause of the
error state was not in the associated hook. In other words, objects and lists rendered inbefore
the hook with any HTTP response code will never run the associated hook.before after

When handling errors, the passed in object will always contain a property containingmessages
a list of Strings describing the error(s) encountered.

Defining Common Hooks

Sometimes it is beneficial to create hooks which are executed for all calls of a certain type, such
as a hook that is executed during the course of listing any resource. These arebeforeList
possible using an file. The format of this file is exactly the same as other hookall.groovy
files. The order of execution is as follows:

40

1.
2.
3.
4.
5.

Before common hook executed
Before resource-specific hook executed
Normal API call executed
After resource-specific hook executed
After common hook executed

3.8 Authentication
MWS uses Basic Authentication for all REST API requests. This means that a username and
password must be provided for each call to resources. There are two types of accounts that can
be granted access: and .Users Applications

For insructions on how to set the credentials for the default account, see the "ClientUser
Connections to MWS" section in .Security
For insructions on how to manage accounts, see .Application Application Accounts

To use Basic Authentication, each client request must contain a header that looks like this:

Authorization: Basic YWRhcHRpdmU6YzNVU3R1bkU=

The string after the word is the base64 encoding of : . In theBasic username password
example above, is the base64 encoding of YWRhcHRpdmU6YzNVU3R1bkU=

. See section 2 of for more details.adaptive:c3UStunE RFC 2617

The username and password in the Basic Authentication header are encoded
but not encrypted. Therefore, it is recommended that MWS be runstrongly
behind a proxy (like Apache) with SSL enabled. See the section "Encrypting
Client Connections using Apache and SSL" under .Security

http://www.ietf.org/rfc/rfc2617.txt

41

4 Resources
The sections below show the MWS resources and the HTTP methods defined on them. The
prefix for these resources depends on how the file is deployed. A typical prefix wouldmws.war
be . Using this example, one absolute resource URI wouldhttp://localhost:8080/mws
be .http://localhost:8080/mws/rest/jobs

This section only contains documentation for the latest API version. Please
see the table in the section for links toRequesting Specific API Versions
documentation for previous versions.

4.1 Access Control Lists
This section describes behavior of the (Access Control List Rules) object in MoabACL Rules
Web Services. It contains the URLs, request bodies, and responses delivered to and from Moab
Web Services.

The contains the type and description of all fields in the ACL API ACL
 object. It also contains details regarding which fields are valid duringRules

PUT and POST actions.

Supported Methods

ACLs are not directly manipulated through a single URL, but with sub-URLs
of the other objects such as Virtual Containers and Reservations.

Resource GET PUT POST DELETE

/rest/reservations/ /acl-rules/rsvId aclId Create or Update ACLs Delete ACL

/rest/vcs/ /acl-rules/vcId aclId Create or Update ACLs Delete ACL

4.1.1 Getting ACLs
Although cannot be retrieved directly using the GET method on any of the ACL Rules

 resources, are attached to supported objects when querying for them.acl-rules ACL Rules
Each supported object contains a field named , which is a collection of the aclRules ACL

 defined on that object.Rules

Supported Objects

The following is a list of objects that will return when queried:ACL Rules

Reservations
Standing Reservations
Virtual Containers

42

4.1.2 Creating or Updating ACLs
The HTTP PUT method is used to create or update . The request body can containACL Rules
one or more . If an with the same and exists, then it will beACL Rules ACL Rule type value
overwritten.

Quick Reference

PUT http://localhost/mws/rest/reservations/ /acl-rules<rsvId>
PUT http://localhost/mws/rest/vcs/ /acl-rules<vcId>

4.1.2.1 Create or Update ACL

URLs and Parameters

PUT http://localhost/mws/rest/reservations/ /acl-rules<objectId>
PUT http://localhost/mws/rest/vcs/ /acl-rules<objectId>

Parameter Required Type Valid Values Description

objectId Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available for the PUT method, along with
some sample values.

JSON Request Body

{ : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "ted"
}]}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

43

JSON Response

{ :[]}"messages" "Virtual container 'vc1' successfully modified"

Samples

Create or update multiple ACLs on a single object:

PUT http://localhost/mws/rest/reservations/system.21/acl-rules

{ : ["aclRules"
 {
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LESS_THAN_OR_EQUAL"
 : ,"type" "DURATION"
 : "value" "3600"
 },
 {
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "ted"
 }
]}

Restrictions

ACL Rules cannot be added to or updated on .Standing Reservations
The and fields are ignored for .affinity comparator Virtual Containers

4.1.3 Deleting ACLs
The HTTP DELETE method is used to remove .ACL Rules

Quick Reference

ACL Rules cannot be removed from .Standing Reservations

DELETE http://localhost/mws/rest/reservations/ /acl-rules/<rsvId> <aclId>
DELETE http://localhost/mws/rest/vcs/ /acl-rules/<vcId> <aclId>

4.1.3.1 Delete ACL

URLs and Parameters

DELETE http://localhost/mws/rest/reservations/ /acl-rules/<objectId> <aclId>
DELETE http://localhost/mws/rest/vcs/ /acl-rules/<objectId> <aclId>

44

Parameter Required Type
Valid
Values

Description

objectId Yes String -
The unique identifier of the object from which to
remove the .ACL Rule

aclId Yes String -
A string representing the , with the format ACL Rule

.type:value

See for available URL parameters.Global URL Parameters

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "Successfully modified virtual container 'vc1'"

Restrictions

ACL Rules cannot be removed from .Standing Reservations

4.2 Accounts
This section describes behavior of the object in Moab Web Services. It contains theAccounts
URLs, request bodies, and responses delivered to and from Moab Web Services.

This resource refers to Moab Accounting Manager accounts, not Moab
Workload Manager accounts.

The contains the type and description of fields that all Account API
 have in common.Accounts

Supported Methods

Resource GET PUT POST DELETE

/rest/accounts Get all accounts

/rest/accounts/id Get specified account

45

4.2.1 Getting Accounts
The HTTP GET method is used to retrieve information.Accounts

Quick Reference

GET http://localhost/mws/rest/accounts

4.2.1.1 Get All Accounts

URLs and Parameters

GET http://localhost/mws/rest/accounts?proxy-user=<USER>
[&custom-fields=Department][&query={ :false}][&sort={ :-1}]"deleted" "requestId"

Parameter Required Valid Values Description Example

proxy-user Yes String
Perform action as
defined MAM user.

proxy-user=amy

custom-fields No
Comma-Separated
String

Includes custom
MAM account
attributes.

custom-fields=Department

query No JSON
Query for specific
results.

query={"deleted":false}

sort No JSON
Sort the results. Use

 for ascending and 1
 for descending.-1

sort={"requestId":-1}

The parameter does not support the full Mongo query syntax. Onlyquery
querying for a simple, non-nested JSON object is allowed.

See for available URL parameters.Global URL Parameters

Sample Response

46

GET http://localhost/mws/rest/accounts?proxy-user=amy&fields=name,description

{
 : 2,"totalCount"
 : 2,"resultCount"
 : ["results"
 {
 : ,"id" "biology"
 : "description" "Biology Dept."
 },
 {
 : ,"id" "chemistry"
 : "description" "Chemistry Dept."
 }
]
}

4.2.1.2 Get Single Account

URLs and Parameters

GET http://localhost/mws/rest/accounts/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Responses

GET http://localhost/mws/rest/accounts/chemistry?proxy-user=amy

{
 : ,"id" "chemistry"
 : ,"active" true
 : ,"organization" ""
 : ,"description" "Chemistry Dept"
 : ,"creationTime" "2012-04-11 06:56:11 UTC"
 : ,"modificationTime" "2012-04-11 06:56:11 UTC"
 : ,"deleted" false
 : 94,"requestId"
 : 283,"transactionId"
 : ["users"
 {
 : ,"id" "amy"
 : ,"active" true
 : "admin" false
 },
 {
 : ,"id" "bob"
 : ,"active" true
 : "admin" false
 },
 {
 : ,"id" "dave"
 : ,"active" true
 : "admin" false
 }
]
}

4.3 Credentials

47

This section describes behavior of the object in Moab Web Services. It contains theCredential
URLs, request bodies, and responses delivered to and from Moab Web Services.

The Credential API is new with . The supported methods tableAPI version 2
below requires each resource to be accessed with a URL parameter of

.api-version=2

See for more information.Requesting Specific API Versions

The contains the type and description of all fields in the Credential API
 object.Credential

Supported Methods

Resource GET PUT POST DELETE

/rest/credentials/accounts Get all account credentials

/rest/credentials/classes Get all class credentials

/rest/credentials/groups Get all group credentials

/rest/credentials/qoses Get all QoS credentials

/rest/credentials/users Get all user credentials

4.3.1 Getting Credentials
The HTTP GET method is used to retrieve information.Resource Type

Quick Reference

GET http://localhost/mws/rest/credentials/accounts
GET http://localhost/mws/rest/credentials/classes
GET http://localhost/mws/rest/credentials/groups
GET http://localhost/mws/rest/credentials/qoses
GET http://localhost/mws/rest/credentials/users

4.3.1.1 Get All Account Credentials

URLs and Parameters

GET http://localhost/mws/rest/credentials/accounts

See for available URL parameters.Global URL Parameters

Sample Response

48

GET http://localhost/mws/rest/credentials/accounts?fields=name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"name" "account1"
]
}

4.3.1.2 Get All Class Credentials

URLs and Parameters

GET http://localhost/mws/rest/credentials/classes

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/credentials/classes?fields=name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"name" "class1"
]
}

4.3.1.3 Get All Group Credentials

URLs and Parameters

GET http://localhost/mws/rest/credentials/groups

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/credentials/groups?fields=name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"name" "group1"
]
}

4.3.1.4 Get All QoS Credentials

URLs and Parameters

49

GET http://localhost/mws/rest/credentials/qoses

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/credentials/qoses?fields=name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"name" "qos1"
]
}

4.3.1.5 Get All User Credentials

URLs and Parameters

GET http://localhost/mws/rest/credentials/users

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/credentials/users?fields=name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"name" "user1"
]
}

4.4 Diagnostics
This section describes additional REST calls that are available for performing diagnostics on
Moab Web Services.

Supported Methods

50

Resource GET PUT POST DELETE

/rest/diag/about Get version information

/rest/diag/auth Diagnose authentication

/rest/diag/health/summary Get health information summary

/rest/diag/health/detail Get health information detail

/rest/diag/ldap Get LDAP connection information

4.4.1 Version and Build Information
The HTTP GET method is used to retrieve version and build information.

Quick Reference

GET http://localhost/mws/rest/diag/about

URLs and Parameters

GET http://localhost/mws/rest/diag/about

Sample Response

The response contains the application version, build number, build date, and revision.

{
 : ,"suite" "Cloud"
 : ,"pluginCommonsVersion" "0.9.3"
 : ,"version" "7.1"
 : ,"build" "100"
 : ,"buildDate" "2012-01-01_16-00-00"
 :"revision" "1000"
}

4.4.2 Diagnose Authentication
The HTTP GET method is used to test for proper authentication. This resource is designed to be
used as a simple validation of credentials and gives no output besides the response code.

Quick Reference

GET http://localhost/mws/rest/diag/auth

URLs and Parameters

51

GET http://localhost/mws/rest/diag/auth

Sample Response

A successful result is indicated by the response code while a failure is200
indicated by a response code.401

{}

4.4.3 Connection Health Information
The HTTP GET method is used to retrieve health or status information for connections to
external systems or software. There are two available resources for health, one that returns
simple summary information and another that returns detailed information.

Quick Reference

GET http://localhost/mws/rest/diag/health
GET http://localhost/mws/rest/diag/health/detail

4.4.3.1 Get Health Summary

URLs and Parameters

GET http://localhost/mws/rest/diag/health/summary

If the MongoDB connection is down, authenticated resources are not
available. While this resource does not possess much detail beyond that of
simple connection information, it is still useful as it does not require
authentication and therefore can be used to determine connection problems
with MongoDB.

Sample Response

52

The response contains the connection health for Moab Workload Manager (MWM), Moab
Accounting Manager (MAM), and MongoDB. A response value indicates that thetrue
connection is healthy and available, and a response indicates that the connection isfalse
currently down. Likewise, the property for MWM signifies the state of themongoConnected
MWM to MongoDB connection. The possible values of this state are , , UP DOWN

 when the MongoDB server is not configured in MWM, NOT_CONFIGURED NOT_SUPPORTED
when MWM is not compiled with MongoDB support, and when MWS cannotUNKNOWN
communicate with MWM.

{
 : {"mam"
 : "connected" true
 },
 : {"mongo"
 : "connected" false
 },
 : {"mwm"
 : ,"connected" true
 : "mongoConnected" "UP"
 }
}

4.4.3.2 Get Health Detail

URLs and Parameters

GET http://localhost/mws/rest/diag/health/detail

If the MongoDB connection is down, authenticated resources such as this are
not available. In this case, using the instead may beGet Health Summary
required.

Sample Response

The response contains the connection health and information for Moab Workload Manager
(MWM), Moab Accounting Manager (MAM), and MongoDB. A "connected": true
response value indicates that the connection is healthy and available, and a responsefalse
indicates that the connection is currently down. Likewise, the property formongoConnected
MWM signifies the state of the MWM to MongoDB connection. The possible values of this state
are , , when the MongoDB server is not configured in MWM, UP DOWN NOT_CONFIGURED

 when MWM is not compiled with MongoDB support, and whenNOT_SUPPORTED UNKNOWN
MWS cannot communicate with MWM. A message is also present for all down connections
except MWM to MongoDB giving a reason for the error state.

53

{
 : {"mam"
 : ,"connected" false
 : ,"host" "localhost"
 : "message" "There was an error connecting to MAM at 'localhost', the secret key

,does not match."
 : 7112,"port"
 : "version" null
 },
 : {"mongo"
 : ,"connected" true
 : ,"databaseName" "mws"
 : ,"host" "127.0.0.1"
 : ,"message" null
 : 27017,"port"
 : ,"replicaSet" null
 : ,"username" "mws"
 :"version" "2.0.1"
 },
 : {"mwm"
 : ,"connected" true
 : ,"host" "localhost"
 : ,"message" null
 : 42559,"port"
 : [,],"licensedFeatures" "vm" "provision"
 : ,"state" "RUNNING"
 : ,"mongoConnected" "DOWN"
 : ,"mongoCredentialsSet" false
 : ,"mongoHost" "localhost"
 :27017,"mongoPort"
 : "version" "7.2"
 }
}

4.4.4 LDAP Information
The HTTP GET method is used to retrieve LDAP information.

Quick Reference

GET http://localhost/mws/rest/diag/ldap

URLs and Parameters

GET http://localhost/mws/rest/diag/ldap

Sample Response

{
 : ,"server" "openldapsambaserver"
 : 389,"port"
 : ,"securityType" "SSL"
 : [],"baseDNs" "dc=testldap,dc=ac"
 : ,"bindUser" "cn=admin,dc=testldap,dc=ac"
 : ,"userObjectClass" "posixAccount"
 : "userNameAttribute" "uid"
}

4.5 Events

54

This section describes the URLs, request bodies, and responses delivered to and from Moab Web
Services for handling events

The contains the type and description of all fields in the Event API Event
object. It also contains details regarding which fields are valid during POST
actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/events Get all events Create event

/rest/events/id Get specified event

Configuration

Logging events to a flat file requires that you make a few changes to the configuration in the
log4j section of the mws-config.groovy file so that events will be logged to the events.log file,
and all other Moab Web Services logging information will be sent to the mws.log file.

Causing events.log to Roll Based on a Time Window

You can specify how often the events.log file rolls. The following example illustrates the
configuration changes you will need make to mws-config.groovy to cause the events.log file to
roll based on a time window. (In this example, mws-config.groovy is configured so that
events.log rolls daily at midnight.)

Daily rolling events.log configuration in mws-config.groovy

log4j = {
 def eventAppender = org.apache.log4j.rolling.RollingFileAppender(name: 'events',new
layout: pattern(conversionPattern:))"%m%n"
 def rollingPolicy = new
org.apache.log4j.rolling.TimeBasedRollingPolicy(fileNamePattern:
'/tmp/events.%d{yyyy-MM-dd}', activeFileName: '/tmp/events.log')
 rollingPolicy.activateOptions()
 eventAppender.setRollingPolicy(rollingPolicy)

appenders {
 appender eventAppender

rollingFile name: 'rootLog',
 file: '/tmp/mws.log',
 maxFileSize: '1GB'
 }

root {
 warn 'rootLog'
 }

trace additivity: , events:'com.ace.mws.events.EventFlatFileWriter'false
}

Note the and the lines. These lines configureRollingFileAppender TimeBasedRollingPolicy
Moab Web Services to write the event log to the events.log file.

55

Rolled log files will have a date appended to their name in this format: 'yyyy-MM-dd' (for
example, events.log.2012-02-28).

If you want the event log file to roll at the beginning of each month, change the
 "fileNamePattern" date format to 'yyyy-MM'. For example:TimeBasedRollingPolicy

Monthly event logs

def rollingPolicy = new
org.apache.log4j.rolling.TimeBasedRollingPolicy(fileNamePattern:
'/tmp/events.%d{yyyy-MM}', activeFileName: '/tmp/events.log')

If you want the event log file to roll at the beginning of each hour, change the date format to
'yyyy-MM-dd_HH:00'. For example:

Hourly event logs

def rollingPolicy = new
org.apache.log4j.rolling.TimeBasedRollingPolicy(fileNamePattern:
'/tmp/events.%d{yyyy-MM-dd_HH:00}', activeFileName: '/tmp/events.log')

Configuring events.log to Roll Based on File Size Threshold

You can also configure the events.log file to roll when the log size exceeds a specified threshold.
The following example illustrates the configuration changes you will need to make to
mws-config.groovy to cause the events.log file to roll on a size threshold. (In this example,
mws-config.groovy is configured so that events.log rolls when its size exceeds 50 MB.)

mws-config.groovy configuration that rolls events.log based on file size

log4j = {
 appenders {
 rollingFile name: 'events',
 file: '/tmp/events.log',
 maxFileSize: '50MB',
 maxBackupIndex:10

rollingFile name: 'rootLog',
 file: '/tmp/mws.log',
 maxFileSize: '1GB'
 }

root {
 warn 'rootLog'
 }

trace additivity: , events:'com.ace.mws.events.EventFlatFileWriter'false
}

Note that is set to '50MB'. This means that when the events.log file exceeds 50 MB,maxFileSize
it will roll.

The name for the rolled log will be "events.log.1". When the new events.log file exceeds 50 MB,
it will roll and be named "events.log.1", while the old "events.log.1" file will be renamed
"events.log.2". This process will continue until the optional value is met. InmaxBackupIndex
the example above, is set to 10. This means that Moab Web Services will deletemaxBackIndex
all but the ten most recent events.log files. Using this feature helps prevent hard drives from
filling up.

56

Additivity

The attribute of the EventFlatFileWriter logger can be either "true" or "false". If youadditivity
specify "true", events will be logged to the events.log file and the mws.log file. If you specify
"false", events will be logged to the events.log file only. (All other Moab Web Services logging
information will be logged to the mws.log file, as configured by the rootLog appender.)

To log events to the mws.log file in addition to the events.log file, make this configuration:
. For example:additivity:true

Logging events to both events.log and mws.log

trace additivity: , events:'com.ace.mws.events.EventFlatFileWriter'true

For more configuration options, see .Apache Extras Companion for log4j

Deleting Old Events

By default, MWS will hold event data in MongoDB indefinitely. However, if disk space is
limited, you may want to regularly delete old, unneeded events from MongoDB. This section
contains some examples of how you can do this.

Let's say that you want to delete events that are older than 90 days. You could run this script.
(There are 86,400,000 milliseconds in a day, so in this example, corresponds to90*86400000
90 days in milliseconds.)

Delete events older than 90 days

$ mongo
MongoDB shell version: 2.0.1
connecting to: test
> use mws
> db.event.remove({eventTime:{$lt: Date(Date().getTime()-90*86400000)}})new new
> exit

To create a script to perform this task:

deleteOldEvents.sh

#!/bin/bash
printf 'use mws_dev\ndb.event.remove({eventTime:{$lt: Date(new new
Date().getTime()-90*86400000)}})\nexit' | mongo

Now say that you want to set up a () so that old events arecron job $crontab -e
automatically deleted on a certain day of the week (for example, every Sunday at 2:00 a.m.), you
would add an entry like this:

cron table entry to delete old events

00 02 * * 0 /root/deleteOldEvents.sh

4.5.1 Getting Events

http://logging.apache.org/log4j/companions/extras/apidocs/index.html?org/apache/log4j/rolling/RollingFileAppender.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-autotasks.html

57

The HTTP GET method is used to retrieve information. Queries for all objects and aEvent
single object are available.

Quick Reference

GET http://localhost/mws/rest/events[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"
GET http://localhost/mws/rest/events/<id>

4.5.1.1 Get All Events

URLs and Parameters

GET http://localhost/mws/rest/events[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

Parameter Required
Valid
Values

Description Example

query No JSON Query for specific results. query={"status":"failure"}

sort No JSON
Sort the results. Use for1
ascending and for descending.-1

sort={"id":-1}

See for available URL parameters.Global URL Parameters

Sample Response

58

GET http://localhost:8080/mws/rest/events

{
 :3,"totalCount"
 :3,"resultCount"
 :["results"
 {
 :{"details"

},
 :{"errorMessage"
 : ,"errorCode" "542"
 : ,"message" "Cannot communicate with XCAT resource manager"
 :"originator" "XCAT"
 },
 : ,"eventCategory" "failure"
 : ,"eventTime" "2012-01-27 15:18:32 UTC"
 : ,"eventType" "rmfailure"
 : ,"facility" "rm"
 :{"primaryObject"
 : ,"serialization" null
 : ,"type" "rm"
 :"id" "xcat"
 },
 : ,"sourceComponent" "MWM"
 : ,"status" "failure"
 :"id" "4faddab8c4aa264506f8ac3d"
 },
 {
 :{"details"

},
 : ,"eventCategory" "start"
 : ,"eventTime" "2012-01-27 15:18:31 UTC"
 : ,"eventType" "schedcyclestart"
 : ,"facility" "scheduler"
 : ,"sourceComponent" "MWM"
 : ,"status" "success"
 :"id" "4faddab8c4aa264506f8ac3c"
 },
 {
 :{"details"
 : ,"alpha" "lorem ipsum dolor sit amet"
 : ,"bravo" "2"
 :"charlie" "consectetur adipisicing elit, sed "do
 },
 : ,"eventCategory" "start"
 : ,"eventTime" "2012-01-27 15:18:30 UTC"
 : ,"eventType" "jobstart"
 : ,"facility" "job"
 :{"initiatedBy"
 : ,"proxyUser" "bob"
 :"user" "tomcat6"
 },
 :{"primaryObject"
 :"serialization" "\n <job JobID=\"moab.849\"

,ReqAWDuration=\"100000\" User=\"bob\" />\n "
 : ,"type" "job"
 :"id" "moab.849"
 },
 :["relatedObjects"
 {
 : ,"type" "vm"
 :"id" "vm56"
 },
 {
 : ,"type" "service"
 :"id" "lamp.211"
 }
],
 : ,"sourceComponent" "MWM"
 : ,"status" "success"
 :"id" "4faddab8c4aa264506f8ac3b"
 }
]
}

Querying Events

It is possible to query events by one or more fields based on . TheMongoDB query syntax
following contains examples of simple and complex event queries and event queries by date.

http://www.mongodb.org/display/DOCS/Advanced+Queries

59

Simple Queries

To see only events that are of type "jobsubmit":

http://localhost/mws/rest/events?query={ : }"eventType" "jobsubmit"

To see only events of type "jobsubmit" with the status of "failure":

http://localhost/mws/rest/events?query={ : , : }"eventType" "jobsubmit" "status" "failure"

To see only events with the "job" facility:

http://localhost/mws/rest/events?query={ : }"facility" "job"

To see only events in the "start" event category:

http://localhost/mws/rest/events?query={ : }"eventCategory" "start"

More Complex Queries

You can query on embedded JSON objects within the event JSON. For example, to see events
associated with proxyUser bob:

http://localhost/mws/rest/events?query={ : }"initiatedBy.proxyUser" "bob"

To see only events that are NOT associated with bob:

http://localhost/mws/rest/events?query={ :{ : }}"initiatedBy.proxyUser" "$ne" "bob"

When the field values of the desired events are a finite set, you can use the operator. For$in
example, to see events that relate to either alice, bob, or charlie:

http://localhost/mws/rest/events?query={ :{ :[, ,"initiatedBy.proxyUser" "$in" "alice" "bob"
]}}"charlie"

Querying Events by Date

To see events created before January 27, 2012 at 12:08 a.m. UTC:

http://localhost/mws/rest/events?query={ :{ : }}"eventTime" "$lt" "2012-01-27 12:08:00 UTC"

60

To see events created before or on January 27, 2012 at 12:08 a.m. UTC:

http://localhost/mws/rest/events?query={ :{ : }}"eventTime" "$lte" "2012-01-27 12:08:00 UTC"

To see all events created after January 27, 2012 at 12:04 a.m. UTC:

http://localhost/mws/rest/events?query={ :{ : }}"eventTime" "$gt" "2012-01-27 12:04:00 UTC"

To see all events created after or on January 27, 2012 at 12:04 a.m. UTC:

http://localhost/mws/rest/events?query={ :{ : }}"eventTime" "$gte" "2012-01-27 12:04:00 UTC"

To see events created between 12:04 a.m. and 12:08 a.m. UTC inclusive:

http://localhost/mws/rest/events?query={ :{ : ,"eventTime" "$gte" "2012-01-27 12:04:00 UTC"
: }}"$lte" "2012-01-27 12:08:00 UTC"

To see events created between 12:04 a.m. and 12:08 a.m. UTC inclusive that are associated with
proxyUser bob:

http://localhost/mws/rest/events?query={ : , :{"initiatedBy.proxyUser" "bob" "eventTime"
: , : }}"$gte" "2012-01-27 12:04:00 UTC" "$lte" "2012-01-27 12:08:00 UTC"

To see events created between 12:04 a.m. and 12:08 a.m. UTC inclusive, that are associated with
proxyUser bob, and that are of type "jobsubmit":

http://localhost/mws/rest/events?query={ : , :"initiatedBy.proxyUser" "bob" "eventType"
, :{ : , :"jobsubmit" "eventTime" "$gte" "2012-01-27 12:04:00 UTC" "$lte" "2012-01-27 12:08:00

}}UTC"

Sorting

See the sorting section of Global URL Parameters

Limiting the Number of Results

If you want to limit the number of results of events, you can use the parameter. Formax
example, to see only 10 "vmmigrate" events:

http://localhost/mws/rest/events?query={ : }&sort={"eventType" "vmmigrate" "eventTime"
:1}&max=10

To see "vmcreate" events 51-60 when sorted by eventTime in descending order, you can
combine with , as follows:max offset

61

http://localhost/mws/rest/events?query={ : }&sort={"eventType" "vmcreate" "eventTime"
:-1}&max=51&offset=60

Retrieving a Subset of Fields

To cause only certain fields to return for each event, use the parameter. For example, tofields
show only the eventTime field for each event:

http://localhost/mws/rest/events?max=3&fields=eventTime

This returns:

{
 : 187,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"eventTime" "2012-03-05 10:01:59 UTC"
 { : },"eventTime" "2012-03-05 10:02:00 UTC"
 { : }"eventTime" "2012-03-05 10:02:01 UTC"
]
}

To show the name, type, and status:

http://localhost/mws/rest/events?fields=name,type,status

This returns:

{
 : 187,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"eventTime" "2012-03-05 10:01:59 UTC"
 : ,"eventType" "jobsubmit"
 : "status" "failure"
 },
 {
 : ,"eventTime" "2012-03-05 10:02:00 UTC"
 : ,"eventType" "jobstart"
 : "status" "success"
 },
 {
 : ,"eventTime" "2012-03-05 10:02:01 UTC"
 : ,"eventType" "vmmigrate"
 : "status" "success"
 }
]
}

4.5.1.2 Get Single Event

URLs and Parameters

GET http://localhost/mws/rest/events/<id>

62

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : {"details"
 : ,"attribute" "walltime"
 : ,"modifier" "increase"
 : "value" "200000"
 },
 : ,"eventCategory" "job"
 : ,"eventTime" "2012-01-27 00:07:00 UTC"
 : ,"eventType" "jobmodify"
 : ,"facility" "baseline"
 : {"initiatedBy"
 : ,"proxyUser" "bob"
 : "user" "viewpoint"
 },
 : {"primaryObject"
 : ,"serialization" null
 : ,"type" "job"
 : "id" "moab.900"
 },
 : ,"sourceComponent" "MWM"
 : ,"status" "success"
 : "id" "4fa46081c4aa5b896ac4b757"
}

4.5.2 Creating Events
The HTTP POST method is used to create an .Event

Quick Reference

POST http://localhost/mws/rest/events

4.5.2.1 Create Event

URLs and Parameters

POST http://localhost/mws/rest/events

Request Body

Unlike most other URLs, the events URL accepts both JSON and XML. Be sure to set the
 HTTP header to either or .Content-Type application/json application/xml

63

POST http://localhost/mws/rest/events Content-Type:application/json

[
 {
 : ,"eventTime" "2012-01-27 15:18:30 UTC"
 : ,"eventType" "jobstart"
 : ,"eventCategory" "start"
 : ,"sourceComponent" "MWM"
 : ,"status" "success"
 : ,"facility" "job"
 :{"initiatedBy"
 : ,"proxyUser" "bob"
 :"user" "tomcat6"
 },
 :{"primaryObject"
 :"serialization" "<job JobID=\"moab.849\" ReqAWDuration=\"100000\" User=\"bob\"

,/>"
 : ,"type" "job"
 :"id" "moab.849"
 },
 :["relatedObjects"
 {
 : ,"type" "vm"
 :"id" "vm56"
 },
 {
 : ,"type" "service"
 :"id" "lamp.211"
 }
],
 :{"details"
 : ,"alpha" "lorem ipsum dolor sit amet"
 : ,"bravo" "2"
 :"charlie" "consectetur adipisicing elit, sed "do
 }
 },
 {
 : ,"eventTime" "2012-01-27 15:18:32 UTC"
 : ,"eventType" "rmfailure"
 : ,"eventCategory" "failure"
 : ,"sourceComponent" "MWM"
 : ,"status" "failure"
 : ,"facility" "rm"
 :{"primaryObject"
 : ,"serialization" null
 : ,"type" "rm"
 :"id" "xcat"
 },
 :{"errorMessage"
 : ,"errorCode" "542"
 : ,"message" "Cannot communicate with XCAT resource manager"
 :"originator" "XCAT"
 }
 },
 {
 : ,"eventTime" "2012-01-27 15:18:31 UTC"
 : ,"eventType" "schedcyclestart"
 : ,"eventCategory" "start"
 : ,"sourceComponent" "MWM"
 : ,"status" "success"
 :"facility" "scheduler"
 }
]

64

POST http://localhost/mws/rest/events Content-Type:application/xml

<Events>

<Event eventTime= eventType= eventCategory="2012-01-27T15:18:30.000-07:00" "jobstart"
 sourceComponent= status= facility= >"start" "MWM" "success" "job"

 <InitiatedBy user= proxyUser= />"tomcat6" "bob"
 <PrimaryObject objectType= objectID= >"job" "moab.849"
 <Serialization>
 <![CDATA[]]><job JobID= ReqAWDuration= User= />"moab.849" "100000" "bob"
 </Serialization>
 </PrimaryObject>
 <RelatedObjects>
 <RelatedObject objectType= objectID= />"vm" "vm56"
 <RelatedObject objectType= objectID= />"service" "lamp.211"
 </RelatedObjects>
 <Details>
 lorem ipsum dolor sit amet<Detail name= >"alpha" </Detail>
 2<Detail name= >"bravo" </Detail>
 consectetur adipisicing elit, sed do <Detail name= >"charlie" </Detail>

 </Details>
 </Event>

<Event eventTime= eventType="2012-01-27T15:18:31.000-07:00" "schedcyclestart"
eventCategory= sourceComponent= status= facility= />"start" "MWM" "success" "scheduler"

<Event eventTime= eventType= eventCategory="2012-01-27T15:18:32.000-07:00" "rmfailure"
 sourceComponent= status= facility= >"failure" "MWM" "failure" "rm"

 <PrimaryObject objectType= objectID= />"rm" "xcat"
 Cannot communicate with XCAT<ErrorMessage originator= errorCode= >"XCAT" "542"
resource manager </ErrorMessage>
 </Event>

</Events>

Sample Response

If the request was successful, the response will be an object with an id property containing the ID
of the newly created events. On failure, the response is an error message.

JSON Response

[{ : },{ : },{ :"id" "4fadd83bc4aa366464599e1a" "id" "4fadd83bc4aa366464599e1b" "id"
}]"4fadd83bc4aa366464599e1c"

Below is an example of events.log output for a successful event request:

2012-01-27T15:18:30.000-07:00 type= category= sourceComponent="jobstart" "start" "MWM"
status= facility= initiatedBy.user= initiatedBy.proxyUser="success" "job" "tomcat6" "bob"
primaryObject.type= primaryObject.id= relatedObject.0.type="job" "moab.849" "service"
relatedObject.0.id= relatedObject.1.type= relatedObject.1.id="lamp.211" "vm" "vm56"
detail.alpha= detail.bravo= detail.charlie="lorem ipsum dolor sit amet" "2" "consectetur

 primaryObject.serialization=adipisicing elit, sed "do "<job JobID=\"moab.849\"
ReqAWDuration=\"100000\" User=\"bob\" />"
2012-01-27T15:18:31.000-07:00 type= category= sourceComponent="schedcyclestart" "start"

 status= facility="MWM" "success" "scheduler"
2012-01-27T15:18:32.000-07:00 type= category= sourceComponent="rmfailure" "failure" "MWM"
status= facility= primaryObject.type= primaryObject.id="failure" "rm" "rm" "xcat"
error.originator= error.code= error.message="XCAT" "542" "Cannot communicate with XCAT
resource manager"

Note that (double quote) characters in the input have been replaced by " \"
characters in the output. (For other character restrictions, see the
"Restrictions" section below.)

65

Restrictions

Special characters, such as newline, carriage return, and (double quote) are encoded in the"
output of events.log to make events.log easy to parse with scripts and third party tools. For
example, if the input XML contains:

<ErrorMessage>RM says, "Cannot provision vm21"</ErrorMessage>

Then the following will be output to events.log:

error.message= ""RM says, \"Cannot provision vm21\"

Notice that has been replaced with . This table contains the most common encodings." \"

Character Escape Sequence

" (double quote) \"

\ (backslash) \\

newline \n

carriage return \r

tab \t

(For more information see .)escape sequences for Java Strings

Other restrictions include:

Detail names can only contain alpha-numeric characters, colons (:), underscores (_), and
dashes (-).
primaryObject.serialization, , and (for exampleerror.message detail values
detail.someName="some value") can contain any printable ASCII character. Single quotes
(') and double quotes (") cannot be contained in any other field.
A single event cannot contain more than more than 50 details. If an event has more than 50
details, the excess details will be ignored.

4.6 Funds
This section describes behavior of the object and all related objects in Moab WebFund
Services. It contains the URLs, request bodies, and responses delivered to and from Moab Web
Services.

The , , , and Fund API FundBalance API FundStatement API
 contain the type and description of all fields inFundStatementSummary API

the object as well as related objects and reports given in the URLsFund
below.

