
Moab HPC Suite - Basic Edition
Adminstrator Guide 8.0.1

November 2014

© 2014 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without prior
written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager, Moab
Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing products are either
registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster
Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other company and product names may be
trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

Contents

Welcome xxi

Moab HPC Suite Release Notes 1
Moab HPC Suite - Basic Edition 8.0.1 release notes 1
New Features 1
Differences 6
Installation and Upgrade Information 9
Known Issues 10
Resolved issues 12

Installation and Configuration 17
Requirements 17
Manual installation 24

Installation 24
Preparing for installation 24
Installing TORQUE 30
Installing MoabWorkloadManager 34
Installing MoabWeb Services 38

Additional configuration 42
Configuring SSL in Tomcat 42
Setting up OpenLDAP on CentOS 6 43
MoabWorkloadManager configuration options 49
Trusting servers in Java 51

Upgrading 52
Preparing for upgrade 52
Upgrading MongoDB 53
Upgrading TORQUE 53
Upgrading MoabWorkloadManager 55
Upgrading MWS 58

RPM installation 62
Installing Moab HPC Suite - Basic Edition 62
Configuration 67

Configuring TORQUE 67
Configuring MoabWorkloadManager 68
Configuring MoabWeb Services 70

Additional configuration 72
Configuring SSL in Tomcat 72
Setting up OpenLDAP on CentOS 6 72

iii

iv

Trusting servers in Java 79
Upgrading 80

Upgrading Moab HPC Suite - Basic Edition 80
Upgrading from MongoDB 2.0 to 2.4.x 86

Troubleshooting 87
Component documentation 95

Moab Workload Manager 97
MoabWorkloadManager overview 97
Philosophy 97

Value of a Batch System 98
Philosophy and Goals 99
Workload 100

Scheduler Basics 102
Initial Moab Configuration 102
Layout of Scheduler Components 104
Scheduling Environment 106

Scheduling Dictionary 112
Scheduling Iterations and Job Flow 119
Configuring the Scheduler 122
Credential Overview 125
Job Attributes/Flags Overview 152

Scheduler Commands 159
Status Commands 161
JobManagement Commands 162
Reservation Management Commands 163
Policy/Configuration Management Commands 164
End-user Commands 164
Commands 165

checkjob 165
checknode 177
mcredctl 182
mdiag 185

mdiag -a 188

mdiag -b 189

mdiag -c 189

mdiag -f 193

mdiag -g 195

mdiag -j 195

mdiag -n 196

mdiag -t 203

mdiag -p 203

mdiag -q 206

mdiag -r 207

mdiag -S 211

mdiag -s 212

mdiag -T 213

mdiag -u 215

mjobctl 216
mnodectl 233
moab 239
mrmctl 240
mrsvctl 242
mschedctl 268
mshow 275

mshow -a 276

mshow -a 287

msub 290

Applying the msub submit filter 307

Submitting Jobs via msub in XML 309

mvcctl (Moab Virtual Container Control) 313
mvmctl 318
showbf 322
showq 325
showhist.moab.pl 335
showres 340
showstart 346
showstate 349
showstats 351

showstats -f 363

TIMESPEC 366

Deprecated commands 366

canceljob 366

changeparam 367

diagnose 367

releasehold 368

releaseres 370

resetstats 370

runjob 371

v

vi

sethold 372

setqos 373

setres 374

setspri 378

showconfig 379

Prioritizing Jobs and Allocating Resources 380
Job Prioritization 381

Priority Overview 381
Job Priority Factors 382
Fairshare Job Priority Example 392
Common Priority Usage 394
Prioritization Strategies 396
Manual Job Priority Adjustment 397

Node Allocation Policies 397
Node Access Policies 407
Node Availability Policies 408
Task Distribution Policies 415

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 415
Fairness Overview 415
Usage Limits/Throttling Policies 418
Fairshare 436

Sample FairShare Data File 449
Controlling Resource Access - Reservations, Partitions, and QoS Facilities 450

Advance Reservations 450
Reservation Overview 451
Administrative Reservations 455
Standing Reservations 457
Reservation Policies 458
Configuring andManaging Reservations 461
Personal Reservations 492

Partitions 495
Quality of Service (QoS) Facilities 499

Optimizing Scheduling Behavior – Backfill and Node Sets 508
Optimization Overview 508
Backfill 509
Node Set Overview 515

Evaluating System Performance - Statistics, Profiling, and Testing 522
Moab Performance Evaluation Overview 522
Accounting: Job and System Statistics 522
Testing New Versions and Configurations 524

General Job Administration 525
Job Holds 526
Job Priority Management 527

Suspend/Resume Handling 527
Checkpoint/Restart Facilities 528
Job Dependencies 529
Job Defaults and Per Job Limits 531
General Job Policies 532
Using a Local Queue 539
Job Deadlines 542
Job Arrays 545

General Node Administration 552
Node Location 553
Node Attributes 556
Node Specific Policies 566
Managing Shared Cluster Resources (Floating Resources) 567
Managing Node State 571
Managing Consumable Generic Resources 573
Enabling Generic Metrics 575
Enabling Generic Events 578

Resource Managers and Interfaces 584
Resource Manager Overview 585
Resource Manager Configuration 588
Resource Manager Extensions 618

PBS Resource Manager Extensions 647
Adding New Resource Manager Interfaces 649
Managing Resources Directly with the Native Interface 650
Utilizing Multiple Resource Managers 662
License Management 663
Resource Provisioning 665
Managing Networks 666
Intelligent Platform Management Interface 669
Resource Manager Translation 672

Troubleshooting and System Maintenance 673
Internal Diagnostics/Diagnosing System Behavior and Problems 673
Logging Overview 676
Object Messages 683
Notifying Administrators of Failures 684
Issues with Client Commands 686
Tracking System Failures 687
Problems with Individual Jobs 689
Diagnostic Scripts 689

Improving User Effectiveness 691
User Feedback Loops 692
User Level Statistics 693
Enhancing Wallclock Limit Estimates 693
Job Start Time Estimates 693

vii

viii

Providing Resource Availability Information 694
Collecting Performance Information on Individual Jobs 694

Cluster Analysis and Testing 695
Testing New Releases and Policies 695
Testing NewMiddleware 698

Green computing 701
Green computing overview 701
How-to's 712

Deploying Adaptive Computing IPMI scripts 712
Choosing which nodes Moab powers on or off 713
Enabling green computing 714
Adjusting green pool size 719
Handling power-related events 719
Maximizing scheduling efficiency 720
Putting idle nodes in power-saving states 721
Troubleshooting green computing 721

Object triggers 724
About object triggers 724
How-to's 726

Creating a trigger 727
Creating VM triggers 730
Using a trigger to send email 731
Using a trigger to execute a script 733
Using a trigger to perform internal Moab actions 733
Requiring an object threshold for trigger execution 734
Enabling job triggers 734
Modifying a trigger 735
Viewing a trigger 736
Checkpointing a trigger 736

References 737
Job triggers 737
Node triggers 738
Reservation triggers 740
Resource manager triggers 741
Scheduler triggers 742
Threshold triggers 743
Trigger components 744
Trigger exit codes 752
Node maintenance example 752
Environment creation example 753

Trigger variables 754
About trigger variables 754
How-to's 755

Setting and receiving trigger variables 755

Externally injecting variables into job triggers 756

Exporting variables to parent objects 756

Requiring variables from generations of parent objects 757

Requesting name space variables 757

References 758

Dependency trigger components 758

Trigger variable comparison types 758

Internal variables 759

Miscellaneous 760
User Feedback Overview 760
Enabling High Availability Features 762
Malleable Jobs 764
Identity Managers 765
Generic System Jobs 769

Database Configuration 772
SQLite3 772
Connecting to a MySQL Database with an ODBC Driver 773
Connecting to a PostgreSQL Database with an ODBC Driver 776
Connecting to an Oracle Database with an ODBC Driver 778

Installing the Oracle Instant Client 785
Migrating Your Database to Newer Versions of Moab 787
Importing Statistics from stats/DAY.* to the Moab Database 794

Accelerators 794
Scheduling GPUs 795
Using GPUs with NUMA 795
NVIDIA GPUs 796
GPUMetrics 799
Intel® Xeon Phi™ Coprocessor Configuration 801
Intel® Xeon Phi™ Co-processor Metrics 806

Preemption 807
About preemption 807
How-to's 809

Canceling jobs with preemption 809
Checkpointing jobs with preemption 812
Requeueing jobs with preemption 813
Suspending jobs with preemption 816
Using owner preemption 819
Using QoS preemption 823

References 824
Manual preemption commands 824
Preemption flags 825
PREEMPTPOLICY types 827

ix

x

Simple example of preemption 827
Testing and troubleshooting preemption 831

Job templates 832
About job templates 832
How-to's 833

Creating job templates 833
Viewing job templates 834
Applying templates based on job attributes 834
Requesting job templates directly 835
Creating workflows with job templates 836

References 837
Job template extension attributes 837
Job template matching attributes 849
Job template examples 849
Job template workflow examples 850

MoabWorkloadManager for Grids 851
Grid Basics 852
Grid Configuration Basics 860
Centralized Grid Management (Master/Slave) 861
Hierarchal Grid Management 861
Localized Grid Management 863
Resource Control and Access 864
Workload Submission and Control 867
Reservations in the Grid 867
Grid Usage Policies 868
Grid Scheduling Policies 870
Grid Credential Management 872
Grid Data Management 874
Grid Security 879
Grid Diagnostics and Validation 879

Data staging 880
About data staging 880
How-to's 882

Configuring the SSH keys for the data staging transfer script 882
Configuring data staging 884
Staging data to or from a shared file system 886
Staging data to or from a shared file system in a grid 890

Configuring the $CLUSTERHOST variable 894

Staging data to or from a compute node 895
Configuring data staging with advanced options 899

References 901
Sample user job script 901

Appendices 902
Appendix A: Moab Parameters 902

Appendix B: Multi-OS Provisioning 1057
Event Dictionary 1076
Appendix D: Adjusting Default Limits 1191
Appendix E: Security 1195
Appendix F: Initial Moab Testing 1203
Appendix G: Integrating Other Resources with Moab 1205

Compute Resource Managers 1206

Moab-TORQUE Integration Guide 1206

TORQUE/PBS Integration Guide - RM Access Control 1209

TORQUE/PBS Config - Default Queue Settings 1210

Moab-SLURM Integration Guide 1210

Installation Notes for Moab and TORQUE for Cray 1214

Provisioning Resource Managers 1230

Validating an xCAT Installation for Use with Moab 1230

Hardware Integration 1233

Moab-NUMA Integration Guide 1233

Appendix H: Interfacing with Moab (APIs) 1237
Appendix I: Considerations for Large Clusters 1241
Appendix J: Configuring Moab as a Service 1246
Appendix K: Migrating from 3.2 1247
Appendix R: Node Allocation Plug-in Developer Kit 1250
Appendix S: Scalable Systems Software Specification 1256

Scalable Systems Software Job Object Specification 1256
Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Mes-
sage Format 1292
Scalable Systems Software Node Object Specification 1316
Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire
Protocol 1325

Appendix W: Moab Resource Manager Language Interface Overview 1341
W.1 Moab Resource Manager Language Data Format 1341
W.2 Managing Resources with SLURM 1350
W.3Moab RM Language Socket Protocol Description 1361

SCHEDCFG flags 1367

Moab Web Services 1373
MoabWeb Services overview 1373
Setup 1373

MoabWeb Services setup 1373
Configuring MoabWeb Services 1373
Setting upMWS security 1388

Securing the connection with Moab 1389
Securing the connection with MongoDB 1389

xi

xii

Securing client connections toMWS 1390
Securing the LDAP connection 1394
Securing the connection with the message queue 1395

Version and build information 1396
Access control 1398

About access control 1398
Access control 1398

API documentation 1401
About the API 1401
RESTful web services 1401
Data format 1403
Global URL parameters 1403
Requesting specific API versions 1406
Responses and return codes 1407
Error messages 1410
Pre and post-processing hooks 1412
Authentication 1421
System events 1422

Resources 1424
Resources introduction 1424
Access control lists (ACLs) 1426
Accounting 1429

Accounting Accounts 1429
Accounting Allocations 1433
Accounting Charge rates 1437
Accounting Funds 1441
Accounting Liens 1451
Accounting Organizations 1455
Accounting Quotes 1458
Accounting Transactions 1461
Accounting Usage records 1466
Accounting Users 1480

Credentials 1484
Diagnostics 1499
Distinct 1504
Events 1506
Images 1514
Job arrays 1523
Jobs 1525
Job templates 1547
Metric types 1549
Nodes 1551
Notification conditions 1558
Notifications 1563

Permissions 1571
Plugins 1577
Plugin types 1585
Policies 1589

Fairshare 1596
Principals 1605
Priority 1611
Reports 1614
Reservations 1624
Resource types 1632
Roles 1633
Standing reservations 1639

Reporting framework 1643
Overview of reporting framework 1643
Example report (CPU Utilization) 1646

Plugins 1650
About MoabWeb Services plugins 1650
Plugin overview 1651

Plugin introduction 1651
Lifecycle states 1653
Events 1654
Custom web services 1654
Utility services 1655
Data consolidation 1655
Routing 1657

Plugin developer's guide 1657
Requirements 1658
Dynamic methods 1659
Logging 1660
i18n messaging 1661
Configuration 1663
Configuration constraints 1664
Individual datastore 1672
Exposing web services 1674
Reporting state data 1676
Controlling lifecycle 1679
Accessing MWS REST resources 1680
Creating events and notifications 1682
Handling events 1689
Handling exceptions 1691
Managing SSL connections 1692
Utilizing services or custom "helper" classes 1693
Packaging plugins 1698
Example plugin types 1707

xiii

xiv

MoabWorkloadManager resource manager integration 1708
Configuring MoabWorkloadManager 1709
Resource manager queries 1713

Plugin type management 1715
Listing plugin types 1715
Displaying plugin types 1716
Plugin type documentation 1716
Add or update plugin types 1717

Plugin management 1720
Listing plugins 1720
Creating a plugin 1720
Displaying a plugin 1721
Modifying a plugin 1722
Deleting a plugin 1723
Monitoring and lifecycle controls 1723
Setting default plugin configuration 1725

Plugin services 1725
Job RM service 1726
Moab REST service 1726
Node RM service 1728
Plugin control service 1728
Plugin datastore service 1730
Plugin event service 1733
SSL service 1735
Storage RM service 1735
Virtual machine RM service 1735

Plugin types 1736
Power Management Plugin 1736

References 1741
Client code samples 1741

Javascript code samples 1742
PHP code samples 1743
Perl code samples 1747
Python code examples 1749
cURL samples 1749

Configuration 1750
Resource reference 1760

Resources reference 1760
Fields: Access Control Lists (ACLs) 1761
Accounting 1770

Fields: Accounts 1770

Fields: Allocations 1773

Fields: Charge Rates 1777

Fields: Fund Balances 1779

Fields: Fund Statement Summary 1786

Fields: Fund Statements 1797

Fields: Funds 1807

Fields: Liens 1815

Fields: Organizations 1819

Fields: Quotes 1821

Fields: Transactions 1826

Fields: Usage Records 1830

Fields: Users 1834

Fields: Credentials 1836
Fields: Events 1837
Fields: Images 1843
Fields: Job Arrays 1851
Fields: Jobs 1914
Fields: Job Templates 1974
Fields: Metric Types 2003
Fields: Nodes 2004
Fields: Notification Conditions 2024
Fields: Notifications 2028
Fields: Plugins 2030
Fields: Plugin Types 2035
Fields: Policies 2039
Fields: Principals 2065
Fields: Report Datapoints 2072
Fields: Reports 2074
Fields: Reservations 2080
Fields: Resource Types 2120
Fields: Roles 2121
Fields: Report Samples 2127
Fields: Standing Reservations 2129
Fields: User's Permissions 2186

TORQUE Resource Manager 2190
Introduction 2190
Overview 2192

TORQUE Installation Overview 2193
TORQUE Architecture 2193
Installing TORQUE 2193
Compute Nodes 2198
Enabling TORQUE as a Service 2199

xv

xvi

Initializing/Configuring TORQUE on the Server (pbs_server) 2200
Specifying Compute Nodes 2202
Configuring TORQUE on Compute Nodes 2203
Configuring Ports 2204
Configuring trqauthd for Client Commands 2205
Finalizing Configurations 2207

Advanced configuration 2207
Customizing the Install 2207
Server Configuration 2215
MOMHierarchy 2219

Manual Setup of Initial Server Configuration 2221
Server Node File Configuration 2222

Basic Node Specification 2223
Specifying Virtual Processor Count for a Node 2223
Specifying GPU Count for a Node 2224
Specifying Node Features (Node Properties) 2224

Testing Server Configuration 2224
TORQUE on NUMA Systems 2227

TORQUE NUMA Configuration 2227
Building TORQUE with NUMA Support 2227

TORQUE Multi-MOM 2231
Multi-MOM Configuration 2231
Stopping pbs_mom in Multi-MOMMode 2233

Submitting andManaging Jobs 2233
Job Submission 2234

Multiple Job Submission 2235
Managing Multi-node Jobs 2236
Requesting Resources 2237
Requesting Generic Resources 2244
Requesting Floating Resources 2244
Requesting Other Resources 2245
Exported Batch Environment Variables 2245
Enabling Trusted Submit Hosts 2247
Example Submit Scripts 2247
Job Files 2248

Monitoring Jobs 2250
Canceling Jobs 2250
Job Preemption 2251
Keeping Completed Jobs 2251
Job Checkpoint and Restart 2252

Introduction to BLCR 2252
Configuration Files and Scripts 2253
Starting a Checkpointable Job 2260
Checkpointing a Job 2261

Restarting a Job 2261
Acceptance Tests 2262

Job Exit Status 2262
Service Jobs 2266

Submitting Service Jobs 2267
Submitting Service Jobs in MCM 2267
Managing Service Jobs 2267

Managing Nodes 2268
Adding Nodes 2268
Node Properties 2269
Changing Node State 2269
Changing Node Power States 2270
Host Security 2272
Linux cpuset Support 2274
Scheduling Cores 2275

Geometry Request Configuration 2275
Geometry Request Usage 2276
Geometry Request Considerations 2276

Scheduling Accelerator Hardware 2276
Setting Server Policies 2277

Queue Configuration 2277
Queue Attributes 2277
Example Queue Configuration 2288
Setting a Default Queue 2289
Mapping a Queue to Subset of Resources 2289
Creating a Routing Queue 2289

Server High Availability 2291
Setting min_threads andmax_threads 2303

Integrating Schedulers for TORQUE 2304
Configuring Data Management 2304

SCP Setup 2304
Generating SSH Key on Source Host 2305
Copying Public SSH Key to each Destination Host 2305
Configuring the SSH Daemon on Each Destination Host 2306
Validating Correct SSH Configuration 2306
Enabling Bi-directional SCP Access 2306
Compiling TORQUE to Support SCP 2307
Troubleshooting 2307

NFS and Other Networked Filesystems 2307
File stage-in/stage-out 2308

MPI (Message Passing Interface) Support 2309
MPICH 2309
OpenMPI 2310

Resources 2311

xvii

xviii

Accounting Records 2313
Job Logging 2315

Job Log Location and Name 2315
Enabling Job Logs 2316

Troubleshooting 2316
Host Resolution 2317
Firewall Configuration 2317
TORQUE Log Files 2318
Using "tracejob" to Locate Job Failures 2319
Using GDB to Locate Job Failures 2321
Other Diagnostic Options 2321
Stuck Jobs 2322
Frequently Asked Questions (FAQ) 2323
Compute Node Health Check 2328

Configuring MOMs to Launch a Health Check 2329
Creating the Health Check Script 2329
Adjusting Node State Based on the Health Check Output 2330
Example Health Check Script 2330

Debugging 2330
Appendices 2336

Appendix A: Commands Overview 2337
momctl 2338
pbs_mom 2344
pbs_server 2350
pbs_track 2353
pbsdsh 2355
pbsnodes 2356
qalter 2360
qchkpt 2370
qdel 2371
qgpumode 2373
qgpureset 2374
qhold 2375
qmgr 2377
qmove 2380
qorder 2381
qrerun 2382
qrls 2384
qrun 2385
qsig 2386
qstat 2388
qsub 2395
qterm 2414
trqauthd 2416

Appendix B: Server Parameters 2417
Appendix C: Node Manager (MOM) Configuration 2435

Parameters 2435
Node Features and Generic Consumable Resource Specification 2453
Command-line Arguments 2453

Appendix D: Diagnostics and Error Codes 2454
Appendix E: Considerations before Upgrading 2462
Appendix F: Large Cluster Considerations 2463

Scalability Guidelines 2464
End-user Command Caching 2464
Moab and TORQUE Configuration for Large Clusters 2466
Starting TORQUE in Large Environments 2467
Other Considerations 2467

Appendix G: Prologue and Epilogue Scripts 2469
Script Order of Execution 2470
Script Environment 2471
Per Job Prologue and Epilogue Scripts 2472
Prologue and Epilogue Scripts Time Out 2473
Prologue Error Processing 2473

Appendix H: Running Multiple TORQUE Servers andMOMs on the Same Node 2477
Appendix I: Security Overview 2478
Appendix J: Job Submission Filter ("qsub wrapper") 2479
Appendix K: "torque.cfg" Configuration File 2480
Appendix L: TORQUE Quick Start Guide 2485
Appendix M: BLCR Acceptance Tests 2488

Test Environment 2488
Test 1 - Basic Operation 2489
Test 2 - Persistence of Checkpoint Images 2491
Test 3 - Restart after Checkpoint 2492
Test 4 - Multiple Checkpoint/Restart 2493
Test 5 - Periodic Checkpoint 2493
Test 6 - Restart from Previous Image 2494

xix

xx

xxi

Welcome
Welcome to Moab HPC Suite - Basic Edition 8.0.1!

The following sections will help you quickly get started with Moab HPC Suite:

Release Notes

Provides information on enhancements and fixes.

Installation and Configuration

Instructs on how to install, upgrade, and configure the Moab HPC Suite and components.

Component Functions and Procedures

Documentation, including references and tasks, for the components in the Moab HPC Suite.
Documentation is grouped by the specific component.

l Moab Workload Manager

l Moab Web Services

l TORQUE Resource Manager

Welcome

xxii

Moab HPC Suite - Basic Edition 8.0.1 release notes 1

Moab HPC Suite Release Notes

Moab HPC Suite - Basic Edition 8.0.1 release notes

The release notes file contains the following sections:

l New Features on page 1

l Differences on page 6

l Installation and Upgrade Information on page 9

l Known Issues on page 10

l Resolved issues on page 12

New Features
The following is a summary of key new features in Moab HPC Suite - Basic Edition.

l Moab Workload Manager on page 1

l Moab Web Services on page 4

l TORQUE Resource Manager on page 5

Moab Workload Manager

8.0.1

Added Support for "flags=allprocs"

You can now request one or more nodes and Moab will allocate all the processors on every node that is
assigned to the job. For example, `qsub -l nodes=1,flags=allprocs`.

8.0.0

Data staging

The old method of data staging has been deprecated in Moab Workload Manager 8.0 and will be
removed from the product in a future release.

Moab data staging has undergone a major redesign in 8.0. Consequently, Moab includes several new
features that improve the data staging experience. These features include the following:

l Moab data staging system jobs, separately schedulable from the user job, that increase system
performance and utilization by not reserving compute nodes during input or output data-staging
unless a compute node's local file system is involved.

l New msub options that are required to submit data staging jobs. At least one of --stagein, --
stageinfile, --stageout, and/or --stageoutfile is required to stage data for your job.

o --stagein and --stageout specify individual files and/or directories to stage in or out,
respectively.

o --stageinfile and --stageoutfile specify the path to an individual file that contain
the paths of files and/or directories to stage in or out, respectively.

l --stageinsize and --stageoutsize options that give Moab an estimate of the size of the
files or directories to stage in or out, respectively, so it can more accurately schedule the
associated data staging jobs. For more information, see msub on page 290 for more information.

l A customizable reference data staging job submit filter that sums the size of all input files and
passes the sum to Moab. It uses the --stageinsize option so you do not have to estimate an
input data size and Moab can more accurately estimate wallclock time when scheduling the input
data staging system job. See Configuring data staging on page 884 for more information.

l Customizable reference scripts that use scp or rsync to stage data (/opt/moab/tools/data-
staging/ds_move_scp and /opt/moab/tools/data-staging/ds_move_rsync,
respectively). The scripts work in an out-of-the-box environment, but you should modify one or
both to work with your unique environment. You can use the reference scripts as a guide to create
your own script that supports data staging with a different Linux file transfer utility or
commercial file transfer utility, such as one from Aspera.

l The ability to set generic metrics on partitions (for more information, see Per-Partition Settings
on page 498).

o The new DATASTAGINGBANDWIDTH_MBITS_PER_SEC metric, required for data staging,
specifies the transfer rate of the partition in megabits per second. Moab uses it and the --
stageinsize and/or --stageoutsize msub options submitted with the job to estimate
the wallclock time for better scheduling of the input and output data staging system jobs.

o The new metric can be dynamically updated by a resource manager or configured by an
administrator.

l When you run checkjob -v on a data staging job, Moab returns the source and destination of data
staging files and their total size. See checkjob on page 165 for more information.

l Advanced configuration options allow you to rename the default template, support multiple file
transfer script utilities in a grid on a per-partition basis, configure a notification email to be sent
after a data staging job completes, add a non-default template via msub, and use msub to return
all job IDs in the workflow at submission time. This is useful when you dynamically generate user
workflows using scripts that must create dependencies on data-staging system jobs (when input or
output data-staging has completed, for example), not the user job. For more information, see
Configuring data staging with advanced options on page 899.

Moab HPC Suite Release Notes

2 New Features

New Features 3

The features associated with data staging in previous Moab releases have been deprecated in this
release and will be removed in the next. For more information about data staging in Moab Workload
Manager, see About data staging on page 880.

CPU frequency control

Moab can now ask the resource manager to change the CPU frequency on allocated nodes for submitted
jobs. The request is made with the new CPUCLOCK resource manager extension. A user can specify a
desired clock frequency in megahertz, a Linux power governor policy name, or an ACPI performance
state (P-state) number. For more information, see CPUCLOCK on page 621.

The mjobctl-m command has been updated to allow modification of the requested CPU frequency on an
already submitted job.

CPUCLOCK has also been added as a job template extension. The job template extension overrides the job
script CPUCLOCK extension and the job submission CPUCLOCK option.

Improved Performance and Scalability

Moab 8.0 includes new multi-threaded scheduling routines and is now compiled with optimizations
enabled (-O). These improvements should increase scalability, efficiency, and performance for the
majority of sites. The size of the thread pool can be throttled using the THREADPOOLSIZE parameter.

Finer-grained Logging Timestamps

The timestamps in the Moab logs now include milliseconds, which can be helpful with higher LOGLEVEL
settings.

Deleting checkpoint file doesn't reset IDs

Moab now persists counters for job and reservation IDs to an external file (<moab home>/.counters),
in addition to persisting the counters to checkpoints. The new external counter file is created during
installation. On startup, Moab reads the ID counters from either or both sources and uses the maximum
of the two values that it sees as the resumption point for new IDs. This means that you can safely delete
a checkpoint file without causing your IDs to be reset.

If both the external counter file and the checkpoint file are missing, Moab refuses to start. This is a
precaution to protect the integrity of a relational database or external processes that rely on the IDs. If
you need to override this behavior, you can do so by manually creating a new external counter file that
starts IDs at an arbitrary number.

CANCELFAILEDDEPENDENCYJOBS scheduler flag

The new CANCELFAILEDDEPENDENCYJOBS scheduler flag automatically cancels dependency jobs
that will never run because of an unmet requirement. For more information, see Job Dependencies on
page 529.

Reduction in command processing time

If your system's scheduling cycle regularly takes longer than the CLIENTTIMEOUT value, you can
configure Moab to fork a copy of itself that will respond to certain information-only client commands
(checkjob, showbf, and showstart). This enables you to run intense diagnostic commands while Moab is in

Moab HPC Suite Release Notes

the middle of its scheduling process. For more information, see Reduce command processing time on
page 1242.

New --workflowjobids option formsub

A new --workflowjobids option for the msub command returns all the job IDs, including data-staging
system job IDs, in a data-staging workflow at submission time (Moab creates an internal workflow for
jobs submitted with data-staging options). For more information, see Configuring data staging with
advanced options on page 899.

The support.diag.pl script used for gathering information for Adaptive support representatives has
been deprecated with the 8.0.1 release. Use the new support-diag.py script instead. For more
information, see Diagnostic Scripts on page 689.

Moab Web Services

8.0.1

No new features.

8.0.0

PAM authentication support

Support for PAM (pluggable authentication module) has been added to MWS. PAM treats the user as if it
is local to the machine doing the authenticating, and it uses whatever the user is authenticating with,
whether it be LDAP or NIS. For information about configuring PAM with MWS, see PAM (pluggable
authentication module) configuration using mws-config.groovy on page 1383.

There is a security risk when authenticating local users through your PAM configuration. This
behavior is highly discouraged and is not supported by Adaptive Computing.

OAuth authentication support

Support for OAuth has been added to MWS. OAuth allows trusted client applications to securely delegate
authentication to MWS. Once MWS has authenticated a user by verifying the username and password in
LDAP, PAM, or NIS, MWS returns an access token to the client. The client then presents this access token
to MWS to access resources. For information about configuring PAM with MWS, see OAuth configuration
using mws-config.groovy on page 1385.

Node powermanagement plugin

The MWS power management plugin acts as a power resource manager; it monitors the power states of
the nodes in the Node Configuration File using the TORQUE pbsnodes command and a query script. The
plugin also allows you to customize the power state of each node when it should be "turned off." For
more information, see the documentation included with the plugin in Moab Web Services.

Fairshare policy added to MWS Policies object

The Moab "fairshare" policy has been added to the Policies object in MWS. With this addition, you can get
fairshare policy information and make fairshare policy modifications through the MWS API. For more

Moab HPC Suite Release Notes

4 New Features

New Features 5

information, see Policies on page 1589.

Modifiable attributes added to the MWS job resource

You can now use MWS to modify an idle job's system priority, the nodes that the job requests, and the
resources per task required for the job. For more information, see Modify job attributes on page 1540.

View and modify single credentials

You can now query a single credential in MWS. Additionally, you can modify a credential's fields and use
the change-mode parameter to modify the credential's list fields. For more information, see Credentials
on page 1484.

View and modify scheduler priorities

You can now query and modify the scheduler priorities through the Priority resource in MWS. For more
information, see Priority on page 1611.

TORQUE Resource Manager

5.0.1

Modification of the Output Location

TORQUE now allows for the modification of the output location based on the Mother superior hostname.
An environment variable ($HOSTNAME) has been added to the job's environment.

5.0.0

CPU frequency control

TORQUE can now set the CPU frequency on requested nodes for submitted jobs. The request is made
with the new cpuclock resource extension. A user can specify a desired clock frequency in megahertz, a
Linux power governor policy name, or an ACPI performance state (P-state) number. For more
information, see cpuclock on page 2238.

The qalter -l command has been updated to allow modification of the requested CPU frequency on an
already submitted job.

The pass_cpuclock server parameter was added allowing administrators to track, but not grant, the CPU
frequency request portion of a job submission. For more information, see pass_cpuclock on page 2432.

qrerun all command

When you execute the qrerun all command, you will be prompted for confirmation. TORQUE will then
place all running jobs in a queued state without contacting the MOMs. You should only use this when the
entire cluster is down and you cannot contact it.

Node power state control

TORQUE can now set the power state of a node. Depending on the hardware and software capabilities of
the node, TORQUE can set the power state to Running, Standby, Suspend, Hibernate, or Shutdown. A new

Moab HPC Suite Release Notes

-m option was added to the pbsnodes command to make this work. For more information, see -m on page
2358.

The syntax of the command is:

pbsnodes -m [running|standby|suspend|hibernate|shutdown] <space delimited list of
nodes to alter>

In order to wake a node from a low-power state, Wake-on-LAN must be supported and configured on the
node. For more information, see Changing Node Power States on page 2270.

Differences
This section contains differences in previously existing features that require a change in configuration or
routine.

l Moab Workload Manager on page 6

l Moab Web Services on page 7

l TORQUE Resource Manager on page 7

Moab Workload Manager

8.0.1

MAXPROCPERNODE Can Also Be Configured Per Node

Added capability to configure MAXPROCPERNODE per class and per node. Before, MAXPROCPERNODE
could be configured per class but it applied to all nodes. Now you can configure something like the
following:

CLASSCFG[cpu] MAXPROCPERNODE[n1,n2,n3]=20 MAXPROCPERNODE[n4,n5,n6]=10

8.0.0

Green policy scripts might need updated values

If you do string comparisons in your green scripts, you might need to convert the incoming strings from
Moab to all uppercase or lowercase.

mshow -a policy flag deprecated

The mshow -a policy flag (mshow -a --flags=policy) has been deprecated and may be removed in a
future release.

Moab versions have been condensed to one build

There is now only one Moab build to download, install, and configure. In past releases, customers have
had to choose between Moab builds that were compiled against ODBC and/or TORQUE libraries. Moab is
still compatible with ODBC and TORQUE libraries, however there is now only one package to download.

Moab HPC Suite Release Notes

6 Differences

Differences 7

Use of these libraries is enabled/disabled with the existing configuration parameters in moab.cfg (e.g.,
USEDATABASE ODBC).

CLASSCFGMAXPROCPERNODE no longer solely global

You can now specify individual nodes with the CLASSCFG MAXPROCPERNODE attribute, which limits the
number of processors a class can have on a node.

CLASSCFG[batch] MAXPROCPERNODE[n1,n2,n3]=2

The batch class is limited to 2 processors on nodes n1, n2, and n3.

Complicated workflows contained in a single VC

Jobs that are created from a workflow template are now associated with a single VC (Virtual Container).
Previously, for complex workflows, multiple VCs were created that each contained portions of the
workflow jobs.

Moab Web Services

8.0.1

Node Power States

Moab only supports node power states of "On" and "Off". The API has been updated accordingly. See
Power Management Plugin on page 1736 for details on supporting a larger set of node power states.

Reporting Plugins Are No Longer Turned On By Default

The reporting plugins (i.e., VMUtilizationReport and NodeUtilizationReport) are no longer turned on by
default during installation. They are still available for use for those wishing to enable them.

Tenancy Plugin Removed

The MWS tenancy plugin was removed in 8.0.

8.0.0

API version 1 removed

API version 1 was deprecated in 7.5.0 and has been removed from Moab Web Services in this release. It
is highly recommended that you use the most recent API version (version 3). See Requesting specific
API versions on page 1406 for more information.

TORQUE Resource Manager

5.0.1

qmgr Server Parameter "copy_on_rerun"

A new qmgr option: set server copy_on_rerun=[True|False] is available. When set to True, Torque will
copy the OU, ER files over to the user-specified directory when the qrerun command is executed (i.e a

Moab HPC Suite Release Notes

job preemption). This setting requires a pbs_server restart for the new value to take in effect. Note that
the MOMs and the pbs_server must be updated to this version before setting copy_on_rerun=True will
behave as expected.

qmgr Server Parameter "job_exclusive_on_use"

A new qmgr option: job_exclusive_on_use=[True|False] is available. When set to True, pbsnodes will
report job-exclusive anytime 1 or more processors are in use. This resolves discrepancies between Moab
and TORQUE node reports in cases where Moab is configured with a SINGLEJOB policy.

TORQUE Accounting Improvements

Two new fields were added to the accounting file for completed jobs: total_execution_slots and unique_
node_count. total_execution_slots should be 20 for a job that requests nodes=2:ppn=10. unique_node_count
should be the number of unique hosts the job occupied.

scan_for_terminated

Improved performance by moving scan_for_terminated to its own thread.

Port Using the Munge API Instead of Forking

TORQUE now uses the Munge API, rather than forking, when configured with the --enable-munge-
auth option.

pbsdsh -o Option Captures Stdeer

The pbsdsh -o option is modified to add stdeer capturing.

5.0.0

The job_stat_rate parameter has a new default and function

Before this release, pbs_server asked the mother superior of every job for an update on the job every
job_stat_rate seconds. The mother superior now sends updates on every job with its regular status, so
there is no need for pbs_server to regularly poll. Instead, this parameter sets a timeout.

Two threadpools and new default for max_threads

The max_threads parameter has a new default: The value of min_threads ((2 * the number of procs listed
in /proc/cpuinfo) + 1) * 20. In previous versions, 20 was 10.

Additionally, threadpools are now split. One-fourth of the threads are allocated for background tasks and
three-fourths of the threads are allocated for incoming requests from MOMs and through the API (client
commands, Moab, and so forth). Additionally, incoming requests no longer build up indefinitely. If a new
request comes in, pbs_server evaluates whether it is too busy to service the request. For managers, the
request is serviced as long as there are at least two threads available in the threadpool. For non-
managers, the request is serviced as long as at least 5% of the threadpool is available. When pbs_server
is too busy, it returns the error code PBSE_SERVER_BUSY with the message: "Pbs Server is currently too
busy to service this request. Please retry this request."

Moab HPC Suite Release Notes

8 Differences

Installation and Upgrade Information 9

Job status polling removed from TORQUE

Pbs_server now polls a mom for a job’s information only if it hasn’t received the information in 5
minutes. Otherwise, the information is communicated with the mom’s status information.

TORQUE no longer searches linearly for the nodes in a node list

TORQUE now recognizes when a request to run a job specifies a node list. It directly accesses those
nodes instead of searching for them linearly.

The exec_host list has one entry per node

The exec_host list has been condensed to contain one entry per node instead of one entry per execution
slot. The node entry contains a string specifying each execution slot index.

TORQUE no longer displays the value of exec_port in qstat.

The qstat -f output for CPUs has been reduced

The output of qstat -f has been condensed to reduce clutter in the CPU section.

Installation and Upgrade Information

When installing or upgrading, it is strongly recommended that administrators configure Moab
with mauth authentication with a complex key value. See Appendix E: Security on page 1195 for
more information.

Moab 8.0.x supports TORQUE 4.2.8 and later. However, TORQUE 5.0.x requires Moab 8.0.x.

Moab has been tested with the latest versions of Postgres 9.3, MySQL 5.6, and Oracle 12c.

Installing Moab HPC Suite – Basic Edition 8.0.1
Please see Requirements on page 17 and also see Preparing for installation on page 24 and Installing
Moab HPC Suite - Basic Edition on page 62 for manual or RPM-based installation instructions,
respectively.

Installing TORQUE 5.0.x on RHEL 5
TORQUE requires the download of boost version 1.36 or later header files in order to build on most
RHEL 5 installations. TORQUE 5.0.x needs the unordered_map from the boost library. This did not
become part of the boost standard until boost version 1.36. Standard RHEL 5 installations only have
boost version 1.33.1. TORQUE 5.0.x has added a configure option named --with-boost-path. This
option allows the user to be able to download a newer version of boost without the need to install boost.

You can download a new boost library from www.boost.org. Extract the tarball to a directory of your
choosing. When you are configuring TORQUE you then add the --with-boost-path=<boost_path>

Moab HPC Suite Release Notes

to the configuration line. The boost_path is the location where you unzipped the boost library. Within
the unzipped files is a directory named boost. This directory contains the .hpp files with the needed
boost classes. Once the --with-boost-path option has been added to the configuration line you can
continue to install TORQUE as per the installation guide.

This procedure is not required on RHEL 6 and later versions.

Upgrading to Moab HPC Suite – Basic Edition 8.0.1
Please see Preparing for upgrade on page 52 and Upgrading Moab HPC Suite - Basic Edition on page
80 for manual or RPM-based installation instructions, respectively.

Moab Database Schema Updates

The Moab database schema has been updated for 8.0.

Table
name New additions Changes

Nodes l CPUClock
(VARCHAR
(64))

l Column name "Partition" changed to "PartitionName". The
word "partition" became a reserved word as of MySQL 5.6

Requests l CPUClock
(VARCHAR
(64))

n/a

NodeStats l CPUClock
integer

l CPUMaxClock
integer

l CPUMinClock
integer

n/a

Reservations n/a l Column name "Partition" changed to "PartitionName". The
word "partition" became a reserved word as of MySQL 5.6

See for instructions on migrating your database schema.

Known Issues
The following are known issues in Moab HPC Suite - Basic Edition. Following each issue description is an
associated issue number in parentheses.

Moab HPC Suite Release Notes

10 Known Issues

Known Issues 11

Known issues are aggregated and grouped by the release version for which they first occurred or where
reported.

8.0.1/5.0.1

l The node collection in the moab database in MongoDB has an index on the attributes field. This
field can grow too large to index. (MOAB-7506)

o For existing installations, the following commands on the MongoDB server will fix the
problem:

$ mongo moab -u moab_user -p secret2
> db.node.dropIndex({"attributes":1})

The username and password for your database are most likely different from the above
example. Check with your database administrator.

o For new installations using this and future releases, the index is no longer created and does
not need to be dropped.

l Jobs submitted with invalid credentials are put in a held state, instead of rejected, until the
administrator can respond. The checkjob command gives administrators further information
regarding why the job is held. Blindly assuming that all held jobs should in fact be running RIGHT
NOW is not only unsafe, but circumvents intentional Moab policies and workflow. An administrator
should exercise care when resolving held jobs. (MOAB-7478)

l Some limitations exist in the way that pbsdsh can be used. Please note the following situations are
not currently supported:

o Running multiple instances of pbsdsh concurrently within a single job. (TRQ-2851)

o Launching a large number of processes in succession (causes pbdsdsh to hang). (TRQ-2890)

l If the Moab JOBNODEMATCHPOLICY is set to EXACTNODE and requirements.tasksPerNode
is used in a job submission to MWS, then Moab will double the resources requested. To avoid this
problem, use requirements.resourcesPerTask.processors.dedicated instead. (MOAB-
7424)

l BACKFILLPOLICY BESTFIT does not support multi-req jobs. Only FIRSTFIT supports multi-req jobs.
(MOAB-6824)

8.0.0/5.0.0

l Connecting Moab to MySQL via ODBC can cause Moab to slow down. You can work around this
issue by creating the tables with the old storage engine (ENGINE = MyISAM). Also note that other
factors will also affect DB performance, such as the type of DB connection (remote vs. local), the
DB server's hardware specifications, Moab's configuration for how much to write to the DB (see
REALTIMEDBOBJECTS), etc (MOAB-6316).

l Sites that used RPMs to install Moab HPC Suite will not be able to upgrade to 8.0.0 RPMs until
7.2.9 is released. The issue exists in all pre-8.0 RPMs and cannot be worked around without
uninstalling the suite. Thank you for your patience as we work to resolve these upgrade issues.
Until the issues are addressed, we suggest a fresh installation (either manual or RPM) on a

Moab HPC Suite Release Notes

http://docs.adaptivecomputing.com/suite/8-0-1/enterprise/help.htm#topics/hpcSuiteInstall/manual/1-installing/installationOverview.htm
http://docs.adaptivecomputing.com/suite/8-0-1/enterprise/help.htm#topics/hpcSuiteInstall/rpm/1-installing/installing.htm

separate machine (MOAB-7192). This issue has been resolved when upgrading from Moab HPC
Suite 7.2.9.

l Verification and validation of the Moab 8.0 integration with Oracle 12c is not yet complete (AC-
7407).

l When you submit jobs to Moab with a proxy user but no group specified via MWS, Moab uses the
root group rather than the group of the proxy user (WS-2111).

l When you submit jobs with MWS, you must set the commandFile field to the absolute path of the
job script on the MWS server. MWS must have read access to the file given in commandFile.
Submitting remote job scripts (that is, including the script as part of the JSON payload) is not
currently supported (WS-2112).

l Jobs submitted with invalid credentials are put in a held state, instead of rejected, until the
administrator can respond. The checkjob command gives administrators further information
regarding why the job is held. Blindly assuming that all held jobs should in fact be running RIGHT
NOW is not only unsafe, but circumvents intentional Moab policies and workflow. An administrator
should exercise care when resolving held jobs. (CVE-2014-5375, MOAB-7478, MOAB-7526)

l When installing or upgrading, it is strongly recommended that administrators configure Moab with
mauth authentication with a complex key value. See Appendix E: Security on page 1195 for more
information. (CVE-2014-5376, MOAB-7525, MOAB-7480)

Resolved issues
The following is a list of some key bugs fixed in Moab HPC Suite – Basic Edition. Following each issue
description is an associated issue number in parentheses.

Resolved issues are aggregated and grouped by the release version in which they were resolved.

8.0.1/5.0.1

l Submitting remote job scripts (that is, including the script as part of the JSON payload) is not
currently supported. Job scripts can now be included in the POST body when submitting jobs via
MWS. The new field is called commandScript. (WS-2112)

l Role permission updates were incorrectly applied to user permissions. This issue is fixed. (WS-
2340)

l Moab was not decrementing GRES correctly within a Cray environment. Fixed a GRES bug
found in Cray environments. (MOAB-6577)

l multireq jobs take hours to start. Fix bug where multi-req jobs were slow to start in certain
cases. (MOAB-6824)

l When using .moab.key and mauth, having the string "actor=" in an environment variable in
the job script causes mauth to fail. Fixed bug in environment variable handling in mauth. (MOAB-
6908)

Moab HPC Suite Release Notes

12 Resolved issues

Resolved issues 13

l Moab reserved extra nodes for generic resources requested in MAM. Moab no longer reserves
an extra node for MAM gres. (MOAB-6228)

l Jobs were not rejected even though they violated fairshare policy. This bug is fixed. (MOAB-
7077)

l support-diag.py does not processes backtrace information correctly. This bug is fixed. (INT-808)

l Script fails when more than one moab service is running on the same system. Updated
support-diag.py to better handle cases where more than one moab service is running
simultaneously. (INT-811)

l Moab changes task count on jobs on restart. Fixed bug around incorrect task counts on multi-req
jobs across a Moab restart in grid environment. (MOAB-7104)

l Moab was still blocking on checkjob and showres. Added showres to the list of commands
available when UIMANAGEMENTPOLICY is set to FORK. (MOAB-7233)

l ALERT log message did not end in a new line. Added a missing new line character to a log
message. (MOAB-7329)

l Reservation was not being created when some resources are available. Fixed an issue with
standing reservations that occasionally weren't created when they should be. (MOAB-7384)

l Moab XML submission not working. Fixed some API bugs preventing job submission via XML
(Moab Wire Protocol). (MOAB-7485)

l Some bugs found that caused Moab 8.0 crashes. Fixed bugs that were causing crashes.

l Issue found with sqlite 8.0.0 integration. Fixed an issue where some of the sqlite integration
scripts were not being packaged properly.

l Moab was unable to modify the hostlist of a idle job correctly. Fixed bug with modifying
hostlists on idle jobs. (MOAB-7490)

l nallocpolicy=cpuload was being ignored. Fixed bug where requested nallocpolicy was
inadvertantly getting overridden. (MOAB-7443)

l UIMANAGEMENTPOLICY caused Moab to hang. Fixed a bug where UIMANAGEMENTPOLICY
caused Moab to hang. (MOAB-7578)

l Job dependencies were not consistently working as expected. Fixed bug related to job
dependencies getting out of sync with TORQUE in some cases. (MOAB-7472)

l Performance bug found in ReportJob.groovy. Fixed scalability issue with large sample sets (e.g.,
node utilization). (WS-2273)

l Services stuck in Deploying state. Fixed bug where some services were getting stuck in Deployed
state. (WS-2293)

l Slow performance reported on large LDAP systems. Fixed bug with LDAP integration to improve
performance on large LDAP systems. (WS-2252)

l Torque job can kill processes not owned by the job owner. Fixed issue around unauthorized
termination of processes. (CVE-2014-3684, TRQ-2885)

Moab HPC Suite Release Notes

l qstat -Q <bad_queue_name> prints queue name twice. Fixed bug where giving a bad queue name
to qstat -Q results in duplicate output. (TRQ-2025)

l Mail output for qsub -m options was failing to output new lines. Fixed bug in qsub -m when
TORQUE is configured --with-sendmail. Some missing newlines were added. (TRQ-2937)

l mppnodes hostlist was being re-ordered. This bug is fixed. (TRQ-2112)

l Some tasks were incorrectly listed as 0 in qstat -a when requested specific nodes. This has
been resolved. (TRQ-2292)

l TORQUE accounting problems - jobs without accounting records. Fixed bug related to
accounting records on large systems. (TRQ-2367)

l qstat wouldn't parse anything after a bad job ID. Improved qstat behavior in cases where bad
job IDs were referenced in the command. (TRQ-2410)

l Separate headers for multiple jobs IDs provided to qstat. Fixed output format bug in cases
where multiple job IDs are passed into qstat. (TRQ-2411)

l qsub did not process arguments correctly when a submitfilter is used. Fixed bug where qsub
did not process args correctly when using a submit filter. (TRQ-2646)

l Parsing bug found when using hostlist ranges in qsub. This bug is fixed. (TRQ-2652)

l Build bug reported with MIC libraries. Fixed build bug related to newer Intel MIC libraries
installing in different locations. (TRQ-2653)

l XML job log error. Corrected mismatched <Job_Id> XML tags in the job log. (TRQ-2692)

l TORQUE was not dividing GPUS amongst NUMA nodes. Fixed problem where GPUs were not
split between NUMA nodes. You now need to specify which gpus belong to each node board in the
mom.layout file. (TRQ-2730)

A sample mom.layout file might look like

nodes=0 gpu=0
nodes=1 gpu=1

This only works if you use nvml. The nvidia-smi command is not supported.

l TORQUE was leaving behind error and out files when a job was preempted or requeued. Fixed
bug where OU files were being left in spool when job was preempted or requeued. (TRQ-2732)

l Reported cput was incorrect. Fixed bug where reported cput was incorrect. (TRQ-2759)

l pbsnodes -l offline -n unexpected error. Fixed unexpected error when running `pbsnodes -l offline
-n`. (TRQ-2760)

l max_user_queuable limit reached, however, there were no jobs in the queue. Fixed bug where
jobs rejected due to max_user_queuable limit reached, yet no jobs in the queue. (TRQ-2795)

l momctl -q clearmsg didn't seem to clear error messages permanently. Fixed bug where
`momctl -q clearmsg` didn't properly clear error messages. (TRQ-2828)

l Some bugs found that caused TORQUE core crashes. These bugs are fixed.

Moab HPC Suite Release Notes

14 Resolved issues

Resolved issues 15

l TORQUE was crashing. Fixed crashing.

l pbs_server segfault after large array deletion. Fixed segmentation fault. (TRQ-2835)

l GPU nodes where not passed to sister nodes. This bug is fixed. (TRQ-2837)

l pbs_server did not write resource_default units to serverdb file. This bug is fixed. (TRQ-2852)

l pbs_mom filling up the logs in a HA environment. Reduced verbosity in error logging in HA
environments. (TRQ-2863)

l Make trqauthd error messages more meaningful and non-repetitive. Improved trqauthd error
messages to be more meaningful and less redundant. (TRQ-2882)

l Remote job submissions were being rejected, even when host is in submit_hosts list. Fixed
problem with remote client job submission during ruserok() calls. (TRQ-2918)

l pbsdsh did not support running multiple instances concurrently. Improved pbsdsh to better
handle simultaneous use of -o and -s options. Also fixed some problems where -o output was
sometimes getting truncated. (TRQ-2890)

l TORQUE was not notifying Moab of completed jobs. Fixed bug where TORQUE was not honoring
KeepCompleted server parameter when job_nanny was set to true. (TRQ-2904)

l HOST_NAME_SUFFIX was no longer adding suffix to job names. This bug is fixed. (TRQ-2956)

l Deadlock when running 'qdel -p' as non-root user. Fixed deadlock issue. (TRQ-2919)

8.0.0/5.0.0

l Moab attempted to power off drained nodes. Moab now skips drained nodes when it powers off
nodes. (MOAB-6036)

l Moab Authentication Bypass issue. This has been fixed. (CVE-2014-5300, MOAB-7100, MOAB-7524)

l In environments where a license RM was configured and created a global node, Moab would
try to power the global node on and off. Now Moab does not allow the global node to be
powered down as part of a pool of eligible nodes. (MOAB-6608)

l The mdiag -n command did not return the correct amount of available memory on the node.
Running mdiag -n once again returns the correct amount of available memory. (DOC-6708)

l Moab did not honor features configured in the DEFAULTNODEFEATURES parameter. The
DEFFAULTNODEFEATURES parameters once again works as expected.

l When Moab would rerun a job after the job migrated to another partition, it attempted the
rerun on the wrong partition. Moab reruns migrated jobs in the correct partition. (MOAB-6734)

l When using a JOBMIGRATEPOLICY of IMMEDIATE, Moab did not call the CREATEURL Native
Accounting Manager Interface script. Moab now calls the CREATEURL NAMI script. (MOAB-6867)

l Running msub and qsub in an interactive environment produced different results. Running
msub -l no longer hangs in an interactive environment. (MOAB-7165)

l Moab ignored requirements set using the "hostlist" parameter. Moab now honors hostlist
requirements. (MOAB-6475)

Moab HPC Suite Release Notes

l When the queue contained more than 50,000 jobs, TORQUE slowed down substantially.
TORQUE no longer slows down with a large number of jobs in the queue. (TRQ-2345)

l When pbs_server had a high load, it would get stuck polling. pbs_server no longer gets stuck
polling under these conditions. (TRQ-2620)

l When a job with a dependent job was deleted with qdel, TORQUE did not clean up the
dependent job. TORQUE now removes the dependent job when you delete its parent. (TRQ-2621)

l When a lot of jobs were run at once, one job would get stuck in an exiting state. This error no
longer occurs. (TRQ-2622)

l The afterok dependency did not work as expected. afterok now works correctly. (TRQ-2626)

l When running a large amount of jobs, the server would crash during job recycle. The crash no
longer occurs. (TRQ-2628)

l pbsdsh requires FQDN even if other elements don't. pbsdsh no longer requires FQDN. (TRQ-
2632)

l A deadlock would occur on job_save failure. This error no longer occurs. (TRQ-2645)

l Asynchronous job starts queued in TORQUE but not yet serviced caused Moab to reschedule
jobs that would eventually run. A new job sub-state in TORQUE prevents this from occurring.
(TRQ-2715)

Moab HPC Suite Release Notes

16 Resolved issues

Requirements 17

Installation and Configuration

Requirements

It is highly recommended that you first perform installations and upgrades in a test environment.
Standard installation and upgrade procedures and use cases are tested prior to release.
However, due to the wide range of possible configurations and customizations, it is important to
exercise caution when deploying new versions of software into your production environments. This
is especially true when the workload has vital bearing on your organization's day-to-day
operations. We recommend that you test in an environment that mirrors your production
environment's configuration, workflow and load as closely as possible. Please contact your
Adaptive Computing account manager for suggestions and options for installing / upgrading to
newer versions.

There are many different ways to install and configure Moab HPC Suite. Each environment has its own
set of requirements and preferences. The following installation instructions are intended to help an
administrator understand how each of the Moab HPC Suite components interact and how to install and
configure each one. Two approaches have been documented: the “Manual installation” and the “RPM
installation”. Only one approach is required for installation; do not try to follow both sets of instructions
on a single system.

The diagram below provides a general topology of the Moab HPC Suite.

Please note the following:

l Moab Accounting Manager is available only with the Moab HPC Enterprise Suite.

l Moab 8.0.0 and later supports TORQUE 4.2.8 and later. However, TORQUE 5.0.0 and later requires
Moab8.0.0 and later.

l Smaller environments may elect to consolidate the TORQUE Head Node with the Moab Head Node,
including PBS Server in the list of components installed on the Moab Head Node.

l The Requirements section gives further clarification regarding what each component requires.

l Although Moab Workload Manager and Moab Accounting Manager may share the same database
instance, it is not a requirement. Two database instances may be used, one for each component.
See the Requirements section for more information about what databases are supported.

l The Message Queue component is fulfilled by ZeroMQ™. The libraries are provided with the
components that use the message queue and are enabled via configuration; no special installation
is necessary.

Where to Start
1. Begin by reading the Requirements section below. Whether installing manually or with RPMs, it is

important to be familiar with the hardware and software requirements.

2. Decide whether you will perform a manual installation or an RPM installation.

Installation and Configuration

18 Requirements

http://zeromq.org/

Requirements 19

The manual installation provides advantages to administrators who want to pick and choose what
components to install and administrators who want non-standard configure options. The RPM
installation provides advantages to administrators who want a fairly standard installation.

Code samples have been provided for convenience. Some code samples provide sample
passwords (i.e. “changeme!”). We strongly recommend that you do not use these passwords
during installation, as using the documented passwords could introduce unnecessary security
vulnerabilities into your system.

Then follow the appropriate installation instructions.

3. The “Additional Configuration” section in both the manual and the RPM installation instructions
provide additional information and instructions for optional, but recommended configurations (i.e.
Configuring SSL in Tomcat, etc.).

4. Refer to Troubleshooting on page 87 for assistance in addressing common problems during
installation and configuration.

5. Refer to Component documentation on page 95 for links to additional administrator and reference
guides.

Requirements

Moab HPC Suite

Hardware Requirements

The following are the minimum hardware requirements for an average environment. Larger
environments should consider allocating more resources and/or spreading components across multiple
servers. Please consult the table below for recommendations:

Installation and Configuration

Type
of
Compute
Nodes

Jobs/
week

Minimum
Requirements
(combine
TORQUE &
Moab head
nodes on one
server)

Recommended Requirements (targeting
minimum number of servers)

Proof of
Concept
/ Small
Demo

50 <1k Moab+TORQUE
Head Node:

l 4
Intel/AMD
x86-64
cores

l At least 8
GB RAM

l At least
100 GB
dedicated
disk space

Same as minimum

Medium 500 <100k Moab+TORQUE
Head Node:

l 8
Intel/AMD
x86-64
cores

l At least 16
GB RAM

l At least
512 GB
dedicated
disk space

Moab+TORQUE Head Node:
l 16 Intel/AMD x86-64 cores
l At least 32 GB RAM
l At least 1 TB dedicated disk space

Installation and Configuration

20 Requirements

Requirements 21

Type
of
Compute
Nodes

Jobs/
week

Minimum
Requirements
(combine
TORQUE &
Moab head
nodes on one
server)

Recommended Requirements (targeting
minimum number of servers)

Medium
with High
Throughput
or Larger

>500 >100k Moab Head
Node:

l 8
Intel/AMD
x86-64
cores

l At least 16
GB RAM

l At least
512 GB
dedicated
disk space

TORQUE Head
Node:

l 8
Intel/AMD
x86-64
cores

l At least 16
GB RAM

l At least
512 GB
dedicated
disk space

We recommend separating components onto
separate servers where possible (some
components should not be separated; see
Requirements below). Specific requirements
around the intended configuration and use of
Moab HPC Suite will help determine suite
topology and resource allocation.

Please note the following:

l All requirements above (minimum and recommended) target a minimum number of management
servers. Administrators are encouraged to separate the TORQUE and Moab head nodes where
possible for better results, especially when High Throughput is enabled.

l Although many factors may have an impact on performance (network bandwidth, intended use and
configuration, etc.), we consider High Throughput as something that makes a significant enough
difference between minimum and recommended hardware requirements to merit mention in the
table above.

l Moab and TORQUE are both multi-threaded and perform better with more processors.

l Regarding disk space, consideration should be given to requirements related to log files, log
depth, number of jobs/nodes/reservations (more objects impact database journal size), average
number of events generated (more events take more space), etc.

Installation and Configuration

Software Requirements

The installation documentation provides more details regarding how to install and configure the
following software requirements. The information provided below is for your information only. No action
is necessary.

Software requirements are listed per-component rather than suite-wide to make it easier for
administrators who wish to install components on separate servers.

TORQUE

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

CentOS 5.9, Red Hat 5.9 and Scientific Linux 5.9 are supported, largely to continue support for
clusters where the compute nodes operating systems cannot be upgraded. We recommend that the
TORQUE head node run on the supported operating systems listed above.

Software Requirements

l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l Tcl/Tk version 8 or later if you plan to build the GUI portion of TORQUE or use a Tcl based
scheduler

l If you use cpusets, libhwloc 1.1 or later is required (for TORQUE 4.0.0 and later)

If you build TORQUE from source (i.e. clone from github), the following additional software is required:

l gcc

l gcc-c++

l A posix compatible version of make

l libtool 1.5.22

l boost-devel 1.36.0

Moab Workload Manager

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

Installation and Configuration

22 Requirements

Requirements 23

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

Software Requirements

l libcurl

l Perl 5.8.8 or later

l perl-cpan (package name may vary)

l libxml2-devel (package name may vary)

l (Optional) MySQL, PostgreSQL, or Oracle with ODBC driver (see Database Configuration on page
772 for details)

Supported Resource Managers

l TORQUE 5.0.1

l SLURM

Moab Accounting Manager

MAM is commonly installed on the same host as Moab Workload Manager; however, in some cases you
might obtain better performance by installing them on separate hosts.

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

Software Requirements

l gcc

l perl-suidperl

l httpd

l mod_ssl

l rrdtool

l Moab Workload Manager 7.2 or later

l Perl modules

Depends On (not necessarily on the same server)

MAM uses an RDBMS as a back end.

l PostgreSQL 7.2 or later

Installation and Configuration

http://curl.haxx.se/libcurl/

Moab Web Services

MWS should be installed on the same host as Moab® Workload Manager.

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

Software Requirements

l Moab® Workload Manager 8.0.1

l Apache Tomcat™ 6

l Oracle® Java® 7 Runtime Environment

Oracle Java 7 Runtime Environment is the recommended Java environment, but Oracle Java
6 is also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for
Java, and so on cannot run Moab Web Services.

l MongoDB® 2.4.x

Depends On (not necessarily on the same server)

l OpenLDAP or PAM (see Configuring Moab Web Services on page 1373)

Manual installation

Installation

Preparing for installation
The installation process of the Moab HPC Suite includes installing the separate components in the suite.
This guide contains detailed instructions for installing each component.

Many individual components have dependencies on other components (see Requirements on page
17). However, if you do not require a certain component (Moab Web Services, for example), you do
not have to install it.

The install instructions for each component include information about system requirements and
dependencies. Some include prerequisite instructions that you will need to complete before you begin the
install. Please read this information carefully, and make sure you have installed all the dependencies and
packages that are necessary in order to avoid errors during the Moab HPC Suite install process.

Installation and Configuration

24 Manual installation

Manual installation 25

Because many system-level files and directories are accessed during the installation, the
instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same
commands will work for a non-root user with the sudo command.

To install the Moab HPC Suite, install the packages in the following order:

1. Install the TORQUE and Moab Workload Manager dependencies (see the dependency installation
instructions below).

2. Install TORQUE (see Installing TORQUE on page 2193).

3. Install Moab Workload Manager (see Installing Moab Workload Manager on page 34).

4. Install Moab Web Services (see Installing Moab Web Services on page 38).

Install TORQUE and Moab Workload Manager dependencies

You must install the following dependencies in order to use TORQUE and Moab Workload Manager:

l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l boost-devel package (package name may vary)

l ANSI C compiler. The native C compiler is recommended if it is ANSI; otherwise use gcc.

Use the following commands to install the required dependencies and packages.

l RHEL, CentOS, and Scientific Linux:

[root]# yum install make perl-CPAN libxml2-devel openssl-devel boost-devel gcc
gcc-c++

l SLES:

Before installing the dependencies, do the following:

1. Verify that you have a licensed installation of SLES 11 SP3.

2. Download the SuSE Linux Enterprise 11 Software Development Kit e-Media Kit and add the
ISO to the repository.

[root]# zypper install make libxml2-devel libopenssl-devel boost-devel gcc gcc-
c++ git-core automake

Install Java

You must install the 64-bit RPM version of Oracle® Java® 7 Runtime Environment if you are installing
Moab Web Services.

Installation and Configuration

http://download.novell.com/Download?buildid=fQKpDcAhPVY&ref=suse

Oracle Java 7 Runtime Environment is the recommended Java environment, but Oracle Java 6 is
also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and
so on cannot run Moab Web Services.

Do the following:

l Download the Linux x64 RPM version of Oracle Java SE 7 JRE. (Go to the Oracle Java 7 download
page, copy the URL to the Linux x64 RPM version, then run the following command.)

[root]# wget <URL> -O jre-7-linux-x64.rpm

To verify that the download was successful, run the following on the RPM before installation:

[root]# rpm -qip jre-7-linux-x64.rpm

l Run the following to install Java 7:

[root]# rpm -Uh jre-7-linux-x64.rpm

Install Tomcat

You must install Tomcat if you are installing Moab Web Services.

l RHEL, CentOS, and Scientific Linux:

[root]# yum install tomcat6

l SLES:

[root]# zypper ar --refresh -r
http://download.opensuse.org/evergreen/11.4/openSUSE:Evergreen:11.4.repo
[root]# zypper in tomcat6
[root]# zypper mr -d openSUSE_Evergreen_11.4

Opening ports

A few ports need to be available through your firewall so components of the suite can communicate with
each other. Some features of some components might need additional ports configured. The individual
component documentation indicates when additional ports are needed.

The ports required for basic suite functionality are:

l 7112: Default, configurable port needed for Moab Accounting Manager client-server
communication

l 443: Needed for Moab Accounting Manager web GUI (https)

l 8080: Needed for Moab Web Services web portal (http)

Installation and Configuration

26 Manual installation

http://java.com/en/download/linux_manual.jsp
http://java.com/en/download/linux_manual.jsp

Manual installation 27

To open ports in your firewall

l Use iptables for Red Hat-based distributions:

[root]# iptables-save > /tmp/iptables.mod
[root]# vi /tmp/iptables.mod

Add the following lines immediately *before* the line matching
"-A INPUT -j REJECT --reject-with icmp-host-prohibited"
-A INPUT -p tcp --dport 7112 -j ACCEPT
-A INPUT -p tcp --dport 443 -j ACCEPT
-A INPUT -p tcp --dport 8080 -j ACCEPT

[root]# iptables-restore < /tmp/iptables.mod
[root]# service iptables save

l Use SuSEfirewall2 for SuSE-based distributions:

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="443 7112 8080"

[root]# service SuSEfirewall2_setup restart

Install MongoDB

You must install MongoDB if you are installing Moab Web Services.

To install and enable MongoDB

1. Install MongoDB.

l RHEL and CentOS, and Scientific Linux:

Create a file called /etc/yum.repos.d/10gen.repo and add the following lines.

[10gen]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64
gpgcheck=0
enabled=1

Install mongo-10gen-server.

[root]# yum install mongo-10gen-server --exclude mongodb-org,mongodb-org-server

l SLES:

[root]# zypper ar
http://download.opensuse.org/repositories/server:/database/SLE_11_SP3
OpenSuseDatabase
[root]# zypper install mongodb

Installation and Configuration

2. Start MongoDB.

l RHEL and CentOS, and Scientific Linux:

[root]# chkconfig mongod on
[root]# service mongod start

l SLES:

[root]# chkconfig mongodb on
[root]# service mongodb start

There may be a short delay (approximately 3 minutes) for Mongo to start the first time.

If you see errors while running the chkconfig command, make sure that /sbin is in your
PATH environment variable, then run chkconfig again.

export PATH=/sbin:$PATH

3. Prepare the MongoDB database by doing the following:

a. Add the required MongoDB users.

The passwords used below (secret1, secret2, and secret3) are examples. Choose your
own passwords for these users.

[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth ("admin_user", "secret1");

> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);

> use mws;
> db.addUser("mws_user", "secret3");
> exit

Because the admin_user has read and write rights to the admin database, it also has
read and write rights to all other databases. See Control Access to MongoDB Instances with
Authentication for more information.

b. Enable authentication in MongoDB.

l RHEL and CentOS, and Scientific Linux:

[root]# vi /etc/mongod.conf

auth = true

[root]# service mongod restart

Installation and Configuration

28 Manual installation

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/

Manual installation 29

l SLES:

[root]# vi /etc/mongodb.conf

auth = true

[root]# service mongodb restart

On SLES machines, auth = true is enabled by default.

Install PostgreSQL

To install PostreSQL

1. Install and initialize PostgreSQL.

CentOS, RHEL, and Scientific Linux

[root]# yum install postgresql-server
[root]# service postgresql initdb

SLES

[root]# zypper install postgresql-server
[root]# service postgresql start

2. Configure trusted connections.

Edit or add a "host" line in the pg_hba.conf file for the interface from which the server(s) (for
example, Moab Workload Manager and/or Moab Accounting Manager) will be connecting to the
database and ensure that it specifies a secure password-based authentication method (for
example, md5).

[root]# vi /var/lib/pgsql/data/pg_hba.conf

IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

3. Configure PostgreSQL to accept connections from your host.

[root]# vi /var/lib/pgsql/data/postgresql.conf

Uncomment the listen addresses line in the configuration:

listen_addresses = 'localhost' # what IP address(es) to listen on;

4. Start or restart the database.

[root]# chkconfig postgresql on
[root]# service postgresql restart

Installation and Configuration

Related topics

l Welcome on page xxi

Installing TORQUE
These instructions describe how to install and start TORQUE.

Requirements

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

CentOS 5.9, Red Hat 5.9 and Scientific Linux 5.9 are supported, largely to continue support for
clusters where the compute nodes operating systems cannot be upgraded. We recommend that
the TORQUE head node run on the supported operating systems listed above.

Software Requirements

l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l Tcl/Tk version 8 or later if you plan to build the GUI portion of TORQUE or use a Tcl based
scheduler

l If you use cpusets, libhwloc 1.1 or later is required (for TORQUE 4.0.0 and later)

If you build TORQUE from source (i.e. clone from github), the following additional software is
required:

l gcc

l gcc-c++

l A posix compatible version of make

l libtool 1.5.22

l boost-devel 1.36.0

Installation and Configuration

30 Manual installation

Manual installation 31

Prerequisites

l TORQUE requires certain ports to be open for essential communication:

o For client communication to pbs_server, all privileged ports must be open (ports
under 1024).

o For pbs_server communication to pbs_mom, the default port is 15003.

o For pbs_mom to pbs_server, the default port is 15001.

For more information on how to configure the ports that TORQUE uses for communication, see
Configuring Ports on page 2204.

Important: If you intend to use TORQUE 5.0.x with Moab, you must run Moab version
8.0.x or later. TORQUE 5.0.x will not work with versions earlier than Moab 8.0.x.

l Make sure your host (with the correct IP address) is in your /etc/hosts file.

l The libxml2-devel, openssl-devel, and boost-devel packages must be installed
(These packages should already be installed from following the steps in the Preparing for
installation on page 24).

RHEL 6.5 and CentOS 6.5, and Scientific Linux 6.5:

[root]# yum install openssl-devel libtool-devel libxml2-devel boost-devel gcc
gcc-c++

SLES

[root]# zypper install openssl-devel libtool-devel libxml2-devel boost-devel
gcc gcc-c++

RHEL 5 and CentOS 5, and Scientific Linux 5:

[root]# yum install openssl-devel libtool-devel libxml2-devel gcc gcc-c++

Important: TORQUE requires Boost version 1.36.0 or greater. The boost-devel package
provided with RHEL 5, CentOS 5, and Scientific Linux 5 is older than this requirement. A
new option, --with-boost-path has been added to configure (see Customizing the Install
on page 2207 in the TORQUE Administrator Guide for more information). This allows you
to point TORQUE to a specific version of boost during make. One way to
compileTORQUE without installing Boost is to simply download the Boost version you
plan to use from: http://www.boost.org/users/history/. Next, untar Boost—you do not
need to build it or install it. When you run TORQUE configure, use the --with-boost-path
option pointed to the extracted Boost directory.

To install TORQUE

1. Switch the user to root.

[user]$ su -

Installation and Configuration

http://www.boost.org/users/history/

2. Download the latest 5.0.1 build from the Adaptive Computing website. It can also be downloaded via
command line (github method or the tarball distribution).

l Clone the source from github:

If you clone the source from github, the libtool package must be installed.

RHEL 6 and Scientific Linux 6:
[root]# yum install git libtool

SLES:
[root]# zypper install libtool

[root]# git clone https://github.com/adaptivecomputing/torque.git -b 5.0.1 5.0.1
[root]# cd 5.0.1
[root]# ./autogen.sh

If you are using CentOS 5, use these instructions for installing libtool:

[root]# cd /tmp
[root]# wget http://ftpmirror.gnu.org/libtool/libtool-2.4.2.tar.gz
[root]# tar -xzvf libtool-2.4.2.tar.gz
[root]# cd libtool-2.4.2
[root]# ./configure --prefix=/usr
[root]# make
[root]# make install
[root]# cd /tmp
[root]# git clone https://github.com/adaptivecomputing/torque.git -b
5.0.1 5.0.1
[root]# cd 5.0.1
[root]# ./autogen.sh

l Get the tarball source distribution:

[root]# wget http://www.adaptivecomputing.com/download/torque/torque-
5.0.1.tar.gz -O torque-5.0.1.tar.gz

[root]# tar -xzvf torque-5.0.1.tar.gz
[root]# cd torque-5.0.1/

3. Run each of the following commands in order.

[root]# ./configure
[root]# make
[root]# make install

For information on what options are available to customize the ./configure command, see
Customizing the Install on page 2207.

4. Configure the trqauthd daemon to start automatically at system boot.

Installation and Configuration

32 Manual installation

http://www.adaptivecomputing.com/support/download-center/

Manual installation 33

* If RHEL distribution, do the following *
[root]# cp contrib/init.d/trqauthd /etc/init.d/
[root]# chkconfig --add trqauthd
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
[root]# service trqauthd start

* If SLES distribution, do the following *
[root]# cp contrib/init.d/suse.trqauthd /etc/init.d/trqauthd
[root]# chkconfig --add trqauthd
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
[root]# service trqauthd start

5. The make packages command can be used to create self-extracting packages that can be copied and
executed on your nodes. For information on creating packages and deploying them, see Compute
Nodes on page 2198.

You will also want to scp the init.d scripts to the compute nodes and install them there.

6. Verify that the /var/spool/torque/server_name file exists and contains the correct name of
the server.

[root]# echo <pbs_server's_hostname> > /var/spool/torque/server_name

7. By default, TORQUE installs all binary files to /usr/local/bin and /usr/local/sbin. Make
sure the path environment variable includes these directories for both the installation user and the
root user.

[root]# export PATH=/usr/local/bin/:/usr/local/sbin/:$PATH

8. Initialize serverdb by executing the torque.setup script.

[root]# ./torque.setup root

9. Add nodes to the /var/spool/torque/server_priv/nodes file. For information on syntax and
options for specifying compute nodes, see Specifying Compute Nodes on page 2202.

10. Configure the MOMs if necessary (see Configuring TORQUE on Compute Nodes on page 2203 in the
TORQUE Administrator Guide).

11. Configure pbs_server and pbs_mom to start automatically at system boot, and then start their
daemons.

Installation and Configuration

* If RHEL distribution, do the following *
[root]# cp contrib/init.d/pbs_server contrib/init.d/pbs_mom /etc/init.d
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom
[root]# service pbs_server restart
[root]# service pbs_mom start

* If SLES distribution, do the following *
[root]# cp contrib/init.d/suse.pbs_server /etc/init.d/pbs_server
[root]# cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom
[root]# service pbs_server restart
[root]# service pbs_mom start

Related topics

l Preparing for installation on page 24
l Installing Moab Workload Manager on page 34
l Component documentation on page 95

Installing Moab Workload Manager
These instructions describe how to install and start Moab Workload Manager (Moab).

Dependencies and packages installation

Use the following commands to install the required Moab Workload Manager dependencies and
packages (listed in the Installing Moab Workload Manager section above).

RHEL , CentOS, and Scientific Linux:

[root]# yum update
[root]# yum install make libcurl perl-CPAN libxml2-devel

SLES:

[root]# zypper update
[root]# zypper install make curl libxml2-devel

Optional: To build a custom RPM

1. Install rpm-build.

[root]# yum install rpm-build

2. Download the latest Moab build (moab-<version>-<OS>.tar.gz) from the Adaptive Computing
website.

The variable marked <version> is the desired version of the suite; for example, 8.0-2014061017-
8f96ac8d would be Moab 8.0 revision 2014061017 at changeset 8f96ac8d. The variable marked
<OS> indicates which OS the build was designed for.

3. Untar the downloaded package.

Installation and Configuration

34 Manual installation

http://www.adaptivecomputing.com/support/download-center/

Manual installation 35

4. Change directories into the untarred directory.

5. Edit the ./moab.spec file for RPM customization.

6. Run ./rpm-build.

7. Locate the custom RPM in rpm/RPMS/x86_64.

To install Moab Workload Manager

1. Download the latest Moab build (moab-<version>-<OS>.tar.gz) from the Adaptive Computing
website.

The variable marked <version> is the desired version of the suite; for example, 8.0-2014061017-
8f96ac8d would be Moab 8.0 revision 2014061017 at changeset 8f96ac8d. The variable marked
<OS> indicates which OS the build was designed for.

2. As the root user, run each of the following commands in order.

[root]# tar xzvf moab-<version>-<OS>.tar.gz
[root]# cd moab-<version>-<OS>

3. Configure Moab. For a complete list of ./configure options, use ./configure --help or refer
to Moab Workload Manager configuration options on page 49 for a list of commonly used options.

It is strongly recommended that you configure Moab with the --with-init and --with-profile
options. The --with-profile option makes it easier to execute Moab commands (see step 8). The
--with-init option allows Moab to automatically start at OS startup (see step 11).

[root]# ./configure <options>

4. (Only if you are using green computing, or if you are using a resource manager other than TORQUE)
Run the make perldeps command to install the necessary perl modules using CPAN. When first
running CPAN, you will be asked for configuration information. It is recommended that you choose an
automatic configuration. You will be prompted to provide input during module installation; running
the make perldeps command with a script is not recommended.

[root]# make perldeps

5. Install Moab.

[root]# make install

6. (ONLY if installing on non-RHEL distributions)

Copy the appropriate init.d file, set the permissions on it, and configure Moab to start
automatically at system boot.

* If SLES distribution, do the following *
[root]# cp OS/SLES/etc/init.d/moab /etc/init.d/moab

[root]# chmod 755 /etc/init.d/moab
[root]# chkconfig --add moab

7. Modify the Moab configuration file.

Installation and Configuration

http://www.adaptivecomputing.com/support/download-center/

[root]# vi /opt/moab/etc/moab.cfg

Do the following:

a. Verify that SUBMITCMD is set up for your TORQUE resource manager and that it points to a valid
qsub executable. For example:

RMCFG[torque] SUBMITCMD=/usr/local/bin/qsub

If you use a SLURM resource manager, see Moab-SLURM Integration Guide for configuration
information. If you use a NATIVE resource manager, see Managing Resources Directly with the
Native Interface for configuration information.

b. ONLY if you are using Moab Web Services, add tomcat to the list of administrator USERS. For
example:

ADMINCFG[1] USERS=root,tomcat

8. If you configured with the ./configure --with-profile option, source the following file to add the Moab
executable directories to your current shell $PATH environment.

[root]# . /etc/profile.d/moab.sh

9. Copy your license file into the same directory as moab.cfg (/opt/moab/etc/ by default). For
example:

[root]# cp moab.lic $MOABHOMEDIR/etc/moab.lic

To verify the current status of your license, use moab --about.

Moab checks the status of the license every day just after midnight. At 60 and 45 days before, and
daily from 30 days before license expiration to and including the license expiration date, Moab sends
an e-mail to all level 1 administrators informing them of the pending Moab license expiration. A log
record is also made of the upcoming expiration event. For the notifications to occur correctly, you
must enable administrator email notification (see "Notifying Administrators of Failures on page
684" in the Moab Workload Manager Administrator Guide) and moab.cfg must contain email
addresses for level 1 administrators. For example:

ADMINCFG[1] USERS=u1,u2,u3[,...]

USERCFG[u1] EMAILADDRESS=u1@company.com
USERCFG[u2] EMAILADDRESS=u2@company.com
USERCFG[u3] EMAILADDRESS=u3@company.com

MAILPROGRAM DEFAULT

Moab will not run without a license. For information about obtaining a trial license, please
contact Adaptive Computing.

10. Start Moab.

[root]# chkconfig moab on
[root]# service moab start

Installation and Configuration

36 Manual installation

mailto:sales@adaptivecomputing.com?subject=Moab Trial License

Manual installation 37

11. Submit a sleep job as a non-root user and verify the job is running.

[root]# su - user
[user]$ echo sleep 150 | msub
[user]$ showq
[user]$ exit

12. Connecting Moab to MongoDB

If you will be installing Moab Web Services, connect Moab to MongoDB using the following
instructions:

The USEDATABASE parameter is unrelated to the MongoDB configuration.

a. Set the MONGOSERVER parameter in /opt/moab/etc/moab.cfg to the MongoDB server
hostname. Use localhost as the hostname if Moab and MongoDB are hosted on the same
server.

MONGOSERVER <host>[:<port>]

If your MONGOSERVER host is set to anything other than localhost, edit the
/etc/mongod.conf file on the MongoDB server host and either comment out any bind_ip
parameter or set it to the correct IP address:

Listen to local interface only. Comment out to listen on all interfaces.
#bind_ip=127.0.0.1

b. In the /opt/moab/etc/moab-private.cfg file, set the MONGOUSER and
MONGOPASSWORD parameters to the MongoDB moab_user credentials you set (for details,
see Install MongoDB on page 27).

MONGOUSER moab_user
MONGOPASSWORD secret2

c. Verify that Moab is able to connect to MongoDB.

[root]# service moab restart
[root]# mdiag -S
...
Mongo connection (localhost) is up (credentials are set)
...

13. Securing communication using secret keys

a. (required) Moab and MWS use Message Authentication Codes (MAC) to ensure messages have
not been altered or corrupted in transit. Generate a key and store the result in
/opt/moab/etc/.moab.key:

[root]# service moab stop
[root]# dd if=/dev/urandom count=18 bs=1 2>/dev/null | base64 >
/opt/moab/etc/.moab.key
[root]# chown root:root /opt/moab/etc/.moab.key
[root]# chmod 400 /opt/moab/etc/.moab.key
[root]# service moab start

Installation and Configuration

The key you specify in the .moab.key file is the same key you must also specify in the
moab.secretKey property when installing and configuring MWS (see Installing Moab Web
Services on page 38).

b. (optional) Moab supports message queue security using AES. This feature requires a Base64-
encoded 16-byte (128-bit) shared secret. Generate a key and append the result to
/opt/moab/etc/moab-private.cfg:

[root]# service moab stop
[root]# echo "MESSAGEQUEUESECRETKEY $(dd if=/dev/urandom count=16 bs=1
2>/dev/null | base64)" >> /opt/moab/etc/moab-private.cfg
[root]# service moab start

The key you specify in the moab-private.cfg file is the same key you must also specify in the
moab.messageQueue.secretKey property when installing and configuring MWS (see Installing
Moab Web Services).

If MWS is configured to encrypt the message queue and Moab is not (or vice versa),
then MWS will ignore the messsages from Moab. Furthermore, all attempts to access
the MWS service resource will fail.

c. (optional) Verify that encryption is on for the ZeroMQ connection.

[root]# mdiag -S|grep 'ZeroMQ MWS'
ZeroMQ MWS connection is bound on port 5570 (encryption is on)

Related topics

l Preparing for installation on page 24
l Installing TORQUE on page 2193
l Component documentation on page 95

Installing Moab Web Services
These instructions describe how to install Moab Web Services (MWS).

To install Moab Web Services

You must deploy Moab Web Services on the same server as Moab Workload Manager.

1. Verify Moab is installed and configured as desired (for details, see Installing Moab Workload
Manager).

2. Start Moab.

[root]# service moab start

3. Create the MWS home directory and subdirectories (for more information, see the "Configuration on
page 1750" section of the Moab Web Services Reference Guide).

Installation and Configuration

38 Manual installation

Manual installation 39

The default location for the MWS home directory is /opt/mws. These instructions assume the
default location.

Here is a sample script for this setup:

[root]# mkdir -p \
/opt/mws/etc/mws.d \
/opt/mws/hooks \
/opt/mws/log \
/opt/mws/plugins \
/opt/mws/spool/hooks \
/opt/mws/utils

[root]# chown -R tomcat:tomcat /opt/mws # Depending on your OS, the Tomcat username
might be tomcat6.
[root]# chmod -R 555 /opt/mws
[root]# chmod u+w \

/opt/mws/log \
/opt/mws/plugins \
/opt/mws/spool \
/opt/mws/spool/hooks \
/opt/mws/utils

4. Download the latest MWS build (mws-<version>.tar.gz) from the Adaptive Computing website.

5. Extract the contents of the MWS download tarball into a temporary directory. For example:

[root]# mkdir /tmp/mws-install
[root]# cd /tmp/mws-install
[root]# tar xvzf $HOME/Downloads/mws-8.0.1.tar.gz

6. Copy the extracted utility files to the utility directory created above and give the tomcat user
ownership of the directory.

[root]# cd /tmp/mws-install/mws-8.0.1/utils
[root]# cp * /opt/mws/utils
[root]# chown tomcat:tomcat /opt/mws/utils/*

7. Set up the MWS configuration files. In the extracted directory are several configuration files.

a. Copy mws-config.groovy to /opt/mws/etc.

[root]# cd /tmp/mws-install/mws-8.0
[root]# cp mws-config.groovy /opt/mws/etc

b. Copy the appropriate suite-specific file to /opt/mws/etc/mws.d. Pick from the files matching
filename mws-config-*.groovy in /tmp/mws-install/mws-8.0.

[root]# cp mws-config-<your suite choice>.groovy /opt/mws/etc/mws.d

c. Give the Tomcat user read access to /opt/mws/etc/mws-config.groovy and
/opt/mws/etc/mws.d/mws-config-*.groovy.

Installation and Configuration

http://www.adaptivecomputing.com/support/download-center/

[root]# chown tomcat:tomcat /opt/mws/etc/mws-config.groovy
/opt/mws/etc/mws.d/mws-config-hpc.groovy
[root]# chmod 400 /opt/mws/etc/mws-config.groovy /opt/mws/etc/mws.d/mws-config-
hpc.groovy

d. In the /opt/mws/etc/mws-config.groovy file, change these settings:

l moab.secretKey: Must match the Moab secret key you generated earlier (contained in
/opt/moab/etc/.moab.key).

l auth.defaultUser.username: Any value you like, or leave as is.

l auth.defaultUser.password: Any value you like, but choose a strong password.

l moab.messageQueue.secretKey: Add this property to configure the message queue security
key in MWS.

The key you specify must be encoded in Base64, and must match exactly the key
specified in the MESSAGEQUEUESECRETKEY when installing Moab Workload Manager
(see Installing Moab Workload Manager on page 34).

Important: If MWS is configured to encrypt the message queue and Moab is not (or vice
versa) then the messages from Moab will be ignored. Furthermore, all attempts to
access the MWS service resource will fail.

[root]# vi /opt/mws/etc/mws-config.groovy

// Replace <ENTER-KEY-HERE> with the contents of /opt/moab/etc/.moab.key.

moab.secretKey = "<ENTER-KEY-HERE>"
moab.server = "localhost"
moab.port = 42559

// Replace <ENTER-KEY-HERE> with the value of MESSAGEQUEUESECRETKEY in
/opt/moab/etc/moab-private.cfg.

moab.messageQueue.secretKey = "<ENTER-KEY-HERE>"

// Change these to be whatever you like.

auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"

If you do not change auth.defaultUser.password, your MWS will not be secure (because
anyone reading these instructions would be able to log into your MWS). Here are some
tips for choosing a good password.

e. Do one of the following:

Installation and Configuration

40 Manual installation

http://en.wikipedia.org/wiki/Base64
http://www.us-cert.gov/cas/tips/ST04-002.html

Manual installation 41

You can configure only one authentication method in mws-config.groovy—LDAP or
PAM, but not both. If you have configured both LDAP and PAM, MWS defaults to using
LDAP.

If you need multiple authentication methods, you must add them to your local PAM
configuration. See your distribution documentation for details.

l If you are configuring an MWS connection to your LDAP server, add the following parameters
to /opt/mws/etc/mws-config.groovy:

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

This is just an example LDAP connection. Be sure to use the appropriate domain controllers (dc) and
common names (cn) for your environment.

If you followed the Adaptive Computing tutorial, Setting up OpenLDAP on CentOS 6 on
page 72, your ldap.directory.type should be set to "OpenLDAP Using InetOrgPerson
Schema." However, the use of other schemas is supported. For more information see
LDAP Configuration using mws-config.groovy on page 1380.

To see how to configure a secure connection to the LDAP server, see Securing the
LDAP connection on page 1394.

l If you are configuring MWS to use PAM, add the the pam.configuration.service parameter to
the mws-config.groovy file. For example:

pam.configuration.service = "login"

This is just an example PAM configuration file name. Make sure you specify the name of the configuration
file you want MWS to use.

For more information about PAM configuration with MWS, see PAM (pluggable
authentication module) configuration using mws-config.groovy on page 1383.

There is a security risk when authenticating local users through your PAM
configuration. This behavior is highly discouraged and not supported by Adaptive
Computing.

f. Add the grails.mongo.username and grails.mongo.password parameters to the mws-
config.groovy file. Use the MWS credentials you added to MongoDB in the Preparing for
installation on page 24 section.

Installation and Configuration

...
grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

8. Add the following lines to the end of /etc/tomcat6/tomcat6.conf:

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m -
Dfile.encoding=UTF8"
JAVA_HOME="/usr/java/latest"

Some Linux distributions use /etc/default/tomcat6 or /etc/sysconfig/tomcat6
instead of /etc/tomcat6/tomcat6.conf.

9. Deploy the mws.war file and start Tomcat.

[root]# chkconfig tomcat6 on
[root]# service tomcat6 stop
[root]# cp /tmp/mws-install/mws-8.0.1/mws.war /usr/share/tomcat6/webapps
[root]# service tomcat6 start

10. Navigate to http://localhost:8080/mws/ in a web browser to verify that MWS is running (you
will see some sample queries and a few other actions).

11. Log in to MWS to verify that your credentials are working. (Your login credentials are the
auth.defaultUser.username and auth.defaultUser.password values you set in the
/opt/mws/etc/mws-config.groovy file.)

If you encounter problems, or if the application does not seem to be running, see the steps in
Moab Web Services issues on page 91.

Additional configuration

Configuring SSL in Tomcat
To configure SSL in Tomcat, please refer to the Apache Tomcat documentation.

Installation and Configuration

42 Manual installation

http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Manual installation 43

Related topics

Setting up OpenLDAP on CentOS 6
These instructions are intended to help first-time LDAP administrators get up and running. The following
procedures contain instructions for getting started using OpenLDAP on a CentOS 6 system. For more
complete information on how to set up OpenLDAP see the OpenLDAP documentation.

l Installing and configuring OpenLDAP on Centos 6 on page 43

l Adding an organizational unit (OU) on page 47

l Adding a user on page 47

l Adding a group on page 48

l Adding a user to a group on page 48

Adaptive Computing is not responsible for creating, maintaining, or supporting customer LDAP or
Active Directory configurations.

Installing and configuring OpenLDAP on Centos 6
First, you will need to install OpenLDAP. These instructions explain how you can do this on a CentOS 6
system.

To install and configure OpenLDAP on Centos 6

1. Run the following command:

[root]# yum -y install openldap openldap-clients openldap-servers

2. Generate a password hash to be used as the admin password. This password hash will be used when
you create the root user for your LDAP installation. For example:

[root]# slappasswd
New password : p@ssw0rd
Re-enter new password : p@ssw0rd
{SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv

3. Add the root user and the root user's password hash to the OpenLDAP configuration in the
olcDatabase={2}bdb.ldif file. The root user will have permissions to add other users, groups,
organizational units, etc. Do the following:

a. Run this command:

[root]# cd /etc/openldap/slapd.d/cn\=config
[root]# vi olcDatabase\=\{2\}bdb.ldif

Installation and Configuration

http://www.openldap.org/doc/admin24/

b. If the olcRootPW attribute does not already exist, create it. Then set the value to be the hash
you created from slappasswd. For example:

olcRootPW: {SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv
...

4. While editing this file, change the distinguished name (DN) of the olcSuffix to something appropriate.
The suffix typically corresponds to your DNS domain name, and it will be appended to the DN of
every other LDAP entry in your LDAP tree.

For example, let's say your company is called Acme Corporation, and that your domain name is
"acme.com." You might make the following changes to the olcDatabase={2}bdb.ldif file:

olcSuffix: dc=acme,dc=com
...
olcRootDN: cn=Manager,dc=acme,dc=com
...
olcRootPW: {SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv
...

Throughout the following examples in this topic, you will see dc=acme,dc=com. "acme" is
only used as an example to illustrate what you would use as your own domain controller if
your domain name was "acme.com." You should replace any references to "acme" with your
own organization's domain name.

Do not set the cn of your root user to "root" (cn=root,dc=acme,dc=com), or OpenLDAP
will have problems.

5. Modify the DN of the root user in the olcDatabase={1}monitor.ldif file to match the
olcRootDN line in the olcDatabase={2}bdb.ldif file. Do the following:

a. Run this command to edit the olcDatabase={2}bdb.ldif file:

[root]# vi olcDatabase\=\{1\}monitor.ldif

b. Modify the olcAccess line so that the dn.base matches the olcRootDN from the olcDatabase=
{2}bdb.ldif file. (In this example, dn.base should be "cn=Manager,dc=acme,dc=com".)

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth" read by
dn.base="cn=Manager,dc=acme,dc=com" read by * none

c. Now the root user for your LDAP is cn=Manager,dc=acme,dc=com. The root user's password
is the password that you entered using slappasswd (see step 2), which, in this example, is
p@ssw0rd

6. Hide the password hashes from users who should not have permission to view them.

A full discussion on configuring access control in OpenLDAP is beyond the scope of this tutorial.
For help, see the OpenLDAP Access Control documentation.

Installation and Configuration

44 Manual installation

http://www.openldap.org/doc/admin24/access-control.html

Manual installation 45

a. Run this command to edit the oclDatabase\=\{2\}bdb.ldif file:
[root]# vi olcDatabase\=\{2\}bdb.ldif

b. Add the following two lines to the end of the file to restrict users from viewing other users'
password hashes.

olcAccess: {0}to attrs=userPassword by self write by
dn.base="cn=Manager,dc=acme,dc=com" write by anonymous auth by * none
olcAccess: {1}to * by dn.base="cn=Manager,dc=acme,dc=com" write by self write by
* read

These lines allow a user to read and write his or her own password. It also allows a manager to read and write
anyone's password. Anyone, including anonymous users, is allowed to view non-password attributes of other
users.

7. Make sure that OpenLDAP is configured to start when the machine starts up, and start the OpenLDAP
service.

[root]# chkconfig slapd on
[root]# service slapd start

8. Now, you must manually create the "dc=acme,dc=com" LDAP entry in your LDAP tree.

An LDAP directory is analogous to a tree. Nodes in this tree are called LDAP "entries" and may
represent users, groups, organizational units, domain controllers, or other objects. The attributes in
each entry are determined by the LDAP schema. In this tutorial we will build entries based on the
InetOrgPerson schema (which ships with OpenLDAP by default).

In order to build our LDAP tree we must first create the root entry. Root entries are usually a
special type of entry called a domain controller (DC). Because we are assuming that the organization
is called Acme Corporation, and that the domain is "acme.com," we will create a domain controller
LDAP entry called dc=acme,dc=com. Again, you will need to replace "acme" with your
organization's domain name. Also note that dc=acme,dc=com is what is called an LDAP
distinguished name (DN). An LDAP distinguished name uniquely identifies an LDAP entry.

Do the following:

a. Create a file called acme.ldif. (You can delete this file once its content has been added to
LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi acme.ldif

b. Add the following lines in acme.ldif:

dn: dc=acme,dc=com
objectClass: dcObject
objectClass: organization
dc: acme
o : acme

c. Now add the contents of this file to LDAP. Run this command:

[root]# ldapadd -f acme.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Installation and Configuration

d. Verify that your entry was added correctly.

[root]# ldapsearch -x -LLL -b dc=acme,dc=com
dn: dc=acme,dc=com
objectClass: dcObject
objectClass: organization
dc: acme
o: acme

9. Run the following:

[root]# sudo iptables -L
[root]# sudo service iptables save

10. By default, the CentOS 6 firewall will block external requests to OpenLDAP. In order to allow MWS to
access LDAP, you will have to configure your firewall to allow connections on port 389. (Port 389 is
the default LDAP port.)

Configuring your firewall is beyond the scope of this tutorial; however, it may be helpful to know that
the default firewall on CentOS is a service called iptables. (For more information, see the
documentation on iptables.) In the most basic case, you may be able to add a rule to your firewall
that accepts connections to port 389 by doing the following:

a. Edit your iptables file:

[root]# vi /etc/sysconfig/iptables

b. Add the following line after all the ACCEPT lines but before any of the REJECT lines in your
iptables file:

... lines with ACCEPT should be above
-A INPUT -p tcp --dport 389 -j ACCEPT
.. lines with REJECT should be below

For example, here is a sample iptables file with this line added:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -p tcp --dport 389 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

c. Now reload iptables.

[root]# service iptables reload

Installation and Configuration

46 Manual installation

http://wiki.centos.org/HowTos/Network/IPTables

Manual installation 47

Although providing instructions is beyond the scope of this tutorial, it is also highly
recommended that you set up OpenLDAP to use SSL or TLS security to prevent passwords and
other sensitive data from being sent in plain text. For information on how to do this, see the
OpenLDAP TLS documentation.

Now that you have installed and set up Open LDAP, you are ready to add organizational units (see
Adding an organizational unit (OU) on page 47).

Adding an organizational unit (OU)
These instructions will describe how to populate the LDAP tree with organizational units (OUs), groups,
and users, all of which are different types of LDAP entries. The examples that follow also presume an
InetOrgPerson schema, because the InetOrgPerson schema is delivered with OpenLDAP by default.

To add an organizational unit (OU) entry to the LDAP tree

In this example, we are going to add an OU called "Users."

1. Create a temporary file called users.ldif. (You can delete this file once its content has been added
to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi users.ldif

2. Add these lines to users.ldif:

dn: ou=Users,dc=acme,dc=com
objectClass: organizationalUnit
ou: Users

3. Add the contents of users.ldif file to LDAP.

[root]# ldapadd -f users.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a user

To add a user to LDAP

In this example, we will add a user named "Bob Jones" to LDAP inside the "Users" OU.

1. Create a temporary file called bob.ldif. (You can delete this file once its content has been added to
LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi bob.ldif

2. Add these lines to bob.ldif:

Installation and Configuration

http://www.openldap.org/doc/admin24/tls.html

dn: cn=Bob Jones,ou=Users,dc=acme,dc=com
cn: Bob Jones
sn: Jones
objectClass: inetOrgPerson
userPassword: p@ssw0rd
uid: bjones

3. Add the contents of bob.ldif file to LDAP.

[root]# ldapadd -f bob.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a group

To add a group to LDAP

In this example, we will add a group called "Engineering" to LDAP inside the "Users" OU.

1. Create a temporary file called engineering.ldif. (You can delete this file once its content has
been added to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi engineering.ldif

2. Add these lines to engineering.ldif:

dn: cn=Engineering,ou=Users,dc=acme,dc=com
cn: Engineering
objectClass: groupOfNames
member: cn=Bob Jones,ou=Users,dc=acme,dc=com

3. Add the contents of engineering.ldif file to LDAP.

[root]# ldapadd -f engineering.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a user to a group

To add a user to an LDAP group

In this example, we will add an LDAP member named "Al Smith" to the "Engineering" LDAP group. This
example assumes that user, Al Smith, has already been added to LDAP.

Before you add a user to an LDAP group, the user must first be added to LDAP. For more
information, see Adding a user on page 47.

1. Create a temporary file called addUserToGroup.ldif. (You can delete this file once its content
has been added to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi addUserToGroup.ldif

2. Add these lines to addUserToGroup.ldif:

Installation and Configuration

48 Manual installation

Manual installation 49

dn: cn=Engineering,ou=Users,dc=acme,dc=com
changetype: modify
add: member
member: cn=Al Smith,ou=Users,dc=acme,dc=com

3. Now add the contents of addUserToGroup.ldif file to LDAP.

[root]# ldapadd -f addUserToGroup.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Related topics

Moab Workload Manager configuration options
The following is a list of commonly used configure options. For a complete list, use ./configure --help when
configuring Moab.

Option Description Example

--with-flexlm Causes Moab to install the
license.mon.flexLM.pl script
in the /opt/moab/tools dir-
ectory. For more information
about this script, see the Inter-
facing to FLEXlm on page 653
section in the Moab Administrator
Guide.

[root]# ./configure --with-flexlm

--with-homedir Specifies the location of the Moab
configuration directory and the
MOABHOMEDIR environment
variable. The default location is
/opt/moab.

MOABHOMEDIR is
automatically set on some
distributions during
installation, when the --
with-profile option is
enabled.

[root]# ./configure --with-
homedir=/var/moab

The Moab HPC Suite home directory
will be /var/moab instead of the
default /opt/moab.

Installation and Configuration

Option Description Example

--with-init Enables the installation of a
distribution-specific
/etc/init.d/moab service
startup script.
This option is required if you want
to install this script onto a new
system. If you do not set this
option, you must manually set up
the Moab daemon service.
The startup script is located at
OS/EL/etc/init.d/moab.

The TORQUE and Moab
HPC Suite initialization
scripts are provided in the
contrib/init.d
directory as a courtesy and
may be modified at your
discretion to work on your
system.

[root]# ./configure --with-init

--prefix Specifies the location of the
binaries and libraries of the Moab
install.
The default location is
/opt/moab.

[root]# ./configure --prefix=/usr/local

--with-profile Enables the installation of
distribution-specific
/etc/profile.d/moab.[c]sh
setup script for bash and cshell.
The MOABHOMEDIR, PERL5LIB,
PATH and MANPATH environment
variables are setup to specify
where the new moab
configuration, scripts, binaries and
man pages reside. If you do not
set this option, these scripts are
not installed, and you must
manually perform this set up.
The environment setup scripts are
located at
OS/EL/etc/profile.d/moab.
[c]sh.

[root]# ./configure --with-profile

Installation and Configuration

50 Manual installation

Manual installation 51

Option Description Example

--with-am Specifies that you want to
configure Moab with Moab
Accounting Manager.

There is a similar --
with-torque option that
configures Moab with
TORQUE, but you do not
need to specify this option
if you install the "torque"
tarball version.

[root]# ./configure --with-am

Trusting servers in Java

Prerequisites
Some of these instructions refer to JAVA_HOME, which must point to the same directory that Tomcat
uses. To set JAVA_HOME, do this:

[root]# source /etc/tomcat6/tomcat6.conf

Your system administrator might have defined Tomcat's JAVA_HOME in a different file.

Retrieve the server's X.509 public certificate
To retrieve the server's certificate, use the following command:

[root]# $JAVA_HOME/bin/keytool -printcert -rfc -sslserver <servername>:<port> >
/tmp/public.cert.pem

Replace <servername> with the server's host name and <port> with the secure port number. The default
port for https is 443. The default port for ldaps is 636. If successful, /tmp/public.cert.pem contains
the server's public certificate. Otherwise, /tmp/public.cert.pem contains an error message. This
message is typical: keytool error: java.lang.Exception: No certificate from the SSL
server. This message suggests that the server name or port is incorrect. Consult your IT department to
determine the correct server name and port.

Add the server's certificate to Java's keystore
Java stores trusted certificates in a database known as the keystore. Because each new version of Java
has its own keystore, you need to add the server certificate to the Java keystore (using the steps below)
every time you install a new version of Java.

Java's keystore is located at $JAVA_HOME/lib/security/cacerts. If Tomcat's JAVA_HOME points to
a JDK, then the keystore is located at $JAVA_HOME/jre/lib/security/cacerts. To add the server
certificate to the keystore, run the following command:

Installation and Configuration

[root]# $JAVA_HOME/bin/keytool -import -trustcacerts -file /tmp/public.cert.pem -alias
<servername> -keystore $JAVA_HOME/lib/security/cacerts

You will be prompted for the keystore password, which is "changeit" by default.

Your system administrator might have changed this password.

After you've entered the keystore password, you'll see the description of the server's certificate. At the
end of the description it prompts you to trust the certificate.

Trust this certificate? [no]:

Type yes and press Enter to add the certificate to the keystore.

Upgrading

Preparing for upgrade
The upgrade process of the Moab HPC Suite includes upgrading the database and separate components in
the suite. This guide contains detailed instructions for upgrading each component.

It is highly recommended that you first perform upgrades in a test environment. Installation and
upgrade procedures are tested prior to release; however, due to customizable variations that
may be utilized by your configuration, it is not recommended to drop new versions of software
directly into production environments. This is especially true when the workload has vital bearing.
Contact Adaptive Computing Professional Services for more information.

Because many system-level files and directories are accessed during the upgrade, the upgrade
instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same
commands will work for a non-root user with the sudo command.

Upgrade the Moab HPC Suite in the following order:

Mongo database. See Upgrading MongoDB

TORQUE. See Upgrading TORQUE

Moab Workload Manager. See Upgrading Moab Workload Manager

Moab Web Services. See Upgrading Moab Web Services

Related topics

l Requirements

Installation and Configuration

52 Manual installation

Manual installation 53

Upgrading MongoDB
Adaptive Computing strongly recommends upgrading MongoDB to version 2.4.x. Support for environments
using MongoDB 2.0 is now deprecated and will be removed in future releases. Please refer to
docs.mongodb.org for instructions on how to upgrade MongoDB. Note that you must pay close attention
to the information regarding instances with auth enabled (as this is the recommended setup for Moab
HPC Suite).

[root]# service mongod stop
[root]# yum remove mongo20-10gen-server mongo20-10gen
[root}# yum install mongo-10gen-server --exclude mongodb-org,mongodb-org-server
[root]# service mongod start

Note that the settings in the /etc/mongod.conf file were saved in
/etc/mongod.conf.rpmsave while removing MongoDB 2.0. You may need to be restore any
custom settings after MongoDB 2.4.x is installed in the new /etc/mongod.conf file (for example,
"auth = true").

After upgrading to MongoDB 2.4.x, you should verify that the MongoDB credentials were preserved:

[root]# mongo -u mws_user mws -p
MongoDB shell version: 2.4.8
connecting to: mws
> show collections
event
mongeez
permission
...

Running yum upgrade will replace MongoDB 2.4.x with a more recent, and incompatible version.
Consider using yum version lock to maintain MongoDB 2.4.x.

Upgrading TORQUE
TORQUE 5.0.1 binaries are not backward compatible with previous versions of TORQUE. When you
upgrade to TORQUE 5.0.1, all MOM and server daemons must be upgraded at the same time.

The job format is compatible between 5.0.1 and previous versions of TORQUE. Any queued jobs will
upgrade to the new version with the exception of job arrays in TORQUE 2.4 and earlier. It is not
recommended to upgrade TORQUE while jobs are in a running state.

Job arrays
Job arrays from TORQUE version 2.5 and 3.0 are compatible with TORQUE 5.0.1. Job arrays were
introduced in TORQUE version 2.4 but modified in 2.5. If upgrading from TORQUE 2.4, you need to make
sure all job arrays are complete before upgrading.

Installation and Configuration

http://docs.mongodb.org/manual/release-notes/2.4-upgrade/

serverdb
The pbs_server configuration is saved in the file $TORQUE_HOME/server_priv/serverdb. When
running TORQUE 4.1.0 or later for the first time, this file converts from a binary file to an XML-like
format. This format can be used by TORQUE versions 2.5 and 3.0, but not earlier versions. Back up the
$TORQUE_HOME/server_priv/serverdb file before moving to TORQUE 4.1.0 or later.

Jobs
Before upgrading the system, all running jobs must complete. To prevent queued jobs from starting,
nodes can be set to offline or all queues can be disabled. Once all running jobs are complete, the upgrade
can be made. Remember to allow any job arrays in version 2.4 to complete before upgrading. Queued
array jobs will be lost.

Cray
For upgrading TORQUE to 5.0.1 on a Cray system, refer to the Installation Notes for Moab and TORQUE
for Cray on page 1214 in Appendix G of the Moab Workload Manager Administrator Guide.

To upgrade TORQUE

1. Shut down TORQUE.

[root]# qterm
[root]# momctl -s

* If running TORQUE 4.6.0 or later *
[root]# trqauthd -d

*If running a version of TORQUE earlier than 4.6.0 *
[root]# ps -efw | grep trqauthd
root 1487 1 0 Dec18 ? 00:00:00 /usr/sbin/trqauthd
adaptive 4830 4374 0 15:07 pts/0 00:00:00 grep trqauthd

[root]# kill -9 1487

2. Back up your server_priv directory.

[root]# tar -cvf backup.tar.gz $TORQUE_HOME/server_priv

3. If not already installed, install the Boost C++ headers.

[root]# yum install boost-devel

For SLES, use zypper install <package names> instead of yum install <package
names>.

4. Install the latest TORQUE tarball.

Installation and Configuration

54 Manual installation

Manual installation 55

[root]# cd /tmp
[root]# tar xzvf torque-5.0.1-<build number>.tar.gz
[root]# cd torque-5.0.1-<build number>
[root]# ./configure
[root]# make
[root]# make install

5. If not already done, configure pbs_server and pbs_mom to start automatically at system boot.

* If Debian distribution, do the following *
[root]# cp contrib/init.d/debian.pbs_server /etc/init.d/pbs_server
[root]# cp contrib/init.d/debian.pbs_mom /etc/init.d/pbs_mom
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom

* If SLES distribution, do the following *
[root]# cp contrib/init.d/suse.pbs_server /etc/init.d/pbs_server
[root]# cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom

* If RHEL distribution, do the following *
[root]# cp contrib/init.d/pbs_server contrib/init.d/pbs_mom /etc/init.d
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom

6. Start the services.

[root]# service trqauthd start
[root]# service pbs_mom start
[root]# service pbs_server start

7. Check the status of jobs in the queue and perform other checks for errors.

[root]# qstat
[root]# grep -i error /var/spool/torque/server_logs/*
[root]# grep -i error /var/spool/torque/mom_logs/*

Upgrading Moab Workload Manager
The following instructions will guide you through a 6.1.x, 7.0.x, 7.1.x, 7.2.x, or 7.5.0 to 8.0.1 upgrade.
Depending on which version of Moab you are presently running, upgrade instructions may vary, so unless
otherwise noted, all instructions assume use of a RHEL operating system; notes for SLES users are added
in appropriate places.

You might want to test the newest version of Moab on your system (before making the new version live)
to verify your policies, scripts, and queues work the way you want them to.

If you are also upgrading TORQUE from an older version (pre-4.0), you may encounter a problem where
Moab HPC Suite core files are regularly created in /opt/moab. This can be caused by old TORQUE
library files used by Moab that try to authorize with the old TORQUE pbs_iff authorization daemon. You
can resolve the problem by removing the old version library files from /usr/local/lib.

Installation and Configuration

Because many system-level files and directories are accessed during the installation, the
instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same
commands will work for a non-root user with the sudo command.

To upgrade Moab

1. Untar the distribution file. For example:

[root]# tar -xzvf moab-<version>-<OS>.tar.gz

2. Change directory into the extracted directory.

3. Verify /etc/yum.repos.d/epel.repo exists and has the following lines. If not, create it and add
these lines.
[epel]
name=Extra Packages for Enterprise Linux 6 - x86_64
mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=epel-6&arch=x86_64
failovermethod=priority
enabled=1
gpgcheck=1
gpgkey=http://download.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-6

SLES users must add a repository to YaST. The URL of the repository is
http://download.opensuse.org/repositories/server:/database/SLE_11_SP2/.

4. Configure the installation package.

Use the same configure options as when Moab was installed previously. If you cannot remember
which options were used previously, check the config.log file in the directory where the previous
version of Moab was installed from.

For a complete list of configure options, use ./configure --help.

5. Stop Moab.

[root]# mschedctl -k
moab will be shutdown immediately

While Moab is down, all currently running jobs continue to run on the nodes, the job queue
remains intact, and new jobs cannot be submitted to Moab.

6. Before proceeding to the following steps, consider backing up your Moab Workload Manager home
directory (/opt/moab/ by default).

7. If you use ODBC, you must upgrade to the 8.0.1 schema. See Migrating Your Database to Newer
Versions of Moab on page 787 for more information.

8. Run the make perldeps command to install the necessary perl modules using CPAN (and install CPAN
if you have not already done so). When first running CPAN, you will be asked for configuration
information. It is recommended that you choose an automatic configuration. You will be prompted to

Installation and Configuration

56 Manual installation

http://download.opensuse.org/repositories/server:/database/SLE_11_SP2/

Manual installation 57

provide input during module installation; running the make perldeps command with a script is not
recommended.

[root]# yum install cpan
[root]# make perldeps

9. Install Moab.

[root]# make install

Default configuration files are installed during make install. Existing configuration files are not
overwritten and the new files are given a .dist extension.

10. Verify the version number is correct before starting the new server version.

[root]# moab --about

Defaults: server=:42559 cfgdir=/opt/moab vardir=/opt/moab
Build dir: /tmp/develop
Build host: crom
Build date: Mon Jun 16 16:00:00 MST 2014
Build args: NA
Compiler Flags: -D__M64 -D_BUILDDATETIME="2014061616" -DMUSEWEBSERVICES -
DMUSEZEROMQ -DMUSEMONGODB -DMMAX_GRES=512 -DMMAX_RANGE=2048 -DMMAX_TASK=32768 -fPIC
-gdwarf-3 -Wall -Wextra -DVALGRIND -x c++ -std=c++11 -DDMAX_PJOB=512 -D_GNU_SOURCE
Compiled as little endian.
Version: moab server master (revision 2014061616, changeset
90ce9f804ddd09b061238e438ecb4d117cc83e81)
Copyright (C) 2000-2014 by Adaptive Computing Enterprises, Inc. All Rights
Reserved.

11. If you are upgrading from Moab Workload Manager 7.5 or earlier and use Moab Accounting Manager
with the native interface, (AMCFG[...] TYPE=native), locate the entries in moab.cfg with the following
form:

AMCFG[mam] *URL=exec:///$HOME/tools/mam/*.*.mam.pl

Replace the matching entries with the following:

AMCFG[mam] CREATEURL=exec://$TOOLSDIR/mam/usage.quote.mam.pl
AMCFG[mam] STARTURL=exec://$TOOLSDIR/mam/usage.reserve.mam.pl
AMCFG[mam] PAUSEURL=exec://$TOOLSDIR/mam/usage.charge.mam.pl
AMCFG[mam] UPDATEURL=exec://$TOOLSDIR/mam/usage.charge.mam.pl
AMCFG[mam] RESUMEURL=exec://$TOOLSDIR/mam/usage.reserve.mam.pl
AMCFG[mam] ENDURL=exec://$TOOLSDIR/mam/usage.charge.mam.pl
AMCFG[mam] DELETEURL=exec://$TOOLSDIR/mam/lien.delete.mam.pl

12. Start Moab.

[root]# moabd

13. If you will be using Moab Web Services, you must configure a secret key. See Securing
communication using secret keys on page 37.

Installation and Configuration

Upgrading MWS
Context

Before upgrading MWS, we recommend you upgrade to Java 7 and MongoDB 2.4.x. To upgrade Java,
repeat the Java installation instructions. To upgrade MongoDB, see Upgrading MongoDB on page 53.

It is highly recommended that you perform a full database backup before updating your database.
This can be done using the mongodump utility documented in the MongoDB documentation.

To perform an MWS upgrade

1. Extract the contents of the MWS download tarball into a temporary directory. For example:

[root]# mkdir /tmp/mws-install
[root]# cd /tmp/mws-install
[root]# tar xvzf mws-8.0.1.tar.gz
[root]# cd /tmp/mws-install/mws-8.0.1

2. Stop Tomcat, re-deploy mws.war, and remove the exploded mws directory.

CentOS 6 example

[root]# service tomcat6 stop
[root]# cp /tmp/mws-install/mws-8.0.1/mws.war /usr/share/tomcat6/webapps
[root]# rm -rf /usr/share/tomcat6/webapps/mws

3. Create the MWS home directory and subdirectories (for more information, see the "Configuration on
page 1750" section of the Moab Web Services Reference Guide).

The default location for the MWS home directory is /opt/mws. These instructions assume the
default location.

Here is a sample script for this setup:

[root]# mkdir -p \
/opt/mws/etc/mws.d \
/opt/mws/hooks \
/opt/mws/log \
/opt/mws/plugins \
/opt/mws/spool/hooks \
/opt/mws/utils

[root]# chown -R tomcat:tomcat /opt/mws # Depending on your OS, the Tomcat username
might be tomcat6.
[root]# chmod -R 555 /opt/mws
[root]# chmod u+w \

/opt/mws/log \
/opt/mws/plugins \
/opt/mws/spool \
/opt/mws/spool/hooks \
/opt/mws/utils

4. Copy the extracted utility files to the utility directory created above and give the tomcat user
ownership of the directory.

Installation and Configuration

58 Manual installation

http://www.mongodb.org/display/DOCS/Backups

Manual installation 59

[root]# cd /tmp/mws-install/mws-8.0.1/utils
[root]# cp * /opt/mws/utils
[root]# chown tomcat:tomcat /opt/mws/utils/*

5. Set up the MWS configuration files. In the extracted directory are several configuration files.

a. Merge the /opt/mws/etc/mws-config.groovy.rpmnew file with the old
/opt/mws/etc/mws-config.groovy file by editing /opt/mws/etc/mws-config.groovy.
(Note the addition of the "auditAppender" in the default logging configuration of
/opt/mws/etc/mws-config.groovy.rpmnew.)

Installation and Configuration

moab.messageQueue.port = 5563
moab.messageQueue.port = 5570

log4j = {
// Configure an appender for the events log.
def eventAppender = new org.apache.log4j.rolling.RollingFileAppender(
name: 'events', layout: pattern(conversionPattern: "%m%n"))

def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
fileNamePattern: '/opt/mws/log/events.%d{yyyy-MM-dd}',
activeFileName: '/opt/mws/log/events.log')

rollingPolicy.activateOptions()
eventAppender.setRollingPolicy(rollingPolicy)

// Configure an appender for the audit log.
def auditAppender = new org.apache.log4j.rolling.RollingFileAppender(

name: 'audit',
layout: new com.ace.mws.logging.ACPatternLayout("%j\t\t\t%c{1}

\t\t\t%m%n"))
def auditRollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(

fileNamePattern: '/opt/mws/log/audit.%d{yyyy-MM-dd}',
activeFileName: '/opt/mws/log/audit.log')

auditRollingPolicy.activateOptions()
auditAppender.setRollingPolicy(auditRollingPolicy)

appenders {
rollingFile name: 'stacktrace',

file: '/opt/mws/log/stacktrace.log',
maxFileSize: '100MB'

rollingFile name: 'rootLog',
file: '/opt/mws/log/mws.log',
maxFileSize: '100MB', //The maximum file size for a single log file
maxBackupIndex: 10, //Retain only the 10 most recent log files, delete

older logs to save space
layout:pattern(conversionPattern: '%d %p %c %m%n'), //Configures the

output format of each log entry
layout: new com.ace.mws.logging.ACPatternLayout(), //Configures the

output format of each log entry
threshold: org.apache.log4j.Level.ERROR //Ignore any logging entries

less verbose than this threshold

appender eventAppender
appender auditAppender

}

// NOTE: This definition is a catch-all for any logger not defined below
root {
error 'rootLog'

}

// Individual logger configurations
...

// Logs event information to the events log, not the rootLog
trace additivity:false, events:'com.ace.mws.events.EventFlatFileWriter'
// Logs audit information to the audit log, not the rootLog
trace additivity:false, audit:'mws.audit'

}

Additions are noted in red. Removed content is stricken out.

Installation and Configuration

60 Manual installation

Manual installation 61

If necessary, open port 5570 in the firewall.

Note that the mws.suite parameter and the mam.* parameters have been moved to a suite-
specific file in /opt/mws/etc/mws.d/ and do not need to exist in /opt/mws/etc/mws-
config.groovy.

Also note the new *messageQueue parameters in /opt/mws/etc/mws-
config.groovy.rpmnew. These are required and the value for moab.messageQueue.secretKey
should match the value located in /opt/moab/etc/moab-private.cfg. If you have not yet
configured a secret key, see Securing communication using secret keys on page 37.

b. Copy the mws-config-hpc.groovy file to /opt/mws/etc/mws.d.

c. Give the Tomcat user read access to /opt/mws/etc/mws-config.groovy and
/opt/mws/etc/mws.d/mws-config-*.groovy.

6. Upgrade the schema of the mws database in MongoDB.

You must perform this step, regardless of whether you upgraded MongoDB to version 2.4.x or
not.

Run the database migration script provided with MWS. (It is safe to run this script more than once. If
for any reason, errors occur during the execution of the script, run it again.)

[root]# mongo -u mws_user mws /opt/mws/utils/db-migrate.js -p

The script might take several minutes to execute.

7. Start Tomcat.

[root]# service tomcat6 start

8. Visit http://localhost:8080/mws/ in a web browser to verify that MWS is running again.

You will see some sample queries and a few other actions.

9. Log into MWS to verify configuration. (The credentials are the values of auth.defaultUser.username
and auth.defaultUser.password set in /opt/mws/etc/mws-config.groovy.)

If you encounter problems, or if MWS does not seem to be running, see the steps in
Troubleshooting on page 87.

Installation and Configuration

http://localhost:8080/mws/

RPM installation

Installing Moab HPC Suite - Basic Edition

The RPM installation only supports installation on Red Hat 6.5, CentOS 6.5 or Scientific Linux 6.5.
Use the Manual installation instructions if installing on other supported operating systems.

Because many system-level files and directories are accessed during the installation, the
instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same
commands will work for a non-root user with the sudo command.

Dependencies and packages installation

Install Java

Install the Linux x64 RPM version of Oracle® Java® 7 Runtime Environment.

Oracle Java 7 Runtime Environment is the recommended Java environment, but Oracle Java 6 is
also supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, and
so on cannot run Moab Web Services.

Do the following:

1. Download the Linux x64 RPM version of Oracle Java SE 7 JRE. (Go to the Oracle Java 7 download page,
copy the URL to the Linux x64 RPM version, then run the following command.)

[root]# wget <URL> -O jre-7-linux-x64.rpm

To verify that the download was successful, run the following on the RPM before installation:

[root]# rpm -qip jre-7-linux-x64.rpm

2. Run the following to install Java 7:

[root]# rpm -Uh jre-7-linux-x64.rpm

Opening ports

A few ports need to be available through your firewall so components of the suite can communicate with
each other. Some features of some components might need additional ports configured. The individual
component documentation indicates when additional ports are needed.

l 8080: Needed for Moab Web Services web portal (http)

Installation and Configuration

62 RPM installation

http://java.com/en/download/linux_manual.jsp

RPM installation 63

To open ports in your firewall

l Use iptables for Red Hat-based distributions:

[[root]# iptables-save > /tmp/iptables.mod
[root]# vi /tmp/iptables.mod

Add the following lines immediately *before* the line matching
"-A INPUT -j REJECT --reject-with icmp-host-prohibited"
-A INPUT -p tcp --dport 8080 -j ACCEPT

[root]# iptables-restore < /tmp/iptables.mod
[root]# service iptables save

l Use SuSEfirewall2 for SuSE-based distributions:

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="8080"

[root]# service SuSEfirewall2_setup restart

Installing the RPM suite

If you want to build a custom RPM for component documentation (Moab Workload Manager, Moab
Web Services orMoab Accounting Manager, refer to the Manual Installation Guide and follow
instructions in the respective component.

To install the RPM suite

1. If you are upgrading from a previous installation of Moab, back up your /opt/moab/tools
directory to prevent losing modifications made to the perl scripts. If you are performing a clean
installation of Moab HPC Suite, skip this step.

[root]# tar czf backup-tools.tar.gz /opt/moab/tools

2. Download the latest 8.0.1 RPM suite tarball (moab-hpc-basic-suite-<version>-
<timestamp>-<OS>.tar.gz, for example) from the Adaptive Computing website.

3. Untar the downloaded package.

[root]# tar zxf moab-hpc-basic-suite-<version>-<timestamp>-<OS>.tar.gz

4. Change directories into the untarred directory.

Consider reviewing the README file for additional details on using the RPM distribution
tarball.

5. Install the suite repositories. The -y option installs with the default settings for the RPM suite.

Installation and Configuration

http://www.adaptivecomputing.com/support/download-center/

For a description of the options of the repository installer script, run:

[root]# ./install-rpm-repos.sh -h

[root]# ./install-rpm-repos.sh [<repository-directory>] [-y]

If the installation returns the following warning line:

Warning: RPMDB altered outside of yum.

This is normal and can safely be ignored.

The [<repository-directory>] option is the directory where you want to copy the RPMs. If no argument
is given, run "install-rpm-repos.sh -h" and note the default directory location. If the
[<repository-directory>] already exists, RPMs will be added to the existing directory. No files are
overwritten in [<repository-directory>]. A repository file is also created in /etc/yum.repos.d/ and
points to the [<repository-directory>] location.

For ease in repository maintenance, the install script fails if Adaptive Computing RPMs are copied to
different directories. If a non-default [<repository-directory>] is specified, please use the same
directory for future updates.

The script installs the createrepo package and its dependencies. You must answer "y" to all the
questions in order for the RPM install of the suite to work. Additionally, the script installs the EPEL
and 10gen repositories.

6. Test the repository:

[root]# yum search moab

If no error is given, the repository is correctly installed. The output will look similar to the following
(varying slightly depending on the suite and build type):

...

moab-hpc-basic-suite.noarch : Moab HPC Basic Suite virtual package
moab-perl-RRDs.noarch : Moab RRDs
moab-tomcat-config.x86_64 : Tomcat Configuration for Moab Viewpoint and Web
Services
moab-verify-oracle-java.noarch : Java Validator for Moab Viewpoint and Web Services
moab-web-services.x86_64 : Moab Web Services
moab-workload-manager.x86_64 : Moab Workload Manager
moab-workload-manager-client.x86_64 : Moab Workload Manager Client
moab-workload-manager-common.x86_64 : Moab Workload Manager Common Files
moab-perl-data.noarch : Perl Configuration for perl packages by Adaptive Computing
moab-torque-client.x86_64 : TORQUE Client
moab-torque-common.x86_64 : TORQUE Common Files
moab-torque-devel.x86_64 : TORQUE Development Files
moab-torque-mom.x86_64 : TORQUE MOM agent
moab-torque-server.x86_64 : TORQUE Server
moab-web-services-hpc-configuration.x86_64 : MWS configuration for HPC
moab-workload-manager-hpc-configuration.x86_64 : MWM configuration for HPC

Installation and Configuration

64 RPM installation

RPM installation 65

7. Install the suite package.

[root]# yum install moab-hpc-basic-suite

If you encounter the following error:

...
--> Finished Dependency Resolution

krb5-workstation-1.6.1-62.el5.x86_64 from installed has depsolving problems
--> Missing Dependency: krb5-libs = 1.6.1-62.el5 is needed by package

krb5-workstation-1.6.1-62.el5.x86_64 (installed)
krb5-workstation-1.6.1-62.el5.x86_64 from installed has depsolving problems
--> Missing Dependency: krb5-libs = 1.6.1-62.el5 is needed by package

krb5-workstation-1.6.1-62.el5.x86_64 (installed)
Error: Missing Dependency: krb5-libs = 1.6.1-62.el5 is needed by package
krb5-workstation-1.6.1-62.el5.x86_64 (installed)
You could try using --skip-broken to work around the problem
You could try running: package-cleanup --problems
package-cleanup --dupes
rpm -Va --nofiles --nodigest

Install the krb5-workstation package, then execute the install suite package again.

[root]# yum install krb5-workstation
[root]# yum install moab-hpc-basic-suite

If you encounter CURL library errors, make sure you are installing the correct version for your
OS.

8. Install and prepare the MongoDB database by doing the following:

a. Install mongo-10gen-server.

[root]# yum install mongo-10gen-server --exclude mongodb-org,mongodb-org-server

Running yum upgrade will replace MongoDB 2.4.x with a more recent, and incompatible
version. Consider using yum version lock to maintain MongoDB 2.4.x.

b. Start MongoDB.

RHEL and CentOS, and Scientific Linux:

[root]# chkconfig mongod on
[root]# service mongod start

[OK]

c. Add the required MongoDB users.

The passwords used below (secret1, secret2, and secret3) are examples. Choose your
own passwords for these users.

Installation and Configuration

[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth("admin_user", "secret1");

> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);

> use mws;
> db.addUser("mws_user", "secret3");
> exit

Because the admin_user has read and write permissions to the admin database, it also has
read and write permissions to all other databases. See Control Access to MongoDB Instances
with Authentication for more information.

d. Enable authentication in MongoDB.

RHEL and CentOS, and Scientific Linux:

[root]# vi /etc/mongod.conf

auth = true

[root]# service mongod restart

Installing PostgreSQL
If you plan to use Moab Workload Manager with ODBC, you must install a PostgreSQL database.

To install PostgreSQL

1. Install and initialize PostgreSQL.

CentOS, RHEL, and Scientific Linux

[root]# yum install postgresql-server
[root]# service postgresql initdb

SLES

[root]# zypper install postgresql-server
[root]# service postgresql start

2. Configure trusted connections.

Edit or add a "host" line in the pg_hba.conf file for the interface from which the server(s) (for
example, Moab Workload Manager and/or Moab Accounting Manager) will be connecting to the
database and ensure that it specifies a secure password-based authentication method (for
example, md5).

Installation and Configuration

66 RPM installation

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/

RPM installation 67

[root]# vi /var/lib/pgsql/data/pg_hba.conf

IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

3. Configure PostgreSQL to accept connections from your host.

[root]# vi /var/lib/pgsql/data/postgresql.conf

Uncomment the listen addresses line in the configuration:

listen_addresses = 'localhost' # what IP address(es) to listen on;

4. Start or restart the database.

[root]# chkconfig postgresql on
[root]# service postgresql restart

Related topics

l Welcome on page xxi

Configuration

Configuring TORQUE
These instructions describe how to configure and start TORQUE.

Prerequisites

l TORQUE requires certain ports to be open for essential communication:

o For client communication to pbs_server, all privileged ports must be open (ports
under 1024).

o For pbs_server communication to pbs_mom, the default port is 15003.

o For pbs_mom to pbs_server, the default port is 15001.

For more information on how to configure the ports that TORQUE uses for communication, see
Configuring Ports on page 2204.

Important: If you intend to use TORQUE 5.0.x with Moab, you must run Moab version
8.0.x or later. TORQUE 5.0.x will not work with versions earlier than Moab 8.0.x.

l Make sure your host (with the correct IP address) is in your /etc/hosts file.

Installation and Configuration

To configure TORQUE

1. Add nodes to the /var/spool/torque/server_priv/nodes file. For information on syntax and
options for specifying compute nodes, see Managing Nodes on page 2268.

2. Start the servers.

[root]# service trqauthd start
[root]# service pbs_server start
[root]# service pbs_mom start

To configure MOMs

1. To set up the MOMs, in the directory of the unpackaged tarball, copy the torque-common and
torque-mom RPM files to each MOM node.

[root]# scp RPMs/moab-torque-common-*.rpm <mom-node>
[root]# scp RPMs/moab-torque-mom-*.rpm <mom-node>

2. On each MOM node, install the RPMs, making sure that torque-mom-common is installed first.

[root]# ssh root@<mom-node>
[root]# yum install moab-torque-common-*.rpm moab-torque-mom-*.rpm

3. By default, on each MOM node, the /var/spool/torque/server_name file contains the hostname
of the current host. If pbs_server is running on another host, change the name.

[root]# echo <pbs_server's_hostname> > /var/spool/torque/server_name

4. Edit the /var/spool/torque/mom_priv/config file on each node. This file is identical for all
compute nodes and can be created on the head node and distributed in parallel to all systems.

[root]# vi /var/spool/torque/mom_priv/config

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

Related topics

l Installing Moab HPC Suite - Basic Edition on page 62
l Configuring Moab Workload Manager on page 68
l Component documentation on page 95

Configuring Moab Workload Manager
These instructions describe how to configure and start Moab Workload Manager (Moab).

To configure Moab Workload Manager

1. Source the following file to add the Moab executable directories to your current shell $PATH
environment.

[root]# . /etc/profile.d/moab.sh

Installation and Configuration

68 RPM installation

RPM installation 69

2. Copy your license file into the same directory as moab.cfg (/opt/moab/etc/ by default). For
example:

[root]# cp moab.lic $MOABHOMEDIR/etc/moab.lic

To verify the current status of your license, use moab --about.

Moab checks the status of the license every day just after midnight. At 60 and 45 days before, and
daily from 30 days before license expiration to and including the license expiration date, Moab sends
an e-mail to all level 1 administrators informing them of the pending Moab license expiration. A log
record is also made of the upcoming expiration event. For the notifications to occur correctly, you
must enable administrator email notification (see "Notifying Administrators of Failures on page
684" in the Moab Workload Manager Administrator Guide) and moab.cfg must contain email
addresses for level 1 administrators. For example:

ADMINCFG[1] USERS=u1,u2,u3[,...]

USERCFG[u1] EMAILADDRESS=u1@company.com
USERCFG[u2] EMAILADDRESS=u2@company.com
USERCFG[u3] EMAILADDRESS=u3@company.com

MAILPROGRAM DEFAULT

Moab will not run without a license. For information about obtaining a trial license, please
contact Adaptive Computing.

3. Start Moab.

[root]# chkconfig moab on
[root]# service moab start

4. If you have a resource manager configured, submit a sleep job as a non-root user and verify the job is
running.

If you do not have a resource manager configured, skip this step. For TORQUE, you can configure a
basic queue.

qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

[root]# su - moab
[moab]$ echo sleep 150 | msub
[moab]$ showq
[moab]$ exit

5. Connecting Moab to MongoDB

If you will be installing Moab Web Services, connect Moab to MongoDB using the following

Installation and Configuration

mailto:sales@adaptivecomputing.com?subject=Moab Trial License

instructions:

The USEDATABASE parameter is unrelated to the MongoDB configuration.

a. In /opt/moab/etc/moab.cfg, set the MONGOSERVER parameter to the correct location of
the MongoDB server. By default, Moab assumes it is on the same server.

MONGOSERVER <host>[:<port>]

b. In the /opt/moab/etc/moab-private.cfg file, set the MONGOUSER and
MONGOPASSWORD parameters to the MongoDB moab_user credentials you set.

MONGOUSER moab_user
MONGOPASSWORD secret2

c. Verify that Moab is able to connect to MongoDB.

[root]# service moab restart
[root]# mdiag -S
...
Mongo connection (localhost) is up (credentials are set)
...

Related topics

l Installing Moab HPC Suite - Basic Edition on page 62
l Configuring TORQUE on page 67
l Component documentation on page 95

Configuring Moab Web Services
These instructions describe how to configure Moab Web Services (MWS).

To configure Moab Web Services

1. Start Moab.

[root]# service moab start

2. Set up the MWS configuration file.

a. In the /opt/mws/etc/mws-config.groovy file, change these settings:

l auth.defaultUser.username: Any value you like, or leave as is.

l auth.defaultUser.password: Any value you like, but choose a strong password.

[root]# vi /opt/mws/etc/mws-config.groovy

// Change these to be whatever you like.
auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"

Installation and Configuration

70 RPM installation

RPM installation 71

If you do not change auth.defaultUser.password, your MWS will not be secure (because
anyone reading these instructions would be able to log into your MWS). Here are some
tips for choosing a good password.

b. Do one of the following:

l If you are configuring an MWS connection to your LDAP server, add the following parameters:

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

This is just an example LDAP connection. Be sure to use the appropriate domain controllers (dc) and
common names (cn) for your environment.

If you followed the Adaptive Computing tutorial, Setting up OpenLDAP on CentOS 6 on
page 72, your ldap.directory.type should be set to "OpenLDAP Using InetOrgPerson
Schema." However, the use of other schemas is supported. For more information see
LDAP Configuration using mws-config.groovy on page 1380.

To see how to configure a secure connection to the LDAP server, see Securing the
LDAP connection on page 1394.

l If you are configuring MWS to use PAM, add the the pam.configuration.service parameter to
the mws-config.groovy file. For example:

pam.configuration.service = "login"

This is just an example PAM configuration file name. Make sure you specify the name of the configuration
file you want MWS to use.

For more information about PAM configuration with MWS, see PAM (pluggable
authentication module) configuration using mws-config.groovy on page 1383.

There is a security risk when authenticating local users through your PAM
configuration. This behavior is highly discouraged and not supported by Adaptive
Computing.

You can configure only one authentication method in mws-config.groovy—LDAP or
PAM, but not both. If you have configured both LDAP and PAM, MWS defaults to using LDAP.

If you need multiple authentication methods, you must add them to your local PAM
configuration. See your distribution documentation for details.

Installation and Configuration

http://www.us-cert.gov/cas/tips/ST04-002.html

c. Add the grails.mongo.username and grails.mongo.password parameters to the mws-
config.groovy file. Use the MWS credentials you added to MongoDB in the Installing Moab
HPC Suite - Basic Edition on page 62section.

...
grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

3. Start or restart Tomcat.

[root]# chkconfig tomcat6 on
[root]# service tomcat6 restart

4. Navigate to http://localhost:8080/mws/ in a web browser to verify that MWS is running (you
will see some sample queries and a few other actions).

5. Log in to MWS to verify that your credentials are working. (Your login credentials are the
auth.defaultUser.username and auth.defaultUser.password values you set in the
/opt/mws/etc/mws-config.groovy file.)

If you encounter problems, or if the application does not seem to be running, see the steps
inMoab Web Services issues on page 91

Additional configuration

Configuring SSL in Tomcat
To configure SSL in Tomcat, please refer to the Apache Tomcat documentation.

Related topics

Setting up OpenLDAP on CentOS 6
These instructions are intended to help first-time LDAP administrators get up and running. The following
procedures contain instructions for getting started using OpenLDAP on a CentOS 6 system. For more

Installation and Configuration

72 RPM installation

http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

RPM installation 73

complete information on how to set up OpenLDAP see the OpenLDAP documentation.

l Installing and configuring OpenLDAP on Centos 6 on page 73

l Adding an organizational unit (OU) on page 77

l Adding a user on page 77

l Adding a group on page 78

l Adding a user to a group on page 78

Adaptive Computing is not responsible for creating, maintaining, or supporting customer LDAP or
Active Directory configurations.

Installing and configuring OpenLDAP on Centos 6
First, you will need to install OpenLDAP. These instructions explain how you can do this on a CentOS 6
system.

To install and configure OpenLDAP on Centos 6

1. Run the following command:

[root]# yum -y install openldap openldap-clients openldap-servers

2. Generate a password hash to be used as the admin password. This password hash will be used when
you create the root user for your LDAP installation. For example:

[root]# slappasswd
New password : p@ssw0rd
Re-enter new password : p@ssw0rd
{SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv

3. Add the root user and the root user's password hash to the OpenLDAP configuration in the
olcDatabase={2}bdb.ldif file. The root user will have permissions to add other users, groups,
organizational units, etc. Do the following:

a. Run this command:

[root]# cd /etc/openldap/slapd.d/cn\=config
[root]# vi olcDatabase\=\{2\}bdb.ldif

b. If the olcRootPW attribute does not already exist, create it. Then set the value to be the hash
you created from slappasswd. For example:

olcRootPW: {SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv
...

4. While editing this file, change the distinguished name (DN) of the olcSuffix to something appropriate.
The suffix typically corresponds to your DNS domain name, and it will be appended to the DN of
every other LDAP entry in your LDAP tree.

Installation and Configuration

http://www.openldap.org/doc/admin24/

For example, let's say your company is called Acme Corporation, and that your domain name is
"acme.com." You might make the following changes to the olcDatabase={2}bdb.ldif file:

olcSuffix: dc=acme,dc=com
...
olcRootDN: cn=Manager,dc=acme,dc=com
...
olcRootPW: {SSHA}5lPFVw19zeh7LT53hQH69znzj8TuBrLv
...

Throughout the following examples in this topic, you will see dc=acme,dc=com. "acme" is
only used as an example to illustrate what you would use as your own domain controller if
your domain name was "acme.com." You should replace any references to "acme" with your
own organization's domain name.

Do not set the cn of your root user to "root" (cn=root,dc=acme,dc=com), or OpenLDAP
will have problems.

5. Modify the DN of the root user in the olcDatabase={1}monitor.ldif file to match the
olcRootDN line in the olcDatabase={2}bdb.ldif file. Do the following:

a. Run this command to edit the olcDatabase={2}bdb.ldif file:

[root]# vi olcDatabase\=\{1\}monitor.ldif

b. Modify the olcAccess line so that the dn.base matches the olcRootDN from the olcDatabase=
{2}bdb.ldif file. (In this example, dn.base should be "cn=Manager,dc=acme,dc=com".)

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth" read by
dn.base="cn=Manager,dc=acme,dc=com" read by * none

c. Now the root user for your LDAP is cn=Manager,dc=acme,dc=com. The root user's password
is the password that you entered using slappasswd (see step 2), which, in this example, is
p@ssw0rd

6. Hide the password hashes from users who should not have permission to view them.

A full discussion on configuring access control in OpenLDAP is beyond the scope of this tutorial.
For help, see the OpenLDAP Access Control documentation.

a. Run this command to edit the oclDatabase\=\{2\}bdb.ldif file:
[root]# vi olcDatabase\=\{2\}bdb.ldif

b. Add the following two lines to the end of the file to restrict users from viewing other users'
password hashes.

Installation and Configuration

74 RPM installation

http://www.openldap.org/doc/admin24/access-control.html

RPM installation 75

olcAccess: {0}to attrs=userPassword by self write by
dn.base="cn=Manager,dc=acme,dc=com" write by anonymous auth by * none
olcAccess: {1}to * by dn.base="cn=Manager,dc=acme,dc=com" write by self write by
* read

These lines allow a user to read and write his or her own password. It also allows a manager to read and write
anyone's password. Anyone, including anonymous users, is allowed to view non-password attributes of other
users.

7. Make sure that OpenLDAP is configured to start when the machine starts up, and start the OpenLDAP
service.

[root]# chkconfig slapd on
[root]# service slapd start

8. Now, you must manually create the "dc=acme,dc=com" LDAP entry in your LDAP tree.

An LDAP directory is analogous to a tree. Nodes in this tree are called LDAP "entries" and may
represent users, groups, organizational units, domain controllers, or other objects. The attributes in
each entry are determined by the LDAP schema. In this tutorial we will build entries based on the
InetOrgPerson schema (which ships with OpenLDAP by default).

In order to build our LDAP tree we must first create the root entry. Root entries are usually a
special type of entry called a domain controller (DC). Because we are assuming that the organization
is called Acme Corporation, and that the domain is "acme.com," we will create a domain controller
LDAP entry called dc=acme,dc=com. Again, you will need to replace "acme" with your
organization's domain name. Also note that dc=acme,dc=com is what is called an LDAP
distinguished name (DN). An LDAP distinguished name uniquely identifies an LDAP entry.

Do the following:

a. Create a file called acme.ldif. (You can delete this file once its content has been added to
LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi acme.ldif

b. Add the following lines in acme.ldif:

dn: dc=acme,dc=com
objectClass: dcObject
objectClass: organization
dc: acme
o : acme

c. Now add the contents of this file to LDAP. Run this command:

[root]# ldapadd -f acme.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

d. Verify that your entry was added correctly.

Installation and Configuration

[root]# ldapsearch -x -LLL -b dc=acme,dc=com
dn: dc=acme,dc=com
objectClass: dcObject
objectClass: organization
dc: acme
o: acme

9. Run the following:

[root]# sudo iptables -L
[root]# sudo service iptables save

10. By default, the CentOS 6 firewall will block external requests to OpenLDAP. In order to allow MWS to
access LDAP, you will have to configure your firewall to allow connections on port 389. (Port 389 is
the default LDAP port.)

Configuring your firewall is beyond the scope of this tutorial; however, it may be helpful to know that
the default firewall on CentOS is a service called iptables. (For more information, see the
documentation on iptables.) In the most basic case, you may be able to add a rule to your firewall
that accepts connections to port 389 by doing the following:

a. Edit your iptables file:

[root]# vi /etc/sysconfig/iptables

b. Add the following line after all the ACCEPT lines but before any of the REJECT lines in your
iptables file:

... lines with ACCEPT should be above
-A INPUT -p tcp --dport 389 -j ACCEPT
.. lines with REJECT should be below

For example, here is a sample iptables file with this line added:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -p tcp --dport 389 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

c. Now reload iptables.

[root]# service iptables reload

Installation and Configuration

76 RPM installation

http://wiki.centos.org/HowTos/Network/IPTables

RPM installation 77

Although providing instructions is beyond the scope of this tutorial, it is also highly
recommended that you set up OpenLDAP to use SSL or TLS security to prevent passwords and
other sensitive data from being sent in plain text. For information on how to do this, see the
OpenLDAP TLS documentation.

Now that you have installed and set up Open LDAP, you are ready to add organizational units (see
Adding an organizational unit (OU) on page 77).

Adding an organizational unit (OU)
These instructions will describe how to populate the LDAP tree with organizational units (OUs), groups,
and users, all of which are different types of LDAP entries. The examples that follow also presume an
InetOrgPerson schema, because the InetOrgPerson schema is delivered with OpenLDAP by default.

To add an organizational unit (OU) entry to the LDAP tree

In this example, we are going to add an OU called "Users."

1. Create a temporary file called users.ldif. (You can delete this file once its content has been added
to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi users.ldif

2. Add these lines to users.ldif:

dn: ou=Users,dc=acme,dc=com
objectClass: organizationalUnit
ou: Users

3. Add the contents of users.ldif file to LDAP.

[root]# ldapadd -f users.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a user

To add a user to LDAP

In this example, we will add a user named "Bob Jones" to LDAP inside the "Users" OU.

1. Create a temporary file called bob.ldif. (You can delete this file once its content has been added to
LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi bob.ldif

2. Add these lines to bob.ldif:

Installation and Configuration

http://www.openldap.org/doc/admin24/tls.html

dn: cn=Bob Jones,ou=Users,dc=acme,dc=com
cn: Bob Jones
sn: Jones
objectClass: inetOrgPerson
userPassword: p@ssw0rd
uid: bjones

3. Add the contents of bob.ldif file to LDAP.

[root]# ldapadd -f bob.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a group

To add a group to LDAP

In this example, we will add a group called "Engineering" to LDAP inside the "Users" OU.

1. Create a temporary file called engineering.ldif. (You can delete this file once its content has
been added to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi engineering.ldif

2. Add these lines to engineering.ldif:

dn: cn=Engineering,ou=Users,dc=acme,dc=com
cn: Engineering
objectClass: groupOfNames
member: cn=Bob Jones,ou=Users,dc=acme,dc=com

3. Add the contents of engineering.ldif file to LDAP.

[root]# ldapadd -f engineering.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Adding a user to a group

To add a user to an LDAP group

In this example, we will add an LDAP member named "Al Smith" to the "Engineering" LDAP group. This
example assumes that user, Al Smith, has already been added to LDAP.

Before you add a user to an LDAP group, the user must first be added to LDAP. For more
information, see Adding a user on page 77.

1. Create a temporary file called addUserToGroup.ldif. (You can delete this file once its content
has been added to LDAP, so in this example, we will create it in the /tmp folder.)

[root]# cd /tmp
[root]# vi addUserToGroup.ldif

2. Add these lines to addUserToGroup.ldif:

Installation and Configuration

78 RPM installation

RPM installation 79

dn: cn=Engineering,ou=Users,dc=acme,dc=com
changetype: modify
add: member
member: cn=Al Smith,ou=Users,dc=acme,dc=com

3. Now add the contents of addUserToGroup.ldif file to LDAP.

[root]# ldapadd -f addUserToGroup.ldif -D cn=Manager,dc=acme,dc=com -w p@ssw0rd

Related topics

Trusting servers in Java

Prerequisites
Some of these instructions refer to JAVA_HOME, which must point to the same directory that Tomcat
uses. To set JAVA_HOME, do this:

[root]# source /etc/tomcat6/tomcat6.conf

Your system administrator might have defined Tomcat's JAVA_HOME in a different file.

Retrieve the server's X.509 public certificate
To retrieve the server's certificate, use the following command:

[root]# $JAVA_HOME/bin/keytool -printcert -rfc -sslserver <servername>:<port> >
/tmp/public.cert.pem

Replace <servername> with the server's host name and <port> with the secure port number. The default
port for https is 443. The default port for ldaps is 636. If successful, /tmp/public.cert.pem contains
the server's public certificate. Otherwise, /tmp/public.cert.pem contains an error message. This
message is typical: keytool error: java.lang.Exception: No certificate from the SSL
server. This message suggests that the server name or port is incorrect. Consult your IT department to
determine the correct server name and port.

Add the server's certificate to Java's keystore
Java stores trusted certificates in a database known as the keystore. Because each new version of Java
has its own keystore, you need to add the server certificate to the Java keystore (using the steps below)
every time you install a new version of Java.

Java's keystore is located at $JAVA_HOME/lib/security/cacerts. If Tomcat's JAVA_HOME points to
a JDK, then the keystore is located at $JAVA_HOME/jre/lib/security/cacerts. To add the server
certificate to the keystore, run the following command:

[root]# $JAVA_HOME/bin/keytool -import -trustcacerts -file /tmp/public.cert.pem -alias
<servername> -keystore $JAVA_HOME/lib/security/cacerts

You will be prompted for the keystore password, which is "changeit" by default.

Installation and Configuration

Your system administrator might have changed this password.

After you've entered the keystore password, you'll see the description of the server's certificate. At the
end of the description it prompts you to trust the certificate.

Trust this certificate? [no]:

Type yes and press Enter to add the certificate to the keystore.

Upgrading

Upgrading Moab HPC Suite - Basic Edition

It is highly recommended that you perform a full database backup before updating your database.
This can be done using the mongodump utility documented in the MongoDB documentation.

This upgrade removes all roles and permissions and recreates the default roles. If you have
modified any permissions or roles, you will need to recreate them after the upgrade is complete.

Because many system-level files and directories are accessed during the installation, the
instructions in this guide should be executed with root privileges.

You will see that the instructions execute commands as the root user. Please note that the same
commands will work for a non-root user with the sudo command.

To upgrade the RPM suite

1. Shut down all Adaptive applications.

[root]# service moab stop # you can also run mschedctl -k
[root]# service tomcat6 stop
[root]# service pbs_server stop

2. Back up your /opt/moab/tools directory to prevent losing modifications made to the perl scripts.

[root]# tar czf backup-tools.tar.gz /opt/moab/tools

3. Download the latest 8.0.1 build executable (moab-hpc-basic-suite-<version>-<timestamp>-
<OS>.tar.gz, for example) from the Adaptive Computing website.

The variable marked <version> is the desired version of the suite; for example, 8.0-2014061017-
8f96ac8d would be Moab 8.0 revision 2014061017 at changeset 8f96ac8d. The variable marked
<OS> indicates which OS the build was designed for.

4. Untar the package.

Installation and Configuration

80 RPM installation

http://www.mongodb.org/display/DOCS/Backups
http://www.adaptivecomputing.com/support/download-center/

RPM installation 81

[root]# tar xzf moab-hpc-basic-suite-<version>-<timestamp>-<OS>.tar.gz

5. Change directories into the root directory of the untarred directory.

Consider reviewing the README file for additional details on using the RPM distribution
tarball.

6. Install the suite repositories.

[root]# ./install-rpm-repos.sh [repository-directory] -y

The -y option will install with the default settings for the RPM suite.

The installation returns the following warning line:

Warning: RPMDB altered outside of yum.

This is normal and can safely be ignored.

The [<repository-directory>] option is the directory where you want to copy the RPMs. If no argument
is given, [<repository-directory>] defaults to /opt/adaptive-rpm-repository/rpm. If the
[<repository-directory>] already exists, RPMs will be added to the existing directory. No files are
overwritten in [<repository-directory>]. A repository file is also created in /etc/yum.repos.d/ and
points to the [<repository-directory>] location.

For ease in repository maintenance, the install script fails if Adaptive Computing RPMs are copied to
different directories. If a non-default [<repository-directory>] is specified, please use the same
directory for future updates.

The script installs the createrepo package and its dependencies. You must answer "y" to all the
questions in order for the RPM install to work. Additionally, the script installs the EPEL and 10gen
repositories.

7. Merge the new .repo files in /etc/yum.repos.d/ with the existing ones.

The install-rpm-repos.sh script will not overwrite existing RPM, GPG key or .repo files.
Because some .repo files may have changed from previous releases, some merging of the .repo
files is necessary. The newest files will have the .new extension.

Please compare older .repo files with the newer ones to ensure that the latest changes are
reflected. In some cases, there is no change, and you can remove the new file. In most cases,
however, it is safe to overwrite the old .repo file with the new one. For example:

[root]# mv /etc/yum.repos.d/AC.repo.new /etc/yum.repos.d/AC.repo

After making changes in the /etc/yum.repos.d directory, make sure to run the following
command to update the yum cache:

[root]# yum clean all

8. Install the 8.0.1 suite packages.

Installation and Configuration

[root]# yum install moab-hpc-basic-suite

The Moab and MWS RPMs automatically create a backup of all relevant files. These backups
are stored in /var/tmp/backup-<rpmName>-<timestamp>.tar.gz.

If changes are detected between any existing configuration files and new configuration files, a
version of the new configuration file will be saved under
<configurationFileLocation>/<fileName>.rpmnew.

9. Upgrade the mongo database. Adaptive Computing strongly recommends MongoDB version 2.4.x. New
versions of MongoDB are not supported. When upgrading, you must add 'exclude=mongodb-org
mongodb-org-server' to the mongo.repo file to maintain 2.4.x:

name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1
exclude=mongodb-org mongodb-org-server

Running yum upgrade without 'exclude=mongodb-org mongodb-org-server', will replace 2.4.x
with a more recent, and incompatible version.

Support for environments using 2.0 is now deprecated and will be removed in future releases. See
Upgrading from MongoDB 2.0 to 2.4.x on page 86 for instructions on updating from 2.0 to 2.4.x

10. Upgrade the schema of the mws database in MongoDB.

You must perform this step, regardless of whether you upgraded MongoDB to version 2.4.x or
not. (See previous step.)

Before updating this database, you should perform a full backup. This can be done by using
the mongodump utility documented in the MongoDB documentation.

Run the database migration script provided with MWS. (It is safe to run this script more than once. If
for any reason, errors occur during the execution of the script, run it again.)

[root]# mongo -u mws_user mws /opt/mws/utils/db-migrate.js -p

Depending on the number of events and services in the system, the script may take several
minutes to execute.

11. (Optional, but recommended) You must update the moab-verify-oracle-java RPM package
before you can proceed with the Java 7 upgrade. You may need to remove Java 6 before upgrading to
Java 7.

Installation and Configuration

82 RPM installation

http://www.mongodb.org/display/DOCS/Backups

RPM installation 83

Oracle Java 7 Runtime Environment is the recommended Java environment, but Java 6 is also
supported. All other versions of Java, including OpenJDK/IcedTea, GNU Compiler for Java, etc.
cannot run Moab Web Services.

Do the following:

a. Update the moab-verify-oracle-java RPM package.

[root]# yum update moab-verify-oracle-java

b. Download the Linux x64 RPM version of Oracle Java SE 7 JRE. (Go to the Oracle Java 7 download
page, copy the URL to the Linux x64 RPM version, then run the following command.)

[root]# wget <URL> -O jre-7-linux-x64.rpm

To verify that the download was successful, run the following on the RPM before installation:

[root]# rpm -qip jre-7-linux-x64.rpm

c. Run the following to install Java 7:

[root]# rpm -Uh jre-7-linux-x64.rpm

12. Merge the configuration files.

Whether or not to start with the old configuration file and add newer configuration options (or
vice versa) depends on the amount of customization you previously made in earlier versions.
In instances where you have modified very little, you should consider using the newer
configuration and merging site-specific settings from the old file into the new one. The
following steps highlight important changes between the 7.2.x default configuration and the
8.0.1 default configuration. Also note that new configuration files may have auto-generated
content for secret keys and default passwords—be careful to ensure that secret keys shared
between components are configured correctly.

The recommended layout for the /opt/moab/etc/ directory appears as follows:

[root]# ls -l /opt/moab/etc
total 29
-rw-r--r--. 1 root moab 2323 Nov 13 13:41 config.moab.pl
-rw-r--r--. 1 root moab 989 Nov 13 13:41 config.sql.pl
lrwxrwxrwx. 1 root root 14 Nov 13 15:46 moab.cfg -> moab.hpc.cfg
-rw-r--r--. 1 root moab 23500 Nov 13 15:43 moab.hpc.cfg
drwxr-xr-x. 2 root moab 4096 Nov 13 15:41 moab.d
-rw-r--r--. 1 root moab 391 Nov 13 13:41 moab.dat
-r--r--r--. 1 root root 493 Nov 6 16:14 moab.lic
-rw-------. 1 root moab 288 Nov 13 15:39 moab-private.cfg
lrwxrwxrwx. 1 root root 14 Nov 13 15:46 nami.cfg -> nami.hpc.cfg
-rw-r--r--. 1 root moab 563 Nov 13 15:43 nami.hpc.cfg

Installation and Configuration

http://java.com/en/download/linux_manual.jsp
http://java.com/en/download/linux_manual.jsp

Do the following:

a. Merge the /opt/moab/etc/moab-private.cfg file. Make sure that unique items in
/opt/moab/etc/moab-private.cfg.rpmnew are added to the existing
/opt/moab/etc/moab-private.cfg file. Include the new MWS RM credentials if you
configure MWS as a resource manager in /opt/moab/etc/moab.cfg:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

The default MWS credentials in 7.2.x were admin:adminpw. These have been changed in
8.0.1 to moab-admin:changeme! in order to mirror the Viewpoint default credentials. Use
whatever credentials you have configured in /opt/mws/etc/mws-config.groovy.

b. Merge customizations from /opt/moab/etc/moab.cfg and /opt/moab/etc/moab.d/* into
/opt/moab/etc/moab.hpc.cfg.

Although there are several ways to configure and merge changes into the
/opt/moab/etc/moab.cfg file, the following instructions outline the recommended best
practices. Deviations from these best practices may result in unexpected behavior or added difficulty
in future upgrades.

It is best to use the new default configuration file (/opt/moab/etc/moab.hpc.cfg) and merge
changes from previous files into that one. You will notice that content from the
/opt/moab/etc/moab.d/ directory has been merged into /opt/moab/etc/moab.hpc.cfg.
Ensure that custom configuration options in all files located in /opt/moab/etc/moab.d/
directory get merged in to /opt/moab/etc/moab.hpc.cfg.

You should avoid #include configurations.

Although the upgrade should have created a backup of the moab.cfg file (in
/var/tmp/backup-<rpmName>-<timestamp>.tar.gz), it is best to create your own backup
until you can confirm the updated configuration behaves as expected.

[root]# mv /opt/moab/etc/moab.cfg /opt/moab/etc/moab.hpc.cfg.bak

Once the changes have been merged to /opt/moab/etc/moab.hpc.cfg, configure Moab to use
the new file. The recommended configuration is to use a symlink called
/opt/moab/etc/moab.cfg that points to /opt/moab/etc/moab.hpc.cfg.

[root]# ln -s /opt/moab/etc/moab.hpc.cfg /opt/moab/etc/moab.cfg

c. Merge the /opt/mws/etc/mws-config.groovy file.

Merge the /opt/mws/etc/mws-config.groovy.rpmnew file with the old
/opt/mws/etc/mws-config.groovy file by editing /opt/mws/etc/mws-config.groovy.
(Note the addition of the "auditAppender" in the default logging configuration of
/opt/mws/etc/mws-config.groovy.rpmnew.)

Installation and Configuration

84 RPM installation

RPM installation 85

moab.messageQueue.port = 5563
moab.messageQueue.port = 5570

log4j = {
// Configure an appender for the events log.
def eventAppender = new org.apache.log4j.rolling.RollingFileAppender(
name: 'events', layout: pattern(conversionPattern: "%m%n"))

def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
fileNamePattern: '/opt/mws/log/events.%d{yyyy-MM-dd}',
activeFileName: '/opt/mws/log/events.log')

rollingPolicy.activateOptions()
eventAppender.setRollingPolicy(rollingPolicy)

// Configure an appender for the audit log.
def auditAppender = new org.apache.log4j.rolling.RollingFileAppender(

name: 'audit',
layout: new com.ace.mws.logging.ACPatternLayout("%j\t\t\t%c{1}

\t\t\t%m%n"))
def auditRollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(

fileNamePattern: '/opt/mws/log/audit.%d{yyyy-MM-dd}',
activeFileName: '/opt/mws/log/audit.log')

auditRollingPolicy.activateOptions()
auditAppender.setRollingPolicy(auditRollingPolicy)

appenders {
rollingFile name: 'stacktrace',

file: '/opt/mws/log/stacktrace.log',
maxFileSize: '100MB'

rollingFile name: 'rootLog',
file: '/opt/mws/log/mws.log',
maxFileSize: '100MB', //The maximum file size for a single log file
maxBackupIndex: 10, //Retain only the 10 most recent log files, delete

older logs to save space
layout:pattern(conversionPattern: '%d %p %c %m%n'), //Configures the

output format of each log entry
layout: new com.ace.mws.logging.ACPatternLayout(), //Configures the

output format of each log entry
threshold: org.apache.log4j.Level.ERROR //Ignore any logging entries

less verbose than this threshold

appender eventAppender
appender auditAppender

}

// NOTE: This definition is a catch-all for any logger not defined below
root {
error 'rootLog'

}

// Individual logger configurations
...

// Logs event information to the events log, not the rootLog
trace additivity:false, events:'com.ace.mws.events.EventFlatFileWriter'
// Logs audit information to the audit log, not the rootLog
trace additivity:false, audit:'mws.audit'

}

Additions are noted in red. Removed content is stricken out.

Installation and Configuration

If necessary, open port 5570 in the firewall.

Note that the mws.suite parameter and the mam.* parameters have been moved to a suite-
specific file in /opt/mws/etc/mws.d/ and do not need to exist in /opt/mws/etc/mws-
config.groovy.

Also note note the new *messageQueue parameters in /opt/mws/etc/mws-
config.groovy.rpmnew. These are required and the moab.messageQueue.secretKey value
should match the value located in /opt/moab/etc/moab-private.cfg.

13. Start all Adaptive applications.

[root]# service pbs_server start
[root]# service moab start
[root]# service tomcat6 start

Related topics

l Welcome on page xxi

Upgrading fromMongoDB 2.0 to 2.4.x
Adaptive Computing strongly recommends MongoDB version 2.4.x. Support for environments using 2.0 is
now deprecated and will be removed in future releases. Please refer to docs.mongodb.org for
instructions on how to upgrade MongoDB. Note that you must pay close attention to the information
regarding instances with auth enabled (as this is the recommended setup for Moab HPC Suite).

[root]# service mongod stop
[root]# yum remove mongo20-10gen-server mongo20-10gen
[root}# yum install mongo-10gen-server --exclude mongodb-org,mongodb-org-server
[root]# service mongod start

Note that the settings in the /etc/mongod.conf file were saved in
/etc/mongod.conf.rpmsave while removing MongoDB 2.0. You may need to be restore any
custom settings after MongoDB 2.4.x is installed in the new /etc/mongod.conf file (for example,
"auth = true").

After upgrading from 2.0 to 2.4.x, you should verify that the MongoDB credentials were preserved:

[root]# mongo -u mws_user mws -p
MongoDB shell version: 2.4.8
connecting to: mws
> show collections
event
mongeez
permission
...

Installation and Configuration

86 RPM installation

http://docs.mongodb.org/manual/release-notes/2.4-upgrade/

Troubleshooting 87

Troubleshooting
This page details some common problems and general solutions. It contains these sections:

l General issues on page 87

l Moab Web Services issues on page 91

General issues
l Moab error: "cannot determine local hostname" on page 87

l Moab error: "Moab will now exit due to license file not found" on page 88

l Other Moab issues on page 88

l Where do I change my passwords? on page 89

Moab error: "cannot determine local hostname"

service moab start
Starting moab: ERROR: cannot determine local hostname - node is misconfigured

[FAILED]

If you encounter this error when starting Moab, check the /opt/moab/etc/moab.cfg file to make
sure a valid host is configured. For example:

...
SCHEDCFG[Moab] SERVER=<moab-hostname>:42559
...

Also check /etc/hosts to be sure the host name resolves, at least with localhost:

...
127.0.0.1 <moab-hostname> localhost localhost.localdomain localhost4
localhost4.localdomain4
...

Installation and Configuration

Moab error: "Moabwill now exit due to license file not found"

service moab start
Starting moab: Moab will now exit due to license file not found
Please contact Adaptive Computing (sales@adaptivecomputing.com) to get a license
for your system

[FAILED]

If you encounter this error when starting Moab, make sure your Moab license file is named moab.lic
and is located in the /opt/moab/etc/ directory.

Also make sure the license is not expired. The expiration date is listed in the license file. For
example:

cat /opt/moab/etc/moab.lic
...
Expires after Tue Dec 31 10:43:46 2013
...

OtherMoab issues
Please see "Troubleshooting and System Maintenance" in the Moab Workload ManagerAdministrator
Guide.

Installation and Configuration

88 Troubleshooting

Troubleshooting 89

Where do I change my passwords?

Installation and Configuration

MWS super user username and password

The default username and password for MWS are moab-admin and changeme! (respectively).

To change the username and/or the password for the MWS super user:

1. Stop the tomcat6 and moab services.

[root]# service moab stop
[root]# service tomcat6 stop

2. Change the respective values in the following files:

l /opt/mws/etc/mws-config.groovy:

auth.defaultUser.username = "moab-admin"
auth.defaultUser.password = "changeme!"

l /opt/moab/etc/moab-private.cfg:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

l /opt/moab/etc/cloud.cfg:

CONFIG[default] MWS_USERNAME=moab-admin
CONFIG[default] MWS_PASSWORD=changeme!

3. Start the tomcat6 service.

[root]# service tomcat6 start

4. Start the moab service.

[root]# service moab start

MongoDB passwords

To change the passwords for MongoDB:

1. Stop the tomcat6 and moab services.

[root]# service moab stop
[root]# service tomcat6 stop

2. Change the passwords for the MongoDB accounts (i.e., moab_user and/or mws_user). For
instructions, see the MongoDB documentation.

3. Edit the password values in the following files:

l /opt/moab/etc/moab-private.cfg:

MONGOUSER moab_user
MONGOPASSWORD secret2

l /opt/mws/etc/mws-config.groovy:

Installation and Configuration

90 Troubleshooting

http://docs.mongodb.org/manual/tutorial/change-user-password/

Troubleshooting 91

// MongoDB configuration.
grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

4. Start the tomcat6 service.

[root]# service tomcat6 start

5. Start the moab service.

[root]# service moab start

Moab Web Services issues
If something goes wrong with MWS, look in the following files:

l The MWS log file. By default this is /opt/mws/log/mws.log.

l The Tomcat catalina.out file, usually in /var/log/tomcat6 or $CATALINA_HOME/logs.

If you remove the log4j configuration from mws-config.groovy, MWS writes its log files to
java.io.tmpdir. For Tomcat, java.io.tmpdir is generally set to $CATALINA_BASE/temp
or CATALINA_TMPDIR.

Here is a list of some errors and their fixes:

l MongoDB: Errors during MWS startup on page 92

l MongoDB: Out of semaphores to get db connection on page 94

l MongoDB: Connection wait timeout after 120000 ms on page 94

l java.lang.OutOfMemoryError: Java heap space on page 94

l java.lang.OutOfMemoryError: PermGen space on page 95

l SEVERE: Context [/mws] startup failed due to previous errors on page 95

l Moab Reached Maximum Number of Concurrent Client Connections on page 95

Installation and Configuration

MongoDB: Errors during MWS startup

Installation and Configuration

92 Troubleshooting

Troubleshooting 93

If the application fails to start and gives error messages such as these:

Error creating bean with name 'mongoDatastore'
can't say something; nested exception is com.mongodb.MongoException

ERROR grails.app.services.com.ace.mws.ErrorService 0
Error encountered while attempting to authenticate account or query database;

the MongoDB server is not available. Please verify connection to server
'/127.0.0.1:27017' and that MongoDB is running.

MongoDB is most likely not running, or the MongoDB host and port are misconfigured.

In this case, there are a few things to verify:

l (Not relevant if MongoDB is installed on a separate server) Is MongoDB installed?

Run the following commands to assess whether MongoDB is installed on the current server.

$ mongo
-bash: mongo: command not found

To remedy, install MongoDB, start the mongod service and then restart the tomcat6 service.
See Preparing for installation on page 24 or Installing Moab HPC Suite - Basic Edition on
page 62 for more information on how to install and configure MongoDB in the manual
installation guide or the RPM-based installation guide, respectively.

l (Only relevant if MongoDB is installed on a separate server) Is MWS configured to connect
to the remote MongoDB server?

Run the following commands to assess whether MongoDB is installed on the current server.

[root]# cat /opt/mws/etc/mws-config.groovy | grep 'grails.mongo'
// grails.mongo.username = "mws_user"
// grails.mongo.password = "<ENTER-KEY-HERE>"
// grails.mongo.host = "127.0.0.1"
// grails.mongo.port = 27017

Make sure that the grails.mongo.* options are configured in /opt/mws/etc/mws-
config.groovy for the remote MongoDB server and then restart the tomcat6 service.

[root]# service tomcat6 restart

l Is MWS configured to authenticate with MongoDB, and is MongoDB configured to enforce
authentication?

Run the following commands to assess the relevant MWS and MongoDB configurations.

[root]# cat /opt/mws/etc/mws-config.groovy | grep 'grails.mongo'
// grails.mongo.username = "mws_user"
// grails.mongo.password = "<ENTER-KEY-HERE>"

[root]# cat /etc/mongod.conf | grep 'auth'
#noauth = true
auth = true

The configuration above is problematic because the grails.mongo credentials are
commented out in the /opt/mws/etc/mws-config.groovy file while MongoDB is

Installation and Configuration

configured to enforce authentication ("auth = true"). Similar connection issues will exist if the
grails.mongo parameters do not match the credentials configured for the "mws_user" on
both the mws and moab databases in MongoDB.

(For upgrade scenarios only) If the application fails to start and gives the following message in
/opt/mws/etc/log/mws.log:

java.lang.Exception: The db-migrate.js script has not yet been run. Please see the
upgrade section of the installation guide for instructions.

Then the db-migrate.js script must be run to update the schema of the mws database in
MongoDB.

MongoDB: Out of semaphores to get db connection
To resolve this error, adjust the values of connectionsPerHost or
threadsAllowedToBlockForConnectionMultiplier by adding them to mws-
config.groovy. Example:

grails.mongo.options.connectionsPerHost = 60
grails.mongo.options.threadsAllowedToBlockForConnectionMultiplier = 10

For more information on these options, refer to these documents:

l "Configuration" (in the Moab Web Services Reference Guide), which briefly discusses a few
MongoDB driver options.

l The MongoOptions documentation, which contains full details on all MongoDB driver options.

You must restart Tomcat after adding, removing, or changing grails.mongo.options
parameters.

As shipped, mws-config.groovy does not contain any grails.mongo.options parameters. To
adjust their values, you need to add them to mws-config.groovy.

The default value of connectionsPerHost is normally 10, but MWS sets it internally to 50.

The default value of threadsAllowedToBlockForConnectionMultiplier is 5.

Any of the options listed in MongoOptions can be specified in mws-config.groovy. Just use
the prefix grails.mongo.options as shown above.

MongoDB: Connection wait timeout after 120000ms
See MongoDB: Out of semaphores to get db connection above.

java.lang.OutOfMemoryError: Java heap space
Increase the size of the heap using JVM options -Xms and -Xmx. Here are the suggested values:

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m-Xmx3g -XX:MaxPermSize=384m"

l -Xms: Set initial Java heap size.

l -Xmx: Set maximum Java heap size.

Installation and Configuration

94 Troubleshooting

http://api.mongodb.org/java/current/com/mongodb/MongoOptions.html

Component documentation 95

java.lang.OutOfMemoryError: PermGen space
Increase the size of the permanent generation using JVM option -XX:MaxPermSize. Here are the
suggested values:

CATALINA_OPTS="-DMWS_HOME=/opt/mws -Xms256m -Xmx3g -XX:MaxPermSize=384m"

SEVERE: Context [/mws] startup failed due to previous errors
If catalina.out contains this error, look in /opt/mws/log/mws.log and
/opt/mws/log/stacktrace.log for more details on the error.

Also ensure that the /opt/mws/etc/mws-config.groovy file can be read by the Tomcat user.
The permissions should appear as follows:

$ ls -al /opt/mws/etc/mws-config.groovy
-r-------- 1 tomcat tomcat 4056 Dec 4 12:07 mws-config.groovy

Moab ReachedMaximumNumber of Concurrent Client Connections
When this error message is encountered, simply add a new line to the moab.cfg file:

CLIENTMAXCONNECTIONS 256

This will change the Moab configuration when Moab is restarted. Run the following command to
immediately use the new setting:

[root]# changeparam CLIENTMAXCONNECTIONS 256

The number 256 above may be substituted for the desired maximum number of Moab client
connections.

Component documentation
The individual components of the suite have more options and allow for more configuration than can be
contained in this guide. Refer to the individual component guides for more information.

TORQUE

l TORQUE 5.0.1 Administrator Guide: HTML – PDF

Moab Workload Manager

l Moab Workload Manager 8.0.1 Administrator Guide: HTML

Moab Web Services

l Moab Web Services 8.0.1 Reference Guide: HTML

Related topics

l Preparing for installation on page 24
l Installing Moab HPC Suite - Basic Edition on page 62

Installation and Configuration

http://docs.adaptivecomputing.com/torque/torqueAdminGuide-4.5.0.pdf
http://docs.adaptivecomputing.com/torque/torqueAdminGuide-4.5.0.pdf

l Welcome on page xxi

Installation and Configuration

96 Component documentation

Moab Workload Manager overview 97

Moab Workload Manager

MoabWorkloadManager overview
Moab Workload Manager is a highly advanced scheduling and management system designed for clusters,
grids, and on-demand/utility computing systems. At a high level, Moab applies site policies and extensive
optimizations to orchestrate jobs, services, and other workload across the ideal combination of network,
compute, and storage resources. Moab enables true adaptive computing allowing compute resources to
be customized to changing needs and failed systems to be automatically fixed or replaced. Moab
increases system resource availability, offers extensive cluster diagnostics, delivers powerful QoS/SLA
features, and provides rich visualization of cluster performance through advanced statistics, reports, and
charts.

Moab works with virtually all major resource management and resource monitoring tools. From
hardware monitoring systems like IPMI to provisioning systems and storage managers, Moab takes
advantage of domain expertise to allow these systems to do what they do best, importing their state
information and providing them with the information necessary to better do their job. Moab uses its
global information to coordinate the activities of both resources and services, which optimizes overall
performance in-line with high-level mission objectives.

Related topics

l

Philosophy
The scheduler's purpose is to optimally use resources in a convenient and manageable way. System
users want to specify resources, obtain quick turnaround on their jobs, and have reliable resource
allocation. On the other hand, administrators want to understand both the workload and the resources
available. This includes current state, problems, and statistics—information about what is happening that
is transparent to the end-user. Administrators need an extensive set of options to enable management
enforced policies and tune the system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in many respects.
Moab matches jobs to nodes, dynamically reprovisions nodes to satisfy workload, and dynamically
modifies workload to better take advantage of available nodes. Moab allows sites to fully visualize
cluster and user behavior. It can integrate and orchestrate resource monitors, databases, identity
managers, license managers, networks, and storage systems, thus providing a cohesive view of the
cluster—a cluster that fully acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and virtual
clusters on demand and from scratch that are custom-tailored to a specific request. Moab can integrate
visualization services, web farms and application servers; it can create powerful grids of disparate
clusters. Moab maintains complete accounting and auditing records, exporting this data to information
services on command, and even providing professional billing statements to cover all used resources and
services.

Moab provides user- and application-centric web portals and powerful graphical tools for monitoring and
controlling every conceivable aspect of a cluster's objectives, performance, workload, and usage. Moab is
unique in its ability to deliver a powerful user-centric cluster with little effort. Its design is focused on
ROI, better use of resources, increased user effectiveness, and reduced staffing requirements.

This chapter contains these sections:

l Value of a Batch System on page 98

l Philosophy and Goals on page 99

l Workload on page 100

Value of a Batch System
Batch systems provide centralized access to distributed resources through mechanisms for submitting,
launching, and tracking jobs on a shared resource. This greatly simplifies use of the cluster's distributed
resources, allowing users a single system image in terms of managing jobs and aggregate compute
resources available. Batch systems should do much more than just provide a global view of the cluster,
though. Using compute resources in a fair and effective manner is complex, so a scheduler is necessary
to determine when, where, and how to run jobs to optimize the cluster. Scheduling decisions can be
categorized as follows:

l Traffic Control

l Mission Policies

l Optimizations

Traffic Control
A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster performance
decreases, job execution is delayed, and jobs may fail. Thus, the scheduler tracks resources and dedicates
requested resources to a particular job, which prevents use of such resources by other jobs.

Mission Policies
Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes, or mission
goals, there are usually rules about system use pertaining to who or what is allowed to use the system.
To be effective, a scheduler must provide a suite of policies allowing a site to map site mission policies
into scheduling behavior.

Moab Workload Manager

98 Philosophy

Philosophy 99

Optimizations
The compute power of a cluster is a limited resource; over time, demand inevitably exceeds supply.
Intelligent scheduling decisions facilitate higher job volume and faster job completion. Though subject to
the constraints of the traffic control and mission policies, the scheduler must use whatever freedom is
available to maximize cluster performance.

Philosophy and Goals
Managers want high system utilization and the ability to deliver various qualities of service to various
users and groups. They need to understand how available resources are delivered to users over time.
They also need administrators to tune cycle delivery to satisfy the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to measure them.
The value of statistics is best understood if optimal statistical values are known for a given environment,
including workload, resources, and policies. That is, if an administrator could determine that a site's
typical workload obtained an average queue time of 3.0 hours on a particular system, that would be a
useful statistic; however, if an administrator knew that through proper tuning the system could deliver
an average queue time of 1.2 hours with minimal negative side effects, that would be valuable
knowledge.

Moab development relies on extensive feedback from users, administrators, and managers. At its core, it
is a tool designed to manage resources and provide meaningful information about what is actually
happening on the system.

Management Goals
A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a manager must
deliver cycles to those projects that are most critical to the success of the funding organizations.
Management tasks to fulfill this role may include the following:

l Define cluster mission objectives and performance criteria

l Evaluate current and historical cluster performance

l Instantly graph delivered service

Administration Goals
An administrator must ensure that a cluster is effectively functioning within the bounds of the
established mission goals. Administrators translate goals into cluster policies, identify and correct
cluster failures, and train users in best practices. Given these objectives, an administrator may be tasked
with each of the following:

l Maximize utilization and cluster responsiveness

l Tune fairness policies and workload distribution

l Automate time-consuming tasks

l Troubleshoot job and resource failures

Moab Workload Manager

l Instruct users of available policies and in their use regarding the cluster

l Integrate new hardware and cluster services into the batch system

End-user Goals
End-users are responsible for learning about the resources available, the requirements of their
workload, and the policies to which they are subject. Using this understanding and the available tools,
they find ways to obtain the best possible responsiveness for their own jobs. A typical end-user may have
the following tasks:

l Manage current workload

l Identify available resources

l Minimize workload response time

l Track historical usage

l Identify effectiveness of prior submissions

Workload
Moab can manage a broad spectrum of compute workload types, and it can optimize all four workload
types within the same cluster simultaneously, delivering on the objectives most important to each
workload type. The workload types include the following:

l Batch Workload

l Interactive Workload

l Calendar Workload

l Service Workload

Batch Workload
Batch workload is characterized by a job command file that typically describes all critical aspects of the
needed compute resources and execution environment. With a batch job, the job is submitted to a job
queue, and is run somewhere on the cluster as resources become available. In most cases, the submitter
will submit multiple batch jobs with no execution time constraints and will process the job results as
they become available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver compute
resources to the most important workload and provide general SLA guarantees while maximizing system
utilization and minimizing average response time.

Interactive Workload
Interactive workload differs from batch in that requestors are interested in immediate response and are
generally waiting for the interactive request to be executed before going on to other activities. In many
cases, interactive submitters will continue to be attached to the interactive job, routing keystrokes and

Moab Workload Manager

100 Philosophy

Philosophy 101

other input into the job and seeing both output and error information in real-time. While interactive
workload may be submitted within a job file, commonly, it is routed into the cluster via a web or other
graphical terminal and the end-user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee immediate
execution or at least a minimal wait time for interactive jobs. Targeted service levels require
management when mixing batch and interactive jobs. Interactive and other jobs types can be dynamically
steered in terms of what they are executing as well as in terms of the quantity of resources required by
the application. Moab can apply dynamic or malleable job facilities to dynamically grow and shrink jobs
as needed to meet these changing constraints.

Calendar Workload
Calendar workload must be executed at a particular time and possibly in a regular periodic manner. For
such jobs, time constraints range from flexible to rigid. For example, some calendar jobs may need to
complete by a certain time, while others must run exactly at a given time each day or each week.

Moab can schedule the future and can thus guarantee resource availability at needed times to allow
calendar jobs to run as required. Furthermore, Moab provisioning features can locate or temporarily
create the needed compute environment to properly execute the target applications.

Service Workload
Moab can schedule and manage both individual applications and long-running or persistent services.
Service workload processes externally-generated transaction requests while Moab provides the
distributed service with needed resources to meet target backlog or response targets to the service.
Examples of service workload include parallel databases, web farms, and visualization services. Moab
can apply cluster, grid, or dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract manner. Using the
JOBCFG parameter, aspects of the service jobs can be discovered or configured with attributes describing
them as resource consumers possessing response time, backlog, state metrics, and associated QoS
targets. In addition, each application can specify the type of compute resource required (OS, arch,
memory, disk, network adapter, data store, and so forth) as well as the support environment (network,
storage, external services, and so forth).

If the QoS response time/backlog targets of the application are not being satisfied by the current
resource allocation, Moab evaluates the needs of this application against all other site mission objectives
and workload needs and determines what it must do to locate or create (that is, provision, customize,
secure) the needed resources. With the application resource requirement specification, a site may also
indicate proximity/locality constraints, partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the application via a
site customized URL. This URL can be responsible for whatever application-specific hand-shaking must be
done to launch and initialize the needed components of the distributed application upon the new
resources. Moab engages in the hand-off by providing needed context and resource information and by
launching the URL at the appropriate time.

Moab Workload Manager

Related topics

l Malleable Jobs
l QOS/SLA Enforcement

Scheduler Basics
l Initial Moab Configuration on page 102

l Layout of Scheduler Components on page 104

l Scheduling Environment on page 106

o Scheduling Dictionary on page 112

l Scheduling Iterations and Job Flow on page 119

l Configuring the Scheduler on page 122

l Credential Overview on page 125

o Job Attributes/Flags Overview on page 152

Initial Moab Configuration

Configuring an RPM-based install of Moab
When Moab is installed via an RPM source, the moab.cfg file contains only one directive - an #IMPORT
line that imports all the configuration files in /opt/moab/etc. The usual configuration settings that are
normally contained in moab.cfg have been moved to moab-server.cfg. Moab still reads the moab.cfg
file and, due to the #INCLUDE directive, reads in all the other configuration files as well.

To configure Moab in the case of an RPM install, you can modify the moab.cfg file, the moab-
server.cfg file, or any of the configuration files that are read in by moab.cfg such as the accounting
manager configuration file (am.cfg) or the resource manager configuration file (rm.cfg).

The RPMs allow for a client install of Moab, instead of a server install. In this instance, the moab-
server.cfg file is replaced with a moab-client.cfg file. The server and client RPMs cannot be
installed on the same machine.

Basic configuration of Moab
After Moab is installed, there may be minor configuration remaining within the primary configuration
file, moab.cfg. While the configure script automatically sets these parameters, sites may choose to
specify additional parameters. If the values selected in configure are satisfactory, then this section
may be safely ignored.

The parameters needed for proper initial startup include the following:

Moab Workload Manager

102 Scheduler Basics

Scheduler Basics 103

Parameter Instructions

SCHEDCFG The SCHEDCFG parameter specifies how the Moab server will execute and communicate with
client requests. The SERVER attribute allows Moab client commands to locate the Moab server and
is specified as a URL or in <HOST>[:<PORT>] format. For example:

SCHEDCFG[orion] SERVER=cw.psu.edu

Specifying the server in the Moab configuration file is optional. If nothing is specified,
gethostname() is called. You can restart Moab and run mdiag -S to confirm that the correct host
name is specified.

The SERVER attribute can also be set using the environment variable $MOABSERVER.
Using this variable allows you to quickly change to the Moab server that client commands
will connect to.

> export MOABSERVER=cluster2:12221

ADMINCFG Moab provides role-based security enabled via multiple levels of admin access. Users who are to
be granted full control of all Moab functions should be indicated by setting the ADMINCFG[1]
parameter. The first user in this USERS attribute list is considered the primary administrator. It is
the ID under which Moab will execute. For example, the following may be used to enable users
greg and thomas as level 1 admins:

ADMINCFG[1] USERS=greg,thomas

Moab may only be launched by the primary administrator user ID.

The primary administrator should be configured as a manager/operator/administrator in
every resource manager with which Moab will interface.

If the msub command will be used, then "root" must be the primary administrator.

Moab's home directory and contents should be owned by the primary administrator.

RMCFG For Moab to properly interact with a resource manager, the interface to this resource manager
must be defined as described in the Resource Manager Configuration Overview. Further, it is
important that the primary Moab administrator also be a resource manager administrator within
each of those systems. For example, to interface to a TORQUE resource manager, the following may
be used:

RMCFG[torque1] TYPE=pbs

Related topics

l Parameter Overview
l mdiag -C command (for diagnosing current Moab configuration)

Moab Workload Manager

Layout of Scheduler Components
Moab is initially unpacked into a simple one-deep directory structure. What follows demonstrates the
default layout of scheduler components; some of the files (such as log and statistics files) are created
while Moab runs.

l * $(MOABHOMEDIR) (default is /opt/moab and can be modified via the --with-homedir
parameter during ./configure) contains the following files:

Filename Description

.moab.ck Checkpoint file

.moab.pid Lock file

moab.lic License file

contrib/ Directory containing contributed code and plug-ins

docs/ Directory for documentation

etc/ Directory for configuration files

moab.cfg General configuration file

moab.dat Configuration file generated by Moab Cluster Manager

moab-private.cfg Secure configuration file containing private information

lib/ Directory for library files (primarily for tools/)

log/ Directory for log files

moab.log Log file

moab.log.1 l Previous log file

Moab Workload Manager

104 Scheduler Basics

Scheduler Basics 105

Filename Description

stats/ Directory for statistics files:
o events.<date> – event files
o {DAY|WEEK|MONTH|YEAR}.<date> – usage profiling

data
o FS.<PARTITION>.<epochtime> – fairshare usage

data

samples/ Directory for sample configuration files, simulation trace files, etc.

l $(MOABINSTDIR) (default is /opt/moab and can be modified via the --prefix parameter
during ./configure) contains the following files:

Filename Description

bin/ Directory for client commands (for example, showq, setres, etc.)

sbin/ Directory for server daemons

moab Moab binary

tools/ Directory for resource manager interfaces and local scripts

l /etc/moab.cfg – If the Moab home directory cannot be found at startup, this file is checked to
see if it declares the Moab home directory. If a declaration exists, the system checks the declared
directory to find Moab. The syntax is: MOABHOMEDIR=<DIRECTORY>.

If you want to run Moab from a different directory other than /opt/moab but did not use the --with-
homedir parameter during ./configure, you can set the $MOABHOMEDIR environment variable,
declare the home directory in the /etc/moab.cfg file, or use the -C command line option when using
the Moab server or client commands to specify the configuration file location.

When Moab runs, it creates a log file, moab.log, in the log/ directory and creates a statistics file in
the stats/ directory with the naming convention events.WWW_MMM_DD_YYYY (for example,
events.Sat_Oct_10_2009). Additionally, a checkpoint file, .moab.ck, and lock file, .moab.pid, are
maintained in the Moab home directory.

Layout of Scheduler Components with Integrated Database Enabled
If USEDATABASE INTERNAL is configured, the layout of scheduler components varies slightly. The
.moab.ck file and usage profiling data (stat/{DAY|WEEK|MONTH|YEAR}.<date>) are stored in the
moab.db database. In addition, the event information is stored in both event files:
(stat/events.<date>) and moab.db.

Moab Workload Manager

Related topics

l Commands Overview
l Installation

Scheduling Environment
Moab functions by manipulating a number of elementary objects, including jobs, nodes, reservations, QoS
structures, resource managers, and policies. Multiple minor elementary objects and composite objects
are also used; these objects are defined in the scheduling dictionary.

l Jobs

o Job States

o Requirement (or Req)

l Nodes

l Advance Reservations

l Policies

l Resources

l Task

l PE

l Class (or Queue)

l Resource Manager (RM)

Moab functions by manipulating a number of elementary objects, including jobs, nodes, reservations, QoS
structures, resource managers, and policies. Multiple minor elementary objects and composite objects
are also used; these objects are defined in the scheduling dictionary.

Jobs
Job information is provided to the Moab scheduler from a resource manager such as Loadleveler, PBS,
Wiki, or LSF. Job attributes include ownership of the job, job state, amount and type of resources
required by the job, and a wallclock limit indicating how long the resources are required. A job consists
of one or more task groups, each of which requests a number of resources of a given type; for example, a
job may consist of two task groups, the first asking for a single master task consisting of 1 IBM SP node
with at least 512 MB of RAM and the second asking for a set of slave tasks such as 24 IBM SP nodes with
at least 128 MB of RAM. Each task group consists of one or more tasks where a task is defined as the
minimal independent unit of resources. By default, each task is equivalent to one processor. In SMP
environments, however, users may wish to tie one or more processors together with a certain amount of
memory and other resources.

Moab Workload Manager

106 Scheduler Basics

Scheduler Basics 107

Job States

The job's state indicates its current status and eligibility for execution and can be any of the values listed
in the following tables:

Table 3-1: Pre-execution states

State Definition

Deferred Job that has been held by Moab due to an inability to schedule the job under current conditions.
Deferred jobs are held for DEFERTIME before being placed in the idle queue. This process is
repeated DEFERCOUNT times before the job is placed in batch hold.

Hold Job is idle and is not eligible to run due to a user, (system) administrator, or batch system hold (also,
batchhold, systemhold, userhold).

Idle Job is currently queued and eligible to run but is not executing (also, notqueued).

NotQueued The job has not been queued.

Unknown Moab cannot determine the state of the job.

Table 3-2: Execution states

State Definition

Starting Batch system has attempted to start the job and the job is currently performing pre-start tasks that
may include provisioning resources, staging data, or executing system pre-launch scripts.

Running Job is currently executing the user application.

Suspended Job was running but has been suspended by the scheduler or an administrator; user application is
still in place on the allocated compute resources, but it is not executing.

Table 3-3: Post-execution states

State Definition

Completed Job has completed running without failure.

Removed Job has run to its requested walltime successfully but has been canceled by the scheduler or
resource manager due to exceeding its walltime or violating another policy; includes jobs canceled
by users or administrators either before or after a job has started.

Moab Workload Manager

State Definition

Vacated Job canceled after partial execution due to a system failure.

Task Group (or Req)

A job task group (or req) consists of a request for a single type of resources. Each task group consists of
the following components:

Component Description

Task Defin-
ition

A specification of the elementary resources that compose an individual task.

Resource
Constraints

A specification of conditions that must be met for resource matching to occur. Only resources
from nodes that meet all resource constraints may be allocated to the job task group.

Task Count The number of task instances required by the task group.

Task List The list of nodes on which the task instances are located.

Task Group
Statistics

Statistics tracking resource utilization.

Nodes
Moab recognizes a node as a collection of resources with a particular set of associated attributes. This
definition is similar to the traditional notion of a node found in a Linux cluster or supercomputer wherein
a node is defined as one or more CPUs, associated memory, and possibly other compute resources such
as local disk, swap, network adapters, and software licenses. Additionally, this node is described by
various attributes such as an architecture type or operating system. Nodes range in size from small
uniprocessor PCs to large symmetric multiprocessing (SMP) systems where a single node may consist of
hundreds of CPUs and massive amounts of memory.

In many cluster environments, the primary source of information about the configuration and status of a
compute node is the resource manager. This information can be augmented by additional information
sources including node monitors and information services. Further, extensive node policy and node
configuration information can be specified within Moab via the graphical tools or the configuration file.
Moab aggregates this information and presents a comprehensive view of the node configuration, usages,
and state.

While a node in Moab in most cases represents a standard compute host, nodes may also be used to
represent more generalized resources. The GLOBAL node possesses floating resources that are available
cluster wide, and created virtual nodes (such as network, software, and data nodes) track and allocate
resource usage for other resource types.

Moab Workload Manager

108 Scheduler Basics

Scheduler Basics 109

For additional node information, see General Node Administration.

Advance Reservations
An advance reservation dedicates a block of specific resources for a particular use. Each reservation
consists of a list of resources, an access control list, and a time range for enforcing the access control
list. The reservation ensures the matching nodes are used according to the access controls and policy
constraints within the time frame specified. For example, a reservation could reserve 20 processors and
10 GB of memory for users Bob and John from Friday 6:00 a.m. to Saturday 10:00 p.m. Moab uses advance
reservations extensively to manage backfill, guarantee resource availability for active jobs, allow
service guarantees, support deadlines, and enable metascheduling. Moab also supports both regularly
recurring reservations and the creation of dynamic one-time reservations for special needs. Advance
reservations are described in detail in the Advance Reservations overview.

Policies
A configuration file specifies policies controls how and when jobs start. Policies include job prioritization,
fairness policies, fairshare configuration policies, and scheduling policies.

Resources
Jobs, nodes, and reservations all deal with the abstract concept of a resource. A resource in the Moab
world is one of the following:

Resource Description

processors Specify with a simple count value

memory Specify real memory or RAM in megabytes (MB)

swap Specify virtual memory or swap in megabytes (MB)

disk Specify local disk in megabytes (MB)

In addition to these elementary resource types, there are two higher level resource concepts used within
Moab: Task and the processor equivalent, or (PE).

Task
A task is a collection of elementary resources that must be allocated together within a single node. For
example, a task may consist of one processor, 512 MB of RAM, and 2 GB of local disk. A key aspect of a
task is that the resources associated with the task must be allocated as an atomic unit, without spanning
node boundaries. A task requesting 2 processors cannot be satisfied by allocating 2 uniprocessor nodes,
nor can a task requesting 1 processor and 1 GB of memory be satisfied by allocating 1 processor on 1
node and memory on another.

Moab Workload Manager

In Moab, when jobs or reservations request resources, they do so in terms of tasks typically using a task
count and a task definition. By default, a task maps directly to a single processor within a job and maps
to a full node within reservations. In all cases, this default definition can be overridden by specifying a
new task definition.

Within both jobs and reservations, depending on task definition, it is possible to have multiple tasks from
the same job mapped to the same node. For example, a job requesting 4 tasks using the default task
definition of 1 processor per task, can be satisfied by 2 dual processor nodes.

PE
The concept of the processor equivalent, or PE, arose out of the need to translate multi-resource
consumption requests into a scalar value. It is not an elementary resource but rather a derived resource
metric. It is a measure of the actual impact of a set of requested resources by a job on the total
resources available system wide. It is calculated as follows:

PE = MAX(ProcsRequestedByJob / TotalConfiguredProcs,
MemoryRequestedByJob / TotalConfiguredMemory,
DiskRequestedByJob / TotalConfiguredDisk,
SwapRequestedByJob / TotalConfiguredSwap) * TotalConfiguredProcs

For example, if a job requested 20% of the total processors and 50% of the total memory of a 128-
processor MPP system, only two such jobs could be supported by this system. The job is essentially using
50% of all available resources since the system can only be scheduled to its most constrained resource -
memory in this case. The processor equivalents for this job should be 50% of the processors, or PE = 64.

Another example: Assume a homogeneous 100-node system with 4 processors and 1 GB of memory per
node. A job is submitted requesting 2 processors and 768 MB of memory. The PE for this job would be
calculated as follows:

PE = MAX(2/(100*4), 768/(100*1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the memory on a 4-processor node.

The calculation works equally well on homogeneous or heterogeneous systems, uniprocessor or large
SMP systems.

Class (or Queue)
A class (or queue) is a logical container object that implicitly or explicitly applies policies to jobs. In
most cases, a class is defined and configured within the resource manager and associated with one or
more of the following attributes or constraints:

Attribute Description

Default Job
Attributes

A queue may be associated with a default job duration, default size, or default resource require-
ments.

Moab Workload Manager

110 Scheduler Basics

Scheduler Basics 111

Attribute Description

Host Con-
straints

A queue may constrain job execution to a particular set of hosts.

