
Nitro 2.1.x
User Guide

November 2016

© 2016 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without
prior written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager,
Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing
products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive
Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other
company and product names may be trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

iii

Welcome 1

Chapter 1 Nitro Overview 2
Introduction To Nitro 2
Key Terminology And Usage 5

Chapter 2 Using Nitro 7
Prepare A Nitro Job 7
Submit A Nitro Job Using The Nitrosub Command 10
Submit A Nitro Job With User-Customized Job Scripts 11
Track Job Progress 12

Chapter 3 References 19
Nitrosub Command 19
Command Line Flags Or Options 21
Environment Variables 24
Job Scripts 24
Task File 25
Nitrostat 28
Job Recovery 30
Dynamic Workload 31
Glossary 32

Chapter 4 Troubleshooting 37
Sources Of Troubleshooting Information 37
Troubleshooting Task Errors 37

1

Welcome

Welcome to the User Guide for Nitro 2.1.x.
The following chapters are provided to assist in understanding, and using Nitro.

l Nitro Overview on page 2 - Provides basic information on Nitro, including theory of
operation.

l Using Nitro on page 7 - Contains procedures and reference information on using Nitro.
l References on page 19 - Provides additional conceptual information about Nitro, including a
glossary of key terms used throughout this guide.

l Troubleshooting on page 37 - Identifies common sources of reference for troubleshooting
and provides troubleshooting information for task errors.

Welcome

Introduction to Nitro 2

Chapter 1 Nitro Overview

Nitro is the Adaptive Computing High Throughput Computing (HTC) product designed to
integrate with either High Performance Computing (HPC), such as Moab Workload Manager, or
datacenter schedulers to schedule and run workloads consisting of large quantities (tens of
thousands to millions) of small jobs (seconds to minutes to complete) without affecting the
throughput of the HPC or datacenter scheduler.
In this chapter:

l Introduction to Nitro on page 2
l Key Terminology and Usage on page 5

Introduction to Nitro

This Nitro User Guide documentation explains how to define tasks for a task file, the kinds of
information you can give to Nitro via your job script and/or job submission to customize your Nitro
job's execution, and the information Nitro will give you as it executes your tasks and after it has
finished.
Nitro lets you execute many workloads quickly using a single job.
This topic introduces you to Nitro and provides some basic understanding about how to use Nitro.
In this topic

l What is Nitro? on page 2
l How Nitro Works on page 3
l About a Nitro Job on page 3
l How to Create and Run a Nitro Job on page 5
l Factors Affecting Nitro Job Performance on page 5

What is Nitro?
Nitro is a "high-throughput task scheduler" product that quickly executes user jobs or "tasks" that
fit the criterion of being able to fit and execute on a single node.
A job or task can be a

l single-core serial application
l multi-threaded application
l small parallel application
l regression test
l "embarrassingly parallel" application such as a Monte Carlo simulation.

Chapter 1 Nitro Overview

While Nitro can be used for workloads that execute in short (sub-second) or long (hours) periods of
time, the shorter a workload executes, the better performance gain Nitro will give you over a
normal job scheduler; meaning the shorter the workload, the higher the performance gain.
Notwithstanding the advantages for small and short jobs, some sites where users may submit many
(1000s) small jobs use Nitro to improve their normal job scheduler's performance, which degrades
when the site has a large queue containing tens or hundreds of thousands, or even millions, of jobs.
These sites have these users convert their many small jobs into a single Nitro job, which can greatly
reduce the job queue size and speeds the response time for the users since the normal job scheduler
can schedule a single job that then executes thousands or millions of small jobs as "tasks".

How Nitro Works
To execute many workloads quickly, you give Nitro a text-based "task" file containing commands
that execute application programs you want to run. The task file has no limit on the number of
application program commands, which means the task file may contain 10, 10 thousand, or 10
million tasks; it does not matter to Nitro.
If you have many small jobs, you convert them into Nitro tasks by extracting the jobs' commands to
execute application programs and then putting the extracted commands into a single Nitro task file.
To use Nitro, you must do these four things:
1. Create a task file.
2. Create a job script.
3. Submit your job script to a job scheduler and give it the location of your task file.
4. Examine the Nitro job output to see the results.

About a Nitro Job
The following image identifies and illustrates the different items involved with a Nitro job, its
submission to a job scheduler, its execution on the job's nodes, and the results it generates and
returns to you.

Chapter 1 Nitro Overview

3 Introduction to Nitro

Introduction to Nitro 4

A Nitro job is a user job script that defines where the Nitro task file is and launches the Nitro
application. The user job script can tailor the Nitro application's execution through the use of pre-
defined Nitro environment variables.
When executed, the Nitro application takes the information from the Nitro task file and generates
output to four files, the Nitro Job Log File and Nitro Task Log File, and the job's Standard Output
File and Standard Error File.

l The Nitro Job Log File contains information about the Nitro job and the resources it used, a
summary of all the tasks' status, and performance information. This is information you will
want to look at to determine quickly how well your tasks executed and Nitro performed.

l The Nitro Task Log File contains information about the execution, status, and performance
of each individual task; i.e., the results of the tasks.

l The job's Standard Output File contains information the Nitro application outputs in real-time
about what it is doing. Some of the information in the Nitro Job Log File also appears here,
but not all.

l The job's Standard Error File contains messages about any errors the Nitro application
encountered.

Chapter 1 Nitro Overview

In addition, while the Nitro job is executing, the Nitro application saves checkpoint information in a
Nitro Job Checkpoint File that permits a Nitro job to restart later and resume from where it
stoppped because it was cancelled, preempted, etc. When the Nitro application finishes processing
all tasks, it deletes the checkpoint file.

How to Create and Run a Nitro Job
A Nitro job is a user job script that defines where the Nitro task file is and launches the Nitro
application.
You can create the task file on any system that permits you to create and edit a text file. (for
example, Windows or Linux systems).
Typically, your administrator will give you a sample job script to use as the starting point for your
user job script. You can pass your task file name/path to your Nitro job either by

l assigning it to a specific Nitro environment variable within the job script
l defining the Nitro environment variable before submitting the job script and then passing the
environment variable and its value via the job submission command to the job script.

After creating the task file, and possibly customizing the job script, you submit your Nitro job script
to your site's job scheduler to request a quantity of resources (for example, five nodes) on which to
execute your Nitro job. The job scheduler schedules and allocates the requested resources to your
job and then starts your Nitro job when the resources become available.
Your job script then executes the Nitro application via the launch_nitro.sh script and thehe Nitro
application reads your task file and executes its tasks on your job's resources as quickly and with as
little overhead as possible.
While tasks are executing, the Nitro application updates its Nitro Job Log File every five seconds to
indicate its progress processing the tasks in your Nitro task file. In addition, for each task it
processes, it outputs a record of the task, its status, and performance information, as well as possible
task output, to the Nitro Task Log File.
When the Nitro job finishes,

l the Nitro Job Log File contains a final record of the Nitro job's information.
l the Nitro Task Log File contains a record for every task defined in the Nitro task file.

Factors Affecting Nitro Job Performance
Your execution time will vary based on these factors:

l individual task execution times
l task resource requirements (e.g., single-core versus multi-core)
l quantity of resources you requested for your Nitro job

For example:
If a node has 16 cores, it can execute 16 single-core tasks at once (simultaneously); however it can
only execute 2 multi-threaded tasks that require 8 cores each. You can expect a faster tasks per
second rate with the first scenario (16 single-core tasks), than with the 2 multi-threaded tasks
scenario.

Key Terminology and Usage

Chapter 1 Nitro Overview

5 Key Terminology and Usage

Key Terminology and Usage 6

This document includes a glossary of key terms used through this guide. This is to help simplify
and clarify the information presented.
For example, instead of using terms specific to the traditional HPC (research, university, and
government institutions) and commercial enterprise markets, such as "HPC cluster" and
"datacenter" and their corresponding "compute node" and "server" terms, this guide uses the
generic terms "system" and "host", respectively. Also this guide uses the term "workload" to
represent an arbitrary amount of work to execute on a system while "job" refers to workload
submitted by a user to a system's scheduler for eventual execution on one or more of the system's
hosts.
Refer often to Glossary on page 32 for a complete list of terms used in this guide.

Chapter 1 Nitro Overview

Prepare a Nitro Job 7

Chapter 2 Using Nitro

This chapter provides information and instructions on using Nitro.
In this chapter:

l Prepare a Nitro Job on page 7
l Submit a Nitro Job using the nitrosub Command on page 10
l Submit a Nitro Job with User-Customized Job Scripts on page 11
l Track Job Progress on page 12

Prepare a Nitro Job

This topic provides information on the Nitro job's task file and performance tuning information.
In this topic:

l Task File on page 7
l Performance Tuning on page 9

Task File
The task file is a single file that contains a list of tasks to execute. Each line of the task file should
contain only one task. You can add comments to your task file to help describe the tasks being
performed, the data required, or other information that is pertinent to describing the tasks. Nitro also
provides the capability to use task names and labels to help you organize your tasks.
Most of the tasks you create for a task file will probably run to completion fairly quickly, but it is
possible that a task gets stuck in a loop or needs to run for a certain amount of time. Nitro by
default limits tasks to 3,600 seconds (1 hour), but you can specify the limit to apply to the task by
using the "maxtime" token. Time limits are specified in seconds. The following is an example of a
task definition that limits a task to 30 seconds.

name=S23T01 maxtime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex
1

Tasks
A task line can be as simple as the command you want to execute. For example, if you want to run
a program called "framegen", input a file from a shared directory, and process the frame starting at
time index "0" (zero), the command line might look like as follows.