Supported Methods

http://docs.oracle.com/javase/tutorial/java/data/characters.html

66

Resource GET PUT POST DELETE

/rest/funds Get all funds

/rest/funds/id Get specified fund

/rest/funds/balances Get all fund balances

/rest/funds/reports/statement Get fund statement

/rest/funds/reports/statement/summary Get fund statement summary

4.6.1 Getting Funds
The HTTP GET method is used to retrieve information.Fund

Quick Reference

GET http://localhost/mws/rest/funds?proxy-user=<USER>
[&active=true][&custom-fields=health][&filter={"account"
:"chemistry"}][&filter-type=NonExclusive][&query={ : }][&sort={ :-1}]"priority" "2" "id"
GET http://localhost/mws/rest/funds/ ?proxy-user=<id> <USER>
[&active=true][&custom-fields=health][&filter={"account"
:"chemistry"}][&filter-type=NonExclusive]
GET http://localhost/mws/rest/funds/balances?proxy-user=<USER>
[&custom-fields=health][&filter={ :"chemistry"}][&filter-type=NonExclusive]"account"
GET http://localhost/mws/rest/funds/reports/statement?proxy-user= [&filter=<USER>

][&filter-type=][&start-time=][&end-time=<FILTER> <FILTER-TYPE> <DATE-STRING>
][&context=]<DATE-STRING> <CONTEXT>

GET http://localhost/mws/rest/funds/reports/statement/summary?proxy-user=<USER>
[&filter=][&filter-type=][&start-time=][&end-time=<FILTER> <FILTER-TYPE> <DATE-STRING>

]<DATE-STRING>

4.6.1.1 Get All Funds

URLs and Parameters

GET http://localhost/mws/rest/funds?proxy-user=<USER>
[&active=true][&custom-fields=health][&filter={"account"
:"chemistry"}][&filter-type=NonExclusive][&query={ : }][&sort={ :-1}]"priority" "2" "id"

67

Parameter Required Valid Values Description Example

proxy-user Yes String

Perform
action as
defined MAM
user.

proxy-user=amy

active No Boolean

Lists only
active or
non-active
allocations of
the fund. The
fund amount
becomes the
sum of the
active/inactive
allocations.

active=true

custom-fields No
Comma-Separated
String

Includes
custom MAM
fund
attributes.

custom-fields=health

filter No JSON

Query funds
based on
defined MAM
filter.

filter={"account":"chemistry"}

filter-type No String

Query funds
based on
defined MAM
filter type.

filter-type=NonExclusive

query No JSON
Query for
specific
results.

query={"priority":"2","allocation.active":"false"}

sort No JSON

Sort the
results. Use 1
for ascending
and for-1
descending.

sort={"id":-1}

The parameter does not support the full Mongo query syntax. Onlyquery
querying for a simple, non-nested JSON object is allowed.

See for available URL parameters.Global URL Parameters

Sample Response

68

GET
http://localhost/mws/rest/funds?proxy-user=amy&fields=id,name,allocations,constraints

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : 2,"id"
 : 1204,"name"
 : [{"allocations"
 : 2,"id"
 : ,"startTime" "-infinity"
 : ,"endTime" "2012-02-02 09:34:42 UTC"
 : 9060000,"amount"
 : 0,"creditLimit"
 : 9060000,"deposited"
 : ,"active" true
 : "description" ""
 }],
 : [{"fundConstraints"
 : 2,"id"
 : ,"name" "CostCenter"
 : 1204"value"
 }]
 }]
}

4.6.1.2 Get Single Fund

URLs and Parameters

GET http://localhost/mws/rest/funds/ ?proxy-user=<id> <USER>
[&active=true][&custom-fields=health][&filter={"account"
:"chemistry"}][&filter-type=NonExclusive]

69

Parameter Required Type Valid Values Description

id Yes String -
The unique identifier of the
object.

proxy-user Yes String
Perform action as
defined MAM
user.

proxy-user=amy

active No Boolean

Lists only active
or non-active
allocations of the
fund. The fund
amount becomes
the sum of the
active/inactive
allocations.

active=true

custom-fields No
Comma-Separated
String

Includes custom
MAM fund
attributes.

custom-fields=health

filter No JSON
Query funds
based on defined
MAM filter.

filter={"account":"chemistry"}

filter-type No String
Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

See for available URL parameters.Global URL Parameters

Sample Responses

Fund sample response

{
 : 2,"id"
 : 1204,"name"
 : 0,"priority"
 : ,"description" "R&D Manufacturing"for
 : ,"creationTime" "2012-02-02 09:34:42 UTC"
 : 9060000,"amount"
 : 9060000,"deposited"
 : 0,"creditLimit"
 : [{"allocations"
 : 2,"id"
 : ,"startTime" "-infinity"
 : ,"endTime" "infinity"
 : 9060000,"amount"
 : 0,"creditLimit"
 : 9060000,"deposited"
 : ,"active" true
 : "description" ""
 }],
 : [{"fundConstraints"
 : 2,"id"
 : ,"name" "CostCenter"
 : 1204"value"
 }]
}

4.6.1.3 Get All Fund Balances

70

URLs and Parameters

GET http://localhost/mws/rest/funds/balances?proxy-user=<USER>
[&custom-fields=health][&filter={ :"chemistry"}][&filter-type=NonExclusive]"project"

Parameter Required Valid Values Description Example

proxy-user Yes String
Perform action as
defined MAM
user.

proxy-user=amy

custom-fields No
Comma-Separated
String

Includes custom
MAM fund
attributes.

custom-fields=health

filter No JSON
Query funds
based on defined
MAM filter.

filter={"account":"chemistry"}

filter-type No String
Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

See for available URL parameters.Global URL Parameters

Sample Response

The fund balances resource is an aggregation of fund data. See the page forFundBalance API
more details.

71

GET http://localhost/mws/rest/funds/balances?proxy-user=amy

{
 : 2,"totalCount"
 : 2,"resultCount"
 : ["results"
 {
 : 2,"id"
 : 1204,"name"
 : 0,"priority"
 : ,"description" "R&D Manufacturing"for
 : ,"creationTime" "2012-02-02 09:34:42 UTC"
 : 9060000,"amount"
 : 9060000,"deposited"
 : 0,"creditLimit"
 : 0,"reserved"
 : ["allocations"
 {
 : 2,"id"
 : 9060000,"amount"
 : 0,"creditLimit"
 : 9060000"deposited"
 }
],
 : ["fundConstraints"
 {
 : 2,"id"
 : ,"name" "CostCenter"
 : 1204"value"
 }
],
 : 9060000,"balance"
 : 9060000,"available"
 : 9060000,"allocated"
 : 0,"used"
 : 100,"percentRemaining"
 : 0"percentUsed"
 },
 {
 : 5,"id"
 : ,"name" ""
 : 0,"priority"
 : ,"description" ""
 : ,"creationTime" "2012-04-03 09:25:47 UTC"
 : 901290219001,"amount"
 : 901290219021,"deposited"
 : 30,"creditLimit"
 : 84018308897.68,"reserved"
 : ["allocations"
 {
 : 6,"id"
 : 901290219001,"amount"
 : 30,"creditLimit"
 : 901290219021"deposited"
 }
],
 : [],"fundConstraints"
 : 817271910103.32,"balance"
 : 817271910133.32,"available"
 : 901290219051,"allocated"
 : 20,"used"
 : 100,"percentRemaining"
 : 0"percentUsed"
 }
]
}

4.6.1.4 Get Fund Statement

URLs and Parameters

GET http://localhost/mws/rest/funds/reports/statement?proxy-user= [&filter=<USER>
][&filter-type=][&start-time=][&end-time=<FILTER> <FILTER-TYPE> <DATE-STRING>

][&context=]<DATE-STRING> <CONTEXT>

72

Parameter Required
Valid
Values

Description Example

proxy-user Yes String
Perform action as defined
MAM user.

proxy-user=amy

filter No JSON
Query funds based on
defined MAM filter.

filter={"account":"chemistry"}

filter-type No String
Query funds based on
defined MAM filter type.

filter-type=NonExclusive

start-time No
Date,
-infinity, or
now

Filter allocations and
transaction after a start
time.

start-time=2012-04-03
15:24:39 UTC

end-time No
Date,
-infinity, or
now

Filter allocations and
transactions before an end
time.

end-time=2012-04-03
15:24:39 UTC

context No
hpc or
cloud

The context to use in
Moab Accounting
Manager.

context=hpc

The parameter overrides the default context set for MAM usingcontext
the configuration parameter. See the page formam.context Configuration
more information on this parameter.

See for available URL parameters.Global URL Parameters

Sample Response

The fund statement report provides a snapshot of the current funds. See the FundStatement API
for more details.

GET
http://localhost/mws/rest/funds/reports/statement?proxy-user=amy&fields=startBalance,endBalance

{
 :1234.01,"startBalance"
 :1000"endBalance"
}

4.6.1.5 Get Fund Statement Summary

URLs and Parameters

GET http://localhost/mws/rest/funds/reports/statement/summary?proxy-user=<USER>
[&filter=][&filter-type=][&start-time=][&end-time=<FILTER> <FILTER-TYPE> <DATE-STRING>

]<DATE-STRING>

73

Parameter Required
Valid
Values

Description Example

proxy-user Yes String
Perform action as defined
MAM user.

proxy-user=amy

filter No JSON
Query funds based on
defined MAM filter.

filter={"account":"chemistry"}

filter-type No String
Query funds based on
defined MAM filter type.

filter-type=NonExclusive

start-time No
Date,
-infinity, or
now

Filter allocations and
transaction after a start
time.

start-time=2012-04-03
15:24:39 UTC

end-time No
Date,
-infinity, or
now

Filter allocations and
transactions before an end
time.

end-time=2012-04-03
15:24:39 UTC

See for available URL parameters.Global URL Parameters

Sample Response

The fund statement summary is slightly different from the typical fund statement in that the
transactions are provided as summaries grouped by and . See the object action

 for more details.FundStatementSummary API

GET
http://localhost/mws/rest/funds/reports/statement/summary?proxy-user=amy&fields=totalCredits,totalDebits,transactions.action,transactions.amount,transactions.count

{
 :200.02,"totalCredits"
 :-100,"totalDebits"
 :[{"transactions"
 : ,"action" "Deposit"
 :200.02,"amount"
 :2"count"
 }, {
 : ,"action" "Charge"
 :-100,"amount"
 :1"count"
 }
]
}

4.7 Images
This section describes behavior of the resource in Moab Web Services. An imageImage
resource is used to track the different types of operating systems and hypervisors available in the
data center. It also tracks which virtual machines are available on the hypervisors. This section
describes the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Image API Image
object. It also contains details regarding which fields are valid during PUT
and POST actions.

74

Supported Methods

Resource GET PUT POST DELETE

/rest/images Get All Images Create Image

/rest/images/id Get Specified Image Modify Image Delete Image

/rest/images/name Get Specified Image Modify Image Delete Image

4.7.1 Getting Images
The HTTP GET method is used to retrieve information. You can query all objects or aImage
single object.

Quick Reference

GET http://localhost/mws/rest/images[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"
GET http://localhost/mws/rest/images/<id>
GET http://localhost/mws/rest/images/<name>

4.7.1.1 Get All Images

URLs and Parameters

GET http://localhost/mws/rest/images[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for
specific results.

query={"type":"stateful","osType":"linux"}

sort No JSON

Sort the results.
Use for1
ascending and -1
for descending.

sort={"name":-1}

It is possible to query images by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

http://www.mongodb.org/display/DOCS/Advanced+Queries

75

GET http://localhost/mws/rest/images?fields=id,name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : "name" "centos5-stateful"
 }]
}

Sorting and Querying

See the sorting and querying sections of .Global URL Parameters

4.7.1.2 Get Single Image

URLs and Parameters

GET http://localhost/mws/rest/images/<id>
GET http://localhost/mws/rest/images/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specify both.id name

Sample Response

Virtual machine image example:

76

GET http://localhost/mws/rest/images/centos5-compute-stateful

{
 : ,"active" true
 :{"extensions"
 :{"xcat"
 : ,"os" "centos"
 : ,"architecture" "x86_64"
 :"profile" "compute"
 }
 },
 :[],"features"
 : ,"hypervisor" false
 : ,"hypervisorType" null
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"supportsPhysicalMachine" false
 : ,"supportsVirtualMachine" true
 : ,"templateName" ""
 : ,"type" "stateful"
 :0,"version"
 :[]"virtualizedImages"
}

Hypervisor image example:

GET http://localhost/mws/rest/images/esxi-4.1-stateful

{
 : ,"active" true
 :{"extensions"
 :{"xcat"
 : ,"hvGroupName" "hvGroup"
 : ,"vmGroupName" "vmGroup"
 : ,"os" "esxi-4.1"
 : ,"architecture" "x86_64"
 :"profile" "hv"
 }
 },
 :[],"features"
 : ,"hypervisor" true
 : ,"hypervisorType" "ESX"
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"supportsPhysicalMachine" true
 : ,"supportsVirtualMachine" false
 : ,"templateName" ""
 : ,"type" "stateful"
 :0,"version"
 :[]"virtualizedImages"
}

The field contains the current version of the database entry andversion
does reflect the version of the operating system. See fornot Modify Image
more information.

4.7.2 Creating Images
The HTTP POST method is used to submit .Images

Quick Reference

POST http://localhost/mws/rest/images

77

4.7.2.1 Create Single Image

URLs and Parameters

POST http://localhost/mws/rest/images

See for available URL parameters.Global URL Parameters

Request Body

Three fields are required to submit an image: , , and . Each image mustname hypervisor osType
also support provisioning to either a physical machine or a virtual machine by using the

 or fields.supportsPhysicalMachine supportsVirtualMachine

The field must contain only letters, digits, periods, dashes, andname
underscores.

The array of virtualized images are themselves objects that contain image IDs or names. For
more information on available fields and types, see the .Image API

The following is an example of the most basic image that can be created:

POST http://localhost/mws/rest/images

{
 : ,"name" "centos5-stateful"
 : ,"osType" "linux"
 : ,"hypervisor" false
 :"supportsVirtualMachine" true
}

Note that this example does not provide any information for a provisioning manager (such as
xCAT) to actually provision the machine. In order to provide this, you must add an entry to the

 field that contains provisioning manager-specific information. Each key in theextensions
extensions field corresponds to the provisioning manager, and certain properties are required
based on this key. For example, the xCAT extension key must be named and must containxcat
certain fields. These extension keys are documented in the . See the followingImage API
examples of creating images with xCAT-specific provisioning information below.

Sample Response

If the request was successful, the response body is the new image that was created exactly as
shown in . On failure, the response is an error message.Get Single Image

Samples

The field only accepts input when the image is a hypervisor and expects anvirtualizedImages
array of image IDs names, as shown in the following example:or

78

Example payload of hypervisor with 2 vms

{
 : ,"hypervisor" true
 : ,"name" "esx5-stateful"
 : ,"osType" "linux"
 : ,"supportsPhysicalMachine" true
 : ,"type" "stateful"
 : ,"hypervisorType" "ESX"
 : ["virtualizedImages"
 { : },"id" "4fa197e68ca30fc605dd1cf0"
 { : }"name" "centos5-stateful"
]
}

The following example shows how to create an image that utilizes a cloned template for a virtual
machine. (Note that the must be set to in order to set the type linkedclone templateName
field.)

VM Utilizing a Cloned Template

{
 : ,"active" true
 : ,"hypervisor" false
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"type" "linkedclone"
 : ,"supportsVirtualMachine" true
 :"templateName" "centos5-compute"
}

The following are samples of a virtual machine and a hypervisor image that can be provisioned
with xCAT:

xCAT Virtual Machine Image

{
 : ,"active" true
 : [],"features"
 : ,"hypervisor" false
 : ,"name" "centos5-compute-stateful"
 : ,"osType" "linux"
 : ,"type" "stateful"
 : ,"supportsVirtualMachine" true
 : { "extensions"
 : { "xcat"
 : ,"os" "centos"
 : ,"architecture" "x86_64"
 : "profile" "compute"
 }
 }
}

79

xCAT Hypervisor Image

{
 : ,"active" true
 : [],"features"
 : ,"hypervisor" true
 : ,"name" "esxi5-base-stateless"
 : ,"osType" "linux"
 : ["virtualizedImages"
 { : }"name" "centos5-compute-stateless"
],
 : ,"type" "stateless"
 : ,"hypervisorType" "ESX"
 : ,"supportsPhysicalMachine" true
 : { "extensions"
 : { "xcat"
 : ,"os" "esxi5"
 : ,"architecture" "x86_64"
 : ,"profile" "base"
 : ,"hvType" "esx"
 : ,"hvGroupName" "esx5hv"
 : "vmGroupName" "esx5vm"
 }
 }
}

4.7.3 Modifying Images
The HTTP PUT method is used to modify .Images

Quick Reference

PUT http://localhost/mws/rest/images/<id>
PUT http://localhost/mws/rest/images/<name>

4.7.3.1 Modify Single Image

URLs and Parameters

PUT http://localhost/mws/rest/images/<id>
PUT http://localhost/mws/rest/images/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specifyid name
both.
The field must contain only letters, digits, periods, dashes, andname
underscores.

80

Example Request

PUT http://locahost/mws/rest/images/centos5-stateful

{
 : ,"name" "centos5-stateful"
 : ,"type" "stateful"
 : ,"hypervisor" false
 : ,"osType" "linux"
 : []"virtualizedImages"
}

The field contains the current version of the database entry and does version
 reflect the version of the operating system. This field cannot be updatednot

directly. However, if is included in the modify request, it will beversion
used to verify that another client did not update the object in between the
time the data was retrieved and the modify request was delivered.

Sample Response

If the request was successful, the response body is the modified image as shown in Get Single
. On failure, the response is an error message.Image

4.7.4 Deleting Images
The HTTP DELETE method is used to delete .Images

Quick Reference

DELETE http://localhost/mws/rest/images/<id>
DELETE http://localhost/mws/rest/images/<name>

4.7.4.1 Delete Single Image

URLs and Parameters

DELETE http://localhost/mws/rest/images/<id>
DELETE http://localhost/mws/rest/images/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Image.

name Yes String - The name of the Image.

See for available URL parameters.Global URL Parameters

81

Only one of or are required.id name

Sample Response

JSON Response

{}

4.8 Jobs
This section describes behavior of the object in Moab Web Services. It contains the URLs,Job
request bodies, and responses delivered to and from Moab Web Services.

The Job API has changed with . The supported methods tableAPI version 2
below requires each resource to be accessed with a URL parameter of

 in order to behave as documented.api-version=2

In order to access documentation for previous API versions, see Requesting
.Specific API Versions

The contains the type and description of all fields in the object.Job API Job
It also contains details regarding which fields are valid during PUT and
POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/jobs Get all jobs Submit job

/rest/jobs/name Get single job Modify job Cancel job

4.8.1 Getting Job Information
The HTTP GET method is used to retrieve information.Job

Quick Reference

GET http://localhost/mws/rest/jobs/ ?api-version=2<name>

4.8.1.1 Get All Jobs

URLs and Parameters

82

GET http://localhost/mws/rest/jobs?api-version=2

Parameter Required
Valid
Values

Description Example

query No JSON Queries for specific results. query={"isActive":true}

sort No JSON
Sort the results. Use for1
ascending and for descending.-1

sort={"name":-1}

It is possible to query by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

How to Get All Jobs

GET http://localhost/mws/rest/jobs?api-version=2&fields=name,flags&max=3

{
 : 8,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : [],"flags" "GLOBALQUEUE"
 : "name" "Moab.1"
 },
 {
 : [],"flags" "GLOBALQUEUE"
 : "name" "Moab.2"
 },
 {
 : [],"flags" "GLOBALQUEUE"
 : "name" "Moab.4"
 }
]
}

How to Get a Subset of Jobs

Here are a few examples of how to query for jobs.

Get Active Jobs

http://localhost/mws/ /jobs?api-version=2&query={ : }rest "isActive" true

Get Completed Jobs

http://localhost/mws/ /jobs?api-version=2&query={ : }rest "isActive" false

Get Jobs Owned by a Particular User

http://localhost/mws/ /jobs?api-version=2&query={ : }rest "credentials.user" "fred"

http://www.mongodb.org/display/DOCS/Advanced+Queries

83

Known Issues

Some jobs are not returned if is set in the DisplayFlags UseBlocking moab.cfg
file.

4.8.1.2 Get Single Job

URLs and Parameters

GET http://localhost/mws/rest/jobs/ ?api-version=2<name>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"arrayIndex" null
 : ,"arrayMasterName" null
 : [],"attributes"
 : [{"blocks"
 : ,"category" "jobBlock"
 : ,"message" null
 : "type" null
 }],
 : 0,"bypassCount"
 : 0,"cancelCount"
 : ,"commandFile" "/tmp/test.sh"
 : ,"commandLineArgs" null
 : ,"completionCode" null
 : 0,"cpuTime"
 : {"credentials"
 : ,"account" null
 : ,"group" "adaptive"
 : ,"jobClass" null
 : ,"qos" "NONE"
 : ,"qosRequested" null
 : "user" "adaptive"
 },
 : ,"customName" null
 : {"dates"
 : ,"completedDate" null
 : ,"createdDate" "2012-10-11 17:58:16 UTC"
 : ,"deadlineDate" "2037-10-24 12:26:40 UTC"
 : ,"dispatchedDate" null
 : ,"earliestRequestedStartDate" null
 : ,"earliestStartDate" "2012-10-11 17:58:18 UTC"
 : ,"eligibleDate" "2012-10-11 17:59:19 UTC"
 : ,"lastCanceledDate" null
 : ,"lastChargedDate" null
 : ,"lastPreemptedDate" null
 : ,"lastUpdatedDate" "2012-10-11 17:59:19 UTC"
 : ,"startDate" null
 : ,"submitDate" "2012-10-11 17:58:16 UTC"
 : "terminationDate" "2037-10-24 12:26:40 UTC"
 },
 : 0,"deferCount"
 : [],"dependencies"
 : ,"description" null
 : 8639999,"duration"
 : 0,"durationActive"
 : 31,"durationQueued"

84

 : 0,"durationRemaining"
 : 0,"durationSuspended"
 : [],"emailNotifyAddresses"
 : [],"emailNotifyTypes"
 : ,"environmentRequested" false
 : {},"environmentVariables"
 : ,"epilogScript" null
 : [],"flags" "GLOBALQUEUE"
 : ,"holdDate" null
 : ,"holdReason" null
 : [],"holds"
 : ,"initialWorkingDirectory" "/tmp"
 : ,"isActive" true
 : ,"jobGroup" null
 : ,"masterNode" null
 : 0,"memorySecondsDedicated"
 : 0,"memorySecondsUtilized"
 : [],"messages"
 : 0,"migrateCount"
 : 0,"minimumPreemptTime"
 : ,"mwmName" "Moab"
 : ,"name" "Moab.15"
 : [],"nodesExcluded"
 : [],"nodesRequested"
 : ,"nodesRequestedPolicy" null
 : ["partitionAccessList"
 ,"msm"
 "SHARED"
],
 : ["partitionAccessListRequested"
 ,"msm"
 "SHARED"
],
 : 0,"preemptCount"
 : {"priorities"
 : 0,"run"
 : 1,"start"
 : 0,"system"
 : 0"user"
 },
 : 0,"processorSecondsDedicated"
 : 0,"processorSecondsLimit"
 : 0,"processorSecondsUtilized"
 : ,"prologScript" null
 : ,"queueStatus" "blocked"
 : [],"rejectPolicies"
 : [{"requirements"
 : ,"architecture" null
 : [],"attributes"
 : [],"features"
 : 0,"index"
 : [],"featuresRequested"
 : ,"featuresRequestedMode" "AND"
 : [],"featuresExcluded"
 : ,"featuresExcludedMode" "AND"
 : {},"metrics"
 : ,"nodeAccessPolicy" null
 : ,"nodeAllocationPolicy" null
 : 0,"nodeCount"
 : [],"nodes"
 : ,"nodeSet" null
 : ,"image" null
 : ,"reservation" null
 : {"resourcesPerTask"
 : {"processors"
 : 1,"dedicated"
 : 0"utilized"
 },
 : {"memory"
 : 0,"dedicated"
 : 0"utilized"
 },
 : {"disk"
 : 0,"dedicated"
 : "utilized" null
 },
 : {"swap"
 : 0,"dedicated"
 : "utilized" null
 }
 },
 : 4,"taskCount"
 : 0"tasksPerNode"
 }],
 : ,"reservationRequested" null
 : ,"resourceFailPolicy" null
 : ,"resourceManagerExtension" null
 : [{"resourceManagers"
 : ,"isDestination" false
 : ,"isSource" true
 : ,"jobName" "Moab.15"

85

 : "name" "internal"
 }],
 : ,"rmStandardErrorFilePath" null
 : ,"rmStandardOutputFilePath" null
 : ,"standardErrorFilePath" null
 : ,"standardOutputFilePath" null
 : 0,"startCount"
 : {"states"
 : ,"state" "Idle"
 : ,"stateExpected" "Idle"
 : ,"stateLastUpdatedDate" null
 : "subState" null
 },
 : ,"submitHost" "0:0:0:0:0:0:0:1"
 : ,"systemJobAction" null
 : ,"systemJobType" null
 : ,"targetedJobAction" null
 : ,"targetedJobName" null
 : [{ : }],"templates" "name" "DEFAULT"
 : [],"triggers"
 : {},"variables"
 : [],"virtualContainers"

86

 : [],"virtualMachines"
 : "vmUsagePolicy" null
}

Job Arrays

If a job is the master of a job array, the response will have some additional fields set as shown in
the following example. The field is chosen by the Moab Workload Manager, and the name

 field comes from the job array field.customName name

Job Array Master

{
 : ,"name" "Moab.5"
 : ,"customName" "myarray"
 : ["flags"
 ,"ARRAYMASTER"
 ,"GLOBALQUEUE"
 ,"CANCELONFIRSTFAILURE"
 "CANCELONANYSUCCESS"
]
}

If a job is a sub-job of an array, the response will have other fields set as shown in the following
example.

Array Sub-Job

{
 : ,"name" "Moab.5[21]"
 : ,"customName" "myarray"
 : 21,"arrayIndex"
 : ,"arrayMasterName" "Moab.5"
 : ["flags"
 ,"ARRAYJOB"
 ,"GLOBALQUEUE"
 ,"CANCELONFIRSTFAILURE"
 "CANCELONANYSUCCESS"
]
}

4.8.2 Submitting Jobs
The HTTP POST method is used to submit .Jobs

Quick Reference

POST http://localhost/mws/rest/jobs?api-version=2[&proxy-user=]<username>

Restrictions

87

No more than one virtual container can be specified in the request. The virtual container
must already exist.
The and properties are used to submit acredentials.user credentials.group
job as the specified user belonging to the specified group.
Job have the following restrictions:variables

Variable names cannot contain equals (=), semicolon (;), colon (:), plus (+), question
mark (?), caret (^), backslash (\), or white space.
Variable values cannot contain semicolon (;), colon (:), plus (+), or caret (^).

When submitting jobs, the only supported type is .hold User

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

When the JOBNODEMATCHPOLICY is set to EXACTNODE in Moab, avoid using
requirements.tasksPerNode. Use requirements.resourcesPerTask.processors.dedicated
instead.

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.8.2.1 Submit Job

URLs and Parameters

POST http://localhost/mws/rest/jobs?api-version=2[&proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available during job submission. This is a
very contrived example; its purpose is simply to show sample values in the correct format.

JSON Request Body (specified host list)

{
 : ["attributes"
 ,"attr1"
 "attr2"
],
 : ,"commandFile" "/tmp/test.sh"
 : ,"commandScript" "c2xlZXAgNjAK"
 : ,"commandLineArguments" "-x -v"
 : {"credentials"
 : ,"account" "account"
 : ,"group" "group"
 : ,"jobClass" "BATCH"
 : ,"qosRequested" "QOS1"
 : "user" "saadmin"
 },
 : ,"customName" "custom name job"for
 : {"dates"

88

 : ,"earliestRequestedStartDate" "2012-11-08 13:18:47 UTC"
 : "deadlineDate" "2014-02-17 14:00:00 UTC"
 },
 : ["dependencies"
 {
 : ,"type" "set"
 : "name" "vc1.varA"
 },
 {
 : ,"type" "set"
 : "name" "vc2.varB"
 },
 {
 : ,"type" "set"
 : "name" "vc3.varC"
 }
],
 : 600,"duration"
 : ["emailNotifyAddresses"
 ,"user3@ac.com"
 "user4@ac.com"
],
 : ["emailNotifyTypes"
 ,"JobStart"
 "JobEnd"
],
 : ,"environmentRequested" true
 : {"environmentVariables"
 : ,"var1" "val1"
 : "var2" "val2"
 },
 : ,"epilogScript" "/tmp/epilog.sh"
 : ["flags"
 ,"RESTARTABLE"
 "SUSPENDABLE"
],
 : [],"holds" "User"
 : ,"initialWorkingDirectory" "/tmp"
 : ,"jobGroup" "job_group"
 : ["nodesExcluded"
 { : },"name" "node07"
 { : }"name" "node08"
],
 : ["nodesRequested"
 { : },"name" "node01"
 { : }"name" "node02"
],
 : ,"nodesRequestedPolicy" "SUBSET"
 : ["partitionAccessListRequested"
 ,"p1"
 "p2"
],
 : { : 5},"priorities" "user"
 : ,"prologScript" "/tmp/prolog.sh"
 : [{"requirements"
 : ,"architecture" "x86_64"
 : ["attributes"
 {
 : ,"name" "matlab"
 : ,"comparator" "<="
 : "value" "7.1"
 },
 {
 : ,"name" "soffice"
 : ,"comparator" "="
 : "value" "3.1"
 }
],
 : ["featuresRequested"
 ,"a"
 ,"b"
 "c"
],
 : ,"featuresRequestedMode" "OR"
 : ["featuresExcluded"
 ,"d"
 ,"e"
 "f"
],
 : ,"featuresExcludedMode" "AND"
 : ,"nodeAccessPolicy" "SINGLEJOB"
 : ,"nodeAllocationPolicy" "PRIORITY"
 : 6,"nodeCount"
 : ,"image" "linux"
 : {"resourcesPerTask"
 : { : 1024},"disk" "dedicated"
 : { : 512},"memory" "dedicated"
 : { : 2},"processors" "dedicated"
 : { : 4096},"swap" "dedicated"
 : { : 6},"matlab" "dedicated"
 : { : 2}"intellij" "dedicated"

89

 },
 : 4,"taskCount"
 : 14"tasksPerNode"
 }],
 : { : },"reservationRequested" "name" "rsv.1"
 : ,"resourceFailPolicy" "RETRY"
 : ,"resourceManagerExtension" "x=PROC=4"
 : ,"standardErrorFilePath" "/tmp/error"
 : ,"standardOutputFilePath" "/tmp/out"
 : ,"submitHost" "admin-node"
 : ["templates"
 { : },"name" "template1"
 { : }"name" "template2"
],
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 },

90

 : [{ : }],"virtualContainers" "name" "vc1"
 : "vmUsagePolicy" "CREATEVM"
}

Sample Response

The response of this task is one of three possibilities:

An object with a single property containing a list of error messages on failuremessages

{ :[]}"messages" "Could not create job - invalid requirements"

An object with a property containing the name of the newly created jobname

{ : }"name" "Moab.1"

An object with a property and a list containing the name ofname virtualContainers
the newly created virtual container

{ : , : [{ : }] }"name" "Moab.1" "virtualContainers" "name" "vc1"

The virtual container will only be reported when a virtual container hasnew
been created by Moab for the job.

4.8.2.2 Examples of Job Submission
This section includes some sample job submission requests.

Submit job to run on node2 and node3

POST http://localhost/mws/rest/jobs?api-version=2

{
 : ,"commandFile" "/tmp/test.sh"
 : {"credentials"
 : ,"group" "adaptive"
 : "user" "adaptive"
 },
 : ,"initialWorkingDirectory" "/tmp"
 : ["nodesRequested"
 { : },"name" "node2"
 { : }"name" "node3"
]
}

Submit job that requires 20 processors

91

POST http://localhost/mws/rest/jobs?api-version=2

{
 : ,"commandFile" "/tmp/test.sh"
 : {"credentials"
 : ,"group" "adaptive"
 : "user" "adaptive"
 },
 : ,"initialWorkingDirectory" "/tmp"
 : [{ : 20}]"requirements" "taskCount"
}

Submit job to run after a certain time

POST http://localhost/mws/rest/jobs?api-version=2

{
 : ,"commandFile" "/tmp/test.sh"
 : {"credentials"
 : ,"group" "adaptive"
 : "user" "adaptive"
 },
 : { : },"dates" "earliestRequestedStartDate" "2012-10-11 18:36:35 UTC"
 : ,"initialWorkingDirectory" "/tmp"
 : [{ : 20}]"requirements" "taskCount"
}

Submit job based on examplemsub

Given this command:msub

msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100 script2.pbs.cmd

Here is an equivalent MWS request:

POST http://localhost/mws/rest/jobs?api-version=2

{
 : 3600,"duration"
 : ,"commandFile" "/home/adaptive/script2.pbs.cmd"
 : {"credentials"
 : ,"group" "adaptive"
 : "user" "adaptive"
 },
 : ,"initialWorkingDirectory" "/home/adaptive"
 : [{"requirements"
 : { : { : 100}},"resourcesPerTask" "memory" "dedicated"
 : 6,"taskCount"
 : 2"tasksPerNode"
 }]
}

To emulate what does, make an absolute path,msub commandFile
and add , , and credentials.user credentials.group

.initialWorkingDirectory
As shown above, is equivalent to setting nodes=3:ppn=2

 to 6 and to 2.taskCount tasksPerNode

92

Submit a Job Array

See the section for details on how to submit a job array.Submitting Job Arrays

4.8.3 Modifying Jobs
The HTTP PUT method is used to modify .Jobs

Quick Reference

PUT http://localhost/mws/rest/jobs/ [/]?api-version=2[&proxy-user=<name> <modifyAction>
]<username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.8.3.1 Modify Job Attributes

URLs and Parameters

PUT http://localhost/mws/rest/jobs/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when modifying a Job, along with
some sample values.

93

JSON Request Body

{
 : {"credentials"
 : ,"account" "account"
 : ,"jobClass" "BATCH"
 : "qosRequested" "QOS1"
 },
 : ,"customName" "custom name job"for
 : { : },"dates" "earliestRequestedStartDate" "2012-11-08 13:18:47 UTC"
 : 600,"duration"
 : ["flags"
 ,"RESTARTABLE"
 "SUSPENDABLE"
],
 : [],"holds" "User"
 : ["messages"
 { : },"message" "Message one"
 { : }"message" "Message two"
],
 : ["partitionAccessListRequested"
 ,"p1"
 "p2"
],
 : { : 5},"priorities" "user"
 : { : },"reservationRequested" "name" "rsv.1"
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Sample Response

These messages may not match the messages returned from Moab exactly,
but are given as an example of the structure of the response.

Not all messages are shown for the above request body.

JSON Response

{ : ["messages"
 ,"Account modified successfully"
 ,"Messages modified successfully"
 "Variables modified successfully"
]}

Restrictions

Old messages are not removed from jobs; only new messages are added.
Job have the restrictions documented in variables Submitting Jobs

4.8.3.2 Perform Actions on Job

URLs and Parameters

PUT http://localhost/mws/rest/jobs/ / ?api-version=2[&proxy-user=<name> <modifyAction>
]<username>

94

Parameter Required Type
Valid
Values

Description

name Yes String - The name of the object.

modifyAction Yes String cancel Attempts to cancel the job.

 checkpoint
Attempts to checkpoint the job. Note that the OS
must support checkpointing for this to work.

 execute Executes the job if possible.

 hold
Attempts to hold the job using the holds set in the
request body.

 requeue Attempts to requeue the job.

 resume Attemps to resume the job.

 suspend Attempts to suspend the job.

 unhold
Attempts to release the holds set in the request
body.

proxy-user No String - Perform the action as this user.

Performing a cancel function on a job is equivalent to deleting a job.

See for available URL parameters.Global URL Parameters

Request Body

Request bodies are only required for holding or unholding jobs. All other actions do not require
request bodies of any kind.

JSON Request Body to Add Holds to a Job

{ : []}"holds" "User"

JSON Request Body to Remove Holds from a Job

{ : []}"holds" "User"

If no holds are specified when unholding a job, all holds will be removed.
This is equivalent to specifying as a list with a single element of holds All
.