Job Con-
straints

A queue may constrain the attributes of jobs that may be submitted, including setting limits such
as max wallclock time and minimum number of processors.

Access List A queue may constrain who may submit jobs into it based on such things as user lists and group
lists.

Special
Access

A queue may associate special privileges with jobs including adjusted job priority.

As stated previously, most resource managers allow full class configuration within the resource
manager. Where additional class configuration is required, the CLASSCFG parameter may be used.

Moab tracks class usage as a consumable resource allowing sites to limit the number of jobs using a
particular class. This is done by monitoring class initiators that may be considered to be a ticket to run
in a particular class. Any compute node may simultaneously support several types of classes and any
number of initiators of each type. By default, nodes will have a one-to-one mapping between class
initiators and configured processors. For every job task run on the node, one class initiator of the
appropriate type is consumed. For example, a 3-processor job submitted to the class "batch" consumes
three batch class initiators on the nodes where it runs.

Using queues as consumable resources allows sites to specify various policies by adjusting the class
initiator to node mapping. For example, a site running serial jobs may want to allow a particular 8-
processor node to run any combination of batch and special jobs subject to the following constraints:

l Only 8 jobs of any type allowed simultaneously.

l No more than 4 special jobs allowed simultaneously.

To enable this policy, the site may set the node's MAXJOB policy to 8 and configure the node with 4
special class initiators and 8 batch class initiators.

In virtually all cases, jobs have a one-to-one correspondence between processors requested and class
initiators required. However, this is not a requirement, and with special configuration, sites may choose
to associate job tasks with arbitrary combinations of class initiator requirements.

In displaying class initiator status, Moab signifies the type and number of class initiators available using
the format [<CLASSNAME>:<CLASSCOUNT>]. This is most commonly seen in the output of node status
commands indicating the number of configured and available class initiators, or in job status commands
when displaying class initiator requirements.

Resource Manager (RM)
While other systems may have more strict interpretations of a resource manager and its
responsibilities, Moab's multi-resource manager support allows a much more liberal interpretation. In
essence, any object that can provide environmental information and environmental control can be used

Moab Workload Manager

as a resource manager, including sources of resource, workload, credential, or policy information such as
scripts, peer services, databases, web services, hardware monitors, or even flats files. Likewise, Moab
considers to be a resource manager any tool that provides control over the cluster environment whether
that be a license manager, queue manager, checkpoint facility, provisioning manager, network manager,
or storage manager.

Moab aggregates information from multiple unrelated sources into a larger more complete world view
of the cluster that includes all the information and control found within a standard resource manager
such as TORQUE, including node, job, and queue management services. For more information, see the
Resource Managers and Interfaces overview.

Arbitrary Resource

Nodes can also be configured to support various arbitrary resources. Use the NODECFG parameter to
specify information about such resources. For example, you could configure a node to have 256 MB RAM,
4 processors, 1 GB Swap, and 2 tape drives.

Scheduling Dictionary

Account

Definition A credential also known as "project ID." Multiple users may be associated a single account ID and
each user may have access to multiple accounts. (See credential definition and ACCOUNTCFG para-
meter.)

Example ACCOUNT=hgc13

ACL (Access Control List)

Definition In the context of scheduling, an access control list is used and applied much as it is elsewhere. An
ACL defines what credentials are required to access or use particular objects. The principal objects to
which ACLs are applied are reservations and QoSs. ACLs may contain both allow and deny state-
ments, include wildcards, and contain rules based on multiple object types.

Example Reservation META1 contains 4 access statements.
l Allow jobs owned by user "john" or "bob "
l Allow jobs with QoS "premium"
l Deny jobs in class "debug"
l Allow jobs with a duration of less than 1 hour

Moab Workload Manager

112 Scheduler Basics

Scheduler Basics 113

Allocation

Definition A logical, scalar unit assigned to users on a credential basis, providing access to a particular quantity
of compute resources. Allocations are consumed by jobs associated with those credentials.

Example ALLOCATION=30000

Class

Definition (See Queue) A class is a logical container object that holds jobs allowing a site to associate various
constraints and defaults to these jobs. Class access can also be tied to individual nodes defining
whether a particular node will accept a job associated with a given class. Class based access to a node
is denied unless explicitly allowed via resource manager configuration. Within Moab, classes are tied
to jobs as a credential.

Example job "cw.073" is submitted to class batch
node "cl02" accepts jobs in class batch
reservation weekend allows access to jobs in class batch

CPU

Definition A single processing unit. A CPU is a consumable resource. Nodes typically consist of one or more
CPUs. (same as processor)

Credential

Definition An attribute associated with jobs and other objects that determines object identity. In the case of
schedulers and resource managers, credential based policies and limits are often established. At
submit time, jobs are associated with a number of credentials such as user, group , account , QoS, and
class. These job credentials subject the job to various polices and grant it various types of access.
In most cases, credentials set both the privileges of the job and the ID of the actual job executable.

Example Job "cw.24001" possesses the following credentials:

USER=john;GROUP=staff;ACCOUNT=[NONE];
QOS=[DEFAULT];CLASS=batch

Disk

Definition A quantity of local disk available for use by batch jobs. Disk is a consumable resource.

Moab Workload Manager

Execution Environment

Definition A description of the environment in which the executable is launched. This environment may
include attributes such as the following:

l an executable
l command line arguments
l input file
l output file
l local user ID
l local group ID
l process resource limits

Example Job "cw.24001" possesses the following execution environment:

EXEC=/bin/sleep;ARGS="60";
INPUT=[NONE];OUTPUT=[NONE];
USER=loadl;GROUP=staff;

Fairshare

Definition Amechanism that allows historical resource utilization information to be incorporated into job pri-
ority decisions.

Fairness

Definition The access to shared compute resources that each user is granted. Access can be equal or based on
factors such as historical resource usage, political issues, and job value.

Group

Definition A credential typically directly mapping to a user's UNIX group ID.

Job

Definition The fundamental object of resource consumption. A job contains the following components:
l A list of required consumable resources
l A list of resource constraints controlling which resources may be allocated to the
job

l A list of job constraints controlling where, when, and how the job should run
l A list of credentials
l An execution environment

Moab Workload Manager

114 Scheduler Basics

Scheduler Basics 115

Job Constraints

Definition A set of conditions that must be fulfilled for the job to start. These conditions are far reaching and
may include one or more of the following:

l When the job may run. (After time X, within Y minutes.)
l Which resources may be allocated. (For example, node must possess at least 512 MB of RAM,
run only in partition or Partition C, or run on HostA and HostB.)

l Starting job relative to a particular event. (Start after job X successfully completes.)

Example RELEASETIME>='Tue Feb 12, 11:00AM'
DEPEND=AFTERANY:cw.2004
NODEMEMORY==256MB

Memory

Definition A quantity of physical memory (RAM). Memory is provided by compute nodes. It is required as a con-
straint or consumed as a consumable resource by jobs. Within Moab, memory is tracked and repor-
ted in megabytes (MB).

Example Node "node001" provides the following resources:
PROCS=1,MEMORY=512,SWAP=1024

"Job cw.24004" consumes the following resources per task:
PROCS=1,MEMORY=256

Node

Definition A node is the fundamental object associated with compute resources. Each node contains the
following components:

l A list of consumable resources
l A list of node attributes

Node Attribute

Definition A node attribute is a non-quantitative aspect of a node. Attributes typically describe the node itself
or possibly aspects of various node resources such as processors or memory. While it is probably not
optimal to aggregate node and resource attributes together in this manner, it is common practice.
Common node attributes include processor architecture, operating system, and processor speed.
Jobs often specify that resources be allocated from nodes possessing certain node attributes.

Example ARCH=AMD,OS=LINUX24,PROCSPEED=950

Moab Workload Manager

Node Feature

Definition A node feature is a node attribute that is typically specified locally via a configuration file. Node fea-
tures are opaque strings associated with the node by the resource manager that generally only have
meaning to the end-user, or possibly to the scheduler. A node feature is commonly associated with a
subset of nodes allowing end-users to request use of this subset by requiring that resources be alloc-
ated from nodes with this feature present. In many cases, node features are used to extend the
information provided by the resource manager.

Example FEATURE=s950,pIII,geology

This may be used to indicate that the node possesses a 950 MHz Pentium III processor and
that the node is owned by the Geology department.

Processor

Definition A processing unit. A processor is a consumable resource. Nodes typically consist of one or more pro-
cessors. (same as CPU)

Quality of Service (QoS)

Definition An object that provides special services, resources, and so forth.

Queue

Definition (see Class)

Reservation

Definition An object that reserves a specific collection or resources for a specific timeframe for use by jobs that
meet specific conditions.

Example Reserve 24 processors and 8 GB of memory from time T1 to time T2 for use by user X or jobs in the
class batch.

Resource

Definition Hardware, generic resources such as software, and features available on a node, including memory,
disk, swap, and processors.

Moab Workload Manager

116 Scheduler Basics

Scheduler Basics 117

Resource, Available

Definition A compute node's configured resources minus the maximum of the sum of the resources utilized by
all job tasks running on the node and the resources dedicated; that is, R.Available = R.Configure -
MAX(R.Dedicated,R.Utilized).
In most cases, resources utilized will be associated with compute jobs that the batch system has
started on the compute nodes, although resource consumption may also come from the operating
system or rogue processes outside of the batch system's knowledge or control. Further, in a well-
managed system, utilized resources are less than or equal to dedicated resources and when
exceptions are detected, one or more usage-based limits are activated to preempt the jobs violating
their requested resource usage.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Resources available to user jsmith on node "cl003":

l 2 processors
l 392 MB memory

Resources available to a user other than jsmith on node "cl003":
l 1 processor
l 142 MB memory

Resource, Configured

Definition The total amount of consumable resources that are available on a compute node for use by job tasks.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Configured resources for node "cl003":

l 4 processors
l 512 MB memory

Moab Workload Manager

Resource, Consumable

Definition Any object that can be used (that is, consumed and thus made unavailable to another job) by, or
dedicated to a job is considered to be a resource. Common examples of resources are a node's
physical memory or local disk. As these resources may be given to one job and thus become
unavailable to another, they are considered to be consumable. Other aspects of a node, such as its
operating system, are not considered to be consumable since its use by one job does not preclude its
use by another. Note that some node objects, such as a network adapter, may be dedicated under
some operating systems and resource managers and not under others. On systems where the
network adapter cannot be dedicated and the network usage per job cannot be specified or tracked,
network adapters are not considered to be resources, but rather attributes.
Nodes possess a specific quantity of consumable resources such as real memory, local disk, or
processors. In a resource management system, the node manager may choose to report only those
configured resources available to batch jobs. For example, a node may possess an 80-GB hard drive
but may have only 20 GB dedicated to batch jobs. Consequently, the resource manager may report
that the node has 20 GB of local disk available when idle. Jobs may explicitly request a certain
quantity of consumable resources.

Resource, Constraint

Definition A resource constraint imposes a rule on which resources can be used to match a resource request.
Resource constraints either specify a required quantity and type of resource or a required node
attribute. All resource constraints must be met by any given node to establish a match.

Resource, Dedicated

Definition A job may request that a block of resources be dedicated while the job is executing. At other times, a
certain number of resources may be reserved for use by a particular user or group. In these cases,
the scheduler is responsible for guaranteeing that these resources, utilized or not, are set aside and
made unavailable to other jobs.

Example Node " cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Dedicated resources for node "cl003":

l 1 processor
l 250 MB memory

Resource, Utilized

Definition All consumable resources actually used by all job tasks running on the compute node.

Moab Workload Manager

118 Scheduler Basics

Scheduler Basics 119

Resource, Utilized

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Utilized resources for node "cl003":

l 2 processors
l 120 MB memory

Swap

Definition A quantity of virtual memory available for use by batch jobs. Swap is a consumable resource
provided by nodes and consumed by jobs.

Task

Definition An atomic collection of consumable resources.

User, Global

Definition The user credential used to provide access to functions and resources. In local scheduling, global
user IDs map directly to local user IDs.

User, Local

Definition The user credential under which the job executable will be launched.

Workload

Definition Generalized term.

Scheduling Iterations and Job Flow
l Scheduling Iterations

o Update State Information

o Handle User Requests

Moab Workload Manager

o Perform Next Scheduling Cycle

l Detailed Job Flow

o Determine Basic Job Feasibility

o Prioritize Jobs

o Enforce Configured Throttling Policies

o Determine Resource Availability

o Allocate Resources to Job

o Launch Job

Scheduling Iterations
In any given scheduling iteration, many activities take place, examples of which are listed below:

l Refresh reservations

l Schedule reserved jobs

l Schedule priority jobs

l Backfill jobs

l Update statistics

l Update State Information

l Handle User Requests

l Perform Next Scheduling Cycle

Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up-to-date information on
compute resources, workload, and policy configuration. On most systems, these calls are to a centralized
resource manager daemon that possesses all information. Jobs may be reported as being in any of the
following states listed in the job state table.

Handle User Requests

User requests include any call requesting state information, configuration changes, or job or resource
manipulation commands. These requests may come in the form of user client calls, peer daemon calls, or
process signals.

Perform Next Scheduling Cycle

Moab operates on a polling/event driven basis. When all scheduling activities complete, Moab processes
user requests until a new resource manager event is received or an internal event is generated.
Resource manager events include activities such as a new job submission or completion of an active job,
addition of new node resources, or changes in resource manager policies. Internal events include

Moab Workload Manager

120 Scheduler Basics

Scheduler Basics 121

administrator schedule requests, reservation activation/deactivation, or the expiration of the
RMPOLLINTERVAL timer.

Detailed Job Flow

Determine Basic Job Feasibility

The first step in scheduling is determining which jobs are feasible. This step eliminates jobs that have
job holds in place, invalid job states (such as Completed, Not Queued, Deferred), or unsatisfied
preconditions. Preconditions may include stage-in files or completion of preliminary job steps.

Prioritize Jobs

With a list of feasible jobs created, the next step involves determining the relative priority of all jobs
within that list. A priority for each job is calculated based on job attributes such as job owner, job size,
and length of time the job has been queued.

Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many jobs, nodes, processors, and so
forth are allowed on a per credential basis. Jobs that violate these policies are not considered for
scheduling.

Determine Resource Availability

For each job, Moab attempts to locate the required compute resources needed by the job. For a match to
be made, the node must possess all node attributes specified by the job and possess adequate available
resources to meet the "TasksPerNode" job constraint. (Default "TasksPerNode" is 1.) Normally, Moab
determines that a node has adequate resources if the resources are neither utilized by nor dedicated to
another job using the calculation.

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).

The NODEAVAILABILITYPOLICY on page 979 parameter can be modified to adjust this behavior.

Allocate Resources to Job

If adequate resources can be found for a job, the node allocation policy is then applied to select the best
set of resources. These allocation policies allow selection criteria such as speed of node, type of
reservations, or excess node resources to be figured into the allocation decision to improve the
performance of the job and maximize the freedom of the scheduler in making future scheduling decisions.

Launch Job

With the resources selected and task distribution mapped, the scheduler then contacts the resource
manager and informs it where and how to launch the job. The resource manager then initiates the actual
job executable.

Moab Workload Manager

Configuring the Scheduler
l Adjusting Server Behavior

o Logging

o Checkpointing

o Client Interface

o Scheduler Mode

o Configuring a job ID offset on page 124

Scheduler configuration is maintained using the flat text configuration file moab.cfg. All configuration
file entries consist of simple <PARAMETER> <VALUE> pairs that are whitespace delimited. Parameter
names are not case sensitive but <VALUE> settings are. Some parameters are array values and should
be specified as <PARAMETER>[<INDEX>] (Example: QOSCFG[hiprio] PRIORITY=1000); the <VALUE>
settings may be integers, floats, strings, or arrays of these. Some parameters can be specified as arrays
wherein index values can be numeric or alphanumeric strings. If no array index is specified for an array
parameter, an index of zero (0) is assumed. The example below includes both array based and non-array
based parameters:

SCHEDCFG[cluster2] SERVER=head.c2.org MODE=NORMAL
LOGLEVEL 6
LOGDIR /var/tmp/moablog

See the parameters documentation for information on specific parameters.

The moab.cfg file is read when Moab is started up or recycled. Also, the mschedctl -m command can be
used to reconfigure the scheduler at any time, updating some or all of the configurable parameters
dynamically. This command can be used to modify parameters either permanently or temporarily. For
example, the command mschedctl -m LOGLEVEL 3will temporarily adjust the scheduler log level. When the
scheduler restarts, the log level restores to the value stored in the Moab configuration files. To adjust a
parameter permanently, the option --flags=persistent should be set.

At any time, the current server parameter settings may be viewed using the mschedctl -l command.

Adjusting Server Behavior
Most aspects of Moab behavior are configurable. This includes both scheduling policy behavior and
daemon behavior. In terms of configuring server behavior, the following realms are most commonly
modified.

Logging

Moab provides extensive and highly configurable logging facilities controlled by parameters.

Parameter Description

LOGDIR Indicates directory for log files.

Moab Workload Manager

122 Scheduler Basics

Scheduler Basics 123

Parameter Description

LOGFACILITY Indicates scheduling facilities to track.

LOGFILE Indicates path name of log file.

LOGFILEMAXSIZE Indicates maximum size of log file before rolling.

LOGFILEROLLDEPTH Indicates maximum number of log files to maintain.

LOGLEVEL Indicates verbosity of logging.

Checkpointing

Moab checkpoints its internal state. The checkpoint file records statistics and attributes for jobs, nodes,
reservations, users, groups, classes, and almost every other scheduling object.

Parameter Description

CHECKPOINTEXPIRATIONTIME Indicates how long unmodified data should be kept after the associated object
has disappeared; that is, job priority for a job no longer detected.

CHECKPOINTFILE Indicates path name of checkpoint file.

CHECKPOINTINTERVAL Indicates interval between subsequent checkpoints.

Client Interface

The Client interface is configured using the SCHEDCFG parameter. Most commonly, the attributes SERVER
and PORT must be set to point client commands to the appropriate Moab server. Other parameters such
as CLIENTTIMEOUT may also be set.

Scheduler Mode

The scheduler mode of operation is controlled by setting the MODE attribute of the SCHEDCFG
parameter. The following modes are allowed:

Mode Description

INTERACTIVE Moab interactively confirms each scheduling action before taking any steps. (See interactive
mode overview for more information.)

Moab Workload Manager

Mode Description

MONITOR Moab observes cluster and workload performance, collects statistics, interacts with allocation
management services, and evaluates failures, but it does not actively alter the cluster, including
job migration, workload scheduling, and resource provisioning. (See monitor mode overview for
more information.)

NORMAL Moab actively schedules workload according to mission objectives and policies; it creates reser-
vations; starts, cancels, preempts, and modifies jobs; and takes other scheduling actions.

SIMULATION Moab obtains workload and resource information from specified simulation trace files and sched-
ules the defined virtual environment.

SINGLESTEP Moab behaves as in NORMAL mode but will only schedule a single iteration and then exit.

SLAVE Moab behaves as in NORMAL mode but will only start a job when explicitly requested by a trus-
ted grid peer service or administrator.

TEST Moab behaves as in NORMAL mode, will make reservations, and scheduling decisions, but will
then only log scheduling actions it would have taken if running in NORMAL mode. In most cases,
"TEST" mode is identical toMONITOR mode. (See test mode overview for more information.)

Configuring a job ID offset

Moab assigns job IDs as integers in numeric order as jobs are submitted, starting with 1. In some
situations, you might want to offset the integer at which Moab starts to assign job IDs in your system.

This example describes how you would offset the job IDs in a compound system consisting of Site A, Site
B, and Site C, each of which runs its own instance of Moab. Users belonging to any of the sites can submit
jobs to their own site and to the other two. To simplify aggregation of usage records from the three
sites, offset the job IDs for Site B to a starting value higher than the expected total lifetime value for the
system; in this example, to 20000000. Likewise, set Site C to 20,000,000 more, or 40000000. To do so, set
the MINJOBID attribute of SCHEDCFG in each system's moab.cfg to the offset value. To ensure that
Moab will never use the same job ID for two different sites, also set MAXJOBID. If the Moab job naming
process ever reaches the MAXJOBID, it will start over again with the MINJOBID.

SCHEDCFG[moab] SERVER=moab_siteA:4244 MAXJOBID=19999999

SCHEDCFG[moab] SERVER=moab_siteB:4344 MINJOBID=20000000 MAXJOBID=39999999

SCHEDCFG[moab] SERVER=moab_siteC:4444 MINJOBID=40000000 MAXJOBID=59999999

When users submit jobs to Moab using msub on page 290, Moab selects the job ID in numeric order,
starting with 1 in Site A, 20000000 in Site B, and 40000000 in Site C.

If the compound system in this example uses TORQUE as its resource manager and users submit jobs
directly to TORQUE using qsub, TORQUE assigns the job ID instead of Moab. In this case, you should also

Moab Workload Manager

124 Scheduler Basics

Scheduler Basics 125

offset the TORQUE job IDs by setting the next_job_number on page 2430 server parameter of Site B and
Site C to 20000000 and 40000000, respectively.

$user qmgr "set server next_job_number=20000000"

$user qmgr "set server next_job_number=40000000"

TORQUE job ID limits will allow you to use the 20,000,000 offset scheme for up to 4 sites.

Related topics

l Initial Configuration
l Adding #INCLUDE files to moab.cfg

Credential Overview
Moab supports the concept of credentials, which provide a means of attributing policy and resource
access to entities such as users and groups. These credentials allow specification of job ownership,
tracking of resource usage, enforcement of policies, and many other features. There are five types of
credentials -user, group, account, class, and QoS. While the credentials have many similarities, each
plays a slightly different role.

l General Credential Attributes

l User Credential

l Group Credential

l Account (or Project) Credential

l Class (or Queue) Credential

l QoS Credential

General Credential Attributes
Internally, credentials are maintained as objects. Credentials can be created, destroyed, queried, and
modified. They are associated with jobs and requests providing access and privileges. Each credential
type has the following attributes:

l Priority Settings

l Usage Limits

l Service Targets

l Credential and Partition Access

l Statistics

l Credential Defaults, State and Configuration Information

Moab Workload Manager

All credentials represent a form of identity, and when applied to a job, express ownership. Consequently,
jobs are subject to policies and limits associated with their owners.

Credential Priority Settings

Each credential may be assigned a priority using the PRIORITY attribute. This priority affects a job's
total credential priority factor as described in the Priority Factors section. In addition, each credential
may also specify priority weight offsets, which adjust priority weights that apply to associated jobs.
These priority weight offsets include FSWEIGHT (See Priority-Based Fairshare for more information.),
QTWEIGHT, and XFWEIGHT.

For example:

set priority weights
CREDWEIGHT 1
USERWEIGHT 1
CLASSWEIGHT 1
SERVICEWEIGHT 1
XFACTORWEIGHT 10
QUEUETIMEWEIGHT 1000
set credential priorities
USERCFG[john] PRIORITY=200
CLASSCFG[batch] PRIORITY=15
CLASSCFG[debug] PRIORITY=100
QOSCFG[bottomfeeder] QTWEIGHT=-50 XFWEIGHT=100
ACCOUNTCFG[topfeeder] PRIORITY=100

Credential Usage Limits

Usage limits constrain which jobs may run, which jobs may be considered for scheduling, and what
quantity of resources each individual job may consume. With usage limits, policies such as MAXJOB,
MAXNODE, and MAXMEM may be enforced against both idle and active jobs. Limits may be applied in
any combination as shown in the example below where usage limits include 32 active processors per
group and 12 active jobs for user john. For a job to run, it must satisfy the most limiting policies of all
associated credentials. The Throttling Policy section documents credential usage limits in detail.

GROUPCFG[DEFAULT] MAXPROC=32 MAXNODE=100
GROUPCFG[staff] MAXNODE=200
USERCFG[john] MAXJOB=12

Service Targets

Credential service targets allow jobs to obtain special treatment to meet usage or response time based
metrics. Additional information about service targets can be found in the Fairshare section.

Credential and Partition Access

Access to partitions and to other credentials may be specified on a per credential basis with credential
access lists, default credentials, and credential membership lists.

Credential Access Lists

You can use the ALIST, PLIST, and QLIST attributes (shown in the following table) to specify the list of
credentials or partitions that a given credential may access.

Moab Workload Manager

126 Scheduler Basics

Scheduler Basics 127

Credential Attribute

Account ALIST (allows credential to access specified list of accounts

Partition PLIST (allows credential to access specified list of partitions)

QoS QLIST (allows credential to access specified list of QoSes)

Example 3-1:

USERCFG[bob] ALIST=jupiter,quantum
USERCFG[steve] ALIST=quantum

Account-based access lists are only enforced if using an allocation manager or if the
ENFORCEACCOUNTACCESS parameter is set to "TRUE."

Assigning Default Credentials

Use the *DEF attribute (shown in the following table) to specify the default credential or partition for a
particular credential.

Credential Attribute

Account ADEF (specifies default account)

Class CDEF (specifies default class)

QoS QDEF (specifies default QoS)

Example 3-2:

user bob can access accounts a2, a3, and a6. If no account is explicitly requested,
his job will be assigned to account a3
USERCFG[bob] ALIST=a2,a3,a6 ADEF=a3
user steve can access accounts a14, a7, a2, a6, and a1. If no account is explicitly
requested, his job will be assigned to account a2
USERCFG[steve] ALIST=a14,a7,a2,a6,a1 ADEF=a2

Specifying Credential Membership Lists

As an alternate to specifying access lists, administrators may also specify membership lists. This allows
a credential to specify who can access it rather than allowing each credential to specify which
credentials it can access. Membership lists are controlled using the MEMBERULIST, EXCLUDEUSERLIST
and REQUIREDUSERLIST attributes, shown in the following table:

Moab Workload Manager

Credential Attribute

User ---

Account, Group, QoS MEMBERULIST

Class EXCLUDEUSERLIST and REQUIREDUSERLIST

Example 3-3:

account omega3 can only be accessed by users johnh, stevek, jenp
ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp

Example 3-4: Controlling Partition Access on a Per User Basis

A site may specify the user john may access partitions atlas, pluto, and zeus and will default to
partition pluto. To do this, include the following line in the configuration file:

USERCFG[john] PLIST=atlas,pluto,zeus

Example 3-5: Controlling QoS Access on a Per Group Basis

A site may also choose to allow everyone in the group staff to access QoS standard and special
with a default QoS of standard. To do this, include the following line in the configuration file:

GROUPCFG[staff] QLIST=standard,special QDEF=standard

Example 3-6: Controlling Resource Access on a Per Account Basis

An organization wants to allow everyone in the account omega3 to access nodes 20 through 24. To do
this, include the following in the configuration file:

ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp
SRCFG[omega3] HOSTLIST=r:20-24 ACCOUNTLIST=omega3

Credential Statistics

Full statistics are maintained for each credential instance. These statistics record current and historical
resource usage, level of service delivered, accuracy of requests, and many other aspects of workload.
Note, though, that you must explicitly enable credential statistics as they are not tracked by default. You
can enable credential statistics by including the following in the configuration file:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE

Job Defaults, Credential State, and General Configuration

Credentials may apply defaults and force job configuration settings via the following parameters:

Moab Workload Manager

128 Scheduler Basics

Scheduler Basics 129

COMMENT

Description Associates a comment string with the target credential.

Example USERCFG[steve] COMMENT='works for boss, provides good
service'
CLASSCFG[i3] COMMENT='queue for I/O intensive workload'

HOLD

Description Specifies a hold should be placed on all jobs associated with the target credential.

The order in which this HOLD attribute is evaluated depends on the following credential
precedence: USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, QOSCFG, USERCFG
[DEFAULT], GROUPCFG[DEFAULT], ACCOUNTCFG[DEFAULT], CLASSCFG[DEFAULT],
QOSCFG[DEFAULT].

Example GROUPCFG[bert] HOLD=yes

JOBFLAGS

Description Assigns the specified job flag to all jobs with the associated credential.

Example CLASSCFG[batch] JOBFLAGS=suspendable
QOSCFG[special] JOBFLAGS=restartable

NOSUBMIT

Description Specifies whether jobs belonging to this credential can submit jobs using msub.

Example ACCOUNTCFG[general] NOSUBMIT=TRUE
CLASSCFG[special] NOSUBMIT=TRUE

OVERRUN

Description Specifies the amount of time a job may exceed its wallclock limit before being terminated. (Only
applies to user and class credentials.)

Example CLASSCFG[bigmem] OVERRUN=00:15:00

Moab Workload Manager

VARIABLE

Description Specifies attribute-value pairs associated with the specified credential. These variables may be
used in triggers and other interfaces to modify system behavior.

Example GROUPCFG[staff] VARIABLE='nocharge=true'

Credentials may carry additional configuration information. They may specify that detailed statistical
profiling should occur, that submitted jobs should be held, or that corresponding jobs should be marked
as preemptible.

User Credential
The user credential is the fundamental credential within a workload manager; each job requires an
association with exactly one user. In fact, the user credential is the only required credential in Moab; all
others are optional. In most cases, the job's user credential is configured within or managed by the
operating system itself, although Moab may be configured to obtain this information from an independent
security and identity management service.

As the fundamental credential, the user credential has a number of unique attributes.

l Role

l Email Address

l Disable Moab User Email

Role

Moab supports role-based authorization, mapping particular roles to collections of specific users. See the
Security section for more information.

Email Address

Facilities exist to allow user notification in the event of job or system failures or under other general
conditions. This attribute allows these notifications to be mailed directly to the target user.

USERCFG[sally] EMAILADDRESS=sally@acme.com

Disable Moab User Email

You can disable Moab email notifications for a specific user.

USERCFG[john] NOEMAIL=TRUE

Group Credential
The group credential represents an aggregation of users. User-to-group mappings are often specified by
the operating system or resource manager and typically map to a user's UNIX group ID. However, user-

Moab Workload Manager

130 Scheduler Basics

Scheduler Basics 131

to-group mappings may also be provided by a security and identity management service, or you can
specify such directly within Moab.

With many resource managers such as TORQUE, PBSPro, and LSF, the group associated with a job is
either the user's active primary group as specified within the operating system or a group that is
explicitly requested at job submission time. When a secondary group is requested, the user's default
group and associated policies are not taken into account. Also note that a job may only run under one
group. If more constraining policies are required for these systems, an alternate aggregation scheme
such as the use of Account or QOS credentials is recommended.

To submit a job as a secondary group, refer to your local resource manager's job submission options. For
TORQUE users, see the group_list=g_list option of the qsub -W command.

Account Credential
The account credential is also referred to as the project. This credential is generally associated with a
group of users along the lines of a particular project for accounting and billing purposes. User-to-
accounting mapping may be obtained from a resource manager or allocation manager, or you can
configure it directly within Moab. Access to an account can be controlled via the ALIST and ADEF
credential attributes specified via the Identity Manager or the moab.cfg file.

The MANAGERS attribute (applicable only to the account and class credentials) allows an administrator
to assign a user the ability to manage jobs inside the credential, as if the user is the job owner.

Example 3-7: MANAGERS Attribute

ACCOUNTCFG[general] MANAGERS=ops
ACCOUNTCFG[special] MANAGERS=stevep

If a user is able to access more than one account, the desired account can be specified at job submission
time using the resource-manager specific attribute. For example, with TORQUE this is accomplished
using the -A argument to the qsub command.

Example 3-8: Enforcing Account Usage

Job-to-account mapping can be enforced using the ALIST attribute and the ENFORCEACCOUNTACCESS
parameter.

USERCFG[john] ALIST=proj1,proj3
USERCFG[steve] ALIST=proj2,proj3,proj4
USERCFG[brad] ALIST=proj1
USERCFG[DEFAULT] ALIST=proj2
ENFORCEACCOUNTACCESS TRUE
...

Class Credential
l Class Job Defaults

l Per Job Min/Max Limits

l Resource Access

l Class Membership Constraints

Moab Workload Manager

l Attributes Enabling Class Access to Other Credentials

l Special Class Attributes (such as Managers and Job Prologs)

l Setting Default Classes

l Creating a Remap Class

l Class Attribute Overview

l Enabling Queue Complex Functionality

The concept of the class credential is derived from the resource manager class or queue object. Classes
differ from other credentials in that they more directly impact job attributes. In standard HPC usage, a
user submits a job to a class and this class imposes a number of factors on the job. The attributes of a
class may be specified within the resource manager or directly within Moab. Class attributes include the
following:

l Job Defaults

l Per Job Min/Max Limits

l Resource Access Constraints

l Class Membership Constraints

l Attributes Enabling Class Access to Other Credentials

l Special Class Attributes

When using SLURM, Moab classes have a one-to-one relationship with SLURM partitions of the
same name.

For all classes configured in Moab, a resource manager queue with the same name should be
created.

When TORQUE reports a new queue to Moab a class of the same name is automatically applied to
all nodes.

Class Job Defaults

Classes can be assigned to a default job template that can apply values to job attributes not explicitly
specified by the submitter. Additionally, you can specify shortcut attributes from the table that follows:

Attribute Description

DEFAULT.ATTR Job Attribute

DEFAULT.DISK Required Disk (in MB)

Moab Workload Manager

132 Scheduler Basics

Scheduler Basics 133

Attribute Description

DEFAULT.EXT Job RM Extension

DEFAULT.FEATURES Required Node Features/Properties

DEFAULT.GRES Required Consumable Generic Resources

DEFAULT.MEM Required Memory/RAM (in MB)

DEFAULT.NODESET Node Set Specification

DEFAULT.PROC Required Processor Count

DEFAULT.TPN Tasks Per Node

DEFAULT.WCLIMIT Wallclock Limit

Defaults set in a class/queue of the resource manager will override the default values of the
corresponding class/queue specified in Moab.

RESOURCELIMITPOLICY must be configured in order for the CLASSCFG limits to take effect.

Example 3-9:

CLASSCFG[batch] DEFAULT.DISK=200MB DEFAULT.FEATURES=prod DEFAULT.WCLIMIT=1:00:00
CLASSCFG[debug] DEFAULT.FEATURES=debug DEFAULT.WCLIMIT=00:05:00

Per Job Min/Max Limits

Classes can be assigned a minimum and a maximum job template that constrains resource requests. Jobs
submitted to a particular queue must meet the resource request constraints of these templates. If a job
submission exceeds these limits, the entire job submission fails.

Limit Description

MAX.ARRAYSUBJOBS Max Allowed Jobs in an Array

MAX.CPUTIME Max Allowed Utilized CPU Time

MAX.NODE Max Allowed Node Count

Moab Workload Manager

Limit Description

MAX.PROC Max Allowed Processor Count

MAX.PS Max Requested Processor-Seconds

MIN.NODE Min Allowed Node Count

MIN.PROC Min Allowed Processor Count

MIN.PS Min Requested Processor-Seconds

MIN.TPN Min Tasks Per Node

MIN.WCLIMIT Min Requested Wallclock Limit

MAX.WCLIMIT Max Requested Wallclock Limit

The parameters listed in the preceding table are for classes and PARCFG only, not users, accounts,
groups or QoSes, and they function on a per-job basis. The MAX.* and MIN.* parameters are
different from the MAXJOB, MAXNODE, and MAXMEM parameters described earlier in Credential
Usage Limits.

Resource Access

Classes may be associated with a particular set of compute resources. Consequently, jobs submitted to a
given class may only use listed resources. This may be handled at the resource manager level or via the
CLASSCFG HOSTLIST attribute.

Class Membership Constraints

Classes may be configured at either the resource manager or scheduler level to only allow select users
and groups to access them. Jobs that do not meet these criteria are rejected. If specifying class
membership/access at the resource manager level, see the respective resource manager documentation.
Moab automatically detects and enforces these constraints. If specifying class membership/access at the
scheduler level, use the REQUIREDUSERLIST or EXCLUDEUSERLIST attributes of the CLASSCFG parameter.

Under most resource managers, jobs must always be a member of one and only one class.

Attributes Enabling Class Access to Other Credentials

Classes may be configured to allow jobs to access other credentials such as QoSs and Accounts. This is
accomplished using the QDEF, QLIST, ADEF, and ALIST attributes.

Moab Workload Manager

134 Scheduler Basics

Scheduler Basics 135

Special Class Attributes

The class object also possesses a few unique attributes including JOBPROLOG, JOBEPILOG,
RESFAILPOLICY, and DISABLEAM attributes described in what follows:

MANAGERS

Users listed via the MANAGERS parameter are granted full control over all jobs submitted to or running
within the specified class.

allow john and steve to cancel and modify all jobs submitted to the class/queue
special
CLASSCFG[special] MANAGERS=john,steve

In particular, a class manager can perform the following actions on jobs within a class/queue:

l view/diagnose job (checkjob)

l cancel, requeue, suspend, resume, and checkpoint job (mjobctl)

l modify job (mjobctl)

JOBPROLOG

The JOBPROLOG class performs a function similar to the resource manager level job prolog feature;
however, there are some key differences:

l Moab prologs execute on the head node; resource manager prologs execute on the nodes allocated
to the job.

l Moab prologs execute as the primary Moab administrator, resource manager prologs execute as
root.

l Moab prologs can incorporate cluster environment information into their decisions and actions.
(See Valid Variables.)

l Unique Moab prologs can be specified on a per class basis.

l Job start requests are not sent to the resource manager until the Moab job prolog is successfully
completed.

l Error messages generated by a Moab prolog are attached to jobs and associated objects; stderr
from prolog script is attached to job.

l Moab prologs have access to Moab internal and peer services.

Valid epilog and prolog variables are:

Variable Description

$TIME Time that the trigger launches

$HOME Moab home directory

Moab Workload Manager

Variable Description

$USER User name the job is running under

$JOBID Unique job identifier

$HOSTLIST Entire host list for job

$MASTERHOST Master host for job

The JOBPROLOG class attribute allows a site to specify a unique per-class action to take before a job is
allowed to start. This can be used for environmental provisioning, pre-execution resource checking,
security management, and other functions. Sample uses may include enabling a VLAN, mounting a global
file system, installing a new application or virtual node image, creating dynamic storage partitions, or
activating job specific software services.

A prolog is considered to have failed if it returns a negative number. If a prolog fails, the
associated job will not start.

If a prolog executes successfully, the associated epilog is guaranteed to start, even if the job fails
for any reason. This allows the epilog to undo any changes made to the system by the prolog.

Job Prolog Examples

explicitly specify prolog arguments for special epilog
CLASSCFG[special] JOBPROLOG='$TOOLSDIR/specialprolog.pl $JOBID $HOSTLIST'
use default prolog arguments for batch prolog
CLASSCFG[batch] JOBPROLOG=$TOOLSDIR/batchprolog.pl

JOBEPILOG

The Moab epilog is nearly identical to the prolog in functionality except that it runs after the job
completes within the resource manager but before the scheduler releases the allocated resources for
use by subsequent jobs. It is commonly used for job clean-up, file transfers, signaling peer services, and
undoing other forms of resource customization.

An epilog is considered to have failed if it returns a negative number. If an epilog fails, the
associated job will be annotated and a message will be sent to administrators.

RESFAILPOLICY

This policy allows specification of the action to take on a per-class basis when a failure occurs on a node
allocated to an actively running job. See the Node Availability Overview for more information.

Moab Workload Manager

136 Scheduler Basics

Scheduler Basics 137

DISABLEAM

You can disable allocation management for jobs in specific classes by setting the DISABLEAM class
attribute to TRUE. For all jobs outside of the specified classes, allocation enforcement will continue to
be enforced.

do not enforce allocations on low priority and debug jobs
CLASSCFG[lowprio] DISABLEAM=TRUE
CLASSCFG[debug] DISABLEAM=TRUE

Setting Default Classes

In many cases, end-users do not want to be concerned with specifying a job class/queue. This is often
handled by defining a default class. Whenever a user does not explicitly submit a job to a particular
class, a default class, if specified, is used. In resource managers such as TORQUE, this can be done at the
resource manager level and its impact is transparent to the scheduler. The default class can also be
enabled within the scheduler on a per resource manager or per user basis. To set a resource manager
default class within Moab, use the DEFAULTCLASS attribute of the RMCFG parameter. For per user
defaults, use the CDEF attribute of the USERCFG parameter.

Creating a Remap Class

If a single default class is not adequate, Moab provides more flexible options with the REMAPCLASS
parameter. If this parameter is set and a job is submitted to the remap class, Moab attempts to
determine the final class to which a job belongs based on the resources requested. If a remap class is
specified, Moab compares the job's requested nodes, processors, memory, and node features with the
class's corresponding minimum and maximum resource limits. Classes are searched in the order in which
they are defined; when the first match is found, Moab assigns the job to that class.

Because Moab remaps at job submission, updates you make to job requirements after submission will not
cause any class changes. Moab does not restart the process.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS. For example:

RMCFG[internal] DEFAULTCLASS=batch

In the example that follows, a job requesting 4 processors and the node feature fast are assigned to the
class quick.

Moab Workload Manager

You must specify a default class in order to use remap classes
RMCFG[internal] DEFAULTCLASS=batch

Jobs submitted to "batch" should be remapped
REMAPCLASS batch

stevens only queue
CLASSCFG[stevens] REQ.FEATURES=stevens REQUIREDUSERLIST=stevens,stevens2

Special queue for I/O nodes
CLASSCFG[io] MAX.PROC=8 REQ.FEATURES=io

General access queues
CLASSCFG[quick] MIN.PROC=2 MAX.PROC=8 REQ.FEATURES=fast|short
CLASSCFG[medium] MIN.PROC=2 MAX.PROC=8
CLASSCFG[DEFAULT] MAX.PROC=64
...

The following parameters can be used to remap jobs to different classes:

l MIN.PROC

l MAX.PROC

l MIN.WCLIMIT

l MAX.WCLIMIT

l REQ.FEATURES

l REQ.FLAGS=INTERACTIVE

l REQUIREDUSERLIST

If the parameter REMAPCLASSLIST is set, then only the listed classes are searched and they are
searched in the order specified by this parameter. If none of the listed classes are valid for a particular
job, that job retains its original class.

The remap class only works with resource managers that allow dynamic modification of a job's
assigned class/queue.

If default credentials are specified on a remap class, a job submitted to that class will inherit
those credentials. If the destination class has different defaults credentials, the new defaults
override the original settings. If the destination class does not have default credentials, the job
maintains the defaults inherited from the remap class.

Class Attribute Overview

The following table enumerates the different parameters for CLASSCFG.

Setting DEFAULT.* on a class does not assign resources or features to that class. Rather, it
specifies resources that jobs will inherit when they are submitted to the class without their own
resource requests. To configure features, use NODECFG.

Moab Workload Manager

138 Scheduler Basics

Scheduler Basics 139

DEFAULT.ATTR

Format <ATTRIBUTE>[,<ATTRIBUTE>]...

Description One or more comma-delimited generic job attributes.

Example ---

DEFAULT.DISK

Format <INTEGER>

Description Default amount of requested disk space.

Example ---

DEFAULT.EXT

Format <STRING>

Description Default job RM extension.

Example ---

DEFAULT.FEATURESDEFAULT.EXT

Format Comma-delimited list of features.

Description Default list of requested node features (a.k.a, node properties). This only applies to com-
pute resource reqs.

Example ---

DEFAULT.GRES

Format <STRING>[<COUNT>][,<STRING>[<COUNT>]]...

Description Default list of per task required consumable generic resources.

Moab Workload Manager

DEFAULT.GRES

Example CLASSCFG[viz] DEFAULT.GRES=viz:2

DEFAULT.MEM

Format <INTEGER> (in MB)

Description Default amount of requested memory.

Example ---

DEFAULT.NODE

Format <INTEGER>

Description Default required node count.

Example CLASSCFG[viz] DEFAULT.NODE=5

When a user submits a job to the viz class without a specified node count, the job is assigned 5
nodes.

DEFAULT.NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...]

Description Default node set.

Example CLASSCFG[amd]
DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON

DEFAULT.PROC

Format <INTEGER>

Description Default number of requested processors.

Example ---

Moab Workload Manager

140 Scheduler Basics

Scheduler Basics 141

DEFAULT.TPN

Format <INTEGER>

Description Default number of tasks per node.

Example ---

DEFAULT.WCLIMIT

Format <INTEGER>

Description Default wallclock limit.

Example ---

EXCL.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of excluded (disallowed) features. If delimited by commas, reject job if all features are reques-
ted; if delimited by the pipe symbol (|), reject job if at least one feature is requested.

Example CLASSCFG[intel] EXCL.FEATURES=ATHLON,AMD

EXCL.FLAGS

Format Comma-delimited list of job flags.

Description Set of excluded (disallowed) job flags. Reject job if any listed flags are set.

Example CLASSCFG[batch] EXCL.FLAGS=INTERACTIVE

EXCLUDEUSERLIST

Format Comma-delimited list of users.

Moab Workload Manager

EXCLUDEUSERLIST

Description List of users not permitted access to class.

Example ---

FORCENODEACCESSPOLICY

Format one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description Node access policy associated with queue. If set, this value overrides any per job settings spe-
cified by the user at the job level. (See Node Access Policy overview for more information.)

Example CLASSCFG[batch] FORCENODEACCESSPOLICY=SINGLEJOB

FSCAP

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

FSTARGET

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

HOSTLIST

Format Host expression, or comma-delimited list of hosts or host ranges.

Description List of hosts associated with a class. If specified, Moab constrains the availability of a class to only
nodes listed in the class host list.

Moab Workload Manager

142 Scheduler Basics

Scheduler Basics 143

HOSTLIST

Example CLASSCFG[batch] HOSTLIST=r:abs[45-113]

JOBEPILOG

Format <STRING>

Description Scheduler level job epilog to be run after job is completed by resource manager. (See special class
attributes.)

Example ---

JOBFLAGS

Format Comma-delimited list of job flags.

Description See the flag overview for a description of legal flag values.

Example CLASSCFG[batch] JOBFLAGS=restartable

JOBPROLOG

Format <STRING>

Description Scheduler level job prolog to be run before job is started by resource manager. (See special class
attributes.)

Example ---

MANAGERS

Format <USER>[,<USER>]...

Description Users allowed to control, cancel, preempt, and modify jobs within class/queue. (See special class
attributes.)

Example CLASSCFG[fast] MANAGERS=root,kerry,e43

Moab Workload Manager

MAXJOB

Format <INTEGER>

Description Maximum number of jobs allowed in the class.

Example ---

MAXPROCPERNODE

Form-
at

<INTEGER>

Descri-
ption

Maximum number of processors requested per node. May optionally include node names to articulate
which nodes have a specific limit.

Exam-
ple

CLASSCFG[cpu] MAXPROCPERNODE=20 # When using this class, limit 20 for all nodes

CLASSCFG[cpu] MAXPROCPERNODE[n1,n2]=20 MAXPROCPERNODE[n3]=10 # When using this class,
limit 20 for n1 & n2 and limit 10 for n3

CLASSCFG[cpu] MAXPROCPERNODE[n1,n2]=20 MAXPROCPERNODE=10 # When using this class, limit
20 for n1 & n2 and limit 10 for all other nodes

MAX.CPUTIME

Format <INTEGER>

Description Maximum allowed utilized CPU time.

Example ---

MAX.NODE

Format <INTEGER>

Description Maximum number of requested nodes per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Moab Workload Manager

144 Scheduler Basics

Scheduler Basics 145

MAX.NODE

Example CLASSCFG[batch] MAX.NODE=64

Deny jobs requesting over 64 nodes access to the class batch.

MAX.PROC

Format <INTEGER>

Description Maximum number of requested processors per job. (Also used when REMAPCLASS is set to cor-
rectly route the job.)

Example CLASSCFG[small] MAX.PROC[USER]=3,6

MAX.PS

Format <INTEGER>

Description Maximum requested processor-seconds.

Example ---

MAX.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Maximum allowed wallclock limit per job. (Also used when REMAPCLASS is set to correctly route
the job.)

Example CLASSCFG[long] MAX.WCLIMIT=96:00:00

MIN.NODE

Format <INTEGER>

Description Minimum number of requested nodes per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Moab Workload Manager

MIN.NODE

Example CLASSCFG[dev] MIN.NODE=16

Jobs must request at least 16 nodes to be allowed to access the class.

MIN.PROC

Format <INTEGER>

Description Minimum number of requested processors per job. (Also used when REMAPCLASS is set to cor-
rectly route the job.)

Example CLASSCFG[dev] MIN.PROC=32

Jobs must request at least 32 processors to be allowed to access the class.

MIN.PS

Format <INTEGER>

Description Minimum requested processor-seconds.

Example ---

MIN.TPN

Format <INTEGER>

Description Minimum required tasks per node per job.

Example ---

MIN.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Minimum required wallclock limit per job. (Also used when REMAPCLASS is set to correctly route
the job.)

Moab Workload Manager

146 Scheduler Basics

Scheduler Basics 147

MIN.WCLIMIT

Example ---

NODEACCESSPOLICY

Format one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description Default node access policy associated with queue. This value will be overridden by any per job set-
tings specified by the user at the job level. (See Node Access Policy overview.)

Example CLASSCFG[batch] NODEACCESSPOLICY=SINGLEJOB

PARTITION

Format <STRING>

Description Partition name where jobs associated with this class must run.

Example CLASSCFG[batch] PARTITION=p12

PRIORITY

Format <INTEGER>

Description Priority associated with the class. (See Priority overview.)

Example CLASSCFG[batch] PRIORITY=1000

QDEF

Format <QOSID>

Description Default QoS for jobs submitted to this class. You may specify a maximum of four QDEF entries per
credential. Any QoSes specified after the fourth will not be accepted.

In addition to classes, you may also specify QDEF for accounts, groups, and users.

Moab Workload Manager

QDEF

Example CLASSCFG[batch] QDEF=base

Jobs submitted to class batch that do not explicitly request a QoS will have the QoS base assigned.

QLIST

Format <QOSID>[,<QOSID>]...

Description List of accessible QoSs for jobs submitted to this class.

Example CLASSCFG[batch] QDEF=base
QLIST=base,fast,special,bigio

REQ.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of required features. If delimited by commas, all features are required; if delimited by the pipe
symbol (|), at least one feature is required.

Example CLASSCFG[amd] REQ.FEATURES=ATHLON,AMD

REQ.FLAGS

Format REQ.FLAGS can be used with only the INTERACTIVE flag.

Description Sets the INTERACTIVE flag on jobs in this class.

Example CLASSCFG[orion] REQ.FLAGS=INTERACTIVE

REQUIREDACCOUNTLIST

Format Comma-delimited list of accounts.

Description List of accounts allowed to access and use a class (analogous to *LIST for other credentials).

Moab Workload Manager

148 Scheduler Basics

Scheduler Basics 149

REQUIREDACCOUNTLIST

Example CLASSCFG[jasper] REQUIREDACCOUNTLIST=testers,development

REQUIREDUSERLIST

Format Comma-delimited list of users.

Description List of users allowed to access and use a class (analogous to *LIST for other credentials).

Example CLASSCFG[jasper] REQUIREDUSERLIST=john,u13,steve,guest

REQUIREDQOSLIST

Format Comma-delimited list of QoSs

Description List of QoSs allowed to access and use a class (analogous to *LIST for other credentials).

The number of unique QoSs is limited by the Moab Maximum ACL limit, which
defaults to 32.

Example CLASSCFG[jasper] REQUIREDQOSLIST=hi,lo

SYSPRIO

Format <INTEGER>

Description Value of system priority applied to every job submitted to this class.

Example CLASSCFG[special] SYSPRIO=100

WCOVERRUN

Format [[[DD:]HH:]MM:]SS

Moab Workload Manager

WCOVERRUN

Description Tolerated amount of time beyond the specified wallclock limit.

Example ---

Enabling Queue Complex Functionality

Queue complexes allow an organization to build a hierarchy of queues and apply certain limits and rules
to collections of these queues. Moab supports this functionality in two ways. The first way, queue
mapping, is very simple but limited in functionality. The second method provides very rich functionality
but requires more extensive configuration using the Moab hierarchical fairshare facility.

Queue Mapping

Queue mapping allows collections of queues to be mapped to a parent credential object against which
various limits and policies can be applied, as in the following example.

QOSCFG[general] MAXIJOB[USER]=14 PRIORITY=20
QOSCFG[prio] MAXIJOB[USER]=8 PRIORITY=2000
group short, med, and long jobs into 'general' QOS
CLASSCFG[short] QDEF=general FSTARGET=30
CLASSCFG[med] QDEF=general FSTARGET=40
CLASSCFG[long] QDEF=general FSTARGET=30 MAXPROC=200
group interactive and debug jobs into 'prio' QOS
CLASSCFG[inter] QDEF=prio
CLASSCFG[debug] QDEF=prio
CLASSCFG[premier] PRIORITY=10000

QoS Credential
The concept of a quality of service (QoS) credential is unique to Moab and is not derived from any
underlying concept or peer service. In most cases, the QoS credential is used to allow a site to set up a
selection of service levels for end-users to choose from on a long-term or job-by-job basis. QoSs differ
from other credentials in that they are centered around special access where this access may allow use
of additional services, additional resources, or improved responsiveness. Unique to this credential,
organizations may also choose to apply different charge rates to the varying levels of service available
within each QoS. As QoS is an internal credential, all QoS configuration occurs within Moab.

QoS access and QoS defaults can be mapped to users, groups, accounts, and classes, allowing limited
service offering for key users. As mentioned, these services focus around increasing access to special
scheduling capabilities & additional resources and improving job responsiveness. At a high level, unique
QoS attributes can be broken down into the following:

l Usage Limit Overrides

l Service Targets

l Privilege Flags

Moab Workload Manager

150 Scheduler Basics

Scheduler Basics 151

l Charge Rate

l Access Controls

QoS Usage Limit Overrides

All credentials allow specification of job limits. In such cases, jobs are constrained by the most limiting of
all applicable policies. With QoS override limits, however, jobs are limited by the override, regardless of
other limits specified.

QoS Service Targets

Service targets cause the scheduler to take certain job-related actions as various responsiveness targets
are met. Targets can be set for either job queue time or job expansion factor and cause priority
adjustments, reservation enforcement, or preemption activation. In strict service centric organizations,
Moab can be configured to trigger various events and notifications in the case of failure by the cluster to
meet responsiveness targets.

QoS Privilege Flags

QoSs can provide access to special capabilities. These capabilities include preemption, job deadline
support, backfill, next to run priority, guaranteed resource reservation, resource provisioning, dedicated
resource access, and many others. See the complete list in the QoS Facility Overview section.

QoS Charge Rate

Associated with the QoSs many privileges is the ability to assign end-users costs for the use of these
services. This charging can be done on a per-QoS basis and may be specified for both dedicated and use-
based resource consumption. The Per QoS Charging section covers more details on QoS level costing
configuration while the Charging and Allocation Management section provides more details regarding
general single cluster and multi-cluster charging capabilities.

QoS Access Controls

QoS access control can be enabled on a per QoS basis using the MEMBERULIST attribute or specified on
a per-requestor basis using the QDEF and QLIST attributes of the USERCFG, GROUPCFG, ACCOUNTCFG, and
CLASSCFG parameters. See Managing QoS Access for more detail.

Related topics

l Identity Manager Interface
l Usage Limits

Moab Workload Manager

Job Attributes/Flags Overview

Job Attributes

FLAGS

Format: <FLAG>[:<FLAG>]...

Default: ---

Description: Specifies job specific flags.

Example: FLAGS=ADVRES:RESTARTABLE

The job can restart and should only utilize
reserved resources.

PLIST*

Format: <PARTITION_NAME>[^|&]
[:<PARTITION_NAME>[^|&]]...

Default: [ALL]

Description: Specifies the list of partitions the object can access. If no partition list is specified, the object is
granted default access to all partitions.

Example: PLIST=OldSP:Cluster1:O3K

The object can access resources located in theOldSP, Cluster1, and/or O3K partitions.

QDEF

Format: <QOS_NAME>

Default: [DEFAULT]

Description: Specifies the default QOS associated with the object.

Moab Workload Manager

152 Scheduler Basics

Scheduler Basics 153

QDEF

Example: QDEF=premium

The object is assigned the default QOS
premium.

QLIST*

Format: <QOS_NAME>[^|&]
[:<QOS_NAME>[^|&]]...

Default: <QDEF>

Description: Specifies the list of QoSs the object can access. If no QOS list is specified, the object is granted
access only to its default partition.

Example: QLIST=premium:express:bottomfeeder

The object can access any of the 3 QoSs listed.

By default, jobs may access QoSs based on the 'logical or' of the access lists associated with all job
credentials. For example, a job associated with user "John," group "staff," and class "batch" may
utilize QoSs accessible by any of the individual credentials. Thus the job's QOS access list, or
QLIST, equals the 'or' of the user, group, and class QLIST's. (i.e., JOBQLIST = USERQLIST |
GROUPQLIST | CLASSQLIST). If the ampersand symbol, '&', is associated with any list, this list is
logically and'd with the other lists. If the carat symbol, '^', is associated with any object QLIST, this
list is exclusively set, regardless of other object access lists using the following order of
precedence user, group, account, QOS, and class. These special symbols affect the behavior of both
QOS and partition access lists.

Job Flags

ADVRES

Format: ADVRES[:<RESID>]

Default: Use available resources where ever found, whether inside a reservation or not.

Description: Specifies the job may only utilize accessible, reserved resources. If <RESID> is specified, only
resources in the specified reservation may be utilized.

Moab Workload Manager

ADVRES

Example: FLAGS=ADVRES:META.1

The job may only utilize resources located in theMETA.1 reservation.

ARRAYJOBPARLOCK

Format: ---

Default: ---

Description: Specifies that the job array being submitted should not span across multiple partitions. This locks
all sub jobs of the array to a single partition. If you want to lock all job arrays to a single partition,
specify the ARRAYJOBPARLOCK parameter in moab.cfg to force this behavior on a global scale.

Example: > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparlock

ARRAYJOBPARSPAN

Format: ---

Default: ---

Description: Specifies that the job array being submitted should span across multiple partitions. This is the
default behavior in Moab, unless the ARRAYJOBPARLOCK parameter is specified in moab.cfg.
This job flag overrides the ARRAYJOBPARLOCK parameter so that job arrays can be allowed to
span multiple partitions at submit time.

Example: > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparspan

GRESONLY

Format: GRESONLY

Default: False

Description: Uses no compute resources such as processors, memory, and so forth; uses only generic resources.

Moab Workload Manager

154 Scheduler Basics

Scheduler Basics 155

GRESONLY

Example: > msub -l gres=matlab,walltime=300

IGNIDLEJOBRSV

Format: IGNIDLEJOBRSV

Default: N/A

Description: Only applies to QOS. IGNIDLEJOBRSV allows jobs to start without a guaranteed walltime. Instead, it
overlaps the idle reservations of real jobs and is preempted 2 minutes before the real job starts.

Example: QOSCFG[standby] JOBFLAGS=IGNIDLEJOBRSV

NOQUEUE

Format: NOQUEUE

Default: Jobs remain queued until they are able to run

Description: Specifies that the job should be removed it is unable to allocate resources and start execution
immediately.

Example: FLAGS=NOQUEUE

The job should be removed unless it can start running at submit time.

This functionality is identical to the resource manager extension QUEUEJOB:FALSE.

NORMSTART

Format: NORMSTART

Default: Moab passes jobs to a resource manager to schedule.

Description: Specifies that the job is an internal system job and will not be started via an RM.

Moab Workload Manager

NORMSTART

Example: FLAGS=NORMSTART

The job begins running in Moab without a corresponding RM job.

NOVMMIGRATE

Format NOVMMIGRATE

Default Moab can migrate the VM associated with the job.

Description Specifies that Moab may not migrate the VM that the job sets up.

Example msub -l
walltime=INFINITY,template=VMTracking,os=linux,nodes=h3,jobflags=novmmigrate

Moab will not migrate the new VM.

PREEMPTEE

Format: PREEMPTEE

Default: Jobs may not be preempted by other jobs

Description: Specifies that the job may be preempted by other jobs which have the PREEMPTOR flag set.

Example: FLAGS=PREEMPTEE

The job may be preempted by other jobs which have the PREEMPTOR flag set.

PREEMPTOR

Format: PREEMPTOR

Default: Jobs may not preempt other jobs

Description: Specifies that the job may preempt other jobs which have the PREEMPTEE flag set .

Moab Workload Manager

156 Scheduler Basics

Scheduler Basics 157

PREEMPTOR

Example: FLAGS=PREEMPTOR

The job may preempt other jobs which have the PREEMPTEE flag set.

PURGEONSUCCESSONLY

Format PURGEONSUCCESSONLY

Default Completed jobs are sent to a queue for a short period of time before Moab purges them from
the system.

Description Specifies that Moab should only purge the job from the completed queue if it completed suc-
cessfully. If the job failed, Moab will keep it in the queue indefinitely to allow you to restart it at
any time. This flag is particularly useful for setup and take down jobs in job workflows. See
Creating workflows with job templates on page 836 for more information.

Example FLAGS=PURGEONSUCCESSONLY

If the job fails, Moab will not purge it from the completed job queue.

RESTARTABLE

Format: RESTARTABLE

Default: Jobs may not be restarted if preempted.

Description: Specifies jobs can be requeued and later restarted if preempted.

Example: FLAGS=RESTARTABLE

The associated job can be preempted and restarted
at a later date.

SUSPENDABLE

Format: SUSPENDABLE

Moab Workload Manager

SUSPENDABLE

Default: Jobs may not be suspended if preempted.

Description: Specifies jobs can be suspended and later resumed if preempted.

Example: FLAGS=SUSPENDABLE

The associated job can be suspended and resumed at
a later date.

SYSTEMJOB

Format: SYSTEMJOB

Default: N/A

Description: Creates an internal system job that does not require resources.

Example: FLAGS=SYSTEMJOB

WIDERSVSEARCHALGO

Format: <BOOLEAN>

Default: ---

Description: When Moab is determining when and where a job can run, it either searches for the most
resources or the longest range of resources. In almost all cases searching for the longest range is
ideal and returns the soonest starttime. In some rare cases, however, a particular job may need
to search for the most resources. In those cases this flag can be used to have the job find the soon-
est starttime. The flag can be specified at submit time, or you can use mjobctl -m to modify the
job after it has been submitted. See the RSVSEARCHALGO parameter.

Example: > msub -l flags=widersvsearchalgo

> mjobctl -m flags+=widersvsearchalgo job.1

Related topics

l Setting Per-Credential Job Flags

Moab Workload Manager

158 Scheduler Basics

Scheduler Commands 159

Scheduler Commands

Moab Commands

Command Description

checkjob Provide detailed status report for specified job

checknode Provide detailed status report for specified node

mcredctl Controls various aspects about the credential objects within Moab

mdiag Provide diagnostic reports for resources, workload, and scheduling

mjobctl Control and modify job

mnodectl Control and modify nodes

moab Control the Moab daemon

mrmctl Query and control resource managers

mrsvctl Create, control and modify reservations

mschedctl Modify scheduler state and behavior

mshow Displays various diagnostic messages about the system and job queues

mshow -a Query and show available system resources

msub Scheduler job submission

mvcctl Create, modify, and delete VCs

mvmctl Create, control and modify VMs

showbf Show current resource availability

showhist.moab.pl Show past job information

Moab Workload Manager

Command Description

showq Show queued jobs

showres Show existing reservations

showstart Show estimates of when job can/will start

showstate Show current state of resources

showstats Show usage statistics

showstats -f Show various tables of scheduling/system performance

Moab command options
For many Moab commands, you can use the following options to specify that Moab will run the command
in a different way or different location from the configured default. These options do not change your
settings in the configuration file; they override the settings for this single instance of the command.

Option Description

--about Displays build and version information and the status of your Moab license

--help Displays usage information about the command

--host=<server-
HostName>

Causes Moab to run the client command on the specified host

--
loglevel=
<logLevel>

Causes Moab to write log information to STDERR as the client command is running. For
more information, see Logging Overview on page 676.

--msg=<message> Causes Moab to annotate the action in the event log

--port=<server-
Port>

Causes Moab to run the command using the port specified

--
timeout=
<seconds>

Sets the maximum time that the client command will wait for a response from the Moab
server

Moab Workload Manager

160 Scheduler Commands

Scheduler Commands 161

Option Description

--version Displays version information

--xml Causes Moab to return the command output in XML format

Commands Providing Maui Compatibility

The following commands are deprecated. Click the link for respective deprecated commands to
see the updated replacement command for each.

Command Description

canceljob Cancel job

changeparam Change in memory parameter settings

diagnose Provide diagnostic report for various aspects of resources, workload, and scheduling

releasehold Release job defers and holds

releaseres Release reservations

runjob Force a job to run immediately

sethold Set job holds

setqos Modify job QOS settings

setres Set an admin/user reservation

setspri Adjust job/system priority of job

showconfig Show current scheduler configuration

Status Commands
The status commands organize and present information about the current state and historical statistics
of the scheduler, jobs, resources, users, and accounts. The following table presents the primary status
commands and flags.

Moab Workload Manager

Command Description

checkjob Displays detailed job information such as job state, resource requirements, environment, con-
straints, credentials, history, allocated resources, and resource utilization.

checknode Displays detailed node information such as node state, resources, attributes, reservations, history,
and statistics.

mdiag -f Displays summarized fairshare information and any unexpected fairshare configuration.

mdiag -j Displays summarized job information and any unexpected job state.

mdiag -n Displays summarized node information and any unexpected node state.

mdiag -p Displays summarized job priority information.

mschedctl
-f

Resets internal statistics.

showstats
-f

Displays various aspects of scheduling performance across a job duration/job size matrix.

showq [-r|-
i]

Displays various views of currently queued active, idle, and non-eligible jobs.

showstats
-g

Displays current and historical usage on a per group basis.

showstats
-u

Displays current and historical usage on a per user basis.

showstats
-v

Displays high level current and historical scheduling statistics.

Job Management Commands
Moab shares job management tasks with the resource manager. Typically, the scheduler only modifies
scheduling relevant aspects of the job such as partition access, job priority, charge account, and hold
state. The following table covers the available job management commands. The Commands Overview
lists all available commands.

Moab Workload Manager

162 Scheduler Commands

Scheduler Commands 163

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

mdiag -j Displays summarized job information and any unexpected job state.

releasehold
-a

Removes job holds or deferrals.

runjob Starts job immediately, if possible.

sethold Sets hold on job.

setqos Sets/modifies QoS of existing job.

setspri Adjusts job/system priority of job.

Related topics

l Job State Definitions

Reservation Management Commands
Moab exclusively controls and manages all advance reservation features including both standing and
administrative reservations. The following table covers the available reservation management
commands.

Command Description

mdiag -r Displays summarized reservation information and any unexpected state.

mrsvctl Reservation control.

mrsvctl -r Removes reservations.

mrsvctl -c Creates an administrative reservation.

showres Displays information regarding location and state of reservations.

Moab Workload Manager

Policy/Configuration Management Commands
Moab allows dynamic modification of most scheduling parameters allowing new scheduling policies,
algorithms, constraints, and permissions to be set at any time. Changes made via Moab client commands
are temporary and are overridden by values specified in Moab configuration files the next time Moab is
shut down and restarted. The following table covers the available configuration management commands.

Command Description

mschedctl -l Displays triggers, messages, and settings of all configuration parameters.

mschedctl Controls the scheduler (behavior, parameters, triggers, messages).

mschedctl -m Modifies system values.

End-user Commands
While the majority of Moab commands are tailored for use by system administrators, a number of
commands are designed to extend the knowledge and capabilities of end-users. The following table
covers the commands available to end-users.

When using Active Directory as a central authentication mechanism, all nodes must be reported
with a different name when booted in both Linux and Windows (for instance, node01-l for Linux
and node01 for Windows). If a machine account with the same name is created for each OS, the
most recent OS will remove the previously-joined machine account. The nodes must report to
Moab with the same hostname. This can be done by using aliases (adding all node names to the
/etc/hosts file on the system where Moab is running) and ensuring that the Linux resource
manager reports the node with its global name rather than the Linux-specific one (node01 rather
than node01-l).

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

msub Submit a new job.

releaseres Releases a user reservation.

Moab Workload Manager

164 Scheduler Commands

Scheduler Commands 165

Command Description

setres Create a user reservation.

showbf Shows resource availability for jobs with specific resource requirements.

showq Displays detailed prioritized list of active and idle jobs.

showstart Shows estimated start time of idle jobs.

showstats Shows detailed usage statistics for users, groups, and accounts, to which the end-user has access.

Related topics

l Commands Overview

Commands

checkjob

Synopsis
checkjob [exact:jobid] [-l policylevel] [-n nodeid] [-q qosid] [-r reservationid] [-v] [--flags=future] [--
blocking] jobid

Overview
checkjob displays detailed job state information and diagnostic output for a specified job. Detailed
information is available for queued, blocked, active, and recently completed jobs. The checkjob command
shows the master job of an array as well as a summary of array sub-jobs, but does not display all sub-
jobs. Use checkjob -v to display all job-array sub-jobs.

Access
This command can be run by level 1-3 Moab administrators for any job. Also, end users can use checkjob
to view the status of their own jobs.

Moab Workload Manager

Arguments

--blocking

Format --blocking

Description Do not use cache information in the output. The --blocking flag retrieves results exclusively
from the scheduler.

Example > checkjob -v --blocking 1234

Display real time data about job 1234.

--flags

Format --flags=future

Description Evaluates future eligibility of job (ignore current resource state and usage limitations).

Example > checkjob -v --flags=future 6235

Display reasons why idle job is blocked ignoring node state and current node
utilization constraints.

exact

Format exact:<JOBID>

Description Searches for and returns the exact job ID

Example > checkjob exact:1.job_
dependency1

-l (Policy level)

Format <POLICYLEVEL>

HARD, SOFT, or OFF

Moab Workload Manager

166 Scheduler Commands

Scheduler Commands 167

-l (Policy level)

Description Reports job start eligibility subject to specified throttling policy level.

Example > checkjob -l SOFT 6235
> checkjob -l HARD 6235

-n (NodeID)

Format <NODEID>

Description Checks job access to specified node and preemption status with regards to jobs located on that
node.

Example > checkjob -n node113 6235

-q (QoS)

Format <QOSID>

Description Checks job access to specified QoS <QOSID>.

Example > checkjob -q special 6235

-r (Reservation)

Format <RSVID>

Description Checks job access to specified reservation <RSVID>.

Example: > checkjob -r orion.1 6235

Moab Workload Manager

-v (Verbose)

Description Sets verbose mode. If the job is part of an array, the -v option shows pertinent array information
before the job-specific information (see Example 2 and Example 3 for differences between
standard output and -v output).

Specifying the double verbose (-v -v) displays additional information about the job. See
the Output table for details.

Example > checkjob -v 6235

Details
This command allows any Moab administrator to check the detailed status and resource requirements of
an active, queued, or recently completed job. Additionally, this command performs numerous diagnostic
checks and determines if and where the job could potentially run. Diagnostic checks include policy
violations, reservation constraints, preemption status, and job to resource mapping. If a job cannot run, a
text reason is provided along with a summary of how many nodes are and are not available. If the -v
flag is specified, a node by node summary of resource availability will be displayed for idle jobs.

Job Eligibility

If a job cannot run, a text reason is provided along with a summary of how many nodes are and are not
available. If the -v flag is specified, a node by node summary of resource availability will be displayed
for idle jobs. For job level eligibility issues, one of the following reasons will be given:

Reason Description

job has hold in place one or more job holds are currently in place

insufficient idle procs there are currently not adequate processor resources available to start
the job

idle procs do not meet require-
ments

adequate idle processors are available but these do not meet job require-
ments

start date not reached job has specified a minimum start datewhich is still in the future

expected state is not idle job is in an unexpected state

state is not idle job is not in the idle state

Moab Workload Manager

168 Scheduler Commands

Scheduler Commands 169

Reason Description

dependency is not met job depends on another job reaching a certain state

rejected by policy job start is prevented by a throttling policy

If a job cannot run on a particular node, one of the following 'per node' reasons will be given:

Reason Description

Class Node does not allow required job class/queue

CPU Node does not possess required processors

Disk Node does not possess required local disk

Features Node does not possess required node features

Memory Node does not possess required real memory

Network Node does not possess required network interface

State Node is not Idle or Running

Reservation Access

The -r flag can be used to provide detailed information about job access to a specific reservation

Preemption Status

If a job is marked as a preemptor and the -v and -n flags are specified, checkjob will perform a job by job
analysis for all jobs on the specified node to determine if they can be preempted.

Output
The checkjob command displays the following job attributes:

Attribute Value Description

Account <STRING> Name of account associated with job

Moab Workload Manager

Attribute Value Description

Actual Run Time [[[DD:]HH:]MM:]SS Length of time job actually ran.

This info is only displayed in simulation mode.

Allocated Nodes Square bracket
delimited list of
node and pro-
cessor ids

List of nodes and processors allocated to job

Applied Nodeset** <STRING> Nodeset used for job's node allocation

Arch <STRING> Node architecture required by job

Attr square bracket
delimited list of
job attributes

Job Attributes (i.e. [BACKFILL][PREEMPTEE])

Available Memory** <INTEGER> The available memory requested by job. Moab displays the rel-
ative or exact value by returning a comparison symbol (>, <,
>=, <=, or ==) with the value (i.e. Available Memory <=
2048).

Available Swap** <INTEGER> The available swap requested by job. Moab displays the rel-
ative or exact value by returning a comparison symbol (>, <,
>=, <=, or ==) with the value (i.e. Available Swap >=
1024).

Average Utilized
Procs*

<FLOAT> Average load balance for a job

Avg Util Resources
Per Task*

<FLOAT>

BecameEligible <TIMESTAMP> The date and time when the job moved from Blocked to Eli-
gible.

Bypass <INTEGER> Number of times a lower priority job with a later submit time
ran before the job

CheckpointStartTime** [[[DD:]HH:]
MM:]SS

The time the job was first checkpointed

Moab Workload Manager

170 Scheduler Commands

Scheduler Commands 171

Attribute Value Description

Class [<CLASS NAME>
<CLASS COUNT>]

Name of class/queue required by job and number of class ini-
tiators required per task.

Dedicated Resources
Per Task*

Space-delimited
list of
<STRING>
:<INTEGER>

Resources dedicated to a job on a per-task basis

Disk <INTEGER> Amount of local disk required by job (in MB)

Estimated Walltime [[[DD:]HH:]MM:]SS The scheduler's estimated walltime.

In simulation mode, it is the actual walltime.

EnvVariables** Comma-delimited
list of <STRING>

List of environment variables assigned to job

Exec Size* <INTEGER> Size of job executable (in MB)

Executable <STRING> Name of command to run

Features Square bracket
delimited list of
<STRING>s

Node features required by job

Flags

Group <STRING> Name of UNIX group associated with job

Holds Zero or more of
User, System, and
Batch

Types of job holds currently applied to job

Image Size <INTEGER> Size of job data (in MB)

IWD (Initial Working
Directory)

<DIR> Directory to run the executable in

Job Messages** <STRING> Messages attached to a job

Job Submission** <STRING> Job script submitted to RM

Moab Workload Manager

Attribute Value Description

Memory <INTEGER> Amount of real memory required per node (in MB)

Max Util Resources
Per Task*

<FLOAT>

NodeAccess*

Nodecount <INTEGER> Number of nodes required by job

Opsys <STRING> Node operating system required by job

Partition Mask ALL or colon delim-
ited list of par-
titions

List of partitions the job has access to

PE <FLOAT> Number of processor-equivalents requested by job

Per Partition Pri-
ority**

Tabular Table showing job template priority for each partition

Priority Analysis** Tabular Table showing how job's priority was calculated:
Job PRIORITY* Cred(User:Group:Class) Serv
(QTime)

QOS <STRING> Quality of Service associated with job

Reservation <RSVID> (
<TIME1> -
<TIME2> Duration:
<TIME3>)

RESID specifies the reservation id, TIME1 is the relative start
time, TIME2 the relative end time, TIME3 the duration of the
reservation

Req [<INTEGER>]
TaskCount:
<INTEGER> Par-
tition: <partition>

A job requirement for a single type of resource followed by the
number of tasks instances required and the appropriate par-
tition

StageIn <SOURCE>
%<DESTINATION>

The <SOURCE> is the username, hostname, directory and file
name of origin for the file(s) that Moab will stage in for this
job. The <DESTINATION> is the username, hostname, directory
and file name where Moab will place the file during this job.
See About data staging on page 880 for more information.

Moab Workload Manager

172 Scheduler Commands

Scheduler Commands 173

Attribute Value Description

StageInSize <INTEGER><UNIT> The size of the file Moab will stage in for this job. <UNIT> can
be KB, MB, GB, or TB. See About data staging on page 880 for
more information.

StageOut <SOURCE>
%<DESTINATION>

The <SOURCE> is the username, hostname, directory and file
name of origin for the file(s) that Moab will stage out for this
job. The <DESTINATION> is the username, hostname, directory
and file name where Moab will place the file during this job.
See About data staging on page 880 for more information.

StageOutSize <INTEGER><UNIT> The size of the file Moab will stage out for this job. <UNIT> can
be KB, MB, GB, or TB. See About data staging on page 880 for
more information.

StartCount <INTEGER> Number of times job has been started by Moab

StartPriority <INTEGER> Start priority of job

StartTime <TIME> Time job was started by the resource management system

State One of Idle, Start-
ing, Running, etc.
See Job States on
page 107 for all
possible values.

Current Job State

SubmitTime <TIME> Time job was submitted to resource management system

Swap <INTEGER> Amount of swap disk required by job (in MB)

Task Distribution* Square bracket
delimited list of
nodes

Time Queued

Total Requested
Nodes**

<INTEGER> Number of nodes the job requested

Total Requested Tasks <INTEGER> Number of tasks requested by job

Moab Workload Manager

Attribute Value Description

User <STRING> Name of user submitting job

Utilized Resources
Per Task*

<FLOAT>

WallTime [[[DD:]HH:]MM:]SS
of [[[DD:]HH:]MM:]
SS

Length of time job has been running out of the specified limit

In the above table, fields marked with an asterisk (*) are only displayed when set or when the -v flag is
specified. Fields marked with two asterisks (**) are only displayed when set or when the -v -v flag is
specified.

Example 3-10: checkjob 717

> checkjob 717
job 717
State: Idle
Creds: user:jacksond group:jacksond class:batch
WallTime: 00:00:00 of 00:01:40
SubmitTime: Mon Aug 15 20:49:41
(Time Queued Total: 3:12:23:13 Eligible: 3:12:23:11)

TerminationDate: INFINITY Sat Oct 24 06:26:40
Total Tasks: 1
Req[0] TaskCount: 1 Partition: ALL
Network: --- Memory >= 0 Disk >= 0 Swap >= 0
Opsys: --- Arch: --- Features: ---

IWD: /home/jacksond/moab/moab-4.2.3
Executable: STDIN
Flags: RESTARTABLE,NORMSTART
StartPriority: 5063
Reservation '717' (INFINITY -> INFINITY Duration: 00:01:40)
Note: job cannot run in partition base (idle procs do not meet requirements : 0 of 1
procs found)
idle procs: 4 feasible procs: 0
Rejection Reasons: [State : 3][ReserveTime : 1]
cannot select job 717 for partition GM (partition GM does not support requested class
batch)

The example job cannot be started for two different reasons.

l It is temporarily blocked from partition base because of node state and node
reservation conflicts.

l It is permanently blocked from partition GM because the requested class batch is not
supported in that partition.

Moab Workload Manager

174 Scheduler Commands

Scheduler Commands 175

Example 3-11: Using checkjob (no -v) on a job array master job:

checkjob array.1
job array.1

AName: array
Job Array Info:
Name: array.1

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Example 3-12: Using checkjob -v on a job array master job:

$ checkjob -v array.1
job array.1

AName: array
Job Array Info:
Name: array.1
1 : array.1.1 : Running
2 : array.1.2 : Running
3 : array.1.3 : Running
4 : array.1.4 : Running
5 : array.1.5 : Running
6 : array.1.6 : Running
7 : array.1.7 : Idle
8 : array.1.8 : Idle
9 : array.1.9 : Blocked
10 : array.1.10 : Blocked

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Moab Workload Manager

Example 3-13: Using checkjob -v on a data staging job

$ checkjob -v moab.14.dsin
job moab.14.dsin

AName: moab.14.dsin
State: Running
Creds: user:fred group:company
WallTime: 00:00:00 of 00:01:01
SubmitTime: Wed Apr 16 10:07:19
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Apr 16 10:07:19
TemplateSets: dsin
Triggers: 78$start+0@0.000000:exec@/opt/moab/tools/datastaging/ds_move_rsync --
stagein:FALSE
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: SHARED
Dedicated Resources Per Task: bandwidth: 1
NodeAccess: SHARED

Allocated Nodes:
[GLOBAL:1]

Job Group: moab.14
SystemID: moab
SystemJID: moab.14.dsin
Task Distribution: GLOBAL
IWD: $HOME/test/datastaging
SubmitDir: $HOME/test/datastaging
StartCount: 1
Parent VCs: vc11
User Specified Partition List: local
Partition List: local
SrcRM: internal
Flags: NORMSTART,GRESONLY,TEMPLATESAPPLIED
Attr: dsin
StageInSize: 386MB
StageOutSize: 100MB
StageIn: fred@remotelab:/home/fred/input1/%fred@scratch:/home/fred/input1/
StageIn: fred@remotelab:/home/fred/input2/%fred@scratch:/home/fred/input2/
StageIn: fred@remotelab:/home/fred/input3/%fred@scratch:/home/fred/input3/
StageOut: fred@scratch:/home/fred/output/%fred@remotelab:/home/fred/output/
StartPriority: 1
SJob Type: datastaging
Completion Policy: datastaging

PE: 0.00
Reservation 'moab.14.dsin' (-00:00:06 -> 00:00:55 Duration: 00:01:01)

Related topics

l showhist.moab.pl - explains how to query for past job information
l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -j command - display additional detailed information regarding jobs
l showq command - showq high-level job summaries
l JOBCPURGETIME parameter - specify how long information regarding completed jobs is
maintained

l diagnosing job preemption

Moab Workload Manager

176 Scheduler Commands

Scheduler Commands 177

checknode

Synopsis
checknode options nodeID

ALL

Overview
This command shows detailed state information and statistics for nodes that run jobs.

The following information is returned by this command:

Name Description

Disk Disk space available

Memory Memory available

Swap Swap space available

State Node state

Opsys Operating system

Arch Architecture

Adapters Network adapters available

Features Features available

Classes Classes available

StateTime Time node has been in current state in HH:MM:SS notation

Downtime Displayed only if downtime is scheduled

Load CPU Load (Berkley one-minute load average)

TotalTime Total time node has been detected since statistics initialization expressed in HH:MM:SS
notation

Moab Workload Manager

Name Description

UpTime Total time node has been in an available (Non-Down) state since statistics initialization
expressed in HH:MM:SS notation (percent of time up: UpTime/TotalTime)

ActiveTime Total time node has been busy (allocated to active jobs) since statistics initialization
expressed in HH:MM:SS notation (percent of time busy: BusyTime/TotalTime)

EffNodeAccessPolicy Configured effective node access policy

After displaying this information, some analysis is performed and any unusual conditions are reported.

Access
By default, this command can be run by any Moab Administrator (see ADMINCFG).

Parameters

Name Description

NODE Node name you want to check. Moab uses regular expressions to return any node that contains the
provided argument. For example, if you ran checknode node1, Moab would return information about
node1, node10, node100, etc. If you want to limit the results to node1 only, you would run checknode
"^node1$".

Flags

Name Description

ALL Returns checknode output on all nodes in the cluster.

-h Help for this command.

-v Returns verbose output.

--xml Output in XML format. Same as mdiag -n --xml.

Moab Workload Manager

178 Scheduler Commands

Scheduler Commands 179

Example 3-14: checknode

> checknode P690-032
node P690-032

State: Busy (in current state for 11:31:10)
Configured Resources: PROCS: 1 MEM: 16G SWAP: 2000M DISK: 500G
Utilized Resources: PROCS: 1
Dedicated Resources: PROCS: 1
Opsys: AIX Arch: P690
Speed: 1.00 CPULoad: 1.000
Network: InfiniBand,Myrinet
Features: Myrinet
Attributes: [Batch]
Classes: [batch]

Total Time: 5:23:28:36 Up: 5:23:28:36 (100.00%) Active: 5:19:44:22 (97.40%)

Reservations:
Job '13678'(x1) 10:16:12:22 -> 12:16:12:22 (2:00:00:00)
Job '13186'(x1) -11:31:10 -> 1:12:28:50 (2:00:00:00)

Jobs: 13186

Moab Workload Manager

Example 3-15: checknode ALL

Moab Workload Manager

180 Scheduler Commands

Scheduler Commands 181

> checknode ALL
node ahe

State: Idle (in current state for 00:00:30)
Configured Resources: PROCS: 12 MEM: 8004M SWAP: 26G DISK: 1M
Utilized Resources: PROCS: 1 SWAP: 4106M
Dedicated Resources: ---
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 1.400
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:00 (0.00%)

Reservations: ---
node ahe-ubuntu32

State: Running (in current state for 00:00:05)
Configured Resources: PROCS: 12 MEM: 2013M SWAP: 3405M DISK: 1M
Utilized Resources: PROCS: 6 SWAP: 55M
Dedicated Resources: PROCS: 6
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 2.000
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:02 (1.92%)

Reservations:
6x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)
7x2 Job:Running -00:00:06 -> 00:01:54 (00:02:00)
8x2 Job:Running -00:00:05 -> 00:01:55 (00:02:00)

Jobs: 6,7,8
node ahe-ubuntu64

State: Busy (in current state for 00:00:06)
Configured Resources: PROCS: 12 MEM: 2008M SWAP: 3317M DISK: 1M
Utilized Resources: PROCS: 12 SWAP: 359M
Dedicated Resources: PROCS: 12
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:55 (52.88%)

Reservations:
0x2 Job:Running -00:01:10 -> 00:00:50 (00:02:00)
1x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
2x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
3x2 Job:Running -00:00:17 -> 00:01:43 (00:02:00)
4x2 Job:Running -00:00:13 -> 00:01:47 (00:02:00)
5x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)

Moab Workload Manager

Jobs: 0,1,2,3,4,5
ALERT: node is in state Busy but load is low (0.000)

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -n
l showstate

mcredctl

Synopsis
mcredctl [-d credtype[:credid]] [-h credtype:credid] [-l credtype] [-q
{role|limit|profile|accessfrom|accessto|policies} credtype[:credid]] [--format=xml] [-r
{stats|credits|fairshare} credtype[:credid]] [-t <STARTTIME>[,<ENDTIME>]

Overview
The mcredctl command controls various aspects about the credential objects within Moab. It can be used
to display configuration, limits, roles, and relationships for various Moab credential objects.

Arguments

In all cases <CREDTYPE> is one of acct, group, user, class, or qos.

In most cases it is necessary to use the --format=xml flag in order to print the output (see
examples below for specific syntax requirements).

-d - DESTROY

Format <TYPE>:<VAL>

Description Purge a credential from moab.cfg (does not delete credential from memory).

Example > mcredctl -d user:john

All references to USERCFG[john] will be commented out of
moab.cfg)

Moab Workload Manager

182 Scheduler Commands

Scheduler Commands 183

-h - HOLD

Format <TYPE>:<VAL>

Description Toggles whether a given credentials' jobs should be place on hold or not.

Example > mcredctl -h user:john

User [john] will be put on hold.

-l - LIST

Format <TYPE>

Description List the various sub-objects of the specified credential.

Example > mcredctl -l user --format=xml

List all users within Moab in XML.

> mcredctl -l group --format=xml

List all groups within Moab in XML.

-q - QUERY

Format {role | accessfrom | accessto | limit| profile | policies}
limit <TYPE>
policies <TYPE>
role <USER>:<USERID>
profile <TYPE>[:<VAL>]
accessfrom <TYPE>[:<VAL>]
accessto <TYPE>[:<VAL>]

Description: Display various aspects of a credential (formatted in XML)

Moab Workload Manager

-q - QUERY

Example: > mcredctl -q role user:bob --format=xml

View user bob's administrative role within Moab in XML

> mcredctl -q limit acct --format=xml

Display limits for all accounts in XML

> mcredctl -q policies user:bob

View limits organized by credential for user bob on each partition and
resource manager

-r - RESET

Format <TYPE>

Description Resets the credential within Moab.

Example > mcredctl -r user:john

Resets the credential
of user john

-t - TIMEFRAME

Format <STARTTIME>[,<ENDTIME>]

Description Can be used in conjunction with the -q profile option to display profiling information for the spe-
cified timeframe.

Example > mcredctl -q profile user -t 14:30_06/20

Credential Statistics XML Output
Credential statistics can be requested as XML (via the --format=xml argument) and will be written to
STDOUT in the following format:

Moab Workload Manager

184 Scheduler Commands

Scheduler Commands 185

> mcredctl -q profile user --format=xml -o time:1182927600,1183013999
<Data>
<user ...>
<Profile ...>
</Profile>

</user>
</Data>

Example 3-16: Deleting a group

> mcredctl -d group:john
GROUPCFG[john] Successfully purged from config files

Example 3-17: List users in XML format

> mcredctl -l user --format=xml
<Data><user ID="john"</user><user ID="john"></user><user ID="root"></user><user
ID="dev"></user></Data>

Example 3-18: Display information about a user

> mcredctl -q role user:john --format=xml
<Data><user ID="test" role="admin5"></user></Data>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

mdiag

Synopsis
mdiag -a [accountid]

mdiag -b [-l policylevel] [-t partition]

mdiag -c [classid]

mdiag -C [configfile] // diagnose config file syntax

mdiag -e [-w <starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>] --xml

mdiag -f [-o user|group|acct|qos|class] [-v]

mdiag -g [groupid]

mdiag -G [Green]

mdiag -j [jobid] [-t <partition>] [-v] [--blocking]

mdiag -L [-v] // diagnose usage limits

mdiag -n [-A <creds>] [-t partition] [nodeid] [-v]

mdiag -p [-t partition] [-v] // diagnose job priority

mdiag -q [qosid]

Moab Workload Manager

mdiag -r [reservationid] [-v] [-w type=<type>] [--blocking]

mdiag -R [resourcemanagername] [-v]

mdiag -s [standingreservationid] [--blocking]

mdiag -S [-v] // diagnose scheduler

mdiag -t [-v] // diagnose partitions

mdiag -T [triggerid] [-v] [--blocking]

mdiag -u [userid]

mdiag [--format=xml]

Overview
The mdiag command is used to display information about various aspects of the cluster and the results of
internal diagnostic tests. In summary, it provides the following:

l current object health and state information

l current object configuration (resources, policies, attributes, etc)

l current and historical performance/utilization information

l reports on recent failure

l object messages

Some mdiag options gather information from the Moab cache which prevents them from interrupting the
scheduler, but the --blocking option can be used to bypass the cache and interrupt the scheduler.

Arguments

Argument Description

-a [accountid] Display account information

-b Display information on jobs blocked by policies, holds, or other factors.

If blocked job diagnostics are specified, the -t option is also available to constrain the
report to analysis of particular partition. Also, with blocked job diagnosis, the -l option
can be used to specify the analysis policy level.

-c [classid] Display class information

Moab Workload Manager

186 Scheduler Commands

Scheduler Commands 187

Argument Description

-C [file] With the vast array of options in the configuration file, the -C option does not validate function,
but it does analyze the configuration file for syntax errors including use of invalid parameters,
deprecated parameters, and some illegal values. If you start Moab with the -e flag, Moab eval-
uates the configuration file at startup and quits if an error exists.

-e Moab will do a query for all events whose eventtime starts at <starttime> and matches the
search criteria. This works only when Moab is configured with ODBC MySQL. The syntax is:
mdiag -e[-w <starttime>|<eventtypes>|
<oidlist>|<eidlist>|<objectlist>] --xml

l starttime default is -
l

l eventtypes default is command delimited, the default is all event types (possible values
can be found in the EventType table in the Moab database)

l oidlist is a comma-delimited list of object ids, the default is all objects ids
l eidlist is a comma-delimited list of specific event ids, the default is all event ids
l objectlist is a comma-delimited list of object types, the default is all object types
(possible values can be found in the ObjectType table in the Moab database)

-f Display fairshare information

-g [groupid] display group information

-G [Green] display power management information

-j [jobid] display job information

-L display limits

-n [nodeid] display nodes

If node diagnostics are specified, the -t option is also available to constrain the report
to a particular partition.

-p display job priority.

If priority diagnostics are specified, the -t option is also available to constrain the
report to a particular partition.

-q [qosid] display qos information

Moab Workload Manager

Argument Description

-r [reser-
vationid]

display reservation information

-R [rmid] display resource manager information

-s [srsv] display standing reservation information

-S display general scheduler information

-t display configuration, usage, health, and diagnostic information about partitions maintained by
Moab

-T [triggerid] display trigger information

-u [userid] display user information

--format=xml display output in XML format

XML Output

Information for most of the options can be reported as XML as well. This is done with the command
mdiag -<option> <CLASS_ID> --format=xml. For example, XML-based class information will be
written to STDOUT in the following format:

<Data>
<class <ATTR>="<VAL>" ... >
<stats <ATTR>="<VAL>" ... >
<Profile <ATTR>="<VAL>" ... >
</Profile>

</stats>
</class>

<Data>
...

</Data>

Of the mdiag options, only -G and -L cannot be reported as XML.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l checkjob
l checknode

mdiag -a

Moab Workload Manager

188 Scheduler Commands

Scheduler Commands 189

Synopsis
mdiag -a [accountid]

Overview
The mdiag -a command provides detailed information about the accounts (aka projects) Moab is currently
tracking. This command also allows an administrator to verify correct throttling policies and access
provided to and from other credentials.

Example 3-19: Generating information about accounts

> mdiag -a
evaluating acct information
Name Priority Flags QDef QOSList*
PartitionList Target Limits
engineering 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXPROC=400,500
marketing 1 - low low [A]

5.00 MAXJOB=100,110 MAXPS=54000,54500
it 10 - DEFAULT DEFAULT,high,urgent,low [A]

100.00 MAXPROC=100,1250 MAXPS=12000,12500
FSWEIGHT=1000

development 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXNODE=100,120
research 100 - high DEFAULT,high,low [A]
[B] 30.00 MAXNODE=400,500 MAXPS=900000,1000000
DEFAULT 0 - - - -

0.00 -

Related topics

l Account credential

mdiag -b

Synopsis
mdiag -b [-l policylevel] [-t partition]

Overview
The mdiag -b command returns information about blocked jobs.

mdiag -c

Synopsis
mdiag -c [-v] [classid]

Moab Workload Manager

Overview
The mdiag -c command provides detailed information about the classes Moab is currently tracking. This
command also allows an administrator to verify correct throttling policies and access provided to and
from other credentials.

The term class is used interchangeably with the term queue and generally refers to resource
manager queue.

XML Attributes

Name Description

ADEF Accounts a class has access to.

CAPACITY Number of procs available to the class.

DEFAULT.ATTR Default attributes attached to a job.

DEFAULT.DISK Default required disk attached to a job.

DEFAULT.FEATURES Default required node features attached to a job.

DEFAULT.GRES Default generic resources attached to a job.

DEFAULT.MEM Default required memory attached to a job.

DEFAULT.NODESET Default specified nodeset attached to a job.

DEFAULT.WCLIMIT Default wallclock limit attached to a job.

EXCL.FEATURES List of excluded (disallowed) node features.

EXCL.FLAGS List of excluded (disallowed) job flags.

FSTARGET The class' fairshare target.

HOLD If TRUE this credential has a hold on it, FALSE otherwise.

HOSTLIST The list of hosts in this class.

Moab Workload Manager

190 Scheduler Commands

Scheduler Commands 191

Name Description

JOBEPILOG Scheduler level job epilog to be run after job is completed by resource manager (script
path).

JOBFLAGS Default flags attached to jobs in the class.

JOBPROLOG Scheduler level job prolog to be run before job is started by resource manager (script
path).

ID The unique ID of this class.

LOGLEVEL The log level attached to jobs in the class.

MAX.PROC The max processors per job in the class.

MAX.PS The max processor-seconds per job in the class.

MAX.WCLIMIT The max wallclock limit per job in the class.

MAXIJOB The max idle jobs in the class.

MAXIPROC The max idle processors in the class.

MAXJOBPERUSER The max jobs per user.

MAXNODEPERJOB The max nodes per job.

MAXNODEPERUSER The max nodes per user.

MAXPROCPERJOB The max processors per job.

MAXPROCPERNODE The max processors per node.

MAXPROCPERUSER The max processors per user.

MIN.NODE The minimum nodes per job in the class.

MIN.PROC The minimum processors per job in the class.

Moab Workload Manager

Name Description

MIN.WCLIMIT The minimum wallclock limit per job in the class.

NODEACCESSPOLICY The node access policy associated with jobs in the class.

OCDPROCFACTOR Dedicated processor factor.

OCNODE Overcommit node.

PRIORITY The class' associated priority.

PRIORITYF Priority calculation function.

REQ.FEATURES Required features for a job to be considered in the class.

REQ.FLAGS Required flags for a job to be considered in the class.

REQ.IMAGE Required image for a job to be considered in the class.

REQUIREDUSERLIST The list of users who have access to the class.

RM The resource manager reporting the class.

STATE The class' state.

WCOVERRUN Tolerated amount of time beyond the specified wallclock limit.

Moab Workload Manager

192 Scheduler Commands

Scheduler Commands 193

Example 3-20: Generating information about classes

> mdiag -c
Class/Queue Status
ClassID Priority Flags QDef QOSList* PartitionList
Target Limits
DEFAULT 0 --- --- --- ---
0.00 ---
batch 1 --- --- --- [A][B]
70.00 MAXJOB=33:200,250
MAX.WCLIMIT=10:00:00 MAXPROCPERJOB=128

long 1 --- low low [A]
10.00 MAXJOB=3:100,200
MAX.WCLIMIT=1:00:00:00 MAXPROCPERJOB=128

fast 100 --- high high [B]
10.00 MAXJOB=8:100,150
MAX.WCLIMIT=00:30:00 MAXPROCPERJOB=128

bigmem 1 --- low,high low ---
10.00 MAXJOB=1:100,200
MAXPROCPERJOB=128

In the example above, class fast has MAXJOB soft and hard limits of 100 and 150 respectively and is currently running 8
jobs.

The Limits column will display limits in the following format:
<USAGE>:<HARDLIMIT>[,<SOFTLIMIT>]

Related topics

l showstats command - display general statistics

mdiag -f

Synopsis
mdiag -f [-o user|group|acct|qos|class] [--flags=relative] [-w par=<PARTITIONID>]

Overview
The mdiag -f command is used to display at a glance information about the fairshare configuration and
historic resource utilization. The fairshare usage may impact job prioritization, job eligibility, or both
based on the credential FSTARGET and FSCAP attributes and by the fairshare priority weights as
described in the Job Prioritization Overview. The information presented by this command includes
fairshare configuration and credential fairshare usage over time.

The command hides information about credentials which have no fairshare target and no fairshare cap.

If an object type (<OTYPE>) is specified, then only information for that credential type (user, group, acct,
class, or qos) will be displayed. If the relative flag is set, then per user fairshare usage will be
displayed relative to each non-user credential (see the second example below).

Relative output is only displayed for credentials which have user mappings. For example, if there
is no association between classes and users, no relative per user fairshare usage class breakdown
will be provided.

Moab Workload Manager

Example 3-21: Standard Fairshare Output

> mdiag -f
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 85.3 476.1 478.9 478.5 475.5 482.8
USER

mattp 2.51 ------- 2.20 2.69 2.21 2.65 2.65 3.01
jsmith 12.82 ------- 12.66 15.36 10.96 8.74 8.15 13.85
kyliem 3.44 ------- 3.93 2.78 4.36 3.11 3.94 4.25
tgh 4.94 ------- 4.44 5.12 5.52 3.95 4.66 4.76
walex 1.51 ------- 3.14 1.15 1.05 1.61 1.22 1.60
jimf 4.73 ------- 4.67 4.31 5.67 4.49 4.93 4.92
poy 4.64 ------- 4.43 4.61 4.58 4.76 5.36 4.90
mjackson 0.66 ------- 0.35 0.78 0.67 0.77 0.55 0.43
tfw 17.44 ------- 16.45 15.59 19.93 19.72 21.38 15.68
gjohn 2.81 ------- 1.66 3.00 3.16 3.06 2.41 3.33
ljill 10.85 ------- 18.09 7.23 13.28 9.24 14.76 6.67
kbill 11.10 ------- 7.31 14.94 4.70 15.49 5.42 16.61
stevei 1.58 ------- 1.41 1.34 2.09 0.75 3.30 2.15
gms 1.54 ------- 1.15 1.74 1.63 1.40 1.38 0.90
patw 5.11 ------- 5.22 5.11 4.85 5.20 5.28 5.78
wer 6.65 ------- 5.04 7.03 7.52 6.80 6.43 2.83
anna 1.97 ------- 2.29 1.68 2.27 1.80 2.37 2.17
susieb 5.69 ------- 5.58 5.55 5.57 6.48 5.83 6.16
GROUP

dallas 13.25 15.00 14.61 12.41 13.19 13.29 15.37 15.09
sanjose* 8.86 15.00 6.54 9.55 9.81 8.97 8.35 4.16
seattle 10.05 15.00 9.66 10.23 10.37 9.15 9.94 10.54
austin* 30.26 15.00 29.10 30.95 30.89 28.45 29.53 29.54
boston* 3.44 15.00 3.93 2.78 4.36 3.11 3.94 4.25
orlando* 26.59 15.00 29.83 26.77 22.56 29.49 25.53 28.18
newyork* 7.54 15.00 6.33 7.31 8.83 7.54 7.34 8.24
ACCT

engineering 31.76 30.00 32.25 32.10 31.94 30.07 30.74 31.14
marketing 8.86 5.00 6.54 9.55 9.81 8.97 8.35 4.16
it 9.12 5.00 7.74 8.65 10.92 8.29 10.64 10.40
development* 24.86 30.00 24.15 24.76 25.00 24.84 26.15 26.78
research 25.40 30.00 29.32 24.94 22.33 27.84 24.11 27.53
QOS

DEFAULT* 0.00 50.00 ------- ------- ------- ------- ------- -------
high* 83.69 90.00 86.76 83.20 81.71 84.35 83.19 88.02
urgent 0.00 5.00 ------- ------- ------- ------- ------- -------
low* 12.00 5.00 7.34 12.70 14.02 12.51 12.86 7.48
CLASS

batch* 51.69 70.00 53.87 52.01 50.80 50.38 48.67 52.65
long* 18.75 10.00 16.54 18.36 20.89 18.36 21.53 16.28
fast* 15.29 10.00 18.41 14.98 12.58 16.80 15.15 18.21
bigmem 14.27 10.00 11.17 14.65 15.73 14.46 14.65 12.87

An asterisk (*) next to a credential name indicates that that credential has exceeded its fairshare
target.

Moab Workload Manager

194 Scheduler Commands

Scheduler Commands 195

Example 3-22: Grouping User Output by Account

> mdiag -f -o acct --flags=relative
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 23.8 476.1 478.9 478.5 475.5 482.8
ACCOUNT

dallas 13.12 15.00 15.42 12.41 13.19 13.29 15.37 15.09
mattp 19.47 ------- 15.00 21.66 16.75 19.93 17.26 19.95
walex 9.93 ------- 20.91 9.28 7.97 12.14 7.91 10.59
stevei 12.19 ------- 9.09 10.78 15.85 5.64 21.46 14.28
anna 14.77 ------- 16.36 13.54 17.18 13.55 15.44 14.37
susieb 43.64 ------- 38.64 44.74 42.25 48.74 37.92 40.81

sanjose* 9.26 15.00 8.69 9.55 9.81 8.97 8.35 4.16
mjackson 7.71 ------- 6.45 8.14 6.81 8.62 6.54 10.29
gms 17.61 ------- 21.77 18.25 16.57 15.58 16.51 21.74
wer 74.68 ------- 71.77 73.61 76.62 75.80 76.95 67.97

seattle 10.12 15.00 10.16 10.23 10.37 9.15 9.94 10.54
tgh 49.56 ------- 46.21 50.05 53.26 43.14 46.91 45.13
patw 50.44 ------- 53.79 49.95 46.74 56.86 53.09 54.87

austin* 30.23 15.00 25.58 30.95 30.89 28.45 29.53 29.54
jsmith 42.44 ------- 48.77 49.62 35.47 30.70 27.59 46.90
tfw 57.56 ------- 51.23 50.38 64.53 69.30 72.41 53.10

boston* 3.38 15.00 3.78 2.78 4.36 3.11 3.94 4.25
kyliem 100.00 ------- 100.00 100.00 100.00 100.00 100.00 100.00

orlando* 26.20 15.00 30.13 26.77 22.56 29.49 25.53 28.18
poy 17.90 ------- 16.28 17.22 20.30 16.15 20.98 17.39
ljill 37.85 ------- 58.60 26.99 58.87 31.33 57.79 23.67
kbill 44.25 ------- 25.12 55.79 20.83 52.52 21.23 58.94

newyork* 7.69 15.00 6.24 7.31 8.83 7.54 7.34 8.24
jimf 61.42 ------- 69.66 58.94 64.20 59.46 67.21 59.64
gjohn 38.58 ------- 30.34 41.06 35.80 40.54 32.79 40.36

Related topics

l Fairshare Overview

mdiag -g

Synopsis
mdiag -g [groupid]

Overview
The mdiag -g command is used to present information about groups.

mdiag -j

Synopsis
mdiag -j [jobid] [-t <partition>] [-v] [-w] [--flags=policy] [--xml] [--blocking]

Moab Workload Manager

Overview
The mdiag -j command provides detailed information about the state of jobs Moab is currently tracking.
This command also performs a large number of sanity and state checks. The job configuration and status
information, as well as the results of the various checks, are presented by this command. The command
gathers information from the Moab cache which prevents it from interrupting the scheduler, but the --
blocking option can be used to bypass the cache and interrupt the scheduler. If the -v (verbose) flag is
specified, additional information about less common job attributes is displayed. If --flags=policy is
specified, information about job templates is displayed.

If used with the -t <partition> option on a running job, the only thing mdiag -j shows is if the job is
running on the specified partition. If used on job that is not running, it shows if the job is able to run on
the specified partition.

The -w flag enables you to specify specific job states (Such as Running, Completed, Idle, or ALL. See Job
States on page 107 for all valid options.) or jobs associated with a given credential (user, acct, class,
group, qos). For example:

mdiag -j -w user=david # Displays only David's jobs
mdiag -j -w state=Idle,Running # Displays only idle or running jobs

The mdiag -j command does not show all subjobs of an array unless you use mdiag -j --xml. In
the XML, the master job element contains a child element called ArraySubJobs that contains the
subjobs in the array. Using mdiag -j -v --xml shows the completed sub-jobs as well.

XML Output
If XML output is requested (via the --format=xml argument), XML based node information will be written
to STDOUT in the following format:

<Data>
<job ATTR="VALUE" ... > </job>
...

</Data>

For information about legal attributes, refer to the XML Attributes table.

To show jobs in XML, use mdiag -j --xml -w
[completed=true|system=true|ALL=true] to limit or filter jobs. This is for XML use only.

Related topics

l checkjob
l mdiag

mdiag -n

Synopsis
mdiag -n [-t partitionid] [-A creds] [-w <CONSTRAINT>] [-v] [--format=xml] [nodeid]

Moab Workload Manager

196 Scheduler Commands

Scheduler Commands 197

Overview
The mdiag -n command provides detailed information about the state of nodes Moab is currently tracking.
This command also performs a large number of sanity and state checks. The node configuration and
status information as well as the results of the various checks are presented by this command.

Arguments

Flag Argument Description

[-A] {user|group|account|qos|class|job}:
<OBJECTID>

report if each node is accessible by requested job or credential

[-t] <partitionid> report only nodes from specified partition

[-v] --- show verbose output (do not truncate columns and add columns
for additional node attributes)

[-w] nodestate=drained display only jobs associated with the specified constraint:
nodestate (See DISPLAYFLAGS for more information.)

Output
This command presents detailed node information in whitespace-delineated fields.

The output of this command can be extensive and the values for a number of fields may be truncated. If
truncated, the -v flag can be used to display full field content.

Column Format

Name <NODE NAME>

State <NODE STATE>

Procs <AVAILABLE PROCS>:<CONFIGURED PROCS>

Memory <AVAILABLE MEMORY>:<CONFIGURED MEMORY>

Disk <AVAILABLE DISK>:<CONFIGURED DISK>

Swap <AVAILABLE SWAP>:<CONFIGURED SWAP>

Speed <RELATIVE MACHINE SPEED>

Moab Workload Manager

Column Format

Opsys <NODE OPERATING SYSTEM>

Arch <NODE HARDWARE ARCHITECTURE>

Par <PARTITION NODE IS ASSIGNED TO>

Load <CURRENT 1 MINUTE BSD LOAD>

Rsv <NUMBER OF RESERVATIONS ON NODE>

Classes <CLASS NAME>

Network <NETWORK NAME>...

Features <NODE FEATURE>...

Moab Workload Manager

198 Scheduler Commands

Scheduler Commands 199

Examples

Example 3-23:

> mdiag -n

compute node summary
Name State Procs Memory Opsys

opt-001 Busy 0:2 2048:2048 SuSE
opt-002 Busy 0:2 2048:2048 SuSE
opt-003 Busy 0:2 2048:2048 SuSE
opt-004 Busy 0:2 2048:2048 SuSE
opt-005 Busy 0:2 2048:2048 SuSE
opt-006 Busy 0:2 2048:2048 SuSE
WARNING: swap is low on node opt-006
opt-007 Busy 0:2 2048:2048 SuSE
opt-008 Busy 0:2 2048:2048 SuSE
opt-009 Busy 0:2 2048:2048 SuSE
opt-010 Busy 0:2 2048:2048 SuSE
opt-011 Busy 0:2 2048:2048 SuSE
opt-012 Busy 0:2 2048:2048 SuSE
opt-013 Busy 0:2 2048:2048 SuSE
opt-014 Busy 0:2 2048:2048 SuSE
opt-015 Busy 0:2 2048:2048 SuSE
opt-016 Busy 0:2 2048:2048 SuSE
x86-001 Busy 0:1 512:512 Redhat
x86-002 Busy 0:1 512:512 Redhat
x86-003 Busy 0:1 512:512 Redhat
x86-004 Busy 0:1 512:512 Redhat
x86-005 Idle 1:1 512:512 Redhat
x86-006 Idle 1:1 512:512 Redhat
x86-007 Idle 1:1 512:512 Redhat
x86-008 Busy 0:1 512:512 Redhat
x86-009 Down 1:1 512:512 Redhat
x86-010 Busy 0:1 512:512 Redhat
x86-011 Busy 0:1 512:512 Redhat
x86-012 Busy 0:1 512:512 Redhat
x86-013 Busy 0:1 512:512 Redhat
x86-014 Busy 0:1 512:512 Redhat
x86-015 Busy 0:1 512:512 Redhat
x86-016 Busy 0:1 512:512 Redhat
P690-001 Busy 0:1 16384:16384 AIX
P690-002 Busy 0:1 16384:16384 AIX
P690-003 Busy 0:1 16384:16384 AIX
P690-004 Busy 0:1 16384:16384 AIX
P690-005 Busy 0:1 16384:16384 AIX
P690-006 Busy 0:1 16384:16384 AIX
P690-007 Idle 1:1 16384:16384 AIX
P690-008 Idle 1:1 16384:16384 AIX
WARNING: node P690-008 is missing ethernet adapter
P690-009 Busy 0:1 16384:16384 AIX
P690-010 Busy 0:1 16384:16384 AIX
P690-011 Busy 0:1 16384:16384 AIX
P690-012 Busy 0:1 16384:16384 AIX
P690-013 Busy 0:1 16384:16384 AIX
P690-014 Busy 0:1 16384:16384 AIX
P690-015 Busy 0:1 16384:16384 AIX
P690-016 Busy 0:1 16384:16384 AIX
----- --- 6:64 745472:745472 -----

Total Nodes: 36 (Active: 30 Idle: 5 Down: 1)

Moab Workload Manager

Warning messages are interspersed with the node configuration information with all warnings
preceded by the keyword WARNING.

XML Output
If XML output is requested (via the --format=xml argument), XML based node information will be written
to STDOUT in the following format:

mdiag -n --format=xml
<Data>
<node> <ATTR>="<VAL>" ... </node>
...

</Data>

XML Attributes

Name Description

AGRES Available generic resources

ALLOCRES Special allocated resources (like vlans)

ARCH The node's processor architecture.

AVLCLASS Classes available on the node.

AVLETIME Time when the node will no longer be available (used in Utility centers)

AVLSTIME Time when the node will be available (used in Utility centers)

CFGCLASS Classes configured on the node

ENABLEPROFILING If true, a node's state and usage is tracked over time.

FEATURES A list of comma-separated custom features describing a node.

GEVENT A user-defined event that allows Moab to perform some action.

GMETRIC A list of comma-separated consumable resources associated with a node.

GRES generic resources on the node

Moab Workload Manager

200 Scheduler Commands

Scheduler Commands 201

Name Description

HOPCOUNT Howmany hops the node took to reach this Moab (used in hierarchical grids)

ISDELETED Node has been deleted

ISDYNAMIC Node is dynamic (used in Utility centers)

JOBLIST The list of jobs currently running on a node.

LOAD Current load as reported by the resource manager

LOADWEIGHT Load weight used when calculating node priority

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPROC See Node Policies for details.

MAXPROCPERUSER See Node Policies for details.

NETWORK The ability to specify which networks are available to a given node is limited to only a few
resource managers. Using the NETWORK attribute, administrators can establish this node
to network connection directly through the scheduler. The NODECFG parameter allows this
list to be specified in a comma-delimited list.

NODEID The unique identifier for a node.

NODESTATE The state of a node.

OS A node's operating system.

OSLIST Operating systems the node can run

OSMODACTION URL for changing the operating system

OWNER Credential type and name of owner

Moab Workload Manager

Name Description

PARTITION The partition a node belongs to. See Node Location for details.

POWER The state of the node's power. Either ON or OFF.

PRIORITY The fixed node priority relative to other nodes.

PROCSPEED A node's processor speed information specified in MHz.

RACK The rack associated with a node's physical location.

RADISK The total available disk on a node.

RAMEM The total available memory available on a node.

RAPROC The total number of processors available on a node.

RASWAP The total available swap on a node.

RCMEM The total configured memory on a node.

RCPROC The total configured processors on a node.

RCSWAP The total configured swap on a node.

RESCOUNT Number of reservations on the node

RSVLIST List of reservations on the node

RESOURCES Deprecated (use GRES)

RMACCESSLIST A comma-separated list of resource managers who have access to a node.

SIZE The number of slots or size units consumed by the node.

SLOT The first slot in the rack associated with the node's physical location.

SPEED A node's relative speed.

SPEEDWEIGHT speed weight used to calculate node's priority

Moab Workload Manager

202 Scheduler Commands

Scheduler Commands 203

Name Description

STATACTIVETIME Time node was active

STATMODIFYTIME Time node's state was modified

STATTOTALTIME Time node has been monitored

STATUPTIME Time node has been up

TASKCOUNT The number of tasks on a node.

Related topics

l checknode

mdiag -t

Synopsis
mdiag -t [-v] [-v] [partitionid]

Overview
The mdiag -t command is used to present configuration, usage, health, and diagnostic information about
partitions maintained by Moab. The information presented includes partition name, limits, configured and
available resources, allocation weights and policies.

Examples

Example 3-24: Standard partition diagnostics

> mdiag -t
Partition Status
...

mdiag -p

Synopsis
mdiag -p [-t partition] [-v]

Overview
The mdiag -p command is used to display at a glance information about the job priority configuration and
its effects on the current eligible jobs. The information presented by this command includes priority

Moab Workload Manager

weights, priority components, and the percentage contribution of each component to the total job
priority.

The command hides information about priority components which have been deactivated (i.e. by setting
the corresponding component priority weight to 0). For each displayed priority component, this command
gives a small amount of context sensitive information. The following table documents this information. In
all cases, the output is of the form <PERCENT>(<CONTEXT INFO>) where <PERCENT> is the
percentage contribution of the associated priority component to the job's total priority.

By default, this command only shows information for jobs which are eligible for immediate
execution. Jobs which violate soft or hard policies, or have holds, job dependencies, or other job
constraints in place will not be displayed. If priority information is needed for any of these jobs,
use the -v flag or the checkjob command.

Format

Flag Name Format Default Description Example

-v VERBOSE --- --- Display verbose priority information. If
specified, display priority breakdown
information for blocked, eligible, and
active jobs.

By default, only information for
eligible jobs is displayed. To
view blocked jobs in addition to
eligible, run mdiag -p -v -v.

> mdiag -p -v

Display
priority
summa
ry
informa
tion for
eligible
and
active
jobs

Output

Priority Com-
ponent Format Description

Target <PERCENT>()

QOS <PERCENT>(<QOS>:<QOSPRI>) QOS— QOS associated with job
QOSPRI— Priority assigned to the QOS

Moab Workload Manager

204 Scheduler Commands

Scheduler Commands 205

Priority Com-
ponent Format Description

FairShare <PERCENT>
(
<USR>:<GRP>:<ACC>:<QOS>:<CLS>)

USR— user fs usage - user fs target
GRP— group fs usage - group fs target
ACC— account fs usage - account fs target
QOS— QOS fs usage - QOS fs target
CLS— class fs usage - class fs target

Service <PERCENT>(<QT>:<XF>:<Byp>) QTime— job queue time which is applicable towards
priority (in minutes)
XF— current theoretical minimum XFactor is job were
to start immediately
Byp— number of times job was bypassed by lower pri-
ority jobs via backfill

Resource <PERCENT>
(<NDE>:<PE>:<PRC>:<MEM>)

NDE— nodes requested by job
PE— Processor Equivalents as calculated by all
resources requested by job
PRC— processors requested by job
MEM— real memory requested by job

Moab Workload Manager

Examples

Example 3-25: mdiag -p

diagnosing job priority information (partition: ALL)

Job PRIORITY* Cred(QOS) FS(Accnt) Serv(QTime)
Weights -------- 1(1) 1(1) 1(1)

13678 1321* 7.6(100.0) 0.2(2.7) 92.2(1218.)
13698 235* 42.6(100.0) 1.1(2.7) 56.3(132.3)
13019 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13030 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13099 8537 0.6(50.0) 0.3(25.4) 99.1(8512.)
13141 8438 0.6(50.0) 0.2(17.6) 99.2(8370.)
13146 8428 0.6(50.0) 0.2(17.6) 99.2(8360.)
13153 8360 0.0(1.0) 0.1(11.6) 99.8(8347.)
13177 8216 0.0(1.0) 0.1(11.6) 99.8(8203.)
13203 8127 0.6(50.0) 0.3(25.4) 99.1(8102.)
13211 8098 0.0(1.0) 0.1(11.6) 99.8(8085.)
...
13703 137 36.6(50.0) 12.8(17.6) 50.6(69.2)
13702 79 1.3(1.0) 5.7(4.5) 93.0(73.4)

Percent Contribution -------- 0.9(0.9) 0.4(0.4) 98.7(98.7)

* indicates system prio set on job

The mdiag -p command only displays information for priority components actually utilized. In the above example, QOS,
Account Fairshare, and QueueTime components are utilized in determining a job's priority. Other components, such as
Service Targets, and Bypass are not used and thus are not displayed. (See the Priority Overview for more information)
The output consists of a header, a job by job analysis of jobs, and a summary section.
The header provides column labeling and provides configured priority component and subcomponent weights. In the
above example, QOSWEIGHT is set to 1000 and FSWEIGHT is set to 100. When configuring fairshare, a site also has the
option of weighting the individual components of a job's overall fairshare, including its user, group, and account
fairshare components. In this output, the QoS and account fairshare weights are set to 1.
The job by job analysis displays a job's total priority and the percentage contribution to that priority of each of the
priority components. In this example, job 13019 has a total priority of 8699. Both QOS and Fairshare contribute to the
job's total priority although these factors are quite small, contributing 0.6% and 0.3% respectively with the fairshare
factor being contributed by an account fairshare target. For this job, the dominant factor is the service subcomponent
qtime which is contributing 99.1% of the total priority since the job has been in the queue for approximately 8600
minutes.
At the end of the job by job description, a Totals line is displayed which documents the average percentage
contributions of each priority component to the current idle jobs. In this example, the QOS, Fairshare, and Service
components contributed an average of 0.9%, 0.4%, and 98.7% to the jobs' total priorities.

Related topics

l Job Priority Overview
l Moab Cluster Manager - Priority Manager

mdiag -q

Synopsis
mdiag -q [qosid]

Moab Workload Manager

206 Scheduler Commands

Scheduler Commands 207

Overview
The mdiag -q command is used to present information about each QOS maintained by Moab. The
information presented includes QOS name, membership, scheduling priority, weights and flags.

Examples

Example 3-26: Standard QOS Diagnostics

> mdiag -q
QOS Status
System QOS Settings: QList: DEFAULT (Def: DEFAULT) Flags: 0
Name * Priority QTWeight QTTarget XFWeight XFTarget QFlags
JobFlags Limits
DEFAULT 1 1 3 1 5.00 PREEMPTEE
[NONE] [NONE]
Accounts: it research
Classes: batch

[ALL] 0 0 0 0 0.00 [NONE]
[NONE] [NONE]
high 1000 1 2 1 10.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development research
Classes: fast

urgent 10000 1 1 1 7.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development

low 100 1 5 1 1.00 PREEMPTEE
[NONE] [NONE]
Accounts: engineering marketing it development research
Classes: long bigmem

mdiag -r

Synopsis
mdiag -r [reservationid] [-v] [-w type=<type>]

Overview
The mdiag -r command allows administrators to look at detailed reservation information. It provides the
name, type, partition, starttime and endtime, proc and node counts, as well as actual utilization figures.
It also provides detailed information about which resources are being used, how many nodes, how much
memory, swap, and processors are being associated with each task. Administrators can also view the
Access Control Lists for each reservation as well as any flags that may be active in the reservation. The
command gathers information from the Moab cache which prevents it from waiting for the scheduler, but
the --blocking option can be used to bypass the cache and allow waiting for the scheduler.

The -w flag filters the output according to the type of reservation. The allowable reservation types are
Job, and User.

Moab Workload Manager

Examples

Example 3-27:

> mdiag -r
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
engineer.0.1 User A -6:29:00 INFINITY INFINITY 0 0
7

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==low-:==high+ JATTR==PREEMPTEE+
CL: RSV==engineer.0.1
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr10n01 fr10n03 fr10n05 fr10n07 fr10n09 fr10n11 fr10n13

fr10n15')
Active PH: 43.77/45.44 (96.31%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

research.0.2 User A -6:29:00 INFINITY INFINITY 0 0
8

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==high+:==low- JATTR==PREEMPTEE+
CL: RSV==research.0.2
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr3n01 fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 fr3n11 fr3n13

fr3n15')
Active PH: 51.60/51.93 (99.36%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

fast.0.3 User A 00:14:05 5:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.0.3
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
fast.1.4 User A 1:00:14:05 1:05:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.1.4
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
job2411 Job A -00:01:00 00:06:30 Each tile contains a
summary information about the service it represents, including the following:

ACL: JOB==job2411=
CL: JOB==job2411 USER==jimf GROUP==newyork ACCT==it CLASS==bigmem QOS==low

JATTR==PREEMPTEE DURATION==00:07:30 PROC==6 PS==2700
job1292 Job A 00:00:00 00:07:30 00:07:30 0 0
4

ACL: JOB==job1292=
CL: JOB==job1292 USER==jimf GROUP==newyork ACCT==it CLASS==batch QOS==DEFAULT

JATTR==PREEMPTEE DURATION==00:07:30 PROC==4 PS==1800

Moab Workload Manager

208 Scheduler Commands

Scheduler Commands 209

Example 3-28:

With the -v option, a nodes line is included for each reservation and shows how many nodes are in the
reservation as well as how many tasks are on each node.

Moab Workload Manager

> mdiag -r -v
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
Moab.6 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.6=
CL: JOB==Moab.6 USER==tuser1 GROUP==tgroup1 CLASS==fast QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.6

Moab.4 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.4=
CL: JOB==Moab.4 USER==tuser1 GROUP==tgroup1 CLASS==batch QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.4

Moab.5 Job A -00:01:05 00:00:35 00:01:40 3 3
6

Flags: ISACTIVE
ACL: JOB==Moab.5=
CL: JOB==Moab.5 USER==tuser1 GROUP==tgroup1 ACCT==marketing CLASS==long

QOS==low JPRIORITY<=0 DURATION==00:01:40 PROC==6 PS==600
Task Resources: PROCS: [ALL]
SubType: JobReservation
Nodes='node008:1,node007:1,node006:1'
Rsv-Group: Moab.5

Moab.7 Job A -00:01:04 00:00:36 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.7=
CL: JOB==Moab.7 USER==tuser1 GROUP==tgroup1 CLASS==bigmen QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node005:1'
Rsv-Group: Moab.7

Moab.2 Job A -00:01:07 3:58:53 4:00:00 1 2
2

Flags: ISACTIVE
ACL: JOB==Moab.2=
CL: JOB==Moab.2 USER==tuser1 GROUP==tgroup1 QOS==starter JPRIORITY<=0

DURATION==4:00:00 PROC==2 PS==28800
SubType: JobReservation
Nodes='node009:1'
Rsv-Group: Moab.2

Moab.8 Job A 3:58:53 7:58:53 4:00:00 8 16
16

Flags: PREEMPTEE
ACL: JOB==Moab.8=
CL: JOB==Moab.8 USER==tuser1 GROUP==tgroup1 ACCT==development CLASS==bigmen

Moab Workload Manager

210 Scheduler Commands

Scheduler Commands 211

QOS==starter JPRIORITY<=0 DURATION==4:00:00 PROC==16 PS==230400
SubType: JobReservation

Nodes='node009:1,node008:1,node007:1,node006:1,node005:1,node004:1,node003:1,node001:
1'

Attributes (Priority=148)
Rsv-Group: idle

system.3 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.3=
CL: RSV==system.3
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node254:1'
Attributes (HostExp='node254')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.2 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.2=
CL: RSV==system.2
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node255:1'
Attributes (HostExp='node255')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.1 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.1=
CL: RSV==system.1
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node256:1'
Attributes (HostExp='node256')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

mdiag -S

Synopsis
mdiag -S [-v] [-v]

Overview
The mdiag -S command is used to present information about the status of the scheduler and grid
interface.

Moab Workload Manager

This command will report on the following aspects of scheduling:

l General Scheduler Configuration

o Reports short and long term scheduler load

o Reports detected overflows of node, job, reservation, partition, and other scheduler object
tables

l High Availability

o Configuration

o Reports health of HA primary

o Reports health of HA backup

l Scheduling Status

o Reports if scheduling is paused

o Reports if scheduling is stopped

l System Reservation Status

o Reports if global system reservation is active

l Message Profiling/Statistics Status

l Moab scheduling activities (only with mdiag -S -v -v)

o Activity[JobStart]: Time Moab spends telling the RM to start a job and waiting for a
response.

o Activity[RMResourceLoad]: Time Moab spends querying license managers and nodes.

o Activity[RMWorkloadLoad]: Time Moab spends querying resource managers about jobs (as
opposed to nodes)

o Activity[Schedule]: Time Moab spends prioritizing jobs and scheduling them onto nodes.

o Activity[UIProcess]: Time Moab spends handling client commands.

Examples

Example 3-29:

> mdiag -S
Moab Server running on orion-1:43225 (Mode: NORMAL)
Load(5m) Sched: 12.27% RMAction: 1.16% RMQuery: 75.30% User: 0.29% Idle: 10.98%
Load(24h) Sched: 10.14% RMAction: 0.93% RMQuery: 74.02% User: 0.11% Idle: 13.80%
HA Fallback Server: orion-2:43225 (Fallback is Ready)
Note: system reservation blocking all nodes
Message: profiling enabled (531 of 600 samples/5:00 interval)

mdiag -s

Moab Workload Manager

212 Scheduler Commands

Scheduler Commands 213

Synopsis
mdiag -s [reservationid] [-v]>]

Overview
The mdiag -s command allows administrators to look at detailed standing reservation information. It
provides the name, type, partition, starttime and endtime, period, task count, host list, and a list of child
instances.

Examples

Example 3-30:

> mdiag -s
standing reservation overview
RsvID Type Par StartTime EndTime Duration Period
----- ---- --- --------- ------- -------- ------

TestSR User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
Depth: 2
RsvList: testSR.1,testSR.2,testSR.3
HostExp: 'node1,node2,node4,node8'

test2 User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
TaskCount: 4
Depth: 1
RsvList: test2.4,test2.5

mdiag -T

Synopsis
mdiag -T [triggerid] [-v] [--blocking]

Overview
The mdiag -T command is used to present information about each Trigger. The information presented
includes Name, State, Action, Event Time. The command gathers information from the Moab cache which
prevents it from waiting for the scheduler, but the --blocking option can be used to bypass the cache and
allow waiting for the scheduler.

Moab Workload Manager

Examples

Example 3-31:

> mdiag -T
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

sched_trig.0 sched:Moab end exec -
Blocked
3 node:node010 threshol exec -
Blocked
5 job:Moab.7 preempt exec -
Blocked
6 job:Moab.8 preempt exec -
Blocked
4* job:Moab.5 start exec -00:00:36
Failure
* indicates trigger has completed

Moab Workload Manager

214 Scheduler Commands

Scheduler Commands 215

Example 3-32:

> mdiag -T -v
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

sched_trig.0 sched:Moab end exec -
Blocked
Name: sched_trig
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: date
NOTE: trigger can launch

3 node:node010 threshol exec -
Blocked
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Threshold: CPULoad > 3.00 (current value: 0.00)
Action Data: date
NOTE: trigger cannot launch - threshold not satisfied - threshold type not

supported

5 job:Moab.7 preempt exec -
Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME

6 job:Moab.8 preempt exec -
Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
NOTE: trigger cannot launch - parent job Moab.8 is in state Idle

4* job:Moab.5 start exec Mon Jan 16 12:33:00
Failure
Launch Time: -00:02:17
Flags: globaltrig
Last Execution State: Failure (ExitCode: 0)
BlockUntil: 00:00:00 ActiveTime: 00:00:00
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
ALERT: trigger failure detected
Message: 'exec '/usr/test/moab/tools/preemptnotify.pl' cannot be located or is

not executable'

* indicates trigger has completed

mdiag -u

Synopsis
mdiag -u [userid]

Overview
The mdiag -u command is used to present information about user records maintained by Moab. The
information presented includes user name, UID, scheduling priority, default job flags, default QOS level,

Moab Workload Manager

List of accessible QOS levels, and list of accessible partitions.

Examples

Example 3-33:

> mdiag -u
evaluating user information
Name Priority Flags QDef QOSList* PartitionList
Target Limits

jvella 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

[NONE] 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
reynolds 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Administration
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

mshaw 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Test
Message: profiling enabled (584 of 3000 samples/00:15:00 interval)

kforbes 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Shared
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

gastor 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

Note that only users which have jobs which are currently queued or have been queued since Moab was
most recently started are listed.

Related topics

l showstats command (display user statistics)

mjobctl

Synopsis
mjobctl -c jobexp

mjobctl -c -w attr=val

mjobctl -C jobexp

mjobctl -e jobid

mjobctl -F jobexp

mjobctl -h [User|System|Batch|Defer|All] jobexp

mjobctl -m attr{+=|=|-=}valjobexp

Moab Workload Manager

216 Scheduler Commands

Scheduler Commands 217

mjobctl -N [<SIGNO>] jobexp

mjobctl -n <JOBNAME>

mjobctl -p <PRIORITY> jobexp

mjobctl -q {diag|starttime|hostlist} jobexp

mjobctl -r jobexp

mjobctl -R jobexp

mjobctl -s jobexp

mjobctl -u jobexp

mjobctl -w attr{+=|=|-=}valjobexp

mjobctl -x [-w flags=val] jobexp

Overview
The mjobctl command controls various aspects of jobs. It is used to submit, cancel, execute, and
checkpoint jobs. It can also display diagnostic information about each job. The mjobctl command enables
the Moab administrator to control almost all aspects of job behavior. See General Job Administration for
more details on jobs and their attributes.

Format

-c - Cancel

Format JOBEXP

Description Cancel a job.

Use -w (following a -c flag) to specify job cancellation according to given credentials or job
attributes. See -c -w for more information.

Example: > mjobctl -c job1045

Cancel job job1045.

-c -w - Cancel Where

Format <ATTR>=<VALUE>

where <ATTR>=[user | account | qos | class | reqreservation(RsvName) | state (JobState) | job-
name(JobName, not job ID)] | partition

Moab Workload Manager

-c -w - Cancel Where

Description Cancel a job based on a given credential or job attribute.

Use -w following a -c flag to specify job cancellation according to credentials or job attributes. (See
examples.)
SeeJob States on page 107for a list of all valid job states.
Also, you can cancel jobs from given partitions using -w partition=<PAR1>[<PAR2>...]];
however, you must also either use another -w flag to specify a job or use the standard job
expression.

Example > mjobctl -c -w state=USERHOLD

Cancels all jobs that currently have a USERHOLD on them.

> mjobctl -c -w user=user1 -w acct=acct1

Cancels all jobs assigned to user1 or acct1.

-C - Checkpoint

Format JOBEXP

Description Checkpoint a job. See Checkpoint/Restart Facilities on page 528 for more information.

Example > mjobctl -C job1045

Checkpoint job job1045.

-e - Rerun

Format JOBID

Description Rerun the completed TORQUE job. This works only for jobs that are completed and show up in
TORQUE as completed. This flag does not work with other resource managers.

Example > mjobctl -e job1045

Rerun job job1045.

Moab Workload Manager

218 Scheduler Commands

Scheduler Commands 219

-F - Force Cancel

Format JOBEXP

Description Forces a job to cancel and ignores previous cancellation attempts.

Example > mjobctl -F job1045

Force cancel job job1045.

-h - Hold

Format <HOLDTYPE><JOBEXP>

<HOLDTYPE> = { user | batch | system | defer | ALL }

Default user

Description Set or release a job hold

See Job Holds on page 526 for more information

Example > mjobctl -h user job1045

Set a user hold on job job1045.

> mjobctl -u all job1045

Unset all holds on job job1045.

-m - Modify

Format <ATTR>{ += | =| -= } <VAL>

<ATTR>={ account | arraylimit | awduration| class | cpuclock | deadline | depend | eeduration |
env | features | feature | flags | gres | group | hold | hostlist | jobdisk | jobmem | jobname | job-
swap | loglevel | messages | minstarttime | nodecount | notificationaddress | partition | priority |
queue | qos | reqreservation | rmxstring | reqattr | reqawduration | sysprio | trig | trigvar |
userprio | var | wclimit}

Moab Workload Manager

-m - Modify

Description Modify a specific job attribute.

If an mjobctl -m attribute can affect how a job starts, then it generally cannot affect a job
that is already running. For example, it is not feasible to change the hostlist of a job that is
already running.

The userprio attribute allows you to specify user priority. For job priority, use the '-p' flag.
Modification of the job dependency is also communicated to the resource manager in the case of
SLURM and PBS/TORQUE.
Adding --flags=warnifcompleted causes a warning message to print when a job completes.
To define values for awduration, eeduration, minstarttime (Note that the minstarttime
attribute performs the same function as msub -a.), reqawduration, and wclimit, use the time
spec format.
A non-active job's partition list can be modified by adding or subtracting partitions. Note, though,
that when adding or subtracting multiple partitions, each partition must have its own -m
partition{+= | = | -=}name on the command line. (See example for adding multiple
partitions.)
To modify a job's generic resources, use the following format: gres{ += | = | -= }
<gresName>[:<count>]. <gresName> is a single resource, not a list. <count> is an integer that, if
not specified, is assumed to be 1. Modifying a job's generic resources causes Moab to append the
new gres (+=), subtract the specified gres (-=), or clear out all existing generic resources attached
to the job and override them with the newly-specified one (=).

Moab Workload Manager

220 Scheduler Commands

Scheduler Commands 221

-m - Modify

Example > mjobctl -m reqawduration+=600 1664

Add 10 minutes to the job walltime.

> mjobctl -m eeduration=-1 1664

Reset job's effective queue time, to when the job was submitted.

> mjobctl -m var=Flag1=TRUE 1664

Set the job variable Flag1 to TRUE.

> mjobctl -m notificationaddress="name@server.com"

Sets the notification e-mail address associated with a job to name@server.com.

> mjobctl -m partition+=p3 -m partition+=p4 Moab.5

Adds multiple partitions (p3 and p4) to job Moab.5.

> mjobctl -m arraylimit=10 sim.25

Changes the concurrently running sub-job limit to 10 for array sim.25.

> mjobctl -m gres=matlab:1 job0201

Overrides all generic resources applied to job job0201 and replaces them with 1
matlab.

> mjobctl -m userprio-=100 Moab.4

Reduces the user priority of Moab.4 by 100.

-N - Notify

Format [signal=]<SIGID>JOBEXP

Description Send a signal to all jobs matching the job expression.

Moab Workload Manager

-N - Notify

Example > mjobctl -N INT 1664

Send an interrupt signal to job 1664.

> mjobctl -N 47 1664

Send signal 47 to job 1664.

-n - Name

Format

Description Select jobs by job name.

Example

-p - Priority

Format [+|+=|-=]<VAL><JOBID> [--flags=relative]

Description Modify a job's system priority.

Moab Workload Manager

222 Scheduler Commands

Scheduler Commands 223

-p - Priority

Example Priority is the job priority plus the system priority. Each format affects the job and system
priorities differently. Using the format <VAL><JOBID> or +<VAL><JOBID> will set the system
priority to the maximum system priority plus the specified value. Using +=<VAL><JOBID> or
<VAL><JOBID> --flags=relative will relatively increase the job's priority and set the system
priority. Using the format -=<VAL> <JOBID> sets the system priority to 0, and does not change
priority based on <VAL> (it will not decrease priority by that number).
For the following example, job1045 has a priority of 10, which is composed of a job priority of 10
and a system priority of 0.

> mjobctl -p +1000 job1045

The system priority changes to the max system priority plus 1000 points, ensuring that
this job will be higher priority than all normal jobs. In this case, the job priority of 10 is
not added, so the priority of job1045 is now 1000001000.

> mjobctl -p -=1 job1045

The system priority of job1045 resets to 0. The job priority is still 10, so the overall
priority becomes 10.

> mjobctl -p 3 job1045 --flags=relative

Adds 3 points to the relative system priority. The priority for job1045 changes from 10
to 13.

-q - Query

Format [diag(ALL)| hostlist | starttime| template] <JOBEXP>

Description Query a job.

Moab Workload Manager

-q - Query

Example > mjobctl -q diag job1045

Query job job1045.

> mjobctl -q diag ALL --format=xml

Query all jobs and return the output in machine-readable XML.

> mjobctl -q starttime job1045

Query starttime of job job1045.

> mjobctl -q template <job>

Query job templates. If the <job> is set to ALL or empty, it will return information for all
job templates.

> mjobctl -q wiki <jobName>

Query a job with the output displayed in a WIKI string. The job's name may be replaced
with ALL.

--flags=completed will only work with the diag option.

-r - Resume

Format JOBEXP

Description Resume a job.

Example > mjobctl -r
job1045

Resume
job
job1045.

-R - Requeue

Format JOBEXP

Moab Workload Manager

224 Scheduler Commands

Scheduler Commands 225

-R - Requeue

Description Requeue a job. Adding --flags=unmigrate causes Moab to pull a grid job back to the central
scheduler for further evaluation on all valid partitions.

Example > mjobctl -R job1045

Requeue job job1045.

-s - Suspend

Format JOBEXP

Description Suspend a job. For more information, see Suspend/Resume Handling.

Example > mjobctl -s job1045

Suspend job job1045.

-u - Unhold

Format [<TYPE>[,<TYPE>]]JOBEXP

<TYPE> = [user | system | batch | defer | ALL]

Default ALL

Description Release a hold on a job

See Job Holds on page 526 for more information.

Example > mjobctl -u user,system scrib.1045

Release user and system holds on job
scrib.1045.

-w - Where

Format [CompletionTime | StartTime][<= | = | >=]<EPOCH_TIME>

Moab Workload Manager

-w - Where

Description Add a where constraint clause to the current command. As it pertains to CompletionTime |
StartTime, the where constraint only works for completed jobs. CompletionTime filters according
to the completed jobs' completion times; StartTime filters according to the completed jobs' start
times.

Example > mjobctl -q diag ALL --flags=COMPLETED --format=xml
-w CompletionTime>=1246428000 -w CompletionTime<=1254376800

Prints all completed jobs still in memory that completed between July 1, 2009 and October
1, 2009.

-x - Execute

Format JOBEXP

Description Execute a job. The -w option allows flags to be set for the job. Allowable flags are, ignore-
policies, ignorenodestate, and ignorersv.

Example > mjobctl -x job1045

Execute job job1045.

> mjobctl -x -w flags=ignorepolicies job1046

Execute job job1046 and ignore policies, such as MaxJobPerUser.

Parameters

JOB EXPRESSION

Format <STRING>

Moab Workload Manager

226 Scheduler Commands

Scheduler Commands 227

JOB EXPRESSION

Descrip-
tion

The name of a job or a regular expression for several jobs. The flags that support job expressions
can use node expression syntax as described in Node Selection. Using x: indicates the following
string is to be interpreted as a regular expression, and using r: indicates the following string is to
be interpreted as a range. Job expressions do not work for array sub-jobs.

Moab uses regular expressions conforming to the POSIX 1003.2 standard. This standard is
somewhat different than the regular expressions commonly used for filename matching in
Unix environments (see man 7 regex). To interpret a job expression as a regular expression,
use x: or in the Moab configuration file (moab.cfg), set the parameter USEJOBREGEX to
TRUE (and take note of the following caution).

If you set USEJOBREGEX to TRUE, Moab treats allmjobctl job expressions as regular
expressions regardless of whether wildcards are specified. This should be used with

extreme caution since there is high potential for unintended consequences. For example,
specifying canceljob m.1 will not only cancel m.1, but also m.11,m.12,m.13, and so on.

In most cases, it is necessary to quote the job expression (for example, job13[5-9]) to
prevent the shell from intercepting and interpreting the special characters.

The mjobctl command accepts a comma delimited list of job expressions. Example usage
might be mjobctl -r job[1-2],job4 or mjobctl -c job1,job2,job4.

Example: > mjobctl -c "x:80.*"
job '802' cancelled
job '803' cancelled
job '804' cancelled
job '805' cancelled
job '806' cancelled
job '807' cancelled
job '808' cancelled
job '809' cancelled

Cancel all jobs starting with 80.

> mjobctl -m priority+=200 "x:74[3-5]"
job '743' system priority modified
job '744' system priority modified
job '745' system priority modified

> mjobctl -h x:17.*
This puts a hold on any job that has a 17 that is followed by an unlimited amount
of any
character and includes jobs 1701, 17mjk10, and 17DjN_JW-07

> mjobctl -h r:1-17
This puts a hold on jobs 1 through 17.

Moab Workload Manager

XML Output
mjobctl information can be reported as XML as well. This is done with the command mjobctl -q diag
<JOB_ID>.

XML Attributes

Name Description

Account The account assigned to the job

AllocNodeList The nodes allocated to the job

Args The job's executable arguments

AWDuration The active wall time consumed

BlockReason The block message index for the reason the job is not eligible

Bypass Number of times the job has been bypassed by other jobs

Calendar The job's timeframe constraint calendar

Class The class assigned to the job

CmdFile The command file path

CompletionCode The return code of the job as extracted from the RM

CompletionTime The time of the job's completion

Cost The cost of executing the job relative to an allocation manager

CPULimit The CPU limit for the job

Depend Any dependencies on the status of other jobs

DRM The master destination RM

DRMJID The master destination RM job ID

EEDuration The duration of time the job has been eligible for scheduling

Moab Workload Manager

228 Scheduler Commands

Scheduler Commands 229

Name Description

EFile The stderr file

Env The job's environment variables set for execution

EnvOverride The job's overriding environment variables set for execution

EState The expected state of the job

EstHistStartTime The estimated historical start time

EstPrioStartTime The estimated priority start time

EstRsvStartTime The estimated reservation start time

ExcHList The excluded host list

Flags Command delimited list of Moab flags on the job

GAttr The requested generic attributes

GJID The global job ID

Group The group assigned to the job

Hold The hold list

Holdtime The time the job was put on hold

HopCount The hop count between the job's peers

HostList The requested host list

IFlags The internal flags for the job

IsInteractive If set, the job is interactive

IsRestartable If set, the job is restartable

IsSuspendable If set, the job is suspendable

Moab Workload Manager

Name Description

IWD The directory where the job is executed

JobID The job's batch ID.

JobName The user-specified name for the job

JobGroup The job ID relative to its group

LogLevel The individual log level for the job

MasterHost The specified host to run primary tasks on

Messages Any messages reported by Moab regarding the job

MinPreemptTime The minimum amount of time the job must run before being eligible for preemption

Notification Any events generated to notify the job's user

OFile The stdout file

OldMessages Any messages reported by Moab in the old message style regarding the job

OWCLimit The original wallclock limit

PAL The partition access list relative to the job

QueueStatus The job's queue status as generated this iteration

QOS The QoS assigned to the job

QOSReq The requested QoS for the job

ReqAWDuration The requested active walltime duration

ReqCMaxTime The requested latest allowed completion time

ReqMem The total memory requested/dedicated to the job

ReqNodes The number of requested nodes for the job

Moab Workload Manager

230 Scheduler Commands

Scheduler Commands 231

Name Description

ReqProcs The number of requested procs for the job

ReqReservation The required reservation for the job

ReqRMType The required RM type

ReqSMinTime The requested earliest start time

RM The master source resource manager

RMXString The resource manager extension string

RsvAccess The list of reservations accessible by the job

RsvStartTime The reservation start time

RunPriority The effective job priority

Shell The execution shell's output

SID The job's system ID (parent cluster)

Size The job's computational size

STotCPU The average CPU load tracked across all nodes

SMaxCPU The max CPU load tracked across all nodes

STotMem The average memory usage tracked across all nodes

SMaxMem The max memory usage tracked across all nodes

SRMJID The source RM's ID for the job

StartCount The number of the times the job has tried to start

StartPriority The effective job priority

StartTime The most recent time the job started executing

Moab Workload Manager

Name Description

State The state of the job as reported by Moab

StatMSUtl The total number of memory seconds utilized

StatPSDed The total number of processor seconds dedicated to the job

StatPSUtl The total number of processor seconds utilized by the job

StdErr The path to the stderr file

StdIn The path to the stdin file

StdOut The path to the stdout file

StepID StepID of the job (used with LoadLeveler systems)

SubmitHost The host where the job was submitted

SubmitLanguage The RM language that the submission request was performed

SubmitString The string containing the entire submission request

SubmissionTime The time the job was submitted

SuspendDuration The amount of time the job has been suspended

SysPrio The admin specified job priority

SysSMinTime The system specified min. start time

TaskMap The allocation taskmap for the job

TermTime The time the job was terminated

User The user assigned to the job

UserPrio The user specified job priority

UtlMem The utilized memory of the job

Moab Workload Manager

232 Scheduler Commands

Scheduler Commands 233

Name Description

UtlProcs The number of utilized processors by the job

Variable

VWCTime The virtual wallclock limit

Examples

Example 3-34:

> mjobctl -q diag ALL --format=xml
<Data><job AWDuration="346" Class="batch" CmdFile="jobsleep.sh" EEDuration="0"
EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test" JobID="11578"
QOS="high"
RMJID="11578.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1" ReqProcs="1"
StartCount="1"
StartPriority="1" StartTime="1083861225" StatMSUtl="903.570" StatPSDed="364.610"
StatPSUtl="364.610"
State="Running" SubmissionTime="1083861225" SuspendDuration="0" SysPrio="0"
SysSMinTime="00:00:00"
User="test"><req AllocNodeList="hana" AllocPartition="access" ReqNodeFeature="[NONE]"
ReqPartition="access"></req></job><job AWDuration="346" Class="batch"
CmdFile="jobsleep.sh"
EEDuration="0" EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test"
JobID="11579"
QOS="high" RMJID="11579.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1"
ReqProcs="1"
StartCount="1" StartPriority="1" StartTime="1083861225" StatMSUtl="602.380"
StatPSDed="364.610"
StatPSUtl="364.610" State="Running" SubmissionTime="1083861225" SuspendDuration="0"
SysPrio="0"
SysSMinTime="00:00:00" User="test"><req AllocNodeList="lolo" AllocPartition="access"
ReqNodeFeature="[NONE]" ReqPartition="access"></req></job></Data>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l setspri
l canceljob
l runjob

mnodectl

Synopsis
mnodectl -m attr{=|-=}val nodeexp
mnodectl -q [cat|diag|profile|wiki] nodeexp

Moab Workload Manager

Overview
Change specified attributes for a given node expression.

Access
By default, this command can be run by any Moab Administrator.

Format

-m - Modify

Format <ATTR>{=|-=|+=}<VAL>

Where <ATTR> is one of the following:
FEATURES
GEVENT,
GMETRIC,
MESSAGE,
OS,
POWER,
STATE,
VARIABLE
and -=, except when used for features, clears the attribute instead of decrementing the attribute's
value and = indicates that you are specifying a new value to replace the old one(s), if any.
When the -= option is used to modify features, it removes the specified features from the node.
The += option, which is only available for features, allows you to append additional features to the
current list rather than replacing the current list entirely.

Changing OS and POWER require a Moab Adaptive Computing Suite license and a
provisioning resource manager.

Description Modify the state or attribute of specified node(s)

Example > mnodectl -m features+=fastio,highmem node1
> mnodectl -m gevent=cpufail:'cpu02 has failed w/ec:0317' node1
> mnodectl -m gmetric=temp:131.2 node1
> mnodectl -m message='cpufailure:cpu02 has failed w/ec:0317' node1
> mnodectl -m OS=RHAS30 node1
> mnodectl -m power=off node1
> mnodectl -m state=idle node1
> mnodectl -m variable=IP=10.10.10.100,Location=R1S2 node1

-q - Query

Format {cat | diag | profile | wiki}

Moab Workload Manager

234 Scheduler Commands

Scheduler Commands 235

-q - Query

Description Query node categories or node profile information (see ENABLEPROFILING for nodes).

The diag and profile options must use --xml.

Example > mnodectl -q cat ALL
node categorization stats from Mon Jul 10 00:00:00 to Mon Jul 10 15:30:00
Node: moab
Categories:

busy: 96.88%
idle: 3.12%

Node: maka
Categories:

busy: 96.88%
idle: 3.12%

Node: pau
Categories:

busy: 96.88%
idle: 3.12%

Node: maowu
Categories:

busy: 96.88%
down-hw: 3.12%

Cluster Summary:
busy: 96.88%

down-hw: 0.78%
idle: 2.34%

> mnodectl -v -q profile
...

> mnodectl -q wiki <ALL>
GLOBAL STATE=Idle PARTITION=SHARED
n0 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n1 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n2 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n3 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n4 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n5 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n6 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n7 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n8 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n9 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED

Query a node with the output displayed in a WIKI string.

Parameters

Moab Workload Manager

FEATURES

Format <STRING>
One of the following:

l a comma-delimited list of features
l [NONE] (to clear features on the node)

Description Sets the features on a node.

These node features will be overwritten when an RM reports
features.

Example mnodectl -m features=fastio,highmem node1
mnodectl -m features=[NONE] node1

GEVENT

Format <EVENT>:<MESSAGE>

Description Creates a generic event on the node to which Moab may respond (see Enabling Generic Events).

Example mnodectl -m gevent=powerfail:'power has failed' node1

GMETRIC

Format <ATTR>:<VALUE>

Description Sets the value for a generic metric on the node (see Enabling Generic Metrics).

When a gmetric set in Moab conflicts with what the resource manager reports, Moab uses
the set gmetric until the next time the resource manager reports a different number.

Example mnodectl -m gmetric=temp:120 node1

MESSAGE

Format '<MESSAGE>'

Moab Workload Manager

236 Scheduler Commands

Scheduler Commands 237

MESSAGE

Description Sets a message to be displayed on the node.

Example mnodectl -m message='powerfailure: power has failed'
node1

NODEEXP

Format <STRING>
Where <NODEEXP> is a node name, regex or ALL

Description Identifies one or more nodes.

Example node1— applies only to node1
fr10n* - all nodes starting with fr10n
ALL - all known nodes

OS

Format <STRING>

Description Operating System (see Resource Provisioning).

Example mnodectl node1 -m OS=RHELAS30

POWER

Format {off|on}

Moab Workload Manager

POWER

Description Set the power state of a node. Action will NOT be taken if the node is already in the specified state.

If you power off a node, a green policy will try to turn it back on. If you want the node to
remain powered off, you must associate a reservation with it.

If you request to power off a node that has active work on it, Moab returns a status
indicating that the node is busy (with a job or VM) and will not be powered off. You will
see one of these messages:
l Ignoring node <name>: power ON in process (indicates node is currently
powering on)

l Ignoring node <name>: power OFF in process (indicates node is currently
powering off)

l Ignoring node <name>: has active VMs running (indicates the node is
currently running active VMs)

l Ignoring node <name>: has active jobs running (indicates the node is
currently running active jobs)

Once you resolve the activity on the node (by preempting or migrating the jobs or VMs, for
example), you can attempt to power the node off again.
You can use the --flags=force option to cause a force override. However, doing this will
power off the node regardless of whether or not its jobs get migrated or preempted (i.e.,
you run the risk of losing the VMs/jobs entirely). For example:

> mnodectl node1 -m power=off --flags=force

Example > mnodectl node1 -m power=off

STATE

Format {drained|idle}

Description Remove (drained) or add (idle) a node from scheduling.

Example mnodectl node1 -m state=drained

Moab ignores node1 when scheduling.

VARIABLE

Format <name>[=<value>],<name>[=<value>]...

Moab Workload Manager

238 Scheduler Commands

Scheduler Commands 239

VARIABLE

Description Set a list of variables for a node.

Example > mnodectl node1 -m
variable=IP=10.10.10.100,Location=R1S2

Related topics

l Moab Client Installation — explains how to distribute this command to client nodes
l mdiag -n
l showres -n
l checknode
l showstats -n — report current and historical node statistics

moab

Synopsis
moab --about --help --loglevel=<LOGLEVEL> --version [-c <CONFIG_FILE>] [-C] [-d] [-e] [-h] [-P
[<PAUSEDURATION>]] [-R <RECYCLEDURATION>] [-s] [-S [<STOPITERATION>]] [-v]

Parameters

Parameter Description

--about Displays build environment and version information.

--loglevel Sets the server loglevel to the specified value.

--version Displays version information.

-c Configuration file the server should use.

-C Clears checkpoint files (.moab.ck, .moab.ck.1).

-d Debug mode (does not background itself).

Moab Workload Manager

Parameter Description

-e Forces Moab to exit if there are any errors in the configuration file, if it can't connect to the con-
figured database, or if it can't find these directories:

l statdir

l logdir

l spooldir

l toolsdir

-P Starts Moab in a paused state for the duration specified.

-R Causes Moab to automatically recycle every time the specified duration transpires.

-s Starts Moab in the state that was most recently checkpointed.

-S Suspends/stops scheduling at specified iteration (or at startup if no iteration is specified).

-v Same as --version.

mrmctl

Synopsis
mrmctl -f [fobject] {rmName|am:[amid]} mrmctl -l [rmid|am:[amid]] mrmctl -m <attr>=<value> [rmid|am:
[amid]] mrmctl -p {rmid|am:[amid]} mrmctl -R {AM|ID}[:RMID]}}

Overview
mrmctl allows an admin to query, list, modify, and ping the resource managers and allocation managers
in Moab. mrmctl also allows for a queue (often referred to as a class) to be created for a resource
manager.

Access
By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-f - Flush Statistics

Format [<fobject>] where fobject is optional and one of messages or stats.

Moab Workload Manager

240 Scheduler Commands

Scheduler Commands 241

-f - Flush Statistics

Default If no fobject is specified, then reported failures and performance data will be flushed. If no
resource manager id is specified, the first resource manager will be flushed.

Description Clears resource manager statistics. If messages is specified, then reported failures, performance
data, and messages will be flushed.

Example > mrmctl -f base

Moab will clear the statistics for RM base.

-l - List

Format N/A

Default All RMs and AMs (when no RM/AM is specified)

Description List Resource and Allocation Manager(s)

Example > mrmctl -l

Moab will list all resource and
allocation managers.

-m - Modify

Format N/A

Default All RMs and AMs (when no RM/AM is specified).

Description Modify Resource and Allocation Manager(s).

Example > mrmctl -m state=disabled peer13

-p - Ping

Format N/A

Moab Workload Manager

-p - Ping

Default First RM configured.

Description Ping Resource Manager.

Example > mrmctl -p base

Moab will
ping RM
base.

-R - Reload

Format {AM|ID}[:RMID]}}

Description Dynamically reloads server information for the identity manager service if ID is specified; if AM is
specified, reloads the allocation manager service.

Example > mrmctl -R ID

Reloads the identity manager on demand.

Resource manager interfaces can be enabled/disabled using the modify operation to change the
resource manager state as in the following example:

disable active resource manager interface
> mrmctl -m state=disabled torque
restore disabled resource manager interface
> mrmctl -m state=enabled torque

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -R
l mdiag -c

mrsvctl

Synopsis
mrsvctl -c [-a acl] [-bsubtype] [-d duration] [-D description] [-e endtime] [-E] [-f features] [-F flags] [-g
rsvgroup] [-h hostexp] [-n name] [-o owner] [-p partition] [-P profile] [-R resources] [-s starttime] [-S
setvalue] [-t tasks] [-T trigger] [-V variable] [-x joblist]

Moab Workload Manager

242 Scheduler Commands

Scheduler Commands 243

mrsvctl -C [-g standing_reservationid] {reservationid}

mrsvctl -l [{reservationid | -i index}]

mrsvctl -m <duration|endtime|reqtaskcount|starttime>{=|+=|-=}<VAL> <hostexp>{+=|-=}<VAL> <variable>
{+=KEY=VAL|-=KEY_TO_REMOVE} {reservationid | -i index}

mrsvctl -q {reservationid | -i index} [--blocking]

mrsvctl -r {reservationid | -i index}

Overview
mrsvctl controls the creation, modification, querying, and releasing of reservations.

The timeframe covered by the reservation can be specified on either an absolute or relative basis. Only
jobs with credentials listed in the reservation's access control list can utilize the reserved resources.
However, these jobs still have the freedom to utilize resources outside of the reservation. The
reservation will be assigned a name derived from the ACL specified. If no reservation ACL is specified,
the reservation is created as a system reservation and no jobs will be allowed access to the resources
during the specified timeframe (valuable for system maintenance, etc.). See the Reservation Overview
for more information.

Reservations can be viewed using the -q flag and can be released using the -r flag.

By default, reservations are not exclusive and may overlap with other reservations and jobs. Use
the '-E' flag to adjust this behavior.

Access
By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-a

Name ACL

Moab Workload Manager

-a

Format <TYPE>==<VAL>[,<TYPE>==<VAL>]...

Where <TYPE> is one of the following:
ACCT,
CLASS,
DURATION,
GROUP,
JATTR,
PROC,
QOS, or
USER

Descrip-
tion

List of limitations for access to the reserved resources (See also: ACL Modifiers).

Example > mrsvctl -c -h node01 -a USER==john+,CLASS==batch-

Moab will make a reservation on node01 allowing access to user john and restricting
access from class batch when other resources are available to class batch

> mrsvctl -m -a USER-=john system.1

Moab will remove user john from the system.1 reservation

Moab Workload Manager

244 Scheduler Commands

Scheduler Commands 245

-a

Notes l When you specify multiple credentials, a user must only match one of them in order to
access the reservation. To require one or more of the listed limitations for reservation
access, each required specification must end with an asterisk (*). If a user meets the
required limitation(s), he or she has access to the reservation (without meeting any that are
not marked required).

l There are three different assignment operators that can be used for modifying most
credentials in the ACL. The operator == will reassess the list for that particular credential
type. The += operator will append to the list for that credential type, and -= will remove
from the list. Two other operators are used to specify DURATION and PROC: >= (greater
than) and <= (less than).

l To add multiple credentials of the same type with one command, use a colon to separate
them. To separate lists of different credential types, use commas. For example, to reassign
the user list to consist of users Joe and Bob, and to append the group MyGroup to the
groups list on the system.1 reservation, you could use the command mrsvctl -m -a
USER==Joe:Bob,GROUP+=MyGroup system.1.

l Any of the ACL modifiers may be used. When using them, it is often useful to put single
quotes on either side of the assignment command. For example, mrsvctl -m -a
'USER==&Joe' system.1.

l Some flags are mutually exclusive. For example, the ! modifier means that the credential is
blocked from the reservation and the & modifier means that the credential must run on
that reservation. Moab will take the most recently parsed modifier. Modifiers may be placed
on either the left or the right of the argument, so USER==&JOE and USER==JOE& are
equivalent. Moab parses each argument starting from right to left on the right side of the
argument, then from left to right on the left side. So, if the command was USER==!Joe&,
Moab would keep the equivalent of USER==!Joe because the ! would be the last one
parsed.

l You can set a reservation to have a time limit for submitted jobs using DURATION and the *
modifier. For example, mrsvctl -m -a 'DURATION<=*1:00:00' system.1 would
cause the system.1 reservation to not accept any jobs with a walltime greater than one
hour. Similarly, you can set a reservation to have a processor limit using PROC and the
* modifier. mrsvctl -a 'PROC>=2*' system.2 would cause the system.2
reservation to only allow jobs requesting more than 2 procs to run on it.

l You can verify the ACL of a reservation using the mdiag -r command.

mrsvctl -m -a 'USER==Joe:Bob,GROUP-=BadGroup,ACCT+=GoodAccount,DURATION<=*1:00:00'
system.1

Moab will reassign the USER list to be Joe and Bob, will remove BadGroup from the
GROUP list, append GoodAccount to the ACCT list, and only allow jobs that have a
submitted walltime of an hour or less on the system.1 reservation.

Moab Workload Manager

-a

mrsvctl -m -a 'USER==Joe,USER==Bob' system.1

Moab will assign the USER list to Joe, and then reassign it again to Bob. The final result
will be that the USER list will just be Bob. To add Joe and Bob, use mrsvctl -m -a
USER==Joe:Bob system.1 or mrsvctl -m -a USER==Joe,USER+=Bob
system.1.

-b

Name SUBTYPE

Format One of the node category values or node category shortcuts.

Description Add subtype to reservation.

Example > mrsvctl -c -b SoftwareMaintenance -t ALL

Moab will associate the reserved nodes with the node category
SoftwareMaintenance.

-c

Name CREATE

Format <ARGUMENTS>

Description Creates a reservation.

The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude
certain nodes from being part of the reservation because they are running specific jobs.
The -F flag instructsmrsvctl to still consider nodes with current running jobs.

Moab Workload Manager

246 Scheduler Commands

Scheduler Commands 247

-c

Examples > mrsvctl -c -t ALL

Moab will create a reservation across all system resources.

> mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5
and moab6 will not be assigned to the reservation.

> mrsvctl -c -d INFINITY

Moab will create an infinite reservation.

-C

Name CLEAR

Format <RSVID> | -g <SRSVID>

Description Clears any disabled time slots from standing reservations and allows the recreation of disabled
reservations

Example > mrsvctl -C -g testing

Moab will clear any disabled timeslots from the standing reservation testing.

-d

Name DURATION

Format [[[DD:]HH:]MM:]SS

Default INFINITY

Description Duration of the reservation (not needed if ENDTIME is specified)

Moab Workload Manager

-d

Example > mrsvctl -c -h node01 -d 5:00:00

Moab will create a reservation on node01 lasting 5 hours.

mrsvctl -c -d INFINITY

Moab will create a reservation with a duration of
INFINITY (no endtime).

-D

Name DESCRIPTION

Format <STRING>

Description Human-readable description of reservation or purpose

Example > mrsvctl -c -h node01 -d 5:00:00 -D 'system maintenance to test
network'

Moab will create a reservation on node01 lasting 5 hours.

-e

Name ENDTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default INFINITY

Description Absolute or relative time reservation will end (not required if Duration specified). ENDTIME also
supports an epoch timestamp.

Moab Workload Manager

248 Scheduler Commands

Scheduler Commands 249

-e

Example > mrsvctl -c -h node01 -e +3:00:00

Moab will create a reservation on node01 ending in 3 hours.

-E

Name EXCLUSIVE

Description When specified, Moab will only create a reservation if there are no other reservations (exclusive or
otherwise) which would conflict with the time and space constraints of this reservation. If excep-
tions are desired, the rsvaccesslist attribute can be set or the ignrsv flag can be used.

Example > mrsvctl -c -h node01 -E

Moab will only create a reservation on node01 if no conflicting reservations are found.

This flag is only used at the time of reservation creation. Once the reservation is created,
Moab allows jobs into the reservation based on the ACL. Also, once the exclusive
reservation is created, it is possible that Moab will overlap it with jobs that match the ACL.

-f

Name FEATURES

Format <STRING>[:<STRING>]...

Description List of node features which must be possessed by the reserved resources. You can use a backslash
and pipe to delimit features to indicate that Moab can use one or the other.

Example > mrsvctl -c -h node[0-9] -f fast\|slow

Moab will create a reservation on nodes matching the expression and which also have
either the feature fast or the feature slow.

Moab Workload Manager

-F

Name FLAGS

Format <flag>[[,<flag>]...]

Description Comma-delimited list of flags to set for the reservation (see Managing Reservations for flags).

Example > mrsvctl -c -h node01 -F ignstate

Moab will create a reservation on node01 ignoring any conflicting node states.

-g

Name RSVGROUP

Format <STRING>

Description For a create operation, create a reservation in this reservation group. For list and modify oper-
ations, take actions on all reservations in the specified reservation group. The -g option can also be
used in conjunction with the -r option to release a reservation associated with a specified group.
See Reservation Group for more information.

Example > mrsvctl -c -g staff -h 'node0[1-9]'

Moab will create a reservation on nodes matching the node expression given and assign it
to the reservation group staff.

-h

Name HOSTLIST

Format class:<classname>[,<classname>]...
or
<STRING>
or
'r:<nodeNameStart>[<beginRange>-<endRange>]'
or
ALL

Moab Workload Manager

250 Scheduler Commands

Scheduler Commands 251

-h

Description Host expression or a class mapping indicating the nodes which the reservation will allocate.

When you specify a <STRING>, the HOSTLIST attribute is always treated as a regular
expression. foo10 will map to foo10, foo101, foo1006, etc. To request an exact host

match, the expression can be bounded by the carat and dollar op expression markers as in
^foo10$.

Example > mrsvctl -c -h 'r:node0[1-9]'

Moab will create a reservation on nodes node01, node02, node03, node04, node05,
node06, node07, node08, and node09.

> mrsvctl -c -h class:batch

Moab will create a reservation on all nodes which support class/queue batch.

-i

Name INDEX

Format <STRING>

Description Use the reservation index instead of full reservation ID.

Example > mrsvctl -m -i 1 starttime=+5:00

Moab will create a reservation on nodes matching the
expression given.

-l

Name LIST

Format <RSV_ID> or ALL

RSV_ID can be the name of a reservation or a regular expression.

Moab Workload Manager

-l

Default ALL

Description List reservation(s).

Example > mrsvctl -l system*

Moab will list all of the reservations whose names start
with system.

-m

Name MODIFY

Format <ATTR>=<VAL>[-m <ATTR2>=<VAL2>]...

Where <ATTR> is one of the following:

flags

duration duration{+=|-=|=}<RELTIME>

endtime endtime{+=|-=}<RELTIME> or endtime=<ABSTIME>

hostexp hostexp[+=|-=]<node>[,<node>]

variable variable[+=key1=val1|-=key_to_remove]

reqtaskcount reqtaskcount{+=|-=|=}<TASKCOUNT>

starttime starttime{+=|-=}<RELTIME> or starttime=<ABSTIME>

Description Modify aspects of a reservation.

Moab is constantly scheduling and updating reservations. Before modifying a reservation it
is recommended that you first stop the scheduler (mschedclt -s) so that the scheduler and
reservation are in a stable and steady state. Once the reservation has been modified,
resume the scheduler with mschedctl -r.

Moab Workload Manager

252 Scheduler Commands

Scheduler Commands 253

-m

Example > mrsvctl -m duration=2:00:00 system.1

Moab sets the duration of reservation system.1 to be exactly two hours, thus modifying
the endtime of the reservation.

> mrsvctl -m starttime+=5:00:00 system.1

Moab advances the starttime of system.1 five hours from its current starttime (without
modifying the duration of the reservation).

> mrsvctl -m endtime-=5:00:00 system.1

Moab moves the endtime of reservation system.1 ahead five hours from its current
endtime (without modifying the starttime; thus, this action is equivalent to modifying the
duration of the reservation).

> mrsvctl -m starttime=15:00:00_7/6/08 system.1

Moab sets the starttime of reservation system.1 to 3:00 p.m. on July 6, 2008.

> mrsvctl -m starttime-=5:00:00 system.1

Moab moves the starttime of reservation system.1 ahead five hours.

> mrsvctl -m starttime+=5:00:00 system.1

Moab moves the starttime of reservation system.1 five hours from the current time.

> mrsvctl -m -duration+=5:00:00 system.1

Moab extends the duration of system.1 by five hours.

> mrsvctl -m flags+=ADVRES system.1

Moab adds the flag ADVRES to reservation system.1.

Moab Workload Manager

-m

> mrsvctl -m variable+key1=val1 system.1

Moab adds the variable key1 with the value key2 to system.1.

> mrsvctl -m variable+=key1=val1 variable+=key2=val2 system.1

Moab adds the variable key1 with the value val1, and variable key2 with val2 to
system.1. (Note that each variable flag requires a distinct -m entry.)

> mrsvctl -m variable-=key1 system.1

Moab deletes the variable key1 from system.1.

> mrsvctl -m variable-=key1 -m variable-=key2 system.1

Moab deletes the variables key1 and key2 from system.1.

Moab Workload Manager

254 Scheduler Commands

Scheduler Commands 255

-m

Notes: l Modifying the starttime does not change the duration of the reservation, so the endtime
changes as well. The starttime can be changed to be before the current time, but if the
change causes the endtime to be before the current time, the change is not allowed.

l Modifying the endtime changes the duration of the reservation as well (and vice versa). An
endtime cannot be placed before the starttime or before the current time.

l Duration cannot be negative.
l The += and -= operators operate on the time of the reservation (starttime+=5 adds
five seconds to the current reservation starttime), while + and - operate on the current
time (starttime+5 sets the starttime to five seconds from now).

l If the starttime or endtime specified is before the current time without a date specified, it
is set to the next time that fits the command. To force the date, add the date as well. For
the following examples, assume that the current time is 9:00 a.m. on March 1, 2007.

> mrsvctl -m starttime=8:00:00_3/1/07 system.1

Moab moves system.1's starttime to 8:00 a.m., March 1.

> mrsvctl -m starttime=8:00:00 system.1

Moab moves system.1's starttime to 8:00 a.m., March 2.

> mrsvctl -m endtime=7:00:00 system.1

Moab moves system.1's endtime to 7:00 a.m., March 3. This happens because the
endtime must also be after the starttime, so Moab continues searching until it has found a
valid time that is in the future and after the starttime.

> mrsvctl -m endtime=7:00:00_3/2/07 system.1

Moab will return an error because the endtime cannot be before the starttime.

-n

Name NAME

Format <STRING>

Moab Workload Manager

-n

Description Name for new reservation.

If no name is specified, the reservation name is set to first name listed in ACL or SYSTEM if
no ACL is specified.

Reservation names may not contain whitespace.

Example mrsvctl -c -h node01 -n John

Moab will create a reservation on node01 with the name John.

-o

Name OWNER

Format <CREDTYPE>:<CREDID>

Description Specifies the owner of a reservation. See Reservation Ownership for more information.

Example mrsvctl -c -h node01 -o USER:user1

Moab creates a reservation on node01 owned by user1.

-p

Name PARTITION

Format <STRING>

Description Only allocate resources from the specified partition

Example mrsvctl -c -p switchB -t 14

Moab will allocate 14 tasks from the
switchB partition.

Moab Workload Manager

256 Scheduler Commands

Scheduler Commands 257

-P

Name PROFILE

Format <STRING>

Description Indicates the reservation profile to load when creating this reservation

Example mrsvctl -c -P testing2 -t 14

Moab will allocate 14 tasks to a reservation defined by the testing2
reservation profile.

-q

Name QUERY

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well).

Description Get diagnostic information or list all completed reservations. The command gathers information
from the Moab cache which prevents it from interrupting the scheduler, but the --blocking
option can be used to bypass the cache and interrupt the scheduler.

Example mrsvctl -q ALL

Moab will query reservations.

mrsvctl -q system.1

Moab will query the reservation system.1.

-r

Name RELEASE

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well).

Moab Workload Manager

-r

Description Releases the specified reservation.

Example > mrsvctl -r system.1

Moab will release reservation system.1.

> mrsvctl -r -g idle

Moab will release all idle job reservations.

-R

Name RESOURCES

Format <tid> or
<RES>=<VAL>[{,|+|;}<RES>=<VAL>]...

Where <RES> is one of the following:
PROCS,
MEM,
DISK,
SWAP,
GRES

Default PROCS=-1

Description Specifies the resources to be reserved per task. (-1 indicates all resources on node)

For GRES resources, <VAL> is specified in the format <GRESNAME>
[:<COUNT>]

Example > mrsvctl -c -R MEM=100;PROCS=2 -t 2

Moab will create a reservation for two tasks with the specified resources.

Moab Workload Manager

258 Scheduler Commands

Scheduler Commands 259

-s

Name STARTTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default [NOW]

Description Absolute or relative time reservation will start. STARTTIME also supports an epoch timestamp.

Example > mrsvctl -c -t ALL -s 3:00:00_4/4/04

Moab will create a reservation on all system resources at 3:00 am on April 4, 2004

> mrsvctl -c -h node01 -s +5:00

Moab will create a reservation in 5 minutes on node01

> mrsvctl -m -s -=5:00 system.1

This will decrement the start time by 5 minutes.

-S

Name SET ATTRIBUTE

Format <ATTR>=<VALUE>where <ATTR> is one of
aaccount — Accountable account
agroup — accountable group
aqos — accountable QoS
auser — accountable user
reqarch — required architecture
reqmemory — required node memory - in MB
reqos — required operating system
rsvaccesslist — comma-delimited list of reservations or reservation groups which can be accessed
by this reservation request. Because each reservation can access all other reservations by default,
you should make any reservation with a specified rsvaccesslist exclusive by setting the -E on page
249 flag. This setting gives the otherwise exclusive reservation access to reservations specified in
the list.

Moab Workload Manager

-S

Description Specifies a reservation attribute will be used to create this reservation

Example > mrsvctl -c -h node01 -S aqos=high

Moab will create a reservation on node01 and will use the QOS high as the accountable
credential

-t

Name TASKS

Format <INTEGER>[-<INTEGER>]

Description Specifies the number of tasks to reserve. ALL indicates all resources available should be reserved.

If the task value is set to ALL, Moab applies the reservation regardless of existing
reservations and exclusive issues. If an integer is used, Moab only allocates accessible
resources. If a range is specified Moab attempts to reserve the maximum number of tasks,
or at least the minimum.

Example > mrsvctl -c -t ALL

Moab will create a reservation on all resources.

> mrsvctl -c -t 3

Moab will create a reservation for three tasks.

> mrsvctl -c -t 3-10 -E

Moab will attempt to reserve 10 tasks but will fail if it cannot get at least three.

-T

Name TRIGGER

Moab Workload Manager

260 Scheduler Commands

Scheduler Commands 261

-T

Format <STRING>

Description Comma-delimited reservation trigger list following format described in the trigger format section
of the reservation configuration overview. See Creating a trigger on page 727 for more inform-
ation.

To cancel a standing reservation with a trigger, the SRCFG parameter's attribute DEPTH
must be set to 0.

Example > mrsvctl -c -h node01 -T offset=200,etype=start,atype=exec,action=/tmp/email.sh

Moab will create a reservation on node01 and fire the script /tmp/email.sh 200
seconds after it starts

-V

Name VARIABLE

Format <name>[=<value>][[;<name>[=<value>]]...]

Description Semicolon-delimited list of variables that will be set when the reservation is created (See About
trigger variables on page 754 for more information.). Names with no values will simply be set to
TRUE.

Example > mrsvctl -c -h node01 -V $T1=mac;var2=18.19

Moab will create a reservation on node01 and set $T1 to mac and var2 to 18.19.

For information on modifying a variable on a reservation, see MODIFY.

-x

Name JOBLIST

Format -x <jobs to be excluded>

Moab Workload Manager

-x

Description The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude certain
nodes that are running the listed jobs. The -F flag instructsmrsvctl to still consider nodes with cur-
rent running jobs. The nodes are not listed directly.

Example > mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5
and moab6 will not be assigned to the reservation.

Parameters

RESERVATION ID

Format <STRING>

Description The name of a reservation or a regular expression for several reservations.

Example system*

Specifies all reservations starting with system.

Resource Allocation Details
When allocating resources, the following rules apply:

l When specifying tasks, each task defaults to one full compute node unless otherwise specified
using the -R specification

l When specifying tasks, the reservation will not be created unless all requested resources can be
allocated. (This behavior can be changed by specifying -F besteffort)

l When specifying tasks or hosts, only nodes in an idle or running state will be considered. (This
behavior can be changed by specifying -F ignstate)

Reservation Timeframe Modification
Moab supports dynamically modifying the timeframe of existing reservations. This can be accomplished
using the mrsvctl -m flag. By default, Moab will perform advanced boundary and resource access to
verify that the modification does not result in an invalid scheduler state. However, in certain
circumstances administrators may wish to FORCE the modification in spite of any access violations. This
can be done using the switch mrsvctl -m --flags=force which forces Moab to bypass any access
verification and force the change through.

Moab Workload Manager

262 Scheduler Commands

Scheduler Commands 263

Extending a reservation by modifying the endtime
The following increases the endtime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:57 1:11:35:57 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime+=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:22 2:11:35:22 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the endtime of a reservation by setting the endtime to an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:18 1:11:33:18 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/20 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:05 2:11:33:05 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Extending a reservation by modifying the duration
The following increases the duration of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:46 1:11:28:46 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration+=24:00:00 system.1
duration for rsv 'system.1' changed
>$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:42 2:11:28:42 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the duration of a reservation by setting the duration to an absolute time:

Moab Workload Manager

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:41 1:11:26:41 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration=48:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:33 2:11:26:33 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Shortening a reservation by modifying the endtime
The following modifies the endtime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:51 2:11:15:51 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime-=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:48 1:11:15:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the endtime of a reservation by setting the endtime to an absolute time:

$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:14:00 2:11:14:00 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/19 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:13:48 1:11:13:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Shortening a reservation by modifying the duration
The following modifies the duration of a reservation using the -= tag:

Moab Workload Manager

264 Scheduler Commands

Scheduler Commands 265

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:20 2:11:12:20 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration-=24:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:07 1:11:12:07 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the duration of a reservation by setting the duration to an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:57 2:11:10:57 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration=24:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:50 1:11:10:50 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Modifying the starttime of a reservation
The following increases the starttime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:08:30 2:11:08:30 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime+=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:08:22 3:11:08:22 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following decreases the starttime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:07:04 2:11:07:04 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime-=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:53:04 1:11:06:56 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

Moab Workload Manager

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:05:31 2:11:05:31 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime=0_11/19 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:05:18 3:11:05:18 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:04:04 2:11:04:04 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime=0_11/17 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:56:02 1:11:03:58 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

Examples
l Basic Reservation on page 266

l System Maintenance Reservation on page 266

l Explicit Task Description on page 267

l Dynamic Reservation Modification on page 267

l Reservation Modification on page 267

l Allocating Reserved Resources on page 267

l Modifying an Existing Reservation on page 267

Example 3-35: Basic Reservation

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

> mrsvctl -c -a USER=john,USER=mary -starttime +24:00:00 -duration 8:00:00 -t 2
reservation 'system.1' created

Example 3-36: System Maintenance Reservation

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00
PM.

Moab Workload Manager

266 Scheduler Commands

Scheduler Commands 267

% mrsvctl -c -s 8:00:00_06/20 -e 17:00:00_06/22 -h ALL
reservation 'system.1' created

Example 3-37: Explicit Task Description

Reserve one processor and 512 MB of memory on nodes node003 through node node006 for members
of the group staff and jobs in the interactive class

> mrsvctl -c -R PROCS=1,MEM=512 -a GROUP=staff,CLASS=interactive -h 'node00[3-6]'
reservation 'system.1' created

Example 3-38: Dynamic Reservation Modification

Modify reservation john.1 to start in 2 hours, run for 2 hours, and include node02 in the hostlist.

> mrsvctl -m starttime=+2:00:00,duration=2:00:00,HostExp+=node02
Note: hosts added to rsv system.3

Example 3-39: Reservation Modification

Remove user John's access to reservation system.1

> mrsvctl -m -a USER=John system.1 --flags=unset
successfully changed ACL for rsv system.1

Example 3-40: Allocating Reserved Resources

Allocate resources for group dev which are exclusive except for resources found within reservations
myrinet.3 or john.6

> mrsvctl -c -E -a group=dev,rsv=myrinet.3,rsv=john.6 -h 'node00[3-6]'
reservation 'dev.14' created

Create exclusive network reservation on racks 3 and 4

> mrsvctl -c -E -a group=ops -g network -f rack3 -h ALL
reservation 'ops.1' created
> mrsvctl -c -E -a group=ops -g network -f rack4 -h ALL
reservation 'ops.2' created

Allocate 64 nodes for 2 hours to new reservation and grant access to reservation system.3 and all
reservations in the reservation group network

> mrsvctl -c -E -d 2:00:00 -a group=dev -t 64 -S rsvaccesslist=system.3,network
reservation 'system.23' created

Allocate 4 nodes for 1 hour to new reservation and grant access to idle job reservations

> mrsvctl -c -E -d 1:00:00 -t 4 -S rsvaccesslist=idle
reservation 'system.24' created

Example 3-41: Modifying an Existing Reservation

Remove user john from reservation ACL

Moab Workload Manager

> mrsvctl -m -a USER=john system.1 --flags=unset
successfully changed ACL for rsv system.1

Change reservation group

> mrsvctl -m RSVGROUP=network ops.4
successfully changed RSVGROUP for rsv ops.4

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l Admin Reservation Overview
l showres
l mdiag -r
l mshow -a command to identify available resources
l job to rsv binding

mschedctl

Synopsis
mschedctl -A '<MESSAGE>'

mschedctl -c message messagestring [-o type:val]

mschedctl -c trigger triggerid -o type:val

mschedctl -d trigger:triggerid

mschedctl -d message:index

mschedctl -f {all|fairshare|usage}

mschedctl -k

mschedctl -l {config|gmetric|gres|message|opsys|trigger|trans} [--flags=verbose] [--xml]

mschedctl -L [LOGLEVEL]

mschedctl -m config string [-e] [--flags=persistent]

mschedctl -m trigger triggerid attr=val[,attr=val...]

mschedctl -q mschedctl -q pactions --xml

mschedctl -p

mschedctl -r [resumetime]

mschedctl -R

mschedctl -s [STOPITERATION]

mschedctl -S [STEPITERATION]

Moab Workload Manager

268 Scheduler Commands

Scheduler Commands 269

Overview
The mschedctl command controls various aspects of scheduling behavior. It is used to manage scheduling
activity, shutdown the scheduler, and create resource trace files. It can also evaluate, modify, and create
parameters, triggers, and messages.

With many flags, the --msg=<MSG> option can be specified to annotate the action in the event log.

Format

-A - ANNOTATE

Format <STRING>

Description Report the specified parameter modification to the event log and annotate it with the specified
message. The RECORDEVENTLIST parameter must be set in order for this to work.

Example mschedctl -A 'increase logging' -m 'LOGLEVEL 6'

Adjust the LOGLEVEL parameter and record an associated message.

-c - CREATE

Format One of:
l message <STRING> [-o <TYPE>:<VAL>]
l trigger<TRIGSPEC> -o <OBJECTTYPE>:<OBJECTID>
l gevent -n <NAME> [-m <message>]

where <ATTR> is one of account, duration, ID, messages, profile, reqresources, resources,
rsvprofile, starttime, user, or variables

Descrip-
tion

Create a message, trigger, or gevent and attach it to the specified object. To create a trigger on a
default object, use the Moab configuration file (moab.cfg) rather than the mschedctl command.

Moab Workload Manager

-c - CREATE

Example mschedctl -c message tell the admin to be nice

Create a message on the system table.

mschedctl -c trigger EType=start,AType=exec,Action="/tmp/email $OWNER $TIME" -o
rsv:system.1

Create a trigger linked to system.1.

Creating triggers on default objects via mschedctl -c trigger does not propagate the
triggers to individual objects. To propagate triggers to all objects, the triggers must be

created within the moab.cfg file; for example: NODECFG[DEFAULT]TRIGGER.

mschedctl -c gevent -n diskfailure -m "node=n4"

Create a gevent indicating a disk failure on the node labeled n4.

-d - DESTROY

Format One of:
l trigger:<TRIGID>
l message:<INDEX>

Description Delete a trigger or message.

Example mschedctl -d
trigger:3

Delete trigger
3.

mschedctl -d
message:5

Delete message
with index 5.

Moab Workload Manager

270 Scheduler Commands

Scheduler Commands 271

-f - FLUSH

Format {all|fairshare|usage}

Description Reset all internally-stored Moab Scheduler statistics to the initial start-up state as of the time the
command was executed.

Flushing should only be used if you experience corrupt statistics. The best practice is to
pause the Moab scheduler with mschedctl -p before running the flush command. After
running the flush command, unpause the Moab scheduler with mschedctl -r and the jobs
will start flowing again. For all external observers this will be a transparent flush unless
they are watching the stats.

Example mschedctl -f usage

Flush usage statistics.

-k - KILL

Description Stop scheduling and exit the scheduler

Example mschedctl -k

Kill the scheduler.

-l - LIST

Format {config | gmetric| gres |message|opsys | trans | trigger} [--flags=verbose] [--xml]

Using the --xml argument with the trans option returns XML that states if the queried
TID is valid or not.

Default config

Description List the generic metrics, generic resources, scheduler configuration, system messages, operating sys-
tems, triggers, or transactions.

Moab Workload Manager

-l - LIST

Example mschedctl -l config

List system parameters.

mschedctl -l gmetric

List all configured generic metrics.

mschedctl -l gres

List all configured generic resources.

mschedctl -l message

List all system messages.

mschedctl -l opsys

List all recognized operating systems

mschedctl -l trans 1

List transaction id 1.

mschedctl -l trigger

List triggers.

-L - LOG

Format <INTEGER>

Default 7

Description Create a temporary log file with the specified loglevel.

Example mschedctl -L 7

Create temporary log file with naming convention
<logfile>.YYYYMMDDHHMMSS.

Moab Workload Manager

272 Scheduler Commands

Scheduler Commands 273

-m - MODIFY

Format One of:
l config [<STRING>]

[-e]
[--flags=pers]
<STRING> is any string which would be acceptable in moab.cfg

o If no string is specified, <STRING> is read from STDIN.
o If -e is specified, the configuration string will be evaluated for correctness but no

configuration changes will take place. Any issues with the provided string will be
reported to STDERR.

o If --flags=persistent is specified, the Moab configuration files (moab.cfg
and moab.dat) are modified.

l trigger:<TRIGID> <ATTR>=<VAL>

where <ATTR> is one of action, atype, etype, iscomplete, oid, otype, offset, or threshold

Description Modify a system parameter or trigger.

Example mschedctl -m config LOGLEVEL 9

Change the system loglevel to 9.

mschedctl -m trigger:2 AType=exec,Offset=200,OID=system.1

Change aspects of trigger 2.

-p - PAUSE

Description Disable scheduling but allow the scheduler to update its cluster and workload state information.

Example mschedctl -p

-q QUERY PENDING ACTIONS

Default mschedctl -q pactions --xml

Description A way to view pending actions. Only an XML request is valid. Pending actions can be VMs or sys-
tem jobs.

Moab Workload Manager

-q QUERY PENDING ACTIONS

Example mschedctl -q pactions --xml

-R - RECYCLE

Description Recycle scheduler immediately (shut it down and restart it using the original execution envir-
onment and command line arguments).

Example mschedctl -R

Recycle scheduler immediately.

To restart Moab with its last known scheduler state, use:
mschedctl -R savestate

-r - RESUME

Format mschedctl -r [[HH:[MM:]]SS]

Default 0

Description Resume scheduling in the specified amount of time (or immediately if none is specified).

Example mschedctl -r

Resume scheduling immediately.

-s - STOP

Format <INTEGER>

Default 0

Description Suspend/stop scheduling at specified iteration (or at the end of the current iteration if none is spe-
cified). If the letter I follows <ITERATION>, Moab will not process client requests until this iteration
is reached.

Moab Workload Manager

274 Scheduler Commands

Scheduler Commands 275

-s - STOP

Example mschedctl -s 100I

Stop scheduling at iteration 100 and ignore all client requests until then.

-S - STEP

Format <INTEGER>

Default 0

Description Step the specified number of iterations (or to the next iteration if none is specified) and suspend
scheduling If the letter I follows <ITERATION>, Moab will not process client requests until this iter-
ation is reached.

Example mschedctl -S

Step to the next iteration and stop scheduling.

Examples

Example 3-42: Shutting down the Scheduler

mschedctl -k
scheduler will be shutdown immediately

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

mshow

Synopsis
mshow [-a] [-q jobqueue=active]

Overview
The mshow command displays various diagnostic messages about the system and job queues.

Moab Workload Manager

Arguments

Flag Description

-a AVAILABLE RESOURCES

-q [<QUEUENAME>] Displays the job queues.

Format

AVAILABLE RESOURCES

Format Can be combined with --flags=[tid|verbose|future] --format=xml and/or -w

Description Display available resources.

Example > mshow -a -w user=john --flags=tid --format=xml

Show resources available to john in XML format with a transaction id. See mshow
-a for details.

JOB QUEUE

Format <QUEUENAME>, where the queue name is one of: active, eligible, or blocked. Job queue names can
be delimited by a comma to display multiple queues. If no job queue name is specified, mshow dis-
plays all job queues.

Description Displays the job queues. If a job queue name is specified,mshow shows only that job queue.

Example > mshow -q active,blocked
[Displays all jobs in the active and blocked queues]

...

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mshow -a command to show available resources

mshow -a

Moab Workload Manager

276 Scheduler Commands

Scheduler Commands 277

Synopsis
mshow -a [-i] [-o] [-T] [-w where] [-x] [--xml]

Overview
The mshow -a command allows for querying of available system resources.

Arguments

[-i] INTERSECTION

[-o] NO AGGREGATE

[-T] TIMELOCK

[-w] WHERE

[-x] EXCLUSIVE

Table 3-4: Argument Format

--flags

Name Flags

Format --flags=[future | policy | tid | summary | verbose]

Description futurewill return resources available immediately and available in the future.
policy (Deprecated. May be removed in a future release.) will apply charging policies to
determine the total cost of each reported solution (only enabled for XML responses).

summarywill assign all jointly allocated transactions as dependencies of the first transaction
reported.
tid will associate a transaction id with the reported results.
verbosewill return diagnostic information.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a transaction ID.

Moab Workload Manager

--xml

Name XML

Format --xml

Description Report results in XML format.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a
transaction ID.

-i

Name INTERSECTION

Description Specifies that an intersection should be performed during an mshow -a command with multiple
requirements.

-o

Name NO AGGREGATE

Description Specifies that the results of the command mshow -a with multiple requirements should not be
aggregated together.

-T

Name TIMELOCK

Description Specifies that the multiple requirements of an mshow -a command should be timelocked.

Example > mshow -a -w minprocs=1,os=linux,duration=1:00:00 \
-w minprocs=1,os=aix,duration=10:00 \
--flags=tid,future -x -T

Moab Workload Manager

278 Scheduler Commands

Scheduler Commands 279

-w

Name WHERE

Format Comma delimited list of <ATTR>=<VAL> pairs:
<ATTR>=<VAL> [,<ATTR>=<VAL>]...

If any of the <ATTR>=<VAL> pairs contains a sub-list that is also comma delimited, the
entire -w string must be wrapped in single quotations with the sub-list expression
wrapped in double quotations. See the example below.

Attributes are listed below in table 2.

Description Add a Where clause to the current command (currently supports up to six co-allocation clauses).

Example > mshow -a -w minprocs=2,duration=1:00:00 -w nodemem=512,duration=1:00:00

Moab returns a list of all nodes with at least 2 processors and one hour duration or with a
memory of 512 and a duration of one hour.

> mshow -a -w nodefeature=\!vmware:gpfs --flags=future

Moab returns a list of all nodes that do not contain the vmware feature but that do
contain the gpfs feature.

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY, except for nodes named n01,
n12, and n23.
Note the use of single quotations containing the entire -w string and the use of double
quotations containing the excludehostlist attribute.

-x

Name EXCLUSIVE

Description Specifies that the multiple requirements of an mshow -a command should be exclusive (i.e. each
node may only be allocated to a single requirement)

Example > mshow -a -w minprocs=1,os=linux -w minprocs=1,os=aix --flags=tid -x

Moab Workload Manager

Table 3-5: Request Attributes

Name Description

account The account credential of the requestor

acl ACL to attach to the reservation

This ACL must be enclosed in quotation marks. For example:
$ mshow -a ... -w acl=\"user=john\" ...

arch Select only nodes with the specified architecture

cal Select resources subject to the constraints of the specified global calendar

class The class credential of the requestor

coalloc The co-allocation group of the specific Where request (can be any string but must match co-
allocation group of at least one other Where request)

The number of tasks requested in each Where request must be equal whether this
taskcount is specified via minprocs, mintasks, or gres.

count The number of profiles to apply to the resource request

displaymode Possible value is future. (Example: displaymode=future). Constrains how results are
presented; setting future evaluates which resources are available now and which resources
will be available in the future that match the requested attributes.

duration The duration for which the resources will be required in format [[[DD:]HH:]MM:]SS

excludehostlist Do not select any nodes from the given list. The list must be comma delimited.

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY, except for nodes named
n01, n12, and n23.
Note the use of single quotations to contain the entire -w string, and the use of double
quotations containing the excludehostlist attribute.

gres Select only nodes which possess the specified generic resource

group The group credential of the requestor

Moab Workload Manager

280 Scheduler Commands

Scheduler Commands 281

Name Description

hostlist Select only the specified resources. The list must be comma delimited.

> mshow -a -w 'duration=INFINITY,"hostlist=n01,n12,n23"'

Moab returns a list of nodes from the selected hostlist that have a duration of
INFINITY.
Note the use of single quotations to contain the entire -w string, and the use of double
quotations containing the hostlist attribute.

job Use the resource, duration, and credential information for the job specified as a resource
request template

jobfeature Select only resources which would allow access to jobs with the specified job features

jobflags Select only resources which would allow access to jobs with the specified job flags. The job-
flags attribute accepts a colon delimited list of multiple flags.

label Removed label 1/2013 for DOC-16 Associate the specified label with all results matching this
request

minnodes Return only results with at least the number of nodes specified. If used with TID's, return only
solutions with exactly minnodes nodes available

minprocs Return only results with at least the number of processors specified. If used with TID's, return
only solutions with exactly minprocs processors available

mintasks FORMAT: <TASKCOUNT>[@<RESTYPE>:<COUNT>[+<RESTYPE>:<COUNT>]...] where <RESTYPE>
is one of procs, mem, disk, or swap. Return only results with at least the number of tasks spe-
cified. If used with TID's, return only solutions with exactly mintasks available

nodedisk Select only nodes with at least nodedisk MB of local disk configured

nodefeature Select only nodes with all specified features present and nodes without all \! specified fea-
tures using format [\!]<feature>[:[\!]<feature>]... You must set the future flag
when specifying node features.

nodemem Select only nodes with at least nodememMB of memory configured

offset Select only resources which can be co-allocated with the specified time offset where offset is
specified in the format [[[DD:]HH:]MM:]SS

Moab Workload Manager

Name Description

os Select only nodes with have, or can be provisioned to have, the specified operating system

partition The partition in which the resources must be located

policylevel Enable policy enforcement at the specified policy constraint level

qos The qos credential of the requestor

rsvprofile Use the specified profile if committing a resulting transaction id directly to a reservation

starttime Constrain the timeframe for the returned results by specifying one or more ranges using the
format <STIME>[-<ENDTIME>][;<STIME>[-<ENDTIME>]] where each time is specified in the
format in absolute, relative, or epoch time format ([HH[:MM[:SS]]][_MO[/DD[/YY]]] or +
[[[DD:]HH:]MM:]SS or <EPOCHTIME>).