/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0

Nitro uses name/value pairs before the command line that you want to execute to define Nitro-
specific information, such as, specifying a task name, task labels (that you can use to categorize the
task), maximum time a task will run, and the command to execute to run the tasks itself. The key
words for these name/value pairs are:

Chapter 2 Using Nitro

"cores=<count>"
"env=<name=value>[,<name=value>,...]"
"labels=<label>[,<label>,...]"
"name=<task name>"
"maxtime=<time limit in seconds>"
"memory=<amount>"
"shell=[default | none | <shell path>]"
"cmd=<command line>"

The optional name/value pairs must be prepended to the line containing the task command
line. As soon as Nitro sees something that isn't a name/value pair, the task line parsing stops
and the rest is assumed to be part of the command line to execute.
To make it clear where the task options end and your command line begins, include "cmd="
before your task's command line. This token is optional but helps to make the task definition
easier to read when you are specifying other options. The following is an example command
line with the "cmd=" token.

cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0

Nitro organizes the tasks for tracking.
Nitro tracks tasks by a task ID and line number. Nitro automatically generates a task ID for each
task definition in the task file. The first task definition receives task ID "1".

Only a task definition will increment the task ID. Because a task file can have empty or
comment lines, the task ID and the line number in the task file may not be the same for the
task.

Nitro will create a report of all tasks run and will include the task ID and line number in this report.
The task ID is passed to the task via the $NITROTASKID environment variable.
To make Nitro tasks easier to track, or to search for specific tasks in the task completion report, add
a unique task name to your task definition. Task names don't have to be unique, but creating a
unique task name helps you identify specific tasks.

You can use any naming scheme you want, as long as the name does not include spaces
(which would indicate an end to the name/value pair).

For example, if you are processing data for scenes 21, 22, and 23, you can name the tasks
according to scene and time index.

name=S21T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 0
name=S21T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 1
name=S22T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 0
name=S22T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 1
name=S23T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0
name=S23T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 1

Nitro makes the task name available to the task via the $NITROTASKNAME environment variable
when it executes the task. If the task command line includes the environment variable, it is
substituted by its value before the command executes.
You can also use task labels to organize or identify the tasks. You can use multiple labels to
describe a task. Multiple label values are separated by a comma between them; spaces are not
allowed.

Chapter 2 Using Nitro

8 Prepare a Nitro Job

Prepare a Nitro Job 9

For example, if scene 22 contains a green screen that needs additional processing after this job
completes, you can include the label "green" on all of the tasks for this scene.

name=S21T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 0
name=S21T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 1
name=S22T00 labels=green /opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 0
name=S22T01 labels=green /opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 1
name=S23T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0
name=S23T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 1

Performance Tuning

Assignment Size
Each set of tasks that a coordinator sends to a worker is called an assignment. Nitro is most efficient
when it can send a large enough assignment to each worker to keep the worker busy for at least 10
seconds before requesting more work. On the other hand, if you have a heterogeneous set of nodes
with a wide variance in performance characteristics, you don't want one worker taking a very long
time completing its assignment after all of the other workers have finished.
The nitro.cfg file lets you specify an assignment size of 0 up to 1000. A size of 0 allows the
assignment size to be calculated by the coordinator and dynamically calculated to target an
assignment duration of 5 seconds.
You can also use the --assignment-size command line option on the coordinator to change the
tasks per assignment for your configuration. You can specify an assignment size as "0" (calculated
by the coordinator), as small as "1" (which could be useful for tasks that need to use all of the
available OS cores), and as large as "1000" (useful to keep worker cores busy with tasks of
extremely short duration).
If submitting a job to a job scheduler, you can change the assignment size by setting the NITRO_
COORD_OPTIONS environment variable so it contains the --assignment-size command line
option.
For example, if your nodes are all running 16 OS cores and each task takes 2 seconds to complete,
each assignment of default size will take 31.25 seconds to complete (250 tasks at 2 seconds each
divided by 16 OS cores), so you might want to change the assignment size to "80" to get an
assignment time of closer to 10 seconds with the command line option.

--assignment-size 80

Assignment sizes don't need to be evenly divisible by the number of OS cores available.
Nitro will try to send the worker a second assignment when the worker gets about half way
done with the current assignment so the second assignment will start running tasks as soon as
an OS core becomes idle from the previous assignment.

Adaptive Computing recommends a 10-20 second assignment duration to optimize node
utilization and to prevent "tailing" jobs (job where at its end there is only one or a few
workers executing a large assignment and other workers are idle).

Thread Control
Nitro typically runs one task per available OS core on each worker. However, you can configure
Nitro to run more tasks than OS cores (over-subscription), fewer tasks than OS cores (under-
subscription) or a specific number of OS cores. You might want to over-subscribe the available OS
cores if you are not utilizing the full capacity of the node. You may need to under-subscribe cores if

Chapter 2 Using Nitro

background tasks are running on the nodes. To over- or under-subscribe, use the --thread-ratio
command line option.

--thread-ratio <ratio>

<ratio> only applies to worker nodes. However, if you are using the --run-local-worker command
line option, then the thread ratio will be passed on to the coordinator's local worker.

--thread-ratio also lets you specify over- or under-subscription properly in a heterogeneous node
environment where nodes have different numbers of processors, cores, or threads. For example, if
your nodes are all single socket, oct-core with hyper-threading enabled (16 total OS cores), but you
want to over-subscribe by a factor of 1.5x, you could accomplish this by adding "--thread-ratio 1.5"
to the worker command line to give each worker the ability to run 24 concurrent tasks. Alternately,
if your tasks are all designed to use 2 OS cores each (multi-threaded application), you could use
"--thread-ratio 0.5".
There may also be cases where you want to specify the exact number of OS cores to be used by the
worker, such as when you have tasks that will use all available OS cores. In that case, you would
use the --thread-count command line option to specify a thread count of 1 (--thread-count 1).

Run a Worker on the Coordinator Node
In configurations where you will be running less than 20 worker nodes, the coordinator node may
be underutilized. To remedy this situation you may want to run a worker on the coordinator node
so you can use its resources more effectively. To run a worker on the coordinator node, include the
--run-local-worker flag on the coordinator's command line or you can explicitly start a worker
Nitro process on the node.
If using the nitrosub command, use --no-local-worker to prevent a worker from running on a
coordinator node.

Nitro will calculate the number of threads that the local worker should run so the coordinator
is not starved for CPU cycles; causing it to slow down all the other workers.

Task Execution Environment Variables
Nitro will pass several environment variables to your tasks when it executes them. See
Environment Variables on page 24 for more information.

Nitro reads a portion of the task file at a time. While the Nitro job is running, do not add or
remove any task definitions or comment lines in the task file. Changes to the task file could
cause line numbers to be changed and jobs to not run or be accidentally rerun.

Related Topics

l Command Line Flags or Options on page 21
l Environment Variables on page 24

Submit a Nitro Job using the nitrosub Command

Chapter 2 Using Nitro

10 Submit a Nitro Job using the nitrosub Command

Submit a Nitro Job with User-Customized Job Scripts 11

This topic is applicable for static and dynamic jobs. Alternatively, for static jobs, you can
submit the jobs using a customized nitro_job.sh script and the resource manager's submit
command (for example, Torque's qsub). See Submit a Nitro Job with User-Customized Job
Scripts on page 11 for more information.

Do the following:
1. Obtain the required information:

l how many resources (nodes or cores) you will need; this can be a static amount or a range
(used for dynamic jobs).

Contact your system administrator to determine which resource type is applicable for
your configuration.

l the time limit for the execution (wall-time)
l location of your task file

2. Determine if you want any additional information included:
l whether a worker will reside on the same host as the coordinator
l a job ID for the job
l a job directory for recording job information
l any customized environment variables

3. Submit the Nitro job. The following example is for a dynamic job requesting 4-10 hosts, with a
walltime of 30 minutes.

$ nitrosub --resources=4-10--wall-time=30:00--task-file=mytasks.txt

Related Topics

l nitrosub Command on page 19
l Prepare a Nitro Job on page 7

Submit a Nitro Job with User-Customized Job Scripts

This topic is only applicable for static jobs submitted using the resource manager's submit
command (for example, qsub for Torque). If your configuration uses the nitrosub command,
see Submit a Nitro Job using the nitrosub Command on page 10.