Sample Response

95

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ : []}"messages" "Job modified successfully"

4.8.4 Deleting (Canceling) Jobs
The HTTP DELETE method is used to cancel .Jobs

Quick Reference

DELETE http://localhost/mws/rest/jobs/ ?api-version=2[&proxy-user=]<name> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.8.4.1 Cancel Job

URLs and Parameters

DELETE http://localhost/mws/rest/jobs/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

96

Additional information about the DELETE can be found in the HTTP
response header .X-MWS-Message

4.9 Job Arrays
This section describes behavior of the object in Moab Web Services. It contains theJob Array
URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the JobArray API Job
 object.Array

Supported Methods

Resource GET PUT POST DELETE

/rest/job-arrays Submit new job array

4.9.1 Submitting Job Arrays
The HTTP POST method is used to submit .Job Arrays

Quick Reference

POST http://localhost/mws/rest/job-arrays?api-version=2[&proxy-user=]<username>

While the resource only gives access to create job arrays, jobJob Array
arrays are retrieved using the operations in the Getting Job Information
section.

Restrictions

All restrictions present for are present for job arrays. In addition, job arrays are Submitting Jobs
 supported if the parameter is set to in the file.only ENABLEJOBARRAYS TRUE moab.cfg

Example:

ENABLEJOBARRAYS TRUE

4.9.1.1 Submit Job Array

URLs and Parameters

97

POST http://localhost/mws/rest/job-arrays?api-version=2[&proxy-user=]<username>

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

To submit a job array, only two fields are required: and one of jobPrototype
 or . Both index ranges and values may be specified if desired.indexValues indexRanges

The request body below shows all the fields that are available during job array submission,
although the shown is a simple example and does not utilize all fields of a jobjobPrototype
submission.

The field has the same properties as a typical jobjobPrototype
submission. Examples of this can be seen in the section.Submitting Jobs

JSON Request Body

{
 : ,"name" "myarray"
 : [{"indexRanges"
 : 11,"startIndex"
 : 25,"endIndex"
 : 2"increment"
 }],
 : [2, 4, 6, 8, 10],"indexValues"
 : 2,"slotLimit"
 : {"cancellationPolicy"
 : ,"firstJob" "FAILURE"
 : "anyJob" "SUCCESS"
 },
 : {"jobPrototype"
 : ,"commandFile" "/tmp/test.sh"
 : ,"initialWorkingDirectory" "/tmp"
 : [{ : 4}]"requirements" "taskCount"
 }
}

Sample Response

The response of this task is the same as .submitting a job

4.10 Job Templates
This section describes behavior of the object in Moab Web Services. It containsJob Template
the URLs, request bodies, and responses delivered to and from Moab Web Services.

98

The contains the type and description of all fields in the Job Template API
 object. It also contains details regarding which fields are validJob Template

during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/job-templates Get all job templates

/rest/job-templates/id Get specified job template

4.10.1 Getting Job Templates
The HTTP GET method is used to retrieve information. Queries for all objectsJob Template
and a single object are available.

Quick Reference

GET http://localhost/mws/rest/job-templates/<id>

4.10.1.1 Get All Job Templates

URLs and Parameters

GET http://localhost/mws/rest/job-templates

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/job-templates?fields=id

{
 : 14,"totalCount"
 : 14,"resultCount"
 : ["results"
 { : },"id" "DEFAULT"
 { : },"id" "genericVM"
 { : },"id" "genericVM-setup"
 { : },"id" "genericVM-destroy"
 { : },"id" "genericVM-migrate"
 { : },"id" "genericPM"
 { : },"id" "genericPM-setup"
 { : },"id" "genericPM-destroy"
 { : },"id" "OSStorage"
 { : },"id" "OSStorage-setup"
 { : },"id" "OSStorage-destroy"
 { : },"id" "extraStorage"
 { : },"id" "extraStorage-setup"
 { : }"id" "extraStorage-destroy"
]
}

99

4.10.1.2 Get Single Job Template

URLs and Parameters

GET http://localhost/mws/rest/job-templates/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"account" "account"
 : ,"args" "arg1 arg2"
 : ,"commandFile" "/tmp/script"
 : ,"description" "description"
 : ,"genericSystemJob" true
 : ,"id" "genericVM"
 : ,"inheritResources" false
 : [{"jobDependencies"
 : ,"name" "genericVM-setup"
 : "type" "JOBSUCCESSFULCOMPLETE"
 }],
 : [],"jobFlags" "VMTRACKING"
 : [],"jobTemplateFlags" "SELECT"
 : [{"jobTemplateRequirements"
 : ,"architecture" "x86_64"
 : 500,"diskRequirement"
 : { : 3},"genericResources" "tape"
 : ,"nodeAccessPolicy" "SINGLEJOB"
 : ,"operatingSystem" "Ubuntu 10.04.3"
 : 200,"requiredDiskPerTask"
 : [],"requiredFeatures" "dvd"
 : 1024,"requiredMemoryPerTask"
 : 2,"requiredProcessorsPerTask"
 : 512,"requiredSwapPerTask"
 : 4"taskCount"
 }],
 : 20,"priority"
 : ,"qos" "qos"
 : ,"queue" "queue"
 : 600,"durationRequested"
 : ,"select" true
 : ,"trigger" null
 : 0,"version"
 : "vmUsagePolicy" "REQUIREPM"
}

4.11 Metric Types
This section describes behavior of the object in Moab Web Services. It contains theMetric Type
URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the MetricType API
 object.Metric Type

100

Supported Methods

Resource GET PUT POST DELETE

/rest/metric-types Get all metric types

4.11.1 Getting Metric Types
The HTTP GET method is used to retrieve information.Metric Type

Quick Reference

GET http://localhost/mws/rest/metric-types

4.11.1.1 Get All Metric Types

URLs and Parameters

GET http://localhost/mws/rest/metric-types

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/metric-types?fields=id

{
 : 9,"totalCount"
 : 9,"resultCount"
 : ["results"
 { : },"id" "vmcount"
 { : },"id" "watts"
 { : },"id" "pwatts"
 { : },"id" "temp"
 { : },"id" "cpu"
 { : },"id" "mem"
 { : },"id" "io"
 { : },"id" "ccores"
 { : }"id" "threads"
]
}

4.12 Nodes
This section describes behavior of the object in Moab Web Services. It contains the URLs,Node
request bodies, and responses delivered to and from Moab Web Services.

101

The Node API has changed with . The supported methodsAPI version 2
table below requires each resource to be accessed with a URL parameter of

 in order to behave as documented.api-version=2

In order to access documentation for previous API versions, see Requesting
.Specific API Versions

The contains the type and description of all fields in the Node API Node
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/nodes Get all nodes

/rest/nodes/name Get specified node Modify node

4.12.1 Getting Nodes
The HTTP GET method is used to retrieve information.Node

Quick Reference

GET http://localhost/mws/rest/nodes/ ?api-version=2<name>

4.12.1.1 Get All Nodes

URLs and Parameters

GET http://localhost/mws/rest/nodes?api-version=2

Parameter Required
Valid
Values

Description Example

query No JSON Queries for specific results. query={"type":"compute"}

sort No JSON
Sort the results. Use for1
ascending and for-1
descending.

sort={"name":-1}

It is possible to query by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

http://www.mongodb.org/display/DOCS/Advanced+Queries

102

This query will not return the or nodes from MoabDEFAULT GLOBAL
Workload Manager. However, the task may be used toGet Single Node
retrieve them individually if desired.

Sample Response

GET http://localhost/mws/rest/nodes?api-version=2&fields=name

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "node1"
 { : },"name" "node2"
 { : }"name" "node3"
]
}

4.12.1.2 Get Single Node

URLs and Parameters

GET http://localhost/mws/rest/nodes/ ?api-version=2<name>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"name" "hv2"
 : ,"architecture" null
 : [],"classes" "class1"
 : [],"featuresReported"
 : 2,"index"
 : ,"ipAddress" "10.0.0.4"
 : ,"isHypervisor" true
 : ,"lastUpdatedDate" "2012-10-11 17:42:24 UTC"
 : ,"migrationDisabled" false
 : ,"partition" "msm"
 : ,"processorSpeed" null
 : ,"profilingEnabled" false
 : ,"rack" null
 : {"resourceManagerMessages"
 : ,"torque" null
 : "mws" null
 },
 : ,"slot" null
 : ,"type" "compute"
 : [{"messages"
 : 11,"count"
 : ,"createdDate" "2012-10-24 04:06:04 UTC"
 : ,"expireDate" "2037-10-24 12:26:40 UTC"
 : "message" "This is a message"
 }],
 : {"metrics"

103

 : 200,"watts"
 : 200,"pwatts"
 : 103,"temp"
 : 4"vmcount"
 },
 : {},"variables"
 : {"states"
 : ,"powerState" "On"
 : ,"powerStateExpected" null
 : ,"state" "Idle"
 : ,"stateExpected" "Idle"
 : ,"stateLastUpdatedDate" "2012-10-11 17:15:01 UTC"
 : ,"subState" null
 : ,"subStateLast" null
 : "subStateLastUpdatedDate" null
 },
 : {"operatingSystem"
 : ,"hypervisorType" "KVM"
 : ,"image" "hyper"
 : ,"imageExpected" null
 : ,"imageLastUpdatedDate" null
 : [],"imagesAvailable" "hyper"
 : ["virtualMachineImages"
 ,"stateless1"
 "stateless2"
]
 },
 : {"resources"
 : {"processors"
 : 8,"configured"
 : 8,"real"
 : 0,"dedicated"
 : 8,"available"
 : -1"utilized"
 },
 : {"memory"
 : 1048576,"configured"
 : 1048576,"real"
 : 0,"dedicated"
 : 1048576,"available"
 : 0"utilized"
 },
 : {"disk"
 : 1048576,"configured"
 : 1048576,"real"
 : 0,"dedicated"
 : 1048576,"available"
 : 0"utilized"
 },
 : {"swap"
 : 4096,"configured"
 : 4096,"real"
 : 0,"dedicated"
 : 4096,"available"
 : 0"utilized"
 }
 },
 : [{"resourceManagers"
 : ,"name" "msm"
 : ,"isMaster" true
 : "stateReported" "Active"
 }],
 : [],"jobs"
 : ["reservations"
 {
 : ,"name" "system.5"
 : "type" "user"
 },
 {
 : ,"name" "system.17"
 : "type" "user"
 }
],
 : [],"virtualContainers"
 : ["virtualMachines"
 { : },"name" "vm3"
 { : }"name" "vm4"

104

],
 : []"triggers"
}

4.12.2 Modifying Nodes
The HTTP PUT method is used to modify .Nodes

Quick Reference

PUT http://localhost/mws/rest/nodes/ ?api-version=2[&proxy-user=]<name> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.12.2.1 Modify Node

URLs and Parameters

PUT http://localhost/mws/rest/nodes/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when modifying a Node, along
with some sample values.

105

Sample JSON Request Body to Modify a Node

{
 : ["messages"
 { : },"message" "Message one"
 { : }"message" "Message two"
],
 : { : 211},"metrics" "pwatts"
 : { : },"operatingSystem" "image" "esx4.1"
 : ,"partition" "part1"
 : {"states"
 : ,"powerState" "On"
 : "state" "Running"
 },
 : {"variables"
 : ,"key" "value"
 : "arbitrary text key" "more value"
 }
}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :["messages"
 ,"Successfully modified os to 'linux'"
 "Successfully powered node off"
]}

4.13 Pending Actions
This section describes behavior of the object in Moab Web Services. It containsPending Action
the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Pending Action API
 object. It also contains details regarding which fields arePending Action

valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/pending-actions Get all pending actions

4.13.1 Getting Pending Actions
The HTTP GET method is used to retrieve information.Pending Action

Quick Reference

106

GET http://localhost/mws/rest/pending-actions

4.13.1.1 Get All Pending Actions

URLs and Parameters

GET http://localhost/mws/rest/pending-actions

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/pending-actions

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"failureDetails" ""
 : [],"hosts" "hv3"
 : ,"id" "vmcreate-27"
 : 3600,"maxDurationInSeconds"
 : ,"migrationDestination" ""
 : ,"migrationSource" ""
 : ,"motivation" "requested by root"
 : ,"pendingActionState" "RUNNING"
 : ,"pendingActionType" "VMCREATE"
 : ,"requester" "root"
 : ,"serviceId" "Rhel55Vm.200"
 : ,"startTime" "2011-11-15 21:57:55 UTC"
 : ,"substate" "installing"
 : ,"targetOS" ""
 : ,"topLevelServiceId" "Lamp.132"
 : "vmId" "vm8"
 }]
}

Generic vs Non-Generic Types

If generic job templates are used in Moab, MWS may be configured to translate pending actions
with the generic type to the proper type such as . This is done in the configurationVMCREATE
file. The provides the default mappings for this feature, as well as an exampleQuickstart Guide
of adding a custom mapping from a custom template name to the correct type.

The default mappings are shown in the table below. The available pending action types may be
seen on the page.PendingActionType API

107

Template Name Mapped Type

genericVM-setup VMCREATE

genericVM-migrate VMMIGRATE

genericVM-destroy VMDESTROY

OSStorage-setup VMSTORAGE

OSStorage-destroy VMSTORAGEDESTROY

extraStorage-setup STORAGE

extraStorage-destroy STORAGEDESTROY

genericPM-setup OSPROVISION

When generic mappings are used, MWS will match the first template
mapping that the pending action ID ends with. For example, an ID of

 will map the type to .Moab.1.genericVM-setup VMCREATE

To enable mapping for a custom template name such as , simply add themyCustomVM-setup
following line to the MWS configuration file. The value of the pending action type is case
insensitive.

mws.pendingActions.mappings[] = "myCustomVM-setup" "vmcreate"

MWS also provides the ability to enable or disable the display of generic pending actions (or
those pending actions that are not mapped). This behavior is controlled by the

 setting as shown below. A value willmws.pendingActions.displayGeneric false
prevent generic pending actions from being displayed, while a value will display alltrue
pending actions. By default this value is .true

mws.pendingActions.displayGeneric = false

4.14 Permissions
This section describes behavior of the object in Moab Web Services. It contains thePermissions
URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of fields that all Permission API
 have in common.Permissions

Supported Methods

108

Resource GET PUT POST DELETE

/rest/permissions Get all Permissions
Create
Permission

/rest/permissions/id
Get specified
Permissions

Delete
Permission

/rest/permissions/users/
id

Get users Permissions

4.14.1 Getting Permissions
The HTTP GET method is used to retrieve information. You can query all objects orPermission
a single object.

Quick Reference

GET http://localhost/mws/rest/permissions
GET http://localhost/mws/rest/permissions/<id>

4.14.1.1 Get All Permissions

URLs and Parameters

GET http://localhost/mws/rest/permissions[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]

Parameter Required
Valid
Values

Description Example

query No JSON Queries for specific results. query={"type":"CUSTOM"}

sort No JSON
Sort the results. Use for1
ascending and for-1
descending.

sort={"name":-1}

It is possible to query permissions by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

http://www.mongodb.org/display/DOCS/Advanced+Queries

109

GET http://localhost/mws/rest/permissions?fields=resource,action,description

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"resource" "chart"
 : ,"action" "read"
 : "description" "The permission to view all charts."
 }]
}

Sorting and Querying

See the sorting and querying sections of .Global URL Parameters

4.14.1.2 Get a User's Permissions

URLs and Parameters

GET http://localhost/mws/rest/permissions/users/<name>

Parameter Required Type Valid Values Description

name Yes String - The name of the user

See for available URL parameters.Global URL Parameters

Sample Response

110

GET http://localhost/mws/rest/permissions/users/bob

[
 {
 : ,"action" "read"
 : ,"description" "The permission to read all charts"
 : ,"id" "5033b842e4b09cc61bedb818"
 : ,"label" ""
 : ,"resource" "chart"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 1"version"
 },
 {
 : ,"action" "read"
 : ,"description" "The permission to read all pages"
 : ,"id" "5033b8a5e4b09cc61bedb82d"
 : ,"label" ""
 : ,"resource" "page"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 1"version"
 },
 {
 : ,"action" "update"
 : ,"description" "The permission to update all pages"
 : ,"id" "5033b8a5e4b09cc61bedb82f"
 : ,"label" ""
 : ,"resource" "page"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 1"version"
 }
]

4.14.1.3 Get Single Permission

URLs and Parameters

GET http://localhost/mws/rest/permissions/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Permission.

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/permissions/

{
 : ,"action" "create"
 : ,"description" "The permission to create all charts."
 : ,"id" "50296335e4b0011b0f8394ec"
 : ,"label" "Create Chart"
 : ,"resource" "chart"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 0"version"
}

111

4.14.2 Creating Permissions
The HTTP POST method is used to create .Permissions

Quick Reference

POST http://localhost/mws/rest/permissions

4.14.2.1 Create Single Permission

URLs and Parameters

POST http://localhost/mws/rest/permissions

See for available URL parameters.Global URL Parameters

Request Body

The , , and are required on each Permission.resource action type
Api permissions are permissions with the type 'api' and are the only
permissions enforced by MWS.
Api permissions must map to a valid resource. For example 'services' is
valid because there is a resource /mws/rest/services.
Api permissions must have create, read, update, or delete as the action.

The following is an example request body to create a permission:

POST http://localhost/mws/rest/permissions

{
 : ,"resource" "Chart"
 : ,"action" "read"
 : ,"type" "custom"
 : ,"label" "Read all charts"
 : "description" "The permissions to view all charts."
}

Sample Response

If the request was successful, the response body is the new permission that was created exactly
as shown in . On failure, the response is an error message.Get Single Permission

4.14.3 Deleting Permissions
The HTTP DELETE method is used to delete .Permissions

112

Quick Reference

DELETE http://localhost/mws/rest/permissions/<id>

4.14.3.1 Delete Single Permission

URLs and Parameters

DELETE http://localhost/mws/rest/permission/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Permission.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{}

4.15 Plugins
This section describes behavior of the object in Moab Web Services. It contains thePlugin
URLs, request bodies, and responses delivered to and from Moab Web Services.

The page contains the type and description of all fields inPluginInstance API
the object. It also contains details regarding which fields are validPlugin
during PUT and POST actions.

Supported Methods

113

Resource GET PUT POST DELETE

/rest/plugins Get all plugins
Create new
plugin

/rest/plugins/id
Get specified
plugin

Modify plugin Delete plugin

/rest/plugins/ /pollid
Trigger Plugin
Poll

/rest/plugins/ /services/id
serviceName

Access Web
Service

Access Web
Service

Access Web
Service

Access Web
Service

4.15.1 Getting Plugins
The HTTP GET method is used to retrieve information. Queries for all objects and aPlugin
single object are available.

Quick Reference

GET http://localhost/mws/rest/plugins
GET http://localhost/mws/rest/plugins/<id>

4.15.1.1 Get All Plugins

URLs and Parameters

GET http://localhost/mws/rest/plugins

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/plugins?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "plugin1"
 { : },"id" "plugin2"
 { : }"id" "plugin3"
]
}

4.15.1.2 Get Single Plugin

URLs and Parameters

GET http://localhost/mws/rest/plugins/<id>

114

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"id" "plugin1"
 : ,"pluginType" "Native"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 },
 : ,"state" "STARTED"
 : ,"nextPollDate" "2011-12-02 17:28:52 UTC"
 :"lastPollDate" "2011-12-02 17:28:22 UTC"
}

4.15.2 Creating Plugins
The HTTP POST method is used to create .Plugins

Quick Reference

POST http://localhost/mws/rest/plugins

4.15.2.1 Create Plugin

URLs and Parameters

POST http://localhost/mws/rest/plugins

See for available URL parameters.Global URL Parameters

Request Body

When creating a plugin, the and fields are required. The request body belowid pluginType
shows all fields that are available when creating a Plugin, along with some sample values.

115

JSON Request Body

{
 : ,"id" "plugin1"
 : ,"pluginType" "Native"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 }
}

Sample Response

JSON Response for successful POST

{ : }"id" "plugin1"

Restrictions

While it is to create a plugin with arbitrary nested configuration, such as:possible

…
:{"config"

 :{"nestedObject"
 : ,"property1" "value1"
 :"property2" "value2"
 },
 listItem1 listItem2"]"nestedList:[" ", "
}

It is recommended as the does not support editing or viewing anynot user interface
configuration data values other than strings.

4.15.3 Modifying Plugins
The HTTP PUT method is used to modify . Additionally, the POST method may be usedPlugins
to trigger an immediate poll of a .Plugin

Quick Reference

PUT http://localhost/mws/rest/plugins/<id>
POST http://localhost/mws/rest/plugins/ /poll<id>

4.15.3.1 Modify Plugin

URLs and Parameters

PUT http://localhost/mws/rest/plugins/<id>

116

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when modifying a Plugin, along
with some sample values.

JSON Request Body for Plugin Modification

{
 : ,"state" "STARTED"
 :30,"pollInterval"
 : ,"autoStart" true
 :{"config"
 :"getJobs" "exec:///opt/moab/tools/workload.query.pl"
 },
 :"state" "STARTED"
}

Sample Response

JSON Response

{ :[,]}"messages" "Plugin plugin1 updated" "Started Plugin 'plugin1'"

4.15.3.2 Trigger Plugin Poll

URLs and Parameters

POST http://localhost/mws/rest/plugins/ /poll<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Trigger Poll

This resource call will trigger an immediate poll of the specified plugin. It is equivalent to the
same operation on the page.Monitoring and Lifecycle Controls

Request Body

No request body is required.

117

Sample Response

JSON Response

{ :[]}"messages" "Polled Plugin with ID 'myPlugin'"

4.15.4 Deleting Plugins
The HTTP DELETE method is used to delete .Plugins

Quick Reference

DELETE http://localhost/mws/rest/plugins/<id>

4.15.4.1 Delete Plugin

URLs and Parameters

DELETE http://localhost/mws/rest/plugins/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

Additional information about a successful DELETE can be found in the
HTTP response header .X-MWS-Message

JSON Response for an unsuccessful DELETE

{ :[, "messages" "Plugin plugin1 could not be deleted" "Error message describing the
]}problem"

4.15.5 Accessing Plugin Web Services

118

All HTTP methods can be used to access . However, some services onlyPlugin Web Services
support specific methods. Check the specific plugin type documentation for more information.

Quick Reference

GET http://localhost/mws/rest/plugins/ /services/<id> <serviceName>
POST http://localhost/mws/rest/plugins/ /services/<id> <serviceName>
PUT http://localhost/mws/rest/plugins/ /services/<id> <serviceName>
DELETE http://localhost/mws/rest/plugins/ /services/<id> <serviceName>

4.15.5.1 Access a Plugin Web Service

URLs and Parameters

GET http://localhost/mws/rest/plugins/ /services/<id> <serviceName>
POST http://localhost/mws/rest/plugins/ /services/<id> <serviceName>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

serviceName Yes String -
The name of the web service, either in CamelCase
or hyphenated.

See for available URL parameters.Global URL Parameters

Web Service IDs

Translation is done to map web service names to hyphenated names in the URL. ForCamelCase
example, a web service method named on a plugin with a name of notifyEvent

 may be called with the following URLs:notifications

// CamelCase
/ /plugins/notifications/services/notifyEventrest

// Hyphenated
/ /plugins/notifications/services/notify-eventrest

HTTP Method and Request Body

Because plugin do not need to distinguish which HTTP method is used, itCustom Web Services
is recommended to use GET and POST when making requests to access web services unless
documented otherwise. The request body and output may vary for each web service called. See
the plugin type documentation for the requested plugin for available web services, request
parameters, and expected output.

4.16 Plugin Types

http://en.wikipedia.org/wiki/Camel_case

119

This section describes behavior of the object in Moab Web Services. It contains thePlugin Type
URLs, request bodies, and responses delivered to and from Moab Web Services.

The page contains the type and description of all fields inPluginType API
the object. It also contains details regarding which fields arePlugin Type
valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/plugin-types Get all plugin types Create or update plugin type

/rest/plugin-types/id Get specified plugin type

4.16.1 Getting Plugin Types
The HTTP GET method is used to retrieve information. Queries for all objects andPlugin Type
a single object are available.

Quick Reference

GET http://localhost/mws/rest/plugin-types/<id>

4.16.1.1 Get All Plugin Types

URLs and Parameters

GET http://localhost/mws/rest/plugin-types

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/plugin-types?fields=id

{
 : 2,"totalCount"
 : 2,"resultCount"
 : ["results"
 { : },"id" "vCenter"
 { : }"id" "Native"
]
}

4.16.1.2 Get Single Plugin Type

URLs and Parameters

120

GET http://localhost/mws/rest/plugin-types/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : ,"author" "Adaptive Computing Enterprises, Inc."
 : ,"commonsVersion" "0.9.3 > *"
 : "description" "Polls a VMware® vCenter™ Server information on the hypervisorsfor

,and virtual machines it manages."
 : ,"documentationLink" ""
 : ,"email" ""
 : ,"id" "VCenter"
 : { },"initialPlugins"
 : ["instances"
 { : }"id" "vcenter"
],
 : ,"issueManagementLink" ""
 : ,"license" "APACHE"
 : ,"mwsVersion" "7.1.2 > *"
 : ,"pollMethod" true
 : ,"scmLink" ""
 : ,"title" "VCenter"
 : ,"version" "1.0"
 : [],"webServices"
 : "website" "http://www.adaptivecomputing.com"
}

4.16.2 Creating or Updating Plugin Types
The HTTP PUT method is used to create or update . The HTTPPlugin Types Content-Type
header is used to determine if the request contains a single class file as plaintext or the binary
data of a JAR file. Each request is explained in the following sections.

Quick Reference

PUT http://localhost/mws/rest/plugin-types[?reload-plugins=false]

There is a known issue with dynamically updating plugin types with typed
field injection. See the section for moreAdd or Update Plugin Types
information.

4.16.2.1 Update Plugin Type (File)

URLs and Parameters

121

PUT http://localhost/mws/rest/plugin-types[?reload-plugins=false]

Parameter Required
Valid
Values

Description

reload-plugins No
true or
false

Reloads all plugins of this type on successful update.
Defaults to true.

See for available URL parameters.Global URL Parameters

Request Body

This function is idempotent, meaning it will create the Plugin Type if it does not exist or update
it if it does. The request body is the actual contents of the class file to upload. This web service is
an exception to most as it a content type of or requires application/x-groovy

.text/plain

If the or content types are notapplication/x-groovy text/plain
used in the request, it will be interpreted as JSON, resulting in a failure.

Plaintext upload

package test

 com.adaptc.mws.plugins.*import

class UploadPlugin {
 author = static "Adaptive Computing"
 description = static "A sample plugin class"
 idString

 void configure() InvalidPluginConfigurationException {public throws
 def myConfig = config
 def errors = []
 (!myConfig.arbitraryKey)if
 errors << "Missing arbitraryKey!"
 (errors)if
 InvalidPluginConfigurationException(errors)throw new
 }

 def customService(Map params) {public
 paramsreturn
 }
}

If using the library to perform plugin type uploading, the equivalent ofcurl
the command-line option must be used to send the--data-binary
request body. Otherwise compilation errors may be encountered when
uploading the plugin type.

Sample Response

http://curl.haxx.se/

122

The response of this task is the same as the task. The reason that the returnGet All Plugin Types
of this task is a list is to accommodate the possibility of uploading multiple plugin types in a
single JAR file as explained in the next section.

4.16.2.2 Update Plugin Type (JAR)

URLs and Parameters

PUT http://localhost/mws/rest/plugin-types?jar-filename=<filename.jar>
[&reload-plugins=false]

Parameter Required
Valid
Values

Description

jar-filename Yes String The filename of the JAR file that is being uploaded.

reload-plugins No
true or
false

Reloads all plugins of this type on successful update.
Defaults to true.

See for available URL parameters.Global URL Parameters

Request Body

This function is idempotent, meaning it will create the Plugin Types if they do not exist or
update them if they do. The request body is the binary contents of the JAR file to upload. This
web service is an exception to most as it a content type of .requires application/x-jar

If the content type is not used in the request, it willapplication/x-jar
be interpreted as JSON, resulting in a failure.

If using the library to perform plugin type uploading, the equivalent ofcurl
the command-line option must be used to send the--data-binary
request body. Otherwise compilation errors may be encountered when
uploading the plugin type.

Sample Response

The response of this task is the same as the task. Note that when using aGet All Plugin Types
JAR file, multiple plugin types may be uploaded in the same request.

4.17 Policies
This section describes behavior of the object in Moab Web Services. It contains thePolicies
URLs, request bodies, and responses delivered to and from Moab Web Services.

http://curl.haxx.se/

123

The contains the type and description of fields that all Policy API Policies
have in common.

Supported Policies

Name Id

Auto VM Migration auto-vm-migration

Hypervisor Allocation Overcommit hv-allocation-overcommit

Node Allocation node-allocation

Migration Exclusion List migration-exclusion-list

Supported Methods

Resource GET PUT POST DELETE

/rest/policies Get all policies

/rest/policies/id Get specified policy Modify specified policy

4.17.1 Getting Policies
The HTTP GET method is used to retrieve information.Policies

Quick Reference

GET http://localhost/mws/rest/policies

4.17.1.1 Get All Policies

URLs and Parameters

GET http://localhost/mws/rest/policies

124

Parameter Required
Valid
Values

Description Example

query No JSON
Query for
specific
results.

query={"state":"DISABLED","conflicted":"false"}

sort No JSON

Sort the
results. Use

 for1
ascending
and for-1
descending.

sort={"id":-1}

It is possible to query policies by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/policies?fields=id,state,conflicted

{
 : 2,"totalCount"
 : 2,"resultCount"
 : [{"results"
 : ,"conflicted" false
 : ,"state" "DISABLED"
 : "id" "auto-vm-migration"
 },{
 : ,"conflicted" false
 : ,"state" "DISABLED"
 : "id" "hv-allocation-overcommit"
 },{
 : ,"conflicted" false
 : ,"state" "DISABLED"
 : "id" "node-allocation"
 },{
 : ,"conflicted" false
 : ,"state" "DISABLED"
 : "id" "migration-exclusion-list"
 }]
}

4.17.1.2 Get Single Policy

URLs and Parameters

GET http://localhost/mws/rest/policies/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Responses

http://www.mongodb.org/display/DOCS/Advanced+Queries

125

Auto VM Migration

{
 : ,"conflicted" false
 : "description" "Configure thresholds to control how and when virtual machines are

,moved from one hypervisor to another."
 : ,"id" "auto-vm-migration"
 : ,"name" "Automatic Virtual Machine Migration"
 : [],"potentialConflicts"
 : 1,"priority"
 : ,"state" "DISABLED"
 : [],"tags"
 : [],"types"
 : 0,"version"
 :{"genericMetricThresholds"
 :1.3"GMETRIC1"
 },
 :0.5,"processorUtilizationThreshold"
 :0.4,"memoryUtilizationThreshold"
 : "migrationAlgorithmType" "NONE"
}

Hypervisor Allocation Overcommit

{
 : ,"conflicted" false
 : "description" "Controls how hypervisors are overallocated with regards to processors

,and memory."
 : ,"id" "hv-allocation-overcommit"
 : ,"name" "Hypervisor Allocation Overcommit"
 : [],"potentialConflicts"
 : 2,"priority"
 : ,"state" "DISABLED"
 : [],"tags"
 : [],"types"
 : 0,"version"
 :29.5,"processorAllocationLimit"
 :1.2"memoryAllocationLimit"
}

Node Allocation

{
 : ,"conflicted" false
 : ,"description" "Controls how nodes are selected workload placement."for
 : ,"id" "node-allocation"
 : ,"name" "Node Allocation"
 : [],"potentialConflicts"
 : 3,"priority"
 : ,"state" "DISABLED"
 : [],"tags"
 : [],"types"
 : 0,"version"
 : ,"nodeAllocationAlgorithm" "CustomPriority"
 : "customPriorityFunction" "100*RSVAFFINITY - GMETRIC[numvms]"
}

126

Migration Exclusion List

{
 : ,"conflicted" false
 : "description" "Controls which machines are excluded from automatic live migration

,operations."
 : [,],"hvExclusionList" "blade05" "blade02"
 : ,"name" "Migration Exclusion List"
 : [],"potentialConflicts"
 : 100,"priority"
 : ,"state" "DISABLED"
 : [],"tags"
 : [],"types"
 : 1,"version"
 : [,],"vmExclusionList" "vm1" "vm5"
 : "id" "migration-exclusion-list"
}

4.17.2 Modifying Policies
The HTTP PUT method is used to modify .Policies

Quick Reference

PUT http://localhost/mws/rest/policies/<id>

4.17.2.1 Modify Policy

URLs and Parameters

PUT http://localhost/mws/rest/policies/ [?change-mode=set]<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Additional URL parameters

URL parameters for modifying a Migration Exclusion Lists Policy.

127

Migration Exclusion Lists
Parameter

Required
Valid
Values

Description

change-mode No set(Default)
Replace the existing exclusion list(s)
with the given one.

 add
Add the given VMs/HVs to the existing
exclusion list(s).

 remove
Remove the given VMs/HVs from the
existing exclusion list(s).

Request Body

In general, the fields shown in the are available for modification. However, the Policy API not
 field may be modified to a valid . All other fields listed in the specific APIstate Policy State

pages may be modified unless documented otherwise.

The request body below shows all the fields that are available when modifying a Auto VM
Migration Policy, along with some sample values.

JSON Request Body for Auto VM Migration Policy

{
 : {"genericMetricThresholds"
 : 5"GENERICTHRESHOLD"
 },
 : 0.5,"memoryUtilizationThreshold"
 : 0.4"processorUtilizationThreshold"
}

The request body below shows all the fields that are available when modifying a Node
Allocation Policy, along with some sample values.

JSON Request Body for Auto VM Migration Policy

{
 : ,"nodeAllocationAlgorithm" "CustomPriority"
 : "customPriorityFunction" "100*RSVAFFINITY - GMETRIC[numvms]"
}

The request body below shows all the fields that are available when modifying a Migration
Exclusion Lists Policy, along with some sample values.

JSON Request Body for Migration Exclusion Lists Policy

{
 : [, ,], "vmExclusionList" "vm1" "vm3" "vm5"
 : [, ,]"hvExclusionList" "hv2" "hv3" "hv6"
}

Sample Response

128

JSON Response

{
 : []"messages" "Policy auto-vm-migration updated"
}

Samples

Enable the Auto VM Migration Policy and set values.

PUT http://localhost/mws/rest/policies/auto-vm-migration

{
 : ,"state" "enabled"
 : ,"migrationAlgorithmType" "overcommit"
 : 0.5,"processorUtilizationThreshold"
 : 0.4"memoryUtilizationThreshold"
}

As noted in the documentation, if the is setAuto VM Migration API state
to ENABLED, then the must be set tomigrationAlgorithmType not
NONE.

Restrictions

All Policies

Fields cannot be modified while the policy is disabled. Enable the policy to modify the
field.

Auto VM Migration

Arbitrary metrics can be added to , but they cannot be removedgenericMetricThresholds
once added.
The field cannot be modified while the policy is disabled.migrationAlgorithmType
Enable the policy to modify the field.
Moab is configured with a default limit of 10 generic metrics. If this limit is reached, such
as when arbitrary metrics are added to , the metric will not begenericMetricThresholds
reported.

To increase this limit, set the property in the Moab configuration file.MAXGMETRIC

4.18 Principals
This section describes behavior of the object in Moab Web Services. It contains thePrincipal
URLs, request bodies, and responses delivered to and from Moab Web Services.

129

The contains the type and description of all fields in the Principal API
 object. It also contains details regarding which fields are validPrincipal

during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/principals Get All Principals
Create
Principal

/rest/principals/id
Get Specified
Principal

Modify
Principal

Delete
Principal

/rest/principals/
name

Get Specified
Principal

Modify
Principal

Delete
Principal

4.18.1 Getting Principals
The HTTP GET method is used to retrieve information. You can query all objects or aPrincipal
single object.