The starttime specified is not the exact time at which the returned range must start,
but is rather the earliest possible time the range may start.

taskmem Require taskmemMB of memory per task located

tpn Require exactly tpn tasks per node on all discovered resources

user The user credential of the requestor

var Use associated variables in generating per transaction charging quotes

variables Takes a string of the format variables='var[=attr]'[;'var[=attr]' and passes the
variables onto the reservation when used in conjunction with --flags=tid and mrsvctl -
c -R <tid>.

vmusage Possible value is vmcreate. Moab will find resources for the job assuming it is a vmcreate job,
and if os is also specified, Moab will look for a hypervisor capable of running a VM with the
requested OS.

Usage Notes
The mshow -a command allows for querying of available system resources. When combined with the --
flags=tid option these available resources can then be placed into a packaged reservation (using
mrsvctl -c -R). This allows system administrators to grab and reserve available resources for whatever
reason, without conflicting with jobs or reservations that may be holding certain resources.

Moab Workload Manager

282 Scheduler Commands

Scheduler Commands 283

There are a few restrictions on which <ATTR> from the -w command can be placed in the same req:
minprocs, minnodes, and gres are all mutually exclusive, only one may be used per -w request.

The allocation of available nodes will follow the global NODEALLOCATIONPOLICY.

When the '-o' flag is not used, multi-request results will be aggregated. This aggregation will negate the
use of offsets and request-specific starttimes.

The config parameter RESOURCEQUERYDEPTH controls the maximum number of options that will be
returned in response to a resource query.

Examples

Example 3-43: Basic Compute Node Query and Reservation

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobfeature=shared --
flags=tid,future

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0
> mrsvctl -c -R 4
Note: reservation system.2 created

Example 3-44: Mixed Processor and License Query

Select one node with 4 processors and 1 matlab license where the matlab license is only available for
the last hour of the reservation. Also, select 16 additional processors which are available during the
same timeframe but which can be located anywhere in the cluster. Group the resulting transactions
together using transaction dependencies so only the first transaction needs to be committed to reserve
all associated resources.

> mshow -a -i -o -x -w mintasks=1@PROCS:4,duration=10:00:00,coalloc=a \
-w gres=matlab,offset=9:00:00,duration=1:00:00,coalloc=a \
-w minprocs=16,duration=10:00:00 --flags=tid,future,summary

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0
> mrsvctl -c -R 4

Note: reservation system.2 created
Note: reservation system.3 created
Note: reservation system.4 created

Example 3-45: Request for Generic Resources

Query for a generic resource on a specific host (no processors, only a generic resource).

Moab Workload Manager

> mshow -a -i -x -o -w gres=dvd,duration=10:00,hostlist=node03 --flags=tid,future
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 00:00:00 00:10:00 11:33:25_07/27 TID=16
ReqID=0
ALL 1 1 00:10:00 00:10:00 11:43:25_07/27 TID=17
ReqID=0
ALL 1 1 00:20:00 00:10:00 11:53:25_07/27 TID=18
ReqID=0
> mrsvctl -c -R 16
Note: reservation system.6 created
> mdiag -r system.6
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
system.6 User loc -00:01:02 00:08:35 00:09:37 1 1
0

Flags: ISCLOSED
ACL: RSV==system.6=
CL: RSV==system.6
Accounting Creds: User:test
Task Resources: dvd: 1
Attributes (HostExp='^node03$')
Rsv-Group: system.6

Example 3-46: Allocation of Shared Resources

This example walks through a relatively complicated example in which a set of resources can be
reserved to be allocated for shared requests. In the example below, the first mshow query looks for
resources within an existing shared reservation. In the example, this first query fails because there is
now existing reservation. The second query looks for resources within an existing shared reservation. In
the example, this first query fails because there is now existing reservation. The second mshow request
asks for resources outside of a shared reservation and finds the desired resources. These resources are
then reserved as a shared pool. The third mshow request again asks for resources inside of a shared
reservation and this time finds the desired resources.

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
> mshow -a -w duration=100:00:00,minprocs=1,os=AIX53,jobfeature=shared --flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 100:00:00 00:00:00 13:20:23_04/27 TID=1 ReqID=0
> mrsvctl -c -R 1
Note: reservation system.1 created
> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:20:36_04/27 TID=2 ReqID=0
> mrsvctl -c -R 2
Note: reservation system.2 created

Moab Workload Manager

284 Scheduler Commands

Scheduler Commands 285

Example 3-47: Full Resource Query in XML Format

The following command will report information on all available resources which meet at least the
minimum specified processor and walltime constraints and which are available to the specified user. The
results will be reported in XML to allow for easy system processing.

Moab Workload Manager

> mshow -a -w class=grid,minprocs=8,duration=20:00 --format=xml --flags=future,verbose

<Data>
<Object>cluster</Object>
<job User="john" time="1162407604"></job>
<par Name="template">
<range duration="Duration" nodecount="Nodes" proccount="Procs"

starttime="StartTime"></range>
</par>

<par Name="ALL" feasibleNodeCount="131" feasibleTaskCount="163">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="10" proccount="8" reqid="0"

starttime="1162407604"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="11" proccount="8"reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,x86-002:1,x86-004:1,
x86-006:1,x86-013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,P690-001:1,P690-

021:1,P690-022:1"
index="0" nodecount="19" proccount="8" reqid="0"

starttime="1162425519"></range>
</par>

<par Name="SharedMem">
<range duration="1200" hostlist="P690-001:1,P690-002:1,P690-003:1,P690-004:1,P690-

005:1,P690-006:1,P690-007:1,P690-008:1,P690-009:1,
P690-010:1,P690-011:1,P690-012:1,P690-013:1,P690-014:1,P690-015:1,P690-

016:1,P690-017:1,P690-018:1,P690-019:1,P690-020:1,P690-021:1,
P690-022:1,P690-023:1,P690-024:1,P690-025:1,P690-026:1,P690-027:1,P690-

028:1,P690-029:1,P690-030:1,P690-031:1,P690-032:1"
index="0" nodecount="32" proccount="8" reqid="0"

starttime="1163122507"></range>
</par>

<par Name="64Bit">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1"
index="0" nodecount="7" proccount="8" reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,
opt-046:1,opt-047:1,opt-048:1,opt-049:1,opt-050:1"
index="0" nodecount="15" proccount="8" reqid="0"

starttime="1162428996"></range>
<range duration="1200" hostlist="opt-001:1,opt-006:1,opt-007:2,opt-008:2,opt-

009:2,opt-010:2,opt-011:2,opt-012:2,opt-013:2,opt-014:2,
opt-015:2,opt-016:2,opt-017:2,opt-018:2,opt-019:2,opt-020:2,opt-021:2,opt-

022:2,opt-023:2,opt-024:2,opt-025:1,opt-027:2,opt-039:1,
opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,opt-046:1,opt-047:1,opt-

048:1,opt-049:1,opt-050:1"
index="0" nodecount="33" proccount="8" reqid="0"

starttime="1162876617"></range>
</par>

<par Name="32Bit">
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1"
index="0" nodecount="9" proccount="8" reqid="0"

starttime="1162425519"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,x86-042:1,x86-043:1"
index="0" nodecount="11" proccount="8" reqid="0"

Moab Workload Manager

286 Scheduler Commands

Scheduler Commands 287

starttime="1162956803"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-027:1,x86-028:1,
x86-029:1,x86-030:1,x86-037:1,x86-041:1,x86-042:1,x86-043:1,x86-046:1,x86-

047:1,x86-048:1,x86-049:1"
index="0" nodecount="20" proccount="8" reqid="0"

starttime="1163053393"></range>
</par>

</Data>

This command reports the original query, and the timeframe, resource size, and hostlist
associated with each possible time slot.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mshow in a hosting environment

mshow -a

Basic Current and Future Requests
The mshow command can report information on many aspects of the scheduling environment. To request
information on available resources, the -a flag should be used. By default, the mshow command resource
availability query only reports resources that are immediately available. To request information on
specific resources, the type of resources required can be specified using the -w flag as in the following
example:

> mshow -a -w taskmem=1500,duration=600
...

To view current and future resource availability, the future flag should be set as in the following
example:

> mshow -a -w taskmem=1500,duration=600 --flags=future
...

Co-allocation Resources Queries
In many cases, a particular request will need simultaneous access to resources of different types. The
mshow command supports a co-allocation request specified by using multiple -w arguments. For
example, to request 16 nodes with feature fastcpu and 2 nodes with feature fastio, the following
request might be used:

> mshow -a -w minprocs=16,duration=1:00:00,nodefeature=fastcpu -w
minprocs=2,nodefeature=fastio,duration=1:00:00 --flags=future
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 8 00:00:00 1:00:00 13:00:18_08/25 ReqID=0
ALL 2 1 00:00:00 1:00:00 13:00:18_08/25 ReqID=1

Moab Workload Manager

The mshow -a documentation contains a list of the different resources that may be queried as well as
examples on using mshow.

Using Transaction IDs
By default, the mshow command reports simply when and where the requested resources are available.
However, when the tid flag is specified, the mshow command returns both resource availability
information and a handle to these resources called a Transaction ID as in the following example:

> mshow -a -w minprocs=16,nodefeature=fastcpu,duration=2:00:00 --flags=future,tid
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 16 00:00:00 2:00:00 13:00:18_08/25 TID=26 ReqID=0

In the preceding example, the returned transaction id (TID) may then be used to reserve the available
resources using the mrsvctl -c -R command:

> mrsvctl -c -R 26
reservation system.1 successfully created

Any TID can be printed out using the mschedctl -l trans command:

Code example (replace with your own content)

> mschedctl -l trans 26 TID[26] A1='node01' A2='600' A3='1093465728' A4='ADVRES' A5='fastio'

Where A1 is the hostlist, A2 is the duration, A3 is the starttime, A4 are any flags, and A5 are any
features.

Using Reservation Profiles
Reservation profiles (RSVPROFILE) stand as templates against which reservations can be created. They
can contain a hostlist, startime, endtime, duration, access-control list, flags, triggers, variables, and most
other attributes of an Administrative Reservation. The following example illustrates how to create a
reservation with the exact same trigger-set.

Moab Workload Manager

288 Scheduler Commands

Scheduler Commands 289

moab.cfg

RSVPROFILE[test1] TRIGGER=Sets=$Var1.$Var2.$Var3.!Net,EType=start,AType=exec,

Action=/tmp/host/triggers/Net.sh,
Timeout=1:00:00

RSVPROFILE[test1] TRIGGER=Requires=$Var1.$Var2.$Var3,
Sets=$Var4.$Var5,EType=start,
AType=exec,Action=/tmp/host/triggers/
FS.sh+$Var1:$Var2:$Var3,Timeout=20:00

RSVPROFILE[test1]
TRIGGER=Requires=$Var1.$Var2.$Var3.$Var4.$Var5,

Sets=!NOOSinit.OSinit,Etype=start,
AType=exec,
Action=/tmp/host/triggers/
OS.sh+$Var1:$Var2:$Var3:$Var4:$Var5

RSVPROFILE[test1]
TRIGGER=Requires=NOOSini,AType=cancel,EType=start
RSVPROFILE[test1]
TRIGGER=EType=start,Requires=OSinit,AType=exec,

Action=/tmp/host/triggers/success.sh
...

To create a reservation with this profile the mrsvctl -c -P command is used:

> mrsvctl -c -P test1

reservation system.1 successfully created

Using Reservation Groups
Reservation groups are a way for Moab to tie reservations together. When a reservation is created
using multiple Transaction IDs, these transactions and their resulting reservations are tied together into
one group.

> mrsvctl -c -R 34,35,36
reservation system.99 successfully created
reservation system.100 successfully created
reservation system.101 successfully created

In the preceding example, these three reservations would be tied together into a single group. The mdiag
-r command can be used to see which group a reservation belongs to. The mrsvctl -q diag -g command
can also be used to print out a specific group of reservations. The mrsvctl -c -g command can also be
used to release a group of reservations.

Related topics

l mshow

Moab Workload Manager

msub

Synopsis
msub [-a datetime][-A account][-c interval][-C directive_prefix][-d path] [-e path][-E][-F][-h][-I][-j join][-k
keep][-K][-l resourcelist][-m mailoptions] [-M user_list][-N name][-o path][-p priority][-q destination][-r] [-
S pathlist][-t jobarrays][-u userlist][-v variablelist][-V] [-W additionalattributes][-x][-z][--stagein][--
stageout][--stageinfile][--stageoutfile][--stageinsize][--stageoutsize][--workflowjobids][script]

Overview
msub allows users to submit jobs directly to Moab. When a job is submitted directly to a resource
manager (such as TORQUE), it is constrained to run on only those nodes that the resource manager is
directly monitoring. In many instances, a site may be controlling multiple resource managers. When a
job is submitted to Moab rather than to a specific resource manager, it is not constrained as to what
nodes it is executed on. msub can accept command line arguments (with the same syntax as qsub), job
scripts (in either PBS or LoadLeveler syntax), or the SSS Job XML specification.

Moab must run as a root user in order for msub submissions to work. Workload submitted via
msub when Moab is running as a non-root user fail immediately.

Submitted jobs can then be viewed and controlled via the mjobctl command.

Flags specified in the following table are not necessarily supported by all resource managers.

Access
When Moab is configured to run as root, any user may submit jobs via msub.

Flags

-a

Name Eligible Date

Format [[[[CC]YY]MM]DD]hhmm[.SS]

Description Declares the time after which the job is eligible for execution.

Example > msub -a 12041300 cmd.pbs

Moab will not schedule the job until 1:00 pm on December 4, of
the current year.

Moab Workload Manager

290 Scheduler Commands

Scheduler Commands 291

-A

Name Account

Format <ACCOUNT NAME>

Description Defines the account associated with the job.

Example > msub -A research cmd.pbs

Moab will associate this job with
account research.

-c

Name Checkpoint Interval

Format [n|s|c|c=<minutes>]

Description Checkpoint of the will occur at the specified interval.

n—No Checkpoint is to be performed.
s— Checkpointing is to be performed only when the server executing the job is shut down.
c— Checkpoint is to be performed at the default minimum time for the server executing the job.
c=<minutes>— Checkpoint is to be performed at an interval of minutes.

Example > msub -c c=12 cmd.pbs

The job will be checkpointed every 12minutes.

-C

Name Directive Prefix

Format '<PREFIX NAME>'

Default First known prefix (#PBS, #@, #BSUB, #!, #MOAB, #MSUB)

Moab Workload Manager

-C

Description Specifies which directive prefix should be used from a job script.
l It is best to submit with single quotes. '#PBS'
l An empty prefix will cause Moab to not search for any prefix. -C ''
l Command line arguments have precedence over script arguments.
l Custom prefixes can be used with the -C flag. -C '#MYPREFIX'
l Custom directive prefixes must use PBS syntax.
l If the -C flag is not given, Moab will take the first default prefix found. Once a directive is
found, others are ignored.

Example > msub -C '#MYPREFIX' cmd.pbs
#MYPREFIX -l walltime=5:00:00 (in cmd.pbs)

Moab will use the #MYPREFIX directive specified in cmd.pbs, setting the wallclock limit to
five hours.

-d

Name Execution Directory

Format <path>

Default Depends on the RM being used. If using TORQUE, the default is $HOME. If using SLURM, the
default is the submission directory.

Description Specifies which directory the job should execute in.

Example > msub -d /home/test/job12 cmd.pbs

The job will begin execution in the /home/test/job12 directory.

-e

Name Error Path

Format [<hostname>:]<path>

Default $SUBMISSIONDIR/$JOBNAME.e$JOBID

Moab Workload Manager

292 Scheduler Commands

Scheduler Commands 293

-e

Description Defines the path to be used for the standard error stream of the batch job.

Example > msub -e test12/stderr.txt

The STDERR stream of the job will be placed in the relative (to execution)
directory specified.

-E

Name Environment Variables

Description Moab adds the following variables, if populated, to the job's environment:
l MOAB_ACCOUNT— Account name.
l MOAB_BATCH— Set if a batch job (non-interactive).
l MOAB_CLASS — Class name.
l MOAB_DEPEND — Job dependency string.
l MOAB_GROUP — Group name.
l MOAB_JOBARRAYINDEX —For a job in an array, the index of the job.
l MOAB_JOBARRAYRANGE — For a system with job arrays, the range of all job arrays.
l MOAB_JOBID — Job ID. If submitted from the grid, grid jobid.
l MOAB_JOBNAME — Job name.
l MOAB_MACHINE — Name of the machine (i.e. Destination RM) that the job is running on.
l MOAB_NODECOUNT— Number of nodes allocated to job.
l MOAB_NODELIST — Comma-separated list of nodes (listed singly with no ppn info).
l MOAB_PARTITION— Partition name the job is running in. If grid job, cluster scheduler's
name.

l MOAB_PROCCOUNT— Number of processors allocated to job.
l MOAB_QOS — QOS name.
l MOAB_TASKMAP — Node list with procs per node listed. <nodename>.<procs>
l MOAB_USER— User name.

In SLURM environments, not all variables will be populated since the variables are added at
submission (such as NODELIST). With TORQUE/PBS, the variables are added just before the job is
started.
This feature only works with SLURM and TORQUE/PBS.

Example: > msub -E mySim.cmd

The job mySim will be submitted with extra environment variables.

Moab Workload Manager

-F

Name Script Flags

Format "\"<STRING>\""

Description Specifies the flags TORQUE will pass to the job script at execution time.

The -F flag is only compatible with TORQUE resource managers.

Example > msub -F "\"arg1 arg2\"" -1 nodes=1,walltime=60 files/job.sh

TORQUE will pass parameters arg1 and arg2 to the job.sh script when
the job executes.

-h

Name Hold

Description Specifies that a user hold be applied to the job at submission time.

Example > msub -h cmd.ll

The job will be submitted with a user hold on it.

-I

Name Interactive

Description Declares the job is to be run interactively.

qsub must exist on the same host asmsub if the interactive job is destined for a
TORQUE cluster, because the interactive msub request will be converted to a qsub -
I request.

Example > msub -I job117.sh

The job will be submitted in interactive mode.

Moab Workload Manager

294 Scheduler Commands

Scheduler Commands 295

-j

Name Join

Format [eo|oe|n]

Default n (not merged)

Description If eo is specified, the error and output streams are merged into the error stream. If oe is specified,
the error and output streams will be merged into the output stream.

If using either the -e or the -o option and the -j eo|oe option, the -j option takes
precedence and all standard error and output messages go to the chosen output file.

Example > msub -j oe cmd.sh

STDOUT and STDERR will be merged into one file.

-k

Name Keep

Format [e|o|eo|oe|n]

Default n (not retained)

Description Defines which (if either) of output and error streams will be retained on the execution host (over-
rides path for stream).

Example > msub -k oe myjob.sh

STDOUT and STDERR for the job will be retained on the execution host.

-K

Name Continue Running

Format N/A

Moab Workload Manager

-K

Description Tells the client to continue running until the submitted job is completed. The client will query the
status of the job every 5 seconds. The time interval between queries can be specified or disabled
via MSUBQUERYINTERVAL.

Use the -K option sparingly (if at all) as it slows down the Moab scheduler with frequent
queries. Running ten jobs with the -K option creates an additional fifty queries per minute
for the scheduler.

Example > msub -K newjob.sh
3
Job 3 completed*

*Only shows up after job completion.

-l

Name Resource List

Format <STRING>
-l [BANDWIDTH|DDISK|DEADLINE|DEPEND|DMEM|EXCLUDENODES|FEATURE...|]
Additional options can be referenced on the resource manager extensions page.

Description Defines the resources that are required by the job and establishes a limit to the amount of
resource that can be consumed. Resources native to the resource manager, scheduler resource
manager extensions, or job flags may be specified. Note that resource lists are dependent on the
resource manager in use.
For information on specifying multiple types of resources for allocation, see Multi-Req Support.

Moab Workload Manager

296 Scheduler Commands

Scheduler Commands 297

-l

Example > msub -l nodes=32:ppn=2,pmem=1800mb,walltime=3600,VAR=testvar:myvalue cmd.sh
> msub -l nodes=32:ppn=2,pmem=1800mb,walltime=3600,VAR=testvar:
myvalue cmd.sh

The job requires 32 nodes with 2 processors each, 1800MB per task, a walltime of 3600
seconds, and a variable named testvar with a value of myvalue.

If JOBNODEMATCHPOLICY is not set, Moab does not reserve the requested number of
processors on the requested number of nodes. It reserves the total number of requested
processors (nodes x ppn) on any number of nodes. Rather than setting
nodes=<value>:ppn=<value>, set procs=<value>, replacing <value>with the total
number of processors the job requires. Note that JOBNODEMATCHPOLICY is not set by
default.

> msub -l nodes=32:ppn=2 -l advres=!<resvid>

This entry would tell Moab to only consider resources outside of the specified <reservation
id>.

-m

Name Mail Options

Format <STRING> (either n or one or more of the characters a, b, and e)

Description Defines the set of conditions (abort,begin,end) when the server will send a mail message about the
job to the user.

Example > msub -m be cmd.sh

Mail notifications will be sent when the job begins and ends.

-M

Name Mail List

Format <user>[@<host>][,<user>[@<host>],...]

Default $JOBOWNER

Moab Workload Manager

-M

Description Specifies the list of users to whom mail is sent by the execution server. Overrides the
EMAILADDRESS specified on the USERCFG credential.

Example > msub -M jon@node01,bill@node01,jill@node02 cmd.sh

Mail will be sent to the specified users if the job is aborted.

-N

Name Name

Format <STRING>

Default STDIN or name of job script

Description Specifies the user-specified job name attribute.

Example > msub -N chemjob3 cmd.sh

Job will be associated with the
name chemjob3.

-o

Name Output Path

Format [<hostname>:]<path> - %J and %I are acceptable variables. %J is the master array name and %I is
the array member index in the array.

Default $SUBMISSIONDIR/$JOBNAME.o$JOBID

Moab Workload Manager

298 Scheduler Commands

Scheduler Commands 299

-o

Description: Defines the path to be used for the standard output stream of the batch job.
More variables are allowed when they are used in the job script instead of msub -o. In the job
script, specify a #PBS -o line and input your desired variables. The allowable variables are:

l OID
l OTYPE
l USER
l OWNER
l JOBID
l JOBNAME

Submitting a job script that has the line #PBS -o $(USER)_$(JOBID)_$(JOBNAME).txt
results in a file called <username>_<jobID>_<jobName>.txt.
Do not use msub -o when submitting a job script that has a #PBS -o line defined.

Example > msub -o test12/stdout.txt

The STDOUT stream of the job will be placed in the relative (to execution) directory
specified.

> msub -t 1-2 -o /home/jsmith/simulations/%J-%I.out ~/sim5.sh

A job array is submitted and the name of the output files includes the master array index
and the array member index.

-p

Name Priority

Format <INTEGER> (between -1024 and 0)

Default 0

Description Defines the priority of the job.
To enable priority range from -1024 to +1023, see ENABLEPOSUSERPRIORITY.

Example > msub -p 25 cmd.sh

The job will have a user priority of 25.

Moab Workload Manager

-q

Name Destination Queue (Class)

Format [<queue>][@<server>]

Default [<DEFAULT>]

Description Defines the destination of the job.

Example > msub -q priority cmd.sh

The job will be submitted to the
priority queue.

-r

Name Rerunable

Format [y|n]

Default n

Description: Declares whether the job is rerunable.

Example > msub -r n cmd.sh

The job cannot be rerun.

-S

Name Shell

Format <path>[@<host>][,<path>[@<host>],...]

Default $SHELL

Description Declares the shell that interprets the job script.

Moab Workload Manager

300 Scheduler Commands

Scheduler Commands 301

-S

Example > msub -S /bin/bash

The job script will be interpreted by the
/bin/bash shell.

-t

Name Job Arrays

Format <name>[<indexlist>]%<limit>

Description Starts a job array with the jobs in the index list. The limit variable specifies how many jobs may
run at a time. For more information, see Submitting Job Arrays.

Moab enforces an internal limit of 100,000 sub-jobs that a single array job submission can
specify.

Example > msub -t myarray[1-1000]%4

-u

Name User List

Format <user>[@<host>[,<user>[@<host>],...]

Default UID of msub command

Description Defines the user name under which the job is to run on the execution system.

Example > msub -u bill@node01 cmd.sh

On node01 the job will run under Bill's UID, if permitted.

-v

Name Variable List

Moab Workload Manager

-v

Format <string>[,<string>,...]

Description Expands the list the environment variables that are exported to the job (taken from the msub com-
mand environment).

Example > msub -v DEBUG cmd.sh

The DEBUG environment variable will be defined for the job.

-V

Name All Variables

Description Declares that all environment variables in the msub environment are exported to the batch job

Example > msub -V cmd.sh

All environment variables will be exported to the job.

-W

Name Additional Attributes

Format <string>

Description Allows for specification of additional job attributes (See Resource Manager Extension)

Example > msub -W x=GRES:matlab:1 cmd.sh

The job requires one resource of matlab.

This flag can be used to set a filter for what namespaces will be passed from a job to a trigger
using a comma-delimited list. This limits the trigger's action to objects contained in certain
workflows. For more information, see Requesting name space variables on page 757.

> msub -W x="trigns=vc1,vc2"

The job passes namespaces vc1 and vc2 to triggers.

Moab Workload Manager

302 Scheduler Commands

Scheduler Commands 303

-x

Format <script> or <command>

Description When running an interactive job, the -x flag makes it so that the corresponding script won't be
parsed for PBS directives, but is instead a command that is launched once the interactive job has
started. The job terminates at the completion of this command. This option works only when using
TORQUE.

The -x option for msub differs from qsub in that qsub does not require the script name to
come directly after the flag. The msub command requires a script or command
immediately after the -x declaration.

Example > msub -I -x ./script.pl
> msub -I -x /tmp/command

-z

Name Silent Mode

Description The job's identifier will not be printed to stdout upon submission.

Example > msub -z cmd.sh

No job identifier will be printout the stdout upon
successful submission.

Staging data

Data staging, or the ability to copy data required for a job from one location to another or to copy
resulting data to a new location (See About data staging on page 880 for more information), must be
specified at job submission. To stage data in, you would use the msub --stagein and/or --
stageinfile option, optionally with --stageinsize. You would use similar options the same way for
staging out: --stageout, --stageoutfile, and --stageoutsize. --stagein and --stageout,
which you can use multiple times in the same msub command, allow you to specify a single file or
directory to stage in or out. --stageinfile and --stageoutfile allow you to specify a text file that
lists the files to stage in or out. The --stageinsize and [--stageoutsize] options allow you to
estimate the total size of the files and directories that you want to stage in or out, which can help Moab
make an intelligent guess about how long it will take to stage the data in or out, thus ensuring that the
job can start as soon as possible after the staging has occurred.

Staging a file or directory

The --stagein and --stageout options use the same format.

--<stagein|stageout><=| ><source>%<destination>

Moab Workload Manager

Where <source> and <destination> take on the following format:

[<user>@]<host>:/<path>[/<fileName>]

Specifying a user and file name are optional. If you do not specify a file name, Moab will assume a
directory.

> msub ... --stagein=student@biology:/stats/file001%admin@moab:/tmp/staging
<jobScript>

This msub commands tells Moab that the job requires file001 from student's stats directory on the biology server
to be staged to admin's staging directory on the moab server prior to the job's starting.

You can specify the option multiple times for the same msub command; however, staging large number
of files is easier with --stageinfile or --stageoutfile.

You can also use #MSUB or #PBS within a job script to specify data staging options. For example:

#MSUB --stageinsize=1gb
#MSUB --stagein=...

See Sample user job script on page 901 for more information. Note that the data staging options are not
compatible with qsub.

Stagingmultiple files or directories

The --stageinfile and --stageoutfile options use the same format. You must include the path to
a text file that lists each file to stage in or out on its own line. Each file specification follows the same
format as a --stagein or --stageout specification as described above. The format of the command
options looks like this:

--<stageinfile|stageoutfile><=| ><path>/<fileName>

The file contains multiple lines with the following format:

[<user>@]<host>:/<path>[/<fileName>]%[<user>@]<host>:/<path>[/<fileName>]

...

Moab ignores blank lines in the file. You can comment out lines by preceding them with a pound sign (#).
The following examples demonstrate what the --stageinfile option looks like on the command line
and what the file it specifies might look like.

> msub ... --stageinfile=/tmp/myStagingFile <jobScript>

/tmp/myStagingFile:

Moab Workload Manager

304 Scheduler Commands

Scheduler Commands 305

student@biology:/stats/file001%moab:/tmp/staging
student@biology:/stats/file002%moab:/tmp/staging
student@biology:/stats/file003%moab:/tmp/staging
#student@biology:/stats/file004%moab:/tmp/staging
student@biology:/stats/file005%moab:/tmp/staging

student@biology:/stats/file006%moab:/tmp/staging
student@biology:/stats/file007%moab:/tmp/staging
student@biology:/stats/file008%moab:/tmp/staging
student@biology:/stats/file009%moab:/tmp/staging
student@biology:/stats/file010%moab:/tmp/staging

Moab stages in each file listed in myStagingFile to the /tmp/staging directory. Each file resides on the biology
host as the student user. Moab ignores the blank line and the line specifying file004.

Stage in or out file size

The optional --stageinsize and --stageoutsize options give you the opportunity to estimate the
size of the file(s) or directory(-ies) being staged to aid Moab in choosing an appropriate start time. Both
options use the same format:

--<stageinsize|stageoutsize>=<integer>[unit]

The integer indicates the size of the file(s) and directory(-ies) in megabytes unless you specify a
different unit. Moab accepts the follow case-insensitive suffixes: KB, MB, GB, or TB.

> msub --stageinfile=/stats/file003 --stageinsize=100 <jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from the biology
node to the host where the job will run prior to job start.

> msub --stageinfile=/stats/file002 --stageinsize=1gb <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file, which add up to approximately 1
gigabyte, to the host where the job will run prior to job start.

Return all the job IDs in the workflow at submission time

By default, msub will print the job ID to stdout at the time of submission. If you want msub to print all of
the jobs that are created as part of the workflow template, you can use the msub --workflowjobids
option to show all the job IDs at submission time:

$ echo sleep 60 | msub -l walltime=15 --workflowjobids

MoabA.3.dsin MoabA.3 MoabA.3.dsout

Job Script

The msub command supports job scripts written in any one of the following languages:

Language Notes

PBS/TORQUE Job Sub-
mission Language

Moab Workload Manager

Language Notes

LoadLeveler Job Submission
Language

Use the INSTANTSTAGE parameter as only a subset of the command file
keywords are interpreted by Moab.

SSS XML Job Object Spe-
cification

LSF Job Submission Lan-
guage

enabled in Moab 4.2.4 and higher

/etc/msubrc
Sites that wish to automatically add parameters to every job submission can populate the file
/etc/msubrc with global parameters that every job submission will inherit.

For example, if a site wished every job to request a particular generic resource they could use the
following /etc/msubrc:

-W x=GRES:matlab:2

Usage Notes
msub is designed to be as flexible as possible, allowing users accustomed to PBS, LSF, or LoadLeveler
syntax, to continue submitting jobs as they normally would. It is not recommended that different styles
be mixed together in the same msub command.

When only one resource manager is configured inside of Moab, all jobs are immediately staged to the
only resource manager available. However, when multiple resource managers are configured Moab will
determine which resource manager can run the job soonest. Once this has been determined, Moab will
stage the job to the resource manager.

It is possible to have Moab take a best effort approach at submission time using the forward flag. When
this flag is specified, Moab will do a quick check and make an intelligent guess as to which resource
manager can run the job soonest and then immediately stage the job.

Moab can be configured to instantly stage a job to the underlying resource manager (like
TORQUE/LOADLEVELER) through the parameter INSTANTSTAGE. When set inside moab.cfg, Moab will
migrate the job instantly to an appropriate resource manager. Once migrated, Moab will destroy all
knowledge of the job and refresh itself based on the information given to it from the underlying resource
manager.

In most instances Moab can determine what syntax style the job belongs to (PBS or LoadLeveler); if
Moab is unable to make a guess, it will default the style to whatever resource manager was configured
at compile time. If LoadLeveler and PBS were both compiled then LoadLeveler takes precedence.

Moab can translate a subset of job attributes from one syntax to another. It is therefore possible to
submit a PBS style job to a LoadLeveler resource manager, and vice versa, though not all job attributes
will be translated.

Moab Workload Manager

306 Scheduler Commands

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html

Scheduler Commands 307

Examples

Example 3-48:

> msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100kb script2.pbs.cmd
4364.orion

Example 3-49:

This example is the XML-formatted version of the above example. See Submitting Jobs via msub in XML
for more information.

<job>
<InitialWorkingDirectory>/home/user/test/perlAPI
</InitialWorkingDirectory>
<Executable>/home/user/test/perlAPI/script2.pbs.cmd
</Executable>
<SubmitLanguage>PBS</SubmitLanguage>
<Requested>
<Feature>ppn2</Feature>
<Processors>3</Processors>
<WallclockDuration>3600</WallclockDuration>

</Requested>
</job>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mjobctl command to view, modify, and cancel jobs
l checkjob command to view detailed information about the job
l mshow command to view all jobs in the queue
l DEFAULTSUBMITLANGUAGE parameter
l MSUBQUERYINTERVAL parameter
l SUBMITFILTER parameter
l Applying the msub Submit Filter for job script sample

Applying the msub submit filter

When you use msub to submit a job, msub processes the input, converts it to XML, and sends the job
specification XML to the Moab scheduler. You can create a submission filter to modify the job XML based
on the criteria you set before Moab receives and processes it.

Moab Workload Manager

Image 3-1: Job submission process

The filter gives you the ability to customize the submission process, which is helpful if jobs should have
certain defaults assigned to them, if you want to keep detailed submission statistics, or if you want to
change job requests based on custom needs.

The submit filter, is a simple executable or script that receives XML via its standard input and returns
the modified XML in its standard output. It modifies the attributes of the job specification XML based on
policies you specify. It can perform various other actions at your request, too; for instance, logging. Once
the submit filter has modified the job XML based on your criteria, it writes the XML representing the
actual job submission to stdout. The new XML could potentially match the original XML, depending on
whether the job met the criteria for modification set in the job submit filter script. Job submissions you
want to proceed will leave the filter with an exit code of 0 and continue to Moab for scheduling. If the job
meets the filter's specified criteria for rejection, it exits with a non-zero value, aborting the job
submission process. You can configure the filter script to write a descriptive rejection message to stderr.

Job submit filters follow these rejection rules: 1) msub will reject job XML with an exit code of anything
other than zero, 2) the msub command displays filter's error output on the command line, 3) msub will
reject the job if the filter outputs invalid job XML, and 4) msubwill reject the job if it violates any
policies in your general Moab configuration; you cannot use a submit filter to bypass other policies.

To see the schema for job submission XML, please refer to Submitting Jobs via msub in XML.

Submit filter types
You can implement submit filters on either the client or server side of a job submission. The primary
differences between the two submit filter types are the location from which the filter runs, the powers
and privileges of the user running the filter, and whether a user can bypass the filter. Client-based
submit filters run from the msub client as the user who submits the job and can be bypassed, and server-
based submit filters run from the Moab server as the user as which the server is running and cannot be
bypassed.

Client-based submit filter

Client-based filters run from the msub client as the user who is submitting the job. Because they do not
have elevated privileges, the risk of client-based submit filters' being abused is low; however, it is

Moab Workload Manager

308 Scheduler Commands

Scheduler Commands 309

possible for the client to specify its own configuration file and bypass the filter or substitute its own
filter. Job submissions do not even reach the server if a client-based submit filter rejects it.

To configure msub to use the submit filter, give each submission host access to the submit filter script
and add a SUBMITFILTER parameter to the Moab configuration file (moab.cfg) on each submission host.
The following example demonstrates how you might modify the moab.cfg file:

SUBMITFILTER /home/submitfilter/filter.pl

If you experience problems with your submit filter and want to debug its interaction with msub, enter
msub --loglevel=9. This will cause msub to print verbose log messages to the terminal.

Server-based submit filter

Server-based submit filters run from the Moab server as the user as which the server is running.
Because it runs as a privileged user, you must evaluate the script closely for security implications. A
client configuration cannot bypass the filter.

To configure Moab to automatically apply a filter to all job submissions, use the SERVERSUBMITFILTER
on page 1019 parameter. SERVERSUBMITFILTER specifies the path to a global job submit filter script,
which Moab will run on the head node and apply to every job submitted.

SERVERSUBMITFILTER /opt/moab/scripts/jobFilter.pl

Moab runs jobFilter.pl, located in the /opt/moab/scripts directory, on the head node, applying the filter to all
jobs submitted.

Sample submit filter script
The following example is a trivial implementation that will not affect whether a job is submitted. Use it
as reference to verify that you are writing your filter properly.

#!/usr/bin/perl
use strict;

Simple filter example that re-directs the output to a file.

my $file = "xmllog.out";

open FILE,">>$file" or die "Couldn't open $file: $!";
while (<>)
{
print FILE;
print;
}
close FILE;

Submitting Jobs via msub in XML

The following describes the XML format used with the msub command to submit a job to a Moab server.
This information can be used to implement a filter and modify the XML normally generated by the msub
command. The XML format described in what follows is based on a variant of the Scalable Systems
Software Job Object Specification.

Moab Workload Manager

Overall XML Format
The overall format of an XML request to submit a job can be shown through the following example:

<job>
job attribute children
</job>

An example of a simple job element with all the required children for a job submission is as follows:

<job>
<Owner>user</Owner>
<UserId>user</UserId>
<GroupId>group</GroupId>
<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>
<UMask>18</UMask>
<Executable>/full/path/to/script/or/first/line/of/stdin</Executable>
<SubmitLanguage>Resource Manager Type</SubmitLanguage>
<SubmitString>\START\23!/usr/bin/ruby\0contents\20of\20script</SubmitString>

</job>

The section that follows entitled Job Element Format describes the possible attributes and their
meanings in detail. In actuality, all that is needed to run a job in Moab is something similar to the
following:

<job>
<SubmitString>\START\23!/bin/sh\0asleep\201000</SubmitString>

</job>

This piece of XML requests Moab to submit a job using the contents of the SubmitString tag as a script, which is in this
case a simple sh script to sleep for 1000 seconds. The msub command will create default values for all other needed
attributes.

Job Element Format
The job element of the submission request contains a list of children and string values inside the children
that represent the attribute/value pairs for the job. The earlier section, Overall XML Format, gives an
example of this format. This section explains these attributes in detail.

Arguments— The arguments to be passed to the program are normally specified as arguments after
the first argument specifying the script to be executed.

EligibleTime— The minimum time after which the job is eligible. This is the equivalent of the -a option
in msub. Format: [[[[CC]YY]MM]DD]hhmm[.SS]

Environment — The semi-colon list of environment variables that are exported to the job (taken from
the msub command environment). The -V msub flag, for example, adds all the environment variables
present at the time msub is invoked. Environment variables are delimited by the ~rs; characters.
Following is an example of the results of the msub -v arg1=1,arg2=2 command:

<Environment>arg1=1~rs;arg2=2~rs;</Environment>

ErrorFile— Defines the path to be used for the standard error stream of the batch job. This is
equivalent to the -e flag in msub.

Moab Workload Manager

310 Scheduler Commands

Scheduler Commands 311

Executable— This is normally either the name of the script to be executed, or the first line of the script
if it is passed to msub through standard input.

Extension— The resource manager extension string. This can be specified via the command line in a
number of ways, including the -W x= directive. Some other requests, such as some extensions used in the
-l flag, are also converted to an extension string. The element has the following format:

<Extension>x=extension</Extension>

See Using the Extension Element to Submit Triggers for additional information on the extension element.

GroupId — The string name of the group of the user submitting the job. This will correspond to the
user's primary group on the operating system.

Hold — Specifies that a user hold be applied to the job at submission time. This is the equivalent to the
msub flag -h. It will have the form:

<Hold>User</Hold>

InitialWorkingDirectory— Specifies in which directory the job should begin executing. This is
equivalent to the -d flag in the msub command.

<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>

Interactive— Specifies that the job is to be interactive. This is the equivalent of the -I flag in msub.

<Interactive>TRUE</Interactive>

JobName— Specifies the user-specified job name attribute. This is equivalent to the -N flag in msub.

NotificationList — Specifies the job states after which an email should be sent and also specifies the
users to be emailed. This is the equivalent of the -m and -M options in msub.

<NotificationList URI=user1:user2>JobFail,JobStart,JobEnd</NotificationList>

In this example, the command msub -m abe -M user1:user2 ran indicating that emails should be sent when a job
fails, starts, or ends, and that they should be sent to user1 and user2.

OutputFile— Defines the path to be used for the standard output stream of the batch job. This is the
equivalent of the -o flag in msub.

Priority— A user-requested priority value. This is the equivalent to the msub -p flag.

ProjectId — Defines the account associated with the job. This is equivalent to the -A msub flag.

QueueName— The requested class of the job. This is the equivalent of the msub -q flag.

Requested — Specifies resources and attributes the job specifically requests and has the following form:

<Requested>
<... requested attributes>

</Requested>

See the section dedicated to requestable attributes in this element.

Moab Workload Manager

RMFlags— Flags that will get passed directly to the resource manager on job submission. This is
equivalent to any arguments listed after the -l msub flag.

<RMFlags>arg1 arg2 arg3</RMFlags>

ShellName— Declares the shell that interprets the job script. This is equivalent to the msub flag -S.

SubmitLanguage— Resource manager whose language the job is using. Use TORQUE to specify a
TORQUE resource manager.

SubmitString — Contains the contents of the script to be run, retrieved either from an actual script or
from standard input. This also includes all resource manager specific directives that may have been in
the script already or added as a result of other command line arguments.

TaskGroup — Groups a set of requested resources together. It does so by encapsulating a Requested
element. For example, the command msub -l nodes=2+nodes=3:ppn=2 generates the following
XML:

<TaskGroup>
<Requested>
<Processors>2</Processors>
<TPN>2</TPN>

</Requested>
</TaskGroup>
<TaskGroup>
<Requested>
<Processors>2</Processors>

</Requested>
</TaskGroup>

UserId — The string value of the user ID of the job owner. This will correspond to the user's name on
the operating system.
Using the Extension Element to Submit Triggers
Use the Extension element to submit triggers. With the exception of certain characters, the syntax for
trigger creation is the same for non-XML trigger submission. See About object triggers on page 724 for
detailed information on triggers. The ampersand (&) and less than sign (<) characters must be replaced
for the XML to be valid. The following example shows how the Extension element is used to submit
multiple triggers (separated by a semi-colon). Note that ampersand characters are replaced with &
in the example:

<Job>
<UserId>user1</UserId>
<GroupId>user1</GroupId>
<Arguments>60</Arguments>
<Executable>/bin/sleep</Executable>

<Extension>x=trig:AType=exec&Action="env"&EType=start;trig:AType=exec&Acti
on="trig2.sh"&EType=end</Extension>
<Processors>3</Processors>
<Disk>500</Disk>
<Memory>1024</Memory>
<Swap>600</Swap>
<WallclockDuration>300</WallclockDuration>
<Environment>PERL5LIB=/perl5:</Environment>

</Job>

Moab Workload Manager

312 Scheduler Commands

Scheduler Commands 313

Elements Found in Requested Element
The following describes the tags that can be found in the Requested sub-element of the job element in a
job submission request.

Nodes— A list of nodes that the job requests to be run on. This is the equivalent of the -l
hosts=<host-list> msub directive.

<Requested>
<Nodes>
<Node>n1:n2</Node>

</Nodes>
</Requested>

In this example, the users requested the hosts n1 and n2 with the command msub -l host=n1:n2.

Processors— The number of processors requested by the job. The following example was generated
with the command msub -l nodes=5:

<Requested>
<Processors>5</Processors>

</Requested>

TPN— Tasks per node. This is generated using the ppn resource manager extensions. For example, from
msub -l nodes=3:ppn=2, the following results:

<Requested>
<Processors>6</Processors>
<TPN>2</TPN>

</Requested>

WallclockDuration— The requested wallclock duration of the job. This attribute is specified in the
Requested element.

<Requested>
<WallclockDuration>3600</WallclockDuration>

</Requested>

Related topics

l Applying the msub Submit Filter
l SUBMITFILTER parameter

mvcctl (Moab Virtual Container Control)

Synopsis
l mvcctl -a <OType>:<OName>[,<OType>:<OName>] <name>

l mvcctl -c [<description>]

l mvcctl -d <name>

l mvcctl -m <ATTR>=VAL[,<ATTR>=<VAL>] <name>

Moab Workload Manager

l mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

l mvcctl -r <OType>:<OName>[,<OType>:<OName>] <name>

l mvcctl -x <action><name>

Overview
A virtual container (VC) is a logical grouping of objects with a shared variable space and applied policies.
Containers can hold virtual machines, jobs, reservations, and nodes. Containers can also be nested inside
other containers.

A VC can be owned by a user, group, or account. Users can only view VCs to which they have access.
Level 1 administrators (Admin1) can view and modify all VCs. The owner can also be changed. When
modifying the owner, you must also specify the owner type:

mvcctl -m OWNER=acct:bob myvc

Adding objects to VCs at submission: You associate jobs, VMs, and reservations with a specified VC upon
submission. For example,

l mrsvctl -c ... -H <VC>

l msub ... -W x="vc=<VC>"

l mvmctl -c ...,vc=<VC>

The user who submits objects must have access to the VC or the command is rejected.

FullXML flag
The FullXML flag will cause the mvcctl -q command to show VCs in a hierarchical manner. If doing a non-
XML (plaintext) query, sub-VCs will be listed inside their parent VCs. Each VC will be indented more than
its parent.

VC[vc2] (vc2)
Owner: user:jason
VCs:
VC[vc1] (vc1)

Owner: user:jason
Jobs: Moab.1
Rsvs: system.1
VCs:
VC[vc3] (vc3)

Owner: user:jason
VC[vc4] (vc4)

Owner: user:jason

If doing an XML query, the XML for all sub-objects (VCs, but also reservations, jobs, etc.) will also be
included in the VC.

Moab Workload Manager

314 Scheduler Commands

Scheduler Commands 315

<Data>
<vc DESCRIPTION="vc2" NAME="vc2" OWNER="user:jason">
<vc DESCRIPTION="vc1" NAME="vc1" OWNER="user:jason">
<job CmdFile="sleep 7200" Flags="GLOBALQUEUE,NORMSTART"
Group="jason" JobID="Moab.1" PAL="[base]" RM="internal"
ReqAWDuration="2:00:00" User="jason">

<req Index="0"></req>
</job>
<rsv ACL="RSV=%=system.1=;" AUser="jason"
AllocNodeList="n0,n1,n2,n3,n4,n5,n6,n7,n8,n9" HostExp="ALL"
HostExpIsSpecified="TRUE" Name="system.1" Partition="base"
ReqNodeList="n0:1,n1:1,n2:1,n3:1,n4:1,n5:1,n6:1,n7:1,n8:1,n9:1"
Resources="PROCS=[ALL]" StatCIPS="5964.00" SubType="Other"
Type="User" ctime="1299953557" duration="3600"
endtime="1299957157"
flags="ISCLOSED,ISGLOBAL,ISACTIVE,REQFULL"
starttime="1299953557">
<ACL aff="neutral" cmp="%=" name="system.1" type="RSV">
</ACL>
<CL aff="neutral" cmp="%=" name="system.1" type="RSV"></CL>
<History>
<event state="PROCS=40" time="1299953557"></event>

</History>
</rsv>
<vc DESCRIPTION="vc3" NAME="vc3" OWNER="user:jason"></vc>

</vc>
<vc DESCRIPTION="vc4" NAME="vc4" OWNER="user:jason"></vc>

</vc>
</Data>

Note that the XML from the blocking and non-blocking commands may differ.

Virtual Container Flags
The following table indicates available virtual container (VC) flags and associated descriptions. Note that
the Deleting, HasStarted, and Workflow flags cannot be set by a user but are helpful indicators of
status.

VC Flags

DestroyObjects When the VC is destroyed, any reservations, jobs, and VMs in the VC are also des-
troyed. This is recursive, so any objects in sub-VCs are also destroyed. Nodes are
not removed.

DestroyWhenEmpty When the VC is empty, it is destroyed.

Deleting Set by the scheduler when the VC has been instructed to be removed.

Internal flag. Administrators cannot set or clear this flag.

Moab Workload Manager

VC Flags

HasStarted This flag is set on a VC workflow where at least one job has started.

Internal flag. Administrators cannot set or clear this flag.

HoldJobs This flag will place a hold on any job that is submitted to the VC while this flag is
set. It is not applied for already existing jobs that are added into the VC. If a job
with a workflow is submitted to the VC, all jobs within the workflow are placed on
hold.

NoReleaseWhenScheduled Prevents Moab from lifting the UserHold on the workflow when it is scheduled.
This enables an approval method in which an administrator must release the hold
manually before the service is allowed to start as scheduled.

Workflow Designates this VC as a VC that is for workflows. This flag is set when generated by
a job template workflow. Workflow jobs can only be attached to one workflow VC.

Internal flag. Administrators cannot set or clear this flag.

Format

-a

Format mvcctl -a<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, VC, or VM.

Description Add the given object(s).

Example mvcctl -a JOB:Moab.45 vc13
>>job 'Moab.45' added to VC 'vc13'

-c

Format mvcctl -c [<description>]

Description Create a virtual container (VC). The VC name is auto-generated. It is recommended that you sup-
ply a description; otherwise the description is the same as the auto-generated name.

Example mvcctl -c "Linux testing machine"
>>VC 'vc13' created

Moab Workload Manager

316 Scheduler Commands

Scheduler Commands 317

-d

Format mvcctl -d<lab01>

Description Destroy the VC.

Example mvcctl -d vc13
>>VC 'vc13'
destroyed

-m

Format mvcctl -m<ATTR>=VAL[,<ATTR>=<VAL>] <name>

Description Modify the VC. Attributes are flags, owner, reqstarttime, reqnodeset, variables, and owner; note
that only the owner can modify owner. Use reqstarttime when implementing guaranteed start
time to specify when jobs should start. The reqnodeset attribute indicates the node set that jobs
should run in that are submitted to a virtual container.

Example mvcctl -m variables+=HV=node8 vc13
>>VC 'vc13' successfully modified

mvcctl -m flags+=DESTROYWHENEMPTY vc1
>>VC 'vc1' successfully modified

-q

Format mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

Description Query VCs

Example mvcctl -q ALL
VC[vc13] (Linux testing machine)
Create Time: 1311027343 Creator: jdoe
Owner: user:jdoe
ACL: USER=%=jdoe+;
Jobs: Moab.45
Vars: HV=node88
Flags: DESTROYWHENEMPTY

Moab Workload Manager

-r

Format mvcctl -r<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, VC, or VM.

Description Remove the given object(s) from the VC.

Example mvcctl -r JOB:Moab.45 vc13
>>job 'Moab.45' removed from VC 'vc13'

-x

Format mvcctl -x<action><name>

Description Executes the given action on the virtual container (VC).

Example mvcctl -x schedulevc vc1

mvmctl

Synopsis
mvmctl -d [--flags=force] <vmid>

mvmctl -f <migrationPolicy> [--flags=eval [--xml]]

mvmctl -m [<options>] <vmid>

mvmctl -M dsthost=<newhost><vmid>

mvmctl -q <vmid> [--blocking] [--xml]

mvmctl -w state=drained

Overview
mvmctl controls the modification, querying, migration, and destruction of virtual machines (VMs).

Moab Workload Manager

318 Scheduler Commands

Scheduler Commands 319

Format

-d

Name Destroy

Format mvmctl -d [--flags=force] <vmid>

Description Destroys the specified VM. When you add the force flag, Moab forces the deletion of the VM if and
only if it does not have a VM-tracking job.

Example > mvmctl -d oldVM

> mvmctl -d --flags=force oldVM

Because oldVM does not have a VM-tracking job associated with it and you set the force
flag, Moab forces the deletion of oldVM.

-f

Name Force Migrate

Format mvmctl -f consolidation|overcommit [--flags=eval [--xml]]

Description Forces the migration policy on the system. The eval flag causes Moab to run through migration
routines and report the results without actually migrating the VMs.

Example > mvmctl -f consolidation --flags=eval

Moab returns a report like the following:

1: VM 'vm1' from 'h0' to 'h3'
2: VM 'vm2' from 'h0' to 'h5'

-m

Name Modify

Format [<options>] <vmid>
The <options> variable is a comma-separated list of <attr>=<value> pairs.

Moab Workload Manager

-m

Description Modifies the VM.

Example > mvmctl -m gevent=hitemp:'mymessage' myNewVM

Gevents can be set using gevent.

> mvmctl -m gmetric=bob:5.6 myNewVM

Gmetrics can be set using gmetric.

> mvmctl -m os=compute myNewVM

Reprovisioning is done by changing os.

> mvmctl -m powerstate=off myNewVM

Power management is done by modifying powerstate.

> mvmctl -m variable=user:bob+purpose:myVM myNewVM

The modify variable uses the same syntax as Create.

> mvmctl -m flags=cannotmigrate myNewVM

Allow a VM to migrate by setting the canmigrate flag.

> mvmctl -m flags=canmigrate myNewVM

Allows a VM to migrate by setting the canmigrate flag.

Notes l The variable option is a set-only operation. Previous variables will be over-
written.

-M

Name Migrate

Format dsthost=<newhost><vmid>

Moab Workload Manager

320 Scheduler Commands

Scheduler Commands 321

-M

Description Migrate the given VM to the destination host.
When you set the vmid to ANY, Moab migrates the VM to any available eligible hypervisor. For this
to work, the following conditions must be met:

l The VM reports a CPULOAD, and it is greater than 0.
l The VM's AMEMORY is less than its CMEMORY. This indicates that some memory is
currently in use and tells Moab that the RM is reporting memory correctly.

l The VM's state is not "Unknown."
l All hypervisors report a CPULOAD, and it is greater than 0.
l All hypervisors report an AMEMORY, and it is less than its CMEMORY.
l All hypervisors report a hypervisor type.

Example > mvmctl -M dsthost=node05 myNewVM

myNewVMmigrates to node05.

> mvmctl -M dsthost=ANY vm42

Moab migrates vm42 to a node based on policy destination limitations (such as the
NoVMMigrations flag).

-q

Name Query

Format <vmid> [--blocking] [--xml]

Description Queries the specified VM; that is, it returns detailed information about the given VM. May be used
with or without the --xml flag. ALL may also be used to display information about all VMs. This
option gathers information from the Moab cache which prevents it from waiting for the scheduler,
but the --blocking option can be used to bypass the cache and allow waiting for the scheduler.

Example > mvmctl -q myNewVM

> mvmctl -q ALL --blocking

> mvmctl -q ALL --xml

Moab Workload Manager

-w

Name Constraint

Format state=drained

Description Overrides the HIDEDRAINED DISPLAYFLAGS attribute allowing display of VMs in a DRAINED state.

Example > mvmctl -q -w state=drained

showbf

Synopsis
showbf [-A] [-a account] [-c class] [-d duration] [-D] [-f features] [-g group] [-L] [-m [==|>|>=|<|<=]
memory] [-n nodecount] [-p partition] [-q qos] [-u user] [-v] [--blocking]

Overview
Shows what resources are available for immediate use.

The results Moab returns do not include resources that may be freed due to preemption.

This command can be used by any user to find out how many processors are available for immediate use
on the system. It is anticipated that users will use this information to submit jobs that meet these
criteria and thus obtain quick job turnaround times. This command incorporates down time, reservations,
and node state information in determining the available backfill window.

If specific information is not specified, showbf will return information for the user and group
running but with global access for other credentials. For example, if -q qos is not specified, Moab
will return resource availability information for a job as if it were entitled to access all QOS based
resources (i.e., resources covered by reservations with a QOS based ACL), if -c class is not
specified, the command will return information for resources accessible by any class.

The showbf command incorporates node configuration, node utilization, node state, and node
reservation information into the results it reports. This command does not incorporate constraints
imposed by credential based fairness policies on the results it reports.

Access
By default, this command can be used by any user or administrator.

Moab Workload Manager

322 Scheduler Commands

Scheduler Commands 323

Parameters

Parameter Description

ACCOUNT Account name.

CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in [DD:]HH:MM:SS notation.

FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signs are >, >=, ==, <=, and <.

MEMORY Specifies the amount of required real memory configured on the node, (in MB), used with the -
m flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.

PARTITION Specify partition to check with -p flag.

QOS Specify QOS to check with -q flag.

USER Specify particular user to check with -u flag.

Flags

Flag Description

-A Show resource availability information for all users, groups, and accounts. By default, showbf uses the
default user, group, and account ID of the user issuing the command.

-a Show resource availability information only for specified account.

--block-
ing

Do not use cache information in the output. The --blocking flag retrieves results exclusively from
the scheduler.

-d Show resource availability information for specified duration.

Moab Workload Manager

Flag Description

-D Display current and future resource availability notation.

-g Show resource availability information only for specified group.

-h Help for this command.

-L Enforce Hard limits when showing available resources.

-m Allows user to specify the memory requirements for the backfill nodes of interest. It is important to
note that if the optional MEMCMP and MEMORY parameters are used, they must be enclosed in
single ticks (') to avoid interpretation by the shell. For example, enter showbf -m '==256' to
request nodes with 256 MB memory.

-n Show resource availability information for a specified number of nodes. That is, this flag can be used
to force showbf to display only blocks of resources with at least this many nodes available.

-p Show resource availability information for the specified partition.

-q Show information for the specified QOS.

-r Show resource availability for the specified processor count.

-u Show resource availability information only for specified user.

Examples

Example 3-50:

In this example, a job requiring up to 2 processors could be submitted for immediate execution in
partition ClusterA for any duration. Additionally, a job requiring 1 processor could be submitted for
immediate execution in partition ClusterB. Note that by default, each task is tracked and reported as a
request for a single processor.

> showbf
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 3 3 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterA 1 1 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterB 2 2 00:00:00 INFINITY 11:32:38_08/19
ReqID=0

StartOffset is the amount of time remaining before resources will be available.

Moab Workload Manager

324 Scheduler Commands

Scheduler Commands 325

Example 3-51:

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour runtime and
at least 16 processors. Specifying job duration is of value when time based access is assigned to
reservations (i.e., using the SRCFG TIMELIMIT ACL)

> showbf -r 16 -d 3:00:00
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:22:25_07/19

Example 3-52:

In this example, a resource availability window is requested for processors located only on nodes with at
least 512 MB of memory.

> showbf -m ' =512'
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:23:23_07/19
ClusterA 10 10 INFINITY 00:00:00 09:23:23_07/19
ClusterB 10 10 INFINITY 00:00:00 09:23:23_07/19

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l showq
l mdiag -t

showq

Synopsis
showq [-b] [-g] [-l] [-c|-i|-r] [-n] [-o] [-p partition] [-R rsvid] [-u] [-v] [-w <CONSTRAINT>] [--blocking] [--
noblock]

Overview
Displays information about active, eligible, blocked, and/or recently completed jobs. Since the resource
manager is not actually scheduling jobs, the job ordering it displays is not valid. The showq command
displays the actual job ordering under the Moab Workload Manager. When used without flags, this
command displays all jobs in active, idle, and non-queued states.

Access
By default, this command can be run by any user. However, the -c, -i, and -r flags can only be used by
level 1, 2, or 3 Moab administrators.

Moab Workload Manager

Flags

Flag Description

-b Display blocked jobs only

-c Display details about recently completed jobs (see example, JOBCPURGETIME).

-g Display grid job and system IDs for all jobs.

-i Display extended details about idle jobs. (see example)

-l Display local/remote view. For use in a Grid environment, displays job usage of both local and remote
compute resources.

-n Displays normal showq output, but lists job names under JOBID

-o Displays jobs in the active queue in the order specified (uses format showq -o <spe-
cifiedOrder>). Valid options include REMAINING, REVERSEREMAINING, JOB, USER, STATE, and
STARTTIME. The default is REMAINING.

-p Display only jobs assigned to the specified partition.

-r Display extended details about active (running) jobs. (see example)

-R Display only jobs which overlap the specified reservation.

-u Display all running jobs for a particular user.

-v Display local and full resource manager job IDs as well as partitions. If specified with the -i option,
will display job reservation time. The -v option displays all array subjobs. All showq commands
without the -v option show just the master jobs in an array.

-w Display only jobs associated with the specified constraint. Valid constraints include user, group, acct,
class, and qos (see showq -w example.).

--block-
ing

Do not use cache information in the output. The --blocking flag retrieves results exclusively from
the scheduler.

--
noblock

Use cache information for a faster response.

Moab Workload Manager

326 Scheduler Commands

Scheduler Commands 327

Details
Beyond job information, the showqcommand will also report if the scheduler is stopped or paused or if a
system reservation is in place. Further, the showq command will also report public system messages.

Examples
l Default Report on page 327

o Detailed Active/Running Job Report on page 330

o Eligible Jobs on page 329

o Detailed Completed Job Report on page 333

l Filtered Job Report on page 334

Example 3-53: Default Report

The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and Blocked Jobs.

Moab Workload Manager

> showq

active jobs------------------------
JOBIDUSERNAMESTATEPROCSREMAINING STARTTIME

12941 sartois Running 25 2:44:11 Thu Sep 1 15:02:50
12954 tgates Running 4 2:57:33 Thu Sep 1 15:02:52
12944 eval1 Running 16 6:37:31 Thu Sep 1 15:02:50
12946 tgates Running 2 1:05:57:31 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

12956 cfosdyke Idle 32 6:40:00 Thu Sep 1 15:02:50
12969 cfosdyke Idle 4 6:40:00 Thu Sep 1 15:03:23
12939 eval1 Idle 16 3:00:00 Thu Sep 1 15:02:50
12940 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12947 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12949 eval1 Idle 2 3:00:00 Thu Sep 1 15:02:50
12953 tgates Idle 10 4:26:40 Thu Sep 1 15:02:50
12955 eval1 Idle 2 4:26:40 Thu Sep 1 15:02:50
12957 tgates Idle 16 3:00:00 Thu Sep 1 15:02:50
12963 eval1 Idle 16 1:06:00:00 Thu Sep 1 15:02:52
12964 tgates Idle 16 1:00:00:00 Thu Sep 1 15:02:52
12937 allendr Idle 9 1:00:00:00 Thu Sep 1 15:02:50
12962 aacker Idle 6 00:26:40 Thu Sep 1 15:02:50
12968 tamaker Idle 1 4:26:40 Thu Sep 1 15:02:52

14 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 18

The fields are as follows:

Column Description

JOBID Job identifier.

USERNAME User owning job.

STATE Job State. Current batch state of the job.

PROCS Number of processors being used by the job.

Moab Workload Manager

328 Scheduler Commands

Scheduler Commands 329

Column Description

REMAINING/WCLIMIT For active jobs, the time the job has until it has reached its wallclock limit or for idle/b-
locked jobs, the amount of time requested by the job. Time specified in [DD:]HH:MM:SS
notation.

STARTTIME Time job started running.

Active Jobs

Active jobs are those that are Running or Starting and consuming resources. Displayed are the job id*,
the job's owner, and the job state. Also displayed are the number of processors allocated to the job, the
amount of time remaining until the job completes (given in HH:MM:SS notation), and the time the job
started. All active jobs are sorted in "Earliest Completion Time First" order.

*Job IDs may be marked with a single character to specify the following conditions:

Character Description

_ (underbar) job violates usage limit

* (asterisk) job is backfilled AND is preemptible

+ (plus) job is backfilled AND is NOT preemptible

- (hyphen) job is NOT backfilled AND is preemptible

Detailed active job information can be obtained using the -r flag.

Eligible Jobs

Eligible Jobs are those that are queued and eligible to be scheduled. They are all in the Idle job state and
do not violate any fairness policies or have any job holds in place. The jobs in the Idle section display the
same information as the Active Jobs section except that the wallclock CPULIMIT is specified rather than
job time REMAINING, and job QUEUETIME is displayed rather than job STARTTIME. The jobs in this
section are ordered by job priority. Jobs in this queue are considered eligible for both scheduling and
backfilling.

Detailed eligible job information can be obtained using the -i flag.

Blocked Jobs

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a number of
states for the following reasons:

Moab Workload Manager

State Description

Idle Job violates a fairness policy. Use diagnose -q for more information.

UserHold A user hold is in place.

SystemHold An administrative or system hold is in place.

BatchHold A scheduler batch hold is in place (used when the job cannot be run because the requested
resources are not available in the system or because the resource manager has repeatedly failed
in attempts to start the job).

Deferred A scheduler defer hold is in place (a temporary hold used when a job has been unable to start
after a specified number of attempts. This hold is automatically removed after a short period of
time).

NotQueued Job is in the resource manager state NQ (indicating the job's controlling scheduling daemon in
unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 3-54: Detailed Active/Running Job Report

> showq -r

active jobs------------------------
JOBID S PAR EFFIC XFACTOR Q USER GROUP MHOST PROCS
REMAINING STARTTIME

12941 R 3 100.00 1.0 - sartois Arches G5-014 25
2:43:31 Thu Sep 1 15:02:50
12954 R 3 100.00 1.0 Hi tgates Arches G5-016 4
2:56:54 Thu Sep 1 15:02:52
12944 R 2 100.00 1.0 De eval1 RedRock P690-016 16
6:36:51 Thu Sep 1 15:02:50
12946 R 3 100.00 1.0 - tgates Arches G5-001 2
1:05:56:51 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

Total jobs: 4

The fields are as follows:

Column Description

JOBID Name of active job.

Moab Workload Manager

330 Scheduler Commands

Scheduler Commands 331

Column Description

S Job State. Either R for Running or S for Starting.

PAR Partition in which job is running.

EFFIC CPU efficiency of job.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality Of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host running primary task of job.

PROCS Number of processors being used by the job.

REMAINING Time the job has until it has reached its wallclock limit. Time specified in HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the running jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

Column Description

JobName Name of active job.

S Job State. Either R for Running or S for Starting.

CCode Completion Code. The return/completion code given when a job completes. (Only applicable to com-
pleted jobs.)

Par Partition in which job is running.

Effic CPU efficiency of job.

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Moab Workload Manager

Column Description

Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Number of processors being used by the job.

Remaining Time the job has until it has reached its wallclock limit. Time specified in HH:MM:SS notation.

StartTime Time job started running.

> showq -i

eligible jobs----------------------
JOBID PRIORITY XFACTOR Q USER GROUP PROCS WCLIMIT
CLASS SYSTEMQUEUETIME

12956* 20 1.0 - cfosdyke RedRock 32 6:40:00
batch Thu Sep 1 15:02:50
12969* 19 1.0 - cfosdyke RedRock 4 6:40:00
batch Thu Sep 1 15:03:23
12939 16 1.0 - eval1 RedRock 16 3:00:00
batch Thu Sep 1 15:02:50
12940 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12947 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12949 16 1.0 - eval1 RedRock 2 3:00:00
batch Thu Sep 1 15:02:50
12953 16 1.0 - tgates Arches 10 4:26:40
batch Thu Sep 1 15:02:50
12955 16 1.0 - eval1 RedRock 2 4:26:40
batch Thu Sep 1 15:02:50
12957 16 1.0 - tgates Arches 16 3:00:00
batch Thu Sep 1 15:02:50
12963 16 1.0 - eval1 RedRock 16 1:06:00:00
batch Thu Sep 1 15:02:52
12964 16 1.0 - tgates Arches 16 1:00:00:00
batch Thu Sep 1 15:02:52
12937 1 1.0 - allendr RedRock 9 1:00:00:00
batch Thu Sep 1 15:02:50
12962 1 1.2 - aacker RedRock 6 00:26:40
batch Thu Sep 1 15:02:50
12968 1 1.0 - tamaker RedRock 1 4:26:40
batch Thu Sep 1 15:02:52

14 eligible jobs

Total jobs: 14

The fields are as follows:

Moab Workload Manager

332 Scheduler Commands

Scheduler Commands 333

Column Description

JOBID Name of job.

PRIORITY Calculated job priority.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallC-
lockLimit

Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

PROCS Minimum number of processors required to run job.

WCLIMIT Wallclock limit specified for job. Time specified in HH:MM:SS notation.

CLASS Class requested by job.

SYSTEMQUEUETIME Time job was admitted into the system queue.

An asterisk at the end of a job (job 12956* in this example) indicates that the job has a job
reservation created for it. The details of this reservation can be displayed using the checkjob
command.

Example 3-55: Detailed Completed Job Report

> showq -c
completed jobs------------------------
JOBID SCCODE PAR EFFIC XFACTOR Q USERNAME GROUP MHOST
PROC WALLTIME STARTTIME
13098 C 0 bas 93.17 1.0 - sartois Arches G5-014
25 2:43:31 Thu Sep 1 15:02:50
13102 C 0 bas 99.55 2.2 Hi tgates Arches G5-016
4 2:56:54 Thu Sep 1 15:02:52
13103 C 2 tes 99.30 2.9 De eval1 RedRock P690-016
16 6:36:51 Thu Sep 1 15:02:50
13115 C 0 tes 97.04 1.0 - tgates Arches G5-001
2 1:05:56:51 Thu Sep 1 15:02:50
3 completed jobs

The fields are as follows:

Moab Workload Manager

Column Description

JOBID job id for completed job.

S Job State. Either C for Completed or V for Vacated.

CCODE Completion code reported by the job.

PAR Partition in which job ran.

EFFIC CPU efficiency of job.

XFACTOR Expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host which ran the primary task of job.

PROCS Number of processors being used by the job.

WALLTIME Wallclock time used by the job. Time specified in [DD:]HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the active jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

If the DISPLAYFLAGS parameter is set to ACCOUNTCENTRIC, job group information will be
replaced with job account information.

Example 3-56: Filtered Job Report

Show only jobs associated with user john and class benchmark.

> showq -w class=benchmark -w user=john
...

Moab Workload Manager

334 Scheduler Commands

Scheduler Commands 335

Job Array
Job arrays show the name of the job array and then in parenthesis, the number of sub-jobs in the job
array that are in the specified state.

> showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(14) aesplin Running 14 00:59:41 Fri May 27 14:58:57

14 active jobs 14 of 14 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1(4) aesplin Idle 4 1:00:00 Fri May 27 14:58:52

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1(2) aesplin Blocked 2 1:00:00 Fri May 27 14:58:52

2 blocked jobs

Total jobs: 20

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l showbf - command to display resource availability.
l mdiag -j - command to display detailed job diagnostics.
l checkjob - command to check the status of a particular job.
l JOBCPURGETIME - parameter to adjust the duration of time Moab preserves information about
completed jobs

l DISPLAYFLAGS - parameter to control what job information is displayed

showhist.moab.pl

Synopsis
showhist.moab.pl [-a accountname]
[-c classname] [-e enddate]
[-g groupname] [-j jobid] [-n days]
[-q qosname] [-s startdate]
[-u username]

Moab Workload Manager

Overview
The showhist.moab.pl script displays historical job information. Its purpose is similar to the checkjob
command's, but showhist.moab.pl displays information about jobs that have already completed.

Access
By default, this script's use is limited to administrators on the head node; however, end users can also be
given power to run the script. To grant access to the script to end users, move showhist.moab.pl
from the tools directory to the bin directory.

Arguments

-a (Account)

Format <ACCOUNTNAME>

Description Displays job records matching the specified account.

Example > showhist.moab.pl -a myAccount

Information about jobs related to the account
myAccount is displayed.

-c (Class)

Format <CLASSNAME>

Description Displays job records matching the specified class (queue).

Example > showhist.moab.pl -c newClass

Information about jobs related to the class
newClass is displayed.

-e (End Date)

Format YYYY-MM-DD

Description Displays the records of jobs recorded before or on the specified date.

Moab Workload Manager

336 Scheduler Commands

Scheduler Commands 337

-e (End Date)

Example > showhist.moab.pl -e 2001-01-03

Information about all jobs recorded on or before January 3,
2001 is displayed.

> showhist.moab.pl -s 2011-01-01 -e 2011-01-31

Information is displayed about all jobs recorded in January
2011.

-g (Group)

Format <GROUPNAME>

Description Displays job records matching the specified group.

Example > showhist.moab.pl -g admins

Information about jobs related to the group
admins is displayed.

-j (Job ID)

Format <JOBID>

Description Displays job records matching the specified job id.

Example > showhist.moab.pl -j moab01

Information about job moab01 is
displayed.

-n (Number of Days)

Format <INTEGER>

Moab Workload Manager

-n (Number of Days)

Description Restricts the number of past jobs to search by a specified number of days relative to today.

Example > showhist.moab.pl -n 90 -j moab924

Displays job information for job moab924. The search is restricted to the last 90
days.

-q (QoS)

Format <QOSNAME>

Description Displays job records matching the specified quality of service.

Example > showhist.moab.pl -q myQos

Information about jobs related to the QoS myQos
is displayed.

-s (Start Date)

Format YYYY-MM-DD

Description Displays the records of jobs that recorded on the specified date and later.

Example > showhist.moab.pl -s 1776-07-04

Information about all jobs recorded on July 4, 1776 and later is
displayed.

> showhist.moab.pl -s 2001-07-05 -e 2002-07-05

Information is displayed about all jobs recorded between July 5, 2001
and July 5, 2002.

Moab Workload Manager

338 Scheduler Commands

Scheduler Commands 339

-u (User)

Format <USERNAME>

Description Displays job records matching the specified user.

Example > showhist.moab.pl -u bob

Information about user bob's jobs is
displayed.

Sample Output

> showhist.moab.pl
Job Id : Moab.4
User Name : user1
Group Name : company
Queue Name : NONE
Processor Count : 4
Wallclock Duration: 00:00:00
Submit Time : Mon Nov 21 10:48:32 2011
Start Time : Mon Nov 21 10:49:37 2011
End Time : Mon Nov 21 10:49:37 2011
Exit Code : 0
Allocated Nodelist: 10.10.10.3

Job Id : Moab.1
Executable : 4
User Name : user1
Group Name : company
Account Name : 1321897709
Queue Name : NONE
Quality Of Service: 0M
Processor Count : -0
Wallclock Duration: 00:01:05
Submit Time : Mon Nov 21 10:48:29 2011
Start Time : Mon Nov 21 10:48:32 2011
End Time : Mon Nov 21 10:49:37 2011
Exit Code : 0
Allocated Nodelist: 512M

Information is displayed for all completed jobs.

When a job's Start Time and End Time are the same, the job is infinite and still running.

Related topics

l checkjob - explains how to query for a status report for a specified job.
l mdiag -j command - display additional detailed information regarding jobs
l showq command - showq high-level job summaries

Moab Workload Manager

showres

Synopsis
showres [-f] [-n [-g]] [-o] [-r] [reservationid]

Overview
This command displays all reservations currently in place within Moab. The default behavior is to
display reservations on a reservation-by-reservation basis.

Access
By default, this command can be run by any Moab administrator.

Flag Description

-f Show free (unreserved) resources rather than reserved resources. The -f flag cannot be used in con-
junction with the any other flag

-g When used with the -n flag, shows grep-able output with nodename on every line

-n Display information regarding all nodes reserved by <RSVID>

-o Display all reservations which overlap <RSVID> (in time and space)

Not supported with -n flag

-r Display reservation timeframes in relative time mode

-v Show verbose output. If used with the -n flag, the command will display all reservations found on nodes
contained in <RSVID>. Otherwise, it will show long reservation start dates including the reservation year.

Parameter Description

RSVID ID of reservation of interest — optional

Moab Workload Manager

340 Scheduler Commands

Scheduler Commands 341

Examples

Example 3-57:

> showres

ReservationID Type S Start End Duration N/P StartTime

12941 Job R -00:05:01 2:41:39 2:46:40 13/25 Thu Sep 1
15:02:50
12944 Job R -00:05:01 6:34:59 6:40:00 16/16 Thu Sep 1
15:02:50
12946 Job R -00:05:01 1:05:54:59 1:06:00:00 1/2 Thu Sep 1
15:02:50
12954 Job R -00:04:59 2:55:01 3:00:00 2/4 Thu Sep 1
15:02:52
12956 Job I 1:05:54:59 1:12:34:59 6:40:00 16/32 Fri Sep 2
21:02:50
12969 Job I 6:34:59 13:14:59 6:40:00 4/4 Thu Sep 1
21:42:50

6 reservations located

The above example shows all reservations on the system.

The fields are as follows:

Column Description

Type Reservation Type. This will be one of the following: Job or User.

ReservationID This is the name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. Sys-
tem reservations are given the name SYSTEM followed by a number.

S State. This field is valid only for job reservations. It indicates whether the job is (S)tarting, (R)
unning, or (I)dle.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time.

End Relative end time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time. Reservations that will not complete in 1,000 hours are marked with the
keyword INFINITY.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1,000 hours
are marked with the keyword INFINITY.

Nodes Number of nodes involved in reservation.

Moab Workload Manager

Column Description

StartTime Time Reservation became active.

Moab Workload Manager

342 Scheduler Commands

Scheduler Commands 343

Example 3-58:

Moab Workload Manager

> showres -n
reservations on Thu Sep 1 16:49:59

NodeName Type ReservationID JobState Task Start Duration
StartTime

G5-001 Job 12946 Running 2 -1:47:09 1:06:00:00 Thu
Sep 1 15:02:50
G5-001 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-003 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-003 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-004 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-004 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-005 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-005 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-006 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-006 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-007 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-007 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-008 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-008 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-009 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-009 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-010 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-010 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-011 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-011 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-012 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-012 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-013 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-013 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-014 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-014 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22

Moab Workload Manager

344 Scheduler Commands

Scheduler Commands 345

G5-015 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-015 Job 12949 Running 2 -00:08:57 3:00:00 Thu
Sep 1 16:41:02
G5-016 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-016 Job 12947 Running 2 -00:08:57 3:00:00 Thu
Sep 1 16:41:02
P690-001 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-002 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-003 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-004 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-005 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-006 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-007 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-008 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-009 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-010 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-011 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-012 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-014 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-014 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-015 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-015 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-016 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-016 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50

52 nodes reserved

This example shows reservations for nodes.

The fields are as follows:

Column Description

NodeName Node on which reservation is placed.

Moab Workload Manager

Column Description

Type Reservation Type. This will be one of the following: Job or User.

ReservationID This is the name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. Sys-
tem reservations are given the name SYSTEM followed by a number.

JobState This field is valid only for job reservations. It indicates the state of the job associated with the
reservation.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1000 hours
are marked with the keyword INFINITY.

StartTime Time Reservation became active.

Example 3-59:

> showres 12956

ReservationID Type S Start End Duration N/P StartTime

12956 Job I 1:04:09:32 1:10:49:32 6:40:00 16/32 Fri Sep 2
21:02:50

1 reservation located

In this example, information for a specific reservation (job) is displayed.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mrsvctl -c - create new reservations.
l mrsvctl -r - release existing reservations.
l mdiag -r - diagnose/view the state of existing reservations.
l Reservation Overview - description of reservations and their use.

showstart

Synopsis
showstart {jobid|proccount[@duration]|s3jobspec} [-e {all|hist|prio|rsv}] [-f] [-g [peer]] [-l qos=<QOS>] [--
blocking] [--format=xml]

Moab Workload Manager

346 Scheduler Commands

Scheduler Commands 347

Overview
This command displays the estimated start time of a job based a number of analysis types. This analysis
may include information based on historical usage, earliest available reservable resources, and priority
based backlog analysis. Each type of analysis will provide somewhat different estimates based on
current cluster environmental conditions. By default, only reservation based analysis is performed.

The start time estimate Moab returns does not account for resources that will become available
due to preemption.

Historical analysis utilizes historical queue times for jobs which match a similar processor count and job
duration profile. This information is updated on a sliding window which is configurable within moab.cfg

Reservation based start time estimation incorporates information regarding current administrative,
user, and job reservations to determine the earliest time the specified job could allocate the needed
resources and start running. In essence, this estimate will indicate the earliest time the job would start
assuming this job was the highest priority job in the queue.

Priority based job start analysis determines when the queried job would fit in the queue and determines
the estimated amount of time required to complete the jobs which are currently running or scheduled to
run before this job can start.

In all cases, if the job is running, this command will return the time the job started. If the job already has
a reservation, this command will return the start time of the reservation.

Access
By default, this command can be run by any user.

Parameters

Parameter Description

--blocking Do not use cache information in the output. The --blocking flag retrieves results exclusively
from the scheduler.

DURATION Duration of pseudo-job to be checked in format [[[DD:]HH:]MM:]SS (default duration is 1 second)

-e Estimate method. By default, Moab will use the reservation based estimation method.

-f Use feedback. If specified, Moab will apply historical accuracy information to Improve the quality
of the estimate. See ENABLESTARTESTIMATESTATS for more information.

Moab Workload Manager

Parameter Description

-g Grid mode. Obtain showstart information from remote resource managers. If -g is not used and
Moab determines that job is already migrated, Moab obtains showstart information from the
remote Moab where the job was migrated to. All resource managers can be queried by using the
keyword "all" which returns all information in a table.

$ showstart -g all head.1
Estimated Start Times
[Remote RM] [Reservation] [Priority] [Historical]
[c1] [00:15:35] [] []
[c2] [3:15:38] [] []

-l qos-
s=<QOS>

Specifies what QOS the job must start under, using the same syntax as themsub command. Cur-
rently, no other resource manager extensions are supported. This flag only applies to hypothetical
jobs by using the proccount[@duration] syntax.

JOBID Job to be checked

PROCCOUNT Number of processors in pseudo-job to be checked

S3JOBSPEC XML describing the job according to the Dept. of Energy Scalable Systems Software/S3 job spe-
cification.

Examples

Example 3-60:

> showstart orion.13762
job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

Example 3-61:

> showstart 12@3600
job 12@3600 requires 12 procs for 1:00:00
Earliest start in 00:01:39 on Wed Aug 31 16:30:45
Earliest completion in 1:01:39 on Wed Aug 31 17:30:45
Best Partition: 32Bit

Moab Workload Manager

348 Scheduler Commands

Scheduler Commands 349

You cannot specify job flags when running showstart, and since a job by default can only run on one
partition, showstart fails when querying for a job requiring more nodes than the largest partition
available.

Additional Information
For reservation based estimates, the information provided by this command is more highly accurate if
the job is highest priority, if the job has a reservation, or if the majority of the jobs which are of higher
priority have reservations. Consequently, sites wishing to make decisions based on this information may
want to consider using the RESERVATIONDEPTH parameter to increase the number of priority based
reservations. This can be set so that most or even all idle jobs receive priority reservations and make
the results of this command generally useful. The only caution of this approach is that increasing the
RESERVATIONDEPTH parameter more tightly constrains the decisions of the scheduler and may resulting
in slightly lower system utilization (typically less than 8% reduction).

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l checkjob
l showres
l showstats -f eststarttime
l showstats -f avgqtime
l Job Start Estimates

showstate

Synopsis
showstate

Overview
This command provides a summary of the state of the system. It displays a list of all active jobs and a
text-based map of the status of all nodes and the jobs they are servicing. Basic diagnostic tests are also
performed and any problems found are reported.

Access
By default, this command can be run by any Moab Administrator.

Moab Workload Manager

Examples

Example 3-62:

> showstate
cluster state summary for Wed Nov 23 12:00:21

JobID S User Group Procs Remaining StartTime
------------------ - --------- -------- ----- ----------- -------------------

(A) fr17n11.942.0 R johns staff 16 13:21:15 Nov 22 12:00:21
(B) fr17n12.942.0 S johns staff 32 13:07:11 Nov 22 12:00:21
(C) fr17n13.942.0 R johns staff 8 11:22:25 Nov 22 12:00:21
(D) fr17n14.942.0 S johns staff 8 10:43:43 Nov 22 12:01:21
(E) fr17n15.942.0 S johns staff 8 9:19:25 Nov 22 12:01:21
(F) fr17n16.942.0 R johns staff 8 9:01:16 Nov 22 12:01:21
(G) fr17n17.942.0 R johns staff 1 7:28:25 Nov 22 12:03:22
(H) fr17n18.942.0 R johns staff 1 3:05:17 Nov 22 12:04:22
(I) fr17n19.942.0 S johns staff 24 0:54:38 Nov 22 12:00:22
Usage Summary: 9 Active Jobs 106 Active Nodes

[0][0][0][0][0][0][0][0][0][1][1][1][1][1][1][1]
[1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6]

Frame 2: XXXXXXXXXXXXXXXXXXXXXXXX[][A][C][][A][C][C][A]
Frame 3: [][][][][][][A][][I][][I][][][][][]
Frame 4: [][I][][][][A][][I][][][][E][][I][][E]
Frame 5: [F][][E][][][][F][F][F][I][][][E][][E][E]
Frame 6: [][I][I][E][I][][I][I][][I][F][I][I][I][I][F]
Frame 7: []XXX[]XXX[]XXX[]XXX[b]XXX[]XXX[]XXX[#]XXX
Frame 9: [][][][][][][][][][][][][][][E][]
Frame 11: [][][][][][][I][F][@][][A][I][][F][][A]
Frame 12: [A][][][A][][][C][A][][C][A][A][][][][]
Frame 13: [D]XXX[I]XXX[]XXX[]XXX[]XXX[]XXX[I]XXX[I]XXX
Frame 14: [D]XXX[I]XXX[I]XXX[D]XXX[]XXX[H]XXX[I]XXX[]XXX
Frame 15: [b]XXX[b]XXX[b]XXX[b]XXX[D]XXX[b]XXX[b]XXX[b]XXX
Frame 16: [b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX[]XXX[b]XXX
Frame 17: [][][][][][][][][][][][][][][][]
Frame 21: []XXX[b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX
Frame 22: [b]XXX[b]XXX[b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX
Frame 27: [b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX[b]XXX
Frame 28: [G]XXX[]XXX[D]XXX[]XXX[D]XXX[D]XXX[D]XXX[]XXX
Frame 29: [A][C][A][A][C][][A][C]XXXXXXXXXXXXXXXXXXXXXXXX
Key: XXX:Unknown [*]:Down w/Job [#]:Down [']:Idle w/Job []:Idle [@]:Busy w/No Job
[!]:Drained
Key: [a]:(Any lower case letter indicates an idle node that is assigned to a job)

Check Memory on Node fr3n07
Check Memory on Node fr4n06
Check Memory on Node fr4n09

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with a
letter. For example, job fr17n11.942.0 is associated with the letter A. This letter can now be used to determine where
the job is currently running. By looking at the system map, it can be found that job fr17n11.942.0 (job A) is running
on nodes fr2n10, fr2n13, fr2n16, fr3n07 ...
The key at the bottom of the system map can be used to determine unusual node states. For example, fr7n15 is
currently in the state down.
After the key, a series of warning messages may be displayed indicating possible system problems. In this case, warning
message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09. Also, warning
messages indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 is in state BUSY but has no job
assigned to it (it possibly has a runaway job running on it).

Moab Workload Manager

350 Scheduler Commands

Scheduler Commands 351

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l Specifying Node Rack/Slot Location

showstats

Synopsis
showstats

showstats -a [accountid] [-v] [-t <TIMESPEC>]

showstats -c [classid] [-v] [-t <TIMESPEC>]

showstats -f <statistictype>

showstats -g [groupid] [-v] [-t <TIMESPEC>]

showstats -j [jobtemplate] [-t <TIMESPEC>]

showstats -n [nodeid] [-t <TIMESPEC>]

showstats -q [qosid] [-v] [-t <TIMESPEC>]

showstats -s

showstats -T [leafid | tree-level]

showstats -u [userid] [-v] [-t <TIMESPEC>]

Overview
This command shows various accounting and resource usage statistics for the system. Historical
statistics cover the timeframe from the most recent execution of the mschedctl -f command.

Access
By default, this command can be run by any Moab level 1, 2, or 3 Administrator.

Parameters

Flag Description

-a[<ACCOUNTID>] Display account statistics. See Account statistics on page 353 for an example.

-c[<CLASSID>] Display class statistics

-f <statistictype> Display full matrix statistics (see showstats -f for full details)

Moab Workload Manager

Flag Description

-g[<GROUPID>] Display group statistics. See Group statistics on page 355 for an example.

-j
[<JOBTEMPLATE>]

Display template statistics

-n[<NODEID>] Display node statistics (ENABLEPROFILING must be set). See Node statistics on page 357
for an example.

-q [<QOSID>] Display QoS statistics

-s display general scheduler statistics

-t Display statistical information from the specified timeframe:

<START_TIME>[,<END_TIME>]
(ABSTIME: [HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 14:30_06/20)
(RELTIME: -[[[DD:]HH:]MM:]SS)

See Statistics from an absolute time frame on page 363 and Statistics from a relative
time frame on page 363 for examples.

Profiling must be enabled for the credential type you want statistics for. See
Credential Statistics for information on how to enable profiling. Also, -t is not a
stand-alone option. It must be used in conjunction with the -a, -c, -g, -n, -q, or -u flag.

-T Display fairshare tree statistics. See Fairshare tree statistics on page 362 for an example.

-u[<USERID>] Display user statistics. See User statistics on page 359 for an example.

-v Display verbose information. See Verbose statistics on page 357 for an example.

Moab Workload Manager

352 Scheduler Commands

Scheduler Commands 353

Examples

Example 3-63: Account statistics

> showstats -a
Account Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77
8.15 5.21 90.70 34.69
462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71
5.40 3.14 98.64 40.83
462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37
4.88 0.52 82.01 24.14
005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53

14.81 0.42 98.73 28.40
175436 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78
8.61 5.60 83.64 17.04
000102 0 0 0.00 1 0.17 64 0.16 5.1 0.03 ----- 10.85

10.85 10.77 27.90 7.40
000023 0 0 0.00 1 0.17 12 0.03 0.2 0.00 ----- 0.04
0.04 0.19 21.21 1.20

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both running
and completed jobs.

The fields are as follows:

Column Description

Account Account Number

Jobs Number of running jobs

Procs Number of processors allocated to running jobs

ProcHours Number of proc-hours required to complete running jobs

Jobs* Number of jobs completed

% Percentage of total jobs that were completed by account

PHReq* Total proc-hours requested by completed jobs

% Percentage of total proc-hours requested by completed jobs that were requested by account

Moab Workload Manager

Column Description

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by account

FSTgt Fairshare target. An account's fairshare target is specified in the fs.cfg file. This value should be
compared to the account's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed

AvgQH* Average queue time (in hours) of jobs

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested walltime
it will report an accuracy of 100%.

* These fields are empty until an account has completed at least one job.

Moab Workload Manager

354 Scheduler Commands

Scheduler Commands 355

Example 3-64: Group statistics

> showstats -g
Group Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
GroupName GID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00
0.77 8.15 5.21 90.70 34.69

daf 204 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25
0.71 5.40 3.14 98.64 40.83

dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25
0.37 4.88 0.52 82.01 24.14

govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 -----
1.53 14.81 0.42 98.73 28.40

asp 227 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50
1.78 8.61 5.60 83.64 17.04

derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2.09 -----
0.50 1.93 0.51 96.03 32.60

dchall 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00
0.52 0.88 2.49 95.82 33.67

nih 239 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----
0.95 1.83 0.14 97.59 84.31

darmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25
0.14 0.59 0.07 81.33 12.73
systems 80 0 0 0.00 6 1.03 67 0.16 22.4 0.13 -----

4.07 8.49 1.23 28.68 37.34
pdc 252 0 0 0.00 1 0.17 64 0.16 5.1 0.03 -----

10.85 10.85 10.77 27.90 7.40
staff 1 0 0 0.00 1 0.17 12 0.03 0.2 0.00 -----

0.04 0.04 0.19 21.21 1.20

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both running
and completed jobs.

The fields are as follows:

Column Description

GroupName Name of group.

GID Group ID of group.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc hours required to complete running jobs.

Jobs* Number of jobs completed.

Moab Workload Manager

Column Description

% Percentage of total jobs that were completed by group.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by group.

FSTgt Fairshare target. A group's fairshare target is specified in the fs.cfg file. This value should be
compared to the group's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by
the following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested
walltime it will report an accuracy of 100%.

* These fields are empty until a group has completed at least one job.

Moab Workload Manager

356 Scheduler Commands

Scheduler Commands 357

Example 3-65: Node statistics

> showstats -n
node stats from Mon Jul 10 00:00:00 to Mon Jul 10 16:30:00
node CfgMem MinMem MaxMem AvgMem | CfgProcs MinLoad MaxLoad AvgLoad
node01 58368 0 21122 5841 32 0.00 32.76 27.62
node02 122880 0 19466 220 30 0.00 33.98 29.54
node03 18432 0 9533 2135 24 0.00 25.10 18.64
node04 60440 0 17531 4468 32 0.00 30.55 24.61
node05 13312 0 2597 1189 8 0.00 9.85 8.45
node06 13312 0 3800 1112 8 0.00 8.66 5.27
node07 13312 0 2179 1210 8 0.00 9.62 8.27
node08 13312 0 3243 1995 8 0.00 11.71 8.02
node09 13312 0 2287 1943 8 0.00 10.26 7.58
node10 13312 0 2183 1505 8 0.00 13.12 9.28
node11 13312 0 3269 2448 8 0.00 8.93 6.71
node12 13312 0 10114 6900 8 0.00 13.13 8.44
node13 13312 0 2616 2501 8 0.00 9.24 8.21
node14 13312 0 3888 869 8 0.00 8.10 3.85
node15 13312 0 3788 308 8 0.00 8.40 4.67
node16 13312 0 4386 2191 7 0.00 18.37 8.36
node17 13312 0 3158 1870 8 0.00 8.95 5.91
node18 13312 0 5022 2397 8 0.00 19.25 8.19
node19 13312 0 2437 1371 8 0.00 8.98 7.09
node20 13312 0 4474 2486 8 0.00 8.51 7.11
node21 13312 0 4111 2056 8 0.00 8.93 6.68
node22 13312 0 5136 2313 8 0.00 8.61 5.75
node23 13312 0 1850 1752 8 0.00 8.39 5.71
node24 13312 0 3850 2539 8 0.00 8.94 7.80
node25 13312 0 3789 3702 8 0.00 21.22 12.83
node26 13312 0 3809 1653 8 0.00 9.34 4.91
node27 13312 0 5637 70 4 0.00 17.97 2.46
node28 13312 0 3076 2864 8 0.00 22.91 10.33

Example 3-66: Verbose statistics

> showstats -v
current scheduler time: Sat Aug 18 18:23:02 2007
moab active for 00:00:01 started on Wed Dec 31 17:00:00
statistics for iteration 0 initialized on Sat Aug 11 23:55:25
Eligible/Idle Jobs: 6/8 (75.000%)
Active Jobs: 13
Successful/Completed Jobs: 167/167 (100.000%)
Preempt Jobs: 0
Avg/Max QTime (Hours): 0.34/2.07
Avg/Max XFactor: 1.165/3.26
Avg/Max Bypass: 0.40/8.00
Dedicated/Total ProcHours: 4.46K/4.47K (99.789%)
Preempt/Dedicated ProcHours: 0.00/4.46K (0.000%)
Current Active/Total Procs: 32/32 (100.0%)
Current Active/Total Nodes: 16/16 (100.0%)
Avg WallClock Accuracy: 64.919%
Avg Job Proc Efficiency: 99.683%
Min System Utilization: 87.323% (on iteration 46)
Est/Avg Backlog: 02:14:06/03:02:567

This example shows a concise summary of the system scheduling state. Note that showstats and showstats -s are
equivalent.
The first line of output indicates the number of scheduling iterations performed by the current scheduling process,
followed by the time the scheduler started. The second line indicates the amount of time the Moab Scheduler has been
scheduling in HH:MM:SS notation followed by the statistics initialization time.

Moab Workload Manager

The fields are as follows:

Column Description

Active Jobs Number of jobs currently active (Running or Starting).

Eligible Jobs Number of jobs in the system queue (jobs that are considered when scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the LoadLeveler Idle
state.

Completed Jobs Number of jobs completed since statistics were initialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max XFactor Maximum expansion factor of completed jobs.

Max Bypass Maximum bypass of completed jobs.

Available ProcHours Total proc-hours available to the scheduler.

Dedicated
ProcHours

Total proc-hours made available to jobs.

Effic Scheduling efficiency (DedicatedProcHours / Available ProcHours).

Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.

Iteration Iteration on which the minimum scheduling efficiency occurred.

Available Procs Number of procs currently available.

Busy Procs Number of procs currently busy.

Effic Current system efficiency (BusyProcs/AvailableProcs).

WallClock Accuracy Average wallclock accuracy of completed jobs (job-weighted average).

Job Efficiency Average job efficiency (UtilizedTime / DedicatedTime).

Moab Workload Manager

358 Scheduler Commands

Scheduler Commands 359

Column Description

Est Backlog Estimated backlog of queued work in hours.

Avg Backlog Average backlog of queued work in hours.

Example 3-67: User statistics

> showstats -u
User Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
UserName UID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
moorejt 2617 1 16 58.80 2 0.34 221 0.54 1896.6 11.25 -----

1.02 1.04 0.14 99.52 100.00
zhong 1767 3 24 220.72 20 3.42 2306 5.65 1511.3 8.96 -----

0.71 0.96 0.49 99.37 67.48
lui 2467 0 0 0.00 16 2.74 1970 4.82 1505.1 8.93 -----

1.02 6.33 0.25 98.96 57.72
evans 3092 0 0 0.00 62 10.60 4960 12.14 1464.3 8.69 5.0

0.62 1.64 5.04 87.64 30.62
wengel 2430 2 64 824.90 1 0.17 767 1.88 630.3 3.74 -----

0.18 0.18 4.26 99.63 0.40
mukho 2961 2 16 71.06 6 1.03 776 1.90 563.5 3.34 -----

0.31 0.82 0.20 93.15 30.28
jimenez 1449 1 16 302.29 2 0.34 768 1.88 458.3 2.72 -----

0.80 0.98 2.31 97.99 70.30
neff 3194 0 0 0.00 74 12.65 669 1.64 352.5 2.09 10.0

0.50 1.93 0.51 96.03 32.60
cholik 1303 0 0 0.00 2 0.34 552 1.35 281.9 1.67 -----

1.72 3.07 25.35 99.69 66.70
jshoemak 2508 1 24 572.22 1 0.17 576 1.41 229.1 1.36 -----
0.55 0.55 3.74 99.20 39.20

kudo 2324 1 8 163.35 6 1.03 1152 2.82 211.1 1.25 -----
0.12 0.34 1.54 96.77 5.67

xztang 1835 1 8 18.99 ---- ------ ----- ------ 176.3 1.05 10.0 -----
- ------ ------ 99.62 ------

feller 1880 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----
0.95 1.83 0.14 97.59 84.31

maxia 2936 0 0 0.00 1 0.17 191 0.47 129.1 0.77 7.5
0.88 0.88 4.49 99.84 69.10
ktgnov71 2838 0 0 0.00 1 0.17 192 0.47 95.5 0.57 -----
0.53 0.53 0.34 90.07 51.20

This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the output
indicates the timeframe covered by the displayed statistics.
The statistical output is divided into two statistics categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical information from
both running and completed jobs.

The fields are as follows:

Moab Workload Manager

Column Description

UserName Name of user.

UID User ID of user.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by user.

FSTgt Fairshare target. A user's fairshare target is specified in the fs.cfg file. This value should be com-
pared to the user's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

Moab Workload Manager

360 Scheduler Commands

Scheduler Commands 361

Column Description

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested walltime
it will report an accuracy of 100%.

* These fields are empty until a user has completed at least one job.

Moab Workload Manager

Example 3-68: Fairshare tree statistics

> showstats -T
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

root 0 0 0.00 0 56 100.00 2.47K 100.00 1.58K 48.87 -----
1.22 0.00 0.24 100.00 58.84

l1.1 0 0 0.00 0 25 44.64 845.77 34.31 730.25 22.54 -----
1.97 0.00 0.20 100.00 65.50
Administrati 0 0 0.00 0 10 17.86 433.57 17.59 197.17 6.09 -----
3.67 0.00 0.25 100.00 62.74
Engineering 0 0 0.00 0 15 26.79 412.20 16.72 533.08 16.45 -----
0.83 0.00 0.17 100.00 67.35

l1.2 0 0 0.00 0 31 55.36 1.62K 65.69 853.00 26.33 -----
0.62 0.00 0.27 100.00 53.46
Shared 0 0 0.00 0 3 5.36 97.17 3.94 44.92 1.39 -----
0.58 0.00 0.56 100.00 31.73
Test 0 0 0.00 0 3 5.36 14.44 0.59 14.58 0.45 -----
0.43 0.00 0.17 100.00 30.57
Research 0 0 0.00 0 25 44.64 1.51K 61.16 793.50 24.49 -----
0.65 0.00 0.24 100.00 58.82

> showstats -T 2
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
Test 0 0 0.00 0 22 4.99 271.27 0.55 167.42 0.19 -----
3.86 0.00 2.89 100.00 60.76
Shared 0 0 0.00 0 59 13.38 12.30K 24.75 4.46K 5.16 -----
6.24 0.00 10.73 100.00 49.87
Research 0 0 0.00 0 140 31.75 9.54K 19.19 5.40K 6.25 -----
2.84 0.00 5.52 100.00 57.86
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

> showstats -T l1.1
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
l1.1 0 0 0.00 0 220 49.89 27.60K 55.52 33.01K 38.17 -----
3.68 0.00 2.39 100.00 63.17
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

Moab Workload Manager

362 Scheduler Commands

Scheduler Commands 363

Example 3-69: Statistics from an absolute time frame

> showstats -c batch -v -t 00:00:01_01/01/13,23:59:59_12/31/13
statistics initialized Wed Jan 1 00:00:00

-------- Active --------- ------------------------------------ Completed ------------

class Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
batch 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

Moab returns information about the class batch from January 1, 2013 to December 31, 2013. For more information
about specifying absolute dates, see "Absolute Time Format" in TIMESPEC on page 366.

Example 3-70: Statistics from a relative time frame

> showstats -u bob -v -t -30:00:00:00
statistics initialized Mon Nov 11 15:30:00

-------- Active --------- ------------------------------------ Completed ------------

user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
bob 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

Moab returns information about user bob from the past 30 days. For more information about specifying relative dates,
see "Relative Time Format" in TIMESPEC on page 366.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mschedctl -f command - re-initialize statistics
l showstats -f command - display full matrix statistics

showstats -f

Synopsis
showstats -f <statistictype>

Overview
Shows table of various scheduler statistics.

This command displays a table of the selected Moab Scheduler statistics, such as expansion factor,
bypass count, jobs, proc-hours, wallclock accuracy, and backfill information.

Statistics are aggregated over time. This means statistical information is not available for time
frames and the -t option is not supported with showstats -f.

Moab Workload Manager

Access
This command can be run by any Moab Scheduler Administrator.

Parameters

Parameter Description

AVGBYPASS Average bypass count. Includes summary of job-weighted expansion bypass and total
samples.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and total samples.

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion factor, processor-
weighted expansion factor, processor-hour-weighted expansion factor, and total number of
samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job percent and total
samples.

BFPHRUN Number of proc-hours backfilled. Includes summary of job-weighted backfill proc-hour per-
centage and total samples.

ESTSTARTTIME Job start time estimate for jobs meeting specified processor/duration criteria. This estimate is
based on the reservation start time analysis algorithm.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and total samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum expansion factor and total
samples.

PHREQUEST proc-hours requested. Includes summary of total proc-hours requested and total samples.

PHRUN proc-hours run. Includes summary of total proc-hours run and total samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of service success rate
and total samples.

WCACCURACY Wallclock accuracy. Includes summary of overall wall clock accuracy and total samples.

Moab Workload Manager

364 Scheduler Commands

Scheduler Commands 365

Examples

Example 3-71:

> showstats -f AVGXFACTOR
Average XFactor Grid
[NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00][
02:08:00][04:16:00][08:32:00][17:04:00][34:08:00][TOTAL]
[1][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[2][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[4][--------][--------][--------][--------][--------][--------][
1.00 1][--------][1.12 2][--------][--------][1.10 3]
[8][--------][--------][--------][--------][--------][--------][
1.00 2][1.24 2][--------][--------][--------][1.15 4]
[16][--------][--------][--------][--------][--------][1.01 2][---
-----][--------][--------][--------][--------][1.01 2]
[32][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[64][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[128][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[256][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[T TOT][--------][--------][--------][--------][--------][1.01 2][
1.00 3][1.24 2][1.12 2][--------][--------]
Job Weighted X Factor: 1.0888
Node Weighted X Factor: 1.1147
NS Weighted X Factor: 1.1900
Total Samples: 9

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter. The left-most column
shows the maximum number of processors required by the jobs shown in the other columns. The column headers indicate
the maximum wallclock time (in HH:MM:SS notation) requested by the jobs shown in the columns. The data returned in
the table varies by the STATISTICTYPE requested. For table entries with one number, it is of the data requested. For
table entries with two numbers, the left number is the data requested and the right number is the number of jobs used
to calculate the average. Table entries that contain only dashes (-------) indicate no job has completed that matches
the profile associated for this inquiry. The bottom row shows the totals for each column. Following each table is a
summary, which varies by the STATISTICTYPE requested.

The column and row break down can be adjusted using the STATPROC* and STATTIME* parameters respectively.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of
information — the average expansion factor for all jobs that meet this slot's profile and the number of jobs that were
used to calculate this average. For example, the XFactors of two jobs were averaged to obtain an average XFactor of
1.24 for jobs requiring over 2 hours 8 minutes, but not more than 4 hours 16 minutes and between 5 and 8 processors.
Totals along the bottom provide overall XFactor averages weighted by job, processors, and processor-hours.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mschedctl -f command
l showstats command
l STATPROCMIN parameter
l STATPROCSTEPCOUNT parameter
l STATPROCSTEPSIZE parameter
l STATTIMEMIN parameter

Moab Workload Manager

l STATTIMESTEPCOUNT parameter
l STATTIMESTEPSIZE parameter

TIMESPEC

Relative Time Format
The relative time format specifies a time by using the current time as a reference and specifying a time
offset.

Format

+[[[DD:]HH:]MM:]SS

Examples

2 days, 3 hours and 57 seconds in the future:

+02:03:0:57

21 days (3 weeks) in the future:

+21:0:0:0

30 seconds in the future:

+30

Absolute Time Format
 The absolute time format specifies a specific time in the future.

Format

[HH[:MM[:SS]]][_MO[/DD[/YY]]] i.e. 14:30_06/20)

Examples

1 PM, March 1 (this year)

13:00_03/01

Deprecated commands
canceljob

This command is deprecated. Use mjobctl -c instead.

Synopsis
canceljob jobid [jobid]...

Moab Workload Manager

366 Scheduler Commands

Scheduler Commands 367

Overview
The canceljob command is used to selectively cancel the specified job(s) (active, idle, or non-queued)
from the queue.

Access
This command can be run by any Moab Administrator and by the owner of the job (see ADMINCFG).

Flag Name Format Default Description Example

-h HELP N/A Display usage information > canceljob -h

JOB ID <STRING> --- a jobid, a job expression, or the
keyword ALL

> canceljob 13001
13003

Examples

Example 3-72: Cancel job 6397

> canceljob 6397

changeparam

This command is deprecated. Use mschedctl -m instead.

Synopsis
changeparamparametervalue

Overview
The changeparam command is used to dynamically change the value of any parameter which can be
specified in the moab.cfg file. The changes take effect at the beginning of the next scheduling iteration.
They are not persistent, only lasting until Moab is shut down.

changeparam is a compact command of mschedctl -m.

Access
This command can be run by a level 1 Moab administrator.

diagnose

Moab Workload Manager

This command is deprecated. Use mdiag instead.

Synopsis
diagnose -a [accountid]

diagnose -b [-l policylevel] [-t partition]

diagnose -c [classid]

diagnose -C [configfile]

diagnose -f [-o user|group|account|qos|class]

diagnose -g [groupid]

diagnose -j [jobid]

diagnose -L

diagnose -m [rackid]

diagnose -n [-t partition] [nodeid]

diagnose -p [-t partition]

diagnose -q [qosid]

diagnose -r [reservationid]

diagnose -R [resourcemanagername]

diagnose -s [standingreservationid]

diagnose -S diagnose -u [userid]

diagnose -v

diagnose -x

Overview
The diagnose command is used to display information about various aspects of scheduling and the results
of internal diagnostic tests.

releasehold

This command is deprecated. Use mjobctl -u instead.

Synopsis
releasehold [-a|-b] jobexp

Moab Workload Manager

368 Scheduler Commands

Scheduler Commands 369

Overview
Release hold on specified job(s).

This command allows you to release batch holds or all holds (system, user, and batch) on specified jobs.
Any number of jobs may be released with this command.

Access
By default, this command can be run by any Moab Scheduler Administrator.

Parameters

JOBEXP Job expression of job(s) to release.

Flags

-a Release all types of holds (user, system, batch) for specified job(s).

-b Release batch hold from specified job(s).

-h Help for this command.

Examples

Example 3-73: releasehold -b

> releasehold -b 6443
batch hold released for job 6443

In this example, a batch hold was released from this one job.

Example 3-74: releasehold -a

> releasehold -a "81[1-6]"
holds modified for job 811
holds modified for job 812
holds modified for job 813
holds modified for job 814
holds modified for job 815
holds modified for job 816

In this example, all holds were released from the specified jobs.

Related topics

l sethold
l mjobctl

Moab Workload Manager

releaseres

This command is deprecated. Use mrsvctl -r instead.

Synopsis
releaseres [arguments] reservationid [reservationid...]

Overview
Release existing reservation.

This command allows Moab Scheduler Administrators to release any user, group, account, job, or system
reservation. Users are allowed to release reservations on jobs they own. Note that releasing a
reservation on an active job has no effect since the reservation will be automatically recreated.

Access
Users can use this command to release any reservation they own. Level 1 and level 2 Moab
administrators may use this command to release any reservation.

Parameters

RESERVATION ID Name of reservation to release.

Examples

Example 3-75: Release two existing reservations

> releaseres system.1 bob.2
released User reservation 'system.1'
released User reservation 'bob.2'

resetstats

This command is deprecated. Use mschedctl -f instead.

Synopsis
resetstats

Overview
This command resets all internally-stored Moab Scheduler statistics to the initial start-up state as of the
time the command was executed.

Moab Workload Manager

370 Scheduler Commands

Scheduler Commands 371

Access
By default, this command can be run by level 1 scheduler administrators.

Examples

Example 3-76:

> resetstats Statistics Reset at time Wed Feb 25 23:24:55 2011

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

runjob

This command is deprecated. Use mjobctl -x instead.

Synopsis
runjob [-c|-f|-n nodelist|-p partition|-s|-x] jobid

Overview
This command will attempt to immediately start the specified job.

runjob is a deprecated command, replaced by mjobctl.

Access
By default, this command can be run by any Moab administrator.

Parameters

JOBID Name of the job to run.

Args Description

-c Clear job parameters from previous runs (used to clear PBS neednodes attribute after PBS job
launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-n
<NODELIST>

Attempt to start the job using the specified nodelist where nodenames are comma or colon
delimited

Moab Workload Manager

Args Description

-p
<PARTITION>

Attempt to start the job in the specified partition

-s Attempt to suspend the job

-x Attempt to force the job to run, ignoring throttling policies, QoS constraints, and reservations

Examples

Example 3-77: Run job cluster.231

> runjob cluster.231
job cluster.231 successfully started

See Also
l mjobctl
l canceljob - cancel a job.
l checkjob - show detailed status of a job.
l showq - list queued jobs.

sethold

This command is deprecated. Use mjobctl -h instead.

Synopsis
sethold [-b] jobid [jobid...]

Overview
Set hold on specified job(s).

Permissions
This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Job number of job to hold.

Moab Workload Manager

372 Scheduler Commands

Scheduler Commands 373

Flags

-
b

Set a batch hold. Typically, only the scheduler places batch holds. This flag allows an administrator to manu-
ally set a batch hold.

-
h

Help for this command.

Examples

Example 3-78:

> sethold -b fr17n02.1072.0 fr15n03.1017.0
Batch Hold Placed on All Specified Jobs

In this example, a batch hold is placed on job fr17n02.1072.0 and job fr15n03.1017.0.

setqos

This command is deprecated. Use mjobctl -m instead.

Synopsis
setqosqosidjobid

Overview
Set Quality Of Service for a specified job.

This command allows users to change the QOS of their own jobs.

Access
This command can be run by any user.

Parameters

JOBID Job name.

QOSID QOS name.

Moab Workload Manager

Examples

Example 3-79:

> setqos high_priority moab.3

Job QOS Adjusted

This example sets the Quality Of Service to a value of high_priority for job moab.3.

setres

This command is deprecated. Use mrsvctl -c instead.

Synopsis
setres [arguments] resourceexpression
[-a <ACCOUNT_LIST>]
[-b <SUBTYPE>]
[-c <CHARGE_SPEC>]
[-d <DURATION>]
[-e <ENDTIME>]
[-E] // EXCLUSIVE
[-f <FEATURE_LIST>]
[-g <GROUP_LIST>]
[-n <NAME>]
[-o <OWNER>]
[-p <PARTITION>]
[-q <QUEUE_LIST>] // (i.e. CLASS_LIST)
[-Q <QOSLIST>]
[-r <RESOURCE_DESCRIPTION>]
[-R <RESERVATION_PROFILE>]
[-s <STARTTIME>]
[-T <TRIGGER>]
[-u <USER_LIST>]
[-x <FLAGS>]

Overview
Reserve resources for use by jobs with particular credentials or attributes.

Access
This command can be run by level 1 and level 2 Moab administrators.

Moab Workload Manager

374 Scheduler Commands

Scheduler Commands 375

Parameters

Name Format Default Description

ACCOUNT_LIST <STRING>
[:<STRING>]...

--- List of accounts that will be allowed access to the
reserved resources

SUBTYPE <STRING> --- Specify the subtype for a reservation

CHARGE_SPEC <ACCOUNT>
[,<GROUP>
[,<USER>]]

--- Specifies which credentials will be accountable for
unused resources dedicated to the reservation

CLASS_LIST <STRING>
[:<STRING>]...

--- List of classes that will be allowed access to the
reserved resource

DURATION [[[DD:]HH:]MM:]SS INFINITY Duration of the reservation (not needed if
ENDTIME is specified)

ENDTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]
SS

INFINITY Absolute or relative time reservation will end (not
required if Duration specified)

EXCLUSIVE N/A N/A Requests exclusive access to resources

FEATURE_LIST <STRING>
[:<STRING>]...

--- List of node features which must be possessed by
the reserved resources

FLAGS <STRING>
[:<STRING>]...

--- List of reservation flags (See Managing Reser-
vations for details)

GROUP_LIST <STRING>
[:<STRING>]...

--- List of groups that will be allowed access to the
reserved resources

NAME <STRING> Name set to
first name lis-
ted in ACL or
SYSTEM if no
ACL specified

Name for new reservation

Moab Workload Manager

Name Format Default Description

OWNER <CREDTYPE>
:<CREDID>where
CREDTYPE is one of
user, group, acct,
class, or qos

N/A Specifies which credential is granted reservation
ownership privileges

PARTITION <STRING> [ANY] Partition in which resources must be located

QOS_LIST <STRING>
[:<STRING>]...

--- List of QOS's that will be allowed access to the
reserved resource

RESERVATION_

PROFILE

Existing reservation
profile ID

N/A Requests that default reservation attributes be
loaded from the specified reservation profile (see
RSVPROFILE)

RESOURCE_
DESCRIPTION

Colon delimited list
of zero or more of
the following
<ATTR>=<VALUE>
pairs
PROCS=<INTEGER>
MEM=<INTEGER>
DISK=<INTEGER>
SWAP=<INTEGER>
GRES=<STRING>

PROCS=-1 Specifies the resources to be reserved per task. (-
1 indicates all resources on node)

RESOURCE_
EXPRESSION ALL

or
TASKS{==|>=}
<TASKCOUNT>
or
<HOST_REGEX>

Required Field.
No Default

Specifies the tasks to reserve. ALL indicates all
resources available should be reserved.

If ALL or a host expression is specified,
Moab will apply the reservation regardless
of existing reservations and exclusive
issues. If TASKS is used, Moab will only
allocate accessible resources.

STARTTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]
SS

NOW Absolute or relative time reservation will start

Moab Workload Manager

376 Scheduler Commands

Scheduler Commands 377

Name Format Default Description

TRIGGER <STRING> N/A Comma delimited reservation trigger list following
format described in the trigger format section of
the reservation configuration overview.

USER_LIST <STRING>
[:<STRING>]...

--- List of users that will be allowed access to the
reserved resources

Description
The setres command allows an arbitrary block of resources to be reserved for use by jobs which meet
the specified access constraints. The timeframe covered by the reservation can be specified on either an
absolute or relative basis. Only jobs with credentials listed in the reservation ACL (i.e., USERLIST,
GROUPLIST,...) can utilize the reserved resources. However, these jobs still have the freedom to utilize
resources outside of the reservation. The reservation will be assigned a name derived from the ACL
specified. If no reservation ACL is specified, the reservation is created as a system reservation and no
jobs will be allowed access to the resources during the specified timeframe (valuable for system
maintenance, etc.). See the Reservation Overview for more information.

Reservations can be viewed using the showres command and can be released using the releaseres
command.

Examples

Example 3-80:

> setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2
reservation 'john.1' created on 2 nodes (2 tasks)
node001:1
node005:1

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours.

Example 3-81:

> setres -s 8:00:00_06/20 -e 17:00:00_06/22 ALL
reservation 'system.1' created on 8 nodes (8 tasks)
node001:1
node002:1
node003:1
node004:1
node005:1
node006:1
node007:1
node008:1

Schedule a system wide reservation to allow system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00 PM.

Moab Workload Manager

Example 3-82:

> setres -r PROCS=1:MEM=512 -g staff -l interactive 'node00[3-6]'
reservation 'staff.1' created on 4 nodes (4 tasks)
node003:1
node004:1
node005:1
node006:1

Reserve one processor and 512 MB of memory on nodes node003 through node node006 for members of the group staff
and jobs in the interactive class.

setspri

This command is deprecated. Use mjobctl -p instead.

Synopsis
setspri [-r] priorityjobid

Overview
(This command is deprecated by the mjobctl command)

Set or remove absolute or relative system priorities for a specified job.

This command allows you to set or remove a system priority level for a specified job. Any job with a
system priority level set is guaranteed a higher priority than jobs without a system priority. Jobs with
higher system priority settings have priority over jobs with lower system priority settings.

Access
This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding the policy generated
priority value. Range is 0 to clear, 1 for lowest, 1000 for highest. The given value is added onto the
system priority (see 32-bit and 64-bit values below), except for a given value of zero. If the '-r' flag is
specified, the system priority is relative, adding or subtracting the specified value from the policy
generated priority.
If a relative priority is specified, any value in the range +/- 1,000,000,000 is acceptable.

Flags

-r Set relative system priority on job.

Moab Workload Manager

378 Scheduler Commands

Scheduler Commands 379

Examples

Example 3-83:

> setspri 10 orion.4752
job system priority adjusted

In this example, a system priority of 10 is set for job orion.4752.

Example 3-84:

> setspri 0 clusterB.1102
job system priority adjusted

In this example, system priority is cleared for job clusterB.1102.

Example 3-85:

> setspri -r 100000 job.00001
job system priority adjusted

In this example, the job's priority will be increased by 100000 over the value determine by configured priority policy.

This command is deprecated. Use mjobctl instead.

showconfig

This command is deprecated. Use mschedctl -l instead.

Synopsis
showconfig [-v]

Overview
View the current configurable parameters of the Moab Scheduler.

The showconfig command shows the current scheduler version and the settings of all "in memory"
parameters. These parameters are set via internal defaults, command line arguments, environment
variable settings, parameters in the moab.cfg file, and via the mschedctl -m command. Because of the
many sources of configuration settings, the output may differ from the contents of the moab.cfg file.
The output is such that it can be saved and used as the contents of the moab.cfg file if desired.

Access
This command can be run by a level 1, 2, or 3 Moab administrator.

Moab Workload Manager

Flags

-
h

Help for this command.

-
v

This optional flag turns on verbose mode, which shows all possible Moab Scheduler parameters and their cur-
rent settings. If this flag is not used, this command operates in context-sensitive terse mode, which shows only
relevant parameter settings.

Examples

Example 3-86: showconfig

> showconfig
moab scheduler version 4.2.4 (PID: 11080)
BACKFILLPOLICY FIRSTFIT
BACKFILLMETRIC NODES
ALLOCATIONPOLICY MINRESOURCE
RESERVATIONPOLICY CURRENTHIGHEST
...

The showconfig command without the -v flag does not show the settings of all parameters. It does
show all major parameters and all parameters which are in effect and have been set to non-
default values. However, it hides other rarely used parameters and those which currently have no
effect or are set to default values. To show the settings of all parameters, use the -v (verbose)
flag. This will provide an extended output. This output is often best used in conjunction with the
grep command as the output can be voluminous.

Related topics

l Use the mschedctl -m command to change the various Moab Scheduler parameters.
l See the Parameters document for details about configurable parameters.

Prioritizing Jobs and Allocating Resources
l Job Prioritization on page 381

l Node Allocation Policies on page 397

l Node Access Policies on page 407

l Node Availability Policies on page 408

Moab Workload Manager

380 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 381

Job Prioritization
In general, prioritization is the process of determining which of many options best fulfills overall goals.
In the case of scheduling, a site will often have multiple, independent goals that may include maximizing
system utilization, giving preference to users in specific projects, or making certain that no job sits in
the queue for more than a given period of time. The approach used by Moab in representing a multi-
faceted set of site goals is to assign weights to the various objectives so an overall value or priority can
be associated with each potential scheduling decision. With the jobs prioritized, the scheduler can
roughly fulfill site objectives by starting the jobs in priority order.

l Priority Overview

l Job Priority Factors

l Fairshare Job Priority Example on page 392

l Common Priority Usage

l Prioritization Strategies

l Manual Priority Management

Related topics

l mdiag -p (Priority Diagnostics)

Priority Overview
Moab's prioritization mechanism allows component and subcomponent weights to be associated with
many aspects of a job to enable fine-grained control over this aspect of scheduling. To allow this level of
control, Moab uses a simple priority-weighting hierarchy where the contribution of each priority
subcomponent is calculated as follows:

<COMPONENT WEIGHT> * <SUBCOMPONENT WEIGHT> * <PRIORITY SUBCOMPONENT VALUE>

Each priority component contains one or more subcomponents as described in the section titled Job
Priority Factors on page 382. For example, the Resource component consists of Node, Processor,
Memory, Swap, Disk, Walltime, and PE subcomponents. While there are numerous priority components
and many more subcomponents, a site need only focus on and configure the subset of components related
to their particular priority needs. In actual usage, few sites use more than a small fraction (usually 5 or
fewer) of the available priority subcomponents. This results in fairly straightforward priority
configurations and tuning. By mixing and matching priority weights, sites may generally obtain the
desired job-start behavior. At any time, you can issue the mdiag -p command to determine the impact of
the current priority-weight settings on idle jobs. Likewise, the command showstats -f can assist the
administrator in evaluating priority effectiveness on historical system usage metrics such as queue time
or expansion factor.

As mentioned above, a job's priority is the weighted sum of its activated subcomponents. By default, the
value of all component and subcomponent weights is set to 1 and 0 respectively. The one exception is the
"QUEUETIME" subcomponent weight that is set to 1. This results in a total job priority equal to the
period of time the job has been queued, causing Moab to act as a simple FIFO. Once the summed
component weight is determined, this value is then bounded resulting in a priority ranging between 0

Moab Workload Manager

and MAX_PRIO_VAL which is currently defined as 1000000000 (one billion). In no case will a job obtain a
priority in excess of MAX_PRIO_VAL through its priority subcomponent values.

Negative priority jobs may be allowed if desired; see ENABLENEGJOBPRIORITY and
REJECTNEGPRIOJOBS for more information.

Using the mjobctl -p command, site administrators may adjust the base calculated job priority by either
assigning a relative priority adjustment or an absolute system priority. A relative priority adjustment
causes the base priority to be increased or decreased by a specified value. Setting an absolute system
priority, SPRIO, causes the job to receive a priority equal to MAX_PRIO_VAL + SPRIO, and thus
guaranteed to be of higher value than any naturally occurring job priority.

Related topics

l REJECTNEGPRIOJOBS parameter

Job Priority Factors
l Credential (CRED) Component

l Fairshare (FS) Component

l Resource (RES) Component

l Service (SERVICE) Component

l Target Service (TARG) Component

l Usage (USAGE) Component

l Job Attribute (ATTR) Component

Moab allows jobs to be prioritized based on a range of job related factors. These factors are broken
down into a two-tier hierarchy of priority factors and subfactors, each of which can be independently
assigned a weight. This approach provides the administrator with detailed yet straightforward control of
the job selection process.

Each factor and subfactor can be configured with independent priority weight and priority cap values
(described later). In addition, per credential and per QoS priority weight adjustments may be specified
for a subset of the priority factors. For example, QoS credentials can adjust the queuetime subfactor
weight and group credentials can adjust fairshare subfactor weight.

The following table highlights the factors and subfactors that make up a job's total priority.

Moab Workload Manager

382 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 383

Factor SubFactor Metric

CRED
(job credentials)

USER user-specific priority (See USERCFG)

GROUP group-specific priority (See GROUPCFG)

ACCOUNT account-specific priority (See ACCOUNTCFG)

QOS QoS-specific priority (See QOSCFG)

CLASS class/queue-specific priority (See CLASSCFG)

Moab Workload Manager

Factor SubFactor Metric

FS
(fairshare usage)

FSUSER user-based historical usage (See Fairshare Overview)

FSGROUP group-based historical usage (See Fairshare Overview)

FSACCOUNT account-based historical usage (See Fairshare Overview)

FSQOS QoS-based historical usage (See Fairshare Overview)

FSCLASS class/queue-based historical usage (See Fairshare Overview)

FSGUSER imported global user-based historical usage (See ID Manager
and Fairshare Overview)

FSGGROUP imported global group-based historical usage (See ID Manager
and Fairshare Overview)

FSGACCOUNT imported global account-based historical usage (See ID Man-
ager and Fairshare Overview)

FSJPU current active jobs associated with job user

FSPPU current number of processors allocated to active jobs asso-
ciated with job user

FSPSPU current number of processor-seconds allocated to active jobs
associated with job user

WCACCURACY user's current historical job wallclock accuracy calculated as
total processor-seconds dedicated / total processor-seconds
requested

Factor values are in the range of 0.0 to 1.0.

Moab Workload Manager

384 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 385

Factor SubFactor Metric

RES
(requested job
resources)

NODE number of nodes requested

PROC number of processors requested

MEM total real memory requested (in MB)

SWAP total virtual memory requested (in MB)

DISK total local disk requested (in MB)

PS total processor-seconds requested

PE total processor-equivalent requested

WALLTIME total walltime requested (in seconds)

SERV
(current service
levels)

QUEUETIME time job has been queued (in minutes)

XFACTOR minimum job expansion factor

BYPASS number of times job has been bypassed by backfill

STARTCOUNT number of times job has been restarted

DEADLINE proximity to job deadline

SPVIOLATION Boolean indicating whether the active job violates a soft usage
limit

USERPRIO user-specified job priority

TARGET
(target service
levels)

TARGETQUEUETIME time until queuetime target is reached (exponential)

TARGETXFACTOR distance to target expansion factor (exponential)

Moab Workload Manager

Factor SubFactor Metric

USAGE
(consumed
resources -- active
jobs only)

CONSUMED processor-seconds dedicated to date

REMAINING processor-seconds outstanding

PERCENT percent of required walltime consumed

EXECUTIONTIME seconds since job started

ATTR
(job attribute-based
prioritization)

ATTRATTR Attribute priority if specified job attribute is set (attributes
may be user-defined or one of preemptor, or preemptee).
Default is 0.

ATTRSTATE Attribute priority if job is in specified state (see Job States).
Default is 0.

ATTRGRES Attribute priority if a generic resource is requested. Default is
0.

*CAP parameters (FSCAP, for example) are available to limit the maximum absolute value of each
priority component and subcomponent. If set to a positive value, a priority cap will bound priority
component values in both the positive and negative directions.

All *CAP and *WEIGHT parameters are specified as positive or negative integers. Non-integer
values are not supported.

Credential (CRED) Component
The credential component allows a site to prioritize jobs based on political issues such as the relative
importance of certain groups or accounts. This allows direct political priorities to be applied to jobs.

The priority calculation for the credential component is as follows:

Priority += CREDWEIGHT * (
USERWEIGHT * Job.User.Priority +
GROUPWEIGHT * Job.Group.Priority +
ACCOUNTWEIGHT * Job.Account.Priority +
QOSWEIGHT * Job.Qos.Priority +
CLASSWEIGHT * Job.Class.Priority)

All user, group, account, QoS, and class weights are specified by setting the PRIORITY attribute of using
the respective *CFG parameter (namely, USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, and CLASSCFG).

For example, to set user and group priorities, you might use the following:

Moab Workload Manager

386 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 387

CREDWEIGHT 1
USERWEIGHT 1
GROUPWEIGHT 1
USERCFG[john] PRIORITY=2000
USERCFG[paul] PRIORITY=-1000
GROUPCFG[staff] PRIORITY=10000

Class (or queue) priority may also be specified via the resource manager where supported (as in
PBS queue priorities). However, if Moab class priority values are also specified, the resource
manager priority values will be overwritten.

All priorities may be positive or negative.

Fairshare (FS) Component
Fairshare components allow a site to favor jobs based on short-term historical usage. The Fairshare
Overview describes the configuration and use of fairshare in detail.

The fairshare factor is used to adjust a job's priority based on current and historical percentage system
utilization of the job's user, group, account, class, or QoS. This allows sites to steer workload toward a
particular usage mix across user, group, account, class, and QoS dimensions.

The fairshare priority factor calculation is as follows:

Priority += FSWEIGHT * MIN(FSCAP, (
FSUSERWEIGHT * DeltaUserFSUsage +
FSGROUPWEIGHT * DeltaGroupFSUsage +
FSACCOUNTWEIGHT * DeltaAccountFSUsage +
FSQOSWEIGHT * DeltaQOSFSUsage +
FSCLASSWEIGHT * DeltaClassFSUsage +
FSJPUWEIGHT * ActiveUserJobs +
FSPPUWEIGHT * ActiceUserProcs +
FSPSPUWEIGHT * ActiveUserPS +
WCACCURACYWEIGHT * UserWCAccuracy))

All *WEIGHT parameters just listed are specified on a per partition basis in the moab.cfg file. The
Delta*Usage components represent the difference in actual fairshare usage from the corresponding
fairshare usage target. Actual fairshare usage is determined based on historical usage over the time
frame specified in the fairshare configuration. The target usage can be a target, floor, or ceiling value as
specified in the fairshare configuration file. See the Fairshare Overview for further information on
configuring and tuning fairshare. Additional insight may be available in the fairshare usage example. The
ActiveUser* components represent current usage by the job's user credential.

How violated ceilings and floors affect fairshare-based priority

Moab determines FSUsageWeight in the previous section. In order to account for violated ceilings and
floors, Moab multiplies that number by the FSUsagePriority as demonstrated in the following
formula:

FSPriority = FSUsagePriority * FSUsageWeight

When a ceiling or floor is violated, FSUsagePriority = 0, so FSPriority = 0. This means the job
will gain no priority because of fairshare. If fairshare is the only component of priority, then violation

Moab Workload Manager

takes the priority to 0. For more information, see Priority-Based Fairshare on page 443 and Fairshare
Targets on page 440.

Resource (RES) Component
Weighting jobs by the amount of resources requested allows a site to favor particular types of jobs. Such
prioritization may allow a site to better meet site mission objectives, improve fairness, or even improve
overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the resources requested.
This is good in three main scenarios: (1) when you need to favor large resource jobs because it's part of
your site's mission statement, (2) when you want to level the response time distribution across large
and small jobs (small jobs are more easily backfilled and thus generally have better turnaround time),
and (3) when you want to improve system utilization. While this may be surprising, system utilization
actually increases as large resource jobs are pushed to the front of the queue. This keeps the smaller
jobs in the back where they can be selected for backfill and thus increase overall system utilization. The
situation is like the story about filling a cup with golf balls and sand. If you put the sand in first, it gets in
the way and you are unable to put in as many golf balls. However, if you put in the golf balls first, the
sand can easily be poured in around them completely filling the cup.

The calculation for determining the total resource priority factor is as follows:

Priority += RESWEIGHT* MIN(RESCAP, (
NODEWEIGHT * TotalNodesRequested +
PROCWEIGHT * TotalProcessorsRequested +
MEMWEIGHT * TotalMemoryRequested +
SWAPWEIGHT * TotalSwapRequested +
DISKWEIGHT * TotalDiskRequested +
WALLTIMEWEIGHT* TotalWalltimeRequested +
PEWEIGHT * TotalPERequested))

The sum of all weighted resources components is then multiplied by the RESWEIGHT parameter and
capped by the RESCAP parameter. Memory, Swap, and Disk are all measured in megabytes (MB). The
final resource component, PE, represents Processor Equivalents. This component can be viewed as a
processor-weighted maximum percentage of total resources factor.

For example, if a job requested 25% of the processors and 50% of the total memory on a 128-processor
system, it would have a PE value of MAX(25,50) * 128, or 64. The concept of PEs is a highly effective
metric in shared resource systems.

Ideal values for requested job processor count and walltime can be specified using
PRIORITYTARGETPROCCOUNT and PRIORITYTARGETDURATION.

Service (SERVICE) Component
The Service component specifies which service metrics are of greatest value to the site. Favoring one
service subcomponent over another generally improves that service metric.

The priority calculation for the service priority factor is as follows:

Priority += SERVICEWEIGHT * (
QUEUETIMEWEIGHT * <QUEUETIME> +

Moab Workload Manager

388 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 389

XFACTORWEIGHT * <XFACTOR> +
BYPASSWEIGHT * <BYPASSCOUNT> +
STARTCOUNTWEIGHT * <STARTCOUNT> +
DEADLINEWEIGHT * <DEADLINE> +
SPVIOLATIONWEIGHT * <SPBOOLEAN> +
USERPRIOWEIGHT * <USERPRIO>)

QueueTime (QUEUETIME) Subcomponent

In the priority calculation, a job's queue time is a duration measured in minutes. Using this
subcomponent tends to prioritize jobs in a FIFO order. Favoring queue time improves queue time based
fairness metrics and is probably the most widely used single job priority metric. In fact, under the initial
default configuration, this is the only priority subcomponent enabled within Moab. It is important to note
that within Moab, a job's queue time is not necessarily the amount of time since the job was submitted.
The parameter JOBPRIOACCRUALPOLICY allows a site to select how a job will accrue queue time based
on meeting various throttling policies. Regardless of the policy used to determine a job's queue time, this
effective queue time is used in the calculation of the QUEUETIME, XFACTOR, TARGETQUEUETIME, and
TARGETXFACTOR priority subcomponent values.

The need for a distinct effective queue time is necessitated by the fact that many sites have users who
like to work the system, whatever system it happens to be. A common practice at some long existent
sites is for some users to submit a large number of jobs and then place them on hold. These jobs remain
with a hold in place for an extended period of time and when the user is ready to run a job, the needed
executable and data files are linked into place and the hold released on one of these pre-submitted jobs.
The extended hold time guarantees that this job is now the highest priority job and will be the next to
run. The use of the JOBPRIOACCRUALPOLICY parameter can prevent this practice and prevent "queue
stuffers" from doing similar things on a shorter time scale. These "queue stuffer" users submit hundreds
of jobs at once to swamp the machine and consume use of the available compute resources. This
parameter prevents the user from gaining any advantage from stuffing the queue by not allowing these
jobs to accumulate any queue time based priority until they meet certain idle and active Moab fairness
policies (such as max job per user and max idle job per user).

As a final note, you can adjust the QUEUETIMEWEIGHT parameter on a per QoS basis using the QOSCFG
parameter and the QTWEIGHT attribute. For example, the line QOSCFG[special] QTWEIGHT=5000 causes
jobs using the QoS special to have their queue time subcomponent weight increased by 5000.

Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but favors shorter jobs
based on their requested wallclock run time. In its traditional form, the expansion factor (XFactor)
metric is calculated as follows:

XFACTOR = 1 + <QUEUETIME> / <EXECUTIONTIME>

However, a couple of aspects of this calculation make its use more difficult. First, the length of time the
job will actually run—<EXECUTIONTIME>—is not actually known until the job completes. All that is
known is how much time the job requests. Secondly, as described in the Queue Time Subcomponent
section, Moab does not necessarily use the raw time since job submission to determine <QUEUETIME> to
prevent various scheduler abuses. Consequently, Moab uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETIME> / <WALLCLOCKLIMIT>

Moab Workload Manager

In the equation Moab uses, <EFFQUEUETIME> is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and <WALLCLOCKLIMIT> is the user—or system—specified job
wallclock limit.

Using this equation, it can be seen that short running jobs will have an XFactor that will grow much
faster over time than the xfactor associated with long running jobs. The following table demonstrates
this favoring of short running jobs:

Job Queue Time 1 hour 2 hours 4 hours 8 hours 16 hours

XFactor for 1
hour job

1 + (1 / 1) =
2.00

1 + (2 / 1) =
3.00

1 + (4 / 1) =
5.00

1 + (8 / 1) =
9.00

1 + (16 / 1) =
17.0

XFactor for 4
hour job

1 + (1 / 4) =
1.25

1 + (2 / 4) =
1.50

1 + (4 / 4) =
2.00

1 + (8 / 4) =
3.00

1 + (16 / 4) =
5.0

Since XFactor is calculated as a ratio of two values, it is possible for this subcomponent to be almost
arbitrarily large, potentially swamping the value of other priority subcomponents. This can be addressed
either by using the subcomponent cap XFACTORCAP, or by using the XFMINWCLIMIT parameter. If the
latter is used, the calculation for the XFactor subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETIME> / MAX(<XFMINWCLIMIT>,<WALLCLOCKLIMIT>)

Using the XFMINWCLIMIT parameter allows a site to prevent very short jobs from causing the XFactor
subcomponent to grow inordinately.

Some sites consider XFactor to be a more fair scheduling performance metric than queue time. At these
sites, job XFactor is given far more weight than job queue time when calculating job priority and job
XFactor distribution consequently tends to be fairly level across a wide range of job durations. (That is, a
flat XFactor distribution of 1.0 would result in a one-minute job being queued on average one minute,
while a 24-hour job would be queued an average of 24 hours.)

Like queue time, the effective XFactor subcomponent weight is the sum of two weights, the
XFACTORWEIGHT parameter and the QoS-specific XFWEIGHT setting. For example, the line QOSCFG
[special] XFWEIGHT=5000 causes jobs using the QoS special to increase their expansion factor
subcomponent weight by 5000.

Bypass (BYPASS) Subcomponent

The bypass factor is based on the bypass count of a job where the bypass count is increased by one every
time the job is bypassed by a lower priority job via backfill. Backfill starvation has never been reported,
but if encountered, use the BYPASS subcomponent.

StartCount (STARTCOUNT) Subcomponent

Apply the startcount factor to sites with trouble starting or completing due to policies or failures. The
primary causes of an idle job having a startcount greater than zero are resource manager level job start
failure, administrator based requeue, or requeue based preemption.

Moab Workload Manager

390 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 391

Deadline (DEADLINE) Subcomponent

The deadline factor allows sites to take into consideration the proximity of a job to its DEADLINE. As a
jobs moves closer to its deadline its priority increases linearly. This is an alternative to the strict
deadline discussed in QOS SERVICE.

Soft Policy Violation (SPVIOLATION) Subcomponent

The soft policy violation factor allows sites to favor jobs which do not violate their associated soft
resource limit policies.

User Priority (USERPRIO) Subcomponent

The user priority subcomponent allows sites to consider end-user specified job priority in making the
overall job priority calculation. Under Moab, end-user specified priorities may only be negative and are
bounded in the range 0 to -1024. See Manual Priority Usage and Enabling End-user Priorities for more
information.

User priorities can be positive, ranging from -1024 to 1023, if ENABLEPOSUSERPRIORITY TRUE
is specified in moab.cfg.

Target Service (TARG) Component
The target factor component of priority takes into account job scheduling performance targets.
Currently, this is limited to target expansion factor and target queue time. Unlike the expansion factor
and queue time factors described earlier which increase gradually over time, the target factor
component is designed to grow exponentially as the target metric is approached. This behavior causes
the scheduler to do essentially all in its power to make certain the scheduling targets are met.

The priority calculation for the target factor is as follows:

Priority += TARGETWEIGHT* (
TARGETQUEUETIMEWEIGHT * QueueTimeComponent +
TARGETXFACTORWEIGHT * XFactorComponent)

The queue time and expansion factor target are specified on a per QoS basis using the XFTARGET and
QTTARGET attributes with the QOSCFG parameter. The QueueTime and XFactor component calculations
are designed to produce small values until the target value begins to approach, at which point these
components grow very rapidly. If the target is missed, this component remains high and continues to
grow, but it does not grow exponentially.

Usage (USAGE) Component
The Usage component applies to active jobs only. The priority calculation for the usage priority factor is
as follows:

Priority += USAGEWEIGHT * (
USAGECONSUMEDWEIGHT * ProcSecondsConsumed +
USAGEHUNGERWEIGHT * ProcNeededToBalanceDynamicJob +
USAGEREMAININGWEIGHT * ProcSecRemaining +

Moab Workload Manager

USAGEEXECUTIONTIMEWEIGHT * SecondsSinceStart +
USAGEPERCENTWEIGHT * WalltimePercent)

Job Attribute (ATTR) Component
The Attribute component allows the incorporation of job attributes into a job's priority. The most
common usage for this capability is to do one of the following:

l adjust priority based on a job's state (favor suspended jobs)

l adjust priority based on a job's requested node features (favor jobs that request attribute pvfs)

l adjust priority based on internal job attributes (disfavor backfill or preemptee jobs)

l adjust priority based on a job's requested licenses, network consumption, or generic resource
requirements

To use job attribute based prioritization, the JOBPRIOF parameter must be specified to set corresponding
attribute priorities. To favor jobs based on node feature requirements, the parameter
NODETOJOBATTRMAP must be set to map node feature requests to job attributes.

The priority calculation for the attribute priority factor is as follows:

Priority += ATTRWEIGHT * (
ATTRATTRWEIGHT * <ATTRPRIORITY> +
ATTRSTATEWEIGHT * <STATEPRIORITY> +
ATTRGRESWEIGHT * <GRESPRIORITY>
JOBIDWEIGHT * <JOBID> +
JOBNAMEWEIGHT * <JOBNAME_INTEGER>)

Example 3-87:

ATTRWEIGHT 100
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1
ATTRGRESWEIGHT 5
favor suspended jobs
disfavor preemptible jobs
favor jobs requesting 'matlab'

JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=-200 ATTR[gpfs]
=30 GRES[matlab]=400
map node features to job features

NODETOJOBATTRMAP gpfs,pvfs
...

Related topics

l Node Allocation Priority
l Per Credential Priority Weight Offsets
l Managing Consumable Generic Resources

Fairshare Job Priority Example
Consider the following information associated with calculating the fairshare factor for job X.

Moab Workload Manager

392 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 393

Job X
User A
Group B
Account C
QOS D
Class E

User A
Fairshare Target: 50.0
Current Fairshare Usage: 45.0

Group B
Fairshare Target: [NONE]
Current Fairshare Usage: 65.0

Account C
Fairshare Target: 25.0
Current Fairshare Usage: 35.0

QOS D
Fairshare Target: 10.0+
Current Fairshare Usage: 25.0

Class E
Fairshare Target: [NONE]
Current Fairshare Usage: 20.0

Priority Weights:
FSWEIGHT 100
FSUSERWEIGHT 10
FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30
FSQOSWEIGHT 40
FSCLASSWEIGHT 0

In this example, the Fairshare component calculation would be as follows:

Priority += 100 * (
10 * 5 +
20 * 0 +
30 * (-10) +
40 * 0 +
0 * 0)

User A is 5% below his target so fairshare increases the total fairshare factor accordingly. Group B has
no target so group fairshare usage is ignored. Account C is above its 10% above its fairshare usage
target so this component decreases the job's total fairshare factor. QOS D is 15% over its target but the
'+' in the target specification indicates that this is a 'floor' target, only influencing priority when
fairshare usage drops below the target value. Thus, the QOS D fairshare usage delta does not influence
the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a particular
distribution of jobs. However, it is important to realize that fairshare can only favor a particular

Moab Workload Manager

distribution of jobs, it cannot force it. If user X has a fairshare target of 50% of the machine but does not
submit enough jobs, no amount of priority favoring will get user X's usage up to 50%.

See the Fairshare Overview for more information.

Common Priority Usage
l Credential Priority Factors

l Service Level Priority Factors

l Priority Factor Caps

l User Selectable Prioritization

Site administrators vary widely in their preferred manner of prioritizing jobs. Moab's scheduling
hierarchy allows sites to meet job control needs without requiring adjustments to dozens of parameters.
Some choose to use numerous subcomponents, others a few, and still others are content with the default
FIFO behavior. Any subcomponent that is not of interest may be safely ignored.

Credential Priority Factors
To help clarify the use of priority weights, a brief example may help. Suppose a site wished to maintain
the FIFO behavior but also incorporate some credential based prioritization to favor a special user.
Particularly, the site would like the user john to receive a higher initial priority than all other users.
Configuring this behavior requires two steps. First, the user credential subcomponent must be enabled
and second, john must have his relative priority specified. Take a look at the sample moab.cfg file:

USERWEIGHT 1
USERCFG[john] PRIORITY=300

The "USER" priority subcomponent was enabled by setting the USERWEIGHT parameter. In fact,
the parameters used to specify the weights of all components and subcomponents follow this same
"*WEIGHT" naming convention (as in RESWEIGHT and TARGETQUEUETIMEWEIGHT.

The second part of the example involves specifying the actual user priority for the user john. This is
accomplished using the USERCFG parameter. Why was the priority 300 selected and not some other
value? Is this value arbitrary? As in any priority system, actual priority values are meaningless, only
relative values are important. In this case, we are required to balance user priorities with the default
queue time based priorities. Since queuetime priority is measured in minutes queued, the user priority
of 300 places a job by user john on par with a job submitted 5 minutes earlier by another user.

Is this what the site wants? Maybe, maybe not. At the onset, most sites are uncertain what they want in
prioritization. Often, an estimate initiates prioritization and adjustments occur over time. Cluster
resources evolve, the workload evolves, and even site policies evolve, resulting in changing priority
needs over time. Anecdotal evidence indicates that most sites establish a relatively stable priority policy
within a few iterations and make only occasional adjustments to priority weights from that point.

Service Level Priority Factors
In another example, suppose a site administrator wants to do the following:

Moab Workload Manager

394 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 395

l favor jobs in the low, medium, and high QoSs so they will run in QoS order

l balance job expansion factor

l use job queue time to prevent jobs from starving

Under such conditions, the sample moab.cfg file might appear as follows:

QOSWEIGHT 1
XFACTORWEIGHT 1
QUEUETIMEWEIGHT 10
TARGETQUEUETIMEWEIGHT 1
QOSCFG[low] PRIORITY=1000
QOSCFG[medium] PRIORITY=10000
QOSCFG[high] PRIORITY=100000
QOSCFG[DEFAULT] QTTARGET=4:00:00

This example is a bit more complicated but is more typical of the needs of many sites. The desired QoS
weightings are established by enabling the QoS subfactor using the QOSWEIGHT parameter while the
various QoS priorities are specified using QOSCFG. XFACTORWEIGHT is then set as this subcomponent
tends to establish a balanced distribution of expansion factors across all jobs. Next, the queuetime
component is used to gradually raise the priority of all jobs based on the length of time they have been
queued. Note that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default value
of 1. Finally, the TARGETQUEUETIMEWEIGHT parameter is used in conjunction with the USERCFG line to
specify a queue time target of 4 hours.

Priority Factor Caps
Assume now that the site administrator is content with this priority mix but has a problem with users
submitting large numbers of very short jobs. Very short jobs would tend to have rapidly growing XFactor
values and would consequently quickly jump to the head of the queue. In this case, a factor cap would be
appropriate. Such caps allow a site to limit the contribution of a job's priority factor to be within a
defined range. This prevents certain priority factors from swamping others. Caps can be applied to either
priority components or subcomponents and are specified using the <COMPONENTNAME>CAP parameter
(such as QUEUETIMECAP, RESCAP, and SERVCAP). Note that both component and subcomponent caps apply
to the pre-weighted value, as in the following equation:

Priority =
C1WEIGHT * MIN(C1CAP,SUM(
S11WEIGHT * MIN(S11CAP,S11S) +
S12WEIGHT * MIN(S12CAP,S12S) +
...)) +

C2WEIGHT * MIN(C2CAP,SUM(
S21WEIGHT * MIN(S21CAP,S21S) +
S22WEIGHT * MIN(S22CAP,S22S) +
...)) +

...

Moab Workload Manager

Example 3-88: Priority cap

QOSWEIGHT 1
QOSCAP 10000
XFACTORWEIGHT 1
XFACTORCAP 1000
QUEUETIMEWEIGHT 10
QUEUETIMECAP 1000

User Selectable Prioritization
Moab allows users to specify a job priority to jobs they own or manage. This priority may be set at job
submission time or it may be dynamically modified (using setspri or mjobctl) after submitting the job.
For fairness reasons, users may only apply a negative priority to their job and thus slide it further back
in the queue. This enables users to allow their more important jobs to run before their less important
ones without gaining unfair advantage over other users.

User priorities can be positive if ENABLEPOSUSERPRIORITY TRUE is specified in moab.cfg.

In order to set ENABLEPOSUSERPRIORITY, you must change the USERPRIOWEIGHT from its default
value of 0. For example:

USERPRIOWEIGHT 100

> setspri -r 100 332411
successfully modified job priority

Specifying a user priority at job submission time is resource manager specific. See the associated
resource manager documentation for more information.

User Selectable Priority w/QoS

Using the QoS facility, organizations can set up an environment in which users can more freely select the
desired priority of a given job. Organizations may enable access to a number of QoSs each with its own
charging rate, priority, and target service levels. Users can then assign job importance by selecting the
appropriate QoS. If desired, this can allow a user to jump ahead of other users in the queue if they are
willing to pay the associated costs.

Related topics

l User Selectable Priority

Prioritization Strategies
Each component or subcomponent may be used to accomplish different objectives. WALLTIME can be used
to favor (or disfavor) jobs based on their duration. Likewise, ACCOUNT can be used to favor jobs
associated with a particular project while QUEUETIME can be used to favor those jobs waiting the
longest.

Moab Workload Manager

396 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 397

l Queue Time

l Expansion Factor

l Resource

l Fairshare

l Credential

l Target Metrics

Each priority factor group may contain one or more subfactors. For example, the Resource factor
consists of Node, Processor, Memory, Swap, Disk, and PE components. From the table in Job Priority
Factors section, it is apparent that the prioritization problem is fairly complex since every site needs to
prioritize a bit differently. When calculating a priority, the various priority factors are summed and then
bounded between 0 and MAX_PRIO_VAL, which is currently defined as 100000000 (one billion).

The mdiag -p command assists with visualizing the priority distribution resulting from the current job
priority configuration. Also, the showstats -f command helps indicate the impact of the current priority
settings on scheduler service distributions.

Manual Job Priority Adjustment
Batch administrator's regularly find a need to adjust the calculated priority of a job to meet current
needs. Current needs often are broken into two categories:

1. The need to run an administrator test job as soon as possible.

2. The need to pacify a disserviced user.

You can use the setspri command to handle these issues in one of two ways; this command allows the
specification of either a relative priority adjustment or the specification of an absolute priority. Using
absolute priority specification, administrators can set a job priority guaranteed to be higher than any
calculated value. Where Moab-calculated job priorities are in the range of 0 to 1 billion, system
administrator assigned absolute priorities start at 1 billion and go up. Issuing the setspri <PRIO>
<JOBID> command, for example, assigns a priority of 1 billion + <PRIO> to the job. Thus, setspri 5
job.1294 sets the priority of "job.1294" to 1000000005.

For more information, see Common Priority Usage - End-user Adjustment.

Node Allocation Policies
While job prioritization allows a site to determine which job to run, node allocation policies allow a site
to specify how available resources should be allocated to each job. The algorithm used is specified by the
parameter NODEALLOCATIONPOLICY. There are multiple node allocation policies to choose from
allowing selection based on reservation constraints, node configuration, resource usage, prefed other
factors. You can specify these policies with a system-wide default value, on a per-partition basis, or on a
per-job basis. Please note that LASTAVAILABLE is the default policy.

Available algorithms are described in detail in the following sections and include FIRSTAVAILABLE,
LASTAVAILABLE, PRIORITY, CPULOAD, MINRESOURCE, CONTIGUOUS, MAXBALANCE, PLUGIN.

Moab Workload Manager

l Node Allocation Overview

o Heterogeneous Resources

o Shared Nodes

o Reservations or Service Guarantees

o Non-flat Network

l Node selection factors on page 402

l Resource-Based Algorithms

o CPULOAD

o FIRSTAVAILABLE

o LASTAVAILABLE

o PRIORITY

o MINRESOURCE

o CONTIGUOUS

o MAXBALANCE

l User-Defined Algorithms

o PLUGIN

l Specifying Per Job Resource Preferences

o Specifying Resource Preferences

o Selecting Preferred Resources

Node Allocation Overview
Node allocation is the process of selecting the best resources to allocate to a job from a list of available
resources. Making this decision intelligently is important in an environment that possesses one or more
of the following attributes:

l heterogeneous resources (resources which vary from node to node in terms of quantity or quality)

l shared nodes (nodes may be utilized by more than one job)

l reservations or service guarantees

l non-flat network (a network in which a perceptible performance degradation may potentially exist
depending on workload placement)

Heterogeneous Resources

Moab analyzes job processing requirements and assigns resources to maximize hardware utility.

For example, suppose two nodes are available in a system, A and B. Node A has 768 MB of RAM and node
B has 512 MB. The next two jobs in the queue are X and Y. Job X requests 256 MB and job Y requests 640

Moab Workload Manager

398 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 399

MB. Job X is next in the queue and can fit on either node, but Moab recognizes that job Y (640 MB) can
only fit on node A (768 MB). Instead of putting job X on node A and blocking job Y, Moab can put job X on
node B and job Y on node A.

Shared Nodes

Symmetric Multiprocessing (SMP)

When sharing SMP-based compute resources amongst tasks from more than one job, resource contention
and fragmentation issues arise. In SMP environments, the general goal is to deliver maximum system
utilization for a combination of compute-intensive and memory-intensive jobs while preventing
overcommitment of resources.

By default, most current systems do not do a good job of logically partitioning the resources (such as
CPU, memory, and network bandwidth) available on a given node. Consequently contention often arises
between tasks of independent jobs on the node. This can result in a slowdown for all jobs involved, which
can have significant ramifications if large-way parallel jobs are involved. Virtualization, CPU sets, and
other techniques are maturing quickly as methods to provide logical partitioning within shared
resources.

On large-way SMP systems (> 32 processors/node), job packing can result in intra-node fragmentation.
For example, take two nodes, A and B, each with 64 processors. Assume they are currently loaded with
various jobs and A has 24 and B has 12 processors free. Two jobs are submitted; job X requests 10
processors and job Y requests 20 processors. Job X can start on either node but starting it on node A
prevents job Y from running. An algorithm to handle intra-node fragmentation is straightforward for a
single resource case, but the algorithm becomes more involved when jobs request a combination of
processors, memory, and local disk. These workload factors should be considered when selecting a site's
node allocation policy as well as identifying appropriate policies for handling resource utilization limit
violations.

Interactive Nodes

In many cases, sites are interested in allowing multiple users to simultaneously use one or more nodes
for interactive purposes. Workload is commonly not compute intensive consisting of intermittent tasks
including coding, compiling, and testing. Because these jobs are highly variant in terms of resource usage
over time, sites are able to pack a larger number of these jobs onto the same node. Consequently, a
common practice is to restrict job scheduling based on utilized, rather than dedicated resources.

Interactive Node Example

The example configuration files that follow show one method by which node sharing can be accomplished
within a TORQUE + Moab environment. This example is based on a hypothetical cluster composed of 4
nodes each with 4 cores. For the compute nodes, job tasks are limited to actual cores preventing
overcommitment of resources. For the interactive nodes, up to 32 job tasks are allowed, but the node
also stops allowing additional tasks if either memory is fully utilized or if the CPU load exceeds 4.0. Thus,
Moab continues packing the interactive nodes with jobs until carrying capacity is reached.

Moab Workload Manager

Example 3-89: /opt/moab/etc/moab.cfg

constrain interactive jobs to interactive nodes
constrain interactive jobs to 900 proc-seconds
CLASSCFG[interactive] HOSTLIST=interactive01,interactive02
CLASSCFG[interactive] MAX.CPUTIME=900
RESOURCELIMITPOLICY CPUTIME:ALWAYS:CANCEL
base interactive node allocation on load and jobs
NODEALLOCATIONPOLICY PRIORITY
NODECFG[interactive01] PRIORITYF='-20*LOAD - JOBCOUNT'
NODECFG[interactive02] PRIORITYF='-20*LOAD - JOBCOUNT'

Example 3-90: /var/spool/torque/server_priv/nodes

interactive01 np=32
interactive02 np=32
compute01 np=4
compute02 np=4

Example 3-91: /var/spool/torque/mom_priv/config on "interactive01"

interactive01
$max_load 4.0

Example 3-92: /var/spool/torque/mom_priv/config on "interactive02"

interactive02
$max_load 4.0

Reservations or Service Guarantees

A reservation-based system adds the time dimension into the node allocation decision. With
reservations, node resources must be viewed in a type of two dimension node-time space. Allocating
nodes to jobs fragments this node-time space and makes it more difficult to schedule jobs in the
remaining, more constrained node-time slots. Allocation decisions should be made in such a way as to
minimize this fragmentation and maximize the scheduler's ability to continue to start jobs in existing
slots. The following figure shows that job A and job B are running. A reservation, X, is created some time
in the future. Assume that job A is 2 hours long and job B is 3 hours long. Again, two new single-
processor jobs are submitted, C and D; job C requires 3 hours of compute time while job D requires 5
hours. Either job will just fit in the free space located above job A or in the free space located below job
B. If job C is placed above job A, job D, requiring 5 hours of time will be prevented from running by the
presence of reservation X. However, if job C is placed below job B, job D can still start immediately
above job A.

Moab Workload Manager

400 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 401

Image 3-2: Job A, Job B, and Reservation X scheduled on nodes

The preceding example demonstrates the importance of time based reservation information in making
node allocation decisions, both at the time of starting jobs and at the time of creating reservations. The
impact of time based issues grows significantly with the number of reservations in place on a given
system. The LASTAVAILABLE algorithm works on this premise, locating resources that have the smallest
space between the end of a job under consideration and the start of a future reservation.

Non-flat Network

On systems where network connections do not resemble a flat all-to-all topology, task placement may
impact performance of communication intensive parallel jobs. If latencies and network bandwidth
between any two nodes vary significantly, the node allocation algorithm should attempt to pack tasks of
a given job as close to each other as possible to minimize impact of bandwidth and latency differences.

Moab Workload Manager

Node selection factors
While the node allocation policy determines which nodes a job will use, other factors narrow the options
before the policy makes the final decision. The following process demonstrates how Moab executes its
node allocation process and how other policies affect the decision:

1. Moab eliminates nodes that do not meet the hard resource requirements set by the job.

2. Moab gathers affinity information, first from workload proximity rules and then from reservation
affinity rules (See Affinity on page 486 for more information.). Reservation affinity rules trump
workload proximity rules.

3. Moab allocates nodes using the allocation policy.

l If more than enough nodes with Required affinity exist, only they are passed down for the final
sort by the node allocation policy.

l If the number of nodes with Required affinity matches the number of nodes requested exactly,
then the node allocation policy is skipped entirely and all of those nodes are assigned to the job.

l If too few nodes have Required affinity, all of them are assigned to the job, then the node
allocation policy is applied to the remaining eligible nodes (after Required, Moab will use
Positive, then Neutral, then Negative.).

Resource-Based Algorithms
Moab contains a number of allocation algorithms that address some of the needs described earlier. You
can also create allocation algorithms and interface them with the Moab scheduling system. Each of these
policies has a name and descriptive alias. They can be configured using either one, but Moab will only
report their names.

If ENABLEHIGHTHROUGHPUT on page 929 is TRUE, you must set NODEALLOCATIONPOLICY on
page 978 to FIRSTAVAILABLE.

The current suite of algorithms is described in what follows:

Allocation
algorithm
name

Alias Description

CPULOAD ProcessorLoad Nodes are selected that have the maximum amount of available,
unused CPU power (<#of CPU's> - <CPU load>). CPULOAD is a
good algorithm for timesharing node systems and applies to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

FIRSTAVAILA-
BLE

InReportedOrder Simple first come, first served algorithm where nodes are alloc-
ated in the order they are presented by the resource manager.
This is a very simple, and very fast algorithm.

Moab Workload Manager

402 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 403

Allocation
algorithm
name

Alias Description

LASTAVAILA-
BLE

InReserveReportedOrder Nodes are allocated in descending order that they are presented
by the resource manager, or the reverse of FIRSTAVAILABLE.

Moab Workload Manager

Allocation
algorithm
name

Alias Description

PRIORITY CustomPriority Allows a site to specify the priority of various static and dynamic
aspects of compute nodes and allocate them with preference for
higher priority nodes. It is highly flexible allowing node attribute
and usage information to be combined with reservation affinity.
Using node allocation priority, you can specify the following
priority components:

l ADISK - Local disk currently available to batch jobs in MB.
l AMEM - Real memory currently available to batch jobs in
MB.

l APROCS - Processors currently available to batch jobs on
node (configured procs - dedicated procs).

l ARCH[<ARCH>] - Processor architecture.
l ASWAP - Virtual memory currently available to batch
jobs in MB.

l CDISK - Total local disk allocated for use by batch jobs in
MB.

l CMEM - Total real memory on node in MB.
l COST - Based on node CHARGERATE.
l CPROCS - Total processors on node.
l CSWAP - Total virtual memory configured on node in
MB.

l FEATURE[<FNAME>] - Boolean; specified feature is
present on node.

l FREETIME - FREETIME is calculated as the time during
which there is no reservation on the machine. It uses
either the job wallclock limit (if there is a job), or 2
months. The more free time a node has within either the
job wallclock limit or 2 months, the higher this value will
be.

l GMETRIC[<GMNAME>] - Current value of specified
generic metric on node.

l JOBCOUNT - Number of jobs currently running on node.
l JOBFREETIME - The number of seconds that the node is
idle between now and when the job is scheduled to start.

l LOAD - Current 1 minute load average.
l MTBF - Mean time between failures (in seconds).
l NODEINDEX - Node's nodeindex as specified by the
resource manager.

l OS - True if job compute requirements match node
operating system.

l PARAPROCS - Processors currently available to batch
jobs within partition (configured procs - dedicated procs).

l POWER - TRUE if node is ON.
l PREF - Boolean; node meets job specific resource
preferences.

l PRIORITY - Administrator specified node priority.
l RANDOM - Per iteration random value between 0 and 1.
(Allows introduction of random allocation factor.)

Regardless of coefficient, the contribution of this
weighted factor cannot exceed 32768.
The coefficient, if any, of the RANDOM component
must precede, not follow, the component in order
to work correctly. For example:

100 * RANDOM

l SPEED - If set, node processor speed (procspeed);
otherwise, relative node speed.

l SUSPENDEDJCOUNT - Number of suspended jobs
currently on the node.

l USAGE - Percentage of time node has been running
batch jobs since the last statistics initialization.

l WINDOWTIME - The window of time between the end of
one reservation and the beginning of another. This
algorithm, given a negative value, can be used to pack
reservations as close together on a node as possible.

The node allocation priority function can be specified on a node
by node or cluster wide basis. In both cases, the recommended
approach is to specify the PRIORITYF attribute with the NODECFG
parameter. Some examples follow.
Example 1: Favor the fastest nodes with the most available
memory that are running the fewest jobs

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='SPEED + .01 * AMEM - 10 *
JOBCOUNT'
...

If spaces are placed within the priority function for
readability, the priority function value must be quoted to
allow proper parsing.

Example 2: Favor the nodes with the least amount of idle time
between now and the job's scheduled start time.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=-JOBFREETIME

Moab stacks jobs on the nodes that are busiest between
now and the job's scheduled start time.

Example 3: A site has a batch system consisting of two dedicated "
batchX" nodes, as well as numerous desktop systems. The
allocation function should favor batch nodes first, followed by
desktop systems that are the least loaded and have received the
least historical usage.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='-LOAD - 5*USAGE'
NODECFG[batch1] PRIORITY=1000 PRIORITYF='PRIORITY +
APROCS'
NODECFG[batch2] PRIORITY=1000 PRIORITYF='PRIORITY +
APROCS'
...

Example 4: Pack tasks onto loaded nodes first.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=JOBCOUNT
...

Moab Workload Manager

404 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 405

Allocation
algorithm
name

Alias Description

Example 5: Pack tasks onto nodes with the most processors
available and the lowest CPU temperature.

RMCFG[torque] TYPE=pbs
RMCFG[temp] TYPE=NATIVE
CLUSTERQUERYURL=exec://$TOOLSDIR/hwmon.pl
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='100*APROCS - GMETRIC[temp]
'
...

MINRESOURC-
E

Min-
imumCon-
figuredResources

Prioritizes nodes according to the configured memory resources
on each node. Those nodes with the fewest configured memory
resources, that still meet the job's resource constraints, are selec-
ted.

CONTIGUOUS Contiguous Allocates nodes in contiguous (linear) blocks as required by the
Compaq RMS system.

MAXBALANCE ProcessorSpeedBalance Attempts to allocate the most balanced set of nodes possible to a
job. In most cases, but not all, the metric for balance of the nodes
is node procspeed. Thus, if possible, nodes with identical proc-
speeds are allocated to the job. If identical procspeed nodes can-
not be found, the algorithm allocates the set of nodes with the
minimum node procspeed span or range.

User-Defined Algorithms
User-defined algorithms allow administrators to define their own algorithms based on factors such as
their system's network topology. When node allocation is based on topology, jobs finish faster,
administrators see better cluster productivity and users pay less for resources.

PLUGIN

This algorithm allows administrators to define their own node allocation policy and create a plug-in that
allocates nodes based on factors such as a cluster's network topology. This has the following advantages:

l plug-ins keep the source code of the cluster's interconnect network for node allocation separate
from Moab's source code (customers can implement plug-ins independent of Moab's release
schedule)

l plug-ins can be independently created and tailored to specific hardware and network topology

l plug-ins can be modified without assistance from Adaptive Computing, Inc.

Moab Workload Manager

Specifying Per Job Resource Preferences
While the resource based node allocation algorithms can make a good guess at what compute resources
would best satisfy a job, sites often possess a subset of jobs that benefit from more explicit resource
allocation specification. For example one job may perform best on a particular subset of nodes due to
direct access to a tape drive, another may be very memory intensive. Resource preferences are distinct
from node requirements. While the former describes what a job needs to run at all, the latter describes
what the job needs to run well. In general, a scheduler must satisfy a job's node requirement
specification and then satisfy the job's resource preferences as well as possible.

Specifying Resource Preferences

A number of resource managers natively support the concept of resource preferences (such as
Loadleveler). When using these systems, the language specific preferences keywords may be used. For
systems that do not support resource preferences natively, Moab provides a resource manager extension
keyword, "PREF," which you can use to specify desired resources. This extension allows specification of
node features, memory, swap, and disk space conditions that define whether the node is considered
preferred.

Moab 5.2 (and earlier) only supports feature-based preferences.

Selecting Preferred Resources

Enforcing resource preferences is not completely straightforward. A site may have a number of
potentially conflicting requirements that the scheduler is asked to simultaneously satisfy. For example, a
scheduler may be asked to maximize the proximity of the allocated nodes at the same time it is supposed
to satisfy resource preferences and minimize node overcommitment. To allow site specific weighting of
these varying requirements, Moab allows resource preferences to be enabled through the PRIORITY
node allocation algorithm. For example, to use resource preferences together with node load, the
following configuration might be used:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='5 * PREF - LOAD'
...

To request specific resource preferences, a user could then submit a job indicating those preferences. In
the case of a PBS job, the following can be used:

> qsub -l nodes=4,walltime=1:00:00,pref=feature:fast

Related topics

l Generic Metrics
l Per Job Node Allocation Policy Specification via Resource Manager Extensions

Moab Workload Manager

406 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 407

Node Access Policies
Moab allocates resources to jobs on the basis of a job task—an atomic collection of resources that must
be co-located on a single compute node. A given job may request 20 tasks where each task is defined as
one processor and 128 MB of RAM. Compute nodes with multiple processors often possess enough
resources to support more than one task simultaneously. When it is possible for more than one task to
run on a node, node access policies determine which tasks may share the compute node's resources.

Moab supports a distinct number of node access policies that are listed in the following table:

Policy Description

SHARED Tasks from any combination of jobs may use available resources.

SHAREDONLY Only jobs requesting shared node access may use available resources.

SINGLEACCOUNT Tasks from any jobs owned by the same account may use available resources.

SINGLEGROUP Tasks from any jobs owned by the same group may use available resources.

SINGLEJOB Only tasks from a single job may use the node's resources.

SINGLETASK Only a single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may use available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node. UNIQUEUSER limits the number of jobs a single
user can run on a node, allowing other users to run jobs with the remaining resources.

This policy is useful in environments where job epilog/prologs scripts are used to
clean up processes based on userid.

Configuring Node Access Policies
The global node access polices may be specified via the parameter NODEACCESSPOLICY. This global
default may be overridden on a per node basis with the ACCESS attribute of the NODECFG parameter or
on a per job basis using the resource manager extension NACCESSPOLICY. Finally, a per queue node
access policy may also be specified by setting either the NODEACCESSPOLICY or
FORCENODEACCESSPOLICY attributes of the CLASSCFG parameter. FORCENODEACCESSPOLICY overrides
any per job specification in all cases, whereas NODEACCESSPOLICY is overridden by per job specification.

By default, nodes are accessible using the setting of the system wide NODEACCESSPOLICY parameter
unless a specific ACCESS policy is specified on a per node basis using the NODECFG parameter. Jobs may
override this policy and subsequent jobs are bound to conform to the access policies of all jobs currently

Moab Workload Manager

running on a given node. For example, if the NODEACCESSPOLICY parameter is set to SHARED, a new job
may be launched on an idle node with a job specific access policy of SINGLEUSER. While this job runs, the
effective node access policy changes to SINGLEUSER and subsequent job tasks may only be launched on
this node provided they are submitted by the same user. When all single user jobs have completed on
that node, the effective node access policy reverts back to SHARED and the node can again be used in
SHARED mode.

For example, to set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

Related topics

l Per job naccesspolicy specification via Resource Manager Extensions
l JOBNODEMATCHPOLICY parameter
l NODEAVAILABILITY parameter

Node Availability Policies
l Node Resource Availability Policies

l Node Categorization

l Node Failure/Performance Based Notification

l Node Failure/Performance Based Triggers

l Handling Transient Node Failures

l Allocated Resource Failure Policy for Jobs on page 413

Moab enables several features relating to node availability. These include policies that determine how
per node resource availability should be reported, how node failures are detected, and what should be
done in the event of a node failure.

Node Resource Availability Policies
Moab allows a job to be launched on a given compute node as long as the node is not full or busy. The
NODEAVAILABILITYPOLICY parameter allows a site to determine what criteria constitute a node being
busy. The legal settings are listed in the following table:

Availability
Policy Description

DEDICATED The node is considered busy if dedicated resources equal or exceed configured resources.

Moab Workload Manager

408 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 409

Availability
Policy Description

UTILIZED The node is considered busy if utilized resources equal or exceed configured resources.

COMBINED The node is considered busy if either dedicated or utilized resources equal or exceed con-
figured resources.

The default setting for all nodes is COMBINED, indicating that a node can accept workload so long as the
jobs that the node was allocated to do not request or use more resources than the node has available. In
a load balancing environment, this may not be the desired behavior. Setting the
NODEAVAILABILITYPOLICY parameter to UTILIZED allows jobs to be packed onto a node even if the
aggregate resources requested exceed the resources configured. For example, assume a scenario with a
4-processor compute node and 8 jobs requesting 1 processor each. If the resource availability policy was
set to COMBINED, this node would only allow 4 jobs to start on this node even if the jobs induced a load
of less than 1.0 each. With the resource availability policy set to UTILIZED, the scheduler continues
allowing jobs to start on the node until the node's load average exceeds a per processor load value of 1.0
(in this case, a total load of 4.0). To prevent a node from being over populated within a single scheduling
iteration, Moab artificially raises the node's load for one scheduling iteration when starting a new job.
On subsequent iterations, the actual measured node load information is used.

Per Resource Availability Policies

By default, the NODEAVAILABILITYPOLICY sets a global per node resource availability policy. This policy
applies to all resource types on each node such as processors, memory, swap, and local disk. However,
the syntax of this parameter is as follows:

<POLICY>[:<RESOURCETYPE>] ...

This syntax allows per resource availability specification. For example, consider the following:

NODEAVAILABILITYPOLICY DEDICATED:PROC COMBINED:MEM COMBINED:DISK
...

This configuration causes Moab to only consider the quantity of processing resources actually dedicated
to active jobs running on each node and ignore utilized processor information (such as CPU load). For
memory and disk, both utilized resource information and dedicated resource information should be
combined to determine what resources are actually available for new jobs.

Node Categorization
Moab allows organizations to detect and use far richer information regarding node status than the
standard batch "idle," "busy," "down states" commonly found. Using node categorization, organizations
can record, track, and report on per node and cluster level status including the following categories:

Moab Workload Manager

Category Description

Active Node is healthy and currently executing batch workload.

BatchFailure Node is unavailable due to a failure in the underlying batch system (such as a
resource manager server or resource manager node daemon).

Benchmark Node is reserved for benchmarking.

EmergencyMaintenance Node is reserved for unscheduled system maintenance.

GridReservation Node is reserved for grid use.

HardwareFailure Node is unavailable due to a failure in one or more aspects of its hardware con-
figuration (such as a power failure, excessive temperature, memory, processor, or
swap failure).

HardwareMaintenance Node is reserved for scheduled system maintenance.

Idle Node is healthy and is currently not executing batch workload.

JobReservation Node is reserved for job use.

NetworkFailure Node is unavailable due to a failure in its network adapter or in the switch.

Other Node is in an uncategorized state.

OtherFailure Node is unavailable due to a general failure.

PersonalReservation Node is reserved for dedicated use by a personal reservation.

Site[1-8] Site specified usage categorization.

SoftwareFailure Node is unavailable due to a failure in a local software service (such as automounter,
security or information service such as NIS, local databases, or other required soft-
ware services).

SoftwareMaintenance Node is reserved for software maintenance.

StandingReservation Node is reserved by a standing reservation.

Moab Workload Manager

410 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 411

Category Description

StorageFailure Node is unavailable due to a failure in the cluster storage system or local storage infra-
structure (such as failures in Lustre, GPFS, PVFS, or SAN).

UserReservation Node is reserved for dedicated use by a particular user or group and may or may not
be actively executing jobs.

Node categories can be explicitly assigned by cluster administrators using the mrsvctl -c command to
create a reservation and associate a category with that node for a specified timeframe. Further, outside
of this explicit specification, Moab automatically mines all configured interfaces to learn about its
environment and the health of the resources it is managing. Consequently, Moab can identify many
hardware failures, software failures, and batch failures without any additional configuration. However, it
is often desirable to make additional information available to Moab to allow it to integrate this
information into reports; automatically notify managers, users, and administrators; adjust internal
policies to steer workload around failures; and launch various custom triggers to rectify or mitigate the
problem.

You can specify the FORCERSVSUBTYPE parameter to require all administrative reservations be
associated with a node category at reservation creation time. For example:

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
FORCERSVSUBTYPE TRUE

Node health and performance information from external systems can be imported into Moab using the
native resource manager interface. This is commonly done using generic metrics or consumable generic
resources for performance and node categories or node variables for status information. Combined with
arbitrary node messaging information, Moab can combine detailed information from remote services and
report this to other external services.

Use the NODECATCREDLIST parameter to generate extended node category based statistics.

Node Failure/Performance Based Notification
Moab can be configured to cause node failures and node performance levels that cross specified
thresholds to trigger notification events. This is accomplished using the GEVENTCFG parameter as
described in the Generic Event Overview section. For example, the following configuration can be used to
trigger an email to administrators each time a node is marked down.

GEVENTCFG[nodedown] ACTION=notify REARM=00:20:00
...

Node Failure/Performance Based Triggers
Moab supports per node triggers that can be configured to fire when specific events are fired or specific
thresholds are met. These triggers can be used to modify internal policies or take external actions. A few

Moab Workload Manager

examples follow:

l decrease node allocation priority if node throughput drops below threshold X

l launch local diagnostic/recovery script if parallel file system mounts become stale

l reset high performance network adapters if high speed network connectivity fails

l create general system reservation on node if processor or memory failure occurs

As mentioned, Moab triggers can be used to initiate almost any action, from sending mail to updating a
database, to publishing data for an SNMP trap, to driving a web service.

Handling Transient Node Failures
Since Moab actively schedules both current and future actions of the cluster, it is often important for it
to have a reasonable estimate of when failed nodes will be again available for use. This knowledge is
particularly useful for proper scheduling of new jobs and management of resources in regard to backfill.
With backfill, Moab determines which resources are available for priority jobs and when the highest
priority idle jobs can run. If a node experiences a failure, Moab should have a concept of when this node
will be restored.

When Moab analyzes down nodes for allocation, one of two issues may occur with the highest priority
jobs. If Moab believes that down nodes will not be recovered for an extended period of time, a transient
node failure within a reservation for a priority job may cause the reservation to slide far into the future
allowing other lower priority jobs to allocate and launch on nodes previously reserved for it. Moments
later, when the transient node failures are resolved, Moab may be unable to restore the early
reservation start time as other jobs may already have been launched on previously available nodes.

In the reverse scenario, if Moab recognizes a likelihood that down nodes will be restored too quickly, it
may make reservations for top priority jobs that allocate those nodes. Over time, Moab slides those
reservations further into the future as it determines that the reserved nodes are not being recovered.
While this does not delay the start of the top priority jobs, these unfulfilled reservations can end up
blocking other jobs that should have properly been backfilled and executed.

Creating Automatic Reservations

If a node experiences occasional transient failures (often not associated with a node state of down), Moab
can automatically create a temporary reservation over the node to allow the transient failure time to
clear and prevent Moab from attempting to re-use the node while the failure is active. This reservation
behavior is controlled using the NODEFAILURERESERVETIME parameter as in the following example:

reserve nodes for 1 minute if transient failures are detected
NODEFAILURERESERVETIME 00:01:00

Blocking Out Down Nodes

If one or more resource managers identify failures and mark nodes as down, Moab can be configured to
associate a default unavailability time with this failure and the node state down. This is accomplished
using the NODEDOWNSTATEDELAYTIME parameter. This delay time floats and is measured as a fixed
time into the future from the time " NOW"; it is not associated with the time the node was originally

Moab Workload Manager

412 Prioritizing Jobs and Allocating Resources

Prioritizing Jobs and Allocating Resources 413

marked down. For example, if the delay time was set to 10 minutes, and a node was marked down 20
minutes ago, Moab would still consider the node unavailable until 10 minutes into the future.

While it is difficult to select a good default value that works for all clusters, the following is a general
rule of thumb:

l Increase NODEDOWNSTATEDELAYTIME if jobs are getting blocked due to priority reservations
sliding as down nodes are not recovered.

l Decrease NODEDOWNSTATEDELAYTIME if high priority job reservations are getting regularly
delayed due to transient node failures.

assume down nodes will not be recovered for one hour
NODEDOWNSTATEDELAYTIME 01:00:00

Allocated Resource Failure Policy for Jobs
If a failure occurs within a collection of nodes allocated to a job, Moab can automatically re-allocate
replacement resources. This can be configured with JOBACTIONONNODEFAILURE.

How an active job behaves when one or more of its allocated resources fail depends on the allocated
resource failure policy. Depending on the type of job, type of resources, and type of middleware
infrastructure, a site may choose to have different responses based on the job, the resource, and the type
of failure.

Failure Responses

By default, Moab cancels a job when an allocated resource failure is detected. However, you can specify
the following actions:

Option Policy action

CANCEL Cancels the job

FAIL Terminates the job as a failed job

HOLD Places a hold on the job. This option is only applicable if you are using checkpointing

IGNORE Ignores the failed node, allowing the job to proceed

NOTIFY Notifies the administrator and user of failure but takes no further action

REQUEUE Requeues job and allows it to run when alternate resources become available

Policy Precedence

For a given job, the applied policy can be set at various levels with policy precedence applied in the job,
class/queue, partition, and then system level. The following table indicates the available methods for

Moab Workload Manager

setting this policy:

Object Parameter Example

Job RESFAILPOLICY resource manager exten-
sion

> qsub -l resfailpolicy=requeue

Class/Queue RESFAILPOLICY attribute of CLASSCFG para-
meter

CLASSCFG[batch] RESFAILPOLICY=CANCEL

Partition JOBACTIONONNODE
FAILURE attribute of PARCFG parameter

PARCFG[web3]
JOBACTIONONNODEFAILURE=NOTIFY

System NODEALLOCRESFAILURE
POLICY parameter

NODEALLOCRESFAILUREPOLICY=MIGRATE

Failure Definition

Any allocated node going down constitutes a failure. However, for certain types of workload, responses
to failures may be different depending on whether it is the master task (task 0) or a slave task that fails.
To indicate that the associated policy should only take effect if the master task fails, the allocated
resource failure policy should be specified with a trailing asterisk (*), as in the following example:

CLASSCFG[virtual_services] RESFAILPOLICY=requeue*

TORQUE Failure Details

When a node fails becoming unresponsive, the resource manager central daemon identifies this failure
within a configurable time frame (default: 60 seconds). Detection of this failure triggers an event that
causes Moab to immediately respond. Based on the specified policy, Moab notifies administrators, holds
the job, requeues the job, allocates replacement resources to the job, or cancels the job. If the job is
canceled or requeued, Moab sends the request to TORQUE, which immediately frees all non-failed
resources making them available for use by other jobs. Once the failed node is recovered, it contacts the
resource manager central daemon, determines that the associated job has been canceled/requeued,
cleans up, and makes itself available for new workload.

Related topics

l Node State Overview
l JOBACTIONONNODEFAILURE parameter
l NODEFAILURERESERVETIME parameter
l NODEDOWNSTATEDELAYTIME parameter (down nodes will be marked unavailable for the
specified duration)

l NODEDRAINSTATEDELAYTIME parameter (offline nodes will be marked unavailable for the
specified duration)

l NODEBUSYSTATEDELAYTIME parameter (nodes with unexpected background load will be marked
unavailable for the specified duration)

Moab Workload Manager

414 Prioritizing Jobs and Allocating Resources

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 415

l NODEALLOCRESFAILUREPOLICY parameter (action to take if executing jobs have one or more
allocated nodes fail)

Task Distribution Policies
Under Moab, task distribution policies are specified at a global scheduler level, a global resource
manager level, or at a per job level. In addition, you can set up some aspects of task distribution as
defaults on a per class basis.

Related topics

l Node Set Overview
l Node Allocation Overview

Managing Fairness - Throttling Policies, Fairshare,
and Allocation Management

l Fairness Overview on page 415

l Usage Limits/Throttling Policies on page 418

l Fairshare on page 436

Fairness Overview
The concept of cluster fairness varies widely from person to person and site to site. While some
interpret it as giving all users equal access to compute resources, more complicated concepts
incorporating historical resource usage, political issues, and job value are equally valid. While no
scheduler can address all possible definitions of fair, Moab provides one of the industry's most
comprehensive and flexible set of tools allowing most sites the ability to address their many and varied
fairness management needs.

Under Moab, most fairness policies are addressed by a combination of the facilities described in the
following table:

Job Prioritization

Description: Specifies what is most important to the scheduler. Using service based priority factors allows a site
to balance job turnaround time, expansion factor, or other scheduling performance metrics.

Example: SERVICEWEIGHT 1
QUEUETIMEWEIGHT 10

Causes jobs to increase in priority by 10 points for every minute they remain in the queue.

Moab Workload Manager

Usage Limits (Throttling Policies)

Description: Specifies limits on exactly what resources can be used at any given instant.

Example: USERCFG[john] MAXJOB=3
GROUPCFG[DEFAULT] MAXPROC=64
GROUPCFG[staff] MAXPROC=128

Allows john to only run 3 jobs at a time. Allows the group staff to use up to 128 total
processors and all other groups to use up to 64 processors.

Fairshare

Description: Specifies usage targets to limit resource access or adjust priority based on historical cluster and
grid level resource usage.

Example: USERCFG[steve] FSTARGET=25.0+
FSWEIGHT 1
FSUSERWEIGHT 10

Enables priority based fairshare and specifies a fairshare target for user steve such that
his jobs are favored in an attempt to keep his jobs using at least 25.0% of delivered
compute cycles.

Allocation Management

Description: Specifies long term, credential-based resource usage limits.

Example: AMCFG[mam] TYPE=MAM HOST=server.sys.net

Enables the Moab Accounting Manager allocation management interface. Within the
allocation manager, project or account based allocations may be configured. These
allocations may, for example, do such things as allow project X to use up to 100,000
processor-hours per quarter, provide various QoS sensitive charge rates, and share
allocation access.

Quality of Service

Description: Specifies additional resource and service access for particular users, groups, and accounts. QoS facil-
ities can provide special priorities, policy exemptions, reservation access, and other benefits (as well
as special charge rates).

Moab Workload Manager

416 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 417

Quality of Service

Example: QOSCFG[orion] PRIORITY=1000 XFTARGET=1.2
QOSCFG[orion] QFLAGS=PREEMPTOR,IGNSYSTEM,RESERVEALWAYS

Enables jobs requesting the orion QoS a priority increase, an expansion factor target to
improve response time, the ability to preempt other jobs, an exemption from system level
job size policies, and the ability to always reserve needed resources if it cannot start
immediately.

Standing Reservations

Description: Reserves blocks of resources within the cluster for specific, periodic time frames under the con-
straints of a flexible access control list.

Example: SRCFG[jupiter] HOSTLIST=node01[1-4]
SRCFG[jupiter] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[jupiter] USERLIST=john,steve ACCOUNTLIST=jupiter

Reserve nodes node011 through node014 from 9:00 AM until 5:00 PM for use by jobs
from user john or steve or from the project jupiter.

Class/Queue Constraints

Description: Associates users, resources, priorities, and limits with cluster classes or cluster queues that can be
assigned to or selected by end-users.

Example: CLASSCFG[long] MIN.WCLIMIT=24:00:00
SRCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=acn[1-4][0-9]

Assigns long jobs a high priority but only allow them to run on certain nodes.

Selecting the Correct Policy Approach
Moab supports a rich set of policy controls in some cases allowing a particular policy to be enforced in
more than one way. For example, cycle distribution can be controlled using usage limits, fairshare, or
even queue definitions. Selecting the most correct policy depends on site objectives and needs; consider
the following when making such a decision:

l Minimal end-user training

o Does the solution use an approach familiar to or easily learned by existing users?

Moab Workload Manager

l End-user transparency

o Can the configuration be enabled or disabled without impacting user behavior or job
submission?

l Impact on system utilization and system responsiveness

l Solution complexity

o Is the impact of the configuration readily intuitive, and is it easy to identify possible side
effects?

l Solution extensibility and flexibility

o Will the proposed approach allow the solution to be easily tuned and extended as cluster
needs evolve?

Related topics

l Job Prioritization
l Usage Limits (Throttling Policies)
l Fairshare
l Allocation Management
l Quality of Service
l Standing Reservations
l Class/Queue Constraints

Usage Limits/Throttling Policies
A number of Moab policies allow an administrator to control job flow through the system. These
throttling policies work as filters allowing or disallowing a job to be considered for scheduling by
specifying limits regarding system usage for any given moment. These policies may be specified as
global or specific constraints specified on a per user, group, account, QoS, or class basis.

l Fairness via Throttling Policies

o Basic Fairness Policies

o Multi-Dimension Fairness Policies

l Override Limits

l Idle Job Limits

l Hard and Soft Limits

l Per-partition Limits

l Usage-based limits on page 433

o Configuring Actions on page 433

o Specifying Hard and Soft Policy Violations on page 435

o Constraining Walltime Usage on page 436

Moab Workload Manager

418 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 419

Fairness via Throttling Policies
Moab allows significant flexibility with usage limits, or throttling policies. At a high level, Moab allows
resource usage limits to be specified in three primary workload categories: (1) active, (2) idle, and (3)
system job limits.

Basic Fairness Policies

Workload category Description

Active job limits Constrain the total cumulative resources available to active jobs at a given time.

Idle job limits Constrain the total cumulative resources available to idle jobs at a given time.

System job limits Constrain the maximum resource requirements of any single job.

These limits can be applied to any job credential (user, group, account, QoS, and class), or on a system-
wide basis. Using the keyword DEFAULT, a site may also specify the default setting for the desired user,
group, account, QoS, and class. Additionally, you may configure QoS to allow limit overrides to any
particular policy.

To run, a job must meet all policy limits. Limits are applied using the *CFG set of parameters,
particularly USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG. Limits are specified by
associating the desired limit to the individual or default object. The usage limits currently supported are
listed in the following table.

MAXARRAYJOB

Units Number of simultaneous active array job sub-jobs.

Description Limits the number of simultaneously active (starting or running) array sub-jobs a credential can
have.

Example USERCFG[gertrude] MAXARRAYJOB=10

Gertrude can have a maximum of 10 active job array sub-jobs.

MAXGRES

Units # of concurrent uses of a generic resource

Description Limits the concurrent usage of a generic resource to a specific quantity or quantity range.

Moab Workload Manager

MAXGRES

Example USERCFG[joe] MAXGRES[matlab]=2
USERCFG[jim] MAXGRES[matlab]=2,4

MAXJOB

Units # of jobs

Description Limits the number of jobs a credential may have active (starting or running) at any given time.
Moab places a hold on all new jobs submitted by that credential once it has reached its maximum
number of allowable jobs.

MAXJOB=0 is not supported. You can, however, achieve similar results by using the HOLD
attribute of the USERCFG parameter:

USERCFG[john] HOLD=yes

Example USERCFG[DEFAULT] MAXJOB=8
GROUPCFG[staff] MAXJOB=2,4

MAXMEM

Units total memory in MB

Description Limits the total amount of dedicated memory (in MB) that can be allocated by a credential's active
jobs at any given time.

Example ACCOUNTCFG[jasper] MAXMEM=2048

MAXNODE

Units # of nodes

Moab Workload Manager

420 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 421

MAXNODE

Description Limits the total number of compute nodes that can be in use by active jobs at any given time.

On some systems (including TORQUE/PBS), nodes have been softly defined rather than
strictly defined; that is, a job may request 2 nodes but TORQUE will translate this request
into 1 node with 2 processors. This can prevent Moab from enforcing a MAXNODE policy
correctly for a single job. Correct behavior can be achieved using MAXPROC.

Example CLASSCFG[batch] MAXNODE=64

MAXPE

Units # of processor equivalents

Description Limits the total number of dedicated processor-equivalents that can be allocated by active jobs at
any given time.

Example QOSCFG[base] MAXPE=128

MAXPROC

Units # of processors

Description Limits the total number of dedicated processors that can be allocated by active jobs at any given
time per credential. To setMAXPROC per job, use msub -W.

Example CLASSCFG[debug] MAXPROC=32

MAXPS

Units <# of processors> * <walltime>

Description Limits the number of outstanding processor-seconds a credential may have allocated at any given
time. For example, if a user has a 4-processor job that will complete in 1 hour and a 2-processor
job that will complete in 6 hours, they have 4 * 1 * 3600 + 2 * 6 * 3600 = 16 * 3600 outstanding
processor-seconds. The outstanding processor-second usage of each credential is updated each
scheduling iteration, decreasing as jobs approach their completion time.

Moab Workload Manager

MAXPS

Example USERCFG[DEFAULT] MAXPS=720000

MAXSUBMITJOBS

Units # of jobs

Description Limits the number of jobs a credential may submit and have in the system at once. Moab will reject
any job submitted beyond this limit.
If you use a TORQUE resource manager, you should also set max_user_queuable in case the
user submits jobs via qsub instead of msub. See "Queue Attributes on page 2277" in the
TORQUE Administrator Guide for more information.

Example USERCFG[DEFAULT] MAXSUBMITJOBS=5

MAXWC

Units job duration [[[DD:]HH:]MM:]SS

Description Limits the cumulative remaining walltime a credential may have associated with active jobs. It
behaves identically to the MAXPS on page 421 limit (listed earlier) only lacking the processor
weighting. Like MAXPS, the cumulative remaining walltime of each credential is also updated each
scheduling iteration.

MAXWC does not limit the maximum wallclock limit per job. For this capability, use
MAX.WCLIMIT on page 145.

Example USERCFG[ops] MAXWC=72:00:00

The following example demonstrates a simple limit specification:

USERCFG[DEFAULT] MAXJOB=4
USERCFG[john] MAXJOB=8

This example allows user john to run up to 8 jobs while all other users may only run up to 4.

Simultaneous limits of different types may be applied per credential and multiple types of credentials
may have limits specified. The next example demonstrates this mixing of limits and is a bit more
complicated.

Moab Workload Manager

422 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 423

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32

This configuration may potentially apply multiple limits to a single job. As discussed previously, a job
may only run if it satisfies all applicable limits. Thus, in this example, the scheduler will be constrained
to allow at most 2 simultaneous user steve jobs with an aggregate node consumption of no more than 30
nodes. However, if the job is submitted to a class other than batch, it may be limited further. Here, only
16 total nodes may be used simultaneously by jobs running in any given class with the exception of the
class batch. If steve submitted a job to run in the class interactive, for example, and there were jobs
already running in this class using a total of 14 nodes, his job would be blocked unless it requested 2 or
fewer nodes by the default limit of 16 nodes per class.

Multi-Dimension Fairness Policies and Per Credential Overrides

Multi-dimensional fairness policies allow a site to specify policies based on combinations of job
credentials. A common example might be setting a maximum number of jobs allowed per queue per user
or a total number of processors per group per QoS. As with basic fairness policies, multi-dimension
policies are specified using the *CFG parameters or through the identity manager interface. Moab
supports the most commonly used multi-dimensional fairness policies (listed in the table below) using
the following format:

*CFG[X] <LIMITTYPE>[<CRED>]=<LIMITVALUE>

*CFG is one of USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, or CLASSCFG, the <LIMITTYPE> policy is one
of the policies listed in the table in section 6.2.1.1, and <CRED> is of the format <CREDTYPE>[:<VALUE>]
with CREDTYPE being one of USER, GROUP, ACCT, QoS, or CLASS. The optional <VALUE> setting can
be used to specify that the policy only applies to a specific credential value. For example, the following
configuration sets limits on the class fast, controlling the maximum number of jobs any group can have
active at any given time and the number of processors in use at any given time for user steve.

CLASSCFG[fast] MAXJOB[GROUP]=12
CLASSCFG[fast] MAXPROC[USER:steve]=50
CLASSCFG[fast] MAXIJOB[USER]=10

The following example configuration may clarify further:

allow class batch to run up the 3 simultaneous jobs
allow any user to use up to 8 total nodes within class
CLASSCFG[batch] MAXJOB=3 MAXNODE[USER]=8
allow users steve and bob to use up to 3 and 4 total processors respectively within
class
CLASSCFG[fast] MAXPROC[USER:steve]=3 MAXPROC[USER:bob]=4

Multi-dimensional policies cannot be applied on DEFAULT credentials.

The table below lists the currently implemented, multi-dimensional usage limit permutations. The "slmt"
stands for "Soft Limit" and "hlmt" stands for "Hard Limit."