Do the following:

Chapter 2 Using Nitro

1. If you have not already done so,
a. Obtain the etc/nitro_job.sh script customized for your system.
b. Create a copy of that job script.

2. Customize the job script for your task file.
a. Specify the path to your task file (NITRO_TASK_FILE).
b. (Optional) Specify the directory to which Nitro writes log files (NITROJOBDIR). This

directory can be used to store output files from your tasks.
c. Customize any other environment variables referenced by the launch_nitro.sh script as

needed. See Environment Variables on page 24 for more information.
d. Confirm the job script executes the launch_nitro.sh script (last line in the script).

3. Save your customized nitro_job.sh script.
4. Using your resource manager's submit command, submit the Nitro job for your task file. The

following example uses the Torque resource manager and the customized job script saved in the
"myscripts" directory.

$ qsub \myscripts\nitro_job.sh

Related Topics

l Job Scripts on page 24
l Prepare a Nitro Job on page 7

Track Job Progress

This topic provides information on viewing job progress and output.
In this topic:

l Introduction on How Nitro Tracks the Job on page 12
l Job Log on page 13
l Task Log on page 16

Introduction on How Nitro Tracks the Job
Nitro will print some job information to stdout, such as what workers attached, how many tasks
have been run, if any tasks failed, etc.
If your Nitro job is submitted through a scheduler, you may not see any of this until the job has
completed and the resource manager has copied the job output to your job's submission directory.
However, Nitro provides a tool called nitrostat to display status information while the job is
running. nitrostat is located in the nitro/bin directory where Nitro was installed.
Nitro creates two files that you can use to stay up-to-date on the progress of your job.

Chapter 2 Using Nitro

12 Track Job Progress

Track Job Progress 13

l nitro_<jobid>.joblog.txt - Information about the job in general.
l nitro_<jobid>.tasklog.txt - Listing of individual tasks that have completed along with
performance statistics collected from running the task (duration and memory usage) and the
task output to stdout and/or stderr.

Both files are written to the job directory that you provide using the --job-dir command
line option when submitting your job, or to the default job directory
$HOME/nitro/<jobid>.

Job Log
To see job status using nitrostat, you will need the job ID. The job ID is the job ID reported to you
when you submitted the job to the schuleder or that you set manually via the --job-id
command line option in the NITRO_OPTIONS environment variable or via the NITROJOBID
environment variable.

l The default location for the job and task logs are in your "$HOME/nitro/<jobID>"
directory.

l You can also use the "--job-dir" command line option to specify a different job directory if
you are not using the default location.

Nitro Job Progress Report
The Nitro job progress reports lets you see the current contents of a job log file.
For example, let's say you have a job that was run by your resource manager as job "23576",
running "/opt/nitro/bin/nitrostat 23576"shows you the job's progress.

Chapter 2 Using Nitro

Nitro Job Progress Report

Start Time : 2016-02-10 09:10:11-0600
Current Time: 2016-02-10 09:10:42-0600
Elapsed Time: 31 seconds (00:00:31)

Job Id : 23576
Coordinator : node01
Load Pct : 5.6%

Task Log : /home/jdoe/jobs/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/jobs/survey03.tasks
 File Size : 123366
Est Tasks : 3016
Processed : 75%

Tasks

Pending : 500
In Progress : 500
Completed : 1250
 Success : 1250
 Failure : 0
InsufRes : 0
Timeout : 0
 Invalid : 0
 Tasks/sec : 40.3
Total Tasks : 2250

Workers

Host Pid Thrds Status Assigned Running Completed Success Failure InsufRes
Timeout Tasks/sec AsgmtDur
node02 6851 12 running 1250 250 1000 1000 0 0
0 36.0 8.0

node03 14988 4 running 500 250 250 250 0 0
0 9.3 27.0

The following describes the fields and their output descriptions.
l Start Time – Date and time the coordinator started running.
l Current Time – Current date and time the report was generated (reports are generated every 5
seconds).

l Elapsed Time – Amount of time the coordinator has been working on the tasks.
l Job Id – Job ID that Nitro was passed on its command line. Typically assigned by the
resource manager, but can be assigned by the user.

l Coordinator – Host name on which the coordinator is running.
l Load Pct – Percentage of coordinator load capacity.
l Task Log – Path and file name of the task log file that is generated by the coordinator.
l Task File – Path and file name of the task file.
l File Size – File size of the task file.
l Est Tasks – Number of tasks the coordinator estimates in the task file. Since Nitro doesn't
read the entire task file on startup, an estimate is given based on lines read from the file so
far.

l Processed– Percentage of the task file that has been read by the coordinator.

Chapter 2 Using Nitro

14 Track Job Progress

Track Job Progress 15

l Tasks Section: Lists the counts of tasks in each category
o Pending – Number of tasks that have been put into assignments and are waiting to be
sent to a worker.

o In Progress– Number of tasks in assignments sent to the workers for which workers
have not yet returned results.

o Completed – Number of tasks in assignments that have been completed (workers have
returned results).

o Success – Number of completed tasks that were successful (the task returned an exit
code of 0).

o Failure – Number of completed tasks that returned an exit code other than 0.
o InsufRes – Number of tasks that could not be run because the requested resources for
the task were not available.

o Timeout – Number of completed tasks that ran longer than the task "maxtime"
parameter and were terminated by the worker.

o Invalid – Number of task definitions that contained errors and could not be run.
o Tasks/sec – Number of tasks per second based on the time that the coordinator sends
the first assignment until the time the report is generated. If in linger mode, this will
only be calculated for the last 60 seconds.

o Total Tasks – Total number of tasks including completed and invalid tasks.
l Workers Section: List by worker

o Host – Host name and port (if not the default port) of the worker.
o Pid – Process ID of the worker.
o Thrds –Number of task launch threads the worker is using to run tasks.
o Status – Status of the worker. This may be "unconnected", "running", "unresponsive",
"closing", or "closed".

o Assigned – Number of tasks assigned to this worker so far.
o Running – Number of tasks in assignments currently allocated to the worker.
o Completed – Number of tasks in assignments the worker has completed.
o Success – Number of successfully completed tasks.
o Failure – Number of tasks that returned an exit code other than 0.
o InsufRes – Number of tasks that could not be run because the requested resources for
the task were not available.

o Timeout – Number of tasks that exceeded the tasks "maxtime" threshold and were
terminated by the worker.

o Tasks/sec – Number of tasks per second that the worker has completed so far. In

Chapter 2 Using Nitro

linger mode this is only calculated for the last 60 seconds.
o AsgmtDur – Average assignment duration in seconds.

Job Completed Report
Once the job has completed, the job report will show "(final)" on the end of the first line of the
report and Current Time is replaced with Finish Time (after Start Time). The following example is
based on the previous example for job "23576" .

Nitro Job Progress Report (final)

Start Time : 2016-02-10 09:10:11-0600
Finish Time : 2016-02-10 09:11:36-0600
Elapsed Time: 85 seconds (00:01:25)

Job Id : 23576
Task Log : /home/jdoe/jobs/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/jobs/survey03.tasks

Tasks

Pending : 0
Running : 0
Completed : 3000
Success : 3000
Failure : 0
InsufRes : 0
Timeout : 0
Invalid : 0
Tasks/sec : 35.3

Total Tasks : 3000

Coordinator

Host : node01
Threads : 8

Worker Resources

Workers : 2
Threads : 16

Workers

Host Pid Thrds Status Assigned Running Completed Success Failure InsufRes
Timeout Tasks/sec AsgmtDur
node02 6851 12 closed 2250 0 2250 2250 0 0
0 29.2 8.3
node03 14988 4 closed 750 0 750 750 0 0
0 8.8 35.7

Task Log
The task log file contains a listing of all tasks that have been completed and some statistics about
the tasks duration and memory consumption. This file is named nitro_
<JobID>.tasklog.txt and is located in the same directory as the job log file.
The task log file is tab-delimited, so you can easily import it into a spreadsheet or database, or
process it using another program. You can also view the task log using the nitrostat utility.