Quick Reference

GET http://localhost/mws/rest/principals[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]
GET http://localhost/mws/rest/principals/<id>
GET http://localhost/mws/rest/principals/<name>

4.18.1.1 Get All Principals

URLs and Parameters

GET http://localhost/mws/rest/principals[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]

Parameter Required
Valid
Values

Description Example

query No JSON Queries for specific results.
query={"name":"Acme
Principal"}

sort No JSON
Sort the results. Use for ascending1
and for descending.-1

sort={"name":-1}

It is possible to query principals by one or more fields based on .MongoDB query syntax

http://www.mongodb.org/display/DOCS/Advanced+Queries

130

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/principals?fields=name,description

{
 : 2,"totalCount"
 : 2,"resultCount"
 : ["results"
 {
 : [{"groups"
 : ,"name" "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev"
 : "type" "LDAPGROUP"
 }],
 : "name" "Engineering-Principal"
 },
 {
 : [{"groups"
 : ,"name" "CN=Marketing,CN=Users,DC=corp,DC=cloud,DC=dev"
 : "type" "LDAPGROUP"
 }],
 : "name" "Marketing-Principal"
 }
]
 }

Sorting and Querying

See the sorting and querying sections of .Global URL Parameters

4.18.1.2 Get Single Principal

URLs and Parameters

GET http://localhost/mws/rest/principals/<id>
GET http://localhost/mws/rest/principals/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Principal.

name Yes String - The name of the Principal.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specify both.id name

Sample Response

131

GET http://localhost/mws/rest/principals/principal8

{
 : [{"attachedRoles"
 : ,"description" "This is a role normal users in the Acme BU Group."for
 : ,"id" "5033b8eae4b09cc61bedb895"
 : ,"name" "Acme-User-Role"
 : ["permissions"
 {
 : ,"action" "read"
 : ,"description" "The permission to read all nodes"
 : ,"id" "5033b842e4b09cc61bedb818"
 : ,"label" ""
 : ,"resource" "nodes"
 : ,"resourceFilter" null
 : ,"type" "api"
 : 1"version"
 },
],
 : 2"version"
 }],
 : ,"description" "Principal 8"
 : [{"groups"
 : ,"name" "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev"
 : "type" "LDAPGROUP"
 }],
 : ,"id" "5033d33fe4b018b28745fecd"
 : ,"name" "principal8"
 : ["users"
 {
 : ,"name" "jhammon"
 : "type" "LDAP"
 },
 {
 : ,"name" "bjones"
 : "type" "LDAP"
 }
],
 : 0"version"
}

4.18.2 Creating Principals
The HTTP POST method is used to submit .Principals

Quick Reference

POST http://localhost/mws/rest/principals

4.18.2.1 Create Single Principal

URLs and Parameters

POST http://localhost/mws/rest/principals

See for available URL parameters.Global URL Parameters

Request Body

132

The field is required and must contain only letters, digits, periods,name
dashes, and underscores.
The field expects an array of Role IDs names:attachedRoles or

The following is an example request body to create a principal:

POST http://localhost/mws/rest/principals

{
 : ,"name" "Acme-Principal"
 : [{ : }],"attachedRoles" "name" "Acme-User-Role"
 : ,"description" "A cool principal"
 : [{ : , :"groups" "name" "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev" "type"

}],"LDAPGROUP"
 : [{"users"
 : ,"name" "john"
 : "type" "LDAP"
 }]
}

Sample Response

If the request was successful, the response body is the new principal that was created, exactly as
shown in . On failure, the response is an error message.Get Single Principal

4.18.3 Modifying Principals
The HTTP PUT method is used to modify .Principals

Quick Reference

PUT http://localhost/mws/rest/principals/<id>
PUT http://localhost/mws/rest/principals/<name>

4.18.3.1 Modify Single Principal
URLs and Parameters

PUT http://localhost/mws/rest/principal/<id>
PUT http://localhost/mws/rest/principal/<name>

133

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the Principal.

name Yes String - The name of the Principal.

change-mode Yes String add
Add the given objects (ldapGroups, ldapOUs, etc) to
the objects that already exist.

 remove
Delete the given objects from the objects that already
exist.

 set
Add the given objects (ldapGroups, ldapOUs, etc)
and remove the objects that already exist.

See for available URL parameters.Global URL Parameters

The change-mode is the default if no change-mode parameter isset
given.
You must specify either or , but you do not have to specifyid name
both.
The field must contain only letters, digits, periods, dashes, andname
underscores.
The field expects an array of Role IDs names:attachedRoles or

Example Request

PUT http://locahost/mws/rest/principals/Acme-Principal"

{
 : [{"groups"
 : ,"name" "CN=Marketing,CN=Users,DC=mycompany,DC=com"
 : "type" "LDAPGROUP"
 },{
 : ,"name" "CN=Sales,CN=Users,DC=mycompany,DC=com"
 : "type" "LDAPGROUP"
 }],
 : [{"users"
 : ,"name" "jhammon"
 : "type" "LDAP"
 }]
}

The field contains the current version of the database entry. Thisversion
field cannot be updated directly. However, if is included in theversion
modify request, it will be used to verify that another client did not update the
object between the time that the data was retrieved and the modify request
was delivered.

Sample Response

134

If the request was successful, the response body is the modified principal as shown in Get Single
. On failure, the response is an error message.Principal

4.18.4 Deleting Principals
The HTTP DELETE method is used to delete .Principals

Quick Reference

DELETE http://localhost/mws/rest/principals/<id>
DELETE http://localhost/mws/rest/principals/<name>

4.18.4.1 Delete Single Principal

URLs and Parameters

DELETE http://localhost/mws/rest/principal/<id>
DELETE http://localhost/mws/rest/principal/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Principal.

name Yes String - The name of the Principal.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{}

4.19 Quotes
This section describes behavior of the object in Moab Web Services. It contains theQuotes
URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of fields that all Quote API Quotes
have in common.

Supported Methods

135

Resource GET PUT POST DELETE

/rest/quotes/standard/quote Quoting resources

4.19.1 Quoting Resources

Quick Reference

POST http://localhost/mws/rest/quotes/standard/quote?object-type=<OBJECTTYPE>
&proxy-user= &charge-duration=<USER> <CHARGEDURATION>

4.19.1.1 Quote Single Job or Service

URLs and Parameters

POST http://localhost/mws/rest/quotes/standard/quote?object-type=<OBJECTTYPE>
&proxy-user= &charge-duration=<USER> <CHARGEDURATION>

Parameter Required Type
Valid
Values

Description

proxy-user Yes String

Perform
action as
defined
MAM user.

proxy-user=amy

charge-duration Yes Integer

The charge
duration of
the job in
seconds.

charge-duration=6400

object-type Yes String

The object to
quote. It can
be job or
service.

object-type=job

itemize No Boolean

Returns the
composite
charge
information
in the
response
data.

itemize=true

136

rate No JSONArray

Uses the
specified
charge rates
in the quote.
The specified
rates
override the
standard and
quote rates.
If the
guarantee
field is set to
true, these
charge rates
will be saved
and used
when this
quote is
referenced in
a charge
action.

rate=[{"type":"VBR","name":"Memory","rate":1},{"type":"VBR","name":"Processors","rate":1}]

guarantee No Boolean

Guarantees
the quote and
returns a
quote id to
secure the
current
charge rates.
This results
in the
creation of a
quote record
and a
permanent
usage record.
This
parameter is
mutually
exclusive
with the
cost-only
parameter.

guarantee=true

137

grace-duration No Integer

The
guaranteed
quote grace
period in
seconds. If
the quote
duration is
specified but
not the quote
end time, the
quote
endtime will
be calculated
as the quote
start time
plus the
quote
duration plus
the grace
duration.

grace-duration=6400

cost-only No Integer

Returns the
cost,
ignoring all
balance and
validity
checks. This
parameter is
mutually
exclusive
with the
guarantee
parameter.

cost-only=true

description No String

The
guaranteed
quote
description.

description="ABC Coupon Rate"

start-time No Date

The
guaranteed
quote start
time in the
format
yyyy-MM-dd
HH:mm:ss z,
-Infinity,
Infinity, or
Now.

start-time="2012-04-09 13:49:40 UTC"

138

end-time No Date

The
guaranteed
quote end
time in the
format
yyyy-MM-dd
HH:mm:ss z,
-Infinity,
Infinity, or
Now.

end-time="2012-04-09 14:49:40 UTC"

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all of the fields in a Job that could affect the quote.

POST http://localhost/mws/rest/quotes/standard/quote?object-type=job

{
 : ,"id" "Moab.1"
 : ,"user" "amy"
 : ,"group" "group"
 : ,"rmName" "machine1"
 : ["templateList"
 "genericVm"
],
 : ,"account" "biology"
 : ,"qosRequested" "QOS1"
 : {"variables"
 : ,"imageName" "centos5.5-stateless"
 : ,"topLevelServiceId" "myService.1"
 : ,"serviceId" "vmService.1"
 : ,"vmid" "VmService.1"
 : "pmid" "VmService.1"
 },
 : ["requirements"
 {
 : 2,"requiredProcessorsPerTask"
 : {"genericResources"
 : 100,"gold"
 : 500"os"
 },
 : 1,"requiredNodeCountMinimum"
 : 1024,"requiredMemoryPerTask"
 : "requiredClass" "batch"
 }
]
}

The request body below shows all of the fields in a Service that affect the quote in a default
MAM installation.

139

POST http://localhost/mws/rest/quotes/standard/quote?object-type=service

{
 : ,"name" "service.1"
 : ,"user" "amy"
 : "account" "chemistry"
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :1,"procs"
 :2048,"mem"
 :500,"OS"
 :100"gold"
 },
 :{"variables"
 : 1524"Var1"
 },
 : ,"image" "centos5.5-stateless"
 : ,"template" "genericVM"
 }
 }
 }
 }

Sample Responses

If the quote is not guaranteed

JSON Response

{
 : ,"instance" "Moab.1"
 : 600"amount"
}

If the quote is guaranteed

JSON Response

{
 : 1,"id"
 : 2,"usageRecord"
 : ,"instance" "Moab.1"
 : 600"amount"
}

If the quote is guaranteed and itemized

140

JSON Response

{
 : ["details"
 {
 : ,"name" "Processors"
 : ,"value" "2"
 : 300,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 600,"amount"
 : "details" "2 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 300 [Duration]"
 },
 {
 : ,"name" "Memory"
 : ,"value" "1024"
 : 300,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 307200,"amount"
 : "details" "1024 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 300 [Duration]"
 }
],
 : 20,"id"
 : ,"instance" "Moab.1"
 : 20,"usageRecord"
 : 307800"amount"
}

If the quote is on a service

141

JSON Response

{
 : ["services"
 {
 : ["details"
 {
 : ,"name" "Processors"
 : ,"value" "22"
 : 30,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 660,"amount"
 : "details" "22 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30
[Duration]"
 },
 {
 : ,"name" "Memory"
 : ,"value" "32343242"
 : 30,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 970297260,"amount"
 : "details" "32343242 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30 [Duration]"
 }
],
 : 120,"id"
 : ,"instance" "myVmWorkflow"
 : 157,"usageRecord"
 : 970297920"amount"
 },
 {
 : [{"details"
 : ,"name" "Storage"
 : ,"value" "2500"
 : 30,"duration"
 : 1.157E-7,"rate"
 : 1,"scalingFactor"
 : 0,"amount"
 : "details" "2500 [Storage] * 1.157e-07 [ChargeRate{VBR}{Storage}] * 30
[Duration]"
 }],
 : 122,"id"
 : ,"instance" "myExtraStorageWorkflow"
 : 159,"usageRecord"
 : 0"amount"
 },
 {
 : ["details"
 {
 : ,"name" "Processors"
 : ,"value" "0"
 : 30,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 0,"amount"
 : "details" "0 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30 [Duration]"
 },
 {
 : ,"name" "Memory"
 : ,"value" "0"
 : 30,"duration"
 : 1,"rate"
 : 1,"scalingFactor"
 : 0,"amount"
 : "details" "0 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30 [Duration]"
 }
],
 : 123,"id"
 : ,"instance" "myPmWorkflow"
 : 160,"usageRecord"
 : 0"amount"
 }
],
 : 970297920"amount"
}

Restrictions

The details field is only available with MAM version 7.1.0 or later.

142

4.20 Reports
This section describes behavior of the reporting framework in Moab Web Services. It contains
the URLs, request bodies, and responses delivered to and from Moab Web Services.

The , , and API contains the type and description ofReport Sample Datapoint
all fields in the , , and objects. They also containsReport Sample Datapoint
details regarding which fields are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/reports Get all reports Create Reports
Deleting
Reports

/rest/reports/name
Get single report with
data

/rest/reports/id
Get single report with
data

/rest/reports/name
/datapoints

Get datapoints for
report

/rest/reports/id
/datapoints

Get datapoints for
report

/rest/reports/name
/samples

Get samples for report
Create sample(s) for
report

/rest/reports/ /samplesid Get samples for report
Create sample(s) for
report

4.20.1 Getting Reports
The HTTP GET method is used to retrieve information. Queries for all reports with noReport
attached data and a single report with associated data are available.

Quick Reference

GET http://localhost/mws/rest/reports[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"
GET http://localhost/mws/rest/reports/<id>
GET http://localhost/mws/rest/reports/<name>

4.20.1.1 Get All Reports (No Data Included)

URLs and Parameters

GET http://localhost/mws/rest/reports[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

143

Parameter Required
Valid
Values

Description Example

query No JSON Queries for specific results. query={"reportSize":4}

sort No JSON
Sort the results. Use for ascending1
and for descending.-1

sort={"name":-1}

It is possible to query reports by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "3efe5c670be86ba8560397ff"
 : "name" "cpu-util"
 …
 }]
}

No datapoints are returned when querying for all reports. To view the
consolidated datapoints, the API call must be used.Get Single Report

Samples

GET http://localhost/mws/rest/reports?fields=id,name

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"id" "3efe5c670be86ba8560397ff"
 : "name" "cpu-util"
 },
 {
 : ,"id" "3efe5c670be86ba856039800"
 : "name" "cpu-temp"
 },
 {
 : ,"id" "3efe5c670be86ba856039801"
 : "name" "cpu-load"
 }
]
}

4.20.1.2 Get Single Report (Includes Data)

URLs and Parameters

http://www.mongodb.org/display/DOCS/Advanced+Queries

144

GET http://localhost/mws/rest/reports/<id>
GET http://localhost/mws/rest/reports/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

In the example below, the first datapoint has a data element, which means that the null
 configured for the report was not met when consolidating theminimumSampleSize

datapoint. The second datapoint contains actual data.

JSON Response

{
 : ,"consolidationFunction" "average"
 : 15,"datapointDuration"
 : ["datapoints"
 {
 : ,"endDate" "2011-12-02 17:28:22 UTC"
 : ,"startDate" "2011-12-02 17:28:22 UTC"
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : "data" null
 },
 {
 : ,"endDate" "2011-12-02 17:28:23 UTC"
 : ,"startDate" "2011-12-02 17:28:37 UTC"
 : ,"firstSampleDate" "2011-12-02 17:28:23 UTC"
 : ,"lastSampleDate" "2011-12-02 17:28:30 UTC"
 : {"data"
 : 99.89,"utilization"
 : 27.433333333333337"time"
 }
 }
],
 : ,"description" "Example of CPU utilization reporting"
 : ,"id" "3efe5c670be86ba8560397ff"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 2"reportSize"
}

4.20.1.3 Get Datapoints For Single Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /datapoints[?query={ : }&sort={<id> "field" "value"
:<1|-1>}]"field"

GET http://localhost/mws/rest/reports/ /datapoints[?query={ : }&sort={<name> "field" "value"
:<1|-1>}]"field"

145

Parameter Required Type Valid Values Description

id Yes String -
The unique identifier of
the report.

name Yes String - The name of the report.

query No JSON Queries for specific results. query={"data.test":true}

sort No JSON
Sort the results. Use for ascending1
and for descending.-1

sort={"startDate":-1}

It is possible to query datapoints by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

This function is exactly the same as requesting a with only the datapoints returned.single report
No report metadata (i.e. description, minimumSampleSize, etc.) is returned.

JSON Response

{
 :1,"resultCount"
 :1,"totalCount"
 :["results"
 {
 : ,"endDate" "2011-12-02 17:28:22 UTC"
 : ,"startDate" "2011-12-02 17:28:22 UTC"
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : "data" null
 },
 {
 : ,"endDate" "2011-12-02 17:28:37 UTC"
 : ,"startDate" "2011-12-02 17:28:37 UTC"
 : ,"firstSampleDate" "2011-12-02 17:28:23 UTC"
 : ,"lastSampleDate" "2011-12-02 17:28:23 UTC"
 : {"data"
 : 99.89,"utilization"
 : 27.433333333333337"time"
 }
 }
]
}

4.20.2 Getting Samples For Reports
The HTTP GET method is used to retrieve information.Sample

Quick Reference

GET http://localhost/mws/rest/reports/ /samples[?query={ : }&sort={<id> "field" "value"
:<1|-1>}]"field"

GET http://localhost/mws/rest/reports/ /samples[?query={ : }&sort={<name> "field" "value"
:<1|-1>}]"field"

http://www.mongodb.org/display/DOCS/Advanced+Queries

146

4.20.2.1 Get Samples For Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /samples[?query={ : }&sort={<id> "field" "value"
:<1|-1>}]"field"

GET http://localhost/mws/rest/reports/ /samples[?query={ : }&sort={<name> "field" "value"
:<1|-1>}]"field"

Parameter Required Type Valid Values Description

id Yes String -
The unique identifier of the
report.

name Yes String - The name of the report.

query No JSON Queries for specific results. query={"agent":"cpu-monitor"}

sort No JSON
Sort the results. Use for1
ascending and for-1
descending.

sort={"agent":-1}

It is possible to query samples by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : "timestamp" "2011-12-02 17:28:37 UTC"
 :{"data"
 :2.3,"cpu1"
 :1.2,"cpu2"
 :0.0,"cpu3"
 :12.1"cpu4"
 },
 …
 }]
}

4.20.3 Creating Reports
The HTTP POST method is used to create . Operations are available to create reportsReports
with or without historical datapoints.

Quick Reference

http://www.mongodb.org/display/DOCS/Advanced+Queries

147

POST http://localhost/mws/rest/reports

4.20.3.1 Create Report

URLs and Parameters

POST http://localhost/mws/rest/reports

See for available URL parameters.Global URL Parameters

Request Body

To create a report, several fields are required as documented in the .Report API

The request body below shows all the fields that are available during report creation.

JSON Request Body

{
 : ,"name" "cpu-util"
 : ,"description" "An example report on cpu utilization"
 : ,"consolidationFunction" "average"
 :15,"datapointDuration"
 :1,"minimumSampleSize"
 :2,"reportSize"
 : ,"keepSamples" true
 :["datapoints"
 {
 : ,"startDate" "2011-12-01 19:16:57 UTC"
 : ,"endDate" "2011-12-01 19:16:57 UTC"
 :{"data"
 :30,"time"
 :99.98"util"
 }
 }
]
}

Sample Response

{
 :[],"messages" "Report cpu-util created"
 : ,"id" "3efe5c670be86ba8560397ff"
 :"name" "cpu-util"
}

Samples

POST http://localhost/mws/rest/reports (Minimal report without datapoints)

{
 : ,"name" "cpu-util"
 :15,"datapointDuration"
 :2"reportSize"
}

148

4.20.4 Creating Samples
The HTTP POST method is used to create for Reports.Samples

Quick Reference

POST http://localhost/mws/rest/reports

4.20.4.1 Create Samples For Report

URLs and Parameters

GET http://localhost/mws/rest/reports/ /samples<id>
GET http://localhost/mws/rest/reports/ /samples<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Request Body

To create samples for a report, simply send data and an optional timestamp to the URL above.

The request body below shows all the fields that are available during sample creation. Note that
the field can contain arbitrary JSON.data

JSON Request Body

{
 : ,"timestamp" "2011-12-01 19:16:57 UTC"
 : ,"agent" "my agent"
 :{"data"
 :2.3,"cpu1"
 :1.2,"cpu2"
 :0.0,"cpu3"
 :12.1"cpu4"
 }
}

Sample Response

149

{ :[]}"messages" "1 sample(s) created report cpu-util"for

4.20.5 Deleting Reports
The HTTP DELETE method is used to delete .Reports

Quick Reference

DELETE http://localhost/mws/rest/reports/<id>
DELETE http://localhost/mws/rest/reports/<name>

4.20.5.1 Delete Report

URLs and Parameters

DELETE http://localhost/mws/rest/reports/<id>
DELETE http://localhost/mws/rest/reports/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the report.

name Yes String - The name of the report.

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{ :[]}"messages" "Report cpu-util deleted"

4.21 Reservations
This section describes behavior of the object in Moab Web Services. It contains theReservation
URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Reservation API
 object. It also contains details regarding which fields are validReservation

during PUT and POST actions.

150

Supported Methods

Resource GET PUT POST DELETE

/rest/reservations Get all reservations
Create
reservation

/rest/reservations/
id

Get specified
reservation

Modify
reservation

Release
reservation

4.21.1 Getting Reservations
The HTTP GET method is used to retrieve information. Queries for all objects andReservation
a single object are available.

Quick Reference

GET http://localhost/mws/rest/reservations/<id>

Restrictions

Only admin or user reservations are returned with this call.

4.21.1.1 Get All Reservations

URLs and Parameters

GET http://localhost/mws/rest/reservations

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/reservations?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "system.1"
 { : },"id" "system.2"
 { : }"id" "system.3"
]
}

4.21.1.2 Get Single Reservation

URLs and Parameters

151

GET http://localhost/mws/rest/reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

152

JSON Response

{
 : ,"accountingAccount" ""
 : ,"accountingGroup" ""
 : ,"accountingQOS" ""
 : ,"accountingUser" "root"
 : [{"aclRules"
 : ,"affinity" "NEUTRAL"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "RESERVATION_ID"
 : "value" "system.43"
 }],
 : 1,"allocatedNodeCount"
 : 8,"allocatedProcessorCount"
 : 1,"allocatedTaskCount"
 : ["allocatedNodes"
 { : }"id" "node001"
],
 : ,"comments" ""
 : ,"creationDate" null
 : 200000000,"duration"
 : ,"endDate" "2018-03-17 16:49:10 UTC"
 : ["excludeJobs"
 ,"job1"
 "job2"
],
 : ,"expireDate" null
 : ["flags"
 ,"REQFULL"
 ,"ISACTIVE"
 "ISCLOSED"
],
 : ,"globalId" ""
 : ,"hostListExpression" ""
 : ,"id" "system.43"
 : ,"idPrefix" ""
 : ,"isActive" true
 : ,"isTracked" false
 : ,"label" ""
 : 0,"maxTasks"
 : [],"messages"
 : {"owner"
 : ,"name" "adaptive"
 : "type" "USER"
 },
 : ,"partitionId" "switchB"
 : ,"profile" ""
 : {"requirements"
 : ,"architecture" ""
 : ["featureList"
 ,"feature1"
 "feature2"
],
 : ,"featureMode" ""
 : 0,"memory"
 : 0,"nodeCount"
 : [],"nodeIds" "node001:1"
 : ,"os" ""
 : 1"taskCount"
 },
 : ,"reservationGroup" ""
 : { : 0},"resources" "PROCS"
 : ,"startDate" "2011-11-14 20:15:50 UTC"
 : {"statistics"
 : 0,"caps"
 : 2659.52,"cips"
 : 0,"taps"
 : 0"tips"
 },
 : ,"subType" "Other"
 : 0,"taskCount"
 : ,"trigger" null
 : [],"triggerIds"
 : ,"uniqueIndex" ""
 : {}"variables"
}

4.21.2 Creating Reservations
The HTTP POST method is used to create .Reservations

153

Quick Reference

POST http://localhost/mws/rest/reservations

4.21.2.1 Create Reservation

URLs and Parameters

POST http://localhost/mws/rest/reservations

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when creating a Reservation,
along with some sample values.

154

JSON Request Body

{
 : ,"accountingAccount" ""
 : ,"accountingGroup" ""
 : ,"accountingQOS" ""
 : ,"accountingUser" "root"
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "GROUP"
 : "value" "staff"
 }],
 : ,"comments" ""
 : 200000000,"duration"
 : ,"endDate" "2018-03-17 16:49:10 UTC"
 : ["excludeJobs"
 ,"job1"
 "job2"
],
 : ["flags"
 ,"SPACEFLEX"
 ,"ACLOVERLAP"
 "SINGLEUSE"
],
 : ,"hostListExpression" ""
 : ,"idPrefix" ""
 : ,"label" "myreservation"
 : {"owner"
 : ,"name" "adaptive"
 : "type" "USER"
 },
 : ,"partitionId" ""
 : ,"profile" ""
 : {"requirements"
 : ,"architecture" ""
 : ["featureList"
 ,"feature1"
 "feature2"
],
 : 0,"memory"
 : ,"os" ""
 : 1"taskCount"
 },
 : ,"reservationGroup" ""
 : {"resources"
 : 2,"PROCS"
 : 1024,"MEM"
 : 1024,"DISK"
 : 1024,"SWAP"
 : 17,"other1"
 : 42"other2"
 },
 : ,"startDate" "2011-11-14 20:15:50 UTC"
 : ,"subType" "Other"
 : {"trigger"
 : ,"eventType" "START"
 : ,"actionType" "EXEC"
 :"action" "date"
 },
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

Create reservation if no conflicting reservations are found.

This is equivalent to mrsvctl -c -h node01 -E.

JSON Request Body

{
 : ["flags"
 "DEDICATEDRESOURCE"
],
 : "hostListExpression" "node01"
}

155

Sample Response

JSON Response for successful POST

{ : }"id" "system.44"

4.21.3 Modifying Reservations
The HTTP PUT method is used to modify .Reservations

Quick Reference

PUT http://localhost/mws/rest/reservations/ ?change-mode=<id> <add|remove|set>

4.21.3.1 Modify Reservation

URLs and Parameters

PUT http://localhost/mws/rest/reservations/ ?change-mode=<id> <add|remove|set>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

change-mode Yes String add
Add the given variables to the variables that
already exist.

 remove
Delete the given variables from the variables that
already exist.

 set
Replace all existing variables with the given
variables.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when modifying a Reservation,
along with some sample values.

JSON Request Body for Reservation Modify

{
 : {"variables"
 : ,"var1" "val1"
 : "var2" "val2"
 }
}

156

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "reservation 'system.43' attribute 'Variable' changed."

Restrictions

You can change the ACL Rules on a reservation, but not using this resource. See Create or
.Update ACLs

4.21.4 Releasing Reservations
The HTTP DELETE method is used to release .Reservations

Quick Reference

DELETE http://localhost/mws/rest/reservations/<id>

4.21.4.1 Release Reservation

URLs and Parameters

DELETE http://localhost/mws/rest/reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

4.22 Resource Types

157

This section describes behavior of the object in Moab Web Services. It containsResource Type
the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the ResourceType API
 object.Resource Type

Supported Methods

Resource GET PUT POST DELETE

/rest/resource-types Get all resource types

4.22.1 Getting Resource Types
The HTTP GET method is used to retrieve information.Resource Type

Quick Reference

GET http://localhost/mws/rest/resource-types

4.22.1.1 Get All Resource Types

URLs and Parameters

GET http://localhost/mws/rest/resource-types

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/resource-types?fields=id

{
 : 1,"totalCount"
 : 1,"resultCount"
 : ["results"
 { : }"id" "throttle_migrate"
]
}

4.23 Roles
This section describes behavior of the resource in Moab Web Services. The role resource isRole
used to control access to MWS resources based on the proxy-user. Each role is attached to a
principal and contains a list of proxy-user permissions that the group can use in MWS. This
section describes the URLs, request bodies, and responses delivered to and from Moab Web
Services.

158

The contains the type and description of all fields in the Role API Role
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/roles Get All Roles Create Role

/rest/roles/id Get Specified Role Modify Role Delete Role

/rest/roles/name Get Specified Role Modify Role Delete Role

4.23.1 Getting Roles
The HTTP GET method is used to retrieve information. You can query all objects or aRole
single object.

Quick Reference

GET http://localhost/mws/rest/roles[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"
GET http://localhost/mws/rest/roles/<id>
GET http://localhost/mws/rest/roles/<name>

4.23.1.1 Get All Roles

URLs and Parameters

GET http://localhost/mws/rest/roles[?query={ : }&sort={ :<1|-1>}]"field" "value" "field"

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for specific
results.

query={"name":"Acme-User-Role"}

sort No JSON
Sort the results. Use 1
for ascending and for-1
descending.

sort={"name":-1}

It is possible to query roles by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

http://www.mongodb.org/display/DOCS/Advanced+Queries

159

GET http://localhost/mws/rest/roles?fields=id,name

{
 : 1,"totalCount"
 : 1,"resultCount"
 : [{"results"
 : ,"id" "4fa197e68ca30fc605dd1cf0"
 : "name" "Acme-User-Role"
 }]
}

Sorting and Querying

See the sorting and querying sections of .Global URL Parameters

4.23.1.2 Get Single Role

URLs and Parameters

GET http://localhost/mws/rest/roles/<id>
GET http://localhost/mws/rest/roles/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Role.

name Yes String - The name of the Role.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specify both.id name

Sample Response

160

GET http://localhost/mws/rest/roles/Acme-User-Role

{
 : ,"description" "This is a role normal users in the Acme BU Group."for
 : ,"id" "5022e695e4b073f54e47c28d"
 : ,"name" "Acme-User-Role"
 : [{"permissions"
 : ,"action" "create"
 : ,"description" "The permission to create all charts."
 : ,"id" "5022e695e4b073f54e47c28e"
 : ,"label" "Create Chart"
 : ,"resource" "chart"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 0"version"
 }, {
 : ,"action" "read"
 : ,"description" "The permission to view all charts."
 : ,"id" "5022e695e4b073f54e47c28f"
 : ,"label" "View Chart"
 : ,"resource" "chart"
 : ,"resourceFilter" null
 : ,"type" "custom"
 : 0"version"
 }, {
 : ,"action" "update"
 : ,"description" "The permission to modify the africa chart."
 : ,"id" "5022e695e4b073f54e47c290"
 : ,"label" "Modify Africa Chart"
 : ,"resource" "chart"
 : {"resourceFilter"
 : "name" "africa"
 },
 : ,"type" "custom"
 : 0"version"
 }, {
 : ,"action" "read"
 : ,"description" "The permissions to view John's services."
 : ,"id" "5022e695e4b073f54e47c291"
 : ,"label" "Read John's services"
 : ,"resource" "services"
 : {"resourceFilter"
 :"user" "john"
 },
 : ,"type" "api"
 : 0"version"
 }],
 : 2"version"
}

4.23.2 Creating Roles
The HTTP POST method is used to submit .Roles

Quick Reference

POST http://localhost/mws/rest/roles

4.23.2.1 Create Single Role

URLs and Parameters

POST http://localhost/mws/rest/roles

See for available URL parameters.Global URL Parameters

Request Body

161

The field is required and must contain only letters, digits, periods,name
dashes, and underscores.

The following is an example of a request body to create a role:

POST http://localhost/mws/rest/roles

{
 : ,"name" "Acme-User-Role"
 : ,"description" "This is a role normal users in the Acme BU Group."for
 :"permissions"
 [
 {
 : "id" "4fa197e68ca30fc605dd1cf0"
 },
 {
 : "id" "4fa197e68ca30fc605dd1df2"
 }
]
}

Sample Response

If the request was successful, the response body is the new role that was created, exactly as
shown in . On failure, the response is an error message.Get Single Role

Samples

The field only expects an array of permission IDs, as shown in the followingpermissions
example:

Example payload of role with 2 permissions

{
 : ,"name" "Acme-User-Role"
 : ,"description" "This is a role normal users in the Acme BU Group."for
 :"permissions"
 [
 {
 : "id" "4fa197e68ca30fc605dd1cf0"
 }
]
}

4.23.3 Modifying Roles
The HTTP PUT method is used to modify .Roles

Quick Reference

PUT http://localhost/mws/rest/roles/<id>
PUT http://localhost/mws/rest/roles/<name>

4.23.3.1 Modify Single Role

URLs and Parameters

162

PUT http://localhost/mws/rest/role/<id>
PUT http://localhost/mws/rest/role/<name>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the Role.

name Yes String - The name of the Role.

change-mode No String add
Adds the given permissions to the permissions that
already exist.

 remove
Deletes the given permissions from the permissions
that already exist.

 set
Adds the given permissions and deletes the
permissions that already exist.

If you do not specify a change-mode value, the system automatically
assumes as the default.set
You must specify either or , but you do not have to specifyid name
both.
The field must contain only letters, digits, periods, dashes, andname
underscores.

See for available URL parameters.Global URL Parameters

Example Request

PUT http://locahost/mws/rest/role/Acme-User-Role?change-mode=add

{
 :[{ : }]"permissions" "id" "4fa197e68ca30fc605dd1cf0"
}

Sample Response

If the request was successful, the response body is the modified role as shown in Get Single Role
. On failure, the response is an error message.

4.23.4 Deleting Roles
The HTTP DELETE method is used to delete .Roles

Quick Reference

163

DELETE http://localhost/mws/rest/roles/<id>
DELETE http://localhost/mws/rest/roles/<name>

4.23.4.1 Delete Single Role

URLs and Parameters

DELETE http://localhost/mws/rest/role/<id>
DELETE http://localhost/mws/rest/role/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Role.

name Yes String - The name of the Role.

See for available URL parameters.Global URL Parameters

You must specify either or , but you do not have to specify both.id name

Sample Response

JSON Response

{}

4.24 Services
This section describes the behavior of a (an interdependent collection of workflows). ItService
is possible for a to be composed of multiple Services. This section describes the URLs,Service
request bodys, and responses delivered to and from Moab Web Services for each approach.

The contains the type and description of all fields in the Service API Service
object. It also contains details regarding which fields are valid during PUT
and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/services Get all Services Create Service

/rest/services/id Get specified Service Modify Service Delete Service

164

4.24.1 Getting Service Information
The HTTP GET method is used to retrieve information. Queries for all objects and aService
single object are available.