Moab Workload Manager

Multi-dimension usage limit permutations

ACCOUNTCFG[name] MAXIJOB[QOS]=hlmt
MAXIJOB[QOS:qosname]=hlmt

MAXIPROC[QOS]=hlmt
MAXIPROC[QOS:qosname]=hlmt

MAXJOB[QOS]=slmt,hlmt
MAXJOB[QOS:qosname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[QOS]=slmt,hlmt
MAXPE[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPROC[QOS]=slmt,hlmt
MAXPROC[QOS:qosname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[QOS]=slmt,hlmt
MAXPS[QOS:qosname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

Moab Workload Manager

424 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 425

Multi-dimension usage limit permutations

CLASSCFG[name] MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAXJOB[QOS:qosname]=hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXMEM[QOS:qosname]=hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXNODE[QOS:qosname]=hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPE[QOS:qosname]=hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

Moab Workload Manager

Multi-dimension usage limit permutations

MAXPROC[QOS:qosname]=hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXPS[QOS:qosname]=hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

MAXWC[QOS:qosname]=hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

Moab Workload Manager

426 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 427

Multi-dimension usage limit permutations

GROUPCFG[name] MAXJOB[CLASS:classname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[CLASS:classname]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[CLASS:classname]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[CLASS:classname]=slmt,hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[CLASS:classname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[CLASS:classname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[CLASS:classname]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

Moab Workload Manager

Multi-dimension usage limit permutations

QOSCFG[name] MAXIJOB[ACCT]=hlmt
MAXIJOB[ACCT:accountname]=hlmt

MAXIPROC[ACCT]=hlmt
MAXIPROC[ACCT:accountname]=hlmt

MAXJOB[ACCT]=slmt,hlmt
MAXJOB[ACCT:accountname]=slmt,hlmt

MAXJOB[USER]=slmt,hlmt
MAXJOB[USER:username]=slmt,hlmt

MAXMEM[USER]=slmt,hlmt
MAXMEM[USER:username]=slmt,hlmt

MAXNODE[USER]=slmt,hlmt
MAXNODE[USER:username]=slmt,hlmt

MAXPE[ACCT]=slmt,hlmt
MAXPE[ACCT:accountname]=slmt,hlmt

MAXPE[USER]=slmt,hlmt
MAXPE[USER:username]=slmt,hlmt

MAXPROC[ACCT]=slmt,hlmt
MAXPROC[ACCT:accountname]=slmt,hlmt

MAXPROC[USER]=slmt,hlmt
MAXPROC[USER:username]=slmt,hlmt

MAXPS[ACCT]=slmt,hlmt
MAXPS[ACCT:accountname]=slmt,hlmt

MAXPS[USER]=slmt,hlmt
MAXPS[USER:username]=slmt,hlmt

MAXWC[USER]=slmt,hlmt
MAXWC[USER:username]=slmt,hlmt

Moab Workload Manager

428 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 429

Multi-dimension usage limit permutations

USERCFG[name] MAXJOB[GROUP]=slmt,hlmt
MAXJOB[GROUP:groupname]=slmt,hlmt

MAXMEM[GROUP]=slmt,hlmt
MAXMEM[GROUP:groupname]=slmt,hlmt

MAXNODE[GROUP]=slmt,hlmt
MAXNODE[GROUP:groupname]=slmt,hlmt

MAXPE[GROUP]=slmt,hlmt
MAXPE[GROUP:groupname]=slmt,hlmt

MAXPROC[GROUP]=slmt,hlmt
MAXPROC[GROUP:groupname]=slmt,hlmt

MAXPS[GROUP]=slmt,hlmt
MAXPS[GROUP:groupname]=slmt,hlmt

MAXWC[GROUP]=slmt,hlmt
MAXWC[GROUP:groupname]=slmt,hlmt

Override Limits
Like all job credentials, the QoS object may be associated with resource usage limits. However, this
credential can also be given special override limits that supersede the limits of other credentials,
effectively causing all other limits of the same type to be ignored. See QoS Usage Limits and Overrides
for a complete list of policies that can be overridden. The following configuration provides an example of
this in the last line:

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32
QOSCFG[hiprio] OMAXJOB=3 OMAXNODE=64

Only 3 hiprio QoS jobs may run simultaneously and hiprio QoS jobs may run with up to 64 nodes per credential ignoring
other credential MAXNODE limits.

Given the preceding configuration, assume a job is submitted with the credentials, user steve, group staff,
class batch, and QoS hiprio.

Such a job will start so long as running it does not lead to any of the following conditions:

Moab Workload Manager

l Total nodes used by user steve does not exceed 64.

l Total active jobs associated with user steve does not exceed 2.

l Total active jobs associated with group staff does not exceed 5.

l Total nodes dedicated to class batch does not exceed 64.

l Total active jobs associated with QoS hiprio does not exceed 3.

While the preceding example is a bit complicated for most sites, similar combinations may be required
to enforce policies found on many systems.

Idle Job Limits
Idle (or queued) job limits control which jobs are eligible for scheduling. To be eligible for scheduling, a
job must meet the following conditions:

l Be idle as far as the resource manager is concerned (no holds).

l Have all job prerequisites satisfied (no outstanding job or data dependencies).

l Meet all idle job throttling policies.

If a job fails to meet any of these conditions, it will not be considered for scheduling and will not accrue
service based job prioritization. (See service component and JOBPRIOACCRUALPOLICY.) The primary
purpose of idle job limits is to ensure fairness among competing users by preventing queue stuffing and
other similar abuses. Queue stuffing occurs when a single entity submits large numbers of jobs, perhaps
thousands, all at once so they begin accruing queue time based priority and remain first to run despite
subsequent submissions by other users.

Idle limits are specified in a manner almost identical to active job limits with the insertion of the capital
letter I into the middle of the limit name. Below are examples of the MAXIJOB and MAXINODE limits,
which are idle limit equivalents to the MAXJOB on page 420 and MAXNODE on page 420 limits:

MAXIJOB

Units # of jobs

Description Limits the number of idle (eligible) jobs a credential may have at any given time.

Example USERCFG[DEFAULT] MAXIJOB=8
GROUPCFG[staff] MAXIJOB=2,4

MAXINODE

Units # of nodes

Moab Workload Manager

430 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 431

MAXINODE

Description Limits the total number of compute nodes that can be requested by jobs in the eligible/idle queue
at any time. Once the limit is exceeded, the remaining jobs will be placed in the blocked queue. The
number of nodes is determined by <tasks> / <maximumProcsOnOneNode> or, if using
JOBNODEMATCHPOLICY on page 960 EXACTNODE, by the number of nodes requested.

Example USERCFG[DEFAULT] MAXINODE=2

Idle limits can constrain the total number of jobs considered to be eligible on a per credential basis.
Further, like active job limits, idle job limits can also constrain eligible jobs based on aggregate
requested resources. This could, for example, allow a site to indicate that for a given user, only jobs
requesting up to a total of 64 processors, or 3200 processor-seconds would be considered at any given
time. Which jobs to select is accomplished by prioritizing all idle jobs and then adding jobs to the eligible
list one at a time in priority order until jobs can no longer be added. This eligible job selection is done
only once per scheduling iteration, so, consequently, idle job limits only support a single hard limit
specification. Any specified soft limit is ignored.

All single dimensional job limit types supported as active job limits are also supported as idle job limits.
In addition, Moab also supports MAXIJOB[USER] and MAXIPROC[USER] policies on a per class basis. (See
Basic Fairness Policies.)

Example:

USERCFG[steve] MAXIJOB=2
GROUPCFG[staff] MAXIJOB=5
CLASSCFG[batch] MAXIJOB[USER]=2 MAXIJOB[USER:john]=6
QOSCFG[hiprio] MAXIJOB=3

Hard and Soft Limits
Hard and soft limit specification allows a site to balance both fairness and utilization on a given system.
Typically, throttling limits are used to constrain the quantity of resources a given credential (such as
user or group) is allowed to consume. These limits can be very effective in enforcing fair usage among a
group of users. However, in a lightly loaded system, or one in which there are significant swings in usage
from project to project, these limits can reduce system utilization by blocking jobs even when no
competing jobs are queued.

Soft limits help address this problem by providing additional scheduling flexibility. They allow sites to
specify two tiers of limits; the more constraining limits soft limits are in effect in heavily loaded
situations and reflect tight fairness constraints. The more flexible hard limits specify how flexible the
scheduler can be in selecting jobs when there are idle resources available after all jobs meeting the
tighter soft limits have started. Soft and hard limits are specified in the format [<SOFTLIMIT>,]
<HARDLIMIT>. For example, a given site may want to use the following configuration:

Moab Workload Manager

USERCFG[DEFAULT] MAXJOB=2,8

With this configuration, the scheduler would select all jobs that meet the per user MAXJOB limit of 2. It would then
attempt to start and reserve resources for all of these selected jobs. If after doing so there still remain available resources,
the scheduler would then select all jobs that meet the less constraining hard per user MAXJOB limit of 8 jobs. These jobs
would then be scheduled and reserved as available resources allow.
If no soft limit is specified or the soft limit is less constraining than the hard limit, the soft limit is set equal to the hard
limit.

Example:

USERCFG[steve] MAXJOB=2,4 MAXNODE=15,30
GROUPCFG[staff] MAXJOB=2,5
CLASSCFG[DEFAULT] MAXNODE=16,32
CLASSCFG[batch] MAXNODE=12,32
QOSCFG[hiprio] MAXJOB=3,5 MAXNODE=32,64

Job preemption status can be adjusted based on whether the job violates a soft policy using the
ENABLESPVIOLATIONPREEMPTION parameter.

Per-partition Limits
Per-partition scheduling can set limits and enforce credentials and polices on a per-partition basis.
Configuration for per-partition scheduling is done on the grid head. In a grid, each Moab cluster is
considered a partition. Per-partition scheduling is typically used in a Master/Slave grid.

To enable per-partition scheduling, add the following to moab.cfg:

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

With per-partition scheduling, it is recommended that limits go on the specific partitions and not
on the global level. If limits are specified on both levels, Moab will take the more constricting of
the limits. Also, please note that a DEFAULT policy on the global partition is not overridden by any
policy on a specific partition.

Per-partition Limits

You can configure per-job limits and credential usage limits on a per-partition basis in the moab.cfg
file. Here is a sample configuration for partitions g02 and g03 in moab.cfg.

PARCFG[g02] CONFIGFILE=/opt/moab/parg02.cfg
PARCFG[g03] CONFIGFILE=/opt/moab/parg03.cfg

You can then add per-partition limits in each partition configuration file:

/opt/moab/parg02.cfg
CLASSCFG[pbatch] MAXJOB=5

/opt/moab/parg03.cfg
CLASSCFG[pbatch] MAXJOB=10

Moab Workload Manager

432 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 433

You can configure Moab so that jobs submitted to any partition besides g02and g03 get the default limits
in moab.cfg:

stl

CLASSCFG[pbatch] MAXJOB=2

Supported Credentials and Limits

The user, group, account, QoS, and class credentials are supported in per-partition scheduling.

The following per-job limits are supported:

l MAX.NODE

l MAX.WCLIMIT

l MAX.PROC

The following credential usage limits are supported:

l MAXJOB

l MAXNODE

l MAXPROC

l MAXWC

l MAXSUBMITJOBS

Multi-dimensional limits are supported for the listed credentials and per-job limits. For example:

CLASSCFG[pbatch] MAXJOB[user:frank]=10

Usage-based limits
Resource usage limits constrain the amount of resources a given job may consume. These limits are
generally proportional to the resources requested and may include walltime, any standard resource, or
any specified generic resource. The parameter RESOURCELIMITPOLICY controls which resources are
limited, what limit policy is enforced per resource, and what actions the scheduler should take in the
event of a policy violation.

Configuring Actions

The RESOURCELIMITPOLICY parameter accepts a number of policies, resources, and actions using the
format and values defined below.

If walltime is the resource to be limited, be sure that the resource manager is configured to not
interfere if a job surpasses its given walltime. For TORQUE, this is done by using $ignwalltime in
the configuration on each MOM node.

Moab Workload Manager

Format

RESOURCELIMITPOLICY<RESOURCE>:[<SPOLICY>,]<HPOLICY>:[<SACTION>,]<HACTION>[:
[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

Resource Description

CPUTIME Maximum total job proc-seconds used by any single job (allows scheduler enforcement of
cpulimit).

DISK Local disk space (in MB) used by any single job task.

JOBMEM Maximum real memory/RAM (in MB) used by any single job.

JOBMEM will only work with the MAXMEM flag.

JOBPROC Maximum processor load associated with any single job. You must setMAXPROC on page 421 to
use JOBPROC.

MEM Maximum real memory/RAM (in MB) used by any single job task.

MINJOBPROC Minimum processor load associated with any single job (action taken if job is using 5% or less of
potential CPU usage).

NETWORK Maximum network load associated with any single job task.

PROC Maximum processor load associated with any single job task.

SWAP Maximum virtual memory/SWAP (in MB) used by any single job task.

WALLTIME Requested job walltime.

Policy Description

ALWAYS take action whenever a violation is detected

EXTENDEDVIOLATION take action only if a violation is detected and persists for greater than the spe-
cified time limit

BLOCKEDWORKLOADONLY take action only if a violation is detected and the constrained resource is required
by another job

Moab Workload Manager

434 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 435

Action Description

CANCEL terminate the job

CHECKPOINT checkpoint and terminate job

MIGRATE requeue the job and require a different set of hosts for execution

NOTIFY notify admins and job owner regarding violation

REQUEUE terminate and requeue the job

SUSPEND suspend the job and leave it suspended for an amount of time defined by the MINADMINSTIME
parameter

Example 3-93: Notify and then cancel job if requested memory is exceeded

if job exceeds memory usage, immediately notify owner
if job exceeds memory usage for more than 5 minutes, cancel the job
RESOURCELIMITPOLICY MEM:ALWAYS,EXTENDEDVIOLATION:NOTIFY,CANCEL:00:05:00

Example 3-94: Checkpoint job on walltime violations

if job exceeds requested walltime, checkpoint job
RESOURCELIMITPOLICY WALLTIME:ALWAYS:CHECKPOINT
when checkpointing, send term signal, followed by kill 1 minute later
RMCFG[base] TYPE=PBS CHECKPOINTTIMEOUT=00:01:00 CHECKPOINTSIG=SIGTERM

Example 3-95: Cancel jobs that use 5% or less of potential CPU usage for more than 5 minutes

RESOURCELIMITPOLICY MINJOBPROC:EXTENDEDVIOLATION:CANCEL:5:00

Example 3-96: Migrating a job when it blocks other workload

RESOURCELIMITPOLICY JOBPROC:BLOCKEDWORKLOADONLY:MIGRATE

Specifying Hard and Soft Policy Violations

Moab is able to perform different actions for both hard and soft policy violations. In most resource
management systems, a mechanism does not exist to allow the user to specify both hard and soft limits.
To address this, Moab provides the RESOURCELIMITMULTIPLIER parameter that allows per partition and
per resource multiplier factors to be specified to generate the actual hard and soft limits to be used. If
the factor is less than one, the soft limit will be lower than the specified value and a Moab action will be
taken before the specified limit is reached. If the factor is greater than one, the hard limit will be set
higher than the specified limit allowing a buffer space before the hard limit action is taken.

In the following example, job owners will be notified by email when their memory reaches 100% of the
target, and the job will be canceled if it reaches 125% of the target. For wallclock usage, the job will be

Moab Workload Manager

requeued when it reaches 90% of the specified limit if another job is waiting for its resources, and it will
be checkpointed when it reaches the full limit.

RESOURCELIMITPOLICY MEM:ALWAYS,ALWAYS:NOTIFY,CANCEL
RESOURCELIMITPOLICY WALLTIME:BLOCKEDWORKLOADONLY,ALWAYS:REQUEUE,CHECKPOINT
RESOURCELIMITMULTIPLIER MEM:1.25,WALLTIME:0.9

Constraining Walltime Usage

While Moab constrains walltime using the parameter RESOURCELIMITPOLICY like other resources, it
also allows walltime exception policies which are not available with other resources. In particular, Moab
allows jobs to exceed the requested wallclock limit by an amount specified on a global basis using the
JOBMAXOVERRUN parameter or on a per credential basis using the OVERRUN attribute of the CLASSCFG
parameter.

JOBMAXOVERRUN 00:10:00
CLASSCFG[debug] overrun=00:00:30

Related topics

l RESOURCELIMITPOLICY parameter
l FSTREE parameter (set usage limits within share tree hierarchy)
l Credential Overview
l JOBMAXOVERRUN parameter
l WCVIOLATIONACTION parameter
l RESOURCELIMITMULTIPLIER parameter

Fairshare
Fairshare allows historical resource utilization information to be incorporated into job feasibility and
priority decisions. This feature allows site administrators to set system utilization targets for users,
groups, accounts, classes, and QoS levels. Administrators can also specify the time frame over which
resource utilization is evaluated in determining whether the goal is being reached. Parameters allow
sites to specify the utilization metric, how historical information is aggregated, and the effect of
fairshare state on scheduling behavior. You can specify fairshare targets for any credentials (such as
user, group, and class) that administrators want such information to affect.

l Fairshare Parameters

o FSPOLICY - Specifying the Metric of Consumption

o Specifying Fairshare Timeframe

o Managing Fairshare Data

l Using Fairshare Information

o Fairshare Targets

o Fairshare Caps

Moab Workload Manager

436 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 437

o Priority-Based Fairshare

o Per-Credential Fairshare Weights

o Extended Fairshare Examples

l Hierarchical Fairshare/Share Trees

o Defining the Tree

o Controlling Tree Evaluation

l Importing Fairshare Data

Fairshare Parameters
Fairshare is configured at two levels. First, at a system level, configuration is required to determine how
fairshare usage information is to be collected and processed. Second, some configuration is required at
the credential level to determine how this fairshare information affects particular jobs. The following
are system level parameters:

Parameter Description

FSINTERVAL Duration of each fairshare window.

FSDEPTH Number of fairshare windows factored into current fairshare utilization.

FSDECAY Decay factor applied to weighting the contribution of each fairshare window.

FSPOLICY Metric to use when tracking fairshare usage.

Credential level configuration consists of specifying fairshare utilization targets using the *CFG suite of
parameters, including ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and USERCFG.

If global (multi-cluster) fairshare is used, Moab must be configured to synchronize this information with
an identity manager.

Image 3-3: Effective fairshare over 7 days

Moab Workload Manager

FSPOLICY - Specifying the Metric of Consumption

As Moab runs, it records how available resources are used. Each iteration (RMPOLLINTERVAL seconds) it
updates fairshare resource utilization statistics. Resource utilization is tracked in accordance with the
FSPOLICY parameter allowing various aspects of resource consumption information to be measured. This
parameter allows selection of both the types of resources to be tracked as well as the method of
tracking. It provides the option of tracking usage by dedicated or consumed resources, where dedicated
usage tracks what the scheduler assigns to the job and consumed usage tracks what the job actually
uses.

Metric Description

DEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job. This is based on the
total number of dedicated processor-equivalent seconds delivered in the system. Useful in
dedicated and shared nodes environments.

DEDICATEDPS Usage tracked by processor seconds dedicated to each job. This is based on the total number
of dedicated processor seconds delivered in the system. Useful in dedicated node envir-
onments.

DEDICATEDPS% Usage tracked by processor seconds dedicated to each job. This is based on the total number
of dedicated processor seconds available in the system.

UTILIZEDPS Usage tracked by processor seconds used by each job. This is based on the total number of
utilized processor seconds delivered in the system. Useful in shared node/SMP environments.

Example 3-97:

An example may clarify the use of the FSPOLICY parameter. Assume a 4-processor job is running a
parallel /bin/sleep for 15 minutes. It will have a dedicated fairshare usage of 1 processor-hour but a
consumed fairshare usage of essentially nothing since it did not consume anything. Most often, dedicated
fairshare usage is used on dedicated resource platforms while consumed tracking is used in shared SMP
environments.

FSPOLICY DEDICATEDPS%
FSINTERVAL 24:00:00
FSDEPTH 28
FSDECAY 0.75

Specifying Fairshare Timeframe

When configuring fairshare, it is important to determine the proper timeframe that should be
considered. Many sites choose to incorporate historical usage information from the last one to two
weeks while others are only concerned about the events of the last few hours. The correct setting is
very site dependent and usually incorporates both average job turnaround time and site mission policies.

With Moab's fairshare system, time is broken into a number of distinct fairshare windows. Sites
configure the amount of time they want to consider by specifying two parameters, FSINTERVAL and
FSDEPTH. The FSINTERVAL parameter specifies the duration of each window while the FSDEPTH

Moab Workload Manager

438 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 439

parameter indicates the number of windows to consider. Thus, the total time evaluated by fairshare is
simply FSINTERVAL * FSDEPTH.

Many sites want to limit the impact of fairshare data according to its age. The FSDECAY parameter
allows this, causing the most recent fairshare data to contribute more to a credential's total fairshare
usage than older data. This parameter is specified as a standard decay factor, which is applied to the
fairshare data. Generally, decay factors are specified as a value between 1 and 0 where a value of 1 (the
default) indicates no decay should be specified. The smaller the number, the more rapid the decay using
the calculation WeightedValue = Value * <DECAY> ^ <N> where <N> is the window number. The
following table shows the impact of a number of commonly used decay factors on the percentage
contribution of each fairshare window.

Decay
Factor Win0 Win1 Win2 Win3 Win4 Win5 Win6 Win7

1.00 100% 100% 100% 100% 100% 100% 100% 100%

0.80 100% 80% 64% 51% 41% 33% 26% 21%

0.75 100% 75% 56% 42% 31% 23% 17% 12%

0.50 100% 50% 25% 13% 6% 3% 2% 1%

While selecting how the total fairshare time frame is broken up between the number and length of
windows is a matter of preference, it is important to note that more windows will cause the decay factor
to degrade the contribution of aged data more quickly.

Managing Fairshare Data

Using the selected fairshare usage metric, Moab continues to update the current fairshare window until
it reaches a fairshare window boundary, at which point it rolls the fairshare window and begins updating
the new window. The information for each window is stored in its own file located in the Moab statistics
directory. Each file is named FS.<EPOCHTIME>[.<PNAME>] where <EPOCHTIME> is the time the new
fairshare window became active (see sample data file) and <PNAME> is only used if per-partition share
trees are configured. Each window contains utilization information for each entity as well as for total
usage.

Historical fairshare data is recorded in the fairshare file using the metric specified by the
FSPOLICY parameter. By default, this metric is processor-seconds.

Historical fairshare data can be directly analyzed and reported using the mdiag -f -v command.

When Moab needs to determine current fairshare usage for a particular credential, it calculates a decay-
weighted average of the usage information for that credential using the most recent fairshare intervals
where the number of windows evaluated is controlled by the FSDEPTH parameter. For example, assume
the credential of interest is user john and the following parameters are set:

Moab Workload Manager

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5

Further assume that the fairshare usage intervals have the following usage amounts:

Fairshare interval Total user john usage Total cluster usage

0 60 110

1 0 125

2 10 100

3 50 150

Based on this information, the current fairshare usage for user john would be calculated as follows:

Usage = (60 * 1 + .5^1 * 0 + .5^2 * 10 + .5^3 * 50) / (110 + .5^1*125 + .5^2*100 + .5^3*150)

The current fairshare usage is relative to the actual resources delivered by the system over the
timeframe evaluated, not the resources available or configured during that time.

Historical fairshare data is organized into a number of data files, each file containing the
information for a length of time as specified by the FSINTERVAL parameter. Although FSDEPTH,
FSINTERVAL, and FSDECAY can be freely and dynamically modified, such changes may result in
unexpected fairshare status for a period of time as the fairshare data files with the old
FSINTERVAL setting are rolled out.

Using Fairshare Information

Fairshare Targets

Once the global fairshare policies have been configured, the next step involves applying resulting
fairshare usage information to affect scheduling behavior. As mentioned in the Fairshare Overview, by
specifying fairshare targets, site administrators can configure how fairshare information impacts
scheduling behavior. The targets can be applied to user, group, account, QoS, or class credentials using
the FSTARGET attribute of *CFG credential parameters. These targets allow fairshare information to
affect job priority and each target can be independently selected to be one of the types documented in
the following table:

Target type - Ceiling

Target mod-
ifier

-

Moab Workload Manager

440 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 441

Target type - Ceiling

Job impact Priority

Format Percentage Usage

Description Adjusts job priority down when usage exceeds target. See How violated ceilings and floors
affect fairshare-based priority on page 387 for more information on how ceilings affect job pri-
ority.

Target type - Floor

Target mod-
ifier

+

Job impact Priority

Format Percentage Usage

Description Adjusts job priority up when usage falls below target. See How violated ceilings and floors
affect fairshare-based priority on page 387 for more information on how floors affect job pri-
ority.

Target type - Target

Target modifier N/A

Job impact Priority

Format Percentage Usage

Description Adjusts job priority when usage does not meet target.

Setting a fairshare target value of 0 indicates that there is no target and that the priority of jobs
associated with that credential should not be affected by the credential's previous fairshare
target. If you want a credential's cluster usage near 0%, set the target to a very small value, such
as 0.001.

Example

Moab Workload Manager

The following example increases the priority of jobs belonging to user john until he reaches 16.5% of
total cluster usage. All other users have priority adjusted both up and down to bring them to their target
usage of 10%:

FSPOLICY DEDICATEDPS
FSWEIGHT 1
FSUSERWEIGHT 100
USERCFG[john] FSTARGET=16.5+
USERCFG[DEFAULT] FSTARGET=10
...

Fairshare Caps

Where fairshare targets affect a job's priority and position in the eligible queue, fairshare caps affect a
job's eligibility. Caps can be applied to users, accounts, groups, classes, and QoSs using the FSCAP
attribute of *CFG credential parameters and can be configured to modify scheduling behavior. Unlike
fairshare targets, if a credential reaches its fairshare cap, its jobs can no longer run and are thus
removed from the eligible queue and placed in the blocked queue. In this respect, fairshare targets
behave like soft limits and fairshare caps behave like hard limits. Fairshare caps can be absolute or
relative as described in the following table. If no modifier is specified, the cap is interpreted as relative.

Absolute Cap

Cap Modi-
fier:

^

Job Impact: Feasibility

Format: Absolute Usage

Description: Constrains job eligibility as an absolute quantity measured according to the scheduler charge met-
ric as defined by the FSPOLICY parameter

Relative Cap

Cap Modi-
fier:

%

Job Impact: Feasibility

Format: Percentage Usage

Description: Constrains job eligibility as a percentage of total delivered cycles measured according to the sched-
uler charge metric as defined by the FSPOLICY parameter.

Example

Moab Workload Manager

442 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 443

The following example constrains the marketing account to use no more than 16,500 processor seconds
during any given floating one week window. At the same time, all other accounts are constrained to use
no more than 10% of the total delivered processor seconds during any given one week window.

FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 14
ACCOUNTCFG[marketing] FSCAP=16500^
ACCOUNTCFG[DEFAULT] FSCAP=10
...

Priority-Based Fairshare

The most commonly used type of fairshare is priority based fairshare. In this mode, fairshare
information does not affect whether a job can run, but rather only the job's priority relative to other
jobs. In most cases, this is the desired behavior. Using the standard fairshare target, the priority of jobs
of a particular user who has used too many resources over the specified fairshare window is lowered.
Also, the standard fairshare target increases the priority of jobs that have not received enough
resources.

While the standard fairshare target is the most commonly used, Moab can also specify fairshare ceilings
and floors. These targets are like the default target; however, ceilings only adjust priority down when
usage is too high and floors only adjust priority up when usage is too low.

Since fairshare usage information must be integrated with Moab's overall priority mechanism, it is
critical that the corresponding fairshare priority weights be set. Specifically, the FSWEIGHT component
weight parameter and the target type subcomponent weight (such as FSACCOUNTWEIGHT,
FSCLASSWEIGHT, FSGROUPWEIGHT, FSQOSWEIGHT, and FSUSERWEIGHT) be specified.

If these weights are not set, the fairshare mechanism will be enabled but have no effect on
scheduling behavior. See the Job Priority Factor Overview for more information on setting priority
weights.

Example

set relative component weighting
FSWEIGHT 1
FSUSERWEIGHT 10
FSGROUPWEIGHT 50

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5
FSPOLICY DEDICATEDPS
all users should have a FS target of 10%
USERCFG[DEFAULT] FSTARGET=10.0
user john gets extra cycles
USERCFG[john] FSTARGET=20.0
reduce staff priority if group usage exceed 15%
GROUPCFG[staff] FSTARGET=15.0-
give group orion additional priority if usage drops below 25.7%
GROUPCFG[orion] FSTARGET=25.7+

Moab Workload Manager

Job preemption status can be adjusted based on whether the job violates a fairshare target using
the ENABLEFSVIOLATIONPREEMPTION parameter.

Credential-Specific Fairshare Weights

Credential-specific fairshare weights can be set using the FSWEIGHT attribute of the ACCOUNT, GROUP,
and QOS credentials as in the following example:

FSWEIGHT 1000
ACCOUNTCFG[orion1] FSWEIGHT=100
ACCOUNTCFG[orion2] FSWEIGHT=200
ACCOUNTCFG[orion3] FSWEIGHT=-100
GROUPCFG[staff] FSWEIGHT=10

If specified, a per-credential fairshare weight is added to the global component fairshare weight.

The FSWEIGHT attribute is only enabled for ACCOUNT, GROUP, and QOS credentials.

Extended Fairshare Examples

Example 3-98: Multi-Cred Cycle Distribution

Example 1 represents a university setting where different schools have access to a cluster. The
Engineering department has put the most money into the cluster and therefore has greater access to the
cluster. The Math, Computer Science, and Physics departments have also pooled their money into the
cluster and have reduced relative access. A support group also has access to the cluster, but since they
only require minimal compute time and shouldn't block the higher-paying departments, they are
constrained to five percent of the cluster. At this time, users Tom and John have specific high-priority
projects that need increased cycles.

Moab Workload Manager

444 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 445

#global general usage limits - negative priority jobs are considered in scheduling
ENABLENEGJOBPRIORITY TRUE
site policy - no job can last longer than 8 hours
USERCFG[DEFAULT] MAX.WCLIMIT=8:00:00
Note: default user FS target only specified to apply default user-to-user balance
USERCFG[DEFAULT] FSTARGET=1
high-level fairshare config
FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 32 #recycle FS every 16 days
FSDECAY 0.8 #favor more recent usage info
qos config
QOSCFG[inst] FSTARGET=25
QOSCFG[supp] FSTARGET=5
QOSCFG[premium] FSTARGET=70
account config (QoS access and fstargets)
Note: user-to-account mapping handled via allocation manager
Note: FS targets are percentage of total cluster, not percentage of QOS
ACCOUNTCFG[cs] QLIST=inst FSTARGET=10
ACCOUNTCFG[math] QLIST=inst FSTARGET=15

ACCOUNTCFG[phys] QLIST=supp FSTARGET=5
ACCOUNTCFG[eng] QLIST=premium FSTARGET=70
handle per-user priority exceptions
USERCFG[tom] PRIORITY=100
USERCFG[john] PRIORITY=35
define overall job priority
USERWEIGHT 10 # user exceptions
relative FS weights (Note: QOS overrides ACCOUNT which overrides USER)
FSUSERWEIGHT 1
FSACCOUNTWEIGHT 10
FSQOSWEIGHT 100
apply XFactor to balance cycle delivery by job size fairly
Note: queuetime factor also on by default (use QUEUETIMEWEIGHT to adjust)
XFACTORWEIGHT 100
enable preemption
PREEMPTPOLICY REQUEUE
temporarily allow phys to preempt math
ACCOUNTCFG[phys] JOBFLAGS=PREEMPTOR PRIORITY=1000
ACCOUNTCFG[math] JOBFLAGS=PREEMPTEE

Hierarchical Fairshare/Share Trees
Moab supports arbitrary depth hierarchical fairshare based on a share tree. In this model, users, groups,
classes, and accounts can be arbitrarily organized and their usage tracked and limited. Moab extends
common share tree concepts to allow mixing of credential types, enforcement of ceiling and floor style
usage targets, and mixing of hierarchical fairshare state with other priority components.

Defining the Tree

The FSTREE parameter can be used to define and configure the share tree used in fairshare
configuration. This parameter supports the following attributes:

Moab Workload Manager

SHARES

Format: <COUNT>[@<PARTITION>][,<COUNT>[@<PARTITION>]]... where <COUNT> is a double and
<PARTITION> is a specified partition name.

Description: Specifies the node target usage or share.

Example: FSTREE[Eng] SHARES=1500.5
FSTREE[Sales] SHARES=2800

MEMBERLIST

Format: Comma delimited list of child nodes of the format [<OBJECT_TYPE>]:<OBJECT_ID> where
object types are only specified for leaf nodes associated with user, group, class, qos, or acct cre-
dentials.

Description: Specifies the tree objects associated with this node.

Example: FSTREE[root] SHARES=100 MEMBERLIST=Eng,Sales
FSTREE[Eng] SHARES=1500.5 MEMBERLIST=user:john,user:steve,user:bob
FSTREE[Sales] SHARES=2800 MEMBERLIST=Sales1,Sales2,Sales3
FSTREE[Sales1] SHARES=30 MEMBERLIST=user:kellyp,user:sam
FSTREE[Sales2] SHARES=10 MEMBERLIST=user:ux43,user:ux44,user:ux45
FSTREE[Sales3] SHARES=60 MEMBERLIST=user:robert,user:tjackson

Current tree configuration and monitored usage distribution is available using the mdiag -f -v commands.

Controlling Tree Evaluation

Moab provides multiple policies to customize how the share tree is evaluated.

Policy Description

FSTREETIERMULTIPLIER Decreases the value of sub-level usage discrepancies. It can be a positive or negative
value. When positive, the parent's usage in the tree takes precedence; when neg-
ative, the child's usage takes precedence. The usage amount is not changed, only the
coefficient used when calculating the value of fstree usage in priority. When using
this parameter, it is recommended that you research how it changes the values in
mdiag -p to determine the appropriate use.

FSTREECAP Caps lower level usage factors to prevent them from exceeding upper tier dis-
crepancies.

Moab Workload Manager

446 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 447

Using FS Floors and Ceilings with Hierarchical Fairshare

All standard fairshare facilities including target floors, target ceilings, and target caps are supported
when using hierarchical fairshare.

Multi-Partition Fairshare

Moab supports independent, per-partition hierarchical fairshare targets allowing each partition to
possess independent prioritization and usage constraint settings. This is accomplished by setting the
PERPARTITIONSCHEDULING attribute of the FSTREE parameter to TRUE in moab.cfg and setting
partition="name" in your <fstree> leaf.

FSTREE[tree]
<fstree>
<tnode partition="slave1" name="root" type="acct" share="100" limits="MAXJOB=6">
<tnode name="accta" type="acct" share="50" limits="MAXSUBMITJOBS=2 MAXJOB=1">
<tnode name="fred" type="user" share="1" limits="MAXWC=1:00:00">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50" limits="MAXSUBMITJOBS=4 MAXJOB=3">
<tnode name="george" type="user" share="1" >
</tnode>

</tnode>
</tnode>
<tnode partition="slave2" name="root" type="acct" share="100"

limits="MAXSUBMITJOBS=6 MAXJOB=5">
<tnode name="accta" type="acct" share="50">
<tnode name="paul" type="user" share="1">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50">
<tnode name="ringo" type="user" share="1">
</tnode>

</tnode>
</tnode>

</fstree>

If no partition is specified for a given share value, then this value is assigned to the global
partition. If a partition exists for which there are no explicitly specified shares for any node, this
partition will use the share distribution assigned to the global partition.

Dynamically Importing Share Tree Data

Share trees can be centrally defined within a database, flat file, information service, or other system and
this information can be dynamically imported and used within Moab by setting the FSTREE parameter
within the Identity Managers on page 765. This interface can be used to load current information at
startup and periodically synchronize this information with the master source.

To create a fairshare tree in a separate XML file and import it into Moab

1. Create a file to store your fair share tree specification. Give it a descriptive name and store it in
your Moab home directory ($MOABHOMEDIR or $MOABHOMEDIR/etc). In this example, the file is
called fstree.dat.

2. In the first line of fstree.dat, set FSTREE[myTree] to indicate that this is a fairshare file.

3. Build a tree in XML to match your needs. For example:

Moab Workload Manager

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8 MAXPROC=24
MAXWC=01:00:00"></tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5"></tnode>
</tnode>
</fstree>

This configuration creates a fairshare tree in which users share a value of 100. Users john and jane share the
value equally, because each has been given 50.

Because 100 is an arbitrary number, users john and jane could be assigned 10000 and 10000
respectively and still have a 50% share under the parent leaf. To keep the example simple, however,
it is recommended that you use 100 as your arbirary share value and distribute the share as
percentages. In this case, john and jane each have 50%.

If the users' numbers do not add up to at least the fairshare value of 100, the remaining value is
shared among all users under the tree. For instance, if the tree had a value of 100, user john had a
value of 50, and user jane had a value of 25, then 25% of the fairshare tree value would belong to
all other users associated with the tree. By default, tree leaves do not limit who can run under them.

Each value specified in the tnode elements must be contained in quotation marks.

4. Optional: Share trees defined within a flat file can be cumbersome; consider running tidy for xml to
improve readability. Sample usage:

> tidy -i -xml goldy.cfg <filename> <output file>

Sample output

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

5. Link the new file to Moab using the IDCFG parameter in your Moab configuration file.

IDCFG[myTree] server="FILE:///$MOABH OMEDIR/etc/fstree.dat" REFRESHPERIOD=INFINITY

Moab imports the myTree fairshare tree from the fstree.dat file. Setting REFRESHPERIOD to INFINITY causes
Moab to read the file each time it starts or restarts, but other settings (hour, day, month) cause Moab to read the
file more often (See Refreshing Identity Manager Data for more information).

6. To view your fairshare tree configuration, run mdiag -f. If it is configured correctly, the tree
information will appear beneath all the information about your fairshare settings configured in
moab.cfg.

Moab Workload Manager

448 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 449

> mdiag -f
Share Tree Overview for partition 'ALL'
Name Usage Target (FSFACTOR)
---- ----- ------ ------------
root 100.00 100.00 of 100.00 (node: 1171.81) (0.00)
- john 16.44 50.00 of 100.00 (user: 192.65) (302.04) MAXJOB=8
MAXPROC=24 MAXWC=3600
- jane 83.56 50.00 of 100.00 (user: 979.16) (-302.04) MAXJOB=5

The settings you configured in fstree.dat appear in the output. The tree of 100 is shared equally between users john
and jane.

Specifying Share Tree Based Limits

Limits can be specified on internal nodes of the share tree using standard credential limit semantics. The
following credential usage limits are valid:

l MAXIJOB (Maximum number of idle jobs allowed for the credential)

l MAXJOB on page 420

l MAXMEM on page 420

l MAXNODE on page 420

l MAXPROC on page 421

l MAXSUBMITJOBS on page 422

l MAXWC on page 422

Example 3-99: FSTREE limits example

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

Other Uses of Share Trees

If a share tree is defined, it can be used for purposes beyond fairshare, including organizing general
usage and performance statistics for reporting purposes (see showstats -T), enforcement of tree node
based usage limits, and specification of resource access policies.

Related topics

l mdiag -f command (provides diagnosis and monitoring of the fairshare facility)
l FSENABLECAPPRIORITY parameter
l ENABLEFSPREEMPTION parameter
l FSTARGETISABSOLUTE parameter

Sample FairShare Data File
FS.<EPOCHTIME>

Moab Workload Manager

FS Data File (Duration: 43200 seconds) Starting: Sat Jul 8 06:00:20
user jvella 134087.910
user reynolds 98283.840
user gastor 18751.770
user uannan 145551.260
user mwillis 149279.140
...
group DEFAULT 411628.980
group RedRock 3121560.280
group Summit 500327.640
group Arches 3047918.940
acct Administration 653559.290
acct Engineering 4746858.620
acct Shared 75033.020
acct Research 1605984.910
qos Deadline 2727971.100
qos HighPriority 4278431.720
qos STANDARD 75033.020
class batch 7081435.840
sched iCluster 7081435.840

The total usage consumed in this time interval is 7081435.840 processor-seconds. Since every job in this example
scenario had a user, group, account, and QOS assigned to it, the sum of the usage of all members of each category should
equal the total usage value: USERA + USERB + USERC + USERD = GROUPA + GROUPB = ACCTA + ACCTB + ACCTC = QOS0
+ QOS1 + QOS2 = SCHED.

Controlling Resource Access - Reservations,
Partitions, and QoS Facilities

l Advance Reservations on page 450

l Partitions on page 495

l Quality of Service (QoS) Facilities on page 499

Advance Reservations
An advance reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1) a set of
resources, (2) a time frame, and (3) an access control list. It is a scheduler role to ensure that the access
control list is not violated during the reservation's lifetime (that is, its time frame) on the resources
listed. For example, a reservation may specify that node002 is reserved for user Tom on Friday. The
scheduler is thus constrained to make certain that only Tom's jobs can use node002 at any time on
Friday. Advance reservation technology enables many features including backfill, deadline based
scheduling, grid scheduling, and QOS support.

The mrsvctl command is used to create, modify, query, and release reservations.

l Reservation Overview

l Administrative Reservations

Moab Workload Manager

450 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 451

l Standing Reservations

l Reservation Policies

l Configuring and Managing Reservations

l Enabling Reservations for End-users

Reservation Overview
l Resources

l TimeFrame

l Access Control List

l Job to Reservation Binding

l Reservation Specification

l Reservation Behavior

l Reservation Group

Every reservation consists of 3 major components: (1) a set of resources, (2) a time frame, and (3) an
access control list. Additionally, a reservation may also have a number of optional attributes controlling
its behavior and interaction with other aspects of scheduling. Reservation attribute descriptions follow.

Resources
Under Moab, the resources specified for a reservation are specified by way of a task description.
Conceptually, a task can be thought of as an atomic, or indivisible, collection of resources. If reservation
resources are unspecified, a task is a node by default. To define a task, specify resources. The resources
may include processors, memory, swap, local disk, and so forth. For example, a single task may consist of
one processor, 2 GB of memory, and 10 GB of local disk.

A reservation consists of one or more tasks. In attempting to locate the resources required for a
particular reservation, Moab examines all feasible resources and locates the needed resources in groups
specified by the task description. An example may help clarify this concept:

Reservation A requires four tasks. Each task is defined as 1 processor and 1 GB of memory.

Node X has 2 processors and 3 GB of memory available
Node Y has 2 processors and 1 GB of memory available
Node Z has 2 processors and 2 GB of memory available

When collecting the resources needed for the reservation, Moab examines each node in turn. Moab finds
that Node X can support 2 of the 4 tasks needed by reserving 2 processors and 2 GB of memory, leaving
1 GB of memory unreserved. Analysis of Node Y shows that it can only support 1 task reserving 1
processor and 1 GB of memory, leaving 1 processor unreserved. Note that the unreserved memory on
Node X cannot be combined with the unreserved processor on Node Y to satisfy the needs of another
task because a task requires all resources to be located on the same node. Finally, analysis finds that
node Z can support 2 tasks, fully reserving all of its resources.

Moab Workload Manager

Both reservations and jobs use the concept of a task description in specifying how resources should be
allocated. It is important to note that although a task description is used to allocate resources to a
reservation, this description does not in any way constrain the use of those resources by a job. In the
above example, a job requesting resources simply sees 4 processors and 4 GB of memory available in
reservation A. If the job has access to the reserved resources and the resources meet the other
requirements of the job, the job could use these resources according to its own task description and
needs.

Currently, the resources that can be associated with reservations include processors, memory, swap,
local disk, initiator classes, and any number of arbitrary resources. Arbitrary resources may include
peripherals such as tape drives, software licenses, or any other site specific resource.

Time Frame
Associated with each reservation is a time frame. This specifies when the resources will be reserved or
dedicated to jobs that meet the reservation's access control list (ACL). The time frame simply consists of
a start time and an end time. When configuring a reservation, this information may be specified as a
start time together with either an end time or a duration.

Access Control List
A reservation's access control list specifies which jobs can use a reservation. Only jobs that meet one or
more of a reservation's access criteria are allowed to use the reserved resources during the reservation
time frame. Currently, the reservation access criteria include the following: users, groups, accounts,
classes, QOS, job attributes, job duration, and job templates.

Job to Reservation Binding
While a reservation's ACL will allow particular jobs to use reserved resources, it does not force any job
to use these resources. With each job, Moab attempts to locate the best possible combination of
available resources whether these are reserved or unreserved. For example, in the following figure, note
that job X, which meets access criteria for both reservation A and B, allocates a portion of its resources
from each reservation and the remainder from resources outside of both reservations.

Moab Workload Manager

452 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 453

Image 3-4: Job X uses resources from reservations A and B

Although by default, reservations make resources available to jobs that meet particular criteria, Moab
can be configured to constrain jobs to only run within accessible reservations. This can be requested by
the user on a job by job basis using a resource manager extension flag, or it can be enabled
administratively via a QoS flag. For example, assume two reservations were created as follows:

> mrsvctl -c -a GROUP==staff -d 8:00:00 -h 'node[1-4]'
reservation staff.1 created

> mrsvctl -c -a USER==john -t 2
reservation john.2 created

If the user "john," who happened to also be a member of the group "staff," wanted to force a job to run
within a particular reservation, "john" could do so using the FLAGS resource manager extension.
Specifically, in the case of a PBS job, the following submission would force the job to run within the
"staff.1" reservation.

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES:staff.1 testjob.cmd

Note that for this to work, PBS needs to have resource manager extensions enabled as described in the
PBS Resource Manager Extension Overview. (TORQUE has resource manager extensions enabled by
default.) If the user wants the job to run on reserved resources but does not care which, the user could
submit the job with the following:

Moab Workload Manager

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES testjob.cmd

To enable job to reservation mapping via QoS, the QoS flag USERESERVED should be set in a similar
manner.

Use the reservation BYNAME flag to require explicit binding for reservation access.

To lock jobs linked to a particular QoS into a reservation or reservation group, use the REQRID
attribute.

Reservation Specification
There are two main types of reservations that sites typically deal with. The first, administrative
reservations, are typically one-time reservations created for special purposes and projects. These
reservations are created using the mrsvctl or setres commands. These reservations provide an
integrated mechanism to allow graceful management of unexpected system maintenance, temporary
projects, and time critical demonstrations. This command allows an administrator to select a particular
set of resources or just specify the quantity of resources needed. For example an administrator could use
a regular expression to request a reservation be created on the nodes "blue0[1-9]" or could simply
request that the reservation locate the needed resources by specifying a quantity based request such as
"TASKS==20."

The second type of reservation is called a standing reservation. It is specified using the SRCFG
parameter and is of use when there is a recurring need for a particular type of resource distribution.
Standing reservations are a powerful, flexible, and efficient means for enabling persistent or periodic
policies such as those often enabled using classes or queues. For example, a site could use a standing
reservation to reserve a subset of its compute resources for quick turnaround jobs during business hours
on Monday thru Friday. The Standing Reservation Overview provides more information about configuring
and using these reservations.

Reservation Behavior
As previously mentioned, a given reservation may have one or more access criteria. A job can use the
reserved resources if it meets at least one of these access criteria. It is possible to stack multiple
reservations on the same node. In such a situation, a job can only use the given node if it has access to
each active reservation on the node.

Reservation Group
Reservations groups are ways of associating multiple reservations. This association is useful for variable
namespace and reservation requests. The reservations in a group inherit the variables from the
reservation group head, but if the same variable is set locally on a reservation in the group, the local
variable overrides the inherited variable. Variable inheritance is useful for triggers as it provides
greater flexibility with automating certain tasks and system behaviors.

Jobs may be bound to a reservation group (instead of a single reservation) by using the resource
manager extension ADVRES.

Moab Workload Manager

454 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 455

Infinite Jobs and Reservations
To allow infinite walltime jobs, you must have the following scheduler flag set:

SCHEDCFG[Moab] FLAGS=allowinfinitejobs

You can submit an infinite job by completing:

msub -l walltime=INFINITY

Or an infinite reservation by completing:

mrsvctl -c -d INFINITY

Infinite jobs can run in infinite reservations. Infinite walltime also works with job templates and advres.

Output XML for infinite jobs will print "INFINITY" in the ReqAWDuration, and XML for infinite rsvs will
print "INFINITY" in duration and endtime.

<Data>
<rsv AUser="jgardner" AllocNodeCount="1" AllocNodeList="n5"
AllocProcCount="4" AllocTaskCount="1" HostExp="n5"
LastChargeTime="0" Name="jgardner.1" Partition="base"
ReqNodeList="n5:1" Resources="PROCS=[ALL]" StatCAPS="0.00"
StatCIPS="0.00" StatTAPS="0.00" StatTIPS="0.00" SubType="Other"
Type="User" cost="0.000000" ctime="1302127058"
duration="INFINITY" endtime="INFINITY" starttime="1302127058">
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<ACL cmp="%=" name="jgardner" type="USER"></ACL>
<ACL cmp="%=" name="company" type="GROUP"></ACL>
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<History>
<event state="PROCS=4" time="1302127058"></event>

</History>
</rsv>

</Data>

Related topics

l Reservation Allocation Policies
l Reservation Re-Allocation Policies

Administrative Reservations
l Annotating Administrative Reservations

l Using Reservation Profiles

l Optimizing Maintenance Reservations

Administrative reservations behave much like standing reservations but are generally created to
address non-periodic, one-time issues. All administrative reservations are created using the mrsvctl -c
(or setres) command and are persistent until they expire or are removed using the mrsvctl -r (or
releaseres) command.

Moab Workload Manager

Annotating Administrative Reservations
Reservations can be labeled and annotated using comments allowing other administrators, local users,
portals and other services to obtain more detailed information regarding the reservations. Naming and
annotations are configured using the -n and -D options of the mrsvctl command respectively, as in the
following example:

> mrsvctl -c -D 'testing infiniband performance' -n nettest -h 'r:agt[15-245]'

Using Reservation Profiles
You can set up reservation profiles to avoid manually and repetitively inputting standard reservation
attributes. Profiles can specify reservation names, descriptions, ACLs, durations, hostlists, triggers, flags,
and other aspects that are commonly used. With a reservation profile defined, a new administrative
reservation can be created that uses this profile by specifying the -P flag as in the following example.

Example 3-100:

RSVPROFILE[mtn1] TRIGGER=AType=exec,Action="/tmp/trigger1.sh",EType=start
RSVPROFILE[mtn1] USERLIST=steve,marym
RSVPROFILE[mtn1] HOSTEXP="r:50-250"

> mrsvctl -c -P mtn1 -s 12:00:00_10/03 -d 2:00:00

Example 3-101: Non-Blocking System Reservations with Scheduler Pause

RSVPROFILE[pause] TRIGGER=atype=exec,etype=start,action="/opt/moab/bin/mschedctl -p"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=cancel,action="/opt/moab/bin/mschedctl -r"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=end,action="/opt/moab/bin/mschedctl -r"

> mrsvctl -c -P pause -s 12:00:00_10/03 -d 2:00:00

Optimizing Maintenance Reservations
Any reservation causes some negative impact on cluster performance as it further limits the scheduler's
ability to optimize scheduling decisions. You can mitigate this impact by using flexible ACLs and triggers.

In particular, a maintenance reservation can be configured to reduce its effective reservation shadow by
allowing overlap with checkpointable/preemptible jobs until the time the reservation becomes active.
This can be done using a series of triggers that perform the following actions:

l Modify the reservation to disable preemption access.

l Preempt jobs that may overlap the reservation.

l Cancel any jobs that failed to properly checkpoint and exit.

The following example highlights one possible configuration:

Moab Workload Manager

456 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 457

RSVPROFILE[adm1] JOBATTRLIST=PREEMPTEE
RSVPROFILE[adm1] DESCRIPTION="regular system maintenance"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-
300,AType=internal,Action="rsv:-:modify:acl:jattr-=PREEMPTEE"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-240,AType=jobpreempt,Action="checkpoint"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

> mrsvctl -c -P adm1 -s 12:00:00_10/03 -d 8:00:00 -h ALL

This reservation reserves all nodes in the cluster for a period of eight hours. Five minutes before the
reservation starts, the reservation is modified to remove access to new preemptible jobs. Four minutes
before the reservation starts, preemptible jobs that overlap the reservation are checkpointed. One
minute before the reservation, all remaining jobs that overlap the reservation are canceled.

Reservations can also be used to evacuate virtual machines from a nodelist. To do this, you can configure
a reservation profile in the moab.cfg file that calls an internal trigger to enable the evacuate VM logic.
For example:

RSVPROFILE[evacvms]
TRIGGER=EType=start,AType=internal,action=node:$(HOSTLIST):evacvms

> mrsvctl -c -P evacvms -s 12:00:00_10/03 -d 8:00:00 -h ALL

Please note that Moab gives its best effort in evacuating VMs; however, if other reservations and
policies prevent Moab from locating an alternate location for the VMs to be migrated to, then no action
will occur. Administrators can attach additional triggers to the reservation profile to add evacuation
logic where needed.

You can also manually create a reservation that evacuates VMs from a nodelist by using the
EVACVMS reservation flag. For example:

> mrsvctl -c -F EVACVMS -s 12:00:00_10/03 -d 8:00:00 -h ALL

Related topics

l Backfill
l Preemption
l mrsvctl command

Standing Reservations
Standing reservations build upon the capabilities of advance reservations to enable a site to enforce
advanced usage policies in an efficient manner. Standing reservations provide a superset of the
capabilities typically found in a batch queuing system's class or queue architecture. For example, queues
can be used to allow only particular types of jobs access to certain compute resources. Also, some batch
systems allow these queues to be configured so that they only allow this access during certain times of
the day or week. Standing reservations allow these same capabilities but with greater flexibility and
efficiency than is typically found in a normal queue management system.

Moab Workload Manager

Standing reservations provide a mechanism by which a site can dedicate a particular block of resources
for a special use on a regular daily or weekly basis. For example, node X could be dedicated to running
jobs only from users in the accounting group every Friday from 4 to 10 p.m. See the Reservation
Overview for more information about the use of reservations. The Managing Reservations section
provides a detailed explanation of the concepts and steps involved in the creation and configuration of
standing reservations.

A standing reservation is a powerful means of doing the following:

l Controlling local credential based access to resources.

l Controlling external peer and grid based access to resources.

l Controlling job responsiveness and turnaround.

Related topics

l SRCFG
l Moab Workload Manager for Grids
l mdiag -s (diagnose standing reservations)

Reservation Policies
l Controlling Priority Reservation Creation

l Managing Resource Failures

l Resource Allocation Policy

l Resource Re-Allocation Policy

Controlling Priority Reservation Creation
In addition to standing and administrative reservations, Moab can also create priority reservations.
These reservations are used to allow the benefits of out-of-order execution (such as is available with
backfill) without the side effect of job starvation. Starvation can occur in any system where the potential
exists for a job to be overlooked by the scheduler for an indefinite period. In the case of backfill, small
jobs may continue to run on available resources as they become available while a large job sits in the
queue, never able to find enough nodes available simultaneously on which to run.

To avoid such situations, priority reservations are created for high priority jobs that cannot run
immediately. When making these reservations, the scheduler determines the earliest time the job could
start and then reserves these resources for use by this job at that future time.

Priority Reservation Creation Policy

Organizations have the ability to control how priority reservations are created and maintained. It is
possible that one job can be at the top of the priority queue for a time and then get bypassed by another
job submitted later. The parameter RESERVATIONPOLICY allows a site to determine how existing
reservations should be handled when new reservations are made.

Moab Workload Manager

458 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 459

Value Description

HIGHEST All jobs that have ever received a priority reservation up to the RESERVATIONDEPTH
number will maintain that reservation until they run, even if other jobs later bypass them
in priority value.
For example, if there are four jobs with priorities of 8, 10,12, and 20.

RESERVATIONPOLICY HIGHEST
RESERVATIONDEPTH 3

Only jobs 20, 12, and 10 get priority reservations. Later, if a job with priority higher than
20 is submitted into the queue, it will also get a priority reservation along with the jobs
listed previously. If four jobs higher than 20 were to be submitted into the queue, only
three would get priority reservations, in accordance with the condition set in the
RESERVATIONDEPTH policy.
With HIGHEST, Moab may appear to exceed the RESERVATIONDEPTH if it has already
scheduled the maximum number of priority reservations and then users submit jobs with
higher priority than those already given a priority reservation. Moab keeps all of the
previously-created priority reservations and creates new ones for jobs with higher priority
(again up to the quantity specified with RESERVATIONDEPTH). This means that, if your
RESERVATIONDEPTH is set to 3, Moab can potentially schedule up to 3 new priority
reservations each scheduling iteration, as long as new higher-priority jobs are continually
submitted. This behavior ensures that the highest-priority jobs receive attention while the
former highest-priority jobs do not lose their priority reservation.

CURRENTHIGHEST Only the current top <RESERVATIONDEPTH> priority jobs receive reservations. Under this
policy, all job reservations are destroyed each iteration when the queue is re-prioritized.
The top jobs in the queue are then given new reservations.

NEVER No priority reservations are made.

Priority Reservation Depth

By default, only the highest priority job receives a priority reservation. However, this behavior is
configurable via the RESERVATIONDEPTH policy. Moab's default behavior of only reserving the highest
priority job allows backfill to be used in a form known as liberal backfill. Liberal backfill tends to
maximize system utilization and minimize overall average job turnaround time. However, it does lead to
the potential of some lower priority jobs being indirectly delayed and may lead to greater variance in
job turnaround time. The RESERVATIONDEPTH parameter can be set to a very large value, essentially
enabling what is called conservative backfill where every job that cannot run is given a reservation.
Most sites prefer the liberal backfill approach associated with the default RESERVATIONDEPTH of 1 or
else select a slightly higher value. It is important to note that to prevent starvation in conjunction with
reservations, monotonically increasing priority factors such as queue time or job XFactor should be
enabled. See the Prioritization Overview for more information on priority factors.

Another important consequence of backfill and reservation depth is how they affect job priority. In Moab,
all jobs are prioritized. Backfill allows jobs to be run out of order and thus, to some extent, job priority
to be ignored. This effect, known as priority dilution, can cause many site policies implemented via Moab

Moab Workload Manager

prioritization policies to be ineffective. Setting the RESERVATIONDEPTH parameter to a higher value
gives job priority more teeth at the cost of slightly lower system utilization. This lower utilization
results from the constraints of these additional reservations, decreasing the scheduler's freedom and its
ability to find additional optimizing schedules. Anecdotal evidence indicates that these utilization losses
are fairly minor, rarely exceeding 8%.

It is difficult a priori to know the right setting for the RESERVATIONDEPTH parameter. Surveys indicate
that the vast majority of sites use the default value of 1. Sites that do modify this value typically set it
somewhere in the range of 2 to 10. The following guidelines may be useful in determining if and how to
adjust this parameter:

Reasons to Increase RESERVATIONDEPTH

l The estimated job start time information provided by the showstart command is heavily used and
the accuracy needs to be increased.

l Priority dilution prevents certain key mission objectives from being fulfilled.

l Users are more interested in knowing when their job will run than in having it run sooner.

Reasons to Decrease RESERVATIONDEPTH

l Scheduling efficiency and job throughput need to be increased.

Assigning Per-QoS Reservation Creation Rules

QoS based reservation depths can be enabled via the RESERVATIONQOSLIST parameter. This parameter
allows varying reservation depths to be associated with different sets of job QoSs. For example, the
following configuration creates two reservation depth groupings:

RESERVATIONDEPTH[0] 8
RESERVATIONQOSLIST[0] highprio,interactive,debug
RESERVATIONDEPTH[1] 2
RESERVATIONQOSLIST[1] batch

This example causes that the top 8 jobs belonging to the aggregate group of highprio, interactive, and debug QoS jobs
will receive priority reservations. Additionally, the top two batch QoS jobs will also receive priority reservations. Use of
this feature allows sites to maintain high throughput for important jobs by guaranteeing that a significant proportion of
these jobs progress toward starting through use of the priority reservation.

By default, the following parameters are set inside Moab:

RESERVATIONDEPTH[DEFAULT] 1
RESERVATIONQOSLIST[DEFAULT] ALL

This allows one job with the highest priority to get a reservation. These values can be overwritten by modifying the
DEFAULT policy.

Managing Resource Failures
Moab allows organizations to control how to best respond to a number of real-world issues. Occasionally
when a reservation becomes active and a job attempts to start, various resource manager race
conditions or corrupt state situations will prevent the job from starting. By default, Moab assumes the

Moab Workload Manager

460 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 461

resource manager is corrupt, releases the reservation, and attempts to re-create the reservation after a
short timeout. However, in the interval between the reservation release and the re-creation timeout,
other priority reservations may allocate the newly available resources, reserving them before the
original reservation gets an opportunity to reallocate them. Thus, when the original job reservation is
re-established, its original resource may be unavailable and the resulting new reservation may be
delayed several hours from the earlier start time. The parameter RESERVATIONRETRYTIME allows a
site that is experiencing frequent resource manager race conditions and/or corruption situations to tell
Moab to hold on to the reserved resource for a period of time in an attempt to allow the resource
manager to correct its state.

Resource Allocation Policy
By default, when a standing or administrative reservation is created, Moab allocates nodes in accordance
with the specified taskcount, node expression, node constraints, and the MINRESOURCE node allocation
policy.

Related topics

l Reservation Overview
l Backfill

Configuring and Managing Reservations
l Reservation Attributes

o Start/End Time

o Access Control List (ACL)

o Selecting Resources

o Flags

l Configuring and Managing Standing Reservations

o Standing Reservation Attributes

o Standing Reservation Overview

o Specifying Reservation Resources

o Enforcing Policies Via Multiple Reservations

o Affinity

o ACL Modifiers

o Reservation Ownership

o Partitions

o Resource Allocation Behavior

o Rollback Reservations

o Modifying Resources with Standing Reservations

Moab Workload Manager

l Managing Administrative Reservations

Reservation Attributes
All reservations possess a time frame of activity, an access control list (ACL), and a list of resources to
be reserved. Additionally, reservations may also possess a number of extension attributes including
epilog/prolog specification, reservation ownership and accountability attributes, and special flags that
modify the reservation's behavior.

Start/End Time

All reservations possess a start and an end time that define the reservation's active time. During this
active time, the resources within the reservation may only be used as specified by the reservation
access control list (ACL). This active time may be specified as either a start/end pair or a start/duration
pair. Reservations exist and are visible from the time they are created until the active time ends at
which point they are automatically removed.

Access Control List (ACL)

For a reservation to be useful, it must be able to limit who or what can access the resources it has
reserved.

By default a reservation may allocate resources that possess credentials that meet the
submitter's ACL. In other words, a user's reservation won't necessarily allocate only free and idle
nodes. If a reservation exists that coincides with the submitter's ACL, the nodes under that
reservation are also considered for allocation. This is referred to as ACL overlap. To make new
reservations allocate only free and idle nodes, you must use the NOACLOVERLAP flag.

This is handled by way of an ACL. With reservations, ACLs can be based on credentials, resources
requested, or performance metrics. In particular, with a standing reservation, the attributes USERLIST,
GROUPLIST, ACCOUNTLIST, CLASSLIST, QOSLIST, JOBATTRLIST, PROCLIMIT, MAXTIME, or TIMELIMIT
may be specified. (See Affinity and Modifiers.)

Reservation access can be adjusted based on a job's requested node features by mapping node
feature requests to job attributes as in the following example:

NODECFG[DEFAULT] FEATURES=ia64
NODETOJOBATTRMAP ia64,ia32
SRCFG[pgs] JOBATTRLIST=ia32

> mrsvctl -c -a jattr=gpfs\! -h "r:13-500"

Selecting Resources

When specifying which resources to reserve, the administrator has a number of options. These options
allow control over how many resources are reserved and where they are reserved. The following
reservation attributes allow the administrator to define resources.

Moab Workload Manager

462 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 463

Task Description

Moab uses the task concept extensively for its job and reservation management. A task is simply an
atomic collection of resources, such as processors, memory, or local disk, which must be found on the
same node. For example, if a task requires 4 processors and 2 GB of memory, the scheduler must find all
processors AND memory on the same node; it cannot allocate 3 processors and 1 GB on one node and 1
processor and 1 GB of memory on another node to satisfy this task. Tasks constrain how the scheduler
must collect resources for use in a standing reservation; however, they do not constrain the way in
which the scheduler makes these cumulative resources available to jobs. A job can use the resources
covered by an accessible reservation in whatever way it needs. If reservation X allocates 6 tasks with 2
processors and 512 MB of memory each, it could support job Y which requires 10 tasks of 1 processor
and 128 MB of memory or job Z which requires 2 tasks of 4 processors and 1 GB of memory each. The
task constraints used to acquire a reservation's resources are transparent to a job requesting use of
these resources.

Example 3-102:

SRCFG[test] RESOURCES=PROCS:2,MEM:1024

Taskcount

Using the task description, the taskcount attribute defines how many tasks must be allocated to satisfy
the reservation request. To create a reservation, a taskcount and/or a hostlist must be specified.

Example 3-103:

SRCFG[test] TASKCOUNT=256

Hostlist

A hostlist constrains the set of resources available to a reservation. If no taskcount is specified, the
reservation attempts to reserve one task on each of the listed resources. If a taskcount is specified that
requests fewer resources than listed in the hostlist, the scheduler reserves only the number of tasks
from the hostlist specified by the taskcount attribute. If a taskcount is specified that requests more
resources than listed in the hostlist, the scheduler reserves the hostlist nodes first and then seeks
additional resources outside of this list.

Example 3-104:

SRCFG[test] HOSTLIST=node01,node1[3-5]

Node Features

Node features can be specified to constrain which resources are considered.

Example 3-105:

SRCFG[test] NODEFEATURES=fastos

Partition

A partition may be specified to constrain which resources are considered.

Moab Workload Manager

Example 3-106:

SRCFG[test] PARTITION=core3

Flags

Reservation flags allow specification of special reservation attributes or behaviors. Supported flags are
listed in the following table:

Flag Name Description

ACLOVERLAP Deprecated (this is now a default flag). In addition to free or idle
nodes, a reservation may also reserve resources that possess credentials
that meet the reservation's ACL. To change this behavior, set the
NOACLOVERLAP on page 466 flag.

ADVRESJOBDESTROY All jobs that have an ADVRES matching this reservation are canceled when
the reservation is destroyed.

ALLOWJOBOVERLAP A job is allowed to start in a reservation that may end before the job com-
pletes. When the reservation ends before the job completes, the job will
not be canceled but will continue to run.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job ADVRES
flag. (See Job to Reservation Binding.)

DEDICATEDRESOURCE
(aka EXCLUSIVE)

Reservation placed only on resources that are not reserved by any other
reservation including job, system, and user reservation. There are two
exception to this:
1. Reserved resources could be allocated when DEDICATEDRESOURCE is

combined with IGNJOBRSV*
2. Reserved resources could be allocated when a reservation matches

the submitter's ACL. In this case, to make DEDICATEDRESOURCE truly
exclusive, use the NOACLOVERLAP flag.

The order that SRCFG reservations are listed in the configuration
is important when using DEDICATEDRESOURCE, because
reservations made afterwards can steal resources later. During
configuration, list DEDICATEDRESOURCE reservations last to
guarantee exclusiveness.

Moab Workload Manager

464 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 465

Flag Name Description

EVACVMS Reservation will automatically evacuate virtual machines from the
reservation nodelist.

The same action can be accomplished by using reservation
profiles. For more information, see Optimizing Maintenance
Reservations on page 456.

IGNIDLEJOBS* Reservation can be placed on top of idle job reservations.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNJOBRSV* Ignores existing job reservations, allowing the reservation to be forced
onto available resources even if it conflicts with existing job reservations.
User and system reservation conflicts are still valid. It functions the same
as IGNIDLEJOBS plus allows a reservation to be placed on top of an
existing running job's reservation.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNRSV* Request ignores existing resource reservations allowing the reservation to
be forced onto available resources even if this conflicts with other
reservations. It functions the same as IGNJOBRSV plus allows the
reservation to be placed on top of the system reservations.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNSTATE* Reservation ignores node state when assigning nodes. It functions the
same as IGNRSV plus allows the reservation to be placed on nodes that are
not currently available. Also ignores resource availability on nodes.

IGNSTATE is specified by default when using a HOSTLIST to define
nodes. However, if using a HOSTLIST and a TASKCOUNT, you need
to specify IGNSTATE if you want Moab to ignore the node state
when assigning nodes to the reservation.

Moab Workload Manager

Flag Name Description

NOACLOVERLAP All resources must be free or idle, with no existing reservations. Moab will
not allocate in-use resources even if they match the reservation's ACL.

mrsvctl -c -t 12 -E -F noacloverlap -a user==john

Moab looks for resources that are exclusive (free). Without the
flag, Moab would look for resources that are exclusive or that
are already running john's jobs.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

NOVMMIGRATION If set on a reservation, this prevents VMs from being migrated away from
the reservation. If there are multiple reservations on the hypervisor and
at least one reservation does not have the NOVMIGRATION flag, then
VMs will be migrated.

OWNERPREEMPT Jobs by the reservation owner are allowed to preempt non-owner jobs
using reservation resources.

OWNERPREEMPTIGNOREMINTIME Allows the OWNERPREEMPT flag to "trump" the PREEMPTMINTIME
setting for jobs already running on a reservation when the owner of the
reservation submits a job. For example: without the
OWNERPREEMPTIGNOREMINTIME flag set, a job submitted by the
owner of a reservation will not preempt non-owner jobs already running
on the reservation until the PREEMPTMINTIME setting (if set) for those
jobs is passed.
With the OWNERPREEMPTIGNOREMINTIME flag set, a job submitted
by the owner of a reservation immediately preempts non-owner jobs
already running on the reservation, regardless of whether
PREEMPTMINTIME is set for the non-owner jobs.

REQFULL Reservation is only created when all resources can be allocated.

SINGLEUSE Reservation is automatically removed after completion of the first job to
use the reserved resources.

SPACEFLEX Deprecated (this is now a default flag). Reservation is allowed to adjust
resources allocated over time in an attempt to optimize resource util-
ization.

Moab Workload Manager

466 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 467

* IGNIDLEJOBS, IGNJOBRSV, IGNRSV, and IGNSTATE flags are built on one another and form
a hierarchy. IGNJOBRSV performs the function of IGNIDLEJOBS plus its own functions. IGNRSV
performs the function of IGNJOBSRV and IGNIDLEJOBS plus its own functions. IGNSTATE
performs the function of IGNRSV, IGNJOBRSV, and IGNIDLEJOBS plus its own functions. While
you can use combinations of these flags, it is not necessary. If you set one flag, you do not need to
set other flags that fall beneath it in the hierarchy.

Most flags can be associated with a reservation via the mrsvctl -c -F command or the SRCFG parameter.

Configuring Standing Reservations
Standing reservations allow resources to be dedicated for particular uses. This dedication can be
configured to be permanent or periodic, recurring at a regular time of day and/or time of week. There is
extensive applicability of standing reservations for everything from daily dedicated job runs to improved
use of resources on weekends. By default, standing reservations can overlap other reservations. Unless
you set an ignore-type flag (ACLOVERLAP, DEDICATEDRESOURCE, IGNIDLEJOBS, or IGNJOBRSV),
they are automatically given the IGNRSV flag. All standing reservation attributes are specified via the
SRCFG parameter using the attributes listed in the table below.

Standing Reservation Attributes

ACCESS

Format DEDICATED or SHARED

Default ---

Description If set to SHARED, allows a standing reservation to use resources already allocated to other non-
job reservations. Otherwise, these other reservations block resource access.

Example SRCFG[test] ACCESS=SHARED

Standing reservation test may access resources allocated to existing standing and
administrative reservations.

The order that SRCFG reservations are listed in the configuration are important when
using DEDICATED, because reservations made afterwards can steal resources later.
During configuration, list DEDICATED reservations last to guarantee exclusiveness.

ACCOUNTLIST

Format List of valid, comma delimited account names (see ACL Modifiers).

Moab Workload Manager

ACCOUNTLIST

Default ---

Description Specifies that jobs with the associated accounts may use the resources contained within this reser-
vation.

Example SRCFG[test] ACCOUNTLIST=ops,staff

Jobs using the account ops or staff are granted access to the resources in standing
reservation test.

CHARGE

Format <BOOLEAN>

Default ---

Description Overrides the default charging behavior. If set to True, indicates that this reservation should be
charged, even if no ChargeAccount or ChargeUser are specified (this assumes your Accounting
Manager is set up to permit this). If set to False, indicates that this reservation should not be
charged. It is not necessary to specify CHARGE=True if CHARGEACCOUNT or CHARGEUSER is spe-
cified.

Example SRCFG[sr_gold1] CHARGE=False

Prevent charges to this reservation (might be used when AMCFG[]
ALWAYSCHARGERESERVATIONS=True).

CHARGEACCOUNT

Format Any valid account name.

Default ---

Description Specifies that idle cycles for this reservation should be charged against the specified account (via
the Accounting Manager).

CHARGEACCOUNTmust be used in conjunction with CHARGEUSER.

Moab Workload Manager

468 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 469

CHARGEACCOUNT

Example SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting standing reservation sr_
gold1 to account math.

CHARGEUSER

Format Any valid username.

Default ---

Description Specifies that idle cycles for this reservation should be charged against the specified user (via the
Accounting Manager).

CHARGEUSERmust be used in conjunction with CHARGEACCOUNT.

Example SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting standing reservation sr_
gold1 to user john.

CLASSLIST

Format List of valid, comma delimited classes/queues (see ACL Modifiers).

Default ---

Description Specifies that jobs with the associated classes/queues may use the resources contained within this
reservation.

Example SRCFG[test] CLASSLIST=!interactive

Jobs not using the class interactive are granted access to the resources in standing
reservation test.

Moab Workload Manager

CLUSTERLIST

Format List of valid, comma-delimited peer clusters (see Moab Workload Manager for Grids).

Default ---

Description Specifies that jobs originating within the listed clusters may use the resources contained within
this reservation.

Example SRCFG[test] CLUSTERLIST=orion2,orion7

Moab grants jobs from the listed peer clusters access to the reserved resources.

COMMENT

Format <STRING>

If the string contains whitespace, it should be enclosed in single (') or double quotes (").

Default ---

Description Specifies a descriptive message associated with the standing reservation and all child reservations.

Example SRCFG[test] COMMENT='rsv for network testing'

Moab annotates the standing reservation test and all child reservations with the specified
message. These messages show up within Moab client commands, Moab web tools, and
graphical administrator tools.

DAYS

Format One or more of the following (comma-delimited):
l Mon
l Tue
l Wed
l Thu
l Fri
l Sat
l Sun
l [ALL]

Moab Workload Manager

470 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 471

DAYS

Default [ALL]

Description Specifies which days of the week the standing reservation is active.

Example SRCFG[test] DAYS=Mon,Tue,Wed,Thu,Fri

Standing reservation test is active Monday through
Friday.

DEPTH

Format <INTEGER>

Default 2

Description Specifies the depth of standing reservations to be created (one per period).

To satisfy the DEPTH, Moab creates new reservations at the beginning of the specified
PERIOD on page 476. If your reservation ends at the same time that a new PERIOD begins,
the number of reservations may not match the requested DEPTH. To prevent or resolve this
issue, set the ENDTIME on page 472 a couple minutes before the beginning of the next
PERIOD. For example, set the ENDTIME to 23:58 instead of 00:00.

Example SRCFG[test] PERIOD=DAY DEPTH=6

Specifies that six reservations will be created for standing reservation test.

DISABLE

Format <BOOLEAN>

Default FALSE

Description Specifies that the standing reservation should no longer spawn child reservations.

Example SRCFG[test] PERIOD=DAY DEPTH=7 DISABLE=TRUE

Specifies that reservations are created for standing reservation test for today and
the next six days.

Moab Workload Manager

ENDTIME

Format [[[DD:]HH:]MM:]SS

Default 24:00:00

Description Specifies the time of day the standing reservation period ends (end of day or end of week depend-
ing on PERIOD).

Example SRCFG[test] STARTTIME=8:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

Standing reservation test is active from 8:00 AM until 5:00 PM.

FLAGS

Format Comma-delimited list of zero or more flags listed in the reservation flags overview.

Default ---

Description Specifies special reservation attributes. See Managing Reservations - Flags for details.

Example SRCFG[test] FLAGS=BYNAME,DEDICATEDRESOURCE

Jobs may only access the resources within this reservation if they explicitly request the
reservation by name. Further, the reservation is created to not overlap with other
reservations.

GROUPLIST

Format One or more comma-delimited group names.

Default [ALL]

Description Specifies the groups allowed access to this standing reservation (see ACL Modifiers).

Example SRCFG[test] GROUPLIST=staff,ops,special
SRCFG[test] CLASSLIST=interactive

Moab allows jobs with the listed group IDs or which request the job class interactive to
use the resources covered by the standing reservation.

Moab Workload Manager

472 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 473

HOSTLIST

Format One or more comma delimited host names or host expressions or the string "class:<classname>".

Default ---

Description Specifies the set of hosts that the scheduler can search for resources to satisfy the reservation. If
specified using the "class:X" format, Moab only selects hosts that support the specified class. If
TASKCOUNT is also specified, only TASKCOUNT tasks are reserved. Otherwise, all matching hosts
are reserved.

The HOSTLIST attribute is treated as host regular expression so foo10 will map to foo10,
foo101, foo1006, and so forth. To request an exact host match, the expression can be
bounded by the carat and dollar symbol expression markers as in ^foo10$.

Example SRCFG[test] HOSTLIST=node001,node002,node003
SRCFG[test] RESOURCES=PROCS:2;MEM:512
SRCFG[test] TASKCOUNT=2

Moab reserves a total of two tasks with 2 processors and 512 MB each, using resources
located on node001, node002, and/or node003.

SRCFG[test] HOSTLIST=node01,node1[3-5]

The reservation will consume all nodes that have "node01" somewhere in their names and
all nodes that have both "node1" and either a "3," "4," or "5" in their names.

SRCFG[test] HOSTLIST=r:node[1-6]

The reservation will consume all nodes with names that begin with "node" and end with
any number 1 through 6. In other words, it will reserve node1, node2, node3, node4, node5,
and node6.

JOBATTRLIST

Format Comma-delimited list of one or more of the following job attributes:
l PREEMPTEE
l INTERACTIVE
l any generic attribute configured through NODECFG.

Default ---

Moab Workload Manager

JOBATTRLIST

Description Specifies job attributes that grant a job access to the reservation.

Values can be specified with a "!="assignment to only allow jobs NOT requesting a certain
feature inside the reservation.

To enable/disable reservation access based on requested node features, use the
parameter NODETOJOBATTRMAP.

Example SRCFG[test] JOBATTRLIST=PREEMPTEE

Preemptible jobs can access the resources reserved within this reservation.

MAXJOB

Format <INTEGER>

Default ---

Description Specifies the maximum number of jobs that can run in the reservation.

Example SRCFG[test] MAXJOB=1

Only one job will be allowed to run in this reservation.

MAXTIME

Format [[[DD:]HH:]MM:]SS[+]

Default ---

Description Specifies the maximum time for jobs allowable. Can be used with Affinity to attract jobs with same
MAXTIME.

Example SRCFG[test] MAXTIME=1:00:00+

Jobs with a time of 1:00:00 are attracted to this reservation.

Moab Workload Manager

474 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 475

NODEFEATURES

Format Comma-delimited list of node features.

Default ---

Description Specifies the required node features for nodes that are part of the standing reservation.

Example SRCFG[test] NODEFEATURES=wide,fddi

All nodes allocated to the standing reservation must have both thewide and fddi
node attributes.

OWNER

Format <CREDTYPE>:<CREDID>
Where <CREDTYPE> is one of USER,GROUP, ACCT,QoS,CLASS or CLUSTER and
<CREDTYPE> is a valid credential id of that type.

Default ---

Description Specifies the owner of the reservation. Setting ownership for a reservation grants the user
management privileges, including the power to release it.

Setting a USER as the OWNER of a reservation gives that user privileges to query and
release the reservation.

For sandbox reservations, sandboxes are applied to a specific peer only if OWNER is set to
CLUSTER:<PEERNAME>.

Example SRCFG[test] OWNER=ACCT:jupiter

User jupiter owns the reservation and may be granted special privileges associated with
that ownership.

PARTITION

Format Valid partition name.

Default [ALL]

Moab Workload Manager

PARTITION

Description Specifies the partition in which to create the standing reservation.

Example SRCFG[test] PARTITION=OLD

The standing reservation will only select resources from
partitionOLD.

PERIOD

Format One of DAY,WEEK, or INFINITY.

Default DAY

Description Specifies the period of the standing reservation.

Example SRCFG[test] PERIOD=WEEK

Each standing reservation covers a one week period.

PROCLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

Default ---

Description Specifies the processor limit for jobs requesting access to this standing reservation.

Example SRCFG[test] PROCLIMIT<=4

Jobs requesting 4 or fewer processors are allowed to run.

PSLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

Moab Workload Manager

476 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 477

PSLIMIT

Default ---

Description Specifies the processor-second limit for jobs requesting access to this standing reservation.

Example SRCFG[test] PSLIMIT<=40000

Jobs requesting 40000 or fewer processor-seconds are allowed to run.

QOSLIST

Format Zero or more valid, comma-delimited QoS names.

Default ---

Description Specifies that jobs with the listed QoS names can access the reserved resources.

Example SRCFG[test] QOSLIST=hi,low,special

Moab allows jobs using the listed QOS's access to the reserved
resources.

REQUIREDTPN

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

Default ---

Description Restricts access to reservations based on the job's TPN (tasks per node).

Example SRCFG[test] REQUIREDTPN==4

Jobs with tpn=4 or ppn=4 would be allowed within the reservation, but any other TPN
value would not. (For more information, see TPN (Exact Tasks Per Node) on page
480.)

Moab Workload Manager

RESOURCES

Format Semicolon delimited <ATTR>:<VALUE> pairs where <ATTR>may be one of PROCS,MEM, SWAP,
or DISK.

Default PROCS:-1 (All processors available on node)

Description Specifies what resources constitute a single standing reservation task. (Each task must be able to
obtain all of its resources as an atomic unit on a single node.) Supported resources currently
include the following:

l PROCS (number of processors)
l MEM (real memory in MB)
l DISK (local disk in MB)
l SWAP (virtual memory in MB)

Example SRCFG[test] RESOURCES=PROCS:1;MEM:512

Each standing reservation task reserves one processor and 512 MB of real memory.

ROLLBACKOFFSET

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the minimum time in the future at which the reservation may start. This offset is rollback
meaning the start time of the reservation will continuously roll back into the future to maintain
this offset. Rollback offsets are a good way of providing guaranteed resource access to users under
the conditions that they must commit their resources in the future or lose dedicated access. See
QoS for more info about quality of service and service level agreements; also see Rollback
Reservation Overview.

Neither credlock nor advres is compatible on the jobs submitted for this reservation.

Example SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

The standing reservation guarantees access to up to 32 processors within 24 hours to jobs
from the ajax account.

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when an
idle reservation is created in the rollback reservation. For example:

SRCFG[staff] ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY

Moab Workload Manager

478 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 479

RSVACCESSLIST

Format <RESERVATION>[,...]

Default ---

Description A list of reservations to which the specified reservation has access.

Example SRCFG[test] RSVACCESSLIST=rsv1,rsv2,rsv3

RSVGROUP

Format <STRING>

Default ---

Description See section Reservation Group for a detailed description.

Example SRCFG[test] RSVGROUP=rsvgrp1
SRCFG[ajax] RSVGROUP=rsvgrp1

STARTTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:00:00 (midnight)

Description Specifies the time of day/week the standing reservation becomes active. Whether this indicates a
time of day or time of week depends on the setting of the PERIOD attribute.

If specified within a reservation profile, a value of 0 indicates the reservation should start
at the earliest opportunity.

Example SRCFG[test] STARTTIME=08:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

The standing reservation will be active from 8:00 a.m. until 5:00 p.m. each day.

Moab Workload Manager

TASKCOUNT

Format <INTEGER>

Default 0 (unlimited tasks)

Description Specifies how many tasks should be reserved for the reservation.

Example SRCFG[test] RESOURCES=PROCS:1;MEM:256
SRCFG[test] TASKCOUNT=16

Standing reservation test reserves 16 tasks worth of resources; in this case, 16 processors
and 4 GB of real memory.

TIMELIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (no time based access)

Description Specifies the maximum allowed overlap between the standing reservation and a job requesting
resource access.

Example SRCFG[test] TIMELIMIT=1:00:00

Moab allows jobs to access up to one hour of resources in the standing reservation.

TPN (Exact Tasks Per Node)

Format <INTEGER>

Default 0 (no TPN constraint)

Description Specifies the exact number of tasks per node that must be available on eligible nodes.

Example SRCFG[2] TPN=4
SRCFG[2] RESOURCES=PROCS:2;MEM:256

Moab must locate four tasks on each node that is to be part of the reservation. That is,
each node included in standing reservation 2 must have 8 processors and 1 GB of memory
available.

Moab Workload Manager

480 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 481

TRIGGER

Format See Creating a trigger on page 727 for syntax.

Default N/A

Descrip-
tion

Specifies event triggers to be launched by the scheduler under the scheduler's ID. These triggers
can be used to conditionally cancel reservations, modify resources, or launch various actions at spe-
cified event offsets. See About object triggers on page 724 for more detail.

Example SRCFG[fast]
TRIGGER=EType=start,Offset=5:00:00,AType=exec,Action="/usr/local/domail.pl"

Moab launches the domail.pl script 5 hours after any fast reservation starts.

USERLIST

Format Comma-delimited list of users.

Default ---

Description Specifies which users have access to the resources reserved by this reservation (see ACL
Modifiers).

Example SRCFG[test] USERLIST=bob,joe,mary

Users bob, joe and mary can all access the resources reserved within this reservation.

Standing Reservation Overview

A standing reservation is similar to a normal administrative reservation in that it also places an access
control list on a specified set of resources. Resources are specified on a per-task basis and currently
include processors, local disk, real memory, and swap. The access control list supported for standing
reservations includes users, groups, accounts, job classes, and QoS levels. Standing reservations can be
configured to be permanent or periodic on a daily or weekly basis and can accept a daily or weekly start
and end time. Regardless of whether permanent or recurring on a daily or weekly basis, standing
reservations are enforced using a series of reservations, extending a number of periods into the future
as controlled by the DEPTH attribute of the SRCFG parameter.

The following examples demonstrate possible configurations specified with the SRCFG parameter.

Moab Workload Manager

Example 3-107: Basic Business Hour Standing Reservation

SRCFG[interactive] TASKCOUNT=6 RESOURCES=PROCS:1,MEM:512
SRCFG[interactive] PERIOD=DAY DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[interactive] CLASSLIST=interactive

When using the SRCFG parameter, attribute lists must be delimited using the comma (,), pipe (|),
or colon (:) characters; they cannot be space delimited. For example, to specify a multi-class ACL,
specify:

SRCFG[test] CLASSLIST=classA,classB

Only one STARTTIME and one ENDTIME value can be specified per reservation. If varied start and
end times are desired throughout the week, complementary standing reservations should be
created. For example, to establish a reservation from 8:00 p.m. until 6:00 a.m. the next day during
business days, two reservations should be created-one from 8:00 p.m. until midnight, and the other
from midnight until 6:00 a.m. Jobs can run across reservation boundaries allowing these two
reservations to function as a single reservation that spans the night. The following example
demonstrates how to span a reservation across 2 days on the same nodes:

SRCFG[Sun] PERIOD=WEEK
SRCFG[Sun] STARTTIME=00:20:00:00 ENDTIME=01:00:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

SRCFG[Mon] PERIOD=WEEK
SRCFG[Mon] STARTTIME=01:00:00:00 ENDTIME=01:06:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

The preceding example fully specifies a reservation including the quantity of resources requested using
the TASKCOUNT and RESOURCES attributes. In all cases, resources are allocated to a reservation in units
called tasks where a task is a collection of resources that must be allocated together on a single node.
The TASKCOUNT attribute specifies the number of these tasks that should be reserved by the
reservation. In conjunction with this attribute, the RESOURCES attribute defines the reservation task by
indicating what resources must be included in each task. In this case, the scheduler must locate and
reserve 1 processor and 512 MB of memory together on the same node for each task requested.

As mentioned previously, a standing reservation reserves resources over a given time frame. The
PERIOD attribute may be set to a value of DAY, WEEK, or INFINITY to indicate the period over which
this reservation should recur. If not specified, a standing reservation recurs on a daily basis. If a standing
reservation is configured to recur daily, the attribute DAYS may be specified to indicate which days of
the week the reservation should exist. This attribute takes a comma-delimited list of days where each
day is specified as the first three letters of the day in all capital letters: MON or FRI. The preceding
example specifies that this reservation is periodic on a daily basis and should only exist on business
days.

The time of day during which the requested tasks are to be reserved is specified using the STARTTIME
and ENDTIME attributes. These attributes are specified in standard military time HH:MM:SS format and
both STARTTIME and ENDTIME specification is optional defaulting to midnight at the beginning and end of

Moab Workload Manager

482 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 483

the day respectively. In the preceding example, resources are reserved from 9:00 a.m. until 5:00 p.m. on
business days.

The final aspect of any reservation is the access control list indicating who or what can use the reserved
resources. In the preceding example, the CLASSLIST attribute is used to indicate that jobs requesting the
class "interactive" should be allowed to use this reservation.

Specifying Reservation Resources

In most cases, only a small subset of standing reservation attributes must be specified in any given case.
For example, by default, RESOURCES is set to PROCS=-1 which indicates that each task should reserve
all of the processors on the node on which it is located. This, in essence, creates a one task equals one
node mapping. In many cases, particularly on uniprocessor systems, this default behavior may be easiest
to work with. However, in SMP environments, the RESOURCES attribute provides a powerful means of
specifying an exact, multi-dimensional resource set.

An examination of the parameters documentation shows that the default value of PERIOD is DAYS.
Thus, specifying this parameter in the preceding above was unnecessary. It was used only to
introduce this parameter and indicate that other options exist beyond daily standing reservations.

Example 3-108: Host Constrained Standing Reservation

Although the first example did specify a quantity of resources to reserve, it did not specify where the
needed tasks were to be located. If this information is not specified, Moab attempts to locate the needed
resources anywhere it can find them. The Example 1 reservation essentially discovers hosts where the
needed resources can be found. If the SPACEFLEX reservation flag is set, then the reservation continues
to float to the best hosts over the life of the reservation. Otherwise, it will be locked to the initial set of
allocated hosts.

If a site wanted to constrain a reservation to a subset of available resources, this could be accomplished
using the HOSTLIST attribute. The HOSTLIST attribute is specified as a comma-separated list of
hostnames and constrains the scheduler to only select tasks from the specified list. This attribute can
exactly specify hosts or specify them using host regular expressions. The following example
demonstrates a possible use of the HOSTLIST attribute:

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive

Note that the HOSTLIST attribute specifies a non-contiguous list of hosts. Any combination of hosts may be specified and
hosts may be specified in any order. In this example, the TASKCOUNT attribute is also specified. These two attributes
both apply constraints on the scheduler with HOSTLIST specifying where the tasks can be located and TASKCOUNT
indicating how many total tasks may be allocated. In this example, six tasks are requested but only four hosts are
specified. To handle this, if adequate resources are available, the scheduler may attempt to allocate more than one task
per host. For example, assume that each host is a quad-processor system with 1 GB of memory. In such a case, the
scheduler could allocate up to two tasks per host and even satisfy the TASKCOUNT constraint without using all of the
hosts in the hostlist.

Moab Workload Manager

It is important to note that even if there is a one to one mapping between the value of TASKCOUNT
and the number of hosts in HOSTLIST, the scheduler will not necessarily place one task on each
host. If, for example, node001 and node002 were 8 processor SMP hosts with 1 GB of memory, the
scheduler could locate up to four tasks on each of these hosts fully satisfying the reservation
taskcount without even partially using the remaining hosts. (Moab will place tasks on hosts
according to the policy specified with the NODEALLOCATIONPOLICY parameter.) If the hostlist
provides more resources than what is required by the reservation as specified via TASKCOUNT,
the scheduler will simply select the needed resources within the set of hosts listed.

Enforcing Policies Via Multiple Reservations

Single reservations enable multiple capabilities. Combinations of reservations can further extend a site's
capabilities to impose specific policies.

Example 3-109: Reservation Stacking

If HOSTLIST is specified but TASKCOUNT is not, the scheduler will pack as many tasks as possible onto all
of the listed hosts. For example, assume the site added a second standing reservation named debug to its
configuration that reserved resources for use by certain members of its staff using the following
configuration:

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive
SRCFG[debug] HOSTLIST=node001,node002,node003,node004
SRCFG[debug] USERLIST=helpdesk
SRCFG[debug] GROUPLIST=operations,sysadmin
SRCFG[debug] PERIOD=INFINITY

The new standing reservation is quite simple. Since RESOURCES is not specified, it will allocate all
processors on each host that is allocated. Since TASKCOUNT is not specified, it will allocate every host
listed in HOSTLIST. Since PERIOD is set to INFINITY, the reservation is always in force and there is no
need to specify STARTTIME, ENDTIME, or DAYS.

The standing reservation has two access parameters set using the attributes USERLIST and GROUPLIST.
This configuration indicates that the reservation can be accessed if any one of the access lists specified
is satisfied by the job. In essence, reservation access is logically OR'd allowing access if the requester
meets any of the access constraints specified. In this example, jobs submitted by either user helpdesk or
any member of the groups operations or sysadmin can use the reserved resources (See ACL Modifiers).

Unless ACL Modifiers are specified, access is granted to the logical OR of access lists specified within a
standing reservation and granted to the logical AND of access lists across different standing
reservations. A comparison of the standing reservations interactive and debug in the preceding example
indicates that they both can allocate hosts node001 and node002. If node001 had both of these
reservations in place simultaneously and a job attempted to access this host during business hours when
standing reservation interactive was active. The job could only use the doubly reserved resources if it
requests the run class interactive and it meets the constraints of reservation debug—that is, that it is
submitted by user helpdesk or by a member of the group operations or sysadmin.

Moab Workload Manager

484 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 485

As a rule, the scheduler does not stack reservations unless it must. If adequate resources exist, it can
allocate reserved resources side by side in a single SMP host rather than on top of each other. In the
case of a 16 processor SMP host with two 8 processor standing reservations, 8 of the processors on this
host will be allocated to the first reservation, and 8 to the next. Any configuration is possible. The 16
processor hosts can also have 4 processors reserved for user "John," 10 processors reserved for group
"Staff," with the remaining 2 processors available for use by any job.

Stacking reservations is not usually required but some site administrators choose to do it to enforce
elaborate policies. There is no problem with doing so as long as you can keep things straight. It really is
not too difficult a concept; it just takes a little getting used to. See the Reservation Overview section for
a more detailed description of reservation use and constraints.

As mentioned earlier, by default the scheduler enforces standing reservations by creating a number of
reservations where the number created is controlled by the DEPTH attribute. Each night at midnight, the
scheduler updates its periodic non-floating standing reservations. By default, DEPTH is set to 2, meaning
when the scheduler starts up, it will create two 24-hour reservations covering a total of two days' worth
of time-a reservation for today and one for tomorrow. For daily reservations, at midnight, the
reservations roll, meaning today's reservation expires and is removed, tomorrow's reservation becomes
today's, and the scheduler creates a new reservation for the next day.

With this model, the scheduler continues creating new reservations in the future as time moves forward.
Each day, the needed resources are always reserved. At first, all appears automatic but the standing
reservation DEPTH attribute is in fact an important aspect of reservation rollback, which helps address
certain site specific environmental factors. This attribute remedies a situation that might occur when a
job is submitted and cannot run immediately because the system is backlogged with jobs. In such a case,
available resources may not exist for several days out and the scheduler must reserve these future
resources for this job. With the default DEPTH setting of two, when midnight arrives, the scheduler
attempts to roll its standing reservations but a problem arises in that the job has now allocated the
resources needed for the standing reservation two days out. Moab cannot reserve the resources for the
standing reservation because they are already claimed by the job. The standing reservation reserves
what it can but because all needed resources are not available, the resulting reservation is now smaller
than it should be, or is possibly even empty.

If a standing reservation is smaller than it should be, the scheduler will attempt to add resources each
iteration until it is fully populated. However, in the case of this job, the job is not going to release its
reserved resources until it completes and the standing reservation cannot claim them until this time.
The DEPTH attribute allows a site to specify how deep into the future a standing reservation should
reserve its resources allowing it to claim the resources first and prevent this problem. If a partial
standing reservation is detected on a system, it may be an indication that the reservation's DEPTH
attribute should be increased.

In Example 3, the PERIOD attribute is set to INFINITY. With this setting, a single, permanent standing
reservation is created and the issues of resource contention do not exist. While this eliminates the
contention issue, infinite length standing reservations cannot be made periodic.

Example 3-110: Multiple ACL Types

In most cases, access lists within a reservation are logically OR'd together to determine reservation
access. However, exceptions to this rule can be specified by using the required ACL marker-the asterisk
(*). Any ACL marked with this symbol is required and a job is only allowed to use a reservation if it
meets all required ACLs and at least one non-required ACL (if specified). A common use for this facility is
in conjunction with the TIMELIMIT attribute. This attribute controls the length of time a job may use the

Moab Workload Manager

resources within a standing reservation. This access mechanism can be AND'd or OR'd to the cumulative
set of all other access lists as specified by the required ACL marker. Consider the following example
configuration:

SRCFG[special] TASKCOUNT=32
SRCFG[special] PERIOD=WEEK
SRCFG[special] STARTTIME=1:08:00:00
SRCFG[special] ENDTIME=5:17:00:00
SRCFG[special] NODEFEATURES=largememory
SRCFG[special] TIMELIMIT=1:00:00*
SRCFG[special] QOSLIST=high,low,special-
SRCFG[special] ACCCOUNTLIST=!projectX,!projectY

The above configuration requests 32 tasks which translate to 32 nodes. The PERIOD attribute makes this
reservation periodic on a weekly basis while the attributes STARTTIME and ENDTIME specify the week
offsets when this reservation is to start and end (Note that the specification format has changed to
DD:HH:MM:SS.). In this case, the reservation starts on Monday at 8:00 a.m. and runs until Friday at 5:00
p.m. The reservation is enforced as a series of weekly reservations that only cover the specified time
frame. The NODEFEATURES attribute indicates that each of the reserved nodes must have the node
feature "largememory" configured.

As described earlier, TIMELIMIT indicates that jobs using this reservation can only use it for one hour.
This means the job and the reservation can only overlap for one hour. Clearly jobs requiring an hour or
less of wallclock time meet this constraint. However, a four-hour job that starts on Monday at 5:00 a.m.
or a 12-hour job that starts on Friday at 4:00 p.m. also satisfies this constraint. Also, note the TIMELIMIT
required ACL marker, *; it is set indicating that jobs must not only meet the TIMELIMIT access constraint
but must also meet one or more of the other access constraints. In this example, the job can use this
reservation if it can use the access specified via QOSLIST or ACCOUNTLIST; that is, it is assigned a QoS of
high, low, or special , or the submitter of the job has an account that satisfies the !projectX and !projectY
criteria. See the QoS Overview for more info about QoS configuration and usage.

Affinity

Reservation ACLs allow or deny access to reserved resources but they may be configured to also impact
a job's affinity for a particular reservation. By default, jobs gravitate toward reservations through a
mechanism known as positive affinity. This mechanism allows jobs to run on the most constrained
resources leaving other, unreserved resources free for use by other jobs that may not be able to access
the reserved resources. Normally this is a desired behavior. However, sometimes, it is desirable to
reserve resources for use only as a last resort-using the reserved resources only when there are no
other resources available. This last resort behavior is known as negative affinity. Note the '-' (hyphen or
negative sign) following the special in the QOSLIST values. This special mark indicates that QoS special
should be granted access to this reservation but should be assigned negative affinity. Thus, the QOSLIST
attribute specifies that QoS high and low should be granted access with positive affinity (use the
reservation first where possible) and QoS special granted access with negative affinity (use the
reservation only when no other resources are available).

Affinity status is granted on a per access object basis rather than a per access list basis and always
defaults to positive affinity. In addition to negative affinity, neutral affinity can also be specified using
the equal sign (=) as in QOSLIST[0] normal= high debug= low-.

When a job matches multiple ACLs for a reservation, the final node affinity for the node, job, and
reservation combination is based on the last matching ACL entry found in the configuration file.

Moab Workload Manager

486 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 487

For example, given the following reservation ACLs, a job matching both will receive a negative affinity:

SRCFG[res1] USERLIST=joe+ MAXTIME<=4:00:00-

With the following reservation ACLs, a job matching both will receive a positive affinity:

SRCFG[res1] MAXTIME<=4:00:00- USERLIST=joe+

ACL Modifiers

ACL modifiers allow a site to change the default behavior of ACL processing. By default, a reservation can
be accessed if one or more of its ACLs can be met by the requestor. This behavior can be changed using
the "deny" or "required" ACL modifier, as in the following tables:

Not

Symbol: ! (exclamation point)

Description If attribute is met, the requestor is denied access regardless of any other satisfied ACLs.

Example SRCFG[test] GROUPLIST=staff USERLIST=!steve

Allow access to all staff members other than steve.

Required

Symbol: * (asterisk)

Description All required ACLs must be satisfied for requestor access to be granted.

Example SRCFG[test] QOSLIST=*high MAXTIME=*2:00:00

Only jobs in QoS high that request less than 2 hours of walltime are
granted access.

XOR

Symbol: ^ (carat)

Description All attributes of the type specified other than the ones listed in the ACL satisfy the ACL.

Moab Workload Manager

XOR

Example SRCFG[test] QOSLIST=^high

All jobs other than those requesting QoS high are granted access.

CredLock

Symbol:
& (ampersand)

Description Matching jobs will be required to run on the resources reserved by this reservation. You can use
this modifier on accounts, classes, groups, qualities of service, and users.

Example SRCFG[test] USERLIST=&john

All of user john's jobs must run in this reservation.

HPEnable (hard policy enable)

Symbol: ~ (tilde)

Description ACLs marked with this modifier are ignored during soft policy scheduling and are only considered
for hard policy scheduling once all eligible soft policy jobs start.

Example SRCFG[johnspace] USERLIST=john CLASSLIST=~debug

All of user john's jobs are allowed to run in the reservation at any time. Debug jobs are
also allowed to run in this reservation but are only considered after all of John's jobs are
given an opportunity to start. User john's jobs are considered before debug jobs
regardless of job priority.

If HPEnable and Notmarkers are used in conjunction, then specified credentials are
blocked-out of the reservation during soft-policy scheduling.

Note the ACCOUNTLIST values in Example 3-110 are preceded with an exclamation point, or NOT symbol.
This indicates that all jobs with accounts other than projectX and projectY meet the account ACL. Note
that if a !<X> value (!projectX) appears in an ACL line, that ACL is satisfied by any object not explicitly
listed by a NOT entry. Also, if an object matches a NOT entry, the associated job is excluded from the
reservation even if it meets other ACL requirements. For example, a QoS 3 job requesting account
projectX is denied access to the reservation even though the job QoS matches the QoS ACL.

Moab Workload Manager

488 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 489

Example 3-111: Binding Users to Reservations at Reservation Creation

create a 4 node reservation for john and bind all of john's jobs to that reservation
> mrsvctl -c -a user=&john -t 4

Reservation Ownership

Reservation ownership allows a site to control who owns the reserved resources during the reservation
time frame. Depending on needs, this ownership may be identical to, a subset of, or completely distinct
from the reservation ACL. By default, reservation ownership implies resource accountability and
resources not consumed by jobs are accounted against the reservation owner. In addition, ownership can
also be associated with special privileges within the reservation.

Ownership is specified using the OWNER attribute in the format <CREDTYPE>:<CREDID>, as in
OWNER=USER:john. To enable john's jobs to preempt other jobs using resources within the reservation,
the SRCFG attribute FLAG should be set to OWNERPREEMPT. In the example below, the jupiter project
chooses to share resources with the saturn project but only when it does not currently need them.

Example 3-112: Limited Shared Access

ACCOUNTCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=node0[1-9]
SRCFG[jupiter] PERIOD=INFINITY
SRCFG[jupiter] ACCOUNTLIST=jupiter,saturn-
SRCFG[jupiter] OWNER=ACCT:jupiter
SRCFG[jupiter] FLAGS=OWNERPREEMPT

Partitions

A reservation can be used in conjunction with a partition. Configuring a standing reservation on a
partition allows constraints to be (indirectly) applied to a partition.

Example 3-113: Time Constraints by Partition

The following example places a 3-day wall-clock limit on two partitions and a 64 processor-hour limit on
jobs running on partition small.

SRCFG[smallrsv] PARTITION=small MAXTIME=3:00:00:00 PSLIMIT<=230400 HOSTLIST=ALL
SRCFG[bigrsv] PARTITION=big MAXTIME=3:00:00:00 HOSTLIST=ALL

Resource Allocation Behavior

As mentioned, standing reservations can operate in one of two modes, floating, or non-floating
(essentially node-locked). A floating reservation is created when the flag SPACEFLEX is specified. If a
reservation is non-floating, the scheduler allocates all resources specified by the HOSTLIST parameter
regardless of node state, job load, or even the presence of other standing reservations. Moab interprets
the request for a non-floating reservation as, "I want a reservation on these exact nodes, no matter
what!"

If a reservation is configured to be floating, the scheduler takes a more relaxed stand, searching through
all possible nodes to find resources meeting standing reservation constraints. Only Idle, Running, or Busy
nodes are considered and further, only considered if no reservation conflict is detected. The reservation

Moab Workload Manager

attribute ACCESS modifies this behavior slightly and allows the reservation to allocate resources even if
reservation conflicts exist.

If a TASKCOUNT is specified with or without a HOSTEXPRESSION, Moab will, by default, only
consider "up" nodes for allocation. To change this behavior, the reservation flag IGNSTATE can be
specified as in the following example:

SRCFG[nettest] GROUPLIST=sysadm
SRCFG[nettest] FLAGS=IGNSTATE
SRCFG[nettest] HOSTLIST=node1[3-8]
SRCFG[nettest] STARTTIME=9:00:00
SRCFG[nettest] ENDTIME=17:00:00

Access to existing reservations can be controlled using the reservation flag IGNRSV.

Other standing reservation attributes not covered here include PARTITION and CHARGEACCOUNT. These
parameters are described in some detail in the parameters documentation.

Example 3-114: Using Reservations to Guarantee Turnover

In some cases, it is desirable to make certain a portion of a cluster's resources are available within a
specific time frame. The following example creates a floating reservation belonging to the jupiter account
that guarantees 16 tasks for use by jobs requesting up to one hour.

SRCFG[shortpool] OWNER=ACCT:jupiter
SRCFG[shortpool] FLAGS=SPACEFLEX
SRCFG[shortpool] MAXTIME=1:00:00
SRCFG[shortpool] TASKCOUNT=16
SRCFG[shortpool] STARTTIME=9:00:00
SRCFG[shortpool] ENDTIME=17:00:00
SRCFG[shortpool] DAYS=Mon,Tue,Wed,Thu,Fri

This reservation enables a capability similar to what was known in early Maui releases as "shortpool."
The reservation covers every weekday from 9:00 a.m. to 5:00 p.m., reserving 16 tasks and allowing jobs
to overlap the reservation for up to one hour. The SPACEFLEX flag indicates that the reservation may
be dynamically modified--over time to re-locate to more optimal resources. In the case of a reservation
with the MAXTIME ACL, this would include migrating to resources that are in use but that free up within
the MAXTIME time frame. Additionally, because the MAXTIME ACL defaults to positive affinity, any jobs
that fit the ACL attempt to use available reserved resources first before looking elsewhere.

Rollback Reservations

Rollback reservations are enabled using the ROLLBACKOFFSET attribute and can be used to allow users
guaranteed access to resources, but the guaranteed access is limited to a time-window in the future. This
functionality forces users to commit their resources in the future or lose access.

Moab Workload Manager

490 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 491

Image 3-5: Rollback reservation over 3 iterations

Example 3-115: Rollback Reservations

SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when an idle
reservation is created in the rollback reservation. For example: SRCFG[staff]
ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY.

Modifying Resources with Standing Reservations

Moab can customize compute resources associated with a reservation during the life of the reservation.
This can be done generally using the TRIGGER attribute, or it can be done for operating systems using
the shortcut attribute OS. If set, Moab dynamically reprovisions allocated reservation nodes to the
requested operating system as shown in the following example:

SRCFG[provision] PERIOD=DAY DAY=MON,WED,FRI STARTTIME=7:00:00 ENDTIME=10:00:00
SRCFG[provision] OS=rhel4 # provision nodes to use redhat during reservation, restore
when done

Managing Administrative Reservations
A default reservation with no ACL is termed an administrative reservation, but is occasionally referred to
as a system reservation. It blocks access to all jobs because it possesses an empty access control list. It

Moab Workload Manager

is often useful when performing administrative tasks but cannot be used for enforcing resource usage
policies.

Administrative reservations are created and managed using the mrsvctl command. With this command,
all aspects of reservation time frame, resource selection, and access control can be dynamically
modified. The mdiag -r command can be used to view configuration, state, allocated resource information
as well as identify any potential problems with the reservation. The following table briefly summarizes
commands used for common actions. More detailed information is available in the command summaries.

Action Command

create reservation mrsvctl -c <RSV_DESCRIPTION>

list reservations mrsvctl -l

release reservation mrsvctl -r <RSVID>

modify reservation mrsvctl -m <ATTR>=<VAL> <RSVID>

query reservation configuration mdiag -r <RSVID>

display reservation hostlist mrsvctl -q resources <RSVID>

Related topics

l SRCFG (configure standing reservations)
l RSVPROFILE (create reservation profiles)

Personal Reservations
l Enabling Personal Reservation Management

l Reservation Accountability and Defaults

o Reservation Allocation and Charging

o Setting Reservation Default Attributes

l Reservation Limits

l Reservation and Job Binding

o Constraining a job to only run in a particular reservation

o Constraining a Reservation to Only Accept Certain Jobs

By default, advance reservations are only available to scheduler administrators. While administrators
may create and manage reservations to provide resource access to end-users, end-users cannot create,
modify, or destroy these reservations. Moab extends the ability to manage reservations to end-users and

Moab Workload Manager

492 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 493

provides control facilities to keep these features manageable. Reservations created by end-users are
called personal reservations or user reservations.

Enabling Personal Reservation Management
User, or personal, reservations can be enabled on a per QoS basis by setting the ENABLEUSERRSV flag
as in the following example:

QOSCFG[titan] QFLAGS=ENABLEUSERRSV # allow 'titan' QOS jobs to create user
reservations
USERCFG[DEFAULT] QDEF=titan # allow all users to access 'titan' QOS
...

If set, end-users are allowed to create, modify, cancel, and query reservations they own. As with jobs,
users may associate a personal reservation with any QoS or account to which they have access. This is
accomplished by specifying per reservation accountable credentials as in the following example:

> mrsvctl -c -S AQOS=titan -h node01 -d 1:00:00 -s 1:30:00
Note: reservation test.126 created

As in the preceding example, a non-administrator user who wants to create a reservation must ALWAYS
specify an accountable QoS with the mrsvctl -S flag. This specified QoS must have the
ENABLEUSERRSVflag. By default, a personal reservation is created with an ACL of only the user who
created it.

Example 3-116: Allow All Users in Engineering Group to Create Personal Reservations

QOSCFG[rsv] QFLAGS=ENABLEUSERRSV # allow 'rsv' QOS jobs to create user
reservations
GROUPCFG[sales] QDEF=rsv # allow all users in group sales to access 'rsv'
QOS
...

Example 3-117: Allow Specific Users to Create Personal Reservations

special qos has higher job priority and ability to create user reservations
QOSCFG[special] QFLAGS=ENABLEUSERRSV
QOSCFG[special] PRIORITY=1000
allow betty and steve to use the special qos
USERCFG[betty] QDEF=special
USERCFG[steve] QLIST=fast,special,basic QDEF=rsv
...

Reservation Accountability
Personal reservations must be configured with a set of accountable credentials. These credentials (user,
group, account, and so forth) indicate who is responsible for the resources dedicated by the reservation.
If resources are dedicated by a reservation but not consumed by a job, these resources can be charged
against the specified accountable credentials. Administrators are allowed to create reservations and
specify any accountable credentials for that reservation. While end-users can also be allowed to create
and otherwise modify personal reservations, they are only allowed to create reservations with
accountable credentials to which they have access. Further, while administrators may manage any
reservation, end-users may only control reservations they own.

Moab Workload Manager

Like jobs, reservation accountable credentials specify which credentials are charged for reservation
usage and what policies are enforced as far as usage limits and allocation management is concerned.
(See the mrsvctl command documentation for more information on setting personal reservation
credentials.) While similar to jobs, personal reservations do have a separate set of usage limits and
different allocation charging policies.

Setting Reservation Default Attributes

Organizations can use reservation profiles to set default attributes for personal reservations. These
attributes can include reservation aspects such as management policies, charging credentials, ACLs, host
constraints, and time frame settings.

Reservation Limits
Allowing end-users the ability to create advance reservations can lead to potentially unfair and
unproductive resource usage. This results from the fact that by default, there is nothing to prevent a
user from reserving all resources in a given system or reserving resources during time slots that would
greatly impede the scheduler's ability to schedule jobs efficiently. Because of this, it is highly advised
that sites initially place either usage or allocation based constraints on the use of personal reservations.
This can be achieved using Moab Accounting Manager (see the Moab Accounting Manager
Administrator Guide).

Reservation and Job Binding
Moab allows job-to-reservation binding to be configured at an administrator or end-user level. This
binding constrains how job to reservation mapping is allowed.

Constraining a job to only run in a particular reservation

Jobs may be bound to a particular reservation at submit time (using the RM extension ADVRES) or
dynamically using the mjobctl command (See Job to Reservation Mapping.). In either case, once bound to
a reservation, a job may only run in that reservation even if other resources may be found outside of
that reservation. The mjobctl command may also be used to dynamically release a job from reservation
binding.

Example 3-118: Bind job to reservation

> mjobctl -m flags+=advres:grid.3 job1352

Example 3-119: Release job from reservation binding

> mjobctl -m flags-=advres job1352

Constraining a Reservation to Only Accept Certain Jobs

Binding a job to a reservation is independent of binding a reservation to a job. For example, a
reservation may be created for user "steve." User "steve" may then submit a number of jobs including
one that is bound to that reservation using the ADVRES attribute. However, this binding simply forces
that one job to use the reservation, it does not prevent the reservation from accepting other jobs

Moab Workload Manager

494 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 495

submitted by user "steve." To prevent these other jobs from using the reserved resources, reservation to
job binding must occur. This binding is accomplished by specifying either general job binding or specific
job binding.

General job binding is the most flexible form of binding. Using the BYNAME attribute, a reservation may
be created that only accepts jobs specifically bound to it.

Specific job binding is more constraining. This form of binding causes the reservation to only accept
specific jobs, regardless of other job attributes and is set using the JOB reservation ACL.

Example 3-120: Configure a reservation to accept only jobs that are bound to it

> mrsvctl -m flags+=byname grid.3

Example 3-121: Remove general reservation to job binding

> mrsvctl -m flags-=byname grid.3

Example 3-122: Configure a reservation to accept a specific job

> mrsvctl -m -a JOB=3456 grid.3

Example 3-123: Remove a specific reservation to job binding

> mrsvctl -m -a JOB=3456 grid.3 --flags=unset

Partitions
l Partition Overview

l Defining Partitions

l Managing Partition Access

l Requesting Partitions

l Per-Partition Settings

l Miscellaneous Partition Issues

Partition Overview
Partitions are a logical construct that divide available resources. Any single resource (compute node)
may only belong to a single partition. Often, natural hardware or resource manager bounds delimit
partitions such as in the case of disjoint networks and diverse processor configurations within a cluster.
For example, a cluster may consist of 256 nodes containing four 64 port switches. This cluster may
receive excellent interprocess communication speeds for parallel job tasks located within the same
switch but sub-stellar performance for tasks that span switches. To handle this, the site may choose to
create four partitions, allowing jobs to run within any of the four partitions but not span them.

While partitions do have value, it is important to note that within Moab, the standing reservation facility
provides significantly improved flexibility and should be used in the vast majority of politically

Moab Workload Manager

motivated cases where partitions may be required under other resource management systems. Standing
reservations provide time flexibility, improved access control features, and more extended resource
specification options. Also, another Moab facility called Node Sets allows intelligent aggregation of
resources to improve per job node allocation decisions. In cases where system partitioning is considered
for such reasons, node sets may be able to provide a better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability to specify
partition specific policies, limits, priorities, and scheduling algorithms although this feature is rarely
required. An example of this need may be a cluster consisting of 48 nodes owned by the Astronomy
Department and 16 nodes owned by the Mathematics Department. Each department may be willing to
allow sharing of resources but wants to specify how their partition will be used. As mentioned, many of
Moab's scheduling policies may be specified on a per partition basis allowing each department to control
the scheduling goals within their partition.

The partition associated with each node should be specified as indicated in the Node Location section.
With this done, partition access lists may be specified on a per job or per QoS basis to constrain which
resources a job may have access to. (See the QoS Overview for more information.) By default, QoSs and
jobs allow global partition access. Note that by default, a job may only use resources within a single
partition.

If no partition is specified, Moab creates one partition per resource manager into which all resources
corresponding to that resource manager are placed. (This partition is given the same name as the
resource manager.)

A partition may not span multiple resource managers. In addition to these resource manager
partitions, a pseudo-partition named " [ALL]" is created that contains the aggregate resources of
all partitions.

While the resource manager partitions are real partitions containing resources not explicitly
assigned to other partitions, the " [ALL]" partition is only a convenience object and is not a real
partition; thus it cannot be requested by jobs or included in configuration ACLs.

Defining Partitions
Node to partition mappings can be established directly using the NODECFG parameter or indirectly using
the FEATUREPARTITIONHEADER parameter. If using direct mapping, this is accomplished as shown in
the example that follows.

NODECFG[node001] PARTITION=astronomy
NODECFG[node002] PARTITION=astronomy
...
NODECFG[node049] PARTITION=math
...

By default, Moab creates two partitions, "DEFAULT" and "[ALL]." These are used internally, and
consume spots in the 31-partition maximum defined in the MMAX_PAR parameter. If more
partitions are needed, you can adjust the maximum partition count. See Adjusting Default Limits
for information on increasing the maximum number of partitions.

Moab Workload Manager

496 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 497

Managing Partition Access
Partition access can be constrained by credential ACLs and by limits based on job resource requirements.

Credential Based Access

Determining who can use which partition is specified using the *CFG parameters (USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG). These parameters allow you to select a partition access
list on a credential or system wide basis using the PLIST attribute. By default, the access associated with
any given job is the logical OR of all partition access lists assigned to the job's credentials.

For example, assume a site with two partitions, general, and test. The site management would like
everybody to use the general partition by default. However, one user, Steve, needs to perform the
majority of his work on the test partition. Two special groups, staff and management will also need
access to use the test partition from time to time but will perform most of their work in the general
partition. The following example configuration enables the needed user and group access and defaults for
this site:

SYSCFG[base] PLIST=general:test
USERCFG[DEFAULT] PLIST=general
USERCFG[steve] PLIST=general:test
GROUPCFG[staff] PLIST=general:test
GROUPCFG[mgmt] PLIST=general:test

While using a logical OR approach allows sites to add access to certain jobs, some sites prefer to work
the other way around. In these cases, access is granted by default and certain credentials are then
restricted from accessing various partitions. To use this model, a system partition list must be specified
as in the following example:

SYSCFG[base] PLIST=general,test&
USERCFG[demo] PLIST=test&
GROUPCFG[staff] PLIST=general&

In the preceding example, note the ampersand (&). This character, which can be located anywhere in the
PLIST line, indicates that the specified partition list should be logically AND'd with other partition access
lists. In this case, the configuration limits jobs from user demo to running in partition test and jobs from
group staff to running in partition general. All other jobs are allowed to run in either partition.

When using AND-based partition access lists, the base system access list must be specified with
SYSCFG.

Per Job Resource Limits

Access to partitions can be constrained based on the resources requested on a per job basis with limits
on both minimum and maximum resources requested. All limits are specified using PARCFG. See Usage
Limits for more information on the available limits.

PARCFG[amd] MAX.PROC=16
PARCFG[pIII] MAX.WCLIMIT=12:00:00 MIN.PROC=4
PARCFG[aix] MIN.NODE=12

Moab Workload Manager

Requesting Partitions
Users may request to use any partition they have access to on a per job basis. This is accomplished using
the resource manager extensions since most native batch systems do not support the partition concept.
For example, on a TORQUE system, a job submitted by a member of the group staff could request that
the job run in the test partition by adding the line -l partition=test to the qsub command line. See
the resource manager extension overview for more information on configuring and using resource
manager extensions.

Per-Partition Settings
The following settings can be specified on a per-partition basis using the PARCFG parameter:

Setting Description

GMETRIC Specifies a generic metric to apply to the partition. It is configured like a Moab
parameter, with the gmetric name inside square brackets. Specify multiple gmetrics
by separating each configuration with a space. For example:

PARCFG[par1] GMETRIC[GM1]=20 GMETRIC[GM2]=10

Partition par1 has a GM1metric of 20 and a GM2metric of 10.

JOBNODEMATCHPOLICY Specifies the JOBNODEMATCHPOLICY to be applied to jobs that run in the specified
partition.

NODEACCESSPOLICY Specifies the NODEACCESSPOLICY to be applied to jobs that run in the specified
partition.

NODEALLOCATIONPOLICY Specifies the NODEALLOCATIONPOLICY to be applied to jobs that run in the spe-
cified partition.

USETTC Specifies whether TTC specified at submission should be used and displayed by
the scheduler.

VMCREATEDURATION Specifies the maximum amount of time VM creation can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

VMDELETEDURATION Specifies the maximum amount of time VM deletion can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

VMMIGRATEDURATION Specifies the maximum amount of time VM migration can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

Moab Workload Manager

498 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 499

Miscellaneous Partition Issues
A brief caution: Use of partitions has been quite limited in recent years as other, more effective
approaches are selected for site scheduling policies. Consequently, some aspects of partitions have
received only minor testing. Still, note that partitions are fully supported and any problem found will be
rectified.

Related topics

l Standing Reservations
l Node Sets
l FEATUREPARTITIONHEADER parameter
l PARCFG parameter

Quality of Service (QoS) Facilities
This section describes how to do the following:

l Allow key projects access to special services (such as preemption, resource dedication, and
advance reservations).

l Provide access to special resources by requested QoS.

l Enable special treatment within priority and fairshare facilities by requested QoS.

l Provide exemptions to usage limits and other policies by requested QoS.

l Specify delivered service and response time targets.

l Enable job deadline guarantees.

l Control the list of QoSs available to each user and job.

l Enable special charging rates based on requested or delivered QoS levels.

l Enable limits on the extent of use for each defined QoS.

l Monitor current and historical usage for each defined QoS.

It contains the following sub-sections:

l QoS Overview

l QoS Enabled Privileges

o Special Prioritization

o Service Access and Constraints

o Usage Limits and Overrides

o Service Access Thresholds

o Preemption Management

l Managing QoS Access

Moab Workload Manager

l Requesting QoS Services at Job Submission

l Restricting Access to Special Attributes

QoS Overview
Moab's QoS facility allows a site to give special treatment to various classes of jobs, users, groups, and
so forth. Each QoS object can be thought of as a container of special privileges ranging from fairness
policy exemptions, to special job prioritization, to special functionality access. Each QoS object also has
an extensive access list of users, groups, and accounts that can access these privileges.

Sites can configure various QoSs each with its own set of priorities, policy exemptions, and special
resource access settings. They can then configure user, group, account, and class access to these QoSs. A
given job will have a default QoS and may have access to several additional QoSs. When the job is
submitted, the submitter may request a specific QoS or just allow the default QoS to be used. Once a job
is submitted, a user may adjust the QoS of the job at any time using the setqos command. The setqos
command will only allow the user to modify the QoS of that user's jobs and only change the QoS to a QoS
that this user has access to. Moab administrators may change the QOS of any job to any value.

Jobs can be granted access to QoS privileges if the QoS is listed in the system default configuration QDEF
(QoS default) or QLIST (QoS access list), or if the QoS is specified in the QDEF or QLIST of a user, group,
account, or class associated with that job. Alternatively, a user may access QoS privileges if that user is
listed in the QoSs MEMBERULIST attribute.

The mdiag -q command can be used to obtain information about the current QoS configuration including
specified credential access.

QoS Enabled Privileges
The privileges enabled via QoS settings may be broken into the following categories:

l Special Prioritization on page 500

l Service Access and Constraints on page 501

l Usage Limits and Overrides on page 504

l Service Access Thresholds on page 505

l Preemption Management on page 505

All privileges are managed via the QOSCFG parameter.

Special Prioritization

Attribute name Description

FSTARGET Specifies QoS fairshare target.

FSWEIGHT Sets QoS fairshare weight offset affecting a job's fairshare priority component.

Moab Workload Manager

500 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 501

Attribute name Description

PRIORITY Assigns priority to all jobs requesting particular QoS.

QTTARGET Sets QoS queuetime target affecting a job's target priority component and QoS delivered.

QTWEIGHT Sets QoS queuetime weight offset affecting a job's service priority component.

XFTARGET Sets QoS XFactor target affecting a job's target priority component and QoS delivered.

XFWEIGHT Sets QoS XFactor weight offset affecting a job's service priority component.

Example 3-124:

assign priority for all qos geo jobs

QOSCFG[geo] PRIORITY=10000

Service Access and Constraints

The QoS facility can be used to enable special services and to disable default services. These services
are enabled/disabled by setting the QoS QFLAGS attribute.

Flag Name Description

DEADLINE Job may request an absolute or relative completion deadline and Moab will reserve
resources to meet that deadline. (An alternative priority based deadline behavior is
discussed in the PRIORITY FACTORS section.)

DEDICATED Moab dedicates all resources of an allocated node to the job meaning that the job
will not share a node's compute resources with any other job.

ENABLEUSERRSV Allow user or personal reservations to be created and managed.

IGNALL Scheduler ignores all resource usage policies for jobs associated with this QoS.

Moab Workload Manager

Flag Name Description

JOBPRIOACCRUALPOLICY Specifies how Moab should track the dynamic aspects of a job's priority. The two
valid values are ACCRUE and RESET.

l ACCRUE indicates that the job will accrue queuetime based priority from
the time it is submitted unless it violates any of the policies not specified in
JOBPRIOEXCEPTIONS.

l RESET indicates that it will accrue priority from the time it is submitted
unless it violates any of the JOBPRIOEXCEPTIONS. However, with RESET, if
the job does violate JOBPRIOEXCEPTIONS then its queuetime based priority
will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but can be configured to
work only in QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been deprecated and
should be adjusted to the following values:

l QUEUEPOLICY = ACCRUE and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l QUEUEPOLICYRESET = RESET and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l ALWAYS = ACCRUE and JOBPRIOEXCEPTIONS ALL
l FULLPOLICY = ACCRUE and JOBPRIOEXCEPTIONS NONE
l FULLPOLICYRESET = RESET and JOBPRIOEXCEPTIONS NONE

JOBPRIOEXCEPTIONS Specifies exceptions for calculating a job's dynamic priority (QUEUETIME, XFACTOR,
TARGETQUEUETIME). Valid values are a comma delimited list of any of the
following: DEFER,DEPENDS, SOFTPOLICY,HARDPOLICY, IDLEPOLICY,
USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE can also be
specified on their own).
Normally, when a job violates a policy, is placed on hold, or has an unsatisfied
dependency, it will not accrue priority. Exceptions can be configured to allow a job
to accrue priority in spite of any of these violations. With DEPENDS a job will
increase in priority even if there exists an unsatisfied dependency. With
SOFTPOLICY,HARDPOLICY, or IDLEPOLICY a job can accrue priority despite
violating a specific limit. With DEFER,USERHOLD, BATCHHOLD, or
SYSTEMHOLD a job can accrue priority despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be configured to work
only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

NOBF Job is not considered for backfill.

Moab Workload Manager

502 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 503

Flag Name Description

NORESERVATION Job should never reserve resources regardless of priority.

NTR Job is prioritized as next to run (NTR) and backfill is disabled to prevent other jobs
from jumping in front of ones with the NTR flag.

It is important to note that jobs marked with this flag should not be blocked.
If they are, Moab will stop scheduling because if a job is marked with this
flag, no other jobs will be run until the flagged NTR (Next to Run) job starts.
Consider using the PRIORITY attribute of the QOSCFG[<QOSID>] on page
1001 parameter instead, when possible. Or, as you may encounter a
scheduling delay for NTR-flagged jobs to start, consider using the
RESERVATIONDEPTH and RESERVATIONQOSLIST parameters to provide
better scheduling flow. See Reservation Policies on page 458 (especially
the section on Assigning Per-QoS Reservation Creation Rules) for more
information.

PREEMPTCONFIG User jobs may specify options to alter how preemption impacts the job such as min-
preempttime.

PREEMPTEE Job may be preempted by higher priority PREEMPTOR jobs.

PREEMPTFSV Job may be preempted by higher priority PREEMPTOR jobs if it exceeds its fairshare
target when started.

PREEMPTOR Job may preempt lower priority PREEMPTEE jobs.

PREEMPTSPV Job may be preempted by higher priority PREEMPTOR jobs if it currently violates a
soft usage policy limit.

PROVISION If the job cannot locate available resources with the needed OS or software, the
scheduler may provision a number of nodes to meet the needed OS or software
requirements.

RESERVEALWAYS Job should create resource reservation regardless of job priority.

RUNNOW Boosts a job's system priority and makes the job a preemptor.

RUNNOW overrides resource restrictions such as MAXJOB or MAXPROC.

TRIGGER The job is able to directly specify triggers.

Moab Workload Manager

Flag Name Description

USERESERVED[:<RSVID>] Job may only use resources within accessible reservations. If <RSVID> is specified,
job may only use resources within the specified reservation.

Example 3-125: For lowprio QoS job, disable backfill and make job preemptible

QOSCFG[lowprio] QFLAGS=NOBF,PREEMPTEE

Example 3-126: Bind all jobs to chemistry reservation

QOSCFG[chem-b] QFLAGS=USERESERVED:chemistry

Other QoS Attributes

In addition to the flags, there are attributes that alter service access.

Attribute name Description

SYSPRIO Sets the system priority on jobs associated with this QoS.

Example 3-127: All jobs submitted under a QoS sample receive a system priority of 1

QOSCFG[sample] SYSPRIO=1

Per QoS Required Reservations

If desired, jobs associated with a particular QoS can be locked into a reservation or reservation group
using the REQRID attribute. For example, to force jobs using QoS jasper to only use the resources within
the failsafe standing reservation, use the following:

QOSCFG[jasper] REQRID=failsafe
...

Usage Limits and Overrides

All credentials, including QoS, allow specification of job usage limits as described in the Basic Fairness
Policies overview. In such cases, jobs are constrained by the most limiting of all applicable policies. With
QoSs, an override limit may also be specified and with this limit, jobs are constrained by the override,
regardless of other limits specified. The following parameters can override the throttling policies from
other credentials:

OMAXJOB, OMAXNODE, OMAXPE, OMAXPROC, OMAXPS, OMAXJPROC, OMAXJPS, OMAXJWC, and
OMAXJNODE.

(See Usage Limits/Throttling Policies Override Limits.)

Moab Workload Manager

504 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 505

Example 3-128:

staff QoS should have a limit of 48 jobs, ignoring the user limit
USERCFG[DEFAULT] MAXJOB=10
QOSCFG[staff] OMAXJOB=48

Service Access Thresholds

Jobs can be granted access to services such as preemption and reservation creation, and they can be
granted access to resource reservations. However, with QoS thresholds, this access can be made
conditional on the current queuetime and XFactor metrics of an idle job. The following table lists the
available QoS service thresholds:

Threshold attribute Description

PREEMPTQTTHRESHOLD A job with this QoS becomes a preemptor if the specified queuetime threshold is
reached.

PREEMPTXFTHRESHOLD A job with this QoS becomes a preemptor if the specified XFactor threshold is
reached.

RSVQTTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if the
specified queuetime threshold is reached.

RSVXFTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if the
specified XFactor threshold is reached.

ACLQTTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if the
specified queuetime threshold is reached.

ACLXFTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if the
specified XFactor threshold is reached.

TRIGGERQTTHRESHOLD If a job with this QoS fails to run before this threshold is reached, any failure trig-
gers associated with this QoS will fire.

Preemption Management

Job preemption facilities can be controlled on a per-QoS basis using the PREEMPTEE and PREEMPTOR
flags. Jobs that are preemptible can optionally be constrained to only be preempted in a particular
manner by specifying the QoS PREEMPTPOLICY attribute as in the following example:

QOSCFG[special] QFLAGS=PREEMPTEE PREEMPTPOLICY=CHECKPOINT

For preemption to be effective, a job must be marked as a preemptee and must be enabled for the
requested preemption type. For example, if the PREEMPTPOLICY is set to suspend, a potential target job
must be both a preemptee and marked with the job flag SUSPENDABLE. (See suspension for more

Moab Workload Manager

information.) If the target job is not suspendable, it will be either requeued or canceled. Likewise, if the
PREEMPTPOLICY is set to requeue, the job will be requeued if it is marked restartable. Otherwise, it will
be canceled.

The minimum time a job must run before being considered eligible for preemption can also be configured
on a per-QoS basis using the PREEMPTMINTIME parameter, which is analogous to the
JOBPREEMPTMINACTIVETIME. Conversely, PREEMPTMAXTIME sets a threshold for which a job is no
longer eligible for preemption; see JOBPREEMPTMAXACTIVETIME for analogous details.

The PREEMPTEES attribute allows you to specify which QoSs that a job in a specific QoS is allowed to
preempt. The PREEMPTEES list is a comma-delimited list of QoS IDs. When a PREEMPTEES attribute is
specified, a job using that QoS can only preempt jobs using QoSs listed in the PREEMPTEES list. In turn,
those QoSs must be flagged as PREEMPTEE as in the following example:

QOSCFG[a] QFLAGS=PREEMPTOR PREEMPTEES=b,c
QOSCFG[b] QFLAGS=PREEMPTEE
QOSCFG[c] QFLAGS=PREEMPTEE

In the example, jobs in the 'a' QoS can only preempt jobs in the b and c QoSs.

Managing QoS Access

Specifying Credential Based QoS Access

You can define the privileges allowed within a QoS by using the QOSCFG parameter; however, in most
cases access to the QoS is enabled via credential specific *CFG parameters, specifically the USERCFG,
GROUPCFG, ACCOUNTCFG, and CLASSCFG parameters, which allow defining QoS access lists and QoS
defaults. Specify credential specific QoS access by using the QLIST and/or QDEF attributes of the
associated credential parameter.

QOS Access via Logical OR

To enable QoS access, the QLIST and/or QDEF attributes of the appropriate user, group, account, or
class/queue should be specified as in the following example:

user john's jobs can access QOS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development qos
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal qos
CLASSCFG[batch] QDEF=normal

By default, jobs may request a QoS if access to that QoS is allowed by any of the job's credentials. (In the
previous example, a job from user john submitted to the class batch could request QoSs geo, chem, staff,
or normal).

QOS Access via Logical AND

If desired, QoS access can be masked or logically AND'd if the QoS access list is specified with a
terminating ampersand (&) as in the following example:

Moab Workload Manager

506 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Controlling Resource Access - Reservations, Partitions, and QoS Facilities 507

user john's jobs can access QOS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development qos
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal qos
CLASSCFG[batch] QDEF=normal
class debug jobs can only access the development or lowpri QoSs regardless of other
credentials
CLASSCFG[debug] QLIST=development,lowpri&

Specifying QoS Based Access

QoS access may also be specified from within the QoS object using the QoS MEMBERULIST attribute as in
the following example:

define qos premiere and grant access to users steve and john
QOSCFG[premiere] PRIORITY=1000 QFLAGS=PREEMPTOR MEMBERULIST=steve,john

By default, if a job requests a QoS that it cannot access, Moab places a hold on that job. The
QOSREJECTPOLICY can be used to modify this behavior.

Requesting QoS Services at Job Submission
By default, jobs inherit a default QoS based on the user, group, class, and account associated with the job.
If a job has access to multiple QoS levels, the submitter can explicitly request a particular QoS using the
QoS resource manager extension as in the following example:

> msub -l nodes=1,walltime=100,qos=special3 job.cmd

Restricting Access to Special Attributes
By default, Moab allows all users access to special attributes such as node access policy. By enabling the
QoS facility SPECATTRS, the access to these policies can be restricted. For example, to enable the facility,
in the moab.cfg file, specify QOSCFG[DEFAULT] SPECATTRS=. Then, to allow access to the special
attributes, indicate which special attributes a specific QoS may access.

QOSCFG[DEFAULT] SPECATTRS=
QOSCFG[high] SPECATTRS=NACCESSPOLICY

Related topics

l Credential Overview
l Allocation Management Overview
l Rollback Reservations
l Job Deadlines
l Using QoS preemption

Moab Workload Manager

Optimizing Scheduling Behavior – Backfill and Node
Sets

l Optimization Overview on page 508

l Backfill on page 509

l Node Set Overview on page 515

Optimization Overview
Moab optimizes cluster performance. Every policy, limit, and feature is designed to allow maximum
scheduling flexibility while enforcing the required constraints. A driving responsibility of the scheduler is
to do all in its power to maximize system use and to minimize job response time while honoring the
policies that make up the site's mission goals.

However, as all jobs are not created equal, optimization must be abstracted slightly further to
incorporate this fact. Cluster optimization must also focus on targeted cycle delivery. In the scientific
HPC community, the true goal of a cluster is to maximize delivered research. For businesses and other
organizations, the purposes may be slightly different, but all organizations agree on the simple tenet
that the cluster should optimize the site's mission goals.

To obtain this goal, the scheduler has several levels of optimization it performs:

Level Description

Workload
Ordering

Prioritizing workload and utilizing backfill

Intelligent
Resource
Allocation

Selecting those resources that best meet the job's needs or best enable future jobs to run (see
node allocation)

Maximizing
Intra-Job
Efficiency

Selecting the type of nodes, collection of nodes, and proximity of nodes required to maximize job
performance by minimizing both job compute and inter-process communication time (see node
sets and node allocation)

Job Pree-
mption

Preempting jobs to allow the most important jobs to receive the best response time (see pree-
mption)

Utilizing
Flexible
Policies

Using policies that minimize blocking and resource fragmentation while enforcing needed con-
straints (see soft throttling policies and reservations)

Moab Workload Manager

508 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 509

Backfill
l Backfill Overview

l Backfill Algorithms

l Configuring Backfill

Backfill Overview
Backfill is a scheduling optimization that allows a scheduler to make better use of available resources by
running jobs out of order. When Moab schedules, it prioritizes the jobs in the queue according to a
number of factors and then orders the jobs into a highest priority first (or priority FIFO) sorted list. It
starts the jobs one by one stepping through the priority list until it reaches a job it cannot start. Because
all jobs and reservations possess a start time and a wallclock limit, Moab can determine the completion
time of all jobs in the queue. Consequently, Moab can also determine the earliest the needed resources
will become available for the highest priority job to start.

Backfill operates based on this earliest job start information. Because Moab knows the earliest the
highest priority job can start, and which resources it will need at that time, it can also determine which
jobs can be started without delaying this job. Enabling backfill allows the scheduler to start other, lower-
priority jobs so long as they do not delay the highest priority job. If backfill is enabled, Moab protects
the highest priority job's start time by creating a job reservation to reserve the needed resources at the
appropriate time. Moab then can start any job that will not interfere with this reservation.

Image 3-6: Scheduling with backfill

Moab Workload Manager

Backfill offers significant scheduler performance improvement. In a typical large system, enabling
backfill increases system utilization by about 20% and improves turnaround time by an even greater
amount. Because of the way it works, essentially filling in holes in node space, backfill tends to favor
smaller and shorter running jobs more than larger and longer running ones. It is common to see over
90% of these small and short jobs backfilled. Consequently, sites will see marked improvement in the
level of service delivered to the small, short jobs and moderate to little improvement for the larger,
long ones.

With most algorithms and policies, there is a trade-off. Backfill is not an exception but the negative
effects are minor. Because backfill locates jobs to run from throughout the idle job queue, it tends to
diminish the influence of the job prioritization a site has chosen and thus may negate some desired
workload steering attempts through this prioritization. Although by default the start time of the highest
priority job is protected by a reservation, there is nothing to prevent the third priority job from starting
early and possibly delaying the start of the second priority job. This issue is addressed along with its
trade-offs later in this section.

Another problem is a little more subtle. Consider the following scenario involving a two-processor
cluster. Job A has a four-hour wallclock limit and requires one processor. It started one hour ago (time
zero) and will reach its wallclock limit in three more hours. Job B is the highest priority idle job and
requires two processors for one hour. Job C is the next highest priority job and requires one processor
for two hours. Moab examines the jobs and correctly determines that job A must finish in three hours
and thus, the earliest job B can start is in three hours. Moab also determines that job C can start and
finish in less than this amount of time. Consequently, Moab starts job C on the idle processor at time one.
One hour later (time two), job A completes early. Apparently, the user overestimated the amount of time
job A would need by a few hours. Since job B is now the highest priority job, it should be able to run.
However, job C, a lower priority job was started an hour ago and the resources needed for job B are not
available. Moab re-evaluates job B's reservation and determines that it can slide forward an hour. At
time three, job B starts.

In review, backfill provided positive benefits. Job A successfully ran to completion. Job C was started
immediately. Job B was able to start one hour sooner than its original target time, although, had backfill
not been enabled, job B would have been able to run two hours earlier.

The scenario just described occurs quite frequently because user estimates for job duration are
generally inaccurate. Job wallclock estimate accuracy, or wallclock accuracy, is defined as the ratio of
wall time required to actually run the job divided by the wall time requested for the job. Wallclock
accuracy varies from site to site but the site average is rarely better than 50%. Because the quality of
the walltime estimate provided by the user is so low, job reservations for high priority jobs are often
later than they need to be.

Although there do exist some minor drawbacks with backfill, its net performance impact on a site's
workload is very positive. While a few of the highest priority jobs may get temporarily delayed, their
position as highest priority was most likely accelerated by the fact that jobs in front of them were able
to start earlier due to backfill. Studies have shown that only a very small number of jobs are truly
delayed and when they are, it is only by a fraction of their total queue time. At the same time, many jobs
are started significantly earlier than would have occurred without backfill.

The following image demonstrates how Moab might schedule a queue using backfill.

Moab Workload Manager

510 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 511

Backfill Algorithms
The algorithm behind Moab backfill scheduling is straightforward, although there are a number of issues
and parameters that should be highlighted. First of all, Moab makes two backfill scheduling passes. For
each pass, Moab selects a list of jobs that are eligible for backfill. On the first pass, only those jobs that
meet the constraints of the soft fairness throttling policies are considered and scheduled. The second
pass expands this list of jobs to include those that meet the hard (less constrained) fairness throttling
policies.

The second important concept regarding Moab backfill is the concept of backfill windows. The figure
below shows a simple batch environment containing two running jobs and a reservation for a third job.
The present time is represented by the leftmost end of the box with the future moving to the right. The
light gray boxes represent currently idle nodes that are eligible for backfill. For this example, let's
assume that the space represented covers 8 nodes and a 2 hour time frame. To determine backfill
windows, Moab analyzes the idle nodes essentially looking for largest node-time rectangles. It
determines that there are two backfill windows. The first window, Window 1, consists of 4 nodes that are
available for only one hour (because some of the nodes are blocked by the reservation for Job 3). The
second window contains only one node but has no time limit because this node is not blocked by the
reservation for Job 3. It is important to note that these backfill windows overlap.

Moab Workload Manager

Image 3-7: Backfillable nodes create backfill windows 1 and 2

Once the backfill windows have been determined, Moab begins to traverse them. The current behavior is
to traverse these windows widest window first (most nodes to fewest nodes). As each backfill window is
evaluated, Moab applies the backfill algorithm specified by the BACKFILLPOLICY parameter.

If the FIRSTFIT algorithm is applied, the following steps are taken:

Moab Workload Manager

512 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 513

1. The list of feasible backfill jobs is filtered, selecting only those that will actually fit in the current
backfill window.

2. The first job is started.

3. While backfill jobs and idle resources remain, repeat step 1.

If NONE is set, the backfill policy is disabled.

Other backfill policies behave in a generally similar manner. The parameters documentation provides
further details.

Liberal versus Conservative Backfill

By default, Moab reserves only the highest priority job resulting in a liberal and aggressive backfill. This
reservation guarantees that backfilled jobs will not delay the highest priority job, although they may
delay other jobs. The parameter RESERVATIONDEPTH controls how conservative or liberal the backfill
policy is. This parameter controls how deep down the queue priority reservations will be made. While
increasing this parameter improves guarantees that priority jobs will not be bypassed, it reduces the
freedom of the scheduler to backfill resulting in somewhat lower system utilization. The significance of
the trade-offs should be evaluated on a site by site basis.

Configuring Backfill

Backfill Policies

Backfill is enabled in Moab by specifying the BACKFILLPOLICY parameter. By default, backfill is enabled
in Moab using the FIRSTFIT algorithm. However, this parameter can also be set to NONE (disabled).

The number of reservations that protect the resources required by priority jobs can be controlled using
RESERVATIONDEPTH. This depth can be distributed across job QoS levels using RESERVATIONQOSLIST.

Backfill Chunking

In a batch environment saturated with serial jobs, serial jobs will, over time, dominate the resources
available for backfill at the expense of other jobs. This is due to the time-dimension fragmentation
associated with running serial jobs. For example, given an environment with an abundance of serial jobs,
if a multi-processor job completes freeing processors, one of three things will happen:

1. The freed resources are allocated to another job requiring the same number of processors.

2. Additional jobs may complete at the same time allowing a larger job to allocate the aggregate
resources.

3. The freed resources are allocated to one or more smaller jobs.

In environments where the scheduling iteration is much higher than the average time between
completing jobs, case 3 occurs far more often than case 2, leading to smaller and smaller jobs populating
the system over time.

To address this issue, the scheduler incorporates the concept of chunking. Chunking allows the scheduler
to favor case 2 maintaining a more controlled balance between large and small jobs. The idea of
chunking involves establishing a time-based threshold during which resources available for backfill are

Moab Workload Manager

aggregated. This threshold is set using the parameter BFCHUNKDURATION. When resources are freed,
they are made available only to jobs of a certain size (set using the parameter BFCHUNKSIZE) or larger.
These resources remain protected from smaller jobs until either additional resources are freed up and a
larger job can use the aggregate resources, or until the BFCHUNKDURATION threshold time expires.

Backfill chunking is only activated when a job of size BFCHUNKSIZE or larger is blocked in backfill
due to lack of resources.

It is important to note that the optimal settings for these parameters is very site-specific and will
depend on the workload (including the average job turnaround time, job size, and mix of large to small
jobs), cluster resources, and other scheduling environmental factors. Setting too restrictive values
needlessly reduces utilization while settings that are too relaxed do not allowed the desired aggregation
to occur.

Backfill chunking is only enabled in conjunction with the FIRSTFIT backfill policy.

Virtual Wallclock Time Scaling

In most environments, users submit jobs with rough estimations of the wallclock times. Within the HPC
industry, a job typically runs for 40% of its specified wallclock time. Virtual Wallclock Time Scaling takes
advantage of this fact to implement a form of optimistic backfilling. Jobs that are eligible for backfilling
and not restricted by other policies are virtually scaled by the BFVIRTUALWALLTIMESCALINGFACTOR
(assuming that the jobs finish before this new virtual wallclock limit). The scaled jobs are then compared
to backfill windows to see if there is space and time for them to be scheduled. The scaled jobs are only
scheduled if there is no possibility that it will conflict with a standing or administrator reservation.
Conflicts with such reservations occur if the virtual wallclock time overlaps a reservation, or if the
original non-virtual wallclock time overlaps a standing or administrator reservation. Jobs that can fit
into an available backfill window without having their walltime scaled are backfilled "as-is" (meaning,
without virtually scaling the original walltime).

Virtual Wallclock Time Scaling is only enabled when the BFVIRTUALWALLTIMESCALINGFACTOR
parameter is defined.

If a virtually-scaled job fits into a window, and is backfilled, it will run until completion or until it comes
within one scheduling iteration (RMPOLLINTERVAL defines the exact time of an iteration) of the virtual
wallclock time expiration. In the latter case the job's wallclock time is restored to its original time and
Moab checks and resolves conflicts caused by this "expansion." Conflicts may occur when the backfilled
job is restored to its full duration resulting in reservation overlap. The
BFVIRTUALWALLTIMECONFLICTPOLICY parameter controls how Moab handles these conflicts.

If the BFVIRTUALWALLTIMECONFLICTPOLICY parameter is set to NONE or is not specified, the overlapped
job reservations are rescheduled.

Related topics

l BACKFILLDEPTH Parameter
l BACKFILLPOLICY Parameter

Moab Workload Manager

514 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 515

l BFMINVIRTUALWALLTIME
l Reservation Policy Overview

Node Set Overview
l Node Set Usage Overview

l Node Set Configuration

o Node Set Policy

o Node Set Attribute

o Node Set Constraint Handling

o Node Set List

o Node Set Tolerance

o Node Set Priority

o NODESETPLUS

o Nested Node Sets

l Requesting Node Sets for Job Submission

l Configuring Node Sets for Classes

Node Set Usage Overview
While backfill improves the scheduler's performance, this is only half the battle. The efficiency of a
cluster, in terms of actual work accomplished, is a function of both scheduling performance and individual
job efficiency. In many clusters, job efficiency can vary from node to node as well as with the node mix
allocated. Most parallel jobs written in popular languages such as MPI or PVM do not internally load
balance their workload and thus run only as fast as the slowest node allocated. Consequently, these jobs
run most effectively on homogeneous sets of nodes. However, while many clusters start out as
homogeneous, they quickly evolve as new generations of compute nodes are integrated into the system.
Research has shown that this integration, while improving scheduling performance due to increased
scheduler selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without specifying exactly
what resources are required. Node set policy can be specified globally or on a per-job basis. In addition
to their use in forcing jobs onto homogeneous nodes, these policies may also be used to guide jobs to one
or more types of nodes on which a particular job performs best, similar to job preferences available in
other systems. For example, an I/O intensive job may run best on a certain range of processor speeds,
running slower on slower nodes, while wasting cycles on faster nodes. A job may specify
ANYOF:FEATURE:bigmem,fastos to request nodes with the bigmem or fastos feature.
Alternatively, if a simple feature-homogeneous node set is desired, ONEOF:FEATURE may be specified.
On the other hand, a job may request a feature based node set with the configuration
ONEOF:FEATURE:bigmem,fastos, in which case Moab will first attempt to locate adequate nodes
where all nodes contain the bigmem feature. If such a set cannot be found, Moab will look for sets of

Moab Workload Manager

nodes containing the other specified features. In highly heterogeneous clusters, the use of node sets
improves job throughput by 10 to 15%.

Node sets can be requested on a system wide or per job basis. System wide configuration is
accomplished via the NODESET* parameters while per job specification occurs via the resource manager
extensions.

The GLOBAL node is included in all feature node sets.

When creating node sets, you have the option of using a fixed configuration or of creating node sets
dynamically (by using the msub command). This topic explains how to set up both node set use cases.

Node Set Configuration Examples
Global node sets are defined using the NODESETPOLICY, NODESETATTRIBUTE, NODESETLIST, and
NODESETISOPTIONAL parameters. As stated before, you can create node sets dynamically (see Dynamic
example on page 518) or with a fixed configuration (see Fixed configuration example on page 516). The
use of these parameters can be best highlighted with two examples.

Fixed configuration example

In this example, a large site possesses a Myrinet based interconnect and wishes to, whenever possible,
allocate nodes within Myrinet switch boundaries. To accomplish this, they could assign node attributes to
each node indicating which switch it was associated with (switchA, switchB, and so forth) and then
use the following system wide node set configuration:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL TRUE
NODESETLIST switchA,switchB,switchC,switchD
...

Node Set Policy

In the preceding example, the NODESETPOLICY parameter is set to the policy ONEOF and tells Moab to
allocate nodes within a single attribute set. Other node set policies are listed in the following table:

Policy Description

ANYOF Select resources from all sets contained in node set list. The job could span multiple node sets.

FIRSTOF Select resources from first set to match specified constraints.

ONEOF Select a single set that contains adequate resources to support job.

Node Set Attribute

The example's NODESETATTRIBUTE parameter is set to FEATURE, specifying that the node sets are to
be constructed along node feature boundaries.

Moab Workload Manager

516 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 517

You could also set the NODESETATTRIBUTE to VARATTR, specifying that node sets are to be constructed
according to VARATTR values on the job.

Node Set Constraint Handling

The next parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start time of a job
if the desired node set is not available but adequate idle resources exist outside of the set. Setting this
parameter to TRUE basically tells Moab to attempt to use a node set if it is available, but if not, run the
job as soon as possible anyway.

Setting NODESETISOPTIONAL to FALSE will force the job to always run in a complete nodeset
regardless of any start delay this imposes.

Node Set List

Finally, the NODESETLIST value of switchA switchB... tells Moab to only use node sets based on
the listed feature values. This is necessary since sites will often use node features for many purposes
and the resulting node sets would be of little use for switch proximity if they were generated based on
irrelevant node features indicating things such as processor speed or node architecture.

To add nodes to the NODESETLIST, you must configure features on your nodes using the NODECFG
FEATURES on page 558 attribute.

NODECFG[node01] FEATURES=switchA
NODECFG[node02] FEATURES=switchA
NODECFG[node03] FEATURES=switchB

Nodes node01 and node02 contain the switchA feature, and node node03 contains the switchB feature.

Node Set Priority

When resources are available in more than one resource set, the NODESETPRIORITYTYPE parameter
allows control over how the best resource set is selected. Legal values for this parameter are described
in the following table:

Priority
Type Description Details

AFFINITY Avoid a resource set with negative
affinity.

Choosing this type causes Moab to select a node set with no
negative affinity nodes (nodes that have a reservation that
with negative affinity). If all node sets have negative affin-
ity, then Moab will select the first matching node set.

Moab Workload Manager

Priority
Type Description Details

BESTFIT Select the smallest resource set
possible.

Choosing this type causes Moab, when selecting a node set,
to eliminate sets that do not have all the required
resources. From the remaining sets, Moab chooses the set
with the least amount of resources. This priority type most
closely matches the job requirements in order to waste the
least amount of resources.
This type minimizes fragmentation of larger resource sets.

MINLOSS Select the resource set that results
in the minimal wasted resources
assuming no internal job load bal-
ancing is available. (Assumes par-
allel jobs only run as fast as the
slowest allocated node.)

Choosing this type works only when using the following
configuration:
NODESETATTRIBUTE FEATURE
In a SHAREDMEM environment (See Moab-NUMA
Integration Guide on page 1233 for more information.),
Moab will select the node set based on NUMA properties
(the smallest feasible node set).

WORSTFIT Select the largest resource set pos-
sible.

This type causes Moab, when choosing a node set, to
eliminate sets that do not have all the required resources.
From the remaining sets, Moab chooses the set with the
greatest amount of resources.
This type minimizes fragmentation of smaller resource sets,
but increases fragmentation of larger resource sets.

Dynamic example

In this example, a site wants to be able to dynamically specify which VARATTR values the node set will
be based on. To accomplish this, they could use the following configuration in the moab.cfg file:

NODESETISOPTIONAL FALSE
NODESETPOLICY FIRSTOF
NODESETATTRIBUTE VARATTR

Node Set Attribute

The example's NODESETATTRIBUTE parameter is set to VARATTR specifying that the node sets are to
be constructed by job VARATTR values that are specified dynamically in the msub command.

Node Set Policy

In the preceding example, the NODESETPOLICY parameter is set to the policy FIRSTOF and tells Moab
to allocate nodes from the first set that matches specified constraints.

Node Set Constraint Handling

The parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start time of a job if the
desired node set is not available but adequate idle resources exist outside of the set. Setting this

Moab Workload Manager

518 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 519

parameter to FALSE will force the job to always run in a complete node set regardless of any start
delay this imposes.

msub example

With the configuration (above) set in the moab.cfg, Moab is configured for dynamic node sets. You can
create node sets dynamically by using the msub -l command. (For more information, see Resource
Manager Extensions on page 618.) Use the following format:

msub -l nodeset=FIRSTOF:VARATTR:<var>[=<value>],...

For example, if you wanted to create a dynamic node set for the Provo datacenter:

msub -l nodeset=FIRSTOF:VARATTR:datacenter=Provo

This command causes Moab to set datacenter=Provo as the node set.

You can specify more than one VARATTR in the command. For example, if you want to create a
dynamic node set for the Provo datacenter and the SaltLake datacenter:

msub -l nodeset=FIRSTOF:VARATTR:datacenter=Provo:datacenter=SaltLake

If you specify only datacenter (without specifying a value, such as =Provo), Moab will look up all
possible values (values reported on the node for that VARATTR), and then choose one. So if, for example,
you have nodes that have VARATTRs datacenter=Provo, datacenter=SaltLake, and
datacenter=StGeorge, then specifying msub -l nodeset=FIRSTOF:VARATTR:datacenter will
cause the job to run in Provo or SaltLake or StGeorge.

You should also note that Moab also adds the VARATTR (whether you specify it or if Moab chooses it) to
the required attribute (REQATTR) of the job. For example, if you specify datacenter=Provo as the
VARATTR, datacenter=Provo will also be added to the job REQATTR. Likewise, if you specify only
datacenter, and Moab chooses datacenter=SaltLake, then datacenter=SaltLake will be added
to the job REQATTR.

If you do not request a VARATTR in the nodeset of the msub -l command, the job will run as if it did not
use node sets at all, and nothing will be added to its REQATTR.

If you manually specify a different REQATTR on a job (for example, datacenter=SaltLake)
from the node set VARATTR (for example, datacenter=Provo), the job will never run.

NODESETPLUS

Moab supports additional NodeSet behavior by specifying the NODESETPLUS parameter. Possible values
when specifying this parameter are SPANEVENLY and DELAY.

Neither SPANEVENLY nor DELAY will work with multi-req jobs or preemption.

Moab Workload Manager

Value Description

SPANEVENLY Moab attempts to fit all jobs within one node set, or it spans any number of node sets evenly.
When a job specifies a NODESETDELAY, Moab attempts to contain the job within a single node
set; if unable to do so, it spans node sets evenly, unless doing so would delay the job beyond the
requested NODESETDELAY.

DELAY Moab attempts to schedule the job within a nodeset for the configured NODESETDELAY. If Moab
cannot find space for the job to start within NODESETDELAY (Moab considers future workload to
determine if space will open up in time and might create a future reservation), then Moab
schedules the job and ignores the nodeset requirement.

Nested Node Sets

Moab attempts to fit jobs on node sets in the order they are specified in the NODESETLIST. You can
create nested node sets by listing your node sets in a specific order. Here is an example of a "smallest to
largest" nested node set:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL FALSE
NODESETLIST blade1a,blade1b,blade2a,blade2b,blade3a,
blade3b,blade4a,blade4b,quad1a,quad1b,quad2a,
quad2b,octet1,octet2,sixteen

The accompanying cluster would look like this:

Moab Workload Manager

520 Optimizing Scheduling Behavior – Backfill and Node Sets

Optimizing Scheduling Behavior – Backfill and Node Sets 521

Image 3-8: Octet, quad, and blade node sets on a cluster

In this example, Moab tries to fit the job on the nodes in the blade sets first. If that doesn't work, it
moves up to the nodes in the quad sets (a set of four blade sets). If the quads are insufficient, it tries the
nodes in the octet sets (a set of four quad node sets).

Requesting Node Sets for Job Submission
On a per job basis, each user can specify the equivalent of all parameters except NODESETDELAY. As
mentioned previously, this is accomplished using the resource manager extensions.

Configuring Node Sets for Classes
Classes can be configured with a default node set. In the configuration file, specify DEFAULT.NODESET
with the following syntax: DEFAULT.NODESET=<SETTYPE>:<SETATTR>[:<SETLIST>
[,<SETLIST>]...]. For example, in a heterogeneous cluster with two different types of processors,
the following configuration confines jobs assigned to the amd class to run on either ATHLON or OPTERON
processors:

Moab Workload Manager

CLASSCFG[amd] DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON
...

Related topics

l Resource Manager Extensions
l CLASSCFG
l Partition Overview

Evaluating System Performance - Statistics, Profiling,
and Testing

l Moab Performance Evaluation Overview on page 522

l Accounting: Job and System Statistics on page 522

l Testing New Versions and Configurations on page 524

Moab Performance Evaluation Overview
Moab Workload Manager tracks numerous performance statistics for jobs, accounting, users, groups,
accounts, classes, QoS, the system, and so forth. These statistics can be accessed through various
commands or Moab Cluster Manager/Monitor.

Accounting: Job and System Statistics
Moab provides extensive accounting facilities that allow resource usage to be tracked by resources
(compute nodes), jobs, users, and other objects. The accounting facilities may be used in conjunction with,
and correlated with, the accounting records provided by the resource and allocation manager.

Moab maintains both raw persistent data and a large number of processed in memory statistics allowing
instant summaries of cycle delivery and system utilization. With this information, Moab can assist in
accomplishing any of the following tasks:

l Determining cumulative cluster performance over a fixed time frame.

l Graphing changes in cluster utilization and responsiveness over time.

l Identifying which compute resources are most heavily used.

l Charting resource usage distribution among users, groups, projects, and classes.

l Determining allocated resources, responsiveness, and failure conditions for jobs completed in the
past.

l Providing real-time statistics updates to external accounting systems.

Moab Workload Manager

522 Evaluating System Performance - Statistics, Profiling, and Testing

Evaluating System Performance - Statistics, Profiling, and Testing 523

This section describes how to accomplish each of these tasks using Moab tools and accounting
information.

l Accounting Overview

l Real-Time Statistics

l FairShare Usage Statistics

Accounting Overview
Moab provides accounting data correlated to most major objects used within the cluster scheduling
environment. These records provide job and reservation accounting, resource accounting, and credential-
based accounting.

Job and Reservation Accounting

As each job or reservation completes, Moab creates a complete persistent trace record containing
information about who ran, the time frame of all significant events, and what resources were allocated.
In addition, actual execution environment, failure reports, requested service levels, and other pieces of
key information are also recorded. A complete description of each accounting data field can be found
within section Workload Traces.

Resource Accounting

The load on any given node is available historically allowing identification of not only its usage at any
point in time, but the actual jobs which were running on it. Moab Cluster Manager can show load
information (assuming load is configured as a generic metric), but not the individual jobs that were
running on a node at some point in the past. For aggregated, historical statistics covering node usage
and availability, the showstats command may be run with the -n flag.

Credential Accounting

Current and historical usage for users, groups, account, QoSs, and classes are determined in a manner
similar to that available for evaluating nodes. For aggregated, historical statistics covering credential
usage and availability, the showstats command may be run with the corresponding credential flag.

If needed, detailed credential accounting can also be enabled globally or on a credential by credential
basis. With detailed credential accounting enabled, real-time information regarding per-credential usage
over time can be displayed. To enable detailed per credential accounting, the ENABLEPROFILING attribute
must be specified for credentials that are to be monitored. For example, to track detailed credentials,
the following should be used:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE

Credential level profiling operates by maintaining a number of time-based statistical records for each
credential. The parameters PROFILECOUNT and PROFILEDURATION control the number and duration of
the statistical records.

Moab Workload Manager

Real-Time Statistics
Moab provides real-time statistical information about how the machine is running from a scheduling
point of view. The showstats command is actually a suite of commands providing detailed information on
an overall scheduling basis as well as a per user, group, account and node basis. This command gets its
information from in memory statistics that are loaded at scheduler start time from the scheduler
checkpoint file. (See Checkpoint/Restart for more information.) This checkpoint file is updated
periodically and when the scheduler is shut down allowing statistics to be collected over an extended
time frame. At any time, real-time statistics can be reset using the mschedctl -f command.

In addition to the showstats command, the showstats -f command also obtains its information from the in
memory statistics and checkpoint file. This command displays a processor-time based matrix of
scheduling performance for a wide variety of metrics. Information such as backfill effectiveness or
average job queue time can be determined on a job size/duration basis.

FairShare Usage Statistics

Regardless of whether fairshare is enabled, detailed credential based fairshare statistics are maintained.
Like job traces, these statistics are stored in the directory pointed to by the STATDIR parameter.
Fairshare stats are maintained in a separate statistics file using the format FS.<EPOCHTIME>
(FS.982713600, for example) with one file created per fairshare window. (See the Fairshare Overview
for more information.) These files are also flat text and record credential based usage statistics.
Information from these files can be seen via the mdiag -f command.

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

Testing New Versions and Configurations
l MONITOR Mode

l INTERACTIVE Mode

MONITOR Mode
Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running
in NORMAL or production mode. Job are prioritized, reservations created, policies and limits enforced,
and administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in
NORMAL mode but its ability to actually impact the system is disabled. Using this mode, a site can
quickly verify correct resource manager configuration and scheduler operation. This mode can also be
used to validate new policies and constraints. In fact, Moab can be run in MONITOR mode on a
production system while another scheduler or even another version of Moab is running on the same

Moab Workload Manager

524 Evaluating System Performance - Statistics, Profiling, and Testing

General Job Administration 525

system. This unique ability can allow new versions and configurations to be fully tested without any
exposure to potential failures and with no cluster downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to
MONITOR and start Moab. Normal scheduler commands can be used to evaluate configuration and
performance. Diagnostic commands can be used to look for any potential issues. Further, the Moab log
file can be used to determine which jobs Moab attempted to start, and which resources Moab attempted
to allocate.

If another instance of Moab is running in production and a site administrator wants to evaluate an
alternate configuration or new version, this is easily done but care should be taken to avoid conflicts
with the primary scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user
interface ports. One of the easiest ways to avoid these conflicts is to create a new test directory with its
own log and stats subdirectories. The new moab.cfg file can be created from scratch or based on the
existing moab.cfg file already in use. In either case, make certain that the PORT attribute of the
SCHEDCFG parameter differs from that used by the production scheduler by at least two ports. If testing
with the production binary executable, the MOABHOMEDIR environment variable should be set to point
to the new test directory to prevent Moab from loading the production moab.cfg file.

INTERACTIVE Mode
INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different
from MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired
change request to the screen and asks for permission to complete it. For example, before starting a job,
Moab may print something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets
desired site policies. Moab then executes the specified command. This mode is highly useful in validating
scheduler behavior and can be used until configuration is appropriately tuned and all parties are
comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling mode
to NORMAL after verifying correct behavior.

Related topics

l Testing New Releases and Policies
l Side-by-Side Mode

General Job Administration
l Job Holds on page 526

l Job Priority Management on page 527

l Suspend/Resume Handling on page 527

l Checkpoint/Restart Facilities on page 528

Moab Workload Manager

l Job Dependencies on page 529

l Job Defaults and Per Job Limits on page 531

l General Job Policies on page 532

l Using a Local Queue on page 539

l Job Deadlines on page 542

l Job Arrays on page 545

Job Holds

Holds and Deferred Jobs
Moab supports job holds applied by users (user holds), administrators (system holds), and resource
managers (batch holds). There is also a temporary hold known as a job defer.

User Holds
User holds are very straightforward. Many, if not most, resource managers provide interfaces by which
users can place a hold on their own job that tells the scheduler not to run the job while the hold is in
place. Users may use this capability because the job's data is not yet ready, or they want to be present
when the job runs to monitor results. Such user holds are created by, and under the control of a non-
privileged user and may be removed at any time by that user. As would be expected, users can only
place holds on their jobs. Jobs with a user hold in place will have a Moab state of Hold or UserHold
depending on the resource manager being used.

System Holds
The system hold is put in place by a system administrator either manually or by way of an automated
tool. As with all holds, the job is not allowed to run so long as this hold is in place. A batch administrator
can place and release system holds on any job regardless of job ownership. However, unlike a user hold,
normal users cannot release a system hold even on their own jobs. System holds are often used during
system maintenance and to prevent particular jobs from running in accordance with current system
needs. Jobs with a system hold in place will have a Moab state of Hold or SystemHold depending on
the resource manager being used.

Batch Holds
Batch holds are placed on a job by the scheduler itself when it determines that a job cannot run. The
reasons for this vary but can be displayed by issuing the checkjob<JOBID> command. Possible reasons
are included in the following list:

l No Resources — The job requests resources of a type or amount that do not exist on the system.

l System Limits — The job is larger or longer than what is allowed by the specified system policies.

Moab Workload Manager

526 General Job Administration

General Job Administration 527

l Bank Failure — The allocations bank is experiencing failures.

l No Allocations — The job requests use of an account that is out of allocations and no fallback
account has been specified.

l RM Reject — The resource manager refuses to start the job.

l RM Failure — The resource manager is experiencing failures.

l Policy Violation — The job violates certain throttling policies preventing it from running now and
in the future.

l No QOS Access — The job does not have access to the QoS level it requests.

Jobs which are placed in a batch hold will show up within Moab in the state BatchHold.

Job Defer
In most cases, a job violating these policies is not placed into a batch hold immediately; rather, it is
deferred. The parameter DEFERTIME indicates how long it is deferred. At this time, it is allowed back
into the idle queue and again considered for scheduling. If it again is unable to run at that time or at any
time in the future, it is again deferred for the timeframe specified by DEFERTIME. A job is released and
deferred up to DEFERCOUNT times at which point the scheduler places a batch hold on the job and waits
for a system administrator to determine the correct course of action. Deferred jobs have a Moab state of
Deferred. As with jobs in the BatchHold state, the reason the job was deferred can be determined by
use of the checkjob command.

At any time, a job can be released from any hold or deferred state using the releasehold command. The
Moab logs should provide detailed information about the cause of any batch hold or job deferral.

Under Moab, the reason a job is deferred or placed in a batch hold is stored in memory but is not
checkpointed. Thus this information is available only until Moab is recycled at which point the
checkjob command no longer displays this reason information.

Related topics

l DEFERSTARTCOUNT - number of job start failures allowed before job is deferred

Job Priority Management
Job priority management is controlled via both configured and manual intervention mechanisms.

l Priority Configuration - see Job Prioritization

l Manual Intervention with setspri

Suspend/Resume Handling
When supported by the resource manager, Moab can suspend and resume jobs. A user can suspend
his/her own jobs, but only an administrator can resume them. By default, a job is suspended for one

Moab Workload Manager

minute before it can resume. You can modify this default time using the MINADMINSTIME parameter.

A job must be marked as suspendable for Moab to suspend and resume it. To do so, either submit the
job with the suspendable flag attached to it or configure a credential to pass the flag to its associated
jobs. These methods are demonstrated in the examples below:

msub -l flags=suspendable

GROUPCFG[default] JOBFLAGS=SUSPENDABLE

Once the job is suspendable, Moab allows you to suspend jobs using the two following methods: (1)
manually on the command line and (2) automatically in the moab.cfg file.

To manually suspend jobs, use the mjobctl command as demonstrated in the following example:

> mjobctl -s job05

Moab suspends job05, preventing it from running immediately in the job queue.

If you are an administrator and want to resume a job, use the mjobctl command as demonstrated in the
following example:

> mjobctl -r job05

Moab removes job05 from a suspended state and allows it to run.

You can also configure the Moab preemption policy to suspend and resume jobs automatically by setting
the PREEMPTPOLICY parameter to SUSPEND. A sample Moab configuration looks like this:

PREEMPTPOLICY SUSPEND
...
USERCFG[tom] JOBFLAGS=SUSPENDABLE

Moab suspends jobs submitted by user tom if necessary to make resources available for jobs with higher
priority.

If your resource manager has a native interface, you must configure JOBSUSPENDURL to suspend
and resume jobs.

For more information about suspending and resuming jobs in Moab, see the following sections:

l manual preemption with the mjobctl command

l Job preemption

Checkpoint/Restart Facilities
Checkpointing records the state of a job, allowing for it to restart later without interruption to the job's
execution. Checkpointing can be performed manually, as the result of triggers or events, or in conjunction
with various QoS policies.

Moab Workload Manager

528 General Job Administration

General Job Administration 529

Moab's ability to checkpoint is dependent upon both the cluster's resource manager and operating
system. In most cases, two types of checkpoint are enabled, including (1) checkpoint and continue and (2)
checkpoint and terminate. While either checkpointing method can be activated using the mjobctl
command, only the checkpoint and terminate type is used by internal scheduling and event managements
facilities.

Checkpointing behavior can be configured on a per-resource manager basis using various attributes of
the RMCFG parameter.

Related topics

l Job Preemption Overview
l PREEMPTPOLICY Parameter
l Resource Manager CHECKPOINTSIG Attribute
l Resource Manager CHECKPOINTTIMEOUT Attribute

Job Dependencies
l Basic Job Dependency Support

o Job Dependency Syntax

Basic Job Dependency Support
By default, basic single step job dependencies are supported through completed/failed step evaluation.
Basic dependency support does not require special configuration and is activated by default. Dependent
jobs are only supported through a resource manager and therefore submission methods depend upon the
specific resource manager being used. For the TORQUE qsub command, the semantics listed in the
section below can be used with the -W x=depend=<STRING> or -W depend=<STRING> flag; for the
Moab msub command, the -l depend=<STRING> or -W x=depend=<STRING> flag. For other
resource managers, consult the resource manager specific documentation.

If you are submitting a job with a dependency in a grid environment via msub, you need to use the
-l option instead of -W. You must always use -W depend= or -W x=depend= for qsub
dependencies.

Job Dependency Syntax

Dependency Format Description

after after:<job>
[:<job>]...

Job may start at any time after specified jobs have started execution.

afterany afterany:<job>
[:<job>]...

Job may start at any time after all specified jobs have completed
regardless of completion status.

Moab Workload Manager

Dependency Format Description

afterok afterok:<job>
[:<job>]...

Job may be start at any time after all specified jobs have successfully
completed.

afternotok afternotok:<job>
[:<job>]...

Job may start at any time after all specified jobs have completed
unsuccessfully.

before before:<job>
[:<job>]...

Job may start at any time before specified jobs have started exe-
cution.

beforeany beforeany:<job>
[:<job>]...

Job may start at any time before all specified jobs have completed
regardless of completion status.

beforeok beforeok:<job>
[:<job>]...

Job may start at any time before all specified jobs have successfully
completed.

beforenotok beforenotok:<job>
[:<job>]...

Job may start at any time before any specified jobs have completed
unsuccessfully.

on on:<count> Job may start after <count> dependencies on other jobs have been
satisfied.

synccount synccount:<count> Job is the first in a set of jobs to be executed at the same time.
<count> is the number of additional jobs in the set, which can be up
to 5. synccount is valid for single-request jobs with TORQUE as the
resource manager.

syncwith syncwith:<job> Job is an additional member of a set of jobs to be executed at the
same time. Moab supports up to 5 jobs. syncwith is valid for single-
request jobs with TORQUE as the resource manager.

<job>={JOBNAME.jobname|jobid}

When using JobName dependencies, prepend "JOBNAME." to avoid ambiguity.

The before dependencies do not work with jobs submitted with msub; they work only with qsub.

Any of the dependencies containing before must be used in conjunction with the on dependency. So, if
job A must run before job B, job B must be submitted with depend=on:1, as well as job A having
depend=before:A. This means job B cannot run until one dependency of another job on job B has been
fulfilled. This prevents job B from running until job A can be successfully submitted.

Moab Workload Manager

530 General Job Administration

General Job Administration 531

When you submit a dependency job and the dependency is not met, the job will remain idle in the queue
indefinitely. To configure Moab to automatically cancel these failed dependency jobs, set the
CANCELFAILEDDEPENDENCYJOBS on page 1368 scheduler flag.

Related topics

l Job Deadlines

Job Defaults and Per Job Limits

Job Defaults
Job defaults can be specified on a per queue basis. These defaults are specified using the CLASSCFG
parameter. The following table shows the applicable attributes:

Attribute Format Example

DEFAULT.FEATURES comma-delimited list of node
features

CLASSCFG[batch] DEFAULT.FEATURES=fast,io

Jobs submitted to class batch will request
nodes features fast and io.

DEFAULT.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] DEFAULT.WCLIMIT=1:00:00

Jobs submitted to class batch will request
one hour of walltime by default.

Per Job Maximum Limits
Job maximum limits can be specified on a per queue basis. These defaults are specified using the
CLASSCFG parameter. The following table shows the applicable attributes:

Attribute Format Example

MAX.WCLIMIT [[[DD:]HH:]MM:]
SS

CLASSCFG[batch] MAX.WCLIMIT=1:00:00

Jobs submitted to class batch can request no more than one
hour of walltime.

Per Job Minimum Limits
Furthermore, minimum job defaults can be specified with the CLASSCFG parameter. The following table
shows the applicable attributes:

Moab Workload Manager

Attribute Format Example

MIN.PROC <integer> CLASSCFG[batch] MIN.PROC=10

Jobs submitted to class batch can request no less than
ten processors.

Related topics

l Usage-based Limits

General Job Policies
l Multi-Node Support

l Multi-Req Support

l Job Size Policy

l Malleable Job Support

l Enabling Job User Proxy

There are a number of configurable policies that help control advanced job functions. These policies help
determine allowable job sizes and structures.

Multi-Node Support
You can configure the ability to allocate resources from multiple nodes to a job with the MAX.NODE
limit.

Multi-Req Support
Jobs can specify multiple types of resources for allocation. For example, a job could request 4 nodes with
256 MB of memory and 8 nodes with feature fast present.

Resources specified in a multi-req job are delimited with a plus sign (+).

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work with multi-
req jobs or preemption.

Moab Workload Manager

532 General Job Administration

General Job Administration 533

Example 3-129:

Moab Workload Manager

-l nodes=4:ppn=1+10:ppn=5+2:ppn=2

This example requests 4 nodes with 1 proc each, 10 nodes with 5 procs each, and 2 nodes with 2 procs each. The total
number of processors requested is (4*1) + (10*5) + (2*2), or 58 processors.

Moab Workload Manager

534 General Job Administration

General Job Administration 535

Example 3-130:

Moab Workload Manager

-l nodes=15+1:ppn=4

The job submitted in this example requests a total of 16 nodes. 15 of these nodes have no specific requirements, but the
remaining node must have 4 processors.

Moab Workload Manager

536 General Job Administration

General Job Administration 537

Example 3-131:

Moab Workload Manager

-l nodes=3:fast+1:io

The job requests a total of 4 nodes: 3 nodes with the fast feature and 1 node with the io feature.

Job Size Policy
Moab allows jobs to request resource ranges. Using this range information, the scheduler is able to
maximize the amount of resources available to the job while minimizing the amount of time the job is
blocked waiting for resources. The JOBSIZEPOLICY parameter can be used to set this behavior according
to local site needs.

Job resource ranges may only be specified when using a local queue as described in the Using a
Local Queue section.

Malleable Job Support
A job can specify whether it is able to use more processors or less processors and what effect, if any,
that has on its wallclock time. For example, a job may run for 10 minutes on 1 processor, 5 minutes on 2
processors and 3 minutes on 3 processors. When a job is submitted with a task request list attached,
Moab determines which task request fits best and molds the job based on its specifications. To submit a
job with a task request list and allow Moab to mold it based on the current scheduler environment, use
the TRL flag in the Resource Manager Extension.

Enabling Job User Proxy
By default, user proxying is disabled. To be enabled, it must be authorized using the PROXYLIST attribute
of the USERCFG parameter. This parameter can be specified either as a comma-delimited list of users or
as the keyword validate. If the keyword validate is specified, the RMCFG attribute JOBVALIDATEURL
should be set and used to confirm that the job's owner can proxy to the job's execution user. An example
script performing this check for ssh-based systems is provided in the tools directory (See Job Validate
Tool Overview.).

For some resource managers (RM), proxying must also be enabled at the RM level. The following
example shows how ssh-based proxying can be accomplished in a Moab+TORQUE with SSH environment.

To validate proxy users, Moab must be running as root.

Moab Workload Manager

538 General Job Administration

General Job Administration 539

Example 3-132: SSH Proxy Settings

USERCFG[DEFAULT] PROXYLIST=validate
RMCFG[base] TYPE=<resource manager>
JOBVALIDATEURL=exec://$HOME/tools/job.validate.sshproxy.pl

> qmgr -c 's s allow_proxy_user=true'
> su - testuser
> qsub -I -u testuser2
qsub: waiting for job 533.igt.org to start
qsub: job 533.igt.org ready
testuser2@igt:~$

In this example, the validate tool, 'job.validate.sshproxy.pl', can verify proxying is allowed by becoming the
submit user and determining if the submit user can achieve passwordless access to the specified execution user.
However, site-specific tools can use any method to determine proxy access including a flat file look-up, database lookup,
querying of an information service such as NIS or LDAP, or other local or remote tests. For example, if proxy validation is
required but end-user accounts are not available on the management node running Moab, the job validate service could
perform the validation test on a representative remote host such as a login host.

This feature supports qsub only.

The job validate tool is highly flexible allowing any combination of job attributes to be evaluated and
tested using either local or remote validation tests. The validate tool allows not only pass/fail
responses but also allows the job to be modified, or rejected in a custom manner depending on the site
or the nature of the failure.

Related topics

l Usage Limits

Using a Local Queue
Moab allows jobs to be submitted directly to the scheduler. With a local queue, Moab is able to directly
manage the job or translate it for resubmission to a standard resource manager queue. There are
multiple advantages to using a local queue:

l Jobs may be translated from one resource manager job submission language to another (such as
submitting a PBS job and running it on an LSF cluster).

l Jobs may be migrated from one local resource manager to another.

l Jobs may be migrated to remote systems using Moab peer-to-peer functionality.

l Jobs may be dynamically modified and optimized by Moab to improve response time and system
utilization.

l Jobs may be dynamically modified to account for system hardware failures or other issues.

l Jobs may be dynamically modified to conform to site policies and constraints.

l Grid jobs are supported.

Moab Workload Manager

Local Queue Configuration
A local queue is configured just like a standard resource manager queue. It may have defaults, limits,
resource mapping, and credential access constraints. The following table describes the most common
settings:

Default queue

Format RMCFG[internal] DEFAULTCLASS=<CLASSID>

Description The job class/queue assigned to the job if one is not explicitly requested by the submitter.

All jobs submitted directly to Moab are initially received by the pseudo-resource manager
internal. Therefore, default queue configuration may only be applied to it.

Example RMCFG[internal] DEFAULTCLASS=batch

Class default resource requirements

Format CLASSCFG[<CLASSID>] DEFAULT.FEATURES=<X> CLASSCFG[<CLASSID>]
DEFAULT.MEM=<X> CLASSCFG[<CLASSID>] DEFAULT.NODE=<X> CLASSCFG[<CLASSID>]
DEFAULT.NODESET=<X> CLASSCFG[<CLASSID>] DEFAULT.PROC=<X> CLASSCFG
[<CLASSID>] DEFAULT.WCLIMIT=<X>

Description The settings assigned to the job if not explicitly set by the submitter. Default values are available
for node features, per task memory, node count, nodeset configuration, processor count, and
wallclock limit.

Example CLASSCFG[batch] DEFAULT.WCLIMIT=4 DEFAULT.FEATURES=matlab

or

CLASSCFG[batch] DEFAULT.WCLIMIT=4
CLASSCFG[batch] DEFAULT.FEATURES=matlab

Class maximum resource limits

Format CLASSCFG[<CLASSID>] MAX.FEATURES=<X> CLASSCFG[<CLASSID>] MAX.NODE=<X>
CLASSCFG[<CLASSID>] MAX.PROC=<X> CLASSCFG[<CLASSID>] MAX.WCLIMIT=<X>

Moab Workload Manager

540 General Job Administration

General Job Administration 541

Class maximum resource limits

Description The maximum node features, node count, processor count, and wallclock limit allowed for a job sub-
mitted to the class/queue. If these limits are not satisfied, the job is not accepted and the submit
request fails.MAX.FEATURES indicates that only the listed features may be requested by a job.

Example CLASSCFG[smalljob] MAX.PROC=4 MAX.FEATURES=slow,matlab

or

CLASSCFG[smalljob] MAX.PROC=4
CLASSCFG[smalljob] MAX.FEATURES=slow,matlab

Class minimum resource limits

Format CLASSCFG[<CLASSID>] MIN.FEATURES=<X> CLASSCFG[<CLASSID>] MIN.NODE=<X>
CLASSCFG[<CLASSID>] MIN.PROC=<X> CLASSCFG[<CLASSID>] MIN.WCLIMIT=<X>

Description The minimum node features, node count, processor count, and wallclock limit allowed for a job sub-
mitted to the class/queue. If these limits are not satisfied, the job is not accepted and the submit
request fails.MIN.FEATURES indicates that only the listed features may be requested by a job.

Example CLASSCFG[bigjob] MIN.PROC=4 MIN.WCLIMIT=1:00:00

or

CLASSCFG[bigjob] MIN.PROC=4
CLASSCFG[bigjob] MIN.WCLIMIT=1:00:00

Class access

Format CLASSCFG[<CLASSID>] REQUIREDUSERLIST=<USERID>[,<USERID>]...

Description The list of users who may submit jobs to the queue.

Example CLASSCFG[math] REQUIREDUSERLIST=john,steve

Moab Workload Manager

Available resources

Format CLASSCFG[<CLASSID>] HOSTLIST=<HOSTID>[,<HOSTID>]...

Description The list of nodes that jobs in the queue may use.

Example CLASSCFG[special] HOSTLIST=node001,node003,node13

Class mapping between multiple sites is described in the section on Moab grid facilities.

If a job is submitted directly to the resource manager used by the local queue, the class default resource
requirements are not applied. Also, if the job violates a local queue limitation, the job is accepted by the
resource manager, but placed in the Blocked state.

Job Deadlines
l Deadline Overview

l Setting Job Deadlines via QoS on page 542

o Setting Job Deadlines at Job Submission on page 543

o Submitting a Job to a QoS with a Preconfigured Deadline on page 543

l Job Termination Date

l Conflict Policies

Deadline Overview
Job deadlines may be specified on a per job and per credential basis and are also supported using both
absolute and QoS based specifications. A job requesting a deadline is first evaluated to determine if the
deadline is acceptable. If so, Moab adds it to the list of deadline jobs and allocates resources to
guarantee that all accepted deadline jobs are able to complete on or before their requested deadline.
Once the scheduler confirms that all deadlines can be satisfied, it then optimizes resource allocation (in
priority order) attempting to execute all jobs at the earliest possible time.

Setting Job Deadlines via QoS
Two types of job deadlines exist in Moab. The priority-based deadline linearly increases a job's priority
as its deadline approaches (See Deadline (DEADLINE) Subcomponent on page 391 for more
information). The QoS method allows you to set a job completion time on job submission if, and only if, it
requests and is allowed to access a QoS with the DEADLINE QFLAG set. This method is more powerful
than the priority method, because Moab will attempt to make a reservation for the job as soon as the job
enters the queue in order to meet the deadline, essentially bumping it to the front of the queue.

Moab Workload Manager

542 General Job Administration

General Job Administration 543

When a job is submitted to a QoS with the DEADLINE flag set, the job's -l deadline attribute is
honored. If such QoS access is not available, or if resources do not exist at job submission time to allow
the deadline to be satisfied, the job's deadline request is ignored.

Two methods exist for setting deadlines with a QoS:

l Submitting a job to a deadline-enabled QoS and specifying a deadline using msub -l.

l Submitting a job to a deadline-enabled QoS with a QTTARGET specified.

Setting Job Deadlines at Job Submission

This method of setting a job deadline allows you to specify a job deadline as you submit the job. You can
set the deadline as either an exact date and time or as an amount of time after job submission (i.e. three
hours after submission).

To specify a deadline on job submission

1. In moab.cfg, reate a QoS with the DEADLINE flag enabled.

...
QOSCFG[special] QFLAGS=DEADLINE

Jobs requesting the QoS special may submit jobs with a deadline that Moab will honor.

2. Submit a job to the QoS and set a deadline. This can be either absolute or relative.

a. For an absolute deadline, use the format hh:mm:ss_mm/dd/yy. The following configuration sets
a deadline for a job to finish by 8 a.m. on March 15th, 2013.

msub -l qos=special deadline=08:00:00_03/15/13 job.sh

The job must finish running by 8 A.M. on March 15, 2013.

b. For a relative deadline, or the completion deadline of the job relative to its submission time, use
the time format [[[DD:]HH:]MM:]SS.

msub -l qos=special deadline=5:00:00 job.sh

The job's deadline is 5 hours after its submission.

Submitting a Job to a QoS with a Preconfigured Deadline

You may also set a relative job deadline by limiting the job's queue time. This method allows you to pre-
configure the deadline rather than giving the power to specify a deadline to the user submitting the job.
For jobs requesting these QoSes, Moab identifies and sets job deadlines to satisfy the corresponding
response time targets.

To submit a job to a QoS with a preconfigured deadline

1. In moab.cfg, create a QoS with both the DEADLINE QFLAG and a response time target (QTTARGET).
The QTTARGET is the maximum amount of time that Moab should allow the job to be idle in the

Moab Workload Manager

queue.

...
QOSCFG[special2] QFLAGS=DEADLINE QTTARGET=1:00:00

Given this configuration, a job requesting QoS special2 must spend a maximum of one hour in the queue.

2. Submit a job requesting the special2 quality of service.

msub -l qos=special2 walltime=2:00:00 job.sh

This two-hour job has a completion time deadline set to three hours after its submission (one hour of target queue
time and two hours of run time).

Job Termination Date
In addition to job completion targets, jobs may also be submitted with a TERMTIME attribute. The
scheduler attempts to complete the job prior to the termination date, but if it is unsuccessful, it will
terminate (cancel) the job once the termination date is reached.

Conflict Policies
The specific policy can be configured using the DEADLINEPOLICY parameter. Moab does not have a
default policy for this parameter.

Policy Description

CANCEL The job is canceled and the user is notified that the deadline could not be satisfied.

HOLD The job has a batch hold placed on it indefinitely. The administrator can then decide what action to
take.

RETRY The job continually retries each iteration to meet its deadline; note that when used with QTTARGET
the job's deadline continues to slide with relative time.

IGNORE The job has its request ignored and is scheduled as normal.

Deadline scheduling may not function properly with per partition scheduling enabled. Check that
PARALLOCATIONPOLICY is disabled to ensure DEADLINEPOLICY will work correctly.

Related topics

l QoS Facilities
l Job Submission Eligible Start Time constraints

Moab Workload Manager

544 General Job Administration

General Job Administration 545

Job Arrays
l Job Array Overview

l Enabling Job Arrays

l Sub-job Definitions

l Using Environment Variables to Specify Array Index Values

o Control

o Reporting

l Job Array Cancellation Policies

l Examples

o Submitting Job Arrays

Job Array Overview
You can submit an array of jobs to Moab via the msub command. Array jobs are an easy way to submit
many sub-jobs that perform the same work using the same script, but operate on different sets of data.
Sub-jobs are the jobs created by an array job and are identified by the array job ID and an index; for
example, if 235[1] is an identifier, the number 235 is a job array ID, and 1 is the sub-job.

Sub-jobs of an array are executed in sub-job index order.

Moab job arrays are different from TORQUE job arrays.

Enabling Job Arrays
To enable job arrays, include the ENABLEJOBARRAYS parameter in the Moab configuration file
(moab.cfg).

Sub-job Definitions
Like a normal job, an array job submits a job script, but it additionally has a start index (sidx) and an
end index (eidx); array jobs also have increment (incr) values, which Moab uses to create sub-jobs, all
executing the same script. The model for sub-job creation follows the formula of end index minus start
index plus increment divided by the increment value: (eidx - sidx + incr) / incr.

To illustrate, suppose an array job has a start index of 1, an end index of 100, and an increment of 1. This
is an array job that creates (100 - 1 + 1) / 1 = 100 sub-jobs with indexes of 1, 2, 3, ..., 100. An increment of
2 produces (100 - 1 + 2) / 2 = 50 sub-jobs with indexes of 1, 3, 5, ..., 99. An increment of 2 with a start
index of 2 produces (100 - 2 + 2) / 2 = 50 sub-jobs with indexes of 2, 4, 6, ..., 100. Again, sub-jobs are jobs
in their own right that have a slightly different job naming convention jobID[subJobIndex] (e.g.
mycluster.45[37] or 45[37]).

Moab Workload Manager

Using Environment Variables to Specify Array Index Values
The script can use an environment variable to obtain the array index value to form data file and/or
directory names unique to an array job's particular sub-job. The following two environment variables are
supplied so job scripts can recognize what index in the array they are in; use the msub command with
the -V option to pass the environment parameters to the resource manager, or include the parameters in
a job script; for example: #PBS -V MOAB_JOBARRAYRANGE.

Environment
Parameter Description

MOAB_
JOBARRAYINDEX

Used to create dataset file names, directory names, and so forth, when splitting up a single
problem into multiple jobs.
For example, a user may split up a problem into 20 separate jobs, each with its own input
and output data files whose names contain the numbers 1-20.
To illustrate, assume a user submits the 20 sub-jobs using two msub commands; one to
submit the ten even-numbered jobs and one to submit the ten odd-numbered jobs.
msub -t job1.[1-20:2]
msub -t job2.[2-20:2]

The MOAB_JOBARRAYINDEX environment variable value would populate each of the two
job arrays' ten sub-jobs as 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 for the first array job's ten sub-
jobs, and 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 for the second array job's ten sub-jobs.

MOAB_
JOBARRAYRANGE

The count of jobs in the array.

Control

Users can control individual sub-jobs in the same manner as normal jobs. In addition, an array job
represents its group of sub-jobs and any user or administrator commands performed on an array job
apply to its sub-jobs; for example, the command canceljob <arrayJobId> cancels all sub-jobs that belong to
the array job. For more information about job control, see the documentation for the mjobctl command.

Reporting

In the first example below, the parts unique to array subjobs are in red.

Moab Workload Manager

546 General Job Administration

General Job Administration 547

$ checkjob -v Moab.1[1]
job Moab.1[1]

AName: Moab
State: Running
Creds: user:user1 group:usergroup1
WallTime: 00:00:17 of 8:20:00
SubmitTime: Thu Nov 4 11:50:03
(Time Queued Total: 00:00:00 Eligible: INFINITY)
StartTime: Thu Nov 4 11:50:03
Total Requested Tasks: 1
Req[0] TaskCount: 1 Partition: base
Average Utilized Procs: 0.96
NodeCount: 1
Allocated Nodes:
[node010:1]

Job Group: Moab.1
Parent Array ID: Moab.1
Array Index: 1
Array Range: 10
SystemID: Moab
SystemJID: Moab.1[1]
Task Distribution: node010
IWD: /home/user1
UMask: 0000
Executable: /opt/moab/spool/moab.job.3CvNjl
StartCount: 1
Partition List: base
SrcRM: internal DstRM: base DstRMJID: Moab.1[1]
Flags: ARRAYJOB,GLOBALQUEUE
StartPriority: 1
PE: 1.00
Reservation 'Moab.1[1]' (-00:00:19 -> 8:19:41 Duration: 8:20:00)

If the array range is not provided, the output displays all the jobs in the array.

Moab Workload Manager

$ checkjob -v Moab.1
job Moab.1

AName: Moab
Job Array Info:
Name: Moab.1
1 : Moab.1[1] : Running
2 : Moab.1[2] : Running
3 : Moab.1[3] : Running
4 : Moab.1[4] : Running
5 : Moab.1[5] : Running
6 : Moab.1[6] : Running
7 : Moab.1[7] : Running
8 : Moab.1[8] : Running
9 : Moab.1[9] : Running
10 : Moab.1[10] : Running
11 : Moab.1[11] : Running
12 : Moab.1[12] : Running
13 : Moab.1[13] : Running
14 : Moab.1[14] : Running
15 : Moab.1[15] : Running
16 : Moab.1[16] : Running
17 : Moab.1[17] : Running
18 : Moab.1[18] : Running
19 : Moab.1[19] : Running
20 : Moab.1[20] : Running
Totals:
Active: 20
Idle: 0
Complete: 0

You can also use showq. This displays the array master job with a count of how many sub-jobs are in
each queue.

Moab Workload Manager

548 General Job Administration

General Job Administration 549

$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(5) aesplin Running 5 00:52:41 Thu Jun 23 17:05:56
Moab.2(1) aesplin Running 1 00:53:41 Thu Jun 23 17:06:56

6 active jobs 6 of 6 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.2(4) aesplin Idle 4 1:00:00 Thu Jun 23 17:06:56

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.2(1) aesplin Blocked 1 1:00:00 Thu Jun 23 17:06:56

1 blocked job

Total jobs: 11

Moab.1 has five sub-jobs running. Moab.2 has one sub-job running, four waiting to run, and one that is currently
blocked.

Job Array Cancellation Policies
Job arrays can be canceled based on the success or failure of the first sub-job, the first success or failure
of any sub-job, or if any sub-job exits with a specified exit code. The job array cancellation policies are:

Cancel Policy Description Exclus-
ivity

CancelOnFirstFail-
ure

Cancels the job array if the first sub-job (JOBARRAYINDEX = 1) fails.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstFailure

Mutually
exclusive

CancelOnFirstSuc-
cess

Cancels the job array if the first sub-job (JOBARRAYINDEX = 1) succeeds.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstSuccess

CancelOnAnyFail-
ure

Cancels the job array if any sub-job fails.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnyFailure

Moab Workload Manager

Cancel Policy Description Exclus-
ivity

CancelOnAnySuc-
cess

Cancels the job array if any sub-job succeeds.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnySuccess

CancelOnExitCode Cancels the job array if any sub-job returns the specified exit code.

> msub -t myarray[1-1000%50] -l
...,flags=CancelOnExitCode:<error code list>

The syntax for the error code list are ranges specified with a dash and
individual codes delimited by a plus (+) sign, such as: 1-4+9+15
Exit codes 1-387 are accepted.

Up to two cancellation polices can be specified for an array and the two policies must be delimited by a
colon (:). The two "first sub-job" policies are mutually exclusive, as are the three "any sub-job" policies.
You can use either "first sub-job" policy with one of the "any sub-job" policies, as shown in this example:

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstFailure:CancelOnExitCode:3-7+11

Examples
Operations can be performed on individual jobs, a selection of jobs in a job array, or on the entire array.

Submitting Job Arrays

The syntax for submitting job arrays is: msub -t [<jobname>]<indexlist>[%<limit>]
arrayscript.sh

The <jobname> and <limit> are optional. The jobname does not override the jobID Moab assigns to the
array. When submitting an array with a jobname, Moab returns the jobID, which is the scheduler name
followed by a unique ID.