Chapter 2 Using Nitro

16 Track Job Progress

Track Job Progress 17

JobID TaskID Line Name Status ExitCode Hostname StartTime
Duration UserCPU SystemCPU VirtualMem PhysicalMem Labels

Output
foo 1 1 task001 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.005 0.000 0.000 7364608 630784
foo,foobar,foobaz,xyz
foo 2 2 task002 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.007 0.000 0.000 87834368 630784 foo,foobar,xyz
foo 3 3 task003 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.005 0.000 0.000 71728640 901120 foo,xyz
foo 4 4 task004 Success 0 localhost:10004 2015-06-18_
15:26:52.955-0600 1.005 0.000 0.000 38837504 630784
foo,foobar,foobaz,abc
foo 5 5 task005 Success 0 localhost:10004 2015-06-18_
15:26:53.960-0600 1.004 0.000 0.000 405946368 630784 foo,foobar,abc
foo 6 6 task006 Success 0 localhost:10004 2015-06-18_
15:26:53.961-0600 1.005 0.000 0.000 405946368 946176 foo,abc
foo 7 7 task007 Success 0 localhost:10004 2015-06-18_
15:26:53.961-0600 1.003 0.000 0.000 405946368 630784
foo 8 8 task008 Success 0 localhost:10004 2015-06-18_
15:26:53.966-0600 1.003 0.000 0.000 405946368 700416
foo 9 9 task009 Success 0 localhost:10004 2015-06-18_
15:26:54.965-0600 1.005 0.000 0.000 405946368 630784
foo 10 10 task010 Success 0 localhost:10004 2015-06-18_
15:26:54.965-0600 1.003 0.000 0.000 405946368 630784
foo 11 11 task011 Success 0 localhost:10004 2015-06-18_
15:26:55.973-0600 1.005 0.000 0.000 7364608 630784
foo 12 12 Success 0 localhost:10004 2015-06-18_
15:26:55.973-0600 1.004 0.000 0.000 405946368 626688
foo 13 14 fail Failure 1 localhost:10004 2015-06-18_
15:26:55.973-0600 0.005 0.000 0.000 8192 4096
foo 14 16 stderr Success 0 localhost:10004 2015-06-18_
15:26:55.974-0600 0.005 0.000 0.000 405946368 536576
foo 15 18 stderr_fail Failure 1 localhost:10004 2015-06-18_
15:26:55.979-0600 0.005 0.000 0.000 405946368 1228800

ERROR MESSAGE
foo 16 20 overtime Timeout -9 localhost:10004 2015-06-18_
15:26:55.980-0600 2.006 0.000 0.000 405946368 970752

maxtime exceeded, process was killed
foo 17 21 Success 0 localhost:10004 2015-06-18_
15:26:55.985-0600 1.002 0.000 0.000 405946368 626688
foo 19 23 Success 0 localhost:10004 2015-06-18_
15:26:56.979-0600 1.007 0.000 0.000 405946368 970752
foo 20 24 Success 0 localhost:10004 2015-06-18_
15:26:56.988-0600 1.003 0.000 0.000 405946368 724992
foo 21 25 Success 0 localhost:10004 2015-06-18_
15:26:57.986-0600 1.005 0.000 0.000 405946368 724992
foo 22 26 Success 0 localhost:10004 2015-06-18_
15:26:57.988-0600 1.005 0.000 0.000 405946368 970752
foo 23 27 Success 0 localhost:10004 2015-06-18_
15:26:57.988-0600 1.005 0.000 0.000 405946368 630784
foo 24 28 Success 0 localhost:10004 2015-06-18_
15:26:57.995-0600 1.005 0.000 0.000 405946368 630784
foo 25 29 Success 0 localhost:10004 2015-06-18_
15:26:58.993-0600 1.005 0.000 0.000 405946368 974848
foo 26 30 Success 0 localhost:10004 2015-06-18_
15:26:58.994-0600 1.004 0.000 0.000 405946368 626688

The task log contains the following fields.
l JobID – Job ID that was passed to Nitro using the "--job-id" command line option.
l TaskID – Task number within the Nitro job.
l Line – Line number in the task file of the task definition.

Chapter 2 Using Nitro

l Name – Task name supplied in the task definition by the "name=<name>" option.
l Status – One of "Success", "Failure", "InsufRes", "Timeout", or "Invalid".
l ExitCode – Numerical exit code returned by the task.
l Hostname – Name of the worker that executed the task.
l StartTime – Date and time the worker actually started the task.
l Duration – Number of seconds the task ran (millisecond resolution).
l UserCPU – Number of seconds the task ran in user mode (millisecond resolution).
l SystemCPU – Number of seconds the task run system calls (millisecond resolution).
l VirtualMem – Maximum virtual memory allocated to the task in bytes.

The operating system may allocate shared memory and may charge a proportion of this
shared memory to random tasks.

l PhysicalMem – Maximum physical memory allocated to the task in bytes.
l Labels – Optional task labels specified by the task definition.
l Output – stdout and/or stderr. If a task outputs to both stdout and stderr, both are displayed in
the format <stdout>/<stderr>.

Related Topics

l Command Line Flags or Options on page 21
l nitrostat on page 28

Chapter 2 Using Nitro

18 Track Job Progress

nitrosub Command 19

Chapter 3 References

This chapter provides additional information for system administrators and users.
In this chapter:

l nitrosub Command on page 19
l Command Line Flags or Options on page 21
l Environment Variables on page 24
l Job Scripts on page 24
l Task File on page 25
l nitrostat on page 28
l Job Recovery on page 30
l Dynamic Workload on page 31
l Glossary on page 32

nitrosub Command

The nitrosub command lets users easily submit Nitro jobs without having to create their own user
job scripts; thereby not requiring the users to modify bash shell scripts. The nitrosub command is
designed to submit static or dynamic Nitro jobs.
This topic provides information on the nitrosub command and what system administrators need to
do to configure the command for their system.
In this topic:

l Modify the nitrosub Command for your System on page 19
l Command Parameters on page 19

Modify the nitrosub Command for your System
When Nitro is first installed, system administrators need to modify the bin/nitrosub script for
their specific resource manager and licensing model. Specifically,
1. Uncomment the "_resource_manager" line for your resource manager
2. Uncomment the "resouce_type" line for your licensing model's allocation (nodes or cores).
3. If your system will be using dynamic jobs, set the "_dynamic_size" value to the number of

resources to allocate to a dynamic job.

Command Parameters
The following table describes the parameters for the nitrosub command and how they affect a Nitro
job submission.

Chapter 3 References

The terms "node" and "processor" are mutually-exclusive.

Parameter Required Description Syntax

Environment
Variables

No Passes environment variables to the Nitro via by the job
scheduler and/or resource manager.
Users may specify multiple environment variable names
using a comma-delimited list (square brackets indicate
optional additional environment variable names).

--env-
var=xxx=nnn
[,yyy=mmm
[,zzz=ooo]]

Job
Directory
Path

No Sets the directory path the user desires the Nitro job to
use for recording job information. This parameter is
required for a Nitro job restart when a user or
administrator cancels an executing Nitro job and must
have the job directory value of the canceled Nitro job.
When not set, it is the default job directory Nitro creates.
The directory path must be accessible from a compute
node and the job submission node.

--job-dir=xxx

Job ID No Sets the job ID the user desires to give the job. This
parameter is required for a Nitro job restart when a user or
administrator cancels an executing Nitro job and must
have the job id value of the canceled Nitro job.
When not set, it is the default job ID Nitro creates.

--job-id=xxx

Local
Worker

No Indicates whether the Nitro coordinator should start, a
local worker on its resources.
The default is --local-worker.

--local-worker
--no-local-
worker

Resources Yes Indicates the number of hosts (compute nodes/servers) or
hardware cores/threads to be allocated to the Nitro job by
the scheduler.

l If for a static Nitro job, the quantity value (nn) is a
positive decimal integer.

l If for a dynamic Nitro job, the quantity range
values (mm-nn) are positive decimal integers and
"mm" must be less than "nn".

--resources=nn

--
resources=mm-
nn

Task File
Path

Yes Specifies the path of the Nitro task file created by the
user.
This path must be accessible from a compute node

--task-file=xxx

Wall Time Yes Specifies the time limit for the Nitro job's execution. The
parameter's "xxx" value format depends on the job
scheduler used.

--wall-
time=xxx

Chapter 3 References

20 nitrosub Command

Command Line Flags or Options 21

Command Line Flags or Options

This topic identifies the individual command line flags or options recognized and/or required by
Nitro.
In this topic:

l Flags on page 21
l Options on page 21
l Command Line Options per Nitro Mode on page 23

Flags

l Disable Affinity – Instructs a worker that it should not track and set the task's affinity.

This option overrides --disable-affinity in the nitro.cfg file.

--disable-affinity

l Linger – Tells Nitro to keep running after the initial tasks have completed. The <timeout>
specifies the number of seconds that must pass after the last completed task file before Nitro
closes (shuts down). A <timeout> value of -1 indicates an indefinite period of time; Nitro
will not close until a signal is given to close.

--linger <timeout>

l Run Local Worker – Runs a local worker on the coordinator's node.

--run-local-worker

l Trust Workers – Allows any worker to attach to Nitro and accept workload. Without this
flag, the coordinator will only connect workers that were specified with the --workers,
--workers-file, --key, or --key-file command line option.

--trust-workers

Options

l Session Key – Specifies a session key that can be used to authenticate workers to the
coordinator. The session key must be provided on the workers and coordinator command
lines. Any worker reporting in to the coordinator will be required to provide this key to be
able to connect and receive workload. The session key is any string that does not contain
spaces or any characters which the shell will interpret.

--key <keyvalue>

l Key File – File containing a passphrase that can be used to authenticate workers to a

Chapter 3 References

coordinator. If the file contains newline or tab characters, these will be removed from the
passphrase.