Quick Reference

GET http://localhost/mws/rest/services[?query={ : }&sort={"field" "value" "field"
:<1|-1>}[&[show-recursive-vc|show-vc]=true]]
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<id>
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<name>

4.24.1.1 Get All Services

URLs and Parameters

GET http://localhost/mws/rest/services[?query={ : }&sort={"field" "value" "field"
:<1|-1>}[&[show-recursive-vc|show-vc]=true]]

165

Parameter Required
Valid
Values

Description Example

query No JSON
Query for
specific
results.

query={"type":"storage","label":"exlabel"}

sort No JSON

Sort the
results. Use

 for1
ascending
and for-1
descending.

sort={"account":-1}

show-recursive-vc No true

Show
extended
details
about the
service's
virtual
container
including
nested
virtual
containers
and nested
jobs.

show-recursive-vc=true

show-vc No true

Show
details
about the
service's
virtual
container.

show-vc=true

Sample Response

GET http://localhost:8080/mws/rest/services?query={user:"bob"}

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"dateCreated" "2011-12-07 16:03:40 UTC"
 : ,"lastUpdated" "2011-12-07 16:03:40 UTC"

: ,"name" "bobService.1"
 : 1,"version"
 : ,"type" "container"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"startDateRequested" "2012-14-10 20:51:07 UTC"
 : ,"startDateScheduled" "2012-14-10 20:51:07 UTC"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : ["includedServices"
 ,"machine0.1"
 "OSStoremachine0.1"
],
 : ,"parent" null
 : {"serviceTemplate"

166

 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54112"
 : "name" "CentosVmPlusStorage"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc56"
 : [{"dependencies"
 : ,"service" "machine0.1"
 : []"dependency" "OSStoremachine0.1"
 }]
 }},
 : "id" "4edff0cc6852f709fa777826"
 },
 {
 : ,"dateCreated" "2011-12-07 16:03:40 UTC"
 : ,"lastUpdated" "2011-12-07 16:03:40 UTC"
 : ,"name" "machine0.1"
 : 1,"version"
 : ,"type" "vm"
 : ,"label" "bobs machine"
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"startDateRequested" "2012-14-10 20:51:07 UTC"
 : ,"startDateScheduled" "2012-14-10 20:51:07 UTC"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : [],"includedServices"
 : ,"parent" "bobService.1"
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54113"
 : "name" "CentosVm"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc57"
 : {"job"
 : ,"id" "Moab.24"
 : ,"template" "genericVM"
 : ,"image" "centos5.5-stateless"
 : [],"features" "vlan3"
 : { : },"variables" "QOS" "High"
 : {"resources"
 : 2,"mem"
 : 2,"procs"
 : 2"disk"
 }
 }
 }},
 : "id" "4edff0cc6852f709fa777827"
 },
 {
 : ,"dateCreated" "2011-12-07 16:03:40 UTC"
 : ,"lastUpdated" "2011-12-07 16:03:40 UTC"
 : ,"name" "OSStoremachine0.1"
 : 1,"version"
 : ,"type" "storage"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"startDateRequested" "2012-14-10 20:51:07 UTC"
 : ,"startDateScheduled" "2012-14-10 20:51:07 UTC"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : [],"includedServices"
 : ,"parent" "bobService.1"
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54114"
 : "name" "OpSysStorage"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc58"
 : {"job"
 : ,"id" "Moab.23"
 : ,"template" "OSStorage"
 : { : 200}"resources" "OS"
 }
 }},
 : "id" "4edff0cc6852f709fa777828"

167

 }
]
}

Querying Services

It is possible to query services by one or more fields based on .MongoDB query syntax

Simple Queries

To see only services that are associated with the user "bob" you can use a query such as the
following:

http://localhost/mws/rest/services?query={ : }"user" "bob"

To see only services that are of type "vm":

http://localhost/mws/rest/services?query={ : }"type" "vm"

To see only bob's vm services:

http://localhost/mws/rest/services?query={ : , : }"user" "bob" "type" "vm"

To see only services that are NOT associated with bob:

http://localhost/mws/rest/services?query={ :{ : }}"user" "$ne" "bob"

More Complex Queries

When the field values of the desired services are a finite set, you can use the operator. For$in
example, to see services that belong to either bob, alice, or charlie, you can do the following:

http://localhost/mws/rest/services?query={ :{ :[, ,]}}"user" "$in" "alice" "bob" "charlie"

You can also query on embedded JSON objects within the service JSON. For example, to see
services requesting 3 processors you can use:

http://localhost/mws/rest/services?query={ :3}"attributes.moab.job.resources.procs"

Conditional Operators

You can perform , , , comparisons using the , , , operators.< <= > >= $lt $lte $gt $gte

http://www.mongodb.org/display/DOCS/Advanced+Queries

168

Operator Comparison

$lt <

$lte <=

$gt >

$gte >=

To see services requesting 2 processors:<

http://localhost/mws/rest/services?query={ :{"attributes.moab.job.resources.procs" "$lt"
:2}}

To see services requesting 1024 memory:>=

http://localhost/mws/rest/services?query={ :{"attributes.moab.job.resources.mem" "$gte"
:1024}}

Querying Services by Date

To see all services created after February 8, 2012 at 1:00 PM Mountain Standard Time (MST):

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$gt" "2012-02-08 13:00:00
}}MST"

To see services created before or on February 8, 2012 at 1:00 PM Pacific Standard Time (PST):

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$lte" "2012-02-08 13:00:00
}}PST"

To see services created between 12:00 PM and 1:00 PM Eastern Standard Time (EST) on
February 8, 2012:

http://localhost/mws/rest/services?query={ :{ :"dateCreated" "$lte" "2012-02-08 13:00:00
, : }}EST" "$gte" "2012-02-08 12:00:00 EST"

Querying Services by Containing Service

Services can contain other services. When a service is contained within another service, you can
find out what its container is by looking at the parent field. A service that is not contained in any
other service is called a top level service. If you want to see only top level services you need to
query for services with a null parent.

In MongoDB syntax you query for services whose parent field have a of (with 10$type 10
representing null). The following query shows all of bob's top level services:

169

http://localhost/mws/rest/services?query={ : , :{ :10}}"user" "bob" "parent" "$type"

Once you have the top level service, you can find the direct child services:

http://localhost/mws/rest/services?query={ : , : }"user" "bob" "parent" "bobService.1"

Once you have the direct children, you can find the children of those children with a similar
query.

Sorting

See the sorting section of Global URL Parameters

Limiting the Number of Results

If you want to limit the number of results of services you can use the parameter. Formax
example, to see only 10 of bob's services:

http://localhost/mws/rest/services?query={ : }&sort={ :1}&max=10"user" "bob" "name"

To see bob's services 91-100 when sorted by name in ascending order you can combine max
with as follows:offset

http://localhost/mws/rest/services?query={ : }&sort={"user" "bob" "name"
:1}&max=10&offset=90

Retrieving a Subset of Fields

To cause only certain fields to return for each service, use the parameter. For example,fields
to show only the name field for each service:

http://localhost/mws/rest/services?fields=name

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "aliceService.1"
 { : },"name" "machine0.1"
 { : }"name" "OSStoremachine0.1"
]
}

To show the name, type, and user:

170

http://localhost/mws/rest/services?fields=name,type,user

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"name" "aliceService.1"
 : ,"type" "container"
 : "user" "alice"
 },
 {
 : ,"name" "machine0.1"
 : ,"type" "vm"
 : "user" "alice"
 },
 {
 : ,"name" "OSStoremachine0.1"
 : ,"type" "storage"
 : "user" "alice"
 }
]
}

4.24.1.2 Get Single Service

URLs and Parameters

GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<id>
GET http://localhost/mws/rest/services/ [?[show-recursive-vc|show-vc]=true]<name>

Parameter Required
Valid
Values

Description Example

id Yes String
The unique identifier of the
service.

name Yes String The name of the service.

show-recursive-vc No true

Show extended details about
the service's virtual container
including nested virtual
containers and nested jobs.

show-recursive-vc=true

show-vc No true
Show details about the
service's virtual container.

show-vc=true

Parameter Required Type Valid Values Description

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

171

Samples

GET http://localhost/mws/rest/services/bobService.1?

{
 : ,"dateCreated" "2011-12-07 16:03:40 UTC"
 : ,"lastUpdated" "2011-12-07 16:03:40 UTC"
 : ,"name" "bobService.1"
 : 1,"version"
 : ,"type" "container"
 : ,"label" null
 : ,"user" "bob"
 : ,"account" "bamboo"
 : ,"startDateRequested" "2012-14-10 20:51:07 UTC"
 : ,"startDateScheduled" "2012-14-10 20:51:07 UTC"
 : 86400,"durationRequested"
 : ,"status" "A custom status message"
 : 0,"statusCode"
 : ["includedServices"
 ,"machine0.1"
 "OSStoremachine0.1"
],
 : ,"parent" null
 : {"serviceTemplate"
 : ,"id" "4fbd42cfc4aa4c444cc54112"
 : "name" "CentosVmPlusStorage"
 },
 : { : {"attributes" "moab"
 : { : },"vc" "id" "vc56"
 : [{"dependencies"
 : ,"service" "machine0.1"
 : []"dependency" "OSStoremachine0.1"
 }]
 }},
 : "id" "4edff0cc6852f709fa777826"
}

4.24.2 Creating Services
The HTTP POST method is used to create a .Service

Quick Reference

POST http://localhost/mws/rest/services

4.24.2.1 Create Service From Service Template

URLs and Parameters

POST http://localhost/mws/rest/services[?proxy-user=bob]

Parameter Required
Valid
Values

Description Example

proxy-user No String
The name of the user creating the
service.

proxy-user=bob

Simple Case

172

To create a service from the template named "Rhel54VmPlusStorage":

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ,"startDateRequested" "2011-11-08 13:18:47 MST"
 : 86400,"durationRequested"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : ,"serviceTemplate" "Rhel54VmPlusStorage"
 }
]
}

Alternatively you can submit:

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : {"serviceTemplate"
 :"name" "Rhel54VmPlusStorage"
 }
 }
]
}

To create a service based on the service template with id "4fbd2d90c4aa4996400bsa5m"

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : {"serviceTemplate"
 :"id" "4fbd2d90c4aa4996400bsa5m"
 }
 }
]
}

Extending a Service Template

If you want to create a service from a service template, but wish to extend the service template
with some additional variables or generic resources, you can use the field. Extending aextends
service template is also helpful when you wish to override certain values, such as the amount of
memory or processors the service requires.

To extend a service template, you will need to determine the extends path for the service you
wish to override. The extends path is the name of the top level service, followed by one or more
localNames as described in the includedServices field. All but the last <localName> are nested
containers inside the top level container. For example:

173

<top level service name>:: [:]+<localName> <localName>

For example, suppose you want to create a new service from the "Rhel54VmPlusStorage"
service template, and you want to name this new service "MyRhel54VmPlusStorage". In this
example, "Rhel54VmPlusStorage" contains a service template named "SubContainer1". The
localName for "SubContainer1" in the "Rhel54VmPlusStorage" field is "sc1".includedServices

Rhel54VmPlusStorage Service Template

{
 : ,"name" "Rhel54VmPlusStorage"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "sc1"
 :"serviceTemplate" "SubContainer1"
 }
]
}

The extends path for the instance of "SubContainer1" in your "MyRhel54VmPlusStorage" is:

MyRhel54VmPlusStorage::sc1

Let's say inside "SubContainer1" is another service template called "SubContainer2". The
localName for "SubContainer2" as defined in the includedServices field for "SubContainer1" is
"sc2".

SubContainer1 Service Template

{
 : ,"name" "SubContainer1"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "sc2"
 :"serviceTemplate" "SubContainer2"
 }
]
}

The extends path for the instance of "SubContainer2" in "MyRhel54VmPlusStorage" is:

MyRhel54VmPlusStorage::sc1:sc2

Now let's say that "SubContainer2" contains two service templates, "Rhel54Vm" and
"OpsysStorage" with localNames "rvm" and "oss" respectively.

174

SubContainer1 Service Template

{
 : ,"name" "SubContainer2"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "rvm"
 :"serviceTemplate" "Rhel54Vm"
 },
 {
 : ,"localName" "oss"
 :"serviceTemplate" "OpSysStorage"
 }
]
}

The extends paths for the instances of "Rhel54VM" and "OpSysStorage" in
"MyRhel54VmPlusStorage" are:

MyRhel54VmPlusStorage::sc1:sc2:rvm
MyRhel54VmPlusStorage::sc1:sc2:oss

Now that we have the extends paths for all the services that will be created from the
"Rhel54VmPlusStorage" template, we can add variables to these services that were not in the
service templates.

POST http://localhost/mws/rest/services

{
 : ,"user" "steve"
 : ,"account" "cloud"
 : ["data"
 {
 : ,"name" "MyRhel54VmPlusStorage"
 : ,"serviceTemplate" "Rhel54VmPlusStorage"
 : {"attributes"
 :{ :"sharedData" "extraAttribute" "some attribute not in the Rhel54VmPlusStorage

 }template"
 }
 },
 {
 : ,"name" "MyRhel54Vm"
 : ," "extends "MyRhel54VmPlusStorage::sc1:sc2:rvm"
 : {"attributes"
 : { : { : { : "moab" "job" "variables" "extraVar" "An additional variable not in the

}}},Rhel54Vm template"
 :{ :"sharedData" "extraAttribute" "some attribute not in the Rhel54Vm template"
}
 }

},
 {
 : ,"name" "MyOsStorage"
 : ," "extends "MyRhel54VmPlusStorage::sc1:sc2:oss"
 : {"attributes"
 : { : { : { : "moab" "job" "variables" "extraVar2" "An additional variable not in

}}},the OpSysStorage template"
 :{ :"sharedData" "extraAttribute" "some attribute not in the OpSysStorage

 } template"
 }
 }
]
}

175

When the "MyRhel54Vm" service is created, it will have a variable named "extraVar" even
though this variable was not defined in the "Rhel54Vm" service template. Likewise, when the
"MyOsStorage" service is created, it will have a variable named "extraVar2", even though no
such variable was defined in the "OsStorage" service template. All three services will have an
attribute named "extraAttribute" in their attributes.sharedData sections though "extraAttribute"
does not appear in any service template.

Extending Services and Dependencies in a Container Service

To add a services to a container service that were not in the container's service template you first
define the new services in the service request. Then you extend the includedServices field of the
container with the newly defined services. This will add the new services to any that are already
in the container as defined in the service template. It is only possible to add services to a
container. It is not possible to remove services from a container that were defined in the
container's service template.

For example, say the CentosVmPlusStorage service template contains an OpSysStorage service
template and a CentosVm service template.

CentosVmPlusStorage Service Template

{
 : ,"name" "CentosVmPlusStorage"
 : ,"type" "container"
 …
 :["includedServices"
 {
 : ,"localName" "oss"
 :"serviceTemplate" "OpSysStorage"
 },
 {
 : ,"localName" "cvm"
 :"serviceTemplate" "CentosVm"
 }
]
}

To add two storage services to the service created from the CentosVmPlusStorage service
template submit the following service request:

POST http://localhost/mws/rest/services

{
 : ,"user" "bob"
 : ,"account" "cloud"
 :["data"
 {
 : ,"name" "BobsCentosVmPlusStorage"
 : ,"serviceTemplate" "CentosVmPlusStorage"
 :["includedServices"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
]
 },
 {
 : ,"name" "NewStorageToAdd1"
 :"serviceTemplate" "ExtraStorage"
 },
 {
 : ,"name" "NewStorageToAdd2"
 :"serviceTemplate" "ExtraStorage"
 }
]
}

176

The resulting service BobsCentosVmPlusStorage will contain NewStorageToAdd1,
NewStorageToAdd2, a service created from the OpSysStorage template, and a service created
from the CentosVm template. To add a dependency such that the CentosVm service will not be
able to start until both NewStorageToAdd1 and NewStorageToAdd2 have been set up:

POST http://localhost/mws/rest/services

{
 : ,"user" "bob"
 : ,"account" "cloud"
 :["data"
 {
 : ,"name" "BobsCentosVmPlusStorage"
 : ,"serviceTemplate" "CentosVmPlusStorage"
 :["includedServices"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 : ,"service" "BobsCentosVm"
 :["dependency"
 ,"NewStorageToAdd1"
 "NewStorageToAdd2"
]
 }
]
 }
 }
 },
 {
 : ,"name" "BobsCentosVm"
 :" "extends "CentosVmPlusStorage:cvm"
 },
 {
 : ,"name" "NewStorageToAdd1"
 :"serviceTemplate" "ExtraStorage"
 },
 {
 : ,"name" "NewStorageToAdd2"
 :"serviceTemplate" "ExtraStorage"
 }
]
}

Extendable Fields

You can only extend certain fields. Below is a table of fields that can be extended:

177

Extendable Fields Notes

attributes.moab.dependencies
Dependencies can be added but not removed. Only
applicable to containers.

attributes.moab.job.features Features can be added but not removed.

attributes.moab.job.requestedHosts Hosts can be added but not removed.

attributes.moab.job.resources Including procs, mem, disk, and any generic resource.

attributes.moab.job.variables
Can either change the value of variables in the template or
add new variables.

attributes.sharedData A place for arbitrary, site-specific data.

image

includedServices
Services can be added but not removed. Only applicable to
containers.

label

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{ : }"name" "MyRhel54VmPlusStorage.1"

4.24.2.2 Create Custom Service

URLs and Parameters

POST http://localhost/mws/rest/services[?proxy-user=bob]

Parameter Required
Valid
Values

Description Example

proxy-user No String
The name of the user creating the
service.

proxy-user=bob

Request Body

The payload below shows all the fields that are available during service submission.

POST http://localhost/mws/rest/services

178

{
 : ,"user" "adaptive"
 : ,"account" "cloud"
 : ,"startDateRequested" "2011-11-08 13:18:47 MST"
 : 86400,"durationRequested"
 :["data"
 {
 : ,"name" "myNewService"
 : ,"type" "container"
 : ,"label" "My New Service"
 :["includedServices"
 ,"myVmContainer"
 ,"myNetworkStorageWorkflow"
 "myPmContainer"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 :["dependency"
 "myNetworkStorageWorkflow"
],
 :"service" "myVmWorkflow"
 }
]
 },
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 :"extraAttribute2" "Another arbitrary value"
 }
 }
 },
 {
 : ,"name" "myVmContainer"
 : ,"type" "container"
 :["includedServices"
 ,"myVmWorkflow"
 "myOsStorageWorkflow"
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 :["dependency"
 "myOsStorageWorkflow"
],
 :"service" "myVmWorkflow"
 }
]
 }
 }
 },
 {
 : ,"name" "myVmWorkflow"
 : ,"type" "vm"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :2,"procs"
 :2048,"mem"
 :80"disk"
 },
 :{"variables"
 :"QOS" "Premium"
 },
 : ,"image" "centos5.5-stateless"
 : ,"template" "genericVM"
 :[],"requestedHosts" "i16"
 :[]"features" "vlan3"
 }
 }
 }
 },
 {
 : ,"name" "myOsStorageWorkflow"
 : ,"type" "storage"
 :["includedServices"

179

],
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"template" "OSStorage"
 :{"resources"
 :2500"OS"
 }
 }
 }
 }
 },
 {
 : ,"name" "myNetworkStorageWorkflow"
 : ,"type" "storage"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"template" "extraStorage"
 :{"resources"
 :500"gold"
 },
 :{"variables"
 :"mount" "/path/to/mount"
 }
 }
 }
 }
 },
 {
 : ,"name" "myPmContainer"
 : ,"type" "container"
 :["includedServices"
 "myPmWorkflow"
]
 },
 {
 : ,"name" "myPmWorkflow"
 : ,"type" "pm"
 :["includedServices"

],
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :2, "procs"
 :2048,"mem"
 :100"disk"
 },
 :{"variables"
 :"QOS" "Premium"
 },
 : ,"image" "centos5.5-stateless"
 :"template" "genericPM"
 }
 }
 }
 }
]
}

Sample Response

If the request was successful, the response includes the unique ID of the new Service. On failure,
the response is an error message.

JSON Response

{ : }"name" "myNewService.1"

4.24.3 Modifying Services
The HTTP PUT method is used to modify .Services

180

Quick Reference

PUT http://localhost/mws/rest/services/<id>
PUT http://localhost/mws/rest/services/<name>

4.24.3.1 Modify Service

URLs and Parameters

PUT http://localhost/mws/rest/services/<id>
PUT http://localhost/mws/rest/services/<name>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the Service.

name Yes String - The name of the Service .

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Example Request

Only the , , and fields may be modified in services. Noteattributes status statusCode
that the field must be a valid string, and the field must be a validstatus statusCode
number (long). Any arbitrary string and number may be used to represent the current state of the
service through and respectively.status statusCode

PUT http://localhost:8080/mws/rest/services/myStorageService

{
 : ,"status" "Done provisioning!"
 : 200,"statusCode"
 : {"attributes"
 : ,"mount" "/mnt/myMount"
 : ,"size" "2500"
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 : "extraAttribute2" "Another arbitrary value"
 }
 }
}

The element of attributes cannot be modified. An error will be returnedmoab
if this is attempted.

Sample Response

181

JSON Response

{
 : ,"name" "myStorageService"
 : ,"dateCreated" "2012-02-01 14:54:52 UTC"
 : ,"lastUpdated" "2012-02-01 14:54:52 UTC"
 : ,"type" "storage"
 : ,"label" null
 : ,"user" "john"
 : ,"account" "corp"
 : ,"status" "Done provisioning!"
 : 200,"statusCode"
 : [],"includedServices"
 : ,"parent" "myVmWithStorage"
 : {"attributes"
 : {"moab"
 : {"vc "
 : "id" "vc3"
 },
 : {"job"
 : ,"id" "Moab.1"
 : ,"template" "extraStorage"
 : {"resources"
 : 2500"gold"
 }
 }
 },
 :{"sharedData"
 : ,"extraAttribute" "Some arbitrary value"
 : "extraAttribute2" "Another arbitrary value"
 },
 : ,"mount" "/mnt/myMount"
 : "size" "2500"
 },
 : "id" "4f29b4abe4b03c2f8e3a1a40"
}

4.24.4 Deleting Services
The HTTP DELETE method is used to delete .Services

Quick Reference

DELETE http://localhost/mws/rest/services/<id>
DELETE http://localhost/mws/rest/services/<name>

4.24.4.1 Delete Service

URLs and Parameters

DELETE http://localhost/mws/rest/services/ [?proxy-user=bob]<id>
DELETE http://localhost/mws/rest/services/ [?proxy-user=bob]<name>

182

Parameter Required Type Valid Values Description

force-delete No Boolean -
If true MWS will not check service
dependencies before deleting it.

id Yes String - The unique identifier of the Service.

name Yes String - The name of the Service.

proxy-user No String
The name of the user
deleting the service.

proxy-user=bob

See for available URL parameters.Global URL Parameters

Only one of or are required.id name

Sample Response

JSON Response

{}

4.25 Service Templates
This section describes the behavior of the object in Moab Web Services. ItService Template
contains the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields inService Template API
the object. It also contains details regarding which fieldsServiceTemplate
are valid during PUT and POST actions.

See to create Services from ServiceCreate Service From Service Template
Templates.

The Service Template name has the following constraints:

It must contain only letters, digits, spaces, and these special characters:
underscore, comma, hyphen, period, question mark, at sign, tilde, pound
sign, square brackets, angle brackets, vertical bar, equals sign,
ampersand, parentheses, asterisk, curly braces, grave accent, and dollar
sign.
It cannot have the same form as a MongoDB ID (24 characters of 0-9
and a-f)
It must be unique in the database.

183

Supported Methods

Resource GET PUT POST DELETE

/rest/service-templates
Get all Service
Templates

Create
ServiceTemplate

/rest/service-templates/
id or name

Get specified
Service Template

Modify
ServiceTemplate

Cancel
Service
Template

4.25.1 Getting Service Templates
The HTTP GET method is used to retrieve information. Queries for allService Template
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/service-templates[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]
GET http://localhost/mws/rest/service-templates/<id>
GET http://localhost/mws/rest/service-templates/<name>

4.25.1.1 Get All Service Templates

URLs and Parameters

GET http://localhost/mws/rest/service-templates[?query={ : }&sort={"field" "value" "field"
:<1|-1>}]

Parameter Required
Valid
Values

Description Example

query No JSON
Query for specific
results.

query={"type":"vm","createdBy":"name"}

sort No JSON

Sort the results.
Use for1
ascending and -1
for descending.

sort={"name":1}

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response

{
 : 4,"totalCount"
 : 4,"resultCount"

184

 : ["results"
 {
 : {"attributes"
 : { : {"moab" "job"
 : { : 100},"resources" "OS"
 : ,"template" "OSStorage"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : [],"includedServices"
 : ,"label" "Operating Storage"System
 : ,"modified" null
 : ,"name" "OpSysStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "storage"
 : 0,"version"
 : "id" "50d4da1ac4aaceecaf386452"
 },
 {
 : {"attributes"
 : { : {"moab" "job"
 : { : 100},"resources" "gold"
 : ,"template" "extraStorage"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : [],"includedServices"
 : ,"label" "Network Storage"
 : ,"modified" null
 : ,"name" "NetworkStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "storage"
 : 0,"version"
 : "id" "50d4da1ac4aaceecaf386453"
 },
 {
 : {"attributes"
 : { : {"moab" "job"
 : ,"image" "centos5.5-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 20480"disk"
 },
 : ,"template" "genericVM"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : [],"includedServices"
 : ,"label" "Centos 5.5 VM"
 : ,"modified" null
 : ,"name" "Centos55Vm"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "vm"
 : 0,"version"
 : "id" "50d4da1ac4aaceecaf386454"
 },
 {
 : {"attributes"
 : { : [{"moab" "dependencies"
 : ["dependency"
 ,"oss"
 "ns"
],

185

 : "localName" "cvm"
 }]},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : ["includedServices"
 {
 : ,"localName" "cvm"
 : "serviceTemplate" "Centos55Vm"
 },
 {
 : ,"localName" "oss"
 : "serviceTemplate" "OpSysStorage"
 },
 {
 : ,"localName" "ns"
 : "serviceTemplate" "NetworkStorage"
 }
],
 : ,"label" "Centos 5.5 VM Plus OS and Network Storage"
 : ,"modified" null
 : ,"name" "Centos55VmPlusStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "container"
 : 0,"version"
 : "id" "50d4da1ac4aaceecaf386455"

186

 }
]
}

Querying Service Templates

It is possible to query service templates by one or more fields based on the MongoDB query
.syntax

Simple Queries

To see only service templates that are associated with the user "bob", use a query like the
following:

http://localhost/mws/rest/service-templates?query={ : }"user" "bob"

To see only service templates that are of type "vm":

http://localhost/mws/rest/service-templates?query={ : }"type" "vm"

To see only bob's vm service templates:

http://localhost/mws/rest/service-templates?query={ : , : }"user" "bob" "type" "vm"

To see only service templates that are NOT associated with bob:

http://localhost/mws/rest/service-templates?query={ :{ : }}"user" "$ne" "bob"

More Complex Queries

When the field values of the desired service templates are a finite set, use the operator. For$in
example, to see service templates that belong to either bob, alice, or charlie, do the following:

http://localhost/mws/rest/service-templates?query={ :{ :[, ,"user" "$in" "alice" "bob"
]}}"charlie"

You can also query on embedded JSON objects within the service template JSON. For example,
to see service templates requesting 3 processors, do the following:

http://localhost/mws/rest/service-templates?query={
:3}"attributes.moab.job.resources.procs"

Conditional Operators

http://www.mongodb.org/display/DOCS/Advanced+Queries
http://www.mongodb.org/display/DOCS/Advanced+Queries

187

You can perform , , , comparisons using the , , , operators.< <= > >= $lt $lte $gt $gte

Operator Comparison

$lt <

$lte <=

$gt >

$gte >=

To see service templates requesting < 2 processors:

http://localhost/mws/rest/service-templates?query={
:{ :2}}"attributes.moab.job.resources.procs" "$lt"

To see service templates requesting >= 1024 memory:

http://localhost/mws/rest/service-templates?query={"attributes.moab.job.resources.mem"
:{ :1024}}"$gte"

Querying Service Templates by Date

To see all service templates modified after July 4, 2011 at 10:30:00 PM Mountain Standard Time
(MST):

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$gt" "2011-07-04
}}22:30:00 MST"

To see service templates modified before July 6, 2011 at 12:00 AM Pacific Standard Time
(PST):

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$lt" "2011-07-06
}}00:00:00 PST"

To see service templates modified between 12:00 AM and 11:59 PM (inclusive) Eastern
Standard Time (EST) on July 5, 2011

http://localhost/mws/rest/service-templates?query={ :{ :"modified" "$gte" "2011-07-05
, : }}00:00:00 EST" "$lte" "2011-07-05 23:59:00 EST"

Sorting

See the sorting section in .Global URL Parameters

Limiting the Number of Results

188

To limit the size of the result set, use the parameter. For example, to see only 10 of bob'smax
services:

http://localhost/mws/rest/service-templates?query={ : }&sort={ :1}&max=10"user" "bob" "name"

To see bob's service templates 91-100 when sorted by name in ascending order, combine max
with as follows:offset

http://localhost/mws/rest/service-templates?query={ : }&sort={"user" "bob" "name"
:1}&max=10&offset=90

Retrieving a Subset of Fields

To retrieve only certain fields, use the parameter. For example, to show only the fields name
field for each service:

http://localhost/mws/rest/service-templates?fields=name

This returns:

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "aliceService.1"
 { : },"name" "machine0.1"
 { : }"name" "OSStoremachine0.1"
]
}

To show the name, type, and user:

http://localhost/mws/rest/service-templates?fields=name,type,user

This returns:

189

{
 : 9,"totalCount"
 : 3,"resultCount"
 : ["results"
 {
 : ,"name" "aliceService.1"
 : ,"type" "container"
 : "user" "alice"
 },
 {
 : ,"name" "machine0.1"
 : ,"type" "vm"
 : "user" "alice"
 },
 {
 : ,"name" "OSStoremachine0.1"
 : ,"type" "storage"
 : "user" "alice"
 }
]
}

4.25.1.2 Get Single Service Template

URLs and Parameters

GET http://localhost/mws/rest/service-templates/<id>
GET http://localhost/mws/rest/service-templates/<name>

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Response

190

GET http://localhost/mws/rest/service-templates/Centos55Vm

{
 : {"attributes"
 : { : {"moab" "job"
 : ,"image" "centos5.5-stateless"
 : {"resources"
 : 1,"procs"
 : 1024,"mem"
 : 20480"disk"
 },
 : ,"template" "genericVM"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : ,"id" "50d4da1ac4aaceecaf386454"
 : [],"includedServices"
 : ,"label" "Centos 5.5 VM"
 : ,"modified" null
 : ,"name" "Centos55Vm"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "vm"
 : 0"version"
}

GET http://localhost/mws/rest/service-templates/OpSysStorage

{
 : {"attributes"
 : { : {"moab" "job"
 : { : 100},"resources" "OS"
 : ,"template" "OSStorage"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : ,"id" "50d4da1ac4aaceecaf386452"
 : [],"includedServices"
 : ,"label" "Operating Storage"System
 : ,"modified" null
 : ,"name" "OpSysStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "storage"
 : 0"version"
}

191

GET http://localhost/mws/rest/service-templates/NetworkStorage

{
 : {"attributes"
 : { : {"moab" "job"
 : { : 100},"resources" "gold"
 : ,"template" "extraStorage"
 : { : }"variables" "var1" "variable to be attached to tracking job"
 }},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : ,"id" "50d4da1ac4aaceecaf386453"
 : [],"includedServices"
 : ,"label" "Network Storage"
 : ,"modified" null
 : ,"name" "NetworkStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "storage"
 : 0"version"
}

GET http://localhost/mws/rest/service-templates/Centos55VmPlusStorage

{
 : {"attributes"
 : { : [{"moab" "dependencies"
 : ["dependency"
 ,"oss"
 "ns"
],
 : "localName" "cvm"
 }]},
 : {"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 : "custom2" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "bob"
 : ,"id" "50d4da1ac4aaceecaf386455"
 : ["includedServices"
 {
 : ,"localName" "cvm"
 : "serviceTemplate" "Centos55Vm"
 },
 {
 : ,"localName" "oss"
 : "serviceTemplate" "OpSysStorage"
 },
 {
 : ,"localName" "ns"
 : "serviceTemplate" "NetworkStorage"
 }
],
 : ,"label" "Centos 5.5 VM Plus OS and Network Storage"
 : ,"modified" null
 : ,"name" "Centos55VmPlusStorage"
 : ["tags"
 ,"tag1"
 ,"tag2"
 "tag3"
],
 : ,"type" "container"
 : 0"version"
}

4.25.2 Creating Service Templates
The HTTP POST method is used to create .Service Templates

Quick Reference

192

POST http://localhost/mws/rest/service-templates

4.25.2.1 Create Service Template

URLs and Parameters

POST http://localhost/mws/rest/service-templates

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows some of the fields that are available when creating a Service
Template, along with some sample values.

JSON Request Body

{
 : ,"name" "Centos55Vm"
 : ,"label" "Centos 5.5 VM"
 : ,"type" "vm"
 : ,"createdBy" "bob"
 :[, ,],"tags" "tag1" "tag2" "tag3"
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"image" "centos5.5-stateless"
 :{"resources"
 :1,"procs"
 :1024,"mem"
 :20480"disk"
 },
 : ,"template" "genericVM"
 :{"variables"
 : ,"var1" "variable to be attached to tracking job"
 }
 }
 },
 :{"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 :"custom2" "More custom data to be attached to service"
 }
 }
}

The following payload is an example of a Service Template that can be used to create an OS
storage service.

193

OS Storage JSON Payload

{
 : ,"name" "OpSysStorage"
 : ,"label" "Operating Storage"System
 : ,"type" "storage"
 : ,"createdBy" "bob"
 :[, ,],"tags" "tag1" "tag2" "tag3"
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :100"OS"
 },
 : ,"template" "OSStorage"
 :{"variables"
 :"var1" "variable to be attached to tracking job"
 }
 }
 },
 :{"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 :"custom2" "More custom data to be attached to service"
 }
 }
}

The following payload is an example of a Service Template that can be used to create an extra
storage service.

Extra Storage JSON Payload

{
 : ,"name" "NetworkStorage"
 : ,"label" "Network Storage"
 : ,"type" "storage"
 : ,"createdBy" "bob"
 :[, ,],"tags" "tag1" "tag2" "tag3"
 :{"attributes"
 :{"moab"
 :{"job"
 :{"resources"
 :100"gold"
 },
 : ,"template" "extraStorage"
 :{"variables"
 :"var1" "variable to be attached to tracking job"
 }
 }
 },
 :{"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 :"custom2" "More custom data to be attached to service"
 }
 }
}

The following payload is an example of a Service Template that can be used to create a container
service that contains a vm service, an OS storage service, and an extra storage service.

194

Container JSON Payload

{
 : ,"name" "Centos55VmPlusStorage"
 : ,"label" "Centos 5.5 VM Plus OS and Network Storage"
 : ,"type" "container"
 : ,"createdBy" "bob"
 :[, ,],"tags" "tag1" "tag2" "tag3"
 :["includedServices"
 {
 : ,"localName" "cvm"
 :"serviceTemplate" "Centos55Vm"
 },
 {
 : ,"localName" "oss"
 :"serviceTemplate" "OpSysStorage"
 },
 {
 : ,"localName" "ns"
 :"serviceTemplate" "NetworkStorage"
 },
],
 :{"attributes"
 :{"moab"
 :["dependencies"
 {
 :["dependency"
 ,"oss" "ns"
],
 :"localName" "cvm"
 }
]
 },
 :{"sharedData"
 : ,"custom1" "Custom data to be attached to service"
 :"custom2" "More custom data to be attached to service"
 }
 }
}

includedServices is a key-value pair of the internal service name and the
serviceTemplate. The service name is unique for each service container.

Sample Response

JSON Response for successful POST

{ : }"id" "4f06111184ae2bbfa31fa4c7"

If the Service Template name is not unique:

JSON Response

{
 : ["messages"
 , "Service template Rhel54Vm could not be created"
 , "Request has a non-unique service template name 'Rhel54Vm'"
 "Please correct the request and again"try
]
}

If the Service Template included service local name is not unique to this service template:

195

JSON Response

{
 : ["messages"
 , "Service template CentOS5 could not be created"
 "Service template request has a non-unique included service template local name

, ([SQLServ05])"
 "Please correct the request and again"try
]
}
}

If the Service Template depends on a non-existent included service:

JSON Response

{
 : ["messages"
 , "Service template NSStor34 could not be created"
 "Service template requires service template(s) [NewRhel54Vm] which notdo

, exist"
 "Please correct the request and again"try
]
}

If the Service Template depends on more than one non-existent included service:

JSON Response

{
 : ["messages"
 , "Service template NSStor34 could not be created"
 "Service template requires service template(s) [NewRhel54Vm, Storage003] which

, not exist"do
 "Please correct the request and again"try
]
}

If the Service Template name contains a colon:

JSON Response

{
{
 : ["messages"
 , "Service template Rhel54Vm:C could not be created"
 , "Request contains a colon (:) in the service template name 'Rhel54Vm:C'"
 "Please correct the request and again"try
]
}

If the Service Template name has the same format as a MongoDB ID (Service Template ID):

196

JSON Response

{
 : ["messages"
 , "Service template 4f2049a684ae6e1d4f09bd71 could not be created"
 "Request has a MongoDB ID format the service template nameObject for

, '4f2049a684ae6e1d4f09bd71'"
 "Please correct the request and again"try
]
}

4.25.3 Modifying Service Templates
The HTTP PUT method is used to modify .Service Templates

The field is not automatically updated. It will need to be changedmodified
by the user.

Quick Reference

PUT http://localhost/mws/rest/service-templates/<id>
PUT http://localhost/mws/rest/service-templates/<name>

4.25.3.1 Modify Service Template

URLs and Parameters

PUT http://localhost/mws/ /service-templates/<id>rest
PUT http://localhost/mws/ /service-templates/<name>rest

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Request Body

This is similar to create, except you change the request body to what you need modified.

The request body below shows some of the fields that are available when modifying a Service
Template, along with some sample values.