For example, if the scheduler name in moab.cfg is Moab (SCHEDCFG[Moab]), submitting an array with
a jobname responds like this:

> msub -t myarray[1-10] job.sh

Moab.6

To specify that only a certain number of sub-jobs in the array can run at a time, use the percent sign (%)
delimiter. In this example, only five sub-jobs in the array can run at a time:

> msub -t myarray[1-1000]%5

To submit a specific set of array sub-jobs, use the comma delimiter in the array index list:

Moab Workload Manager

550 General Job Administration

General Job Administration 551

> msub -t myarray[1,2,3,4]
> msub -t myarray[1-5,7,10]

You can use the checkjob command on either the jobID or the jobname you specified.

> msub -t myarray[1-2] job.sh

Moab.10

$ checkjob -v myarray
job Moab.10

AName: myarray
Job Array Info:

Name: Moab.10
1 : Moab.10[1] : Running
2 : Moab.10[2] : Running

Sub-jobs: 2
Active: 2 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

State: Idle
Creds: user:tuser1 group:tgroup1
WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

To submit a job with a step size, use a colon in the array range and specify how many jobs to step. In the
example below, a step size of 2 is requested. The sub-jobs will be numbered according to the step size
inside the index limit. The array master job name will be the same as explained above.

Moab Workload Manager

$ msub -t myarray[2-10:2] job.sh

job Moab.15

$ checkjob -v myarray #or you could use 'checkjob -v Moab.15'
job Moab.15

AName: myarray
Job Array Info:

Name: Moab.15
2 : Moab.15[2] : Running
4 : Moab.15[4] : Running
6 : Moab.15[6] : Running
8 : Moab.15[8] : Running
10 : Moab.15[10] : Running

Sub-jobs: 5
Active: 5 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

State: Idle
Creds: user:tuser1 group:tgroup1
WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

Related topics

l Moab Workload Manager for Grids
l Job Dependencies

General Node Administration
l Node Location on page 553

l Node Attributes on page 556

l Node Specific Policies on page 566

l Managing Shared Cluster Resources (Floating Resources) on page 567

l Managing Node State on page 571

l Managing Consumable Generic Resources on page 573

l Enabling Generic Metrics on page 575

l Enabling Generic Events on page 578

Moab Workload Manager

552 General Node Administration

General Node Administration 553

Overview
Moab has a very flexible and generalized definition of a node. This flexible definition, together with the
fact that Moab must inter-operate with many resource managers of varying capacities, requires that
Moab must possess a complete set of mechanisms for managing nodes that in some cases may be
redundant with resource manager facilities.

Resource Manager Specified 'Opaque' Attributes

Many resource managers support the concept of opaque node attributes, allowing a site to assign
arbitrary strings to a node. These strings are opaque in the sense that the resource manager passes
them along to the scheduler without assigning any meaning to them. Nodes possessing these opaque
attributes can then be requested by various jobs. Using certain Moab parameters, sites can assign a
meaning within Moab to these opaque node attributes and extract specific node information. For
example, setting the parameter FEATUREPROCSPEEDHEADER xps causes a node with the opaque string
xps950 to be assigned a processor speed of 950 MHz within Moab.

Scheduler Specified Default Node Attributes

Some default node attributes can be assigned on a rack or partition basis. In addition, many node
attributes can be specified globally by configuring the DEFAULT node template using the NODECFG
parameter (i.e., NODECFG[DEFAULT] PROCSPEED=3200). Unless explicitly specified otherwise, nodes
inherit node attributes from the associated rack or partition or from the default node template. See the
Partition Overview for more information.

Scheduler Specified Node Attributes

The NODECFG parameter also allows direct per-node specification of virtually all node attributes
supported via other mechanisms and also provides a number of additional attributes not found
elsewhere. For example, a site administrator may want to specify something like the following:

NODECFG[node031] MAXJOB=2 PROCSPEED=600 PARTITION=small

These approaches may be mixed and matched according to the site's local needs. Precedence for
the approaches generally follows the order listed earlier in cases where conflicting node
configuration information is specified through one or more mechanisms.

Node Location
Nodes can be assigned three types of location information based on partitions, racks, and queues.

l Partitions

l Racks

l Queues

o TORQUE/OpenPBS Queue to Node Mapping

Moab Workload Manager

l Node Selection/Specification

Partitions
The first form of location assignment, the partition, allows nodes to be grouped according to physical
resource constraints or policy needs. By default, jobs are not allowed to span more than one partition so
partition boundaries are often valuable if an underlying network topology make certain resource
allocations undesirable. Additionally, per-partition policies can be specified to grant control over how
scheduling is handled on a partition by partition basis. See the Partition Overview for more information.

Racks
Rack-based location information is orthogonal to the partition based configuration and is mainly an
organizational construct. In general rack based location usage, a node is assigned both a rack and a slot
number. This approach has descended from the IBM SP2 organizational approach in which a rack can
contain any number of slots but typically contains between 1 and 99. Using the rack and slot number
combo, individual compute nodes can be grouped and displayed in a more ordered manner in certain
Moab commands (i.e., showstate). Currently, rack information can only be specified directly by the
system via the SDR interface on SP2/Loadleveler systems. In all other systems, this information must be
specified using an information service or specified manually using the RACK, SLOT, and SIZE attributes of
the NODECFG parameter.

Sites may arbitrarily assign nodes to racks and rack slots without impacting scheduling behavior.
Neither rack numbers nor rack slot numbers need to be contiguous; their use is simply for
convenience purposes in displaying and analyzing compute resources.

Example 3-133:

NODECFG[node024] RACK=1 SLOT=1
NODECFG[node025] RACK=1 SLOT=2
NODECFG[node026] RACK=2 SLOT=1 PARTITION=special
...

When specifying node and rack information, slot values must be in the range of 1 to 99, and racks must
be in the range of 1 to 399.

Queues
Some resource managers allow queues (or classes) to be defined and then associated with a subset of
available compute resources. With systems such as Loadleveler or PBSPro these queue to node mappings
are automatically detected. On resource managers that do not provide this service, Moab provides
alternative mechanisms for enabling this feature.

TORQUE/OpenPBS Queue to Node Mapping

Under TORQUE, queue to node mapping can be accomplished by using the qmgr command to set the
queue acl_hosts parameter to the mapping hostlist desired. Further, the acl_host_enable parameter
should be set to False.

Moab Workload Manager

554 General Node Administration

General Node Administration 555

Setting acl_hosts and then setting acl_host_enable to True constrains the list of hosts from
which jobs may be submitted to the queue.

The following example highlights this process and maps the queue debug to the nodes host14 through .

> qmgr
Max open servers: 4
Qmgr: set queue debug acl_hosts = "host14,host15,host16,host17"
Qmgr: set queue debug acl_host_enable = false
Qmgr: quit

All queues that do not have acl_hosts specified are global; that is, they show up on every node.
To constrain these queues to a subset of nodes, each queue requires its own acl_hosts
parameter setting.

Node Selection
When selecting or specifying nodes either via command line tools or via configuration file based lists,
Moab offers three types of node expressions that can be based on node lists, exact lists, node ranges, or
regular expressions.

Node Lists

Node lists can be specified as one or more comma or whitespace delimited node IDs. Specified node IDs
can be based on either short or fully qualified hostnames. Each element will be interpreted as a regular
expression.

SRCFG[basic] HOSTLIST=cl37.icluster,ax45,ax46
...

Exact Lists

When Moab receives a list of nodes it will, by default, interpret each element as a regular expression. To
disable this and have each element interpreted as a string node name, the l: can be used as in the
following example:

> setres l:n00,n01,n02

Node Range

Node lists can be specified as one or more comma or whitespace delimited node ranges. Each node range
can be based using either <STARTINDEX>-<ENDINDEX> or <HEADER>[<STARTINDEX>-<ENDINDEX>]
format. To explicitly request a range, the node expression must be preceded with the string r: as in the
following example:

> setres r:37-472,513,516-855

When you specify a <HEADER> for the range, note that it must only contain alphabetical characters. As
always, the range must be numeric.

Moab Workload Manager

CLASSCFG[long] HOSTLIST=r:anc-b[37-472]

Only one expression is allowed with node ranges.

By default, Moab attempts to extract a node's node index assuming this information is built into
the node's naming convention. If needed, this information can be explicitly specified in the Moab
configuration file using NODECFG's NODEINDEX attribute, or it can be extracted from alternately
formatted node IDs by specifying the NODEIDFORMAT parameter.

Node Regular Expression

Node lists may also be specified as one or more comma or whitespace delimited regular expressions.
Each node regular expression must be specified in a format acceptable by the standard C regular
expression libraries that allow support for wildcard and other special characters such as the following:

l * (asterisk)

l . (period)

l [] (left and right bracket)

l ^ (caret)

l $ (dollar)

Node lists are by default interpreted as a regular expression but can also be explicitly requested with
the string x: as in the following examples:

select nodes cl30 thru cl55
SRCFG[basic] HOSTLIST=x:cl[34],cl5[0-5]
...

select nodes cl30 thru cl55
SRCFG[basic] HOSTLIST=cl[34],cl5[0-5]
...

To control node selection search ordering, set the OBJECTELIST parameter to one of the following
options: exact, range, regex, rangere, or rerange.

Node Attributes
l Configurable Node Attributes on page 556

l Node Features/Node Properties on page 565

Configurable Node Attributes
Nodes can possess a large number of attributes describing their configuration which are specified using
the NODECFG parameter. The majority of these attributes such as operating system or configured

Moab Workload Manager

556 General Node Administration

General Node Administration 557

network interfaces can only be specified by the direct resource manager interface. However, the number
and detail of node attributes varies widely from resource manager to resource manager. Sites often
have interest in making scheduling decisions based on scheduling attributes not directly supplied by the
resource manager. Configurable node attributes are listed in the following table; click an attribute for
more detailed information:

ACCESS on page 557
ARCH on page 557

COMMENT on page 557
ENABLEPROFILING on page 557
FEATURES on page 558
FLAGS on page 558
GRES on page 559
MAXIOIN on page 559
MAXJOB on page 559
MAXJOBPERUSER on page 559
MAXPE on page 559
MAXPEPERJOB on page 559
MAXPROC on page 559

NETWORK on page 559
NODEINDEX on page 559

OS on page 560
OSLIST on page 560
OVERCOMMIT on page 560
PARTITION on page 560
POWERPOLICY on page 560
PREEMPTMAXCPULOAD on page 560
PREEMPTMINMEMAVAIL on page 561
PREEMPTPOLICY on page 561
PRIORITY on page 561
PRIORITYF on page 562
PROCSPEED on page 562

PROVRM on page 562
RACK on page 562
RADISK on page 562
RCDISK on page 563
RCMEM on page 563
RCPROC on page 563
RCSWAP on page 564
SIZE on page 564
SLOT on page 564
SPEED on page 564
TRIGGER on page 564
VARIABLE on page 564
VMOCTHRESHOLD on page 565

Attribute Description

ACCESS Specifies the node access policy that can be one of SHARED, SHAREDONLY,
SINGLEJOB, SINGLETASK, or SINGLEUSER. See Node Access Policies for more
details.

NODECFG[node013] ACCESS=singlejob

ARCH Specifies the node's processor architecture.

NODECFG[node013] ARCH=opteron

COMMENT Allows an organization to annotate a node via the configuration file to indicate
special information regarding this node to both users and administrators. The
COMMENT value may be specified as a quote delimited string as shown in the
example that follows. Comment information is visible using checknode, mdiag, Moab
Cluster Manager, and Moab Access Portal.

NODECFG[node013] COMMENT="Login Node"

ENABLEPROFILING Allows an organization to track node state over time. This information is available
using showstats -n.

NODECFG[DEFAULT] ENABLEPROFILING=TRUE

Moab Workload Manager

http://www.adaptivecomputing.com/resources/docs/map/index.php

Attribute Description

FEATURES Not all resource managers allow specification of opaque node features (also known
as node properties). For these systems, the NODECFG parameter can be used to
directly assign a list of node features to individual nodes. To append node features,
use FEATURES=<X>; to overwrite or remove a node's features, you must update
them in your Moab configuration file or resource manager.

NODECFG[node013] FEATURES=gpfs,fastio

Node node013 now has features gpfs and fastio in addition to any other
features configured in this file or the resource manager.

The total number of supported node features is limited as described in the
Adjusting Default Limits section.

If supported by the resource manager, the resource manager specific
manner of requesting node features/properties within a job may be used.
(Within TORQUE, use qsub -l nodes=<NODECOUNT>:<NODEFEATURE>.)
However, if either not supported within the resource manager or if support is
limited, the Moab feature resource manager extension may be used.

FLAGS Specifies various flags that should be set on the given node. Node flags must be set
using the mschedctl -m config command. Do not set node flags in the moab.cfg file.
Flags set in moab.cfgmay conflict with settings controlled automatically by
resource managers, Moab Web Services.

l globalvars - The node has variables that may be used by triggers.
l novmmigrations - Excludes this hypervisor from VM auto-migrations. This
means that VMs cannot automatically migrate to or from this hypervisor
while this flag is set.

NODECFG[node1] FLAGS=NoVMMigrations

To allow VMs to resume migrating, remove this flag using
mschedctl -m config 'NODECFG[node1] FLAGS-
=NoVMMigrations' or use a resource manager to unset the flag.
Because both Moab and the RM report the novmmigration flag
and the RM's setting always overrides the Moab setting, you
cannot remove the flag via the Moab command when the RM is
reporting it.

Moab Workload Manager

558 General Node Administration

General Node Administration 559

Attribute Description

GRES Many resource managers do not allow specification of consumable generic node
resources. For these systems, the NODECFG parameter can be used to directly assign
a list of consumable generic attributes to individual nodes or to the special pseudo-
node global, which provides shared cluster (floating) consumable resources. To
set/overwrite a node's generic resources, use GRES=<NAME>[:<COUNT>]. (See
Managing Consumable Generic Resources.)

NODECFG[node013] GRES=quickcalc:20

MAXIOIN Maximum input allowed on node before it is marked busy.

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXPE See Node Policies for details.

MAXPEPERJOB Maximum allowed Processor Equivalent per job on this node. A job will not be
allowed to run on this node if its PE exceeds this number.

NODECFG[node024] MAXPEPERJOB=10000
...

MAXPROC Maximum dedicated processors allowed on this node. No jobs are scheduled on this
node when this number is reached. See Node Policies for more information.

NODECFG[node024] MAXPROC=8
...

NETWORK The ability to specify which networks are available to a given node is limited to only
a few resource managers. Using the NETWORK attribute, administrators can
establish this node to network connection directly through the scheduler. The
NODECFG parameter allows this list to be specified in a comma-delimited list.

NODECFG[node024] NETWORK=GigE
...

NODEINDEX The node's index. See Node Location for details.

Moab Workload Manager

Attribute Description

OS This attribute specifies the node's operating system.

NODECFG[node013] OS=suse10

Because the TORQUE operating system overwrites the Moab operating
system, change the operating system with opsys on page 2446 instead of OS
if you are using TORQUE.

OSLIST This attribute specifies the list of operating systems the node can run.

NODECFG[compute002] OSLIST=linux,windows

OVERCOMMIT Specifies the high-water limit for over-allocation of processors or memory on a
hypervisor. This setting is used to protect hypervisors from having too many VMs
placed on them, regardless of the utilization level of those VMs. Possible attributes
include DISK, MEM, PROC, and SWAP. Usage is <attr>:<integer>.

NODECFG[node012] OVERCOMMIT=PROC:2,MEM:4

PARTITION See Node Location for details.

POWERPOLICY The POWERPOLICY can be set toOnDemand or STATIC. It defaults to STATIC if
not set. If set to STATIC, Moab will never automatically change the power status of a
node. If set toOnDemand, Moab will turn the machine off and on based on work-
load and global settings. See Green Computing for further details.

PREEMPTMAXCPULOAD If the node CPU load exceeds the specified value, any batch jobs running on the
node are preempted using the preemption policy specified with the node's
PREEMPTPOLICY attribute. If this attribute is not specified, the global default policy
specified with PREEMPTPOLICY parameter is used. See Sharing Server Resources
for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

Moab Workload Manager

560 General Node Administration

General Node Administration 561

Attribute Description

PREEMPTMINMEMAVAIL If the available node memory drops below the specified value, any batch jobs
running on the node are preempted using the preemption policy specified with the
node's PREEMPTPOLICY attribute. If this attribute is not specified, the global default
policy specified with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMINMEMAVAIL=256
...

PREEMPTPOLICY If any node preemption policies are triggered (such as PREEMPTMAXCPULOAD or
PREEMPTMINMEMAVAIL) any batch jobs running on the node are preempted using
this preemption policy if specified. If not specified, the global default preemption
policy specified with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

PRIORITY The PRIORITY attribute specifies the fixed node priority relative to other nodes. It is
only used if NODEALLOCATIONPOLICY is set to PRIORITY. The default node priority
is 0. A default cluster-wide node priority may be set by configuring the PRIORITY
attribute of the DEFAULT node. See Priority Node Allocation for more details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITY=120
...

Moab Workload Manager

Attribute Description

PRIORITYF The PRIORITYF attribute specifies the function to use when calculating a node's
allocation priority specific to a particular job. It is only used if
NODEALLOCATIONPOLICY is set to PRIORITY. The default node priority function
sets a node's priority exactly equal to the configured node priority. The priority
function allows a site to indicate that various environmental considerations such as
node load, reservation affinity, and ownership be taken into account as well using
the following format:
<COEFFICIENT> * <ATTRIBUTE> [+ <COEFFICIENT> * <ATTRIBUTE>
]...

<ATTRIBUTE> is an attribute from the table found in the Priority Node Allocation
section.
A default cluster-wide node priority function may be set by configuring the
PRIORITYF attribute of the DEFAULT node. See Priority Node Allocation for more
details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITYF='APROC + .01 * AMEM - 10 * JOBCOUNT'
...

PROCSPEED Knowing a node's processor speed can help the scheduler improve intra-job
efficiencies by allocating nodes of similar speeds together. This helps reduce losses
due to poor internal job load balancing. Moab's Node Set scheduling policies allow a
site to control processor speed based allocation behavior.
Processor speed information is specified in MHz and can be indicated directly using
NODECFG or through use of the FEATUREPROCSPEEDHEADER parameter.

PROVRM Provisioning resource managers can be specified on a per node basis. This allows
flexibility in mixed environments. If the node does not have a provisioning resource
manager, the default provisioning resource manager will be used. The default is
always the first one listed in moab.cfg.

RMCFG[prov] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[prov] PROVDURATION=10:00
RMCFG[prov] NODEMODIFYURL=exec://$HOME/tools/os.switch.pl
...
NODECFG[node024] PROVRM=prov

RACK The rack associated with the node's physical location. Valid values range from 1 to
400. See Node Location for details.

RADISK Jobs can request a certain amount of disk space through the RM Extension String's
DDISK parameter. When done this way, Moab can track the amount of disk space
available for other jobs. To set the total amount of disk space available the RADISK
parameter is used.

Moab Workload Manager

562 General Node Administration

General Node Administration 563

Attribute Description

RCDISK Jobs can request a certain amount of disk space (in MB) through the RM Extension
String's DDISK parameter. When done this way, Moab can track the amount of disk
space available for other jobs. The RCDISK attribute constrains the amount of disk
reported by a resource manager while the RADISK attribute specifies the amount of
disk available to jobs. If the resource manager does not report available disk, the
RADISK attribute should be used.

RCMEM Jobs can request a certain amount of real memory (RAM) in MB through the RM
Extension String's DMEM parameter. When done this way, Moab can track the
amount of memory available for other jobs. The RCMEM attribute constrains the
amount of RAM reported by a resource manager while the RAMEM attribute
specifies the amount of RAM available to jobs. If the resource manager does not
report available disk, the RAMEM attribute should be used.
Please note that memory reported by the resource manager will override the
configured value unless a trailing caret (^) is used.

NODECFG[node024] RCMEM=2048
...

If the resource manager does not report any memory, then Moab will
assign node0242048 MB of memory.

NODECFG[node024] RCMEM=2048^
...

Moab will assign 2048 MB of memory to node024 regardless of what the
resource manager reports.

RCPROC The RCPROC specifies the number of processors available on a compute node.

NODECFG[node024] RCPROC=8
...

Moab Workload Manager

Attribute Description

RCSWAP Jobs can request a certain amount of swap space in MB.

RCSWAP works similarly to RCMEM. Setting RCSWAP on a node will set the
swap but can be overridden by swap reported by the resource manager. If
the trailing caret (^) is used, Moab will ignore the swap reported by the
resource manager and use the configured amount.

NODECFG[node024] RCSWAP=2048
...

If the resource manager does not report any memory, Moab will assign
node0242048 MB of swap.

NODECFG[node024] RCSWAP=2048^
...

Moab will assign 2048 MB of swap to node024 regardless of what the
resource manager reports.

SIZE The number of slots or size units consumed by the node. This value is used in
graphically representing the cluster using showstate or Moab Cluster Manager. See
Node Location for details. For display purposes, legal size values include 1, 2, 3, 4, 6,
8, 12, and 16.

NODECFG[node024] SIZE=2
...

SLOT The first slot in the rack associated with the node's physical location. Valid values
range from 1 toMMAX_RACKSIZE (default=64). See Node Location for details.

SPEED Because today's processors have multiple cores and adjustable clock frequency, this
feature has no meaning and will be deprecated.

The SPEED specification must be in the range of 0.01 to 100.0.

TRIGGER See About object triggers on page 724 for information.

VARIABLE Variables associated with the given node, which can be used in job scheduling. See -l
PREF.

NODECFG[node024] VARIABLE=var1
...

Moab Workload Manager

564 General Node Administration

General Node Administration 565

Attribute Description

VMOCTHRESHOLD Specifies the high-water threshold for utilization of resources on a server (i.e.
processor and memory). This setting is used to protect hypervisors from becoming
too highly utilized and thus negatively impacting the performance of VMs running
on the hypervisor. Possible attributes include PROC and MEM.

NODECFG[node024] VMOCTHRESHOLD=PROC=2,MEM=2

Node Features/Node Properties
A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it, and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

Node features may be assigned by the resource manager, and this information may be imported by Moab
or node features may be specified within Moab directly. Moab supports hyphens and underscores in node
feature names.

As a convenience feature, certain node attributes can be specified via node features using the
parameters listed in the following table:

PARAMETER DESCRIPTION

FEATURENODETYPEHEADER Set Node Type

FEATUREPARTITIONHEADER Set Partition

FEATUREPROCSPEEDHEADER Set Processor Speed

FEATURERACKHEADER Set Rack

FEATURESLOTHEADER Set Slot

Example 3-134:

FEATUREPARTITIONHEADER par
FEATUREPROCSPEEDHEADER cpu

Related topics

l Job Preferences
l Configuring Specifying Node Features (Node Properties) on page 2224 in TORQUE
l Configuring Node Features in Moab with NODECFG
l Specifying Job Feature Requirements

Moab Workload Manager

l Viewing Feature Availability Breakdown with mdiag -t
l Differences between Node Features and Managing Consumable Generic Resources

Node Specific Policies
Node policies within Moab allow specification of not only how the node's load should be managed, but
who can use the node, and how the node and jobs should respond to various events. These policies allow
a site administrator to specify on a node by node basis what the node will and will not support. Node
policies may be applied to specific nodes or applied system-wide using the specification NODECFG
[DEFAULT]

Node Usage/Throttling Policies

MAXJOB

This policy constrains the number of total independent jobs a given node may run simultaneously. It can
only be specified via the NODECFG parameter.

On Cray XT systems, use the NID (node id) instead of the node name. For more information, see
Configuring the moab.cfg file.

MAXJOBPERUSER

Constrains the number of total independent jobs a given node may run simultaneously associated with
any single user. It can only be specified via the NODECFG parameter.

MAXJOBPERGROUP

Constrains the number of total independent jobs a given node may run simultaneously associated with
any single group. It can only be specified via the NODECFG parameter.

MAXLOAD

MAXLOAD constrains the CPU load the node will support as opposed to the number of jobs. This
maximum load policy can also be applied system wide using the parameter NODEMAXLOAD.

MAXPE

This policy constrains the number of total dedicated processor-equivalents a given node may support
simultaneously. It can only be specified via the NODECFG parameter.

MAXPROC

This policy constrains the number of total dedicated processors a given node may support
simultaneously. It can only be specified via the NODECFG parameter.

Moab Workload Manager

566 General Node Administration

General Node Administration 567

MAXPROCPERUSER

This policy constrains the number of total processors a given node may have dedicated to any single
user. It can only be specified via the NODECFG parameter.

MAXPROCPERGROUP

This policy constrains the number of total processors a given node may have dedicated to any single
group. It can only be specified via the NODECFG parameter.

Node throttling policies are used strictly as constraints. If a node is defined as having a single
processor or the NODEACCESSPOLICY is set to SINGLETASK, and a MAXPROC policy of 4 is
specified, Moab will not run more than one task per node. A node's configured processors must be
specified so that multiple jobs may run and then the MAXJOB policy will be effective. The number
of configured processors per node is specified on a resource manager specific basis. PBS, for
example, allows this to be adjusted by setting the number of virtual processors with the np
parameter for each node in the PBS nodes file.

Example 3-135:

NODECFG[node024] MAXJOB=4 MAXJOBPERUSER=2
NODECFG[node025] MAXJOB=2
NODECFG[node026] MAXJOBPERUSER=1
NODECFG[DEFAULT] MAXLOAD=2.5
...

Node Access Policies
While most sites require only a single cluster wide node access policy (commonly set using
NODEACCESSPOLICY), it is possible to specify this policy on a node by node basis using the ACCESS
attributes of the NODECFG parameter. This attribute may be set to any of the valid node access policy
values listed in the Node Access Policies section.

Example 3-136:

To set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

Related topics

l mnodectl

Managing Shared Cluster Resources (Floating Resources)
This section describes how to configure, request, and reserve cluster file system space and bandwidth,
software licenses, and generic cluster resources.

Moab Workload Manager

Shared Cluster Resource Overview
Shared cluster resources such as file systems, networks, and licenses can be managed through creating a
pseudo-node. You can configure a pseudo-node via the NODECFG parameter much as a normal node would
be but additional information is required to allow the scheduler to contact and synchronize state with
the resource.

In the following example, a license manager is added as a cluster resource by defining the GLOBAL
pseudo-node and specifying how the scheduler should query and modify its state.

NODECFG[GLOBAL] RMLIST=NATIVE
NODECFG[GLOBAL] QUERYCMD=/usr/local/bin/flquery.sh
NODECFG[GLOBAL] MODIFYCMD=/usr/local/bin/flmodify.sh

In some cases, pseudo-node resources may be very comparable to node-locked generic resources
however there are a few fundamental differences which determine when one method of describing
resources should be used over the other. The following table contrasts the two resource types.

Attribute Pseudo-Node Generic Resource

Node-Locked No - Resources can be encapsulated as
an independent node.

Yes - Must be associated with an existing com-
pute node.

Requires exclus-
ive batch system
control over
resource

No - Resources (such as file systems and
licenses) may be consumed both inside
and outside of batch system workload.

Yes - Resources must only be consumed by
batch workload. Use outside of batch control
results in loss of resource synchronization.

Allows scheduler
level allocation
of resources

Yes - If required, the scheduler can take
external administrative action to allocate
the resource to the job.

No - The scheduler can only maintain logical
allocation information and cannot take any
external action to allocate resources to the job.

Configuring Generic Consumable Floating Resources
Consumable floating resources are configured in the same way as node-locked generic resources with the
exception of using the GLOBAL node instead of a particular node.

NODECFG[GLOBAL] GRES=tape:4,matlab:2
...

In this setup, four resources of type tape and 2 of type matlab are floating and available across all nodes.

Requesting Consumable Floating Resources

Floating resources are requested on a per task basis using native resource manager job submission
methods or using the GRES resource manager extensions.

Moab Workload Manager

568 General Node Administration

General Node Administration 569

Configuring Cluster File Systems
Moab allows both the file space and bandwidth attributes or a cluster file system to be tracked,
reserved, and scheduled. With this capability, a job or reservation may request a particular quantity of
file space and a required amount of I/O bandwidth to this file system. While file system resources are
managed as a cluster generic resource, they are specified using the FS attribute of the NODECFG
parameter as in the following example:

NODECFG[GLOBAL] FS=PV1:10000@100,PV2:5000@100
...

In this example, PV1 defines a 10 GB file system with a maximum throughput of 100 MB/s while PV2 defines a 5 GB file
system also possessing a maximum throughput of 100 MB/s.

A job may request cluster file system resources using the fs resource manager extension. For a
TORQUE based system, the following could be used:

>qsub -l nodes=1,walltime=1:00:00 -W x=fs:10@50

Configuring Cluster Licenses
Jobs may request and reserve software licenses using native methods or using the GRES resource
manager extension. If the cluster license manager does not support a query interface, license availability
may be specified within Moab using the GRES attribute of the NODECFG parameter.

Example 3-137: Configure Moab to support four floating quickcalc and two floating matlab licenses.

NODECFG[GLOBAL] GRES=quickcalc:4,matlab:2
...

Example 3-138: Submit a TORQUE job requesting a node-locked or floating quickcalc license.

> qsub -l nodes=1,software=quickcalc,walltime=72000 testjob.cmd

Configuring Generic Resources as Features
Moab can be configured to treat generic resources as features in order to provide more control over
server access. For instance, if a node is configured with a certain GRES and that GRES is turned off, jobs
requesting the node will not run. To turn a GRES into a feature, set the FEATUREGRES attribute of
GRESCFG to TRUE in the moab.cfg file.

GRESCFG[gres1] FEATUREGRES=TRUE

Moab now treats gres1 as a scheduler-wide feature rather than a normal generic resource.

Note that jobs are submitted normally using the same GRES syntax.

If you are running a grid, verify that FEATUREGRES=TRUE is set on all members of the grid.

You can safely upgrade an existing cluster to use the feature while jobs are running. If you are in a
grid, upgrade all clusters at the same time.

Moab Workload Manager

Two methods exist for managing GRES features: via Moab commands and via the resource manager.
Using Moab commands means that feature changes are not checkpointed; they do not remain in place
when Moab restarts. Using the resource manager causes changes to be reported by the RM, so any
changes made before a Moab restart are still present after it.

These methods are mutually exclusive. Use one or the other, but do not mix methods.

Managing Feature GRES via Moab Commands

In the following example, gres1 and gres2 are configured in the moab.cfg file. gres1 is not currently
functioning correctly, so it is set to 0, turning the feature off. Values above 0 and non-specified values
turn the feature on.

NODECFG[GLOBAL] GRES=gres1:0
NODECFG[GLOBAL] GRES=gres2:10000
GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

Moab now treats gres1 and gres2 as features.

To verify that this is set up correctly, run mdiag -S -v. It returns the following:

> mdiag -S -v
...
 Scheduler FeatureGres: gres1:off,gres2:on

Once Moab has started, use mschedctl -m to modify whether the feature is turned on or off.

mschedctl -m sched featuregres:gres1=on

INFO: FeatureGRes 'gres1' turned on

You can verify that the feature turned on or off by once again running mdiag -S -v.

If Moab restarts, it will not checkpoint the state of these changed feature general resources.
Instead, it will read the moab.cfg file to determine whether the feature GRES is on or off.

With feature GRES configured, jobs are submitted normally, requesting GRES type gres1 and gres2. Moab
ignores GRES counts and reads the feature simply as on or off.

> msub -l nodes=1,walltime=600,gres=gres1

1012
> checkjob 1012
job 1012

AName: STDIN
State: Running
.....
StartTime: Tue Jul 3 15:33:28
Feature GRes: gres1
Total Requested Tasks: 1

If you request a feature that is currently turned off, the state is not reported as Running, but as Idle.
A message like the following returns:

Moab Workload Manager

570 General Node Administration

General Node Administration 571

BLOCK MSG: requested feature gres 'gres2' is off

Managing Feature GRES via the Resource Manager

You can automate the process of having a feature GRES turn on and off by setting up an external tool and
configuring Moab to query the tool the same way that Moab queries a license manager. For example:

RMCFG[myRM] CLUSTERQUERYURL=file:///$HOME/tools/myRM.dat TYPE=NATIVE
RESOURCETYPE=LICENSE

GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

LICENSE means that the RM does not contain any compute resources and that Moab should not attempt to use it to
manage any jobs (start, cancel, submit, etc.).

The myRM.dat file should contain something like the following:

GLOBAL state=Idle cres=gres1:0,gres2:10

External tools can easily update the file based on filesystem availability. Switching any of the feature
GRES to 0 turns it off and switching it to a positive value turns it on. If you use this external mechanism,
you do not need to use mschedctl -m to turn a feature GRES on or off. You also do not need to worry
about whether Moab has checkpointed the information or not, since the information is provided by the
RM and not by any external commands.

Related topics

l Managing Resources Directly with the Native Interface

Managing Node State
There are multiple models in which Moab can operate allowing it to either honor the node state set by
an external service or locally determine and set the node state. This section covers the following:

l identifying meanings of particular node states

l specifying node states within locally developed services and resource managers

l adjusting node state within Moab based on load, policies, and events

Node State Definitions

State Definition

Down Node is either not reporting status, is reporting status but failures are detected, or is reporting status
but has been marked down by an administrator.

Idle Node is reporting status, currently is not executing any workload, and is ready to accept additional
workload.

Moab Workload Manager

State Definition

Busy Node is reporting status, currently is executing workload, and cannot accept additional workload due
to load.

Running Node is reporting status, currently is executing workload, and can accept additional workload.

Drained Node is reporting status, currently is not executing workload, and cannot accept additional workload
due to administrative action.

Draining Node is reporting status, currently is executing workload, and cannot accept additional workload due
to administrative action.

Specifying Node States within Native Resource Managers
Native resource managers can report node state implicitly and explicitly, using NODESTATE, LOAD, and
other attributes. See Managing Resources Directly with the Native Interface for more information.

Moab Based Node State Adjustment
Node state can be adjusted based on reported processor, memory, or other load factors. It can also be
adjusted based on reports of one or more resource managers in a multi-resource manager configuration.
Also, both generic events and generic metrics can be used to adjust node state.

l TORQUE health scripts (allow compute nodes to detect and report site specific failures).

Adjusting Scheduling Behavior Based on Reported Node State
Based on reported node state, Moab can support various policies to make better use of available
resources. For more information, see the Green computing overview on page 701.

Down State

l JOBACTIONONNODEFAILURE parameter (cancel/requeue jobs if allocated nodes fail).

l Triggers (take specified action if failure is detected).

Related topics

l Managing Resources Directly with the Native Interface
l License Management
l Adjusting Node Availability
l NODEMAXLOAD parameter
l Green computing overview

Moab Workload Manager

572 General Node Administration

General Node Administration 573

Managing Consumable Generic Resources
l Configuring Node-Locked Consumable Generic Resources

o Requesting Consumable Generic Resources

l Managing Generic Resource Race Conditions

Each time a job is allocated to a compute node, it consumes one or more types of resources. Standard
resources such as CPU, memory, disk, network adapter bandwidth, and swap are automatically tracked
and consumed by Moab. However, in many cases, additional resources may be provided by nodes and
consumed by jobs that must be tracked. The purpose of this tracking may include accounting, billing, or
the prevention of resource over-subscription. Generic consumable resources may be used to manage
software licenses, I/O usage, bandwidth, application connections, or any other aspect of the larger
compute environment; they may be associated with compute nodes, networks, storage systems, or other
real or virtual resources.

These additional resources can be managed within Moab by defining one or more generic resources. The
first step in defining a generic resource involves naming the resource. Generic resource availability can
then be associated with various compute nodes and generic resource usage requirements can be
associated with jobs.

Differences Between Node Features and Consumable Resources
A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

Configuring Node-locked Consumable Generic Resources
Consumable generic resources are supported within Moab using either direct configuration or resource
manager auto-detect (as when using TORQUE and accelerator hardware). For direct configuration, node-
locked consumable generic resources (or generic resources) are specified using the NODECFG
parameter's GRES attribute. This attribute is specified using the format <ATTR>:<COUNT> as in the
following example:

NODECFG[titan001] GRES=tape:4
NODECFG[login32] GRES=matlab:2,prime:4
NODECFG[login33] GRES=matlab:2
...

By default, Moab supports up to 128 independent generic resource types.

Requesting Consumable Generic Resources

Generic resources can be requested on a per task or per job basis using the GRES resource manager
extension. If the generic resource is located on a compute node, requests are by default interpreted as a
per task request. If the generic resource is located on a shared, cluster-level resource (such as a
network or storage system), then the request defaults to a per job interpretation.

Moab Workload Manager

Generic resources are specified per task, not per node. When you submit a job, each processor
becomes a task. For example, a job asking for nodes=3:ppn=4,gres=test:5 asks for 60 gres of
type test ((3*4 processors)*5).

If using TORQUE, the GRES or software resource can be requested as in the following examples:

Example 3-139: Per Task Requests

NODECFG[compute001] GRES=dvd:2 SPEED=2200
NODECFG[compute002] GRES=dvd:2 SPEED=2200
NODECFG[compute003] GRES=dvd:2 SPEED=2200
NODECFG[compute004] GRES=dvd:2 SPEED=2200
NODECFG[compute005] SPEED=2200
NODECFG[compute006] SPEED=2200
NODECFG[compute007] SPEED=2200
NODECFG[compute008] SPEED=2200

submit job which will allocate only from nodes 1 through 4 requesting one dvd per
task
> qsub -l nodes=2,walltime=100,gres=dvd job.cmd

In this example, Moab determines that compute nodes exist that possess the requested generic resource. A compute node
is a node object that possesses processors on which compute jobs actually execute. License server, network, and storage
resources are typically represented by non-compute nodes. Because compute nodes exist with the requested generic
resource, Moab interprets this job as requesting two compute nodes each of which must also possess a DVD generic
resource.

Example 3-140: Per Job Requests

NODECFG[network] PARTITION=shared GRES=bandwidth:2000000

submit job which will allocate 2 nodes and 10000 units of network bandwidth
> qsub -l nodes=2,walltime=100,gres=bandwidth:10000 job.cmd

In this example, Moab determines that there exist no compute nodes that also possess the generic resource bandwidth so
this job is translated into a multiple-requirement—multi-req—job. Moab creates a job that has a requirement for two
compute nodes and a second requirement for 10000 bandwidth generic resources. Because this is a multi-req job, Moab
knows that it can locate these needed resources separately.

Using Generic Resource Requests in Conjunction with other Constraints

Jobs can explicitly specify generic resource constraints. However, if a job also specifies a hostlist, the
hostlist constraint overrides the generic resource constraint if the request is for per task allocation. In
the Per Task Requests example, if the job also specified a hostlist, the DVD request is ignored.

Requesting Resources with No Generic Resources

In some cases, it is valuable to allocate nodes that currently have no generic resources available. This
can be done using the special value none as in the following example:

> qsub -l nodes=2,walltime=100,gres=none job.cmd

In this case, the job only allocates compute nodes that have no generic resources associated with them.

Moab Workload Manager

574 General Node Administration

General Node Administration 575

Requesting Generic Resources Automatically within a Queue/Class

Generic resource constraints can be assigned to a queue or class and inherited by any jobs that do not
have a gres request. This allows targeting of specific resources, automation of co-allocation requests, and
other uses. To enable this, use the DEFAULT.GRES attribute of the CLASSCFG parameter as in the
following example:

CLASSCFG[viz] DEFAULT.GRES=graphics:2

For each node requested by a viz job, also request two graphics cards.

Managing Generic Resource Race Conditions
A software license race condition "window of opportunity" opens when Moab checks a license server for
sufficient available licenses and closes when the user's software actually checks out the software
licenses. The time between these two events can be seconds to many minutes depending on overhead
factors such as node OS provisioning, job startup, licensed software startup, and so forth.

During this window, another Moab-scheduled job or a user or job external to the cluster or cloud can
obtain enough software licenses that by the time the job attempts to obtain its software licenses, there
are an insufficient quantity of available licenses. In such cases a job will sit and wait for the license, and
while it waits it occupies but does not use resources that another job could have used. Use the
STARTDELAY parameter to prevent such a situation.

GRESCFG[<license>] STARTDELAY=<window_of_opportunity>

With the STARTDELAY parameter enabled (on a per generic resource basis) Moab blocks any idle jobs
requesting the same generic resource from starting until the <window_of_opportunity> passes. The
window is defined by the customer on a per generic resource basis.

Related topics

l GRESCFG parameter
l Generic Metrics
l Generic Events
l General Node Attributes
l Floating Generic Resources
l Per Class Assignment of Generic Resource Consumption
l mnodectl -m command to dynamically modify node resources
l Favoring Jobs Based On Generic Resource Requirements

Enabling Generic Metrics
l Configuring Generic Metrics

l Example Generic Metric Usage

Moab allows organizations to enable generic performance metrics. These metrics allow decisions to be
made and reports to be generated based on site specific environmental factors. This increases Moab's
awareness of what is occurring within a given cluster environment, and allows arbitrary information to

Moab Workload Manager

be associated with resources and the workload within the cluster. Uses of these metrics are widespread
and can cover anything from tracking node temperature, to memory faults, to application effectiveness.

l Execute triggers when specified thresholds are reached

l Modify node allocation affinity for specific jobs

l Initiate automated notifications when thresholds are reached

l Display current, average, maximum, and minimum metrics values in reports and charts within
Moab Cluster Manager

Configuring Generic Metrics
A new generic metric is automatically created and tracked at the server level if it is reported by either
a node or a job.

To associate a generic metric with a job or node, a native resource manager must be set up and the
GMETRIC attribute must be specified. For example, to associate a generic metric of temp with each node
in a TORQUE cluster, the following could be reported by a native resource manager:

temperature output
node001 GMETRIC[temp]=113
node002 GMETRIC[temp]=107
node003 GMETRIC[temp]=83
node004 GMETRIC[temp]=85
...

Generic metrics are tracked as floating point values allowing virtually any number to be reported.

In the preceding example, the new metric, temp, can now be used to monitor system usage and
performance or to allow the scheduler to take action should certain thresholds be reached. Some uses
include the following:

l Executing triggers based on generic metric thresholds

l Adjust a node's availability for accepting additional workload

l Adjust a node's allocation priority

l Initiate administrator notification of current, minimum, maximum, or average generic metric
values

l Use metrics to report resource and job performance

l Use metrics to report resource and job failures

l Using job profiles to allow Moab to learn which resources best run which applications

l Tracking effective application efficiency to identify resource brown outseven when no node failure
is obvious

l Viewing current and historical cluster-wide generic metric values to identify failure, performance,
and usage

l Enable charging policies based on consumption of generic metrics patterns

Moab Workload Manager

576 General Node Administration

General Node Administration 577

l View changes in generic metrics on nodes, jobs, and cluster wide over time

l Submit jobs with generic metric based node-allocation requirements

Generic metric values can be viewed using checkjob, checknode, mdiag -n,mdiag -j, or Moab Cluster
Manager Charting and Reporting Features.

Historical job and node generic metric statistics can be cleared using the mjobctl and mnodectl
commands.

Example Generic Metric Usage
As an example, consider a cluster with two primary purposes for generic metrics. The first purpose is to
track and adjust scheduling behavior based on node temperature to mitigate overheating nodes. The
second purpose is to track and charge for utilization of a locally developed data staging service.

The first step in enabling a generic metric is to create probes to monitor and report this information.
Depending on the environment, this information may be distributed or centralized. In the case of
temperature monitoring, this information is often centralized by a hardware monitoring service and
available via command line or an API. If monitoring a locally developed data staging service, this
information may need to be collected from multiple remote nodes and aggregated to a central location.
The following are popular freely available monitoring tools:

Tool Link

BigBrother http://www.bb4.org

Ganglia http://ganglia.sourceforge.net

Monit http://www.tildeslash.com/monit

Nagios http://www.nagios.org

Once the needed probes are in place, a native resource manager interface must be created to report this
information to Moab. Creating a native resource manager interface should be very simple, and in most
cases a script similar to those found in the $TOOLSDIR($PREFIX/tools) directory can be used as a
template. For this example, we will assume centralized information and will use the RM script that
follows:

#!/usr/bin/perl
'hwctl outputs information in format '<NODEID> <TEMP>'
open(TQUERY,"/usr/sbin/hwctl -q temp |");
while (<TQUERY>)
{
my $nodeid,$temp = split /\w+/;
$dstage=GetDSUsage($nodeid);
print "$nodeid GMETRIC[temp]=$temp GMETRIC[dstage]=$dstage

";
}

Moab Workload Manager

http://www.bb4.org/
http://ganglia.sourceforge.net/
http://www.tildeslash.com/monit
http://www.nagios.org/

With the script complete, the next step is to integrate this information into Moab. This is accomplished
with the following configuration line:

RMCFG[local] TYPE=NATIVE CLUSTERQUERYURL=file://$TOOLSDIR/node.query.local.pl
...

Moab can now be recycled and temperature and data staging usage information will be integrated into Moab compute
node reports.

If the checknode command is run, output similar to the following is reported:

> checknode cluster013
...
Generic Metrics: temp=113.2,dstage=23748
...

Moab Cluster Manager reports full current and historical generic metric information in its visual cluster overview screen.

The next step in configuring Moab is to inform Moab to take certain actions based on the new
information it is tracking. For this example, there are two purposes. The first purpose is to get jobs to
avoid hot nodes when possible. This is accomplished using the GMETRIC attribute of the Node Allocation
Priority function as in the following example:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=PRIORITY-10*GMETRIC[temp]
...

This simple priority function reduces the priority of the hottest nodes making such less likely to be
allocated. See Node Allocation Priority Factors for a complete list of available priority factors.

The example cluster is also interested in notifying administrators if the temperature of a given node
ever exceeds a critical threshold. This is accomplished using a trigger. The following line will send email
to administrators any time the temperature of a node exceeds 120 degrees.

NODECFG[DEFAULT] TRIGGER=atype=mail,etype=threshold,threshold=gmetric[temp]
>120,action='warning: node $OID temp high'
...

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

Enabling Generic Events
l Configuring Generic Events

o Action Types

o Named Events

Moab Workload Manager

578 General Node Administration

General Node Administration 579

o Generic Metric (GMetric) Events

l Reporting Generic Events

o Using Generic Events for VM Detection

l Generic Events Attributes

l Manually Creating Generic Events

Generic events are used to identify failures and other occurrences that Moab or other systems must be
made aware. This information may result in automated resource recovery, notifications, adjustments to
statistics, or changes in policy. Generic events also have the ability to carry an arbitrary human
readable message that may be attached to associated objects or passed to administrators or external
systems. Generic events typically signify the occurrence of a specific event as opposed to generic metrics
which indicate a change in a measured value.

Using generic events, Moab can be configured to automatically address many failures and environmental
changes improving the overall performance. Some sample events that sites may be interested in
monitoring, recording, and taking action on include:

l Machine Room Status

o Excessive Room Temperature

o Power Failure or Power Fluctuation

o Chiller Health

l Network File Server Status

o Failed Network Connectivity

o Server Hardware Failure

o Full Network File System

l Compute Node Status

o Machine Check Event (MCE)

o Network Card (NIC) Failure

o Excessive Motherboard/CPU Temperature

o Hard Drive Failures

Configuring Generic Events
Generic events are defined in the moab.cfg file and have several different configuration options. The
only required option is action.

The full list of configurable options for generic events is contained in the following table:

Moab Workload Manager

Attribute Description

ACTION Comma-delimited list of actions to be processed when a new event is received.

ECOUNT Number of events that must occur before launching action.

Action will be launched each <ECOUNT> event if rearm is set.

REARM Minimum time between events specified in [[[DD:]HH:]MM:]SS format.

SEVERITY An arbitrary severity level from 1 through 4, inclusive. SEVERITY appears in the output of mdiag -
n -v -v --xml.

The severity level will not be used for any other purpose.

Action Types

The impact of the event is controlled using the ACTION attribute of the GEVENTCFG parameter. The
ACTION attribute is comma-delimited and may include any combination of the actions in the following
table:

Value Description

DISABLE
[:<OTYPE>:<OID>]

Marks event object (or specified object) down until event report is cleared.

EXECUTE Executes a script at the provided path. The value of EXECUTE is not contained in quo-
tation marks. Arguments are allowed at the end of the path and are separated by question
marks (?). Trigger variables (such as $OID) are allowed.

NOTIFY Notifies administrators of the event occurrence.

OBJECTXMLSTDIN If the EXECUTE action type is also specified, this flag passes an XML description of the fir-
ing gevent to the script.

OFF Powers off node or resource.

ON Powers on node or resource.

PREEMPT
[:<POLICY>]

Preempts workload associated with object (valid for node, job, reservation, partition,
resource manager, user, group, account, class, QoS, and cluster objects).

Moab Workload Manager

580 General Node Administration

General Node Administration 581

Value Description

RECORD Records events to the event log. The record action causes a line to be added to the event log
regardless of whether or not RECORDEVENTLIST includes GEVENT.

RESERVE
[:<DURATION>]

Reserves node for specified duration (default: 24 hours).

RESET Resets object (valid for nodes - causes reboot).

SIGNAL[:<SIGNO>] Sends signal to associated jobs or services (valid for node, job, reservation, partition,
resource manager, user, group, account, class, QoS, and cluster objects).

This is an example of using objectxmlstdin with a gevent:

<gevent name="bob" statuscode="0" time="1320334763">Testing</gevent>

Named Events

In general, generic events are named, with the exception of those based on generic metrics. Names are
used primarily to differentiate between different events and do not have any intrinsic meaning to Moab.
It is suggested that the administrator choose names that denote specific meanings within the
organization.

Example 3-141:

Note: cpu failures require admin attention, create maintenance reservation
GEVENTCFG[cpufail] action=notify,record,disable,reserve rearm=01:00:00# Note: power
failures are transient, minimize future use
GEVENTCFG[powerfail] action=notify,record, rearm=00:05:00
Note: fs full can be automatically fixed
GEVENTCFG[fsfull] action=notify,execute:/home/jason/MyPython/cleartmp.py?$OID?nodefix
Note: memory errors can cause invalid job results, clear node immediately
GEVENTCFG[badmem] action=notify,record,preempt,disable,reserve

Generic Metric (GMetric) Events

GMetric events are generic events based on generic metrics. They are used for executing an action when
a generic metric passes a defined threshold. Unlike named events, GMetric events are not named and use
the following format:
GEVENTCFG[GMETRIC<COMPARISON>VALUE] ACTION=...

Example 3-142:

GEVENTCFG[cputemp>150] action=off

This form of generic events uses the GMetric name, as returned by a GMETRIC attribute in a native
Resource Manager interface.

Moab Workload Manager

Only one generic event may be specified for any given generic metric.

Valid comparative operators are shows in the following table:

Type Comparison Notes

> greater than Numeric values only

> = greater than or equal to Numeric values only

= = equal to Numeric values only

< less than Numeric values only

< = less than or equal to Numeric values only

< > not equal Numeric values only

Reporting Generic Events
Unlike generic metrics, generic events can be optionally configured at the global level to adjust rearm
policies, and other behaviors. In all cases, this is accomplished using the GEVENTCFG parameter.

To report an event associated with a job or node, use the native Resource Manager interface or the
mjobctl or mnodectl commands. You can report generic events on the scheduler with the mschedctl
command.

If using the native Resource Manager interface, use the GEVENT attribute as in the following example:

node001 GEVENT[hitemp]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs]='/var/tmp is full'

The time at which the event occurred can be passed to Moab to prevent multiple processing of the
same event. This is accomplished by specifying the event type in the format <GEVENTID>
[:<EVENTTIME>] as in what follows:

node001 GEVENT[hitemp:1130325993]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs:1130325142]='/var/tmp is full'

Using Generic Events for VM Detection

To enable Moab to detect a virtual machine (VM) reported by a generic event, do the following:

Moab Workload Manager

582 General Node Administration

General Node Administration 583

1. Set up your resource manager to detect virtual machine creation and to submit a generic event to
Moab.

2. Configure moab.cfg to recognize a generic event.

GEVENTCFG[NewVM] ACTION=execute:/opt/moab/AddVM.py,OBJECTXMLSTDIN

3. Report the event.

> mschedctl -c gevent -n NewVM -m "VM=newVMName"

With the ObjectXMLStdin action set, Moab sends an XML description of the generic event to the script, so the
message passes through.

The following sample Perl script submits a VMTracking job for the new VM:

#!/usr/bin/perl

in moab.cfg: GEVENTCFG[NewVM] ACTION=execute:$TOOLSDIR/newvm_event.pl,OBJECTXMLSTDIN
trigger gevent with: mschedctl -c gevent -n NewVM -m "VM=TestVM1"
input to this script: <gevent name="NewVM" statuscode="0"
time="1318500261">VM=TestVM1</gevent>

use strict;

my $vmidVarName = "preVMID";
my $vmTemplate = "existingVM";
my $vmOwner = "operator";

$ENV{MOABHOMEDIR} = '/opt/moab';

my $xml = join "", <STDIN>;
my ($vmid) = ($xml =~ m/VM=([^\<]+)\</);
if (defined $vmid)
{

my $cmd = qq| $ENV{MOABHOMEDIR}/bin/mvmctl -q $vmid --xml |;
my $vmxml = `$cmd`;
my ($hv, $os, $proc, $disk, $mem) = (undef, undef, undef, undef, undef);
($hv) = ($vmxml =~ m/CONTAINERNODE="([^"]+)"/);
($os) = ($vmxml =~ m/OS="([^"]+)"/);
($proc) = ($vmxml =~ m/RCPROC="([^"]+)"/);
($mem) = ($vmxml =~ m/RCMEM="([^"]+)"/);
($disk) = ($vmxml =~ m/RCDISK="([^"]+)"/);
die "Error parsing VM XML. Invalid VMID $vmid or $hv || $os || $proc || $mem ||

$disk?
"

if (! defined $hv || !defined $os || !defined $proc || !defined $mem || !defined
$disk);

$cmd = qq| $ENV{MOABHOMEDIR}/bin/msub -l
hostlist=$hv,os=$os,nodes=1:ppn=$proc,mem=$mem,file=$disk,template=$vmTemplate,VAR=$vm
idVarName=$vmid --proxy=$vmOwner /dev/null |;

my $msubout = `$cmd`;
die "Error executing msub. Output is:

$msubout
" if ($?);
} else {

die "Error parsing VMID from GEVENT message
";
}

Moab Workload Manager

Generic Events Attributes
Each node will record the following about reported generic events:

l status - is event active

l message - human readable message associated with event

l count - number of event incidences reported since statistics were cleared

l time - time of most recent event

Each event can be individually cleared, annotated, or deleted by cluster administrators using a mnodectl
command.

Generic events are only available in Moab 4.5.0 and later.

Manually Creating Generic Events
Generic events may be manually created on a physical node or VM.

To add GEVENT event with message "hello" to node02, do the following:

> mnodectl -m gevent=event:"hello" node02

To add GEVENT event with message "hello" to myvm, do the following:

> mvmctl -m gevent=event:"hello" myvm

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

Resource Managers and Interfaces
l Resource Manager Overview on page 585

l Resource Manager Configuration on page 588

l Resource Manager Extensions on page 618

l Adding New Resource Manager Interfaces on page 649

l Managing Resources Directly with the Native Interface on page 650

l Utilizing Multiple Resource Managers on page 662

l License Management on page 663

Moab Workload Manager

584 Resource Managers and Interfaces

Resource Managers and Interfaces 585

l Resource Provisioning on page 665

l Resource Manager Translation on page 672

Moab provides a powerful resource management interface that enables significant flexibility in how
resources and workloads are managed. Highlights of this interface are listed in what follows:

Highlight Description

Support for Mul-
tiple Standard
Resource Man-
ager Interface Pro-
tocols

Manage cluster resources and workloads via PBS, Loadleveler, SGE, LSF, or BProc based
resource managers.

Support for Gen-
eric Resource
Manager Inter-
faces

Manage cluster resources securely via locally developed or open source projects using
simple flat text interfaces or XML over HTTP.

Support for Mul-
tiple Sim-
ultaneous
Resource Man-
agers

Integrate resource and workload streams from multiple independent sources reporting dis-
joint sets of resources.

Independent
Workload and
Resource Man-
agement

Allow one system to manage your workload (queue manager) and another to manage your
resources.

Support for Rapid
Development
Interfaces

Load resource and workload information directly from a file, a URL, or from the output of a
configurable script or other executable.

Resource Exten-
sion Information

Integrate information from multiple sources to obtain a cohesive view of a compute
resource. (That is, mix information from NIM, OpenPBS, FLEXlm, and a cluster performance
monitor to obtain a single node image with a coordinated state and a more extensive list of
node configuration and utilization attributes.)

Resource Manager Overview
For most installations, the Moab Workload Manager uses the services of a resource manager to obtain
information about the state of compute resources (nodes) and workload (jobs). Moab also uses the

Moab Workload Manager

resource manager to manage jobs, passing instructions regarding when, where, and how to start or
otherwise manipulate jobs.

Moab can be configured to manage more than one resource manager simultaneously, even resource
managers of different types. Using a local queue, jobs may even be migrated from one resource manager
to another. However, there are currently limitations regarding jobs submitted directly to a resource
manager (not to the local queue.) In such cases, the job is constrained to only run within the bound of the
resource manager to which it was submitted.

l Scheduler/Resource Manager Interactions

o Resource Manager Commands

o Resource Manager Flow

l Resource Manager Specific Details (Limitations/Special Features)

l Synchronizing Conflicting Information

l Evaluating Resource Manager Availability and Performance

Scheduler/Resource Manager Interactions
Moab interacts with all resource managers using a common set of commands and objects. Each resource
manager interfaces, obtains, and translates Moab concepts regarding workload and resources into native
resource manager objects, attributes, and commands.

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

Resource Manager Commands

For many environments, Moab interaction with the resource manager is limited to the following objects
and functions:

Object Function Details

Job Query Collect detailed state, requirement, and utilization information about jobs

Modify Change job state and/or attributes

Start Execute a job on a specified set of resources

Cancel Cancel an existing job

Preempt/Resume Suspend, resume, checkpoint, restart, or requeue a job

Moab Workload Manager

586 Resource Managers and Interfaces

Resource Managers and Interfaces 587

Object Function Details

Node Query Collect detailed state, configuration, and utilization information about compute
resources

Modify Change node state and/or attributes

Queue Query Collect detailed policy and configuration information from the resource manager

Using these functions, Moab is able to fully manage workload, resources, and cluster policies. More
detailed information about resource manager specific capabilities and limitations for each of these
functions can be found in the individual resource manager overviews. (LL, PBS, LSF, SGE, BProc, or WIKI).

Beyond these base functions, other commands exist to support advanced features such as provisioning
and cluster level resource management.

Resource Manager Flow

In general, Moab interacts with resource managers in a sequence of steps each scheduling iteration.
These steps are outlined in what follows:

1. load global resource information

2. load node specific information (optional)

3. load job information

4. load queue/policy information (optional)

5. cancel/preempt/modify jobs according to cluster policies

6. start jobs in accordance with available resources and policy constraints

7. handle user commands

Typically, each step completes before the next step is started. However, with current systems, size and
complexity mandate a more advanced parallel approach providing benefits in the areas of reliability,
concurrency, and responsiveness.

Resource Manager Specific Details (Limitations/Special Features)
l TORQUE

o TORQUE Homepage

l SLURM/Wiki

o SLURM Integration Guide

o Wiki Overview

Moab Workload Manager

Synchronizing Conflicting Information
Moab does not trust resource manager information. Node, job, and policy information is reloaded on each
iteration and discrepancies are detected. Synchronization issues and allocation conflicts are logged and
handled where possible. To assist sites in minimizing stale information and conflicts, a number of policies
and parameters are available.

l Node State Synchronization Policies (see NODESYNCTIME on page 989)

l Stale Data Purging (see JOBPURGETIME on page 964)

l Thread Management (preventing resource manager failures from affecting scheduler operation)

l Resource Manager Poll Interval (see RMPOLLINTERVAL on page 1015)

l Node Query Refresh Rate (see NODEPOLLFREQUENCY on page 985)

Evaluating Resource Manager Availability and Performance
Each resource manager is individually tracked and evaluated by Moab. Using the mdiag -R command, a
site can determine how a resource manager is configured, how heavily it is loaded, what failures, if any,
have occurred in the recent past, and how responsive it is to requests.

Related topics

l Resource Manager Configuration
l Resource Manager Extensions

Resource Manager Configuration
l Defining and Configuring Resource Manager Interfaces

o Resource Manager Attributes

l Resource Manager Configuration Details

o Resource Manager Types

o Resource Manager Name

o Resource Manager Location

o Resource Manager Flags

o Other Attributes

l Scheduler/Resource Manager Interactions

Defining and Configuring Resource Manager Interfaces
Moab resource manager interfaces are defined using the RMCFG on page 1014 parameter. This
parameter allows specification of key aspects of the interface. In most cases, only the TYPE attribute
needs to be specified and Moab determines the needed defaults required to activate and use the selected
interface. In the following example, an interface to a Loadleveler resource manager is defined.

Moab Workload Manager

588 Resource Managers and Interfaces

Resource Managers and Interfaces 589

RMCFG[orion] TYPE=LL...

Note that the resource manager is given a label of orion. This label can be any arbitrary site-selected
string and is for local usage only. For sites with multiple active resource managers, the labels can be
used to distinguish between them for resource manager specific queries and commands.

Resource Manager Attributes

The following table lists the possible resource manager attributes that can be configured.

ADMINEXEC on page 589
AUTHTYPE on page 590
BANDWIDTH on page 590
CHECKPOINTSIG on page 591
CHECKPOINTTIMEOUT on page 591
CLIENT on page 591
CLUSTERQUERYURL on page 592
CONFIGFILE on page 592
DATARM on page 593
DEFAULTCLASS on page 593
DEFAULTHIGHSPEEDADAPTER on
page 593
DESCRIPTION on page 594
ENV on page 594
EPORT on page 594
FAILTIME on page 595
FLAGS on page 595
FNLIST on page 595
HOST on page 596
IGNHNODES on page 596
JOBCANCELURL on page 596
JOBEXTENDDURATION on page 596

JOBIDFORMAT on page 597
JOBMODIFYURL on page 598
JOBRSVRECREATE on page 598
JOBSTARTURL on page 598
JOBSUBMITURL on page 599
JOBSUSPENDURL on page 599
JOBVALIDATEURL on page 599
MAXDSOP on page 599
MAXITERATIONFAILURECOUNT on
page 600
MAXJOBPERMINUTE on page 600
MAXJOBS on page 600
MINETIME on page 601
NMPORT on page 601
NODEFAILURERSVPROFILE on page
602
NODESTATEPOLICY on page 602
OMAP on page 602
PORT on page 603
PROVDURATION on page 603
PTYSTRING on page 603
RESOURCECREATEURL on page 604
RESOURCETYPE on page 604
RMSTARTURL on page 605

RMSTOPURL on page 605
SBINDIR on page 605
SERVER on page 606
SLURMFLAGS on page 606
SOFTTERMSIG on page 606
STAGETHRESHOLD on page
607
STARTCMD on page 607
SUBMITCMD on page 608
SUBMITPOLICY on page 608
SUSPENDSIG on page 608
SYNCJOBID on page 609
SYSTEMMODIFYURL on page
609
SYSTEMQUERYURL on page
609
TARGETUSAGE on page 610
TIMEOUT on page 610
TRIGGER on page 610
TYPE on page 611
USEVNODES on page 611
VARIABLES on page 611
VERSION on page 612
VMOWNERRM on page 612
WORKLOADQUERYURL on
page 612

ADMINEXEC

Format "jobsubmit"

Default NONE

Moab Workload Manager

ADMINEXEC

Description Normally, when the JOBSUBMITURL is executed, Moab will drop to the UID and GID of the user sub-
mitting the job. Specifying an ADMINEXEC of jobsubmit causes Moab to use its own UID and GID
instead (usually root). This is useful for some native resource managers where the JOBSUBMITURL
is not a user command (such as qsub) but a script that interfaces directly with the resource man-
ager.

Example RMCFG[base] ADMINEXEC=jobsubmit

Moab will not use the user's UID and GID for executing the JOBSUBMITURL.

AUTHTYPE

Format One of CHECKSUM,OTHER, PKI, SECUREPORT, or NONE.

Default CHECKSUM

Description Specifies the security protocol to be used in scheduler-resource manager
communication.

Only valid with WIKI based interfaces.

Example RMCFG[base] AUTHTYPE=CHECKSUM

Moab requires a secret key-based checksum associated with each
resource manager message.

BANDWIDTH

Format: <FLOAT>[{M|G|T}]

Default: -1 (unlimited)

Description: Specifies the maximum deliverable bandwidth between the Moab server and the resource man-
ager for staging jobs and data. Bandwidth is specified in units per second and defaults to a unit of
MB/s. If a unit modifier is specified, the value is interpreted accordingly (M - megabytes/sec, G -
gigabytes/sec, T - terabytes/sec).

Moab Workload Manager

590 Resource Managers and Interfaces

Resource Managers and Interfaces 591

BANDWIDTH

Example: RMCFG[base] BANDWIDTH=340G

Moab will reserve up to 340 GB of network bandwidth when scheduling job and data
staging operations to and from this resource manager.

CHECKPOINTSIG

Format One of suspend, <INTEGER>, or SIG<X>

Description Specifies what signal to send the resource manager when a job is checkpointed (See Checkpoint
Overview.).

Example RMCFG[base] CHECKPOINTSIG=SIGKILL

Moab routes the signal SIGKILL through the resource manager to the job when a job is
checkpointed.

CHECKPOINTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 0 (no timeout)

Description Specifies how long Moab waits for a job to checkpoint before canceling it. If
set to 0, Moab does not cancel the job if it fails to checkpoint (See Checkpoint
Overview.).

Example RMCFG[base] CHECKPOINTTIMEOUT=5:00

Moab cancels any job that has not exited 5 minutes after receiving
a checkpoint request.

CLIENT

Format <PEER>

Default Use name of resource manager for peer client lookup

Moab Workload Manager

CLIENT

Description If specified, the resource manager will use the peer value to authenticate
remote connections. (See configuring peers). If not specified, the resource
manager will search for a CLIENTCFG[<X>] on page 916 entry of
RM:<RMNAME>in the moab-private.cfg file.

Example RMCFG[clusterBI] CLIENT=clusterB

Moab will look up and use information for peer clusterB when
authenticating the clusterBI resource manager.

CLUSTERQUERYURL

Format [file://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file. If http:// is specified, Moab treats
the destination as a hypertext transfer protocol file. If just a path is specified, Moab treats the des-
tination as an executable.

Description Specifies how Moab queries the resource manager (See Native RM, URL Notes, and interface
details.).

Example RMCFG[base] CLUSTERQUERYURL=file:///tmp/cluster.config

Moab reads /tmp/cluster.config when it queries base resource manager.

CONFIGFILE

Format <STRING>

Description Specifies the resource manager specific configuration file that must be used to enable correct API
communication.

Only valid with LL- and SLURM-based interfaces.

Example RMCFG[base] TYPE=LL CONFIGFILE=/home/loadl/loadl_config

The scheduler uses the specified file when establishing the resource manager/scheduler
interface connection.

Moab Workload Manager

592 Resource Managers and Interfaces

Resource Managers and Interfaces 593

DATARM

Format <RM NAME>

Description If specified, the resource manager uses the given storage resource manager to handle staging data
in and out.

Example RMCFG[clusterB] DATARM=clusterB_storage

When data staging is required by jobs starting/completing on clusterB, Moab uses the
storage interface defined by clusterB_storage to stage and monitor the data.

DEFAULTCLASS

Format <STRING>

Description Specifies the class to use if jobs submitted via this resource manager interface do not have an asso-
ciated class.

Example RMCFG[internal] DEFAULTCLASS=batch

Moab assigns the class batch to all jobs from the resource manager internal that do not
have a class assigned.

If you are using PBS as the resource manager, a job will never come from PBS without a
class, and the default will never apply.

DEFAULTHIGHSPEEDADAPTER

Format: <STRING>

Default: sn0

Description: Specifies the default high speed switch adapter to use when starting LoadLeveler jobs (sup-
ported in version 4.2.2 and higher of Moab and 3.2 of LoadLeveler).

Example: RMCFG[base] DEFAULTHIGHSPEEDADAPTER=sn1

The scheduler will start jobs requesting a high speed adapter on sn1.

Moab Workload Manager

DESCRIPTION

Format <STRING>

Description Specifies the human-readable description for the resource manager interface. If white space is
used, the description should be quoted.

Example RMCFG[torque] DESCRIPTION='TORQUE RM for launching jobs'

Moab annotates the TORQUE resource manager accordingly.

ENV

Format Semi-colon-delimited (;) list of <KEY>=<VALUE> pairs

Default MOABHOMEDIR=<MOABHOMEDIR>

Description Specifies a list of environment variables that will be passed to URLs of type exec:// for that
resource manager.

Example RMCFG[base] ENV=HOST=node001;RETRYTIME=50
RMCFG[base] CLUSTERQUERYURL=exec:///opt/moab/tools/cluster.query.pl
RMCFG[base] WORKLOADQUERYURL=exec:///opt/moab/tools/
workload.query.pl
RMCFG[base] ENV=HOST=node001;RETRYTIME=50
RMCFG[base] CLUSTERQUERYURL=exec:///opt/moab/tools/cluster.query.pl
RMCFG[base] WORKLOADQUERYURL=exec:///opt/moab/tools/workload.query.pl

The environment variables HOST and RETRYTIME (with values node001 and 50
respectively) are passed to the /opt/moab/tools/cluster.query.pl and
/opt/moab/tools/workload.query.pl when they are executed.

EPORT

Format: <INTEGER>

Description: Specifies the event port to use to receive resource manager based scheduling events.

Example: RMCFG[base] EPORT=15017

The scheduler will look for scheduling events from the resource manager host
at port 15017.

Moab Workload Manager

594 Resource Managers and Interfaces

Resource Managers and Interfaces 595

FAILTIME

Format: [[[DD:]HH:]MM:]SS

Description: Specifies how long a resource manager must be down before any failure triggers associated with
the resource manager fire.

Example: RMCFG[base] FAILTIME=3:00

If the base resource manager is down for three minutes, any resource manager failure
triggers fire.

FLAGS

Format Comma-delimited list of zero or more of the following: asyncdelete, async-
start, autostart, autosync, client, fullcp, executionServer, grid, host-
ingCenter, ignqueuestate, private, pushslavejobupdates, report, shared,
or static

Description Specifies various attributes of the resource manager. See Flag Details for
more information.

Example RMCFG[base] FLAGS=static

Moab uses this resource manager to perform a single update of
node and job objects reported elsewhere.

FNLIST

Format Comma-delimited list of zero or more of the following: clusterquery, jobcancel, jobrequeue, jobre-
sume, jobstart, jobsuspend, queuequery, resourcequery or workloadquery

Description By default, a resource manager utilizes all functions supported to query and control batch objects.
If this parameter is specified, only the listed functions are used.

Example RMCFG[base] FNLIST=queuequery

Moab only uses this resource manager interface to load queue configuration information.

Moab Workload Manager

HOST

Format <STRING>

Default localhost

Description The host name of the machine on which the resource manager server is running.

Example RMCFG[base] host=server1

IGNHNODES

Format <BOOLEAN>

Default FALSE

Description Specifies whether to read in the PBSPro host nodes. This parameter is used in conjunction with
USEVNODES on page 611. When both are set to TRUE, the host nodes are not queried.

Example RMCFG[pbs] IGNHNODES=TRUE

JOBCANCELURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab cancels jobs via the resource manager. (See URL Notes below.)

Example RMCFG[base] JOBCANCELURL=exec:///opt/moab/job.cancel.lsf.pl

Moab executes /opt/moab/job.cancel.lsf.pl to cancel specific
jobs.

JOBEXTENDDURATION

Format [[[DD:]HH:]MM:]SS[,[[[DD:]HH:]MM:]SS][!][<] (or <MIN TIME>[,<MAX TIME>]
[!])

Moab Workload Manager

596 Resource Managers and Interfaces

Resource Managers and Interfaces 597

JOBEXTENDDURATION

Default ---

Description Specifies the minimum and maximum amount of time that can be added to a job's walltime if it is
possible for the job to be extended. (See MINWCLIMIT.) As the job runs longer than its current
specified minimum wallclock limit (-l minwclimit, for example), Moab attempts to extend the job's
limit by the minimum JOBEXTENDDURATION. This continues until either the extension can no
longer occur (it is blocked by a reservation or job), the maximum JOBEXTENDDURATION is
reached, or the user's specified wallclock limit (-l walltime) is reached. When a job is extended, it
is marked as PREEMPTIBLE, unless the ! is appended to the end of the configuration string. If
the < is at the end of the string, however, the job is extended the maximum amount possible.

JOBEXTENDDURATION and JOBEXTENDSTARTWALLTIME TRUE cannot be configured
together. If they are in the same moab.cfg or are both active, then the
JOBEXTENDDURATION will not be honored.
For example, comment out the JOBEXTENDSTARTWALLTIME.

RMCFG[base] JOBEXTENDDURATION=30,1:00:00
#JOBEXTENDSTARTWALLTIME TRUE

Example RMCFG[base] JOBEXTENDDURATION=30,1:00:00

Moab extends a job's walltime by 30 seconds each time the job is about to run out of
walltime until it is bound by one hour, a reservation/job, or the job's original
"maximum" wallclock limit.

JOBIDFORMAT

Format INTEGER

Default ---

Description Specifies that Moab should use numbers to create job IDs. This eliminates multiple job IDs asso-
ciated with a single job.

Example RMCFG[base] JOBIDFORMAT=INTEGER

Job IDs are generated as numbers.

Moab Workload Manager

JOBMODIFYURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab modifies jobs via the resource manager. (See URL Notes, and interface details.)

Example RMCFG[base] JOBMODIFYURL=exec://$TOOLSDIR/job.modify.dyn.pl

Moab executes /opt/moab/job.modify.dyn.pl to modify specific jobs.

JOBRSVRECREATE

Format Boolean

Default TRUE

Description Specifies whether Moab will re-create a job reservation each time job information is updated by a
resource manager (See Considerations for Large Clusters for more information.).

Example RMCFG[base] JOBRSVRECREATE=FALSE

Moab only creates a job reservation once when the job first starts.

JOBSTARTURL

Format <protocol>://[<host>[:<port>]][<path>]

Default TRUE

Description Specifies how Moab starts jobs via the resource manager. (See URL Notes below.)

Example RMCFG[base] JOBSTARTURL=http://orion.bsu.edu:1322/moab/jobstart.cgi

Moab triggers the jobstart.cgi script via http to start specific
jobs.

Moab Workload Manager

598 Resource Managers and Interfaces

Resource Managers and Interfaces 599

JOBSUBMITURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab submits jobs to the resource manager (See URL Notes below.).

Example RMCFG[base] JOBSUBMITURL=exec://$TOOLSDIR/job.submit.dyn.pl

Moab submits jobs directly to the database located on host
dbserver.flc.com.

JOBSUSPENDURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab suspends jobs via the resource manager. (See URL Notes below.)

Example RMCFG[base] JOBSUSPENDURL=EXEC://$HOME/scripts/job.suspend

Moab executes the job.suspend script when jobs are suspended.

JOBVALIDATEURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab validates newly submitted jobs (See URL Notes below.). If the script returns
with a non-zero exit code, the job is rejected. (See User Proxying/Alternate Credentials.)

Example RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl

Moab executes the 'job.validate.pl' script when jobs are submitted to verify they
are acceptable.

MAXDSOP

Format <INTEGER>

Default -1 (unlimited)

Moab Workload Manager

MAXDSOP

Description Specifies the maximum number of data staging operations that may be simultaneously active.

Example RMCFG[ds] MAXDSOP=16

MAXITERATIONFAILURECOUNT

Format <INTEGER>

Default 80

Description Specifies the number of times the RM must fail within a certain iteration before Moab con-
siders it down or corrupt. When an RM is down or corrupt, Moab will not attempt to interact
with it.

Example RMCFG[base] MAXITERATIONFAILURECOUNT=25

The RM basemust fail 25 times in a single iteration for Moab to consider it down
and cease interacting with it.

MAXJOBPERMINUTE

Format <INTEGER>

Default -1 (unlimited)

Description Specifies the maximum number of jobs allowed to start per minute via the resource manager.

Example RMCFG[base] MAXJOBPERMINUTE=5

The scheduler only allows five jobs per minute to launch via the resource manager
base.

MAXJOBS

Format <INTEGER>

Moab Workload Manager

600 Resource Managers and Interfaces

Resource Managers and Interfaces 601

MAXJOBS

Default 0 (limited only by the Moab MAXJOB setting)

Description Specifies the maximum number of active jobs that this interface is allowed to load from the
resource manager.

Only works with Moab peer resource managers at this time.

Example RMCFG[cluster1] SERVER=moab://cluster1 MAXJOBS=200

The scheduler loads up to 200 active jobs from the remote Moab peer cluster1.

MINETIME

Format <INTEGER>

Default 1

Description Specifies the minimum time in seconds between processing subsequent scheduling events.

Example RMCFG[base] MINETIME=5

The scheduler batch-processes scheduling events that occur less than five seconds
apart.

NMPORT

Format <INTEGER>

Default (any valid port number)

Description Allows specification of the resource manager's node manager port and is only required when this
port has been set to a non-default value.

Example RMCFG[base] NMPORT=13001

The scheduler contacts the node manager located on each compute node at port 13001.

Moab Workload Manager

NODEFAILURERSVPROFILE

Format <STRING>

Description Specifies the rsv template to use when placing a reservation onto failed nodes (See also
NODEFAILURERESERVETIME on page 983.).

Example # moab.cfg
RMCFG[base] NODEFAILURERSVPROFILE=long
RSVPROFILE[long] DURATION=25:00RSVPROFILE[long] USERLIST=john

The scheduler will use the long rsv profile when creating reservations over failed
nodes belonging to base.

NODESTATEPOLICY

Format One of OPTIMISTIC or PESSIMISTIC

Default PESSIMISTIC

Description Specifies how Moab should determine the state of a node when multiple resource managers are
reporting state.
OPTIMISTIC specifies that if any resource manager reports a state of up, that state will be used.
PESSIMISTIC specifies that if any resource manager reports a state of down, that state will be
used.

Example # moab.cfg
RMCFG[native] TYPE=NATIVE NODESTATEPOLICY=OPTIMISTIC

OMAP

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies an object map file that is used to map credentials and other objects when using this
resource manager peer (See Grid Credential Management for full details.).

Example moab.cfg
RMCFG[peer1] OMAP=file:///opt/moab/omap.dat

When communicating with the resource manager peer1, objects are mapped according to
the rules defined in the /opt/moab/omap.dat file.

Moab Workload Manager

602 Resource Managers and Interfaces

Resource Managers and Interfaces 603

PORT

Format <INTEGER>

Default 0

Description Specifies the port on which the scheduler should contact the associated resource manager. The
value 0 specifies that the resource manager default port should be used.

Example RMCFG[base] TYPE=PBS HOST=cws PORT=20001

Moab attempts to contact the PBS server daemon on host cws, port 20001.

PROVDURATION

Format [[[DD:]HH:]MM:]SS

Default 2:30

Description Specifies the upper bound (walltime) of a provisioning request. After this duration, Moab will con-
sider the provisioning attempt failed.

Example RMCFG[base] PROVDURATION=5:00

When RM base provisions a node for more than 5 minutes, Moab considers the
provisioning as having failed.

PTYSTRING

Format <STRING>

Default srun -n1 -N1 --pty

Moab Workload Manager

PTYSTRING

Description When a SLURM interactive job is submitted, it builds an salloc command that gets the requested
resources and an srun command that creates a terminal session on one of the nodes. The srun
command is called the PTYString. PTYString is configured in moab.cfg.
There are two special things you can do with PTYString:
1. You can have PTYSTRING=$salloc which says to use the default salloc command

(SallocDefaultCommand, look in the slurm.confman page) defined in slurm.conf.
Internally, Moab won't add a PTYString because SLURM will call the
SallocDefaultCommand.

2. As in the example below, you can add $SHELL. $SHELL will be expanded to either what you
request on the command line (such asmsub -S /bin/tcsh -l) or to the value of $SHELL in your
current session.

PTYString works only with SLURM.

Example RMCFG[slurm] PTYSTRING="srun -n1 -N1 --pty --preserve-env $SHELL"

RESOURCECREATEURL

Format <STRING>

Default [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified,
Moab treats the destination as a hypertext transfer protocol file.

Description Specifies a script or method that can be used by Moab to create resources dynamically, such as
creating a virtual machine on a hypervisor.

Example RMCFG[base] RESOURCECREATEURL=exec:///opt/script/vm.provision.py

Moab invokes the vm.provision.py script, passing in data as command line
arguments, to request a creation of new resources.

RESOURCETYPE

Format {COMPUTE|FS|LICENSE|NETWORK|PROV}

Description Specifies which type of resource this resource manager is configured to control. See Native
Resource Managers for more information.

Moab Workload Manager

604 Resource Managers and Interfaces

Resource Managers and Interfaces 605

RESOURCETYPE

Example RMCFG[base] TYPE=NATIVE RESOURCETYPE=FS

Resource manager base will function as a NATIVE resource manager and control file
systems.

RMSTARTURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab starts the resource manager.

Example RMCFG[base] RMSTARTURL=exec:///tmp/nat.start.pl

Moab executes /tmp/nat.start.pl to start the resource manager base.

RMSTOPURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab stops the resource manager.

Example RMCFG[base] RMSTOPURL=exec:///tmp/nat.stop.pl

Moab executes /tmp/nat.stop.pl to stop the resource manager base.

SBINDIR

Format <PATH>

Description For use with TORQUE; specifies the location of the TORQUE system binaries (supported in
TORQUE 1.2.0p4 and higher).

Moab Workload Manager

SBINDIR

Example RMCFG[base] TYPE=pbs SBINDIR=/usr/local/torque/sbin

Moab tells TORQUE that its system binaries are located in /usr/local/torque/sbin.

SERVER

Format <URL>

Description Specifies the resource management service to use. If not specified, the scheduler locates the
resource manager via built-in defaults or, if available, with an information service.

Example RMCFG[base] server=ll://supercluster.org:9705

Moab attempts to use the Loadleveler scheduling API at the specified location.

SLURMFLAGS

Format <STRING>

Description Specifies characteristics of the SLURM resource manager interface. The COMPRESSOUTPUT flag
instructs Moab to use the compact hostlist format for job submissions to SLURM. The flag
NODEDELTAQUERY instructs Moab to request delta node updates when it queries SLURM for
node configuration.

Example RMCFG[slurm] SLURMFLAGS=COMPRESSOUTPUT

Moab uses theCOMPRESSOUTPUT flag to determine interface characteristics with
SLURM.

SOFTTERMSIG

Format <INTEGER>or SIG<X>

Description Specifies what signal to send the resource manager when a job reaches its soft wallclock limit. (See
JOBMAXOVERRUN.)

Moab Workload Manager

606 Resource Managers and Interfaces

Resource Managers and Interfaces 607

SOFTTERMSIG

Example RMCFG[base] SOFTTERMSIG=SIGUSR1

Moab routes the signal SIGUSR1 through the resource manager to the job when a job
reaches its soft wallclock limit.

STAGETHRESHOLD

Format [[[DD:]HH:]MM:]SS

Description Specifies the maximum time a job waits to start locally before considering being migrated to a
remote peer. In other words, if a job's start time on a remote cluster is less than the start time on
the local cluster, but the difference between the two is less than STAGETHRESHOLD, then the job is
scheduled locally. The aim is to avoid job/data staging overhead if the difference in start times is
minimal.

If this attribute is used, backfill is disabled for the associated resource manager.

Example RMCFG[remote_cluster] STAGETHRESHOLD=00:05:00

Moab only migrates jobs to remote_cluster if the jobs can start five minutes sooner on the
remote cluster than they could on the local cluster.

STARTCMD

Format <STRING>

Description Specifies the full path to the resource manager job start client. If the resource manager API fails,
Moab executes the specified start command in a second attempt to start the job.

Moab calls the start command with the format <CMD><JOBID> -H <HOSTLIST> unless
the environment variable MOABNOHOSTLIST is set in which case Moab will only pass the
job ID.

Example RMCFG[base] STARTCMD=/usr/local/bin/qrun

Moab uses the specified start command if API failures occur when launching jobs.

Moab Workload Manager

SUBMITCMD

Format <STRING>

Description Specifies the full path to the resource manager job submission client.

Example RMCFG[base] SUBMITCMD=/usr/local/bin/qsub

Moab uses the specified submit command when migrating
jobs.

SUBMITPOLICY

Format One of NODECENTRIC or PROCCENTRIC

Default PROCCENTRIC

Description If set to NODECENTRIC, each specified node requested by the job is interpreted as a true com-
pute host, not as a task or processor.

Example RMCFG[base] SUBMITPOLICY=NODECENTRIC

Moab uses the specified submit policy when migrating jobs.

SUSPENDSIG

Format <INTEGER> (valid UNIX signal between 1 and 64)

Default RM-specific default

Description If set, Moab sends the specified signal to a job when a job suspend request is issued.

Example RMCFG[base] SUSPENDSIG=19

Moab uses the specified suspend signal when suspending jobs within the base
resource manager.

SUSPENDSIG should not be used with TORQUE or other PBS-based resource
managers.

Moab Workload Manager

608 Resource Managers and Interfaces

Resource Managers and Interfaces 609

SYNCJOBID

Format <BOOLEAN>

Description Specifies that Moab should migrate jobs to the local resource manager with the job's Moab-
assigned job ID. In a grid, the grid-head will only pass dependencies to the underlying Moab if
SYNCJOBID is set. This attribute can be used with the JOBIDFORMAT on page 597 attribute and
PROXYJOBSUBMISSION on page 617 flag in order to synchronize job IDs between Moab and the
resource manager. For more information about all steps necessary to synchronize job IDs between
Moab and TORQUE, see Synchronizing Job IDs in TORQUE and Moab on page 613.

Example RMCFG[slurm] TYPE=wiki:slurm SYNCJOBID=TRUE

SYSTEMMODIFYURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab modifies attributes of the system. This interface is used in data staging.

Example RMCFG[base] SYSTEMMODIFYURL=exec:///tmp/system.modify.pl

Moab executes /tmp/system.modify.pl when it modifies system attributes in
conjunction with the resource manager base.

SYSTEMQUERYURL

Format [exec://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified, Moab treats
the destination as a hypertext transfer protocol file; if just a path is specified, Moab treats the des-
tination as an executable.

Description Specifies how Moab queries attributes of the system. This interface is used in data staging.

Example RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

Moab reads /tmp/system.query when it queries the system in conjunction with base
resource manager.

Moab Workload Manager

TARGETUSAGE

Format <INTEGER>[%]

Default 90%

Description Amount of resource manager resources to explicitly use. In the case of a storage resource manager,
indicates the target usage of data storage resources to dedicate to active data migration requests.
If the specified value contains a percent sign (%), the target value is a percent of the configured
value. Otherwise, the target value is considered to be an absolute value measured in megabytes
(MB).

Example RMCFG[storage] TYPE=NATIVE RESOURCETYPE=storage
RMCFG[storage] TARGETUSAGE=80%

Moab schedules data migration requests to never exceed 80% usage of the storage
resource manager's disk cache and network resources.

TIMEOUT

Format <INTEGER>

Default 30

Description Time (in seconds) the scheduler waits for a response from the resource manager.

Example RMCFG[base] TIMEOUT=40

Moab waits 40 seconds to receive a response from the resource manager before timing
out and giving up. Moab tries again on the next iteration.

TRIGGER

Format <TRIG_SPEC>

Description A trigger specification indicating behaviors to enforce in the event of certain events associated with
the resource manager, including resource manager start, stop, and failure.

Example RMCFG[base] TRIGGER=<X>

Moab Workload Manager

610 Resource Managers and Interfaces

Resource Managers and Interfaces 611

TYPE

Format <RMTYPE>[:<RMSUBTYPE>] where <RMTYPE> is one of the following: TORQUE, NATIVE, PBS,
RMS, SSS, or WIKI and the optional <RMSUBTYPE> value is one of RMS.

Default PBS

Description Specifies type of resource manager to be contacted by the scheduler.

For TYPE WIKI, AUTHTYPE must be set to CHECKSUM. The <RMSUBTYPE> option is
currently only used to support Compaq's RMS resource manager in conjunction with PBS.
In this case, the value PBS:RMS should be specified.

Example RMCFG[clusterA] TYPE=PBS HOST=clusterA PORT=15003
RMCFG[clusterB] TYPE=PBS HOST=clusterB PORT=15005

Moab interfaces to two different PBS resource managers, one located on server clusterA
at port 15003 and one located on server clusterB at port 15005.

USEVNODES

Format <BOOLEAN>

Default FALSE

Description Specifies whether to schedule on PBS virtual nodes. When set to TRUE, Moab queries PBSPro for
vnodes and puts jobs on vnodes rather than hosts. In some systems, such as PBS + Altix, it may not
be desirable to read in the host nodes; for such situations refer to the IGNHNODES attribute.

Example RMCFG[pbs] USEVNODES=TRUE

VARIABLES

Format <VAR>=<VAL>[,<VAR>=<VAL>]

Description Opaque resource manager variables.

Example RMCFG[base] VARIABLES=SCHEDDHOST=head1

Moab associates the variable SCHEDDHOST with the value head1 on resource
manager base.

Moab Workload Manager

VERSION

Format <STRING>

Default SLURM: 10200 (i.e., 1.2.0)

Description Resource manager-specific version string.

Example RMCFG[base] VERSION=10124

Moab assumes that resource manager base has a version
number of 1.1.24.

VMOWNERRM

Format <STRING>

Description Used with provisioning resource managers that can create VMs. It specifies the resource manager
that will own any VMs created by the resource manager.

Example RMCFG[torque]
RMCFG[prov] RESOURCETYPE=PROV VMOWNERRM=torque

WORKLOADQUERYURL

Format [file://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file; if just a path is specified, Moab treats
the destination as an executable.

Description Specifies how Moab queries the resource manager for workload information. (See Native RM,
URL Notes, and interface details.)

Example RMCFG[TORQUE] WORKLOADQUERYURL=exec://$TOOLSDIR/job.query.dyn.pl

Moab executes /opt/moab/tools/job.query.dyn.pl to obtain updated
workload information from resource manager TORQUE.

URL notes

URL parameters can load files by using the file, exec, and http protocols.

Moab Workload Manager

612 Resource Managers and Interfaces

Resource Managers and Interfaces 613

For the protocol file, Moab loads the data directly from the text file pointed to by path.

RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

For the protocol exec, Moab executes the file pointed to by path and loads the output written to STDOUT.
If the script requires arguments, you can use a question mark (?) between the script name and the
arguments, and an ampersand (&) for each space.

RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl
RMCFG[native] CLUSTERQUERYURL=exec://opt/moab/tools/cluster.query.pl?-group=group1&-
arch=x86

Synchronizing Job IDs in TORQUE and Moab

Unless you use an msub on page 290 submit filter or you're in a grid, it is recommended that you
use your RM-specific job submission command (for instance, qsub).

In order to synchronize your job IDs between TORQUE and Moab you must perform the following steps:

1. Verify that you are using TORQUE version 2.5.6 or later.

2. Set SYNCJOBID on page 609 to TRUE in all resource managers.

RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE

3. Set the PROXYJOBSUBMISSION on page 617 flag. With PROXYJOBSUBMISSION enabled, you must
run Moab as a TORQUE manager or operator. Verify that other users can submit jobs using msub on
page 290. Moab, as a non-root user, should still be able to submit jobs to TORQUE and synchronize
job IDs.
RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE
RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

4. Add JOBIDFORMAT on page 597=INTEGER to the internal RM. Adding this parameter forces Moab to
only use numbers as job IDs and those numbers to synchronize across Moab, TORQUE, and the entire
grid. This enhances the end-user experience as it eliminates multiple job IDs associated with a single
job.
RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE
RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

RMCFG[internal] JOBIDFORMAT=INTEGER

Resource Manager Configuration Details
As with all scheduler parameters, follows the syntax described within the Parameters Overview.

Resource Manager Types

The RMCFG parameter allows the scheduler to interface to multiple types of resource managers using
the TYPE or SERVER attributes. Specifying these attributes, any of the following listed resource managers
may be supported.

Moab Workload Manager

Type Resource
managers Details

Moab Moab Work-
load Man-
ager

Use the Moab peer-to-peer (grid) capabilities to enable grids and other configurations.
(See Grid Configuration.)

MWS Moab Web
Services

The MWS resource manager type is a native integration between Moab and MWS.
Resource manager data is passed directly between Moab and MWS using JSON (rather
than Moab's native WIKI syntax). This simplifies RM configuration for systems where
one or more MWS plugins are acting as resource managers. See the "Moab Workload
Manager resource manager integration" section of the MWS plugins chapter in the
MWS documentation for more information.

Native Moab Native
Interface

Used for connecting directly to scripts, files, and databases. (See Managing Resources
Directly with the Native Interface.)

PBS TORQUE
(all ver-
sions)

N/A

SSS Scalable Sys-
tems Soft-
ware
Project ver-
sion 2.0 and
higher

N/A

WIKI Wiki inter-
face spe-
cification
version 1.0
and higher

Used for LRM, YRM, ClubMASK, BProc, SLURM, and others.

Resource Manager Name

Moab can support more than one resource manager simultaneously. Consequently, the RMCFG parameter
takes an index value such as RMCFG[clusterA]. This index value essentially names the resource
manager (as done by the deprecated parameter RMNAME). The resource manager name is used by the
scheduler in diagnostic displays, logging, and in reporting resource consumption to the allocation
manager. For most environments, the selection of the resource manager name can be arbitrary.

Resource Manager Location

The HOST, PORT, and SERVER attributes can be used to specify how the resource manager should be
contacted. For many resource managers the interface correctly establishes contact using default values.
These parameters need only to be specified for resource managers such as the WIKI interface (that do

Moab Workload Manager

614 Resource Managers and Interfaces

Resource Managers and Interfaces 615

not include defaults) or with resources managers that can be configured to run at non-standard locations
(such as PBS). In all other cases, the resource manager is automatically located.

Resource Manager Flags

The FLAGS attribute can be used to modify many aspects of a resources manager's behavior.

Flag Description

ASYNCSTART Jobs started on this resource manager start asynchronously. In this case, the
scheduler does not wait for confirmation that the job correctly starts before
proceeding. (See Large Cluster Tuning for more information.)

AUTOSTART Jobs staged to this resource manager do not need to be explicitly started by
the scheduler. The resource manager itself handles job launch.

AUTOSYNC Resource manager starts and stops together with Moab.

This requires that the resource manager support a resource manager
start and stop API or the RMSTARTURL and RMSTOPURL attributes are
set.

BECOMEMASTER Nodes reported by this resource manager will transfer ownership to this
resource manager if they are currently owned by another resource manager
that does not have this flag set.

CLIENT A client resource manager object is created for diagnostic/statistical purposes
or to configure Moab's interaction with this resource manager. It represents an
external entity that consumes server resources or services, allows a local
administrator to track this usage, and configures specific policies related to
that resource manager. A client resource manager object loads no data and
provides no services.

CLOCKSKEWCHECKING Setting CLOCKSKEWCHECKING allows you to configure clock skew adjust-
ments. Most of the time it is sufficient to use an NTP server to keep the clocks
in your system synchronized.

COLLAPSEDVIEW Does not work— not supported
The resource manager masks details about local workload and resources and
presents only information relevant to the remote server.

DYNAMICCRED The resource manager creates credentials within the cluster as needed to sup-
port workload. (See Identity Manager Overview.)

EXECUTIONSERVER The resource manager is capable of launching and executing batch workload.

Moab Workload Manager

Flag Description

FSISREMOTE Add this flag if the working file system doesn't exist on the server to prevent
Moab from validating files and directories at migration.

FULLCP Always checkpoint full job information (useful with Native resource man-
agers).

HOSTINGCENTER The resource manager interface is used to negotiate an adjustment in dynamic
resource access.

IGNQUEUESTATE The queue state reported by the resource manager should be ignored. May be
used if queues must be disabled inside of a particular resource manager to
allow an external scheduler to properly operate.

IGNWORKLOADSTATE When this flag is applied to a native resource manager, any jobs that are
reported via that resource manager's "workload query URL" have their
reported state ignored. For example, if an RM has the IgnWorkloadState flag
and it reports that a set of jobs have a state of "Running," this state is ignored
and the jobs will either have a default state set or will inherit the state from
another RM reporting on that same set of jobs.
This flag only changes the behavior of RMs of type NATIVE.

LOCALWORKLOADEXPORT When set, destination peers share information about local and remote jobs,
allowing job management of different clusters at a single peer. For more
information, see Workload Submission and Control.

MIGRATEALLJOBATTRIBUTES When set, this flag causes additional job information to be migrated to the
resource manager; additional job information includes things such as node fea-
tures applied via CLASSCFG[name] DEFAULT.FEATURES, the account to
which the job was submitted, and job walltime limit.

NOAUTORES If the resource manager does not report CPU usage to Moab because CPU
usage is at 0%, Moab assumes full CPU usage. When set, Moab recognizes the
resource manager report as 0% usage. This is only valid for PBS.

NOCREATERESOURCE To use resources discovered from this resource manager, they must be created
by another resource manager first. For example, if you set
NOCREATERESOURCE on RM A, which reports nodes 1 and 2, and RM B
only reports node 1, then node 2 will not be created because RM B did not
report it.

PRIVATE The resources and workload reported by the resource manager are not repor-
ted to non-administrator users.

Moab Workload Manager

616 Resource Managers and Interfaces

Resource Managers and Interfaces 617

Flag Description

PROXYJOBSUBMISSION Enables Admin proxy job submission, which means administrators may submit
jobs in behalf of other users.

PUSHSLAVEJOBUPDATES Enables job changes made on a grid slave to be pushed to the grid head or
master. Without this flag, jobs being reported to the grid head do not show any
changes made on the remote Moab server (via mjobctl and so forth).

RECORDGPUMETRICS Enables the recording of GPU metrics for nodes.

RECORDMICMETRICS Enables the recording of MIC metrics for nodes.

REPORT N/A

SHARED Resources of this resource manager may be scheduled by multiple inde-
pendent sources and may not be assumed to be owned by any single source.

STATIC This resource manager only provides partial object information and this
information does not change over time. Consequently, this resource manager
may only be called once per object to modify job and node information.

USERSPACEISSEPARATE This tells Moab to ignore validating the user's uid and gid in the case that
information doesn't exist on the Moab server.

Example

resource manager 'torque' should use asynchronous job start
and report resources in 'grid' mode
RMCFG[torque] FLAGS=asyncstart,grid

Scheduler/Resource Manager Interactions
In the simplest configuration, Moab interacts with the resource manager using the following four
primary functions:

Function Description

GETJOBINFO Collect detailed state and requirement information about idle, running, and recently completed
jobs.

GETNODEINFO Collect detailed state information about idle, busy, and defined nodes.

Moab Workload Manager

Function Description

STARTJOB Immediately start a specific job on a particular set of nodes.

CANCELJOB Immediately cancel a specific job regardless of job state.

Using these four simple commands, Moab enables nearly its entire suite of scheduling functions. More
detailed information about resource manager specific requirements and semantics for each of these
commands can be found in the specific resource manager (such as WIKI) overviews.

In addition to these base commands, other commands are required to support advanced features such as
suspend/resume, gang scheduling, and scheduler initiated checkpoint restart.

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

Resource Manager Extensions
l Resource Manager Extension Specification

l Resource Manager Extension Values

l Resource Manager Extension Examples

All resource managers are not created equal. There is a wide range in what capabilities are available
from system to system. Additionally, there is a large body of functionality that many, if not all, resource
managers have no concept of. A good example of this is job QoS. Since most resource managers do not
have a concept of quality of service, they do not provide a mechanism for users to specify this
information. In many cases, Moab is able to add capabilities at a global level. However, a number of
features require a per job specification. Resource manager extensions allow this information to be
associated with the job.

Resource Manager Extension Specification
Specifying resource manager extensions varies by resource manager. TORQUE, OpenPBS, PBSPro,
Loadleveler, LSF, S3, and Wiki each allow the specification of an extension field as described in the
following table:

Resource
manager Specification method

TORQUE
2.0+

-l

> qsub -l nodes=3,qos=high sleepy.cmd

Moab Workload Manager

618 Resource Managers and Interfaces

Resource Managers and Interfaces 619

Resource
manager Specification method

TORQUE
1.x/OpenPBS

-W x=

> qsub -l nodes=3 -W x=qos:high sleepy.cmd

OpenPBS does not support this ability by default but can be patched as described in the
PBS Resource Manager Extension Overview.

Loadleveler #@comment

#@nodes = 3
#@comment = qos:high

LSF -ext

> bsub -ext advres:system.2

PBSPro -l

> qsub -l advres=system.2

Use of PBSPro resources requires configuring the server_priv/resourcedef file to
define the needed extensions as in the following example:

advres type=string
qos type=string
sid type=string
sjid type=string

Wiki comment

comment=qos:high

Resource Manager Extension Values
Using the resource manager specific method, the following job extensions are currently available:

Moab Workload Manager

ADVRES on page 620
BANDWIDTH on page 620
CPUCLOCK on page 621
DDISK on page 623
DEADLINE on page 623
DEPEND on page 624
DMEM on page 624
EPILOGUE on page 624
EXCLUDENODES on page 625
FEATURE on page 625
GATTR on page 625
GEOMETRY on page 626
GMETRIC on page 626
GPUs on page 626
GRES and SOFTWARE on page 627
HOSTLIST on page 628
JGROUP on page 629
JOBFLAGS (aka FLAGS) on page
630
JOBREJECTPOLICY on page 630
MAXMEM on page 630

MAXPROC on page 631
MEM on page 631
MICs on page 631
MINPREEMPTTIME on page 632
MINPROCSPEED on page 632
MINWCLIMIT on page 633
MSTAGEIN on page 633
MSTAGEOUT on page 634
NACCESSPOLICY on page 635
NALLOCPOLICY on page 636
NCPUS on page 636
NMATCHPOLICY on page 637
NODESET on page 637
NODESETCOUNT on page 637
NODESETDELAY on page 637
NODESETISOPTIONAL on page
638
OPSYS on page 638
PARTITION on page 638
PMEM on page 638
PREF on page 639

PROCS on page 639
PROLOGUE on page 640
PVMEM on page 640
QoS on page 640
QUEUEJOB on page 640
REQATTR on page 641
RESFAILPOLICY on page 641
RMTYPE on page 642
SIGNAL on page 642
GRES and SOFTWARE on page
627
SPRIORITY on page 642
TEMPLATE on page 642
TERMTIME on page 643
TPN on page 643
TRIG on page 644
TRL (Format 1) on page 644
TRL (Format 2) on page 645
VAR on page 645
VC on page 646
VMEM on page 646

ADVRES

Format [!]<RSVID>

Description Specifies that reserved resources are required to run the job. If <RSVID> is specified, then only
resources within the specified reservation may be allocated (see Job to Reservation Binding).
You can request to not use a specific reservation by using advres=!<reservationname>.

Example > qsub -l advres=grid.3

Resources for the job must come from grid.3.

> qsub -l advres=!grid.5

Resources for the job must not come from grid.5

BANDWIDTH

Format <DOUBLE> (in MB/s)

Description Minimum available network bandwidth across allocated resources (See Network Management.).

Moab Workload Manager

620 Resource Managers and Interfaces

Resource Managers and Interfaces 621

BANDWIDTH

Example > bsub -ext bandwidth=120 chemjob.txt

CPUCLOCK

Format <STRING>

Moab Workload Manager

CPUCLOCK

Description Specify the CPU clock frequency for each node requested for this job. A cpuclock request applies to
every processor on every node in the request. Specifying varying CPU frequencies for different
nodes or different processors on nodes in a single job request is not supported.
Not all CPUs support all possible frequencies or ACPI states. If the requested frequency is not
supported by the CPU, the nearest frequency is used.
Using cpuclock sets NODEACCESSPOLICY to SINGLEJOB.
ALPS 1.4 or later is required when using cpuclock on Cray.
The clock frequency can be specified via:

l a number that indicates the clock frequency (with or without the SI unit suffix).
l a Linux power governor policy name. The governor names are:

o performance: This governor instructs Linux to operate each logical processor at its
maximum clock frequency.
This setting consumes the most power and workload executes at the fastest
possible speed.

o powersave: This governor instructs Linux to operate each logical processor at its
minimum clock frequency.
This setting executes workload at the slowest possible speed. This setting does not
necessarily consume the least amount of power since applications execute slower,
and may actually consume more energy because of the additional time needed to
complete the workload's execution.

o ondemand: This governor dynamically switches the logical processor's clock
frequency to the maximum value when system load is high and to the minimum
value when the system load is low.
This setting causes workload to execute at the fastest possible speed or the slowest
possible speed, depending on OS load. The system switches between consuming
the most power and the least power.

The power saving benefits of ondemand might be non-existent due to
frequency switching latency if the system load causes clock frequency
changes too often.
This has been true for older processors since changing the clock frequency
required putting the processor into the C3 "sleep" state, changing its clock
frequency, and then waking it up, all of which required a significant amount
of time.
Newer processors, such as the Intel Xeon E5-2600 Sandy Bridge processors,
can change clock frequency dynamically and much faster.

o conservative: This governor operates like the ondemand governor but is more
conservative in switching between frequencies. It switches more gradually and
uses all possible clock frequencies.
This governor can switch to an intermediate clock frequency if it seems
appropriate to the system load and usage, which the ondemand governor does not
do.

l an ACPI performance state (or P-state) with or without the P prefix. P-states are a special

Moab Workload Manager

622 Resource Managers and Interfaces

Resource Managers and Interfaces 623

CPUCLOCK

range of values (0-15) that map to specific frequencies. Not all processors support all 16
states, however, they all start at P0. P0 sets the CPU clock frequency to the highest
performance state which runs at the maximum frequency. P15 sets the CPU clock
frequency to the lowest performance state which runs at the lowest frequency.

When reviewing job or node properties when cpuclock was used, be mindful of unit conversion.
The OS reports frequency in Hz, not MHz or GHz.

Example msub -l cpuclock=1800,nodes=2 script.sh
msub -l cpuclock=1800mhz,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies should be set to 1800 MHz.

msub -l cpuclock=performance,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies should be set to the
performance power governor policy.

msub -l cpuclock=3,nodes=2 script.sh
msub -l cpuclock=p3,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies should be set to a
performance state of 3.

DDISK

Format <INTEGER>

Default 0

Description Dedicated disk per task in MB.

Example > qsub -l ddisk=2000

DEADLINE

Format Relative time: [[[DD:]HH:]MM:]SS
Absolute time: hh:mm:ss_mm/dd/yy

Description Either the relative completion deadline of job (from job submission time) or an absolute deadline
in which you specify the date and time the job will finish.

Moab Workload Manager

DEADLINE

Example: > qsub -l deadline=2:00:00,nodes=4 /tmp/bio3.cmd

The job's deadline is 2 hours after its submission.

DEPEND

Format [<DEPENDTYPE>:][{jobname|jobid}.]<ID>[:[{jobname|jobid}.]<ID>]...

Description Allows specification of job dependencies for compute or system jobs. If no ID prefix (jobname or
jobid) is specified, the ID value is interpreted as a job ID.

Example # submit job which will run after job 1301 and 1304 complete
> msub -l depend=orion.1301:orion.1304 test.cmd
orion.1322
submit jobname-based dependency job
> msub -l depend=jobname.data1005 dataetl.cmd
orion.1428

DMEM

Format <INTEGER>

Default 0

Description Dedicated memory per task in bytes.

Example > msub -l dmem=20480

Moab will dedicate 20 MB of
memory to the task.

EPILOGUE

Format <STRING>

Moab Workload Manager

624 Resource Managers and Interfaces

Resource Managers and Interfaces 625

EPILOGUE

Description Specifies a user owned epilogue script which is run before the system epilogue and epi-
logue.user scripts at the completion of a job. The syntax is epilogue=<file>. The file can be
designated with an absolute or relative path.

This parameter works only with TORQUE.

Example > msub -l epilogue=epilogue_script.sh job.sh

EXCLUDENODES

Format {<nodeid>|<node_range>}[:...]

Description Specifies nodes that should not be considered for the given job.

Example > msub -l excludenodes=k1:k2:k[5-8]
Comma separated ranges work only with SLURM
> msub -l excludenodes=k[1-2,5-8]

FEATURE

Format <FEATURE>[{:|}<FEATURE>]...

Description Required list of node attribute/node features.

If the pipe (|) character is used as a delimiter, the features are logically OR'd together and
the associated job may use resources that match any of the specified features.

Example > qsub -l feature='fastos:bigio' testjob.cmd

GATTR

Format <STRING>

Description Generic job attribute associated with job. The maximum size for an attribute is 63 bytes (the core
Moab size limit of 64, including a null byte)

Example > qsub -l gattr=bigjob

Moab Workload Manager

GEOMETRY

Format: {(<TASKID>[,<TASKID>[,...]])[(<TASKID>[,...])...]}

Description: Explicitly specified task geometry.

Example: > qsub -l nodes=2:ppn=4 -W x=geometry:'{(0,1,4,5)(2,3,6,7)}' quanta2.cmd

The job quanta2.cmd runs tasks 0, 1, 4, and 5 on one node, while tasks 2, 3, 6, and 7 run
on another node.

GMETRIC

Format Generic metric requirement for allocated nodes where the requirement is specified using the
format <GMNAME>[:{lt:,le:,eq:,ge:,gt:,ne:}<VALUE>]

Description Indicates generic constraints that must be found on all allocated nodes. If a <VALUE> is not spe-
cified, the node must simply possess the generic metric (See Generic Metrics for more inform-
ation.).

Example > qsub -l gmetric=bioversion:ge:133244 testj.txt

GPUs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:gpus=<VALUE>[:mode][:reseterr]

Where mode is one of:
exclusive - The default setting. The GPU is used exclusively by one process thread.
exclusive_thread - The GPU is used exclusively by one process thread.
exclusive_process - The GPU is used exclusively by one process regardless of process thread.
If present, reseterr resets the ECC memory bit error counters. This only resets the volatile error
counts, or errors since the last reboot. The permanent error counts are not affected.
Moab passes the mode and reseterr portion of the request to TORQUE for processing.

Moab does not support requesting GPUs as a GRES. Submitting msub -l gres=gpus:x
does not work.

Description Moab schedules GPUs as a special type of node-locked generic resources. When TORQUE reports
GPUs to Moab, Moab can schedule jobs and correctly assign GPUs to ensure that jobs are sched-
uled efficiently. To have Moab schedule GPUs, configure them in TORQUE then submit jobs using
the "GPU" attribute. Moab automatically parses the "GPU" attribute and assigns them in the cor-
rect manner. For information about GPU metrics, see GPGPUMetrics.

Moab Workload Manager

626 Resource Managers and Interfaces

Resource Managers and Interfaces 627

GPUs

Examples > msub -l nodes=2:ppn=2:gpus=1:exclusive_process:reseterr

Submits a job that requests 2 tasks, 2 processors and 1 GPU per task (2 GPUs total). Each
GPU runs only threads related to the task and resets the volatile ECC memory big error
counts at job start time.

> msub -l nodes=4:gpus=1,tpn=2

Submits a job that requests 4 tasks, 1 GPU per node (4 GPUs total), and 2 tasks per node.
Each GPU is dedicated exclusively to one task process and the ECC memory bit error
counters are not reset.

> msub -l nodes=4:gpus=1:reseterr

Submits a job that requests 4 tasks, 1 processor and 1 GPU per task (4 GPUs total). Each
GPU is dedicated exclusively to one task process and resets the volatile ECC memory bit
error counts at job start time.

> msub -l nodes=4:gpus=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first is 4 tasks, each with 1
processor and 2 gpus, and the second is 1 task with 2 processors. Each GPU is dedicated
exclusively to one task process and the ECC memory bit error counters are not reset.

GRES and SOFTWARE

Format Percent sign (%) delimited list of generic resources where each resource is specified using the
format <RESTYPE>[{+|:}<COUNT>]

Description Indicates generic resources required by the job. If the generic resource is node-locked, it is a per-
task count. If a <COUNT> is not specified, the resource count defaults to 1.

Example > qsub -W x=GRES:tape+2%matlab+3 testj.txt

When specifying more than one generic resource with -l, use the percent (%) character to
delimit them.

> qsub -l gres=tape+2%matlab+3 testj.txt
> qsub -l software=matlab:2 testj.txt

Moab Workload Manager

HOSTLIST

Format Comma (,) or plus (+) delimited list of hostnames. Ranges and regular expressions are supported
in msub only.

Description Indicates an exact set, superset, or subset of nodes on which the job must run. Use the caret (^) or
asterisk (*) characters to specify a host list as superset or subset respectively.
An exact set is defined without a caret or asterisk. An exact set means all the hosts in the specified
hostlist must be selected for the job.
A subset means the specified hostlist is used first to select hosts for the job. If the job requires
more hosts than are in the subset hostlist, they will be obtained from elsewhere if possible. If the
job does not require all of the nodes in the subset hostlist, it will use only the ones it needs.
A superset means the hostlist is the only source of hosts that should be considered for running the
job. If the job can't find the necessary resources in the superset hostlist it should not run. No other
hosts should be considered in allocating the job.

Moab Workload Manager

628 Resource Managers and Interfaces

Resource Managers and Interfaces 629

HOSTLIST

Examples > msub -l hostlist=nodeA+nodeB+nodeE

hostlist=foo[1-5]

This is an exact set of (foo1,foo2,...,foo5). The job must run on all these nodes.

hostlist=foo1+foo[3-9]

This is an exact set of (foo1,foo3,foo4,...,foo9). The job must run on all these nodes.

hostlist=foo[1,3-9]

This is an exact set of the same nodes as the previous example.

hostlist=foo[1-3]+bar[72-79]

This is an exact set of (foo1,foo2,foo3,bar72,bar73,...,bar79). The job must run on all these
nodes.

hostlist=^node[1-50]

This is a superset of (node1,node2,...,node50). These are the only nodes that can be
considered for the job. If the necessary resources for the job are not in this hostlist, the job
is not run. If the job does not require all the nodes in this hostlist, it will use only the ones
that it needs.

hostlist=*node[15-25]

This is a subset of (node15,node16,...,node25). The nodes in this hostlist are considered first
for the job. If the necessary resources for the job are not in this hostlist, Moab tries to
obtain the necessary resources from elsewhere. If the job does not require all the nodes in
this hostlist, it will use only the ones that it needs.

JGROUP

Format <JOBGROUPID>

Description ID of job group to which this job belongs (different from the GID of the user running the job).

Example > msub -l JGROUP=bluegroup

Moab Workload Manager

JOBFLAGS (aka FLAGS)

Format One or more of the following colon delimited job flags including ADVRES[:RSVID], NOQUEUE,
NORMSTART, PREEMPTEE, PREEMPTOR, RESTARTABLE, or SUSPENDABLE (see job flag overview
for a complete listing).

Description Associates various flags with the job.

Example > qsub -l nodes=1,walltime=3600,jobflags=advres myjob.py

JOBREJECTPOLICY

Format: One or more of CANCEL,HOLD, IGNORE (beta),MAIL, or RETRY

Default: HOLD

Details: Specifies the action to take when the scheduler determines that a job can never run.CANCEL
issues a call to the resource manager to cancel the job.HOLD places a batch hold on the job
preventing the job from being further evaluated until released by an administrator.

Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.

With IGNORE (currently in beta), the scheduler will allow the job to exist within the resource
manager queue but will neither process it nor report it. MAIL will send email to both the admin and
the user when rejected jobs are detected. If RETRY is set, then Moab will allow the job to remain
idle and will only attempt to start the job when the policy violation is resolved. Any combination of
attributes may be specified. See QOSREJECTPOLICY.
This is a per-job policy specified with msub -l. JOBREJECTPOLICY also exists as a global parameter.

Example: > msub -l jobrejectpolicy=cancel:mail

MAXMEM

Forma: <INTEGER> (in megabytes)

Description Maximum amount of memory the job may consume across all tasks before the JOBMEM action is
taken.

Example > qsub -W x=MAXMEM:1000mb bw.cmd

If a RESOURCELIMITPOLICY is set for per-job memory utilization, its action will be taken
when this value is reached.

Moab Workload Manager

630 Resource Managers and Interfaces

Resource Managers and Interfaces 631

MAXPROC

Format <INTEGER>

Description Maximum CPU load the job may consume across all tasks before the JOBPROC action is taken.

Example > qsub -W x=MAXPROC:4 bw.cmd

If a RESOURCELIMITPOLICY is set for per-job processor utilization, its action will be
taken when this value is reached.

MEM

Format <INTEGER>

Description Specify the maximum amount of physical memory used by the job. If you do not specify MB or GB,
Moab uses bytes if your resource manger is TORQUE and MB if your resource manager is Native.

Example > msub -l nodes=4:ppn=2,mem=1024mb

The job must have 4 compute nodes with 2 processors per node. The job is limited to 1024
MB of memory.

MICs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:mics=<VALUE>[:mode]

Where mode is one of:
exclusive - The default setting. The MIC is used exclusively by one process thread.
exclusive_thread - The MIC is used exclusively by one process thread.
exclusive_process - The MIC is used exclusively by one process regardless of process thread.
Moab passes the mode portion of the request to TORQUE for processing.

Moab does not support requesting MICs as a GRES. Submitting msub -l gres=mics:x
does not work.

Description Moab schedules MICs as a special type of node-locked generic resources. When TORQUE reports
MICs to Moab, Moab can schedule jobs and correctly assign MICs to ensure that jobs are sched-
uled efficiently. To have Moab schedule MICs , configure them in TORQUE then submit jobs using
the "MIC" attribute. Moab automatically parses the "MIC" attribute and assigns them in the correct
manner.

Moab Workload Manager

MICs

Examples > msub -l nodes=2:ppn=2:mics=1:exclusive_process

Submits a job that requests 2 tasks, 2 processors and 1 MIC per task (2 MICs total). Each
MIC runs only threads related to the task.

> msub -l nodes=4:mics=1,tpn=2

Submits a job that requests 4 tasks, 1 MIC per node (4 MICs total), and 2 tasks per node.
Each MIC is dedicated exclusively to one task process.

> msub -l nodes=4:mics=1

Submits a job that requests 4 tasks, 1 processor and 1 MIC per task (4 MICs total). Each
MIC is dedicated exclusively to one task process.

> msub -l nodes=4:mics=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first is 4 tasks, each with 1
processor and 2 MICs , and the second is 1 task with 2 processors. Each MIC is dedicated
exclusively to one task process.

MINPREEMPTTIME

Format [[DD:]HH:]MM:]SS

Description Minimum time job must run before being eligible for preemption.

Can only be specified if associated QoS allows per-job preemption configuration by setting
the preemptconfig flag.

Example > qsub -l minpreempttime=900 bw.cmd

Job cannot be preempted until it has run for 15 minutes.

MINPROCSPEED

Format <INTEGER>

Default 0

Moab Workload Manager

632 Resource Managers and Interfaces

Resource Managers and Interfaces 633

MINPROCSPEED

Description Minimum processor speed (in MHz) for every node that this job will run on.

Example > qsub -W x=MINPROCSPEED:2000 bw.cmd

Every node that runs this job must have a processor speed of at
least 2000 MHz.

MINWCLIMIT

Format [[DD:]HH:]MM:]SS

Default ---

Description Minimum wallclock limit job must run before being eligible for extension (See
JOBEXTENDDURATION or JOBEXTENDSTARTWALLTIME.).

Example > qsub -l minwclimit=300,walltime=16000 bw.cmd

Job will run for at least 300 seconds but up to 16,000 seconds if possible (without
interfering with other jobs).

MSTAGEIN

Format [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Moab Workload Manager

MSTAGEIN

Descrip-
tion

Indicates a job has data staging requirements. The source URL(s) listed will be transferred to the
execution system for use by the job. If more than one source URL is specified, the destination URL
must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is local.

The format of <DSTURL> is:
[PROTO://][HOST][:PORT]][/PATH]where the path is remote.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when send-
ing a single file and must be a directory when sending multiple files. If a directory is specified, it must
end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Exampl-
e:

> msub -
Wx='mstagein=file://$HOME/helperscript.sh|file:///home/dev/datafile.txt%ssh://host/hom
e/dev/' script.sh

Copy helperscript.sh and datafile.txt from the local machine to /home/dev/ on host for use in exe-
cution of script.sh. $HOME is a path containing a preceding / (i.e. /home/adaptive)

MSTAGEOUT

Forma-
t

[<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Moab Workload Manager

634 Resource Managers and Interfaces

Resource Managers and Interfaces 635

MSTAGEOUT

Descri-
ption

Indicates whether a job has data staging requirements. The source URL(s) listed will be transferred
from the execution system after the completion of the job. If more than one source URL is specified, the
destination URL must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is remote.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is local.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when send-
ing a single file and must be a directory when sending multiple files. If a directory is specified, it must
end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Examp-
le

> msub -W
x='mstageout=ssh://$DEST/$HOME/resultfile1.txt|ssh://host/home/dev/resultscript.sh%file
:///home/dev/' script.sh

Copy resultfile1.txt and resultscript.sh from the execution system to
/home/dev/ after the execution of script.sh is complete. $HOME is a path containing a
preceding / (i.e. /home/adaptive).

NACCESSPOLICY

Format One of SHARED, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Moab Workload Manager

NACCESSPOLICY

Description Specifies how node resources should be accessed. (See Node Access Policies for more information).

The naccesspolicy option can only be used to make node access more constraining than is
specified by the system, partition, or node policies. If the effective node access policy is
shared, naccesspolicy can be set to singleuser, if the effective node access policy is
singlejob, naccesspolicy can be set to singletask.

Example > qsub -l naccesspolicy=singleuser bw.cmd

> bsub -ext naccesspolicy=singleuser lancer.cmd

Job can only allocate free nodes or nodes running jobs by same user.

NALLOCPOLICY

Format One of the valid settings for the parameter NODEALLOCATIONPOLICY

Description Specifies how node resources should be selected and allocated to the job. (See Node Allocation
Policies for more information.)

Example > qsub -l nallocpolicy=minresource bw.cmd

Job should use theminresource node allocation policy.

NCPUS

Format <INTEGER>

Description The number of processors in one task where a task cannot span nodes. If NCPUS is used, then the
resource manager's SUBMITPOLICY should be set to NODECENTRIC to get correct behavior. -l
ncpus=<#> is equivalent to -l nodes=1:ppn=<#>when JOBNODEMATCHPOLICY is set to
EXACTNODE. NCPUS is used when submitting jobs to an SMP. When using GPUs to submit to an
SMP, use -1 ncpus=<#>:GPUs=<#>.

You cannot request both ncpus and nodes in the same job.

Moab Workload Manager

636 Resource Managers and Interfaces

Resource Managers and Interfaces 637

NMATCHPOLICY

Format One of the valid settings for the parameter JOBNODEMATCHPOLICY

Description Specifies how node resources should be selected and allocated to the job.

Example > qsub -l nodes=2 -W x=nmatchpolicy:exactnode bw.cmd

Job should use the EXACTNODEJOBNODEMATCHPOLICY.

NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>]

Description Specifies nodeset constraints for job resource allocation (See the NodeSet Overview for more
information.).

Example > qsub -l nodeset=ONEOF:FEATURE:fastos:hiprio:bigmem bw.cmd

NODESETCOUNT

Format <INTEGER>

Description Specifies how many node sets a job uses.

Example > msub -l nodesetcount=2

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Description Causes Moab to attempt to span a job evenly across nodesets unless doing so delays the job
beyond the requested NODESETDELAY.

Example > qsub -l nodesetdelay=300,walltime=16000 bw.cmd

Moab Workload Manager

NODESETISOPTIONAL

Format <BOOLEAN>

Description Specifies whether the nodeset constraint is optional (See the NodeSet Overview for more inform-
ation.).

Requires SCHEDCFG[] FLAGS=allowperjobnodesetisoptional.

Example > msub -l nodesetisoptional=true bw.cmd

OPSYS

Format <OperatingSystem>

Description Specifies the job's required operating system.

Example > qsub -l nodes=1,opsys=rh73
chem92.cmd

PARTITION

Format <STRING>[:<STRING>]...

Description Specifies the partition (or partitions) in which the job must run.

The job must have access to this partition based on system wide or credential based
partition access lists.

Example > qsub -l nodes=1,partition=math:geology

The job must only run in themath partition or the geology partition.

PMEM

Format <INTEGER>

Description Specifies the maximum amount of physical memory used by any single process of the job.

Moab Workload Manager

638 Resource Managers and Interfaces

Resource Managers and Interfaces 639

PMEM

Example > msub -l nodes=4:ppn=2,pmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and each process of the
job is limited to 1024 MB of physical memory.

PREF

Format [{feature|variable}:]<STRING>[:<STRING>]...

If feature or variable are not specified, then feature is assumed.

Description Specifies which node features are preferred by the job and should be allocated if available. If pre-
ferred node criteria are specified, Moab favors the allocation of matching resources but is not
bound to only consider these resources.

Preferences are not honored unless the node allocation policy is set to PRIORITY and the
PREF priority component is set within the node's PRIORITYF attribute.

Example > qsub -l nodes=1,pref=bigmem

The job may run on any nodes but prefers to allocate nodes with the bigmem feature.

PROCS

Format <INTEGER>

Description Requests a specific amount of processors for the job. Instead of users trying to determine the
amount of nodes they need, they can instead decide how many processors they need and Moab
will automatically request the appropriate amount of nodes from the RM. This also works with
feature requests, such as procs=12[:feature1[:feature2[-]]].

Using this resource request overrides any other processor or node related request, such as
nodes=4.

Example > msub -l procs=32 myjob.pl

Moab will request as many nodes as is necessary to meet the 32-processor requirement
for the job.

Moab Workload Manager

PROLOGUE

Format <STRING>

Description Specifies a user owned prologue script which will be run after the system prologue and pro-
logue.user scripts at the beginning of a job. The syntax isprologue=<file>. The file can be
designated with an absolute or relative path.

This parameter works only with TORQUE.

Example > msub -l prologue=prologue_script.sh job.s

PVMEM

Format <INTEGER>

Description Specify the maximum amount of virtual memory used by any single process in the job.

Example > msub -l nodes=4:ppn=2,pvmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and each process of the
job is limited to 1024 MB of virtual memory.

QoS

Format <STRING>

Description Requests the specified QoS for the job.

Example > qsub -l walltime=1000,qos=highprio
biojob.cmd

QUEUEJOB

Format <BOOLEAN>

Default TRUE

Moab Workload Manager

640 Resource Managers and Interfaces

Resource Managers and Interfaces 641

QUEUEJOB

Description Indicates whether or not the scheduler should queue the job if resources are not available to run
the job immediately

Example > msub -l nodes=1,queuejob=false test.cmd

REQATTR

Format Required node attributes with version number support: reqattr=[<must|must
not|should|should not>]:<ATTRIBUTE>[{>=|>|<=|<|=}<VERSION>]

Description Indicates required node attributes. Values may include letters, numbers, dashes, underscores, and
spaces.
You can choose one of four requirement types for each node attribute you request:

l must – The node on which this job runs must include the attribute at the value specified.
If no node matches this requirement, Moab will not schedule the job.

l must not – The node on which this job runs must not include the attribute at the value
specified. If no node matches this requirement, Moab will not schedule the job.

l should – If possible, the node on which this job runs should include the attribute at the
value specified. If no node matches this requirement, Moab selects a node without it.

l should not – If possible, the node on which this job runs should not include the attribute
at the value specified. If no node matches this requirement, Moab selects a node without it.

If you do not specify a requirement type, Moab assumes "must."
For information about using reqattr to request dynamic features, see Configuring dynamic
features in TORQUE and Moab on page 647.

Example > qsub -l reqattr=matlab=7.1 testj.txt

RESFAILPOLICY

Format One of CANCEL,HOLD, IGNORE,NOTIFY, or REQUEUE

Description Specifies the action to take on an executing job if one or more allocated nodes fail. This setting over-
rides the global value specified with the NODEALLOCRESFAILUREPOLICY parameter.

Example > msub -l resfailpolicy=ignore

For this particular job, ignore node failures.

Moab Workload Manager

RMTYPE

Format <STRING>

Description One of the resource manager types currently available within the cluster or grid. Typically, this is
one of PBS, LSF, LL, SGE, SLURM, BProc, and so forth.

Example > msub -l rmtype=ll

Only run job on a Loadleveler destination resource manager.

SIGNAL

Format <INTEGER>[@<OFFSET>]

Description Specifies the pre-termination signal to be sent to a job prior to it reaching its walltime limit or
being terminated by Moab. The optional offset value specifies how long before job termination the
signal should be sent. By default, the pre-termination signal is sent one minute before a job is ter-
minated

Example > msub -l signal=32@120 bio45.cmd

SPRIORITY

Format <INTEGER>

Default 0

Description Allows Moab administrators to set a system priority on a job (similar to setspri). This only works if
the job submitter is an administrator.

Example > qsub -l nodes=16,spriority=100 job.cmd

TEMPLATE

Format <STRING>

Description Specifies a job template to be used as a set template. The requested template must have SELECT-
T=TRUE (See Job Templates.).

Moab Workload Manager

642 Resource Managers and Interfaces

Resource Managers and Interfaces 643

TEMPLATE

Example > msub -l walltime=1000,nodes=16,template=biojob job.cmd

TERMTIME

Format <TIMESPEC>

Default 0

Description Specifies the time at which Moab should cancel a queued or active job (See Job Deadline Support.).

Example > msub -l nodes=10,walltime=600,termtime=12:00_Jun/14 job.cmd

TPN

Format <INTEGER>[+]

Default 0

Moab Workload Manager

TPN

Description Tasks per node allowed on allocated hosts. If the plus (+) character is specified, the tasks per node
value is interpreted as a minimum tasks per node constraint; otherwise it is interpreted as an
exact tasks per node constraint.
Differences between TPN and PPN:
There are two key differences between the following: (A) qsub -l nodes=12:ppn=3 and (B)
qsub -l nodes=12,tpn=3.
The first difference is that ppn is interpreted as the minimum required tasks per node while tpn
defaults to exact tasks per node; case (B) executes the job with exactly 3 tasks on each allocated
node while case (A) executes the job with at least 3 tasks on each allocated node-
nodeA:4,nodeB:3,nodeC:5

The second major difference is that the line, nodes=X:ppn=Y actually requests X*Y tasks,
whereas nodes=X,tpn=Y requests only X tasks.
TPN with TORQUE as an RM:
Moab interprets nodes loosely as procs. TORQUE interprets nodes as the number of nodes from
the actual number of nodes that you have in your nodes file, not your total number of procs. This
means that if TORQUE is your resource manager and you specify msub -l nodes=16:tpn=8
but do not have 16 nodes, TORQUE will not run the job. Instead, you should specify msub -l
procs=16:tpn=8.
To resolve the problem long term, you can also set server resources_available.nodect to
the total number of procs in your system and use msub -l nodes=16:tpn=8 as you would in a
non-TORQUE Moab environment. For more information, see resources_available on page 2285 in
the TORQUE Administrator Guide.

Example > msub -l nodes=10,walltime=600,tpn=4 job.cmd

TRIG

Format: <TRIGSPEC>

Description: Adds trigger(s) to the job (See Creating a trigger on page 727 for specific syntax.).

Job triggers can only be specified if allowed by the QoS flag trigger. See Enabling job
triggers on page 734 for more information.

Example: > qsub -l trig=etype=start\&atype=exec\&action="/tmp/email.sh job.cmd"

TRL (Format 1)

Format <INTEGER>[@<INTEGER>][:<INTEGER>[@<INTEGER>]]...

Moab Workload Manager

644 Resource Managers and Interfaces

Resource Managers and Interfaces 645

TRL (Format 1)

Default: 0

Description: Specifies alternate task requests with their optional walltimes (See Malleable Jobs.).

Example: > msub -l trl=2@500:4@250:8@125:16@62 job.cmd

or

> qsub -l trl=2:3:4

TRL (Format 2)

Format <INTEGER>-<INTEGER>

Default 0

Description Specifies a range of task requests that require the same walltime (See Malleable Jobs.).

Example > msub -l trl=32-64 job.cmd

For optimization purposes Moab does not perform an exhaustive search of all possible
values but will at least do the beginning, the end, and 4 equally distributed choices in
between.

VAR

Format <ATTR>[:<VALUE>]

Description Adds a generic variable or variables to the job.

Example > msub -l VAR=testvar1:testvalue1

Single variable

> msub -l
VAR=testvar1:testvalue1+testvar2:testvalue2+testvar3:testvalue3

Multiple variables

Moab Workload Manager

VC

Format vc=<NAME>

Description Submits the job or workflow to a virtual container (VC).

Example vc=vc13

VMEM

Format: <INTEGER>

Description: Specify the maximum amount of virtual memory used by all concurrent processes in the job.

Example: > msub -l nodes=4:ppn=2,vmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and the job is limited to
1024 MB of virtual memory.

Resource Manager Extension Examples
If more than one extension is required in a given job, extensions can be concatenated with a semicolon
separator using the format <ATTR>:<VALUE>[;<ATTR>:<VALUE>]...

Example 3-143:

#@comment="HOSTLIST:node1,node2;QOS:special;SID:silverA"

Job must run on nodes node1 and node2 using the QoS special. The job is also associated with the system ID
silverAallowing the silver daemon to monitor and control the job.

Example 3-144:

PBS -W x=\"NODESET:ONEOF:NETWORK;DMEM:64\"

Job will have resources allocated subject to network based nodeset constraints. Further, each task will dedicate 64 MB of
memory.

Example 3-145:

> qsub -l nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES:john.1"

Job will be forced to run within the john.1 reservation.

Moab Workload Manager

646 Resource Managers and Interfaces

Resource Managers and Interfaces 647

Configuring dynamic features in TORQUE and Moab
Used together, the reqattr RM extension and TORQUE $varattr on page 2451 parameter allow you to
create jobs that request resources that may change or disappear. For example, if you wanted a job to
request a certain version of Octave but different versions are configured on each node and updated at
any time, you can create a script that searches for the feature and version on the nodes at a specified
interval. Your Moab job can then retrieve the dynamic node attributes from the latest poll and use them
for scheduling.

This functionality is available when you use the TORQUE $varattr parameter to configure a script that
regularly retrieves updates on the nodes' feature(s) and the reqattr RM extension to require a feature
with a certain value.

To set up a dynamic feature in TORQUE and Moab

1. Create a script that pulls the information you need. For instance, the following script pulls the
version of Octave on each node and prints it.
#!/bin/bash
pull the version string for octave and print it for $varattr
version_str=`octave -v | grep version`
[[$version_str =~ ([[:digit:]].[[:digit:]].[[:digit:]])]]
echo "Octave: ${BASH_REMATCH[1]}"

2. Use the TORQUE $varattr parameter to configure the script. Specify both the number of seconds
between each time TORQUE runs the script and the path to the script. If you set the seconds to -1,
the script will run just once. You may include arguments if desired. In the following example, the
varattr parameter specifies that TORQUE calls the Octave script every 30 seconds.
$varattr 30 /usr/local/scripts/octave.sh

3. Submit your job in Moab, specifying reqattr as a resource. In this example, the job requests a node
where the octave feature has a value of 3.2.4 (that the node has Octave version 3.2.4 installed).

> msub -l rerqattr=octave=3.2.4 myJob.sh

Your job requests a node with Octave version 3.2.4. TORQUE passes the most recent (pulled within the last 30
seconds) version of Octave on each node. Moab then schedules the job on a node that currently has Octave 3.2.4.

Related topics

l Resource Manager Overview

PBS Resource Manager Extensions
Resource manager extensions within PBS are used by setting the -W flag. To enable this flag, some
versions of PBS must be rebuilt. TORQUE and recent OSCAR distributions come with the flag enabled by
default. Most other versions do not. The required steps are documented in what follows:
1.

> qterm -t quick
#shutdown PBS server

cd to the directory from which you executed the PBS 'configure' at install time

Moab Workload Manager

> make distclean
> ./configure <WITH OPTIONS>

2. Create addparam script
(chmod +x addparam)

3.
> addparam x
> make

Backup current $PBS_HOMEDIR directory contents

$PBS_HOMEDIR defaults to /usr/spool/PBS.

4.
> make install

Restore old $PBS_HOMEDIR directory contents
5.

> pbs_server # restart PBS server

A job's QOS level can then be specified using the qsub -W flag. For example, qsub -W x=iQOS:hi -l
nodes=4 ...

Moab Workload Manager

648 Resource Managers and Interfaces

Resource Managers and Interfaces 649

#!/bin/sh
#script: addparam
#usage: addparam $Parameter [S|L]
NewParameter=$1
ParameterType=x$2
if [! -d src/include]; then
echo "error: `basename $0` src/include doesn't exist, run configure"

1>&2
exit 1

fi
run make in this directory to pull over the template files
cd src/include
if make
then
if grep -q "\"$NewParameter\"" site_*.h 2>/dev/null; then
echo "parameter $NewParameter previously added"
exit 0

fi
fi
chmod +w site_job_attr_enum.h
echo "
JOB_SITE_ATR_$1,

" >> site_job_attr_enum.h
chmod +w site_job_attr_def.h
if [$ParameterType = "xS"]
then
echo "
{ \"$NewParameter\",

decode_str,
encode_str,
set_str,
comp_str,
free_str,
NULL_FUNC,
READ_WRITE,
ATR_TYPE_STR,
PARENT_TYPE_JOB

},
" >> site_job_attr_def.h

else
echo "
{ \"$NewParameter\",

decode_l,
encode_l,
set_l,
comp_l,
free_null,
NULL_FUNC,
READ_WRITE,
ATR_TYPE_LONG,
PARENT_TYPE_JOB

},
" >> site_job_attr_def.h

fi
exit 0

Adding New Resource Manager Interfaces
Moab interfaces with numerous resource management systems. Some of these interact through a
resource manager specific interface (OpenPBS/PBSPro, Loadleveler, LSF), while others interact through

Moab Workload Manager

generalized interfaces such as SSS or Wiki (See the Wiki Overview). For most resource managers, either
route is possible depending on where it is easiest to focus development effort. Use of Wiki generally
requires modifications on the resource manager side while creation of a new resource manager specific
Moab interface would require more changes to Moab modules.

Regardless of the interface approach selected, adding support for a new resource manager is typically a
straightforward process for about 95% of all supported features. The final 5% of features usually
requires a bit more effort as each resource manager has a number of distinct concepts that must be
addressed.

l Resource Manager Specific Interfaces

l Wiki Interface

l SSS Interface

Resource Manager Specific Interfaces
If you require tighter integration and need additional instruction, see Managing Resources Directly with
the Native Interface. If you would like consultation on support for a new resource manager type, please
contact the Professional Services group at Adaptive Computing.

Wiki Interface
The Wiki interface is already defined as a resource manager type, so no modifications are required
within Moab. Additionally, no resource manager specific library or header file is required. However,
within the resource manager, internal job and node objects and attributes must be manipulated and
placed within Wiki based interface concepts as defined in the Wiki Overview. Additionally, resource
manager parameters must be created to allow a site to configure this interface appropriately.

SSS Interface
The SSS interface is an XML based generalized resource manager interface. It provides an extensible,
scalable, and secure method of querying and modifying general workload and resource information.

Related topics

l Creating New Tools within the Native Resource Manager Interface

Managing Resources Directly with the Native Interface
l Native Interface Overview

l Configuring the Native Interface

o Configuring the Resource Manager

o Reporting Resources

Moab Workload Manager

650 Resource Managers and Interfaces

http://www.adaptivecomputing.com/about/contact.php

Resource Managers and Interfaces 651

l Generating Cluster Query Data

o Flat Cluster Query Data

o Interfacing to FLEXlm

o Interfacing to Nagios

o Interfacing to Supermon

l Configuring Resource Types

l Creating New Tools to Manage the Cluster

Native Interface Overview
The Native interface allows a site to augment or even fully replace a resource manager for managing
resources. In some situations, the full capabilities of the resource manager are not needed and a lower
cost or lower overhead alternative is preferred. In other cases, the nature of the environment may make
use of a resource manager impossible due to lack of support. Still, in other situations it is desirable to
provide information about additional resource attributes, constraints, or state from alternate sources.

In any case, Moab provides the ability to directly query and manage resources along side of or without
the use of a resource manager. This interface, called the NATIVE interface can also be used to launch,
cancel, and otherwise manage jobs. This NATIVE interface offers several advantages including the
following:

l No cost associated with purchasing a resource manager

l No effort required to install or configure the resource manager

l Ability to support abstract resources

l Ability to support abstract jobs

l Ability to integrate node availability information from multiple sources

l Ability to augment node configuration and utilization information provided by a resource manager

However, the NATIVE interface may also have some drawbacks.

l No support for standard job submission languages

l Limited default configured and utilized resource tracking (additional resource tracking available
with additional effort)

At a high level, the native interface works by launching threaded calls to perform standard resource
manager activities such as managing resources and jobs. The desired calls are configured within Moab
and used whenever an action or updated information is required.

Configuring the Native Interface
Using the native interface consists of defining the interface type and location. As mentioned earlier, a
single object may be fully defined by multiple interfaces simultaneously with each interface updating a
particular aspect of the object.

Moab Workload Manager

Configuring the Resource Manager

The Native resource manager must be configured using the RMCFG parameter. To specify the native
interface, the TYPE attribute must be set to NATIVE.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec:///tmp/query.sh

Reporting Resources

To indicate the source of the resource information, the CLUSTERQUERYURL attribute of the RMCFG
parameter should be specified. This attribute is specified as a URL where the protocols FILE, EXEC and
SQL are allowed. If a protocol is not specified, the protocol EXEC is assumed.

Format Description

EXEC Execute the script specified by the URL path. Use the script stdout as data.

FILE Load the file specified by the URL path. Use the file contents as data.

SQL Load data directly from an SQL database using the FULL format described below.

Moab considers a NativeRM script to have failed if it returns with a non-zero exit code or if the
CHILDSTDERRCHECK parameter is set and its appropriate conditions are met. In addition, the NativeRM
script associated with a job submit URL will be considered as having failed if its standard output stream
contains the text ERROR.

This simple example queries a file on the server for information about every node in the cluster. This
differs from Moab remotely querying the status of each node individually.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=file:///tmp/query.txt

Generating Cluster Query Data

Flat Cluster Query Data

If the EXEC or FILE protocol is specified in the CLUSTERQUERYURL attribute, the data should provide
flat text strings indicating the state and attributes of the node. The format follows the Moab Resource
Manager Language Interface Specification where attributes are delimited by white space rather than ';'
(See Resource Data Format):

Describes any set of node attributes with format: <NAME><ATTR>=<VAL> [<ATTR>=<VAL>]...

<NAME> Name of node

<ATTR> Node attribute

Moab Workload Manager

652 Resource Managers and Interfaces

Resource Managers and Interfaces 653

<VAL> Value of node attribute

n17 CPROC=4 AMEMORY=100980 STATE=idle

Interfacing to FLEXlm
Moab can interface with FLEXlm to provide scheduling based on license availability. Informing Moab of
license dependencies can reduce the number of costly licenses required by your cluster by allowing Moab
to intelligently schedule around license limitations.

Provided with Moab in the tools directory is a Perl script, license.mon.flexLM.pl. This script
queries a FLEXlm license server and gathers data about available licenses. This script then formats this
data for Moab to read through a native interface. This script can easily be used by any site to help
facilitate FLEXlm integration--the only modification necessary to the script is setting the @FLEXlmCmd
to specify the local command to query FLEXlm. To make this change, edit license.mon.flexLM.pl
and, near the top of the file, look for the line:

my @FLEXlmCmd = ("SETME");

Set the @FLEXlmCmd to the appropriate value for your system to query a license server and license file
(if applicable). If lmutil is not in the PATH variable, specify its full path. Using the lmutil -a argument will
cause it to report all licenses. The -c option can be used to specify an optional license file.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

> ./license.mon.flexLM.pl
GLOBAL UPDATETIME=1104688300 STATE=idle ARES=autoCAD:130,idl_mpeg:160
CRES=autoCAD:200,idl_mpeg:330

If the output looks incorrect, set the $LOGLEVEL variable inside of license.mon.flexLM.pl, run it
again, and address the reported failure.

Once the license interface script is properly configured, the next step is to add a license native resource
manager to Moab via the moab.cfg file:

RMCFG[FLEXlm] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured
and utilized licenses can be viewed by issuing the mdiag -n. Floating licenses (non-node-locked) will be
reported as belonging to the GLOBAL node.

Due to the inherent conflict with the plus sign (+), the provided license manager script replaces
occurrences of the plus sign in license names with the underscore symbol (_). This replacement
requires that licenses with a plus sign in their names be requested with an underscore in place of
any plus signs.

Moab Workload Manager

Interfacing to Multiple License Managers Simultaneously

If multiple license managers are used within a cluster, Moab can interface to each of them to obtain the
needed license information. In the case of FLEXlm, this can be done by making one copy of the
license.mon.flexLM.pl script for each license manager and configuring each copy to point to a
different license manager. Then, within Moab, create one native resource manager interface for each
license manager and point it to the corresponding script as in the following example:

RMCFG[FLEXlm1] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm1] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM1.pl
RMCFG[FLEXlm2] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm2] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM2.pl
RMCFG[FLEXlm3] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm3] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM3.pl
...

For an overview of license management, including job submission syntax, see License Management.

It may be necessary to increase the default limit, MMAX_GRES. See Appendix D for more
implementation details.

Interfacing to Nagios
Moab can interface with Nagios to provide scheduling based on network hosts and services availability.

Nagios installation and configuration documentation can be found at Nagios.org.

Provided with Moab in the tools directory is a Perl script, node.query.nagios.pl. This script reads the
Nagios status.dat file and gathers data about network hosts and services. This script then formats
data for Moab to read through a native interface. This script can be used by any site to help facilitate
Nagios integration. To customize the data that will be formatted for Moab, make the changes in this
script.

You may need to customize the associated configuration file in the etc directory, config.nagios.pl.
The statusFile line in this script tells Moab where the Nagios status.dat file is located. Make sure
that the path name specified is correct for your site. Note that the interval which Nagios updates the
Nagios status.dat file is specified in the Nagios nagios.cfg file. Refer to Nagios documentation for
further details.

To make these changes, familiarize yourself with the format of the Nagios status.dat file and make
the appropriate additions to the script to include the desired Moab RM language (formerly WIKI)
Interface attributes in the Moab output.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

> ./node.query.nagios.pl
gateway STATE=Running
localhost STATE=Running CPULOAD=1.22 ADISK=75332

Once the Nagios interface script is properly configured, the next step is to add a Nagios native resource
manager to Moab via the moab.cfg file:

Moab Workload Manager

654 Resource Managers and Interfaces

http://www.nagios.org/

Resource Managers and Interfaces 655

RMCFG[nagios] TYPE=NATIVE
RMCFG[nagios] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.nagios.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured
Nagios node information can be viewed by issuing the mdiag -n -v.

> mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap
Speed Opsys Arch Par Load Rsv Classes Network

Features
gateway Running 0:0 0:0 0:0 0:0
1.00 - - dav 0.00 0 - -

-
WARNING: node 'gateway' is busy/running but not assigned to an active job
WARNING: node 'gateway' has no configured processors

localhost Running 0:0 0:0 75343:75347 0:0
1.00 - - dav 0.48 0 - -

-
WARNING: node 'localhost' is busy/running but not assigned to an active job
WARNING: node 'localhost' has no configured processors

----- --- 3:8 1956:1956 75345:75349 5309:6273
Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

Interfacing to Supermon
Moab can integrate with Supermon to gather additional information regarding the nodes in a cluster. A
Perl script is provided in the tools directory that allows Moab to connect to the Supermon server. By
default the Perl script assumes that Supermon has been started on port 2709 on localhost. These defaults
can be modified by editing the respective parameter in config.supermon.pl in the etc directory. An
example setup is shown below.

RMCFG[TORQUE] TYPE=pbs
RMCFG[supermon] TYPE=NATIVE CLUSTERQUERYURL=exec://$HOME/tools/node.query.supermon.pl

To confirm that Supermon is properly connected to Moab, issue mdiag -R -v. The output should be similar
to the following example, specifically there are no errors about the CLUSTERQUERYURL.

Moab Workload Manager

diagnosing resource managers
RM[TORQUE] State: Active
Type: PBS ResourceType: COMPUTE
Server: keche
Version: '2.2.0-snap.200707181818'
Job Submit URL: exec:///usr/local/bin/qsub
Objects Reported: Nodes=3 (6 procs) Jobs=0
Flags: executionServer
Partition: TORQUE
Event Management: EPORT=15004 (no events received)
Note: SSS protocol enabled
Submit Command: /usr/local/bin/qsub
DefaultClass: batch
RM Performance: AvgTime=0.26s MaxTime=1.04s (4 samples)
RM Languages: PBS
RM Sub-Languages: -

RM[supermon] State: Active
Type: NATIVE ResourceType: COMPUTE
Cluster Query URL: exec://$HOME/node.query.supermon.pl
Objects Reported: Nodes=3 (0 procs) Jobs=0
Partition: supermon
Event Management: (event interface disabled)
RM Performance: AvgTime=0.03s MaxTime=0.11s (4 samples)
RM Languages: NATIVE
RM Sub-Languages: -

Note: use 'mrmctl -f messages ' to clear stats/failures

Run the Perl script by itself. The script's results should look similar to this:

vm01 GMETRIC[CPULOAD]=0.571428571428571 GMETRIC[NETIN]=133 GMETRIC[NETOUT]=702 GMETRIC
[NETUSAGE]=835
vm02 GMETRIC[CPULOAD]=0.428571428571429 GMETRIC[NETIN]=133 GMETRIC[NETOUT]=687 GMETRIC
[NETUSAGE]=820
keche GMETRIC[CPULOAD]=31 GMETRIC[NETIN]=5353 GMETRIC[NETOUT]=4937 GMETRIC[NETUSAGE]
=10290

If the preceding functioned properly, issue a checknode command on one of the nodes that Supermon is
gathering statistics for. The output should look similar to below.

node keche
State: Idle (in current state for 00:32:43)
Configured Resources: PROCS: 2 MEM: 1003M SWAP: 3353M DISK: 1M
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: CPULOAD=33.38,NETIN=11749.00,NETOUT=9507.00,NETUSAGE=21256.00
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.500
Network Load: 0.87 kB/s
Flags: rmdetected
Network: DEFAULT
Classes: [batch 2:2][interactive 2:2]
RM[TORQUE]: TYPE=PBS
EffNodeAccessPolicy: SHARED
Total Time: 2:03:27 Up: 2:03:27 (100.00%) Active: 00:00:00 (0.00%)
Reservations: ---

Moab Workload Manager

656 Resource Managers and Interfaces

Resource Managers and Interfaces 657

Configuring Resource Types
Native Resource managers can also perform special tasks when they are given a specific resource type.
These types are specified using the RESOURCETYPE attribute of the RMCFG parameter.

Type Description

COMPUTE Normal compute resources (no special handling)

FS File system resource manager (see Multiple Resource Managers for an example)

LICENSE Software license manager (see Interfacing with FLEXlm and License Management)

NETWORK Network resource manager

PROV Provisioning resource manager. This is the RM Moab uses to modify the OS of a node (not a VM)
and to power a node on or off.

Creating New Tools to Manage the Cluster
Using the scripts found in the $TOOLSDIR ($INSTDIR/tools) directory as a template, new tools can be
quickly created to monitor or manage most any resource. Each tool should be associated with a
particular resource manager service and specified using one of the following resource manager URL
attributes.

CLUSTERQUERYURL

Description Queries resource state, configuration, and utilization information for compute nodes, networks, stor-
age systems, software licenses, and other resources. For more details, see RM configuration.

Output Node status and configuration for one or more nodes. See Resource Data Format.

Example RMCFG[v-stor] CLUSTERQUERYURL=exec://$HOME/storquery.pl

Moab will execute the storquery.pl script to obtain information about 'v-stor'
resources.

JOBCANCELURL

Description Cancels a job.

Input <JOBID>

Moab Workload Manager

JOBCANCELURL

Example RMCFG[v-stor]
JOBCANCELURL=exec://$HOME/cancel.pl

Moab will execute the cancel.pl script to
cancel jobs.

JOBMODIFYURL

Description Modifies a job or application. For more details, see RM configuration.

Input [-j <JOBEXPR>] [--s[et]|--c[lear]|--i[ncrement]|--d[ecrement]] <ATTR>
[=<VALUE>] [<ATTR>[=<VALUE>]]...

Example RMCFG[v-stor] JOBMODIFYURL=exec://$HOME/jobmodify.pl

Moab will execute the jobmodify.pl script to modify the specified job.

JOBREQUEUEURL

Description Requeues a job.

Input <JOBID>

Example RMCFG[v-stor]
JOBREQUEUEURL=exec://$HOME/requeue.pl

Moab will execute the requeue.pl script to
requeue jobs.

JOBRESUMEURL

Description Resumes a suspended job or application.

Input <JOBID>

Moab Workload Manager

658 Resource Managers and Interfaces

Resource Managers and Interfaces 659

JOBRESUMEURL

Example RMCFG[v-stor] JOBRESUMEURL=exec://$HOME/jobresume.pl

Moab will execute the jobresume.pl script to resume
suspended jobs.

JOBSTARTURL

Description Launches a job or application on a specified set of resources.

Input <JOBID><TASKLIST><USERNAME> [ARCH=<ARCH>] [OS=<OPSYS>]
[IDATA=<STAGEINFILEPATH>[,<STAGEINFILEPATH>]...] [EXEC=<EXECUTABLEPATH>]

Example RMCFG[v-stor] JOBSTARTURL=exec://$HOME/jobstart.pl

Moab will execute the jobstart.pl script to execute jobs.

JOBSUBMITURL

Description Submits a job to the resource manager, but it does not execute the job. The job executes when the
JOBSTARTURL is called.

Input [ACCOUNT=<ACCOUNT>] [ERROR=<ERROR>] [GATTR=<GATTR>] [GNAME=<GNAME>]
[GRES=<GRES>:<Value>[,<GRES>:<Value>]*] [HOSTLIST=<HOSTLIST>]
[INPUT=<INPUT>] [IWD=<IWD>] [NAME=<NAME>] [OUTPUT=<OUTPUT>]
[RCLASS=<RCLASS>] [REQUEST=<REQUEST>] [RFEATURES=<RFEATURES>]
[RMFLAGS=<RMFLAGS>] [SHELL=<SHELL>] [TASKLIST=<TASKLIST>] [TASKS=<TASKS>]
[TEMPLATE=<TEMPLATE>] [UNAME=<UNAME>] [VARIABLE=<VARIABLE>]
[WCLIMIT=<WCLIMIT>] [ARGS=<Value>[<Value>]*]

ARGS must be the last submitted attribute because there can be multiple space-separated
values for ARGS.

Example RMCFG[v-stor] JOBSUBMITURL=exec://$HOME/jobsubmit.pl

Moab submits the job to the jobsubmit.pl script for future job execution.

Moab Workload Manager

JOBSUSPENDURL

Description Suspends in memory an active job or application.

Input <JOBID>

Example RMCFG[v-stor] JOBSUSPENDURL=exec://$HOME/jobsuspend.pl

Moab will execute the jobsuspend.pl script to
suspend active jobs.

NODEMODIFYURL

Description Provide method to dynamically modify/provision compute resources including operating system,
applications, queues, node features, power states, etc.

Input <NODEID>[,<NODEID>] [--force] {--set <ATTR>=<VAL>|--clear <ATTR>}
ATTR is one of the node attributes listed in Resource Data Format

Example RMCFG[warewulf] NODEMODIFYURL=exec://$HOME/provision.pl

Moab will reprovision compute nodes using the provision.plscript.

NODEPOWERURL

Description Allows Moab to issue IPMI power commands.

Input <NODEID>[,<NODEID>] ON | OFF

Example RMCFG[node17rm] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl

Moab will issue a power command contained in the
ipmi.power.plscript.

SYSTEMMODIFYURL

Description Provide method to dynamically modify aspects of the compute environment which are directly
associated with cluster resources. For more details, see RM configuration.

Moab Workload Manager

660 Resource Managers and Interfaces

Resource Managers and Interfaces 661

SYSTEMQUERYURL

Description Provide method to dynamically query aspects of the compute environment which are directly asso-
ciated with cluster resources. For more details, see RM configuration.

Input default <ATTR>
ATTR is one of images

Output <STRING>

Example RMCFG[warewulf] SYSTEMQUERYURL=exec://$HOME/checkimage.pl

Moab will load the list of images available from warewulf using the checkimage.pl
script.

WORKLOADQUERYURL

Description: Provide method to dynamically query the system workload (jobs, services, etc.) of the compute
environment which are associated with managed resources.

Job/workload information should be reported back from the URL (script, file, web service,
etc.) using the Moab RM language (formerly WIKI).

For more details, see RM configuration.

Output: <STRING>

Example: RMCFG[xt] WORKLOADQUERYURL=exec://$HOME/job.query.xt3.pl

Moab will load job/workload information by executing the job.query.xt3.pl script.

Related topics

l mdiag -R command (evaluate resource managers)
l License Management
l Moab Resource Manager Language Data Format
ll Managing Resources with SLURM

Moab Workload Manager

Utilizing Multiple Resource Managers

Multi-RM Overview
In many instances a site may have certain resources controlled by different resource managers. For
example, a site may use a particular resource manager for licensing software for jobs, another resource
manager for managing file systems, another resource manager for job control, and another for node
monitoring. Moab can be configured to communicate with each of these resource managers, gathering all
their data and incorporating such into scheduling decisions. With a more distributed approach to
resource handling, failures are more contained and scheduling decisions can be more intelligent.

Configuring Multiple Independent Resource Manager Partitions
Moab must know how to communicate with each resource manager. In most instances, this is simply
done by configuring a query command.

Migrating Jobs between Resource Managers
With multi-resource manager support, a job may be submitted either to a local resource manager queue
or to the Moab global queue. In most cases, submitting a job to a resource manager queue constrains the
job to only run within the resources controlled by that resource manager. However, if the job is
submitted to the Moab global queue, it can use resources of any active resource manager. This is
accomplished through job translation and staging.

When Moab evaluates resource availability, it determines the cost in terms of both data and job staging.
If staging a job's executable or input data requires a significant amount of time, Moab integrates data
and compute resource availability to determine a job's earliest potential start time on a per resource
manager basis and makes an optimal scheduling decision accordingly. If the optimal decision requires a
data stage operation, Moab reserves the required compute resources, stages the data, and then starts
the job when the required data and compute resources are available.

Aggregating Information into a Cohesive Node View
Using the native interface, Moab can actually perform most of these functions without the need for an
external resource manager. First, configure the native resource managers:

RMCFG[base] TYPE=PBS
RMCFG[network] TYPE=NATIVE
RMCFG[network] CLUSTERQUERYURL=/tmp/network.sh
RMCFG[fs] TYPE=NATIVE
RMCFG[fs] CLUSTERQUERYURL=/tmp/fs.sh

The network script can be as simple as the following:

> _RX=`/sbin/ifconfig eth0 | grep "RX by" | cut -d: -f2 | cut -d' ' -f1`; \
> _TX=`/sbin/ifconfig eth0 | grep "TX by" | cut -d: -f3 | cut -d' ' -f1`; \
> echo `hostname` GMETRIC[netusage]=`echo "$_RX + $_TX" | bc`;

The preceding script would output something like the following:

Moab Workload Manager

662 Resource Managers and Interfaces

Resource Managers and Interfaces 663

node01 GMETRIC[netusage]=10928374

Moab grabs information from each resource manager and includes its data in the final view of the node.

> checknode node01
node node01
State: Running (in current state for 00:00:20)
Configured Resources: PROCS: 2 MEM: 949M SWAP: 2000M disk: 1000000
Utilized Resources: SWAP: 9M
Dedicated Resources: PROCS: 1 disk: 1000
Opsys: Linux-2.6.5-1.358 Arch: linux
Speed: 1.00 CPULoad: 0.320
Location: Partition: DEFAULT Rack/Slot: NA
Network Load: 464.11 b/s
Network: DEFAULT
Features: fast
Classes: [batch 1:2][serial 2:2]
Total Time: 00:30:39 Up: 00:30:39 (100.00%) Active: 00:09:57 (32.46%)
Reservations:
Job '5452'(x1) -00:00:20 -> 00:09:40 (00:10:00)

JobList: 5452

Notice that the Network Load is now being reported along with disk usage.

Example File System Utilization Tracker (per user)

The following configuration can be used to track file system usage on a per user basis:

.....
RMCFG[file] TYPE=NATIVE
RMCFG[file] RESOURCETYPE=FS
RMCFG[file] CLUSTERQUERYURL=/tmp/fs.pl
.....

Assuming that /tmp/fs.pl outputs something of the following format:

DEFAULT STATE=idle AFS=<fs id="user1" size="789456"></fs><fs
id="user2" size="123456"></fs>

This will track disk usage for users user1 and user2 every 24 hours.

License Management
l License Management Overview

l Controlling and Monitoring License Availability

l Requesting Licenses w/in Jobs

License Management Overview
Software license management is typically enabled in one of two models: node-locked and floating. Under
a node-locked license, use of a given application is constrained to certain hosts. For example, node013
may support up to two simultaneous jobs accessing application matlab. In a floating license model, a

Moab Workload Manager

limited number of software licenses are made available cluster wide, and these licenses may be used on
any combination of compute hosts. In each case, these licenses are consumable and application access is
denied once they are gone.

Moab supports both node-locked and floating license models and even allows mixing the two models
simultaneously. Moab monitors license usage and only launches an application when required software
license availability is guaranteed. In addition, Moab also reserves licenses in conjunction with future jobs
to ensure these jobs can run at the appropriate time.

By default, Moab supports up to 128 independent license types.

Moab license recognition is case insensitive. This means that two licenses with the same spelling
and different capitalization are still recognized as the same license. When this occurs, Moab
considers the license invalid.

Controlling and Monitoring License Availability
Moab can use one of three methods to determine license availability. These methods include locally
specifying consumable generic resources, obtaining consumable generic resource information from the
resource manager, and interfacing directly with a license manager.

Local Consumable Resources

Both node-locked and floating licenses can be locally specified within Moab using the NODECFG
parameter. In all cases, this is accomplished by associating the license with a node using the GRES (or
generic resource) attribute. If floating, the total cluster-wide license count should be associated with the
GLOBAL node. If node-locked, the per node license count should be associated with each compute host (or
globally using the DEFAULT node). For example, if a site has two node-locked licenses for application
EvalA and six floating licenses for application EvalB, the following configuration could be used:

NODECFG[node001] GRES=EvalA:2
NODECFG[node002] GRES=EvalA:2
NODECFG[GLOBAL] GRES=EvalB:6
...

Resource Manager Based Consumable Resources

Some resource managers support the ability to define and track generic resource usage at a per node
level. In such cases, support for node-locked licenses may be enabled by specifying this information
within the resource manager. Moab automatically detects and schedules these resources. For example, in
the case of TORQUE, this can be accomplished by adding generic resource specification lines to the MOM
configuration file.

Interfacing to an External License Manager

Moab may also obtain live software license information from a running license manager. Direct
interfaces to supported license managers such as FlexLM may be created using the Native Resource
Manager feature. A complete example on interfacing to an external license manager is provided in the
FLEXlm section of the native resource manager overview.

Moab Workload Manager

664 Resource Managers and Interfaces

Resource Managers and Interfaces 665

Interfacing to Multiple License Managers

Moab may interface to multiple external license managers simultaneously simply by defining additional
native resource manager interfaces. See the FLEXlm Native Resource Manager Overview for more
information.

Requesting Licenses within Jobs
Requesting use of software licenses within jobs is typically done in one of two ways. In most cases, the
native resource manager job submission language provides a direct method of license specification; for
example, in the case of TORQUE, OpenPBS, or PBSPro, the software argument could be specified using
the format <SOFTWARE_NAME>[+<LICENSE_COUNT>] as in the following example:

> qsub -l nodes=2,software=blast cmdscript.txt

The license count is a job total, not a per task total, and the license count value defaults to 1.

An alternative to direct specification is the use of the Moab resource manager extensions. With these
extensions, licenses can be requested as generic resources, using the GRES attribute. The job in the
preceding example could also be requested using the following syntax:

> qsub -l nodes=2 -W x=GRES:blast cmdscript.txt

In each case, Moab automatically determines if the software licenses are node-locked or floating and
applies resource requirements accordingly.

If a job requires multiple software licenses, whether of the same or different types, a user would use the
following syntax:

> qsub -l nodes=2 -W x=GRES:blast+2 cmdscript.txt # two 'blast' licenses required
> qsub -l nodes=2 -W x=GRES:blast+2%bkeep+3 cmdscript.txt # two 'blast' and three
'bkeep' licenses are required

Related topics

l Native Resource Manager License Configuration
l License Ownership with Advance Reservations
l Multi-Cluster License Sharing with Moab Workload Manager for Grids Interfaces

Resource Provisioning
l Resource Provisioning Overview

l Configuring Provisioning

Resource Provisioning Overview
When processing a resource request, Moab attempts to match the request to an existing available
resource. However, if the scheduler determines that the resource is not available or will not be available

Moab Workload Manager

due to load or policy for an appreciable amount of time, it can select a resource to modify to meet the
needs of the current requests. This process of modifying resources to meet existing needs is called
provisioning.

Currently, there are two types of provisioning supported: operating system (OS) and application. As its
name suggests, OS provisioning allows the scheduler to modify the operating system of an existing
compute node while application level provisioning allows the scheduler to request that a software
application be made available on a given compute node. In each case, Moab evaluates the costs of making
the change in terms of time and other resources consumed before making the decision. Only if the
benefits outweigh the costs will the scheduler initiate the change required to support the current
workload.

Preemption (requeueing) does not work with dynamic provisioning.

Configuring Provisioning
Enabling provisioning consists of configuring an interface to a provisioning manager, specifying which
nodes can take advantage of this service, and what the estimated cost and duration of each change will
be. This interface can be used to contact provisioning software such as xCat or HP's Server Automation
tool. Additionally, locally developed systems can be interfaced via a script or web service.

Related topics

l Native Resource Manager Overview
l Appendix O: Resource Manager Integration

Managing Networks

Network Management Overview
Network resources can be tightly integrated with the rest of a compute cluster using the Moab multi-
resource manager management interface. This interface has the following capabilities:

l Dynamic per job and per partition VLAN creation and management

l Monitoring and reporting of network health and failure events

l Monitoring and reporting of network load

l Creation of subnets with guaranteed performance criteria

l Automated workload-aware configuration and router maintenance

l Intelligent network-aware scheduling algorithms

Dynamic VLAN Creation
Most sites using dynamic VLAN's operate under the following assumptions:

Moab Workload Manager

666 Resource Managers and Interfaces

http://www.xcat.org/

Resource Managers and Interfaces 667

l Each compute node has access to two or more networks, one of which is the compute network, and
another which is the administrator network.

l Each compute node may only access other compute nodes via the compute network.

l Each compute node may only communicate with the head node via the administrator network.

l Logins on the head node may not be requested from a compute node.

In this environment, organizations may choose to have VLANs automatically configured that encapsulate
individual jobs. These VLAN's essentially disconnect the job from either incoming or outgoing
communication with other compute nodes.

Configuring VLANs

Automated VLAN management can be enabled by setting up a network resource manager that supports
dynamic VLAN configuration and a QoS to request this feature. The example configuration highlights this
setup:

...
RMCFG[cisco] TYPE=NATIVE RESOURCETYPE=NETWORK FLAGS=VLAN
RMCFG[cisco] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.cisco.pl
RMCFG[cisco] SYSTEMMODIFYURL=exec://$TOOLSDIR/system.modify.cisco.pl
QOSCFG[netsecure] SECURITY=VLAN

Requesting a VLAN

VLANs can be requested on a per job basis directly using the associated resource manager extension or
indirectly by requesting a QoS with a VLAN security requirement.

> qsub -l nodes=256,walltime=24:00:00,qos=netsecure biojob.cmd
143325.umc.com submitted

Network Load and Health Monitoring
Network-level load and health monitoring is enabled by supporting the cluster query action in the
network resource manager and specifying the appropriate CLUSTERQUERYURL attribute in the associated
resource manager interface. Node (virtual node) query commands (mnodectl,checknode) can be used to
view this load and health information that will also be correlated with associated workload and written
to persistent accounting records. Network load and health based event information can also be fed into
generic events and used to drive appropriate event based triggers.

At present, load and health attributes such as fan speed, temperature, port failures, and various core
switch failures can be monitored and reported. Additional failure events are monitored and reported as
support is added within the network management system.

Providing Per-QoS and Per-Job Bandwidth Guarantees
Intra-job bandwidth guarantees can be requested on a per job basis using the BANDWIDTH resource
manager extensions. If specified, Moab does not allow a job to start unless these criteria can be satisfied
via proper resource allocation or dynamic network partitions. As needed, Moab makes future resource
reservations to be able to guarantee required allocations.

Moab Workload Manager

Example 3-146:

> qsub -l nodes=24,walltime=8:00:00,bandwidth=1000 hex3chem.cmd
job 44362.qjc submitted

If dynamic network partitions are enabled, a NODEMODIFYURL attribute must be properly
configured to drive the network resource manager. See Native Resource Manager Overview for
details.

Enabling Workload-Aware Network Maintenance
Network-aware maintenance is enabled by supporting the modify action in the network resource
manager and specifying the appropriate NODEMODIFYURL attribute in the associated resource manager
interface. Administrator resource management commands, (mnodectl and mrmctl), will then be routed
directly through the resource manager to the network management system. In addition, reservation and
real-time generic event and generic metric triggers can be configured to intelligently drive these
facilities for maintenance and auto-recovery purposes.

Maintenance actions can include powering on and off the switch as well as rebooting/recycling all or
part of the network. Additional operations are enabled as supported by the underlying networks.

Creating a Resource Management Interface for a New Network
Many popular networks are supported using interfaces provided in the Moab tools directory. If a
required network interface is not available, a new one can be created using the following guidelines:

General Requirements

In all cases, a network resource manager should respond to a cluster query request by reporting a single
node with a node name that will not conflict with any existing compute nodes. This node should report as
a minimum the state attribute.

Monitoring Load

Network load is reported to Moab using the generic resource bandwidth. For greatest value, both
configured and used bandwidth (in megabytes per second) should be reported as in the following
example:

force10 state=idle ares=bandwidth:5466 cres=bandwidth:10000

Monitoring Failures

Network warning and failure events can be reported to Moab using the gevent metric. If automated
responses are enabled, embedded epochtime information should be included.

force10 state=idle gevent[checksum]='ECC failure detected on port 13'

Moab Workload Manager

668 Resource Managers and Interfaces

Resource Managers and Interfaces 669

Controlling Router State

Router power state can be controlled as a system modify interface is created that supports the
commands on, off, and reset.

Creating VLANs

VLAN creation, management, and reporting is more advanced requiring persistent VLAN ID tracking,
global pool creation, and other features. Use of existing routing interface tools as templates is highly
advised. VLAN management requires use of both the cluster query interface and the system modify
interface.

Per-Job Network Monitoring
It is possible to gather network usage on a per job basis using the Native Interface. When the native
interface has been configured to report netin and netout Moab automatically gathers this data through
the life of a job and reports total usage statistics upon job completion.

...
node99 netin=78658 netout=1256
...

This information is visible to users and administrators via command-line utilities, the web portal, and
the desktop graphical interfaces.

Related topics

l Native Resource Manager Overview
l Network Utilization Statistics

Intelligent Platform Management Interface
l IPMI Overview

l Node IPMI Configuration

l Installing IPMItool

l Setting-up the BMC-Node Map File

l Configuring Moab's IPMI Tools

l Configuring Moab

l Ensuring Proper Setup

IPMI Overview
The Intelligent Platform Management Interface (IPMI) specification defines a set of common interfaces
system administrators can use to monitor system health and manage the system. The IPMI interface can
monitor temperature and other sensor information, query platform status and power-on/power-off
compute nodes. As IPMI operates independently of the node's OS interaction with the node can happen

Moab Workload Manager

even when powered down. Moab can use IPMI to monitor temperature information, check power status,
power-up, power-down, and reboot compute nodes.

Node IPMI Configuration
IPMI must be enabled on each node in the compute cluster. This is usually done either through the node's
BIOS or by using a boot CD containing IPMI utilities provided by the manufacturer. With regard to
configuring IPMI on the nodes, be sure to enable IPMI-over-LAN and set a common login and password on
all the nodes. Additionally, you must set a unique IP address for each node's BMC. Take note of these
addresses as you will need them when reviewing the Creating the IPMI BMC-Node Map File section.

Installing IPMItool
IPMItool is an open-source tool used to retrieve sensor information from the IPMI Baseboard
Management Controller (BMC) or to send remote chassis power control commands. The IPMItool
developer provides Fedora Core binary packages as well as a source tarball on the IPMItool download
page.

Installing IPMItool is not guaranteed to address all power management control. Manufacturer-
specific tools may be required for some hardware integrations.

Download and install IPMItool on the Moab head node and make sure the ipmitool binary is in the
current shell PATH.

Proper IPMI setup and IPMItool configuration can be confirmed by issuing the following command on the
Moab head node.

> ipmitool -I lan -U username -P password -H BMC IP chassis status

The output of this command should be similar to the following.

System Power : off
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false
Power Restore Policy : previous
Last Power Event :
Chassis Intrusion : inactive
Front-Panel Lockout : inactive
Drive Fault : false
Cooling/Fan Fault : false

Creating the IPMI BMC-Node Map File [OPTIONAL]
Since the BMC can be controlled via LAN, it is possible for the BMC to have its own unique IP address.
Since this IP address is separate from the IP address of the node, a simple mapping file is required for
Moab to know each node's BMC address. The file is a flat text file and should be stored in the Moab home
directory. If a mapping file is needed, specify the name in the config.ipmi.pl configuration file in the
etc/ directory. The following is an example of the mapping file:

Moab Workload Manager

670 Resource Managers and Interfaces

http://ipmitool.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=95200
http://sourceforge.net/project/showfiles.php?group_id=95200

Resource Managers and Interfaces 671

#<NodeID> <BMC IP>
node01 10.10.10.101
node02 10.10.10.102
node03 10.10.10.103
node04 10.10.10.104
node05 10.10.10.105
NodeID = the name of the nodes returned with "mdiag -n"
BMC IP = the IP address of the IPMI BMC network interface

Note that only the nodes specified in this file are queried for IPMI information. Also note that the
mapping file is disabled by default and the nodes that are returned from Moab with mdiag -n are the ones
that are queried for IPMI sensor data.

Configuring the Moab IPMI Tools
The tools/ subdirectory in the install directory already contains the Perl scripts needed to interface
with IPMI. The following is a list of the Perl scripts that should be in the tools/ directory; confirm
these are present and executable.

ipmi.mon.pl # The daemon front-end called by Moab
ipmi.power.pl # The power control script called by Moab
__mon.ipmi.pl # The IPMI monitor daemon that updates and caches IPMI data from nodes

Next, a few configuration settings need to be adjusted in the config.ipmi.pl file found in the etc
subdirectory. The IPMI-over-LAN username and password need to be set to the values that were set in
the Node IPMI Configuration section. Also, the IPMI query daemon's polling interval can be modified by
adjusting $pollInterval. This specifies how often the IPMI-enabled nodes are queried to retrieve sensor
data.

Configuring Moab
To allow Moab to use the IPMI tools, a native resource manager is configured. To do this, the following
lines must be added to moab.cfg:

...
IPMI - Node monitor script
RMCFG[ipminative] TYPE=NATIVE CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi.mon.pl
...

Next, the following lines can be added to allow Moab to issue IPMI power commands.

...
IPMI - Power on/off/reboot script
RMCFG[ipminative] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl
...

Moab can be configured to perform actions based on sensor data. For example, Moab can shut down a
compute node if its CPU temperature exceeds 100 degrees Celsius, or it can power down idle compute
nodes if workload is low. Generic event thresholds are used to tell Moab to perform certain duties given
certain conditions. The following example is of a way for Moab to recognize it should power off a
compute node if its CPU0 temperature exceeds 100 degrees Celsius.

Moab Workload Manager

...
IPMI - Power off compute node if its CPU0 temperature exceeds 100 degrees Celsius.
GEVENTCFG[CPU0_TEMP>100] action=off
...

Ensuring Proper Setup
Once the preceding steps have been taken, Moab should be started as normal. The IPMI monitoring
daemon should start automatically, which can be confirmed with the following:

moab@headnode:~/$ ps aux | grep __mon
moab 11444 0.0 0.3 6204 3172 pts/3 S 10:54 0:00 /usr/bin/perl -w
/opt/moab/tools/_mon.ipmi.pl --start

After a few minutes, IPMI data should be retrieved and cached. This can be confirmed with the following
command:

moab@headnode:~/$ cat spool/ipmicache.gm
node01 GMETRIC[CPU0_TEMP]=49
node01 GMETRIC[CPU1_TEMP]=32
node01 GMETRIC[SYS_TEMP]=31
node01 POWER=ON

Finally, issue the following to ensure Moab is grabbing the IPMI data. Temperature data should be
present in the Generic Metrics row.

moab@headnode:~/$ checknode node01
node node01
State: Idle (in current state for 00:03:12)
Configured Resources: PROCS: 1 MEM: 2000M SWAP: 3952M DISK: 1M
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: CPU0_TEMP=42.00,CPU1_TEMP=30.00,SYS_TEMP=29.00
...

Resource Manager Translation
l Translation Overview

l Translation Enablement Steps

Translation Overview
Resource manager translation allows end-users to continue to use existing job command scripts and
familiar job management and resource query commands. This is accomplished by emulating external
commands, routing the underlying queries to Moab, and then formatting the responses in a familiar
manner. Using translation, job submission clients, job query clients, job control clients, and resource
query clients can be emulated making switching from one resource manager to another transparent and
preserving investment in legacy scripts, tools, and experience.

Moab Workload Manager

672 Resource Managers and Interfaces

Troubleshooting and System Maintenance 673

Translation Enablement Steps
To enable translation, you must:

l Edit the Moab tools configuration file.

l Copy, rename, and link the emulation scripts to a shorter, easier-to-use name.

Configure Translation Tools

Located in the $MOABHOMEDIR/etc directory are tools-specific configuration files. For each resource
manager that has installed translation tools, edit the Moab tools configuration file in the etc directory.
For example, if enabling LSF translation, do the following:

> vi $MOABHOMEDIR/etc/config.moab.pl
Set the PATH to include directories for moab client commands — mjobctl, etc.
$ENV{PATH} = "/opt/moab/bin:$ENV{PATH}";

Add Translation Tools

In a directory accessible to users, create links to (or copy) the emulation scripts you want your users to
use. For example, the emulation script tools/bjobs.lsf.pl could be copied to bin/bjobs, or, a
symbolic link could be created in bin/bjobs that points to tools/bjobs.lsf.pl.

> ln -s tools/bjobs.lsf.pl bin/bjobs
> ln -s tools/bhosts.lsf.pl bin/bhosts

Troubleshooting and SystemMaintenance
l Internal Diagnostics/Diagnosing System Behavior and Problems on page 673

l Logging Overview on page 676

l Object Messages on page 683

l Notifying Administrators of Failures on page 684

l Issues with Client Commands on page 686

l Tracking System Failures on page 687

l Problems with Individual Jobs on page 689

l Diagnostic Scripts on page 689

Internal Diagnostics/Diagnosing System Behavior and
Problems
Moab provides a number of commands for diagnosing system behavior. These diagnostic commands
present detailed state information about various aspects of the scheduling problem, summarize

Moab Workload Manager

performance, and evaluate current operation reporting on any unexpected or potentially erroneous
conditions found. Where possible, Moab's diagnostic commands even correct detected problems if
desired.

At a high level, the diagnostic commands are organized along functionality and object based delineations.
Diagnostic commands exist to help prioritize workload, evaluate fairness, and determine effectiveness of
scheduling optimizations. Commands are also available to evaluate reservations reporting state
information, potential reservation conflicts, and possible corruption issues. Scheduling is a complicated
task. Failures and unexpected conditions can occur as a result of resource failures, job failures, or
conflicting policies.

Moab's diagnostics can intelligently organize information to help isolate these failures and allow them to
be resolved quickly. Another powerful use of the diagnostic commands is to address the situation in
which there are no hard failures. In these cases, the jobs, compute nodes, and scheduler are all
functioning properly, but the cluster is not behaving exactly as desired. Moab diagnostics can help a site
determine how the current configuration is performing and how it can be changed to obtain the desired
behavior.

The mdiag Command
The cornerstone of Moab's diagnostics is the mdiag command. This command provides detailed
information about scheduler state and also performs a large number of internal sanity checks presenting
problems it finds as warning messages.

Currently, the mdiag command provides in-depth analysis of the following objects and subsystems:

Object/Subsystem mdiag
Flag Use

Account -a Shows detailed account configuration information.

Blocked -b Indicates why blocked (ineligible) jobs are not allowed to run.

Class -c Shows detailed class configuration information.

Config -C Shows configuration lines from moab.cfg and whether or not they are valid.

FairShare -f Shows detailed fairshare configuration information as well as current fair-
share usage.

Group -g Shows detailed group information.

Job -j Shows detailed job information. Reports corrupt job attributes, unexpected
states, and excessive job failures.

Frame/Rack -m Shows detailed frame/rack information.

Moab Workload Manager

674 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 675

Object/Subsystem mdiag
Flag Use

Node -n Shows detailed node information. Reports unexpected node states and
resource allocation conditions.

Priority -p Shows detailed job priority information including priority factor con-
tributions to all idle jobs.

QoS -q Shows detailed QoS information.

Reservation -r Shows detailed reservation information. Reports reservation corruption and
unexpected reservation conditions.

Resource Manager -R Shows detailed resource manager information. Reports configured and detec-
ted state, configuration, performance, and failures of all configured resource
manager interfaces.

Standing Reser-
vations

-s Shows detailed standing reservation information. Reports reservation cor-
ruption and unexpected reservation conditions.

Scheduler -S Shows detailed scheduler state information. Indicates if scheduler is stopped,
reports status of grid interface, and identifies and reports high-level sched-
uler failures.

Partition -t Shows detailed partition information.

User -u Shows detailed user information.

Other Diagnostic Commands
Beyond mdiag, the checkjob and checknode commands also provide detailed information and sanity
checking on individual jobs and nodes respectively. These commands can indicate why a job cannot start,
which nodes can be available, and information regarding the recent events impacting current job or
nodes state.

Using Moab Logs for Troubleshooting
Moab logging is extremely useful in determining the cause of a problem. Where other systems may be
cursed for not providing adequate logging to diagnose a problem, Moab may be cursed for the opposite
reason. If the logging level is configured too high, huge volumes of log output may be recorded,
potentially obscuring the problems in a flood of data. Intelligent searching combined with the use of the
LOGLEVEL and LOGFACILITY parameters can mine out the needed information. Key information
associated with various problems is generally marked with the keywords WARNING, ALERT, or ERROR.
See the Logging Overview for further information.

Moab Workload Manager

Automating Recovery Actions after a Failure
The RECOVERYACTION parameter of SCHEDCFG can be used to control scheduler action in the case of a
catastrophic internal failure. Valid actions include die, ignore, restart, and trap.

Recovery
Mode Description

die Moab will exit and, if core files are externally enabled, create a core file for analysis (This is the
default behavior.).

ignore Moab will ignore the signal and continue processing. This may cause Moab to continue running with
corrupt data which may be dangerous. Use this setting with caution.

restart When a SIGSEGV is received, Moab will relaunch using the current checkpoint file, the original
launch environment, and the original command line flags. The receipt of the signal will be logged
but Moab will continue scheduling. Because the scheduler is restarted with a new memory image,
no corrupt scheduler data should exist. One caution with this mode is that it may mask underlying
system failures by allowing Moab to overcome them. If used, the event log should be checked occa-
sionally to determine if failures are being detected.

trap When a SIGSEGV is received, Moab stays alive but enters diagnostic mode. In this mode, Moab stops
scheduling but responds to client requests allowing analysis of the failure to occur using internal
diagnostics available via the mdiag command.

Related topics

l Troubleshooting Individual Jobs

Logging Overview
The Moab Workload Manager provides the ability to produce detailed logging of all of its activities. This
is accomplished using verbose server logging, event logging, and system logging facilities.

l Log Facility Configuration on page 677

l Standard Log Format on page 678

l Searching Moab Logs on page 679

l Event Logs on page 680

o Event Log Format on page 680

o Exporting Events in Real-Time on page 681

l Logging Overview on page 676

l Enabling Syslog on page 682

l Managing Verbosity on page 682

Moab Workload Manager

676 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 677

Log Facility Configuration
The LOGFILE and/or LOGDIR parameters within the moab.cfg file specify the destination of this logging
information. Logging information will be written in the file <MOABHOMEDIR>/<LOGDIR><LOGFILE>
unless <LOGDIR> or <LOGFILE> is specified using an absolute path. If the log file is not specified or points
to an invalid file, all logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in production. By default,
LOGDIR and LOGFILE are set to log and moab.log respectively, resulting in scheduler logs being written to
<MOABHOMEDIR>/log/moab.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to become before it is
rolled and is set to 10 MB by default. When the log file reaches this specified size, the log file is rolled.
The parameter LOGFILEROLLDEPTH controls the number of old logs maintained and defaults to 3. Rolled
log files have a numeric suffix appended indicating their order.

The parameter LOGLEVEL controls the verbosity of the information. LOGLEVEL values between 1 and 6
are used to control the amount of information logged with 1 being the least verbose (recording only the
worst events that occur) while 6 is the most verbose. The amount of information provided at each log
level is approximately an order of magnitude greater than what is provided at the log level immediately
below it. The first three log levels (1-3) measure the severity of an event and the rest of the levels (4-6)
measure verbosity and how much detail is logged.

If a problem is detected, you may want to increase the LOGLEVEL value to get more details. However,
doing so will cause the logs to roll faster and will also cause a lot of possibly unrelated information to
clutter up the logs. Also be aware of the fact that high LOGLEVEL values results in large volumes of
possibly unnecessary file I/O to occur on the scheduling machine. Consequently, it is not recommended
that high LOGLEVEL values be used unless tracking a problem or similar circumstances warrant the I/O
cost.

If high log levels are desired for an extended period of time and your Moab home directory is
located on a network file system, performance may be improved by moving your log directory to a
local file system using the LOGDIR parameter.

Visibility LOGLEVEL
value Description

FATAL n/a FATAL events are errors that render part of the system unusable. An example
would be failing to create a connection to a database. FATAL event logging cannot
be suppressed.

ERROR 1 This is the minimum level of logging that Moab accepts. ERROR events are problems
that occur in circumstances where a user's goal has failed. For example, when a
user submits a job but the job fails to start, the cause of the failure will be an error.
Not all failures are ERROR events, such as failing to open a file because it does not
exist. Like FATAL events, ERROR events cannot be suppressed.

Moab Workload Manager

Visibility LOGLEVEL
value Description

WARNING 2 WARNING events are problems that have user consequences that Moab cannot eas-
ily evaluate. Their impact has to be judged by users. An example would be if a user
job asked Moab to copy a folder and Moab was unable to copy one file in the folder
because the file was a temp file and was opened exclusively by another process.
The user might consider that failure irrelevant. WARNING event logging can be sup-
pressed at user discretion.

INFO 3 INFO events are occurrences that might be interesting but do not represent prob-
lems. An example would be the transition to a "terminated phase" when a service is
successfully terminated. This event is potentially interesting to both human and
automated observers but is not a problem in any sense.

TRACE1 4 These log levels are generally not used in production environments. They are used
mainly by Adaptive Computing developers to analyze various issues. Setting
LOGLEVEL to one of these levels could seriously impact performance due to Moab
attempting to write to the log potentially hundreds of times per second.

TRACE2 5

TRACE3 6

A final log related parameter is LOGFACILITY. This parameter can be used to focus logging on a subset
of scheduler activities. This parameter is specified as a list of one or more scheduling facilities as listed
in the parameters documentation.

Example 3-147:

moab.cfg
allow up to 30 100MB logfiles
LOGLEVEL 3
LOGDIR /var/tmp/moab
LOGFILEMAXSIZE 100000000
LOGFILEROLLDEPTH 30

Standard Log Format
Each log event line follows a standard, tab-delimited log format:

timestamp <tab> thread ID <tab> visibility <tab> origin <tab> event code <tab> scope IDs <tab>
message

l timestamp: Timestamps are given in local time, in ISO 8601 format, with a 4-digit timezone offset
suffix. For example, 2012-01-27T15:18:30.000-0700.

l thread ID: The ID of the thread that is producing the log output.

l visibility: Visibility is either a severity (FATAL, ERROR, WARNING, INFO) or a trace level
(TRACE1, TRACE2, TRACE3).

l origin: Origin is where the log event came from.

Moab Workload Manager

678 Troubleshooting and System Maintenance

http://en.wikipedia.org/wiki/ISO_8601

Troubleshooting and System Maintenance 679

l event code: The event code provides a way to determine what kind of event happened. For a full
list of event codes, see Event Dictionary on page 1076.

l scope IDs: The scope ID associates the event with a specific job or service.

l message: Messages can give details about the event and possibly some action information to
resolve issues.

Example 3-148:

2014-08-15T05:26:18.108-0600 846 TRACE1 MQueue.c:MQueueCheckStatus:3081 0
MQueueCheckStatus()

2014-08-15T05:26:18.108-0600 846 TRACE1 MNode.c:MNodeCheckStatus:949 0
MNodeCheckStatus()
2014-08-15T05:26:18.108-0600 846 TRACE1 MVC.c:MVCHarvestVCs:2911 0 Checking for
VCs to harvest
2014-08-15T05:26:18.108-0600 846 TRACE1 MSU.c:MUClearChild:5301 0 MUClearChild
(PID)
2014-08-15T05:26:18.108-0600 846 INFO MSysMainLoop.c:MSysMainLoop:1059 0x1002a14
Scheduling complete. Sleeping for 60 seconds.
2014-08-15T05:26:18.108-0600 846 TRACE1 MSchedStats.c:MSchedUpdateStats:36 0
MSchedUpdateStats()
2014-08-15T05:26:18.108-0600 846 INFO MSchedStats.c:MSchedUpdateStats:45 0x100a9da
Iteration: 23; scheduling time: 0.00 seconds.
2014-08-15T05:26:18.108-0600 846 TRACE1 MRsv.c:MRsvUpdateStats:605 0
MRsvUpdateStats()
2014-08-15T05:26:18.108-0600 846 TRACE1 MSchedStats.c:MSchedUpdateStats:164 0 current
util[23]: 0/1d (0.002f%) PH: 0.072f% active jobs: 0 of 0 (completed: 6217)
2014-08-15T05:26:18.109-0600 846 INFO MSysMainLoop.c:MSysMainLoop:1138 0x1000193
scheduler:Moab A scheduler iteration is ending.

Searching Moab Logs
While major failures are reported via the mdiag -S command, these failures can also be uncovered by
searching the logs using the grep command as in the following:

> grep -E "WARNING|ALERT|ERROR" moab.log

On a production system working normally, this list usually includes some ALERT and
WARNING messages. The messages are usually self-explanatory, but if not, viewing the log can give
context to the message.

If a problem is occurring early when starting the Moab scheduler (before the configuration file is read)
Moab can be started up using the -L <LOGLEVEL>flag. If this is the first flag on the command line, then
the LOGLEVEL is set to the specified level immediately before any setup processing is done and additional
logging is recorded.

If problems are detected in the use of one of the client commands, the client command can be re-issued
with the --loglevel=<LOGLEVEL> command line argument specified. This argument causes log
information to be written to STDERR as the client command is running. As with the server, <LOGLEVEL>
values from 0 to 9 are supported.

The LOGLEVEL can be changed dynamically by use of the mschedctl -m command, or by modifying the
moab.cfg file and restarting the scheduler. Also, if the scheduler appears to be hung or is not properly
responding, the log level can be incremented by one by sending a SIGUSR1 signal to the scheduler

Moab Workload Manager

process. Repeated SIGUSR1signals continue to increase the log level. The SIGUSR2 signal can be used
to decrease the log level by one.

If an unexpected problem does occur, save the log file as it is often very helpful in isolating and
correcting the problem.

Event Logs
Major events are reported to both the Moab log file as well as the Moab event log. By default, the event
log is maintained in the statistics directory and rolls on a daily basis, using the naming convention
events.WWW_MMM_DD_YYYY as in events.Tue_Mar_18_2008.

Event Log Format

The event log contains information about major job, reservation, node, and scheduler events and failures
and reports this information in the following format:

<EVENTTIME> <EPOCHTIME>:<EID> <OBJECT> <OBJECTID> <EVENT> <DETAILS>

Example 3-149:

VERSION 500
07:03:21 110244322:0 sched clusterA start
07:03:26 110244327:1 rsv system.1 start 1124142432 1324142432 2 2 0.0 2342155.3
node1|node2 NA RSV=%=system.1=
07:03:54 110244355:2 job 1413 end 8 16 llw mcc 432000 Completed [batch:1]
11 08708752 1108703981 ...
07:04:59 110244410:3 rm base failure cannot connect to RM
07:05:20 110244431:4 sched clusterA stop admin
...

The parameter RECORDEVENTLIST can be used to control which events are reported to the event log.
See the sections on job and reservation trace format for more information regarding the values reported
in the details section for those records.

Record Type Specific Details Format

The format for each record type is unique and is described in the following table:

Record
Type Event Types Description

gevent See Enabling Generic Events
for gevent information. Generic events are included within node records. See node

detail format that follows.

Moab Workload Manager

680 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 681

Record
Type Event Types Description

job JOBCANCEL,
JOBCHECKPOINT,
JOBEND, JOBHOLD,
JOBMIGRATE, JOBMODIFY,
JOBPREEMPT,
JOBREJECT, JOBRESUME,
JOBSTART, JOBSUBMIT

See Workload Accounting Records.

node NODEDOWN,
NODEFAILURE,NODEUP

The following fields are displayed in the event file in a space-delim-
ited line as long as Moab has information pertaining to it: state, par-
tition, disk, memory, maxprocs, swap, os, rm, nodeaccesspolicy, class,
and message, where state is the node's current state and message
is a human readable message indicating reason for node state
change.

rm RMDOWN,RMPOLLEND,
RMPOLLSTART,RMUP

Human readable message indicating reason for resource manager
state change.

For SCHEDCOMMAND, only create/modify commands
are recorded. No record is created for general list/query

commands. ALLSCHEDCOMMAND does the same thing as
SCHEDCOMMAND, but it also logs info query commands.

trigger TRIGEND, TRIGFAILURE,
TRIGSTART

<ATTR>="<VALUE>"[<ATTR>="<VALUE>"]...
where <ATTR> is one of the following: actiondata, actiontype,
description, ebuf, eventtime, eventtype, flags, name, objectid, object-
type, obuf, offset, period, requires, sets, threshold, timeout, and so
forth.
See About object triggers on page 724 for more information.

vm VMCREATE, VMDESTROY,
VMMIGRATE,
VMPOWEROFF,
VMPOWERON

The following fields are displayed in the event file in a space-delim-
ited line as long as Moab has information pertaining to it: name, sov-
ereign, powerstate, parentnode, swap, memory, disk, maxprocs,
opsys, class, and variables, where class and variables may have 0 or
multiple entries.

Exporting Events in Real-Time

Moab event information can be exported to external systems in real-time using the
ACCOUNTINGINTERFACEURL parameter. When set, Moab activates this URL each time one of the default
events or one of the events specified by the RECORDEVENTLIST occurs.

While various protocols can be used, the most common protocol is exec, which indicates that Moab
should launch the specified tool or script and pass in event information as command line arguments. This

Moab Workload Manager

tool can then select those events and fields of interest and re-direct them as appropriate providing
significant flexibility and control to the organization.

Exec Protocol Format

When a URL with an exec protocol is specified, the target is launched with the event fields passed in as
STDIN. These fields appear exactly as they do in the event logs with the same values and order.

The tools/sql directory included with the Moab distribution contains event.create.sql.pl,
a sample accounting interface processing script that may be used as a template.

Enabling Syslog
In addition to the log file, the Moab scheduler can report events it determines to be critical to the UNIX
syslog facility via the daemon facility using priorities ranging from INFO to ERROR. (See USESYSLOG).
The verbosity of this logging is not affected by the LOGLEVEL parameter. In addition to errors and
critical events, user commands that affect the state of the jobs, nodes, or the scheduler may also be
logged to syslog. Moab syslog messages are reported using the INFO, NOTICE, and ERR syslog priorities.