--key-file <file>

l Thread Count – The quantity of threads the Nitro workers should use when executing
tasks. This option is mutually-exclusive with the Thread Ratio option.
If this option and the Thread Ratio option are not given, a worker uses one task launch
thread per OS core to which it is pinned.
The primary reason for this option is to explicitly specify a task-launch thread count for Nitro
running a specific single application, usually on homogeneous nodes.

--thread-count <num>

l Thread Ratio – The ratio of task launch threads-to-OS "cores" the Nitro workers should use
when creating task launch threads. This option is mutually exclusive with the Thread Count
option.
If this option and the Thread Count option are not given, the ratio is "1.0", meaning a worker
uses one task launch thread per OS core to which it is pinned.
Ratio is a positive real number (e.g., 1.5, 0.5, etc) that when multiplied with the count of OS
cores to which a worker is pinned yields a count of the task launch threads it will use. The
worker rounds the count to the nearest integer, with a minimum value of 1.
The primary reason for this option is to allow a user to over-subscribe or under-subscribe the
task-launch thread count appropriately relative to the OS core count of heterogeneous nodes
(e.g., 1.5 means 6 threads for a quad-core node and 24 threads for a 16-core node).

--thread-ratio <ratio>

l Assignment Size – The quantity of tasks the Nitro coordinator should pass to a Nitro worker
at one time; default is 350, maximum value is 1000. Alternatively, you can specify an
assignment size of 0; allowing the coordinator to automatically determine the assignment size
based on the assignment duration.

This option overrides the --assignment-size setting in the nitro.cfg file.

--assignment-size <num>

l Job Directory – Specifies the path for the directory where Nitro will place its Job Progress
Log and Completed Task Log files.

--job-dir <path>

l Job ID – Specifies the job ID for a specific Nitro run. The job ID may be used to create the
job directory and certain file paths.

--job-id <jobID>

Chapter 3 References

22 Command Line Flags or Options

Command Line Flags or Options 23

l Coordinator Threads – Indicates to the coordinator how many threads to reserve for the
coordinator when allocating cores to a local worker (when using "--run-local-worker" on the
coordinator command line). Default is 2. Adaptive Computing recommends setting the
<count> value to 1 if all jobs will use less than 20 nodes and setting the <count> value to 4
if the jobs require a large number of nodes (greater than 50) to run.

This option overrides the --coord-threads setting in the nitro.cfg file.

--coord-threads <count>

l Task Environment – Specifies the environment variables to set in the task's execution
environment. This is used by the worker but is also needed on the coordinator's command
line if running a local worker. Multiple values can be specified by separating name/value
pairs with a comma.

--task-env <ENVVARNAME=value[,...]>

Command Line Options per Nitro Mode
The table that follows identifies which command line options Nitro uses in worker or coordinator
mode. Some command line options are used in both modes and are listed in this table in the "Both"
row.

Nitro Mode Command Line Option

Coordinator --assignment-size
--coord-threads (if using --run-local-worker with the coordinator)
--run-local-worker
--trust-workers
--key-file

Worker --task-env (if not using --run-local-worker with the coordinator)
--thread-count (if not using --run-local-worker with the coordinator)
--thread-ratio (if not using --run-local-worker with the coordinator)

Both --disable-affinity (if using --run-local-worker with the coordinator)
--job-dir
--job-id
--key
--linger
--task-env (if using --run-local-worker with the coordinator)
--thread-count (if using --run-local-worker with the coordinator)
--thread-ratio (if using --run-local-worker with the coordinator)

Chapter 3 References

Environment Variables

This topic provides information on the Task Execution environment variables available to
customize Nitro's operation.
Valid environment variables:

l $NITROJOBID – Job ID of the Nitro job.
l $NITROJOBDIR – Job directory to which Nitro writes log files. This directory can be used
to store output files from your tasks.

l $NITROTASKCORES – Number of cores allocated to the task.
l $NITROTASKID – Task ID of the task. The task ID is a number that starts at 1 and
increments by 1 for each task definition (valid or invalid) in the task file. Commented and
empty lines are not counted; if the task file contains such, the task ID and the line number
will diverge.

l $NITROTASKMEMORY – Amount of memory (in MB) allocated to the task.
l $NITROTASKNAME – Task name, if provided by the task definition.
l $NITROTASKTIME – Task time limit, specified by "maxtime" in the task definition.
l $NITRO_TASK_FILE – Can be used with normal file names that do not use spaces, but
MUST be used if the user submits more than one task file.

l $NITRO_LONG_TASK_FILE - Can be used with normal file names that do contain
spaces, butMUST be used if the file name contains spaces. This variable can only contain
one file name. You cannot submit multiple file names containing spaces.

Related Topics

l Command Line Flags or Options on page 21

Job Scripts

This topic provides information about the different job scripts, including customization options
(where applicable).
In this topic

l Nitro Job Script on page 24
l Worker Job Script on page 25

Nitro Job Script
The nitro_job.sh script is located in the /opt/nitro/etc/ directory.
Typically the nitro_job.sh script is customized by the system administrator and executed by the
nitrosub command. This job script is used for static jobs, if resources are not in a range. For
dynamic jobs, it sets up the initial resource request (minimum resource value in the range).

Chapter 3 References

24 Environment Variables

Task File 25

Alternatively, the system administrators can modify the nitro_job.sh script and then have authorized
users copy and customize the script for their task file. This script is then executed using the resource
manager's job submission command (for example, Torque's qsub). This functionality is similar to
the Nitro functionality prior to version 2.1.
The nitro_job.sh script:

l Defines path to your task file (NITRO_TASK_FILE)
l Defines the directory to which Nitro writes log files (NITROJOBDIR). This directory can be
used to store output files from your tasks.

l Executes the launch_nitro.sh script (last line in the script)
In the nitro.job.sh script, can also customize the launch_nitro.sh script.

l NITROJOBID – Job ID used by Nitro. If not provided, this ID is based on the resource
manager's job ID.
Unless you are restarting a job that partially completed and was canceled, you don't need to
set this environment variable. If you specify this environment variable in the job's
submission, it will override the resource manager job ID and Nitro will use the value you
supplied.

If your job scheduler and resource manager use different numbering systems, the job
ID that Nitro will use is the one that it gets from the resource manager. You may want
to submit the job directly to the resource manager in this case to avoid confusion.
Check with your system administrator to find out if your job scheduler's and resource
manager's job ids are synchronized.

l Command line options – Any command line options you want passed to the launch_nitro.sh
script must be contained in the NITRO_OPTIONS, NITRO_COORD_OPTIONS, or
NITRO_WORKER_OPTIONS environment variables. See Command Line Flags or
Options on page 21 or Environment Variables on page 24 for more information.

Worker Job Script
The worker_job.sh script is located in the /opt/nitro/etc/ directory.
The worker_job.sh script is executed only by the nitrosub command. This job script is used for the
dynamic portion of dynamic jobs (resources after the initial request up to the maximum value).

l Defines the job ID for the coordinator set up by the nitro_job.sh script for the first part of the
dynamic job submission (NITROJOBID).

l Defines the directory to which Nitro writes log files (NITROJOBDIR). This directory can be
used to store output files from your tasks.

l Executes the launch_worker.sh script (last line in the script).

Task File

Chapter 3 References

A task file contains a list of Nitro task definitions (task execution options) along with the task
command line Nitro will execute. Since the Nitro coordinator will be running on one of the nodes
allocated to the Nitro job, the task file must be accessible to the node on which the coordinator will
run.
The task file is a text file where each task definition must be contained on a single line. Lines of
text may be terminated by either a Linux-style line ending (LF or '\n' new line character) or a
Windows-style line ending (CR/LF - '\r\n' carriage return/line feed combination). The line number
is reported in the task log so that errors in the task file can be quickly located and fixed.
The task file allows comment and empty lines. A hash symbol (#) in the first column of a line
identifies a comment line.
Each task will be assigned a task ID, which will start at 1 and increment with each task line
(comment and empty lines are not assigned a task ID). This task ID is passed to the task in the
NITROTASKID environment variable.

Task Options
Task options are name/value pairs that are listed before the task's command line of the form
"<option>=<value>". Task options must be specified before the task's command line to be
executed. As Nitro parses the line, it will stop looking for name/value pairs as soon as it finds a
character string that does not include the name/value delimiter (=) or is the "cmd" option.
Everything after the "cmd=" option or the first string that is not delimited as a name/value pair will
be considered part of the task command line.
Task definitions that contain errors (such as a misspelled option) are considered "invalid" tasks and
will be reported in the task log along with an explanation of the error in the line. Examples of valid
command lines are as follows:

Commented line
/opt/framemaker/bin/assemble_frame --input /shared/scene23.def --time-index 0
cmd=/opt/framemaker/bin/assemble_frame --input /shared/scene23.def --time-index 0

name=Scene23Time0 /opt/framemaker/bin/assemble_frame --input /shared/scene23.def --
time-index 0
name=Scene23Time0 maxtime=30 cmd=/opt/framemaker/bin/assemble_frame --input
/shared/scene23.def --time-index 0

The following describes the various task options.
l Application Command – The coordinator considers everything immediately after the equal
sign (= in "cmd=") as the task's "application" command line, which a worker will execute.
There must be at least one non-whitespace character immediately after the "=" or the
coordinator declares the task definition invalid. The application command line permits
standard I/O redirection and environment variable substitution.

cmd=<xxx -y zzz>

Do not place any task options after the command line or the coordinator will not parse
them; assumes they are part of the command line.

l Labels – Specifies the labels assigned to a task.
This is optional and there is no default value.