197

PUT http://localhost/mws/rest/service-templates/Centos55Vm

{
 : ,"label" "Centos 5.5 VM (updated)"
 : ,"createdBy" "newUser"
 :[,],"tags" "newTag" "newTag2"
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"image" "centos5.5-stateful"
 :{"resources"
 :2,"procs"
 :2048,"mem"
 :22480"disk"
 },
 : ,"template" "genericVM"
 :{"variables"
 : ,"newVar" "variable to be attached to tracking job"
 }
 }
 },
 :{"sharedData"
 : ,"custom3" "Custom data to be attached to service"
 :"custom4" "More custom data to be attached to service"
 }
 }
}

Sample Response

JSON Response for successful PUT

{
 :{"attributes"
 :{"moab"
 :{"job"
 : ,"image" "centos5.5-stateful"
 :{"resources"
 :2,"procs"
 :2048,"mem"
 :22480"disk"
 },
 : ,"template" "genericVM"
 :{"variables"
 :"newVar" "variable to be attached to tracking job"
 }
 }
 },
 :{"sharedData"
 : ,"custom3" "Custom data to be attached to service"
 :"custom4" "More custom data to be attached to service"
 }
 },
 : ,"createdBy" "newUser"
 : ,"id" "50d4de6bc4aa6ca84bbe9be4"
 :["includedServices"
],
 : ,"label" "Centos 5.5 VM (updated)"
 : ,"modified" "2012-12-21 15:12:01 MST"
 : ,"name" "Centos55Vm"
 :["tags"
 ,"newTag"
 "newTag2"
],
 : ,"type" "vm"
 :0"version"
}

If the Service Template depends on a non-existent included service:

198

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 ,"Service template requires service template(s) [RhOs045] which not exist"do
 "Please correct the request and again"try
]
}

If the Service Template depends on more than one non-existent included service:

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 "Service template requires service template(s) [Stor45, Stor12] which notdo

,exist"
 "Please correct the request and again"try
]
}

An attempt to modify the Service Template name to an existing template name:

JSON Response

{
 : ["messages"
 ,"Service template NewR could not be updated"
 "Request has a non-unique service template name 'Stor44'"
]
}

4.25.4 Deleting (Canceling) Service Templates
The HTTP DELETE method is used to delete .Service Templates

Quick Reference

DELETE http://localhost/mws/rest/service-templates/<id>
DELETE http://localhost/mws/rest/service-templates/<name>

4.25.4.1 Cancel Service Template

URLs and Parameters

DELETE http://localhost/mws/ /service-templates/<id|name>rest

199

Parameter Required Valid Values Description

id Yes
String (24 character
alphanumeric)

The unique identifier of the service
template.

name Yes String The name of the service template.

See for available URL parameters.Global URL Parameters

Only one of or is required.id name

Response

A successful deletion

JSON Response

{}

If the Service Template ID does not exist

JSON Response

{
 : ["messages"
 "Service template not found with ID '4f2049a684ae6e1d4f09bd71'"
]
}

If the Service Template name does not exist

JSON Response

{
 : ["messages"
 "Service template not found with ID 'Stor44'"
]
}

If other Service Templates depend on the one being deleted

JSON Response

{
 : ["messages"
 , "Service template Cent5 could not be deleted"
 "Service template 'Cent5' cannot be deleted because Service template '[Cent5]'
depends on it "
]
}

200

4.26 Standing Reservations
This section describes behavior of the object in Moab Web Services. ItStanding Reservation
contains the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fieldsStanding Reservation API
in the object. It also contains details regarding whichStanding Reservation
fields are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/standing-reservations Get all standing reservations

/rest/standing-reservations/id Get specified standing reservation

4.26.1 Getting Standing Reservations
The HTTP GET method is used to retrieve information. Queries for allStanding Reservation
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/standing-reservations/<id>

4.26.1.1 Get All Standing Reservations

URLs and Parameters

GET http://localhost/mws/rest/standing-reservations

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/standing-reservations?fields=id

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"id" "sr1"
 { : },"id" "sr2"
 { : }"id" "sr3"
]
}

201

4.26.1.2 Get Single Standing Reservation

URLs and Parameters

GET http://localhost/mws/rest/standing-reservations/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

202

JSON Response

{
 : ,"access" "DEDICATED"
 : [],"accounts" "account1"
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "EQUAL"
 : ,"type" "USER"
 : ,"value" "adaptive"
 }],
 : ,"chargeAccount" "account2"
 : ,"chargeUser" "user2"
 : [],"classes" "class1"
 : [],"clusters" "cluster1"
 : ,"comment" "comment"
 : [],"days" "Monday"
 : 2,"depth"
 : ,"disabled" false
 : 86415,"endOffset"
 : [],"flags" "ALLOWJOBOVERLAP"
 : [],"groups" "group1"
 : [],"hosts" "host1"
 : ,"id" "fast"
 : [],"jobAttributes" "TEMPLATESAPPLIED"
 : 2,"maxJob"
 : 0,"maxTime"
 : [],"messages" "message1"
 : [],"nodeFeatures" "feature1"
 : ,"os" "Ubuntu 10.04.3"
 : {"owner"
 : ,"name" "root"
 : "type" "USER"
 },
 : ,"partition" "ALL"
 : ,"period" "DAY"
 : {"procLimit"
 : ,"qualifier" "<="
 : 5"value"
 },
 : {"psLimit"
 : ,"qualifier" "<="
 : 60"value"
 },
 : [],"qoses" "qos1"
 : [],"reservationAccessList"
 : ,"reservationGroup" "group2"
 : {"resources"
 : -1,"PROCS"
 : 1"tapes"
 },
 : 43200,"rollbackOffset"
 : 347040,"startOffset"
 : 0,"taskCount"
 : 0,"tasksPerNode"
 : -1,"timeLimit"
 : [],"triggers"
 : ,"type" "type1"
 : []"users" "user1"
}

4.27 Usage Records
This section describes behavior of the object in Moab Web Services. It containsUsage Record
the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields in the Usage Record API
 object.UsageRecord

Supported Methods

203

Resource GET PUT POST DELETE

/rest/usage-records Get all usage-records

/rest/usage-records/id Get specified usage-record

4.27.1 Getting Usage Records
The HTTP GET method is used to retrieve information.Usage Record

Quick Reference

GET http://localhost/mws/rest/usage-records?proxy-user=<USER>
[&custom-fields=QualityOfService][&query={ : }][&sort={ :-1}]"id" "2" "Stage"
GET http://localhost/mws/rest/usage-records/ ?proxy-user=<id> <USER>
[&custom-fields=QualityOfService]

4.27.1.1 Get All Usage Records

URLs and Parameters

GET http://localhost/mws/rest/usage-records?proxy-user=<USER>
[&custom-fields=QualityOfService][&query={ : }][&sort={ :-1}]"id" "2" "stage"

Parameter Required Valid Values Description Example

proxy-user Yes String

Perform
action as
defined
MAM user.

proxy-user=amy

custom-fields No
Comma-Separated
String

Includes
custom
MAM
usage-record
attributes.

custom-fields=QualityOfService

query No JSON
Query for
specific
results.

query={"priority":"2","allocation.active":"false"}

sort No JSON

Sort the
results. Use

 for1
ascending
and for-1
descending.

sort={"stage":-1}

The parameter does not support the full Mongo query syntax. Onlyquery
querying for a simple, non-nested JSON object is allowed.

204

See for available URL parameters.Global URL Parameters

Sample Response

GET
http://localhost/mws/rest/usage-records?proxy-user=amy&custom-fields=qualityOfService&fields=id,qualityOfService,type,instance

{
 : 8,"totalCount"
 : 2,"resultCount"
 : ["results"
 {
 : 1,"id"
 : ,"qualityOfService" "premium"
 : ,"type" "Job"
 : "instance" "job.123"
 },
 {
 : ,"qualityOfService" "premium"
 : 2,"id"
 : ,"type" "Job"
 : "instance" "job.1234"
 }
]
}

4.27.1.2 Get Single Usage Record

URLs and Parameters

GET http://localhost/mws/rest/usage-records/ ?proxy-user=<id> <USER>
[&custom-fields=QualityOfService]

Parameter Required Type Valid Values Description

id Yes String -
The unique identifier of the
object.

proxy-user Yes String
Perform action
as defined
MAM user.

proxy-user=amy

custom-fields No
Comma-Separated
String

Includes
custom MAM
usage-record
attributes.

custom-fields=QualityOfService

See for available URL parameters.Global URL Parameters

Sample Responses

205

GET
http://localhost/mws/rest/usage-records/1?proxy-user=amy&custom-fields=qualityOfService

{
 : 1,"id"
 : ,"qualityOfService" "premium"
 : ,"type" "Job"
 : ,"instance" "job.123"
 : 0,"charge"
 : ,"stage" "Create"
 : ,"quote" ""
 : ,"user" "doug"
}

4.28 Virtual Containers
This section describes behavior of the object in Moab Web Services. ItVirtual Container
contains the URLs, request bodies, and responses delivered to and from Moab Web Services.

The contains the type and description of all fields inVirtual Container API
the object. It also contains details regarding which fieldsVirtual Container
are valid during PUT and POST actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/vcs
Get all Virtual
Containers

Create Virtual
Container

/rest/vcs/
id

Get specified Virtual
Container

Modify Virtual
Container

Destroy Virtual
Container

4.28.1 Getting Virtual Containers
The HTTP GET method is used to retrieve information. Queries for allVirtual Container
objects and a single object are available.

Quick Reference

GET http://localhost/mws/rest/vcs/<id>

4.28.1.1 Get All Virtual Containers

URLs and Parameters

GET http://localhost/mws/rest/vcs

See for available URL parameters.Global URL Parameters

206

Sample Response

GET http://localhost/mws/rest/vcs?fields=id

{
 : 5,"totalCount"
 : 5,"resultCount"
 : ["results"
 { : },"id" "vc3"
 { : },"id" "vc1"
 { : },"id" "vc4"
 { : },"id" "vc5"
 { : }"id" "vc2"
]
}

4.28.1.2 Get Single Virtual Container

URLs and Parameters

GET http://localhost/mws/rest/vcs/<id>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

See for available URL parameters.Global URL Parameters

Sample Response

207

JSON Response

{
 : [{"aclRules"
 : ,"affinity" "POSITIVE"
 : ,"comparator" "LEXIGRAPHIC_EQUAL"
 : ,"type" "USER"
 : "value" "root"
 }],
 : ,"createDate" "2011-11-15 14:01:40 UTC"
 : ,"creator" "root"
 : ,"description" "vc2"
 : [],"flags" "DESTROYWHENEMPTY"
 : ,"id" "vc2"
 : ["jobs"
 { : }"id" "Moab.1"
],
 : ["nodes"
 { : }"id" "node1"
],
 : {"owner"
 : ,"name" "root"
 : "type" "USER"
 },
 : ["reservations"
 { : }"id" "system.1"
],
 : {"variables"
 : ,"a" "b"
 : "c" "d"
 },
 : ["virtualContainers"
 { : }"id" "vc3"
],
 : ["virtualMachines"
 { : }"id" "vm1"
]
}

4.28.2 Creating Virtual Containers
The HTTP POST method is used to create .Virtual Containers

Quick Reference

POST http://localhost/mws/rest/vcs[?proxy-user=]<username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.28.2.1 Create Virtual Container

URLs and Parameters

POST http://localhost/mws/rest/vcs[?proxy-user=]<username>

208

Parameter Required Type Valid Values Description

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when creating a Virtual Container,
along with some sample values.

JSON Request Body

{
 : ,"description" "ted's vc"
 : {"owner"
 : ,"name" "ted"
 : "type" "USER"
 },
 : ,"requiredStartDate" "2012-11-08 13:18:47 MST"
 : [],"flags" "HOLDJOBS"
 : ["virtualContainers"
 { : },"id" "vc93"
 { : }"id" "vc94"
],
}

Sample Response

JSON Response for successful POST

{ : }"id" "vc8"

Restrictions

When creating a Virtual Container, the field is set to the value of creator proxy-user
(if set) or (if set), with taking precedence. However, settingowner.name proxy-user
the field works only if you set in the file.creator ENABLEPROXY=TRUE moab.cfg
Example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

You can set the field as shown above, but you can never change it.creator

4.28.3 Modifying Virtual Containers
The HTTP PUT method is used to modify .Virtual Containers

Quick Reference

209

PUT http://localhost/mws/rest/vcs/ ?change-mode= [&proxy-user=<id> <add|remove|set>
]<username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.28.3.1 Modify Virtual Container

URLs and Parameters

PUT http://localhost/mws/rest/vcs/ ?change-mode= [&proxy-user=<id> <add|remove|set>
]<username>

Parameter Required Type
Valid
Values

Description

id Yes String - The unique identifier of the object.

change-mode Yes String add
Add the given objects (jobs, VMs, etc) to the objects
that already exist.

 remove
Delete the given objects from the objects that
already exist.

 set
Modify the attributes of the virtual container itself
and the associated objects.not

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

Here are three examples of Virtual Container updates: add objects, remove objects, and update
attributes. In each case, the examples below show all the fields that are available, along with
some sample values.

210

Add objects with /rest/vcs/vc1?change-mode=add

{
 : ["jobs"
 { : },"id" "Moab.37"
 { : }"id" "Moab.38"
],
 : ["nodes"
 { : },"id" "node1"
 { : }"id" "node2"
],
 : ["reservations"
 { : },"id" "system.48"
 { : }"id" "system.49"
],
 : ["virtualContainers"
 { : },"id" "vc93"
 { : }"id" "vc94"
],
 : ["virtualMachines"
 { : },"id" "vm2"
 { : }"id" "vm4"
]
}

Remove objects with /rest/vcs/vc1?change-mode=remove

{
 : ["jobs"
 { : },"id" "Moab.37"
 { : }"id" "Moab.38"
],
 : ["nodes"
 { : },"id" "node1"
 { : }"id" "node2"
],
 : ["reservations"
 { : },"id" "system.48"
 { : }"id" "system.49"
],
 : ["virtualContainers"
 { : },"id" "vc93"
 { : }"id" "vc94"
],
 : ["virtualMachines"
 { : },"id" "vm2"
 { : }"id" "vm4"
]
}

Modify VC attributes with /rest/vcs/vc1?change-mode=set

{
 : ,"description" "This is a description."new
 : [],"flags" "HOLDJOBS"
 : {"owner"
 : ,"name" "ted"
 : "type" "USER"
 },
 : {"variables"
 : ,"a" "b"
 : "c" "d"
 }
}

Sample Responses

These messages may not match the messages returned from Moab exactly,
but they are given as examples of the structure of the responses.

211

JSON response for adding objects

{
 :["messages"
 ,"job '147' added to VC 'vc3'"
 "job 'Moab.1' added to VC 'vc3'"
]
}

JSON response for removing objects

{
 :["messages"
 ,"job '147' removed from VC 'vc3'"
 "job 'Moab.1' removed from VC 'vc3'"
]
}

JSON response for updating attributes

{ :[]}"messages" "VC 'vc3' successfully modified"

Restrictions

You can change the ACL Rules on a Virtual Container, but not using this resource. See
.Create or Update ACLs

4.28.4 Destroying Virtual Containers
The HTTP DELETE method is used to destroy .Virtual Containers

Quick Reference

DELETE http://localhost/mws/rest/vcs/ [?proxy-user=]<id> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.28.4.1 Destroy Virtual Container

URLs and Parameters

212

DELETE http://localhost/mws/rest/vcs/ [?proxy-user=]<id> <username>

Parameter Required Type Valid Values Description

id Yes String - The unique identifier of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{}

4.29 Virtual Machines
This section describes behavior of the object in Moab Web Services. ItVirtual Machine
contains the URLs, request bodies, and responses delivered to and from Moab Web Services.

The Virtual Machine API has changed with . The supportedAPI version 2
methods table below requires each resource to be accessed with a URL
parameter of in order to behave as documented.api-version=2

In order to access documentation for previous API versions, see Requesting
.Specific API Versions

The contains the type and description of all fields in theVirtual Machine API
 object. It also contains details regarding which fields areVirtual Machine

valid during PUT actions.

Supported Methods

Resource GET PUT POST DELETE

/rest/vms Get all VMs

/rest/vms/name Get specified VM Modify VM Destroy VM

4.29.1 Getting Virtual Machines
The HTTP GET method is used to retrieve information.Virtual Machine

Quick Reference

213

GET http://localhost/mws/rest/vms/ ?api-version=2<name>

4.29.1.1 Get All Virtual Machines

URLs and Parameters

GET http://localhost/mws/rest/vms?api-version=2

Parameter Required
Valid
Values

Description Example

query No JSON
Queries for specific
results.

query={"migrationDisabled":true}

sort No JSON
Sort the results. Use for1
ascending and for-1
descending.

sort={"name":-1}

It is possible to query by one or more fields based on .MongoDB query syntax

See for available URL parameters.Global URL Parameters

Sample Response

GET http://localhost/mws/rest/vms?api-version=2&fields=name

{
 : 3,"totalCount"
 : 3,"resultCount"
 : ["results"
 { : },"name" "vm1"
 { : },"name" "vm2"
 { : }"name" "vm3"
]
}

4.29.1.2 Get Single Virtual Machine

URLs and Parameters

GET http://localhost/mws/rest/vms/ ?api-version=2<name>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

See for available URL parameters.Global URL Parameters

http://www.mongodb.org/display/DOCS/Advanced+Queries

214

Sample Response

JSON Response

{
 : ,"name" "vm3"
 : ,"description" null
 : { : },"host" "name" "hv2"
 : [],"hostnames"
 : ,"ipAddress" "10.0.0.5"
 : ,"migrationDisabled" false
 : ,"lastUpdatedDate" "2012-10-11 17:46:32 UTC"
 : ,"startDate" "2012-09-25 18:12:23 UTC"
 : ,"trackingJob" null
 : { : 200},"metrics" "watts"
 : {},"variables"
 : [{"resourceManagers"
 : ,"name" "msm"
 : ,"isMaster" true
 : "stateReported" "Active"
 }],
 : {"operatingSystem"
 : ,"image" "stateless1"
 : ,"imageExpected" null
 : ,"imageLastUpdatedDate" null
 : []"imagesAvailable"
 },
 : {"states"
 : ,"powerState" "On"
 : ,"powerStateExpected" null
 : ,"powerStateLastUpdatedDate" null
 : ,"state" "Idle"
 : ,"stateLastUpdatedDate" "2012-10-11 17:15:01 UTC"
 : ,"subState" null
 : ,"subStateLast" null
 : "subStateLastUpdatedDate" null
 },
 : {"resources"
 : {"processors"
 : 1,"configured"
 : 0,"dedicated"
 : 1"available"
 },
 : {"memory"
 : 512,"configured"
 : 0,"dedicated"
 : 512"available"
 },
 : {"disk"
 : 1024,"configured"
 : 0,"dedicated"
 : 1024"available"
 },
 : {"swap"
 : 0,"configured"
 : 0,"dedicated"
 : 0"available"
 }
 },
 : [],"triggers"
 : []"virtualContainers"
}

4.29.2 Modifying Virtual Machines
The HTTP PUT method is used to modify .Virtual Machines

Quick Reference

PUT http://localhost/mws/rest/vms/ ?api-version=2[&proxy-user=]<name> <username>

Restrictions

215

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.29.2.1 Modify Virtual Machine

URLs and Parameters

PUT http://localhost/mws/rest/vms/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows all the fields that are available when modifying a Virtual
Machine, along with some sample values.

JSON Request Body for VM Modify

{
 : { : 211},"metrics" "pwatts"
 : ,"migrationDisabled" true
 : { : },"operatingSystem" "image" "esx4.1"
 : {"states"
 : ,"powerState" "On"
 : "state" "Running"
 },
 : [{ : }],"triggers" "name" "trigger_id"
 : {"variables"
 : ,"key" "value"
 : "arbitrary text key" "more value"
 }
}

Sample Response

This message may not match the message returned from Moab exactly, but is
given as an example of the structure of the response.

JSON Response

{ :[]}"messages" "successfully updated VM variables"

216

4.29.2.2 Migrate Virtual Machine

URLs and Parameters

PUT http://localhost/mws/rest/vms/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Request Body

The request body below shows how to migrate a Virtual Machine to a host (hypervisor) with
name "hv2".

JSON Request Body for VM Migrate to a specific host

{ : { : }}"host" "name" "hv2"

The request body below shows how to migrate a Virtual Machine to any available host by using
the destination name of ANY, which for this operation is a reserved word.

JSON Request Body for VM Migrate to any available host

{ : { : }}"host" "name" "ANY"

Sample Response

The HTTP response code for this operation is 202 Accepted. See the
 section for more information.responses

JSON Response

{ : }"jobId" "vm-migrate1"

Restrictions

If a migration is requested by setting the host as shown in the above examples, any other
properties in the same request body will be ignored.

217

4.29.3 Destroying Virtual Machines
The HTTP DELETE method is used to destroy .Virtual Machines

Quick Reference

DELETE http://localhost/mws/rest/vms/ ?api-version=2[&proxy-user=]<name> <username>

Restrictions

The proxy-user parameter is ignored unless you set in the ENABLEPROXY=TRUE
 file. Example:moab.cfg

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

4.29.3.1 Destroy Virtual Machine

URLs and Parameters

DELETE http://localhost/mws/rest/vms/ ?api-version=2[&proxy-user=]<name> <username>

Parameter Required Type Valid Values Description

name Yes String - The name of the object.

proxy-user No String - Perform the action as this user.

See for available URL parameters.Global URL Parameters

Sample Response

JSON Response for successful DELETE

{ : }"jobId" "vmdestroy-26"

The jobId in the response identifies the job that will destroy the virtual
machine.

218

5 Reporting Framework
The reporting framework is a set of tools to make time-based reports from numerical data. The
following sections will (1) provide an overview of the framework and the concepts related to it,
and (2) work through an example report (CPU Utilization) with details regarding which web
services to use and with what data.

The REST API reference is located in the section.Report Resource

5.1 Overview

5.1.1 Concepts
The reporting framework uses 3 core concepts: reports, datapoints, and samples.

Report - A report is a time-based view of numerical data.
Datapoint - A datapoint is a consolidated set of data for a certain time period.
Sample - A sample is a snapshot of a certain set of data at a particular point in time.

To illustrate, consider the memory utilization of a virtual machine: at any given point in time,
you can get the memory utilization by using your operating system's performance utilities (top
for Linux, Task Manager for Windows):

2400/12040MB

By recording the memory utilization and time constantly for 1 minute, you could gather the
following data:

Time Memory Utilization

3:53:55 PM 2400/12040 MB

3:54:13 PM 2410/12040 MB

3:54:27 PM 2406/12040 MB

3:54:39 PM 2402/12040 MB

3:54:50 PM 2409/12040 MB

Each of the rows in the table above represent a of data. By averaging the rows we cansample
consolidate them into one or more :datapoints

Start time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

Note that each datapoint covers exactly the same amount of time, and
averages all samples within that period of time.

A , then, is simply a list of datapoints with some additional configuration information:report

219

Field Value

Name Memory Utilization Report

Datapoint Duration 30 seconds

Report Size 3 datapoints

Datapoints:

Start time End Time Memory Utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

5.1.2 Capabilities
While storing simple information like memory utilization is nice, the reporting framework is
built to automatically handle much more complex information.

Consolidating Samples

Samples are JSON documents which are pushed into the report using the . Samplessamples API
are then stored until the consolidation operation creates a datapoint out of them. The table below
shows how different data types are handled in this operation:

Type Consolidation Function Handling

Numbers Numerical data is averaged

Strings Strings are aggregated into an array

Objects The consolidation function recursively consolidates sub-objects

Lists Lists are combined into a single flat list containing all elements

Mixed
If samples have different types of data for the same field, the values are aggregated
into an array.

Null
These values will be ignored unless all values for a sample field are set to null,
resulting in a null result.

If the mixed data types contains at least one number, it will be treated as
numerical data. The non-numerical data will be ignored and the result will be
averaged.

Below is an example of how the consolidation function works:

220

Samples:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:53:55
PM

2400 "str1" ["elem1"] "str1" "str1"

3:54:13
PM

2410 "str2"
["elem2",
"elem3"]

["elem1"] ["elem1"]

3:54:27
PM

2405 "str3" ["elem4"] null 5

Resulting Datapoint after consolidation:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:55:00
PM

2405
["str1",
"str2",
"str3"]

["elem1",
"elem2",
"elem3",
"elem4"]

["str1",
"elem1"]

5

Minimum Number of Samples

If your dataset is highly variable (i.e. values contained in samples are not very close together),
converting a single sample into a datapoint may provide misleading information. It may be better
to have a datapoint with an "Unknown" value. This can be accomplished by setting the minimum
number of samples for a datapoint in the report.

The field in the explains that if the specified size ofminimumSampleSize Report API
samples is not met when the consolidation function is performed, the datapoint is considered
"null" and no data is available for it. When this occurs, the sample data is discarded and the

 field of the datapoint is set to "null".data

For information on how to set this option, see the REST API section in theReport Resource
documentation.

Report Size

Reports have a predetermined number of datapoints, or size, which sets a limit on the amount of
data that can be stored. After the report size has been reached, as newly created datapoints are
pushed into the report, the oldest datapoints will automatically be deleted. This is to aid in
managing the storage capacity of the server hosting MWS.

On report creation, a Mongo collection will be initialized that is the
maximum size of a single entry (currently 16 MB) multiplied by the report
size. Be careful in setting a large report size as this will quickly allocate the
entire disk if many reports with large report sizes are created.

5.2 Example Report (CPU Utilization)

221

To understand how the behavior and usage of the reporting framework, a sample report covering
CPU Utilization will be shown in this section. It will not cover how to gather or display data for
reports, but will cover some basic operations that are available with Moab Web Services to
facilitate reporting.

5.2.1 Creating A Report
Before any data is sent to Moab Web Services, a report must first be created. A JSON request
body with a HTTP method of POST must be used to do this.

POST /rest/reports

{
 : ,"name" "cpu-util"
 : ,"description" "An example report cpu utilization"for
 : ,"consolidationFunction" "average"
 :600,"datapointDuration"
 :288"reportSize"
}

This will result in a report being created which can then be retrieved by sending a GET request
to . The of signifies that the/rest/reports/cpu-util datapointDuration 600
datapoint consolidation should occur once every 10 minutes, while the (i.e.reportSize
number of the datapoints) shows that the report will retain up to 2 days worth of the latest
datapoints.

GET /rest/reports/cpu-util

{
 : ,"consolidationFunction" "average"
 : 600,"datapointDuration"
 : [],"datapoints"
 : ,"description" "An example report cpu utilization"for
 : ,"id" "aef6f6a3a0bz7bf6449537c9d"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 288,"reportSize"
 : 0"version"
}

Note that an ID has been generated automatically and that no datapoints are associated with the
report.

5.2.2 Adding Samples
Until samples are added and associated with the report, datapoint consolidation will generate
datapoints with a field equal to . Once samples are added, however, they will bedata null
averaged and inserted into the next datapoint.

Create samples for the by sending a POST request as follows:cpu-util

222

1.

2.
3.

POST /rest/reports/cpu-util/samples

[
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:00:00 UTC"
 : {"data"
 : 0.5,"minutes1"
 : 0,"minutes5"
 : 0"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:01:00 UTC"
 : {"data"
 : 1,"minutes1"
 : 0.5,"minutes5"
 : 0.05"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:02:00 UTC"
 : {"data"
 : 1,"minutes1"
 : 0.5,"minutes5"
 : 0.1"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:03:00 UTC"
 : {"data"
 : 0.75,"minutes1"
 : 1,"minutes5"
 : 0.25"minutes15"
 }
 },
 {
 : ,"agent" "cpu-monitor"
 : ,"timestamp" "2012-01-01 12:04:00 UTC"
 : {"data"
 : 0,"minutes1"
 : 1,"minutes5"
 : 0.85"minutes15"
 }
 }
]

This sample data contains average load for the last 1, 5, and 15 minute intervals. The samples
were recorded at one-minute intervals starting at noon on January 1st, 2012.

5.2.3 Consolidating Data
A consolidation function must run to generate datapoints from the given samples. This scheduled
consolidation will occur at intervals of seconds. For each field in the datapointDuration

 object in samples, all values will be averaged. If non-numeric values are included, thedata
following strategies will be followed:

All fields which contain a single numeric value in any included sample will be averaged and
the non-numeric or null values will be ignored.
All fields which contain a list will be consolidated into a single, flat list.
All fields which contain only non-numeric or null values will be consolidated into a single,
flat list.

223

If no historical datapoints are provided in the creation of a report as in this example, the next
consolidation will be scheduled for the current time plus the . In thisdatapointDuration
example, the scheduled consolidation is at 10 minutes from the creation date. If historical
datapoints are included in the report creation, the latest datapoint's plus the endDate

 will be used as the scheduled time. If this date was in the past, the nextdatapointDuration
scheduled consolidation will occur at the appropriate interval from the last .endDate

5.2.4 Retrieving Report Data
To retrieve the consolidated datapoints, simply perform a GET request on the report once again.
Alternatively, the GET for a report's may be used.datapoints

GET /rest/reports/cpu-util

{
 : ,"consolidationFunction" "average"
 : 600,"datapointDuration"
 : ["datapoints"
 {
 : ,"firstSampleDate" null
 : ,"lastSampleDate" null
 : ,"data" null
 : ,"startDate" "2012-01-01 11:49:00 UTC"
 : "endDate" "2012-01-01 11:59:00 UTC"
 },
 {
 : ,"firstSampleDate" "2012-01-01 12:00:00 UTC"
 : ,"lastSampleDate" "2012-01-01 12:04:00 UTC"
 : {"data"
 : 0.65,"minutes1"
 : 0.25,"minutes15"
 : 0.6"minutes5"
 },
 : ,"startDate" "2012-01-01 11:59:00 UTC"
 : "endDate" "2012-01-01 12:09:00 UTC"
 }
],
 : ,"description" "An example report cpu utilization"for
 : ,"id" "aef6f6a3a0bz7bf6449537c9d"
 : ,"keepSamples" false
 : 1,"minimumSampleSize"
 : ,"name" "cpu-util"
 : 288,"reportSize"
 : 0"version"
}

Note that of the two datapoints above, only the second actually contains data, while the other is
set to . Only samples lying within the datapoint's duration, or from the to the null startDate

, are included in the consolidation. Therefore the first datapoint, which covered the 10endDate
minute period just before the samples' recorded timestamps, contained no data. The second,
which covers the 10 minute period matching that of the samples, contains the averaged sample
data. This data could be used to display consolidated report data in a custom interface.

5.2.5 Possible Configurations
Configuration options may be changed to affect the process of report generation. These are
documented in the API for the object and the object.Report Sample

224

6 MWS Plugins (Beta)
This section describes MWS Plugins, their use, and their creation in Moab Web Services.

MWS Plugins are currently in beta. Interfaces may change significantly in
future releases.

6.1 Plugin Overview
This section provides an overview of the plugin layer in web services. The following areas will
be covered:

An to the concept of MWS pluginsintroduction
How to Moab Workload Manager to interact with MWS pluginsconfigure
A description of the plugin lifecycle
How plugins are driven by events
How to expose from a pluginweb services
How plugin may be usedutility services
How data report collisions between plugins are consolidated
How calls from MWM are to MWS pluginsrouted

6.1.1 Introduction
Moab Web Services plugins provide a highly extensible interface to interact with Moab, MWS,
and external resources. Plugins can perform some of the same functions as Moab Resource
Managers (RMs), while also providing many other features not available to RMs. This section
will discuss the main features of plugins, some basic terminology, and how MWS plugins can
interact with Moab.

Features

Plugins can

be created, modified, and deleted without restarting Moab Workload Manager or MWS.
be defined in Groovy and uploaded to MWS without restarting.
have individual data storage space and configuration.
access MWS configuration and RESTful web services.
log to a standard location configured in MWS.
be polled at a regular interval (configured on a per-plugin basis).
report current state data to Moab Workload Manager through the Resource Manager
interface (see for more information).MWM Resource Manager Integration
be informed of important system events.
be individually stopped, started, paused, and resumed.
expose secured and unsecured custom web services for external use.
be manipulated via a full RESTful API (see for more information).Resources
be manipulated via a full user interface in a web browser.

225

1.

2.
3.

4.
5.

Terminology

There are two distinct terms in the plugin layer: plugin types and plugins (also called plugin
instances).

Plugin Types

Plugin Types can be considered plugin templates with built-in logic. In object-oriented
programming languages, this relates to the concept of a class. They possess certain abilities, or
methods, that can be called by Moab Web Services to query or update information about certain
resources. They also can define methods which will be exposed to external clients as web
services. They do not contain any configuration or current data, but they are often tied to a type
of component, such as components that communicate with Moab's WIKI Protocol or those that
are built on a certain product.

They can define several types of methods:

Instance methods that return information about the current plugin, such as .getState
While these are defined in the plugin type, the plugin type itself does not have a state.
The that is called at a configured interval.poll event method
Lifecycle event methods of plugins created from the plugin type, such as beforeStart
and .afterStart

RM event methods that are called by Moab when certain events occur.
Web service methods that expose custom functionality as public web services.

Some examples of plugin types include the and plugin types.Native vCenter

Plugins (Instances)

Plugins (also called plugin instances) are created from plugin types. They contain current data or
configuration and use the plugin type methods to interact with resources.

Interactions with MWM as a Resource Manager

The plugin layer in MWS is integrated with Moab Workload Manager via the Native Resource
Manager (RM) interface. When utilizing plugins, MWS is configured as a RM in Moab as
explained in the next section. Events from Moab are pushed through the RM interface to MWS
which is then pushed to each plugin in turn. The relationship between Moab Web Services,
Moab, and plugins is shown in the following image:

226

See and for more information.Consolidating Data Reporting State Data

6.1.2 Lifecycle States
During the course of a plugin's use, the state of the plugin may change many times. Plugins have
four possible states: , , , and . The flow of a pluginStopped Started Paused Errored
through the states is shown in the following image:

To see descriptions of each state, see the .PluginState API

Events that occur during lifecycle state changes may be found in the section.Events

6.1.3 Events
Plugins use an event based model in that methods are called on the plugin when certain criteria
are met or situations arise. Events currently exist for polling, lifecycle state changes, and RM
events from Moab. See for more information.Handling Events

227

6.1.4 Custom Web Services
Although the events interface typically serves most cases, there are some instances where an
event is not supported that is desired. This is especially true when an external resource is the
source of the event. To address these issues, plugins can expose custom web services to external
resources. These web services may be named freely and do anything they wish within the plugin
framework.

For example, suppose a resource needs to notify a plugin that provisioning of a virtual machine
has been completed. Instead of having the plugin poll the resource to verify that the provisioning
was finished, the plugin could expose a custom web service to handle notification from the
resource itself.

Sample custom web service

def vmProvisionFinished(Map params) {
 // Handle event
 [messages:[]]return "Event successfully processed"
}

Additionally, plugin types may define web services which are unsecured, meaning that a user or
application account is not required to access it. A full explanation of the syntax and creation of
custom secured and unsecured web services may be seen on the page.Exposing Web Services

For information how resources can access plugin web services, see Accessing Plugin Web
.Services

6.1.5 Utility Services
Several features of plugins are only available by utilizing bundled services. These include:

Accessing the .individual datastore
Reporting state data to Moab through the Resource Manager interface.
Manipulating other plugins and .controlling their lifecycle
Accessing REST resources from Moab Web Services.

All bundled services are covered on their respective pages in the Quick Reference guide under
"Plugin Services".

It may also be necessary or desired to create additional utility services when creating new plugin
types. The easiest way to do this is to create a utility service which is called by convention a

, since it typically can "translate" from a specific resource or API to data which can beTranslator
used by the plugin type.

Finally, may be used to fulfill use cases not covered by bundled services orcustom components
custom translators.

6.1.6 Data Consolidation

228

At times, plugins can report differing or even contradictory data for nodes, virtual machines, and
jobs. This is called a data "collision". The act of resolving these collisions is called
"Consolidation". Plugins also have the concept of "precedence", where the plugins with the
lowest precedence value are considered more authoritative than the greater precedence values
plugins. For example, a plugin with a precedence value of 1 has a higher precedence and is
considered more authoritative than a plugin with a precedence value of 5. If no precedence is
provided when creating plugins, the plugin is automatically assigned to the lowest precedence, or
1 greater than the highest precedence value. The precedence value may not be less than 1.

When data from one plugin "collides" with another, the data from the highest precedence plugin
will be considered the authoritative source for information. If multiple sets of data (reports) are
provided by the same plugin, the latest set of data will take precedence. Additionally, MWS
supports the concept of treating node and virtual machine data with state information

, , or . This is configured using the optimistically pessimistically neither
 configuration property in the MWSplugins.stateConsolidationPolicy

configuration file. If this property is set to and plugin reports the state for aoptimistic any
node or VM as "Up", the consolidated state will be "Up". Inversely, if the property is set to

 and plugin reports the state as "Down", the consolidated state will bepessimistic any
"Down". If it is set to (neither), consolidation will occur for the state field just as with anynull
other field, with higher precedence and later reports being considered authoritative.