By default, messages are logged to syslog's user facility. However, using the USESYSLOG parameter,
Moab can be configured to use any of the following:

l user

l daemon

l local0

l local1

l local2

l local3

l local4

l local5

l local6

l local7

Managing Verbosity
In very large systems, a highly verbose log may roll too quickly to be of use in tracking specific targeted
behaviors. In these cases, one or more of the following approaches may be of use:

l Use the LOGFACILITY parameter to log only functions and services of interest.

l Use syslog to maintain a permanent record of critical events and failures.

l Specify higher object loglevels on jobs, nodes, and reservations of interest (such as NODECFG
[orion13] LOGLEVEL=6).

l Increase the range of events reported to the event log using the RECORDEVENTLIST parameter.

Moab Workload Manager

682 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 683

l Review object messages for required details.

l Run Moab in monitor mode using IGNOREUSERS, IGNOREJOBS, IGNORECLASSES, or IGNORENODES.

Related topics

l RECORDEVENTLIST parameter
l USESYSLOG parameter
l Notifying Admins
l Simulation Workload Trace Overview
l mschedctl -L command

Object Messages

Object Message Overview
Messages can be associated with the scheduler, jobs, and nodes. Their primary use is a line of
communication between resource managers, the scheduler, and end-users. When a node goes offline, or
when a job fails to run, both the resource manager and the scheduler will post messages to the object's
message buffer, giving the administrators and end-users a reason for the failure. They can also be used
as a way for different administrators and users to send messages associated with the various objects.
For example, an administrator can set the message Node going down for maintenance
Apr/6/08 12pm," on node node01, which would then be visible to other administrators.

Viewing Messages
To view messages associated with a job (either from users, the resource manager, or Moab), run the
checkjob command.

To view messages associated with a node (either from users, the resource manager, or Moab), run the
checknode command.

To view system messages, use the mschedctl -l message command.

To view the messages associated with a credential, run the mcredctl -c command.

Creating Messages
To create a message use the mschedctl -c message <STRING> [-o <OBJECTTYPE>:<OBJECTID>] [-
w <ATTRIBUTE>=<VALUE>[-w ...]] command.

The <OBJECTTYPE> can be one of the following:

l node

l job

l rsv

l user

Moab Workload Manager

l acct

l qos

l class

l group

The <ATTRIBUTE> can be one of the following:

l owner

l priority

l expiretime

l type

Valid types include:

l annotation

l other

l hold

l pendactionerror

Deleting Messages
Deleting, or removing, messages is straightforward. The commands used depend on the type of object to
which the message is attached:

l Scheduler: Use the "mschedctl -d message:<INDEX>" command (where INDEX is the index of the
message you want to delete).

l Node: Use the mnodectl<NODE> -d message:<INDEX> command.

Notifying Administrators of Failures

Enabling Administrator Email
In the case of certain events, Moab can automatically send email to administrators. To enable mail
notification, the MAILPROGRAM parameter must be set to DEFAULT or point to the locally available mail
client. With this set, policies such as JOBREJECTPOLICY will send email to administrators if set to a value
of MAIL.

Handling Events with the Notification Routine
Moab possesses a primitive event management system through the use of the notify program. The
program is called each time an event of interest occurs. Currently, most events are associated with
failures of some sort but use of this facility need not be limited in this way. The NOTIFICATIONPROGRAM
parameter allows a site to specify the name of the program to run. This program is most often locally

Moab Workload Manager

684 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 685

developed and designed to take action based on the event that has occurred. The location of the
notification program may be specified as a relative or absolute path. If a relative path is specified, Moab
looks for the notification relative to the $(INSTDIR)/tools directory. In all cases, Moab verifies the
existence of the notification program at start up and disables it if it cannot be found or is not executable.

The notification program's action may include steps such as reporting the event via email, adjusting
scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with command line arguments in a simple
<EVENTTYPE>: <MESSAGE> format. The following event types are currently enabled:

Event Type Format Description

JOBCORRUPTION <MESSAGE> An active job is in an unexpected state
or has one or more allocated nodes that
are in unexpected states.

JOBHOLD <MESSAGE> A job hold has been placed on a job.

JOBWCVIOLATION <MESSAGE> A job has exceeded its wallclock limit.

RESERVATIONCORRUPTION <MESSAGE> Reservation corruption has been detec-
ted.

RESERVATIONCREATED <RSVNAME> <RSVTYPE> <NAME>
<PRESENTTIME> <STARTTIME>
<ENDTIME> <NODECOUNT>

A new reservation has been created.

RESERVATIONDESTROYED <RSVNAME> <RSVTYPE>
<PRESENTTIME> <STARTTIME>
<ENDTIME> <NODECOUNT>

A reservation has been destroyed.

RMFAILURE <MESSAGE> The interface to the resource manager
has failed.

Perhaps the most valuable use of the notify program stems from the fact that additional notifications can
be easily inserted into Moab to handle site specific issues. To do this, locate the proper block routine,
specify the correct conditional statement, and add a call to the routine notify(<MESSAGE>);.

Related topics

l JOBREJECTPOLICY parameter
l MAILPROGRAM parameter
l Event Log Overview

Moab Workload Manager

Issues with Client Commands
l Client Overview

l Diagnosing Client Problems

Client Overview
Moab client commands are implemented as links to the executable mclient. When a Moab client
command runs, the client executable determines the name under which it runs and behaves accordingly.
At the time Moab was configured, a home directory was specified. The Moab client attempts to open the
configuration file, moab.cfg, in the etc/ folder of this home directory on the node where the client
command executes. This means that the home directory specified at configure time must be available on
all hosts where the Moab client commands are executed. This also means that a moab.cfg file must be
available in the etc/ folder of this home directory. When the clients open this file, they will try to load
the SCHEDCFG parameter to determine how to contact the Moab server.

The home directory value specified at configure time can be overridden by creating an
/etc/moab.cfg file or by setting the MOABHOMEDIR environment variable.

Once the client has determined where the Moab server is located, it creates a message, adds an
encrypted checksum, and sends the message to the server. The Moab client and Moab server must use a
shared secret key for this to work. When the Moab server receives the client request and verifies the
message, it processes the command and returns a reply.

Diagnosing Client Problems
The easiest way to determine where client failures are occurring is to use built-in Moab logging. On the
client side, use the --loglevel flag. For example:

> showq --loglevel=9

This will display verbose logging information regarding the loading of the configuration file, connecting to the Moab
server, sending the request, and receiving a response.

This information almost always reveals the source of the problem. If it does not, the next step is to look
at the Moab server side logs; this is done using the following steps:

l Stop Moab scheduling so that the only activity is handling Moab client requests.

> mschedctl -s

l Set the logging level to very verbose.

> mschedctl -m loglevel 7

l Watch Moab activity.

> tail -f log/moab.log | more

Now, in a second window, issue any failing client command, such as showq.

Moab Workload Manager

686 Troubleshooting and System Maintenance

Troubleshooting and System Maintenance 687

The moab.log file will record the client request and any reasons it was rejected.

Tracking System Failures

System Failures
The scheduler has a number of dependencies that may cause failures if not satisfied. These dependencies
are in the areas of disk space, network access, memory, and processor utilization.

Disk Space

The scheduler uses a number of files. If the file system is full or otherwise inaccessible, the following
behaviors might be noted:

Unavailable File Behavior

moab.pid Scheduler cannot perform single instance check.

moab.ck* Scheduler cannot store persistent record of reservations, jobs, policies, summary statistics,
and so forth.

moab.cfg
/moab.dat

Scheduler cannot load local configuration.

log/* Scheduler cannot log activities.

stats/* Scheduler cannot write job records.

When possible, configure Moab to use local disk space for configuration files, statistics files, and
logs files. If any of these files are located in a networked file system (such as NFS, DFS, or AFS)
and the network or file server experience heavy loads or failures, Moab server may appear
sluggish or unresponsive and client command may fail. Use of local disk space eliminates
susceptibility to this potential issue.

Network

The scheduler uses a number of socket connections to perform basic functions. Network failures may
affect the following facilities.

Network Connection Behavior

scheduler client Scheduler client commands fail.

Moab Workload Manager

Network Connection Behavior

resource manager Scheduler is unable to load/update information regarding nodes and jobs.

allocation manager Scheduler is unable to validate account access or reserve/debit account balances.

Memory

Depending on cluster size and configuration, the scheduler may require up to 120 MB of memory on the
server host. If inadequate memory is available, multiple aspects of scheduling may be negatively
affected. The scheduler log files should indicate if memory failures are detected and mark any such
messages with the ERROR or ALERT keywords.

Processor Utilization

On a heavily loaded system, the scheduler may appear sluggish and unresponsive. However, no direct
failures should result from this slowdown. Indirect failures may include timeouts of peer services (such
as the resource manager or allocation manager) or timeouts of client commands. All timeouts should be
recorded in the scheduler log files.

Internal Errors
The Moab scheduling system contains features to assist in diagnosing internal failures. If the scheduler
exits unexpectedly, the scheduler logs may provide information regarding the cause. If no reason can be
determined, use of a debugger may be required.

Logs

The first step in any exit failure is to check the last few lines of the scheduler log. In many cases, the
scheduler may have exited due to misconfiguration or detected system failures. The last few lines of the
log should indicate why the scheduler exited and what changes would be required to correct the
situation. If the scheduler did not intentionally exit, increasing the LOGLEVEL parameter to 7, or higher,
may help isolate the problem.

Reporting Failures
If an internal failure is detected on your system, the information of greatest value to developers in
isolating the problem will be the output of the gdb where subcommand and a printout of all variables
associated with the failure. In addition, a level 7 log covering the failure can also help in determining the
environment that caused the failure. If you encounter such and require assistance, please submit a ticket
at the following address:

http://www.adaptivecomputing.com/services/techsupport.php

If you do not already have a support username and password, please create a free account to
request a support ticket

Moab Workload Manager

688 Troubleshooting and System Maintenance

http://www.adaptivecomputing.com/services/techsupport.php
https://www.adaptivecomputing.com/support/
https://www.adaptivecomputing.com/support/

Troubleshooting and System Maintenance 689

Problems with Individual Jobs
To determine why a particular job will not start, there are several helpful commands:

checkjob -v

checkjob evaluates the ability of a job to start immediately. Tests include resource access, node state,
job constraints (such as startdate, taskspernode, and QoS). Additionally, command line flags may be
specified to provide further information.

Flag Description

-l <POLICYLEVEL> Evaluates impact of throttling policies on job feasibility.

-n <NODENAME> Evaluates resource access on specific node.

-r <RESERVATION_LIST> Evaluates access to specified reservations.

checknode

Displays detailed status of node.

mdiag -b

Displays various reasons job is considered blocked or non-queued.

mdiag -j

Displays high level summary of job attributes and performs sanity check on job attributes/state.

showbf -v

Determines general resource availability subject to specified constraints.

Diagnostic Scripts
Moab Workload Manager provides diagnostic scripts that can help aid in monitoring the state of the
scheduler, resource managers, and other important components of the cluster software stack. These
scripts can also be used to help diagnose issues that may need to be resolved with the help of Adaptive
Computing support staff. This section introduces available diagnostic scripts.

support-diag.py
The support-diag.py script has a two-fold purpose. First, it can be used by a Moab trigger or cron job
to create a regular snapshot of the state of Moab. The script captures the output of several Moab
diagnostic commands (such as showq, mdiag -n, and mdiag -S), gathers configuration/log files, and records
pertinent operating system information. This data is then compressed in a time-stamped tarball for easy
long-term storage.

Moab Workload Manager

Second, the script provides Adaptive Computing support personnel with a complete package of
information that can be used to help diagnose configuration issues or system bugs. After capturing the
state of Moab, the resulting tarball can be sent to your Adaptive Computing support contact for further
diagnosis.

The script asks you for the trouble ticket number, -t <TICKET#>, or -n. If you chose to enter -t
<TICKET#> the script uploads your support diagnostic output to Adaptive Computing Customer Support.
The upload and ticket number request can be prevented using the -n option.

Synopsis

support-diag.py [<options>]

Arguments

Argument Description

-h, --help Show this help message and exit.

-q, --diag-torque-off, --without-torque Disable TORQUE diagnostics.

-p TMPDIR, --tmp-dir=TMPDIR Use a different tmp directory to store output.

-n, --no-upload Do not upload to Adaptive Computing.

-t TICKET# Support ticket number.

-f, --full-mode Gather additional logs, stats and, moab.db files.

-u TIMEOUT, --moab-timeout=TIMEOUT Define Moab command timeout (Default 300 seconds).

-d, --debug-mode support-diag print debug variables.

-o, --offline-mode Gather offline logging only.

-r, --ftp Use ftp instead of scp.

-V, --version Print version information.

support.diag.pl

This script is deprecated with the 8.0 release. Use the support-diag.py script instead.

Moab Workload Manager

690 Troubleshooting and System Maintenance

Improving User Effectiveness 691

The support.diag.pl script has a two-fold purpose. First, it can be used by a Moab trigger or cron job
to create a regular snapshot of the state of Moab. The script captures the output of several Moab
diagnostic commands (such as showq, mdiag -n, and mdiag -S), gathers configuration/log files, and records
pertinent operating system information. This data is then compressed in a time-stamped tarball for easy
long-term storage.

The second purpose of the support.diag.pl script is to provide Adaptive Computing support
personnel with a complete package of information that can be used to help diagnose configuration issues
or system bugs. After capturing the state of Moab, the resulting tarball could be sent to your Adaptive
Computing support contact for further diagnosis.

The support.diag.pl will ask you for the trouble ticket number then guide you through the process
of uploading the data to Adaptive Computing Customer Support. The uploading and ticket number request
may be prevented using the --no-upload and --support-ticket=<SUPPORT_TICKET_ID> flags
detailed in the Arguments table that follows.

Synopsis

support.diag.pl [--include-log-lines=<NUM>] [--diag-torque]

Arguments

Argument Description

--include-log-
lines=<NUM>

Instead of including the entire moab.log file, only the last <NUM> lines are
captured in the diagnostics.

--diag-torque Diagnostic commands pertinent to the TORQUE resource manager are
included.

--no-upload Prevents the system from asking the user if they want to upload the tarball to
Adaptive Computing Customer Support.

--support-
ticket=<SUPPORT_TICKET_
ID>

Prevents the system from asking the user for a support ticket number.

Improving User Effectiveness
l User Feedback Loops on page 692

l User Level Statistics on page 693

l Enhancing Wallclock Limit Estimates on page 693

l Job Start Time Estimates on page 693

Moab Workload Manager

l Providing Resource Availability Information on page 694

l Collecting Performance Information on Individual Jobs on page 694

User Feedback Loops
Almost invariably, real world systems outperform simulated systems, even when all policies,
reservations, workload, and resource distributions are fully captured and emulated. What is it about real
world usage that is not emulated via a simulation? The answer is the user feedback loop, the impact of
users making decisions to optimize their level of service based on real time information.

A user feedback loop is created any time information is provided to a user that modifies job submission
or job management behavior. As in a market economy, the cumulative effect of many users taking steps
to improve their individual scheduling performance results in better job packing, lower queue time, and
better overall system utilization. Because this behavior is beneficial to the system at large, system
administrators and management should encourage this behavior and provide the best possible
information to them.

There are two primary types of information that help users make improved decisions: cluster wide
resource availability information and per job resource utilization information.

Improving Job Size/Duration Requests
Moab provides a number of informational commands that help users make improved job management
decisions based on real-time cluster wide resource availability information. These commands include
showbf, showstats -f, and showq. Using these commands, a user can determine what resources are
available and what job configurations statistically receive the best scheduling performance.

Improving Resource Requirement Specification
A job's resource requirement specification tells the scheduler what type of compute nodes are required
to run the job. These requirements may state that a certain amount of memory is required per node or
that a node has a minimum processor speed. At many sites, users will determine the resource
requirements needed to run an initial job. Then, for the next several years, they will use the same basic
batch command file to run all of their remaining jobs even though the resource requirements of their
subsequent jobs may be very different from their initial run. Users often do not update their batch
command files even though these constraints may be unnecessarily limiting the resources available to
their jobs for two reasons: (1) users do not know how much their performance will improve if better
information were provided and (2) users do not know exactly what resources their jobs are using and
are afraid to lower their job's resource requirements since doing so might cause their job to fail.

To help with determining accurate per job resource utilization information, Moab provides the
FEEDBACKPROGRAM facility. This tool allows sites to send detailed resource utilization information back
to users via email, to store it in a centralized database for report preparation, or use it in other ways to
help users refine their batch jobs.

Moab Workload Manager

692 Improving User Effectiveness

Improving User Effectiveness 693

User Level Statistics
Besides displaying job queues, end-users can display a number of their own statistics. The showstats -u
<USER_ID> command displays current and historical statistics for a user as seen in what follows:

$ showstats -u john
statistics initialized Wed Dec 31 17:00:00

|------ Active ------|--------------------------------- Completed -----------
------------------------|
user Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
john 1 1 30.96 9 0.00 300.0 0.00 148.9 0.00 ----- 0.62
0.00 4.33 100.00 48.87

Users can query available system resources with the showbf command. This can aid users in requesting
node configurations that are idle. Also, users can use the checkjob command to determine what
parameter(s) are restricting their job from running. Moab performs better with more accurate wallclock
estimates.

Enhancing Wallclock Limit Estimates
As explained in the previous section, showstats -u <USER_ID> reports statistics for a given user. The
showstats -u command can be accessed by all users. They can use fields such as PHReq, PHDed, or WCAcc
to gauge wallclock estimates. Accurate wallclock estimates allow a job to be scheduled as soon as
possible in a slot that it will fit in. Low or high estimates can cause a job to be scheduled in a less
favorable position.

Job Start Time Estimates
Each user can use the showstart command to display estimated start and completion times. The
following example illustrates a typical response from issuing this command:

> showstart orion.13762
job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

Estimation Types

Reservation-Based Estimates

Reservation-based start time estimation incorporates information regarding current administrative,
user, and job reservations to determine the earliest time the specified job can allocate the needed

Moab Workload Manager

resources and start running. In essence, this estimate indicates the earliest time the job will start,
assuming this job is the highest priority job in the queue.

For reservation-based estimates, the information provided by this command is more highly
accurate if the job is highest priority, if the job has a reservation, or if the majority of the jobs
that are of higher priority have reservations. Consequently, site administrators wanting to make
decisions based on this information may want to consider using the RESERVATIONDEPTH
parameter to increase the number of priority-based reservations. This can be set so that most, or
even all, idle jobs receive priority reservations and make the results of this command generally
useful. The only caution of this approach is that increasing the RESERVATIONDEPTH parameter
more tightly constrains the decisions of the scheduler and may result in slightly lower system
utilization (typically less than 8% reduction).

Backlog/Priority Estimates

Priority-based job start analysis determines when the queried job will fit in the queue and determines
the estimated amount of time required to complete the jobs currently running or scheduled to run before
this job can start.

In all cases, if the job is running, this command returns the time the job starts. If the job already has a
reservation, this command returns the start time of the reservation.

Historical Estimates

Historical analysis uses historical queue times for jobs that match a similar processor count and job
duration profile. This information is updated on a sliding window that is configurable within moab.cfg.

Related topics

l ENABLESTARTESTIMATESTATS parameter
l showstart command

Providing Resource Availability Information
Moab provides commands to allow the user to query available resources. The showbf command displays
what resources are available for immediate use. Using different command line parameters, such as -m, -
n, and -q allows the user to query resources based on memory, nodecount, or QoS respectively.

Collecting Performance Information on Individual Jobs
Individual job information can be collected from the statistics file in STATDIR, which contains start time,
end time, end state, QoS requested, QoS delivered, and so forth for different jobs. Also, Moab optionally
provides similar information to a site's feedback program. See section 21.1 User Feedback Overview for
more information about the feedback program.

Moab Workload Manager

694 Improving User Effectiveness

Cluster Analysis and Testing 695

Cluster Analysis and Testing
l Testing New Releases and Policies on page 695

l Testing New Middleware on page 698

Moab has a number of unique features that allow site administrators to visualize current cluster
behavior and performance, safely evaluate changes on production systems, and analyze probable future
behaviors within a variety of environments.

These capabilities are enabled through a number of Moab facilities that may not appear to be closely
related at first. However, taken together, these facilities allow organizations the ability to analyze their
cluster without the losses associated with policy conflicts, unnecessary downtime, and faulty systems
middleware.

Testing New Releases and Policies
l Moab Evaluation Modes

o MONITOR Mode

o TEST Mode

o INTERACTIVE Mode

l Testing New Releases

l Testing New Policies

o Verifying Correct Specification of New Policies

o Verifying Correct Behavior of New Policies

l Moab Side-by-Side

Moab Evaluation Modes

MONITOR Mode

Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running
in NORMAL or production mode. Jobs are prioritized, reservations created, policies and limits enforced,
and administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in
NORMAL mode, but its ability to actually impact the system is disabled. Using this mode, a site can
quickly verify correct resource manager configuration and scheduler operation. This mode can also be
used to validate new policies and constraints. In fact, Moab can be run in MONITOR mode on a
production system while another scheduler or even another version of Moab is running on the same
system. This unique ability can allow new versions and configurations to be fully tested without any
exposure to potential failures and with no cluster downtime.

Moab Workload Manager

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to
MONITOR and start Moab. Normal scheduler commands can be used to evaluate configuration and
performance. Diagnostic commands can be used to look for any potential issues. Further, the Moab log
file can be used to determine which jobs Moab attempted to start, and which resources Moab attempted
to allocate.

If another instance of Moab is running in production and a site administrator wants to evaluate an
alternate configuration or new version, this is easily done but care should be taken to avoid conflicts
with the primary scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user
interface ports. One of the easiest ways to avoid these conflicts is to create a new test directory with its
own log and statistics subdirectories. The new moab.cfg file can be created from scratch or based on
the existing moab.cfg file already in use. In either case, make certain that the PORT attribute of the
SCHEDCFG parameter differs from that used by the production scheduler by at least two ports. If testing
with the production binary executable, the MOABHOMEDIR environment variable should be set to point
to the new test directory to prevent Moab from loading the production moab.cfg file.

TEST Mode

TEST mode behaves much like MONITOR mode with the exception that Moab will log the scheduling
actions it would have taken to the stats/<DAY>.events file. Using this file, sites can determine the
actions Moab would have taken if running in NORMAL mode and verify all actions are in agreement with
expected behavior.

INTERACTIVE Mode

INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different
from MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired
change request to the screen and requests permission to complete it. For example, before starting a job,
Moab may print something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets
desired site policies. Moab will then execute the specified command. This mode is highly useful in
validating scheduler behavior and can be used until configuration is appropriately tuned and all parties
are comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling
mode to NORMAL after verifying correct behavior.

Testing New Releases
By default, Moab runs in a mode called NORMAL, which indicates that it is responsible for the cluster. It
loads workload and resource information, and is responsible for managing that workload according to
mission objectives and policies. It starts, cancels, preempts, and modifies jobs according to these policies.

If Moab is configured to use a mode called TEST, it loads all information, performs all analysis, but,
instead of actually starting or modifying a job, it merely logs the fact that it would have done so. A test
instance of Moab can run at the same time as a production instance of Moab. A test instance of Moab can
also run while a production scheduler of another type (such as PBS, LSF, or SLURM) is simultaneously

Moab Workload Manager

696 Cluster Analysis and Testing

Cluster Analysis and Testing 697

running. This multi-scheduler ability allows stability and performance tests to be conducted that can help
answer the following questions:

l What impact do Moab services have on network, processor, and memory load?

l What impact do Moab services have on the underlying resource manager?

l Is Moab able to correctly import resource, workload, policy, and credential information from the
underlying resource manager?

l Are Moab's logged scheduling decisions in line with mission objectives?

In test mode, all of Moab's commands and services operate normally allowing the use of client commands
to perform analysis. In most cases, the mdiag command is of greatest value, displaying loaded values as
well as reporting detected failures, inconsistencies, and object corruption. The following table highlights
the most common diagnostics performed.

Command Object

mdiag -n Compute nodes, storage systems, network systems, and generic resources

mdiag -j Applications and static jobs

mdiag -u
mdiag -g
mdiag -a

User, group, and account credentials

mdiag -c Queues and policies

mdiag -R Resource manager interface and performance

mdiag -S Scheduler/system level failures introduced by corrupt information

These commands will not only verify proper scheduling objects but will also analyze the behavior of each
resource manager, recording failures, and delivered performance. If any misconfiguration, corruption,
interface failure, or internal failure is detected, it can be addressed in the test mode instance of Moab
with no urgency or risk to production cluster activities.

Testing New Policies

Verifying Correct Specification of New Policies

The first aspect of verifying a new policy is verifying correct syntax and semantics. If using Moab Cluster
Manager, this step is not necessary as this tool automatically verifies proper policy specification. If
manually editing the moab.cfg file, the following command can be used for validation:

> mdiag -C

This command will validate the configuration file and report any misconfiguration.

Moab Workload Manager

http://www.clusterresources.com/mcm
http://www.clusterresources.com/mcm

Verifying Correct Behavior of New Policies

If concern exists over the impact of a new policy, an administrator can babysit Moab by putting it into
INTERACTIVE mode. In this mode, Moab will schedule according to all mission objectives and policies, but
before taking any action, it will request that the administrator confirm the action. See the interactive
mode overview for more information.

In this mode, only actions approved by the administrator will be carried out. Once proper behavior is
verified, the Moab mode can be set to NORMAL.

Moab Side-by-Side
Moab provides an additional evaluation method that allows a production cluster or other resource to be
logically partitioned along resource and workload boundaries and allows different instances of Moab to
schedule different partitions. The parameters IGNORENODES, IGNORECLASSES, IGNOREJOBS, and
IGNOREUSERS are used to specify how the system is to be partitioned. In the following example, a small
portion of an existing cluster is partitioned for temporary grid testing so that there is no impact on the
production workload.

SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42020
RMCFG[TORQUE] TYPE=PBS
IGNORENODES node61,node62,node63,node64
IGNOREUSERS gridtest1,gridtest2
...
SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42030
RMCFG[TORQUE] TYPE=PBS
IGNORENODES !node61,node62,node63,node64
IGNOREUSERS !gridtest1,gridtest2
...

Two completely independent Moab servers schedule the cluster. The first server handles all jobs and nodes except for the
ones involved in the test. The second server handles only test nodes and test jobs. While both servers actively talk and
interact with a single TORQUE resource manager, the IGNORE* parameters cause them to not schedule, nor even see the
other partition and its associated workload.

When enabling Moab side-by-side, each Moab server should have an independent home directory
to prevent logging and statistics conflicts. Also, in this environment, each Moab server should
communicate with its client commands using a different port as shown in the previous example.

When specifying the IGNORENODES parameter, the exact node names, as returned by the resource
manager, should be specified.

Related topics

l Testing New Versions and Configurations

Testing NewMiddleware
Moab can be used to drive new middleware stress testing resource management systems, information
services, allocation services, security services, data staging services, and other aspects. Moab is unique

Moab Workload Manager

698 Cluster Analysis and Testing

Cluster Analysis and Testing 699

when compared to other stress testing tools as it can perform the tests in response to actual or
recorded workload traces, performing a playback of events and driving the underlying system as if it
were part of the production environment.

This feature can be used to identify scalability issues, pathological use cases, and accounting
irregularities in anything from LDAP, to NIS, and NFS.

Using Moab's time management facilities, Moab can drive the underlying systems in accordance with the
real recorded distribution of time, at a multiplier of real time, or as fast as possible.

The following table describes some aspects of cluster analysis that can be driven by Moab.

System Details

Allocation Manager Use test or simulation mode to drive scheduling queries, allocation debits, and reser-
vations to accounting packages. Verify synchronization of cluster statistics and stress
test interfaces and underlying databases.

On-Demand/Pro-
visioning Services

Use simulation or native resource manager mode to drive triggers and resource man-
agement interfaces to enable dynamic provisioning of hardware, operating systems,
application software, and services. Test reliability and scalability of data servers, net-
works, and provisioning software as well as the interfaces and business logic coordin-
ating these changes.

Resource Monitoring Use test or native resource manager mode to actively load information from compute,
network, storage, and software license managers confirming validity of data, availability
during failures, and scalability.

With each evaluation, the following tests can be enabled:

l functionality

l reliability

o hard failure

o hardware failure - compute, network, and data failures

o software failure - loss of software services (NIS, LDAP, NFS, database)

o soft failure

o network delays, full file system, dropped network packets

o corrupt data

l performance

l determine peak responsiveness in seconds/request

l determine peak throughput in requests/second

l determine responsiveness under heavy load conditions

Moab Workload Manager

l determine throughput under external load conditions

o large user base (many users, groups, accounts)

o large workload (many jobs)

o large cluster (many nodes)

l manageability

o full accounting for all actions/events

o actions/failures can be easily and fully diagnosed

If using a native resource manager and you do not want to actually submit real workload, you can
set the environment variable MFORCESUBMIT to allow virtual workload to be managed without
ever launching a real process.

General Analysis
For all middleware interfaces, Moab provides built-in performance analysis and failure reporting.
Diagnostics for these interfaces are available via the mdiag command.

Native Mode Analysis
Using native mode analysis, organizations can run Moab in normal mode with all facilities fully enabled,
but with the resource manager fully emulated. With a native resource manager interface, any arbitrary
cluster can be emulated with a simple script or flat text file. Artificial failures can be introduced, jobs
can be virtually running, and artificial performance information generated and reported.

In the simplest case, emulation can be accomplished using the following configuration:

SCHEDCFG[natcluster] MODE=NORMAL SERVER=test1.bbli.com
ADMINCFG[1] USERS=dev
RMCFG[natcluster] TYPE=NATIVE CLUSTERQUERYURL=file://$HOME/cluster.dat

The preceding configuration will load cluster resource information from the file cluster.dat. An
example resource information file follows:

node01 state=idle cproc=2
node02 state=idle cproc=2
node03 state=idle cproc=2
node04 state=idle cproc=2
node05 state=idle cproc=2
node06 state=idle cproc=2
node07 state=idle cproc=2
node08 state=idle cproc=2

In actual usage, any number of node attributes may be specified to customize these nodes, but in this
example, only the node state and node configured processors attributes are specified.

The RMCFG flag NORMSTART indicates that Moab should not actually issue a job start command to an
external entity to start the job, but rather start the job logically internally only.

Moab Workload Manager

700 Cluster Analysis and Testing

Green computing 701

If it is desirable to take an arbitrary action at the start of a job, end of a job, or anywhere in between,
the JOBCFG parameter can be used to create one or more arbitrary triggers to initiate internal or
external events. The triggers can do anything from executing a script, to updating a database, to using a
Web service.

Using native resource manager mode, jobs may be introduced using the msub command according to any
arbitrary schedule. Moab will load them, schedule them, and start them according to all site mission
objectives and policies and drive all interfaced services as if running in a full production environment.

Green computing

Green computing overview
SearchDataCenter.com defines green computing as the environmentally responsible use of computers and
related resources. Such practices include the implementation of energy-efficient central processing units
(CPUs), servers, and peripherals as well as reduced resource consumption and proper disposal of
electronic waste (e-waste).

The Moab HPC Suites, both Basic Edition and Enterprise Edition, contain power management features
that give a Moab administrator the ability to implement policies that can conserve energy and save on
operational costs, often without affecting an HPC system's performance with regard to job execution
times.

Effective power management means managing power or energy consumption while a compute node is
actively running jobs, and when a compute node is idle. Both scenarios require different tools and
policies.

l Active compute node power management is mainly performed through control of the clock
frequency of the processor(s) on a compute node while a job is executing. Decreasing the clock
frequency can reduce energy usage.

l Idle compute node power management is mainly performed by placing a compute node into
different low-power states, such as standby and suspend, or no-power states, such as hibernate
and shutdown.

The table below identifies the Moab power management features and/or methods available for the
different Moab HPC Suite editions.

Moab Workload Manager

Feature or Method

Moab HPC Suite
Edition

Basic Enterprise

CPU Clock Frequency Control
l Moab Job Submission Option
l TORQUE Job Submission Option
l Moab Job Template Option

X
X
X

X
X
X

Manual Power Management
l Moab-based on and off states
l TORQUE-based low-power and no-power states

–
X

X
X

Automated Power Management and Green Policies
l Moab-only global-level policies and power management for on and off states
l Moab/Moab Web Services-based global, partition, and node-level policies and
power management for low-power and no-power states

l Green Idle Node Pool Management Policies

–
–
–

X
X
X

Energy-Consumption-by-Job Accounting
l Moab as the ability to report, record and charge a cost for the electrical energy
consumed by a job. Currently, Moab 8.0.x supports this capability only for Cray
XC systems running CLE 5.2 or later.

– X

Moab Power Management Methods
Moab supports two separate and mutually-exclusive methods for managing the power state of compute
nodes, which affects energy consumption. The first method, introduced in Moab 7.2, allows an
administrator to manually power on and power off compute nodes and to create a global set of green
policies that automatically perform these two functions based on specific conditions involving idle
compute nodes. The second method, introduced in Moab 8.0 and TORQUE 5.0, give an administrator
additional power states besides on and off and offer finer control of green policies at the global,
partition, and node levels. Before delving into the theory of operation of these two separate methods, an
administrator must understand how Moab views power management regardless of which method is used.

Moab View of Power Management

Moab is not aware of the actual power state of nodes. From Moab's perspective, nodes are only on or off.
If Moab needs a node that is off, it issues a power-on job prior to scheduling the incoming job.

In addition, in order to schedule a job to a compute node, Moab requires the compute node's workload
resource manager, which in our example is TORQUE, to report the compute node's state is idle. When
the compute node's binary power state indicates on and the RM indicates the compute node's state is
idle, Moab will schedule jobs to the compute node. Any value other than idle for the node's state and

Moab Workload Manager

702 Green computing

Green computing 703

Moab will not schedule a job to the node. If the power state is off, Moab issues a power-on job as a
dependency to the regular job.

Moab performs compute node power management entirely through power management resource
managers, or Power RMs. Each of the two power management methods mentioned above has its own
Power RM implementation. The older Moab-only method uses Python-based scripts to implement a
power RM while the newer Moab+Moab Web Services (MWS)-based method uses a Java-based MWS RM
power management plug-in that runs much simpler Python-based scripts.

These Power RMs perform all power-related management and monitoring, meaning power state control
and power state query, respectively, and only report back to Moab whether a compute node is in a state
in which it can run jobs (on) or not (off). All actual power state-aware control and management is
performed by the power RMs.

Moab Power RMs

Adaptive Computing provides two power management methods to handle different site scenarios; mainly
for site-specific security policies. The older method handles sites with a security policy that does not
permit web service-based services, which can be an attack vector, or sites that do not want to run an
MWS service.

The newer method uses the MWS RM plug-in feature, which allows an administrator to instantiate a
separate RM power management plug-in instance for different partitions, or different compute nodes for
situations where different compute node hardware requires the use of different power management
commands run from Python scripts.

Power Management Scripts

Each power management method, old or new, employs at some point a script that allows the
administrator to customize power management for a site, which may be required because the working
reference scripts provided by Adaptive Computing (based on OpenIPMI tools) do not use the power
management commands specific to the site's vendor-provided hardware.

Moab System Jobs

Moab performs power management functions through a mechanism known as system jobs. A Moab
system job is a special, separately scheduled job that performs some Moab system function (e.g., power
management, data-staging) that Moab executes on the Moab head node and not on a compute node. This
allows Moab to apply policies such as a job wallclock estimate, etc, to system-related functions, which
can aid error recovery procedures, etc.

System jobs perform internal Moab-related functions on Moab's behalf, are nearly always script-based,
and usually require some customization by the Moab administrator in order to perform the needed
function for the HPC system site. For example, the administrator may have to modify power management
scripts so they use a site's hardware vendor-specific power management commands to effect power state
changes in compute nodes.

To create a system job, Moab internally submits an administrator-defined script, with a path typically
specified as a Moab *URL parameter, to itself, which it flags as a system job. Moab schedules the job and
because it is flagged as a system job, executes the script on the head node. Moab submits a system job
whenever it needs to send a power on or off command to a Power RM. Administrators can easily

Moab Workload Manager

recognize queued and running power management system jobs in the showq command output as their job
id has the format id.poweron and id.poweroff, where id is the internally generated Moab job id
number and .poweron and .poweroff are suffixes appended to the job id number that represent
Moab's on and off commands sent to Power RMs.

Green Policies

Moab provides green policies that automate power management for idle compute nodes, which an
administrator can modify and/or configure to control the power state of compute nodes not always in
use. These policies allow Moab to dynamically control the power state of compute nodes between the
active running state or power-on nodes that may be needed. It also allows Moab to power-off nodes that
are idle and wasting energy. Which power state such compute nodes enter depends entirely on the
commands the administrator configures and/or modifies in a power RM's scripts and, for the newer
Moab+MWS method, on configuration information specified for each MWS RM power management plug-in
instance.

The green policies maintain a green idle node pool, the size of which the administrator configures. As
jobs start and use idle nodes from the pool, Moab replenishes the pool by performing an on command on
those compute nodes on which it previously had performed an off command, thus bringing them into the
idle node pool as they enter into an active running state. When jobs finish and the pool has excess idle
nodes, Moab performs an off command on the excess nodes, which removes them from the idle pool.
Thus, Moab maintains a pool of available idle nodes for immediate use by submitted jobs and reduces
energy consumption by powering off any idle nodes in excess of the pool size.

Theory of Operation
Moab itself operates the same regardless of the method of power management, Moab-only or
Moab+MWS, chosen. This is especially true for the green policies as Moab simply uses the configured
power management method to carry out the policies. In order to know how to configure the different
parts and components of each power management method so they work well together, it is necessary for
a site administrator to understand how the power management methods work; that is, how the
components work together to implement a power management method.

Moab-only Method

The Moab-only method has a Power RM composed entirely of Python-based scripts. The script must
maintain a Power Query daemon that queries the power state of all compute nodes and saves their state
for Moab to query, the actual power state query Moab runs to find out the current power state of all
compute nodes, and a power state control that places compute nodes into the state of on so Moab can
schedule jobs to them or into the state of off so energy consumption is minimized and operational costs
reduced. The administrator determines what the actual power state Moab's off represents by
configuring the off command in the power management control script with the actual hardware vendor-
supplied command that effects the desired power state (remember, Moab is not aware of actual power
states).

The list below enumerates the advantages and disadvantages of the Moab-only method.

Moab Workload Manager

704 Green computing

Green computing 705

l Advantages

o Do not have to run the MWS service and its MongoDB database.

o Power management command scripts execute as Moab system jobs.

o Ability to customize the node power and cluster query power management scripts

o For more information on how to specify the node power control script, see the
NODEPOWERURL parameter.

o For more information on how to specify the power cluster query script, see the
CLUSTERQUERYURL parameter.

o Moab power control using mnodectl –m power=[on|off] <nodelist>.

o For more information on how to diagnose power states, see mdiag -n.

l Disadvantages

o More complex scripts to customize.

o Only global power management control (no partition-based or node-based).

o Heterogeneous compute node hardware from different vendors requires more modification
of the control and query scripts.

o Reference scripts not scalable (did not take advantage of Python multi-threading).

o Administrator must maintain complex scripts that must maintain the entire cluster query
information.

The following architecture diagram shows the Moab-only architecture and what occurs between its
components.

Moab Workload Manager

The Python-based IPMI Monitor daemon script running in the background periodically polls the power
state of all compute nodes through IPMI using the command customized by the administrator. As it
gathers power state information, it saves the information in a text file in a specific format understood by
Moab (binary power state). In order to prevent race conditions, it actually writes to a temporary file and
then moves the temporary file on top of the permanent file (not shown).

When Moab starts a scheduling cycle/iteration, it directly executes the power RM's Python-based Cluster
Query script that reads the permanent text file and delivers the compute node power states to Moab.
Moab then performs the scheduling cycle and based on green policies and the state of the HPC cluster
will run the IPMI Node Power script as a Moab system job to perform an on or off (which may be
something different than a power off) command using the actual commands customized by the
administrator in the script.

Moab+MWSMethod

The Moab+MWS method has a Power RM composed of a MWS RM plug-in that encapsulates all power
management logic, which itself uses the TORQUE pbsnodes command to effect compute node power state
changes into low-power and no-power states of standby and suspend, and hibernate and shutdown,
respectively, as well as the IPMI Node Power script to effect compute node power on, power off (pull the
plug) and awaken (resume active running state from low-power state). The Power RM Power
Management plug-in also performs the power query daemon function identified in the Moab-only method
using its built-in power management logic, thus handling more actual power states and allowing much
better power control than the Moab-only method offers.

The advantages and disadvantages of the Moab+MWS-based method are enumerated below.

Moab Workload Manager

706 Green computing

Green computing 707

l Advantages

o More power states to choose from.

o Low-power states of standby and suspend.

o No-power states of hibernate and shutdown.

o On and Off (pull the plug) power states still available.

o TORQUE power control of low-power and no-power states using pbsnodes -m <state>
<nodelist>.

o You can view node power states with the pbsnodes command.

o Power management command scripts execute as Moab system jobs.

o Much simpler moab.cfg customization and maintenance.

o Global, partition-based, and node-based granularity for power management control.

o Heterogeneous compute node hardware from different vendors handled by creating
multiple instances of MWS RM power management plug-in with different configurations.

o Reference scripts are scalable (use Python multi-threading).

o The MWS RM architecture is easier to support DRAC, ILO, and other protocols.

l Disadvantages

o Must run the MWS service and its MongoDB database.

o Configuration of the MWS RM Power Management plug-in and possible multiple instances.

The following architecture diagrams show the Moab+MWS-based method architecture and what occurs
between its components.

The diagram below illustrates power state query:

The MWS RM power management plug-in runs the multi-threaded Power Query script for sets of
compute nodes which obtain their actual power state through IPMI, or more specifically, a hardware
vendor's IPMI implementation (e.g., Dell DRAC, HP iLO, etc), which the RM plug-in saves. It also runs the
TORQUE pbsnodes command to obtain the low-power or no-power states that may have been set via

Moab Workload Manager

TORQUE earlier (pbs_server retains knowledge of any previous command to set a node's power state to
one of the low-power or no-power states).

Note it is quite possible for IPMI to report off and TORQUE to report hibernate or shutdown, both of
which indicate a compute node has no power, and for IPMI to report on and TORQUE to report standby
or suspend, both of which indicate a compute node is in a low-power state from which it can be quickly
awakened. It is also possible for IPMI to report on and TORQUE to report hibernate or shutdown, which
can indicate a booting node that has not yet started the TORQUE pbs_mom daemon or a node
hibernating or shutting down that has not yet powered off. The MWS plug-in's power management logic
reconciles the IPMI and TORQUE reports to produce a single on or off understood by Moab, which it
passes to MWS.

When Moab queries MWS for the current state information of compute nodes at the start of a scheduling
cycle/iteration, MWS passes all node information including the binary power on/off Moab understands
and the TORQUE node state, at which point Moab has the information it needs to perform green policy-
based automated power management.

The diagram below illustrates Moab+MWS power state control interactions.

When Moab detects a condition that requires changing the power state of a compute node, usually as a
result of green policies, it performs the appropriate on or off command as a system job that sends the
command to MWS with a list of the host names of compute nodes that should enter an appropriate power
state.

MWS interacts with the appropriate MWS RM power management plug-in for each compute node and
passes it the on or off command. For the off command, the plug-in examines its configuration of what
off means and passes the configured standby, suspend, hibernate, or shutdown command to the TORQUE
pbsnodes command, or passes the configured off command to the Node Power script.

If the RM plug-in executes the TORQUE pbsnodes command for the configured power state and requested
list of compute node host names, it sends the command to the pbs_server, which passes the command to
each compute node's pbs_mom daemon. The pbs_mom executes software to place the node into the
requested state. The pbs_server daemon keeps the requested state in a file for each compute node, which
it passes on to the MWS RM power management plug-in as part of a node update report.

Moab Workload Manager

708 Green computing

Green computing 709

In clusters where there is a TORQUE pbs_server and pbs_mom on the same machine, the
administrator should set the POWERPOLICY to STATIC on this node, because the pbs_server should
not be powered down. If the pbs_server is powered down, Moab will be unable to get cluster query
updates from all pbs_moms managed by that that pbs_server.

On all TORQUE nodes where pbs_moms are running, the pbs_mom must be configured to auto-
start after being rebooted. If the pbs_mom isn't auto-started, the pbs_server will not be able to
determine when it has been powered up and entered an idle state, and therefore won't have the
ability to inform Moab on a cluster query the node is idle. Refer to Startup/Shutdown service
script for TORQUE/Moab (OPTIONAL) on page 2488 for Torque/Moab for details on how to have
the pbs_mom auto-start on boot.

When the RM plug-in executes the Node Power script for the configured off power state and requested
list of compute node host names, the script executes its IPMI on command (whatever the administrator
configured in the script) that tells the node's BMC to power off the node.

When the RM plug-in receives the on command from Moab via MWS, it checks the internal power state
of each compute node in the requested list of compute node host names. If the internal power state is
standby or suspend, the script executes its IPMI wake command (whatever the administrator configured
in the script) that tells the node's BMC to bump the node into the active running state; otherwise, the
script executes its IPMI off command (whatever the administrator configured in the script) that tells
the node's BMC to power on the node.

Some operating systems require the Wake-on-LAN bit to be enabled using a tool like ethtool. Also,
Wake-on-LAN packets may be blocked by the router, but not always.

In this manner, the MWS RM power management plug-in queries the actual power state of individual
compute nodes and returns to Moab the simple binary on/off state it understands for scheduling jobs to
compute nodes. Likewise, Moab controls the actual power state of individual compute nodes using only
its simple binary on/off command. This method of simple command and simple job-scheduling-ability
state enables Moab to remain scalable and responsive for automatic power management control using
green policies.

Active Node Power Management
Moab 8.0 and TORQUE 5.0 introduce support for active node power management; that is, the
management of energy consumption while a compute node is running a job, which the new CPU Clock
Frequency Control feature provides.

The amount of energy consumption savings achievable through the CPU Clock Frequency Control feature
is application-dependent. For example, memory, I/O, and/or network-bound applications, especially
memory-bound applications, can often drop the clock frequency of their compute nodes' processors and
still have the same execution time even though the compute nodes consume less power. Several studies
have shown common power savings of 18-20% and one study showed one application saving 30% on
power consumption, all of which translate directly into operational cost savings.

Moab Workload Manager

Power/Performance Profiling

To determine whether a lower clock frequency will produce energy consumption savings, applications
must be profiled; that is, a job running a particular application with the same or equivalent data must be
run at different clock frequencies while measuring the energy consumption of the job's compute node.
Each pair of frequency/energy consumption data points are plotted in a chart to show the application's
power performance profile. The charts below are an example of two such profiles for two NAS
benchmark HPC applications.

Moab Workload Manager

710 Green computing

Green computing 711

The intersection of the two lines has no meaning as each line has its own vertical scale, either on the left
or the right as noted!

Note both applications do not consume the least energy (vertical dashed green line) when running at the
lowest clock frequency, which demonstrate the importance of profiling applications to determine the
nominal clock frequency at which energy consumption is the lowest. The charts amply illustrate why a
simplistic policy of using the lowest clock frequency is not the best policy when a site's objective is the
least energy consumption possible.

If the least energy consumption is not a site's primary objective, but running jobs in a manner that
balances energy consumption and job execution time, a power/performance profile chart is very useful
to determine the clock frequency that meets a balanced objective. For example, the vertical dashed
purple line on the right chart shows that running the bt.C.64 application at 1800 MHz has an increase in
energy consumption of ~1% over the minimal energy consumption possible (vertical dashed green line)
but results in a ~10% drop in execution time; a possibly very good trade-off!

Obviously, if a site's primary objective is to complete a job as fast as possible but do so saving energy
where possible, profiling memory-bound and other bound applications can clearly show the lowest clock
frequency at which the application takes longer to execute. The site would then institute a policy that the
application should run at the next highest frequency to fulfill the twin objectives of job performance and
energy consumption minimization.

For more information about the CPU clock frequency job submission option, see CPUCLOCK resource
manager extension of msub -l.

Job Templates

Most users will not care or want to know about clock frequency control, so administrators can use a job
template to specify the CPU clock frequency at which a particular recurring job should execute. A clock
frequency specified on a job template overrides a clock frequency given on the job submission command
line or inside a job script file with TORQUE PBS commands. This order of precedence allows an
administrator to control clock frequency for commonly used applications and jobs based on site policies
and objectives.

For more information about using a CPU clock frequency job submission option in job templates, see the
CPUCLOCK job template extension attribute.

Idle node power management
Moab has so-called green policies that together configure Moab to manage and maintain a pool of idle
nodes in an active running state so it can immediately schedule jobs to them. When Moab does so and
diminishes the pool's idle compute node quantity, it powers on compute nodes by performing an on
command for nodes in a powered-down state (actually, in a low-power or no-power state) to bring them
on-line in order to replenish the pool of idle nodes up to its configured size. When jobs end and the idle
node exceed the configured idle node pool size and there are no jobs to run on the now-idle nodes, Moab
will power off excess idle nodes by performing an off command. In this manner, Moab achieves a site's
power management and energy consumption objectives through the configured green policies.

See the Moab-only Method Architecture diagram above to see the color-coded compute nodes in the
diagram's cluster illustrating Moab's green idle node pool management. The green nodes represent
nodes running jobs, the yellow nodes are idle nodes in a green pool of size 12, and the gray nodes
represent off nodes. Note Moab does not know what actual power state off means; what it means will

Moab Workload Manager

be based on command customization inside Moab-only method scripts or Moab+MWS plug-in
configuration information.

In order to perform green policy management of an idle node pool, Moab must first be configured to use
either the Moab-only or the Moab+MWS method of power management. It is best practice to
configure power management first and test its configuration before configuring green policies. Thus, if
power management is misconfigured, an administrator will know it is the power management
configuration and/or scripts and not the green computing policies that are incorrect. If the manual power
management commands for the configured power management method work, green computing will work
using the configured power management method. For information on how to configure each power
management method in Moab, see Enabling green computing on page 714.

Green Policy Configuration
There are several green policies that affect how Moab performs green idle node pool management using
automated power management operations. The policies are configured in the same manner regardless of
the power management method used, whether Moab-only or Moab+MWS. The other sections of this
chapter describe how to configure green policies that manage the idle node pool for site energy
management objectives.

Related topics

l Enabling green computing on page 714
l Deploying Adaptive Computing IPMI scripts on page 712
l pbsnodes on page 2356

How-to's

Deploying Adaptive Computing IPMI scripts
Context

If you want to enable green computing on your system using the Adaptive Computing supplied
IPMI reference scripts, follow the steps here. The IPMI scripts provided are meant as a reference for
you to configure the solution to your environment, but can also be used as-is.

Prerequisites

l OpenIPMI and ipmitool must be installed and working.

l All nodes must have the same IPMI username and password.

l You must know the IPMI host names and/or IPMI IP addresses of your nodes.

l Python must be installed. The provided IPMI scripts were developed using Python 2.6.5.

l You must identify your Moab home directory. These instructions assume the default Moab home
directory of /opt/moab.

l You must identify your Moab tools directory. These instructions assume the default Moab tools
directory of /opt/moab/tools.

Moab Workload Manager

712 Green computing

Green computing 713

To deploy the Adaptive Computing IPMI scripts

1. Edit the /opt/moab/tools/ipmi/config.py script:

a. Set self.ipmiuser to the IPMI username for your nodes.

b. Set self.ipmipass to the location of the IPMI password file (/opt/moab/passfile.txt by
default).

The permissions for the directory and the password file itself should be set so that they
can be read only by root or the Moab user running the script.

c. Set self.homeDir to your Moab home directory.

d. If desired, change the self.pollInterval value. This is the interval, in seconds, between polls from
the IPMI monitoring script.

e. The self.ipmifile value is the name of a temporary file where the cluster query information is
stored. You can change this or leave it alone.

f. The self.bmcaddrmap value is the filename for the Moab node name/IPMI mapping. The file must
exist in the Moab home directory and will be created in the next step.

2. Create a node-bmc.txt file in the Moab home directory. The file must contain a space-delimited
list of Moab node names that map to the IPMI host names or IP address. For Example:

node01 node01_ipmi # For all three of these entries, the first value is the
node02 node02_ipmi # node name as Moab knows it. The second value is either
node03 10.1.1.1 # the node IPMI name or IPMI IP address.

3. Configure the moab.cfg file for green computing as described in Enabling green computing. Use the
ipmi.mon.py script for the CLUSTERQUERYURL and the ipmi.power.py script for the
NODEPOWERURL.

4. Restart Moab and verify green computing is working correctly. If you encounter trouble, see the
Troubleshooting green computing topic for help.

Related topics

l Enabling green computing on page 714
l Troubleshooting green computing on page 721
l Adjusting green pool size on page 719
l Handling power-related events on page 719
l Maximizing scheduling efficiency on page 720

Choosing which nodes Moab powers on or off
Context

Moab can use the GREENPOOLPRIORITYF function to determine which nodes to power on or off. The
PRIORITY node allocation policy is used to determine which nodes to allocate workload to. When
Moab can no longer allocate workload to available nodes, it begins to power nodes on in the order
specified by the GREENPOOLPRIORITYF function.

Moab Workload Manager

To choose which nodes Moab powers on or off

1. Set a GREENPOOLPRIORITYF function to describe which order nodes should be selected for power
on/off actions. GREENPOOLPRIORITYF uses the PRIORITY node allocation policy options and syntax.

GREENPOOLPRIORITYF '10*RANDOM'

This tells Moab to randomly choose a node to power on to meet workload demands, and to randomly choose an idle
node to power off to meet the MAXGREENSTANDBYPOOLSIZE goal.

To choose which nodes Moab allocates jobs to

1. Set a PRIORITY node allocation policy that uses power as the major factor. This causes Moab to
allocate jobs to nodes that are already powered on. When no nodes are available to meet this policy,
Moab uses the GREENPOOLPRIORITYF function to turn on nodes that are powered off.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

The nodes with the highest priority for workload are the nodes that are powered on. After that, Moab randomly
allocates workload.

Related topics

l Adjusting green pool size on page 719
l Maximizing scheduling efficiency on page 720

Enabling green computing
Context

There are two ways to do green computing in Moab. With just Moab, nodes can be turned on or off.
With MWS, however, you can put nodes into several low-power states. The MWS solution is also
more scalable. The supported low-power states are:

l Running

l Standby

l Suspend

l Hibernate

l Shutdown

Nodes cannot be moved from one low-power state to another. The node must go from low-power to
running, and then to the new low-power state.

Moab Workload Manager

714 Green computing

Green computing 715

To enable green computing with Moab and MWS

1. Edit moab.cfg to use MWS for green computing:

a. Configure the POWERPOLICY attribute of the NODECFG parameter. The default value is
STATIC. Set it to OnDemand.

b. Set the resource manager type as MWS

c. Set FLAGS=UserSpaceIsSeparate for the MWS resource manager.

d. Point BASEURL to your MWS server.

NODECFG[DEFAULT] POWERPOLICY=OnDemand
RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=http://localhost:8080/mws

2. Configure the MWS Power Management Plugin on page 1736.

Moab Workload Manager

To enable green computing with just Moab

1. Edit moab.cfg to enable green computing. There are four things you must configure for basic
functionality of green computing:

a. Configure the POWERPOLICY attribute of the NODECFG parameter. The default value is
STATIC. Set it to OnDemand.

b. Configure a power provisioning resource manager to be TYPE=NATIVE and
RESOURCETYPE=PROV. The resource type of PROV means the RM works only with node
hardware and not workloads.

c. Configure a CLUSTERQUERYURL attribute of the power provisioning RM to point to the power
query script you'd like to use. Moab uses this script to query the current power state of the
nodes. CLUSTERQUERYURL is traditionally used as a workload query but is also used by green
computing for the node power state query. Adaptive Computing provides a reference IPMI
script you can use.

d. Configure a NODEPOWERURL attribute of the power provisioning RM to point to the power
action script you'd like to use. Moab uses this script to turn nodes on or off. Adaptive
Computing provides a reference IPMI script you can use.

NODECFG[DEFAULT] POWERPOLICY=OnDemand
RMCFG[ipmi] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[ipmi] CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi/ipmi.mon.py
RMCFG[ipmi] NODEPOWERURL=exec://$TOOLSDIR/ipmi/ipmi.power.py

Sample moab.cfg for green computing
Below is a sample moab.cfg configuration file of a green computing setup using the Adaptive
Computing IPMI scripts.

Moab Workload Manager

716 Green computing

Green computing 717

##
#
Use 'mdiag -C' to validate config file parameters
#
##

SCHEDCFG[Moab] SERVER=myhostname:5150
ADMINCFG[1] USERS=myusername,root
TOOLSDIR /$HOME/tools
LOGLEVEL 1

##
#
Basic Resource Manager configuration
#
For more information on configuring a Resource Manager, see:
docs.adaptivecomputing.com
#
##

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec://$HOME/scripts/query.resource
RMCFG[local] WORKLOADQUERYURL=exec://$HOME/scripts/query.workload

RMCFG[local] JOBSUBMITURL=exec://$HOME/scripts/submit.pl
RMCFG[local] JOBSTARTURL=exec://$HOME/scripts/job.start
RMCFG[local] JOBCANCELURL=exec://$HOME/scripts/job.cancel
RMCFG[local] JOBMODIFYURL=exec://$HOME/scripts/job.modify
RMCFG[local] JOBREQUEUEURL=exec://$HOME/scripts/job.requeue
RMCFG[local] JOBSUSPENDURL=exec://$HOME/scripts/job.suspend
RMCFG[local] JOBRESUMEURL=exec://$HOME/scripts/job.resume

##################################
GREEN configuration:
##################################
Turn on "green" policy. (This is the policy that enables green computing).
Here we are doing it for all nodes, but it can be controlled on a node-by-node
basis
Default is STATIC, which means green computing is disabled.
#NODECFG[DEFAULT] POWERPOLICY=STATIC
NODECFG[DEFAULT] POWERPOLICY=OnDemand

Use the MWS RM and the MWS power management plugin for power provisioning
and power state.

Moab Workload Manager

RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=http://localhost:8080/mws

We want green policy to work so it allocates jobs to compute nodes already
powered on and will power on powered-off compute nodes only when there are
no powered-on compute nodes available. This requires using the PRIORITY
node allocation policy with a PRIORITYF function that has the POWER variable
as the greatest contributing factor to the function (1 = powered-on,
0 = powered-off).
If we want all compute nodes to operate under green policy, we can assign
the PRIORITYF function to the default node configuration, which is easier
than assigning it to individual compute nodes. If only some compute nodes
should operate under green policy, then the PRIORITYF function must be
configured for the individual nodes. Note the POWER variable must be the
largest factor in the function below; it is assigned the largest multiplier,
which should be greater than the sum of all other factors! Doing so forces
Moab to use all eligible powered-on nodes for workload placement before
powering on any eligible powered-off nodes.

Enable PRIORITYF functionality
#NODEALLOCATIONPOLICY PRIORITY

Use a priority function that uses power as the major factor (plus some other
imaginary factors)
#NODECFG[DEFAULT] PRIORITYF='1000000*POWER + 1000*factor2 + 100*factor3...'
Use a priority function where power is the only factor.
#NODECFG[DEFAULT] PRIORITYF='10000*POWER'
Use a priority function that adds some randomness but uses power as the major
factor.
#NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

Set a priority function that specifies the order nodes should be chosen to power
up/down. By default, Moab will start at the top of the node list and go down.
Some
installations want to rotate power cycles among nodes in a different order.
The configuration below forces Moab to power on/off random nodes, which
eventually guarantees all nodes occasionally go through a power cycle.
#GREENPOOLPRIORITYF '10*RANDOM'

Ensure we are recording power management events
(powering on and off nodes are recorded as "node modification" events).
#RECORDEVENTLIST +NODEMODIFY

Set the size of the standby pool. This is the number of idle nodes that will
be powered on and idle. As the workload changes, Moab turns nodes on
or off to try to meet this goal.
Default value is 0
MAXGREENSTANDBYPOOLSIZE 5

Set the length of time that it takes to power a node on/off. This will be the
walltime of the system job that performs the power operation and should be the
maximum expected time. If Moab detects (via the power RM) that the power
operations have all completed, the system job will finish early.
Default value is 10 minutes (600)
PARCFG[ALL] NODEPOWEROFFDURATION=600
PARCFG[ALL] NODEPOWERONDURATION=600
Set the length of time a node should remain idle before it is powered off.
This prevents Moab from immediately powering off nodes that have just finished
a job. Increasing this number should decrease power on/off thrashing
This should be set higher than NODEPOWEROFFDURATION and/or NODEPOWERONDURATION

Moab Workload Manager

718 Green computing

Green computing 719

NODEIDLEPOWERTHRESHOLD 660

If a node fails to power on, we need to remove it from the available nodes so
Moab won't keep [re-]trying to power it on. Do this by setting a reservation
on the failed node to give time for manual investigation.
#RMCFG[torque] NODEFAILURERSVPROFILE=failure
#RSVPROFILE[failure] DURATION=3600

Related topics

l Deploying Adaptive Computing IPMI scripts on page 712
l Choosing which nodes Moab powers on or off on page 713
l Adjusting green pool size on page 719
l Handling power-related events on page 719
l Maximizing scheduling efficiency on page 720
l Troubleshooting green computing on page 721
l Power Management Plugin on page 1736

Adjusting green pool size
Context

The MAXGREENSTANDBYPOOLSIZE parameter allows you to allocate the number of nodes to keep
powered on in the standby pool. This is the number of idle nodes that are allowed be powered on and
idle. As the workload changes, Moab turns nodes on or off to try to meet this goal. The default value
is 0.

To adjust the green pool size

1. Modify the MAXGREENSTANDBYPOOLSIZE parameter with the number of nodes you want Moab to
keep powered on for the standby pool.

MAXGREENSTANDBYPOOLSIZE 10

Moab keeps up to 10 idle nodes powered on to be kept on standby.

Related topics

l Maximizing scheduling efficiency on page 720
l Choosing which nodes Moab powers on or off on page 713

Handling power-related events
Context

Power actions are considered NODEMODIFYURL events and are not recorded by default, but you can
configure Moab to include power-related events in the logs. Also, if a node fails to turn on (or off),
it's best to associate a reservation on the failed node so that Moab won't keep trying to perform the
power action over and over.

Moab Workload Manager

To configure Moab to record power-related events

1. Modify the RECORDEVENTLIST parameter.

RECORDEVENTLIST +NODEMODIFY

Power-related events are logged to the Moab log file.

To put a reservation on a node that fails to perform a power action

1. Configure the NODEFAILURERSVPROFILE attribute of RMCFG and create an RSVPROFILE with a high
duration.

RMCFG[torque] NODEFAILURERSVPROFILE=failure
RSVPROFILE[failure] DURATION=3600

Nodes that fail to power on or off have a 1-hour reservation placed on them.

Related topics

l RECORDEVENTLIST on page 1005
l Event Logs on page 680

Maximizing scheduling efficiency
Context

When considering whether to power a node on or off, Moab can take into account the amount of time
that it takes to power on or power off the node. With this information, Moab can keep an idle node
powered on if it knows that workload in the queue will be ready for the node in less time that it
takes to power off/power on the node.

Moab can also wait to shut down nodes after they've been idle for a specific amount of time.

To specify node power on/power off duration

1. Modify the NODEPOWERONDURATION and NODEPOWEROFFDURATION attributes of PARCFG with the
maximum amount of time it takes for your nodes to power on/power off. Make sure to use the
keyword ALL for the resource manager name to avoid cases where Moab won't consider the power
on/off duration for a node before making a power action decision.

PARCFG[ALL] NODEPOWERONDURATION=2:00
PARCFG[ALL] NODEPOWEROFFDURATION=2:00

If a node goes idle and has to wait for workload, Moab will not power off the node if the workload will be available
within 4 minutes or less.

To shut down on nodes after they've been idle for a specified time

1. Modify the NODEIDLEPOWERTHRESHOLD parameter with the duration (in seconds) you want Moab
to wait before shutting down an idle node. The default value is 60 seconds. Increasing the number
should decrease power on/off thrashing. This should be set higher than NODEPOWERONDURATION

Moab Workload Manager

720 Green computing

Green computing 721

and/or NODEPOWEROFFDURATION.

NODEIDLEPOWERTHRESHOLD 300

Moab will wait 5 minutes before shutting down a node that has become idle.

Related topics

l Adjusting green pool size on page 719
l Choosing which nodes Moab powers on or off on page 713

Putting idle nodes in power-saving states
Context

When nodes exceed their idle threshold limits, the default behavior is to turn the nodes off. With the
NODEIDLEPOWERACTION parameter, you can choose which power-saving state to put idle nodes into.
This parameter is configured at the partition level. Configuring it for the ALL partition effectively
makes it a global parameter.

To specify what to do with idle nodes

1. Modify the NODEIDLEPOWERACTION parameter.

NODEIDLEPOWERTHRESHOLD 300
PARCFG[ALL] NODEIDLEPOWERACTION SLEEP

All nodes that are idle for more than 5 minutes are put into a sleep state.

Related topics

l [Enter xrefs to related topics here. Use a simple ul style and apply the li.links style to the list
items.]

l

Troubleshooting green computing
Context

If you've enabled green computing and are having trouble, here are some tips that can help you
determine the cause of the issues you encounter. These tips are specifically for the Adaptive
Computing supplied IPMI scripts, but can be generalized for whatever power management solution
you use. Simply substitute your power management system, power query script (as specified by
CLUSTERQUERYURL), and power action script (as specified by NODEPOWERURL) where appropriate.

Verify your IPMI access

1. Use the ipmitool command to verify you have access to the IPMI interface of your nodes. Try getting
the current power state of a node. The syntax is ipmitool -I lan -H <host> -U <IPMI
username> -P <IPMI password> chassis power status.

Moab Workload Manager

$ ipmitool -I lan -H qt06 -U ADMIN -P ADMIN chassis power status

Chassis Power is off

Verify the power query (CLUSTERQUERYURL) script is working

1. Execute the impi.mon.py script (should be found in /<MOABHOMEDIR>/tools/ipmi) to start the
monitor.

$ cd /opt/moab/tools/ipmi
$./ipmi.mon.py

2. Execute the script again. The following is an example of the expected output:

$./ipmi.mon.py

qt09 GMETRIC[System_Temp]=27 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt08 GMETRIC[System_Temp]=31 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt07 GMETRIC[System_Temp]=30 GMETRIC[CPU_Temp]=29 POWER=on State=Unknown
qt06 GMETRIC[System_Temp]=Disabled GMETRIC[CPU_Temp]=Disabled POWER=off
State=Unknown

If the POWER attribute is not present the script is not working correctly.

Verify the power action (NODEPOWERURL) script is working

1. Execute the ipmi.power.py script (should be found in /<MOABHOMEDIR>/tools/ipmi) to see if
you can force a node to power on or off. The syntax is ipmi.power.py
<node>,<node>,<node>... [off|on]

$ /opt/moab/tools/ipmi/ipmi.power.py qt06 off

This example is trying to power off a node named qt06.

2. Verify the machine's power state was changed to what you attempted in the previous step. You can
do this remotely via two methods:

a. If the cluster query script is working, you can use that to verify the current power state of the
node.

b. If you have IPMI access, you can use the ipmitool command to verify the current power state of
the node.

Moab Workload Manager

722 Green computing

Green computing 723

Verify the scripts are configured correctly

1. Run the mdiag -R command to verify your IPMI resource manager configuration.

$ mdiag -R -v
RM[ipmi] State: Active Type: NATIVE ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/ipmi/ipmi.mon.py
Node Power URL: exec://$TOOLSDIR/ipmi/ipmi.power.py
Objects Reported: Nodes=3 (0 procs) Jobs=0
Nodes Reported: 3 (N/A)
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.05s MaxTime=0.06s (176 samples)
RM Languages: NATIVE
RM Sub-Languages: NATIVE

2. Run the mdiag -G command to verify that power information is being reported correctly.

$ mdiag -G

NodeID State Power Watts PWatts
qt09 Idle On 0.00 0.00
qt08 Idle On 0.00 0.00
qt07 Idle Off 0.00 0.00

Verify the scripts are running

1. Once green is configured and Moab is running, Moab should start the power query script
automatically. Use the ps command to verify the script is running.

$ ps -ef | grep <CLUSTERQUERYURL script name>

If this command does not show the power query script running then your settings in moab.cfg aren't working.

Verify Moab can power nodes on or off

1. Use the mnodectl command to turn a node on or off. The syntax is mnodectl -m power=[off|on]
<node>.

mnodectl -m power=off qt06

Moab should turn off the node named qt06.

a. Moab generates a system job called poweron-<num> or poweroff-<num> job as shown in
showq. The system job calls the ipmi.power.py (NODEPOWERURL) script to execute the
command.

b. Moab waits until the cluster query reports the correct data. In this case, the ipmi.power.py
script reports that the power attribute has changed.

c. Moab does not change the power status based on the power script return code. Rather, Moab
completes the system power job when it detects the power attribute has changed as indicated by
the cluster query script.

Moab Workload Manager

Related topics

l Enabling green computing on page 714
l Deploying Adaptive Computing IPMI scripts on page 712

Object triggers

About object triggers
Moab triggers are configurable actions that respond to an event occurring on a Moab object. A trigger is
attached to an object and consists of both an event that may take place on the object and the action that
the trigger will take.

Image 3-9: Trigger attachment

Moab Workload Manager

724 Object triggers

Object triggers 725

Triggers are a powerful tool. Extreme caution should be taken when using them. They are useful in
creating automatic responses to well-understood Moab events; however, by default triggers run as
root and do exactly as they are told, meaning they require great thought and consideration to
ensure that they act appropriately in response to the event.

Use case

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature increases to more
than 40°C, Moab requeues all jobs on the node. If the node's temperature exceeds 50°C, Moab shuts it
down. Moab removes the node's reservation and unsets the variables when the node cools to less
than 25°C.

The administrator wants to receive an email whenever any of these events occur. All of this can be
configured in Moab using triggers. To see a full example for this use case, see Node maintenance
example on page 752.

Sub content

l About trigger variables on page 754

How-to's

l Creating a trigger on page 727
l Using a trigger to send email on page 731
l Using a trigger to execute a script on page 733
l Using a trigger to perform internal Moab actions on page 733
l Requiring an object threshold for trigger execution on page 734
l Enabling job triggers on page 734
l Modifying a trigger on page 735
l Viewing a trigger on page 736
l Checkpointing a trigger on page 736

References

l Job triggers on page 737
l Node triggers on page 738
l Reservation triggers on page 740
l Resource manager triggers on page 741
l Scheduler triggers on page 742
l Threshold triggers on page 743
l Trigger components on page 744
l Trigger exit codes on page 752
l Node maintenance example on page 752
l Environment creation example on page 753

Moab Workload Manager

How-to's

Moab Workload Manager

726 Object triggers

Object triggers 727

Creating a trigger

Moab Workload Manager

Context

Three methods exist for attaching a trigger to an object:

l Directly to the object via the command line

l Directly to the object via the configuration file

l As part of a template via the configuration file

<attr>=<val> pair delimiters, quotation marks, and other elements of the syntax may differ
slightly from one method/object combination to another, but creating any trigger follows the same
basic format:

<attr>=<val>[[{&,}<attr>=<val>]...]

The beginning of the trigger is set off by the keyword trigger. It is followed by a delimited list
(typically by commas) of <attr>=<val> pairs.

Each method of trigger creation can only be used for certain Moab objects. The following table
displays which objects can receive triggers via each method. The links contain examples.

Method Objects

Command line job, reservation; a trigger can be attached to any existing object using mschedctl -c

Configuration file node, reservation, RM, scheduler

Template job, reservation

Triggers are composed of attributes. Only three are required for each trigger: an EType (event
type), an AType (action type), and an Action.

Moab Workload Manager

728 Object triggers

Object triggers 729

Image 3-10: Required trigger attributes

Other attributes exist to further customize triggers. See Trigger components on page 744 for more
information.

To create a Moab trigger

1. Choose an object to which, and a method by which, you will attach the trigger. Use the format and
examples described in its corresponding documentation:

l Job triggers on page 737

l Node triggers on page 738

l Reservation triggers on page 740

l Resource manager triggers on page 741

l Scheduler triggers on page 742

If the trigger is to be attached to a job, you must first enable job triggers (see Enabling job
triggers on page 734 for more information.). Please carefully review the warning before doing
so.

2. Decide whether to attach the trigger via the command line or configuration file. Verify the correct
syntax.

3. Set the EType equal to whichever event will launch the trigger if and when it occurs on the object.

Each object has a different lifecycle, so not every event type will occur on every object. For a list of
valid ETypes for your selected object, see the corresponding object reference page linked in step 1.

Moab Workload Manager

a. To modify the timing of the trigger in any of the following ways, see Event-modifying trigger
components on page 748.

l To set the trigger as rearmable and specify the amount of time the trigger must wait before
firing again.

l To set an amount of time before or after the event that the trigger will fire (See Offset on
page 748 for restrictions).

l To set a specific threshold and the amount of time that the object must meet that threshold
before the trigger will fire.

4. Configure the action that the trigger will take when the event happens. To do so, you must set the
AType to a valid value for your object and specify the action. For instance, to execute a script, set the
AType to exec and the Action to the location of the script in quotation marks. Include the name of the
object on which the script will run.

NODECFG[node01] TRIGGER=EType=fail,AType=exec,Action="node.fail.sh node01"

a. To modify the action in any of the following ways, see Action-modifying trigger components on
page 750.

l To specify environment variables available to the trigger

l To set a flag on the trigger

o To attach any stderr output generated by the trigger to the parent object

o To destroy the trigger if its object ends or cancels

o To tell Moab to checkpoint the trigger

o To set the trigger as periodic

o To pass the object's XML information to the trigger's stdin

o To set the trigger to reset if its object is modified

o To set the trigger to fire under the user ID of the object's owner

l To specify an amount of time that Moab will suspend normal operation to wait for the trigger
to execute

l To allot an amount of time that the trigger will attempt to run before it is marked as
unsuccessful and the process, if any exists, is killed

l Set a maximum number of times that a trigger will attempt to fire before it fails

b. To give the trigger a name or description, see Organizational trigger components on page 751.

c. To configure the trigger to set or unset a variable when it fires or to require a variable to fire,
see Setting and receiving trigger variables on page 755.

Creating VM triggers
Context

Triggers can be attached to virtual machines on the command line using the mvmctl command.

Moab Workload Manager

730 Object triggers

Object triggers 731

To create a VM trigger via the command line

1. Type the mvmctl -m command to modify a virtual machine. Use trigger= to mark the beginning of
the trigger configuration.

> mvmctl -m trigger=

2. Set the EType to start. End with a backslash (\) and ampersand (&).

> mvmctl -m trigger=EType=start\&

3. Specify the action the trigger should take when the event occurs by setting the AType attribute to
changeparam, exec, internal, query, or submit. End with a backslash and ampersand.

> mvmctl -m trigger=EType=start\&AType=exec\&

4. If the trigger launches when the job reaches a threshold, define the threshold.

5. Use the Action attribute to specify the action the trigger will take. Use single quotes.

> mvmctl -m trigger=EType=start\&AType=exec\&Action='trig.py $OID $HOSTLIST'

6. Configure any desired time-related attributes (The offset time, whether a trigger can fire multiple
times, how often, etc.).Insert a comma between the time attribute(s) and the action.

> mvmctl -m trigger=EType=start\&AType=exec\&Action='trig.py $OID
$HOSTLIST',Offset=30

Moab launches the trig.py script 30 seconds after the VM starts.

7. Configure any desired variables. Verify that all attributes are separated by commas.

> mvmctl -m trigger=EType=start\&AType=exec\&Action='trig.py $OID
$HOSTLIST',Offset=30,sets=vmStart

8. Set any desired flags.

9. Submit the trigger.

Using a trigger to send email
Context

Mail triggers can be attached to nodes, jobs, reservations, and the scheduler. The recipient of the
email depends on the object to which the trigger is attached. To select different recipient(s) and add
flexibility to formatting, send email via a script using an exec trigger.

To use a trigger to send email

1. For objects that send mail to the primary user, you must configure the Moab administrator email
using the MAILPROGRAM on page 971 parameter.

2. Create a trigger on one of the four valid objects listed below, setting the AType to mail and the
Action to the body of the message inside of quotation marks.

Moab Workload Manager

Object Recipient

Node The primary user (the first user listed in ADMINCFG[1], typically root)

Job The job's owner

Reservation The primary user

Scheduler The primary user

3. When attaching a mail trigger to all objects of a certain type, use internal variables in the Action to
add information that is specific to an object, such as the ID, owner, time the event occurred, etc. A
variable must be preceded by a dollar sign ($).

Variable Description

$OID Name of the object to which the trigger is attached

$OTYPE The type of object to which the trigger is attached

$TIME Time the trigger launched

$HOSTLIST Hostlist of the trigger's object (jobs and reservations)

$OWNER Owner of the trigger's object (jobs and reservations)

$USER User (jobs and reservations)

The variable is replaced with the information described above. For example, the following trigger is
configured on all nodes:

NODECFG[DEFAULT] EType=fail,AType=mail,Action="node $OID failed at $TIME"

When, for example, node node03 fails, an email is sent to the primary user with a message with the subject line
"node node03 started on Sat Aug 18 11:42:00".

Moab Workload Manager

732 Object triggers

Object triggers 733

Using a trigger to execute a script
Context

Exec triggers launch a program or script when the event occurs. A few examples of what a script
might do in response to an event include:

l Execute an external program

l Send a complex email to any desired recipient(s)

l Collect diagnostics

It is important to note that when a script runs via a trigger, Moab forks and performs a direct
OS exec, meaning there will be no pre-processing of the command by the shell. In addition, the
script runs in a new, reduced environment without the same settings and variables as the
environment from which it stemmed. The script must be able to run in the reduced
environment.

To use a trigger to execute a script

1. Create or locate the script and note its location.

2. Create a trigger on the desired object, setting the AType to exec and the Action to location of the
script or program.

JOBCFG[temp1] TRIGGER=EType=start,AType=exec,Offset=03:00,Action="/tmp/monitor.pl"

Jobs with the temp1 template receive a trigger that executes monitor.pl three minutes after the job starts.

Using a trigger to perform internal Moab actions

To perform internal actions in Moab with a trigger

Create a trigger on a job, node, or reservation, setting the AType to internal and the Action to one
of the following:

o node:-:reserve - reserves the node to which the trigger is attached

o job:-:cancel - cancels the job to which the trigger is attached

o reservation:-:cancel - cancels the reservation to which the trigger is attached

The specified object reserves or cancels itself once the event occurs. See Internal Action on page
747 for examples.

Moab Workload Manager

Requiring an object threshold for trigger execution
Context

Threshold triggers allow sites to configure triggers to launch based on internal scheduler statistics,
such as generic metrics. For example, you might configure a trigger to warn the administrator when
the percentage of nodes available is less than 25.

To configure a threshold trigger

1. Create a trigger. Set its EType to threshold. Configure the AType, Action, and Threshold attributes'
values based on the valid thresholds per object listed in the table found in Threshold triggers on
page 743.
NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric

2. Insert the gmetric name between brackets (such as gmetric[temp]). Provide a comparison
operator. For valid options, see the comparison operators table.

3. Provide a number or string to match against the threshold.

NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric[TEMP]>70,RearmTime=5:00

Moab launches a script that warns the administrator when node04's gmetric temp exceeds 70. Moab rearms the
trigger five minutes after it fires.

Enabling job triggers
Context

By default common users cannot create most objects, and as a result, common users also cannot
create triggers. The exception, however, is jobs. Because common users can create jobs and triggers
generally run as root, additional security is necessary to ensure that not all users can create
triggers. For this reason, job triggers are disabled by default.

Because triggers generally run as root, any user given the power to attach triggers has the
power to run scripts and commands as root. It is recommended that you only enable job
triggers on closed systems in which human users do not have access to directly submit jobs.

To give specific users permission to create job triggers, you must create a QoS, set the trigger flag,
and add users to it.

To enable job triggers

1. In the moab.cfg file, create a QoS and set the trigger flag.

QOSCFG[triggerok] QFLAGS=trigger

2. Add users to the QoS who should be allowed to add triggers to jobs.

USERCFG[joe] QDEF=triggerok

Moab Workload Manager

734 Object triggers

Object triggers 735

User joe is added to the triggerok QoS, giving him both the power to create job triggers and root
access to the machine.

Modifying a trigger
Context

You can modify a trigger at any time by updating its settings in the Moab configuration file
(moab.cfg). This will update most triggers at the beginning of the next Moab iteration; however,
modifying template triggers (configured using RSVPROFILE or JOBCFG) will not update the instances
of the trigger that were attached to individual reservations or jobs on creation. The modification will
only affect the triggers that the template attaches to future objects.

Any trigger with a specified name can be modified using the mschedctl -m command in the following
format:

mschedctl -m trigger: <triggerID><attr1>=<val1><attr2>=<val2>

Modifying triggers on the command line does not change their configuration in moab.cfg.
Except for reservations that are checkpointed, changes made dynamically are lost when Moab
restarts.

For example, the procedure below demonstrates how to modify the following trigger so that the
offset is 10 minutes instead of 5 and so that Moab will attempt to fire the trigger up to 10 times if it
fails. Assume your trigger currently looks like this:

NODECFG[DEFAULT] EType=fail,AType=exec,Action="/scripts/node_
fail.pl",Name=nodeFailTrig,Offset=00:05:00,MultiFire=TRUE,RearmTime=01:00:00

To modify a trigger

1. Type mschedctl -m into the command line and set off the trigger modification with trigger:<id>.
Use the trigger's assigned ID or specified name to state which trigger will receive the modification.

> mschedctl -m trigger:nodeFailTrig

2. Type any changing attributes equal to the new value. Separate multiple modifications with a space
between each <attr>=<val> pair. In this case, set the Offset and MaxRetry attributes the following
way:

> mschedctl -m trigger:nodeFailTrig Offset=00:10:00 MaxRetry=10

The newly-specified attributes replace the original ones. Trigger nodeFailTrig now has an offset
of 10 minutes and will try to fire a maximum of 10 times if it fails. The new trigger has the following
attributes:

EType=fail,AType=exec,Action="/scripts/start_
rsv.pl",Name=nodeFailTrig,Offset=00:10:00,MultiFire=TRUE,RearmTime=01:00:00,MaxRetry
=10

Moab Workload Manager

Viewing a trigger
Context

Moab provides a list of triggers when you run the mdiag -T command. You can view a specific trigger
by running mdiag -T in the following format:

mdiag -T [<triggerID>|<objectID>|<triggerName>|<objectType>]

To view a trigger

1. Type mdiag -T in the command line.

2. Specify either the trigger ID, the trigger name, the name of the object to which the trigger is
attached, or the type of object to which the trigger is attached. For example, if you wanted to view
information about a trigger with ID trigger.34 and name jobFailTrigger, which is attached to
job job.493, you could run any of the following commands:

> mdiag -T trigger.34

> mdiag -T job.493

> mdiag -T jobFailTrigger

> mdiag -T job

The output of the first command would provide basic information about trigger.34; the second command,
information about all triggers attached to job.493 that the user can access; the third command, basic
information about jobFailTrigger; and the fourth command, basic information about all triggers attached to
jobs that the user can access.

3. Optional: to view additional information about the trigger, run the same command with the -v flag
specified after -T.
> mdiag -T -v job.493

This mode outputs information in multiple lines.

4. Optional: to view detailed information about all triggers available to you, use the mdiag -T -
v command. This outputs all triggers available to the user in a single line for each trigger. It provides
additional state information about triggers, including reasons triggers are currently blocked.

> mdiag -T -v

Checkpointing a trigger
Context

Checkpointing is the process of saving state information when Moab is shut down. In general,
triggers defined in the moab.cfg file are not checkpointed but are recreated when Moab starts. The
exception is the JOBCFG parameter, which attaches triggers to jobs as they are created. There are
two cases in which you may want to tell Moab to checkpoint a trigger:

l If a trigger is defined in the moab.cfg file but was created at the command line

l When creating a trigger using the mschedctl on page 268 command

Moab Workload Manager

736 Object triggers

Object triggers 737

To checkpoint a trigger

1. Locate the trigger to be checkpointed in the moab.cfg file, create one on the command line, or
modify a trigger dynamically (See Modifying a trigger on page 735 for more information). Attach the
checkpoint flag using the FLAGS attribute. For more information about flags, see Flags on page 750.

FLAGS=checkpoint

2. If you are working in the configuration file, save the changes. Moab will now checkpoint your trigger.

References

Job triggers
For security reasons, job triggers are disabled by default. They must be enabled in order to successfully
attach triggers to jobs (See Enabling job triggers on page 734 for more information.).

Triggers attached to jobs follow the same basic rules and formats as attaching them to other objects;
however, not all attribute options are valid for each object. Jobs, like other objects, have a unique set of
trigger rules. The table below details the methods, options, and other notable details associated with
attaching triggers to jobs.

Creation methods

Method Format Example

Command line
on job
creation: msub -l

msub <jobName> -l
'trig=<trigSpec>'

Attributes are delimited
by backslash ampersand
(\&).

> msub my.job -l
'trig=EType=create\&AType=exec\&Action="/jobs/my_
trigger.pl"\&Offset=10:00'

Command line
on existing
job: mschedctl -
c

mschedctl -c trig-
ger <trigSpec> -o
job:<jobID>

> mschedctl -c trigger
EType=end,AType=mail,Action="Job moab.54 has ended"
-o job:moab.54

Job template in
moab.cfg
: JOBCFG

JOBCFG[<tem-
plateName>]
TRIGGER=<trigSpec>

JOBCFG[vmcreate]
TRIGGER=,EType=end,AType=exec,Action="/tmp/jobEnd.
sh"

Moab Workload Manager

Valid event types
l cancel on page 747

l checkpoint on page 747

l create on page 747

l end on page 747

l hold on page 748

l modify on page 748

l preempt on page 748

l start on page 748

Valid action types
l changeparam

l exec

l internal

l mail

Mail recipient
The job's owner

See Using a trigger to send email on page 731 for more information.

Node triggers
Triggers attached to nodes follow the same basic rules and formats as attaching them to other objects;
however, not all attribute options are valid for each object. Nodes, like the other objects, have a unique
set of trigger rules. The table below details the methods, options, and other notable details that come
with attaching triggers to nodes.

Creation methods

Method Format Example

Command line
on existing
node: msched-
ctl - c

mschedctl -c
trigger
<trigSpec> -o
node:<nodeID>

> mschedctl -c trigger
EType=fail,AType=exec,Action="/tmp/nodeFailure.sh" -o
node:node01

Moab Workload Manager

738 Object triggers

Object triggers 739

Method Format Example

Node con-
figuration in
moab.cfg:
NODECFG

NODECFG
[<name>]
TRIGGER=
<trigSpec>

NODECFG[node04]
TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp
.py $OID",Threshold=gmetric[TEMP]>70

Valid event types
l create on page 747

l discover on page 747

l end on page 747

l fail on page 748

l standing on page 748

l threshold on page 748

Valid action types
l changeparam

l exec

l internal

l mail

Thresholds

Node threshold settings

Valid ETypes threshold

Valid Threshold types gmetric

Mail recipient
The user listed first in ADMINCFG[1] (usually root)

See Using a trigger to send email on page 731 for more information.

Moab Workload Manager

Reservation triggers
Triggers attached to reservations follow the same basic rules and formats as attaching them to other
objects; however, not all attribute options are valid for each object. Reservations, like the other objects,
have a unique set of trigger rules. The table below details the methods, options, and other notable
details that come with attaching triggers to reservations.

Creation methods

Method Format Example

Command line
on reservation
creation: mrs-
vctl -T

mrsvctl -c
-h <host-
list> -T
<trigSpec>

> mrsvctl -c -h node01 -T EType=start,AType=exec,
Action="/scripts/node_start.pl"

Command line
on existing
reservation:
mschedctl - c

mschedctl -
c trigger
<trigSpec>
-o
rsv:<rsvID>

> mschedctl -c trigger
EType=modify,AType=mail,Action="Reservation system.4 has been
modified" -o rsv:system.4

Standing reser-
vation con-
figuration in
moab.cfg
: SRCFG

SRCFG
[<name>]
TRIGGER=
<trigSpec>

SRCFG[Mail2]
TRIGGER=EType=start,Offset=200,AType=exec,Action="/tmp/email.
sh"

Reservation
template in
moab.cfg
: RSVPROFILE

RSVPROFILE
[<name>]
TRIGGER=
<trigSpec>

RSVPROFILE[rsvtest]
TRIGGER=EType=cancel,AType=exec,Action="$HOME/logdate.pl TEST
CANCEL $VPCHOSTLIST $OID $HOSTLIST $ACTIVE"

Valid event types
l create on page 747

l end on page 747

l modify on page 748

l standing on page 748

l start on page 748

l threshold on page 748

Moab Workload Manager

740 Object triggers

Object triggers 741

Valid action types
l cancel

l changeparam

l exec

l internal

l jobpreempt

l mail

Thresholds

Node threshold settings

Valid ETypes threshold

Valid Threshold types usage

Mail recipient
The owner of the reservation. If the owner is unknown or not a user, the first user listed first in
ADMINCFG (usually root).

See Using a trigger to send email on page 731 for more information.

Resource manager triggers
Triggers attached to the resource manager follow the same basic rules and formats as attaching them to
other objects; however, not all attribute options are valid for each object. The resource manager, like
other objects, has a unique set of trigger rules. The table below details the methods, options, and other
notable details that come with attaching triggers to RMs.

Creation methods

Method Format Example

Command line
on existing
RM: mschedctl
- c

mschedctl -c
trigger
<trigSpec> -
o rm:<rmID>

> mschedctl -c trigger
EType=start,AType=exec,Action="/tmp/rmStart.sh" -o rm:torque

Moab Workload Manager

Method Format Example

RM con-
figuration in
moab.cfg:
RMCFG

RMCFG
[<name>]
TRIGGER=
<trigSpec>

RMCFG[base]
TRIGGER=EType=fail,AType=exec,Action="/opt/moab/tools/diagno
se_rm.pl $OID"

Valid event types
l fail on page 748

l threshold on page 748

Valid action types
l changeparam

l exec

l internal

Scheduler triggers
Triggers attached to the scheduler follow the same basic rules and formats as attaching them to other
objects; however, not all attribute options are valid for each object. The scheduler, like the other objects,
has a unique set of trigger rules. The table below details the methods, options, and other notable details
associated with attaching triggers to the scheduler.

Creation methods

Method Format Example

Command line on
existing
scheduler: msched-
ctl - c

mschedctl -c trigger
<trigSpec> -o
sched:<schedID>

> mschedctl -c trigger
EType=end,AType=exec,Action="/tmp/startRsvs.s
h" -o sched:moab

Scheduler con-
figuration in
moab.cfg
: SCHEDCFG

SCHEDCFG[<name>]
TRIGGER=<trigSpec>

SCHEDCFG[MyCluster]
TRIGGER=EType=fail,AType=mail,Action="schedul
er failure detected on $TIME",RearmTime=15:00

Moab Workload Manager

742 Object triggers

Object triggers 743

Valid event types
l create on page 747

l end on page 747

l fail on page 748

l modify on page 748

l standing on page 748

l start on page 748

Valid action types
l changeparam

l exec

l internal

l mail

Mail recipient
The user listed first in ADMINCFG (usually root)

See Using a trigger to send email on page 731 for more information.

Threshold triggers
The following table identifies the object event, and usage types with which the threshold event/action
type feature works.

Object type Event Type Usage types

Node Threshold gmetric

Reservation Threshold usage

The following table defines each of the usage types:

Usage
type Description

gmetric Generic performance metrics configured in Moab (See Enabling Generic Metrics for more inform-
ation).

usage The percentage of the resource being used (not idle).

Moab Workload Manager

The following table defines each of the threshold trigger comparison operators:

Comparison operator Value

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

Examples

Example 3-150: Reservation usage threshold

SRCFG[res1] TRIGGER=EType=threshold,AType=mail,Action="More than 75% of reservation
res1 is being used",Threshold=usage>75,FailOffset=1:00

When more than 75% of the reservation has been in use for at least a minute, Moab fires a trigger to notify the primary
user.

Trigger components

Required trigger components

AType

Action type Description

cancel Cancels the object

changeparam Causes Moab to give a parameter to a new value

exec Launches an external program or script on the command line when the dependencies are ful-
filled. See Using a trigger to execute a script on page 733 for more information.

internal Modifies Moab without using the command line. See Using a trigger to perform internal
Moab actions on page 733 for more information.

Moab Workload Manager

744 Object triggers

Object triggers 745

Action type Description

jobpreempt Indicates the preempt policy to apply to all jobs currently allocated resources assigned to the trig-
ger's parent reservation

mail Causes Moab to send mail. See Using a trigger to send email on page 731 for more inform-
ation.

Action

Cancel Action

Format NONE

Description Indicates that Moab should cancel the reservation when the event occurs. No action should be spe-
cified.

Example Etype=threshold,Threshold=usage<10,FailOffset=1:00,AType=cancel

When less than 10% of the reservation has been in use for a minute, Moab cancels it.

Changeparam Action

Format Action="<STRING>"

Description Specifies the parameter to change and its new value (using the same syntax and behavior as the
changeparam on page 367 command)

Example Atype=changeparam,Action="JOBCPURGETIME 02:00:00"

Moab maintains detailed job information for two hours after a job has completed.

Jobpreempt Action

Format Action="cancel|checkpoint|requeue|suspend"

Description Signifies PREEMPTPOLICY to apply to jobs that are running on allocated resources

Moab Workload Manager

Jobpreempt Action

Example RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-240,AType=jobpreempt,Action="cancel"

40 minutes after the reservation adm1 starts, all jobs using the reservation's resources
adopt a PREEMPTPOLICY of cancel.

Mail Action

Format Action="<MESSAGE>"

Descrip-
tion

When AType=mail, the Action parameter contains the message body of the email. This can be con-
figured to include certain variables. See Using a trigger to send email on page 731 for details.
Mail triggers can be configured to launch for node failures, reservation creation or release,
scheduler failures, and even job events. In this way, site administrators can keep track of scheduler
events through email.
The email comes from moabadmin, has a subject of moab update, and has a body of whatever you
specified in the Action attribute. The recipient list depends on the type of object the trigger is
attached to.

l Node - The primary user (first listed in ADMINCFG[1]), typically root
l Scheduler - The primary user
l Job - The user who owns the job
l Reservation - The primary user

Example NODECFG[DEFAULT] TRIGGER=EType=fail,AType=mail,Action="node $OID will
failed.",Offset=05:00:00

This example sends an email to the primary administrator informing him/her that the node
(including the node ID) has failed.

Exec Action

Format Action="<script>"

Description Exec triggers will launch an external program or script when their dependencies are fulfilled. The
following example will submit job.cmd and then execute monitor.pl three minutes after the
job is started. See Using a trigger to execute a script on page 733 for more information.

Example > msub -l trig=EType=start\&AType=exec\&Action="/tmp/monitor.pl"
job.cmd\&Offset=03:00

Moab Workload Manager

746 Object triggers

Object triggers 747

Internal Action

Format Action="<objectType>:-:<cancel|reserve>"

Descrip-
tion

A couple different actions are valid depending on what type of object the internal trigger is acting
upon. The following list shows the available actions:

l Reserve a node
l Cancel a job
l Cancel a reservation

See Using a trigger to perform internal Moab actions on page 733 for more information.

Example NODECFG[node01] TRIGGER=EType=start,AType=internal,Action="node:-:reserve"

When node01 starts, it becomes a reservation.

> msub moab.3 -l 'trig=EType=fail\&AType=internal\&Action="job:-:cancel"

If moab.3 fails, Moab cancels it.

> mrsvctl -c -a user==joe -h node50 -T
EType=start,AType=internal,Action="reservation:-:cancel",Offset=10:00

User joe's jobs are given a ten-minute window to start, then the reservation cancels.

EType

Event
type Description

cancel The event is triggered when the parent object is either canceled or deleted.

checkpoint Triggers fire when the job is checkpointed. checkpoint triggers can only be attached to jobs.

create Triggers fire when the parent object is created. create triggers can be attached to nodes, jobs, reser-
vations, and the scheduler (when attached to the scheduler, triggers fire when Moab starts).

discover Triggers fire when the node is loaded from a resource manager and Moab cannot recorgnize it nor
find it in the checkpoint file.

end Triggers fire when the parent object ends. end triggers can be attached to nodes, jobs, reservations,
and the scheduler (when attached to the scheduler, triggers fire when Moab shuts down).

Moab Workload Manager

Event
type Description

fail Triggers fire when the resource manager is in a corrupt or down state for longer than the con-
figured fail time, or when Moab detects a corruption in a node's reservation table. fail triggers can
be attached to jobs, nodes, resource managers, and the scheduler.

hold Triggers fire when the job is put on hold. hold triggers can only be attached to jobs.

modify Triggers fire when the parent object is modified.modify triggers can be attached to jobs and reser-
vations

preempt Triggers fire when the job is preempted. preempt triggers can only be attached to jobs.

standing Triggers fire multiple times based on a certain period. They can be used with Period and Offset
attributes. standing triggers can be attached to nodes and the scheduler.

start Triggers fire when the parent object or Moab starts. start triggers can be attached to jobs, reser-
vations, resource managers, and the scheduler (when Moab starts and at the beginning of Moab's
first iteration).

threshold Triggers fire when a threshold, such as usage or a gmetric comparison, is true. threshold triggers
can be attached to nodes and reservations.
Triggers with ETypes set to threshold must include the Threshold attribute.

Event-modifying trigger components
The following trigger attributes modify the event that causes the trigger to fire.

RearmTime

Possible Val-
ues

[[HH:]MM:]SS

Description The amount of time that must pass before a trigger can fire again. RearmTime is enforced from
the trigger event time.

Usage Notes ---

Offset

Possible Values [-][[HH:]MM:]SS

Moab Workload Manager

748 Object triggers

Object triggers 749

Offset

Description The relative time offset from event when trigger can fire

Usage Notes l Only end triggers can have a negative value for
Offset.

l Offset cannot be used with cancel.

Period

Possible Values Minute,Hour,Day,Week,Month, Infinity

Description The period at which the trigger will regularly fire

Usage Notes ---

Threshold

Possible
Values

Threshold={<metric>[<metricName>]}{> >= < <= ==}<FLOAT>
Where <metric> is one of:

l gmetric
l usage

Description When the object meets, drops below, or increases past the configured Threshold, the trigger will
fire.

Usage
Notes

Threshold triggers allow sites to configure triggers to launch based on internal scheduler statistics,
such as the usage of a reservation.

FailOffset

Possible Values [[HH:]MM:]SS

Description The time that the threshold condition must exist before the trigger fires

Usage Notes Use with fail triggers to avoid transient triggers.

Moab Workload Manager

Action-modifying trigger components

Flags

Possible
Values

Flags=<flag>[:<flag>] or Flags=[<flag>][[<flag>]]
attacherror - If the trigger outputs anything to stderr, Moab attaches it as a message to the trigger
object.
cleanup - If the trigger is still running when the parent object completes or is canceled, Moab kills
the trigger.
checkpoint - Moab always checkpoints this trigger. For more information, see Checkpointing a
trigger on page 736.
objectxmlstdin - Trigger passes its parent's object XML information into the trigger's stdin. This
only works for exec triggers with reservation type parents.
resetonmodify - The trigger resets if its object is modified, even if RearmTime is not set.
user - The trigger executes under the user ID of the object's owner. If the parent object is the
scheduler, you may explicitly specify the user using the format user+<username>. For example:
Flags=user+john.

Description Specifies various trigger behaviors and actions

Usage
Notes

When specifying multiple flags, each flag can be delimited by colons (:) or with square brackets;
for example:
Flags=[user][cleanup] or Flags=user:cleanup

BlockTime

Possible Values [[HH:]MM:]SS

Description The amount of time Moab will suspend normal operation to wait for trigger execution to finish

Usage Notes Use caution; Moab will completely stop normal operation until BlockTime expires.

ExpireTime

Possible Values <INTEGER>

Description The time at which trigger should be terminated if it has not already been activated

Usage Notes ---

Moab Workload Manager

750 Object triggers

Object triggers 751

Timeout

Possible Val-
ues

[+|-][[HH:]MM:]SS

Description The time allotted to this trigger before it is marked as unsuccessful and its process (if any)
killed

Usage Notes ---

MaxRetry

Possible
Values

MaxRetry=<INTEGER>

Description The number of times Action will be attempted before the trigger is designated a failure

Usage
Notes

If Action fails, the trigger will restart immediately (up toMaxRetry times). If it fails more than
MaxRetry times, the trigger has failed. This restart ignores FailOffset and RearmTime.

Organizational trigger components

Name

Possible
Values

Name=<STRING>

Description Name of the trigger

Usage
Notes

Because Moab uses its own internal ID to distinguish triggers, the Name need not be unique. Only
the first 16 characters of Name are stored by Moab.

Description

Possible Values Description=<STRING>

Description Description of the trigger

Usage Notes ---

Moab Workload Manager

Trigger exit codes
By default Moab considers any non-zero exit code as a failure and marks the trigger as having failed. If a
trigger is killed by a signal outside of Moab, Moab treats the signal as the exit code and (in almost all
cases) marks the trigger as having failed. Only exec triggers that exit with an exit code of 0 are marked
as successful.

Node maintenance example

Example scenario

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature increases to more
than 40°C, Moab requeues all jobs on the node. If the node's temperature exceeds 50°C, Moab shuts it
down. Moab removes the node's reservation and unsets the variables when the node cools to less
than 25°C. The administrator wants to receive an email whenever any of these events occur.

The first trigger reserves the node when its reported temperature exceeds 34°C. Note that the gmetric
name in the trigger must match the name of the configured gmetric exactly, including its case (See
Enabling Generic Metrics on page 575 for more information.).

NODECFG[DEFAULT] TRIGGER=Description="ThresholdA",EType=threshold,Threshold=gmetric
[temp]>34,AType=internal,Action="node:-:reserve",RearmTime=30,Offset=2:00,Sets=temp_
rsv

The administrator wants the trigger to fire any time a node overheats, so it must be rearmable. It also
needs to specify that the node must be over 34°C for at least two minutes for Moab to reserve it. If the
trigger succeeds, it will set a variable to be received by the next trigger in order to make them
sequential.

The administrator wants to know when this trigger has fired, so another trigger will send an email once
the first trigger has fired and the temp_rsv variable is set. This one does so via a script:

NODECFG[DEFAULT] Trigger=Description="Email on
Reservation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailReserve.pl
$OID",RearmTime=3:00,Requires=temp_rsv

The second threshold trigger requeues the node's jobs if the node exceeds 40°C and the temp_rsv
variable is set. It uses a script to do so. It sets node_evac variable when it fires, regardless of whether
it succeeds or fails.

NODECFG[DEFAULT] Trigger=Description="Threshold B",EType=threshold,Threshold=gmetric
[temp]>40,Atype=exec,Action="$TOOLSDIR/node_evacuate.pl
$OID",RearmTime=3:00,requires=temp_rsv,Sets=node_evac,!node_evac

The administrator wants another email to inform him that the node is still overheating and has been
evacuated. Another email trigger fires once it receives the node_evac variable.

NODECFG[DEFAULT] Trigger=Description="Email on
Evacuation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailEvac.pl
$OID",RearmTime=3:00,Requires=node_evac

Moab Workload Manager

752 Object triggers

Object triggers 753

The third threshold trigger uses a script to shut down the node if the temp gmetric exceeds 50 and the
node_evac variable is set. It sets a node_shutdown variable to be received by the notification email.

NODECFG[DEFAULT TRIGGER=Description="Threshold C",EType=threshold,Threshold=gmetric
[temp]>50,AType=exec,Action="$TOOLSDIR/node_shutdown.pl
$OID",RearmTime=3:00,Requires=node_evac,Sets=node_shutdown

NODECFG[DEFAULT] Trigger=Description="Email on
Shutdown",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailShutdown.pl
$OID",RearmTime=3:00,Requires=node_shutdown

The final trigger removes the reservation and unsets the variables once the node's temp gmetric is less
than 25.

NODECFG[DEFAULT] Trigger=Description="Remove
Reservation",EType=threshold,Threshold=gmetric[temp]
<25,AType=exec,Action="opt/moab/bin/mrsvctl -r r:$OID",RearmTime=3:00,Requires=temp_
rsv,unsets=temp_rsv.node_evac.node_shutdown

Environment creation example

Example scenario

An administrator wants to create the following setup in Moab:

If a user requests an environment, she must have the permission of her two managers and the
administrator. If all three approve, then the environment builds. The user is sent email messages
informing her of the environment's end date in case she would like an extension. These are sent 7, 3,
and 1 days prior to the environment's ending.

The administrator wants to require his and the managers' approval of any modifications the user
makes to her environment so that it cannot be extended without consent.

The first trigger requests manager and administrator approval in response to the user's environment
request. So in the event of a reservation's creation, a script is used to send messages to the
administrator and manager. The internal variable OWNER is used to indicate to the recipients (via the
script) which user is requesting the environment.

RSVPROFILE[envSetup] TRIGGER=EType=create,AType=exec,Action="envRequest.sh $OWNER"

The managers and administrator use an external program to approve or reject the request. On approval,
a variable is sent back to Moab (to the reservation specifically). Once all three variables are set, the
environment can start. In this example, the variables are called approval1, approval2, and
approval3.

RSVPROFILE[envSetup]
TRIGGER=EType=start,AType=exec,Action="buildScript",Requires=approval1.approval2.appro
val3

As it is configured now, the reservation will continue to reserve the requested resources regardless of
whether all three approvals are given. So, in case approval is not given, the next trigger cancels the
reservation 7 days after its creation if the three variables are not set.

Moab Workload Manager

RSVPROFILE[envSetup]
TRIGGER=EType=create,Offset=7:00:00,AType=internal,Action="rsv:-:cancel",Requires=!app
roval1.!approval2.!approval3

Every remaining trigger in this series is meant to fire for an approved environment and must require
the approval variables. Otherwise these notifications would be sent to users who do not have the
environment they requested. The next triggers must be rearmable so that it can fire again if necessary;
however, they should be set to just over the amount of time left on the reservation so that it doesn't fire
again for the same environment. The notification triggers use the Offset attribute to fire at the
administrator's requested times (7, 3, and 1 day(s) prior to the environment's end).

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
7:00:00,AType=exec,Action="weekNotification.sh",RearmTime=7:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
3:00:00,AType=exec,Action="3dayNotification.sh",RearmTime=3:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
1:00:00,AType=exec,Action="dayNotification.sh",RearmTime=1:00:00:02,Requires=approval1
.approval2.approval3

The next trigger requests administrator and manager approval when the environment is modified. The
problem is that the trigger must be rearmable in case of multiple modifications and each time the
RearmTime on page 748 is reached, Moab will fire the trigger based on the first instance of modification.
To resolve this issue, this modification trigger requires a modify variable. When the reservation is
modified, the modify variable is set.

RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modify.sh",RearmTime=1:00:00,Requires=approval
1.approval2.approval3.!modify,Sets=modify
RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modificationRequest.sh",RearmTime=5:00,Require
s=approval1.approval2.approval3.modify,Unsets=modify

The final triggers notify the user of the end of the environment.

RSVPROFILE[envSetup]
TRIGGER=EType=end,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

The same trigger is repeated for the cancelEType in case the environment ends unexpectedly.

RSVPROFILE[envSetup]
TRIGGER=EType=cancel,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

Trigger variables

About trigger variables
Trigger variables are pieces of information that pass from trigger to trigger. They allow triggers to fire
based on another trigger's behavior, state, and/or output. A variable can be a required condition for a
trigger to fire; for instance, a trigger might be set to launch when a reservation starts, but only if it has
received a variable from another trigger indicating that a specific node has started first. Variables give

Moab Workload Manager

754 Object triggers

Object triggers 755

greater flexibility and power to a site administrator who wants to automate certain tasks and system
behaviors.

Variables can be used to define under what circumstances the trigger will fire. Many Moab objects have
their own variables and each object's variable name space is unique. Triggers can use their own
variables or the variables attached to their parent objects. A trigger's variable name space is limited to
itself and its parent object. Variables do not have to be unique across all objects.

How-to's

l Setting and receiving trigger variables on page 755
l Externally injecting variables into job triggers on page 756
l Exporting variables to parent objects on page 756
l Requiring variables from generations of parent objects on page 757
l Requesting name space variables on page 757

References

l Dependency trigger components on page 758
l Internal variables on page 759

How-to's
Setting and receiving trigger variables

Context

Following is an example of how comparative dependencies can be expressed when creating a trigger.

To set and require variables

1. Create a trigger.

EType=start,AType=exec,Action="/tmp/trigger1.sh"

2. Use the Sets attribute to set a variable if the trigger succeeds. You can precede the variable with "!"
to indicate that the variable should be set if the trigger fails. You can specify more than one variable
by separating them with a period.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2

The trigger sets variable Var2 when it succeeds and variable Var1 when it fails.

3. Set up the recipient trigger(s). Use the Requires attribute to receive the variable(s). Note that
preceding the variable with "!" means that the variable must not be set in order for the trigger to
fire.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2
AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

The second trigger will launch if Var1 has been set (the first trigger failed), and the third trigger will launch if
Var2 is set (the first trigger succeeded).

Moab Workload Manager

4. Refine the requirement with comparisons.

a. Use the following format:
<varID>[:<type>[:<varVal>]]

b. Change <varID> to the variable name.

c. Use any of the comparisons found on the Trigger variable comparison types on page 758 page in
place of <type>:

d. Set the value that the variable will be compared against.

AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1:eq:45
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2:ne:failure1

The first trigger fires if Var1 exists and has a value of 45. The second trigger fires if Var2 does not have a
string value of failure1.

Externally injecting variables into job triggers

Context

Job triggers are able to see the variables in the job object to which it is attached. This means that,
for triggers that are attached to job objects, another method for supplying variables exists. Updating
the job object's variables effectively updates the variable for the trigger.

To externally inject variables into job triggers

Use the mjobctl -m command to set a variable to attach to a job.

> mjobctl -m var=Flag1=TRUE 1664

The variable Flag1 is set. This will be available to any trigger attached to job 1664.

Exporting variables to parent objects

To export variables to parent objects

1. When setting a variable, indicate that the variable is to be exported to the parent object by using a
caret (^).

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=Var1.!^Var2
Atype=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

Var2 is exported to the parent object if the trigger fails. It can be used by job and reservation
triggers at the same level or by parent objects.

2. Optional: if running a script, you can set a variable as a string to pass up to the parent object.

a. Set the variable to pass up to the parent object with the caret (^). Use the exec AType to run a
script.

AType=exec,Action="/tmp/trigger.sh",EType=start,Sets=^Var1

The trigger sets Var1 when it completes successfully. Because the trigger launches a script, a
string value can be set for Var1.

Moab Workload Manager

756 Object triggers

Object triggers 757

b. Declare the variable's string value on its own line in the trigger stdout.

EXITCODE=15
Var1=linux

Var1 has the value of linux and is passed up to the parent object. This is useful in workflows in which a
trigger may depend on the value given by a previous trigger.

To return multiple variables, simply print out one per line.

Requiring variables from generations of parent objects

Context

By default, triggers look for variables to fulfill dependencies in the object to which they are directly
attached. If they are attached to a job object, they will also look in the job group, if defined.
However, it is not uncommon for objects to have multiple generations of parent objects. If the
desired behavior is to search through all parent objects, do the following task.

To require variables from generations of parent objects

Set the Requires attribute in the trigger to the required variable, preceded by a caret (^).

EType=start,AType=exec,Action="/tmp/trigger2.sh",Requires=^Var1

The trigger searches through the parent objects in which it resides for the variable Var1.

Requesting name space variables

To request a name space variable in a trigger

1. Configure the trigger. If it is attached to a generic system job, verify that it meets all the generic
system job trigger requirements.

2. Create an argument list in the Action attribute (after the script path and before the closing quotes)
and request the desired variable with an asterisk (*) in place of the name space.

...Action="$HOME/myTrig.py $*.IPAddr"...

Each applicable name space variable is added to the argument list in the format <varName>=<val>.

For instance, the example above would cause the script to run the following way:

> myTrig.py vc1.IPAddr=/tmp/dir1 vc2.IPAddr=/tmp/dir2 vc4.IPAddr=/tmp/dir3

Any other arguments provided here without name spaces will not change.

3. Filter which name spaces are passed down to a job trigger by setting trigns when you submit the
job. Its value is a comma-delimited list of the desired name spaces.

msub -l ... -W x="trigns=vc2,vc4"

If the new job is applied to the example in step 2, the script's arguments include vc2.IPAddr and
vc4.Addr and exclude vc1.IPAddr. The script runs as follows:

Moab Workload Manager

> myTrig.py vc2.IPAddr=/tmp/dir1 vc4.IPAddr=/tmp/dir2

References
Dependency trigger components

Sets

Possible
values

'.' delimited string

Description Variable values this trigger sets upon success or failure

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is set upon trigger failure.
Preceding the string with a caret (^) indicates this variable is to be exported to the parent object
when the trigger completes and satisfies all its set conditions. Used in conjunction with Requires
on page 758 to create trigger dependencies.

Unsets

Possible
values

'.' delimited string

Description Variable this trigger destroys upon success or failure.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is unset upon trigger fail-
ure. Used in conjunction with Requires on page 758 to create trigger dependencies.

Requires

Possible
values

'.' delimited string

Description Variables this trigger requires to be set or not set before it will fire.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable must not be set. Pre-
ceding the string with a caret (^) indicates that the variable may come from a parent object (See
Requiring variables from generations of parent objects on page 757 for more information.).
Used in conjunction with Sets on page 758 to create trigger dependencies.

Trigger variable comparison types

Moab Workload Manager

758 Object triggers

Object triggers 759

The following table describes the valid types of comparisons you can use to express the relationship of a
trigger variable to its value:

Type Comparison Notes

set is set (exists) Default

notset not set (does not exist) Same as specifying '!' before a variable

eq equals

ne not equal

gt greater than Integer values only

lt less than Integer values only

ge greater than or equal to Integer values only

le less than or equal to Integer values only

Internal variables

Several internal variables are available for use in trigger scripts. These can be accessed using
$<varName>.

Internal Variables

ETYPE The type of event that signals that the trigger can fire. ETYPE values include cancel, checkpoint,
create, end, fail, hold, migrate, preempt, standing, start, and threshold.

OID The name of the object to which the trigger was attached

OTYPE The type of object to which the trigger is attached; can be rsv, job, node, vm, or sched

OWNERMAIL A variable that is populated only if the trigger's parent object has a user associated with it and
that user has an email address associated with it

TIME The time of the trigger launch in the following format:
Wed Mar 10 12:35:12 2012

USER The user (when applicable)

Moab Workload Manager

Object-specific internal variables

Job Variables

MASTERHOST The primary node for the job

HOSTLIST The entire hostlist of the job

Reservation Variables

HOSTLIST The entire hostlist for the reservation

OBJECTXML The XML representation of an object output is the same that is generated by mdiag -r --xml

OS The operating system on the first node of the reservation

OWNER The owner of the reservation

Example 3-151: Internal variable example

AType=exec,Action="/tmp/trigger.sh $OID $HOSTLIST",EType=start

The object ID ($OID) and hostlist ($HOSTLIST) will be passed to /tmp/trigger.sh as command line arguments when
the trigger executes the script. The script can then process this information as needed.

Miscellaneous
l User Feedback Overview on page 760

l Enabling High Availability Features on page 762

l Malleable Jobs on page 764

l Identity Managers on page 765

l Generic System Jobs on page 769

User Feedback Overview
The Feedback facility allows a site administrator to provide job performance information to users at job
completion time. When a job completes, the program pointed to by the FEEDBACKPROGRAM parameter
is called with a number of command line arguments. The site administrator is responsible for creating a
program capable of processing and acting upon the contents of the command line. The command line
arguments passed are as follows:

Moab Workload Manager

760 Miscellaneous

Miscellaneous 761

1. job id

2. user name

3. user email

4. final job state

5. QoS requested

6. epoch time job was submitted

7. epoch time job started

8. epoch time job completed

9. job XFactor

10. job wallclock limit

11. processors requested

12. memory requested

13. average per task cpu load

14. maximum per task cpu load

15. average per task memory usage

16. maximum per task memory usage

17. messages associated with the job

18. hostlist (comma-delimited)

For many sites, the feedback script is useful as a means of letting users know the accuracy of their
wallclock limit estimate, as well as the CPU efficiency, and memory usage pattern of their job. The
feedback script may be used as a mechanism to do any of the following:

l email users regarding statistics of all completed jobs

l email users only when certain criteria are met (such as "Job 14991 has just completed which
requested 128 MB of memory per task. During execution, it used 253 MB of memory per task
potentially conflicting with other jobs. Please improve your resource usage estimates in future
jobs.")

l update system databases

l take system actions based on job completion statistics

Some of these fields may be set to zero if the underlying OS/resource manager does not support
the necessary data collection.

Example 3-152:

FEEDBACKPROGAM /opt/moab/tools/fb.pl

Moab Workload Manager

Enabling High Availability Features

Contact Adaptive Computing before attempting to implement any type of high availability.

l Moab High Availability Overview

o Configuring High Availability via a Networked File System

o Confirming High Availability on a Networked File System

l Other High Availability Configuration

High Availability Overview
High availability allows Moab to run on two different machines: a primary and secondary server. The
configuration method to achieve this behavior takes advantage of a networked file system to configure
two Moab servers with only one operating at a time.

If you use a shared file system for high availability and Moab is configured to use a database,
Moab must be an ODBC build, not SQLite.

When configured to run on a networked file system — any networked file system that supports file
locking is supported — the first Moab server that starts locks a particular file. The second Moab server
waits on that lock and only begins scheduling when it gains control of the lock on the file. This method
achieves near instantaneous turnover between failures and eliminates the need for two Moab servers to
synchronize information periodically as the two Moab servers access the same database/checkpoint file.

As Moab uses timestamping in the lock file to implement high availability, the clocks on both
servers require synchronization; all machines in a cluster must be synchronized to the same time
server.

Moab high availability and TORQUE high availability operate independently of each other. If a job is
submitted with msub and the primary Moab server is down, msub tries to connect to the fallback Moab
server. Once the job is given to TORQUE, if TORQUE can't connect to the primary pbs_server, it tries to
connect to the fallback pbs_server. For example:

A job is submitted with msub, but Moab is down on server01, so msub contacts Moab running on server02.

A job is submitted with msub and Moab hands it off to TORQUE, but pbs_server is down on server01, so
qsub contacts pbs_server running on server02.

When you shut down or restart Moab on both servers, you must run the command twice. A single
shutdown (mschedctl -k) or restart (mschedctl -R) command will go to the primary server and kill it,
causing the secondary server to fall back and start operating. To kill the secondary server, resubmit the
command.

Do not use anything but a plain simple NFS fileshare that is not used by anybody or anything else
(i.e., only Moab can use the fileshare).

Moab Workload Manager

762 Miscellaneous

Miscellaneous 763

Do not use any general-purpose NAS, do not use any parallel file system, and do not use company-
wide shared infrastructure to set up Moab high availability using "native" high availability.

Configuring High Availability on a Networked File System
Because the two Moab servers access the same files, configuration is only required in the moab.cfg file.
The two hosts that run Moab must be configured with the SERVER and FBSERVER parameters. File lock is
turned on using the FLAGS=filelockha flag. Specify the lock file with the HALOCKFILE parameter. The
following example illustrates a possible configuration:

SCHEDCFG[Moab] SERVER=host1:42559
SCHEDCFG[Moab] FBSERVER=host2
SCHEDCFG[Moab] FLAGS=filelockha
SCHEDCFG[Moab] HALOCKFILE=/opt/moab/.moab_lock

Use the HALOCKUPDATETIME parameter to specify how frequently the primary server updates the
timestamp on the lock file. Use the HALOCKCHECKTIME parameter to specify how frequently the
secondary server checks the timestamp on the lock file.

HALOCKCHECKTIME 9
HALOCKUPDATETIME 3

In the preceding example, the secondary server checks the lock file for updates every 9 seconds. The HALOCKUPDATETIME
parameter is set to 3 seconds, permitting the primary server three opportunities to update the timestamp for each time
the secondary server checks the timestamp on the lock file.

FBSERVER does not take a port number. The primary server's port is used for both the primary
server and the fallback server.

Confirming High Availability on a Networked File System
Administrators can run the mdiag -S -v command to view which Moab server is currently scheduling and
responding to client requests.

Other High Availability Configuration
Moab has many features to improve the availability of a cluster beyond the ability to automatically
relocate to another execution server. The following table describes some of these features.

Moab Workload Manager

Feature Description

AMCFG[] BACKUPHOST If using the Moab Accounting Manager, you may enable high availability with
the accounting manager by specifying a backup server as in the following
example:

AMCFG[mam] BACKUPHOST=headnode2

JOBACTIONONNODEFAILURE If a node allocated to an active job fails, it is possible for the job to continue run-
ning indefinitely even though the output it produces is of no value. Setting this
parameter allows the scheduler to automatically preempt these jobs when a
node failure is detected, possibly allowing the job to run elsewhere and also
allowing other allocated nodes to be used by other jobs.

SCHEDCFG[]
RECOVERYACTION

If a catastrophic failure event occurs (SIGSEGV or SIGILL signal is triggered),
Moab can be configured to automatically restart, trap the failure, ignore the fail-
ure, or behave in the default manner for the specified signal. These actions are
specified using the values RESTART, TRAP, IGNORE, or DIE, as in the fol-
lowing example:

SCHEDCFG[bas] MODE=NORMAL RECOVERYACTION=RESTART

Malleable Jobs
Malleable jobs are jobs that can be adjusted in terms of resources and duration required, and which
allow the scheduler to maximize job responsiveness by selecting a job's resource shape or footprint prior
to job execution. Once a job has started, however, its resource footprint is fixed until job completion.

To enable malleable jobs, the underlying resource manager must support dynamic modification of
resource requirements prior to execution (i.e., TORQUE) and the jobs must be submitted using the TRL
(task request list) resource manager extension string. With the TRL attribute specified, Moab will
attempt to select a start time and resource footprint to minimize job completion time and maximize
overall effective system utilization (i.e., <AverageJobEfficiency> *
<AverageSystemUtilization>).

Example 3-153:

With the following job submission, Moab will execute the job in one of the following configurations: 1
node for 1 hour, 2 nodes for 30 minutes, or 4 nodes for 15 minutes.

> qsub -l nodes=1,trl=1@3600:2@1800:4@900 testjob.cmd
job 72436.orion submitted

Moab Workload Manager

764 Miscellaneous

Miscellaneous 765

Identity Managers
l Identity Manager Overview

l Basic Configuration

l Importing Credential Fairness Policies

l Identity Manager Data Format

l Identity Manager Conflicts

l Refreshing Identity Manager Data

The Moab identity manager interface can be used to coordinate global and local information regarding
users, groups, accounts, and classes associated with compute resources. The identity manager interface
may also be used to allow Moab to automatically and dynamically create and modify user accounts and
credential attributes according to current workload needs.

Only one identity manager can be configured at a time.

Identity Manager Overview
Moab allows sites extensive flexibility when it comes to defining credential access, attributes, and
relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, and QOSCFG
parameters is adequate to specify the needed configuration. However, in certain cases such as the
following, this approach may not be ideal or even adequate:

l Environments with very large user sets

l Environments with very dynamic credential configurations in terms of fairshare targets,
priorities, service access constraints, and credential relationships

l Grid environments with external credential mapping information services

l Enterprise environments with fairness policies based on multi-cluster usage

Moab addresses these and similar issues through the use of an identity manager. An identity manager is
configured with the IDCFG parameter and allows Moab to exchange information with an external identity
management service. As with Moab resource manager interfaces, this service can be a full commercial
package designed for this purpose, or something far simpler such as a web service, text file, or database.

Basic Configuration
Configuring an identity manager in basic read-only mode can be accomplished by simply setting the
SERVER attribute. If Moab is to interact with the identity manager in read/write mode, some additional
configuration may be required.

Moab Workload Manager

BLOCKCREDLIST

Format One or more comma-delimited object types from the following list: acct, group, or user

Details If specified, Moab will block all jobs associated with credentials not explicitly reported in the most
recent identity manager update. If the credential appears on subsequent updates, resource access
will be immediately restored.

Jobs will only be blocked if fairshare is enabled. This can be accomplished by setting the
FSPOLICY parameter to any value such as in the following example:

FSPOLICY DEDICATEDPS

Example IDCFG[test01] BLOCKCREDLIST=acct,user,groups

Moab will block any jobs associated with accounts, users, or groups not in the most recent
identity manager update.

CREATECRED

Format <BOOLEAN> (default is FALSE)

Details Specifies whether Moab should create credentials reported by the identity manager that have not yet
been locally discovered or loaded via the resource manager. By default, Moab will only load inform-
ation for credentials which have been discovered outside of the identity manager.

Example IDCFG[test01] CREATECRED=TRUE

Moab will create credentials from test01 that have not been previously loaded.

REFRESHPERIOD

Format minute, hour, day, or infinity (default is infinity).

Details If specified, Moab refreshes identity manager information once every specified iteration. If infinity is
specified, the information is updated only at Moab start up.

Example IDCFG[test01] REFRESHPERIOD=hour

Moab queries the identity manager every hour.

Moab Workload Manager

766 Miscellaneous

Miscellaneous 767

RESETCREDLIST

Format One or more comma-delimited object types from the following list: acct, group, or user.

Details If specified, Moab will reset the account access list and fairshare cap and target for all credentials of
the specified type(s) regardless of whether they are included in the current info manager report.
Moab will then load information for the specified credentials.

Example IDCFG[test01] RESETCREDLIST=group

Moab will reset the account access list and fairshare target for all groups.

SERVER

Format <URL>

Details Specifies the protocol/interface to use to contact the identity manager.

Example IDCFG[test01] SERVER=exec://$HOME/example.pl

Moab will use example.pl to communicate with the
identity manager.

UPDATEREFRESHONFAILURE

Format <BOOLEAN> (default is FALSE)

Details When an IDCFG script fails, it retries almost immediately and continuously until it succeeds. When
UPDATEREFRESHONFAILURE is set to TRUE, a failed script does not attempt to rerun immediately,
but instead follows the specified REFRESHPERIOD schedule. When set to TRUE,
UPDATEREFRESHONFAILURE updates the script execution timestamp, even if the script does not
end successfully.

Example IDCFG[info] SERVER=exec:///home/tshaw/test/1447/bad_script.pl REFRESHPERIOD=hour
UPDATEREFRESHONFAILURE=TRUE

Importing Credential Fairness Policies
One common use for an identity manager is to import fairness data from a global external information
service. As an example, assume a site needed to coordinate Moab group level fairshare targets with an

Moab Workload Manager

allocation database that constrains total allocations available to any given group. To enable this, a
configuration like the following might be used:

IDCFG[alloc] SERVER=exec://$TOOLSDIR/idquery.pl
...

The tools/idquery.pl script could be set up to query a local database and report its results to Moab. Each iteration,
Moab will then import this information, adjust its internal configuration, and immediately respect the new fairness
policies.

Identity Manager Data Format
When an identity manager outputs credential information either through an exec or file based
interface, the data should be organized in the following format:
<CREDTYPE>:<CREDID> <ATTR>=<VALUE>

where

l <CREDTYPE> is one of user, group, account, class, or qos.

l <CREDID> is the name of the credential.

l <ATTR> is one of adminlevel, alist, chargerate, comment, emailaddress, fstarget,
globalfstarget, globalfsusage, maxjob, maxmem, maxnode, maxpe, maxproc, maxps,
maxwc, plist, priority, qlist, or role. Multi-dimensional policies work here as well.

l <VALUE> is the value for the specified attribute.

To clear a comment, set its value to ""; for example: comment="".

Example 3-154:

The following output may be generated by an exec based identity manager:

group:financial fstarget=16.3 alist=project2
group:marketing fstarget=2.5
group:engineering fstarget=36.7
group:dm fstarget=42.5
user:jason adminlevel=3
account:sales maxnode=128 maxjob=8,16

The following example limits user bob to 8 matlab generic resources.

user:bob MAXGRES[matlab]=8

To specify unlimited use of generic resources, set the value to -1.

Identity Manager Conflicts
When local credential configuration (as specified via moab.cfg) conflicts with identity manager
configuration, the identity manager value takes precedence and the local values are overwritten.

Moab Workload Manager

768 Miscellaneous

Miscellaneous 769

Refreshing Identity Manager Data
By default, Moab only loads identity manager information once when it is first started up. If the identity
manager data is dynamic, then you may want Moab to periodically update its information. To do this, set
the REFRESHPERIOD attribute of the IDCFG parameter. Legal values are documented in the following
table:

Value Description

minute Update identity information once per minute

hour Update identity information once per hour

day Update identity information once per day

infinity Update identity information only at start-up (default)

Example 3-155:

IDCFG[hq] SERVER=exec://$TOOLSDIR/updatepolicy.sh REFRESHPERIOD=hour

Job credential feasibility is evaluated at job submission and start time.

Related topics

l Credential Overview
l Usage Limits/Throttling Policies

Generic System Jobs
Generic system jobs are system jobs with a trigger. They are useful for specifying steps in a workflow.

l Creating a Generic System Job

o The Trigger

l Workflows Using Job Template Dependencies

o Inheriting Resources in Workflows

Creating a Generic System Job
Generic system jobs are specified via a job template. The template can be selectable and you must use
the GENERICSYSJOB attribute to let Moab know that this job template describes a generic system job and
to specify a trigger, as shown in the following example:

JOBCFG[gen]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/genericTrig.py",Timeout=5:00

Moab Workload Manager

The Trigger

The generic system job's trigger that meets certain criteria. This trigger must have a timeout, an
Atype=Exec, and the EType must equal "start". The timeout of the trigger will be used as the walltime
for the job. The trigger will begin when the system job begins and the job will be considered completed
when the trigger completes. The job will have the same completion code as the trigger. The walltime on
the job template is not applicable in this case since the timeout of the trigger will be the walltime.

If the trigger fails, an error message will be attached to all of the job's parent VCs. You can view this in
the --xml output of the VC query. The message includes the location of STDIN, STDOUT, and STDERR
files. For example:

mvcctl -q ALL --xml

<Data>
<vc CREATETIME="1320184350" DESCRIPTION="Moab.1"
 FLAGS="DESTROYOBJECTS,DESTROYWHENEMPTY,HASSTARTED,WORKFLOW"
 JOBS="Moab.1" NAME="vc1" OWNER="user:frank">
<ACL aff="positive" cmp="%=" name="frank" type="USER"></ACL>
<MESSAGES>
<message COUNT="1" CTIME="1320184362"
 DATA="Trigger 10 failed on job Moab.1.setup- STDIN:
/tmp/ByLLl2wv/spool/vm.py.ieWPPS5 STDOUT:
/tmp/ByLLl2wv/spool/vm.py.oDMIXAW STDERR /tmp/ByLLl2wv/spool/vm.py.e2jD5iN"
 EXPIRETIME="1322776362" OWNER="frank" PRIORITY="0"
 TYPE="other" index="0"></message>
</MESSAGES>
<Variables>
<Variable name="VMID">vm1</Variable>
<Variable name="HV">TRUE</Variable>
</Variables>
</vc>
</Data>

You can specify other triggers on a generic system job using the TRIGGER attribute and delimiting them
with semicolons. For example:

JOBCFG[gen] GENERICSYSJOB=<genericSystemJobTriggerSpecs>
JOBCFG[gen] TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>

Workflows Using Job Template Dependencies
To create workflows, use the following format:

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate

This will create a job based on the template otherTemplate. The generic job will run after the
otherTemplate job has finished. Afterany in the example means after all other jobs have completed,
regardless of success.

Inheriting Resources in Workflows

The INHERITRES flag can be used to cause the same resources in one step of a workflow to be passed
to the next step:

Moab Workload Manager

770 Miscellaneous

Miscellaneous 771

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate
JOBCFG[otherTemplate] INHERITRES=TRUE

This example forces the job based on otherTemplate to have the same resource requirements as its parent. When the
otherTemplate job is finished, the INHERITRES flag will cause the parent to run on the same resources as the child.

The job that finishes first will pass its allocation up.

Any variables on the original job will be passed to the other jobs in the workflow. Variables can be added
by other jobs in the workflow via the sets attribute in the generic system job's trigger. Other triggers
must then request that variable name in the command line options.

You will need to set the carat (^) in order for the variable to be sent up to the job group.

If you set the variable, you need to set it in the STDOUT of the trigger script. See the example below:

JOBCFG[W1] GENERICSYSJOB=...,action='$HOME/W1.py $ipaddress' TEMPLATEDEPEND=AFTER:W2
JOBCFG[W2] TRIGGER=...,action='$HOME/W2.py',sets=^ipaddress

If a variable value is not set in STDOUT, it will be set to TRUE.

To set the variable to a specific value, the W2.py script must set the value in its STDOUT:

print "ipaddress=10.10.10.1" #This will be parsed by Moab and set as the value of the
"ipaddress" variable

Example 3-156:

To create a VM with a workflow using job template dependencies and generic system jobs, use the
following format:

#The job template that is "gate" to the workflow
JOBCFG[CreateVMWithSoftware] TEMPLATEDEPEND=AFTEROK:InstallSoftware SELECT=TRUE

JOBCFG[InstallSoftware]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/setupSoftware.py
$IPAddr",Timeout=30:00
JOBCFG[InstallSoftware] INHERITRES=TRUE
JOBCFG[InstallSoftware] TEMPLATEDEPEND=AFTEROK:CreateVM

JOBCFG[CreateVM] GENERICSYSJOB=EType=start,AType=exec,Action=$HOME/installVM.py
$HOSTLIST",Timeout=1:00:00,sets=^IPAddr
JOBCFG[CreateVM] INHERITRES=TRUE

The user will then submit the job requesting what they need in the VM:

msub -1 walltime=2:00:00,template=CreateVMWithSoftware,nodes=1:ppn=4,mem=1024
ActualWorkload.py

The job will have the CreateVMWithSoftware template applied to it and will create the InstallSoftware job. The
InstallSoftware job, because of INHERITRES, will have the same resource request (4 procs, 1GB of memory). This job
then has its template applied to it which will do the same thing in creating the CreateVM job. The CreateVM job will
then run, the trigger script will return the IP address of the new VM and pass its allocation up to the InstallSoftware
job. The InstallSoftware job will use the IPAddr variable to find the VM and install the software. It will then return
its resources up to the parent job, which will run the actual workload.

Moab Workload Manager

Database Configuration
Moab supports connecting to a database via native SQLite3, and it can also connect to other databases
using the ODBC driver. These optional external databases store some additional information that the
MongoDB database does not and allow you to query them directly using SQL. These databases are
slower, however, and only SQLite3, which does not allow external queries, is supported.

The SQLite3 connection is for storing statistics. Consider reviewing the SQLite web page Appropriate
Uses for SQLite for information regarding the suitability of using SQLite3 on your system.

While the ODBC connection is useful for storing statistics, it also stores events, nodes, and jobs. You can
further configure Moab to store checkpoint information to a database rather than to the flat text file
(.moab.ck) if you set the CHECKPOINTWITHDATABASE parameter to TRUE.

Connecting to an external database makes Moab more searchable, allowing you to run queries for
statistics and events rather than using regular expressions to draw the information from the Moab flat
files.

l SQLite3 on page 772

l Connecting to a MySQL Database with an ODBC Driver on page 773

l Connecting to a PostgreSQL Database with an ODBC Driver on page 776

l Connecting to an Oracle Database with an ODBC Driver on page 778

o Installing the Oracle Instant Client on page 785

l Migrating Your Database to Newer Versions of Moab on page 787

l Importing Statistics from stats/DAY.* to the Moab Database on page 794

SQLite3
Moab supports connecting to a database via native SQLite3. Database installation and configuration
occurs automatically during normal Moab installation (configure, make install). If you did not follow the
normal process to install Moab and need to install the database, do the following to manually install and
configure Moab database support:

1. Create the database file moab.db in your moab home directory by running the following command
from the root of your unzipped Moab build directory:
perl buildutils/install.sqlite3.pl ‹moab-home-directory›

l Verify that the command worked by running lib/sqlite3 ‹moab-home-
directory›/moab.db; at the resulting prompt, type .tables and press ENTER. You should
see several tables such as mcheckpoint listed. Exit from this program with the .quit command.

l The perl buildutils/install.sqlite3.pl ‹moab-home-directory› command may
fail if your operating system cannot find the SQLite3 libraries. Also, Moab fails if unable to
identify the libraries. To temporarily force the libraries to be found, run the following command:
export LD_LIBRARY_PATH=‹location where libraries were copied›

Moab Workload Manager

772 Database Configuration

http://www.sqlite.org/whentouse.html
http://www.sqlite.org/whentouse.html

Database Configuration 773

2. In the moab.cfg file in the etc/ folder of the home directory, add the following line:

USEDATABASE INTERNAL

To verify that Moab is running with SQLite3 support, start Moab and run the mdiag -S -v command. If
there are no database-related error messages displayed, then Moab should be successfully connected to
a database.

> moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

Connecting to a MySQL Database with an ODBC Driver
This documentation shows how to set up and configure Moab to connect to a MySQL database using the
MySQL ODBC driver. This document assumes the necessary MySQL and ODBC drivers have already been
installed and configured.

To set up and configure Moab to connect to a MySQL database using the MySQL ODBC driver, do the
following:

This solution has been tested and works with these versions:

l libmyodbc - 5.1.5

l MySQL 5.1

1. Download and install the ODBC version of Moab. Install and configure Moab as normal but add the
following in the Moab configuration file (moab.cfg):

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

2. Create the database in MySQL using the MySQL database dump contained in the moab-db.sql file.
This file is located in the contrib/sql directory in the root of the binaries.

l Run the following command:

mysql -u root -p < moab-db-mysql-create.sql

3. Configure the MySQL and ODBC driver. The odbcinst.ini file must be contained in /etc.

Moab Workload Manager

Run the following command to find the MySQL ODBC client driver. You could also query the
libmyodbc package that was installed.

[root]# updatedb
[root]# locate libmyodbc

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so

4. Configure Moab to use the MySQL ODBC driver. Moab uses an ODBC datastore file to connect to
MySQL using ODBC. This file must be located in the Moab home directory (/opt/moab by default)
and be named dsninfo.dsn, which is used by Moab. You need to have the following data in both
/etc/odbc.ini and $MOABHOMEDIR/dsninfo.dsn:

[ODBC]
Driver = MySQL
USER = <username>
PASSWORD = <password>
Server = localhost
Database = Moab
Port = 3306

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the MySQL driver, username <username>, password
<password>, and to connect to MySQL running on the localhost on port 3306. ODBC uses this
information to connect to the database called Moab.

5. Test the ODBC to MySQL connection by running the isql command, which reads the /etc/odbc.ini
file:

Moab Workload Manager

774 Database Configuration

Database Configuration 775

$ isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> show tables;
+---+
| Tables_in_Moab |
+---+
| EventType |
| Events |
| GeneralStats |
| GenericMetrics |
| Moab |
| NodeStats |
| NodeStatsGenericResources |
| ObjectType |
| mcheckpoint |
+---+
SQLRowCount returns 10
10 rows fetched
SQL>

If you encounter any errors using the isql command, there was a problem setting up the ODBC to
MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in /etc, but that is
not always true. Use the odbcinst -j command to determine the assumed location of the files
in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not /etc, move them
from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and odbcinst.ini
files. Note the location in which isql expects these files.

$ strace isql -v ODBC

6. With the ODBC driver configured, the database created, and Moab configured to use the database,
start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not installed in
their default locations.

Related topics

l Importing Statistics to the Moab Database

Moab Workload Manager

Connecting to a PostgreSQL Database with an ODBC
Driver
This documentation shows how to set up and configure Moab to connect to a PostgreSQL database using
the ODBC driver. This document assumes the necessary ODBC drivers have already been installed and
configured.

Occasionally vacuuming your PostgresSQL database could improve Moab performance. See the
PostgresSQL documentation for information on how to vacuum your database.

To set up and configure Moab to connect to a PostgreSQL database using the ODBC driver, do the
following:

This solution has been tested and works with the following file version:

l odbc-postgresql - 1:08.03.0200-1.2

1. Configure the PostgreSQL and ODBC driver. odbcinst.ini file must be contained in /etc.

Run the following commands to find the PostgreSQL ODBC client driver and setup file. You
could also query the libodbcpsql package that was installed.

[root]# updatedb
[root]# locate psqlodbc
[root]# locate libodbcpsql

[PostgreSQL]
Description = PostgreSQL ODBC driver
Driver = /usr/lib/odbc/psqlodbca.so
Setup = /usr/lib/odbc/libodbcpsqlS.so
Debug = 0
CommLog = 1
UsageCount = 2

2. Configure Moab to use the PostgreSQL ODBC driver. Moab uses an ODBC datastore file to connect to
PostgreSQL using ODBC. This file must be located in the Moab home directory (/opt/moab by
default) and be named dsninfo.dsn, which is used by Moab. If the following content, which follows
the standard ODBC driver file syntax, is not already included in the /etc/odbc.ini file, make sure
that you include it. Also, include the same content in the dsninfo.dsn file.

[ODBC]
Driver = PostgreSQL
Description = PostgreSQL Data Source
Servername = localhost
Port = 5432
Protocol = 8.4
UserName = postgres
Password = moab
Database = Moab

Moab Workload Manager

776 Database Configuration

Database Configuration 777

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the PostgreSQL driver, postgres user, moab
password, and to connect to PostgreSQL running on the localhost on port 5432. ODBC uses this
information and connects to the database called Moab.

3. Test the ODBC to PostgreSQL connection by running the isql command, which reads the
/etc/odbc.ini file. If connected, you should be able to run the help command.

If you encounter any errors using the isql command, there was a problem setting up the ODBC to
MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in /etc, but that is
not always true. Use the odbcinst -j command to determine the assumed location of the files
in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not /etc, move them
from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and odbcinst.ini
files. Note the location in which isql expects these files.

$ strace isql -v ODBC

4. Create the database in PostgreSQL using the moab-db-postgresql.sh setup script contained in
the contrib/sql directory at the root of the binary.

l Run the script and provide the DB username that will attach to the Moab database (you must
supply a DB username or the script will exit). The default admin user is postgres, but you can
make a new user at this time:

> ./moab-db-postgresql.sh postgres
Create db user "postgres" in postgreSQL? (y/n)>

l The script asks if you want to create the DB user you specified in postgreSQL. If the DB user
already exists, answer 'n'. Otherwise, the DB user is created and it asks for the new user's
password.

l The script then creates the database "Moab".

l Finally, as the DB user you provided, the script imports the DB schema from moab-db-
postgresql-create.sql into the Moab database.

5. Download and install the ODBC version of Moab. Install and configure Moab as normal but add the
following in the Moab configuration file (moab.cfg):

Moab Workload Manager

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

6. With the ODBC driver configured, the database created, and Moab configured to use the database,
start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not installed in
their default locations.

Related topics

l Importing Statistics to the Moab Database

Connecting to an Oracle Database with an ODBC Driver
Context

This documentation shows how to set up and configure Moab to connect to an Oracle database using
the ODBC driver.

To connect to an Oracle database with an ODBC driver

1. Install and configure the Oracle Instant Client with ODBC supporting libraries. For instructions, see
Installing the Oracle Instant Client on page 785.

2. Open your Moab configuration file ($MOABHOMEDIR/moab.cfg) and add the following lines to the
end of the file.

USEDATABASE ODBC

Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

3. Configure the Oracle ODBC Driver. The odbcinst.ini file must be contained in /etc.

[root]# vim /etc/odbcinst.ini

Moab Workload Manager

778 Database Configuration

Database Configuration 779

Run the following command to find the Oracle Instant Client driver. You could also query the
Oracle Instant Client package that was installed.

[root]# updatedb && locate libsqora

Add the following text to the file.

[Oracle 11g ODBC driver]
Description = Oracle ODBC driver for Oracle 11g
Driver = /usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1
Setup =
FileUsage =
CPTimeout =
CPReuse =
Driver Logging = 7

[ODBC]
Trace = Yes
TraceFile = /tmp/odbc.log
ForceTrace = Yes
Pooling = No
DEBUG = 1

Driver Logging is set high (level 7) so that you can debug during the installation and
configuration process if necessary. You can decrease the setting or remove the directive once
you finish the process.

To configure the location of the ODBC log (/tmp/odbc.log), set the TraceFile attribute
shown in the example above. See "unixODBC without the GUI" on the unixODBC website for
more information.

4. Because the driver installed in step 1 is a shared library, run ldd to verify that it and all of its
dependencies are installed and working.

[root]# ldd /usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1
linux-vdso.so.1 => (0x00007fff631ff000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f8afbe83000)
libm.so.6 => /lib64/libm.so.6 (0x00007f8afbbff000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f8afb9e1000)
libnsl.so.1 => /lib64/libnsl.so.1 (0x00007f8afb7c8000)
libclntsh.so.11.1 =>

/usr/lib/oracle/11.2/client64/lib/libclntsh.so.11.1 (0x00007f8af8e59000)
libodbcinst.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007f8af8ac5000)
/lib64/ld-linux-x86-64.so.2 (0x0000003bdb000000)
libnnz11.so => /usr/lib/oracle/11.2/client64/lib/libnnz11.so

(0x00007f8af86f8000)
libaio.so.1 => /lib64/libaio.so.1 (0x00007f8af84f6000)

Moab Workload Manager

http://www.unixodbc.org/odbcinst.html

If the command returns libodbcinst.so.1 => not found, create a symbolic link from
/usr/lib64/libodbcinst.so.1 to /usr/lib64/libodbcinst.so.2. This is a known
Red Hat issue. See Red Hat Bugzilla for more information.

[root]# locate libodbcinst

/usr/local/lib/libodbcinst.so.2

[root]# cd /usr/lib64
[root]# ln -s libodbcinst.so.2 libodbcinst.so.1

Rerun ldd. It should load libsqora.so.11.1 without error, as shown in the ldd example
above.

If the ldd command returns a warning like this: "ldd: warning: you do not have execution
permission for `/usr/lib/oracle/11.2/client64/lib/libsqora.so.11.1'", run the following
command:

[root]# chmod 755 /usr/lib/oracle/11.2/client64/lib/lib*

Rerun ldd. It should load libsqora.so.11.1 without error, as shown in the ldd example
above.

5. Configure Moab to use the Oracle ODBC driver. This example assumes that a Moab user exists and
has been granted read and write privileges to the MOAB database instance referred to on the
Installing the Oracle Instant Client on page 785 page.

[root]# vim $MOABHOMEDIR/dsninfo.dsn

Add the following lines the file, but change ServerName, UserName, and Password to suit your own
system. ServerName is the name of the Oracle database instance. Username and Password are the
credentials used to connect to that instance.

Moab Workload Manager

780 Database Configuration

https://bugzilla.redhat.com/show_bug.cgi?id=498311

Database Configuration 781

[ODBC]
Application Attributes = T
Attributes = W
BatchAutocommitMode = IfAllSuccessful
BindAsFLOAT = F
CloseCursor = F
DisableDPM = F
DisableMTS = T
Driver = Oracle 11g ODBC driver
DSN = ODBC
EXECSchemaOpt =
EXECSyntax = T
Failover = T
FailoverDelay = 10
FailoverRetryCount = 10
FetchBufferSize = 64000
ForceWCHAR = F
Lobs = T
Longs = T
MaxLargeData = 0
MetadataIdDefault = F
QueryTimeout = T
ResultSets = T
ServerName = MOAB
SQLGetData extensions = F
Translation DLL =
Translation Option = 0
DisableRULEHint = T
UserID = moab
Password = moab
StatementCache=F
CacheBufferSize=20
UseOCIDescribeAny=F
MaxTokenSize=8192

6. Add the contents of the dsninfo.dsn file to /etc/odbc.ini. Because the contents of
dsninfo.dsn are required in both files, use the following command to concatenate the contents of
dsninfo.dsn to /etc/odbc.ini. If the odbc.ini file already has content, verify that there are
no conflicts.

[root]# cat $MOABHOMDIR/dsninfo.dsn >> /etc/odbc.ini

7. Create a directory to store the tnsnames.ora file you will create in the next step.

[root]# mkdir /etc/oracle

8. Create the tnsnames.ora file. The ServerName in $MOABHOMEDIR/dsninfo.dsn tells the
Oracle ODBC driver what tnsnames.ora entry to use (MOAB). The MOAB tnsnames entry tells the
Oracle ODBC driver to connect to server adaptive-oracle on the local domain (ac) on port 1561
using TCP and to connect to the Oracle instance named MOAB (The SID is the unique name of the
instance).

Moab Workload Manager

[root]# cat >/etc/oracle/tnsnames.ora <<EOL
MOAB =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = adaptive-oracle)(PORT = 1561))

)
(CONNECT_DATA =
(SID = MOAB)

)
)

EOL

9. Create a profile script (oracle-instant-client.sh) to be invoked by the operating system at
startup. This script will set the ORACLE_HOME, TWO_TASK, and TNS_ADMIN environment variables
required by Oracle and will amend the LD_LIBRARY_PATH to include required Oracle client
libraries in the library search path.

[root]# cat >/etc/profile.d/oracle-instant-client.sh <<EOL
Set ORACLE_HOME to the directory where the bin and lib directories are located
for the oracle client
export ORACLE_HOME=/usr/lib/oracle/11.2/client64

No need to add ORACLE_HOME to the linker search path. oracle-instant-client.conf
in
/etc/ld.so.conf.d should already contain /usr/lib/oracle/11.2/client64.
Alternately, you can set it here by uncommenting the following line:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

Define the default location where Oracle should look for the server
export TWO_TASK=//adaptive-oracle:1561/listener

Define where to find the tnsnames.ora file
export TNS_ADMIN=/etc/oracle
EOL

10. Source the oracle-instant-client.sh script and verify that each environment variable is set
correctly.

[root]# source /etc/profile.d/oracle-instant-client.sh
[root]# echo $ORACLE_HOME
[root]# echo $LD_LIBRARY_PATH
[root]# echo $TWO_TASK
[root]# echo $TNS_ADMIN

11. Modify either the Moab startup script (/etc/init.d/moab) – recommended – or the moabd script
(/opt/moab/sbin/moabd) to source oracle-instant-client.sh.

l Moab startup script (recommended): the following example suggests a location to source the
oracle-instant-client.sh script within the Moab startup script.

...

Export all environment variables required by the Oracle Instant Client
. /etc/profile.d/oracle-instant-client.sh

export MOABHOMEDIR=/opt/moab

...

Moab Workload Manager

782 Database Configuration

Database Configuration 783

l moabd shell script: the following example will resemble the moabd script in /opt/moab/sbin.
Note that the moabd script is not invoked by the Moab startup script; The Moab startup script
invokes the Moab binary (/opt/moab/sbin/moab) by default.

#!/bin/sh
#
Copyright (C) 2012 by Adaptive Computing Enterprises, Inc. All Rights
Reserved.
#

Export all environment variables required by the Oracle Instant Client
. /etc/profile.d/oracle-instant-client.sh

MOABHOMEDIR="/opt/moab" LD_LIBRARY_PATH="/opt/moab/lib:$LD_LIBRARY_PATH" moab
"$@"

12. Verify the Oracle ODBC driver is working.
isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

If you encounter any errors using the isql command, there was a problem setting up the ODBC to
Oracle connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in /etc, but that is
not always true. Use the odbcinst -j command to determine the assumed location of the files
in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not /etc, move them
from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and odbcinst.ini
files. Note the location in which isql expects these files.

$ strace isql -v ODBC

13. If you have not already done so, create the database tables in Oracle using the moab-db-oracle-
create.sql script located in the contrib/sql directory in the root of the binaries. This example
assumes that you are logged into the MOAB database instance (referred to on the Installing the
Oracle Instant Client on page 785 page) as Moab user with read and write privileges.
SQL> @./contrib/sql/moab-db-oracle-create.sql

14. Verify that the database schema installed correctly by listing the tables. Your results should look like
this:

Moab Workload Manager

SQL> select table_name from all_tables where owner = 'MOAB';
+-------------------------------+
| TABLE_NAME |
+-------------------------------+
| TRIGGERS |
| MOAB |
| OBJECTTYPE |
| VCS |
| EVENTTYPE |
| JOBHISTORY |
| MCHECKPOINT |
| NODES |
| EVENTS |
| NODESTATSGENERICRESOURCES |
| JOBS |
| RESERVATIONS |
| GENERICMETRICS |
| REQUESTS |
| GENERALSTATS |
| NODESTATS |
+-------------------------------+
SQLRowCount returns -1
16 rows fetched

15. Restart Moab.

[root]# mschedctl -R

16. Verify Moab is correctly configured to write to the Oracle database by doing each of the following
steps:

a. Tail the moab.log file for ODBC errors.

Check the $MOABHOMEDIR/log/moab.log file for ODBC errors. You should see a few
hits even if there are no errors.
[root]# tail -f $MOABHOMEDIR/log/moab.log | grep -i odbc

b. Log in to the Moab Oracle database.

In the first example below, isql will search /etc/odbc.ini for "[ODBC]". unixODBC will then
use the Oracle 11g ODBC driver defined in /etc/odbcinst.ini to establish a connection. The
ServerName in /etc/odbc.ini tells the Oracle driver to reference the MOAB tnsnames entry
in /etc/oracle/tnsnames.ora for connection parameters.

The second example uses sqlplus and a connect string to connect.

Try both connection methods.

Log in to Oracle. Try both isql and sqlplus64 clients.
[root]# isql -v ODBC

[root]# sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

c. Select some data from one or more of the tables (Nodes, Events, and the like) to verify that data
is being stored in the Moab Oracle instance.

Moab Workload Manager

784 Database Configuration

Database Configuration 785

sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

SQL*Plus: Release 11.2.0.4.0 Production on Fri Oct 4 14:59:02 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Release 11.2.0.1.0 - 64bit Production

SQL> select table_name from user_tables;

TABLE_NAME

JOBS
REQUESTS
RESERVATIONS
VCS
EVENTTYPE
GENERALSTATS
GENERICMETRICS
NODESTATS
NODESTATSGENERICRESOURCES
EVENTS
JOBHISTORY
MCHECKPOINT
NODES
TRIGGERS
MOAB
OBJECTTYPE

16 rows selected.

Related topics

l Installing the Oracle Instant Client on page 785
l Connecting to a MySQL Database with an ODBC Driver on page 773
l Connecting to a PostgreSQL Database with an ODBC Driver on page 776
l Database Configuration on page 772

Installing the Oracle Instant Client
Context

The following procedure demonstrates how to install the correct ODBC drivers for your Oracle
database. This guide is a prerequisite for the Connecting to an Oracle Database with an ODBC
Driver on page 778 task. Each step must be performed as root.

To install the Oracle Instant Client

1. Go to the "Install Client Downloads" page on the Oracle website. Choose the link that matches your
system type (for instance, Instant Client for Linux x86-64). Choose Accept License Agreement at the
top of the page and download the following RPM or zip files for your target version (such as 11.2):

The process of connecting Oracle to Moab Workload Manager has been tested on Oracle
Instant Client version 11.2. The process may work with other versions, but they are not
supported.

Moab Workload Manager

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

l Basic (oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_64.rpm)

l SQL Plus (oracle-instantclient11.2-sqlplus-11.2.0.4.0-1.x86_64.rpm)

l ODBC (oracle-instantclient11.2-odbc-11.2.0.4.0-1.x86_64.rpm)

2. Install the packages. This example installs the RPMs.

[root]# rpm -i ./oracle-instantclient11.2-basic-11.2.0.4.0-1.x86_64.rpm
[root]# rpm -i ./oracle-instantclient11.2-sqlplus-11.2.0.4.0-1.x86_64.rpm
[root]# rpm -i ./oracle-instantclient11.2-odbc-11.2.0.4.0-1.x86_64.rpm

3. Create a configuration file in /etc/ld.so.conf.d to add the Oracle client libraries to the LD_
LIBRARY_PATH.

To confirm where the RPMs installed the libraries, run rpm -qlp <rpmFileName>.

[root]# cat >/etc/ld.so.conf.d/oracle-instant-client.conf <<EOL
/usr/lib/oracle/11.2/client64/lib
EOL

If you installed Oracle Instant Client from a repository, run repoquery -ql <rpmName>
instead.

Rebuild the LD_LIBRARY_PATH.

[root]# ldconfig

4. Connect to the database using sqlplus. If you used RPMs to install the client, the 32-bit and 64-bit
clients are already in your PATH.

[root]# sqlplus64 moab/moab@adaptive-oracle:1561/MOAB

SQL*Plus: Release 11.2.0.4.0 Production on Mon Sep 30 14:35:10 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Release 11.2.0.1.0 - 64bit Production

The 64-bit sqlplus client was used to connect to a 64-bit 11g instance called MOAB, which is hosted on
adaptive-oracle.ac.

5. Verify that you are logged in to the correct database.
SQL> select name from v$database
2 ;

NAME

MOAB

6. Create the database in Oracle using the moab-db-oracle-create.sh script located in the
contrib/sql directory in the root of the binaries.

Useful comments are at the top of the script. Read the comments before running the script.

Moab Workload Manager

786 Database Configuration

Database Configuration 787

[root]# ./moab-db-oracle-create.sh

7. Display all of user MOAB's tables.
SQL> select table_name from all_tables where owner = 'MOAB';

TABLE_NAME

TRIGGERS
MOAB
OBJECTTYPE
VCS
EVENTTYPE
JOBHISTORY
MCHECKPOINT
NODES
EVENTS
NODESTATSGENERICRESOURCES
JOBS
RESERVATIONS
GENERICMETRICS
REQUESTS
GENERALSTATS
NODESTATS

16 rows selected.
SQL>

8. Generate a script to describe all of user MOAB's tables. Cut and paste the following into a terminal
that is not logged in to SQLPlus.
[root]# cat > /tmp/generateDescribe.sql <<EOL
SET HEADING OFF
SET FEEDBACK OFF
SET ECHO OFF
SET PAGESIZE 0
SPOOL /tmp/describeAllUserTables.sql
select 'desc '||owner||'.'||table_name||';' from all_tables where owner = 'MOAB';
SPOOL OFF
EOL

9. Run describeAllUserTables.sql.
[root]# SQL> start /tmp/describeAllUserTables.sql

Related topics

l Connecting to an Oracle Database with an ODBC Driver on page 778
l Database Configuration on page 772

Migrating Your Database to Newer Versions of Moab
Sometimes when upgrading from an older version of Moab to a newer version, you must update your
database schema. If the schema Moab expects to operate against is different from the actual schema of
the database Moab is connected to, Moab might not be able to use the database properly and data might
be lost.

When upgrading the Moab database schema from an old version, you must perform each version upgrade
in order. You cannot skip versions. For example, to migrate from version 6.1 to version 8.0, you must
follow the steps in Migrating from Moab 6.1 to Moab 7.0 on page 789, Migrating from Moab 7.0 to

Moab Workload Manager

Moab 7.1 on page 789, Migrating from Moab 7.1 to Moab 7.2 on page 789, Migrating from Moab 7.2 to
Moab 7.2.6 on page 788, Migrating from Moab 7.2.6 to Moab 7.5 on page 788, and then Migrating from
Moab 7.5 to Moab 8.0 on page 788.

If you are upgrading your database to the 8.0 schema from 7.2.x where "x" is 5 or lower, you must
complete the instructions for the following sections in order:

l Migrating from Moab 7.2 to Moab 7.2.6 on page 788
l Migrating from Moab 7.2.6 to Moab 7.5 on page 788.
l Migrating from Moab 7.5 to Moab 8.0 on page 788

Migrating from Moab 7.5 to Moab 8.0
In Moab Workload Manager 8.0, column names that have become reserved words in newer versions of
MySQL, PostgreSQL, and Oracle were renamed to eliminate the need to quote column names in SQL
statements. Also, a few additional columns were added to existing tables to support Moab's Green
feature. To upgrade your database with these changes, use the moab-db-<database>-upgrade8_
0.sql file located in the contrib/sql directory in the root of the binaries. For example, to migrate
your MySQL database from the 7.5 (or later) schema, run the following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade8_0.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating from Moab 7.2.6 to Moab 7.5
In Moab Workload Manager 7.5, column names that are reserved words in databases supported by
Adaptive Computing were renamed to eliminate the need to quote column names in SQL statements. To
upgrade your database with these changes, use the moab-db-<database>-upgrade7_5.sql file
located in the contrib/sql directory in the root of the binaries. For example, to migrate your
MySQL database from the 7.2.6 (or later) schema, run the following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_5.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating from Moab 7.2 to Moab 7.2.6
In Moab Workload Manager 7.2.6, several columns were extended and the primary key on the Triggers
table changed. To upgrade your database with these changes, use the moab-db-<database>-
upgrade7_2_6.sql file located in the contrib/sql directory in the root of the binaries. For
example, to migrate your MySQL database from the 7.2.x (pre-7.2.6) schema to the 7.2.6 schema, run the
following:

Moab Workload Manager

788 Database Configuration

Database Configuration 789

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_2_6.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

The 7.2.6 database upgrade is compatible with all earlier versions of 7.2.

Migrating from Moab 7.1 to Moab 7.2
In Moab 7.2, several events in the event table related to the Accounting Manager were renamed. To
upgrade your database with these changes, use the moab-db-<database>-upgrade7_2.sql file
located in the contrib/sql directory in the root of the binaries. For example, to migrate your MySQL
database from the 7.1 schema to the 7.2 schema, run the following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_2.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating from Moab 7.0 to Moab 7.1
In Moab 7.1, Offset was renamed TriggerOffset in the Triggers table. To upgrade your database with
these changes, use the moab-db-<database>-upgrade7_1.sql file located in the root of the
binaries. For example, to migrate your MySQL database from the 7.0 schema to the 7.1 schema, run the
following:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade7_1.sql

The database name is usually "Moab".

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating from Moab 6.1 to Moab 7.0
In Moab 7.0, the Moab table has been removed from the database, and MoabInfo and JobHistory tables
have been added to it. To upgrade your database with these changes, use the moab-db-mysql-
upgrade6_1.sql file located in the contrib/sql directory in the root of the binaries. This is done by
running the following command:

[root@]# mysql -u root -D <database name> -p < moab-db-mysql-upgrade6_1.sql

The database name is usually "Moab".

Your MySQL database is updated for Moab 7.0.

Moab Workload Manager

Migrating from Moab 6.0 to Moab 6.1
An Events table has been added to the database in Moab 6.1. Update the contrib/sql/moab-db.sql
file with the following table:

CREATE TABLE Events (
ID INTEGER,
ObjectType INTEGER,
EventType INTEGER,
EventTime INTEGER UNSIGNED,
ObjectName VARCHAR(64),
Name VARCHAR(64),
Description TEXT,
PRIMARY KEY (ID)
);

Use the mdiag -e --xml command in the following format to query the events table.

mdiag -e [-w <starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>] --
xml

The table is then displayed with all specified events configured with the RECORDEVENTLIST parameter.

If the command could return a large of data, redirect the output. mdiag -e --xml >
outputfile

Migrating from Moab 5.4 to Moab 6.0
The ODBC database schema has been updated for Moab 6.0. When updating Moab to version 6.0, the
changes below must be applied to the database for database functionality to work. Below are the SQL
statements required to update the schema for Moab 6.0.

These changes are only necessary for an ODBC database. An SQLite database does not require an
update.

Moab Workload Manager

790 Database Configuration

Database Configuration 791

ALTER TABLE Events ADD COLUMN Name VARCHAR(64);
ALTER TABLE Events MODIFY Description TEXT;

CREATE TABLE Nodes (
ID VARCHAR(64),
State VARCHAR(64),
OperatingSystem VARCHAR(64),
ConfiguredProcessors INTEGER UNSIGNED,
AvailableProcessors INTEGER UNSIGNED,
ConfiguredMemory INTEGER UNSIGNED,
AvailableMemory INTEGER UNSIGNED,
Architecture VARCHAR(64),
AvailGres VARCHAR(64),
ConfigGres VARCHAR(64),
AvailClasses VARCHAR(64),
ConfigClasses VARCHAR(64),
ChargeRate DOUBLE,
DynamicPriority DOUBLE,
EnableProfiling INTEGER UNSIGNED,
Features VARCHAR(64),
GMetric VARCHAR(64),
HopCount INTEGER UNSIGNED,
HypervisorType VARCHAR(64),
IsDeleted INTEGER UNSIGNED,
IsDynamic INTEGER UNSIGNED,
JobList VARCHAR(64),
LastUpdateTime INTEGER UNSIGNED,
LoadAvg DOUBLE,
MaxLoad DOUBLE,
MaxJob INTEGER UNSIGNED,
MaxJobPerUser INTEGER UNSIGNED,
MaxProc INTEGER UNSIGNED,
MaxProcPerUser INTEGER UNSIGNED,
OldMessages VARCHAR(64),
NetworkAddress VARCHAR(64),
NodeSubstate VARCHAR(64),
Operations VARCHAR(64),
OSList VARCHAR(64),
Owner VARCHAR(64),
ResOvercommitFactor VARCHAR(64),
Partition VARCHAR(64),
PowerIsEnabled INTEGER UNSIGNED,
PowerPolicy VARCHAR(64),
PowerSelectState VARCHAR(64),
PowerState VARCHAR(64),
Priority INTEGER UNSIGNED,
PriorityFunction VARCHAR(64),
ProcessorSpeed INTEGER UNSIGNED,
ProvisioningData VARCHAR(64),
AvailableDisk INTEGER UNSIGNED,
AvailableSwap INTEGER UNSIGNED,
ConfiguredDisk INTEGER UNSIGNED,
ConfiguredSwap INTEGER UNSIGNED,
ReservationCount INTEGER UNSIGNED,
ReservationList VARCHAR(64),
ResourceManagerList VARCHAR(64),
Size INTEGER UNSIGNED,
Speed DOUBLE,
SpeedWeight DOUBLE,
TotalNodeActiveTime INTEGER UNSIGNED,
LastModifyTime INTEGER UNSIGNED,
TotalTimeTracked INTEGER UNSIGNED,

Moab Workload Manager

TotalNodeUpTime INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
VMOSList VARCHAR(64),
PRIMARY KEY (ID)

);

CREATE TABLE Jobs (
ID VARCHAR(64),
SourceRMJobID VARCHAR(64),
DestinationRMJobID VARCHAR(64),
GridJobID VARCHAR(64),
AName VARCHAR(64),
User VARCHAR(64),
Account VARCHAR(64),
Class VARCHAR(64),
QOS VARCHAR(64),
OwnerGroup VARCHAR(64),
JobGroup VARCHAR(64),
State VARCHAR(64),
EState VARCHAR(64),
SubState VARCHAR(64),
UserPriority INTEGER UNSIGNED,
SystemPriority INTEGER UNSIGNED,
CurrentStartPriority INTEGER UNSIGNED,
RunPriority INTEGER UNSIGNED,
PerPartitionPriority TEXT,
SubmitTime INTEGER UNSIGNED,
QueueTime INTEGER UNSIGNED,
StartTime INTEGER UNSIGNED,
CompletionTime INTEGER UNSIGNED,
CompletionCode INTEGER,
UsedWalltime INTEGER UNSIGNED,
RequestedMinWalltime INTEGER UNSIGNED,
RequestedMaxWalltime INTEGER UNSIGNED,
CPULimit INTEGER UNSIGNED,
SuspendTime INTEGER UNSIGNED,
HoldTime INTEGER UNSIGNED,
ProcessorCount INTEGER,
RequestedNodes INTEGER,
ActivePartition VARCHAR(64),
SpecPAL VARCHAR(64),
DestinationRM VARCHAR(64),
SourceRM VARCHAR(64),
Flags TEXT,
MinPreemptTime INTEGER UNSIGNED,
Dependencies TEXT,
RequestedHostList TEXT,
ExcludedHostList TEXT,
MasterHostName VARCHAR(64),
GenericAttributes TEXT,
Holds TEXT,
Cost DOUBLE,
Description TEXT,
Messages TEXT,
NotificationAddress TEXT,
StartCount INTEGER UNSIGNED,
BypassCount INTEGER UNSIGNED,
CommandFile TEXT,
Arguments TEXT,
RMSubmitLanguage TEXT,

Moab Workload Manager

792 Database Configuration

Database Configuration 793

StdIn TEXT,
StdOut TEXT,
StdErr TEXT,
RMOutput TEXT,
RMError TEXT,
InitialWorkingDirectory TEXT,
UMask INTEGER UNSIGNED,
RsvStartTime INTEGER UNSIGNED,
BlockReason TEXT,
BlockMsg TEXT,
PSDedicated DOUBLE,
PSUtilized DOUBLE,
PRIMARY KEY (ID)

);

CREATE TABLE Requests (
JobID VARCHAR(64),
RIndex INTEGER UNSIGNED,
AllocNodeList VARCHAR(1024),
AllocPartition VARCHAR(64),
PartitionIndex INTEGER UNSIGNED,
NodeAccessPolicy VARCHAR(64),
PreferredFeatures TEXT,
RequestedApp VARCHAR(64),
RequestedArch VARCHAR(64),
ReqOS VARCHAR(64),
ReqNodeSet VARCHAR(64),
ReqPartition VARCHAR(64),
MinNodeCount INTEGER UNSIGNED,
MinTaskCount INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
TasksPerNode INTEGER UNSIGNED,
DiskPerTask INTEGER UNSIGNED,
MemPerTask INTEGER UNSIGNED,
ProcsPerTask INTEGER UNSIGNED,
SwapPerTask INTEGER UNSIGNED,
NodeDisk INTEGER UNSIGNED,
NodeFeatures TEXT,
NodeMemory INTEGER UNSIGNED,
NodeSwap INTEGER UNSIGNED,
NodeProcs INTEGER UNSIGNED,
GenericResources TEXT,
ConfiguredGenericResources TEXT,
PRIMARY KEY (JobID,RIndex)

);

INSERT INTO ObjectType (Name,ID) VALUES ("Rsv",13);
INSERT INTO ObjectType (Name,ID) VALUES ("RM",14);
INSERT INTO ObjectType (Name,ID) VALUES ("Sched",15);
INSERT INTO ObjectType (Name,ID) VALUES ("SRsv",16);
INSERT INTO ObjectType (Name,ID) VALUES ("Sys",17);
INSERT INTO ObjectType (Name,ID) VALUES ("TNode",18);
INSERT INTO ObjectType (Name,ID) VALUES ("Trig",19);
INSERT INTO ObjectType (Name,ID) VALUES ("User",20);
INSERT INTO ObjectType (Name,ID) VALUES ("CJob",23);
INSERT INTO ObjectType (Name,ID) VALUES ("GRes",30);
INSERT INTO ObjectType (Name,ID) VALUES ("Gmetric",31);
INSERT INTO ObjectType (Name,ID) VALUES ("Stats",39);
INSERT INTO ObjectType (Name,ID) VALUES ("TJob",42);
INSERT INTO ObjectType (Name,ID) VALUES ("Paction",43);
INSERT INTO ObjectType (Name,ID) VALUES ("VM",45);
INSERT INTO ObjectType (Name,ID) VALUES ("JGroup",48);

Moab Workload Manager

INSERT INTO EventType (Name,ID) VALUES ("TRIGTHRESHOLD",41);
INSERT INTO EventType (Name,ID) VALUES ("VMCREATE",42);
INSERT INTO EventType (Name,ID) VALUES ("VMDESTROY",43);
INSERT INTO EventType (Name,ID) VALUES ("VMMIGRATE",44);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWERON",45);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWEROFF",46);
INSERT INTO EventType (Name,ID) VALUES ("NODEMODIFY",47);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWEROFF",48);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWERON",49);
INSERT INTO EventType (Name,ID) VALUES ("NODEPROVISION",50);
INSERT INTO EventType (Name,ID) VALUES ("ALLSCHEDCOMMAND",51);
INSERT INTO EventType (Name,ID) VALUES ("AMCANCEL",52);
INSERT INTO EventType (Name,ID) VALUES ("AMDEBIT",53);
INSERT INTO EventType (Name,ID) VALUES ("AMQUOTE",54);
INSERT INTO EventType (Name,ID) VALUES ("AMRESERVE",55);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLEND",56);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLSTART",57);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLEEND",58);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLESTART",59);
INSERT INTO EventType (Name,ID) VALUES ("JOBCHECKPOINT",60);

ALTER TABLE GeneralStats ADD COLUMN TotalConfiguredProcCount INTEGER;

Importing Statistics from stats/DAY.* to the Moab
Database
The contrib/stat_converter folder contains the files to build mstat_converter, an executable
that reads file-based statistics in a Moab stats directory and dumps them into a database. It also reads
the Moab checkpoint file (.moab.ck) and dumps that to the database as well. It uses the
$MOABHOMEDIR/moab.cfg file to connect to the appropriate database and reads the statistics files
from $MOABHOMEDIR/stats.

To run, execute the program mstat_converter with no arguments.

The statistics converter program does not clear the database before converting. However, if there are
statistics in the database and the statistics files from the same period, the converter overwrites the
database information with the information from the statistics files.

Accelerators
Moab can integrate with the TORQUE resource manager to discover, report, schedule, and submit
workload to various accelerator architectures (such as NVIDIA GPUs or Intel® Xeon Phi™ co-processor
architecture) for parallel processing. See the topics below for specific information.

l Scheduling GPUs

o Using GPUs with NUMA

o NVIDIA GPUs

Moab Workload Manager

794 Accelerators

Accelerators 795

o GPU Metrics

l Configuring Intel® Xeon Phi™ Co-processor Architecture

o Intel® Xeon Phi™ Co-processor Metrics

Scheduling GPUs
In TORQUE 2.5.4 and later, users can request GPUs on a node at job submission by specifying a nodes
resource request, using the qsub -l option. The number of GPUs a node has must be specified in the nodes
file. The GPU is then reported in the output of pbsnodes:

napali
state = free
np = 2
ntype = cluster
status = rectime=1288888871,varattr=,jobs=,state=free,netload=1606207294,gres=tom:!
/home/dbeer/dev/scripts/dynamic_
resc.sh,loadave=0.10,ncpus=2,physmem=3091140kb,availmem=32788032348kb,
totmem=34653576492kb,idletime=4983,nusers=3,nsessions=14,sessions=3136 1805 2380 2428
1161 3174 3184
3191 3209 3228 3272 3333 20560 32371,uname=Linux napali 2.6.32-25-generic #45-Ubuntu
SMP Sat Oct 16 19:52:42
UTC 2010 x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 1

The $PBS_GPUFILE has been created to include GPU awareness. The GPU appears as a separate line in
$PBS_GPUFILE and follows this syntax:

<hostname>-gpu<index>

If a job were submitted to run on a server called "napali" (the submit command would look something
like: qsub test.sh -l nodes=1:ppn=2:gpus=1), the $PBS_GPUFILE would contain:

napali-gpu0

It is left up to the job's owner to make sure that the job executes properly on the GPU. By default,
TORQUE treats GPUs exactly the same as ppn (which corresponds to CPUs).

Related topics

l Using GPUs with NUMA
l NVIDIA GPUs

Using GPUs with NUMA
The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM
daemon and multiple MOM nodes. Configure the server_priv/nodes file with the num_node_boards
and numa_gpu_node_str attributes. The attribute num_node_boards tells pbs_server how many
NUMA nodes are reported by the MOM. If each NUMA node has the same number of GPUs, add the total

Moab Workload Manager

number of GPUs to the nodes file. Following is an example of how to configure the nodes file with num_
node_boards:

numahost gpus=12 num_node_boards=6

This line in the nodes file tells pbs_server there is a host named numahost and that it has 12 GPUs and 6
nodes. The pbs_server divides the value of GPUs (12) by the value for num_node_boards (6) and
determines there are 2 GPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of GPUs per node board, but a system
does not have to be configured with the same number of GPUs per node board. For systems with non-
uniform GPU distributions, use the attribute numa_gpu_node_str to let pbs_server know where GPUs
are located in the cluster.

If there are equal numbers of GPUs on each NUMA node, you can specify them with a string. For example,
if there are 3 NUMA nodes and the first has 0 GPUs, the second has 3, and the third has 5, you would add
this to the nodes file entry:

numa_gpu_node_str=0,3,5

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 0, 3s, and 5 GPUs
respectively. Note that the attribute gpus is not used. The gpus attribute is ignored because the number
of GPUs per node is specifically given.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l gres=gpus:X. This allows
users who are using NUMA systems to make requests such as -l ncpus=20,gpus=5 (or -l
ncpus=20:gpus=5)indicating they are not concerned with the GPUs in relation to the NUMA nodes they
request; they only want a total of 20 cores and 5 GPUs.

Related topics

l Scheduling GPUs
l NVIDIA GPUs

NVIDIA GPUs
The pbs_mom file can now query for GPU hardware information and report status to the pbs_server.
gpustatus will appear in pbsnodes output. New commands allow for setting GPU modes and for resetting
GPU ECC error counts.

This feature is only available in TORQUE 2.5.6, 3.0.2, and later.

This document assumes that you have installed the NVIDIA CUDA ToolKit and the NVIDIA
development drivers on a compute node with an NVIDIA GPU. (Both can be downloaded from
http://developer.nvidia.com/category/zone/cuda-zone).

You will want to download the latest version if you run into problems compiling.

If the pbs_server does not have GPUs, it only needs to be configured with --enable-nvidia-gpus. All
other systems that have NVIDIA GPUs will need:

Moab Workload Manager

796 Accelerators

http://developer.nvidia.com/category/zone/cuda-zone

Accelerators 797

l --enable-nvidia-gpus

l --with-nvml-include=DIR (include path for nvml.h)

nvml.h is only found in the NVIDIA CUDA ToolKit.

l --with-nvml-lib=DIR (*lib path for libnvidia-ml)

Systems that have NVIDIA GPUs require the following:

Server

./configure --with-debug --enable-nvidia-gpus

Compute nodes (with NVIDIA GPUs)

./configure --with-debug --enable-nvidia-gpus --with-nvml-lib=/usr/lib64 --with-nvml-
include=/cuda/NVML

If all of the compute nodes have the same hardware and software configuration, you can choose to
compile on one compute node and then run make packages.

> make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on your production
machines. (Use --help for options.)

When updating, it is good practice to stop the pbs_server and make a backup of the TORQUE home
directory. You will also want to backup the output of qmgr -c 'p s'. The update will only overwrite
the binaries.

If you move GPU cards to different slots, you must restart pbs_server in order for TORQUE to
recognize the drivers as the same ones in different locations rather than 2 new, additional drivers.

For further details, see these topics:

l TORQUE configuration on page 797
l GPU modes for NVIDIA 260.x driver on page 798
l GPU Modes for NVIDIA 270.x driver on page 798
l gpu_status on page 799
l New NVIDIA GPU support on page 799

TORQUE configuration
There are three configuration (./configure) options available for use with Nvidia GPGPUs:

Moab Workload Manager

l --enable-nvidia-gpus

l --with-nvml-lib=DIR

l --with-nvml-include=DIR

--enable-nvidia-gpus is used to enable the new features for the Nvidia GPGPUs. By default, the
pbs_moms use the nvidia_smi command to interface with the Nvidia GPUs.

./configure --enable-nvidia-gpus

To use the NVML (NVIDIA Management Library) API instead of nvidia-smi, configure TORQUE using --
with-nvml-lib=DIR and --with-nvml-include=DIR. These commands specify the location of the
libnvidia-ml library and the location of the nvml.h include file.

./configure -with-nvml-lib=/usr/lib
--with-nvml-include=/usr/local/cuda/Tools/NVML
server_priv/nodes:
node001 gpus=1
node002 gpus=4
…
pbsnodes -a
node001
 …
 gpus = 1
...

By default, when TORQUE is configured with --enable-nvidia-gpus the $TORQUE_HOME/nodes file
is automatically updated with the correct GPU count for each MOM node. See the TORQUE
documentation on qgpumode for additional information.

GPU modes for NVIDIA 260.x driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive - Only one COMPUTE thread is allowed to run on the GPU

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

GPU Modes for NVIDIA 270.x driver
l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive Thread - Only one COMPUTE thread is allowed to run on the GPU (v260 exclusive)

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

l 3 – Exclusive Process - Only one COMPUTE process is allowed to run on the GPU

Moab Workload Manager

798 Accelerators

Accelerators 799

gpu_status
root@gpu:~# pbsnodes gpu
gpu
...
 gpus = 2
 gpu_status = gpu[1]=gpu_id=0:6:0;gpu_product_name=Tesla
 C2050;gpu_display=Disabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:6:0;
 gpu_fan_speed=54 %;gpu_memory_total=2687 Mb;gpu_memory_used=74
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;gpu_double_bit_ecc_errors=
0;gpu_temperature=88 C,gpu[0]=gpu_id=0:5:0;gpu_product_name=Tesla
C2050;gpu_display=Enabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:5:0;
gpu_fan_speed=66 %;gpu_memory_total=2687 Mb;gpu_memory_used=136
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;
gpu_double_bit_ecc_errors=0;gpu_temperature=86 C,driver_ver=270.41.06,timestamp=Wed
May 4 13:00:35
2011

New NVIDIA GPU support
qsub allows specifying required compute mode when requesting GPUs. If no GPU mode is requested, it
will default to "exclusive" for Nvidia driver version 260 or "exclusive_thread" for NVIDIA driver version
270 and above.

l qsub -l nodes=1:ppn=1:gpus=1

l qsub -l nodes=1:gpus=1

l qsub -l nodes=1:gpus=1:exclusive_thread

l qsub -l nodes=1:gpus=1:exclusive_process

l qsub -l nodes=1:gpus=1:reseterr

l qsub -l nodes=1:gpus=1:reseterr:exclusive_thread (exclusive_thread:reseterr)

l qsub -l nodes=1:gpus=1:reseterr:exclusive_process

Related topics

l Scheduling GPUs on page 795
l Using GPUs with NUMA on page 795

GPU Metrics
GPU metrics can be collected for nodes that:

l Have one or more GPUs.

l Run TORQUE 2.5.x or later.

l Use NVIDIA drivers v260.x or v270.x.

GPU metric tracking must be enabled in moab.cfg:

Moab Workload Manager

RMCFG[torque] flags=RECORDGPUMETRICS

There is one GPU metric for all GPU devices within a node (gpu_timestamp) and nine GPU metrics
for each GPU device within a node. If the maximum GPU devices within a node is 4, you must
increase the MAXGMETRIC value in moab.cfg by (maxgpudevices x gpumetrics) + 1. In this case,
the formula is (4 x 9) + 1 = 37, so whatever the MAXGMETRIC value is, it must be increased by 37.
This way, when enabling GPU metrics recording, Moab has enough GMETRIC types to accommodate
the GPU metrics.

GPU Metrics Map
The GPU metric names map is as follows (where X is the GPU number):

Metric name as
returned by
pbsnodes

GMETRIC name as stored in Moab Metric output

timestamp gpu_timestamp

The gpu_timestamp metric is global to all GPUs on
the node and indicates the last time the driver
collected information on the GPUs.

The time data was collected
in epoch time

gpu_fan_speed gpuX_fan The current fan speed as a
percentage

gpu_memory_
total

gpuX_mem The total GPU memory in
megabytes

gpu_memory_
used

gpuX_usedmem The total used GPU memory
in megabytes

gpu_utilization gpuX_util The GPU capability currently
in use as a percentage

gpu_memory_util-
ization

gpuX_memutil The GPU memory currently
in use as a percentage

gpu_ecc_mode gpuX_ecc Whether ECC is enabled or
disabled

gpu_single_bit_
ecc_errors

gpuX_ecc1err The total number of EEC
single-bit errors since the last
counter reset

Moab Workload Manager

800 Accelerators

Accelerators 801

Metric name as
returned by
pbsnodes

GMETRIC name as stored in Moab Metric output

gpu_double_bit_
ecc_errors

gpuX_ecc2err The total number of EEC
double-bit errors since the
last counter reset

gpu_temperature gpuX_temp The GPU current tem-
perature in Celsius

Example 3-157: GPU example

$ mdiag -n -v --xml

<Data>
<node AGRES="GPUS=2;"
AVLCLASS="[test 8][batch 8]"
CFGCLASS="[test 8][batch 8]"
GMETRIC="gpu1_fan:59.00,gpu1_mem:2687.00,gpu1_usedmem:74.00,gpu1_util:94.00,gpu1_
memutil:9.00,gpu1_ecc:0.00,gpu1_ecc1err:0.00,gpu1_ecc2err:0.00,gpu1_temp:89.00,gpu0_
fan:70.00,gpu0_mem:2687.00,gpu0_usedmem:136.00,gpu0_util:94.00,gpu0_memutil:9.00,gpu0_
ecc:0.00,gpu0_ecc1err:0.00,gpu0_ecc2err:0.00,gpu0_temp:89.00,gpu_
timestamp:1304526680.00"
GRES="GPUS=2;"
LASTUPDATETIME="1304526518" LOAD="1.050000"
MAXJOB="0" MAXJOBPERUSER="0" MAXLOAD="0.000000" NODEID="gpu"
NODEINDEX="0" NODESTATE="Idle" OS="linux" OSLIST="linux"
PARTITION="makai" PRIORITY="0" PROCSPEED="0" RADISK="1"
RAMEM="5978" RAPROC="7" RASWAP="22722" RCDISK="1" RCMEM="5978"
RCPROC="8" RCSWAP="23493" RMACCESSLIST="makai" SPEED="1.000000"
STATMODIFYTIME="1304525679" STATTOTALTIME="315649"
STATUPTIME="315649"></node>
</Data>

Intel® Xeon Phi™ Coprocessor Configuration

Intel Many-Integrated Cores (MIC) architecture configuration
If you use an Intel Many-Integrated Cores (MIC) architecture-based product (e.g., Intel Xeon Phi™) in your
cluster for parallel processing, you must configure TORQUE to detect them.

Prerequisites

l TORQUE 4.2 or later

l If you set up TORQUE using auto-detection and intend to get the MIC-based device status report,
you must build pbs_mom on a system that has the lower-level API libraries for the MIC-based
device(s) installed. Additionally, every MOM built with --enable-mics and running on a
compute node must already have the lower-level API libraries installed on the node. Note that the
library is called coi_host. You must obtain the API libraries from Intel.

Moab Workload Manager

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

Setup Options

There are two ways to configure MIC-based devices with TORQUE: (1) manually and (2) by auto-
detection.

Manual configuration

l Add mics=X to the nodes file for the appropriate nodes.

napali np=12 mics=2

Auto-detect

When you use auto-detection, pbs_mom discovers the MIC-based devices and reports them to pbs_server.

l At build time, add --enable-mics to the configure line.

./configure --enable-mics <other configure options>

Moab Workload Manager

802 Accelerators

Accelerators 803

Validating the configuration

TORQUE

pbsnodes

Example 3-158: pbsnodes output

slesmic
state = free
np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=7442004852,gres=,loadave=0.00,ncp
us=32,physmem=65925692kb,availmem=66531344kb,totmem=68028984kb,idletime=59059,nusers=2
,nsessions=8,sessions=4387 4391 4392 4436 4439 4443 4459 100395,uname=Linux slesmic
3.0.13-0.27-default #1 SMP Wed Feb 15 13:33:49 UTC 2012 (d73692b) x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 2
mic_status = mic[1]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;free_

physmem=7854972928;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.000000;normalized_load=0.000000;,mic[0]=mic_id=8796;num_cores=61;num_
threads=244;physmem=8065748992;free_physmem=7872712704;swap=0;free_swap=0;max_
frequency=1090;isa=COI_ISA_KNC;load=0.540000;normalized_load=0.008852;

rhmic.ac
state = free
np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=3006171583,gres=,loadave=0.00,ncp
us=32,physmem=65918268kb,availmem=66901588kb,totmem=67982644kb,idletime=59477,nusers=2
,nsessions=2,sessions=3401 29320,uname=Linux rhmic.ac 2.6.32-220.el6.x86_64 #1 SMP Tue
Dec 6 19:48:22 GMT 2011 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 1
mic_status = mic[0]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;free_

physmem=7872032768;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.540000;normalized_load=0.008852;<mic_status>;

Moab Workload Manager

Moab

mdiag -n -v

Example 3-159: mdiag -n -v output

$ mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap
Speed Opsys Arch Par Load Classes Features

hola Idle 4:4 8002:8002 1:1 10236:13723
1.00 linux - hol 0.24 [batch] -
GRES=MICS:2,
----- --- 4:4 8002:8002 1:1 10236:13723

Total Nodes: 1 (Active: 0 Idle: 1 Down: 0)

checknode -v

Example 3-160: checknode output

$ checknode slesmic
node slesmic

State: Idle (in current state for 00:00:16)
Configured Resources: PROCS: 100 MEM: 62G SWAP: 64G DISK: 1M MICS: 2
Utilized Resources: SWAP: 1581M
Dedicated Resources: ---
Generic Metrics: mic1_mic_id=8796.00,mic1_num_cores=61.00,mic1_num_
threads=244.00,mic1_physmem=8065748992.00,mic1_free_physmem=7854972928.00,mic1_
swap=0.00,mic1_free_swap=0.00,mic1_max_frequency=1090.00,mic1_load=0.12,mic1_
normalized_load=0.00,mic0_mic_id=8796.00,mic0_num_cores=61.00,mic0_num_
threads=244.00,mic0_physmem=8065748992.00,mic0_free_physmem=7872679936.00,mic0_
swap=0.00,mic0_free_swap=0.00,mic0_max_frequency=1090.00
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Classes: [batch]
RM[napali]* TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 3:45:43 Up: 3:45:43 (100.00%) Active: 00:00:00 (0.00%)

Reservations:

Moab Workload Manager

804 Accelerators

Accelerators 805

Job submission

Syntax

Example 3-161: Request MIC-based device(s) in qsub

qsub -l nodes=X:mics=Y

Because these resources are delimited with a colon, this command requests a job with X nodes and Y mics per task. If you
run the same command and delimit the resources with a comma (qsub -l nodes=X,mics=Y), you request a job
with X nodes and Y mics per job.

qstat -f

Example 3-162: qstat -f output

Job Id: 5271.napali
Job_Name = STDIN
Job_Owner = dbeer@napali
job_state = Q
queue = batch
server = napali
Checkpoint = u
ctime = Fri Sep 14 08:56:33 2012
Error_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.e5271
Hold_Types = n
Join_Path = oe
Keep_Files = n
Mail_Points = a
mtime = Fri Sep 14 08:56:33 2012
Output_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.o5271
Priority = 0
qtime = Fri Sep 14 08:56:33 2012
Rerunable = True
Resource_List.neednodes = 1:mics=1
Resource_List.nodect = 1
Resource_List.nodes = 1:mics=1
substate = 10
Variable_List = PBS_O_QUEUE=batch,PBS_O_HOME=/home/dbeer,

PBS_O_LOGNAME=dbeer,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games,PBS_O_MAIL=/var/mail/dbeer,PBS_O_SHELL=/bin/bash,
PBS_O_LANG=en_US.UTF-8,
PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfilter,
PBS_O_WORKDIR=/home/dbeer/dev/private-torque/trunk,PBS_O_HOST=napali,
PBS_O_SERVER=napali

euser = dbeer
egroup = company
queue_rank = 3
queue_type = E
etime = Fri Sep 14 08:56:33 2012
submit_args = -l nodes=1:mics=1
fault_tolerant = False
job_radix = 0
submit_host = napali

Moab Workload Manager

checkjob -v

Example 3-163: checkjob -v output

dthompson@mahalo:~/dev/moab-test/trunk$ checkjob -v 2
job 2 (RM job '2.mahalo')

AName: STDIN
State: Idle
Creds: user:dthompson group:dthompson class:batch
WallTime: 00:00:00 of 1:00:00
SubmitTime: Thu Sep 13 17:06:06
(Time Queued Total: 00:00:24 Eligible: 00:00:02)

TemplateSets: DEFAULT
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL
Dedicated Resources Per Task: PROCS: 1 MICS: 1

...

Intel® Xeon Phi™ Co-processor Metrics
Intel Many-Integrated Cores (MIC) architecture-based device (e.g., Intel Xeon Phi™) metrics can be
collected for nodes that:

l Have one or more MIC-based devices.

l Run TORQUE 4.2.x or later.

l Run Moab 7.2 or later.

MIC-based device metric tracking must be enabled in moab.cfg:

RMCFG[torque] flags=RECORDMICMETRICS

There are 11 metrics for each MIC-based device within a node. If the maximum MIC-based devices
within a node is 4, you must increase the MAXGMETRIC value in moab.cfg by (maxmicdevices x
micmetrics). In this case, the formula is (4 x 11) = 44, so whatever the MAXGMETRIC value is, it
must be increased by 44. This way, when enabling MIC-based device metrics recording, Moab has
enough GMETRIC types to accommodate the additional metrics.

MIC-based Metrics Map
The MIC-based metric names map is as follows (where X is the MIC-based device number):

Moab Workload Manager

806 Accelerators

Preemption 807

Metric name as
returned by
pbsnodes

GMETRIC name
as stored in
Moab

Metric output

mic_id micX_mic_id The ID of the MIC-based device

num_cores micX_num_cores The number of cores in the MIC-based device

num_threads micX_num_threads The number of hardware threads on the MIC-based device

physmem micX_physmem The total physical memory in the MIC-based device

free_physmem micX_free_physmem The available physical memory in the MIC-based device

swap micX_swap The total swap space on the MIC-based device

free_swap micX_free_swap The unused swap space on the MIC-based device

max_frequency micX_max_frequency The maximum frequency speed of any core in the MIC-
based device

isa micX_isa The hardware interface type of the MIC-based device

load micX_load The total current load of the MIC-based device

normalized_load micX_normalized_
load

The normalized load of the MIC-based device (total load
divided by number of cores in the MIC-based device)

Preemption

About preemption
Sites possess workloads of varying importance, and users may want to run jobs with higher priorities
before jobs with lower priorities. This can be done by using preemption. Preemption is simply the
process by which a higher-priority job can take the place of a lower-priority job. You can also use
preemption for optimistic scheduling and development job support.

This section explains how to configure and use preemption. Simple example of preemption on page 827
offers a basic introduction and contains examples to help you get started using preemption. The other
sections offer more explanation and information about what you can do with preemption and contain
some best practices that will help you avoid the need for troubleshooting in the future.

Moab Workload Manager

While this section does not explain every possible preemption configuration, it does prescribe the best
practices for setting up and using preemption with your system. It is recommended that you follow the
established instructions contained in this section.

Preemption does not work with dynamic provisioning.

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work with multi-
req jobs or preemption.

Do not allow preemption with interactive jobs unless PREEMPTPOLICY is set to CANCEL. (For
more information, see Canceling jobs with preemption on page 809.)

Tasks associated with preemption:

The following sections include information about each type of preemption, their different usage
benefits, and any configurations and settings needed to use them.

l Canceling jobs with preemption on page 809

l Checkpointing jobs with preemption on page 812

l Requeueing jobs with preemption on page 813

l Suspending jobs with preemption on page 816

l Using owner preemption on page 819

l Using QoS preemption on page 823

Preemption references:

These sections contain information that you can use as references for the preemption tasks.

l Manual preemption commands on page 824

l Preemption flags on page 825

l PREEMPTPOLICY types on page 827

l Simple example of preemption on page 827

l Testing and troubleshooting preemption on page 831

Related topics

l Optimizing Scheduling Behavior – Backfill and Node Sets on page 508

Moab Workload Manager

808 Preemption

Preemption 809

How-to's

Canceling jobs with preemption
Context

CANCEL is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 827). The CANCEL attribute cancels active jobs, regardless of any JOBFLAGS (such as
REQUEUEABLE or SUSPENDABLE). (For more information, see Job Flags on page 153.)

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 825

You should not allow preemption with interactive jobs unless PREEMPTPOLICY is set to
CANCEL.

The following outlines some benefits of using CANCEL and also lists some things you should be
aware of if you choose to use it.

Advantages:

This attribute is the easiest to configure and use.

Cautions:

Canceled jobs are not automatically restarted or requeued. Users must resubmit canceled jobs.

To preempt jobs using CANCEL

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 831).

c. Set PREEMPTPOLICY to CANCEL (for more information, see PREEMPTPOLICY types on page
827).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 825).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CANCEL

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

Moab Workload Manager

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

(Optional) Examine the following output for showq:

Moab.8
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Canceling 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that test1 is canceled when test2 is submitted.

(Optional) Examine the checkjob outputs for these two jobs:

Moab Workload Manager

810 Preemption

Preemption 811

[john@g06]$ checkjob Moab.9
job Moab.9

State: Removed
Completion Code: -1 Time: Thu Nov 10 12:28:48
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:28:44
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100

Note that the preempted job has been removed.

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Thu Nov 10 12:28:48
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Related topics

l Suspending jobs with preemption on page 816
l Checkpointing jobs with preemption on page 812

Moab Workload Manager

l Requeueing jobs with preemption on page 813
l Preemption flags on page 825
l About preemption on page 807
l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Checkpointing jobs with preemption
Context

CHECKPOINT is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY
types on page 827). For systems that allow checkpointing, the CHECKPOINT attribute allows a job
to save its current state and either terminate or continue running. A checkpointed job may restart at
any time and resume execution from its most recent checkpoint.

You can tune checkpointing behavior on a per-resource manager-basis by setting the CHECKPOINTSIG
and CHECKPOINTTIMEOUT attributes of the RMCFG parameter.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 825

The following outlines some benefits of using CHECKPOINT and also lists some things you should be
aware of if you choose to use it.