Chapter 3 References

26 Task File

Task File 27

If given, a label must be composed of letters, digits, underscore, hyphen, and/or period. Use
a comma to separate multiple labels.
If the option's value violates the conditions above, the coordinator will declare the task
definition invalid and will not send the task to a worker.
When the coordinator logs the task in the Completed Tasks Log file, it outputs this option's
value "as is", meaning without alternation and with no substitution of commas with spaces.

labels=<list>

l Maximum Time – Maximum time (in seconds) a task may execute after which the worker
will terminate it. This is optional; the default value is 3,600 seconds (1 hour).
If given, the value must be less than the maxtime-limit <period> value.

If the option's value is non-numeric, non-decimal, or outside the allowed range, the
coordinator will declare the task definition invalid and will not send the task to a
worker.

maxtime=<nn>

l Name – Unique name assigned to your task definition. Task names do not have to be
unique, but creating a unique task name will help to identify tasks.

name=<task name>

l Task Cores – Number of OS cores that the task requires. Nitro will allocate the number of
cores requested and set the affinity of the task to the available cores.

cores=<count>

The command line options "--thread-count" or "--thread-ratio" affect the number of
available cores. If you use either of these options and they specify more cores than the
node has available, Nitro will not pin the task to a specific core. If a task is specified
to require more cores than the node that receives the task assignment, the task will not
run.

Users should submit their jobs so that tasks can run on any of the nodes that are
allocated to the job. If, for example, you have some tasks that require 20 processors,
but there are some 16 core nodes in the cluster, the job should be submitted so that it
only allows 20 proc nodes to be allocated to the job. If a Nitro worker is assigned a job
with requirements that it cannot fulfill (either too many cores, or too much memory) the
task will be counted as failed, and Nitro will show the status of "InsufRes" for that task
in the task log file.

l Task Environment Variables – Specifies a list of user supplied environment variables that

Chapter 3 References

will be set in the context of the task. The list of environment variables can be one or more
name/value pairs separated by commas. Environment variable name value pairs cannot
contain spaces.

env=<name=value>[,<name=value>,...]

l Task Memory – Maximum amount of memory that the task requires. Nitro determines the
amount of physical memory available on the system and uses this number as the limit that
can be allocated by concurrent tasks. If no units are specified, GB is assumed. Available unit
specifications include "GB" (10^9 bytes), "GiB" (2^30 bytes), "MB" (10^6 bytes), and
"MiB" (2^20 bytes). Nitro uses MB units in debug logs.

memory=<amount>

Users should submit their jobs so that tasks can run on any of the nodes that are
allocated to the job. If, for example, you have some tasks that require 32 GB, but there
are some 16 GB nodes in the cluster, the job should be submitted so that it only allows
32 GB nodes to be allocated to the job. If a Nitro worker is assigned a job with
requirements that it cannot fulfill (either too many cores, or too much memory) the task
will be counted as failed, and Nitro will show the status of "InsufRes" for that task in
the task log file.

l Task Shell – Specifies the task shell, if any, to use. Tasks are normally executed by running
"/bin/bash -c <task command line>".

shell=[default | none | <shell path>]

o The default shell provides translation of environment variables into command line
options and other command line processing benefits.

o In high-throughput environments performance gains can be realized by using a lighter
weight shell such as the Bourne shell or Korn shell.

o If no command line processing is needed, the task can be run without a shell.
o Executing a task directly instead of using the shell can speed task invocation by more
than 50% over the default shell.

When specifying a shell other than the default shell, the fully qualified path should be used.
For example, if you want to use the Bourne shell you should specify the shell as "/bin/sh" as
opposed to just "sh".

nitrostat

nitrostat is a utility found in the /opt/nitro/bin directory that will display the status of a
Nitro job or of individual tasks. nitrostat lets you quickly find specific tasks or list all failed, invalid,
or timed out tasks. nitrostat also offers a "wait" mode that will monitor the task log for tasks
matching the specified criteria until the job completes.

Chapter 3 References

28 nitrostat

nitrostat 29

Running nitrostat
To run nitrostat, you'll need to know the job ID of the job you want to monitor. For example, if you
have a job with ID "3145", you can monitor the job progress with the following command:

/opt/nitro/bin/nitrostat 3145 -w

nitrostat assumes that the job information can be found in $HOME/nitro/<job id>.
If you have specified a different location for the job directory using the Nitro "--job-dir"
command line option, then you'll need to specify the same location using the nitrostat
"--job-dir" command line option.
For example, if your job directory is in $HOME/projects/survey03 then use the following
command:

/opt/nitro/bin/nitrostat 3145 --job-dir $HOME/projects/survey03 -w

nitrostat will show the following information when job status is requested:

Nitro Job Progress Report

Start Time : 2015-06-17 09:10:11-0600
Current Time: 2015-06-17 09:10:42-0600
Elapsed Time: 31 seconds (00:00:31)

Job Id : 23576
Coordinator : node01
Load Pct : 5.6%

Task Log : /home/jdoe/projects/survey03/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/projects/survey03/survey03.tasks
 File Size : 123366
Est Tasks : 3016
Processed : 75%

Tasks

Pending : 500
Running : 500
Completed : 1250
Success : 1250
Failure : 0
 InsufRes : 0
Timeout : 0
Invalid : 0
 Tasks/sec : 40.3
Total Tasks : 2250

Workers

Host Port Pid Thrds Status Assigned Running Completed Success Failure
InsufRes Timeout Tasks/sec AsgmtDur
node02 47000 6851 12 running 1250 250 1000 1000 0
0 0 36.0 8.0
node03 47000 14988 4 running 500 250 250 250 0
0 0 9.3 27.0

Searching for Task Records
You can use nitrostat to search the task log by task name, task ID, or label using regular
expressions. You can also combine criteria to further refine your search.

Chapter 3 References

For example, if you want to search for tasks containing the task name "Survey03" and the label
"NYC" you can specify the command line as follows:

/opt/nitro/bin/nitrostat Job01 --name Survey03 --label NYC

The following identifies the nitrostat command line options.
l --all, -a – Shows all tasks.
l --completed, -c – Shows completed tasks.
l --failed, -f – Shows failed tasks.
l --invalid, -i – Shows invalid tasks.
l --timedout, -o – Shows tasks that timed out (exceeded maxtime).
l --wait, -w – Continues updating results until entire job is completed.
l --name, -n <task name> – Shows task(s) with the specified task name.
l --task, -t <task id> – Shows the task with the specified task ID.
l label, -l <label list> – Shows all tasks that contain the specified label. <label
list> is a comma-separated list of labels that may not contain spaces.

l --working-dir, -d <directory>—Uses the specified working directory to
locate the job and task log files. The default working directory is $HOME/nitro.

l --regex – If set, uses regular expression as the matching mode for <task name>, <task
id>, and <label list>. The default is literal (exact string).

Job Recovery

Jobs run under a scheduler can, depending on job priority and settings, be preempted by a higher
priority job, or even canceled by the user or administrator, or may fail due to hardware failure.
Depending on the scheduler's configuration, a preempted job may be restarted later by the
scheduler using the same job ID as the original job.
The job ID is the key to recovering jobs since Nitro uses the job ID as part of the path to the files
associated with that job. Nitro tracks its progress by storing a checkpoint file that indicates which
tasks have been completed and which have not. When Nitro is restarted, it looks for a checkpoint
file and will continue from where it left off if one is found. If a job was canceled or preempted
without a restart policy, then you will need to restart the job manually. Again, the key to restarting
the job is to use the job ID of the original job.
The job ID is usually the ID that was returned when the job was submitted. There can be some
differences between the scheduler's job ID and the resource manager's job ID depending on
scheduler and resource manager settings. When you submitted your Nitro job, you may have set a
Nitro job directory. If you didn't, it defaults to $HOME/nitro/<jobid>. This directory will
contain the job log and task log files, along with checkpoint and Nitro log files. You can therefore
use the directory name that Nitro created as the job directory with which to resubmit the job by
passing the --job-dir option with the directory name through the NITRO_OPTIONS
environment variable.
To restart the job you must set the NITROJOBID environment variable to the original job ID.
Setting this environment variable will override the job ID provided by the resource manager and
Nitro will resume from the line number of the task file described in the checkpoint file.