Node, virtual machine, and job unique identifiers (IDs) are all converted to
lower-case before consolidation, so the node "NODE1" is equivalent to
"node1".

When MWS is upgraded to a version that supports plugin precedence from an
older version, existing plugins will not have the precedence field set. The
administrator should assign precedence to each plugin manually through the

 or through the to ensure that the consolidation willREST API user interface
occur as expected. By default, data from a plugin without a precedence
defaults to a precedence of 1, or the highest precedence.

Consolidation Examples

Suppose two plugins exist, and . Plugin A has a precedence of 1, andpluginA pluginB
plugin B has a precedence of 2, meaning that plugin A is more authoritative. These plugins both
report data for a node with an ID of . However, each reports a different node power state.node1
Plugin A reports the power as , while plugin B reports the power as . The data collisionON OFF
that occurs due to these two contradictory reports is resolved by the precedence of the plugins.
Since plugin A has a higher precedence (lower number), it is considered authoritative and the
node will be reported as .ON

Now suppose that the plugins also report differing node state for . In this case, the nodenode1
state would depend on the property. Theplugins.stateConsolidationPolicy
different combinations of report values compared to the state consolidation policy and the final
reported state are shown in the table below.

229

Plugin A Node
State

Plugin B Node
State

State Consolidation
Policy

Consolidated Node
State

ON OFF null (neither) ON

OFF ON null (neither) OFF

ON OFF optimistic ON

OFF ON optimistic ON

ON OFF pessimistic OFF

OFF ON pessimistic OFF

In general, it is recommended that no two plugins report the same resource or that they report
different properties of the same resource. For example, if plugin A only modified the power state
and plugin B only modified the available disk resource, these two plugins would work in
harmony to provide a consistent view of the node resource.

See and sections for more information.Reporting State Data RM Queries

6.1.7 Routing
Because Moab Web Services is configured as a Resource Manager (RM) in Moab Workload
Manager, events are sometimes triggered by Moab through the RM interface. These actions
could be migrating a virtual machine, starting a job, submitting a job, modifying a node, and so
forth. The decisions regarding which plugins are affected and notified is termed .routing

Currently all plugins receive all commands from Moab. This means that each plugin will receive
the command to start a job if sent from Moab, even if that plugin does not handle the job. This
means that plugins must ensure they handle actions or commands only for resources which they
report or handle.

6.2 Plugin Developer's Guide
Plugin types comprise the methods by which Moab may communicate with resource managers or
other external components. They define all operations that can be performed for a "type" or
"class" of plugins, hence the name "plugin type".

Several plugin types are provided with Moab Web Services (see Plugin Types in the Quick
Reference), but it is easy to create additional plugin types and add their functionality to web
services. This involves using , which is based on the programming language. ThisGroovy Java
section describes the general guidelines and specifics of implementing new plugin types.

API Classes and Interfaces

There are several packages and classes available to assist in creating plugin types. These can all
be found in the under the package.API documentation com.adaptc.mws.plugins

6.2.1 Requirements

http://groovy.codehaus.org/
http://en.wikipedia.org/wiki/Java_(programming_language)

230

1.
2.

This section discusses the requirements to create a basic functional plugin. The
 package contains the abstract class that shouldcom.adaptc.mws.plugins AbstractPlugin

form the basis of any new plugin type. However, this class need not be extended to create a
functional plugin type. Only two requirements must be fulfilled for this:

The class name must end in .Plugin

There must exist field getter and setter methods:id

* getId();public String
* void setId(id);public String

The field may be stored in whichever way desired as long as the getter and setter areid
available as shown above, but will most likely be implemented as follows:

class BasicPlugin {
 idString
}

In this case, will be expanded by the Groovy compiler to the full getter and setterString id
method definitions given above. In other words, no explicit method definitions are actually
needed. Note that the shown above is able to be uploaded as a plugin type toBasicPlugin
MWS, but does not actually do anything.

It must also be noted that the class already implements an field.AbstractPlugin id
Therefore, a plugin type that extends this class does not need to define the field as shown in the
following example.

import com.adaptc.mws.plugins.AbstractPlugin

class BasicPlugin AbstractPlugin {extends
 // No ID field is needed since it exists in AbstractPlugin
}

6.2.2 Dynamic Methods
Several methods are dynamically inserted onto each plugin. These methods do not need to be
included in the plugin class, and will be overwritten if included. Additionally, a logger is inserted
into each plugin as discussed in the next section. The inserted methods are shown below (full
definitions can be found in and):AbstractPlugin AbstractPluginInfo

231

1.
2.
3.
4.
5.
6.

public void start() throws PluginStartException; (Equivalent to the
 method in the)start Plugin Control Service

public void stop() throws PluginStopException; (Equivalent to the
 method in the)stop Plugin Control Service

public Log getLog(); (Discussed in)Logging
public ConfigObject getAppConfig(); (Discussed in)Configuration
public String message(Map parameters); (Discussed in)i18n Messaging
public String getPluginType();

public PluginState getState();

public Integer getPollInterval();

public Boolean getAutoStart();

public Map<String, Object> getConfig(); (See)Configuration

Many of these methods are provided for convenience and are discussed in the linked pages or the
following sections.

6.2.3 Logging
Logging in plugin types uses the and libraries. Each plugin isApache Commons Logging log4j
injected with a method called which can be used to access the configured logger. ItgetLog
returns an instance of . Examples of using the logger areorg.apache.commons.logging.Log
shown below.

The logger may used to register messages to the MWS log at several levels (in order of severity):

trace
debug
info
warn
error
fatal

Each of these levels is available as a method on the logger, for example:

public void poll() {
 getLog().debug()"getLog() is equivalent to just using 'log' in Groovy"
 log.debug()"This is a debug message and is used debugging purposes only"for
 log.info()"This is a informational message"
 log.warn()"This is a warning"
 log.error()"This is an error message"
}

Logger Name

Each logger in the MWS logging configuration has a name. In the case of plugins, it is composed
of the full class name, including the package, prepended by "plugins.". For example, a plugin
class of "example.LoggingPlugin" will have access to a logger configured as
"plugins.example.LoggingPlugin".

Logging Configuration

http://commons.apache.org/logging/
http://logging.apache.org/log4j/index.html
http://commons.apache.org/logging/apidocs/org/apache/commons/logging/Log.html

232

1.
2.

The logging configuration is done through the MWS configuration file. See the MWS
 page for more information on configuring loggers. A good configuration forConfiguration

developing plugin types may be to add "plugins" at the debug level. Be sure to set the log level
threshold down for the desired appender.

log4j = {
 …
 // Appender configuration
 ...

debug "plugins"
}

6.2.4 i18n Messaging
Plugins, translators, and custom components all have access to messages. Utilizingi18n
messages requires the two following steps:

Including a file (or multiple files) that ends in "messages.properties" in the plugin JAR file.
Using the method on a plugin type, translator, or custom component.message

Including Messages in Plugin JAR File

Messages are defined using property files. These may be named anything as long as they end
with "messages.properties" and must be placed at the root or top level of the plugin JAR file. If
they are present, they will be loaded automatically. Multiple property files may be used within a
single plugin JAR file.

Each property file consists of an arbitrary amount of lines that define a message property (also
called a code) with letters, numbers, and periods, associated with a human-readable message that
can span multiple lines, have quotes, or contain arguments. These are demonstrated in the
following example.

first.message.code=This is the first message
second.message=This message can span multiple lines, \\
 and will not show the linebreaks when retrieved
message.with.arguments=This message has arguments: first - {0}, second - {1}, third -
{2}, etc.
message.with.quotes=This message uses single quotes around ''this phrase''.

It is recommended to namespace the messages by using the property definitions and multiple
property files if necessary. For example, suppose a plugin JAR existed which actually contained
two plugin types: and . The first suggestion is toMessage1Plugin Message2Plugin
namespace the messages for each plugin by the property definition, such as the following:

message1Plugin.first.message=This is a message for Message1Plugin
message2Plugin.first.message=This is a message for Message2Plugin

These messages could be stored in a file named "messages.properties" in the root of the plugin
JAR file. If there are many messages contained for each plugin type, it may be necessary to split
each plugin type's messages into a separate file, such as "message1-messages.properties" and
"message2-messages.properties". Note that it is essential that each property file ends with
"messages.properties" so that it is registered correctly.

http://en.wikipedia.org/wiki/Internationalization_and_localization

233

It is important that no two message codes are identical within a single plugin
JAR file, even if they are defined in separate property files. If this is done, a
conflict will exist with the messages and behavior is undefined.

Using the Message Method

Each plugin, translator, and custom component is injected with a method named . Thismessage
method takes a Map as its parameter, which can contain one or several of the following
properties:

Parameter Type Description

code String

The message property
definition (everything
before the equals sign in
the property file for a
single message), i.e.
"first.message.code".

args List<Object>
A list of arguments to
insert into the message.

default String
A default message to be
used when the message
code cannot be resolved.

error org.springframework.context.MessageSourceResolvable

An object that represents
a hierarchy of message
codes. This is typically
used to display errors.

The most utilized parameters are and , as these combined provide great flexibility incode args
generating messages. If a message cannot be resolved, or in other words the message definition
does not exist, the will simply be returned as the resolved message. Below are severalcode
examples of messages resolved using the property files given above. While these are contained
in the polling method, the may be used anywhere within a plugin type.message

package example

 com.adaptc.mws.plugins.AbstractPluginimport

class MessagingPlugin AbstractPlugin {extends
 def poll() {
 assert message(code:)=="first.message.code" "This is the first message"
 assert message(code: , args:["message.with.arguments"
 , 2, "1st" true
])=="This message has arguments: first - 1st, second - 2, third - ,true
etc."
 assert message(code:)=="message.with.quotes" "This message uses single quotes
around ' phrase'."this
 assert message(code:)=="invalid.message.code" "invalid.message.code"
 }
}

6.2.5 Configuration

234

Plugin types can access two different kinds of configuration: an individual plugin's
configuration, and the global MWS application configuration.

Individual Plugin Configuration

The individual plugin configuration is separate for each instance of a plugin. This may be used to
store current configuration information such as access information for linked resources. It should

 be used to store cached information or non-configuration related data. The not Individual
 should be used instead for these cases.Datastore

It is accessed by using the method discussed in .getConfig Dynamic Methods

public void poll() {
 def configFromMethod = getConfig()
 // OR an even simpler method…
 def configFromMethod = config
}

A common case is to retrieve the configuration in the method, verify that itconfigure
matches predetermined criteria, and utilize it perform initial setup of the plugin (e.g. initialize
libraries needed to communicate with external resources). For example, to verify that the
configuration contains the keys "username" and "password", the following code may be used.

public void configure() InvalidPluginConfigurationException {throws
 def myConfig = config
 // This checks to make sure the key exists in the configuration Map and that the
value is not empty or null
 (!myConfig.containsKey() || !myConfig.username)if "username"
 InvalidPluginConfigurationException(throw new "The username configuration

)parameter must be provided"
 (!myConfig.containsKey() || !myConfig.password)if "password"
 InvalidPluginConfigurationException(throw new "The password configuration parameter

)must be provided"
}

Access MWS Configuration

The MWS application configuration can also be accessed in plugin types. This configuration is
global for the entire application and can be modified by the administrator as shown in the MWS

 section.Configuration

It is accessed by using the method discussed in . This isgetAppConfig Dynamic Methods
demonstrated below.

public void poll() {
 // Retrieve the current MWS_HOME location
 def mwsHome = appConfig.mws.home.location
 // OR an even simpler method…
 def mwsHome = getAppConfig().mws.home.location
}

Any of the properties shown in the reference may be accessed. Custom propertiesConfiguration
may also be registered and accessed:

235

mws-config.groovy

plugins.custom.property = "This is my custom property"

CustomAppPropertyPlugin

public void poll() {
 assert appConfig.plugins.custom.property=="This is my custom property"
}

6.2.6 Configuration Constraints
Plugin types can optionally define validation constraints for the polling interval and plugin
configuration. These parameters are then checked against the defined constraints during the
creation of a new plugin. If the validation fails, meaning the configuration provided does not
pass the constraints defined by the plugin type, the plugin will fail to be created with error
messages based on the parameters and constraints defined.

Defining Constraints

To define constraints for a plugin type and therefore for all plugins created using it, use the
following syntax:

import com.adaptc.mws.plugins.*

class ConstrainedPlugin AbstractPlugin {extends
 constraints = {static
 // Set plugin's polling intervaldefault
 pollInterval defaultValue:60
 // The configuration parameter is automatically required and cannot"myParam"
be blank
 myParam blank:false
 // The configuration parameter is not required and must set to one of"myEnum"
the values in the list
 myEnum required: , inList:[, , "val3]false "val1" "val2"
 // Insert additional constraints here…
 }
}

In the table below, all available constraints are shown, as well as the expected value type, an
example, the default message code, and the message suffix. The message columns are described
in greater detail in the "Messaging" section below.

236

Constraint
Default
Value

Type Example Value Default Message Code Message Suffix

blank - Boolean false default.blank.message blank

creditCard - Boolean true default.invalid.creditCard.message creditCard.invalid

defaultValue - Object 60 - -

email - Boolean true default.invalid.email.message email.invalid

inList - List
["first",
"second"]

default.not.inlist.message not.inList

matches - String "[a-z][A-Z]+" default.doesnt.match.message matches.invalid

max - Integer 10 default.invalid.max.size.message max.exceeded

*maxSize - Integer 10 default.invalid.max.size.message maxSize.exceeded

min - Integer 1 default.invalid.min.size.message min.notmet

*minSize - Integer 1 default.invalid.min.message minSize.notmet

notEqual - Object
"Invalid
Value"

default.not.equal.message notEqual

nullable true Boolean false default.null.message nullable

password - Boolean true - -

range - Range 10..20 default.invalid.range.message range.toosmall/range.toobig

required true Boolean false default.required.message required

scale - Integer 2 - -

*size - Range 1..10 default.invalid.size.message size.toosmall/size.toobig

*type - Class Integer.class typeMismatch typeMismatch

url - Boolean true default.invalid.url.message url.invalid

scriptableUrl - Boolean true default.invalid.scriptable.url.message scriptableUrl.invalid

validator - Closure See below default.invalid.validator.message validator.error

237

The user interface (see) does not supportPlugin Management
parameters whose type is a subclass of Collection (a List for example).
Such parameters are therefore not recommended.
The polling interval constraints must always apply to Integer types. If
this specification is violated, the plugin type cannot be added or
updated.

Messaging

When defined constraints are violated for a plugin, error messages are retrieved based on the
configuration parameters and the applied constraints using codes. First, the mosti18n Messaging
specific error message will be attempted to be resolved from a message code generated from the
plugin type name, the configuration parameter, and the constraint. This code takes the format of
"pluginTypeName.parameterName.suffix" where the plugin type's name has a lowercase first
letter and the suffix is shown in the table above. If this message code is not defined, the default
message code (as shown in the table above) will be used.

For example, if the "url" constraint validation failed for the "ExamplePlugin" plugin type's
"endpoint" configuration parameter, the following message codes would be resolved in order:

examplePlugin.endpoint.url.invalid
default.invalid.url.message

Plugin types that have two or more uppercase letters at the start of the name
will not be converted to have a lowercase first letter for error message codes.
i.e. for the example just given using "VCenterPlugin" instead of
"ExamplePlugin", the following message codes would be resolved in order:

VCenterPlugin.endpoint.url.invalid
default.invalid.url.message

Default Messages

Default messages may be contained in any file included in themessages.properties
plugin JAR file as explained in . Arguments for each constraint vary, but theyi18n Messaging
always include these argument indices:

{0}: The configuration parameter name (i.e. endpoint)
{1}: The plugin type class name (i.e. my.package.ExamplePlugin)
{2}: The value of the configuration parameter

If default messages are not defined in the plugin project, the following messages will be used:

238

default.doesnt.match.message=The ''{0}'' configuration parameter value ({2}) does not
match the required pattern ''{3}''

.invalid.url.message=The ''{0}'' configuration parameter value ({2}) is not adefault
valid URL

.invalid.scriptable.url.message=The ''{0}'' configuration parameter value ({2})default
is not a valid scriptable URL

.invalid.creditCard.message=The ''{0}'' configuration parameter value ({2}) isdefault
not a valid credit card number

.invalid.email.message=The ''{0}'' configuration parameter value ({2}) is not adefault
valid e-mail address

.invalid.range.message=The ''{0}'' configuration parameter value ({2}) does notdefault
fall within the valid range from {3} to {4}

.invalid.size.message=The ''{0}'' configuration parameter value ({2}) does notdefault
fall within the valid size range from {3} to {4}

.invalid.max.message=The ''{0}'' configuration parameter value ({2}) is greaterdefault
than the maximum value of {3}

.invalid.min.message=The ''{0}'' configuration parameter value ({2}) is lessdefault
than the minimum value of {3}

.invalid.max.size.message=The ''{0}'' configuration parameter value ({2})default
exceeds the maximum size of {3}

.invalid.min.size.message=The ''{0}'' configuration parameter value ({2}) isdefault
less than the minimum size of {3}

.invalid.validator.message=The ''{0}'' configuration parameter value ({2}) doesdefault
not pass custom validation

.not.inlist.message=The ''{0}'' configuration parameter value ({2}) is notdefault
contained within the list [{3}]

.blank.message=The ''{0}'' configuration parameter cannot be blankdefault

.not.equal.message=The ''{0}'' configuration parameter value ({2}) cannot bedefault
equal to ''{3}''

. .message=The ''{0}'' configuration parameter cannot be default null null

.required.message=The ''{0}'' configuration parameter is required and cannot be default
null
typeMismatch=The ''{0}'' configuration parameter value ({2}) does not match the
required type ''{3}''

Labels and Help Messages

Message codes may also be provided for configuration parameters to aid the admin user with
human readable property labels and help messages. Similar to the validation error message
codes, labels and help message codes may be defined using the
"pluginTypeName.parameterName.label" and "pluginTypeName.parameterName.help" message
codes. These values are used only in and are not exposed through thePlugin Type Management
REST API.

Type Inferencing and Conversion

Due to the dynamic nature of configuration parameters, the expected type or class of values for
each parameter are inferred from constraints. The following rules govern how type is inferred, in
priority order:

If the "type" constraint is applied to a parameter, the constraint value will be used as the
expected type.
If the "inList" or "range" constraints are applied to a parameter, the class of the first element
in the constraint value array is used as the expected type.
If the "minSize" or "maxSize" constraints are applied to a parameter,

 is used as the expected type.java.lang.Collection

If the "max", "min", or "notEqual" constraints are applied to a parameter, the class of the
constraint value is used as the expected type.
If none of the above apply, is used as the expected type.java.lang.String

239

Only the String, Date, Double, Integer, and Boolean classes are supported for
the "type" constraint. If Float or Long is desired, use Double and Integer
respectively as the type.

If the configuration parameter values can be converted to the expected types, this will occur
automatically. Otherwise, the "type" constraint is violated and the applicable error messages will
be generated.

Custom Validator

In cases where the built-in constraints prove inadequate for validation, custom validators may be
used. The "validator" constraint expects a Groovy Closure parameter which has one or
(optionally) two arguments: the value of the configuration parameter and the plugin object. With
these parameters, complex validation logic may be defined. Additionally, custom message codes
and arguments may be defined by validator constraints and these will be used in generating error
messages when validation fails.

For example, suppose that the parameter "user" cannot be set to the same value as parameter
"creator". Additionally, the "creator" parameter must not be equal to either "bob" or "joe". The
existing constraints are inadequate to fulfill this use case, but the following code using validators
would perform exactly as expected:

import com.adaptc.mws.plugins.*

class ConstrainedPlugin AbstractPlugin {extends
 constraints = {static
 user validator:{ val, obj ->
 (val==obj.config.creator)if
 return "invalid.equal.to.creator"
 }
 creator validator:{ val ->
 (==)if "val" "joe"
 [,]return "invalid.equal" "joe"
 (val==)if "bob"
 [,]return "invalid.equal" "bob"
 }
 }
}

In the examples above, the message codes and output on validation failure is shown below:

Message Codes

constrainedPlugin.user.invalid.equal.to.creator=The user configuration parameter value
({2}) must not be equal to the creator parameter.
constrainedPlugin.creator.invalid.equal=The creator configuration parameter must not be
equal to {3}.

Output Error Messages

For user = , creator = "jill" "jill"
"The user configuration parameter value (jill) must not be equal to the creator
parameter."

For user = , creator = "jill" "bob"
"The creator configuration parameter must not be equal to bob."

For user = , creator = "jill" "joe"
"The creator configuration parameter must not be equal to joe."

240

The validator Closure may return:

Nothing () or if the validation succeeded without errors.null true

false if a validation error occurred (in this case the default validator message suffix
would be used).
A string which will be used as the message code suffix in the
"pluginTypeName.propertyName.suffix" format.
A list with the first element being the message code suffix, and all other elements being
arguments for the message indexed starting at 3 (as shown in the example above).

All validator constraints automatically have the property available which containsappConfig
the application configuration as discussed in the section. Additionally, servicesConfiguration
may be retrieved as explained in the next section.

Retrieving Services

At times it may be necessary to use in custom validators. A method named Bundled Services
 which takes a single string parameter of the name of the service (as used duringgetService

injection) is provided to be used in these cases. For example, if a plugin needs a valid server
certificate file, the may be used as follows:SSL Service

import com.adaptc.mws.plugins.*

class ConstrainedPlugin AbstractPlugin {extends
 constraints = {static
 certificateFile validator:{ val ->
 ISslService sslService = getService()"sslService"
 {try
 sslService.getSocketFactory(val)
 } (Exception e) {catch
 // Certificate file is invalid, an errorreturn
 [, e.message]return "invalid"
 }
 }
 }
}

The method does not work with , getService translators custom
, , or the .components RM services datastore service

6.2.7 Individual Datastore
Each plugin has access to an individual, persistent datastore which may be used for a variety of
reasons. The datastore is not designed to store Moab data such as nodes, jobs, or virtual
machines, but custom, arbitrary data pertinent only to the individual plugin. This may include
storing objects in a persistent cache, state information for currently running processes, or any
other arbitrary data. The individual datastore has the following properties:

241

Data is persisted to the Mongo database and will be available even if the plugin or MWS is
restarted.
The data must be stored in groups of data called . These correspond directly tocollections
MongoDB collections.
Each plugin may have an arbitrary number of collections.
Collections are guaranteed not to collide if there are identically named collections between
two plugin types or even two plugin instances.
Each collection contains multiple objects or . These correspond directly toentries
MongoDB documents.
The values of entries may be any object which can be serialized to MongoDB: simple types
(int or Integer), Maps, and Lists.
A collection is automatically created whenever an entry is added to it, it does not need to be
specifically initialized.

To utilize the datastore, the must be used. Operations are provided toPlugin Datastore Service
add, query, and remove data from each collection.

Simple key/value storage is not currently provided with the datastore. It may
easily be done, however, by storing data in the format of {name:"key",
value:"value"} and then retrieving this entry later by querying on name
equals "key".

Example

The example below demonstrates two . The first adds multiple entries containingweb services
various types of data to an arbitrarily named collection. The second retrieves the data and returns
it to the user.

package example

 com.adaptc.mws.plugins.*import

class DatastorePlugin AbstractPlugin {extends
 IPluginDatastoreService pluginDatastoreService

def storeData(Map params) {
 def collectionName = params.collectionName
 def data = [[boolVal:], [stringVal:], [intVal:1], [nullVal:]]true " "String null
 (pluginDatastoreService.addData(collectionName, data))if
 log.info()"Data successfully added"
 else
 log.info()"There was an error adding the data"
 [success:]return true
 }

def retrieveData(Map params) {
 def collectionName = params.collectionName
 pluginDatastoreService.getCollection(collectionName)return
 }
}

6.2.8 Exposing Web Services
Any number of methods may be exposed as public, custom web services by satisfying several
criteria:

242

1.
2.
3.
4.

The method must declare that it returns or .Object def

The method must define a single argument of type .Map

The method must actually return a or .List Map

The method must not be declared as private or protected; only public or unscoped methods
will be recognized as web services.

Parameters and Request Body

The Map argument will contain all parameters passed into the web service by the client. See
 for additional details.Accessing Plugin Web Services

Parameters may be passed into the web service call as normal URL parameters such as
, as key-value pairs in the POST body of a request, or as?param=value¶m2=value2

JSON in the body.

For the first two cases, the parameters will be available on the Map argument passed into the
web service call as key value pairs matching those of the request. Note that in these cases all
keys and values will be interpreted as strings. However, the parameters object has several helper
methods to convert from Strings to simple types, such as booleans, integers, doubles, floats, and
lists. If the value is not a valid simple type, null is returned.

GET <webServiceUrl>?key=value&key2= &key3=5&list=1&list=2true

def serviceMethod(Map params) {
 assert params.key=="value"
 assert params.key2==" "true
 assert params.bool('key2')==true
 assert params.key3=="5"
 assert params. ('key3')==5int
 assert params.list('list')==[1, 2]

// Null is returned the conversion is invalidif
 assert params. ('key')==int null
}

When the body possesses JSON, the parsed JSON object or array will be available within a
parameter called in the Map argument. In this scenario, the types of the values arebody
preserved by the JSON format.

POST <webServiceUrl> with JSON body of
{ : , : , :5}"key" "value" "key2" true "key3"

def serviceMethod(Map params) {
 assert params.body.key=="value"
 assert params.body.key2==true
 assert params.body.key3==5
}

Unsecured Web Services

There are times when it is desirable to create a plugin with a publicly available web service that
does not require a valid in order to access it. In these cases, the Application Account Unsecured
annotation may be used on the plugin web service method. No authentication will be performed
on Unsecured web services. An example of using the annotation is given below.

243

Sample unsecured custom web service

@Unsecured
def retrievePublicData(Map params) {
 [data:[,]]return "data item 1" "data item 2"
}

Be cautious in using this annotation as it may potentially present a security
risk if sensitive data is returned from the web service.

Returning Errors

In order to signify an error occurred or invalid data was provided, the WebServiceException
class may be thrown from any custom web service. This exception contains constructors and
fields for a list of messages and a HTTP response code. For example, suppose that the user
provided inadequate information. The web service could use the following code to notify the
user and prompt them to take action with custom messages.

def service(Map params) {
 // Handle invalid input
 (!params. ('a'))if int
 WebServiceException(throw new "Invalid parameter 'a' specified, please specify

, 400)an integer!"
 // Use params.a correctly …
}

For the example above, a 400 response code (bad request) would be returned with a response
body as follows:

{
 :["messages"
 "Invalid parameter 'a' specified, please specify an integer!"
]
}

If any other exception is thrown from a web service (ie Exception, IllegalArgumentException,
etc), a 500 response code will be returned with the following response body:

{
 :["messages"
 ,"A problem occurred processing the request"while
 "Message provided in the exception constructor"
]
}

See the section for more information on error formats in MWS.Responses and Return Codes

Accessing the HTTP Request Method

244

The HTTP method used for the request is available from the Map parameters argument. The key
used to access it is stored as a static field in called .PluginConstants WEB_SERVICES_METHOD
The value is a string which can be , , , or . The following exampleGET POST PUT DELETE
demonstrates how this could be used with the to create a REST APIWebServiceException
with a plugin.

def serviceMethod(Map params) {
 // Check to make sure that request used the HTTP GET methodthis
 // Throw a 405 error (method not supported) notif
 (params[PluginConstants.WEB_SERVICES_METHOD]!=)if "GET"
 WebServiceException(, 405)throw new "Method is not supported"
}

6.2.9 Reporting State Data
As long as Moab Workload Manager is with MWS as a Resource Manager (RM),configured
plugins may report state information on nodes, virtual machines, and jobs to MWM. This is done
through that are generated by the plugin and passed to the bundled RM services (Reports Node

, , and). Each report is for a specificRM Service Virtual Machine RM Service Job RM Service
type of object: node, virtual machine, or job. Each contains current state information on the
specific attributes of the type it is for.

Generating Reports

To generate a report, simply create a new instance of a report depending on the type of object to
be reported:

Object Type Report Type

Node NodeReport

Virtual Machine VirtualMachineReport

Job JobReport

Each report has a single required parameter for creating a new instance - the ID of the object
which is being reported. Once the report instance has been created, any property may be
modified as shown in the API documentation links in the table above. The following example
shows the creation of a simple node report and modification of a few properties:

public void poll() {
 NodeReport node = NodeReport()new "node1"
 node.timestamp = Date()new
 node.image = "centos-5.4-stateless"
 … // Set other properties and persist the report
}

Special Cases in Field Values

All complex types, such as Lists, Maps, and objects (not including Enumerated values such as
 and) have default values set for them and are not required to beNodeReportState JobReportState

instantiated before use. For example, the property of a node report may be modifiedmetrics
as follows:

245

public void poll() {
 NodeReport node = NodeReport()new "node1"
 // The following assignments are equivalent in their functionality
 node.features.add()"FEAT1"
 node.features << "FEAT2"
 // The following assignments are equivalent in their functionality
 node.metrics.METRIC1 = 4d
 node.metrics[] = 125.5"METRIC2"
 … // Set other properties and persist the report
}

For the and (jobs only) properties, assignments may be maderesources requirements
easily without checking for previously existing values or null objects. For example, resources
may be added to the property simply by accessing it as a Map:resources

public void poll() {
 NodeReport node = NodeReport()new "node1"
 node.resources.RES1.total = 10
 node.resources.RES1.available = 3
 node.resources[].total = 10"RES2"
 node.resources[].available = 10"RES2"
 … // Set other properties and persist the report
}

The job report's property has some additional handling to allow it to berequirements
accessed as a single object, such as in the following example:JobReportRequirement

public void poll() {
 JobReport job = JobReport()new "job.1"
 job.nodeCountMinimum = 4
 job.processorCountMinimum = 2
 job.requiredNodeFeatures << "FEAT1"
 job.preferredNodeFeatures << "FEAT2"
 … // Set other properties and persist the report
}

Although multiple requirements may be added to the list torequirements
provide consistency with the MWS resource, only the first requirementJob
object's properties will be reported to MWM through the RM interface.

Managing Images for Nodes

In order to have Moab Workload Manager recognize a node as a virtual machine hypervisor, it
must have a valid associated . In particular, the property on a node report must setImage image
to a valid image name. The image's and hypervisorType virtualizedImages
properties are then used to report the correct hypervisor type and supported virtual machine
images to MWM.

If the is invalid, it will be ignored and the node will not be recognized as a hypervisor. Ifimage
the is valid, but no value is present, the image hypervisorType

 field value will be used. If that is also not present, theextensions.xcat.hvType
configuration parameter for default hypervisor type (See) will be used instead.Configuration

Persisting a Report

246

After a report has been generated and all desired fields have been updated, the report must be
sent to one of the three bundled RM services for persisting. If this is not done, the report will be
discarded and will not be considered when reporting state information to MWM. The RM
services are shown below according to the object type that they handle:

Object Type RM Service

Node Node RM Service

Virtual Machine Virtual Machine RM Service

Job Job RM Service

Each service has two methods: and . The difference between these is that the save update
 method first removes all previous reports from the plugin calling the method, and thensave

persists the new reports, thereby only persisting the latest reports, while the methodupdate
does not remove any reports before persisting the new reports. Typically, the method willsave
be used while a plugin is being polled, while the method will be used in incrementalupdate
event based reporting. An example of using the method is shown below.save

INodeRMService nodeRMService

 void poll() {public
 NodeReport node = NodeReport()new "node1"
 // Change the state
 node.state = NodeReportState.BUSY
 // Persist
 nodeRMService.save([node])
}

Once this is done, the reports will be persisted to MongoDB and will be included in RM Queries
from Moab Workload Manager or users.

6.2.10 Controlling Lifecycle
At times a plugin developer may wish to modify the current state of a plugin or even create
plugins programatically. This may be done with the . Operations exist onPlugin Control Service
the service to:

create plugin instances dynamically with specific configuration.
retrieve plugin instances by ID or based on configuration properties.
start or stop plugin instances.
verify plugin instance configuration.

Creating Plugins

Several methods are provided to allow on-the-fly creation of new plugins. Generally, they allow
a plugin with a specific ID and plugin type (as a string or as a Groovy Class) to be created with
optional configuration properties. These properties should match the fields in the .Plugin API

If any configuration properties are omitted, the defaults will be used as described in the Setting
 section. A boolean value is also returned indicating whether theDefault Plugin Configuration

creation succeeded or not.

247

Note that the methods will initialize the plugin for retrieval or usage andcreatePlugin
attempt to start the plugin if the property is true.autoStart

Retrieving Plugins

Plugins may be retrieved by using an ID, querying by plugin type, or even querying based on
configuration parameters. Several methods are provided to perform these functions as shown on
the page.Plugin Control Service

Starting and Stopping Plugins

Plugins may also be started or stopped on demand. These two methods are exposed directly as
 and on the plugin control service. Although each method does not return any data,start stop

exceptions are thrown if errors are encountered.

Verifying Plugin Configuration

Finally, the plugin control service may be used to verify plugin configuration at any point instead
of just when the plugin is started or modified. This may be useful to attempt to modify plugin
configuration directly through the and then verify that the newsetConfig dynamic method
configuration is valid for the plugin. Exceptions are thrown if the plugin or the configuration is
invalid.

Examples

If an error state is detected it may be necessary to stop the current plugin instance until corrective
action can be taken. This may be done using the following code:

package example

 com.adaptc.mws.plugins.*import

class ErrorPlugin {
 IPluginControlService pluginControlService

 void poll() {public
 // Error is detected, stop plugin instance!
 {try
 log.warn()"An error was detected, trying to stop the plugin ${id}"
 pluginControlService.stop(id)
 log.warn()"The plugin was successfully stopped"
 } (PluginStopException e) {catch
 log.error(, e)"Plugin instance ${id} could not be stopped"
 }
 }
}

6.2.11 Accessing MWS REST Resources
Often a plugin type may need to access existing MWS REST Resources in order to extend or
complement default MWS functionality. This may be done with the , whichMoab Rest Service
allows a plugin type developer to utilize the existing documentation to perform theseResources
tasks.

All accesses to resources require a HTTP method to use (such as GET, POST, PUT, or
DELETE) and a relative URL (such as /rest/jobs). Although it mimics the REST resource
interface, no actual requests are made and no data is transmitted through the network.

248

Authentication

All resources are available to the Moab REST Service, and no authentication or Application
Accounts are needed.

Caution must be used when developing plugin types, as there are no
restrictions to what may be done with the Moab REST Service. This is
especially true when not utilizing hooks as discussed below.

Hooks

If are utilized in MWS, the plugin type developer may choosePre and Post-Processing Hooks
whether or not they are executed when performing a "request" through the Moab REST service.
This is done through the option as documented on the page.hooks Moab Rest Service

Verifying API Version Support

The Moab REST Service provides a method for easily determining which API versions are
supported by the current version of MWS. This method includes checks to make sure that the
API version will work as expected, including verifying any configuration or external services are
running.

moabRestService.isAPIVersionSupported(1)
moabRestService.isAPIVersionSupported(2)

URL Parameters

URL parameters, such as , , , and others should be not be appendedquery sort proxy-user
directly to the URL. Instead, these may be specified with the option:params

// Query images that are hypervisors
moabRestService.get(, params:[query:'{ : }'])"/ /images"rest "hypervisor" true
// Sort images by osType
moabRestService.get(, params:[sort:'{ :1}'])"/ /images"rest "osType"

Examples

This code retrieves a list of all nodes, and is equivalent to the task.Get All Nodes

249

package example

 com.adaptc.mws.plugins.*import
 net.sf.json.*import

class RestPlugin {
 IMoabRestService moabRestService

 void poll() {public
 def result = moabRestService.get()"/ /nodes"rest
 // OR with the hook enabled…
 def result = moabRestService.get(, hooks:)"/ /nodes"rest true

assert result MoabRestResponseinstanceof
 assert nodes Listinstanceof

log.debug()"Nodes list:"
 nodes.each { JSON node ->
 log.debug(node.id)
 }
 }
}

This code adds a flag to a job, and is equivalent to the task. This requestModify Job Attributes
also enables the hook (if one is configured) for the "request" and uses a URL parameter. This is
the equivalent of making a call to ./rest/jobs/job.1?proxy-user=adaptive

package example

 com.adaptc.mws.plugins.*import
 net.sf.json.*import

class RestPlugin {
 IMoabRestService moabRestService

 void poll() {public
 def jobId = "job.1"
 def result = moabRestService.put(+jobId, hooks: ,"/ /jobs/"rest true
params:['proxy-user':'adaptive']) {
 [flags:[]]"RESTARTABLE"
 }
 assert result.isSuccess()
 }
}

6.2.12 Handling Events
Plugin types may handle specific events by containing methods defined by the conventions
below. All events are optional.