Advantages:

This attribute allows you to restart a job from its last checkpoint.

Cautions:

Jobs tend to take longer to complete when you use CHECKPOINT.

To preempt jobs using CHECKPOINT

Make the following configurations to the moab.cfg file:

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)(This locks the job on a node and keeps trying to preempt.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 831).

3. Set PREEMPTPOLICY to CHECKPOINT (for more information, see PREEMPTPOLICY types on page
827).

4. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 825).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CHECKPOINT

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

Moab Workload Manager

812 Preemption

Preemption 813

Related topics

l Suspending jobs with preemption on page 816
l Requeueing jobs with preemption on page 813
l Canceling jobs with preemption on page 809
l Preemption flags on page 825
l About preemption on page 807
l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Requeueing jobs with preemption
Context

REQUEUE is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 827). The REQUEUE value terminates active jobs and returns them to the job queue in an
idle state.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 825

The following outlines some benefits of using REQUEUE and also lists some things you should be
aware of if you choose to use it.

Advantages:

l Jobs are automatically resubmitted into the job queue.

Cautions:

l A job gets resubmitted in the job queue at the same priority it had when Moab originally
started it (i.e., the job does not jump ahead in the queue).

l Jobs start over from the beginning.

You must mark a job as RESTARTABLE if you want it to requeue. If you do not, the job will be
canceled when it is preempted.

If supported by the resource manager, you can set the RESTARTABLE job flag when submitting
the job by using the msub -r option. Otherwise, use the JOBFLAGS attribute of the associated class
or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=RESTARTABLE

For more information, see Job Flags on page 153.

To preempt jobs using REQUEUE

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

Moab Workload Manager

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 831).

c. Set PREEMPTPOLICY to REQUEUE (for more information, see PREEMPTPOLICY types on page
827).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 825).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

(Optional) Examine the following output for showq and checkjob:

Moab Workload Manager

814 Preemption

Preemption 815

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Related topics

l Suspending jobs with preemption on page 816
l Checkpointing jobs with preemption on page 812
l Canceling jobs with preemption on page 809
l Preemption flags on page 825
l About preemption on page 807

Moab Workload Manager

l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Suspending jobs with preemption
Context

SUSPEND is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 827). The SUSPEND attribute causes active jobs to stop executing, but to remain in
memory on the allocated compute nodes.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 825

The following outlines some benefits of using SUSPEND and also lists some things you should be
aware of if you choose to use it.

Advantages:

l The job remains in memory on the allocated compute nodes.

l Using SUSPEND frees up processor resources.

l The job can restart where it left off before it was suspended.

Cautions:

l There is a possibility that having multiple suspended jobs on a compute node will crash the
swap.

l Moab tracks only requested memory of active jobs (not used memory). The swap can crash if
the job uses a lot of memory and Moab starts other jobs.

l Suspended jobs do not relinquish their licenses.

You must mark a job as SUSPENDABLE if you want it to suspend. If you do not, the job will be
requeued or canceled when it is preempted.

If supported by the resource manager, you can set the job SUSPENDABLE flag when submitting
the job by using the msub -r option. Otherwise, use the JOBFLAGS attribute of the associated class
or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=SUSPENDABLE

For more information, see Job Flags on page 153.

To preempt jobs using SUSPEND

When you use SUSPEND, you must increase your JOBRETRYTIME. By default, JOBRETRYTIME is set to
60 seconds, but when you use SUSPEND, it is recommended that you increase the time to 300 seconds
(5 minutes).

Moab Workload Manager

816 Preemption

Preemption 817

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 831).

c. Set PREEMPTPOLICY to SUSPEND (for more information, see PREEMPTPOLICY types on page
827).

d. For the PREEMPTEE job, set JOBFLAGS=RESTARTABLE,SUSPENDABLE.

e. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 825).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY SUSPEND

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE,SUSPENDABLE MEMBERULIST=john
PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test1

(Optional) Examine the output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

Moab Workload Manager

(Optional) Examine the output for showq:

Moab.8
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Suspended 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that when a job is suspended, it stays in the output of showq. This is normal behavior for a suspended job.
Moab should only suspend a job once.

4. (Optional) Examine the checkjob outputs for these two jobs.

[john@g06]$ checkjob Moab.9
job Moab.9

State: Suspended
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:36:29
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: RESTARTABLE,SUSPENDABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
job cannot be resumed: preemption required but job is conditional preemptor with no
targets
BLOCK MSG: non-idle state 'Running' (recorded at last scheduling iteration)

Moab Workload Manager

818 Preemption

Preemption 819

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Thu Nov 10 12:36:31
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Occasionally, Moab will keep a job from restarting, holding it in a suspended state for a long
period of time, if it thinks the job cannot restart. For example, if a job could write to I/O before it
was suspended, and now it cannot, Moab would realize the job is unable to start and would leave it
in a suspended state.

Related topics

l Checkpointing jobs with preemption on page 812
l Requeueing jobs with preemption on page 813
l Canceling jobs with preemption on page 809
l Preemption flags on page 825
l About preemption on page 807
l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Using owner preemption
Context

Owner preemption allows jobs submitted by a reservation owner to preempt jobs submitted by other
users (for more information, see Configuring and Managing Reservations on page 461).

Owner preemption is enabled with the OWNERPREEMPT reservation flag.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 825

Moab Workload Manager

To enable owner preemption

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 831).

c. Set the PREEMPTPOLICY type (for more information, see PREEMPTPOLICY types on page 827).

d. Set the OWNERPREEMPT flag.

Optionally, if you want the owner preemption to override any PREEMPTMINTIME settings
for PREEMPTEE jobs, you can set the OWNERPREEMPTIGNOREMINTIME flag as well.

e. Specify an owner.

If the non-owner job does not have a RESTARTABLE or REQUEUEABLE flag set, the job
will cancel.

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

SRCFG[myrez] FLAGS=OWNERPREEMPT HOSTLIST=node01
SRCFG[myrez] OWNER=USER:john
SRCFG[myrez] USERLIST=jane,john PERIOD=INFINITY

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=restartable MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to a user who is not the owner (in this example, jane).

[jane@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=64

(Optional) Examine the following output for showq and checkjob for jane's job:

Moab Workload Manager

820 Preemption

Preemption 821

Moab.1
[jane@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Running 64 00:09:57 Mon Nov 14 12:07:52

1 active job 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

root@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:jane group:jane
WallTime: 00:01:02 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:07:52
Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED
StartPriority: 1
Reservation 'Moab.1' (-00:01:24 -> 00:08:36 Duration: 00:10:00)

3. Now submit a job for the owner (in this example, john).

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

(Optional) Examine the following output for showq and checkjob for john's job:

Moab Workload Manager

Moab.2
[john@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Canceling 64 00:07:43 Mon Nov 14 12:07:52
Moab.2 john Running 50 00:09:59 Mon Nov 14 12:10:08

2 active jobs 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that jane's job is canceled once john's job is submitted.

[john@g06]$ checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john
WallTime: 00:00:31 of 00:10:00
SubmitTime: Mon Nov 14 12:10:08
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:10:08
Total Requested Tasks: 50

Req[0] TaskCount: 50 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:50]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.jf1N4a

StartCount: 1
Flags: HASPREEMPTED,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 1
Reservation 'Moab.2' (-00:00:48 -> 00:09:12 Duration: 00:10:00)

Note the new HASPREEMPTED flag.

(Optional) Now look at the showq for jane's job (after):

Moab Workload Manager

822 Preemption

Preemption 823

[root@g06]# checkjob Moab.1
job Moab.1

State: Removed
Completion Code: -1 Time: Mon Nov 14 12:10:08
Creds: user:jane group:jane
WallTime: 00:02:47 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

IWD: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

Execution Partition: FLEXlm
Flags: GLOBALQUEUE,PROCSPECIFIED
StartPriority: 0

Note that the state is now Removed.

Related topics

l Preemption flags on page 825
l About preemption on page 807
l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Using QoS preemption
Context

This section breaks down how to configure the moab.cfg file to set up preemption with QoS. Using
QoS, you can specify preemption rules and control access to preemption privileges by using the
QFLAGS PREEMPTEE and PREEMPTOR credentials. For information about the PREEMPTEE and
PREEMPTOR flags, see Preemption flags on page 825.

QoS-based preemption only occurs when the following three conditions are satisfied:

l The preemptor job has the PREEMPTOR attribute set.

l The preemptee job has the PREEMPTEE attribute set.

l The preemptor job has a higher priority than the preemptee job.

To configure moab.cfg for QoS preemption

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

Moab Workload Manager

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 831.

3. If it is not already, set NODEACCESSPOLICY to SHARED.

4. Set the PREEMPTPOLICY policy type (for more information, see PREEMPTPOLICY types on page
827).

5. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be preempted by a
higher-priority job), or as PREEMPTOR (a higher-priority job that can preempt a lower-priority
job). As in the example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For more information, see Preemption flags on page 825.

6. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job. As in the
example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Related topics

l About preemption on page 807
l Preemption Management on page 505
l Preemption flags on page 825
l PREEMPTPOLICY types on page 827
l Simple example of preemption on page 827
l Testing and troubleshooting preemption on page 831

References

Manual preemption commands
You can use the mjobctl command to manually preempt jobs. The command can modify a job's execution
state in the following ways:

Moab Workload Manager

824 Preemption

Preemption 825

Action Flag Details

Cancel -c Terminate job; remove from queue

Checkpoint -C Terminate and checkpoint job leaving job in queue

Requeue -R Terminate job; leave in queue

Resume -r Resume suspended job

Start (execute) -x Start idle job

Suspend -s Suspend active job

In general, users are allowed to suspend or terminate jobs they own. Administrators are allowed to
suspend, terminate, resume, and execute any queued jobs.

Related topics

l About preemption on page 807
l Testing and troubleshooting preemption on page 831

Preemption flags
Using QoS, you can specify preemption rules and control access to preemption privileges. This allows you
to increase system throughput, improve job response time for specific classes of jobs, or enable various
political policies. You enable all policies by specifying some QoS credentials with the QFLAGS
PREEMPTEE, and others with PREEMPTOR.

PREEMPTEE

Description Indicates that the job can be preempted by a higher-priority job.

Use Use for lower-priority jobs that can be preempted.

Notes
This may delay some node actions. When reprovisioning, the system job may expire before
the provision action occurs; while the action will still occur, the job will not show it.

Example QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100

Moab Workload Manager

PREEMPTOR

Description Indicates that the job should take priority and preempt any PREEMPTEE jobs.

Use Use for jobs that need to take precedence over lower-priority jobs.

Notes
PREEMPTOR jobs, either queued or running, must have a higher priority than
PREEMPTEE jobs.
When you configure job as a PREEMPTOR, you should also increase its priority (for
details, see PREEMPTPRIOJOBSELECTWEIGHT and PREEMPTRTIMEWEIGHT).

Example QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Additional preemptor and preemptee information

Preemptor priority plays a big role in preemption. Generally, you should assign the preemptor job
a higher priority value than any other queued jobs so that it will move to (or near to) the top of
the eligible queue.

You can set the RESERVATIONPOLICY parameter to NEVER. With this configuration, preemptee jobs
can start whenever idle resources become available. These jobs will be allowed to run until a preemptor
job arrives, at which point the preemptee jobs are preempted, freeing the resource. This configuration
allows near immediate resource access for the preemptor jobs. Using this approach, a cluster can
maintain near 100% system utilization while still delivering excellent turnaround time to the most
important jobs.

In environments where job checkpointing or job suspension incur significant overhead, you might want to
constrain the rate at which job preemption is allowed. You can use the JOBPREEMPTMINACTIVETIME
parameter to throttle job preemption. In essence, this parameter prevents a newly started or newly
resumed job from being eligible for preemption until it has executed for a specified amount of time.
Conversely, you can exclude jobs from preemption after they have run for a certain amount of time by
using the JOBPREEMPTMAXACTIVETIME parameter.

Related topics

l About preemption on page 807
l Using QoS preemption on page 823
l Manual preemption commands on page 824
l PREEMPTPOLICY types on page 827
l Testing and troubleshooting preemption on page 831

Moab Workload Manager

826 Preemption

Preemption 827

PREEMPTPOLICY types
You can use the PREEMPTPOLICY parameter to control how the scheduler preempts a job. This
parameter enforces preemption using one of the following methods:

PREEMPTPOLICY
type Description

SUSPEND Causes active jobs to stop executing, but to remain in memory on the allocated compute
nodes.

CHECKPOINT Saves the current job state and either terminates or continues running the job. A check-
pointed job may restart at any time and resume execution from its most recent checkpoint.

REQUEUE Terminates active jobs and returns them to the job queue in an idle state.

CANCEL Cancels active jobs.

Each of these methods varies in the level of disruption to the job, SUSPEND being the least disruptive
and CANCEL being the most disruptive.

Moab uses preemption escalation to free up resources. So for example, if the PREEMPTPOLICY is set to
SUSPEND, Moab uses this method if it is available; however, Moab will escalate it to something
potentially more disruptive if necessary to preempt and free up resources.

Related topics

l Suspending jobs with preemption on page 816
l Checkpointing jobs with preemption on page 812
l Requeueing jobs with preemption on page 813
l Canceling jobs with preemption on page 809
l About preemption on page 807
l Preemption flags on page 825

Simple example of preemption
This section illustrates the process of setting up preemption on your system from beginning to end and
contains examples of what actions to take and what you should see as you go.

Moab Workload Manager

Example scenario

For this basic setup example, we will have a user who can submit to either a "test1" or "test2" QoS.
This example will use a REQUEUE preemption type.

We will go through three parts to set up this preemption:

l Configuring the moab.cfg file

l Submitting a job to the PREEMPTEE QoS

l Submitting a job to the PREEMPTOR QoS

Okay, let's get started!

Configuring moab.cfg
First, you will need to make some configurations to the moab.cfg file.

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 831).

3. Set the PREEMPTPOLICY type. In this example, PREEMPTPOLICY is set to REQUEUE. For more
information, see PREEMPTPOLICY types on page 827.

4. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be preempted by a
higher-priority job), or as PREEMPTOR (a higher-priority job that can preempt a lower-priority
job). For more information, see Preemption flags on page 825.

For this example, we also set JOBFLAGS=RESTARTABLE (because this example uses
REQUEUE). For more information, see Requeueing jobs with preemption on page 813.

5. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job.

Here is an example of how that would all look in a moab.cfg file (text marked red for emphasis).

GUARANTEEDPREEMPTION TRUE
#should not be JOBNODEMATCHPOLICY EXACTNODE as it causes problems when starting jobs

PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=1000

Now you can submit a job to the preemptee QoS (test1).

Submitting a job to the preemptee QoS
Let's submit a job to the preemptee QoS (test1), requesting all processor cores in the cluster:

Moab Workload Manager

828 Preemption

Preemption 829

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

Take a look at the showq and checkjob output:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

[john@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:john group:john qos:test1
WallTime: 00:00:00 of 00:10:00
SubmitTime: Wed Nov 9 15:56:33
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:33
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.zOyf1N

StartCount: 1
Flags: RESTARTABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
Reservation 'Moab.1' (-00:00:03 -> 00:09:57 Duration: 00:10:00

Submitting a job to the preemptor QoS
Now we will submit a preemptor QoS job (test2) to preempt the first job (test1):

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

Examine the following output for showq and checkjob:

Moab Workload Manager

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that the preemptor job (Moab.2) moved to Running, while the preemptee job (Moab.1) was requeued.

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Note the flag, HASPREEMPTED. HASPREEMPTED is set when the PREEMPTOR job has preempted the PREEMPTEE
job. Also note that the preemptor job priority plays a very big role in preemption. Generally, you should assign the
preemptor a higher priority than any other queued jobs so that it will move to (or near to) the top of the eligible queue.

Related topics

l About preemption on page 807
l Preemption flags on page 825

Moab Workload Manager

830 Preemption

Preemption 831

l PREEMPTPOLICY types on page 827
l Manual preemption commands on page 824
l Testing and troubleshooting preemption on page 831

Testing and troubleshooting preemption
There are multiple steps associated with setting up a working preemption policy. With preemption,
issues arise because it appears that Moab is not allowing preemptor jobs to preempt preemptee jobs in
the right way. To diagnose this, use the following checklist:

Verify that preemptor jobs are marked with the PREEMPTOR flag. (Verify with checkjob <JOBID> | grep
Flags.)

Verify that preemptee jobs are marked with the PREEMPTEE flag. (Verify with checkjob <JOBID> | grep
Flags.)

Verify that the start priority of the preemptor job is higher than the priority of the preemptee job. (Verify with
checkjob <JOBID> | grep Priority.)

Verify that the resources allocated to the preemptee job match those requested by the preemptor job.

Verify that the preemptor job is within the 32-preemptee limit.

Verify that there are no policies preventing preemption from occurring. (Verify with checkjob -v -n <NODEID>
<JOBID>.)

Verify that the PREEMPTPOLICY parameter is properly set. (See PREEMPTPOLICY types on page 827.)

Verify that the preemptee job is properly marked as restartable, suspendable, or checkpointable. (Verify with
checkjob <JOBID> | grep Flags.)

Verify that GUARANTEEDPREEMPTION is set to TRUE.

Verify that JOBNODEMATCHPOLICY is not set to EXACTNODE. Moab does not currently consider
EXACTNODE when it handles preemption, resulting in unexpected behavior when EXACTNODE is set in an
environment with preemption.

Verify that NODEACCESSPOLICY is not set to SINGLEUSER. (SHARED is recommended.)

Verify that BACKFILLPOLICY is set to FIRSTFIT.

Verify that the resource manager is properly responding to preemption requests. (Usemdiag -R.)

Moab Workload Manager

If there is a resource manager level race condition, verify that Moab is properly holding target resources.
(Verify with mdiag -S and set RESERVATIONRETRYTIME if needed.)

Related topics

l About preemption on page 807
l Quality of Service (QoS) Facilities on page 499
l Managing QoS Access on page 506
l JOBMAXPREEMPTPERITERATION on page 958
l Trigger components on page 744
l Checkpoint/Restart Facilities on page 528
l ENABLEFSVIOLATIONPREEMPTION on page 929
l PREEMPTPRIOJOBSELECTWEIGHT on page 997
l PREEMPTSEARCHDEPTH on page 998
l USAGEEXECUTIONTIMEWEIGHT on page 1042 (control priority of suspended jobs)
l IGNOREPREEMPTEEPRIORITY on page 950 (relative job priority is ignored in preemption
decisions)

l DISABLESAMECREDPREEMPTION on page 924 (jobs cannot preempt other jobs with the same
credential)

l PREEMPTRTIMEWEIGHT on page 997 (add remaining time of jobs to preemption calculation)

Job templates

About job templates
A Moab job template is a set of pre-configured settings, attributes, and resources that Moab applies to
jobs that match certain criteria or to which you manually apply it. They perform three primary
functions:

1. They generically match and categorize jobs.

2. They set arbitrary default or forced attributes for certain jobs.

3. They generate workflows that create and maintain user-requested services in a cloud environment.

You can use job templates in many aspects of schedulingPeer-Based Grid usage policies. Job templates
are defined using the JOBCFG on page 954 configuration parameter.

Two methods exist for applying job templates to jobs. You can use the JOBMATCHCFG on page 957
parameter to mark a template that contains the criteria a job must meet for eligibility and another
template as the one to be applied to the job if it is eligible. This allows you to automate the use of
templates. For example, to force all interactive jobs to run on a certain set of nodes, you can set one
template (the criteria template) to have the interactive flag, then give the other template the desired
host list. You can also apply a template directly to a job at submission if that ability is enabled for that
template.

Moab Workload Manager

832 Job templates

Job templates 833

Job template how-to's

l Creating job templates on page 833
l Viewing job templates on page 834
l Applying templates based on job attributes on page 834
l Requesting job templates directly on page 835
l Creating workflows with job templates on page 836

Job template references

l Job template extension attributes on page 837
l Job template matching attributes on page 849
l Job template examples on page 849
l Job template workflow examples on page 850

How-to's

Creating job templates
Context

Job templates are created in the Moab configure file using the JOBCFG on page 954 parameter.

To create a job template

1. Open moab.cfg. Add the JOBCFG parameter and give the new job template a unique name.

JOBCFG[newtemplate]

2. Configure any desired attributes (see Job template extension attributes on page 837.). Some of the
important attributes include:

l FLAGS on page 839 - Lets you specify any job flags that should be applied.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE

When Moab applies newtemplate to a job, the job is marked as suspendable.

l SELECT on page 845 - Lets you apply the template directly at job submission.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE

When you submit a job via msub, you can specify that your job has newtemplate applied to it. When Moab
applies the template to a job, that job is marked as suspendable.

l TEMPLATEDEPEND on page 847 - Lets you create dependencies when you create a job template
workflow (see Creating workflows with job templates on page 836.).

Moab Workload Manager

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE TEMPLATEDEPEND=AFTER:job1.pre

When Moab applies newtemplate to a job, the job cannot run until job job1.pre has finished running; the
job is also marked as suspendable. You can specify that Moab apply this template to a job as you submit it.

3. If you want to automate job template application, see Applying templates based on job attributes
on page 834 for instructions. If you want to apply the template manually on job submission, see
Requesting job templates directly on page 835 for instructions.

Related topics

l Job template extension attributes on page 837
l Job template examples on page 849

Viewing job templates
Context

You can view a job template by running the mdiag -j command.

To view a job template

Run the mdiag -j command with the policy flag. Moab returns a list of job templates configured in
moab.cfg.

> mdiag -j --flags=policy --blocking

Applying templates based on job attributes
Context

The JOBMATCHCFG on page 957 parameter allows you to establish relationships between a number
of job templates. JMAX and JMIN function as filters to determine whether a job is eligible for a
subsequent template to be applied to the job. If a job is eligible, JDEF and JSET templates apply
attributes to the job. See Job template extension attributes on page 837 for more information about
the JOBMATCHCFG attributes. The table on that page indicates which job template types are
compatible with which job template extension attributes.

JSETs and JDEFs have only been tested using msub as the job submission command.

To apply a job template based on job attributes

1. In the Moab configuration file, create a job template with a set of criteria that a job must meet in
order for Moab to apply the template. In the following example, Moab will apply a template to all
interactive jobs, so the first template sets the interactive flag.

JOBCFG[inter.min] FLAGS=interactive

Moab Workload Manager

834 Job templates

Job templates 835

2. Create the job template that Moab should apply to the job if it meets the requirements set in the
first template. In this example, Moab ignores all configured policies, so the second template sets the
ignpolicies flag.

JOBCFG[inter.set] FLAGS=ignpolicies

3. Use the JOBMATCHCFG parameter and its JMAX or JMIN (specify the template specifying maximum
or minimum requirements) and JDEF or JSET (specify the template to be applied) attributes to
demonstrate the relationship between the two templates (See Job template matching attributes on
page 849 for more information.). In this case, all interactive jobs ignore policies; in other words, if a
submitted job has at least the inter.min template settings, Moab applies the inter.set template
settings to the job.

JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

Moab applies the inter.set template to all jobs with the interactive flag set, causing them to ignore Moab's
configured policies.

4. To control which job template is applied to a job that matches multiple templates, use
FLAGS=BREAK. Job templates are processed in the order they are listed in the configuration file and
using the BREAK flag causes Moab to stop evaluating JOBMATCHCFG entries that occur after the
current match.

JOBMATCHCFG[small] JMIN=small.min JMAX=small.max JSET.set=small.set FLAGS=BREAK
JOBMATCHCFG[large] JMIN=large.min JMAX=large.max JSET=large.set

In this case, the large template would not be applied when a job matches both the small and large templates. The
small template matches first, and because of FLAGS=BREAK, Moab stops evaluating further JOBMATCHFG entries for
the job.

Related topics

l Requesting job templates directly on page 835
l Job template examples on page 849

Requesting job templates directly
Context

When a job template has its SELECT on page 845 attribute set to TRUE, you can request that
template directly on job submission.

To directly request job templates

1. Set the SELECT attribute on the template in moab.cfg.

JOBCFG[medium.set] NODESET=ONEOF:FEATURE:fast,slow SELECT=true

2. Submit a job with a resource list (msub -l), requesting the template using the format
template=<templateName>.

> msub -l template=medium.set

Moab creates a job with the medium.set job template created in step 1.

Moab Workload Manager

Attributes set in the template are evaluated as if they were part of the job submission. They
are still subject to all of the same ACLs and policies.

Related topics

l Applying templates based on job attributes on page 834

Creating workflows with job templates
Context

Moab can create workflows from individual jobs using job templates.

To build a workflow with job templates

1. Create the jobs in the workflow using the JOBCFG on page 954 parameter (See Creating job
templates on page 833 for more information.). It might be useful to add the PURGEONSUCCESSONLY
on page 157 flag to your setup or destroy jobs; it will allow you to restart the jobs easily if they fail.
Specify the order in which they should run with the TEMPLATEDEPEND on page 847 attribute.
Please see the Job dependency syntax table for a list of valid dependency options.

JOBCFG[setup.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/setup.pre.sh
JOBCFG[setup.pre2] TEMPLATEDEPEND=AFTER:setup.pre SELECT=TRUE
EXEC=/nfs/tools/setup.pre2.sh
JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre2

When Moab applies the engineering template to a qualifying job, the job will not run until template job setup.pre
and then setup.pre2 are created from the specified EXEC strings and finish running.

The Moab naming convention for jobs created with job templates is
<moabId>.<templateName>. By default, when Moab submits jobs to only one resource
manager, the job IDs are synchronized with the resource manager's job IDs. You can use the
parameter USEMOABJOBID on page 1045 so that a template-created job is easily associated
with its parent job (such as moab.1, moab.1.setup.pre).

2. Create the job template that will act as the criteria a job must meet for Moab to apply the
engineering template. In this situation, the job must be submitted with the account name engineering.

JOBCFG[engineering.match] ACCOUNT=engineering

3. Create the JOBMATCHCFG on page 957 configuration to tell Moab that when a job matches the
engineering.match template, it should apply the engineering template.

JOBMATCHCFG[engineering.job] JMIN=engineering.match JSET=engineering

Related topics

l Job template extension attributes on page 837
l Job template workflow examples on page 850
l Creating job templates on page 833

Moab Workload Manager

836 Job templates

Job templates 837

References

Job template extension attributes
When creating a job template, you can use any attribute acceptable within the WIKI workload query data
format. In addition, job templates can use any of the extension attributes in the following table. Note that
the Template type (JMIN, JMAX, JDEF, JSET) row indicates compatibility with the associated attribute
(See Applying templates based on job attributes on page 834 for more information.).

Attributes set in a template are evaluated as if they were part of the original job submission.
Their jobs are still subject to all the same ACLs and policies.

ACCOUNT

Format <ACCOUNT>[,<ACCOUNT>]...

Template type JMIN
JDEF
JSET

Description Account credentials associated with job. This is used for job template matching.

Example JOBCFG[public] FLAGS=preemptee
JOBCFG[public.min] ACCOUNT=public_acct
JOBMATCHCFG[public] JMIN=public.min JSET=public

CLASS

Format <CLASS>[,<CLASS>]...

Template type JMIN
JDEF
JSET

Description Class credentials associated with job. This is used for job template matching.

Example JOBCFG[night] FLAGS=preemptor
JOBCFG[night.min] CLASS=night_class
JOBMATCHCFG[night] JMIN=night.min JSET=night

Moab Workload Manager

CPUCLOCK

Format <STRING>

Template
type

JMIN
JMAX
JSET

Description CPU clock frequency for all CPUs of a job. For more information, see CPUCLOCK on page 621. The
job template extension overrides the job script.

Example JOBCFG[slow] SELECT=TRUE cpuclock=1400
JOBCFG[fast] SELECT=TRUE cpuclock=3200

JOBCFG[cpu.min] CPUCLOCK=1000
JOBCFG[cpu.max] CPUCLOCK=2000
JOBCFG[cpu.set] CPUCLOCK=1500

JOBMATCHCFG[cpu] JMIN=cpu.min JMAX=cpu.max JSET=cpu.set

CPULIMIT

Format [[[DD:]HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Maximum amount of CPU time used by all processes in the job.

Example JOBCFG[job.min] CPULIMIT=1:00:00:00
JOBCFG[job.max] CPULIMIT=2:00:00:00

DESCRIPTION

Format <STRING>

Template type JMAX
JDEF

Description Description of the job. When you run the checkjob command, the description appears as Reason.

Example JOBCFG[webdb] DESCRIPTION="Template job"

Moab Workload Manager

838 Job templates

Job templates 839

DPROCS

Format <INTEGER>

Template type JMIN
JMAX
JSET

Description Number of processors dedicated per task. The default is 1.

Example JOBCFG[job.min] DPROCS=2
JOBCFG[job.max] DPROCS=4

EXEC

Format <STRING>

Template type JSET

Description Specifies what the job runs, regardless of what the user set.

Example JOBCFG[setup.pre] EXEC=nfs/tools/setup.pre.sh

FLAGS

Format <JOBFLAG>[,<JOBFLAG>]...

Template type JMIN
JDEF
JSET

Description One or more legal job flag values.

Example JOBCFG[webdb]
FLAGS=NORMSTART

GNAME

Format <STRING>

Moab Workload Manager

GNAME

Template type JDEF

JSET

Description Group credential associated with job.

Example JOBCFG[webserv] GNAME=service

For matching the group, see the GROUP
attribute.

GRES

Format <genericResource>[:<COUNT>][,<genericResource>[:<COUNT>]]...

Template
type

JMAX
JDEF

Description Consumable generic attributes associated with individual nodes or the special pseudo-node global,
which provides shared cluster (floating) consumable resources. Use the NODECFG parameter to
configure such resources.

Example JOBCFG[gres.set] GRES=abaqus:2

In this example, the gres.set template applies two Abaqus licenses per task to a matched
job.

GROUP

Format <GROUP>[,<GROUP>]...

Template type JMIN

Description Group credentials associated with job. This is used for job template matching.

Example JOBCFG[webserv] GROUP=service

For information about setting the group, see the GNAME attribute.

Moab Workload Manager

840 Job templates

Job templates 841

MEM

Format <INTEGER>

Template
type

JMIN
JMAX
JDEF
JSET

Description Maximum amount of physical memory per task used by the job in megabytes. You can optionally
specify other units with your integer (300kb or 2gb, for example). See Requesting Resources on
page 2237 for more information.

Example JOBCFG[smalljobs] MEM=25

NODEACCESSPOLICY

Format One of the following: SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK , SINGLEUSER, or
UNIQUEUSER

Template
type

JDEF
JSET

Description Specifies how node resources will be shared by a job. See the Node Access Policies on page 407
for more information.

Example JOBCFG[serverapp] NODEACCESSPOLICY=SINGLEJOB

NODERANGE

Format <MIN>[,<MAX>]

Template type JMAX
JDEF

Description Minimum and maximum nodes allowed to be allocated to job.

Example JOBCFG[vizserver] NODERANGE=1,16

Moab Workload Manager

NODES

Format <INTEGER>

Template
type

JMIN
JMAX
JSET

Description Number of nodes required by the job. The default is 1. See Node Definition for more inform-
ation.

Example JOBCFG[job.min] NODES=2
JOBCFG[job.max] NODES=4

NODESET

Format <STRING>

Template type JSET

Description See Node Set Overview on page 515 for more information.

Example JOBCFG[medium.set]
NODESET=ONEOF:FEATURE:fast,slow

PARTITION

Format <PARTITION>[:<PARTITION>]...

Template type JMIN
JDEF
JSET

Description Specifies the partition (or partitions) in which a job must run.

Example JOBCFG[meis] PARTITION=math:geology

Moab Workload Manager

842 Job templates

Job templates 843

PREF

Format <FEATURE>[,<FEATURE>]...

Template
type

JDEF
JSET

Description Specifies which node features are preferred by the job and should be allocated if available. See
PREF for more information.

Example JOBCFG[meis] PREF=bigmem

PRIORITY

Format <INTEGER>

Template type JMAX
JDEF

Description Relative job priority.

PRIORITY works only as a default setting and not as an override (JSET)
setting.

Example JOBCFG[meis] PRIORITY=25000

PROCRANGE

Format <MIN>[,<MAX>]

Template type JDEF
JSET

Description Minimum and maximum processors allowed to be allocated to job.

Example JOBCFG[meis] PROCRANGE=2,64

Moab Workload Manager

QOS

Format <QOS>[,<QOS>]...

Template type JMIN
JDEF
JSET

Description QoS credentials associated with job. This is used for job template matching.

Example JOBCFG[admin] RFEATURES=bigmem
JOBCFG[admin.min] QOS=admin_qos
JOBMATCHCFG[admin] JMIN=admin.min JSET=admin

RARCH

Format <STRING>

Template type JSET

Description Architecture required by job.

Example JOBCFG[servapp]
RARCH=i386

RFEATURES

Format <FEATURE>[,<FEATURE>]...

Template type JMIN
JDEF
JSET

Description List of features required by job.

Example JOBCFG[servapp]
RFEATURES=fast,bigmem

Moab Workload Manager

844 Job templates

Job templates 845

RM

Format <STRING>

Template type JDEF
JSET

Description Destination resource manager to be associated with job.

Example JOBCFG[webdb] RM=slurm

ROPSYS

Format <STRING>

Template type JDEF
JSET

Description Operating system required by job.

Example JOBCFG[test.set]
ROPSYS=windows

SELECT

Format <BOOLEAN> : TRUE | FALSE

Description Job template can be directly requested by job at submission.

Example JOBCFG[servapp] SELECT=TRUE

SOFTWARE

Format <RESTYPE>[{+|:}<COUNT>][@<TIMEFRAME>]

Template type JDEF
JSET

Moab Workload Manager

SOFTWARE

Description Indicates generic resources required by the job. See SOFTWARE for more information.

Example JOBCFG[servapp] SOFTWARE=matlab:2

SYSTEMJOBTYPE

Template type JMIN

Description System job type (ex. vmcreate).

Example JOBCFG[vmcreate.min] SYSTEMJOBTYPE=vmcreate
JOBCFG[vmcreate.set]
TRIGGER=atype=reserve,action="00:05:00",etype=end
JOBMATCHCFG[vmcreate] JMIN=vmcreate.min JSET=vmcreate.set

TASKS

Format <INTEGER>

Template type JMIN
JMAX
JSET

Description Number of tasks required by job. The default is 1. See Task Definition for more information.

Example JOBCFG[job.min] TASKS=4
JOBCFG[job.max] TASKS=8

TASKPERNODE

Format <INTEGER>

Template type JMIN
JMAX
JDEF

Moab Workload Manager

846 Job templates

Job templates 847

TASKPERNODE

Description Exact number of tasks required per node. The default is 0.

TASKPERNODEworks only as a default setting and not as an override (JSET)
setting.

Example JOBCFG[job.min] TASKPERNODE=2
JOBCFG[job.max] TASKPERNODE=4

TEMPLATEDEPEND

Format <TYPE>:<TEMPLATE_NAME>

Description Create another job from the <TEMPLATE_NAME> job template, on which any jobs using this tem-
plate will depend. This is used for dynamically creating workflows. See Job Dependencies for more
information.

Example JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre
JOBCFG[setup.pre] SELECT=TRUE EXEC=/tools/setup.pre.sh

UNAME

Format <STRING>

Default JDEF

JSET

Description User credential associated with job.

Example JOBCFG[webserv] UNAME=service

For matching the user, see the USER
attribute.

USER

Format <USER>[,<USER>]...

Moab Workload Manager

USER

Template type JMIN
JMAX

Description User credentials associated with job.

Example JOBCFG[webserv] USER=service

For setting the user, see the UNAME
attribute.

VARIABLE

Format <NAME>[:<VAL>]

Template type JMIN
JSET

Description Variables attached to the job template.

Example JOBCFG[this] VARIABLE=var1:1 VARIABLE=var2:1

Variables are set upon successful completion of
the job.

WCLIMIT

Format [[HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Walltime required by job. The default is 8640000 (100 days).

Example JOBCFG[job.min] WCLIMIT=2:00:00
JOBCFG[job.max] WCLIMIT=12:00:00

Moab Workload Manager

848 Job templates

Job templates 849

Related topics

l Job template examples on page 849
l Creating job templates on page 833

Job template matching attributes
The JOBMATCHCFG on page 957 parameter allows you to establish relationships between a number of
job templates. The table in Job template extension attributes on page 837 indicates which job template
types are compatible with which job template extension attributes. The following types of templates can
be specified with the JOBMATCHCFG parameter:

Attribute Description

JMAX A potential job is rejected if it has matching attributes set or has resource requests that exceed
those specified in this template.

For JMAX, a job template can specify only positive non-zero numbers as maximum limits for
generic resources. If a job requests a generic resource that is not limited by the template,
then the template can still be used.

JMIN A potential job is rejected if it does not have matching attributes set or has resource requests that
do not meet or exceed those specified in this template.

JDEF Amatching job has the specified attributes set as defaults but all values can be overridden by the
user if the matching attribute is explicitly set at job submission time.

JSET Amatching job has the specified attributes forced to these values and these values override any val-
ues specified by the submitter at job submission time.

JSTAT Amatching job has its usage statistics reported into this template.

Related topics

l Job template extension attributes on page 837
l Job template examples on page 849
l Applying templates based on job attributes on page 834

Job template examples
Job templates can be used for a wide range of purposes including enabling automated learning, setting up
custom application environments, imposing special account constraints, and applying group default
settings. The following examples highlight some of these uses:

Example 3-164: Setting up application-specific environments

JOBCFG[xxx] EXEC=*app* JOBPROLOG=/usr/local/appprolog.x

Moab Workload Manager

Example 3-165: Applying job preferences and defaults

JOBCFG[xxx] CLASS=appq EXEC=*app* PREF=clearspeed
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=5.0*PREF

Example 3-166: Applying resource constraints to fuzzy collections

In the following example, a job template match is set up. Using the JOBMATCHCFG on page 957
parameter, Moab is configured to apply all attributes of the inter.set job template to all jobs that match
the constraints of the inter.min job template. In this example, all interactive jobs are assigned the
ignpolicies flag that allows them to ignore active, idle, system, and partition level policies. Interactive
jobs are also locked into the test standing reservation and thus only allowed to run on the associated
nodes.

limit all users to a total of two non-interactive jobs
USERCFG[DEFAULT] MAXJOB=2
SRCFG[test] DESCRIPTION="compute pool for interactive and short duration jobs"
SRCFG[test] JOBATTRLIST=INTERACTIVE
SRCFG[test] MAXTIME=1:00:00
SRCFG[test] HOSTLIST=R:atl[16-63]
JOBCFG[inter.min] FLAGS=interactive
JOBCFG[inter.set] FLAGS=ignpolicies
JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

Example 3-167: Resource manager templates

In the following example, interactive jobs are not allowed to enter through this resource manager and
any job that does route in from this resource manager interface has the preemptee flag set.

JOBCFG[no_inter] FLAGS=interactive
JOBCFG[preempt_job] FLAGS=preemptee
RMCFG[gridA.in] MAX.JOB=no_inter SET.JOB=preempt_job

Related topics

l Job template extension attributes on page 837
l Job template workflow examples on page 850
l Creating job templates on page 833

Job template workflow examples
Example 3-168: A workflow with multiple dependencies

In this example the job will depend on the completion of two other jobs Moab creates. Both jobs execute
at the same time.

Engineering2
JOBCFG[engineering2] TEMPLATEDEPEND=AFTER:engineering2.pre2
TEMPLATEDEPEND=AFTER:engineering2.pre
JOBCFG[engineering2.pre2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre2.sh
JOBCFG[engineering2.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre.sh
JOBCFG[engineering2.match] ACCOUNT=engineering2
JOBMATCHCFG[engineering2.job] JMIN=engineering2.match JSET=engineering2

Moab Workload Manager

850 Job templates

Moab Workload Manager for Grids 851

Example 3-169: Jobs that run after the submission job

Three additional jobs are created that depend on the submitted job.

Workflow 2
JOBCFG[workflow2] TEMPLATEDEPEND=BEFORE:workflow2.post1
TEMPLATEDEPEND=BEFORE:workflow2.post2 TEMPLATEDEPEND=BEFORE:workflow2.post3
JOBCFG[workflow2.post1] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post1.sh
JOBCFG[workflow2.post2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post2.sh
JOBCFG[workflow2.post3] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post3.sh
JOBCFG[workflow2.match] ACCOUNT=workflow2
JOBMATCHCFG[workflow2.job] JMIN=workflow2.match JSET=workflow2

Example 3-170: A complex workflow

A complex workflow that handles failures.

Workflow 4
JOBCFG[workflow4.step1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step1.sh TEMPLATEDEPEND=BEFOREFAIL:workflow4.fail1
JOBCFG[workflow4.fail1] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.1.sh TEMPLATEDEPEND=BEFOREANY:workflow4.fail2
JOBCFG[workflow4.fail2] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.2.sh
Submission job
JOBCFG[workflow4.step2] TEMPLATEDEPEND=AFTEROK:workflow4.step1
TEMPLATEDEPEND=BEFOREOK:workflow4.step3.1 TEMPLATEDEPEND=BEFOREOK:workflow4.step3.2
JOBCFG[workflow4.step3.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.1.sh
JOBCFG[workflow4.step3.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.2.sh TEMPLATEDEPEND=BEFOREOK:workflow4.step4
JOBCFG[workflow4.step4] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step4.sh
JOBCFG[workflow4.step4] TEMPLATEDEPEND=BEFOREOK:workflow4.step5.1
TEMPLATEDEPEND=BEFOREOK:workflow4.step5.2 TEMPLATEDEPEND=BEFORENOTOK:workflow4.step5.3
JOBCFG[workflow4.step5.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.1.sh
JOBCFG[workflow4.step5.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.2.sh
JOBCFG[workflow4.step5.3] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.3.sh
JOBCFG[workflow4.match] ACCOUNT=workflow4

Related topics

l Creating workflows with job templates on page 836
l Applying templates based on job attributes on page 834
l Job template examples on page 849
l Job template extension attributes on page 837

MoabWorkloadManager for Grids
Cluster Consolidation and Sovereign Grids is a video tutorial of a session offered at Moab Con that
offers further details for understanding cluster consolidation and sovereign grids.

Moab Workload Manager

http://www.clusterresources.com/moabcon/2008/videos/Cluster Consolidation and Sovereign Grids - Jonathan Ryskamp.php

Moab Grid Scheduler allows sites to establish relationships among multiple clusters. There are three
types of relationships you can implement within the grid: (1) centralized management, (2) hierarchal
management, and (3) localized management. These relationships provide access to additional resources,
improve load-balancing, provide single system images, and offer other benefits. The grid interface is
flexible allowing sites to establish the needed relationship.

l Grid Basics on page 852

l Grid Configuration Basics on page 860

l Centralized Grid Management (Master/Slave) on page 861

l Hierarchal Grid Management on page 861

l Localized Grid Management on page 863

l Resource Control and Access on page 864

l Workload Submission and Control on page 867

l Reservations in the Grid on page 867

l Grid Usage Policies on page 868

l Grid Scheduling Policies on page 870

l Grid Credential Management on page 872

l Grid Data Management on page 874

l Grid Security on page 879

l Grid Diagnostics and Validation on page 879

Grid Basics
l Grid Overview

l Grid Benefits

l Scalability

l Resource Access

l Load-Balancing

l Single System Image (SSI)

l High Availability

l Grid Relationships

o Grid Relationships

o Hierarchal Management

o Local Management

Moab Workload Manager

852 Moab Workload Manager for Grids

Moab Workload Manager for Grids 853

l Submitting Jobs to the Grid

l Viewing Jobs and Resources

Grid Overview
A grid enables you to exchange workload and resource status information and to distribute jobs and data
among clusters in an established relationship. In addition, you can use resource reservations to mask
reported resources, coordinate requests for consumable resources, and quality of service guarantees.

In a grid, some servers running Moab are a source for jobs (that is, where users, portals, and other
systems submit jobs), while other servers running Moab are a destination for these jobs (that is, where
the jobs execute). Thus, jobs originate from a source server and move to a destination server. For a
source server to make an intelligent decision, though, resource availability information must flow from a
destination server to that source server.

Because you can manage workload on both the source and destination side of a grid relationship, you
have a high degree of control over exactly when, how, and where to execute workload.

Grid Benefits
Moab's peer-to-peer capabilities can be used for multiple purposes, including any of the following:

l manage access to external shared resources

l enable cluster monitoring information services

l enable massive-scalability clusters

l enable distributed grid computing

Of these, the most common use is the creation of grids to join multiple centrally managed, partially
autonomous, or fully autonomous clusters. The purpose of this section is to highlight the most common
uses of grid technology and provide references to sections which further detail their configuration and
management. Other sections cover the standard aspects of grid creation including configuring peer
relationships, enabling data staging, credential management, usage policies, and other factors.

Image 3-11: Jobs submitted to grid scheduler then cluster schedulers

Management-Scalability
Much like a massive-scalability cluster, a massive-scalability grid allows organizations to overcome
scalability limitations in resource managers, networks, message passing libraries, security middleware,
file systems, and other forms of software and hardware infrastructure. Moab does this by allowing a
single large set of resources to be broken into multiple smaller, more manageable clusters, and then

Moab Workload Manager

virtually re-assembling them using Moab. Moab becomes responsible for integrating the seams between
the clusters and presenting a single-system image back to the end-users, administrators, and managers.

Jobs cannot span clusters.

Resource Access
In some cases, the primary motivation for creating a grid is to aggregate resources of different types
into a single system. This aggregation allows for multi-step jobs to run a portion of the job on one
architecture, and a portion on another.

A common example of a multi-architecture parameter-sweep job would be a batch regression test suite
which requires a portion of the tests running on Redhat 7.2, a portion on SUSE 9.1, a portion on Myrinet
nodes, and a portion on Infiniband nodes. While it would be very difficult to create and manage a single
cluster which simultaneously provided all of these configurations, Moab can be used to create and
manage a single grid which spans multiple clusters as needed.

Load-Balancing
While grids often have additional motivations, it is rare to have a grid created where increased total
system utilization is not an objective. By aggregating the total pool of jobs requesting resources and
increasing the pool of resources available to each job, Moab is able to improve overall system
utilization, sometimes significantly. The biggest difficulty in managing multiple clusters is preventing
inter-cluster policies and the cost of migration from overwhelming the benefits of decreased
fragmentation losses. Even though remote resources may be available for immediate usage, migration
costs can occur in the form of credential, job, or data staging and impose a noticeable loss in
responsiveness on grid workload.

Moab provides tools to allow these costs to be monitored and managed and both cluster and grid level
performance to be reported.

Single System Image (SSI)
Another common benefit of grids is the simplicity associated with a single system image-based resource
pool. This simplicity generally increases productivity for end-users, administrators, and managers.

An SSI environment tends to increase the efficiency of end-users by minimizing human errors associated
with porting a request from a known system to a less known system. Additionally, the single point of
access grid reduces human overhead associated with monitoring and managing workload within multiple
independent systems.

For system administrators, a single system image can reduce overhead, training time, and diagnostic
time associated with managing a cluster. Furthermore, with Moab's peer-to-peer technology, no
additional software layer is required to enable the grid and no new tools must be learned. No additional
layers means no additional failure points, and that is good for everyone involved.

Managers benefit from SSI by being able to pursue organization mission objectives globally in a more
coordinated and unified manner. They are also able to monitor progress toward those objectives and
effectiveness of resources in general.

Moab Workload Manager

854 Moab Workload Manager for Grids

Moab Workload Manager for Grids 855

High Availability
A final benefit of grids is their ability to decrease the impact of failures. Grids add another layer of high
availability to the cluster-level high availability. For some organizations, this benefit is a primary
motivation, pulling together additional resources to allow workload to continue to be processed even in
the event that some nodes, or even an entire cluster, become unavailable. Whether the resource
unavailability is based on node failures, network failures, systems middleware, systems maintenance, or
other factors, a properly configured grid can reroute priority workload throughout the grid to execute on
other compatible resources.

With grids, there are a number of important factors in high availability that should be considered:

l enabling highly available job submission/job management interfaces

l avoiding network failures with redundant routes to compute resources

l handling partial failures

l dynamically restarting failed jobs

Grid Relationships
There are three types of relationships you can implement within the grid:

l Centralized Management (Master/Slave)

l Centralized/Localized Management (Hierarchal)

l Localized Management (Peer-to-Peer)

Centralized Management (Master/Slave)
The centralized management model (master/slave) allows users to submit jobs to a centralized source
server running Moab. The source Moab server obtains full resource information from all clusters and
makes intelligent scheduling decisions across all clusters. Jobs (and data when configured to do so) are
distributed to the remote clusters as needed. The centralized management model is recommended for
intra-organization grid environments when cluster autonomy is not as necessary.

In the centralized management (master-slave) configuration, roles are clear. In other configurations,
individual Moab servers may simultaneously act as sources to some clusters and destinations to others
or as both a source and a destination to another cluster.

Example of the Centralized Management (Master/Slave) Model

XYZ Research has three clusters - MOAB1, MOAB2, and MOAB3--running Moab and the TORQUE resource
manager. They would like to submit jobs at a single location (cluster MOAB1) and have the jobs run on
whichever cluster can provide the best responsiveness.

The desired behavior is essentially a master-slave relationship. MOAB1 is the central, or master, cluster.
On MOAB1, resource managers point to the local TORQUE resource manager and to the Moab servers on
cluster MOAB2 and cluster MOAB3. The Moab servers on MOAB2 and MOAB3 are configured to trust
cluster MOAB1 and to execute in slave mode.

Moab Workload Manager

With this configuration, XYZ Research may submit jobs to the master Moab server running on cluster
MOAB1 and may, as stated earlier, submit jobs from the slave nodes as well. However, only the master
Moab server may schedule jobs. For example, cluster MOAB2 and cluster MOAB3 cannot schedule a job,
but they can accept a job and retain it in an idle state until the master directs it to run.

You can turn off job submission on slave nodes by setting the DISABLESLAVEJOBSUBMIT on page
924 parameter to TRUE.

The master Moab server obtains full resource information from all three clusters and makes intelligent
scheduling decisions and distributes jobs (and data when configured to do so) to the remote clusters. The
Moab servers running on clusters MOAB2 and MOAB3 are destinations behaving like a local resource
manager. The Moab server running on MOAB1 is a source, loading and using this resource information.

Centralized/Localized Management (Hierarchal)
As with the centralized management model (master/slave), the hierarchal model allows users to submit
jobs to a centralized source server running Moab. However, in the hierarchal model, clusters retain
sovereignty, allowing local job scheduling. Thus, if communication between the source and destination
clusters is interrupted, the destination cluster(s) can still run jobs locally.

Moab Workload Manager

856 Moab Workload Manager for Grids

Moab Workload Manager for Grids 857

In the hierarchal model, the source Moab server obtains full resource information from all clusters and
makes intelligent scheduling decisions across all clusters. As needed, jobs and data are distributed to the
remote clusters. Or, if preferred, a destination cluster may also serve as its own source; however, a
destination cluster may not serve as a source to another destination cluster. The centralized
management model is recommended for intra-organization grid environments when cluster autonomy
and/or local management is necessary.

Localized Management (Peer-to-Peer)
The localized management (peer-to-peer) model allows you to submit jobs on one cluster and schedule
the jobs on the other cluster (it currently works with two clusters). For example, a job may be submitted
on MOAB1 and run on MOAB2. Jobs can also migrate in the opposite direction (that is, from MOAB2 to
MOAB1). The source servers running Moab obtain full resource information from both clusters and make
intelligent scheduling decisions across both clusters. Jobs (and data when configured to do so) are
migrated to other clusters as needed.

Moab Workload Manager

Jobs will not migrate indefinitely. The localized management model limits them to one migration.

This model allows clusters to retain their autonomy while still allowing jobs to run on either cluster. No
central location for job submission is needed, and you do not need to submit jobs from different nodes
based on resource needs. You can submit a job from any location and it is either migrated to nodes on
the least utilized cluster or the cluster requested in the job submission. This model is recommended for
grids in an inter-organization grid environment.

Submitting Jobs to the Grid
In any peer-to-peer or grid environment where jobs must be migrated between clusters, use the Moab
msub command. Once a job has been submitted to Moab using msub, Moab identifies potential
destinations and migrates the job to the destination cluster.

Using Moab's msub job submission command, jobs may be submitted using PBS or LSF command file
syntax and be run on any cluster using any of the resource managers. For example, a PBS job script may
be submitted using msub and depending on availability, Moab may translate a subset of the job's
directives and execute it on an LSF cluster.

Moab can only stage/migrate jobs between resource managers (in between clusters) that have
been submitted using the msub command. If jobs are submitted directly to a low-level resource
manager, such as PBS, Moab will still be able to schedule them but only on resources directly
managed by the resource manager to which they were submitted.

Example 1

Moab Workload Manager

858 Moab Workload Manager for Grids

Moab Workload Manager for Grids 859

A small pharmaceutical company, BioGen, runs two clusters in a centralized relationship. The slave is an
older IBM cluster running Loadleveler, while the master manages the slave and also directly manages a
large Linux cluster running TORQUE. A new user familiar with LSF has multiple LSF job scripts he would
like to continue using. To enable this, the administrators make a symbolic link between the Moab msub
client and the file bsub. The user begins submitting his jobs via bsub and, according to availability, the
jobs run on either the Loadleveler or TORQUE clusters.

Example 2

A research lab wants to use spare cycles on its four clusters, each of which is running a local resource
manager. In addition to providing better site-wide load balancing, the goal is to also provide some of its
users with single point access to all compute resources. Various researchers have made it clear that this
new multi-cluster load balancing must not impose any changes on users who are currently using these
clusters by submitting jobs locally to each cluster.

In this example, the scheduler mode of the destination clusters should be set to NORMAL rather than
SLAVE. In SLAVE mode, Moab makes no local decisions - it simply follows the directions of remote
trusted peers. In NORMAL mode, each Moab is fully autonomous, scheduling all local workload and
coordinating with remote peers when and how to schedule migrated jobs.

From the perspective of a local cluster user, no new behaviors are seen. Remote jobs are migrated in
from time to time, but to the user each job looks as if it were locally submitted. The user continues to
submit, view, and manage jobs as before, using existing local jobs scripts.

Viewing Jobs and Resources
By default, each destination Moab server will report all compute nodes it finds back to the source Moab
server. These reported nodes appear within the source Moab as local nodes each within a partition
associated with the resource manager reporting them. If a source resource manager was named
slave1, all nodes reported by it would be associated with the slave1partition. Users and
administrators communicating with the source Moab via Moab Cluster Manager, Moab Access Portal, or
standard Moab command line tools would be able to view and analyze all reported nodes.

The grid view will be displayed if either the source or the destination server is configured with
grid view.

For job information, the default behavior is to only report to the source Moab information regarding jobs
that originated at the source. If information about other jobs is desired, this can be configured as shown
in the Workload Submission and Control section.

Related topics

l Resource Control and Access

Moab Workload Manager

http://www.adaptivecomputing.com/resources/docs/map/index.php

Grid Configuration Basics
l Peer Configuration Overview

l Initial Configuration

l Viewing Jobs From Other Peers

Peer Configuration Overview
In the simplest case, establishing a peer relationship can be accomplished with as few as two
configuration lines: one line to indicate how to contact the peer and one line to indicate how to
authenticate the server. However, data migration issues, credential mapping, and usage policies must
often be addressed in order to make a peer-based grid effective.

To address these issues Moab provides facilities to control how peers inter-operate, enabling full
autonomy over both client and server ends of the peer relationship.

Initial Configuration
At a minimum, only two parameters must be specified to establish a peer relationship: RMCFG on page
1014 and CLIENTCFG[<X>] on page 916. RMCFG allows a site to specify interface information directing
Moab on how to contact and inter-operate with the peer. For peer interfaces, a few guidelines must be
followed with the RMCFG parameter:

l the TYPE attribute of the peer must be set to moab

l the SERVER attribute must point to the host and user interface port of the remote Moab server

l the name of the resource manager should match the name of the remote peer cluster as specified
with the SCHEDCFG on page 1018 parameter in the peer moab.cfg.

moab.cfg on MoabServer01

SCHEDCFG[MoabServer01] MODE=NORMAL SERVER=hpc-01:41111
RMCFG[MoabServer02] TYPE=moab SERVER=hpc-02:40559
...

Configuring the CLIENTCFG parameter is mandatory. When specifying the CLIENTCFG parameter for peers,
the following guidelines must be followed:

l the CLIENTCFG parameter must be specified in the moab-private.cfg file on both peers

l an RM: prefix is required before the peer's name

l if using default secret key based security, the value of the KEY attribute must match the KEY value
set on the corresponding remote peer

l the AUTH attribute must be set to admin1 in the moab-private.cfg on the destination Moab

moab-private.cfg on MoabServer01

CLIENTCFG[RM:MoabServer02] KEY=3esfv0=32re2-tdbne
....

Moab Workload Manager

860 Moab Workload Manager for Grids

Moab Workload Manager for Grids 861

moab-private.cfg on MoabServer02

CLIENTCFG[RM:MoabServer01] KEY=3esfv0=32re2-tdbne AUTH=admin1
...

Centralized Grid Management (Master/Slave)

Master Configuration
The process of setting up the master configuration is the same as setting up a source Moab
configuration. The master/slave relationship is configured in each moab.cfg on the slave.

moab.cfg on Master

SCHEDCFG[master] SERVER=master:42559 MODE=NORMAL
...

moab-private.cfg on Master

CLIENTCFG[RM:slave1] KEY=3esfv0=32re2-tdbne
...

Slave Configuration
The slave's relationship with the master is determined by the MODE. Setting MODE to SLAVE notifies
the master to take control of starting jobs on the slave. The master starts the jobs on the slave.. In
SLAVE mode, jobs can be submitted locally to the slave, but are not seen or started by the master.
When a job is submitted locally to the slave the job is locked into the cluster and cannot migrate to
other clusters.

moab.cfg on Slave

SCHEDCFG[slave1] SERVER=slave1:42559 MODE=SLAVE
...

moab-private.cfg on Slave

CLIENTCFG[RM:master] KEY=3esfv0=32re2-tdbne AUTH=admin1
...

Hierarchal Grid Management
l Configuring a Peer Server (Source)

o Simple Hierarchal Grid

Moab Workload Manager

Configuring a Peer Server (Source)
Peer relationships are enabled by creating and configuring a resource manager interface using the
RMCFG parameter. This interface defines how a given Moab will load resource and workload information
and enforce its scheduling decisions. In non-peer cases, the RMCFG parameter points to a resource
manager such as TORQUE, LSF, or SGE. However, if the TYPE attribute is set to moab, the RMCFG
parameter can be used to configure and manage a peer relationship.

Simple Hierarchal Grid
The first step to create a new peer relationship is to configure an interface to a destination Moab server.
In the following example, cluster C1 is configured to be able to see and use resources from two other
clusters.

SCHEDCFG[C1] MODE=NORMAL SERVER=head.C1.xyz.com:41111
RMCFG[C2] TYPE=moab SERVER=head.C2.xyz.com:40559
RMCFG[C3] TYPE=moab SERVER=head.C3.xyz.com:40559
...

C1 allows a global view of the underlying clusters. From C1, jobs can be viewed and modified. C2 and C3 act as separate
scheduling entities that can receive jobs from C1. C1 migrates jobs to C2 and C3 based on available resources and
policies of C1. Jobs migrated to C2 and C3 are scheduled according to the polices on C2 and C3.

In this case, one RMCFG parameter is all that is required to configure each peer relationship if standard
secret key based authentication is being used and a shared default secret key exists between the source
and destination Moabs. However, if peer relationships with multiple clusters are to be established and a
per-peer secret key is to be used (highly recommended), then a CLIENTCFG parameter must be specified
for the authentication mechanism. Because the secret key must be kept secure, it must be specified in
the moab-private.cfg file. For the current example, a per-peer secret key could be set up by creating
the following moab-private.cfg file on the C1 cluster.

CLIENTCFG[RM:C2] KEY=fastclu3t3r
CLIENTCFG[RM:C3] KEY=14436aaa

The key specified can be any alphanumeric value and can be locally generated or made up. The
only critical aspect is that the keys specified on each end of the peer relationship match.

Additional information can be found in the Grid Security section which provides detailed information on
designing, configuring, and troubleshooting peer security.

Continuing with the example, the initial source side configuration is now complete. On the destination
clusters, C2 and C3, the first step is to configure authentication. If a shared default secret key exists
between all three clusters, then configuration is complete and the clusters are ready to communicate. If
per-peer secret keys are used (recommended), then it will be necessary to create matching moab-
private.cfg files on each of the destination clusters. With this example, the following files would be
required on C2 and C3 respectively:

CLIENTCFG[RM:C1] KEY=fastclu3t3r AUTH=admin1

CLIENTCFG[RM:C1] KEY=14436aaa AUTH=admin1

Moab Workload Manager

862 Moab Workload Manager for Grids

Moab Workload Manager for Grids 863

Once peer security is established, a final optional step would be to configure scheduling behavior on the
destination clusters. By default, each destination cluster accepts jobs from each trusted peer. However, it
will also be fully autonomous, accepting and scheduling locally submitted jobs and enforcing its own local
policies and optimizations. If this is the desired behavior, then configuration is complete.

In the current example, with no destination side scheduling configuration, jobs submitted to cluster C1
can run locally, on cluster C2 or on cluster C3. However, the established configuration does not
necessarily enforce a strict master-slave relationship because each destination cluster (C2 and C3) has
complete autonomy over how, when, and where it schedules both local and remote jobs. Each cluster can
potentially receive jobs that are locally submitted and can also receive jobs from other source Moab
servers. See Slave Mode for more information on setting up a master-slave grid.

Further, each destination cluster will accept any and all jobs migrated to it from a trusted peer without
limitations on who can run, when and where they can run, or how many resources they can use. If this
behavior is either too restrictive or not restrictive enough, then destination side configuration will be
required.

Localized Grid Management
l Enabling Bi-Directional Job Flow

o True Peer-to-Peer Grid

Enabling Bi-Directional Job Flow

Image 3-12: Bi-directional peer-to-peer setup

For each peer interface, an RMCFG on page 1014 parameter is only required for the server (or source
side of the interface). If two peers are to share jobs in both directions, the relationship is considered to
be bi-directional.

True Peer-to-Peer Grid
Previous examples involved grid masters that coordinated the activities of the grid and made it so direct
contact between peers was not required. However, if preferred, the master is not required and individual
clusters can interface directly with each other in a true peer manner. This configuration is highlighted in
the following example:

Cluster A

SCHEDCFG[clusterA] MODE=NORMAL SERVER=clusterA
RMCFG[clusterA] TYPE=pbs
RMCFG[clusterB] TYPE=moab SERVER=clusterB:40559
CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=banana16

Moab Workload Manager

Cluster B

SCHEDCFG[clusterB] MODE=NORMAL SERVER=clusterB
RMCFG[clusterB] TYPE=pbs
RMCFG[clusterA] TYPE=moab SERVER=clusterA:40559
CLIENTCFG[RM:clusterA] AUTH=admin1 KEY=banana16

If you are using Moab Accounting Manager, the Start action is not supported as a non-blocking
accounting action in Peer-to-Peer grids. You will need to include Start as a blocking action. For
example:

AMCFG[mam] BLOCKINGACTIONS=Start

Resource Control and Access
l Controlling Resource Information

o Direct Node View

o Mapped Node View

o Managing Queue Visibility over the Grid

l Managing Resources with Grid Sandboxes

o Controlling Access on a Per Cluster Basis

o Access Control Lists/Granting Access to Local Jobs

Controlling Resource Information
In a Moab peer-to-peer grid, resources can be viewed in one of two models:

l Direct - nodes are reported to remote clusters exactly as they appear in the local cluster

l Mapped - nodes are reported as individual nodes, but node names are mapped to a unique name
when imported into the remote cluster

Direct Node View
Direct node import is the default resource information mode. No additional configuration is required to
enable this mode.

Mapped Node View
In this mode, nodes are reported just as they appear locally by the exporting cluster. However, on the
importing cluster side, Moab maps the specified node names using the resource manager object map. In
an object map, node mapping is specified using the node keyword as in the following example:

Moab Workload Manager

864 Moab Workload Manager for Grids

Moab Workload Manager for Grids 865

SCHEDCFG[gridmaster] MODE=NORMAL
RMCFG[clusterB] TYPE=moab OMAP=file://$HOME/clusterb.omap.dat
...
node:b_*,*

In this example, all nodes reported by clusterB have the string b_ prepended to prevent node name space
conflicts with nodes from other clusters. For example, if cluster clusterB reported the nodes node01,
node02, and node03, cluster gridmaster would report them as b_node01, b_node02, and b_node03.

See object mapping for more information on creating an object map file.

Managing Resources with Grid Sandboxes

A cluster may wish to participate in a grid but may desire to dedicate only a set amount of resources to
external grid workload or may only want certain peers to have access to particular sets of resources.
With Moab, this can be achieved by way of a grid sandbox which must be configured at the destination
cluster. Grid sandboxes can both constrain external resource access and limit which resources are
reported to other peers. This allows a cluster to only report a defined subset of its total resources to
source peers and restricts peer workload to the sandbox. The sandbox can be set aside for peer use
exclusively, or can allow local workload to also run inside of it. Through the use of multiple, possibly
overlapping grid sandboxes, a site may fully control resource availability on a per peer basis.

A grid sandbox is created by configuring a standing reservation on a destination peer and then specifying
the ALLOWGRID flag on that reservation. This flag tells the Moab destination peer to treat the standing
reservation as a grid sandbox, and, by default, only the resources in the sandbox are visible to grid
peers. Also, the sandbox only allows workload from other peers to run on the contained resources.

Moab Workload Manager

Example 3-171: Dedicated Grid Sandbox

SRCFG[sandbox1] PERIOD=INFINITY HOSTLIST=node01,node02,node03
SRCFG[sandbox1] CLUSTERLIST=ALL FLAGS=ALLOWGRID
...

The standing reservation sandbox1 creates a grid sandbox which always exists and contains the nodes node01, node02,
and node03. This sandbox will only allow grid workload to run within it by default. This means that the scheduler will
not consider the boxed resources for local workload.

Grid sandboxes inherit all of the same power and flexibility that standing reservations have. See
Managing Reservations for additional information.

The flag ALLOWGRID marks the reservation as a grid sandbox and as such, it precludes grid jobs
from running anywhere else. However, it does not enable access to the reserved resources. The
CLUSTERLIST attribute in the above example enables access to all remote jobs.

Controlling Access on a Per Cluster Basis
Often clusters may wish to control which peers are allowed to use certain sandboxes. For example,
Cluster A may have a special contract with Cluster B and will let overflow workload from Cluster B run
on 60% of its resources. A third peer in the grid, Cluster C, doesn't have the same contractual agreement,
and is only allowed 10% of Cluster A at any given time. Thus two separate sandboxes must be made to
accommodate the different policies.

SRCFG[sandbox1] PERIOD=INFINITY HOSTLIST=node01,node02,node03,node04,node05
SRCFG[sandbox1] FLAGS=ALLOWGRID CLUSTERLIST=ClusterB
SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node06 FLAGS=ALLOWGRID
SRCFG[sandbox2] CLUSTERLIST=ClusterB,ClusterC,ClusterD USERLIST=ALL
...

This example configuration illustrates how cluster A could set up their sandboxes to follow a more complicated policy. In
this policy, sandbox1provides exclusive access to nodes 1 through 5 to jobs coming from peer ClusterB by including
CLUSTERLIST=ClusterB in the definition. Reservation sandbox2provides shared access to node6 to local jobs and to jobs
from clusters B, C, and D through use of the CLUSTERLIST and USERLIST attributes.

With this setup, the following policies are enforced:

l local jobs may see all nodes and run anywhere except nodes 1 through 5

l jobs from cluster B may see and run only on nodes 1 through 6

l jobs from clusters C and D may see and run only on node 6

As shown in the example above, sandboxes can be shared across multiple peers by listing all sharing
peers in the CLUSTERLIST attribute (comma delimited).

Access Control Lists/Granting Access to Local Jobs
It is not always desirable to have the grid sandbox reserve resources for grid consumption, exclusively.
Many clusters may want to use the grid sandbox when local workload is high and demand from the grid
is relatively low. Clusters may also wish to further restrict what kind of grid workload can run in a
sandbox. This fine-grained control can be achieved by attaching access control lists (ACLs) to grid
sandboxes.

Moab Workload Manager

866 Moab Workload Manager for Grids

Moab Workload Manager for Grids 867

Since sandboxes are basically special standing reservations, the syntax and rules for specifying an ACL is
identical to those found in Managing Reservations.

Example

SRCFG[sandbox2] PERIOD=INFINITY HOSTLIST=node04,node05,node06
SRCFG[sandbox2] FLAGS=ALLOWGRID QOSLIST=high GROUPLIST=engineer
...

A cluster decides to dedicate resources to a sandbox, but wishes local workload to also run within it. An additional ACL is
then associated with the definition. The reservation sandbox2 takes advantage of this feature by allowing local jobs
running with a QOS of high, or under the group engineer, to also run on the sandboxed nodes node04, node05, and
node06.

Workload Submission and Control
l Controlling Peer Workload Information

l Determining Resource Availability

Controlling Peer Workload Information
By default, a peer is only responsible for workload that is submitted via that particular peer. This means
that when a source peer communicates with destination peers it only receives information about
workload it sent to those destination peers. If desired, the destination peers can send information about
all of its workload: both jobs originating locally and remotely. This is called local workload exporting.
This may help simplify administration of different clusters by centralizing monitoring and management
of jobs at one peer.

To implement local workload exporting, use the LOCALWORKLOADEXPORT resource manager flag.
For example:

RMCFG[ClusterA.INBOUND] FLAGS=LOCALWORKLOADEXPORT # source peer
...

This example shows the configuration on a destination peer (ClusterB) that exports its local and remote workload to the
source peer (ClusterA).

LOCALWORDKLOADEXPORT does not need to be configured in master/slave grids.

Related topics

l Job Start Time Estimates

Reservations in the Grid
In some environments, globally-shared resources may need to be managed to guarantee the full
environment required by a particular job. Resources such as networks, storage systems, and license
managers may be used only by batch workload but this workload may be distributed among multiple
independent clusters. Consequently, the jobs from one cluster may utilize resources required by jobs

Moab Workload Manager

from another. Without a method of coordinating the needs of the various cluster schedulers, resource
reservations will not be respected by other clusters and will be of only limited value.

Using the centralized model, Moab allows the importing and exporting of reservations from one peer
server to another. With this capability, a source peer can be set up for the shared resource to act as a
clearinghouse for other Moab cluster schedulers. This source peer Moab server reports configured and
available resource state and in essence possesses a global view of resource reservations for all clusters
for the associated resource.

To allow the destination peer to export reservation information to the source Moab, the RMCFG on page
1014 lines for all client resource managers must include the flag RSVEXPORT. The source Moab should
be configured with a resource manager interface to the destination peer and include both the
RSVEXPORT and RSVIMPORT flags. For the destination peer, RSVEXPORT indicates that it should
push information about newly created reservations to the source Moab, while the RSVIMPORT flag
indicates that the source Moab server should import and locally enforce reservations detected on the
destination peer server.

Grid Usage Policies
l Grid Usage Policy Overview

l Peer Job Resource Limits

l Usage Limits via Peer Credentials

l Using General Policies in a Grid Environment

o Source Cluster Policies

Grid Usage Policy Overview
Moab allows extensive control over how peers interact. These controls allow the following:

l Limiting which remote users, group, and accounts can utilize local compute resources

l Limiting the total quantity of local resources made available to remote jobs at any given time

l Limiting remote resource access to a specific subset of resources

l Limiting timeframes during which local resources will be made available to remote jobs

l Limiting the types of remote jobs which will be allowed to execute

Peer Job Resource Limits
Both source and destination peers can limit the types of jobs they will allow in terms of resources
requested, services provided, job duration, applications used, etc using Moab's job template feature.
Using this method, one or more job profiles can be created on either the source or destination side, and
Moab can be configured to allow or reject jobs based on whether or not the jobs meet the specified job
profiles.

When using the ALLOWJOBLIST and REJECTJOBLIST attributes, the following rules apply:

Moab Workload Manager

868 Moab Workload Manager for Grids

Moab Workload Manager for Grids 869

l All jobs that meet the job templates listed by ALLOWJOBLIST are allowed.

l All jobs that do not meet ALLOWJOBLIST job templates and which do meet REJECTJOBLIST job
templates are rejected.

l All jobs that meet no job templates in either list are allowed.

Usage Limits via Peer Credentials
With peer interfaces, destination clusters willing to accept remote jobs can map these jobs onto a select
subset of users, accounts, QoSs, and queues. With the ability to lock these jobs into certain credentials
comes the ability to apply any arbitrary credential constraints, priority adjustments, and resource
limitations normally available within cluster management. Specifically, the following can be
accomplished:

l limit number of active jobs simultaneously allowed

l limit quantity of allocated compute resources simultaneously allowed

l adjust job priority

l control access to specific scheduling features (deadlines, reservations, preemption, etc)

l adjust fairshare targets

l limit resource access

Using General Policies in a Grid Environment
While Moab does provide a number of unique grid-based policies for use in a grid environment, the vast
majority of available management tools come from the transparent application of cluster policies.
Cluster-level policies such as job prioritization, node allocation, fairshare, usage limits, reservations,
preemption, and allocation management all just work and can be applied in a grid in exactly the same
manner.

The one key concept to understand is that in a centralized based grid, these policies apply across the
entire grid; in a peer-based grid, these policies apply only to local workload and resources.

Source Cluster Policies
In many cases, organizations are interested in treating jobs differently based on their point of origin.
This can be accomplished by assigning and/or keying off of a unique credential associated with the
remote workload. For example, a site may wish to constrain jobs from a remote cluster to only a portion
of the total available cluster cycles. This could be accomplished using usage limits, fairshare targets,
fairshare caps, reservations, or allocation management based policies.

The examples below show three different approaches for constraining remote resource access.

Moab Workload Manager

Example 3-172: Constraining Remote Resource Access via Fairshare Caps

define peer relationship and map all incoming jobs to orion account
RMCFG[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion
configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100
use fairshare cap to limit jobs from orion to 10% of cycles
ACCOUNTCFG[orion] FSCAP=10%

Example 3-173: Constraining Remote Resource Access via Fairshare Targets and Preemption

define peer relationship and map all incoming jobs to orion account RMCFG
[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] ACCOUNT=orion
local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL
configure basic fairshare for 7 one day intervals
FSPOLICY DEDICATEDPS
FSINTERVAL 24:00:00
FSDEPTH 7
FSUSERWEIGHT 100
decrease priority of remote jobs and force jobs exceeding 10% usage to be
preemptible
ACCOUNTCFG[orion] FSTARGET=10-
ENABLEFSVIOLATIONPREEMPTION TRUE

Example 3-174: Constraining Remote Resource Access via Priority and Usage Limits

define peer relationship and map all incoming jobs to orion account RMCFG
[orion.INBOUND] SET.JOB=orion.set
JOBCFG[orion.set] QOS=orion
USERCFG[DEFAULT] QDEF=orion
local cluster can preempt jobs from orion
USERCFG[DEFAULT] JOBFLAGS=PREEMPTOR
PREEMPTPOLICY CANCEL
adjust remote jobs to have reduced priority
QOSCFG[orion] PRIORITY=-1000
allow remote jobs to use up to 64 procs without being preemptible and up to 96 as
preemptees
QOSCFG[orion] MAXPROC=64,96
ENABLESPVIOLATIONPREEMPTION TRUE

Related topics

l Grid Sandbox - control grid resource access

Grid Scheduling Policies
l Peer-to-Peer Resource Affinity Overview

l Peer Allocation Policies

l Per-partition Scheduling

Moab Workload Manager

870 Moab Workload Manager for Grids

Moab Workload Manager for Grids 871

Peer-to-Peer Resource Affinity Overview
The concept of resource affinity stems from a number of facts:

l Certain compute architectures are able to execute certain compute jobs more effectively than
others.

l From a given location, staging jobs to various clusters may require more expensive allocations,
more data and network resources, and more use of system services.

l Certain compute resources are owned by external organizations and should be used sparingly.

Regardless of the reason, Moab servers allow the use of peer resource affinity to guide jobs to the
clusters that make the best fit according to a number of criteria.

At a high level, this is accomplished by creating a number of job templates and associating the profiles
with different peers with varying impacts on estimated execution time and peer affinity.

Peer Allocation Policies
A direct way to assign a peer allocation algorithm is with the PARALLOCATIONPOLICY parameter. Legal
values are listed in the following table:

Value Description

FirstStart Allocates resources from the eligible peer that can start the job the soonest.

LoadBalance Allocates resources from the eligible peer with the most available resources; measured in tasks
(balances workload distribution across potential peers).

LoadBalanceP Allocates resources from the eligible peer with the most available resources; measured in per-
cent of configured resources (balances workload distribution across potential peers).

Random Allocates partitions in a random order each iteration. In general, all the jobs scheduled within
the same iteration receive the same randomized list of partitions. This means the randomization
happens between iterations and not within the same iteration. One iteration Moab might start
with partition X and the next it might start with partition Y.

RoundRobin Allocates resources from the eligible peer that has been least recently allocated.

The mdiag -t -v command can be used to view current calculated partition priority values.

Per-partition Scheduling
Per-partition scheduling can be enabled by adding the following lines to moab.cfg:

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

Moab Workload Manager

To use per-partition scheduling, you must configure fairshare trees where particular users have higher
priorities on one partition, and other users have higher priorities on a different partition.

Do not set the USEANYPARTITIONPRIO parameter if you use per-partition scheduling. Doing so
causes Moab to schedule jobs to the first partition listed, even if nodes from another partition will
be available sooner.

Grid Credential Management
l Peer User Credential Management Overview

l Credential Mapping Files

Peer Credential Management Overview
Moab provides a number of credential management features that allow sites to control which local users
can utilize remote resources and which remote users can utilize local resources and under what
conditions this access is granted.

Peer Credential Mapping
If two peers share a common user space (a given user has the same login on both clusters), then there is
often no need to enable credential mapping. When users, groups, classes, QoS's, and accounts are not the
same from one peer to another, Moab allows a site to specify an Object Map URL. This URL contains
simple one to one or expression based mapping for credentials and other objects. Using the RMCFG
parameter's OMAP attribute, a site can tell Moab where to find these mappings. The object map uses the
following format:

<OBJECTTYPE>:<SOURCE_OBJECTID>,<DESTINATION_OBJECTID>

where <SOURCE_OBJECT> can be a particular username or an asterisk (*) which is a wildcard matching
all credentials of the specified type which have not already been matched.

The object map file can be used to translate the following:

Keyword Objects

account accounts/projects

class classes/queues

file files/directories

group groups

Moab Workload Manager

872 Moab Workload Manager for Grids

Moab Workload Manager for Grids 873

Keyword Objects

node nodes

qos QoS

user users

The following moab.cfg and omap.dat files demonstrate a sample credential mapping.

SCHEDCFG[master1] MODE=normal
RMCFG[slave1] OMAP=file:///opt/moab/omap.dat
...

user:joe,jsmith
user:steve,sjohnson
group:test,staff
class:batch,serial
user:*,grid

In this example, a job that is being migrated from cluster master1 to the peer slave1 will have its
credentials mapped according to the contents of the omap.dat file. In this case, a job submitted by user
joe on master1 will be executed under the user account jsmith on peer slave1. Any credential that is not
found in the mapping file will be passed to the peer as submitted. In the case of the user credential, all
users other than joe and steve will be remapped to the user grid due to the wildcard matching.

Because the OMAP attribute is specified as a URL, multiple methods can be used to obtain the mapping
information. In addition to the file protocol shown in the example above, exec may be used.

Note that there is no need to use the credential mapping facility to map all credentials. In some cases, a
common user space exists but it is used to map all classes/queues on the source side to a single queue
on the destination side. Likewise, for utilization tracking purposes, it may be desirable to map all source
account credentials to a single cluster-wide account.

Source and Destination Side Credential Mapping
Credential mapping can be implemented on the source cluster, destination cluster, or both. A source
cluster may want to map all user names for all outgoing jobs to the name generaluser for security
purposes, and a destination cluster may want to remap all incoming jobs from this particular user to the
username cluster2 and the QoS grid.

Preventing User Space Collisions
In some cases, a cluster may receive jobs from two independent clusters where grid wide username
distinctiveness is not guaranteed. In this case, credential mapping can be used to ensure the uniqueness
of each name. With credential mapping files, this can be accomplished using the <DESTINATION_
CREDENTIAL> wildcard asterisk (*) character. If specified, this character will be replaced with the exact
<SOURCE_CREDENTIAL> when generating the destination credential string. For example, consider the
following configuration:

Moab Workload Manager

SCHEDCFG[master1] MODE=normal
RMCFG[slave1] OMAP=file:///opt/moab/omap.dat FLAGS=client
...

user:*,c1_*
group:*,*_grid
account:*,temp_*

This configuration will remap the usernames of all jobs coming in from the peer slave1. The username
john will be remapped to c1_john, the group staff will be remapped to staff_grid and the account demo
will be remapped to temp_demo.

Grid Data Management

This method of data staging has been deprecated in Moab Workload Manager 8.0.1 and will be
removed from the product in a future release. See About data staging on page 880 for
information about the new method of staging data.

l Grid Data Management Overview

l Configuring Peer Data Staging

l Peer-to-Peer SCP Key Authentication

l Diagnostics

Grid Data Management Overview
Moab provides a highly generalized data manager interface that can allow both simple and advanced
data management services to be used to migrate data amongst peer clusters. Using a flexible script
interface, services such as scp, NFS, and gridftp can be used to address data staging needs. This feature
enables a Moab peer to push job data to a destination Moab peer.

Configuring Peer Data Staging
Moab offers a simple, automatic configuration, as well as advanced configuration options. At a high level,
configuring data staging across a peer-to-peer relationship consists of configuring one or more storage
managers, associating them with the appropriate peer resource managers, and then specifying data
requirements at the local level—when the job is submitted.

To use the data staging features, you must specify the --with-grid option at ./configure time.
After properly configuring data staging, you can submit a job to the peer with any user who has SSH keys
set up and Moab will automatically or implicitly stage back the standard out and standard error files
created by the job. Files can be implicitly staged in or out before a job runs by using the mstagein or
mstageout options of msub.

Moab Workload Manager

874 Moab Workload Manager for Grids

Moab Workload Manager for Grids 875

Simple Configuration

Moab automatically does most of the data staging configuration based on a simplified set of parameters
(most common defaults) in the configuration file (moab.cfg).

Do the following to configure peer data staging:

1. Configure at least two Moab clusters to work in a grid. Please refer to information throughout Moab
Workload Manager for Grids for help on configuring Moab clusters to work together as peers in a
grid.

2. Set up SSH keys so that users on the source grid peer can SSH to destination peers without the need
for a password.

3. Make necessary changes to the moab.cfg file of the source grid peer to activate data staging, which
involves creating a new data resource manager definition within Moab. The resource manager
provides data staging services to existing peers in the grid. By defining the data resource manager
within the moab.cfg, Moab automatically sets up all of the necessary data staging auxiliary scripts.

Use the following syntax for defining a data resource manager:

RMCFG[<RMName>] TYPE=NATIVE RESOURCETYPE=STORAGE
VARIABLES=DATASPACEUSER=<DataSpaceUser>,DATASPACEDIR=<DataSpaceDir>
SERVER=<DataServer>

l <RMName>: Name of the RM (defined as a storage RM type by RESOURCETYPE=STORAGE).

l <DataSpaceUser>: User used to SSH into <DataServer> to determine available space in
<DataSpaceDir>. Moab runs a command similar to the following:

ssh <DataServer> -l <DataSpaceUser> df <DataSpaceDir>

l <DataSpaceDir>: Directory where staged data is stored.

l <DataServer>: Name of the server where <DataSpaceDir> is located.

Define the following URLs:

RMCFG[data] CLUSTERQUERYURL=exec://$TOOLSDIR/cluster.query.dstage.pl
RMCFG[data] SYSTEMMODIFYURL=exec://$TOOLSDIR/system.modify.dstage.pl
RMCFG[data] SYSTEMQUERYURL=exec://$TOOLSDIR/system.query.dstage.pl
RMCFG[data] RMINITIALIZEURL=exec://$TOOLSDIR/setup.config.pl

4. Associate the data resource manager with a peer resource manager.

RMCFG[remote_data] TYPE=NATIVE RESOURCETYPE=STORAGE
VARIABLES=DATASPACEUSER=datauser,DATASPACEDIR=/tmp SERVER=clusterhead
RMCFG[remote_cluster] TYPE=MOAB SERVER=clusterhead:42559 DATARM=remote_data

5. Restart Moab to finalize changes. You can use the mschedctl -R command to cause Moab to
automatically restart and load the changes.

When restarting, Moab recognizes the added configuration and runs a Perl script in the Moab tool
directory that configures the external scripts (also found in the tools directory) that Moab uses to
perform data staging. You can view the data staging configuration by looking at the
config.dstage.pl file in $MOABHOMEDIR/etc.

Moab Workload Manager

Advanced Configuration

If you need a more customized data staging setup, contact your account representative.

Peer-to-Peer SCP Key Authentication
In order to use scp as the data staging protocol, we will need to create SSH keys which allow users to
copy files between the two peers, without the need for passwords. For example, if UserA is present on the
source peer, and his counterpart is UserB on the destination peer, then UserAwill need to create an SSH
key and configure UserB to allow password-less copying. This will enable UserA to copy files to and from
the destination peer using Moab's data staging capabilities.

Another common scenario is that several users present on the source peer are mapped to a single user
on the destination peer. In this case, each user on the source peer will need to create keys and set them
up with the user at the destination peer. Below are steps that can be used to setup SSH keys among two
(or more) peers:

These instructions were written for OpenSSH version 3.6 and might not work correctly for older
versions.

Generate SSH Key on Source Peer

As the user who will be submitting jobs on the source peer, run the following command:

ssh-keygen -t rsa

You will be prompted to give an optional key. Just hit return and ignore this or other settings. When
finished, this command will create two files id_rsa and id_rsa.pub located inside the user's
~/.ssh/ directory.

Copy the Public SSH Key to the Destination Peer

Transfer the newly created public key (id_rsa.pub) to the destination peer:

scp ~/.ssh/id_rsa.pub ${DESTPEERHOST}:~

Disable Strict SSH Checking on Source Peer (Optional)

By appending the following to your ~/.ssh/config file you can disable SSH prompts which ask to add
new hosts to the "known hosts file." (These prompts can often cause problems with data staging
functionality.) Note that the ${DESTPEERHOST} should be the name of the host machine running the
destination peer:

Host ${DESTPEERHOST}
CheckHostIP no
StrictHostKeyChecking no
BatchMode yes

Configure Destination Peer User

Now, log in to the destination peer as the destination user and set up the newly created public key to be
trusted:

Moab Workload Manager

876 Moab Workload Manager for Grids

http://www.openssh.org/

Moab Workload Manager for Grids 877

ssh ${DESTPEERUSER}@${DESTPEERHOST}
mkdir -p .ssh; chmod 700 .ssh
cat id_rsa.pub >> .ssh/authorized_keys
chmod 600 .ssh/authorized_keys
rm id_rsa.pub

If multiple source users map to a single destination user, then repeat the above commands for each
source user's SSH public key.

Configure SSH Daemon on Destination Peer

Some configuration of the SSH daemon may be required on the destination peer. Typically, this is done
by editing the /etc/ssh/sshd_config file. To verify correct configuration, see that the following
attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted:

/etc/init.d/sshd restart

Validate Correct SSH Configuration

If all is properly configured, if you issue the following command source peer it should succeed without
requiring a password:

scp ${DESTPEERHOST}:/etc/motd /tmp/

Diagnostics
Verify data staging is properly configured by using the following diagnostic commands:

l mdiag -R -v: Displays the status of the storage manager. Verify that you set up the necessary
URLs.

> mdiag -R -v data
diagnosing resource managers
RM[data] State: Active Type: NATIVE ResourceType: STORAGE
Server: keche
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/grid/cluster.query.dstage.pl
RM Initialize URL: exec://$TOOLSDIR/grid/setup.config.pl
System Modify URL: exec://$TOOLSDIR/grid/system.modify.dstage.pl
System Query URL: exec://$TOOLSDIR/grid/system.query.dstage.pl
Nodes Reported: 1 (scp://keche//tmp/)
Partition: SHARED
Event Management: (event interface disabled)
Variables: DATASPACEUSER=root,DATASPACEDIR=/tmp
RM Languages: NATIVE
RM Sub-Languages: -

l checknode -v: Executing this on the storage node displays the data staging operations associated
with the node and its disk usage.

Moab Workload Manager

The number of bytes transferred for each file is currently not used.

> checknode -v scp://keche//tmp/
node scp://keche//tmp/
State: Idle (in current state for 00:00:13)
Configured Resources: DISK: 578G
Utilized Resources: DISK: 316G
Dedicated Resources: ---
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Active Data Staging Operations:
job native.2 complete (1 bytes transferred)

(/home/brian/stage.txt)
job native.3 pending (1 bytes) (/home/brian/stage.txt)

Dedicated Storage Manager Disk Usage: 0 of 592235 MB
Cluster Query URL: exec://$TOOLSDIR/grid/cluster.query.dstage.pl
Partition: SHARED Rack/Slot: ---
Flags: rmdetected
RM[data]: TYPE=NATIVE
EffNodeAccessPolicy: SHARED
Total Time: 00:12:15 Up: 00:12:15 (100.00%) Active: 00:00:00 (0.00%)
Reservations: ---

l mdiag -n: Displays the state of the storage node.

> mdiag -n
compute node summary
Name State Procs Memory Opsys
compute1 Idle 4:4 3006:3006 linux
compute2 Down 0:4 3006:3006 linux
scp://keche//tmp/ Idle 0:0 0:0 -
----- --- 4:8 6012:6012 -----
Total Nodes: 3 (Active: 0 Idle: 2 Down: 1)

l checkjob -v: Displays the status of the staging request.

The remaining time and size of the file information is currently not used. The information
should only be used to see file locations and whether the file has been staged or not.

> checkjob -v jobid
...
Stage-In Requirements:
localhost:/home/brian/stage.txt => keche:/tmp/staged.txt size:0B

status:[NONE] remaining:00:00:01
Transfer URL: file:///home/brian/stage.txt,ssh://keche/tmp/staged.txt

...

To ensure that SCP key authentication is properly configured, the following conditions must be met:

l Moab is running as root.

l You are able to issue the following command as the root user without being prompted for a
password:

su - <DATASPACEUSER> -c "/usr/bin/ssh <destination host> -l <DATASPACEUSER> 'df
-k //tmp/ 2>&1 || echo FAILED'"

l You can SSH <destination host> without a password.

Moab Workload Manager

878 Moab Workload Manager for Grids

Moab Workload Manager for Grids 879

l The dataSpaceLocalUser and dataSpaceMappedUser variables in your
/opt/moab/etc/config.dstage.pl script are set to the same username you assigned
through <DATASPACEUSER>.

Grid Security

Secret Key Based Server Authentication
Secret key based security is required in order for the grid to work. It is enabled in the moab-
private.cfg file. Configuration of moab-private.cfg is covered throughout the grid configuration
documentation, as well as in Appendix E: Security.

Grid Diagnostics and Validation
l Peer Management Overview

l Peer Diagnostic Overview

Peer Management Overview
l Use mdiag -R to view interface health and performance/usage statistics.

l Use mrmctl to enable/disable peer interfaces.

l Use mrmctl -m to dynamically modify/configure peer interfaces.

Peer Diagnostic Overview
l Use mdiag -R to diagnose general RM interfaces.

l Use mdiag -S to diagnose general scheduler health.

l Use mdiag -R -V job <RMID> to diagnose peer-to-peer job migration.

> mdiag -R -V job peer1

l Use mdiag -R -V data <RMID> to diagnose peer-to-peer data staging.

l Use mdiag -R -V cred <RMID> to diagnose peer-to-peer credential mapping.

Moab Workload Manager

Data staging

About data staging
Sometimes you might need a job to process data that resides at another site. With the proper
configuration, you can submit your job with the requirement that it copies data from the external site to
yours and, if needed, copy the job's resulting data out to the external site for its owner to use. Data
staging is an out-of-band method of moving data without reserving compute nodes or other resources for
it.

In the example below, which will appear throughout the chapter, a university researcher needs the
results of tests done at a hospital to run his job. User davidharris on the student server of the
university submits a job called Moab.1 that requires several files stored by user annasmith on the
research server of the hospital. davidharris submitted Moab.1 with certain options in place that
instruct Moab to copy the files to the /student/davidharris/research/patientrecords/
directory on the student server prior to starting the job.

Moab currently supports the following data staging use cases: 1) Staging data to or from a shared file
system, 2) Staging data to or from local node storage on a single compute node, and 3) Staging data to or
from a shared file system on an unspecified cluster – resolved at job migration – in a grid configuration.

Before you can submit data staging jobs, you must configure certain generic metrics in your partitions,
job templates, and the data staging submit filter for data staging scheduling, throttling, and policies.

Moab uses Linux file transfer utilities to stage the data and includes data staging reference scripts that
support the scp and rsync Linux file transfer utilities. The scripts will work for standard installations, but
you can customize the script to support data staging to and from an external staging server, the Moab
server itself, or a local compute node, depending on your implementation. You can also customize your
own script for other file transfer utilities, such as Aspera.

Once you configure your system to support data staging, you can begin creating data staging jobs by
attaching the --stagein, --stageinfile, --stageinsize, --stageout, --stageoutfile, and -
-stageoutsize options to your msub commands. See Staging data on page 303 for more information.

Moab Workload Manager

880 Data staging

Data staging 881

How-to's

The following topics describe how to stage data in different Moab environments.

l Configuring the SSH keys for the data staging transfer script on page 882
l Configuring data staging on page 884
l Configuring the $CLUSTERHOST variable on page 894
l Staging data to or from a shared file system on page 886
l Staging data to or from a shared file system in a grid on page 890
l Staging data to or from a compute node on page 895
l Configuring data staging with advanced options on page 899

References

The following topics contain detailed information that you can use as reference material for data
staging

l Sample user job script on page 901
l Applying the msub submit filter on page 307

Related topics

l msub on page 290

Moab Workload Manager

How-to's

Configuring the SSH keys for the data staging transfer script
Context

For data staging to work correctly, you must configure SSH keys to allow the data staging scripts to
run without passphrases. In the sample data staging server configuration shown in the image below,
davidharris on the student server stages data from the source server student to the
destination server labs. The computation occurs on the labs server before Moab stages the output
data from labs back to student. The image below demonstrates the SSH connections necessary
and how you should configure your SSH keys.

For more details on generating keys, see the ssh-keygen man page and "SSH login without password".

Moab Workload Manager

882 Data staging

http://www.openbsd.org/cgi-bin/man.cgi?query=ssh-keygen
http://www.linuxproblem.org/art_9.html

Data staging 883

To configure the SSH keys for the data staging transfer script

1. Generate a new SSH key on the Moab server (university) if one does not already exist. To do so,
run each of the following steps.

a. Run ssh-keygen to generate a public and private rsa key pair.

davidharris@university]$ ssh-keygen

b. Enter the name of the file where you want to store the key, or you can accept the default
location.

/home/davidharris/.ssh/id_rsa

c. When prompted for a passphrase, leave it blank and press Enter. Repeat when prompted to
retype passphrase.

2. Install the public key on the source and destination hosts. Note that in this example the source host is
student and the destination host is labs.

a. Copy the university public key to student. Answer yes to continue connecting.

[davidharris@university]$ ssh-copy-id -i ~/.ssh/id_rsa.pub student

b. Copy the university public key to labs. Answer yes to continue connecting.

[davidharris@university]$ ssh-copy-id -i ~/.ssh/id_rsa.pub labs

The next two steps generate a key-pair for each node. It is acceptable to generate a single key-
pair and install it on each node. It does not matter where the key-pair is generated, so long as
it is compatible with the SSH client/server.

3. Generate a key pair on the source host (student) and install the public key generated to the
destination host (labs). When prompted for a passphrase, leave it blank and press Enter. Repeat
when prompted to retype passphrase.

[davidharris@student]$ ssh-keygen
[davidharris@student]$ ssh-copy-id -i ~/.ssh/id_rsa.pub labs

4. Generate a key pair on the destination host (labs) and install the public key generated to the source
host (student). When prompted for a passphrase, leave it blank and press Enter. Repeat when
prompted to retype passphrase.

[davidharris@labs]$ ssh-keygen
[davidharris@labs]$ ssh-copy-id -i ~/.ssh/id_rsa.pub student

5. Ensure that each user who will run data staging jobs has read and write permissions on each source
and destination server.

6. Test the configuration. To do so:

a. Install the modules required to run the data staging scripts. python-paramiko is required for
data staging, but python-mock is only required if you intend to run the unit test.

Moab Workload Manager

> yum install python-paramiko python-mock

b. Transfer a file from the source host to the destination host to verify that the keys work for the
users configured. To do so, run /opt/moab/tools/data-staging/ds_move_scp --
test=<source>%<destination> if you use scp or /opt/moab/tools/data-staging/ds_
move_rsync --test=<source>%<destination> script if you use rsync.
<source>%<destination> is configured the same way as the --stagein and --stageout
options for msub; for help configuring your source and destination, see Staging a file or directory
on page 303.

[davidharris@university]$ /opt/moab/tools/data-staging/ds_move_rsync --
test=davidharris@student:/tmp/test%davidharris@labs:/tmp

c. In the same way, transfer a file from the destination host to the source host to verify that the
keys work for the users configured.

[davidharris@university]$ /opt/moab/tools/data-staging/ds_move_rsync --
test=davidharris@labs:/tmp/test%davidharris@student:/test_processed

Related topics

l About data staging on page 880
l Configuring data staging on page 884

Configuring data staging
Context

You must modify your Moab configuration to enable data staging. In addition to the configuration
steps described below, you might also consider customizing the configuration (including the
associated scripts) to meet your site's specific needs.

For advanced configuration steps and options, see Configuring data staging with advanced options
on page 899.

To configure data staging

1. Verify that your firewall and network are correctly configured to allow the scripts to operate as
designed.

2. If you have not already done so, install the modules required to run the data staging scripts.
python-paramiko is required for data staging, but python-mock is only required if you intend to
run the unit test.

> yum install python-paramiko python-mock

3. If you have not already, follow the instructions found in Configuring the SSH keys for the data
staging transfer script on page 882.

4. Ensure that the data staging scripts are installed on your system. To do so, list the contents of the
/opt/moab/tools/data-staging directory. You should see the data staging README file,
reference scripts, and other related files.

Moab Workload Manager

884 Data staging

Data staging 885

> ls -l /opt/moab/tools/data-staging

You can copy and modify the reference scripts and configuration files to meet your specific needs.
See the README file packaged in the data-staging directory for information about modifying
these files.

5. Open your moab.cfg file for editing and do each of the following tasks:

a. Configure the data staging msub filter, located in /opt/moab/tools/data-staging by
default, as a client-side filter. See Applying the msub submit filter on page 307 for more
information.

SUBMITFILTER /opt/moab/tools/data-staging/ds_filter

The data staging filter checks the msub argument syntax to verify that the arguments make
sense and are consistent; attempts a dry run connection via SSH and the file transfer utility to
ensure that keys exist for the user on the necessary systems; and attempts to determine the size
of the data that will be transferred.

You can customize the script to meet your specific needs; the file contains detailed comments
illustrating its default behavior to facilitate its modification. If you replace or modify the submit
filter, it is your responsibility to ensure that the same functionality described in the paragraph
above is present in your filter.

Note that this filter has the DEFAULT_TEMPLATE name which should match the name of the
master data staging template in moab.cfg. For more information, see Configuring data staging
with advanced options on page 899.

b. Set the data staging bandwidth gmetric (DATASTAGINGBANDWIDTH_MBITS_PER_SEC) on each
partition associated with an RM to the rate at which its network to be used for data staging
transfers data in megabits per second (see Per-Partition Settings on page 498 for more
information). Moab will use the specified rate and the data staging size specified at job
submission (see Stage in or out file size on page 305 for more information) to determine how
long staging the data will take and to schedule the job as soon after data staging completes as
possible.

Example 3-175: Non-grid

RMCFG[torque] Type=pbs
PARCFG[torque] GMETRIC[DATASTAGINGBANDWIDTH_MBITS_PER_SEC]=58

Partition torque has a transfer rate of 58 megabits per second. Moab uses the rate when it estimates the time
it will take to stage data in and determine when to schedule the job that will use the data.

Example 3-176: Grid

RMCFG[m1] type=Moab
PARCFG[m1] GMETRIC[DATASTAGINGBANDWIDTH_MBITS_PER_SEC]=100

Partition m1 has a transfer rate of 100 megabits per second. Moab uses the rate when it estimates the time it
will take to stage data in and determine when to schedule the job that will use the data.

Moab Workload Manager

c. Set the bandwidth generic resource on all nodes to limit the total number of concurrent data
staging jobs in your system.

NODECFG[GLOBAL] GRES=bandwidth:10

Data staging jobs can use up to 10 units of bandwidth on the system. You can specify the number of units
consumed by each data staging job when you configure the data staging job templates.

6. Install the msub client filter on all client submission hosts.

Related topics

l About data staging on page 880

Staging data to or from a shared file system
Context

In the most common data staging use case, the cluster utilizes a shared file system between all
compute nodes. This type of data staging makes data stored outside of the cluster available to a job
that will run on any set of nodes in the cluster. At the time of submission, you must specify where
Moab will obtain the data with a username, host name, and path to a file or directory and where on
the shared file system Moab will store the data. After the job runs, you can also copy data from the
shared file system back to a remote file system.

Image 3-13: Data staging to or from a shared file system

Moab Workload Manager

886 Data staging

Data staging 887

To stage data to or from a shared file system

1. If you have not already done so, configure your SSH keys and moab.cfg to support data staging. See
Configuring the SSH keys for the data staging transfer script on page 882 and Configuring data
staging on page 884 for more information.

2. Create your job templates for data staging jobs in moab.cfg. The templates in the example below
create a compute job that stages data in before it starts and stages data out when it completes. For
more information about creating job templates, see About job templates on page 832.

a. Create a selectable master template, called ds in the example below, that creates a stage in and
stage out system job. This name should match the DEFAULT_TEMPLATE value in ds_config.py.
See Configuring data staging with advanced options on page 899 for more information.

b. For the data staging in job template, called dsin in the example below, specify that it will create
a data staging job by setting DATASTAGINGJOB to TRUE. Note that the name of this job template
must match the name of the data stage in job template referenced in the master template.

c. Set the bandwidth GRES to the amount of bandwidth a single stage in job should use. This
indicates how many of the bandwidth units specified with NODECFG[GLOBAL] in Configuring
data staging on page 884 a data staging job with this template should consume.

d. Add FLAGS=GRESONLY to indicate that this data staging job does not require any compute
resources.

e. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_move_multiplex
script, depending on which file transfer utility you use. Set the attacherror, objectxmlstdin, and
user FLAGs to attach any trigger stderr as a message to the job, pass the job XML to the script,
and indicate that the script should run as the job's user, respectively.

If you use the rsync protocol, you can configure your data staging jobs to report the actual
number of bytes transferred and the total data size to be transferred. To do so, use the
Sets attribute to ^BYTES_IN.^DATA_SIZE_IN for stage in jobs and ^BYTES_
OUT.^DATA_SIZE_OUT for stage out jobs. For example, a stage in trigger would look like
the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to TRUE.

f. Create the stage out job, called dsout in the example below, by repeating steps 2b - 2e in a new
template. In the example below, this template is called dsout. Note that the name of this job

Moab Workload Manager

template must match the name of the data stage out job template referenced in the data staging
master template.

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally would. Then
configure Moab to stage the data for it. To do so:

a. At the end of the command, use the --stagein/--stageout option and/or --stageinfile/-
-stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory to stage in or
out. You must set the option equal to <source>%<destination>, where <source> and
<destination> are both [<user>@]<host>:/<path>/[<fileName>]. See Staging a file or
directory on page 303 for format and details.

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

> msub --stagein=annasmith@labs:/patient-
022678/%davidharris@university:/davidharris/research/patientrecords
<jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the university cluster
where the job will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that contains the
file and/or directory name(s) to stage in or out. You must set the option equal to
<path>/<fileName> of the file. The file must contain at least one line with this
format: <source>%<destination>, where both <source> and <destination> are [<user>@]
<host>:/<path>[<fileName>]. See Staging multiple files or directories on page 304 for
more information.

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

> msub --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the cluster where the
job will run prior to job start.

Moab Workload Manager

888 Data staging

Data staging 889

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%davidharris@university:/davidharris/research/patie
ntrecords/blood02282014
annasmith@labs:/patient-
022678/visits/stats02032014%davidharris@university:/davidharris/research/pati
entrecords/stats02032014
annasmith@labs:/patient-
022678/visits/stats02142014%davidharris@university:/davidharris/research/pati
entrecords/stats02142014
annasmith@labs:/patient-
022678/visits/stats02282014%davidharris@university:/davidharris/research/pati
entrecords/stats02282014
annasmith@labs:/patient-
022678/visits/stats03032014%davidharris@university:/davidharris/research/pati
entrecords/stats03032014
annasmith@labs:/patient-
022678/visits/stats03142014%davidharris@university:/davidharris/research/pati
entrecords/stats03142014
annasmith@labs:/patient-
022678/visits/stats03282014%davidharris@university:/davidharris/research/pati
entrecords/stats03282014

Moab copies the seven patient record files from the hospital's labs server to the university cluster
where the job will run prior to job start.

b. The --stageinsize/--stageoutsize option lets you specify the estimated size of the files
and/or directories to help Moab more quickly and accurately calculate the amount of time it will
take to stage the data and therefore schedule your job correctly. If you are staging data out, then
setting --stageoutsize is required. If you provide an integer, Moab will assume the number is
in megabytes. To change the unit, add another suffix. See Stage in or out file size on page 305 for
more information.

> msub --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from
the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run checkjob -v.
See "checkjob" for details.

Related topics

l About data staging on page 880
l Configuring data staging on page 884
l Configuring data staging with advanced options on page 899
l Staging data to or from a shared file system in a grid on page 890
l Staging data to or from a compute node on page 895
l Sample user job script on page 901

Moab Workload Manager

Staging data to or from a shared file system in a grid
Context

You can stage data in an environment where multiple instances of Moab run in a grid configuration.
For this type of data staging, each cluster utilizes a shared file system with all compute nodes. This
type of data staging will make data available to a job that will run on a set of nodes in one of the
clusters in the grid. You must specify where the remote data can be obtained with a username, host
name, and path to a file or directory and where on the shared storage Moab will store the data. The
remote data source location is known at job submission time, but you must use the $CLUSTERHOST
placeholder for the host name of the data transfer server on which the job will be scheduled. After
the job runs, you can also copy data from the cluster shared file system to a remote file system.

Note that you cannot stage data to or from a local compute node with its own local storage in a grid
environment.

Image 3-14: Data staging in a grid

Moab Workload Manager

890 Data staging

Data staging 891

To stage data to or from a shared file system in a grid

1. If you have not already done so, configure your SSH keys and moab.cfg to support data staging. See
Configuring the SSH keys for the data staging transfer script on page 882 and Configuring data
staging on page 884 for more information.

2. Create your job templates for data staging jobs in moab.cfg. The templates in the example below
create a compute job that stages data in before it starts and stages data out when it completes. For
more information about creating job templates, see About job templates on page 832.

a. Create a selectable master template, called ds in the example below, that creates a stage in and
stage out system job. This name should match the DEFAULT_TEMPLATE value in ds_config.py.
For more information, see Configuring data staging with advanced options on page 899.

b. For the data staging in job template, called dsin in the example below, specify that it will create
a data staging job by setting DATASTAGINGJOB to TRUE. Note that the name of this job template
must match the name of the data stage in job template referenced in the master template.

c. Set the staging job template bandwidth GRES to the amount of bandwidth a single stage in job
should use. This indicates how many of the bandwidth units specified with NODECFG[GLOBAL] in
Configuring data staging on page 884 a data staging job with this template should consume.

d. Set JOBMIGRATEPOLICY to JUSTINTIME.

e. Add FLAGS=GRESONLY to indicate that this data staging job does not require any compute
resources.

f. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_move_multiplex
script, depending on which file transfer utility you use. Set the attacherror, objectxmlstdin, and
user FLAGs to attach any trigger stderr as a message to the job, pass the job XML to the script,
and indicate that the script should run as the job's user, respectively.

If you use the rsync protocol, you can configure your data staging jobs to report the actual
number of bytes transferred and the total data size to be transferred. To do so, use the
Sets attribute to ^BYTES_IN.^DATA_SIZE_IN for stage in jobs and ^BYTES_
OUT.^DATA_SIZE_OUT for stage out jobs. For example, a stage in trigger would look like
the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to TRUE.

Moab Workload Manager

g. Create the stage out job, called dsout in the example below, by repeating steps 2b - 2f in a new
template. In the example below, this template is called dsout. Note that the name of this job
template must match the name of the data stage out job template referenced in the master
template.

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] INHERITRES=TRUE
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally would. Then
configure Moab to stage the data for it. To do so:

a. At the end of the command, use the --stagein/--stageout option and/or --stageinfile/-
-stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory to stage in or
out. You must set the option equal to <source>%<destination>, where <source> and
<destination> are both [<user>@]<host>:/<path>/[<fileName>]. See Staging a file or
directory on page 303 for format and details.

Note that if you do not know the cluster where the job will run but want the data staged to
the same location, you can use the $CLUSTERHOST variable in place of a host. If you choose to
use the $CLUSTERHOST variable, you must first customize the ds_config.py file. For more
information, see Configuring the $CLUSTERHOST variable on page 894.

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

> msub ... --stagein=annasmith@labs:/patient-
022678/%\$CLUSTERHOST:/davidharris/research/patientrecords <jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the cluster where the job
will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that contains the file
(s) and directory(-ies) to stage in or out. You must set the option equal to
<path>/<fileName> of the file. The file must contain at least one line with this format:
[<user>@]<host>:/<path>[<fileName>]. See Staging multiple files or directories on
page 304 for more information.

Moab Workload Manager

892 Data staging

Data staging 893

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

> msub ... --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the cluster where the
job will run prior to job start.

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%$CLUSTERHOST:/davidharris/research/patientrecords/b
lood02282014
annasmith@labs:/patient-

022678/visits/stats02032014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats02032014
annasmith@labs:/patient-

022678/visits/stats02142014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats02142014
annasmith@labs:/patient-

022678/visits/stats02282014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats02282014
annasmith@labs:/patient-

022678/visits/stats03032014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats03032014
annasmith@labs:/patient-

022678/visits/stats03142014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats03142014
annasmith@labs:/patient-

022678/visits/stats03282014%$CLUSTERHOST:/davidharris/research/patientrecords/
stats03282014

Moab copies the seven patient record files from the hospital's labs server to the cluster where the job will
run prior to job start.

b. The --stageinsize/--stageoutsize option lets you specify the estimated size of the files
and/or directories to help Moab more quickly and accurately calculate the amount of time it will
take to stage the data and therefore schedule your job correctly. If you used the $CLUSTERHOST
variable to stage in, then setting --stageinsize is required. --stageoutsize is always
required for staging data out. If you provide an integer, Moab will assume the number is in
megabytes. To change the unit, add another suffix. See Stage in or out file size on page 305 for
more information.

> msub ... --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from
the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run checkjob -v.
See "checkjob" for details.

Related topics

l About data staging on page 880
l Configuring data staging on page 884

Moab Workload Manager

l Configuring data staging with advanced options on page 899
l Sample user job script on page 901

Configuring the $CLUSTERHOST variable

Context

When you submit a data staging job in a grid environment, you can use the $CLUSTERHOST variable
instead of specifying a destination if you do not know the cluster where the job will run but want the
data staged to the same location. Before the variable will work correctly, you must first configure it
by customizing the ds_config.py script to match your unique system.

Use case

In a grid with three clusters, you have a partition named master where you want all data
staged to a host named gridheadNAS; a partition named csdept where you want all data
staged to a host named fs001.cs.example.edu; and a partition named lab where you want
all data staged to a host named bigfilesystem.

To configure the $CLUSTERHOST variable

1. Open the ds_config.py file for modification. It is located in /opt/moab/tools/data-staging/
by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

2. Locate the PARTITION_TO_HOST parameter.

...
PARTITION_TO_HOST = {"partition_1_name":"cluster_1_staging_hostname",

"partition_2_name":"cluster_2_staging_hostname",
"partition_3_name":"cluster_3_staging_hostname"}

...

3. Replace the partition names and associated cluster hostnames with those that match your system.
For the use case provided above, you would customize it the following way:

...
PARTITION_TO_HOST = {"master":"gridheadNAS",

"csdept":"fs001.cs.example.edu",
"lab":"bigfilesystem"}

...

Related topics

l Staging data to or from a shared file system in a grid on page 890

Moab Workload Manager

894 Data staging

Data staging 895

Staging data to or from a compute node
Context

You can stage data to or from a local compute node in an environment where each node on the
cluster has local storage. This type of data staging will make data stored outside the cluster
available to a job that will run on a single node in the cluster. You must specify the username, host
name, and path to a file or directory and a location on the compute node where Moab will store the
data. You will supply the remote data source location at job submission time, but you must use the
$JOBHOST placeholder for the name of the compute node. After the job runs, you can also copy data
from the local file system to a remote file system.

Image 3-15: Data staging to or from a local compute node

Before staging data to or from a local compute node, please follow the procedure in Configuring data
staging on page 884.

To stage data to or from a local compute node

1. If you have not already done so, configure your SSH keys and moab.cfg to support data staging. See
Configuring the SSH keys for the data staging transfer script on page 882 and Configuring data
staging on page 884 for more information.

2. Create your job templates for data staging jobs in moab.cfg. The templates in the example below
create a compute job that stages data in before it starts and stages data out when it completes. For
more information about creating job templates, see About job templates on page 832.

a. Create a selectable master template, called ds in the example below, that creates a stage in and
stage out system job. This name should match the DEFAULT_TEMPLATE value in ds_config.py.

Moab Workload Manager

For more information, see Configuring data staging with advanced options on page 899.

b. For the data staging in job template, called dsin in the example below, specify that it will create
a data staging job by setting DATASTAGINGJOB to TRUE. Note that the name of this job template
must match the name of the data stage in job template referenced in the master template.

c. Set the staging job template bandwidth GRES to the amount of bandwidth a single stage in job
should use. This indicates how many of the bandwidth units specified with NODECFG[GLOBAL] in
Configuring data staging on page 884 a data staging job with this template should consume.

d. For local node data staging it is important that the data staging job has the entire node to itself.
To prevent Moab from scheduling another job on the node at the same time as the data staging
job, set the NODEACCESSPOLICY to SINGLEJOB in the staging job template.

e. Add INHERITRES=TRUE to reserve the compute node for the data staging job to prevent other
compute jobs from using the node at the same time and creating input, output, and disk conflicts
with the data staging job.

f. Create a trigger that executes the ds_move_scp, ds_move_rsync, or ds_move_multiplex
script, depending on which file transfer utility you use. Set the attacherror, objectxmlstdin, and
user FLAGs to attach any trigger stderr as a message to the job, pass the job XML to the script,
and indicate that the script should run as the job's user, respectively.

If you use the rsync protocol, you can configure your data staging jobs to report the actual
number of bytes transferred and the total data size to be transferred. To do so, use the
Sets attribute to ^BYTES_IN.^DATA_SIZE_IN for stage in jobs and ^BYTES_
OUT.^DATA_SIZE_OUT for stage out jobs. For example, a stage in trigger would look like
the following:

JOBCFG[dsin]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
IN.^DATA_SIZE_IN

A stage out trigger would look like the following:

JOBCFG[dsout]
TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=objectxmlstdin:user:attacherror,Sets=^BYTES_
OUT.^DATA_SIZE_OUT

These variables show up as events if you set your WIKIEVENTS parameter to TRUE.

g. Create the stage out job, called dsout in the example below, by repeating steps 2b - 2f in a new
template. In the example below, this template is called dsout. Note that the name of this job
template must match the name of the data stage out job template referenced in the data staging
master template.

Moab Workload Manager

896 Data staging

Data staging 897

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout
SELECT=TRUE

JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] NODEACCESSPOLICY=SINGLEJOB
JOBCFG[dsin] INHERITRES=TRUE
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] NODEACCESSPOLICY=SINGLEJOB
JOBCFG[dsout] INHERITRES=TRUE
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

3. Create the job using msub, adding resources and specifying a script as you normally would. Then
configure Moab to stage the data for it. To do so:

a. If the compute job does not use all of the node's processors, Moab could schedule another job on
the node at the same time. If you did not set NODEACCESSPOLICY to SINGLEJOB in your
moab.cfg, set the policy for this job by adding -l naccesspolicy=singlejob to your msub
command.

> msub -l naccesspolicy=singlejob... <jobScript>

b. At the end of the command, use the --stagein/--stageout option and/or --stageinfile/-
-stageoutfile option.

l The --stagein/--stageout option lets you specify a single file or directory to stage in or
out. You must set the option equal to <source>%<destination>, where <source> and
<destination> are both [<user>@]<host>:/<path>/[<fileName>]. See Staging a file or
directory on page 303 for format and details.

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

If you do not know the host where the job will run but want the data staged to the same
location, you can use the $JOBHOST variable in place of a host.

> msub --stagein=annasmith@labs:/patient-
022678/%\$JOBHOST:/davidharris/research/patientrecords <jobScript>

Moab copies the /patient-022678 directory from the hospital's labs server to the node where the job
will run prior to job start.

l The --stageinfile/--stageoutfile option lets you specify a file that contains the file
and directory name(s) to stage in or out. You must set the option equal to
<path>/<fileName>% of the file. The file must contain at least one line with this
format: <source>%<destination>, where <source> and <destination> are both [<user>@]
<host>:/<path>[/<fileName>]. See Staging multiple files or directories on page 304
for more information.

Moab Workload Manager

If the destination partition is down or does not have configured resources, the data
staging workflow submission will fail.

> msub --stageinfile=/davidharris/research/recordlist <jobScript>

Moab copies all files specified in the /davidharris/research/recordlist file to the host where the
job will run prior to job start.

/davidharris/research/recordlist:

annasmith@labs:/patient-
022678/tests/blood02282014%$JOBHOST:/davidharris/research/patientrecords/blood
02282014
annasmith@labs:/patient-

022678/visits/stats02032014%$JOBHOST:/davidharris/research/patientrecords/stat
s02032014
annasmith@labs:/patient-

022678/visits/stats02142014%$JOBHOST:/davidharris/research/patientrecords/stat
s02142014
annasmith@labs:/patient-

022678/visits/stats02282014%$JOBHOST:/davidharris/research/patientrecords/stat
s02282014
annasmith@labs:/patient-

022678/visits/stats03032014%$JOBHOST:/davidharris/research/patientrecords/stat
s03032014
annasmith@labs:/patient-

022678/visits/stats03142014%$JOBHOST:/davidharris/research/patientrecords/stat
s03142014
annasmith@labs:/patient-

022678/visits/stats03282014%$JOBHOST:/davidharris/research/patientrecords/stat
s03282014

Moab copies the seven patient record files from the hospital's labs server to the host where the job will
run prior to job start.

c. The --stageinsize/--stageoutsize option lets you specify the estimated size of the files
and/or directories to help Moab more quickly and accurately calculate the amount of time it will
take to stage the data and therefore schedule your job correctly. If you used the $JOBHOST
variable to stage in, then setting --stageinsize is required. --stageoutsize is always
required for staging data out. If you provide an integer, Moab will assume the number is in
megabytes. To change the unit, add another suffix. See Stage in or out file size on page 305 for
more information.

> msub --stageinfile=/davidharris/research/recordlist --stageinsize=100
<jobScript>

Moab copies the /davidharris/research/recordlist file, which is approximately 100 megabytes, from
the biology node to the host where the job will run prior to job start.

4. To see the status, errors, and other details associated with your data staging job, run checkjob -v.
See "checkjob" for details.

Your checkjob output may include a warning that says "req 1 RM (internal) does not match job
destination RM". You can safely ignore this message.

Moab Workload Manager

898 Data staging

Data staging 899

Related topics

l About data staging on page 880
l Configuring data staging on page 884
l Configuring data staging with advanced options on page 899
l Staging data to or from a compute node on page 895
l Sample user job script on page 901

Configuring data staging with advanced options

Using a different default template name
When you submit a data staging job, a data staging job template is attached to the job automatically. In
the reference script configuration, the default template name is ds. This is the template that will be
attached to the compute job by the client msub filter.

If you would like to change the name of the default template that is automatically attached, you should
change the value of DEFAULT_TEMPLATE in the ds_config.py file installed on all client submit hosts.
This name must match the master data staging template name specified in the Moab configuration file.

To configure the DEFAULT_TEMPLATE variable

1. Open the ds_config.py file for modification. It is located in /opt/moab/tools/data-staging/
by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

2. Locate the DEFAULT_PARTITION parameter.

...
DEFAULT_TEMPLATE = "ds"
...

3. Replace the template name with the one specified in the Moab configuration file.

ds_config.py
...
DEFAULT_TEMPLATE = "datastaging"
...

moab.cfg
...
JOBCFG[datastaging] TEMPLATEDEPEND=...

4. Make these changes on all client submit hosts.

Supporting multiple file transfer script utilities in a grid on a per-
partition basis
If you want a different transfer script to run based on which partition the job is submitted to, you can
configure a multiplexer script that will switch execution to various other scripts based on the partition.

Moab Workload Manager

To support multiple file transfer script utilities in a grid on a per-partition basis

1. Configure the trigger in your job templates in moab.cfg to run ds_move_multiplex instead of
ds_move_rsync or ds_move_scp.

2. Configure the PARTITION_TO_SCRIPT variable in ds_config.py to provide a mapping from each
partition to the desired script to run.

a. Open the ds_config.py file for modification. It is located in /opt/moab/tools/data-
staging/ by default.

[moab]$ vi /opt/moab/tools/data-staging/ds_config.py

b. Locate the PARTITION_TO_SCRIPT parameter.

...
PARTITION_TO_SCRIPT =
{"partition_1_name":"/opt/moab/tools/data-staging/ds_move_rsynch",
"partition_2_name":"/opt/moab/tools/data-staging/ds_move_scp",
"partition_3_name":"/opt/moab/tools/data-staging/ds_move_rsync"}
...

c. Replace the partition_*_names with partitions that exist in your configuration. After each
partition, specify the script that you want to execute for that partition.

Receiving notification at the completion of the data staging job
If you want explicit notification in case of failure of the stage out job, add an additional trigger to the
dsout job template which will send email notification to the job's submitter. For more information, see
Using a trigger to send email on page 731.

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=attacherror:objectxmlstdin:user
JOBCFG[dsout] TRIGGER=EType=fail,AType=mail,Action="Your (stageout) data staging job
$OID failed."

The first trigger listed in the template configuration should be the exec trigger. Add the email trigger
and any other triggers after the exec trigger. You can modify the email trigger to run at completion
rather than at failure. You can also add this type of trigger to stage in jobs.

Adding a non-default template via msub
You can have multiple data staging template workflows defined in the moab.cfg. The submit filter is
configured to add only one of them by default. If you wish to use one of the other available templates,
you can do so by using the -l template=TEMPLATENAME option in the msub command:

Given the following moab.cfg:

Moab Workload Manager

900 Data staging

Data staging 901

#Default data staging template:

JOBCFG[ds] TEMPLATEDEPEND=AFTEROK:dsin TEMPLATEDEPEND=BEFORE:dsout SELECT=TRUE
JOBCFG[dsin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsin] GRES=bandwidth:2
JOBCFG[dsin] FLAGS=GRESONLY
JOBCFG[dsin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dsout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dsout] GRES=bandwidth:1
JOBCFG[dsout] FLAGS=GRESONLY
JOBCFG[dsout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-staging/ds_
move_rsync --stageout",Flags=attacherror:objectxmlstdin:user

#experimental data staging template:

JOBCFG[dscustom] TEMPLATEDEPEND=AFTEROK:dscustomin
TEMPLATEDEPEND=BEFORE:dscustomout SELECT=TRUE
JOBCFG[dscustomin] DATASTAGINGSYSJOB=TRUE
JOBCFG[dscustomin] GRES=bandwidth:2
JOBCFG[dscustomin] FLAGS=GRESONLY
JOBCFG[dscustomin] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_custom --stagein",Flags=attacherror:objectxmlstdin:user

JOBCFG[dscustomout] DATASTAGINGSYSJOB=TRUE
JOBCFG[dscustomout] GRES=bandwidth:1
JOBCFG[dscustomout] FLAGS=GRESONLY
JOBCFG[dscustomout] TRIGGER=EType=start,AType=exec,Action="/opt/moab/tools/data-
staging/ds_move_custom --stageout",Flags=attacherror:objectxmlstdin:user

The user could submit a job using the custom data staging template with the following command:

[moab]$ msub -l template=dscustom …

Using msub to return all the job IDs in the workflow at submission time
By default, msub will print the job ID to stdout at the time of submission. If you would like to have msub
print all of the jobs that are created as part of the data staging workflow template, you can use the msub
--workflowjobids option to show all the job IDs at submission time:

$ echo sleep 60 | msub -l walltime=15 --workflowjobids

MoabA.3.dsin MoabA.3 MoabA.3.dsout

This could be useful if you are writing scripts to do your own workflows and you need to
programmatically capture the data stage out job name for use in your workflow.

Related topics

l Configuring data staging on page 884

References

Sample user job script
The code below is an example of a job script that a user might use to run a data staging job.

Moab Workload Manager

#!/bin/bash
#
Sample data staging job script
#
stage in directives
#MSUB --stageinsize=1MB
#MSUB --stagein=davidharris@source-server:/tmp/filein.tostage%davidharris@destination-
server:/tmp/filein.staged
#
stage out directives
#MSUB --stageoutsize=10GB
#MSUB --stageout=davidharris@destination-
server:/tmp/fileout.tostage%davidharris@source-server:/tmp/fileout.staged

run executable on the destination host using staged data
$HOME/bin/my_compute_executable < /tmp/filein.staged > /tmp/fileout.tostage

Related topics

l About data staging on page 880
l Staging data on page 303

Appendices

Appendix A: Moab Parameters
See the Parameters Overview in the Moab Admin Manual for further information about specifying
parameters.

Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ACCOUNTCFG[<ACCOUNTID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, CHARGERATE, PRIORITY, ENABLEPROFILING, MEMBERULIST, PLIST,
QDEF, QLIST, usage limit, or a fairness usage limit specification (FSCAP, FSTARGET, and
FSWEIGHT).

Default ---

Description Specifies account specific attributes. See the account overview for general information and the job
flag overview for a description of legal flag values.

Example ACCOUNTCFG[projectX] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted under the account ID projectX will be allowed to execute
simultaneously and will be assigned the QOS highprio by default.

Moab Workload Manager

902 Appendices

Appendices 903

ACCOUNTINGINTERFACEURL

Format <URL>where protocol can be one of exec or file

Default ---

Description Specifies the interface to use for real-time export of Moab accounting/auditing information.
See Exporting Events in Real-Time for more information.

Example ACCOUNTINGINTERFACEURL exec:///$TOOLSDIR/dumpacc.pl

ACCOUNTWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight to be applied to the specified account priority. See Credential (CRED)
Factor.

Example ACCOUNTWEIGHT 100

ADMIN1, ADMIN2, ADMIN3

Description
These parameters are deprecated. Use ADMINCFG.

Moab Workload Manager

ADMINCFG[X]

Format One or more <ATTR>=<VALUE> pairs where <ATTR> is one of the following: ENABLEPROXY, USERS,
GROUPS, SERVICES, or NAME

Default ---

Description Allows a site to configure which services and users belong to a particular level of administration.
Note: The first user listed in the ADMINCFG[1] users list is considered to be the primary admin.
The option USERS=ALL is allowed. The groups list adds the groups' users as if they were listed indi-
vidually as USERS. To prevent Moab from assigning a primary user from the first group listed, you
must specify a primary user first using the USERS attribute, then list the desired groups.

Example ADMINCFG[1] USERS=root,john
ADMINCFG[1] GROUPS=admin
ADMINCFG[1] SERVICES=ALL
ADMINCFG[1] NAME=batchadmin
ADMINCFG[3] USERS=bob,carol,smoore
ADMINCFG[3] GROUPS=science,math
ADMINCFG[3] SERVICES=mjobctl,mcredctl,runjob
ADMINCFG[3] NAME=helpdesk

Members of the batchadmin admin role and members of the admin group are allowed to
run all commands. Members of the helpdesk role and science and math groups are
allowed to runmjobctl. They are also able to view and modify credential objects (i.e. users,
groups, accounts, etc.) See the security overview for more details.

ADMINCFG[4] USERS=ALL SERVICES=checknode

All users can execute mdiag -n or checknode to get information on any node.

Moab Workload Manager

904 Appendices

Appendices 905

AGGREGATENODEACTIONS

Format <BOOLEAN>

Default FALSE

Description Consolidates queued node actions into as few actions as possible to reduce communication bur-
den with resource manager. Node actions are queued until the
AGGREGATENODEACTIONSTIME setting.

This may delay some node actions. When reprovisioning, the system job may expire
before the provision action occurs; while the action will still occur, the job will not show
it.

Example AGGREGATENODEACTIONS TRUE

Queues node actions together when possible.

AGGREGATENODEACTIONSTIME

Format <SECONDS>

Default 60

Description The delay time for the AGGREGATENODEACTIONS parameter to aggregate requests before
sending job batches.

Example AGGREGATENODEACTIONSTIME 120

Sets the AGGREGATENODEACTIONS delay to two minutes.

Moab Workload Manager

ALLOWMULTIREQNODEUSE

Format <BOOLEAN>

Default FALSE

Description By default Moab does not allow different requirements on the same job to occupy the same
node. For example, if a job is submitted with nodes=2:ppn=8+4:fast:ppn=16, it's possible
that some of the tasks requested could overlap onto the same node. This parameter instructs
Moab to allow overlapping the same node, or not. This parameter also applies to the various -
w clauses of an mshow -a on page 276 command.

Example ALLOWMULTIREQNODEUSE TRUE

ALLOWROOTJOBS

Format <BOOLEAN>

Default FALSE

Description Specifies whether batch jobs from the root user (UID=0) are allowed to be executed. Note: The
resource manager must also support root jobs.

Example ALLOWROOTJOBS TRUE

Jobs from the root user can execute.

ALLOWVMMIGRATION

Format <BOOLEAN>

Default FALSE

Description Enables Moab to migrate VMs.

Example ALLOWVMMIGRATION TRUE

Moab Workload Manager

906 Appendices

Appendices 907

ALWAYSEVALUATEALLJOBS

Format <BOOLEAN>

Default FALSE

Description When scheduling priority jobs, Moab stops scheduling when it encounters the first job that
cannot run and cannot get a reservation. ALWAYSEVALUATEALLJOBS directs Moab to con-
tinue scheduling until all priority jobs (jobs that do not violate any limits) are evaluated.

Example ALWAYSEVALUATEALLJOBS TRUE

AMCFG

Format One or more key-value pairs as described in the Allocation Manager Configuration Overview.

Default ---

Description Specifies the interface and policy configuration for the scheduler-allocation manager interface.
Described in detail in the Allocation Manager Configuration Overview.

Example AMCFG[mam] SERVER=mam://master.ufl.edu STARTFAILUREACTION=HOLD TIMEOUT=15

APPLICATIONLIST

Format Space-delimited list of generic resources.

Default ---

Description Specifies which generic resources represent actual applications on the cluster/grid. See Managing
Consumable Generic Resources for more information.

Example NODECFG[node01] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
NODECFG[node02] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
APPLICATIONLIST calclab,powerhouse

The generic resources calclab and powerhouse will now be recognized and treated as
application software.

Moab Workload Manager

ARRAYJOBPARLOCK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, all sub jobs of an array are locked to a single partition. The default behavior when
scheduling array sub jobs is to span the jobs across partitions when possible. The
ARRAYJOBPARLOCK job flag can be used to specify partition locking at submit time. The
ARRAYJOBPARSPAN job flag overrides this parameter.

Example ARRAYJOBPARLOCK TRUE

ASSIGNVLANFEATURES

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this forces all VMs to be contained in VLANs.

Example ASSIGNVLANFEATURES TRUE

ATTRATTRWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs with the specified job attribute. See Attribute
(ATTR) Factor.

Example ATTRATTRWEIGHT 100

Moab Workload Manager

908 Appendices

Appendices 909

ATTRGRESWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs requesting the specified generic resource. See
Attribute (ATTR) Factor.

Example ATTRGRESWEIGHT 200

ATTRSTATEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs with the specified job state. See Attribute (ATTR)
Factor.

Example ATTRSTATEWEIGHT 200

ATTRWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority component weight to be applied to the ATTR subcomponents. See Attribute
(ATTR) Factor.

Example ATTRWEIGHT 2
ATTRSTATEWEIGHT 200

Moab Workload Manager

BACKFILLDEPTH

Format <INTEGER>

Default 0 (no limit)

Description Specifies the number of idle jobs to evaluate for backfill. The backfill algorithm will evaluate the
top <X> priority jobs for scheduling. By default, all jobs are evaluated.

Example BACKFILLDEPTH 128

Evaluate only the top 128 highest priority idle jobs for consideration for backfill.

BACKFILLPOLICY

Format One of FIRSTFIT or NONE

Default FIRSTFIT

Description Specifies which backfill algorithm will be used. See Configuring Backfill for more information.

Example BACKFILLPOLICY NONE

BFCHUNKDURATION

Format [[[DD:]HH:]MM:]SS

Default 0 (chunking disabled)

Description Specifies the duration during which freed resources will be aggregated for use by larger jobs.
Used in conjunction with BFCHUNKSIZE on page 911. See Configuring Backfill for more inform-
ation.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making resources available only to
jobs of size 4 or larger.

Moab Workload Manager

910 Appendices

Appendices 911

BFCHUNKSIZE

Format <INTEGER>

Default 0 (chunking disabled)

Description Specifies the minimum job size which can utilize chunked resources. Used in conjunction with
BFCHUNKDURATION on page 910. See Configuring Backfill for more information.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making resources available only to
jobs of size 4 or larger.

BFMINVIRTUALWALLTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the minimum job wallclock time for virtual scaling (optimistic-like backfilling.) Any job
with a wallclock time less than this setting will not be virtually scaled. The value specified
relates to a job's original walltime and not its virtually-scaled walltime.

Example BFMINVIRTUALWALLTIME 00:01:30

BFPRIORITYPOLICY

Format One of RANDOM,DURATION, or HWDURATION

Default ---

Description Specifies policy to use when prioritizing backfill jobs for preemption

Example BFPRIORITYPOLICY DURATION

Use length of job in determining which backfill job to
preempt.

Moab Workload Manager

BFVIRTUALWALLTIMECONFLICTPOLICY

Format One of the following: PREEMPT

Default ---

Description Specifies how to handle scheduling conflicts when a virtually scaled job "expands" to its
original wallclock time. This occurs when the job is within one scheduling iteration -
RMPOLLINTERVAL on page 1015 - of its virtually scaled wallclock time expiring.

Example BFVIRTUALWALLTIMECONFLICTPOLICY PREEMPT

BFVIRTUALWALLTIMESCALINGFACTOR

Format <DOUBLE>

Default 0 (virtual scaling disabled)

Description Specifies the factor by which eligible jobs' wallclock time is virtually scaled (optimistic-
like backfilling).

Example BFVIRTUALWALLTIMESCALINGFACTOR .4

BYPASSCAP

Format <INTEGER>

Default 0

Description Specifies the max weighted value allowed from the bypass count subfactor when determining a
job's priority (see Priority Factors for more information).

Example BYPASSWEIGHT 5000
BYPASSCAP 30000

Moab Workload Manager

912 Appendices

Appendices 913

BYPASSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's backfill bypass count when determining a job's priority
(see Priority Factors for more information).

Example BYPASSWEIGHT 5000

CHECKPOINTDIR

Format <STRING>

Default ---

Description Specifies the directory for temporary job checkpoint files (usually of the form jobid.cp). This is
not the directory for Moab's checkpoint file (.moab.ck).

Example CHECKPOINTDIR /tmp/moabcheckpoint

CHECKPOINTEXPIRATIONTIME

Format [[[DD:]HH:]MM:]SS or UNLIMITED

Default 3,000,000 seconds

Description Specifies how 'stale' checkpoint data can be before it is ignored and purged.

Example CHECKPOINTEXPIRATIONTIME 1:00:00:00

Expire checkpoint data which has been stale for over 1 day.

Moab Workload Manager

CHECKPOINTFILE

Format <STRING>

Default moab.ck

Description Name (absolute or relative) of the Moab checkpoint file.

Example CHECKPOINTFILE /var/adm/moab/moab.ck

Maintain the Moab checkpoint file in the file
specified.

CHECKPOINTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description Time between automatic Moab checkpoints.

If RMPOLLINTERVAL on page 1015 does not specify both a minimum and maximum
poll time, Moab will ignore CHECKPOINTINTERVAL and checkpoint every iteration.

Example CHECKPOINTINTERVAL 00:15:00

Moab should checkpoint state information every 15 minutes.

CHECKPOINTWITHDATABASE

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab stores checkpoint information to a database rather than to the
.moab.ck flat text file.

Example CHECKPOINTWITHDATABASE TRUE

Moab Workload Manager

914 Appendices

Appendices 915

CHECKSUSPENDEDJOBPRIORITY

Format <BOOLEAN>

Default TRUE

Description Prevents Moab from starting a job on any node containing a suspended job of higher pri-
ority.

Example CHECKSUSPENDEDJOBPRIORITY FALSE

CHILDSTDERRCHECK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, child processes Moab executes are considered failed if their standard error stream
contains the text "ERROR".

Example CHILDSTDERRCHECK TRUE

CLASSCFG[<CLASSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, DEFAULT.ATTR, DEFAULT.DISK, DEFAULT.FEATURES, DEFAULT.GRES,
DEFAULT.MEM, DEFAULT.NODE, DEFAULT.NODESET, DEFAULT.PROC, ENABLEPROFILING,
EXCL.FEATURES, EXCLUDEUSERLIST, HOSTLIST, JOBEPILOG, JOBPROLOG, MAXPROCPERNODE,
MAX.NODE, MAX.PROC, MAX.WCLIMIT, MIN.NODE, MIN.PROC, MIN.TPN, MIN.WCLIMIT, PARTITION,
PRIORITY, PRIORITYF, QDEF, QLIST, REQ.FEATURES, REQUIREDACCOUNTLIST,
REQUIREDUSERLIST, RESFAILPOLICY, SYSPRIO, WCOVERRUN, usage limit, or fairshare usage limit
specification.

Default ---

Description Specifies class specific attributes (see Credential Overview for details).

Example CLASSCFG[batch] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted to the class batch will be allowed to execute simultaneously and
will be assigned the QOS highprio by default.

Moab Workload Manager

CLASSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the class priority of each job (see Credential (CRED) Factor
and credential priority).

Example CLASSWEIGHT 10

CLIENTCFG[<X>]

Format One or more of <ATTR>-<VALUE> pairs where <X> indicates the specified peer and <ATTR> is one
of the following: AUTH, AUTHCMD, AUTHTYPE, HOST, KEY, or DEFAULTSUBMITPARTITION.

Default ---

Description Specifies the shared secret key and authentication method which Moab will use to communicate
with the named peer daemon. See Security Overview for more information. Note: The AUTHTYPE
and KEY attributes of this parameter may only be specified in the moab-private.cfg config file.

Example CLIENTCFG[silverB] KEY=apple7 AUTH=admin1

Moab will use the session key apple7 for peer authentication and for encrypting and
decrypting messages sent from silverB. Also, client connections from this interface will be
authorized at an admin 1 level.

CLIENTMAXCONNECTIONS

Format <INTEGER>

Default 128

Description Changes the maximum number of connections that can simultaneously connect to Moab. The
value can be increased during runtime, but it cannot be decreased. The value cannot be
reduced below the default value of 128.

Example CLIENTMAXCONNECTIONS 256

Doubles the maximum number of connections.

Moab Workload Manager

916 Appendices

Appendices 917

CLIENTMAXPRIMARYRETRY

Format <INTEGER> or INFINITY

Default 1

Description Specifies how many times the client command will attempt to retry its connection to the
primary server if Moab is not available.

Example CLIENTMAXPRIMARYRETRY 5
CLIENTMAXPRIMARYRETRYTIMEOUT 1000

The client command will attempt to retry its connection to the primary server 5
times with 1 second intervals before giving up. Note: If INFINITY is specified, Moab
will attempt 2,140,000,000 times.

CLIENTMAXPRIMARYRETRYTIMEOUT

Format <INTEGER> (milliseconds)

Default 2000

Description Specifies how much time to wait until the client command will attempt to retry its con-
nection to the primary server if Moab is not available.

Example CLIENTMAXPRIMARYRETRY 3
CLIENTMAXPRIMARYRETRYTIMEOUT 500

The client command will attempt to retry its connection to the primary server
3 times with .5 second intervals before giving up.

Moab Workload Manager

CLIENTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 00:00:30

Description Time which Moab client commands will wait for a response from the Moab server. See Client Con-
figuration for more information. Note: May also be specified as an environment variable.

Example CLIENTTIMEOUT 00:15:00

Moab clients will wait up to 15 minutes for a response from the server before timing out.

CREDDISCOVERY

Format TRUE

Default FALSE

Description Specifies that Moab should create otherwise unknown credentials when it discovers them in the
statistics files.

Example CREDDISCOVERY TRUE

CREDWEIGHT

Format <INTEGER>

Default 1

Description Specifies the credential component weight associated with the credential priority. See Credential
(CRED) Factor for more information.

Example CREDWEIGHT 2

Moab Workload Manager

918 Appendices

Appendices 919

DATASTAGEHOLDTYPE

Format Any Job Hold type

Default DEFER

Description Specifies what to do if a job's data staging operations fail.

Example DATASTAGEHOLDTYPE BATCH

DEADLINEPOLICY

Format One of CANCEL,HOLD, IGNORE, or RETRY

Default NONE

Description Specifies what to do when a requested deadline cannot be reached (see Job Deadlines).

Example DEADLINEPOLICY IGNORE

DEFAULTCLASSLIST

Format Space-delimited list of one or more <STRING>s.

Default ---

Description Specifies the default classes supported on each node for RM systems which do not provide this
information.

Example DEFAULTCLASSLIST serial parallel

Moab Workload Manager

DEFAULTSUBMITPARTITION

Format See parameter CLIENTCFG[].

Default ---

Description If a user submits a job using msub which does not specify host, feature, or partition con-
straints, then the msub client will insert the specified default submit partition into the newly
submitted job as a hard requirement.

Example CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=partition1

DEFERCOUNT

Format <INTEGER>

Default 24

Description Specifies the number of times a job can be deferred before it will be placed in batch hold.

Example DEFERCOUNT 12

DEFERSTARTCOUNT

Format <INTEGER>

Default 1

Description Specifies the number of times a job will be allowed to fail in its start attempts before being
deferred. JOBRETRYTIME overrides DEFERSTARTCOUNT; DEFERSTARTCOUNT only begins when
the JOBRETRYTIMEwindow elapses. Note: A job's startcount will increase each time a start request
is made to the resource manager regardless of whether or not this request succeeded. This means
start count increases if job starts fail or if jobs are started and then rejected by the resource man-
ager. (For related information, see Reservation Policies, DEFERTIME, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example DEFERSTARTCOUNT 3

Moab Workload Manager

920 Appendices

Appendices 921

DEFERTIME

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description Specifies the amount of time a job will be held in the deferred state before being released back to
the Idle job queue. Note: A job's defer time will be restarted if Moab is restarted. (For related
information, see Reservation Policies, DEFERSTARTCOUNT, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example DEFERTIME 0:05:00

DELETESTAGEOUTFILES

Format <BOOLEAN>

Default FALSE

Description Specifies whether the scheduler should delete explicitly specified stageout files after they are
successfully staged. By default, such files are not deleted but are left on the nodes where the job
ran.

Example DELETESTAGEOUTFILES TRUE
Example of an explicit stageout request
msub x=MSTAGEOUT:ssh://source_node/tmp/file,file:///results_folder
job.cmd

With this parameter set to TRUE, /tmp/file on source_node is deleted after it is
copied to the specified destination (file:///results_folder). If the parameter is
not set, or if it is set to FALSE, /tmp/file remains on source_node after the job
terminates.

Moab Workload Manager

DEPENDFAILUREPOLICY

Format HOLD or CANCEL

Default HOLD

Description Specifies what happens to a job if its dependencies cannot be fulfilled; that is, what happens
when a job depends on another job to complete successfully but the other job fails.

Example DEPENDFAILUREPOLICY CANCEL

If job A is submitted with depend=afterok:B and job B fails, job A is canceled.

DIRECTORYSERVER

Format <HOST>[:<PORT>]

Default ---

Description Specifies the interface for the directory server.

Example DIRECTORYSERVER
calli3.icluster.org:4702

DISABLEEXCHLIST

Format <BOOLEAN>

Default FALSE

Description If the resource manager rejects a job and the value is set to TRUE, then the node is not added to
the job's exclude host list.

Example DISABLEEXCHLIST TRUE

Moab Workload Manager

922 Appendices

Appendices 923

DISABLEINTERACTIVEJOBS

Format <BOOLEAN>

Default FALSE

Description Disallows interactive jobs submitted with msub -I.
Note: It is possible for users to submit interactive jobs directly to a resource manager, which
can bypass the DISABLEINTERACTIVEJOBS parameter. However, some resource managers
(such as TORQUE) will check with Moab before allowing an interactive job.

Example DISABLEINTERACTIVEJOBS TRUE

DISABLEREGEXCACHING

Format <BOOLEAN>

Default FALSE

Description Turns off regular expression caching. Turning off regular expression caching preserves memory
with hostlist reservations and speeds up start time.

Example DISABLEREGEXCACHING TRUE

DISABLEREQUIREDGRESNONE

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this causes Moab to reject msub requests that have a gres of "none".
ENFORCEGRESSACCESSS must also be set to TRUE for this feature to work.

Example ########## moab.cfg ##########
ENFORCEGRESACCESS TRUE
DISABLEREQUIREDGRESNONE TRUE
################################

> msub -A ee -l nodes=1,ttc=5,walltime=600,partition=g02 -l gres=none
ERROR: cannot submit job - cannot locate required resource 'none'

Moab Workload Manager

DISABLESAMECREDPREEMPTION

Format Comma-delimited list of one or more credentials: ACCT,CLASS,GROUP,QOS, or USER

Default ---

Description This parameter prevents specified credentials from preempting its own jobs.

Example DISABLESAMECREDPREEMPTION QOS,USER

DISABLESCHEDULING

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not the scheduler will schedule jobs. If set to TRUE, Moab will continue to
update node and job state but will not start, preempt, or otherwise modify jobs. The command
mschedctl -r will clear this parameter and resume normal scheduling.

Example DISABLESCHEDULING FALSE

DISABLESLAVEJOBSUBMIT

Format <BOOLEAN>

Default TRUE

Description This parameter can be added to the moab.cfg file on a slave Moab server (in a grid con-
figuration) to prevent users from submitting jobs to the master Moab server from the slave
Moab server. Some grid configurations allow the user to submit jobs on the slave that are
migrated to the master and submitted from the master. Other grid configurations do not allow
the jobs to be migrated to the master from the slave, in which case, jobs submitted from the
slave remain idle on the slave and never run. This parameter will reject the job submissions on
the slave to prevent the submission of jobs that will never run.

Example DISABLESLAVEJOBSUBMIT TRUE
example (node04 is a slave and node06 is the master)
[test@node04 moab-slurm]$ echo sleep 100 | msub
ERROR: cannot submit job from slave

Moab Workload Manager

924 Appendices

Appendices 925

DISABLETHRESHOLDTRIGGERS

Format <BOOLEAN>

Default FALSE

Description This makes Moab not fire threshold-based triggers, but will log the intended action to the
event logs. Similar to DISABLEVMDECISIONS.

Example DISABLETHRESHOLDTRIGGERS TRUE

DISABLEVMDECISIONS

Format <BOOLEAN>

Default FALSE

Description This makes Moab not take any automatic decisions with respect to VM's, namely powering on/off
nodes and migrating VMs. Intended actions will instead be logged in the event logs. Similar to
DISABLETHRESHOLDTRIGGERS.

Example DISABLEVMDECISIONS TRUE

DISKWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the amount of dedicated disk space required per task
by a job (in MB).

Example RESWEIGHT 10
DISKWEIGHT 100

If a job requires 12 tasks and 512 MB per task of dedicated local disk space, Moab will
increase the job's priority by 10 * 100 * 12 * 512

Moab Workload Manager

DISPLAYFLAGS

Format One or more of the following values (space delimited):
ACCOUNTCENTRIC,HIDEBLOCKED,HIDEDRAINED,NODECENTRIC, or USEBLOCKING

Default ---

Description Specifies flags that control how Moab client commands display varied information.
ACCOUNTCENTRIC will display account information in showq, rather than group information.
HIDEBLOCKED will prevent showq from listing information about blocked jobs which are not
owned by the user if the user is not an admin.
HIDEDRAINED prevents mdiag -n from displaying nodes and mvmctl -q from displaying VMs in
the DRAINED state. An override option of mdiag -n -w nodestate=drained lists only those nodes
with a DRAINED state. Similarly, an override option of mvmctl -q -w state=drained lists only those
VMs with a DRAINED state.
NODECENTRIC will display node allocation information instead of processor allocation
information in showq.
USEBLOCKING disables threading for commands that support it; those commands include
showq, mdiag -n, and mdiag -j.

Example DISPLAYFLAGS NODECENTRIC

DISPLAYPROXYUSERASUSER

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab shows the proxy users instead of the real user on some queries of sys-
tem jobs that have proxy users. Commands affected include mjobctl -q diag and checkjob.

Example DISPLAYPROXYUSERASUSER TRUE

Moab Workload Manager

926 Appendices

Appendices 927

DONTCANCELINTERACTIVEHJOBS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab does not cancel interactive jobs that are held.

Example DONTCANCELINTERACTIVEHJOBS TRUE

DONTENFORCEPEERJOBLIMITS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, only the scheduler that is running the job can cancel the job or enforce other
limits.

Example DONTENFORCEPEERJOBLIMITS TRUE

Moab Workload Manager

EMULATIONMODE

Format SLURM

Default ---

Description Specifies whether or not the scheduler will perform the automatic setup of a particular resource
manager environment.

Example EMULATIONMODE SLURM

Moab will perform the automated setup steps as if it were interfacing with a slurm
resource manager (automatic QOS creation).

ENABLEFAILUREFORPURGEDJOB

Format <BOOLEAN>

Default FALSE

Description By default, when a job is purged or removed by the TORQUE resource manager for a
walltime violation, the job takes on a state of Completed and a completion code of 0. If
TRUE, the job state is set to Removed and has a completion code of 98.
ENABLEFAILUREFORPURGEDJOB is for the TORQUE resource manager only.

For ENABLEFAILUREFORPURGEDJOB to return Removed job states, you must reset
the TORQUE server attribute keep_completed to 0 in qmgr. See "Queue
Attributes on page 2277" in the TORQUE Administrator Guide for more
information.

Example ENABLEFAILUREFORPURGEDJOB TRUE

Jobs that are purged or removed by TORQUE are given a state of Removed and a
completion code of 98.

Moab Workload Manager

928 Appendices

Appendices 929

ENABLEFSVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a fairshare target and the preemptor is not.

Example ENABLEFSVIOLATIONPREEMPTION TRUE

ENABLEHIGHTHROUGHPUT

Format <BOOLEAN>

Default FALSE

Description Configures Moab so that it will acceptmsub submissions, start jobs, process triggers, etc., in a
manner which minimizes their processing time. The downside is that Moab will return
minimal information about these jobs at submit time.

If ENABLEHIGHTHROUGHPUT is TRUE, you must set NODEALLOCATIONPOLICY on
page 978 to FIRSTAVAILABLE.

Example ENABLEHIGHTHROUGHPUT TRUE

Moab can now accept hundreds of jobs per second using msub instead of 20-30.

ENABLEJOBARRAYS

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, job arrays will be enabled .

Example ENABLEJOBARRAYS TRUE

Moab Workload Manager

ENABLENEGJOBPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler allows job priority value to range from -INFINITY to MMAX_PRIO;
otherwise, job priority values are given a lower bound of '1'. For more information, see
REJECTNEGPRIOJOBS.

Example ENABLENEGJOBPRIORITY TRUE

Job priority may range from -INFINITY to MMAX_PRIO.

ENABLENODEADDRLOOKUP

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will use the default host name service lookup mechanism (i.e.,
/etc/hosts, DNS, NIS, etc.) to determine the IP address of the nodes reported by the
resource manager. This information is used to correlate information reported by multi-homed
hosts.

Example ENABLENODEADDRLOOKUP TRUE

Moab Workload Manager

930 Appendices

Appendices 931

ENABLEPOSUSERPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will allow users to specify positive job priority values which will
be honored. In other words, users can specify a priority that falls in the range of -1024 to
+1023, inclusive. If set to FALSE (the default), user priority values are given an upper bound
of '0' when users request a positive priority. See USERPRIOWEIGHT.

Example ENABLEPOSUSERPRIORITY TRUE

Users may now specify positive job priorities and have them take effect (e.g. msub -
p 100 job.cmd).

ENABLESPVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a soft usage policy and the preemptor is not.

Example ENABLESPVIOLATIONPREEMPTION TRUE

ENABLEVMDESTROY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, enables the automatic destruction of a VM when the VM wall time is expired or
when the VM is stale and configured to be destroyed (for more information, see
VMSTALEACTION).

Example ENABLEVMDESTROY TRUE

Moab Workload Manager

ENFORCEACCOUNTACCESS

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab will enforce account access constraints without an allocation
manager.

Example ENFORCEACCOUNTACCESS TRUE

ENFORCEGRESACCESS

Format <BOOLEAN>

Default FALSE

Description If a user submits a job with a non-existent gres (e.g. in the case of a typo) and
ENFORCEGREACCESS is not set in moab.cfg, or is set to FALSE, then the requested gres will be
created (but will not exist on any nodes) and the job will be deferred (similar to
ENFORCEACCOUNTACCESS).

Example ENFORCEGRESACCESS TRUE

EVENTSERVER

Format <HOST>[:<PORT>]

Default ---

Description Specifies the interface for the event server.

Example EVENTSERVER
calli3.icluster.org:4702

Moab Workload Manager

932 Appendices

Appendices 933

FEATURENODETYPEHEADER

Format <STRING>

Default ---

Description Specifies the header used to specify node type via node features (i.e. LL features or PBS node
attributes).

Example FEATURENODETYPEHEADER xnt

Moab will interpret all node features with the leading string xnt as a nodetype
specification - as used by the allocation manager and other allocation managers, and
assign the associated value to the node. i.e., xntFast.

FEATUREPARTITIONHEADER

Format <STRING>

Default ---

Description Specifies the header used to specify node partition via node features (i.e. LL features or PBS
node attributes).

Example FEATUREPARTITIONHEADER xpt

Moab will interpret all node features with the leading string xpt as a partition
specification and assign the associated value to the node. i.e., xptGold.

Moab Workload Manager

FEATUREPROCSPEEDHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node processor speed via node features (i.e., LL features
or PBS node attributes). Note: Adding a trailing '$' character will specify that only features
with a trailing number be interpreted. For example, the header 'sp$' will match 'sp450' but
not 'sport'.

Example FEATUREPROCSPEEDHEADER xps

Moab will interpret all node features with the leading string xps as a processor
speed specification and assign the associated value to the node. i.e., xps950.

FEATURERACKHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node rack index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specify that only features with a trail-
ing number be interpreted. For example, the header 'rack$' will match 'rack4' but not 'racket'.

Example FEATURERACKHEADER rack

Moab will interpret all node features with the leading string rack as a rack index
specification and assign the associated value to the node. i.e., rack16.

Moab Workload Manager

934 Appendices

Appendices 935

FEATURESLOTHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node slot index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specify that only features with a trailing
number be interpreted. For example, the header 'slot$' will match 'slot12' but not 'slotted'.

Example FEATURESLOTHEADER slot

Moab will interpret all node features with the leading string slot as a slot index
specification and assign the associated value to the node. i.e., slot16.

FEEDBACKPROGRAM

Format <STRING>

Default ---

Description Specifies the name of the program to be run at the completion of each job. If not fully qualified,
Moab will attempt to locate this program in the 'tools' subdirectory.

Example FEEDBACKPROGRAM /var/moab/fb.pl

Moab will run the specified program at the completion of each job.

FILEREQUESTISJOBCENTRIC

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job's file request is a total request for the job or a per task request.

Example FILEREQUESTISJOBCENTRIC TRUE

Moab will treat file requests as a total request per job.

Moab Workload Manager

FILTERCMDFILE

Format <BOOLEAN>

Default TRUE

Description Running the msub command performs the following operations on the submission script:
l Replace all comments with spaces (excludes Resource Manager directives)
l Strip empty lines
l Replace \r with \n
l Lock job to a PBS resource manager if $PBS is found in the script

Include the FILTERCMDFILE parameter in the moab.cfg file that resides on the clients.

FILTERCMDFILEmust be FALSE for REJECTDOSSCRIPTS on page 1005 to work
correctly.

Example FILTERCMDFILE FALSE

Running themsub command does not perform the actions detailed earlier.

FORCENODEREPROVISION

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this config option causes Moab to reprovision a node, even if it is to the
same operating system (in essence rewriting the OS).

Example FORCENODEREPROVISION TRUE

Moab Workload Manager

936 Appendices

Appendices 937

FORCERSVSUBTYPE

Format <BOOLEAN>

Default FALSE

Description Specifies that admin reservations must have a subtype associated with them.

Example FORCERSVSUBTYPE TRUE

Moab will require all admin reservations to include a subtype.

FREETIMELOOKAHEADDURATION

Format [[[DD:]HH:]MM:]SS

Default 2 Months

Description Specifies how far ahead Moab will look when calculating free time on a node.

Example FREETIMELOOKAHEADDURATION 7:00:00:00

Moab will look 1 week ahead when it calculates free time on a
node.

FSACCOUNTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the account subcomponent of the fairshare component of priority.

Example FSACCOUNTWEIGHT 10

Moab Workload Manager

FSCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute value for a job's total pre-weighted fairshare component.

Example FSCAP 10.0

Moab will bind a job's pre-weighted fairshare component by the range +/- 10.0.

FSCLASSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the class subcomponent of the fairshare component of priority.

Example FSCLASSWEIGHT 10

FSDECAY

Format <DOUBLE>

Default 1.0

Description Specifies decay rate applied to past fairshare interval when computing effective fairshare usage.
Values may be in the range of 0.01 to 1.0. A smaller value causes more rapid decay causing aged
usage to contribute less to the overall effective fairshare usage. A value of 1.0 indicates that no
decay will occur and all fairshare intervals will be weighted equally when determining effective
fairshare usage. See Fairshare Overview.

Example FSPOLICY DEDICATEDPS
FSDECAY 0.8
FSDEPTH 8

Moab will apply a decay rate of 0.8 to all fairshare windows.

Moab Workload Manager

938 Appendices

Appendices 939

FSDEPTH

Format <INTEGER>

Default 8

Description Note: The number of available fairshare windows is bounded by the MAX_FSDEPTH value (32 in
Moab). See Fairshare Overview.

Example FSDEPTH 12

FSENABLECAPPRIORITY

Format <BOOLEAN>

Default FALSE

Description Fairshare priority will increase to target and stop.

Example FSENABLECAPPRIORITY TRUE

FSGROUPWEIGHT

Format <INTEGER>

Default 0

Description

Example FSGROUPWEIGHT
4

Moab Workload Manager

FSINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 12:00:00

Description Specifies the length of each fairshare window.

Example FSINTERVAL 12:00:00

Track fairshare usage in 12 hour
blocks.

FSJPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to jobs per user.

Example FSJPUWEIGHT 10

FSMOSTSPECIFICLIMIT

Format <BOOLEAN>

Default FALSE

Description When checking policy usage limits in a fairshare tree, if the most specific policy limit is passed
then do not check the same policy again at higher levels in the tree. For example, if a user has a
MaxProc policy limit then do not check the MaxProc policy limit on the account for this same user.

Example FSMOSTSPECIFICLIMIT TRUE

Moab Workload Manager

940 Appendices

Appendices 941

FSPOLICY

Format <POLICY>[*] where <POLICY> is one of the following: DEDICATEDPS,DEDICATEDPS%,
DEDICATEDPES, or UTILIZEDPS.

Default ---

Description Specifies the unit of tracking fairshare usage. The following options are:
l DEDICATEDPS (dedicated processor seconds delivered) tracks dedicated processor
seconds.

l DEDICATEDPS% (dedicated processor seconds available) to specify that percentage
based fairshare should be used. See Fairshare Overview and Fairshare Consumption
Metrics for more information.

l DEDICATEDPES (dedicated processor-equivalent seconds delivered) tracks dedicated
processor-equivalent seconds.

l UTILIZEDPS (utilized processor seconds delivered) tracks the number of utilized
processor seconds.

Example FSPOLICY DEDICATEDPES

Moab will track fairshare usage by dedicated processor-equivalent seconds.

FSPPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to processors per user.

Example FSPPUWEIGHT 10

Moab Workload Manager

FSPSPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to processor-seconds per user.

Example FSPSPUWEIGHT 10

FSQOSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the QOS fairshare subcomponent.

Example FSQOSWEIGHT 16

FSTARGETISABSOLUTE

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should base fairshare targets off of delivered cycles or up/available
cycles.

Example FSTARGETISABSOLUTE TRUE

Moab Workload Manager

942 Appendices

Appendices 943

FSTREE

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
SHARES or MEMBERLIST

Default ---

Description Specifies the share tree distribution for job fairshare prioritization (see Hierarchical Share Tree
Overview).

Example FSTREE[geo] SHARES=16 MEMBERLIST=geo103,geo313,geo422

FSTREEACLPOLICY

Format OFF, PARENT, or FULL

Default FULL

Description Specifies how Moab should interpret credential membership when building the FSTREE (see Hier-
archical Share Tree Overview).

Example FSTREEACLPOLICY PARENT

Credentials will be given access to their parent node when applicable.

FSTREEISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job must have an applicable node in the partition's FSTREE in order to execute
within that partition (see Hierarchical Share Tree Overview).

Example FSTREEISREQUIRED TRUE

Jobs must have an applicable node in the FSTREE in order to execute.

Moab Workload Manager

FSTREEUSERISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether the user must be given explicit access to a branch in the FSTREE (see Hier-
archical Share Tree Overview).

Example FSTREEUSERISREQUIRED TRUE

Users must be given explicit access to FSTREE nodes in order to gain access to the
FSTREE.

FSUSERWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the user fairshare subfactor.

Example FSUSERWEIGHT 8

FSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight assigned to the summation of the fairshare subfactors (see Priority
Factor and Fairshare overviews).

Example FSWEIGHT 500

Moab Workload Manager

944 Appendices

Appendices 945

GEVENTCFG[<GEVENT>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is ACTION, ECOUNT,
REARM, or SEVERITY. See Responding to Generic Events for details on values you can assign to each
attribute.

Default ---

Description Specifies how the scheduler should behave when various cluster events are detected. See the Gen-
eric Events Overview for more information.

Example GEVENTCFG[hitemp] ACTION=avoid,record,notify REARM=00:10:00
GEVENT[nodeerror] SEVERITY=3

If a hitemp event is detected, Moab adjusts the node allocation policy to minimize the
allocation of the node. Moab also sends emails to cluster administrators and reports the
event in the Moab event log.

GRESCFG[<GRES>]

Format List of zero or more space delimited <ATTR >=<VALUE> pairs where <ATTR> is one of the following:
TYPE, PRIVATE, INVERTTASKCOUNT, FEATUREGRES, or STARTDELAY

Default ---

Description Specifies associations of generic resources into resource groups.
When PRIVATE is set to TRUE, Moab puts the requested generic resource on a separate job
request.
By default a private request is a request with 1 task with X number of generic resources per task.
When INVERTTASKCOUNTandPRIVATE are set to TRUE, Moab makes the generic resource's private
request a request with X number of tasks with 1 generic resource per task.
See 12.6 Managing Consumable Generic Resources for more information.

Example GRESCFG[scsi1] TYPE=fastio
GRESCFG[scsi2] TYPE=fastio
GRESCFG[scsi3] TYPE=fastio

The generic resources scsi1, scsi2, and scsi3 are all associated with the generic resource
type fastio.

Moab Workload Manager

GRESTOJOBATTR

Format Comma delimited list of generic resources

Default ---

Description The list of generic resources will also be interpreted as JOB features. See Managing Reservations.

Example GRESTOJOBATTR matlab,ccs

Jobs which request the generic resources matlab or ccs will have a corresponding job
attribute assigned to them.

GROUPCFG[<GROUPID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, PRIORITY, ENABLEPROFILING, QLIST, QDEF, PLIST, FLAGS, usage limits, or
a fairshare usage limit specification.

Default ---

Description Specifies group specific attributes. See the flag overview for a description of legal flag values.

Example GROUPCFG[staff] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted by members of the group staff will be allowed to execute
simultaneously and will be assigned the QOS highprio by default.

GROUPWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight assigned to the specified group priority (See Credential (CRED)
Factor).

Example GROUPWEIGHT 20

Moab Workload Manager

946 Appendices

Appendices 947

GUARANTEEDPREEMPTION

Format <BOOLEAN>

Default FALSE

Description Causes Moab to lock PREEMPTOR jobs until JOBRETRYTIME expires (essentially, waiting for
the PREEMPTEE jobs to finish).
It may take some time for the PREEMPTEE jobs to clear out. During that time, the PREEMPTOR
job might want to look elsewhere to run, which would be disruptive as it might preempt
another set of jobs. If you wish it prevent this, it is recommended that you set
GUARANTEEDPREEMPTION to TRUE.
For related information, see About preemption, Reservation Policies, DEFERSTARTCOUNT,
DEFERTIME, RESERVATIONRETRYTIME, NODEFAILURERESERVETIME, and JOBRETRYTIME.

Example GUARANTEEDPREEMPTION TRUE

HALOCKCHECKTIME

Format [[[DD:]HH:]MM:]SS

Default 9

Description Specifies how frequently the secondary server checks the timestamp on the lock file. See High Avail-
ability Overview for more info.

Example HALOCKCHECKTIME 00:00:15

The Moab fallback server will check the health of the Moab primary server every 15
seconds.

Moab Workload Manager

HALOCKUPDATETIME

Format [[[DD:]HH:]MM:]SS

Default 3

Description Specifies how frequently the primary server checks the timestamp on the lock file. See High Avail-
ability Overview for more info.

Example HALOCKUPDATETIME 00:00:03

The Moab primary server will check the timestamp of the lock file every 3 seconds.

HIDEVIRTUALNODES

Format <BOOLEAN>

Default ---

Description Enables VM management; also used to reveal hypervisors.

Example HIDEVIRTUALNODES TRANSPARENT

IDCFG[X]

Format One or more of the following attribute/value pairs: BLOCKEDCREDLIST, CREATECRED,
CREATECREDURL,REFRESHPERIOD,RESETCREDLIST or SERVER.

Default ---

Description This parameter enables the identity manager interface allowing credential, policy, and usage
information to be shared with an external information service.

Only one identity manager can be configured at a time.

Example IDCFG[info] SERVER=exec://dbquery.pl REFRESHPERIOD=hour

Moab will refresh credential info every hour using the specified script.

Moab Workload Manager

948 Appendices

Appendices 949

IGNOREMDATASTAGING

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, Moab will ignore any resource manager specific data staging on a job and
assume the resource manager is processing the request. Currently, this only applies to PBS.

Example IGNORERMDATASTAGING TRUE

IGNORECLASSES

Format [!]<CLASS>[,<CLASS>]...

Default ---

Description By default, if using the TORQUE resource manager, jobs from all listed classes are ignored and not
scheduled, tracked, or otherwise processed by Moab. If the not(i.e., '!') character is specified, only
jobs from listed classes are processed. See the Moab Side-by-Side Analysis for more information.

Example IGNORECLASSES dque,batch

Moab will ignore jobs from classes dque and batch.

IGNOREJOBS

Format [!]<JOBID>[,<JOBID>]...

Default ---

Description By default, listed jobs are ignored and not scheduled, tracked, or otherwise processed by Moab. If
the not(i.e., '!') character is specified, only listed jobs are processed. See the Moab Side-by-Side Ana-
lysis for more information.

Example IGNOREJOBS !14221,14223

Moab will ignore jobs all classes except 14221 and 14223.

Moab Workload Manager

IGNORENODES

Format [!]<NODE>[,<NODE>]...

Default ---

Description By default, all listed nodes are ignored and not scheduled, tracked, or otherwise processed by
Moab. If the not(i.e., '!') character is specified, only listed nodes are processed. See the Moab Side-
by-Side Analysis for more information.

Example IGNORENODES !host3,host4

Moab will only process nodes host3 and host4.

IGNOREPREEMPTEEPRIORITY

Format <BOOLEAN>

Default FALSE

Description By default, preemptor jobs can only preempt preemptee jobs if the preemptor has a higher
job priority than the preemptee. When this parameter is set to true, the priority constraint is
removed allowing any preemptor to preempt any preemptees once it reaches the top of the
eligible job queue.

Example IGNOREPREEMPTEEPRIORITY TRUE

A preemptor job can preempt any preemptee jobs when it is at the top of the eligible
job queue.

Moab Workload Manager

950 Appendices

Appendices 951

IGNOREUSERS

Format [!]<USERNAME>[,<USERNAME>]...

Default ---

Description By default, if using the TORQUE resource manager, jobs from all listed users are ignored and not
scheduled, tracked, or otherwise processed by Moab. If the not(i.e., '!') character is specified, only
jobs from listed users are processed. (See the Moab Side-by-Side Analysis for more information.)

Example IGNOREUSERS testuser1,annapolis

Moab will ignore jobs from users testuser1 and annapolis.

#INCLUDE

Format <STRING>

Default ---

Description Specifies another file which contains more configuration parameters. If <STRING> is not an abso-
lute path, Moab will search its home directory for the file.

Example #INCLUDE moab.acct

Moab will process the parameters in moab.acct as well as moab.cfg

INSTANTSTAGE

Description
This parameter is deprecated. Use JOBMIGRATEPOLICY.

Moab Workload Manager

INVALIDFSTREEMSG

Format "<STRING>"

Default "no valid fstree node found"

Description Specifies the error message that should be attached to jobs that cannot run because of a fairshare
tree configuration violation.

Example INVALIDFSTREEMSG "account is invalid for requested partition"

JOBACTIONONNODEFAILURE

Format CANCEL on page 413, FAIL on page 413,HOLD on page 413, IGNORE on page 413, NOTIFY
on page 413, or REQUEUE on page 413

Default ---

Description Specifies the action to take if Moab detects that a node allocated to an active job has failed
(state is down). By default, Moab only reports this information via diagnostic commands. If
this parameter is set, Moab will cancel or requeue the active job. See Reallocating Resources
When Failures Occur for more information.

Note: The HOLD value is only applicable when using checkpointing.

Example JOBACTIONONNODEFAILURE REQUEUE

Moab will requeue active jobs which have allocated nodes which have failed during
the execution of the job.

Moab Workload Manager

952 Appendices

Appendices 953

JOBAGGREGATIONTIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description Specifies the minimum amount of time the scheduler should wait after receiving a job event
until it should process that event. This parameter allows sites with bursty job submissions to
process job events in groups decreasing total job scheduling cycles and allowing the scheduler to
make more intelligent choices by aggregating job submissions and choosing between the jobs.
See Considerations for Large Clusters.

Example JOBAGGREGATIONTIME 00:00:04
RMPOLLINTERVAL 30,30

Moab will wait 4 seconds between scheduling cycles when job events have been
received and will wait 30 seconds between scheduling cycles otherwise.

Moab Workload Manager

JOBCFG

Format <ATTR>=<VAL>where <ATTR> is one of FLAGS, GRES, NODERANGE, PRIORITYF, PROCRANGE, QOS,
RARCH, RFEATURES, ROPSYS, SELECT, or TARGETLOAD

Default ---

Description Specifies attributes for jobs which satisfy the specified profile. The SELECT attribute allows users to
specify the job template by using msub -l template=.
The JOBCFG parameter supports the following attributes:
NONE, ACCOUNT, ACTION, AUTOSIZE, CLASS, CPULIMIT, DESCRIPTION, DGRES, FAILUREPOLICY,
GROUP, IFLAGS, JOBSCRIPT MEM (forMEM=<value>),MEMORY (forMEMORY=$LEARN),
NODEACCESSPOLICY, NODEMOD, PARTITION, PREF, QOS, RESTARTABLE, RM, RMSERVICEJOB,
SELECT, SOFTWARE, SRM, TEMPLIMIT, TFLAGS, USER, VMUSAGE,WALLTIME,WORK
It also supports the following Wiki attributes:
ARGS, DMEM, DDISK, DWAP, ERROR, EXEC, EXITCODE, GATTR, GEVENT, IWD, JNAME, NAME,
PARTITIONMASK, PRIORITYF, RDISK, RSWAP, RAGRES, RCGRES, TASKPERNODE, TRIGGER, VARIABLE,
NULL

Note: The index to the JOBCFG parameter can either be an admin-chosen job template name or the
exact name of job reported by one or more workload queries. See Wiki Attributes and Job
Template Extensions.

Example JOBCFG[sql] RFEATURES=sqlnode QOS=service

When the sql job is detected, it will have the specified default qos and node feature
attributes set.

JOBCPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description Specifies the amount of time Moab will preserve detailed information about a completed job (see
showq -c and checkjob).

Example JOBCPURGETIME 02:00:00

Moab will maintain detailed job information for 2 hours after a job has completed.

Moab Workload Manager

954 Appendices

Appendices 955

JOBCTRUNCATENLCP

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab will store only the first node of the node list for a completed job in the
checkpoint file.

Example JOBCTRUNCATENLCP TRUE

JOBCTRUNCATENLCP reduces the amount of memory Moab uses to store completed job
information.

JOBEXTENDSTARTWALLTIME

Format <BOOLEAN>

Default ---

Description Extends the job walltime when Moab starts the job up to the lesser of the maximum or the
next reservation (rounded down to the nearest minute).

JOBEXTENDSTARTWALLTIME TRUE and JOBEXTENDDURATION cannot be
configured together. If they are in the same moab.cfg or are both active, then the
JOBEXTENDDURATION will not be honored.

Example JOBEXTENDSTARTWALLTIME TRUE

Submit job with a minimum wallclock limit and a walltime; for example:

echo sleep 500 | msub -A ee -l
nodes=5,minwclimit=5:00,walltime=30:00,partition=g02

At job start, Moab recognizes the nodes assigned to the specified job and extends the
walltime for the job (one time at job start) up to the lesser of the maximum
walltime requested or the least amount of time available for any of the nodes until
the next reservation on that node.

Moab Workload Manager

JOBFAILRETRYCOUNT

Format <INTEGER>

Default 0

Description Specifies the number of times a job is requeued and restarted by Moab if the job fails (if the job
itself returns a non-zero exit code). Some types of jobs may succeed if automatically retried
several times in short succession. This parameter was created with these types of jobs in mind.
Note that the job in question must also be restartable (the job needs to have the "RESTARTABLE"
flag set on it) and the RM managing the job must support requeuing and starting completed jobs.
If a job fails too many times, and reaches the number of retries given by JobFailRetryCount, then
a UserHold is placed on the job and a message is attached to it signifying that the job has a
"restart count violation."

Example JOBFAILRETRYCOUNT 7

Any job with a RESTARTABLE flag is requeued, if it fails, up to 7 times before a UserHold
is placed on it.

JOBIDWEIGHT

Format <INTEGER>

Default ---

Description Specifies the weight to be applied to the job's id. See Attribute (ATTR) Factor.

Example JOBIDWEIGHT -1

Later jobs' priority will be negatively affected.

Moab Workload Manager

956 Appendices

Appendices 957

JOBMATCHCFG

Format <ATTR>=<VAL>where <ATTR> is one of JMIN, JMAX, JDEF, JSET, or JSTAT

Default ---

Description Specifies the job templates which must be matched and which will be applied in the case of a
match.

Example JOBMATCHCFG[sql] JMIN=interactive JSTAT=istat

JOBMAXHOLDTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the amount of time a job can be held before it is canceled automatically.

Example JOBMAXHOLDTIME 02:00:00

Moab will keep jobs in any HOLD state for 2 hours before canceling
them.

JOBMAXNODECOUNT

Format <INTEGER>

Default 1024

Description Specifies the maximum number of nodes which can be allocated to a job. After changing this para-
meter, Moab must be restarted. Note: This value cannot exceed eitherMMAX_NODE orMMAX_
TASK_PER_JOB. If larger values are required, these values must also be increased. Moab must be
restarted before changes to this command will take effect. The command mdiag -S will indicate if
any job node count overflows have occurred. See Consideration for Large Clusters.

Example JOBMAXNODECOUNT 4000

Moab Workload Manager

JOBMAXOVERRUN

Format [[[[DD:]HH:]MM:]SS,][[[DD:]HH:]MM:]SS

Default (no soft limit), 10 minutes (hard limit)

Description Soft and hard limit of the amount of time Moab will allow a job to exceed its wallclock limit before
it first sends a mail to the primary admin (soft limit) and then terminates the job (hard limit). See
WCVIOLATIONACTION or Usage-based Limits.

If you run Moab with the TORQUE resource manager, you must set the $ignwalltime
parameter to true in the /var/spool/torque/mom_priv/config file, otherwise the
pbs_mom will kill any job that exceeds its walltime. See the TORQUE documentation for
more information.

Example JOBMAXOVERRUN 15:00,1:00:00

Jobs may exceed their wallclock limit by up to 1 hour, but Moab will send an email to the
primary administrator when a job exceeds its walltime by 15 minutes.

JOBMAXPREEMPTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to be preempted per iteration.

Example JOBMAXPREEMPTPERITERATION 10

JOBMAXSTARTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to start per iteration.

Example JOBMAXSTARTPERITERATION 10

Moab Workload Manager

958 Appendices

Appendices 959

JOBMAXSTARTTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description length of time a job is allowed to remain in a 'starting' state. If a 'started' job does not transition to
a running state within this amount of time, Moab will cancel the job, believing a system failure has
occurred.

Example JOBMAXSTARTTIME 2:00:00

Jobs may attempt to start for up to 2 hours before being canceled by the scheduler

JOBMAXTASKCOUNT

Format <INTEGER>

Default 4096

Description Specifies the total number of tasks allowed per job.

Example JOBMAXTASKCOUNT 226000

JOBMIGRATEPOLICY

Format One of the following: IMMEDIATE, JUSTINTIME, or AUTO

Default AUTO

Description Upon using the msub command to submit a job, you can allocate the job to immediately
(IMMEDIATE) migrate to the resource manager, or you can instruct Moab to only migrate the job
to the resource manager when it is ready to run (JUSTINTIME). Specifying AUTO allows MOAB to
determine on a per-job basis whether to use IMMEDIATE or JUSTINTIME.

Example JOBMIGRATEPOLICY JUSTINTIME

Moab Workload Manager

JOBNAMEWEIGHT

Format <INTEGER>

Default ---

Description Specifies the weight to be applied to the job's name if the Name contains an integer. See Attribute
(ATTR) Factor.

Example JOBNAMEWEIGHT 1

JOBNODEMATCHPOLICY

Format EXACTNODE or EXACTPROC

Default ---

Description Specifies additional constraints on how compute nodes are to be selected. EXACTNODE indic-
ates that Moab should select as many nodes as requested even if it could pack multiple tasks
onto the same node. EXACTPROC indicates that Moab should select only nodes with exactly
the number of processors configured as are requested per node even if nodes with excess pro-
cessors are available.

Example JOBNODEMATCHPOLICY EXACTNODE

In a PBS/Native job with resource specification nodes=<x>:ppn=<y>, Moab will
allocate exactly <y> task on each of <x> distinct nodes.

JOBPREEMPTMAXACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time in which a job may be eligible for preemption. See Job Preemption.

Example JOBPREEMPTMAXACTIVETIME 00:05:00

A job is preemptable for the first 5 minutes of its run time.

Moab Workload Manager

960 Appendices

Appendices 961

JOBPREEMPTMINACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The minimum amount of time a job must be active before being considered eligible for pree-
mption. See Job Preemption.

Example JOBPREEMPTMINACTIVETIME 00:05:00

A job must execute for 5 minutes before Moab will consider it eligible for
preemption.

Moab Workload Manager

JOBPRIOACCRUALPOLICY

Format ACCRUE or RESET

Default ACCRUE

Description Specifies how Moab should track the dynamic aspects of a job's priority. ACCRUE indicates
that the job will accrue queuetime based priority from the time it is submitted unless it violates
any of the policies not specified in JOBPRIOEXCEPTIONS.RESET indicates that it will accrue
priority from the time it is submitted unless it violates any of the JOBPRIOEXCEPTIONS.
However, with RESET, if the job does violate JOBPRIOEXCEPTIONS then its queuetime based
priority will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but can be configured to work only in
QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been deprecated and should be
adjusted to the following values:

l QUEUEPOLICY= ACCRUE and JOBPRIOEXCEPTIONSSOFTPOLICY,HARDPOLICY
l QUEUEPOLICYRESET= RESET and
JOBPRIOEXCEPTIONSSOFTPOLICY,HARDPOLICY

l ALWAYS= ACCRUE and JOBPRIOEXCEPTIONSALL
l FULLPOLICY= ACCRUE and JOBPRIOEXCEPTIONSNONE
l FULLPOLICYRESET= RESET and JOBPRIOEXCEPTIONSNONE

Example JOBPRIOACCRUALPOLICY RESET

Moab will adjust the job's dynamic priority subcomponents, i.e., QUEUETIME,
XFACTOR, and TARGETQUEUETIME, etc. each iteration that the job does not violate
any JOBPRIOEXCEPTIONS, if it is found in violation, its queuetime will be reset to 0.

Moab Workload Manager

962 Appendices

Appendices 963

JOBPRIOEXCEPTIONS

Format Comma delimited list of any of the following: DEFER,DEPENDS, SOFTPOLICY,HARDPOLICY,
IDLEPOLICY,USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE can also be spe-
cified on their own)

Default NONE

Description Specifies exceptions for calculating a job's dynamic priority (QUEUETIME, XFACTOR,
TARGETQUEUETIME). Normally, when a job violates a policy, is placed on hold, or has an
unsatisfied dependency, it will not accrue priority. Exceptions can be configured to allow a job to
accrue priority in spite of any of these violations. With DEPENDS a job will increase in priority
even if there exists an unsatisfied dependency. With SOFTPOLICY,HARDPOLICY, or
IDLEPOLICY a job can accrue priority despite violating a specific limit. With DEFER,
USERHOLD, BATCHHOLD, or SYSTEMHOLD a job can accrue priority despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be configured to work only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

Example JOBPRIOEXCEPTIONS BATCHHOLD,SYSTEMHOLD,DEPENDS

Jobs will accrue priority in spite of batchholds, systemholds, or unsatisfied dependencies.

JOBPRIOF

Format <ATTRIBUTE>[<VALUE>]=<PRIORITY>where <ATTRIBUTE> is one of ATTR, GRES or STATE

Default ---

Descrip-
tion

Specifies attribute priority weights for jobs with specific attributes, generic resource requests, or
states. State values must be one of the standard Moab job states. See Attribute-Based Job Pri-
oritization.

Example JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=200
GRES[biocalc]=5
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1

Moab will adjust the job's dynamic priority subcomponents.

Moab Workload Manager

JOBPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 0 (purge immediately if the resource manager does not report the job)

Description The amount of time Moab will keep a job record which is no longer reported by the resource man-
ager. Useful when using a resource manager which drops information about a job due to internal
failures. See JOBCPURGETIME.

Example JOBPURGETIME 00:05:00

Moab will maintain a job record for 5 minutes after the last update regarding that object
received from the resource manager.

JOBREJECTPOLICY

Format One or more of CANCEL,HOLD, IGNORE (beta),MAIL, or RETRY

Default HOLD

Description Specifies the action to take when the scheduler determines that a job can never run.CANCEL
issues a call to the resource manager to cancel the job.HOLD places a batch hold on the job pre-
venting the job from being further evaluated until released by an administrator. (Note: Admin-
istrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.) With
IGNORE(currently in beta), the scheduler will allow the job to exist within the resource manager
queue but will neither process it nor report it. MAIL will send email to both the admin and the
user when rejected jobs are detected. If RETRY is set, then Moab will allow the job to remain idle
and will only attempt to start the job when the policy violation is resolved. Any combination of
attributes may be specified. See QOSREJECTPOLICY.

Example JOBREJECTPOLICY MAIL,CANCEL

Moab Workload Manager

964 Appendices

Appendices 965

JOBREMOVEENVVARLIST

Format Comma-delimited list of strings

Default ---

Description Moab will remove the specified environment variables from the job's environment before
migrating the job to its destination resource manager. This is useful when jobs submit
themselves from one cluster to another with the full environment.

This parameter is currently only supported with TORQUE resource managers.

Example JOBREMOVEENVVARLIST PBS_SERVER,TZ

Moab will remove the environment variables PBS_SERVER and TZ before
submitting jobs.

JOBRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:60

Description Period of time Moab will continue to attempt to start a job which has failed to start due to tran-
sient failures or which has successfully started and was then rejected by the resource manager
due to transient failures. (For related information, see Reservation Policies, DEFERSTARTCOUNT,
DEFERTIME, RESERVATIONRETRYTIME, NODEFAILURERESERVETIME, and
GUARANTEEDPREEMPTION.)

Example JOBRETRYTIME 00:05:00

Moab will try for up to 5 minutes to restart jobs if the job start has failed due to
transient errors.

Moab Workload Manager

LIMITEDJOBCP

Format <BOOLEAN>

Default FALSE

Description Specifies whether there should be limited job checkpointing (see Consideration for Large
Clusters). With LIMITEDJOBCP enabled, Moab will only checkpoint a job if it is modified with
mjobctl on page 216 or if it has been submitted with msub on page 290 but has not migrated. In
all other cases, Moab does not checkpoint the job and all Moab-specific information (such as mes-
sages attached to the job) is lost. No TORQUE-specific information will be lost.

Example LIMITEDJOBCP TRUE

Moab will only maintain scheduler checkpoint information for jobs with explicitly
modified job attributes. Some minor job performance and usage statistics may be lost.

LIMITEDNODECP

Format <BOOLEAN>

Default FALSE

Description Specifies whether there should be limited node checkpointing (see Consideration for Large
Clusters).

Example LIMITEDNODECP TRUE

Moab will only maintain scheduler checkpoint information for nodes with explicitly
modified job attributes. (some minor node performance and usage statistics may be lost)

Moab Workload Manager

966 Appendices

Appendices 967

LOADALLJOBCP

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should load, during startup, all non-completed jobs in the checkpoint files
regardless of whether or not their corresponding resource managers are active. For example, this
allows source peers to continue showing remote jobs in the queue based on checkpointed info,
even though the destination peer is offline.

Example LOADALLJOBCP TRUE

Moab will load, at startup, all non-completed jobs from all checkpoint files.

LOCKFILE

Format <STRING>

Default ---

Description Specifies the path for the lock (pid) file used by Moab.

Example LOCKFILE /var/spool/moab/lock

LOGDIR

Format <STRING>

Default log

Description Specifies the directory in which log files will be maintained. If specified as a relative path, LOGDIR
will be relative to $(MOABHOMEDIR) See Logging Overview for more information.

Example LOGDIR /var/spool/moab

Moab will record its log files directly into the /var/spool/moab directory

Moab Workload Manager

LOGFACILITY

Format Colon delimited list of one or more of the following: CORE, SCHED, SOCK,UI, LL,CONFIG,
STAT, SIM, STRUCT, FS,CKPT, BANK,RM, PBS,WIKI, ALL

Default ALL

Description Specifies which types of events to log (see Logging Overview).

Example LOGFACILITY RM:PBS

Moab will log only events involving general resource manager or PBS interface activities.

LOGFILE

Format <STRING>

Default moab.log

Description Name of the Moab log file. This file is maintained in the directory pointed to by <LOGDIR> unless
<LOGFILE> is an absolute path (see Logging Overview)

Example LOGFILE moab.test.log

Log information will be written to the filemoab.test.log located in the directory pointed
to by the LOGDIR parameter.

LOGFILEMAXSIZE

Format <INTEGER>

Default 10000000

Description Maximum allowed size (in bytes) of the log file before it will be rolled (see Logging Overview).

Example LOGFILEMAXSIZE 50000000

Log files will be rolled when they reach 50 MB in size

Moab Workload Manager

968 Appendices

Appendices 969

LOGFILEROLLDEPTH

Format <INTEGER>

Default 3

Description Number of old log files to maintain (i.e., when full, moab.log will be renamed moab.log.1,
moab.log.1 will be renamed moab.log.2, ...). See Logging Overview.

Example LOGFILEROLLDEPTH 5

Moab will maintain and roll the last 5 log files.

LOGLEVEL

Format <INTEGER> (0-9)

Default 0

Description Specifies the verbosity of Moab logging where 9 is the most verbose (Note: each logging level is
approximately an order of magnitude more verbose than the previous level). See Logging Over-
view.

Example LOGLEVEL 4

Moab will write all Moab log messages with a threshold of 4 or lower to the moab.log
file.

Moab Workload Manager

LOGLEVELOVERRIDE

Format <BOOLEAN>

Default FALSE

Description When this parameter is on, if someone runs a command with --loglevel=<x>, that loglevel, if
higher than the current loglevel, is used on the scheduler side for the duration of the command. All
logs produced during that time are put into a separate log file (this creates a "gap" in the normal
logs). This can be very useful for debugging, but it is recommend that this be used only when dia-
gnosing a specific problem so that users can't affect performance by submitting multiple --log-
level commands.

This parameter does not work with threaded commands (such as showq,mdiag -n, and
mdiag -j).

Example LOGLEVELOVERRIDE TRUE

LOGPERMISSIONS

Format <INTEGER>

Default 644

Description Specifies the octal number that represents read, write, and execute permissions.

Example LOGPERMISSIONS 600

Allows the file owner to read and write permissions, but denies rights to the
group and others.

Moab Workload Manager

970 Appendices

Appendices 971

LOGROLLACTION

Format <STRING>

Default ---

Description Specifies a script to run when the logs roll. The script is run as a trigger and can be viewed using
mdiag -T. For example, a script can be specified that always moves the first rolled log file, moab.-
log.1, to an archive directory for longer term storage.

Example LOGROLLACTION /usr/local/tools/logroll.pl

MAILPROGRAM

Format [<Full_Path_To_Mail_Command> | DEFAULT | NONE][@<DEFAULTMAILDOMAIN>]

Default NONE

Description If set to NONE, no mail is sent. If set to DEFAULT, Moab sends mail via the system's default mail
program (usually /usr/bin/sendmail). If set to the local path of a mail program, Moab uses the
specified mail program to send mail.
By default, Moab mail notification is disabled. To enable, you must setMAILPROGRAM to
DEFAULT or specify some other locally available mail program. If the default mail domain is set,
emails will be routed to this domain unless a per-user domain is specified using the
EMAILADDRESS attribute of the USERCFG parameter. If neither of these values is set, Moab uses
"@localhost" as the mail domain. See Notify Admins.
For jobs, the email address used on the msub -M option overrides all other user email addresses.
Additionally, administrators are notified in the case of job violations.

Example MAILPROGRAM DEFAULT

Moab sends mail via the system's default mail program, /usr/bin/sendmail.

MAILPROGRAM /usr/local/bin/sendmail@mydomain.com

Moab sends mail via the mail program located at /usr/local/bin/sendmail with default
mail domain@mydomain.com

Moab Workload Manager

MAXGRES

Format <INTEGER>

Default 512

Description Specifies how many generic resources Moab should manage.

Example MAXGRES 1024

MAXGMETRIC

Format <INTEGER>

Default 10

Description Specifies how many generic metrics Moab should manage.

Example MAXGMETRIC 20

MAXJOB

Format <INTEGER>

Default 4096

Description Specifies the maximum quantity of jobs for which Moab should allocate memory used for tracking
jobs. If Moab is tracking the maximum quantity of jobs specified by this parameter, it rejects
subsequent jobs submitted by any user since it has no memory left with which to track newly
submitted jobs.
If a user submitted a job with the msub command, this rejection behavior requires the user to
resubmit the job at a later time after other jobs have completed, which frees memory in which
Moab can place later-submitted jobs. If a user submitted a job with the TORQUE qsub command,
TORQUE will automatically resubmit the job to Moab until Moab accepts it.
The mdiag -S command indicates if any job overflows have occurred.
If this parameter's value is changed, it does not go into effect until Moab restarts. Moab reads the
parameter only on initial startup and uses its value to allocate the memory it uses to track jobs.

Example MAXJOB 45000

Moab Workload Manager

972 Appendices

Appendices 973

MAXNODE

Format <INTEGER>

Default 5120

Description Specifies the maximum number of compute nodes supported.

Example MAXNODE 10000

MAXRSVPERNODE

Format <INTEGER>

Default 48

Description Specifies the maximum number of reservations on a node.

For large SMP systems (>512 processors/node), Adaptive Computing advises adjusting the value
to approximately twice the average sum of admin, standing, and job reservations present.

A second number, led by a comma, can also be specified to set a maximum number of reservations
for nodes that are part of the SHARED partition.
The maximum possible value of MAXRSVPERNODE is 8192 for a global node and 4096 for any
other node.
Moab must be restarted for any changes to this parameter to take effect. The command mdiag -S
indicates whether any node reservation overflows have occurred. See Considerations for Large
Clusters.

Do not lower the MAXRSVPERNODE value while there are active jobs in the queue. This
can lead to queue instability and certain jobs could become stuck or disconnected from

the system.

Example MAXRSVPERNODE 64

64 is the maximum number of reservations on a single node.

MAXRSVPERNODE 100,7000

100 is the maximum number of reservations on a single node, and 7000 is the maximum
number of reservations for global nodes.

Moab Workload Manager

MEMREFRESHINTERVAL

Format [[[DD:]HH:]MM:]:SS | job:<COUNT>

Default ---

Description Specifies the time interval or total job query count at which Moab will perform garbage col-
lection to free memory associated with resource manager API's which possess memory leaks
(i.e., Loadleveler, etc.).

Example # free memory associated with leaky RM API
MEMREFRESHINTERVAL 24:00:00

Moab will perform garbage collection once every 24 hours.

MEMWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's MEM (dedicated memory in MB) factor. See
Resource Priority Overview.

Example RESWEIGHT 10
MEMWEIGHT 1000

Each job's priority will be increased by 10 * 1000 * <request memory>.

Moab Workload Manager

974 Appendices

Appendices 975

MESSAGEQUEUEADDRESS

Format The IP address of the machine on which Moab is generating events.

Default * (all)

Description When a user subscribes to the events Moab provides and delivers via zeroMQ, s/he must do so
by specifying tcp://<ipAddress>:<port>.MESSAGEQUEUEADDRESS specifies the <ipAd-
dress>, which must match the IP address of the machine on which Moab is installed. To specify
the port, see MESSAGEQUEUEPORT on page 975.

Example MESSAGEQUEUEADDRESS 10.1.0.10

To subscribe to Moab events, users must use tcp://10.1.0.10:<port>.

MESSAGEQUEUEPORT

Format The port of the machine on which Moab is generating events.

Default 5563

Description When a user subscribes to the events Moab provides and delivers via zeroMQ, s/he must do so
by specifying tcp://<ipAddress>:<port>.MESSAGEQUEUEPORT specifies the <port>, which
must match the port of the machine on which Moab is installed. To specify the IP address, see
MESSAGEQUEUEADDRESS on page 975.

Example MESSAGEQUEUEPORT 1010

To subscribe to Moab events, users must use tcp://<ipAddress>:1010.

Moab Workload Manager

MESSAGEQUEUESECRETKEY

Format <STRING>

Default ---

Description Causes Moab to encrypt the events delivered via zeroMQ using the Advanced Encryption
Standard (AES) algorithm. Must be a Base64-encoded, 128-bit (16-byte) key. Messages will
be encrypted using AES in CBC mode where inputs are padded with PKCS5 padding. The
initialization vector is calculated by using an MD5 hash of the key specified in
MESSAGEQUEUESECRETKEY.

MESSAGEQUEUESECRETKEY can only be specified in the moab-private.cfg file.

Example MESSAGEQUEUESECRETKEY 1r6RvfqJa6voezy5wAx0hw==

MINADMINSTIME

Format <INTEGER>

Default 60 seconds

Description Specifies the minimum time a job will be suspended if suspended by an administrator or by a
scheduler policy.

Example MINADMINSTIME 00:10:00

Each job suspended by administrators or policies will stay in the suspended state for at
least 10 minutes.