Chapter 3 References

30 Job Recovery

Dynamic Workload 31

The checkpoint file is updated periodically when assignments are completed by workers and are
returned to the coordinator. If a job is canceled, the workers will do their best to respond to the
coordinator with the tasks that have been completed so far, but depending on how quickly the
resource manager forces the applications to close, the checkpoint file may or may not be fully
updated. Therefore, it is possible that restarting a job will result in a particular task or set of tasks
being run a second time. Users should take this into account and program their tasks so that if
running the task a second time would cause a problem, transactions are recorded by the task that
would prevent the second run.
If a job is canceled for reasons of task failure (for example, because of a typo in the task command
line), you may want to submit the job as a new job instead of trying to resume the job with failed
tasks.

Failed and invalid tasks are marked as complete in the checkpoint file; they won't be re-run if
the job is just restarted.

Dynamic Workload

This topic identifies activities pertaining to dynamic workload.
Nitro jobs are flexible in the number of resources they can use to accomplish the tasks given them.
Worker nodes can be added to a job or taken away without any adverse consequences (other than
the job running more slowly). You can also add workload by appending the task file.
In this topic:

l Removing Worker Nodes on page 31
l Adding Worker Nodes to a Running Job on page 31
l Linger Mode on page 32

Removing Worker Nodes
If nodes are needed for a more important task, the workers can be killed, and their assignments will
be returned to the coordinator.

Killing the worker with a SIGTERM signal will allow the worker to send a partial
assignment completion report to the coordinator. Be aware that if a worker is killed, the tasks
that are running, may be run again when the assignment is given to a different worker to
complete. Therefore, it is important to program your tasks to exit if the work has already been
completed or overwrite the previous result.

Adding Worker Nodes to a Running Job
While the workload is being executed, workers can be added to the coordinator. The coordinator
requires either a list of worker names or a session key that workers will use to attach to the
coordinator to receive workload assignments. If you specify a list of worker names, only those
workers will be authorized to connect to the coordinator. If you specify a session key, any worker
with the session key will be able to connect to the coordinator.
Once the coordinator exits, the job is finished and workers won't be able to connect.

Chapter 3 References

Linger Mode
If you need to keep a coordinator up continually to respond to workload that could be added at any
time, you can use the "--linger" command line option on the workers and coordinator to allow
Nitro to stay resident and not exit when the tasks are completed.
Nitro provides a message-based process to dynamically add workload to Nitro. Contact Adaptive
Computing Professional Services for more information on dynamically adding workload.

Glossary

C

Compute Node
Term for a server designed for high-performance computing and managed by an HPC administrator as
part of an HPC cluster.

Coordinator
Nitro component responsible for scheduling Nitro tasks to the Worker components for execution,
recording the tasks' information in the Task Log file and job information in the Nitro Job Log file, and
checkpointing the Nitro job's state information in the Nitro Checkpoint file.

Core
An individual hardware-based execution unit within a processor that can independently execute a
software execution thread and maintain its execution state separate from the execution state of all other
cores within the processor.

CPU
See Processor, Core, Thread, OS Core, and Virtual Core. CPU is too generic, ambiguous, or context-
specific for utilization in this guide.

D

Datacenter
A non-HPC cluster system composed of many "servers" that typically are not used for high performance
computing.

Dynamic job
Nitro job where the requested resources are specified in a range. Nitro will execute the task file as a
static job using the minimum value specified in the range. When resources become available, Nitro
will add in more workers until the maximum range value is reached.

H

High Performance Computing
The use of highly parallel and/or specialized "supercomputers" for executing parallel workloads such as
large simulations, solving problems that require very complex and extensive calculations, computations
that require very long running calculations, etc. Such workloads are characterized by their use of many

Chapter 3 References

32 Glossary

Glossary 33

"compute nodes", often in the thousands, to work on a single problem and have execution times
ranging from minutes to months. HPC systems often execute from one to a few dozen or hundreds of
simultaneous workloads and have a job (workload) queue with a few hundred to several thousands of
pending jobs. In HPC systems, the performance of individual workloads within a time interval is the
primary objective and therefore HPC schedulers attempt to optimize their use of an HPC system's
resources regardless of the scheduling overhead incurred to do so (within reason).

High Throughput Computing
Describes workloads that often execute on just a single core and may have execution times ranging
from sub-seconds to minutes and perhaps hours. HTC systems often execute hundreds to tens of
thousands of simultaneous workloads. In HTC systems, the quantity of workloads processed per time
interval is the primary objective and therefore HTC schedulers attempt to minimize scheduling
overhead in order to maximize workload throughput.

Host
The host name of the HPC system's "compute node" or a datacenter's "server".

HPC
See High Performance Computing.

HPC Cluser
HPC industry's term for a "supercomputer". It is somewhat analogous to a "datacenter", except for the
sometimes specialized nature of its hardware.

HT
See Hyper-Threading.

HTC
See High Throughput Computing.

Hyper-Threading
Term used by Intel for its Simultaneous Multi-Threading (SMT) capability in its Atom, Core, Itanium,
Pentium 4, Xeon, and Xeon Phi processor families. See also Simultaneous Multi-Threading.

J

Job
HPC term for workload submitted by a user to a scheduler for the purpose of scheduling resources on
which the workload executes when started up by the scheduler. This guide will use this term to
identify workload, in whatever form, submitted to a scheduler that schedules the workload for
execution on a system (HPC cluster or commercial datacenter). Typically, a user creates a script that
executes the workload (one or more applications) and submits the script to the scheduler where it
becomes a "job". The user also gives information identifying the types of resources, typically one or
more nodes and optionally other hardware (such as GPU or MIC accelerators) or software and/or
software licenses, required by the workload to execute, either in the job script itself or at the time of
job submission (for example, via command line options or web portal form). The scheduler schedules
the job for the requested resources and when they are available allocates them to the job and then starts
the job by executing the script on one of the allocated nodes. The script executes the workload
(s)/application(s) that then use the resources allocated to the job by the scheduler.

Chapter 3 References

Job Scheduler
HPC term for a scheduler that manages submitted workloads (called "jobs") for an HPC cluster. See
Scheduler.

M

Multi-threading
The use of multiple software threads, which may or may not be pinned to hardware threads (core
affinity), to implement processing in parallel. There are multiple implementations of multi-threading,
such as Linux "pthreads", etc.

N

Nitro
HTC task scheduler application offered by Adaptive Computing, Inc.

Node
Shorthand term for "compute node". See Compute Node.

O

OS Core
Term that refers to what the operating system considers an individual hardware-based computation unit,
often called a "core" or a 'CPU". In actuality, the "OS core" can be a hardware-based core (see "Core")
or a hardware-based thread (see "Thread"). This guide uses this term to refer to the basic hardware-based
computational unit allocatable by an operating system to a process.

P

Process
An individual executing program managed by an operating system. It has its own resources and
memory address space, independent of all other executing processes managed by the operating system.
A process may itself be multi-threaded, which means the operating system can execute simultaneously
different software execution threads of the process.

Processor
A physical hardware chip (sometimes called a "socket"); regardless of whether it supports a single core
or multiple cores ("multi-core" processor). Socket is a strong, unambiguous synonym for processor
while CPU (see CPU) is an ambiguous synonym individuals and/or processor vendor documentation
may use. In addition, people and literature sometimes use the term processor to refer to a hardware core
(see Core) or hardware thread (see Thread). This guide uses the term "processor" to refer to the physical
hardware chip.

S

Scheduler
Term used generically in the guide for the specialized software between the user and the HPC
cluster/datacenter system that manages submitted workloads or "jobs". Such management includes

Chapter 3 References

34 Glossary

Glossary 35

queuing jobs, prioritizing queued jobs for execution, scheduling and allocating requested resources for
each job, and starting jobs when their requested resources become available and the jobs have the
highest priority. This guide uses the term "system scheduler" to refer to the scheduler that schedules
jobs for your system, regardless whether it is an HPC cluster or datacenter.

Server
Term for a (typically) "headless" computer used in a data center and managed by a system administrator
in an IT department.

Simultaneous Multi-Threading
Processor core's ability to execute (in hardware) instructions from multiple, independent, software
execution threads and track their states simultaneously.

SMT
See Simultaneous Multi-Threading.

Static job
Nitro job where the number of resources (nodes or cores) does not change. The task file is not executed
until all of the job's resources become available.

T

Task
A single unit of work (HTC job) defined by Nitro task definitions in a user task file (list of HTC jobs
now referred to as tasks) that Nitro can schedule and launch for execution as a single OS process.

Task file
The file containing the list of tasks that Nitro should execute.

Task Launch Thread
A Nitro worker "software execution thread" capable of launching one Nitro "task". Unless modified by
a Nitro worker command line option, the worker's quantity of task launch threads is identical to the
quantity of node OS cores made available to the worker by the system scheduler.