The Polling Event

To maintain current information, each plugin is polled at a specified time interval. The following
method definition is required to utilize the polling event.

void poll() { … }

Typically this polling method is used to report node and virtual machine information. By default,
the polling interval is set to 30 seconds, but can be modified for all or individual plugins as
explained in .Plugin Management

250

When a polling event occurs, the method on the target plugin is called. This method maypoll
perform any function desired and should typically make calls to the , the Node RM Service

, and the services to report the current state ofVirtual Machine RM Service Job RM Service
nodes and virtual machines. For example, the method in the plugin type ispoll Native
implemented as follows:

This is an extremely simplified version of what is actually implemented in
the Native plugin type.

INodeRMService nodeRMService;
IVirtualMachineRMService virtualMachineRMService;

 void poll() {public
 nodeRMService.save(getNodes());
 virtualMachineRMService.save(getVirtualMachines());
}

This simple poll method calls two other helper methods called and getNodes
 to retrieve node and virtual machine reports. These reports are thengetVirtualMachines

sent to the appropriate RM service. See for more information on the RMReporting State Data
services, but the objective of this example is to demonstrate one possible use of the poll event
handler. Other plugin types, on the other hand, may use the poll event to update internal data
from pertinent resources or make calls to external APIs.

Lifecycle Events

Events are also triggered for certain lifecycle state changes. The following method definitions
are required to receive lifecycle events.

public void configure() InvalidPluginConfigurationException { … }throws
 void beforeStart() { … }public
 void afterStart() { … }public
 void beforeStop() { … }public
 void afterStop() { … }public

Each event is described in the table below with the associated state change when the event is
triggered.

State
Change

Event Description

configure Configure
Triggered before and after the plugin has beenbeforeStart
configured. May be used to verify configuration and perform any setup
needed any time configuration is loaded or modified.

beforeStart Start Triggered just before starting a plugin.

afterStart Start Triggered just after a plugin has been started.

beforeStop Stop Triggered just before stopping a plugin.

afterStop Stop Triggered just after stopping a plugin.

251

Currently, no events are triggered for pausing, resuming, erroring, or clearing errors for plugins.

RM Events

When MWS is configured as a Moab Resource Manager (see MWM Resource Manager
 and more specifically), RM events are sent from Moab to eachIntegration Configuring MWM

plugin according to the specification. The following method definitions are required toRouting
receive these events.

public jobCancel(List< > jobs) { … }boolean String
 jobModify(List< > jobs, Map< , > properties) { … }public boolean String String String
 jobRequeue(List< > jobs) { … }public boolean String
 jobResume(List< > jobs) { … }public boolean String
 jobStart(jobId, taskList, username) { … }public boolean String String String
 jobStart(jobId, taskList, username, Map< , public boolean String String String String
> properties) { … }String
 jobSubmit(Map< , > properties) { … }public boolean String String
 jobSuspend(List< > jobs) { … }public boolean String
 nodeModify(List< > nodes, Map< , > properties) { … }public boolean String String String
 nodePower(List< > nodes, NodeReportPower state) { … }public boolean String
 resourceCreate(type, id, Map< , > attributes) {public boolean String String String String

… }
 systemModify(Map< , > properties) { … }public boolean String String
 List< > systemQuery(List< > attributes) { … }public String String
 virtualMachineMigrate(vmId, hypervisorId, public boolean String String String

operationId) { … }

These calls are equivalent to the Moab RM URLs as described in the "Native PluginNative
Interface Comparison" section. All method definitions are documented in the APIAbstractPlugin
documentation.

6.2.13 Handling Exceptions
The package contains several exceptions that may be used andcom.adaptc.mws.plugins
in some cases, should be caught. All exceptions end with "Exception", as in

.PluginStartException

There are several specific cases where Exceptions should or can be used:

The method on the can throw the reload Plugin Control Service
 to signify that the configuration contains errors.InvalidPluginConfigurationException

Various methods on the throw plugin exceptions which must bePlugin Control Service
caught to diagnose errors when creating plugin types.
Any exception (including the Exception class) can be thrown from a custom web service to
display a 500 Internal Server Error to the client requesting the service with the given error
message.

6.2.14 Managing SSL Connections
At times it is desirable to load and use self-signed certificates, certificates generated from a
single trusted certificate authority (CA), or even simple server certificates. It may also be
necessary to use client certificates to communicate with external resources. To ease this process,
the may be utilized. This service provides methods to load client and serverSSL Service
certificates from the filesystem. Methods are also present to aid in creating connections which
automatically trust all server certificates and connections.

Several points should be noted when using the SSL Service:

252

Certificate files may be in the PEM file format and do not need to be in the DER format (as
is typical of Java security).
Each method returns an instance of SSLSocketFactory, which may then be used to create
simple sockets or, in combination with another client library of choice, create a connection.
If the client certificate password is non-null, it will be used to decrypt the protected client
certificate.
This service is needed when performing SSL communications with trusted certificates,not
such as those for HTTPS enabled websites that do not have a self-signed certificate.
If the file name of the certificate file (client or server) is relative (no leading '/' character), it
will be loaded from the parameter.mws.certificates.location Configuration

The default value of is mws.certificates.location
.MWS_HOME/etc/ssl.crt

Both the client certificate alias and password may be . In this case, the clientnull
certificate must not be encrypted and the client certificate's default alias (the first subject
CN) will be used.
The lenient socket factory and hostname verifier automatically trust all server certificates.
Because of this, they present a large security hole. Only use these methods in development
or in fully trusted environments.

Example

To create a socket to a server that requires a client certificate, the following code may be used.

package example

 com.adaptc.mws.plugins.*import

class SSLConnectionPlugin AbstractPlugin {extends
 ISslService sslService

 void poll() {public
 // This certificate is not encrypted and will be the only certificate presented
to the
 // connecting end of the socket.
 // This file will be loaded from MWS_HOME + mws.certificates.location +
my-cert.pem.
 clientCert = String "my-cert.pem"

def socketFactory = sslService.getSocketFactory(clientCert, ,)null null
 def socket = socketFactory.createSocket(, 443)"hostname.com"
 // Write and read from the socket as desired…
 }
}

To create a HTTPS URL connection to a server that has a self-signed certificate, the following
code may be used. Note that this is very typical of client libraries - they have a method to set the
SSL socket factory used when creating connections.

253

1.
2.
3.

package example

 com.adaptc.mws.plugins.*import

class SSLConnectionPlugin AbstractPlugin {extends
 ISslService sslService

 void poll() {public
 // This certificate represents either the server certificate or the CA'spublic
certificate.
 // Since the path is absolute it will not be loaded from the MWS_HOME
directory.
 serverCert = String "/etc/ssl/certs/server-cert.pem"

def socketFactory = sslService.getSocketFactory(serverCert)

// Open connection to URL
 HttpsURLConnection conn = "https://hostname.com:443/test"
.toURL().openConnection()
 conn.setSSLSocketFactory(socketFactory)

// Retrieve page content and with as desired…do
 def pageContent = conn.getInputStream().text
 }
}

6.2.15 Utilizing Services or Custom "Helper" Classes
There are three general types of services available for use in plugins:

Bundled services such as the .Moab Rest Service
Custom built translators loaded by convention of their name.
Other custom built helper classes registered with Annotations.

These will each be described in this section.

6.2.15.1 Bundled Services
Bundled services are utility classes that are included and injected by default onto all plugin
types. It is not required to use any of these services, but they enable several core features of
plugin types as discussed in the section.Utility Services

More information may be found on each bundled service in the Quick Reference section under
"Plugin Services". See especially the "Usage" page under "Plugin Services" to understand
generally how they are to be used.

6.2.15.2 Using Translators
Often a plugin type class file becomes so complex that it is desirable to split some of its logic
into separate utility service classes. The most typical use case for this is to split out the logic for
"translating" from a specific resource API to a format of data that the plugin type can natively
understand and utilize. For this reason, there is a convention defined to easily add these helper
classes called "Translators".

Simply end any class name with "Translator", and it will be automatically injected just as
bundled services onto plugin types, other translators, or even . Thecustom registered components
injection occurs only if a field exists on the class matching the name of the translator with the
first letter lower-cased. For example, a translator class called "MyTranslator" would be injected
on plugin types, other translators, and custom components that define a field called
"myTranslator" as or .def myTranslator MyTranslator myTranslator

254

Do not use two upper-case letters to start the class name of a Translator.
Doing this may cause injection to work improperly. i.e. use RmTranslator
instead of RMTranslator as the class name.

Be careful not to declare translator and custom component injection such that
a cyclic dependency is created.

Logging in Translators

All translators automatically have a "getLog" method injected on them which can be used to
access the configured logger. It returns an instance of .org.apache.commons.logging.Log

package example

class ExampleTranslator {
 void myMethod() {public
 // log will be translated to getLog() by the groovy compiler
 log.info()"Starting my method"
 }
}

See the section for more information on logging configuration and usage.Logging

Example

Suppose that a translator needs to be created to handle a connection to access an external REST
resource. The translator could be defined as follows:

package example

class ExampleTranslator {
 getExternalNumber() {public int
 def number = … // Make call to external resource
 numberreturn
 }
}

A plugin type can then use the translator by defining a field called "exampleTranslator". Note
that an instance does not need to be explicitly created.

package example

class ExamplePlugin {
 def exampleTranslator
 // OR …
 //ExampleTranslator exampleTranslator

 void poll() {public
 // Use the translator
 log.info(+exampleTranslator.getExternalNumber())"The current number is "
 }
}

To extend the example, the translator may also be injected into another translator:

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/Log.html

255

package example

class AnotherTranslator {
 def exampleTranslator

 modifyNumber(number) {public int int
 number + exampleTranslator.getExternalNumber()return
 }
}

This translator may be used in the plugin type just as the other translator.

6.2.15.3 Registering Custom Components
There are cases where the concept of a "Translator" does not fit the desired use of a utility class.
In these cases, it is possible to register any arbitrary class as a component to be injected just as a
translator would be. This is done using the Spring Framework's annotation

. When this annotation is used, theorg.springframework.stereotype.Component
class is automatically registered to be injected just as translators onto plugin types and
translators.

All annotations are available in the dependencies declared by the
plugins-commons artifact.

Do not use two upper-case letters to start the class name of a custom
component. Doing this may cause injection to work improperly. i.e. use
RmUtility instead of RMUtility as the class name.

Changing Scope

By default, when a custom component is injected, only a single instance is created for all classes
which inject it. This is referred to as the 'singleton' scope. Another scope that is available is
'prototype', which creates a new instance every time it is injected. This is useful when the class
contains state data or fields that are modified by multiple methods. To change the scope, use the

 on the class with a singleorg.springframework.context.annotation.Scope
String parameter specifying 'singleton' or 'prototype'.

Injecting Translators or Components

The need may arise to inject translators or other custom components onto custom components.
This is done using the

 or org.springframework.beans.factory.annotation.Autowired
 annotations. The annotation is used to injectjavax.annotation.Resource Autowired

class instances by the type (i.e.) while the MyTranslator myTranslator Resource
annotation is used to inject class instances by the name (i.e.). Add thedef myTranslator
desired annotation to the field that needs to be injected.

256

Note that using the annotation does injection by type whichAutowired
differs from translator and plugin type injection. These are done by name just
as the annotation allows. Due to this fact, a type of "def" cannotResource
be used when doing injection onto custom components using the

 annotation. See the example below.Autowired

Injection of custom components translators and plugin types are stillonto
done by name, only fields injected using the annotation areAutowired
affected.

Be careful not to declare translator and custom component injection such that
a cyclic dependency is created.

Logging in Custom Components

Unlike plugins and translators, custom components do automatically have a "getLog"not
method injected on them. In order to log with custom components, you must use the Apache
Commons Logging classes to retrieve a new log. The class contains thePluginConstants
value of the logger prefix that is used for all plugins and translators. The following is an example
of how to retrieve and use a logger correctly in a custom component.

package example

 com.adaptc.mws.plugins.PluginConstantsimport
 org.apache.commons.logging.Logimport
 org.apache.commons.logging.LogFactoryimport
 org.springframework.stereotype.Componentimport

@Component
class ExampleComponent {
 Log log = LogFactory.getLog(PluginConstants.LOGGER_PREFIX+private static final this
.name)

 void myMethod() {public
 log.info()"Starting my method"
 }
}

See the for more information on logging configuration and usage.Logging

Example

Suppose that a custom utility class is needed to perform complex logic. A custom component
could be defined as follows (notice the optional use of the annotation):Scope

package example

 org.springframework.stereotype.Componentimport
 org.springframework.context.annotation.Scopeimport

@Component
@Scope()"prototype"
class ComplexLogicHandler {
 def handleLogic() {
 … // Perform complex logic and return
 }
}

257

1.
2.

A plugin type or translator could then be defined to inject this component:

package example

class CustomPlugin {
 def complexLogicHandler

 void poll() {public
 complexLogicHandler.handleLogic()
 }
}

Now suppose another custom component needs to use the ComplexLogicHandler in its code. It
can inject it using the annotation:Autowired

package example

 org.springframework.stereotype.Componentimport
 org.springframework.beans.factory.annotation.Autowiredimport

@Component
class AnotherHandler {
 // Note that is injected by type, so 'def' may not be usedthis
 @Autowired
 ComplexLogicHandler complexLogicHandler

def wrapLogic() {
 complexLogicHandler.handleLogic()
 }
}

To perform the same injection but by name (as translators and plugin types are injected), use the
 annotation:Resource

package example

 org.springframework.stereotype.Componentimport
 javax.annotation.Resourceimport

@Component
class AnotherHandler {
 // Note that is injected by name based solely on the name defined inthis
 // the annotation. The name of the field itself does not affect the injection.
 @Resource(name=)"complexLogicHandler"
 def complexLogicHandler

def wrapLogic() {
 complexLogicHandler.handleLogic()
 }
}

6.2.16 Packaging Plugins
Plugin types may be packaged in two different ways to upload to MWS:

A simple Groovy file containing a single plugin type definition.
A JAR file containing one or more plugin types, translators, and custom components.

While each may be uploaded to MWS using the REST API or the User Interface as described in
, using a JAR file is recommended. Using a simple Groovy file isAdd or Update Plugin Types

useful for testing and generating proof of concept work, but does not allow the use of several
features of plugins.

258

The principles of packaging a plugin type or set of plugin types in a JAR file are very simple.
Simply compile the classes and package in a typical JAR file. All classes ending in "Plugin" are
automatically attempted to be loaded as a plugin type, all classes ending in "Translator" are
attempted to be loaded as a translator, and all classes annotated as a custom component will be
attempted to be loaded. It is recommended that a build framework is used to help with compiling
and packaging the JAR file, such as . This makes it easy to declare a dependency on theGradle
necessary JAR files used in plugin development and to debug, compile, and test plugin code.

In addition to using utility services such as translators, packaging plugin types in JAR files
allows the creation of a single project for multiple related plugin types and bundling of external
dependencies. These two features are discussed in the following sections.

6.2.16.1 Plugin Projects and Metadata
Each plugin type has information attached to it, called metadata, which describes the origin and
purpose of the plugin type. Additionally, a JAR file may also contain a project file which defines
default metadata attributes for all plugin types in the JAR. Initial plugins, or plugins that will be
created on loading of the JAR file if they do not exist, are also able to be defined on a project
file. In all cases, metadata declared on a plugin type will override the metadata defined on the
project file.

To define a project file, simply add a class to JAR file that ends in "Project". This file will
attempted to be loaded as the project file. Every field on a project file, and even the file itself, is
optional. All available fields are shown in the example below.

class SampleProject {
 // Plugin information
 title = String "Sample"
 description = String "Sample plugin types"
 author = String "Our Company."
 website = String "http://example.com"
 email = String "sample@example.com"

// Versioning properties
 version = String "0.1"
 mwsVersion = String "7.1 > *"
 commonsVersion = String "0.9 > *"
 license = String "APACHE"

// Documentation properties
 issueManagementLink = String "http://example.com/ticket-system/sample-plugins"
 documentationLink = String "http://example.com/docs/sample-plugins"
 scmLink = String "http://example.com/git/sample-plugins"

// Plugins that are to be created with these properties only when they NOT existdo
 // This does not override any existing plugin instance configuration
 def initialPlugins = {
 /*
 // Multiple instances of plugins may be defined here.
 // In , 'sample' is the id of the pluginthis case
 sample {
 pluginType = "Sample"
 // All properties except are optionalfor "pluginType"
 pollInterval = 30
 autoStart = true
 // Although it is possible to set plugin precedence, it is not
recommended since precedencethis
 // may already be taken and plugin creation will fail in this case
 precedence = 5
 config {
 configParam = "value"
 }
 }
 }
 // Another plugin with an ID of 'sample2'
 sample2 {
 …
 */
 }
}

http://gradle.org/

259

As can be seen, metadata information about the plugin type(s), versions, and documentation are
available. These are displayed when viewing plugin information in the User Interface or through
the REST API.

Any of these properties except for , , and initialPlugins mwsVersion
 may be overwritten by the plugin type class itself by using static properties.commonsVersion

A simple example is shown below.

package example

class SamplePlugin {
 // Properties may be typed, untyped, , or otherwise,final
 // but they MUST be static
 version = static "0.2"
 title = static "Sample plugin"
 description = static "This sample plugin is used to demonstrate metadata
information"
 author = static "Separate Division"

… // Rest of the plugin type definition
}

MWS and Commons Versions

The and fields are used to restrict the versions of MWS andmwsVersion commonsVersion
plugin framework with which the plugin project may be used. Each field is of the format

, where is the first supported MWSFIRST_VERSION > LAST_VERSION FIRST_VERSION
or plugin framework version (inclusive), and is the last supported MWS orLAST_VERSION
plugin framework version (inclusive). Each version must take the format of #.# or #.#.#, as in
7.1, or 7.1.2. An asterisk (*) is used to denote any version, and may be used for the first or the
last version.

Although support for restricting both the MWS and commons versions are provided, it is
recommended to use the commons version restriction always and the MWS version restriction
where necessary. Restrictions on the commons version prevent plugin loading errors while
restrictions on the MWS version prevent runtime errors such as missing support for certain
MWS API versions.

Typically the and fields are set as shown above, with themwsVersion commonsVersion
first version set to a specific number, and the last version set to any (an asterisk). This is the
recommended approach for setting both fields. It is not recommended to use any version
(asterisk) for the first version. Some examples of and valuesmwsVersion commonsVersion
are shown below with explanations of how they behave.

260

String mwsVersion = // Any MWS version 7.1.0 and greater is supported"7.1 > *"
(including 7.2, etc)

 mwsVersion = // Any MWS version 7.1.3 and greater is supportedString "7.1.3 > *"
(including 7.2, etc)

 mwsVersion = // Any MWS version between 7.1.0 and 7.1.3 isString "7.1 > 7.1.3"
supported

 mwsVersion = // Any MWS version is supported (not recommended!)String "* > *"
 mwsVersion = // Any MWS version up to 7.2 is supported (notString "* > 7.2"

recommended!)

 commonsVersion = // Any framework version 0.9.0 and greater isString "0.9 > *"
supported (including 1.0, etc)

 commonsVersion = // Any framework version 0.9.3 and greater isString "0.9.3 > *"
supported (including 1.0, etc)

 commonsVersion = // Any framework version between 0.9.0 and 0.9.3String "0.9 > 0.9.3"
is supported

 commonsVersion = // Any framework version is supported (notString "* > *"
recommended!)

 commonsVersion = // Any framework version up to 1.0 is supported (notString "* > 1.0"
recommended!)

If the or fields are formatted incorrectly, the plugin projectmwsVersion commonsVersion
will fail to load. If a plugin project is uploaded to MWS and the version check fails, the project
will fail to load with an error message about the or .mwsVersion commonsVersion

The and fields cannot be overridden bymwsVersion commonsVersion
a single plugin type, but can be set only at the plugin project level. This
prevents mixing of MWS and commons version requirements within a single
project.

Initial Plugins

The initial plugins closure provides the flexibility to insert plugin instances when the JAR is
loaded. This occurs at two points: when the plugin JAR is first uploaded to MWS, and when
MWS is restarted. As shown in the example above, the ID, pluginType, and other properties may
be configured for multiple plugins.

The nature of Groovy closures means that programmatic definition of initial plugins is possible.
This may even be based on the MWS application configuration. Two properties are
automatically available in the initialPlugins closure:

appConfig - Contains the MWS application configuration. Any configuration parameter
is available for access as documented on the page.Configuration
suite - Contains the currently configured suite that MWS is running in. This is equivalent
to the configuration parameter, and is an instance of .mws.suite Suite

Native Plugin Case Study

The Native JAR file utilizes many of the features discussed above. In the root of the JAR file, a
compiled class called NativeProject exists which defines all of the metadata fields, including

. Trying to create an initial plugin presents two distinct problems:initialPlugins

The plugin should be initialized only if the suite is CLOUD.
The plugin type configuration must contain an entry referencing the configured

 parameter, or the configured MWS_HOME location.mws.home.location

261

1.

2.

The closure is defined as follows:initialPlugins

import com.adaptc.mws.plugins.Suite

class NativeProject {
 … // Metadata fields

def initialPlugins = {
 // Initialize the cloud- plugin only the suite is CLOUDnative if
 (suite==Suite.CLOUD) {if
 'cloud- ' {native
 pluginType = "Native"
 pollInterval = 30
 config {
 // Use the appConfig property to retrieve the current MWS_HOME
location
 getCluster = "file://${appConfig.mws.home.location}/etc/nodes.txt"
 }
 }
 }
 }
}

6.2.16.2 Managing External Dependencies
External dependencies (e.g. JAR files) may be included and referenced in JAR files. Certain
rules must also be followed in order to have the dependencies loaded from the JAR file correctly:

The plugin type must bundle all external dependency JARs in the root of the plugin type
JAR file.
An entry must be included in the file that references each of these bundledMANIFEST.MF
JAR files as a space separated list:

Class-Path: dependency1.jar dependency2.jar dependency3.jar

Assuming that these rules are followed and that the plugin type is uploaded using the REST API
or the User Interface, the dependent JARs will first be loaded and then the new plugin type and
associated files will be loaded.

6.2.17 Example Plugin Types
Several plugin types are provided by Adaptive Computing for use in Moab Web Services.
Examples of these include the and plugin types.Native vCenter

Please see the Plugin Types item in the Quick Reference menu for all
bundled plugin types.

A sample plugin type in Groovy would resemble the following:

262

package sample

 com.adaptc.mws.plugins.*import

class SamplePlugin AbstractPlugin {extends
 author = static "Adaptive Computing"
 description = static "A simple plugin in groovy"
 version = static "0.1"

INodeRMService nodeRMService

 void configure() InvalidPluginConfigurationException {public throws
 def myConfig = config // is equivalent to getConfig() in groovy"config"
 def errors = []
 (!myConfig.arbitraryKey)if
 errors << "Missing arbitraryKey!"
 (errors)if
 InvalidPluginConfigurationException(errors)throw new
 }

 void poll() {public
 NodeReport node = NodeReport()new "node1"
 node.resources.RES1.total = 5
 node.resources.RES1.available = 5
 node.state = NodeReportState.IDLE
 nodeRMService.save([node])
 }

// Access at / /plugins/<id>/services/example-servicerest
 def exampleService(Map params) {public
 [success:]return true
 }
}

6.3 MWM Resource Manager Integration
Moab Workload Manager possesses the concept of Resource Managers (RMs). While plugins
can be related to RMs, they often provide greater functionality and serve more purposes than a
typical RM. MWS must be represented in MWM as a RM to enable certain plugin features such
as state reporting and handling RM events. This section describes the process of configuring
MWM and additional details of its queries to MWS.

6.3.1 Configuring MWM
Moab Workload Manager must be configured to use MWS as a resource manager. The following
lines must be in the file or one of its included files:/opt/moab/etc/moab.cfg

RMCFG[mws] TYPE=NATIVE
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] CLUSTERQUERYURL=exec://$TOOLSDIR/mws/cluster.query.mws.pl
RMCFG[mws] WORKLOADQUERYURL=exec://$TOOLSDIR/mws/workload.query.mws.pl
RMCFG[mws] JOBCANCELURL=exec://$TOOLSDIR/mws/job.cancel.mws.pl
RMCFG[mws] JOBMIGRATEURL=exec://$TOOLSDIR/mws/vm.migrate.mws.pl
RMCFG[mws] JOBMODIFYURL=exec://$TOOLSDIR/mws/job.modify.mws.pl
RMCFG[mws] JOBREQUEUEURL=exec://$TOOLSDIR/mws/job.requeue.mws.pl
RMCFG[mws] JOBRESUMEURL=exec://$TOOLSDIR/mws/job.resume.mws.pl
RMCFG[mws] JOBSTARTURL=exec://$TOOLSDIR/mws/job.start.mws.pl
RMCFG[mws] JOBSUBMITURL=exec://$TOOLSDIR/mws/job.submit.mws.pl
RMCFG[mws] JOBSUSPENDURL=exec://$TOOLSDIR/mws/job.suspend.mws.pl
RMCFG[mws] NODEMODIFYURL=exec://$TOOLSDIR/mws/node.modify.mws.pl
RMCFG[mws] NODEPOWERURL=exec://$TOOLSDIR/mws/node.power.mws.pl
RMCFG[mws] RESOURCECREATEURL=exec://$TOOLSDIR/mws/resource.create.mws.pl
RMCFG[mws] SYSTEMMODIFYURL=exec://$TOOLSDIR/mws/system.modify.mws.pl
RMCFG[mws] SYSTEMQUERYURL=exec://$TOOLSDIR/mws/system.query.mws.pl

The next step is to edit the MWS values in . Here are the/opt/moab/etc/cloud.cfg
default values:

CONFIG[] MWS_URL=http://localhost:8080/mwsdefault
CONFIG[] MWS_USERNAME=admindefault
CONFIG[] MWS_PASSWORD=adminpwdefault

263

 and must match the values of MWS_USERNAME MWS_PASSWORD
 and auth.defaultUser.username
, respectively, found in auth.defaultUser.password

./opt/mws/etc/mws-config.groovy

The scripts should be located in the of the Moab home directory. The *.mws.pl tools/mws
 module must also be available to the scripts. All of these files mayMoab/WebServices.pm

be found in the and directories of the Moab tar file. They aretools/mws lib/perl5
automatically installed if Moab is configured with the flag or they can be copied--with-mws
directly from there to the folder in your Moab home directory.tools

To enable such actions as submitting jobs as different users, the optionENABLEPROXY=TRUE
must be present in the configuration line and the option must beADMINCFG OSCREDLOOKUP
set to as follows:NEVER

ADMINCFG[1] USERS=root ENABLEPROXY=TRUE
OSCREDLOOKUP NEVER

6.3.2 RM Queries
During each iteration of Moab Workload Manager's cycle, it will query MWS through the RM
interface to access current node, virtual machine, and job information. At this point, all reports
are loaded from the database and consolidated into a single report of each object as explained in
the section.Data Consolidation

All unset, or null, values for properties on reports are ignored.

In some cases it may be desired to query MWS directly for the current consolidated node, virtual
machine, and job reports. This may be done using the following URLs which return data in the
Wiki interface format (see the plugin type for more information). Note that the contentNative
type of these URLs is , not .plain/text application/json

query Description

/rest/plugins/all/rm/cluster-query
Retrieves consolidated node and virtual machine
reports from all plugins. All VMs will have a

 attribute present.CONTAINERNODE

/rest/plugins/<ID>/rm/cluster-query
Retrieves consolidated node and virtual machine
reports for the specified plugin ID. All VMs will have a

 attribute present.CONTAINERNODE

/rest/plugins/all/rm/workload-query Retrieves consolidated job reports from all plugins.

/rest/plugins/<ID>/rm/workload-query
Retrieves consolidated job reports for the specified
plugin ID.

264

These queries have no effect on the data itself. In other words, reports are not removed or
manipulated when RM queries are performed. These are manipulated only the RM services as
described in .Reporting State Data

Examples

The following example uses to perform the query.cURL

$ curl -u admin:adminpw http://localhost:8080/mws/ /plugins/all/rm/cluster-queryrest
SC=0 RESPONSE=Success
n1.test
STATE=Up;UPDATETIME=1344488025;CPROC=4;CMEMORY=8191;AMEMORY=7205;CPULOAD=0.0182;POWER=On
n2.test
STATE=Up;UPDATETIME=1344488025;CPROC=4;CMEMORY=10239;AMEMORY=9227;CPULOAD=0.0233;POWER=On
n3.test
STATE=Up;UPDATETIME=1344488025;CPROC=4;CMEMORY=10239;AMEMORY=9230;CPULOAD=0.019633333333333336;POWER=On
n4.test
STATE=Up;UPDATETIME=1344488025;CPROC=4;CMEMORY=10239;AMEMORY=9230;CPULOAD=0.020033333333333334;POWER=On
management.test
STATE=Up;UPDATETIME=1344488025;CPROC=24;CMEMORY=49150;AMEMORY=39339;CPULOAD=0.23799999999999996;POWER=On
ldapdns
STATE=Up;CONTAINERNODE=management.test;UPDATETIME=1344488025;CPROC=1;CMEMORY=1024;AMEMORY=152;CPULOAD=0.0104;POWER=On

6.4 Plugin Type Management
Plugin types may be managed and accessed with Moab Web Services dynamically, even while
running. Operations are provided to upload (add or update) plugin types and to list or show
current plugin types. The available fields that are displayed with plugin types are given in the

. For more information on how these fields are set, see the PluginType API Plugin Projects and
 section.Metadata

Plugin Type JAR or groovy files should never be manually copied into the
 directory. They must be managed using the methodsMWS_HOME/plugins

shown in this section or through the .REST API

6.4.1 Listing Plugin Types
To list all plugin types, browse to the MWS home page (forhttps://servername/mws
example). Log in as the admin user, then click and then .Plugins Plugin Types

6.4.2 Displaying Plugin Types
To show information about a plugin type, go to the page and click the desiredPlugin Type List
plugin type.

265

6.4.3 Add or Update Plugin Types
Plugin types can be uploaded into Moab Web Services using a Groovy file, a Java Archive (JAR
) file, or pasted Groovy code. To access the plugin type upload page, navigate to the Plugin

 page and click . The default interface of this pageType List Add or Update Plugin Type
enables the uploading of a single Groovy class file or a JAR file.

When a plugin type is updated, by default all corresponding plugins created from the plugin type
will be recreated. If this behavior is not desired, clear the "Do you want to reload all plugins to
use this new version?" checkbox before uploading the plugin type.

Single Class File

Groovy files containing a single plugin type may be uploaded at the
/mws/admin/plugin-types/create URL.

http://en.wikipedia.org/wiki/Jar_file

266

Simply click , select the class file, and click the button. IfAdd files... .groovy Start upload
the plugin type was successfully uploaded and initialized, the size of the file uploaded will be
displayed along with the name of the plugin loaded.

If the upload failed or an error occurred during initialization of the plugin, an error message will
be displayed.

267

JAR File

A JAR file as described in the section containing one or more plugins mayPackaging Plugins
also be uploaded using the same process as the Groovy file.

Click , select the file, and click the button. If the upload failed orAdd files... .jar Start upload
an error occurred during initialization of the plugin(s), an error message will be displayed.

The JAR upload process differs from the single file in that if successful, the name of the JAR file
itself is displayed instead of the plugin name(s).

Code

To paste or type code directly into MWS and have it be loaded as a single class file, click Type
 and type or paste the code into the presented text box.or Paste Code

268

When the code is in the box, click . If the upload succeeded and the code was able to beCreate
compiled as Groovy, the browser will be redirected to the page. If the uploadShow Plugin Type
failed or an error occurred during compilation or initialization of the plugin, an error message
will be displayed.

The MWS file may need to be referred to for additional details andlog file
error messages in the case of a failure.

6.5 Plugin Management
Plugins may be managed and accessed with Moab Web Services dynamically, even while
running. This includes plugin instance and lifecycle management. Additionally, default
configuration values may be set for new plugins. In order to access custom web services, the
REST API must be utilized as described in the section. TheAccessing Plugin Web Services
available fields that are displayed with plugins are given in the .PluginInstance API

269

6.5.1 Listing Plugins
To list all plugins, browse to the MWS home page (forhttps://servername/mws
example). Log in as the admin user, then click and then .Plugins Plugins

6.5.2 Creating a Plugin
To create a plugin, go to the page and click . First, a mustPlugin List Add Plugin Plugin Type
be selected to continue to actually create the plugin.

The page is automatically built to support the . The field will beplugin type's constraints ID
automatically filled in with a suggested value, and the field will be displayed onlyPoll Interval
if the plugin type has a method. The required configuration fields are displayed by default,poll
and optional fields may be selected and added to the configuration from the drop down at the top
of the configuration section. See the for more information on the fields.PluginInstance API

270

6.5.3 Displaying a Plugin
To show information about a plugin, go to the page and click the desired plugin ID.Plugin List

271

6.5.4 Modifying a Plugin
To modify a plugin, go to the page, click the desired plugin ID, and then click .Plugin List Edit
See the for more information on available fields.PluginInstance API

6.5.5 Deleting a Plugin
To delete a plugin, go to the page, click the desired plugin ID, and then click .Plugin List Delete
A confirmation message is shown. If the button is clicked, the plugin is deleted from theOK
system and cannot be recovered, including all configuration.

6.5.6 Monitoring and Lifecycle Controls
To monitor and control the lifecycle of plugins, browse to the MWS home page (

 for example). Log in as the admin user, then click andhttps://servername/mws Plugins
then . This page displays the current state of all plugins as well as theirPlugin Monitoring
polling status.

272

If plugins are created from plugin types which do not have a method,poll
their lifecycle controls will be limited. Any information below which
mentions polling does not apply to the 'no-polling' plugin shown in the
screenshots.

Active Plugins

Active plugins are those which are in the Started or Paused states. These are available to receive
events such as polling. If paused, a plugin will not receive events but is not actually stopped,
therefore no stop events are triggered.

The following images demonstrate the status of plugins in the active states.

Started plugins which can include the relative time of the last poll as well as the time of the next
poll in a countdown format. Action buttons are available to stop or pause the plugin as well as
trigger an immediate poll event.

273

Paused plugins which can include only the last polling time. Action buttons are available to stop
or resume the plugin, as well as trigger an immediate poll event.

Disabled Plugins

Disabled plugins are those which are in the Stopped or Errored states. These plugins do not
receive events such as polling. If errored, a plugin may either be stopped, which represents a
"clearing" of the error, or started normally. However, if no action is taken on an errored plugin, it
likely will not start due to the fact that most plugins are put into the errored state during startup
of the plugin.

The following images demonstrate the representation of plugins in the disabled states.

Stopped plugins. A single action button is available to attempt to start the plugin.

An errored plugin. As mentioned previously, action buttons are available to stop the plugin or
clear the error as well as attempt to start the plugin. If the start fails, an error message will be
displayed.

6.5.7 Setting Default Plugin Configuration
Configuration of default values for plugin configuration parameters involves setting fields in the
MWS configuration file. These values are used if no values are provided when creating a new
plugin. Additionally, the default values will be displayed to the user on the page.Create Plugin

The parameters to configure are documented on the MWS page and compriseConfiguration
most values starting with .plugins

Copyright © 2013 by Adaptive Computing Enterprises, Inc. All Rights Reserved. Moab® Web
Services