Thread
In SMT or hyper-threading, refers to a hardware-based thread execution capability. For example, the
consumer-oriented Intel Core i7 processor has four cores, each of which has hardware that can
simultaneously track two software execution thread states and execute the other thread when one
thread blocks waiting on a memory access; thus increasing the utilization of each core's computational
capability and yielding 8 hardware-based threads for the entire processor. The server-oriented Intel
Xeon processor documentation refers to threads as "logical processors". Cray documentation uses the
term threads relative to the SMT capability of the Intel Xeon processors in its XC systems. Regardless
of vendor terminology, one thread in the context of SMT refers to the hardware capability for tracking
and executing one software execution thread. The term threads used in the context of a processor core
refers to the quantity of software execution threads the core can simultaneously track; e.g., 2 threads
per Intel Xeon E5-2650 v3 core and 20 threads per Intel Xeon E5-2650 v3 processor. BIOS settings
enable or disable the SMT capability of SMT-capable processors and therefore determine at boot time
whether a processor has only one thread per core or multiple threads per core. See Core and OS Core.

Chapter 3 References

V

Virtual Core
Term often used to refer to a hardware-based thread of a core that is not the first thread (thread 0)
within a core. If a processor has SMT or hyper-threading enabled, "thread 0" represents the core and the
other threads 1-N represent "virtual cores". The only way to execute using just a core that has
SMT/hyper-threading enabled is to use only thread 0 of the core and expressly enforce the non-use of
the core's other threads or "virtual cores" through a CPUset or control-group (cgroup).

W

Worker
Nitro component responsible for executing the user's workloads specified by the task definitions in the
Task file.

Workload
Generic term used in this guide to refer to some amount of work to be done, typically by executing
one or more software applications.

Chapter 3 References

36 Glossary

Sources of Troubleshooting Information 37

Chapter 4 Troubleshooting

This chapter provides troubleshooting information.
In this topic:

l Sources of Troubleshooting Information on page 37
l Troubleshooting Task Errors on page 37

Related Topics

l Track Job Progress on page 12
l nitrostat on page 28

Sources of Troubleshooting Information

These are common sources of reference for troubleshooting:
l Job Output Files - Any errors that Nitro reports should be reported on stderr and will be
captured to your job's output files (if running Nitro through a job scheduler).

l Job and Task Log Files in the Job Directory -
o Nitro writes a job log indicating the startup parameters, input files, configuration, and
the main worker events and statistics. You can review the job log to determine if any
tasks failed, timed out, or were invalid (an error parsing the task line).

o The task log contains a listing of all task results from the job and includes stdout and/or
stderr output.

l Nitro debug logs - In the job directory you will also find a "logs" directory with worker and
coordinator logs. The logs are named according to the role (worker or coordinator), host, job,
and process ID so that logs being written to the same directory will not overwrite logs from
another Nitro job or worker with the same process ID.

Related Topics

l Troubleshooting on page 37

Troubleshooting Task Errors

The Nitro job log, and the stdout output from the Nitro coordinator, lists the number of tasks
completed, tasks successfully completed (exit code of 0), failed tasks (exit code other than 0), tasks
that timed out (exceeded the "maxtime" task option), invalid tasks (tasks that the coordinator could
not parse without errors), and tasks with insufficient resources.

Chapter 4 Troubleshooting

If you encounter a problem you are unable to solve, forward the log files according to your
company's escalation process.

In this topic:
l Task Command Line Errors on page 38
l Failed Tasks on page 38
l Invalid Tasks on page 39
l Insufficient Resources Tasks on page 39

Task Command Line Errors
If the command line that you use to specify the task's command line contains an error (for example,
the path is incorrect or you are attempting to run a script with noexecute permissions set), then the
shell will output an error message to stderr that will be captured and stored in the task log file.
For example, if the task's command line references a binary that doesn't exist, you would see the
following error in the task log file.

Job ID Task ID Line # Task Name Status Ret Hostname Start time Duration UserCPU
SysCPU VirtMem PhysMem Labels Output
------ ------- ------ --------- ------- ---- -------- ------------ -------- ------- --
---- ------- ------- ------- ------
EX01 3 3 S07T2303 Failure 127 node02 07:58:07.868 0.005 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 4 4 S07T2304 Failure 127 node02 07:58:07.872 0.007 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 5 5 S07T2305 Failure 127 node02 07:58:07.878 0.003 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory

Failed Tasks
Failed tasks were tasks that the worker executed, but have failed because the command line was
not valid, or the task ran and returned an exit code other than 0. To diagnose the error, examine the
task log file located in the job directory. See Track Job Progress on page 12.
You can also use nitrostat to list failed tasks. See nitrostat on page 28. To list failed tasks using
nitrostat use the following command line.

/opt/nitro/bin/nitrostat <job id> -f

The following is an example of information provided by nitrostat showing failed tasks.

Chapter 4 Troubleshooting

38 Troubleshooting Task Errors

Troubleshooting Task Errors 39

Job ID Task ID Line # Task Name Status Ret Hostname Start time Duration UserCPU
SysCPU VirtMem PhysMem Labels Output
------ ------- ------ --------- ------- ---- -------- ------------ -------- ------- --
---- ------- ------- ------- ------
EX01 3 3 S07T2303 Failure 127 node02 07:58:07.868 0.005 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 4 4 S07T2304 Failure 127 node02 07:58:07.872 0.007 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 5 5 S07T2305 Failure 127 node02 07:58:07.878 0.003 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory

The line number of the failed task in the task file is listed so you can easily identify which lines in
the task file generated errors. If you need to verify the path to the task file used by Nitro you will
find it both in the job log file and in the stdout output from the coordinator, which may also be
recorded in the output files provided by your scheduler.

Nitro Environment

Job Id : EX01
Job path : /home/jdoe/jobs/EX01
Job log : /home/jdoe/jobs/EX01/nitro_EX01.joblog.txt
Task log : /home/jdoe/jobs/EX01/nitro_EX01.tasklog.txt
Task file : /home/jdoe/jobs/example1.tasks
Worker hosts : node02

If Nitro cannot access the task file, you will receive an error from the coordinator on stderr
indicating that the task file was not found or is not accessible.

Invalid Tasks
Invalid tasks are lines in the task file that Nitro could not parse without errors. Parsing errors
usually include misspelling a task option name. If your task line doesn't contain any task options,
you should prepend the "cmd=" option to your command line. The "cmd" option indicates that
Nitro should stop parsing the task line and accept the rest of the line as the command line to be
executed. The following example shows an invalid task.

Job ID Task ID Line # Task Name Status Ret Output
------ ------- ------ --------- -------- ---- ... ------
EX01 14 14 Invalid Unrecognized option name: walltime

In this case an invalid option "walltime" was used in a task definition instead of "maxtime".

invalid line:
name=S07T2314 walltime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene07.def -
tindex 2314

valid line:
name=S07T2314 maxtime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene07.def -
tindex 2314

The task file may also be rejected if you have any binary data in the file. The task file should only
include ASCII text and each task must be on a separate line. The task file allows comment and
empty lines. A hash symbol (#) in the first column of a line identifies a comment line.

Insufficient Resources Tasks

Chapter 4 Troubleshooting

If workers are not able to fulfill resource requirements for tasks with cores or memory
specifications, an insufficient resources error is logged. The following example show a task with
insufficient resources.

JobID TaskID Line Name Status ExitCode Hostname StartTime Duration
UserCPU SystemCPU VirtualMem PhysicalMem Labels Output
425 1 13 Success 0 node02 2016-02-16_17:58:07.052-
0700 0.030 0.010 0.000 130211840 1077248 1 1000000 3.142116000
425 2 14 Success 0 node02 2016-02-16_17:58:07.052-
0700 0.030 0.010 0.000 130211840 1081344 2 1000000 3.141296000
425 3 15 Success 0 node02 2016-02-16_17:58:07.083-
0700 0.021 0.010 0.000 275505152 1679360 3 1000000 3.139544000
425 4 16 InsufRes -1 node02 2016-02-16_17:58:07.083-
0700 0.000 0.000 0.000 0 0 Error: worker is limited
to 2 threads, task is requesting 3 threads

Related Topics

l Track Job Progress on page 12
l nitrostat on page 28
l Troubleshooting on page 37

Chapter 4 Troubleshooting

40 Troubleshooting Task Errors

	 Welcome
	Chapter 1 Nitro Overview
	 Introduction to Nitro
	 Key Terminology and Usage

	Chapter 2 Using Nitro
	 Prepare a Nitro Job
	 Submit a Nitro Job using the nitrosub Command
	 Submit a Nitro Job with User-Customized Job Scripts
	 Track Job Progress

	Chapter 3 References
	 nitrosub Command
	 Command Line Flags or Options
	 Environment Variables
	 Job Scripts
	 Task File
	 nitrostat
	 Job Recovery
	 Dynamic Workload
	 Glossary

	Chapter 4 Troubleshooting
	 Sources of Troubleshooting Information
	 Troubleshooting Task Errors