Moab Workload Manager

976 Appendices

http://en.wikipedia.org/wiki/Base64

Appendices 977

MISSINGDEPENDENCYACTION

Format CANCEL,HOLD, or RUN

Default HOLD

Description Controls what Moab does with a dependent job when its dependency job cannot be found
when Moab evaluates the dependent job for scheduling. This only affects jobs whose
dependent job cannot be found.

Example MISSINGDEPENDENCYACTION CANCEL

Any job that has a dependent job that cannot be found is canceled.

MSUBQUERYINTERVAL

Format <INTEGER>

Default 5 seconds

Description Specifies the length of the interval (in seconds) between job queries when using msub -K. Jobs
submitted with the -K option query the scheduler everyMSUBQUERYINTERVAL seconds until the
job is completed.
MSUBQUERYINTERVAL can exist as an environment variable. Any value in moab.cfg overrides
the environment variable.
Note: If MSUBQUERYINTERVAL is set to 0, the -K option will be disabled. Jobs will still submit
correctly, but the client will not continue to check on the job.

Example MSUBQUERYINTERVAL 60

If a user uses the msub -K command, the client remains open and queries the server
every 60 seconds until the job completes.

Moab Workload Manager

NODEACCESSPOLICY

Format One of the following:
SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Default SHARED

Description Specifies how node resources will be shared by various tasks (See the Node Access Overview for
more information).

Example NODEACCESSPOLICY SINGLEUSER

Moab will allow resources on a node to be used by more than one job provided that the jobs are all
owned by the same user.

NODEALLOCATIONPOLICY

Format One of the following:
FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE, CPULOAD, LOCAL, CONTIGUOUS,
MAXBALANCE, PRIORITY, or PLUGIN.

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to jobs. See Node Allocation Overview
for more information.

If ENABLEHIGHTHROUGHPUT on page 929 is TRUE, you must set
NODEALLOCATIONPOLICY to FIRSTAVAILABLE.

Example NODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to all jobs by default.

Moab Workload Manager

978 Appendices

Appendices 979

NODEALLOCRESFAILUREPOLICY

Format One of the following:
CANCEL,HOLD, IGNORE,MIGRATE,NOTIFY, or REQUEUE

Default NONE

Description Specifies how Moab should handle active jobs which experience node failures during exe-
cution. See the RESFAILPOLICY resource manager extension or the Node Availability Over-
view.

Example NODEALLOCRESFAILUREPOLICY REQUEUE

Moab will requeue jobs which have allocated nodes fail during execution.

NODEAVAILABILITYPOLICY

Format <POLICY>[:<RESOURCETYPE>] ...
where <POLICY> is one of COMBINED, DEDICATED, or UTILIZED
and <RESOURCETYPE> is one of PROC,MEM, SWAP, or DISK

Default COMBINED

Description Specifies how available node resources are reported. Moab uses the following calculations to
determine the amount of available resources:

Dedicated(use what Moab has scheduled to be used):
Available = Configured - Dedicated
Utilized(use what the resource manager is reporting is being used):
Available = Configured - Utilized
Combined(use the larger of dedicated and utilized):
Available = Configured - (MAX(Dedicated,Utilized))

Moab marks a node as busy when it has no available processors, so NODEAVAILABILTYPOLICY,
by affecting how many processors are reported as available, also affects node state. See Node
Availability Policies for more information.

Example NODEAVAILABILITYPOLICY DEDICATED:PROCS COMBINED:MEM

Moab will ignore resource utilization information in locating available processors for
jobs but will use both dedicated and utilized memory information in determining
memory availability.

Moab Workload Manager

NODEBUSYSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:01:00 (one minute)

Description Length of time Moab will assume busy nodes will remain unavailable for scheduling if a sys-
tem reservation is not explicitly created for the node.

Example NODEBUSYSTATEDELAYTIME 0:30:00

Moab will assume busy nodes are not available for scheduling for at least 30
minutes from the current time. Thus, these nodes will never be allocated to starting
jobs. Also, these nodes will only be available for reservations starting more than 30
minutes in the future.

NODECATCREDLIST

Format <LABEL>=<NODECAT>[,<NODECAT>]...[<LABEL>=<NODECAT>[,<NODECAT>]...]...
where <LABEL> is any string and <NODECAT> is one of the defined node categories.

Default ---

Description If specified, Moab will generate node category groupings and each iteration will assign usage of
matching resources to pseudo-credentials with a name matching the specified label. See the Node
Categorization section of the Admin manual for more information.

Example NODECATCREDLIST down=BatchFailure,HardwareFailure,NetworkFailure idle=Idle

Moab will create a down user, group, account, class, and QoS and will associate
BatchFailure, HardwareFailure, and NetworkFailure resources with these credentials.
Additionally, Moab will assign all Idle resources to matching idle credentials.

Moab Workload Manager

980 Appendices

Appendices 981

NODECFG[X]

Format List of space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
ACCESS, CHARGERATE, FEATURES, FLAGS, GRES, MAXJOB, MAXJOBPERUSER, MAXLOAD, MAXPE,
NODEINDEX, NODETYPE, OSLIST, PARTITION, POWERPOLICY on page 560, PRIORITY, PRIORITYF,
PROCSPEED, RACK, RADISK, SLOT, SPEED, or TRIGGER

Default ---

Description Specifies node-specific attributes for the node indicated in the array field. See the General Node
Administration Overview for more information.

Example NODECFG[nodeA] MAXJOB=2 SPEED=1.2

Moab will only allow 2 simultaneous jobs to run on node nodeA and will assign a relative
machine speed of 1.2 to this node.

NODEDOWNSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (never)

Description Length of time Moab will assume down, drained (offline), or corrupt nodes will remain
unavailable for scheduling if a system reservation is not explicitly created for the node. The
default specification of "-1" causes Moab to never create job reservations on down nodes.
See Node Availability for more information.

Example NODEDOWNSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not available for
scheduling for at least 30 minutes from the current time. Thus, these nodes will
never be allocated to starting jobs. Also, these nodes will only be available for
reservations starting more than 30 minutes in the future.

Moab Workload Manager

NODEDOWNTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description The maximum time a previously reported node remains unreported by a resource manager
before the node is considered to be in the down state. This can happen if communication with a
resource manager or a peer server is lost for more than the specified length of time, or if there is
communication with the resource manager but it fails to report the node status.

Example NODEDOWNTIME 10:00

If Moab loses communication with the resource manager for more than 10 minutes, it
sets the state of all nodes belonging to that resource manager to DOWN.

NODEDRAINSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 3:00:00 (three hours)

Description Length of time Moab will assume drained nodes will remain unavailable for scheduling if a
system reservation is not explicitly created for the node. Specifying "-1" will cause Moab to
never create job reservations on drained nodes. See Node Availability for more information.

Example NODEDRAINSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not available for scheduling
for at least 30 minutes from the current time. Thus, these nodes will never be
allocated to starting jobs. Also, these nodes will only be available for reservations
starting more than 30 minutes in the future.

Moab Workload Manager

982 Appendices

Appendices 983

NODEFAILURERESERVETIME

Format [[[DD:]HH:]MM:]SS

Default 0:05:00

Description Duration of reservation Moab will place on any node in which it detects a failure from the
resource manager (0 indicates no reservation will be placed on the node). See Node Avail-
ability for more information. See also RMCFG[] NODEFAILURERSVPROFILE. (For related
information, see Reservation Policies, DEFERSTARTCOUNT, DEFERTIME,
RESERVATIONRETRYTIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example NODEFAILURERESERVETIME 10:00

Moab will reserve failed nodes for 10 minutes.

NODEIDFORMAT

Format <STRING>

Default *$N*

Description Specifies how a node id can be processed to extract possible node, rack, slot, and cluster index
information. The value of the parameter may include the markers $C (cluster index), $N (node
index), $R (rack index), or $S (slot index) separated by *(asterisk - representing any number of
non-numeric characters) or other characters to indicate this encoding. See Node Selection for more
information on use of node, rack, and slot indices.

Example NODEIDFORMAT *$R*$S

Moab will extract rack and slot information from the cluster node ids (i.e. tg-13s08).

Moab Workload Manager

NODEIDLEPOWERACTION

Format [STANDBY | SUSPEND | SLEEP | HIBERNATE | SHUTDOWN | OFF]

Default OFF

Description Specifies what to do with a node that exceeds the NODEIDLEPOWERTHRESHOLD limit.

Example PARCFG[ALL] NODEIDLEPOWERACTION STANDBY

Nodes that exceed the NODEIDLEPOWERTHRESHOLD limit are placed in
standby.

NODEIDLEPOWERTHRESHOLD

Format <INTEGER>

Default 60 seconds

Description Specifies how long to allow a node to be idle before performing a power action. Increasing
the idle duration prevents power on/off thrashing.

Example NODEIDLEPOWERTHRESHOLD 300

Moab will wait 5 minutes before performing a power action on a node that has
become idle.

NODEMAXLOAD

Format <DOUBLE>

Default 0.0

Description Specifies that maximum cpu load on an idle or running node. If the node's load reaches or exceeds
this value, Moab will mark the node busy.

Example NODEMAXLOAD 0.75

Moab will adjust the state of all idle and running nodes with a load >= .75 to the state
busy.

Moab Workload Manager

984 Appendices

Appendices 985

NODEMEMOVERCOMMITFACTOR

Format <DOUBLE>

Default ---

Description The parameter overcommits available and configured memory and swap on a node by the
specified factor (for example: mem/swap * factor). Used to show that the node has more
mem and swap than it really does. Only works for PBS RM types.

Example NODEMEMOVERCOMMITFACTOR .5

Moab will overcommit the memory and swap of the node by a factor of 0.5.

NODEPOLLFREQUENCY

Format <INTEGER>

Default 0 (Poll Always)

Description Specifies the number of scheduling iterations between scheduler initiated node manager quer-
ies. If set to ' -2, Moab will never query the node manager daemons. If set to ' -1', Moab will only
query on the first iteration. Note: this parameter is most often used with OpenPBS and PBSPro. It
is not required when using TORQUE, LoadLeveler, LSF, or SGE as the resource managers.

Example NODEPOLLFREQUENCY 5

Moab will update node manager based information every 5 scheduling iterations.

Moab Workload Manager

NODESETATTRIBUTE

Format FEATURE or VARATTR

Default ---

Description Specifies the type of node attribute by which node set boundaries will be established. See Node
Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE

Moab will create node sets containing nodes with common features.

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Causes Moab to attempt to span a job evenly across nodesets unless doing so delays the job
beyond the requested NODESETDELAY.

Must use with NODESETPLUS on page 988 set to SPANEVENLY; if you do not want to
use SPANEVENLY, use NODESETISOPTIONAL on page 987 instead of NODESETDELAY.

Example NODESETPLUS SPANEVENLY
NODESETDELAY 5:00

Moab tries to span the job evenly across nodesets unless doing so delays the job by 5
minutes.

Moab Workload Manager

986 Appendices

Appendices 987

NODESETISOPTIONAL

Format <BOOLEAN>

Default TRUE

Description Specifies whether or not Moab will start a job if a requested node set cannot be satisfied. See
Node Set Overview.

Example NODESETISOPTIONAL TRUE

Moab will not block a job from running if its node set cannot be satisfied.

NODESETLIST

Format <ATTR>[{ :,|}<ATTR>]...

Default ---

Description Specifies the list of node attribute values which will be considered for establishing node sets. See
Node Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETLIST switchA,switchB

Moab will allocate nodes to jobs either using only nodes with the switchA feature or using
only nodes with the switchB feature.

Moab Workload Manager

NODESETPLUS

Format DELAY or SPANEVENLY

Default ---

Description Specifies how Moab distributes jobs among nodesets. See Node Set Overview.

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work with
multi-req jobs or preemption.

Example NODESETPLUS SPANEVENLY

Moab attempts to fit all jobs on a single nodeset or to span them evenly across a number
of nodesets, unless doing so would delay a job beyond the requested NODESETDELAY.

NODESETPLUS DELAY

Moab attempts to schedule the job within a nodeset for the configured NODESETDELAY. If
Moab cannot find space for the job to start within NODESETDELAY (Moab considers
future workload to determine if space will open up in time and might create a future
reservation), then Moab schedules the job and ignores the nodeset requirement.

NODESETPOLICY

Format ANYOF, FIRSTOF, or ONEOF

Default ---

Description Specifies how nodes will be allocated to the job from the various node set generated. See Node Set
Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE NETWORK

Moab will create node sets containing nodes with common network interfaces.

Moab Workload Manager

988 Appendices

Appendices 989

NODESETPRIORITYTYPE

Format one of AFFINITY, BESTFIT,WORSTFIT, or MINLOSS

Default MINLOSS

Description Specifies how resource sets will be selected when more than one feasible resource can be found.
See Node Set Overview.

Example NODESETPRIORITYTYPE BESTFIT
NODESETATTRIBUTE PROCSPEED

Moab will select the resource set that most closely matches the set of resources
requested.

NODESYNCTIME

Format [[[DD:]HH:]MM:]SS

Default 00:10:00

Description Specifies the length of time after which Moab will sync up a node's expected state with an unex-
pected reported state. IMPORTANT Note: Moab will not start new jobs on a node with an expec-
ted state which does not match the state reported by the resource manager.

Example NODESYNCTIME 1:00:00

NODETOJOBATTRMAP

Format Comma delimited list of node features

Default ---

Description Job requesting the listed node features will be assigned a corresponding job attribute. These job
attributes can be used to enable reservation access, adjust job priority or enable other cap-
abilities.

Example NODETOJOBATTRMAP fast,big

Jobs requesting node feature fast or big will be assigned a corresponding job attribute.

Moab Workload Manager

NODEUNTRACKEDRESDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Length of time Moab will assume untracked generic resources will remain unavailable for
scheduling if a system reservation is not explicitly created for the node.
If NODEUNTRACKEDRESDELAYTIME is enabled and there is an untracked resource
preventing a job from running, then the job remains in the idle queue instead of being
deferred.

Example NODEUNTRACKEDRESDELAYTIME 0:30:00

Moab will assume untracked generic resources are not available for scheduling
for at least 30 minutes from the current time. Thus, these nodes will never be
allocated to starting jobs. Also, these nodes will only be available for reservations
starting more than 30 minutes in the future.

NODEVMFEATURECHECKTIME

Format [[[DD:]HH:]MM:]SS

Default 0:10:00

Description The length of time between each Moab check on node and VM features. If a running VM
requires a feature but the resource manager is no longer reporting that feature on the VM's
host node, Moab migrates the VM to a node that has the feature. If no other node has that
feature, no migration occurs.

Example NODEVMFEATURECHECKTIME 10:00

Moab checks node and VM features every 10 minutes.

NODEVMREQATTRCHECKTIME

Format [[[DD:]HH:]MM:]SS

Default 0:10:00

Moab Workload Manager

990 Appendices

Appendices 991

NODEVMREQATTRCHECKTIME

Description The length of time between each Moab check on a VM's requested node attributes. If a run-
ning VM requires node attributes but the resource manager is no longer reporting reques-
ted attributes on the VM's host node, Moab migrates the VM to a node that has the
requested attributes. If no other node has the requested attributes, no migration occurs.

Example NODEVMREQATTRCHECKTIME 10:00

Moab checks requested node attributes of a node running a VM every 10 minutes.

NODEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight which will be applied to a job's requested node count before this value is
added to the job's cumulative priority. Note: this weight currently only applies when a nodecount
is specified by the user job. If the job only specifies tasks or processors, no node factor will be
applied to the job's total priority. This will be rectified in future versions.

Example NODEWEIGHT 1000

NOLOCALUSERENV

Format <BOOLEAN>

Default FALSE

Description If TRUE, specifies that a user's UserID, GroupID, and HomeDirectory are available on the Moab
server host.

Example NOLOCALUSERENV TRUE

Moab Workload Manager

NOJOBHOLDNORESOURCES

Format <BOOLEAN>

Default FALSE

Description If TRUE, Moab does not place a hold on jobs that don't have feasible resources. For example,
suppose there are 20 processors available for ClassA and 50 processors for the entire system.
If a job requests 21 or more processors from ClassA, or 51 or more processors from the entire
system, Moab idles the job (instead of putting a hold on it) until the resources become avail-
able.

Example NOJOBHOLDNORESOURCES TRUE

NOTIFICATIONPROGRAM

Format <STRING>

Default ---

Description Specifies the name of the program to handle all notification call-outs.

Example NOTIFICATIONPROGRAM tools/notifyme.pl

NOWAITPREEMPTION

Format <BOOLEAN>

Default ---

Description Generally when a job is trying to preempt another, it just waits for the original jobs that it chose to
preempt to end. If this parameter is on, the preemptor will continue trying to preempt jobs until
it can get in.

Example NOWAITPREEMPTION TRUE

Moab Workload Manager

992 Appendices

Appendices 993

OSCREDLOOKUP

Format NEVER

Default ---

Description Disables all Moab OS credential lookups, including UID, GID, user to group mappings, and any
other OS specific information.
Setting OSCREDLOOKUP by itself does not allow job submission; additional configuration is
required. When submitting jobs from user accounts that do not exist on the head node (where
Moab HPC Suite and TORQUE are running), you must also set the PROXYJOBSUBMISSION flag in
addition to specifying configuration settings in the resource manager configuration file. See the
example that follows for information on required resource manager settings.

Example OSCREDLOOKUP NEVER
RMCFG[] FLAGS=PROXYJOBSUBMISSION

To allow job submission, in the TORQUE configuration file (torque.cfg):

VALIDATEPATH FALSE

Run the following qmgr directive:

set server disable_server_id_check = True

Restart both Moab HPC Suite and pbs_server.

PARALLOCATIONPOLICY

Format One of BestFit, BestFitP, FirstStart, LoadBalance, LoadBalanceP,Random, or RoundRobin

Default FirstStart

Description Specifies the approach to use to allocate resources when more than one eligible partition can be
found. See Grid Scheduling Policies for more information.

Example PARALLOCATIONPOLICY LOADBALANCE

New jobs will be started on the most lightly allocated partition.

Moab Workload Manager

PARCFG

Format NODEPOWEROFFDURATION, NODEPOWERONDURATION, NODEALLOCATIONPOLICY or one or
more key-value pairs as described in the Partition Overview

Default ---

Description Specifies the attributes, policies, and constraints for the given partition.

Example PARCFG[oldcluster] MAX.WCLIMIT=12:00:00

Moab will not allow jobs to run on the oldcluster partition which has a wallclock limit in
excess of 12 hours.

PBSACCOUNTINGDIR

Format <PATH>

Default ---

Description When specified, Moab will write out job events in standard PBS/ TORQUE tracejob format to the
specified directory using the standard PBS/TORQUE log file naming convention.

Example PBSACCOUNTINGDIR /var/spool/torque/sched_logs/

Job events will be written to the specified directory (can be consumed by PBS's tracejob
command).

Moab Workload Manager

994 Appendices

Appendices 995

PERPARTITIONSCHEDULING

Format <BOOLEAN>

Default FALSE

Description By default Moab's scheduling routine schedules each job on each partition using the following
algorithm:
prioritize
foreach (job)
 find the partition on which that job should run
 schedule job
In this model, a job's priority is the same on each partition as it uses a single global priority.
Because a job's priority is the same on every partition, Moab prioritizes the queue once and
then schedules the prioritized queue across all partitions.
When PERPARTITIONSCHEDULING TRUE is set, the following algorithm is used:
foreach (partition)
 prioritize
 foreach (job)
 schedule job
In this case, each partition may have a unique priority configuration and Moab will re-
prioritize the jobs for each partition on the system. Each job is prioritized and scheduled on
each partition. See PARCFG on page 994 for more information. Also, note that Moab will order
the partitions as they are discovered in the moab.cfg file. Partitions should be explicitly
ordered via PARCFG in the moab.cfg file.

Example PERPARTITIONSCHEDULING TRUE
PARCFG[p1] CONFIGFILE=/opt/moab/etc/p1.cfg
PARCFG[p2] CONFIGFILE=/opt/moab/etc/p2.cfg

Rather than prioritizing the job queue once, Moab prioritizes the job queue for each
partition, p1 and p2 respectively, and schedules each partition in turn using the
policies located in their respective configuration files. (See Per-Partition Settings
on page 498 for more information).

Moab Workload Manager

PEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's PE (processor equivalent) priority factor.

Example RESWEIGHT 10
PEWEIGHT 100

Each job's priority will be increased by 10 * 100 * its PE factor.

PREEMPTPOLICY

Format one of the following:
CANCEL, REQUEUE, SUSPEND, or CHECKPOINT

Default REQUEUE

Description Specifies how preemptable jobs will be preempted.
Note: If this policy is set to REQUEUE, preemptible jobs should be marked as RESTARTABLE. If
this policy is set to SUSPEND, preemptible jobs should be marked as SUSPENDABLE. Note:Moab
uses preemption escalation to preempt resources if the specified preemption facility is not
applicable. This means if the policy is set to SUSPEND and the job is not SUSPENDABLE, Moab
may attempt to requeue or even cancel the job.

Example PREEMPTPOLICY CHECKPOINT

Jobs that are to be preempted will be checkpointed and restarted at a later time.

Moab Workload Manager

996 Appendices

Appendices 997

PREEMPTPRIOJOBSELECTWEIGHT

Format <DOUBLE>

Default 256.0

Description Determines which jobs to preempt based on size or priority. The higher the value, the
more emphasis is placed on the priority of the job, causing the lower priority jobs to be
preempted first. The lower the value, the more emphasis is placed on the size of the job,
causing the smaller jobs to be preempted first. If set to 0, job priority will be ignored, job
size will take precedence and the smallest jobs will be preempted.
The special setting of -1 places the emphasis solely on resource utilization. This means that
jobs will be preempted in a manner that keeps the resource utilization at the highest level,
regardless of job priority or size.

Example PREEMPTPRIOJOBSELECTWEIGHT 220.5

PREEMPTRTIMEWEIGHT

Format <DOUBLE>

Default 0

Description If set to anything other than 0, a job's remaining time is added into the calculation of which jobs
will be preempted. If a positive weight is specified, jobs with a longer remaining time are
favored. If a negative weight is specified, jobs with a shorter remaining time are favored.

Example PREEMPTRTWEIGHT 1.5

Moab Workload Manager

PREEMPTSEARCHDEPTH

Format <INTEGER>

Default unlimited

Description Specifies how many preemptible jobs will be evaluated as potential targets for serial job pree-
mptors. See Preemption Overview for more information.

Example PREEMPTSEARCHDEPTH 8

Serial job preemptors will only consider the first 8 feasible preemptee jobs when
determining the best action to take.

PRIORITYTARGETDURATION

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the ideal job duration which will maximize the value of the WALLTIMEWEIGHT pri-
ority factor. If specified, this factor will be calculated as the distance from the ideal. Con-
sequently, in most cases, the associated subcomponent weight should be set to a negative
value.

Example WALLTIMEWEIGHT -2500
PRIORITYTARGETDURATION 1:00:00

PRIORITYTARGETPROCCOUNT

Format <INTEGER>{+|-|%}

Default ---

Description Specifies the ideal job requested proc count which will maximize the value of the
PROCWEIGHT priority factor. If specified, this factor will be calculated as the distance from
the ideal (proc count - ideal = coefficient of PROCWEIGHT). Consequently, in most cases, the
associated subcomponent weight should be set to a negative value.

Example PROCWEIGHT -1000
PRIORITYTARGETPROCCOUNT 64

Moab Workload Manager

998 Appendices

Appendices 999

PROCWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's requested processor count priority factor.

Example PROCWEIGHT 2500

PROFILECOUNT

Format <INTEGER>

Default 600

Description Specifies the number of statistical profiles to maintain.
PROFILECOUNT must be set high enough that at least one day of statistics is maintained. The
statistics time window can be determined by measuring PROFILEDURATION * PROFILECOUNT. If
PROFILEDURATION is one hour then PROFILECOUNT must be at least 24 so 24 hours worth of
statistics are maintained. If PROFILEDURATION is 30:00 then PROFILECOUNT must be set to at
least 48. If PROFILECOUNT is not high enough for at least one day of statistics, Moab adjusts it
automatically.

Example PROFILECOUNT 300

PROFILEDURATION

Format [[[DD:]HH:]MM:]SS

Default 00:30:00

Description Specifies the duration of each statistical profile. The duration cannot be more than 24 hours, and
any specified duration must be a factor of 24. For example, factors of 1/4, 1/2, 1, 2, 3, 4, 6, 8, 12,
and 24 are acceptable durations.

Example PROFILEDURATION 24:00:00

Moab Workload Manager

PURGETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time Moab will keep a job or node record for an object no longer reported by the
resource manager. Useful when using a resource manager which 'drops' information about a node
or job due to internal failures. Note: This parameter is superseded by JOBPURGETIME on page
964.

Example PURGETIME 00:05:00

Moab will maintain a job or node record for 5 minutes after the last update regarding
that object received from the resource manager.

PUSHCACHETOWEBSERVICE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not you want to send cache objects (nodes, jobs, services, etc.) to Moab
Web Services.

Example PUSHCACHETOWEBSERVICE TRUE

Moab Workload Manager

1000 Appendices

Appendices 1001

QOSCFG[<QOSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, PRIORITY, ENABLEPROFILING, FSTARGET, JOBPRIOACCRUALPOLICY,
JOBPRIOEXCEPTIONS, MEMBERULIST, QTWEIGHT, QTTARGET, XFWEIGHT, XFTARGET,
PREEMPTMINTIME, PREEMPTMAXTIME, PREEMPTQTTHRESHOLD, PREEMPTXFTHRESHOLD,
PREEMPTEES, RSVQTTHRESHOLD, RSVXFTHRESHOLD, ACLBLTHRESHOLD, ACLQTTHRESHOLD,
ACLXFTHRESHOLD, PLIST, QFLAGS, or a usage limit.

Default ---

Description Specifies QOS specific attributes. See the flag overview for a description of legal flag values. See the
QOS Overview section for further details.

Example QOSCFG[commercial] PRIORITY=1000 MAXJOB=4 MAXPROC=80

Moab will increase the priority of jobs using QOS commercial, and will allow up to 4
simultaneous QOS commercial jobs with up to 80 total allocated processors.

QOSDEFAULTORDER

Format Comma-delimited list of QOS names.

Default ---

Description Sets a global QOS default order for all QOS's which overrides any specific default QOS. If the order
is defined as b,a,c and a user has access to c,a and submits a job without requesting a specific
QOS, the job is assigned a as the default QOS.

Example QOSDEFAULTORDER b,a,c

If the job does not have a QOS specified, it is assigned a QOS from the
QOSDEFAULTORDER list (if the user has access to one of them).

Moab Workload Manager

QOSISOPTIONAL

Format <BOOLEAN>

Default FALSE

Description An entity's default QOS will be the first QOS specified in the QLIST parameter. When this para-
meter is set to TRUE the default QOS for the associated credential (user, account, class, etc.) will
not be automatically set to the first QOS specified in the QLIST.

Example QOSISOPTIONAL TRUE
USERCFG[bob] QLIST=high,low

Moab will set the QOSList for user bob to high and low but will not set the QDEF. Should
bob decide to submit to a particular QOS he will have to do so manually.

QOSREJECTPOLICY

Format One or more of CANCEL,HOLD, IGNORE, or MAIL

Default HOLD(IGNORE for SLURM users)

Description Specifies the action to take when Moab determines that a job cannot access a requested QoS.
CANCEL issues a call to the resource manager to cancel the job.HOLD places a batch hold on the
job preventing the job from being further evaluated until released by an administrator. (Note:
Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.) With
IGNORE, Moab will ignore the QoS request and schedule the job using the default QoS for that
job. MAIL will send email to both the admin and the user when QoS request violations are detec-
ted. Most combinations of attributes may be specified; however, if both MAIL and IGNORE are spe-
cified, Moab will not implement MAIL. Similarly, while CANCEL and HOLD are mutually exclusive,
CANCEL will supersede HOLD if both are specified. (see JOBREJECTPOLICY).

Example QOSREJECTPOLICY MAIL,CANCEL

Moab Workload Manager

1002 Appendices

Appendices 1003

QOSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the qos priority of each job (see Credential (CRED) Factor).

Example QOSWEIGHT 10

QUEUETIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute pre-weighted queuetime priority factor.

Example QUEUETIMECAP 10000
QUEUETIMEWEIGHT 10

A job that has been queued for 40 minutes will have its queuetime priority factor
calculated as 'Priority = QUEUETIMEWEIGHT * MIN(10000,40)'.

QUEUETIMEWEIGHT

Format <INTEGER>

Default 1

Description Specifies multiplier applied to a job's queue time (in minutes) to determine the job's queuetime
priority factor.

Example QUEUETIMEWEIGHT 20

A job that has been queued for 4:20:00 will have a queuetime priority factor of 20 * 260.

Moab Workload Manager

REALTIMEDBOBJECTS

Format Comma-delimited list of one or more of the following: JOB,NODE,RSV (reservation), TRIG (trig-
ger), VC (virtual container). You can also specify ALL or NONE.

Default ALL

Description Specifies which objects Moab will store in the unixodbc database.

Example REALTIMEDBOBJECTS JOB,RSV,TRIG

Moab stores jobs, reservations, and triggers in the uxodbc database. It will no longer
record real time information about nodes and VCs.

Moab Workload Manager

1004 Appendices

Appendices 1005

RECORDEVENTLIST

Format One or more comma (',') or plus ('+') separated events of GEVENT, ALLSCHEDCOMMAND,
AMCREATE, AMDELETE, AMEND, AMPAUSE, AMQUOTE, AMRESUME, AMSTART,
AMUPDATE, JOBCANCEL, JOBCHECKPOINT, JOBEND, JOBFAILURE, JOBMIGRATE,
JOBMODIFY, JOBPREEMPT, JOBREJECT, JOBRESUME, JOBSTART, JOBSUBMIT,
NODEDOWN,NODEFAILURE,NODEUP,QOSVIOLATION,RMDOWN,RMPOLLEND,
RMPOLLSTART,RMUP,RSVCANCEL,RSVCREATE,RSVEND,RSVMODIFY,RSVSTART,
SCHEDCOMMAND, SCHEDCYCLEEND, SCHEDCYCLESTART, SCHEDPAUSE,
SCHEDSTART, SCHEDSTOP, VMCREATE, VMDESTROY, VMMIGRATE, VMPOWEROFF,
VMPOWERON, or ALL

Default JOBSTART, JOBCANCEL, JOBEND, JOBFAILURE, SCHEDPAUSE, SCHEDSTART,
SCHEDSTOP, TRIGEND, TRIGFAILURE, TRIGSTART

Description Specifies which events should be recorded in the appropriate event file found in Moab's stats/
directory. These events are recorded for both local and remotely staged jobs. (See Event Log Over-
view) Note: If a plus character is included in the list, the specified events will be added to the
default list; otherwise, the specified list will replace the default list.

Example RECORDEVENTLIST JOBSTART,JOBCANCEL,JOBEND

When a local and/or remote job starts, is canceled, or ends, the respective event will be
recorded.

REJECTDOSSCRIPTS

Format <BOOLEAN>

Default TRUE

Description Moab rejects DOS-formatted scripts submitted with the msub command. This is useful if you use
SLURM as your resource manager, since it does not handle DOS scripts well. For
REJECTDOSSCRIPTS to work correctly, FILTERCMDFILE on page 936 must be FALSE. Otherwise,
Moab modifies the script instead of rejecting it, leading to job errors.

Example REJECTDOSSCRIPTS FALSE

Moab does not reject DOS-formatted scripts submitted withmsub.

Moab Workload Manager

REJECTINFEASIBLEJOBS

Format <BOOLEAN>

Default FALSE

Description If zero feasible nodes are found for a job among the currently available nodes on the cluster, the
scheduler rejects the job. See JOBREJECTPOLICY for more information.

Example REJECTINFEASIBLEJOBS TRUE
JOBREJECTPOLICY MAIL,CANCEL

Any job with zero feasible nodes for execution will be rejected.

REJECTNEGPRIOJOBS

Format <BOOLEAN>

Default TRUE

Description If enabled, the scheduler will refuse to start any job with a negative priority. See Job Priority Over-
view and ENABLENEGJOBPRIORITY for more information.

Example ENABLENEGJOBPRIORITY TRUE
REJECTNEGPRIOJOBS TRUE

Any job with a priority less than zero will be rejected.

Moab Workload Manager

1006 Appendices

Appendices 1007

REMAPCLASS

Format <ClassID>

Default ---

Description Specifies which class/queue will be remapped based on the processors, nodes, and node features
requested and the resource limits of each class. See Remap Class Overview for more information.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
CLASSCFG[small] MAX.PROC=2
CLASSCFG[medium] MAX.PROC=16
CLASSCFG[large] MAX.PROC=1024

Class batch will be remapped based on the number of processors requested.

REMAPCLASSLIST

Format Comma delimited list of class names

Default ---

Description Specifies the order in which classes will be searched when attempting to remap a class. Only
classes included in the list will be searched and Moab will select the first class with matches. Note:
If no REMAPCLASSLIST is specified, Moab will search all classes and will search them in the order
they are discovered. See Remap Class Overview for more information.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
REMAPCLASSLIST short,medium,long

Class batch will be re-mapped to one of the listed classes.

Moab Workload Manager

REMOTEFAILTRANSIENT

Format <BOOLEAN>

Default FALSE

Description Only applicable to Moab configurations with multiple resource managers able to run jobs (such
as in a grid environment). When Moab attempts to migrate a job to one of these resource man-
agers, a remote failure may occur. For example, a destination peer in a grid that has an error
accepting a job results in a remote error, and the job is rejected. REMOTEFAILTRANSIENT con-
trols how Moab reacts to remote errors. By default, Moab considers such an error permanent
and does not try to migrate the same job to that resource manager again. If
REMOTEFAILTRANSIENT is set to TRUE, then Moab considers such an error as transient and will
not exclude the erring resource manager in future migration attempts.

Example REMOTEFAILTRANSIENT TRUE

REMOVETRIGOUTPUTFILES

Format <BOOLEAN>

Default FALSE

Description When Moab launches external trigger actions, the standard output and error of those trigger
actions are redirected to files located in Moab's spool directory. By default, these files are
cleaned every 24 hours. (Files older than 24 hours are removed.) If, however, you wish to
have Moab immediately remove the spool files after they are no longer needed, set
RemoveTrigOutputFiles to TRUE.

Example REMOVETRIGOUTPUTFILES TRUE

Moab Workload Manager

1008 Appendices

Appendices 1009

RESCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute pre-weighted job resource priority factor.

Example RESCAP 1000

The total resource priority factor component of a job will be bound by
+/- 1000

RESERVATIONDEPTH[X]

Format <INTEGER>

Default 1

Description Specifies the number of priority reservations which are allowed in the associated reservation
bucket. Note: The array index, X, is the bucket label and can be any string up to 64 characters.
This label should be synchronized with the RESERVATIONQOSLIST parameter. See Reservation
Policies.

Example RESERVATIONDEPTH[bigmem] 4
RESERVATIONQOSLIST[bigmem] special,fast,joshua

Jobs with QOS's of special, fast, or joshua can have a cumulative total of up to 4 priority
reservations.

Moab Workload Manager

RESERVATIONPOLICY

Format One of the following: CURRENTHIGHEST,HIGHEST,NEVER

Default CURRENTHIGHEST

Description Specifies how Moab reservations will be handled. (See also RESERVATIONDEPTH) See Reservation
Policies.

Example RESERVATIONPOLICY CURRENTHIGHEST
RESERVATIONDEPTH[DEFAULT] 2

Moab will maintain reservations for only the 2 currently highest priority jobs.

RESERVATIONQOSLIST[X]

Format One or more QOS values or [ALL]

Default [ALL]

Description Specifies which QOS credentials have access to the associated reservation bucket. Note: The array
index, X, is the bucket label and can be any string up to 64 characters. This label should be syn-
chronized with the RESERVATIONDEPTH parameter. See Reservation Policies.

Example RESERVATIONDEPTH[big] 4
RESERVATIONQOSLIST[big] hi,low,med

Jobs with QOS's of hi, low, or med can have a cumulative total of up to 4 priority
reservations.

Moab Workload Manager

1010 Appendices

Appendices 1011

RESERVATIONRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 60 seconds

Description Period of time Moab will continue to attempt to allocate resources to start a job after the time
resources should be made available. This parameter takes into account resource manager node
state race conditions, nodes with residual high load, network glitches, etc. (For related inform-
ation, see Reservation Policies, DEFERSTARTCOUNT, DEFERTIME, NODEFAILURERESERVETIME,
JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example RESERVATIONRETRYTIME 00:05:00

Moab will try for up to 5 minutes to maintain immediate reservations if the
reservations are blocked due to node state, network, or batch system based race
conditions.

RESOURCELIMITMULTIPLIER[<PARID>]

Format <RESOURCE>:<MULTIPLIER>[,...]
Where <RESOURCE> is one of the following:
NODE, PROC, JOBPROC,MEM, JOBMEM, SWAP, DISK, orWALLTIME

Default 1.0

Description If set to less than one, then the hard limit will be the specified limit and the soft limit will be
the specified limit multiplied by the multiplier. If set to a value greater than one, then the spe-
cified limit will be the soft limit and the hard limit will be the specified limit multiplied by the
multiplier. See Usage-based Limits.

Example RESOURCELIMITMULTIPLER PROC:1.1,MEM:2.0

Sets hard limit for PROC at 1.1 times the PROC soft limit, and the hard limit of MEM
to 2.0 times the MEM soft limit.

Moab Workload Manager

RESOURCELIMITPOLICY

Format <RESOURCE>:[<SPOLICY>,]<HPOLICY> :[<SACTION>,]<HACTION> [:[<SVIOLATIONTIME>,]
<HVIOLATIONTIME>]...
Where RESOURCE is one of CPUTIME,DISK, JOBMEM, JOBPROC,MEM,MINJOBPROC,
NETWORK, PROC, SWAP, or WALLTIME
where *POLICY is one of ALWAYS, EXTENDEDVIOLATION, or BLOCKEDWORKLOADONLY
and where *ACTION is one of CANCEL,CHECKPOINT,NOTIFY,REQUEUE, SIGNAL, or
SUSPEND.

Default No limit enforcement.

Description Specifies how the scheduler should handle jobs which utilize more resources than they request.
See Usage-based Limits.

Example RESOURCELIMITPOLICY MEM:ALWAYS,BLOCKEDWORKLOADONLY:REQUEUE,CANCEL

Moab will cancel all jobs which exceed their requested memory limits.

RESTARTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default ---

Description Causes Moab daemon to recycle/restart when the given interval of time has transpired.

Example RESTARTINTERVAL 20:00:00

Moab daemon will automatically restart every 20 hours.

Moab Workload Manager

1012 Appendices

Appendices 1013

RESOURCEQUERYDEPTH

Format <INTEGER>

Default 3

Description Maximum number of options which will be returned in response to an mshow -a resource
query.

Example RESOURCEQUERYDEPTH 1

Themshow -a command will return at most 1 valid collection of resources.

RESWEIGHT

Format <INTEGER>

Default 1

Description All resource priority components are multiplied by this value before being added to the total job
priority. See Job Prioritization.

Example RESWEIGHT 5
MEMWEIGHT 10
PROCWEIGHT 100
SWAPWEIGHT 0
RESCAP 2000

The job priority resource factor will be calculated as MIN(2000,5 * (10 * JobMemory +
100 * JobProc)).

Moab Workload Manager

RMCFG

Format One or more key-value pairs as described in the Resource Manager Configuration Overview

Default ---

Description Specifies the interface and policy configuration for the scheduler-resource manager interface.
Described in detail in the Resource Manager Configuration Overview.

Example RMCFG[TORQUE3] TYPE=PBS

The PBS server will be used for resource management.

RMMSGIGNORE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab should adjust node state based on generic resource manager
failure messages. See Compute Node Health Check on page 2328 for more info.

For green or ONDEMAND computing, RMMSGIGNORE must be set to TRUE to prevent
Moab HPC Suite from powering off a down node.

Example RMMSGIGNORE TRUE

Moab will load and report resource manager failure messages but will not adjust node
state as a result of them.

Moab Workload Manager

1014 Appendices

Appendices 1015

RMPOLLINTERVAL

Format [<MINPOLLTIME>,]<MAXPOLLTIME>where poll time is specified as [[[DD:]HH:]MM:]SS

Default 0,30

Description Specifies the interval between RM polls. The poll interval will be no less than MINPOLLTIME and
no more than MAXPOLLTIME. If you specify a single value, Moab interprets the value as the
MAXPOLLTIME with a MINPOLLTIME of 0.

If you use TORQUE as your resource manager, prevent communication errors by giving
tcp_timeout on page 2434 at least twice the value of the Moab RMPOLLINTERVAL.

Example RMPOLLINTERVAL 30,45

Moab will refresh its resource manager information between a minimum of 30 seconds
and a maximum of 45 seconds. Note: This parameter specifies the default global poll
interval for all resource managers.

RMRETRYTIMECAP

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description Moab attempts to contact RMs that are in state 'corrupt' (not down). If the attempt is unsuccessful,
Moab tries again later. If the second attempt is unsuccessful, Moab increases the gap (the gap
grows exponentially) between communication attempts. RMRETRYTIMECAP puts a cap on the
length between connection attempts.

Example RMRETRYTIMECAP 24:00:00

Moab stops increasing the gap between connection attempts once the retry gap reaches 24
hours.

Moab Workload Manager

RSVLIMITPOLICY

Format HARD or SOFT

Default ---

Description Specifies what limits should be enforced when creating reservations.

Example RSVLIMITPOLICY HARD

Moab will limit reservation creation based on theHARD
limits configured.

RSVNODEALLOCATIONPOLICY

Format One of the following:
FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE, CPULOAD, LOCAL, CONTIGUOUS,
MAXBALANCE, or PRIORITY

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to reservations.

Example RSVNODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to all reservations by
default.

RSVNODEALLOCATIONPRIORITYF

Format User specified algorithm

Default ---

Description When RSVNODEALLOCATIONPOLICY is set to PRIORITY, this parameter allows you to spe-
cify your own priority algorithm. The priority functions available are the same as the node
priority functions.

Example RSVNODEALLOCATIONPOLICY PRIORITY
RSVNODEALLOCATIONPRIORITYF 'SPEED + .01 * AMEM - 10 * JOBCOUNT'

Moab Workload Manager

1016 Appendices

Appendices 1017

RSVPROFILE[X]

Format One or more of the following:
Allowed:
TRIGGERACL (ACCOUNTLIST, CLASSLIST, GROUPLIST, MAXTIME, QOSLIST, USERLIST)
HostExp (HOSTLIST)
Features (NODEFEATURES)
FLAGS
TASKCOUNT
RSVACCESSLIST
Note: Lists of more than one ACL value cannot be whitespace delimited. Such lists must be
delimited with a comma, pipe, or colon.
Not allowed:
ACCESS
CHARGEACCOUNT
DAYS
DEPTH
ENDTIME
OWNER
PARTITION
PERIOD
PRIORITY

RESOURCES
STARTTIME
TPN

Default ---

Description Specifies attributes of a reservation profile using syntax similar to that for specifying a standing
reservation. See Using Reservation Profiles for details.

Example RSVPROFILE[fast] USERLIST=john,steve
RSVPROFILE[fast] QOSLIST=high,low
RSVPROFILE[fast]
TRIGGER=ETYPE=start,OFFSET=5:00,ATYPE=exec,ACTION="/opt/moab/rp.pl"

Moab will create a reservation profile including trigger and ACL information.

Moab Workload Manager

RSVSEARCHALGO

Format LONG or WIDE

Default NONE

Description When Moab is determining when and where a job can run, it either searches for the most
resources (WIDE) or the longest range of resources (LONG). In almost all cases, searching for the
longest range is ideal and returns the soonest starttime. In some rare cases, however, a particular
job may need to search for the most resources. In those cases sites can configure this parameter to
prevent the starvation of large jobs that fail to hold onto their reservation starttimes. See the
WIDERSVSEARCHALGO job flag.
If this parameter is not set, it will be displayed in mschedctl -l as NONE but the algorithm that is
used will be LONG.

Example RSVSEARCHALGO WIDE

SCHEDCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
FBSERVER, FLAGS, MAXJOBID,MAXRECORDEDCJOBID, MINJOBID, HTTPSERVERPORT, MODE,
RECOVERYACTION, SERVER, or TRIGGER

Default ---

Description Specifies scheduler policy and interface configuration.

The SERVER attribute can also be set using the environment variable $MOABSERVER.
Using this variable allows you to quickly change the Moab server that client commands will
connect to.

> export MOABSERVER=cluster2:12221

Example SCHEDCFG[zylem3] SERVER=geronimo.scc.com:3422 MODE=NORMAL

Moab will execute inNORMAL mode on the host geronimo.scc.com.

SERVERHOST

Description
This parameter is deprecated. See SCHEDCFG for replacement parameter.

Moab Workload Manager

1018 Appendices

Appendices 1019

SERVERMODE

Description
This parameter is deprecated. See SCHEDCFG for replacement parameter.

SERVERNAME

Format <STRING>

Default <SERVERHOST>

Description Specifies the name the scheduler will use to refer to itself in communication with peer daemons.
See SCHEDCFG for replacement parameter.

Example SERVERNAME moabA

SERVERPORT

Format <INTEGER> (range: 1-64000)

Default 40559

Description Port on which moab will open its user interface socket. See SCHEDCFG for replacement parameter.

Example SERVERPORT 30003

Moab will listen for client socket connections on port 30003.

SERVERSUBMITFILTER

Format <PATH>

Default ---

Description Specifies the location of a global job submit filter script. When you configure a global job submit
filter, Moab executes it on the head node and uses it to filter every job submission it receives. See
Server-based submit filter on page 309 for more information about job submit filters.

Moab Workload Manager

SERVERSUBMITFILTER

Example SERVERSUBMITFILTER /opt/moab/scripts/globalfilter.pl

Moab uses /opt/moab/scripts/globalfilter.pl to filter every job submitted to Moab.

SERVICEWEIGHT

Format <INTEGER>

Default 1

Description Specifies the service component weight associated with the service factors. See Service (SERV)
Factor for more information.

Example SERVICEWEIGHT 2

SHOWMIGRATEDJOBSASIDLE

Format <BOOLEAN>

Default FALSE

Description By default, migrated jobs in the grid will show as blocked. This is to prevent jobs from count-
ing against the idle policies of multiple clusters rather than just the cluster to which the job
was migrated.

Example SHOWMIGRATEDJOBSASIDLE TRUE

When set to TRUE, migrated jobs will show as idle and will count against the idle
policies of the cluster showing the job as migrated.

Moab Workload Manager

1020 Appendices

Appendices 1021

SIMAUTOSHUTDOWN

Format <BOOLEAN>

Default TRUE

Description If TRUE, the scheduler will end simulations when the active queue and idle queue become
empty.

Example SIMAUTOSHUTDOWN TRUE

The simulation will end as soon as there are no jobs running and no idle jobs which could
run.

SIMINITIALQUEUEDEPTH

Format <INTEGER>

Default 16

Description Specifies how many jobs the simulator will initially place in the idle job queue (see Simulation
Overview).

Example SCHEDCFG[sim1] MODE=SIMULATION
SIMINITIALQUEUEDEPTH 64
SIMJOBSUBMISSIONPOLICY CONSTANTJOBDEPTH

Moab will initially place 64 idle jobs in the queue and, because of the specified queue
policy, will attempt to maintain this many jobs in the idle queue throughout the
duration of the simulation.

Moab Workload Manager

SIMJOBSUBMISSIONPOLICY

Format One of the following:
NORMAL,CONSTANTJOBDEPTH,CONSTANTPSDEPTH, or REPLAY

Default CONSTANTJOBDEPTH

Description Specifies how the simulator will submit new jobs into the idle queue.NORMAL mode causes
jobs to be submitted at the time recorded in the workload trace file,CONSTANTJOBDEPTH
and CONSTANTPSDEPTH attempt to maintain an idle queue of SIMINITIALQUEUEDEPTH
jobs and proc-seconds respectively.REPLAY will force jobs to execute at the exactly the time
specified in the simulation job trace file. This mode is most often used to generate detailed
profile statistics for analysis in Moab Cluster Manager (see Simulation Overview).

Example SIMJOBSUBMISSIONPOLICY NORMAL

Moab will submit jobs with the relative time distribution specified in the workload
trace file.

SIMPURGEBLOCKEDJOBS

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab should remove jobs which can never execute (see Simulation Over-
view).

Example SIMPURGEBLOCKEDJOBS FALSE

Moab Workload Manager

1022 Appendices

Appendices 1023

SIMRMRANDOMDELAY

Format <INTEGER>

Default 0

Description Specifies the random delay added to the RM command base delay accumulated when making
any resource manager call in simulation mode.

Example SIMRMRANDOMDELAY 5

Moab will add a random delay of between 0 and 5 seconds to the simulated time delay
of all RM calls.

SIMSTARTTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default ---

Description Specifies the time when the simulation starts.

Example SIMSTARTTIME 00:00:00_01/01/00

Moab will set its clock to January 1, 2000 at 12:00:00 in the morning before starting
the simulation

SIMSTOPTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default ---

Description Specifies the time when the simulation should pause.

Example SIMSTOPTIME 00:00:00_01/01/04

Moab will stop scheduling when its internal simulation time reaches
January 1, 2004.

Moab Workload Manager

SIMWORKLOADTRACEFILE

Format <STRING>

Default Traces/workload.trace

Description Specifies the file from which moab will obtain job information when running in simulation
mode. Moab will attempt to locate the file relative to <MOABHOMEDIR> unless specified as an
absolute path. See Simulation Overview and Workload Accounting Records.

Example SIMWORKLOADTRACEFILE traces/jobs.2

Moab will obtain job traces when running in simulation mode from the
<MOABHOMEDIR>/traces/jobs.2 file.

SPOOLDIR

Format <STRING>

Default ---

Description Specifies the directory for temporary spool files created by Moab while submitting a job to the RM.

Example SPOOLDIR /tmp/moab/spool

SPOOLDIRKEEPTIME

Format <INTEGER> (seconds) or [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the interval to delete spool files and other temporary files that have been left in the spool
directory.

Example SPOOLDIRKEEPTIME 4:00:00

Moab Workload Manager

1024 Appendices

Appendices 1025

SPVIOLATIONWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job which violates soft usage limit policies (see Service
(SERVICE) Component on page 388).

Example SPVIOLATIONWEIGHT 5000

SRCFG[X]

Format One or more of the following <ATTR>=<VALUE> pairs
ACCESS, ACCOUNTLIST, CHARGE on page 468, CHARGEACCOUNT, CHARGEUSER, CLASSLIST,
CLUSTERLIST, COMMENT, DAYS, DEPTH, DISABLE, ENDTIME, FLAGS, GROUPLIST, HOSTLIST,
JOBATTRLIST,MAXTIME, NODEFEATURES, OWNER, PARTITION, PERIOD, PRIORITY, QOSLIST,
REQUIREDTPN, RESOURCES, ROLLBACKOFFSET, RSVACCESSLIST, RSVGROUP, STARTTIME,
TASKCOUNT, TIMELIMIT, TPN, TRIGGER, or USERLIST
Note:HOSTLIST and ACL list values must be comma delimited. For example:
HOSTLIST=nodeA,nodeB

Default ---

Description Specifies attributes of a standing reservation. See Managing Reservations for details.

Example SRCFG[fast] STARTTIME=9:00:00 ENDTIME=15:00:00
SRCFG[fast] HOSTLIST=node0[1-4]$
SRCFG[fast] QOSLIST=high,low

Moab will create a standing reservation running from 9:00 AM to 3:00 PM on nodes 1
through 4 accessible by jobs with QOS high or low.

Moab Workload Manager

STARTCOUNTCAP

Format <INTEGER>

Default 0

Description Specifies the max weighted value allowed from the startcount subfactor when determining a job's
priority (see Priority Factors for more information).

Example STARTCOUNTWEIGHT 5000
STARTCOUNTCAP 30000

STARTCOUNTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's startcount when determining a job's priority (see Pri-
ority Factors for more information).

Example STARTCOUNTWEIGHT 5000

STATDIR

Format <STRING>

Default stats

Description Specifies the directory in which Moab statistics will be maintained.

Example STATDIR /var/adm/moab/stats

Moab Workload Manager

1026 Appendices

Appendices 1027

STATPROCMAX

Format <INTEGER>

Default 1

Description Specifies the maximum number of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via mschedctl -m or changeparam
while Moab is running. Changing any of the parameters invalidates all past data and will
start the collection over.

Example STATPROCMAX 256
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

Moab Workload Manager

STATPROCMIN

Format <INTEGER>

Default 1

Description Specifies the minimum number of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

STATPROCSTEPCOUNT

Format <INTEGER>

Default 5

Description Specifies the number of rows of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all
past data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

Moab Workload Manager

1028 Appendices

Appendices 1029

STATPROCSTEPSIZE

Format <INTEGER>

Default 4

Description Specifies the processor count multiplier for rows of processors requested by jobs to be displayed
in matrix outputs (as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

STATTIMEMAX

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description Specifies the maximum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMAX 02:08:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

Moab Workload Manager

STATTIMEMIN

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description Specifies the minimum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

STATTIMESTEPCOUNT

Format <INTEGER>

Default 6

Description Specifies the number of columns of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all
past data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

Moab Workload Manager

1030 Appendices

Appendices 1031

STATTIMESTEPSIZE

Format <INTEGER>

Default 4

Description Specifies the time multiplier for columns of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

STOPITERATION

Format <INTEGER>

Default -1 (don't stop)

Description Specifies which scheduling iteration Moab will stop and wait for a command to resume scheduling.

Example STOPITERATION 10

Moab should stop after iteration 10 of scheduling and wait for administrator commands.

Moab Workload Manager

STOREJOBSUBMISSION

Format <BOOLEAN>

Default ---

Description When set to TRUE, specifies that Moab will save a job's submit arguments and script to
$MOABHOMEDIR/stats/jobarchive/jobNumber.
If you use TORQUE as your resource manager, you can configure it to store completed job
information, and it will store the same information returned by the qstat -f command. For more
information, see Job Logging on page 2315 in the TORQUE documentation.

Example STOREJOBSUBMISSION TRUE

STRICTPROTOCOLCHECK

Format <BOOLEAN>

Default FALSE

Description Specifies how Moab reacts to differences in XML protocols when communicating with other
Moab peers. If set to TRUE, Moab will reject any communication that does not strictly conform
to the expected protocol. If set to FALSE (the default), Moab will not reject XML that has extra
or unknown attributes.

Example STRICTPROTOCOLCHECK TRUE

Moab will reject any XML communication that does not strictly conform to the
expected protocol definition.

Moab Workload Manager

1032 Appendices

Appendices 1033

SUBMITENVFILELOCATION

Format FILE or PIPE

Default ---

Description If set to FILE, these behaviors are expected:
l The environment file is owned by a user with 600 permissions.
l Moab writes the environment variables ('\0' delimited) to a random file in Moab's
spool directory.

l Moab adds the --export-file=<path_to_file> on the sbatch command line.
l Moab deletes the file after the job completes.

If set to PIPE, these behaviors are expected:
l Moab creates a pipe and passes the read end of the pipe's file descriptor to sbatch.
l Moab's parent process writes the environment ('\0' delimited) into the write end of
the pipe.

Adaptive Computing recommends that you configure this parameter for a more secure
environment.

Example SUBMITENVFILELOCATION PIPE

SUBMITFILTER

Format <STRING>

Default ---

Description Specifies the directory of a given submit filter script.

Example SUBMITFILTER /home/submitfilter/filter.pl

SUBMITHOSTS

Format space delimited list of host names

Default ---

Description If specified, SUBMITHOSTS specifies an explicit list of hosts where jobs can be submitted.

Example SUBMITHOSTS hostA hostB

Moab Workload Manager

SUSPENDRESOURCES[<PARID>]

Format <RESOURCE>[,...]
Where <RESOURCE> is one of the following:
NODE, PROC,MEM, SWAP,DISK

Default ---

Description List of resources to dedicate while a job is suspended (available in Moab version 4.5.1 and
higher).

Example SUSPENDRESOURCES[base] MEM,SWAP,DISK

While a job is suspended in partition base, the memory, swap and disk for that job will
remain dedicated to the job.

SYSCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
PRIORITY, FSTARGET, QLIST, QDEF, PLIST, FLAGS, or a fairness policy specification.

Default ---

Description Specifies system-wide default attributes. See the Attribute/Flag Overview for more information.

Example SYSCFG PLIST=Partition1 QDEF=highprio

By default, all jobs will have access to partition Partition1 and will use the QOS highprio.

SWAPWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the virtual memory request of a job.

Example SWAPWEIGHT 10

Moab Workload Manager

1034 Appendices

Appendices 1035

SYSTEMMAXPROCPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description Specifies the maximum number of processors that can be requested by any single job.

Example SYSTEMMAXPROCPERJOB 256

Moab will reject jobs requesting more than 256 processors.

SYSTEMMAXPROCSECONDPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description Specifies the maximum number of proc-seconds that can be requested by any single job.

Example SYSTEMMAXJOBPROCSECOND 86400

Moab will reject jobs requesting more than 86400 procs seconds. i.e., 64
processors * 30 minutes will be rejected, while a 2 processor * 12 hour job will be
allowed to run.

SYSTEMMAXJOBWALLTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description Specifies the maximum amount of wallclock time that can be requested by any single job.

Example SYSTEMMAXJOBWALLTIME 1:00:00:00

Moab will reject jobs requesting more than 1 day of walltime.

Moab Workload Manager

TARGETQUEUETIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the time remaining until the queuetime is reached.

Example TARGETQUEUETIMEWEIGHT 10

TARGETWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to a job's queuetime and expansion factor target components
(see Job Prioritization).

Example TARGETWEIGHT 1000

TARGETXFACTORWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the distance to the target expansion factor.

Example TARGETXFACTORWEIGHT 10

Moab Workload Manager

1036 Appendices

Appendices 1037

TASKDISTRIBUTIONPOLICY

Format One of DEFAULT, PACK,RR (round-robin)

Default ---

Description Specifies how job tasks should be mapped to allocated resources.DEFAULT allows the
resource manager to determine how the tasks are placed on the nodes. When PACK is used, a
node is filled up with tasks before the next node is used. When RR is used, tasks are cycled
through nodes, one task at a time, until there are no more tasks. See Task Distribution Over-
view for more information.

Example TASKDISTRIBUTIONPOLICY DEFAULT

Moab should use standard task distribution algorithms.

THREADPOOLSIZE

Format <INTEGER>

Default 2X number of core processors (MAX: 64)

Description Governs the number of threads used when processing job scheduling. Scalability and performance
may improve with multi-threading; to throttle, limit the number of threads used.

Example THREADPOOLSIZE 10

TOOLSDIR

Format <STRING>

Default tools

Description Specifies the directory in which Moab tools will be maintained (commonly used in conjunction with
Native Resource Managers, and Triggers).

Example TOOLSDIR /var/adm/moab/tools

Moab Workload Manager

TRAPFUNCTION

Format <STRING>

Default ---

Description Specifies the functions to be trapped.

Example TRAPFUNCTION
UpdateNodeUtilization|GetNodeSResTime

TRAPJOB

Format <STRING>

Default ---

Description Specifies the jobs to be trapped.

Example TRAPJOB pros23.0023.0

TRAPNODE

Format <STRING>

Default ---

Description Specifies the nodes to be trapped.

Example TRAPNODE
node001|node004|node005

Moab Workload Manager

1038 Appendices

Appendices 1039

TRAPRES

Format <STRING>

Default ---

Description Specifies the reservations to be trapped.

Example TRAPRES interactive.0.1

TRIGCHECKTIME

Format <INTEGER> (milliseconds)

Default 2000

Description Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. Usually this only takes a fraction of a
second, but if the number of triggers are large it could take up substantially more time (up to sev-
eral seconds). While Moab is evaluating triggers, it doesn't respond to UI commands. This makes
Moab feel sluggish and unresponsive. To remedy this, use the parameter TRIGCHECKTIME. This
parameter tells Moab to only spend up to X milliseconds processing triggers during the UI phase.
After X milliseconds has gone by, Moab will pause the evaluating of triggers, handle any pending
UI events, and then restart the trigger evaluations where it last left off.

Example TRIGCHECKTIME 4000

Moab Workload Manager

TRIGEVALLIMIT

Format <INTEGER>

Default 1

Description Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. The number of times Moab evaluates all
triggers in the system is controlled by the TRIGEVALLIMIT parameter. By default, this is set to 1.
This means that Moab will evaluate all triggers at most once during the UI phase. Moab will not
leave the UI phase and start other scheduling tasks until ALL triggers are evaluated at least one
time. If TrigEvalLimit is set to 5, then Moab will wait until all triggers are evaluated five times.

Example TRIGEVALLIMIT 3

UJOBWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by jobs per user. -1 will reduce priority by number of active jobs owned by user.

Example UJOBWEIGHT 10

UMASK

Format <INTEGER>

Default 0022 (octal) (produces 0644 permissions)

Description Specifies the file permission mask to use when creating new fairshare, stats, and event files. See
the umaskman page for more details.

Example UMASK 0127

Create statistics and event files which are 'read-write' by owner and 'read' by group only.

Moab Workload Manager

1040 Appendices

Appendices 1041

UNSUPPORTEDDEPENDENCIES

Format Comma delimited string

Default ---

Description Specifies dependencies that are not supported and should not be accepted by job sub-
missions. A maximum of 30 dependencies is supported.

Example # moab.cfg
UNSUPPORTEDDEPENDENCIES before,beforeok,beforenotok,on

> msub -l depend=before:105 cmd.sh
ERROR: cannot submit job - error in extension string

UPROCWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by processors per user. -1 will reduce priority by number of active procs owned
by user.

Example UPROCWEIGHT 10

USAGECONSUMEDWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to per job processor second consumption.

Example USAGECONSUMEDWEIGHT 10

Moab Workload Manager

USAGEEXECUTIONTIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the total job execution time (measured in seconds
since job start). See Preemption Overview.

Example USAGEEXECUTIONTIMEWEIGHT 10

USAGEPERCENTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to total requested resources consumed.

Example USAGEPERCENTWEIGHT 5

USAGEREMAININGWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to remaining usage.

Example USAGEREMAININGWEIGHT 10

Moab Workload Manager

1042 Appendices

Appendices 1043

USAGEWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight assigned to the percent and total job usage subfactors.

Example USAGEWEIGHT 100

USEANYPARTITIONPRIO

Format <BOOLEAN>

Default FALSE

Description The FSTREE data from the first feasible FSTREE will be used when determining a job's start
priority, rather than having no FSTREE data considered.

Do not set USEANYPARTITIONPRIO if you use per-partition scheduling. Doing so causes
to schedule jobs to the first partition listed, even if nodes from another partition will be
available sooner.

Example USEANYPARTITIONPRIO TRUE

USECPRSVNODELIST

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab should use the checkpointed reservation node list when rebuilding reser-
vations on startup. If this is not used then Moab will use the reservation's specified host expres-
sion during rebuilding.

Example USECPRSVNODELIST FALSE

Moab Workload Manager

USEDATABASE

Format INTERNAL

Default -

Description Specifies whether Moab should store profile statistics, checkpoint information, and event inform-
ation in an integrated database. See Layout of Scheduler Components with Integrated Database
Enabled for more information.

Example USEDATABASE INTERNAL

USEJOBREGEX

Format BOOLEAN

Default FALSE

Description Specifies whether mjobctl supports regular expressions.

Example USEJOBREGEX TRUE

[user@linux]$ mjobctl -c 8[1-3]

job '81' cancelled
job '82' cancelled
job '83' cancelled

Moab Workload Manager

1044 Appendices

Appendices 1045

USEMOABCTIME

Format <BOOLEAN>

Default FALSE

Description When Moab finds new jobs on the resource manager, it creates a job inside of Moab for each job in
the resource manager. By default, when Moab creates a new job, it uses the time the job was sub-
mitted to the resource manager to calculate how long the job has been in the queue (Moab pro-
cessing time - job creation in resource manager), which is then used in determining the job's
priority.
In a system where more jobs are submitted to a resource manager than Moab can handle in one
iteration, there is the possibility of jobs running out of order. For example, two jobs are both
submitted at time 5. The first submitted job is processed first at time 6. So the first job's effective
queue duration would be 1 (6-5). On the next iteration, the second job is processed at time 8. So
the second job's effective queue duration would be 3 (8-5), indicating that it has been in the
queue longer than the other job. Since the later job has a higher effective queue duration it will
get a higher priority and could be scheduled to run before earlier submitted jobs.
Setting USEMOABCTIME to TRUE tells Moab to use the creation time of the job in Moab rather
than the creation time in the resource manager. This corrects the possible problem of having later
submitted jobs having higher priorities and starting before earlier submitted jobs.

Example USEMOABCTIME TRUE

USEMOABJOBID

Format <BOOLEAN>

Default FALSE

Description Specifies whether to use the Moab job ID, or the resource manager's job ID.

Example USEMOABJOBID TRUE

Moab Workload Manager

USERCFG[<USERID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, CDEF, DEFAULT.TPN, DEFAULT.WCLIMIT, EMAILADDRESS,
ENABLEPROFILING, FSCAP, FSTARGET, JOBFLAGS,MAX.WCLIMIT, QLIST, QDEF, NOEMAIL, OVERRUN,
PLIST, PRIORITY, or a usage limit.

Default ---

Description Specifies user specific attributes. For general user attribute information, See the Credential Over-
view. For a description of legal flag values, see flag overview.

Example USERCFG[john] MAXJOB=50 QDEF=highprio
USERCFG[john] EMAILADDRESS=john@company.com

Up to 50 jobs submitted under the user ID john will be allowed to execute simultaneously
and will be assigned the QOS highprio.

USERPRIOCAP

Format <INTEGER>

Default ---

Description Specifies the priority cap to be applied to the user specified job priority factor. Under Moab, only
negative user priorities may be specified. See Credential (Service) Factor.

Example USERPRIOWEIGHT 10
USERPRIOCAP -10000

Moab Workload Manager

1046 Appendices

Appendices 1047

USERPRIOWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to the user specified job priority. Under Moab, only negative
user priorities may be specified. If this weight is set, users may reduce the priority of some of their
jobs to allow other jobs to run earlier. See Credential (Service) Factor and User Selectable Pri-
oritization.

Example USERPRIOWEIGHT 10

USERWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the user priority of each job. See Credential (CRED) Factor.

Example USERWEIGHT 10

USESYSLOG

Format <BOOLEAN>[<FACILITY>]

Default FALSE:daemon

Description Specifies whether or not the scheduler will report key events to the system syslog facility. If the
<FACILITY> is specified, Moab will report events to this syslog facility. See Logging Facilities for
more information.

Example USESYSLOG TRUE:local3

Moab will report key events, commands, and failures to syslog using the local3 facility.

Moab Workload Manager

USESYSTEMQUEUETIME

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not job prioritization should be based on the time the job has been eligible
to run, i.e., idle and meets all fairness policies (TRUE) or the time the job has been idle
(FALSE). See Priority Factors for more info. Note: This parameter has been superseded by the
JOBPRIOACCRUALPOLICY parameter.

Example USESYSTEMQUEUETIME FALSE

The queuetime and expansion factor components of a job's priority will be calculated
based on the length of time the job has been in the idle state.

USEUSERHASH

Format <BOOLEAN>

Default FALSE

Description Enables searching of the user buffer using the user hash key instead of doing sequential searches
of the user buffer.

Example USEUSERHASH TRUE

VMCALCULATELOADBYVMSUM

Format <BOOLEAN>

Default FALSE

Description When false, vmmigrate using overcommits uses the CPU load from the node to determine if
VM's need to be migrated off the hypervisor. When true, overcommit vmmigrates calculates
the total node load using the total sum reported by each VM on the hypervisor.

Example VMCALCULATELOADBYVMSUM TRUE

Moab Workload Manager

1048 Appendices

Appendices 1049

VMCPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 5:00

Description When a VM completes, Moab stores it in a completed VM table for the specified amount of time.
This prevents it from starting again if an RM reports it late. It also prevents a user from creating a
VM with the same ID for a certain amount of time.

The VM will remain in the completed VM table for more than the specified amount of time
if VMSTALETIME is greater than VMCPURGETIME. Both parameters must expire before
Moab will remove the VM from the table.

Example VMCPURGETIME 10:00

Moab holds completed VMs for 10 minutes to prevent a late RM from reporting and
restarting it.

VMMIGRATETOZEROLOADNODES

Format <BOOLEAN>

Default FALSE

Description Allows VM migrations to occur to and from hypervisors that do not report a CPULoad or
memory load.

Example VMMIGRATETOZEROLOADNODES TRUE

Moab Workload Manager

VMMIGRATETHROTTLE

Format <INTEGER>

Default ---

Description Sets the maximum allowable 'VM migrate' jobs at any given time.

Example VMMIGRATETHROTTLE 20

Only 20 VM migrate jobs are allowed in the system at
any given time.

VMMIGRATIONPOLICY

Format <STRING>; values include CONSOLIDATION and OVERCOMMIT

Default NONE

Description Choose only one of these values:
l CONSOLIDATION- If the CONSOLIDATION flag is set, Moab consolidates VMs to allow
nodes to go idle. This flag also ensures that no hypervisors are overloaded.

l OVERCOMMIT- If the OVERCOMMIT flag is set, VMs to be migrated will be selected
from overloaded hypervisors to bring them below the selected thresholds. This flag must
be set for the VMOCTHRESHOLD parameter to function.

Example VMMIGRATIONPOLICY OVERCOMMIT

VMMINOPDELAY

Format [HH[:MM[:SS]

Default ---

Description The minimum time between automatic VM node operations, such as creating, modifying, and des-
troying VMs. May prevent thrashing.

Example VMMINOPDELAY 30

Moab Workload Manager

1050 Appendices

Appendices 1051

VMOCTHRESHOLD

Format MEM:<0-1>,PROCS:<0-1>,DISK:<0-1>,SWAP:<0-1>,GMETRIC:<metric>:value

Default ---

Descrip-
tion

Percentage threshold at which Moab begins to migrate virtual machines to other nodes.
VMMIGRATIONPOLICY must be set to OVERCOMMIT for this to occur.

Exampl-
e

NODECFG[DEFAULT] VMOCTHRESHOLD=PROC:.7,MEM:.9,GMETRIC:mem_io:6000 # This is the
default global policy
NODECFG[node42] VMOCTHRESHOLD=PROC:.2,MEM:.1,GMETRIC:mem_io:12000 # This is a
node-specific policy for node42

When a node surpasses .7 (70%) load of CPU or .9 (90%) of memory, Moab begins to migrate
virtual machines to other nodes. When node42surpasses .2 (20%) load of CPU or .1 (10%) of
memory, Moab begins to migrate virtual machines to other nodes.

VMPROVISIONSTATUSREADYVALUE

Format <INTEGER>

Default ---

Description Checks a VM for a special value or values (which Moab gets from the resource manager)
and, based on the value, tells Moab that a VM was created..

Example VMProvisionStatusReadyValue 2

VMProvisionStatusReadyValue 1-4,6,16

VMSARESTATIC

Format <BOOLEAN>

Default FALSE

Description When set to true, informs Moab that it can schedule under the assumption that no VMs will be
migrated and no new VMs will be created, and disables Moab from scheduling any VM creations or
migrations.

Example VMSARESTATIC TRUE

Moab Workload Manager

VMSTALEACTION

Format One of the following: IGNORE,CANCELTRACKINGJOB, or DESTROY

Default IGNORE

Description Specifies the action that is applied to a stale VM, or a VM that the resource manager has not
reported to Moab recently (see VMSTALETIME).

l IGNORE (default) specifies that Moab will take no action.
l CANCELTRACKINGJOB specifies that Moab will remove the tracking job for stale VMs,
but will not remove the actual VM (not recommended).

l DESTROY specifies that Moab destroys stale VMs.

If you specify DESTROY, you must also set the ENABLEVMDESTROY parameter to TRUE.

Example VMSTALEACTION DESTROY

VMSTALETIME

Format [[HH:]MM:]SS

Default 10:00

Description Specifies the amount of time a VM must be unreported by any resource manager before it is
considered "stale."
To specify what happens with the VM after it has become stale, see VMSTALEACTION.

Example VMSTALETIME 5:00

5 minutes must pass without a resource manager reporting a VM for it to be considered
stale.

Moab Workload Manager

1052 Appendices

Appendices 1053

VMSTORAGEMOUNTDIR

Format <PATH>

Default ---

Description The specified path is used as the default location for storage mounts in all newly created VMs
(created via the mvmctl command). This parameter defines the default storage mount directory
if one is not specified.

Example VMSTORAGEMOUTDIR /var/spool

Moab uses /var/spool as a storage mount directory if a storage directory is not
submitted (but additional storage is requested) at VM creation.

VMTRACKING

Format <STRING>

Default ---

Description When set to TRUE, VMTracking jobs are used to represent VMs in the queue.

Example VMTRACKING TRUE

WALLTIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the walltime component. This value is specified as an absolute priority value, not as a
percent.

Example WALLTIMECAP 10000

Moab will bound a job's pre-weighted walltime priority component within the range +/-
10000.

Moab Workload Manager

WALLTIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the amount of walltime requested by a job (in
seconds) (see Resource (RES) Factor).

Example RESWEIGHT 10
WALLTIMEWEIGHT 100

Increase the priority of longer duration jobs.

WCACCURACYCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the wallclock accuracy component. This value is specified as an absolute priority value,
not as a percent.

Example WCACCURACYCAP 10000

Moab will bound a job's pre-weighted wallclock accuracy priority component within the
range +/- 10000.

WCACCURACYWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the job's historical user wallclock accuracy (range
0.0 to 1.0) (see Fairshare (FS) Factor).

Example FSWEIGHT 10
WCACCURACYWEIGHT 100

Favor jobs with good wallclock accuracies by giving them a priority increase.

Moab Workload Manager

1054 Appendices

Appendices 1055

WCVIOLATIONACTION

Format one of CANCEL or PREEMPT

Default CANCEL

Description Specifies the action to take when a job exceeds its wallclock limit. If set to CANCEL, the job will be
terminated. If set to PREEMPT, the action defined by PREEMPTPOLICY parameter will be taken.
See JOBMAXOVERRUN or Usage-based limits.

Example WCVIOLATIONACTION PREEMPT
PREEMPTPOLICY REQUEUE

Moab will requeue jobs which exceed their wallclock limit.

WEBSERVICESURL

Format <URL>

Default ---

Description If specified, Moab sends data to Moab Web Services (MWS) to be stored in a database. This allows
Moab to spend more cycles on scheduling instead of database interaction. The sending occurs via
HTTP PUT.

Example WEBSERVICESURL http://mws-staging.ac:8080/mws/rm/moab/dump

Moab sends data that needs to be stored in a database to the specified URL.

Moab Workload Manager

WIKIEVENTS

Format <BOOLEAN>

Default TRUE

Descrip-
tion

When set to true, Moab events are set to native wiki format (ATTR=VALUE pairs) to facilitate easier
readability .

Example WIKIEVENTS TRUE

Moab events will generate output in the format of the following sample:

09:26:40 1288279600:5 job 58 JOBEND 58 REQUESTEDNC=1 REQUESTEDTC=3 UNAME=wightman
GNAME=wightman
WCLIMIT=60 STATE=Completed RCLASS=[batch:1] SUBMITTIME=1288279493 RMEMCMP=>=
RDISKCMP=>=
RFEATURES=[NONE] SYSTEMQUEUETIME=1288279493 TASKS=1 FLAGS=RESTARTABLE PARTITION=pbs
DPROCS=1
ENDDATE=2140000000 TASKMAP=proxy,GLOBAL SRM=pbs EXITCODE=0 SID=2357
NODEALLOCATIONPOLICY=SHARED
EFFECTIVEQUEUEDURATION=107

XFACTORCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the expansion factor component. This value is specified as an absolute priority value,
not as a percent.

Example XFACTORCAP 10000

Moab will bound a job's pre-weighted XFactor priority component within the range +/-
10000.

Moab Workload Manager

1056 Appendices

Appendices 1057

XFACTORWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's minimum expansion factor before it is added to the
job's cumulative priority.

Example XFACTORWEIGHT 1000

Moab will multiply a job's XFactor value by 1000 and then add this value to its total
priority.

XFMINWCLIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description Specifies the minimum job wallclock limit that will be considered in job expansion factor priority
calculations.

Example XFMINWCLIMIT 0:01:00

Jobs requesting less than 1 minute of wallclock time will be treated as if their wallclock
limit was set to 1 minute when determining expansion factor for priority calculations.

Appendix B: Multi-OS Provisioning
l xCAT Configuration Requirements

l MSM Installation

l Integrating MSM and xCAT

l MSM Configuration

l Configuration Validation

l Troubleshooting

l Deploying Images with TORQUE

l Installing Moab on the Management Node

Moab Workload Manager

l Moab Configuration File Example

l Verifying the Installation

l xCAT Plug-in Configuration Parameters

Introduction
Moab can dynamically provision compute machines to requested operating systems and power off
compute machines when not in use. Moab can intelligently control xCAT and use its advanced system
configuration mechanisms to adapt systems to current workload requirements. Moab communicates with
xCAT using the Moab Service Manager (MSM). MSM is a translation utility that resides between Moab
and xCAT and acts as aggregator and interpreter. The Moab Workload Manager will query MSM, which in
turn queries xCAT, about system resources, configurations, images, and metrics. After learning about
these resources from MSM, Moab then makes intelligent decisions about the best way to maximize
system utilization.

In this model Moab gathers system information from two resource managers. The first is TORQUE, which
handles the workload on the system; the second is MSM, which relays information gathered by xCAT. By
leveraging these software packages, Moab intelligently adapts clusters to deliver on-site goals.

This document assumes that xCAT has been installed and configured. It describes the process of getting
MSM and xCAT communicating, and it offers troubleshooting guidance for basic integration. This
document offers a description for how to get Moab communicating with MSM and the final steps in
verifying a complete software stack.

xCAT Configuration Requirements
Observe the following xCAT configuration requirements before installing MSM:

l Configure xCAT normally for your site.

o Test the following commands to verify proper function:

o rpower

o nodeset

o makedhcp

o makedns

o nodestat

o rvitals

o If MSM will run on a different machine than the one on which xCAT runs, install the xCAT
client packages on that machine, and test the previously listed commands on that machine
as well.

o Configure and test all stateful/stateless images you intend to use.

l Configure xCAT to use either PostgreSQL or MySQL. Note that the default of SQLite may not
function properly when MSM drives xCAT.

Moab Workload Manager

1058 Appendices

Appendices 1059

o PostgreSQL: See xCATSetupPostgreSQL.pdf for more information.

o MySQL: See xCAT2.SetupMySQL.pdf for more information.

You must have a valid Moab license file (moab.lic) with provisioning and green enabled. For
information on acquiring an evaluation license, please contact info@adaptivecomputing.com.

MSM Installation
l Determine the installation directory (usually /opt/moab/tools/msm)

l Untar the MSM tarball into the specified directory (making it the MSM home directory, or
$MSMHOMEDIR)

l Verify the required Perl modules and version are available

> perl -e 'use Storable 2.18'
> perl -MXML::Simple -e 'exit'
> perl -MProc::Daemon -e 'exit'
> perl -MDBD::SQLite -e 'exit'

Integrating MSM and xCAT
Copy the x_msm table schema to the xCAT schema directory:

> cp $MSMHOMEDIR/contrib/xcat/MSM.pm $XCATROOT/lib/perl/xCAT_schema

Restart xcatd and check the x_msm table is correctly created:

> service xcatd restart

> tabdump x_msm

Prepare xCAT images and ensure they provision correctly (see xCAT documentation)

Populate the x_msm table with your image definitions:

> tabedit x_msm

#flavorname,arch,profile,os,nodeset,features,vmoslist,hvtype,hvgroupname,vmgroupname,co
mments,disable

"compute","x86_64","compute","centos5.3","netboot","torque",,,,,,
"science","x86","compute","scientific_linux","netboot","torque",,,,,,

l flavorname - A user specified name for the image and settings; also an xCAT group name, nodes
are added to this group when provisioned

l arch - Architecture as used by xCAT

l profile - Profile as used by xCAT

l os - Operating system as used by xCAT

l nodeset - One of netboot|install|statelite

Moab Workload Manager

http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCATSetupPostgreSQL.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2.SetupMySQL.pdf
mailto:info@adaptivecomputing.com

l features - Names of xCAT groups that identify special hardware features ('torque' and 'paravirt'
are special cases)

l vmoslist - Note: Not used. List of flavorname's this image may host as VMs (hypervisor images
only)

l hvtype - Note: Not used. One of esx|xen|kvm (hypervisor images only)

l hvgroupname - Note: Not used. Name of xCAT group nodes will be added to when provisioned to
this image

l vmgroupname - Note: Not used. Name of xCAT group VMs will be added to when hosted on a
hypervisor of this image

l comments - User specified comments

l disable - Flag to temporarily disable use of this image

Ensure all xCAT group names in the x_msm table exist in the xCAT nodegroup table

> tabedit nodegroup

Edit as necessary to simulate the following example:

#groupname,grouptype,members,wherevals,comments,disable
"compute",,,,,
"esxi4",,,,,
"esxhv",,,,,
"esxvmmgt",,,,,

After making any necessary edits, run the following command:

> nodels compute,esxi4,esxhv,esxvmmgt
should complete without error, ok if doesn't return anything

MSM Configuration
Edit $MSMHOMEDIR/msm.cfg and configure the xCAT plug-in. Below is a generic example for use with
TORQUE without virtualization. See the section on configuration parameters for a complete list of
parameters and descriptions.

Moab Workload Manager

1060 Appendices

Appendices 1061

MSM configuration options
RMCFG[msm] PORT=24603
RMCFG[msm] POLLINTERVAL=45
RMCFG[msm] LOGFILE=/opt/moab/log/msm.log
RMCFG[msm] LOGLEVEL=8
RMCFG[msm] DEFAULTNODEAPP=xcat

xCAT plugin specific options
APPCFG[xcat] DESCRIPTION="xCAT plugin"
APPCFG[xcat] MODULE=Moab::MSM::App::xCAT
APPCFG[xcat] LOGLEVEL=3
APPCFG[xcat] POLLINTERVAL=45
APPCFG[xcat] TIMEOUT=3600
APPCFG[xcat] _USEOPIDS=0
APPCFG[xcat] _NODERANGE=moab,esxcompute
APPCFG[xcat] _USESTATES=boot,netboot,install
APPCFG[xcat] _LIMITCLUSTERQUERY=1
APPCFG[xcat] _RPOWERTIMEOUT=120
APPCFG[xcat] _DONODESTAT=1
APPCFG[xcat] _REPORTNETADDR=1
APPCFG[xcat] _CQXCATSESSIONS=4

Configuration Validation
Set up environment to manually call MSM commands:

substitute appropriate value(s) for path(s)
export MSMHOMEDIR=/opt/moab/tools/msm
export MSMLIBDIR=/opt/moab/tools/msm
export PATH=$PATH:/$MSMLIBDIR/contrib:$MSMLIBDIR/bin

Verify that MSM starts without errors:

> msmd

Verify that the expected nodes are listed, without errors, using the value of _NODERANGE from
msm.cfg.

> nodels <_NODERANGE>

Verify that the expected nodes, are listed in the cluster query output from MSM:

> cluster.query.pl

Provision all nodes through MSM for the first time (pick and image name from x_msm):

> for i in `nodels <_NODERANGE>; do node.modify.pl $i --set os=<image_name>;done

Verify the nodes correctly provision and that the correct OS is reported (which may take some time
after the provisioning requests are made):

> cluster.query.pl

Moab Workload Manager

Troubleshooting
l msmctl -a does not report the xCAT plugin - Check the log file (path specified in msm.cfg) for
error messages. A common cause is missing Perl modules (Storable, DBD::SQLite, xCAT::Client).

l cluster.query.pl does not report any nodes - Check that the xCAT command nodels <noderange>,
where <noderange> is the value configured for _NODERANGE in msm.cfg, outputs the nodes
expected.

l cluster.query.pl does not report OS - MSM must provision a node to recognize what the current
operating system is. It is not sufficient to look up the values in the nodetype table because MSM
has no way of recognizing whether nodeset and rpower were run with the current values in the
nodetype table.

l cluster.query.pl does not report OSLIST, or does not report the expected OSLIST for a node -
Check that the node belongs to the appropriate groups, particularly any listed in the features field
of the x_msm table for the missing image name.

Deploying Images with TORQUE
When using MSM + xCAT to deploy images with TORQUE, there are some special configuration
considerations. Most of these also apply to other workload resource managers.

Note that while the MSM xCAT plugin contains support for manipulating TORQUE directly, this is not an
ideal solution. If you are using a version of xCAT that supports prescripts, it is more appropriate to write
prescripts that manipulate TORQUE based on the state of the xCAT tables. This approach is also
applicable to other workload resource managers, while the xCAT plugin only deals with TORQUE.

Several use cases and configuration choices are discussed in what follows.

Each image should be configured to report its image name through TORQUE. In the TORQUE pbs_mom
mom_config file the opsys value should mirror the name of the image. See Appendix C: Node Manager
(MOM) Configuration on page 2435 in the TORQUE Administrator's Guide for more information.

Installing Moab on the Management Node
Moab is the intelligence engine that coordinates the capabilities of xCAT and TORQUE to dynamically
provision compute nodes to the requested operating system. Moab also schedules workload on the
system and powers off idle nodes. Download and install Moab.

Moab Configuration File Example
Moab stores its configuration in the moab.cfg file: /opt/moab/etc/moab.cfg. A sample
configuration file, set up and optimized for adaptive computing follows:

Moab Workload Manager

1062 Appendices

https://www.adaptivecomputing.com/myaccount/login.php?url=/resources/downloads/index.php

Appendices 1063

SCHEDCFG[Moab] SERVER=gpc-sched:42559
ADMINCFG[1] USERS=root,egan
LOGLEVEL 7

How often (in seconds) to refresh information from TORQUE and MSM
RMPOLLINTERVAL 60,60
RESERVATIONDEPTH 10
DEFERTIME 0
TOOLSDIR /opt/moab/tools

###
TORQUE and MSM configuration
###
RMCFG[torque] TYPE=PBS
RMCFG[msm] TYPE=NATIVE:msm FLAGS=autosync,NOCREATERESOURCE RESOURCETYPE=PROV
RMCFG[msm] TIMEOUT=60
RMCFG[msm] PROVDURATION=10:00
AGGREGATENODEACTIONS TRUE

###
ON DEMAND PROVISIONING SETUP
###
QOSCFG[od] QFLAGS=PROVISION
USERCFG[DEFAULT] QLIST=od
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=1000*OS+1000*POWER
NODEAVAILABILITYPOLICY DEDICATED
CLASSCFG[DEFAULT] DEFAULT.OS=scinetcompute

###
GREEN POLICIES
###
NODECFG[DEFAULT] POWERPOLICY=ONDEMAND
PARCFG[ALL] NODEPOWEROFFDURATION=20:00
NODEIDLEPOWERTHRESHOLD 600
END Example moab.cfg

Verifying the Installation
When Moab starts it immediately communicates with its configured resource managers. In this case
Moab communicates with TORQUE to get compute node and job queue information. It then communicates
with MSM to determine the state of the nodes according to xCAT. It aggregates this information and
processes the jobs discovered from TORQUE.

When a job is submitted, Moab determines whether nodes need to be provisioned to a particular
operating system to satisfy the requirements of the job. If any nodes need to be provisioned Moab
performs this action by creating a provisioning system job (a job that is internal to Moab). This system
job communicates with xCAT to provision the nodes and remain active while the nodes are provisioning.
Once the system job has provisioned the nodes it informs the user's job that the nodes are ready at
which time the user's job starts running on the newly provisioned nodes.

When a node has been idle for a specified amount of time (see NODEIDLEPOWERTHRESHOLD), Moab
creates a power-off system job. This job communicates with xCAT to power off the nodes and remains
active in the job queue until the nodes have powered off. Then the system job informs Moab that the
nodes are powered off but are still available to run jobs. The power off system job then exits.

To verify correct communication between Moab and MSM run the mdiag -R -v msm command.

Moab Workload Manager

$ mdiag -R -v msm
diagnosing resource managers
RM[msm] State: Active Type: NATIVE:MSM ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: $HOME/tools/msm/contrib/cluster.query.xcat.pl
Workload Query URL: exec://$TOOLSDIR/msm/contrib/workload.query.pl
Job Start URL: exec://$TOOLSDIR/msm/contrib/job.start.pl
Job Cancel URL: exec://$TOOLSDIR/msm/contrib/job.modify.pl
Job Migrate URL: exec://$TOOLSDIR/msm/contrib/job.migrate.pl
Job Submit URL: exec://$TOOLSDIR/msm/contrib/job.submit.pl
Node Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Node Power URL: exec://$TOOLSDIR/msm/contrib/node.power.pl
RM Start URL: exec://$TOOLSDIR/msm/bin/msmd
RM Stop URL: exec://$TOOLSDIR/msm/bin/msmctl?-k
System Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Environment:

MSMHOMEDIR=/home/wightman/test/scinet/tools//msm;MSMLIBDIR=/home/wightman/test/scinet/
tools//msm
Objects Reported: Nodes=10 (0 procs) Jobs=0
Flags: autosync
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.10s MaxTime=0.25s (38 samples)
RM Languages: NATIVE
RM Sub-Languages: -

To verify nodes are configured to provision use the checknode -v command. Each node will have a list of
available operating systems.

$ checknode n01
node n01
State: Idle (in current state for 00:00:00)
Configured Resources: PROCS: 4 MEM: 1024G SWAP: 4096M DISK: 1024G
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: watts=25.00,temp=40.00
Power Policy: Green (global policy) Selected Power State: Off
Power State: Off
Power: Off
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: compute Arch: ---
OS Option: compute
OS Option: computea
OS Option: gpfscompute
OS Option: gpfscomputea

Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
RM[msm]: TYPE=NATIVE:MSM ATTRO=POWER
EffNodeAccessPolicy: SINGLEJOB
Total Time: 00:02:30 Up: 00:02:19 (92.67%) Active: 00:00:11 (7.33%)

To verify nodes are configured for Green power management, run the mdiag -G command. Each node will
show its power state.

Moab Workload Manager

1064 Appendices

Appendices 1065

$ mdiag -G
NOTE: power management enabled for all nodes
Partition ALL: power management enabled
Partition NodeList:

Partition local: power management enabled
Partition NodeList:
node n01 is in state Idle, power state On (green powerpolicy enabled)
node n02 is in state Idle, power state On (green powerpolicy enabled)
node n03 is in state Idle, power state On (green powerpolicy enabled)
node n04 is in state Idle, power state On (green powerpolicy enabled)
node n05 is in state Idle, power state On (green powerpolicy enabled)
node n06 is in state Idle, power state On (green powerpolicy enabled)
node n07 is in state Idle, power state On (green powerpolicy enabled)
node n08 is in state Idle, power state On (green powerpolicy enabled)
node n09 is in state Idle, power state On (green powerpolicy enabled)
node n10 is in state Idle, power state On (green powerpolicy enabled)

Partition SHARED: power management enabled

To submit a job that dynamically provisions compute nodes, run the msub -l os=<image> command.

$ msub -l os=computea job.sh
yuby.3
$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
provision-4 root Running 8 00:01:00 Fri Jun 19 09:12:56
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
yuby.3 wightman Idle 8 00:10:00 Fri Jun 19 09:12:55
1 eligible job
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total jobs: 2

Notice that Moab created a provisioning system job named provision-4 to provision the nodes. When
provision-4 detects that the nodes are correctly provisioned to the requested OS, the submitted job
yuby.3 runs:

$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
yuby.3 wightman Running 8 00:08:49 Fri Jun 19 09:13:29
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total job: 1

The checkjob command shows information about the provisioning job as well as the submitted job. If any
errors occur, run the checkjob -v <jobid> command to diagnose failures.

Moab Workload Manager

xCAT Plug-in Configuration Parameters
Plugin parameters that begin with an underscore character are specific to the xCAT plug-in; others are
common to all plug-ins and may either be set in the RMCFG[msm] for all plug-ins, or per plug-in in the
APPCFG[<plugin_name>].

Description
Module
LogLevel
PollInterval
TimeOut
_NodeRange
_CQxCATSessions
_DORVitals
_PowerString
_DoNodeStat
_DoxCATStats
_LockDir
_HVxCATPasswdKey

_FeatureGroups
_DefaultVMCProc
_DefaultVMDisk
_DefaultVMCMemory
_KVMStoragePath
_ESXStore
_ESXCFGPath
_VMInterfaces
_XenHostInterfaces
_KVMHostInterfaces
_VMSovereign
_UseStates
_ImagesTabName

_VerifyRPower
_RPowerTimeOut
_QueueRPower
_RPowerQueueAge
_RPowerQueueSize
_MaskOSWhenOff
_ModifyTORQUE
_ReportNETADDR
_UseOpIDs
_VMIPRange
_xCATHost
_NoRollbackOnError

Description

Format Double quoted string containing brief description of plugin.

Default ---

Description This information is not visible in Moab, but shows up in msmctl -a.

Module

Format Moab::MSM::App::xCAT

Default ---

Description Name of the plugin module to load.

LogLevel

Format 1-9

Default 5

Moab Workload Manager

1066 Appendices

Appendices 1067

LogLevel

Description Used to control the verbosity of logging, 1 being the lowest (least information logged) and 9 being
the highest (most information logged). For initial setup and testing, 8 is recommended, then
lowering to 3 (only errors logged) for normal operation. Use 9 for debugging, or when submitting
a log file for support.

PollInterval

Format Integer > 0

Default 60

Description MSM will query xCAT every POLLINTERVAL seconds to update general node status. This number
will likely require tuning for each specific system. In general, to develop this number, you should
pick a fraction of the total nodes MSM will be managing (1/_CQXCATSESSIONS), and time how
long it takes run nodestat, rpower stat, and optionally rvitals on these nodes, and add ~15%.
Increasing the POLLINTERVAL will lower the overall load on the xCAT headnode, but decrease the
responsiveness to provisioning and power operations.

TimeOut

Format Integer value > POLLINTERVAL

Default 300

Description This parameter controls how long MSM will wait for child processed to complete (all xCAT com-
mands are run in child processes). After TIMEOUT seconds, if a child has not returned it will be
killed, and an error reported for the operation.

_NodeRange

Format Any valid noderange (see the xCAT noderange man page).

Default All

Description When MSM queries xCAT this is the noderange it will use. At sites where xCAT manages other
hardware that Moab is not intended to control, it is important to change this.

Moab Workload Manager

_CQxCATSessions

Format Positive integer > 1

Default 10

Description MSM will divide the node list generated by nodels into this many groups and simultaneously
query xCAT for each group. The value may need tuning for large installations, higher values will
cause the time to complete a single cluster query to go down, but cause a higher load on the xCAT
headnode.

_DORVitals

Format 0 or 1

Default 0

Description When set to 1, MSM will poll rvitals power and led status (see the xCAT rvitals man page). This
only works with IBM BMCs currently. In order to use this, xCAT should respond without error to
the rvitals <noderange> watts and rvitals <noderange> leds commands. Status is reported as
GMETRTIC[watts] and GMETRIC[leds]. See also the _PowerString on page 1068 configuration para-
meter.

_PowerString

Format single quote delimited string

Default 'AC Avg Power'

Description Only meaningful when used with _DORVitals on page 1068=1. Some BMCs return multiple
responses to the rvitals command, or use slightly different text to describe the power metrics. Use
this parameter to control what is reported to Moab. You can use '$MSMLIBDIR/con-
trib/xcat/dump.xcat.cmd.pl rvitals <node_name> power' and examine the output to determ-
ine what the appropriate value of this string is.

_DoNodeStat

Format 0 or 1

Default 1

Moab Workload Manager

1068 Appendices

Appendices 1069

_DoNodeStat

Description If set to 0, MSM will not call nodestat to generated a substate. This can be used to speed up the
time it takes to query xCAT, and you do not need the substate visible to Moab.

_DoxCATStats

Format 0 or 1

Default 0

Description If Set to 1, MSM will track performance statistics about calls to xCAT, and the performance of
higher level operations. The information is available via the script $MSMHOMEDIR/con-
trib/xcat/xcatstats.pl. This parameter is useful for tuning the POLLINTERVAL and _
CQxCATSessions on page 1068 configuration parameters.

_LockDir

Format Existing path on MSM host

Default $MSMHOMEDIR/lck

Description This is a path to where MSM maintains lock files to control concurrency with some Xen and KVM
operations.

_HVxCATPasswdKey

Format key value in the xCAT passwd table

Default vmware

Description This is where MSM gets the user/password to communicate with ESX hypervisors.

_FeatureGroups

Format Comma delimited string of xCAT group names.

Default ---

Moab Workload Manager

_FeatureGroups

Description MSM builds the OSLIST for a node as the intersection of _FEATUREGROUPS, features specified in
x_msm for that image, and the nodes group membership. The value 'torque' is special, and indic-
ates that the image uses TORQUE, and the node should be added/removed from TORQUE during
provisioning when used in conjunction with the _ModifyTORQUE on page 1074 parameter.

_DefaultVMCProc

Format 1-?

Default 1

Description If not explicitly specified in the create request, MSM will create VMs with this many processors.

_DefaultVMDisk

Format Positive integer values, minimum is determined by your vm image needs

Default 4096

Description If not explicitly specified in the create request, MSM will create VMs with this much disk allocated.

_DefaultVMCMemory

Format Positive integer values, minimum is determined by your vm image needs

Default 512

Description If not specified, MSM will create VMs with this much memory allocated.

_KVMStoragePath

Format Existing path on MSM host

Default /vms

Description File backed disk location for stateful KVM VMS will be placed here.

Moab Workload Manager

1070 Appendices

Appendices 1071

_ESXStore

Format Mountable NFS Path

Default ---

Description Location of ESX stores.

_ESXCFGPath

Format Mountable NFS Path

Default ESXStore

Description Location of ESX VM configuration files.

_VMInterfaces

Format Name of bridge device in your VM image

Default br0

Description Bridge device name passed to libvirt for network configuration of VMs (overrides _
XENHOSTINTERFACES and _KVMHOSTINTERFACES if specified).

_XenHostInterfaces

Format Name of bridge device in your VM image

Default xenbr0

Description Bridge device name passed to libvirt for network configuration of Xen VMs.

_KVMHostInterfaces

Format Name of bridge device in your VM image

Default br0

Moab Workload Manager

_KVMHostInterfaces

Description Bridge device name passed to libvirt for network configration of KVM VMs.

_VMSovereign

Format 0 or 1

Default 0

Description Setting this attribute will cause Moab to reserve VMs' memory and procs on the hypervisor and
treat the VM as the workload — additional workload cannot be scheduled on the VM.

_UseStates

Format Valid xCAT chain.currstate values (see the xCAT chain man page)

Default boot,netboot,install

Description Nodes that do not have one of these values in the xCAT chain.currstate field will reported
with STATE=Updating. Use this configuration parameter to prevent Moab from scheduling nodes
that are updating firmware, etc.

_ImagesTabName

Format Existing xCAT table that contains your image definitions.

Default x_msm

Description This table specifies the images that may be presented to Moab in a node's OSLIST. The xCAT
schema for this table is defined in $MSMHOMEDIR/contrib/xcat/MSM.pm, which needs to be
copied to the $XCATROOT/lib/perl/xCAT_schema directory.

_VerifyRPower

Format 0 or 1

Default 0

Moab Workload Manager

1072 Appendices

Appendices 1073

_VerifyRPower

Description If set, MSM will attempt to confirm that rpower requests were successful by polling the power
state with rpower stat until the node reports the expected state, or _RPowerTimeOut on page
1073 is reached.
NOTE: This can create significant load on the xCAT headnode.

_RPowerTimeOut

Format Positive integer values

Default 60

Description Only meaningful when used with _VerifyRPower on page 1072. If nodes do not report the expec-
ted power state in this amount of time, a GEVENT will be produced on the node (or system job).

_QueueRPower

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to aggregate rpower requests to xCAT into batches. The
timing and size of these batches is controlled with the _RPowerQueueAge on page 1073 and _
RPowerQueueSize on page 1074 parameters.
NOTE: This can significantly reduce load on the xCAT headnode, but will cause the power
commands to take longer, and MSM shutdown to take longer.

_RPowerQueueAge

Format Positive integer values

Default 30

Description Only meaningful when used with _QueueRPower on page 1073. MSM will send any pending
rpower requests when the oldest request in the queue exceeds this value (seconds).

Moab Workload Manager

_RPowerQueueSize

Format Positive integer values

Default 200

Description Only meaningful when used with _QueueRPower on page 1073. MSM will send any pending
rpower requests when the queue depth exceeds this value.

_MaskOSWhenOff

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report OS=None for nodes that are powered off. This
may be useful when mixing stateless and stateful images, forcing Moab to request provisioning
instead of just powering on a node.

_ModifyTORQUE

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to add and removes nodes and VMs from TORQUE as
required by provisioning. See the _FeatureGroups on page 1069 parameter as well.

_ReportNETADDR

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report NETADDR=<hosts.ip from xCAT>.

_UseOpIDs

Format 0 or 1

Moab Workload Manager

1074 Appendices

Appendices 1075

_UseOpIDs

Default 0

Description When set, this parameter will cause errors to be reported as GEVENTs on the provided system job,
instead of a node (Moab 5.4 only, with appropriate Moab CFG)

_VMIPRange

Format Comma separated list of dynamic ranges for VM (ex '10.10.23.100-200,10.10.24.1-255')

Default ---

Description Use this parameter to specify a pool of IPs that MSM should assign to VMs at creation time. IPs are
selected sequentially from this list as available. Omit this configuration parameter if an external
service is managing IP assignment, or if they are all previously statically assigned.

_xCATHost

Format <xcat_headnode>:<xcatd_port>

Default localhost:3001

Description Use to configure MSM to communicate with xCAT on another host.

_NoRollbackOnError

Format 0 or 1

Default 0

Description When an error occurs and rollback is activated (as it is by default), rollback causes a reversion to
the previous successful request. _NoRollbackOnError is useful for debugging to determine the
xCAT state if no rollback occurred. If set to 1 and an error occurs between MSM and xCAT when
creating a node, assigning a name (DNS) to a node, or assigning an IP address (DHCP) to a node,
then no rollback occurs.

Moab Workload Manager

Event Dictionary

See "Logging Overview" for more information about Moab logging.

Moab Event Dictionary

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
0005

USER sys-
tem.-
moab

INFO MWM_TESTING_
INFO

Testing with argu-
ment1: %s. and argu-
ment2: %s and
argument3: %s and
argument4: %s

Internal error for
testing diagnostics.

0x100-
0065

USER domain.li-
fecycle

INFO MWM_JOB_
CANCEL

Job %s was canceled.
%s

The job was canceled.

0x100-
0066

USER domain.li-
fecycle

INFO MWM_JOB_END_
SUCCESSFUL

Job %s finished suc-
cessfully. %s

The job finished suc-
cessfully.

0x100-
0068

USER domain.li-
fecycle

INFO MWM_JOB_
USER_HOLD

Job %s had a user
hold applied.

A user hold was
applied to the job.

0x100-
0069

USER domain.li-
fecycle

INFO MWM_JOB_
SYSTEM_HOLD

Job %s had a system
hold applied.

A system hold was
applied to the job.

0x100-
006a

USER domain.li-
fecycle

INFO MWM_JOB_
BATCH_HOLD

Job %s had a batch
hold applied.

A batch hold was
applied to the job.

0x100-
006b

USER domain.li-
fecycle

INFO MWM_JOB_
DEFER_HOLD

Job %s had a defer
hold applied.

A defer hold was
applied to the job.

0x100-
006c

USER domain.li-
fecycle

INFO MWM_JOB_
MODIFY

Job %s was modified.
%s

One of the attributes
of the job was mod-
ified either via a user
initiated action or an
automated action.

0x100-
006d

USER domain.li-
fecycle

INFO MWM_JOB_
REJECT

Job %s was rejected.
%s

The job was rejected
for some reason.

Moab Workload Manager

1076 Appendices

http://docs.adaptivecomputing.com/mwm/help.htm#topics/troubleshooting/logging.html

Appendices 1077

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
006e

USER domain.li-
fecycle

INFO MWM_JOB_
RELEASE

Job %s was released. Any holds placed on
the job have been
released, and the job
is not prevented
from running due to
any hold action. The
job may still not be
able to run due to
other considerations.

0x100-
006f

USER domain.li-
fecycle

INFO MWM_JOB_
START

Job %s was started.
%s

The job was started
on its designated
node[s].

0x100-
0070

USER domain.li-
fecycle

INFO MWM_JOB_
SUBMIT

Job %s was sub-
mitted. %s

The job has been sub-
mitted to Moab and
is being evaluated
and processed.

0x100-
0071

USER domain.li-
fecycle

INFO MWM_JOB_
CREATED

Job %s was created. The job has been cre-
ated and will be
queued for exe-
cution.

0x100-
0072

USER domain.li-
fecycle

INFO MWM_JOB_
REQUEUE

Job %s was
requeued. %s

The job has been
requeued so it can be
executed again.

0x100-
0073

USER domain.li-
fecycle

INFO MWM_JOB_
CANCEL_
CLEANUP_
STARTED

Job %s is being
cleaned up due to
cancel request.

The job has been
issued a cancel
request and is being
cleaned up.

0x100-
0074

USER domain.li-
fecycle

INFO MWM_JOB_
CLEANUP_
STARTED

Job %s is being
cleaned up.

The job has ended
and is being cleaned
up.

0x100-
0075

USER domain.li-
fecycle

INFO MWM_JOB_
DEFERRED

Job %s has been
deferred.

The job has been
deferred.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
00c9

USER domain.li-
fecycle

INFO MWM_NODE_
EVAC_VMS

Evacuating VMs off
node %s.

Evacuating VMs off
the node.

0x100-
012c

USER domain.li-
fecycle

INFO MWM_RSV_
CREATE

Reservation %s was
created. %s

The reservation has
been created and is
stored in the system.

0x100-
012d

USER domain.li-
fecycle

INFO MWM_RSV_
START

Reservation %s has
started.

The reservation has
started.

0x100-
012e

USER domain.li-
fecycle

INFO MWM_RSV_END Reservation %s has
ended.

The reservation has
ended.

0x100-
0190

USER sys-
tem.-
moab

INFO MWM_SCHED_
COMMAND

The following sched-
uler command was
submitted: %s

External commands
are submitted to
Moab in a variety of
ways. This event doc-
uments the com-
mand line and
possibly other inform-
ation associated with
the command. These
commands typically
have the ability to
change beha-
vior/state within
Moab. Commands
that are typically
queries are not
included.

0x100-
0192

USER sys-
tem.-
moab

INFO MWM_SCHED_
CYCLE_START

A scheduler iteration
is beginning. %s

Moab periodically
checks through sub-
mitted jobs and
makes decisions
regarding which jobs
are scheduled. One of
these iterations is
beginning now.

Moab Workload Manager

1078 Appendices

Appendices 1079

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
0193

USER sys-
tem.-
moab

INFO MWM_SCHED_
CYCLE_END

A scheduler iteration
is ending.

Moab periodically
checks through sub-
mitted jobs and
makes decisions
regarding which jobs
are scheduled. One of
these iterations is
ending now.

0x100-
0194

USER sys-
tem.-
moab

INFO MWM_SCHED_
PAUSE

The scheduler has
been paused. %s

The Moab scheduler
has been admin-
istratively paused.
New jobs may be sub-
mitted and existing
jobs will continue to
run, but no new jobs
will be scheduled as
long as Moab is
paused.

0x100-
0195

USER sys-
tem.-
moab

INFO MWM_SCHED_
RECYCLE

The scheduler has
been recycled. %s

The Moab scheduler
has been admin-
istratively recycled.
The process will
cleanly exit and save
the state data. It will
then restart, read in
the data, and resume
scheduling.

0x100-
0196

USER sys-
tem.-
moab

INFO MWM_SCHED_
RESUME

The scheduler has
been resumed.

The Moab scheduler
has been admin-
istratively resumed. A
new scheduling iter-
ation will begin imme-
diately and continue
regularly.

0x100-
0197

USER sys-
tem.-
moab

INFO MWM_SCHED_
START

The scheduler has
started.

The Moab scheduler
has started.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
0198

USER sys-
tem.-
moab

INFO MWM_SCHED_
STOP

The scheduler has
stopped. %s

The Moab scheduler
has stopped.

0x100-
01f4

USER domain.li-
fecycle

INFO MWM_TRIG_
CREATE

Trigger %s has been
created.

The named trigger
has been created and
is now recognized in
the Moab system.

0x100-
01f5

USER domain.li-
fecycle

INFO MWM_TRIG_
START

Trigger %s has star-
ted.

The named trigger
has started its action.

0x100-
01f6

USER domain.li-
fecycle

INFO MWM_TRIG_END Trigger %s has
ended. %s

The named trigger
has finished its
action.

0x100-
01f8

USER domain.li-
fecycle

INFO MWM_TRIG_
THRESHOLD

Trigger %s threshold
event: %s

A trigger threshold
has been
encountered. Addi-
tional details regard-
ing the threshold
may be included in
the text.

0x100-
0258

USER domain.li-
fecycle

INFO MWM_VM_
SUBMIT

VM %s has been sub-
mitted.

The named VM has
been submitted and
is now recognized in
the Moab system.

0x100-
0259

USER domain.li-
fecycle

INFO MWM_VM_
DESTROY

VM %s has been ter-
minated.

The named VM has
finished its lifecycle
and is now removed
and added to the
completed table.

0x100-
025a

USER domain.li-
fecycle

INFO MWM_VM_
CANCEL

VM %s has been can-
celed.

The named VM has
been canceled.

Moab Workload Manager

1080 Appendices

Appendices 1081

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
025b

USER domain.li-
fecycle

INFO MWM_VM_END VM %s has been
ended.

The named VM has
been canceled
because it has
exceeded its alloc-
ated walltime.

0x100-
025c

USER domain.li-
fecycle

INFO MWM_VM_
MIGRATE_START

VM %s migration has
started. (%s)

The named VM has
started its migration.
Additional inform-
ation may be
provided regarding
source and des-
tination nodes.

0x100-
025d

USER domain.li-
fecycle

INFO MWM_VM_
MIGRATE_END

VM %s migration has
finished. (%s)

The named VM has
finished its migration.
Additional inform-
ation may be
provided regarding
source and des-
tination nodes.

0x100-
025f

USER domain.li-
fecycle

INFO MWM_VM_
MANUAL_
MIGRATE_START

VM %s migration
started manually.
(%s)

The named VM
migration has been
started manually.
Additional inform-
ation may be
provided regarding
source and des-
tination nodes.

0x100-
0260

USER domain.li-
fecycle

INFO MWM_VM_
READY

VM %s is ready. The named VM is
ready. It has been
linked to an internal
tracking job.

0x100-
2711

USER sys-
tem.-
moab

INFO MWM_
PARAMETER_
SET_TO_VALUE_
INFO

Parameter '%s' is set
to '%s'.

A parameter was set
to a specified value.
This is usually accom-
plished via a con-
figuration file.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2741

USER sys-
tem.-
moab

INFO MWM_SOCKET_
EXCEPTION

Exception detected
in select for socket
%s.

The select() system
call indicated an
exception for this
socket.

0x100-
2742

USER sys-
tem.-
moab

INFO MWM_SOCKET_
EXCEPTION_
REASON

Exception identified
as '%s' in select for
socket %s.

The select() system
call indicated an
exception for this
socket. It has been
identified with an
error id by get-
sockopt().

0x100-
2748

USER sys-
tem.-
moab

INFO MWM_MOAB_
STARTED_ON_
CORRECT_HOST

Server started on
host '%s' %s.

Moab is started on
either the primary or
fallback server.

0x100-
2762

USER sys-
tem.-
moab

INFO MWM_CONFIG_
LINE_
SUCCESSFUL

Configuration line
'%s' successfully pro-
cessed.

The line in the con-
figuration file was
processed without
error.

0x100-
2935

USER sys-
tem.-
moab

INFO MWM_ACTIVE_
JOB_REMOVED_
FROM_QUEUE

Active %s job %s has
been removed from
the queue, default to
successful com-
pletion.

The job was removed
from the indicated
resource manager
while it was still act-
ive. By default it is
assumed to complete
successfully unless
more information is
available (i.e.
ENABLEFAILUREFOR-
PURGEDJOB).

Moab Workload Manager

1082 Appendices

Appendices 1083

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2936

USER sys-
tem.-
moab

INFO MWM_
INACTIVE_JOB_
REMOVED_
FROM_QUEUE

Inactive %s job %s
has been removed
from the queue,
default to status 'can-
celed'.

The job was removed
from the indicated
resource manager
while it was still act-
ive. By default it is
given status 'can-
celed' unless more
information is avail-
able (i.e.
ENABLEFAILUREFOR-
PURGEDJOB).

0x100-
2937

USER sys-
tem.-
moab

INFO MWM_RM_
DOWN_
SKIPPING_
WORK

RM %s state is %s,
skipping %s.

The specified
resource manager is
not in a good state.
Certain actions might
be skipped while it is
in this state.

0x100-
296a

USER sys-
tem.-
moab

INFO MWM_CANNOT_
RESUME_JOB

Cannot resume job
'%s' (%s).

Check the PBS server
log to see reason for
failure.

0x100-
296b

USER sys-
tem.-
moab

INFO MWM_CANNOT_
LOCATE_
RESOURCE

Cannot locate %s
'%s'.

Unable to find the
resource specified.

0x100-
296c

USER sys-
tem.-
moab

INFO MWM_CANNOT_
SET_JOB_CLASS

Cannot set class on
job '%s' to '%s' (%s).

The job could not be
modified.

0x100-
296d

USER sys-
tem.-
moab

INFO MWM_NATIVE_
ACTION_
MISSING

%s action not spe-
cified for native inter-
face. %s.

The native interface
allows custom actions
to be specified. No
value was specified
for this action.

0x100-
296e

USER sys-
tem.-
moab

INFO MWM_
COMMAND_
SENT

Command sent to
server.

A command was sent.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
296f

USER sys-
tem.-
moab

INFO MWM_JOB_
MAXPREMPT

JOBMAXPREEMPTPE-
RITERATION
reached: %s of %s.

The maximum value
was reached.

0x100-
2970

USER sys-
tem.-
moab

INFO MWM_JOB_
CHANGED_
STATES

Job '%s' changed
states from '%s' to
'%s'.

The state changed.

0x100-
2971

USER sys-
tem.-
moab

INFO MWM_JOB_
RELEASING_
RESERVATION

Job '%s' was
requeued/rejected.
Releasing reser-
vation.

The job no longer
holds the reservation.

0x100-
2972

USER sys-
tem.-
moab

INFO MWM_NODE_
CHANGED_
STATES

Node '%s' changed
states from '%s' to
'%s'.

The node state
changed.

0x100-
2973

USER sys-
tem.-
moab

INFO MWM_JOB_
ACTION_
SUCCESSFUL

Job '%s' successfully
%s.

The job action com-
pleted.

0x100-
2974

USER sys-
tem.-
moab

INFO MWM_ALLOC_
TEMP_MEMORY

Cannot allocate temp
memory for %s com-
pleted jobs.

The system may be
low on memory.

0x100-
2975

USER sys-
tem.-
moab

INFO MWM_ACTION_
LAUNCHED

Action '%s' launched
with message '%s'.

Scheduler action is
about to be executed.

0x100-
2976

USER sys-
tem.-
moab

INFO MWM_JOB_
ADJUSTMENT

Adjusting allocated
%s to %s for job
'%s'.

The value is being
changed.

0x100-
2977

USER sys-
tem.-
moab

INFO MWM_ALL_JOBS_
LOADED

All jobs loaded. The jobs have been
loaded.

0x100-
2978

USER sys-
tem.-
moab

INFO MWM_ALL_
NODES_LOADED

All located non-nat-
ive nodes loaded
(%s).

The nodes have been
loaded.

Moab Workload Manager

1084 Appendices

Appendices 1085

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2979

USER sys-
tem.-
moab

INFO MWM_
BACKFILL_
POLICY_
DISABLED

Backfill policy dis-
abled.

The policy was dis-
abled.

0x100-
297a

USER sys-
tem.-
moab

INFO MWM_JOB_LOAD Cannot load job '%s'. The job failed to load.

0x100-
297b

USER sys-
tem.-
moab

INFO MWM_CANNOT_
CREATE_RSV

Cannot create reser-
vation.

The request to create
the given reservation
has failed.

0x100-
297c

USER sys-
tem.-
moab

INFO MWM_MODIFY_
PARTITION

Cannot modify par-
tition of running job
'%s'.

Must wait until job
completes.

0x100-
297f

USER sys-
tem.-
moab

INFO MWM_CANNOT_
CREATE_RSV_IN_
PARTITION

Cannot create reser-
vation for job '%s' in
partition '%s'.

Job cannot be run on
requested partition.

0x100-
2982

USER sys-
tem.-
moab

INFO MWM_CLUSTER_
QUERY_
GETDATA

Cluster query get-
data failed for native
interface.

The resource man-
ager may be down or
unresponsive.

0x100-
2a0b

USER sys-
tem.-
moab

INFO MWM_SENDING_
CLIENT_
COMMAND

Sending %s com-
mand: '%s'.

The specified com-
mand is being sent to
the server.

0x100-
2a0e

USER sys-
tem.-
moab

INFO MWM_SCHED_
SHUTDOWN_
REQUEST

The scheduler has
received a user shut-
down request.

The Moab scheduler
has received a
request to shut
down. It will be pro-
cessed as soon as pos-
sible.

0x100-
2a0f

USER sys-
tem.-
moab

INFO MWM_SCHED_
RECYCLE_
REQUEST

The scheduler has
received a user
recycle request.

The Moab scheduler
has received a
request to recycle. It
will be processed as
soon as possible.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2a10

USER sys-
tem.-
moab

INFO MWM_SCHED_
PAUSE_
DESCRIPTION

Scheduling will be
disabled, cluster
information will con-
tinue to be updated.

This is a description
of what happens
when the scheduler
is paused.

0x100-
2a11

USER sys-
tem.-
moab

INFO MWM_SCHED_
STOP_
TIMESTAMP

Scheduling will stop
in %s at iteration %s.

This provides a log
message of when the
scheduler will stop.

0x100-
2a12

USER sys-
tem.-
moab

INFO MWM_SCHED_
RESUME_
TIMESTAMP

Scheduling will
resume in %s
seconds.

This provides a log
message of when the
scheduler will
resume.

0x100-
2a13

USER sys-
tem.-
moab

INFO MWM_SCHED_
RESTART_TIME_
REACHED

Scheduler restart
time reached (sched-
uler will restart).

The configured
restart time was
reached.
(RESTARTINTERVAL
or
MEMREFRESHINTER-
VAL.

0x100-
2a14

USER sys-
tem.-
moab

INFO MWM_SCHED_
COMPLETE_
SCHEDULING

Scheduling complete.
Sleeping for %s
seconds.

The scheduling por-
tion of the iteration is
complete. Additional
jobs will not be sched-
uled until the next
iteration.

0x100-
2a17

USER sys-
tem.-
moab

INFO MWM_ABOUT_
TO_EXEC

About to exec() '%s'. The process is about
to be executed.

0x100-
2a18

USER sys-
tem.-
moab

INFO MWM_JOB_
ARRAY_CANCEL_
POLICY

Sub-job %s exit code
%s canceled job
array %s with policy
%s.

A job within an array
job finished and,
depending on its exit
code and the policy
in place, the entire
array job might can-
cel.

Moab Workload Manager

1086 Appendices

Appendices 1087

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2a19

USER sys-
tem.-
moab

INFO MWM_
RESERVATION_
COMPLETION_
DELAYED

Reservation com-
pletion for job '%s'
delayed from %s to
%s.

The reservation end
time is later than ini-
tially expected for
this job.

0x100-
2a1b

USER sys-
tem.-
moab

INFO MWM_VM_
ORPHANED

VM '%s' successfully
orphaned.

The VM has been sep-
arated from its track-
ing job.

0x100-
2a1c

USER sys-
tem.-
moab

INFO MWM_VM_
REPORTED_
DESTROYED

VM '%s' reported
destroyed via RM -
removing VM.

The VM is no longer
available from the
resource manager, so
it is being removed
from the scheduler.

0x100-
2a1d

USER sys-
tem.-
moab

INFO MWM_VM_
STALE_REPORT

VM '%s' has not
been reported in %s
seconds.

The VM is no longer
being reported from
the resource man-
ager. No action is cur-
rently being taken.

0x100-
2a1e

USER sys-
tem.-
moab

INFO MWM_WIKI_
KEYWORD_NOT_
HANDLED

Wiki keyword '%s'
(%s) not handled.

The keyword was not
recognized, so it will
be ignored.

0x100-
2a20

USER sys-
tem.-
moab

INFO MWM_ROLLING_
LOGFILE

Rolling logfile '%s' to
'%s'.

The old logfile will be
closed and logging
will resume in the
new file.

0x100-
2a23

USER sys-
tem.-
moab

INFO MWM_NODE_
LOCATED

Nodes located for job
%s: %s of %s
required (%s feas-
ible).

List of nodes located
for a specific job.

0x100-
2a2d

USER sys-
tem.-
moab

INFO MWM_JOB_PAL_
SET

Partition access list
set to value: %s.

The partition access
list (PAL) is set.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2a2e

USER sys-
tem.-
moab

INFO MWM_JOB_
PREEMPTED_
BY_JOB

Job %s preempted
job %s - added idle
resources (T: %s; N:
%s; P: %s)/re-
maining (T: %s; N:
%s; P: %s).

Job was preempted
by another job.

0x100-
2a2f

USER sys-
tem.-
moab

INFO MWM_JOB_CAN_
START_
WITHOUT_
PREMEPTION

Job %s would start
in %s without pree-
mption (PC: %s).

Job can start without
preemption.

0x100-
2a32

USER sys-
tem.-
moab

INFO MWM_
PARTITON_
RESOURCES

Partition %s nodes/-
procs available
%s/%s (%s jobs
examined).

General parition
information.

0x100-
2a33

USER sys-
tem.-
moab

INFO MWM_RSV_
OPERATION

Performing '%s'
operation on reser-
vation expression
'%s' (%s matches).

This is operation is
caused by a mrsvctl
command.

0x100-
2a34

USER sys-
tem.-
moab

INFO MWM_
PREEMPTING_
JOBS

Preempting jobs to
allow job %s to start
- required resources
T: %s; N: %s; P: %s.

Preempting jobs.

0x100-
2a35

USER sys-
tem.-
moab

INFO MWM_
MOABTRACKSU-
SPEND

Preempt usage track-
ing enabled (env).

Environment vari-
able
MOABTRACKSUSPEN-
D set.

0x100-
2a36

USER sys-
tem.-
moab

INFO MWM_JOB_MAX_
PREEMPTEE_
LIMIT

Single job max pree-
mptee limit (%s)
reached.

Max requirements
exceeded on job.

0x100-
2a37

USER sys-
tem.-
moab

INFO MWM_QUEUES_
DETECTED

Queues detected:
%s.

Resource manager
found queues on
cluster query update.

Moab Workload Manager

1088 Appendices

Appendices 1089

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2a38

USER sys-
tem.-
moab

INFO MWM_JOB_
START_TIME_
CHANGED

Start time changed
from %s to %s on
job %s.

The job's start time
was changed via the
resource manager.

0x100-
2a39

USER sys-
tem.-
moab

INFO MWM_STORING_
CHECKPOINT_
INFO

Storing object to
checkpoint.

The object's state is
being checkpointed.

0x100-
2a3a

USER sys-
tem.-
moab

INFO MWM_PBS_
DATA_UP_TO_
DATE

PBS raw data
already up to date.

The resource man-
ager is already
updated.

0x100-
2a3b

USER sys-
tem.-
moab

INFO MWM_PBS_
DATA_UPDATED

PBS data updated
for iteration %s.

The resource man-
ager is now updated.

0x100-
2a3c

USER sys-
tem.-
moab

INFO MWM_
STARTED_
MESSAGE_
QUEUE

Started message
queue thread.

The message queue
is now operational.

0x100-
2a3d

USER sys-
tem.-
moab

INFO MWM_JOBS_
SELECTED_IN_
PARTITION

Total jobs selected in
partition %s: %s/%s.

Identifies the selec-
ted jobs in a par-
tition.

0x100-
2a3e

USER sys-
tem.-
moab

INFO MWM_TASKS_
LOCATED_FOR_
JOB

Tasks located for job
%s: %s of %s
required (%s feas-
ible).

Identifies the tasks
available for a job.

0x100-
2a3f

USER sys-
tem.-
moab

INFO MWM_CLIENT_
REQUEST

Client requesting
command '%s'.

Client requested com-
mand.

0x100-
2a40

USER sys-
tem.-
moab

INFO MWM_
REQUEST_TO_
CANCEL_JOB

Request to cancel job
'%s' sent, but could
not confirm can-
celation (pending
response).

Client did not get a
confirmation as
expected.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
2a41

USER sys-
tem.-
moab

INFO MWM_
RESERVATION_
NOT_ALLOWED_
FOR_JOB

Reservation not
allowed for job %s in
%s.

Reservation not
allowed in specified
condition.

0x100-
2a42

USER sys-
tem.-
moab

INFO MWM_
RESERVED_JOB_
STARTED

Reserved job '%s'
started.

Reserved job started.

0x100-
2a43

USER sys-
tem.-
moab

INFO MWM_
RESOURCES_
AVAILABLE_
AFTER_
SCHEDULING

Resources available
after scheduling: N:
%s P: %s.

Resources available
after scheduling.

0x100-
2a44

USER sys-
tem.-
moab

INFO MWM_
RESTORING_
DEFERRED_JOB

Restoring job '%s'
from deferred state.

Restoring job from
deffered state.

0x100-
2a45

USER sys-
tem.-
moab

INFO MWM_RM_
DUPLICATE_
QUERY

RM %s already has a
pending query - skip-
ping get data query.

Duplicate queries
may not be per-
formed sim-
ultaneously.

0x100-
2a46

USER sys-
tem.-
moab

INFO MWM_RM_
PEER_
COMMAND

Sending peer server
command to %s:%s
(Cmd: %s,
Requestor: %s, Key:
%s...).

A command has been
sent to a peer Moab
grid server.

0x100-
2a47

USER sys-
tem.-
moab

INFO MWM_SET_
ATTRIBUTE_ON_
NODE

Setting %s on node
%s to %s.

A command has been
sent to a peer Moab
grid server.

0x100-
2a48

USER sys-
tem.-
moab

INFO MWM_SET_
ATTRIBUTE_ON_
JOB

Setting %s on job %s
to %s (%s).

A command has been
sent to a peer Moab
grid server.

Moab Workload Manager

1090 Appendices

Appendices 1091

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a73c

ADMI-
N

sys-
tem.-
moab

INFO MWM_CANNOT_
STAT_FILE_INFO

Cannot stat file '%s',
errno: %s (%s).

The stat() system call
failed. This is not
always significant as
it is sometimes used
to test the existence
of a file that may or
may not be there.
Use the errno and
associated message
to determine possible
causes.

0x100-
a743

ADMI-
N

sys-
tem.-
moab

INFO MWM_FAILED_
SELECT

Select for socket %s
failed, errno: %s
(%s).

The select() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x100-
a744

ADMI-
N

sys-
tem.-
moab

INFO MWM_SELECT_
TIMEOUT

Select for socket %s
timed out after %s
seconds with no
valid descriptors.

The select() system
call timed out. This
may or may not be
an error. Check MTU.

0x100-
a75d

ADMI-
N

sys-
tem.-
moab

INFO MWM_CONFIG_
VALUE_OUT_OF_
RANGE

Configuration para-
meter '%s' has an
invalid value '%s'.
Range is limited by
%s.

Check the line in the
configuration file for
the attribute.

0x100-
a76d

ADMI-
N

sys-
tem.-
moab

INFO MWM_
REMOVING_
OBJECT_FROM_
MONGO

Removing object '%s'
from Mongo DB '%s'.

The object is being
removed from the
database.

0x100-
a789

ADMI-
N

sys-
tem.-
moab

INFO MWM_UNABLE_
TO_ALLOCATE_
NODES_FOR_RSV

Cannot allocate
nodes for reser-
vation '%s'. (%s)

Cannot allocate a
node list that
matches the require-
ments for this reser-
vation. This may not
be serious since mul-
tiple passes may
occur.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a8ab

ADMI-
N

sys-
tem.-
moab

INFO MWM_VM_
EXCEED_TTL

VM '%s' has reached
TTL (%s). Must be
removed manually.

The given VM has
reached its time to
live.

0x100-
a8e1

ADMI-
N

sys-
tem.-
moab

INFO MWM_PLUGIN_
LOADED_
SUCCESS

Successfully loaded
NodeAllocation plu-
gin '%s' for partition
'%s'.

A NodeAllocation plu-
gin was loaded
without error.

0x100-
a95b

ADMI-
N

sys-
tem.-
moab

INFO MWM_RSV_FULL Full reservation '%s'
reserved %s procs in
partition '%s' to start
in %s at (%s).

The full reservation
has been reserved.

0x100-
a97d

ADMI-
N

sys-
tem.-
moab

INFO MWM_RSV_
PREREQ_JOB

Cannot create reser-
vation for pre-
requisite job '%s'.

Could not obtain a
reservation for this
job.

0x100-
a97e

ADMI-
N

sys-
tem.-
moab

INFO MWM_
ANNOTATE_JOB

Cannot annotate job
'%s' with message
'%s'.

Unable to modify the
job with the annota-
tion.

0x100-
a980

ADMI-
N

sys-
tem.-
moab

INFO MWM_UPDATE_
JOB

Cannot update job
'%s'.

The update on the
job from XML failed.

0x100-
a981

ADMI-
N

sys-
tem.-
moab

INFO MWM_REMAP_
CLASS

Cannot remap class
for RM job '%s' (%s).

Unable to modify the
job with the new
class.

0x100-
a983

ADMI-
N

sys-
tem.-
moab

INFO MWM_
COMPLETING_
JOB

Completing job '%s'. The job finished.

0x100-
a984

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOBS_
DETECTED

There were %s %s
jobs detected on RM
'%s'.

The resource man-
ager reported these
jobs.

Moab Workload Manager

1092 Appendices

Appendices 1093

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a985

ADMI-
N

sys-
tem.-
moab

INFO MWM_
SUSPEND_JOB

Cannot suspend job
'%s' (%s).

Check the PBS server
log to see reason of
failure.

0x100-
a986

ADMI-
N

sys-
tem.-
moab

INFO MWM_STALE_
PARTITION

Attempting to
remove stale par-
tition for completed
job '%s'.

About to perform the
stated operation.

0x100-
a987

ADMI-
N

sys-
tem.-
moab

INFO MWM_STALE_
PARTITION_
SUCCESS

Successfully
removed stale par-
tition for completed
job '%s'.

Successfully per-
formed the stated
operation.

0x100-
a988

ADMI-
N

sys-
tem.-
moab

INFO MWM_CANCEL_
NOQUEUE_JOB

Canceling No-queue
job '%s'.

About to perform the
stated operation.

0x100-
a989

ADMI-
N

sys-
tem.-
moab

INFO MWM_SIGNAL_
JOB

Cannot signal job
%s' (%s).

The resource man-
ager did not respond
to the signal request.

0x100-
a98a

ADMI-
N

sys-
tem.-
moab

INFO MWM_RSV_JOB_
CREDS

Cannot set up reser-
vation job cre-
dentials.

The user, account, or
group credentials
may not be valid.

0x100-
a98b

ADMI-
N

sys-
tem.-
moab

INFO MWM_CP_
CORRUPT_
NODE_LINE

Corrupt node line
detected (%s).

The line does not con-
tain the correct syn-
tax for a checkpoint.

0x100-
a98c

ADMI-
N

sys-
tem.-
moab

INFO MWM_
EVALUATING_
RSV

Evaluating reser-
vation '%s'.

About to perform the
stated operation.

0x100-
a98d

ADMI-
N

sys-
tem.-
moab

INFO MWM_
EXPIRING_
CHECKPOINT_
DATA

Expiring checkpoint
data for %s '%s'. Not
updated in %s.

The object's check-
point data has
expired.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a98e

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
PREVIOUSLY_
REMOVED

Job '%s' was pre-
viously removed.

The job has already
been removed.

0x100-
a98f

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
STARTED_BY_
USER

Job '%s' was started
by user '%s'.

The job started.

0x100-
a990

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_NOT_
STARTED_BY_
USER

Job '%s' could not be
started by user '%s'
(%s).

The job could not be
started.

0x100-
a991

ADMI-
N

sys-
tem.-
moab

INFO MWM_RM_JOB_
NOT_STARTED

Job '%s' could not be
started with %s RM
'%s' (%s).

The job could not be
started.

0x100-
a992

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
CANCELED_
EXTERNALLY

Job '%s' appears to
have been canceled
externally.

The job was canceled.

0x100-
a993

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
COMPLETED_
SINGLE_
ITERATION

Job '%s' appears to
have been started
and completed in a
single iteration.

The job completed.

0x100-
a994

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
PROCESSING_
COMPLETED

Job processing com-
pleted.

The jobs have been
processed.

0x100-
a995

ADMI-
N

sys-
tem.-
moab

INFO MWM_
PROCESSING_
JOB

Processing job '%s'
in state '%s'.

Processing a single
job.

0x100-
a996

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
SUSPENDED

Job '%s' suspended
through %s RM.

The resource man-
ager suspended the
job.

0x100-
a997

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
RESUMED

Job '%s' resumed
through %s RM.

The resource man-
ager resumed the
job.

Moab Workload Manager

1094 Appendices

Appendices 1095

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a998

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
FEASIBILITY_
CHECK_
DISABLED

Job feasibility check
disabled (env).

This feature has
been disabled.

0x100-
a999

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
USAGE_SENT

Job usage sent for
job '%s'.

The usage sent as
feedback to user.

0x100-
a99a

ADMI-
N

sys-
tem.-
moab

INFO MWM_LOADING_
JOBS

Loading %s job(s). The jobs are about to
be loaded.

0x100-
a99b

ADMI-
N

sys-
tem.-
moab

INFO MWM_LOADING_
NODE_RECORDS

Loading %s node
record(s).

The node records are
about to be loaded.

0x100-
a99c

ADMI-
N

sys-
tem.-
moab

INFO MWM_LOADED_
WORKLOAD_
BUFFER

Loaded %s workload
buffer (%s bytes),
processing jobs.

The workload buffer
was loaded.

0x100-
a99d

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
REJECTED_
INFINITE_
WALLTIME

Job '%s' rejected
(requested infinite
walltime).

Jobs must have a
walltime limit.

0x100-
a99e

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
REJECTED_
PARTITION

Job '%s' rejected in
partition %s
(exceeds maximum
task size: %s > %s).

Adjust
JOBMAXTASKCOUNT
in the configuration
file.

0x100-
a99f

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
ALREADY_
EXISTS

Job '%s' already
exists but is not a
duplicate.

The ID of the job
matched a completed
job.

0x100-
a9a0

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
ALREADY_
BATCH_HOLD

Job '%s' is already
on batch hold.

Trying to place a job
on hold that is
already in that state.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9a1

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
REQUESTS_RSV

Job '%s' requests
reservation '%s' (not
deferring).

The job is requesting
the reservation.

0x100-
a9a2

ADMI-
N

sys-
tem.-
moab

INFO MWM_RM_
CONNECTION_
FAILED

Connection to RM
'%s' failed. Not defer-
ring job '%s'
(Reason: %s).

Refer to the reason
message.

0x100-
a9a3

ADMI-
N

sys-
tem.-
moab

INFO MWM_DEFER_
DISABLED

Defer disabled. The job cannot be
deferred.

0x100-
a9a4

ADMI-
N

sys-
tem.-
moab

INFO MWM_MWS_
CLUSTER_
QUERY

Cluster query
retrieval failed for
MWS RM '%s'.

The resource man-
ager did not respond
to the request.

0x100-
a9a5

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
INVALID_
PARTITION

Job '%s' specifies an
invalid partition.

The job must ref-
erence a valid par-
tition.

0x100-
a9a6

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
INVALID_QOS

Cannot set QoS on
job '%s' to '%s' -
invalid QoS.

The job must use a
valid QoS.

0x100-
a9a7

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
INVALID_
ACCOUNT

Cannot set account
on job '%s' to '%s' -
invalid account (%s).

The job must use a
valid account.

0x100-
a9a8

ADMI-
N

sys-
tem.-
moab

INFO MWM_
CHECKING_
IDLE_JOB

Checking idle job
'%s' (priority: %s)
partition %s.

Checking the job.

0x100-
a9a9

ADMI-
N

sys-
tem.-
moab

INFO MWM_
CHECKING_
SUSPENDED_
JOB

Checking suspended
job '%s' (priority:
%s).

Checking the job.

Moab Workload Manager

1096 Appendices

Appendices 1097

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9aa

ADMI-
N

sys-
tem.-
moab

INFO MWM_
CHECKPOINT_
TEST_ENABLED

Checkpoint test
enabled (env).

The feature has been
enabled with an
environment vari-
able.

0x100-
a9ab

ADMI-
N

sys-
tem.-
moab

INFO MWM_ADD_
NODE_FAILED

Could not add node
because MNodeAdd
failed.

The node could not
be added to the
object.

0x100-
a9ac

ADMI-
N

sys-
tem.-
moab

INFO MWM_
ATTEMPTING_
RESERVATION

Attempting reser-
vation of %s procs in
%s for %s.

The scheduler will
try to make the reser-
vation.

0x100-
a9ad

ADMI-
N

sys-
tem.-
moab

INFO MWM_
FAIRSHARE_
INTERVAL

Fairshare rolled to
interval %s.

The interval has
changed.

0x100-
a9ae

ADMI-
N

sys-
tem.-
moab

INFO MWM_INVALID_
ARCHITECTURE

Invalid architecture. The architecture is
not a valid value.

0x100-
a9af

ADMI-
N

sys-
tem.-
moab

INFO MWM_INVALID_
PSEUDOJOB

Invalid pseudo-job. The pseudo-job is not
a valid value.

0x100-
a9b0

ADMI-
N

sys-
tem.-
moab

INFO MWM_HOLD_
TYPE

Hold type '%s' selec-
ted.

The given hold type
was specified.

0x100-
a9b1

ADMI-
N

sys-
tem.-
moab

INFO MWM_
MESSAGE_SENT

Message sent to
server.

The message was
sent.

0x100-
a9b2

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
LOCATED

Located job '%s' in
partition '%s'
reserved to start %s.

The specified job has
been located.

0x100-
a9b3

ADMI-
N

sys-
tem.-
moab

INFO MWM_TOTAL_
JOBS_DETECTED

Total jobs detected:
%s.

Number of counted
jobs returned from
the workload query.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9b4

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
WORKLOAD_
DETECTED

No workload repor-
ted by any RM.

No jobs were repor-
ted across all the
resource manager
queries.

0x100-
a9b5

ADMI-
N

sys-
tem.-
moab

INFO MWM_LOADING_
JOB

Loading job '%s' in
state '%s' (%s
bytes).

The job is being
loaded.

0x100-
a9b6

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
START_
REJECTED

Local constraints
rejected the starting
of job '%s'.

The job cannot start.

0x100-
a9b7

ADMI-
N

sys-
tem.-
moab

INFO MWM_INVALID_
STAT_TYPE

Invalid stat type '%s'
requested.

Not a valid value.

0x100-
a9b8

ADMI-
N

sys-
tem.-
moab

INFO MWM_ORPHAN_
PARTITION

Creating temporary
job to process
orphan partition
'%s' for job '%s'.

The job was not
found in active or
completed job tables.

0x100-
a9b9

ADMI-
N

sys-
tem.-
moab

INFO MWM_
DISABLING_
ACTION_
PROGRAM

Disabling action pro-
gram '%s'.

An invalid action pro-
gram was requested.

0x100-
a9ba

ADMI-
N

sys-
tem.-
moab

INFO MWM_
DISABLING_JOB_
FB_PROGRAM

Disabling job feed-
back program '%s'
(%s).

An invalid job feed-
back program was
requested. See doc-
umentation for
FEEDBACKPROGRAM.

0x100-
a9bb

ADMI-
N

sys-
tem.-
moab

INFO MWM_CP_
RESTART_
STATE_IGNORED

Checkpoint restart
state '%s' ignored.

The restart state spe-
cified is being
ignored.

0x100-
a9bc

ADMI-
N

sys-
tem.-
moab

INFO MWM_CP_
RESTART_
STATE_SUCCESS

Starting scheduler
with checkpoint
restart state '%s'.

The restart state spe-
cified is being used.

Moab Workload Manager

1098 Appendices

Appendices 1099

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9bd

ADMI-
N

sys-
tem.-
moab

INFO MWM_
DESTROYING_
NODE

Destroying node
'%s'.

The specified node is
being destroyed.

0x100-
a9be

ADMI-
N

sys-
tem.-
moab

INFO MWM_
IGNORING_
NODE

Ignoring node '%s'. The specified node is
being ignored.

0x100-
a9c0

ADMI-
N

sys-
tem.-
moab

INFO MWM_CANNOT_
ADJUST_JOB_
HOLDS

Cannot adjust holds
on remote peer for
job '%s' (%s).

Unable to modify the
job.

0x100-
a9c1

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
CANNOT_
CREATE_
RESERVATION

Cannot create reser-
vation for job '%s'
(previously reserved
to start in %s)).

Failed to create reser-
vation for job.

0x100-
a9c2

ADMI-
N

sys-
tem.-
moab

INFO MWM_TRIGGER_
LOAD_OUTPUT

Cannot load output
data for trigger '%s'
(File: %s).

The file may not exist
or may be inac-
cessible.

0x100-
a9c3

ADMI-
N

sys-
tem.-
moab

INFO MWM_PBS_
SERVER_
CONNECT

Connected to PBS
server %s:%s on sd
%s.

Connection estab-
lished.

0x100-
a9c4

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_JOB_
DATA

No job data was sent
by %s RM.

The data sent by the
resource manager
did not contain job
information.

0x100-
a9c5

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
RESUMED_
WITH_PROCS

Job '%s' resumed on
%s processors.

The resource man-
ager resumed the
job.

0x100-
a9c6

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
SIGNALED

Job %s' successfully
signaled (action: %s,
signal: %s).

The job responded to
the signal request.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9c7

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
CANCELED_RM

Job '%s' canceled
through %s RM.

The job was canceled.

0x100-
a9c8

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
ASSIGNED_
DEFAULT_
GROUP

Job '%s' assigned
default group '%s'.

The job was mod-
ified.

0x100-
a9c9

ADMI-
N

sys-
tem.-
moab

INFO MWM_FILE_
EXECUTE_
PERMISSION

File '%s' does not
have user execute
permission (st_mode
= %s).

The permissions
must be modified.

0x100-
a9ca

ADMI-
N

sys-
tem.-
moab

INFO MWM_
INSUFFICIENT_
PREEMPT_JOBS

Inadequate preempt
jobs (%s) located for
%s job (P: %s of %s,
N: %s of %s).

Not enough jobs
could be preempted.

0x100-
a9cb

ADMI-
N

sys-
tem.-
moab

INFO MWM_READ_
STAT_INDEX

Cannot read stat
index for location
%s:%s:%s.

The checkpoint did
not have the stat
information.

0x100-
a9cc

ADMI-
N

sys-
tem.-
moab

INFO MWM_
BACKFULL_JOB_
PREEMPT

Backfill job '%s' no
longer preemptible
(%s > %s) in par-
tition '%s'.

The job cannot be
preempted.

0x100-
a9cd

ADMI-
N

sys-
tem.-
moab

INFO MWM_
STARTTIME_
UNAVAILABLE

Cannot obtain
desired starttime
(%s != %s).

The job cannot be
adjusted to the given
start time.

0x100-
a9ce

ADMI-
N

sys-
tem.-
moab

INFO MWM_
STARTTIME_
ADJUSTED

Timeframe for reser-
vation %s adjusted
forward by %s
seconds.

The reservation has
been adjusted to the
given start time.

0x100-
a9cf

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RESERVATION_
ROLLBACK

Time: %s Roll-
backOffset: %s
RsvStartTime: %s
RsvDuration %s.

The reservation is
being considered for
rollback.

Moab Workload Manager

1100 Appendices

Appendices 1101

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9d0

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RESERVATION_
NOT_REQUIRED

Reservation '%s' not
required for spe-
cified period.

The reservation is
not required for this
time period.

0x100-
a9d1

ADMI-
N

sys-
tem.-
moab

INFO MWM_RM_
INTERFACE_
RECOVERED

The interface for RM
'%s' has been
recovered.

A previously corrupt
interface is now work-
ing.

0x100-
a9d2

ADMI-
N

sys-
tem.-
moab

INFO MWM_NTR_JOB_
FOUND

Found an NTR (next
to run) job - stop-
ping idle job schedul-
ing.

The job will now be
run.

0x100-
a9d3

ADMI-
N

sys-
tem.-
moab

INFO MWM_GRES_
KEYWORD_NO_
VALUE

GRes keyword '%s'
passed in with no
value.

A value must be spe-
cified.

0x100-
a9d4

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
EXTENSION_
STRING

Job '%s' has invalid
extension string -
'%s'.

The system is unable
to process the string.

0x100-
a9d5

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
PROCESS_
FAILURE

Job '%s' is invalid. It
cannot be processed
(%s).

There was an error
loading the job. It will
be rejected.

0x100-
a9d6

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
MODIFIED_RM

Job '%s' has been
modified through %s
RM.

The job was mod-
ified.

0x100-
a9d7

ADMI-
N

sys-
tem.-
moab

INFO MWM_IDLE_
BACKLOG_SIZE

Idle backlog: %s
seconds (%s hours).

The idle backlog
status is given.

0x100-
a9d8

ADMI-
N

sys-
tem.-
moab

INFO MWM_SET_
RESOURCES

Inadequate
resources found in
any set (%s < %s).

None of the node sets
have the resources
needed.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9d9

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
PREEMPTING_
JOB

Job %s preempting
job %s (statemtime:
%s) (preempted this
iteration: %s).

One job preempted
another.

0x100-
a9da

ADMI-
N

sys-
tem.-
moab

INFO MWM_UPDATE_
SCHEDULER_
STATS

Iteration: %s;
scheduling time: %s
seconds.

Normal statistics
update.

0x100-
a9db

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
STARTED_RM

Job '%s' started
through %s RM on
%s procs.

The job has started.

0x100-
a9dc

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
DELAY

Job delay: %s; reser-
vation retry time: %s
(StateDelayNC: %s;
JobRsvDelayNC: %s).

The job has been
delayed.

0x100-
a9dd

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
COMPLETED

Job '%s' completed.
X: %s; T: %s; PS: %s;
A: %s (RM: %s/%s).

The job completed.

0x100-
a9de

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
RESERVED_
TASKS

Job '%s' reserved %s
tasks (partition %s)
to start in %s on %s
(WC: %s).

The job has reserved
the tasks.

0x100-
a9df

ADMI-
N

sys-
tem.-
moab

INFO MWM_EVENT_
INTERFACE_
ENABLED

Event interface
enabled for wiki RM
%s on port %s.

The interface is now
functional.

0x100-
a9e0

ADMI-
N

sys-
tem.-
moab

INFO MWM_RM_
RESOURCES_
DETECTED

There were %s %s
resources detected
on RM '%s'.

The given resources
were found.

0x100-
a9e3

ADMI-
N

sys-
tem.-
moab

INFO MWM_
EXTENDING_
RESERVATION

Extending reser-
vation by %s
seconds (trigger still
active).

The reservation is
being extended.

Moab Workload Manager

1102 Appendices

Appendices 1103

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9e4

ADMI-
N

sys-
tem.-
moab

INFO MWM_
EXTENDING_
RESERVATION_
OVERRUN_JOB

Extending reser-
vation for overrun
job '%s' by %s
seconds.

The reservation is
being extended.

0x100-
a9e5

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
LOCATED_
BESTFIT

Located bestfit job
'%s' (size: %s; dur-
ation: %s).

Backfill found a job
that best fits the
available resources.

0x100-
a9e6

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
BEST_
PARTITION

The best partition
for job '%s' is '%s'.

Backfill found a job
that best fits the
available resources.

0x100-
a9e7

ADMI-
N

sys-
tem.-
moab

INFO MWM_CPA_
PARTITION_
DESTROY

Destroying CPA par-
tition' %s' for job
'%s' with cookie %s
(%s).

The partition is being
destroyed.

0x100-
a9e8

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RESOURCES_
LOCATED

Located resources
for %s tasks (%s) in
best partition '%s'
for job '%s' at time
offset %s.

The listed resources
have been located.

0x100-
a9e9

ADMI-
N

sys-
tem.-
moab

INFO MWM_
MINIMUM_
EFFICIENCY_
REACHED

Minimum efficiency
reached (%s per-
cent) on iteration
%s.

The threshold has
been reached.

0x100-
a9ea

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
START_
PARTITION

Cannot start job '%s'
in partition '%s'
(scheduler mode:
%s).

The job could not be
started.

0x100-
a9eb

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
FEASIBLE_
NODES

Inadequate feasible
nodes found for job
'%s':%s in partition
'%s' (%s < %s).

The job could not be
scheduled.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9ec

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
LOADED

Job '%s' loaded:
TC=%s UGC-
C=%s,%s,%s WC=%s
ST=%s %s %s.

The job was loaded.

0x100-
a9ed

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_RSV_
CREATE

Cannot create new
reservation for job
%s (shape[%s] %s).

Check the reser-
vation time, nodes,
and account.

0x100-
a9ee

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
LOCATE_NODES

Cannot locate nodes
for job '%s' req[%s]
(%s additional
needed).

Not enough nodes
are available to run
the job.

0x100-
a9ef

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
START_RM_
DISABLED

Cannot start job '%s'
since RM '%s' is dis-
abled.

Not enough nodes
are available to run
the job.

0x100-
a9f0

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
START_
RESERVE_TIME

Cannot start job '%s'
reserve time in %s.

The time to schedule
has already arrived.

0x100-
a9f1

ADMI-
N

sys-
tem.-
moab

INFO MWM_ERROR_
IN_EXE_STDERR

Error detected in
'%s' due to presence
of the word 'ERROR'
in stderr (%s).

The executable
failed.

0x100-
a9f2

ADMI-
N

sys-
tem.-
moab

INFO MWM_ERROR_
IN_STDERR

Error detected due
to presence of the
word 'ERROR' in
stderr.

The child process
failed.

0x100-
a9f3

ADMI-
N

sys-
tem.-
moab

INFO MWM_
CHECKJOB_
STATE

Job '%s' State: %s
Expected State: %s
QueueTime: %s.

The job is in the lis-
ted state. The expec-
ted state may not be
the same.

0x100-
a9f4

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
NODELIST

Cannot obtain nodel-
ist for job '%s':%s in
range %s.

The nodes are not
available.

Moab Workload Manager

1104 Appendices

Appendices 1105

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9f5

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
RESUME

Job '%s' cannot be
resumed since alloc-
ated nodes are not
available (node '%s'
state '%s').

The resource man-
ager resumed the
job.

0x100-
a9f6

ADMI-
N

sys-
tem.-
moab

INFO MWM_
CLEARING_
EXPIRED_
RESERVATION

Clearing expired %s
reservation '%s' on
iteration %s (start:
%s end: %s).

The reservation has
expired.

0x100-
a9f7

ADMI-
N

sys-
tem.-
moab

INFO MWM_CPA_
RETRY

CPA retry detected -
will re-attempt par-
tition creation in 2
seconds.

The partition may be
created.

0x100-
a9f9

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOBS_
STARTED

There were %s %s
jobs started in par-
tition '%s' on iter-
ation %s.

The jobs were star-
ted.

0x100-
a9fa

ADMI-
N

sys-
tem.-
moab

INFO MWM_TASKS_
ALLOCATED

There were %s of
%s tasks allocated
for job '%s':%s.

The tasks were alloc-
ated.

0x100-
a9fb

ADMI-
N

sys-
tem.-
moab

INFO MWM_CLASSES_
DETECTED

There were %s %s
classes/queues
detected on RM '%s'.

The classes were
detected.

0x100-
a9fd

ADMI-
N

sys-
tem.-
moab

INFO MWM_JOB_
DELAYED_RSV

Delayed reservation
detected for
reserved job '%s'
(%s seconds)
attempting squeeze.

Attempting to fit the
job into the reser-
vation.

0x100-
a9fe

ADMI-
N

sys-
tem.-
moab

INFO MWM_
DUMPING_
RESERVATIONS

Dumping reser-
vations on iteration
%s.

All the reservations
will be dumped to
the log.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
a9ff

ADMI-
N

sys-
tem.-
moab

INFO MWM_
ALLOCPARTITIO-
N_MISSING

ALLOCPARTITION
missing from com-
pleted job '%s' -
restoring variable
with value '%s'.

The value is being
substituted.

0x100-
aa00

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RECEIVED_
NODELIST

Received nodelist
through %s RM.

The nodelist was
received.

0x100-
aa01

ADMI-
N

sys-
tem.-
moab

INFO MWM_SERVICE_
REQUEST_
FROM_HOST

Received service
request from host
'%s'.

The request was
received.

0x100-
aa02

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RECEIVED_
WORKLOAD

Received workload
info through %s RM
'%s' (%s bytes).

The workload was
received.

0x100-
aa03

ADMI-
N

sys-
tem.-
moab

INFO MWM_RSV_
REMOVED_
FROM_CACHE

Removing reser-
vation '%s' from
cache.

The cached reser-
vation is being
removed.

0x100-
aa04

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RECOVER_READ_
SOCKET

RECOVER: attempt-
ing to read socket
connection.

The recovery func-
tion is attempting to
communicate via
sockets.

0x100-
aa05

ADMI-
N

sys-
tem.-
moab

INFO MWM_GREEDY_
BACKFILL

Improved list found
by greedy backfill in
%s searches (utility:
%s; processors avail-
able: %s).

The object is being
removed from the
database.

0x100-
aa06

ADMI-
N

sys-
tem.-
moab

INFO MWM_
RESERVATION_
NAME_AND_
GROUP

Name='%s'
RsvGroup='%s'.

The object is being
removed from the
database.

Moab Workload Manager

1106 Appendices

Appendices 1107

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
aa15

ADMI-
N

sys-
tem.-
moab

INFO MWM_
TRIGGERS_
DISABLED

Triggers disabled.
%s.

Triggers are disabled.
This message indic-
ates when this flag is
being set, and when
an action is being
skipped because the
flag is set.

0x100-
aa16

ADMI-
N

sys-
tem.-
moab

INFO MWM_USER_
NOT_
AUTHORIZED

User %s is not
authorized to %s.

This user does not
have permissions to
accomplish the listed
task.

0x100-
aa1f

ADMI-
N

sys-
tem.-
moab

INFO MWM_
SUCCESSFULLY_
OPENED_
SOCKET

Opened service
socket on port %s.

A socket was sucess-
fully opened listene-
ing on the remote
port.

0x100-
aa21

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
CHECKPOINT_
INFO

No checkpoint
information available
for '%s'.

Checkpoint inform-
ation was not avail-
able.

0x100-
aa22

ADMI-
N

sys-
tem.-
moab

INFO MWM_NODE_
INDEX_TABLE_
ENABLED

Node index table
enabled.

Enabled by envir-
onment variable:
MOABUSENODEINDE-
X.

0x100-
aa24

ADMI-
N

sys-
tem.-
moab

INFO MWM_
UNKNOWN_
NODE_SLOT

Node slot not yet set
on node '%s'.

Delaying setting rack
until slot is known.

0x100-
aa25

ADMI-
N

sys-
tem.-
moab

INFO MWM_NODE_
STATUS

Node '%s' status:
state='%s' rsvl-
ist='%s' joblist='%s'.

General node status.

0x100-
aa26

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_JOBS_
IN_QUEUE

No jobs in queue. There were no jobs
in the scheduler
queue indicating the
scheduler has noth-
ing to process.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
aa27

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
NODE_DATA

No node data sent by
%s RM.

The resource man-
ager did not receive
any node data in
cluster query.

0x100-
aa28

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
PREEMPTIBLE_
RESOURCES

No preemptible
resources found for
job %s (tc: %s; class:
'%s'; qos: %s; pri-
ority: %s; partition
%s.

Indicates the sched-
uler could not find
any jobs for pree-
mption.

0x100-
aa29

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
PRIORITY_
RESERVATION_
CREATED_FOR_
POLICY

No priority reser-
vations created for
policy '%s' for job
%s.

Job reservation for a
specific policy was
unable to be created.

0x100-
aa2a

ADMI-
N

sys-
tem.-
moab

INFO MWM_NO_
QUEUES_
DETECTED

No queues detected. Resource manager
attempted to obtain
queue information.
Check resource man-
ager for configured
queues.

0x100-
aa2b

ADMI-
N

sys-
tem.-
moab

INFO MWM_NOT_
ADDING_RM

Not adding RM '%s'. The partition is not
adding the specified
resource manager.
This situation is most
common in grid con-
figurations where
resource manager
names are similiar.

0x100-
aa30

ADMI-
N

sys-
tem.-
moab

INFO MWM_ORPHAN_
PARTITION_
REPORTED_FOR_
JOB

Orphan partition %s
reported for job %s.
%s.

The resource man-
ager reported the
partition as
orphaned.

Moab Workload Manager

1108 Appendices

Appendices 1109

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x100-
aa31

ADMI-
N

sys-
tem.-
moab

INFO MWM_
PARAMETER_
CANNOT_BE_
CHANGED

Parameter '%s' can-
not be changed
while Moab is run-
ning.

Configuration file
must be changed,
and Moab must be
restarted.

0x100-
e72f

INTER-
NAL

sys-
tem.-
moab

INFO MWM_SOCKET_
REMOTE_
DISCONNECT

Reading from a
socket failed. It
appears the client
disconnected, errno:
%s (%s).

The recv() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x100-
e7f0

INTER-
NAL

sys-
tem.-
moab

INFO MWM_VM_
LINKED_TO_
NEW_
TRACKING_JOB

Setting VMTracking
job for VM '%s' to
job '%s.

A VM is associated
with a tracking job.

0x110-
001f7

USER domain.li-
fecycle

WAR-
N

MWM_TRIG_
FAILURE

Trigger %s has
failed.

The named trigger
has finished its
action, but it
returned with a fail-
ure status.

0x110-
0025e

USER domain.li-
fecycle

WAR-
N

MWM_VM_
MIGRATE_END_
ERROR

VM %s migration has
finished with an
error: (%s)

The named VM has
finished its migration.
There was a problem
during the migration.
Additional inform-
ation may be
provided regarding
the error specifics.

0x110-
00261

USER domain.li-
fecycle

WAR-
N

MWM_VM_
MIGRATE_
SUBMIT

Failed to submit VM
migration job for VM
%s. (%s)

Failed to submit VM
Migration job.

0x110-
00262

USER domain.li-
fecycle

WAR-
N

MWM_VM_NO_
FEASIBLE_
NODES

Failed to find a feas-
ible node/hypervisor
on which to run VM
%s. Check setup job
%s for details.

The named VM has
been submitted, but
no node/hypervisor
meets all require-
ments.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
00384

USER sys-
tem.-
moab

WAR-
N

MWM_VM_
LICENSE_ERROR

There is an error
with the Moab
license: (%s)

There was a licensing
error. Additional
information may be
provided regarding
the error specifics.

0x110-
0284a

USER sys-
tem.-
moab

WAR-
N

MWM_BAD_
COMMANDLINE_
FLAG

Unexpected flag
detected: '%s'.

The command line
syntax that was
received contains an
invalid flag. Check
the documentation
and retry.

0x110-
02858

USER sys-
tem.-
moab

WAR-
N

MWM_
NODESETMAXU-
SAGE_FAILURE

Ignoring incorrect
NODESETMAXUSAGE
value '%s'.

Valid range is from
0.0 to 1.0 inclusive.

0x110-
02883

USER sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
DESTROY_
STATIC_RM

Trigger cannot des-
troy static RM.

A trigger cannot des-
troy a static resource
manager. Refer to
trigger 'destroy'.

0x110-
02966

USER sys-
tem.-
moab

WAR-
N

MWM_RM_JOB_
SUBMIT_
FAILURE

RM %s job submit
failed: %s.

Error while sub-
mitting the job to the
resource manager.

0x110-
02a0c

USER sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
MODIFY_RM_JOB

Cannot modify %s
for RM job %s - '%s'.

The listed attribute
of the job could not
be changed.

0x110-
04004

POWE-
R_
USER

sys-
tem.-
moab

WAR-
N

MWM_TESTING_
WARNING

Testing with argu-
ment1: %s. and argu-
ment2: %s and
argument3: %s

Internal error for
testing diagnostics.

0x110-
0a713

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
LOAD_FILE

Cannot load %s file
%s.

Failed to load a file
into Moab. Make sure
it exists and that per-
missions are correct.

Moab Workload Manager

1110 Appendices

Appendices 1111

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a71a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_FAILED_
TO_WAIT_FOR_
CHILD

Failed to wait for
child, pid: %s, errno:
%s (%s).

The wait() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a71d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
CHMOD_FILE

Failure changing per-
missions of file: '%s'
to mode:'%s', errno:
%s (%s).

The chmod() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a71e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
OPEN_FILE_
WARNING

Cannot open %s file
'%s', errno: %s (%s).

The fopen() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a722

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
WRITE_FILE_
WARNING

Cannot write to file
'%s', errno: %s (%s).

The fwrite() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a723

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
CLOSE_FILE_
DESCRIPTOR

Cannot close file
descriptor %s, errno:
%s (%s).

The close() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a724

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
RENAME_FILE

Failure renaming file
'%s' to '%s', errno:
%s (%s).

The rename() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a726

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
BIND_TO_PORT

Cannot bind to port
%s, errno: %s (%s).

The bind() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a72a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
SEND_TO_
SOCKET

Cannot send %s byte
packet, errno: %s
(%s).

The send() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a72c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_FAILED_
GETSOCKOPT_
WARNING

Cannot get socket %s
option, errno: %s
(%s).

The getsockopt() sys-
tem call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x110-
0a72d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_FAILED_
SETSOCKOPT_
WARNING

Cannot set socket %s
option, errno: %s
(%s).

The setsockopt() sys-
tem call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x110-
0a738

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
SET_UMASK

Failure setting
umask on file '%s',
errno: %s (%s).

The umask() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a73a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_FAILED_
FCNTL_
WARNING

Cannot set %s option
on file descriptor,
errno: %s (%s).

The fcntl() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x110-
0a73b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
STAT_FILE_
WARNING

Cannot get stats on
file '%s', errno: %s
(%s).

The stat() system call
failed. Use the errno
and associated mes-
sage to determine
possible causes.

Moab Workload Manager

1112 Appendices

Appendices 1113

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a73e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_GET_
HOSTNAME_
CLIENT

Cannot get hostname
of the client, errno:
%s (%s).

The getnameinfo()
system call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x110-
0a74d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
FILE_NOT_
FOUND_
WARNING

Cannot locate con-
figuration file '%s' in
'%s'.

Check for the exist-
ence of this file.

0x110-
0a753

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
CONFIG_
INVALID_VALUE

Invalid %s value
'%s' specified for RM
'%s'.

Check the line in the
configuration file for
the parameter.

0x110-
0a754

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
CONFIG_
PROCESS_ATTR

Failed to process
attribute '%s' for
resource manager
'%s'.

Check the line in the
configuration file for
the parameter.

0x110-
0a755

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
CONFIG_ATTR

RM attribute '%s'
not handled.

Check the line in the
configuration file for
the parameter.

0x110-
0a756

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
CONFIG_
TIMEOUT

Resource manager
'%s' has a timout of
less than 50 ms.

Check the line in the
configuration file for
the parameter.

0x110-
0a758

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_
DEFAULT_
VALUE

Configuration para-
meter '%s[%s]' was
not assigned a value.
Using default.

Check the line in the
configuration file to
see if this behaviour
is desired.

0x110-
0a759

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_
INTEGER_
DEFAULT_
VALUE

Configuration para-
meter '%s[%s]' has a
value '%s' that is not
an integer. Using
default.

Check the line in the
configuration file for
the integer value.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a75a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_
DOUBLE_
DEFAULT_
VALUE

Configuration para-
meter '%s[%s]' has a
value '%s' that is not
a double. Using
default.

Check the line in the
configuration file for
the double value.

0x110-
0a75b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_NULL_
VALUE

Configuration para-
meter '%s[%s]' has a
NULL value.

Check the line in the
configuration file.

0x110-
0a75c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_INVALID

Configuration para-
meter '%s' has an
invalid value.

Check the line in the
configuration file for
the attribute.

0x110-
0a75e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
PARAM_
UNKNOWN

Configuration para-
meter '%s[%s]' is
not defined.

Check the line in the
configuration file for
the undefined para-
meter.

0x110-
0a75f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CONFIG_
ATTR_
EXTRACTION

Configuration para-
meter '%s[%s]'
attribute value '%s'
cannot be extracted.

Check the line in the
configuration file for
the attribute.

0x110-
0a760

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
CONFIG_LINE

Cannot process line
'%s'.

Check the line syntax
against the doc-
umentation.

0x110-
0a763

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
ADMINCFG_
PARAMETER

Unknown ADMINCFG
parameter '%s'.

Check the syntax in
the configuration file.

0x110-
0a764

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
MID_ATTR

Unknown identity
attribute '%s'.

Check the MIDCFG
lines in the con-
figuration file.

0x110-
0a765

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_AM_
ATTR

Unknown account
manager attribute
'%s'.

Check the AMCFG
lines in the con-
figuration file.

Moab Workload Manager

1114 Appendices

Appendices 1115

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a766

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
ATTRIBUTE_
SPECIFIED

Unknown attribute
'%s' specified for %s
%s.

An error occurred
while parsing the con-
figuration for the lis-
ted object. The
specified attribute is
unknown or invalid.

0x110-
0a769

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
MONGOSERVER_
CONNECTION_
FAILURE

Unable to connect to
Mongo server '%s'
(%s).

The program will con-
tinue to try and con-
nect in the
background.

0x110-
0a76e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EVENT_
QUERY_ODBC

Event querying is
only supported with
ODBC.

Check the
USEDATABASE
option.

0x110-
0a770

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_DB_
CONNECT

Cannot connect to
DB--falling back to
file and memory-
based storage (%s).

Verify that the data-
base is running.

0x110-
0a772

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DATABASE_
STATS

Unable to retrieve
statistics from the
database.

Verify that the data-
base is running.

0x110-
0a774

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SERVER_
CONNECTION_
FAILED_TRYING_
FALLBACK

The system was
unable to connect to
the server %s:%s -
attempting fallback
server %s.

Make sure the
server's address is
correct and it is run-
ning.

0x110-
0a775

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
PRIMARY_
SERVER_FAILED_
TRYING_
BACKUP

The system was
unable to connect to
the server %s
(%s:%s) - trying
backup server
(%s:%s).

Make sure the
server's address is
correct and it is run-
ning.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a778

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
REDUCE_
CLIENTMAXCON-
NECTIONS

Reducing
CLIENTMAXCONNEC-
TIONS to %s from
%s not allowed dur-
ing runtime.

Decreasing the value
of
CLIENTMAXCONNEC-
TIONS cannot be
done during runtime.

0x110-
0a785

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_START_JOB

Cannot start job %s.
(%s)

The job failed to
start.

0x110-
0a788

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_ALLOCATE_
NODES_FOR_JOB

Cannot allocate
nodes for job %s.
(%s)

Cannot allocate a
node list that
matches the require-
ments for this job.
This may not be ser-
ious since multiple
passes may occur.

0x110-
0a7d2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
LOAD_PBS_JOB

Cannot load PBS job
'%s'.

Could not load a job
discovered from a
PBS resource man-
ager into Moab.

0x110-
0a7e3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
TRUNCATING_
ATTRIBUTE_
FOR_CLASS

Truncating %s for
class: %s (rm
reports: %s; Moab
enforces: %s).

The resource man-
ager reports a certain
value for a class, but
Moab has been
instructed to keep it
within certain limits.
The value will be
truncated to keep it
within the limits.

0x110-
0a7e4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNEXPECTED_
JOB_STATE

Unexpected job state
'%s' detected for job
%s.

The listed job was
found to be in a state
that was not expec-
ted. This may or may
not be an error con-
dition.

Moab Workload Manager

1116 Appendices

Appendices 1117

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a821

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CLOCK_
SKEW_
DETECTED

Clock skew detected
(%s time for job %s
in %s).

A reported time asso-
ciated with the job
appears to be wrong.
This could be
because of a lack of
synchronization
between system
clocks on all nodes.

0x110-
0a83e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
WIKI_
ATTRIBUTE

Encountered invalid
wiki attribute while
reading '%s'.

Check the syntax of
the attribute.

0x110-
0a83f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DUPLICATE_
WIKI_
ATTRIBUTE

Wiki attribute '%s' is
already set.

Check for duplicate
instances of the
attribute.

0x110-
0a840

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VM_
UNSUPPORTED_
WIKI_
ATTRIBUTE

Wiki attribute '%s' is
unsupported for VM
creation.

Remove the attribute.

0x110-
0a843

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ADD_
NODE_FAILURE

Cannot add node
'%s' to global node
table. Index is
already used.

Cannot have two
nodes with the same
name.

0x110-
0a844

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_HT_ADD_
NODE_FAILURE

Cannot add node
'%s' to hash table.
Index is already
used.

Cannot have two
nodes with the same
name.

0x110-
0a846

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VM_
MIGRATION_
FAILURE

Cannot migrate VM
'%s'.

The VM might not be
eligible for migration.

0x110-
0a84c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNEXPECTED_
SUBCOMMAND_
RECEIVED

Unexpected sub-
command '%s'
received.

The communication
from a Moab client
includes an unknown
subcommand.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a84d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_REGISTER_
JOB_AM

Unable to register
job %s with account-
ing manager for job
%s. reason: '%s' mes-
sage:'%s'.

The accounting man-
ager was unable to
register the listed job
for a certain action.
An optional reason
and/or message may
be given to assist in
diagnosis.

0x110-
0a851

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
IMPROPER_VM_
MIGRATION_
DECISION

The migration
decision for the VM
was not properly set
up.

The information
indicating the des-
tination node is miss-
ing.

0x110-
0a85b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
UPDATE_NULL_
STARTTIME

Start time is NULL
for job update.

Specify a start time
that is greater than
zero.

0x110-
0a85c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
UPDATE_NULL_
DISPATCHTIME

Dispatch time is
NULL for job update.

Specify a dispatch
time that is greater
than zero.

0x110-
0a862

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_REGISTER_
RESERVATION_
AM

Unable to register
reservation %s with
accounting manager
for %s processors for
reservation %s.

The accounting man-
ager was unable to
register the listed
reservation for a cer-
tain action.

0x110-
0a863

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DEPRECATED_
PARAMETER_
VALUE

Deprecated value
'%s' specified for
parameter '%s'. %s

The listed value is no
longer valid for this
parameter. A hint
may be provided
with the message.
Check the most
recent doc-
umentation for the
software version.

Moab Workload Manager

1118 Appendices

Appendices 1119

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a864

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
FILE_
ATTRIBUTES_
WARNING

Invalid value '%s'
specified for %s
(%s).

Checking a file to see
whether it exists, is
executable, etc, has
produced unex-
pected results.

0x110-
0a865

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
SET_JOB_
ATTRIBUTE_VIA_
TEMPLATE_
WARNING

Cannot set %s %s
via template %s.

Failed to set the lis-
ted attribute to the
listed value for a spe-
cified job template.

0x110-
0a866

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_KILL_
PROCESS_
FAILURE

Unable to kill process
%s.

The system tried to
kill the given process
and failed.

0x110-
0a86a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
NODELIST_
STRING_BUFFER

Insufficient buffer
space to convert a
node list into a
string.

The buffer must be
larger to hold all the
nodes.

0x110-
0a86b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MAX_
NODES_
EXCEEDED

The maximum num-
ber of nodes asso-
ciated with a
reservation has been
exceeded.

The number of nodes
must be reduced.

0x110-
0a871

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VC_
ALREADY_
ADDED

The virtual container
'%s' is already an
ancestor of VC '%s'.

Cannot create a cir-
cular chain, must
maintain a hier-
archical structure.

0x110-
0a872

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VC_
REMOVAL_
FAILURE

The virtual container
'%s' cannot be
removed.

This is an internal
error.

0x110-
0a874

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
RESERVATION_
JOB_NOT_
FOUND

Unable to find the
job for reservation
'%s'.

The host job for the
reservation is NULL.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a875

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SINGLE_
USE_
RESERVATION_
DESTRUCTION

Unable to destroy a
single-use reser-
vation.

This is an internal
error.

0x110-
0a878

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNEXPECTED_
JOB_
SUBMISSION_
POLICY

The system
encountered an
unexpected job sub-
mission policy (%s).

The job submission
policy did not match
a defined policy.

0x110-
0a879

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
SIMULATION_
JOB_RECORDS

Unable to simulate
workload by creating
job records (1000
attempts).

The system may be
low on memory.

0x110-
0a880

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
TRANSITION_
XML_MESSAGE

Unable to add mes-
sages to job '%s'
transition XML.

The system may be
low on memory.

0x110-
0a884

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_PBS_API_
STALE

PBS API is stale - re-
initializing.

Re-initializing the
PBS environment.

0x110-
0a885

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_GET_PBS_
QUEUE_INFO

Cannot process PBS
queue info for RM
%s (node %s) - no
data available.

Unable to get any
information on the
PBS queues. Make
sure that there was
at least a queue set
up in PBS.

0x110-
0a886

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_SET_JOB_
ATTRIBUTE

Cannot set job '%s'
attribute '%s:%s' to
'%s' (rc: %s; '%s').

There was a problem
while changing the
job attribute and the
error status was dis-
played in rc.

0x110-
0a887

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_CONNECT_
PBS_
SCHEDULER

Cannot connect to
PBS event/scheduler
port %s.

Ensure the PBS
scheduler is running
and listening on the
specified port.

Moab Workload Manager

1120 Appendices

Appendices 1121

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a888

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
UNUSABLE_NO_
DISK

Idle node %s is unus-
able (inadequate
disk space in /var).

Ensure that the node
has sufficient disk
space.

0x110-
0a889

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
UNUSABLE_BAD_
STATE

Node '%s' is unus-
able in state 'NONE'.

The node has
become unusable
because of its state
being NONE.

0x110-
0a88a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_FIND_USERS_
GID

Cannot locate OS GID
information for user
'%s' - ignoring user.

Moab was unable to
find the GID of this
user. Make sure that
this user has a GID.

0x110-
0a88b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_FIND_USERS_
UID

Cannot locate OS
information for user
'%s' - ignoring user -
%s.

Moab was unable to
find the user on the
system. Make sure
that this user exists.

0x110-
0a88c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_FIND_GID_
LIST

Cannot locate OS
group list inform-
ation for user '%s' -
ignoring user.

Moab was unable to
find the group list for
this user.

0x110-
0a88d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_TIMEOUT Command '%s'
timed out, or wait
failed after %s
seconds.

Increasing the
TIMEOUT settings in
moab.cfg may help.

0x110-
0a88e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
INSUFFICIENT_
POLICIES

Insufficient policies
specified; hpoli-
cy=%s,spolicy=%s.

Please revise your
policies along with
their actions.

0x110-
0a88f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NO_
STDOUT

Request succeeded
with no stdout but
stderr='%s'.

Typically there will
also be stdout when
there is stderr.
Depending on the
request this may be
the intended result.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a890

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
CONNECT_WIKI

Cannot connect to
Wiki event port %s.

Failure to connect to
the Wiki event port.

0x110-
0a891

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
COLON_STR

Colon delimiter not
located in %s wiki
string '%s...' in %s.

Check that the string
contains the right
format.

0x110-
0a892

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ADD_
DEPENDENCY_
FAIL

Failed to add
dependecies to job
%s's submission.

There was a problem
in adding the
dependencies to the
job.

0x110-
0a893

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
PRIORITY_
FUNCTION

Invalid priority func-
tion '%s' on job '%s'.

The priority function
applied to the job
was invalid.

0x110-
0a894

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
JOB_REQ

Invalid job '%s'; no
requirements.

The job was invalid
because it was miss-
ing the requirements.

0x110-
0a895

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
JOB_REQ_AT_
INDEX

Invalid job %s; no
requirement at
index %s.

The job was invalid
because an index
was missing require-
ments.

0x110-
0a896

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
WIKI_STR_
MISSING_EQUAL

Malformed wiki
string '%s' - no '='.

The wiki string was
missing an equal sign
'='.

0x110-
0a897

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
EMPTY_WIKI_
STR

Malformed wiki
string '%s' - EOF.

The wiki string was
empty.

0x110-
0a898

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
INCORRECT_
STAGE_LOC

stage-data source loc-
ation is being incor-
rectly reported via
wiki '%s' != '%s'.

The stage data
source location was
incorrectly reported
in wiki.

Moab Workload Manager

1122 Appendices

Appendices 1123

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a899

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
VM_OBJECT_ID

VM '%s' is not a valid
object, ignoring.

The VM does not
have a valid object
ID.

0x110-
0a89a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
JSON_CLUSTER

Could not parse
JSON cluster query
data from MWS RM
(%s): %s.

The JSON construct
(s) for the cluster
may contain some
invalid syntax.

0x110-
0a89b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
JSON_
WORKLOAD

Could not parse
JSON workload
query data from
MWS RM (%s): %s.

The JSON construct
(s) for the workload
may contain some
invalid syntax.

0x110-
0a89c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
REQ_
PROPERTIES

JSON cluster query
data from MWS RM
(%s) does not con-
tain required prop-
erties (%s, %s, %s).

The JSON constructs
for the cluster query
data are missing the
required properties.

0x110-
0a89d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
JSON_CLUSTER_
OBJECT

JSON cluster query
data from MWS RM
(%s) is not a valid
object.

Review the JSON con-
struct for the cluster
query data to ensure
its syntax is correct.

0x110-
0a89e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
JSON_
WORKLOAD_
OBJECT

JSON workload
query data from
MWS RM (%s) is not
a valid object.

Review the JSON con-
struct for the work-
load query data to
ensure its syntax is
correct.

0x110-
0a89f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EMPTY_
RESPONSE

Empty %s response
from RM (%s).

The response from
the resource man-
ager query was
empty.

0x110-
0a8a0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
NODE_DATA

Nodes data from
MWS RM (%s) is not
a valid object.

The response from
the Moab Web Ser-
vices resource man-
ager query was
empty.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8a1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CREATE_
RESERVATION_
FAIL

Cannot create
requested reser-
vation (%s).

The request to create
the given reservation
has failed.

0x110-
0a8a2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
RSVPROFILE_
FAIL

Cannot locate
RSVPROFILE '%s'.

Moab failed to find
the given
RSVPROFILE. Confirm
that the file exists.

0x110-
0a8a3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
RSV_PARENT_
FAIL

Cannot locate parent
'%s' for reservation
'%s'.

Moab failed to locate
the parent of the
given reservation.

0x110-
0a8a4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
COMMAND_FAIL

Cannot locate com-
mand '%s'.

Moab failed to locate
the given command.
Confirm that the com-
mand exists.

0x110-
0a8a5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
SCHED_CMD

Received unexpected
sched command
'%s'.

Received an unex-
pected mschedctl
command. Confirm
that the used option
is supported.

0x110-
0a8a6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
EVENT

Unsupported event
'%s' from RM '%s'.

The given event is
not supported by the
given resource man-
ager.

0x110-
0a8a7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VM_
MIGRATE_FAIL

VM %s should
migrate from node
%s but cannot locate
valid destination -
%s (policy).

Attempt to migrate
the given VM from
the given node failed.
Please check that the
destination is valid.

0x110-
0a8a8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
START_FAIL

Start of system job
%s failed; no action
specified.

Failed to start a job
because there was no
action specified.

Moab Workload Manager

1124 Appendices

Appendices 1125

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8a9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
VMTRACKING_
JOB_FAIL

VM '%s' reported a
system job failure on
VMTracking job '%s'.

The given VM repor-
ted it failed on the
given VMTracking
job.

0x110-
0a8aa

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
VMTRACKING_
EXCEED_
WALTIME

VM '%s' exceeded its
allocated walltime.
VMTracking job '%s'
(pointing to job
'%s').

The given VM has
exceeded its alloc-
ated walltime on the
associated VM track-
ing job.

0x110-
0a8ac

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
POWER_STATE

No RM can report
node '%s' power
state for system job
'%s'.

No resource manager
can report the power
state for the given
nodes on the given
job.

0x110-
0a8ad

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ADD_
GLOBAL_NODE_
FAIL

Cannot add global
node '%s'.

Failed to add the
given global node.

0x110-
0a8ae

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
CLIENT

Client ID '%s' is
unknown.

Moab failed to recog-
nize the name/ID of
the given client.

0x110-
0a8af

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
DEBIT_
ACCOUNT

Unable to charge
funds for job.

The account manager
failed to debit the
account for the job.

0x110-
0a8b0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
RESERVE_
ACCOUNT

Unable to reserve
funds for job
(Reason: %s).

The account manager
failed to reserve
funds on the account
for the job.

0x110-
0a8b1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANCEL_
LEIN

Unable to cancel lien
for instance '%s'
(Reason: %s).

The account manager
failed to release the
lien.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8b2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
RESERVATION_
RESERVE_
ACCOUNT

Unable to reserve
funds for reservation
(Reason: %s).

The account manager
failed to reserve
funds on the account
for the reservation.

0x110-
0a8b3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
TASK_
DISTRIBUTION

The system cannot
distribute the tasks
allocated for a job.

Check the tasks spe-
cified in the job.

0x110-
0a8b4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
DEFAULT_CLASS

Job cannot run with
default class '%s'.

Check the limits set
on the class.

0x110-
0a8b5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
START_JOB

Cannot start job
through a resource
manager.

The resource man-
ager may not be set
to run the job.

0x110-
0a8b6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
DEPENDENCY_
UPDATE

Cannot find job '%s'
to update depend-
ency '%s' for job
'%s'.

The dependency job
for the specified job
is missing.

0x110-
0a8b7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EXPIRED_
CHECKPOINT

The checkpoint has
expired.

Items within the
checkpoint may no
longer be valid.

0x110-
0a8b8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_BAD_
CHECKPOINT_
LINE

The system
encountered an
incorrectly formed
checkpoint line for
key '%s'.

All lines must end
with a NEWLINE
character.

0x110-
0a8b9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
CONVERT_XML_
FROM_STRING

XML data cannot be
obtained from an
XML string ('%s').

There was an error
converting from a
string that should
contain XML into
internal XML data
structures.

Moab Workload Manager

1126 Appendices

Appendices 1127

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8ba

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
CONVERT_XML_
TO_STRING

An XML string can-
not be constructed
from XML data.

There was an error
converting from
internal XML data
structures into an
XML string rep-
resentation.

0x110-
0a8bb

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SOCKET_
OPERATION

Cannot %s message
on sd %s within %s
second timeout.

There is a com-
munication error
with sockets.

0x110-
0a8bc

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
COMPLETED_
JOB_RECORD

Could not create job
record for completed
job %s - %s.

The system may be
low on memory.

0x110-
0a8bd

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CREATE_
TEMPLATE_JOB_
DEPENDENCY

Could not create tem-
plate job depend-
ency %s - %s.

The system may be
low on memory.

0x110-
0a8be

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
FIND_SMP_
NODE_BY_
FEATURE

Could not find SMP
node by feature '%s'.

The feature did not
match any of the
SMP nodes.

0x110-
0a8bf

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
CHECKPOINT_
PROCESS_
COMPLETED_
JOB

Could not process
completed job from
checkpoint.

Examine the check-
point entry for the
job.

0x110-
0a8c0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
FIND_SMP_
NODE_IN_
PARTITION

Could not find SMP
node in partition
'%s'.

The feature did not
match any of the
SMP nodes in the par-
tition.

0x110-
0a8c1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
REPORTED_BY_
RM_NOT_
OWNER

Job '%s' is being
reported by RM '%s'
but is owned by RM
'%s'.

The resource man-
ager reporting does
not own the job.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8c2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_PEER_
RM_UNKNOWN_
LANGUAGE

Peer RM '%s' repor-
ted unknown lan-
guage: '%s'.

The language does
not match a known
format.

0x110-
0a8c3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_PEER_
RM_UNKNOWN_
SUBLANGUAGE

Peer RM '%s' repor-
ted unknown sub-
language: '%s'.

The language does
not match a known
format.

0x110-
0a8c4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_REQ_
ATTR_TO_
STRING

Required attribute
%s '%s' could not be
converted to a string.

There is no string
conversion routine
for that attribute
type.

0x110-
0a8c5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
ARCH_VALUE

Job '%s' does not
have a valid arch
(architecture) value
'%s'.

Check the specified
value for the archi-
tecture.

0x110-
0a8c6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
HOST_REQ

Job '%s' does not
have a valid host
requirement '%s'.

Check the specified
value for the require-
ment.

0x110-
0a8c7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
OPSYS_VALUE

Job '%s' does not
have a valid oper-
ating system value
'%s'.

Check the specified
value for the oper-
ating system.

0x110-
0a8c8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
REQ

Resouce require-
ment '%s' not sup-
ported.

The requirement spe-
cified is unsupported.

0x110-
0a8c9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NO_
TASKS

Job loaded in active
state with no tasks
allocated.

Jobs must have at
least one task.

0x110-
0a8ca

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SINGLE_
ITERATION_JOB_
COMPLETION

Scheduler cannot
handle job com-
pletion in a single
iteration.

The job must not
start and complete
while the scheduler
is sleeping.

Moab Workload Manager

1128 Appendices

Appendices 1129

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8cb

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MAX_
TASKS_
EXCEEDED

The number of tasks
associated with a job
has exceeded the
maximum (%s).

The number of tasks
must be reduced or
the scheduler must
be configured to
accept more tasks.

0x110-
0a8cc

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
OUT_OF_RANGE

Job '%s' node index
(%s) at task list
index (%s) is out of
range.

This is an internal
limit.

0x110-
0a8cd

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
NULL

Job '%s' node index
(%s) at task list
index (%s) is NULL.

This is an internal
limit.

0x110-
0a8ce

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
NODESET_
CONSTRAINTS

Nodeset constraints
prevent use of task
for job '%s':%s at
%s.

The specified node-
set cannot run the
task.

0x110-
0a8cf

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DEFAULT_
WALLTIME

Job assigned default
walltime limit (%s).

Unlimited or no wall-
time limit specified.

0x110-
0a8d0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
PARTITION_
ACCESS

Job cannot access
requested partitions
(%s).

The partition access
list disallows the job.

0x110-
0a8d1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_ALLOCATE_
TASKS_FOR_JOB

Cannot allocate tasks
for job at %s.

The system may be
low on memory.

0x110-
0a8d2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
IGNORING_
PARTIAL_RANGE

Ignoring partial time
range since full
range previously loc-
ated.

The system will use
the full range
instead.

0x110-
0a8d3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DESTINATION_
RM

Cannot locate a valid
destination resource
manager for job.

The submitted job
could not be sent to a
resource manager.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8d4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
CREDENTIALS

Cannot authenticate
the submitted job
(Reason: %s).

The user for the job
is not a member of a
group or account
with access.

0x110-
0a8d5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
SMPNODE_BY_
FEATURE

Could not find
SMPNode by feature
%s (%s).

None of the nodes
has the feature spe-
cified.

0x110-
0a8d6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
SMPNODE_BY_
PARTITION

Could not find
SMPNode in par-
tition %s.

The SMPNode spe-
cified is not in the
given partition.

0x110-
0a8d7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
ATTR_TO_
STRING

Reservation '%s'
attribute '%s' could
not be converted to a
string.

There is no string
conversion routine
for that attribute
type.

0x110-
0a8d8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
STATUS

Account manager
sent failure message
- %s.

Check status mes-
sage.

0x110-
0a8d9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
FAILURE

Native accounting
manager call '%s'
failed using input
XML '%s'.

Check XML syntax.

0x110-
0a8da

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
INSUFFICIENT_
FUNDS

Account manager -
Insufficient funds
'%s'.

Validate that the user
has access to account.

0x110-
0a8db

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
MIGRATE_JOB

Unable to migrate
job '%s' to RM '%s'
(%s).

Check the error mes-
sage.

0x110-
0a8dc

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RESERVE_
PRIORITY_JOB

Unable to reserve
priority job.

Check the error mes-
sage.

Moab Workload Manager

1130 Appendices

Appendices 1131

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8dd

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SYNC_JOB Job '%s' not syn-
chronized to start
with job '%s'.

The two jobs must
start at the same
time.

0x110-
0a8de

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SYNC_
JOB_REQUEUE

Job '%s' could not
start. Requeuing any
synchronized jobs.

The other jobs
should be back on
the queue.

0x110-
0a8df

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNHANDLED_
PLUGIN_
EXCEPTION

A node allocation plu-
gin '%s' encountered
an unhandled excep-
tion '%s'.

Consult the doc-
umention for the plu-
gin.

0x110-
0a8e0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_PLUGIN_
LOADED_
FAILURE

Error loading node
allocation plugin '%s'
for partition '%s' %s.

A NodeAllocation plu-
gin was not loaded
because of an error.
Default node alloc-
ation will be used.

0x110-
0a8e2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_JOB_
DEPENDENCY

Unknown job
dependency '%s' on
job.

The job is trying to
use a dependency
that is unknown.

0x110-
0a8e3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
JOB_
DEPENDENCY

Unknown job
dependency type
'%s' on job.

The job is trying to
use a dependency
type that is unsup-
ported.

0x110-
0a8e4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
JOB_
DEPENDENCY

Cannot find depend-
ency job. Miss-
ingDependencyAction
is '%s'.

Check for the exist-
ence of the job
dependency.

0x110-
0a8e5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
PARTITION_
REP_NODE

Corrupt partition
representative node.

Check the rep-
resentative node for
the partition.

0x110-
0a8e6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
PARTITION_
ATTRIBUTE

Partition attribute
'%s' is not con-
figurable.

Consult the doc-
umentation to see
which attributes can
be configured.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8e7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_LOCATE_
NODE

Unable to locate spe-
cified nodes for job.

Could not find a node
in the job's node list.

0x110-
0a8e8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODES_
MISSING_FROM_
FEASIBLE_LIST

Specified node(s)
not found in feasible
hostlist.

Could not find a
node.

0x110-
0a8e9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
HOSTLIST_HAS_
TOO_FEW_
TASKS

A hostlist has too few
tasks available for
job '%s':'%s' (%s <
%s).

More nodes are
needed to satisfy the
task requirements.

0x110-
0a8ea

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_TASKS_
REMAINING

A hostlist was unable
to handle all tasks
(%s remain).

More nodes are
needed to satisfy the
task requirements.

0x110-
0a8eb

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
DOWN

Unable to detect
node '%s' for '%s'
seconds. Marking it
down or removing it.

Make sure the node
is up and running.

0x110-
0a8ec

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
RESET_EMPTY

Unable to reset node.
Node list empty.

Must specify a valid
node to reset.

0x110-
0a8ed

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
RESET_URL

Unable to reset node.
NODEPOWERURL
not specified.

Must specify a valid
URL for the node to
reset.

0x110-
0a8ee

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
DOWN

The account man-
ager is not currently
running.

Check the status of
the account manager.

0x110-
0a8ef

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
KEYBOARD_
ACTIVITY_
PREEMPT_JOB

Keyboard activity on
node prevented job
preemption.

Jobs can be pree-
mpted only if the key-
board is idle.

Moab Workload Manager

1132 Appendices

Appendices 1133

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8f0

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
KEYBOARD_
ACTIVITY_SET_
NODE_STATE

Keyboard activity on
node prevented set-
ting the node state to
'%s'.

Node states can be
changed only if the
keyboard is idle.

0x110-
0a8f1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
MISMATCHED_
TIMES

Fixing job '%s' with
invalid '%s' times
(%s - %s).

Check the times for
the specified job.

0x110-
0a8f2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
OPSYS

Cannot add oper-
ating system '%s' to
job.

Check the type of
operating system spe-
cified.

0x110-
0a8f3

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_ARCH Cannot add archi-
tecture '%s' to job.

Check the type of
architecture spe-
cified.

0x110-
0a8f4

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
AM

Cannot locate the
account manager
'%s'.

Check the account
manager command
option syntax.

0x110-
0a8f5

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
RM

Cannot locate the
resource manager
'%s'.

Check the resource
manager command
option syntax.

0x110-
0a8f6

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
RMID

Cannot locate the
resource manager ID
'%s'.

Check the ID com-
mand option syntax.

0x110-
0a8f7

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_LOCATE_
PARTITION

Cannot locate the
partition '%s'.

Check the partition
command option syn-
tax.

0x110-
0a8f8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
QUEUE_MODIFY

Command to modify
RM queue failed on
resource manager
%s - '%s'.

Queue may be con-
figured to reject
modify requests.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a8f9

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
QUEUE_CREATE

Command to create
RM queue failed on
resource manager
%s - '%s'.

System may be con-
figured to reject
queue creation
requests.

0x110-
0a8fa

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
QUEUE_
CREATE_
MISSING_ARGS

Command to create
RM queue failed -
arguments missing.

The user must sup-
ply the needed argu-
ments to the
command.

0x110-
0a8fb

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_STATIC_
RM_
DESTRUCTION

An attempt was
made to destroy a
static resource man-
ager.

Static resource man-
agers cannot be des-
troyed.

0x110-
0a8fc

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ADD_
SYSTEM_USER

Unable to create a
new user '%s' in the
system.

The system may be
low on memory.

0x110-
0a8fd

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ADD_
PARTITION

The system was
unable to create par-
tition '%s'.

The system may be
low on memory.

0x110-
0a8fe

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CORE_
LIMIT

System core limit set
to %s (complete core
files might not be
generated).

Expand the system
core limit to ensure
the complete core
dump can be saved.

0x110-
0a8ff

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_KEY_
FILE_
PERMISSIONS

The .moab.key file
exists, but the file
permissions prevent
access (%s).

Check the ownership
permissions on the
file.

0x110-
0a900

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_STATS_
PERIOD_TYPE

The system could not
process stats for
period type %s.

'Day' is the only
period type currently
supported.

0x110-
0a901

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_STATS_
BUFFER_SIZE

The system could not
process stats for
period type %s (buf-
fer too small).

The buffer allocated
was too small to hold
the data.

Moab Workload Manager

1134 Appendices

Appendices 1135

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a902

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_STATS_
FILE

The system could not
create the stats file
'%s'.

Check the path and
user permissions on
the directory.

0x110-
0a903

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_NO_
ACCOUNT

No account specified
for job '%s'.

Check the job for an
account specification.

0x110-
0a904

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_SET_
JOBATTR_FAIL

Cannot set attribute
'%s' to value '%s' on
jobmatch '%s'.

Failed to set the
given attribute to the
given value on the
given job.

0x110-
0a905

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOBATTR_
NOT_
SUPPORTED

JobAttr not sup-
ported. '%s'.

The given attribute is
not a supported job
attribute.

0x110-
0a906

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
TRIGGER_
DEFINITION

Invalid trigger defin-
ition: %s.

The given trigger is
invalid. Check that
the given trigger has
been defined.

0x110-
0a907

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
ATTRIBUTE_
NOT_HANDLED

System attribute
'%s' not handled.

Check that the given
attribute was spelled
correctly.

0x110-
0a908

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_QOS_IN_
PARAM_NOT_
FOUND

Cannot locate QOS
'%s' for parameter
%s.

Make sure that the
given QOS exists.

0x110-
0a909

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
PROFILEDURATI-
ON_VAL

Invalid
PROFILEDURATION
specified, modified
internally to %s (see
documentation).

The entered
PROFILEDURATION
value is invalid. Moab
uses the given value
instead.

0x110-
0a90a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NO_
DATA_STAGING_
PATH

No path in data sta-
ging specification
'%s' (bad format).

Verify the data sta-
ging path is specified.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a90b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
RM_DATA_
STAGING

Cannot stage-out
stdout/stderr
(unsupported RM
type '%s').

Failed to stage-out
stdout/stderr
because the given
resource manager
does not support
such feature.

0x110-
0a90c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
DATA_ON_NON_
EXISTING_JOB

Storage RM '%s'
reporting data oper-
ation for non-
existant job '%s'.

The given resource
manager is reporting
data operation on the
non-existing job.

0x110-
0a90d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
RM_DATA_
STAGE

Data stage for RM
'%s' not possible as
it has no nodelist.

Check
CLUSTERQUERYURL
to ensure it at least
has a nodelist.

0x110-
0a90e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_DATA_
STAGE_IN_FAIL

Data stage in failed
for job '%s' file '%s'
(%s).

Failed to complete
the data staging in
operation for the job
on the given file due
to error(s).

0x110-
0a90f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_UNABLE_
TO_REMOVE_
DATA_STAGE

Cannot remove data
staging block for job
'%s'.

Failed to remove the
data staging block for
the given job.

0x110-
0a910

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_DATA_
STAGE_OUT_
FAIL

Data stage out failed
for job '%s' file '%s'
(%s).

Failed to complete
the data staging out
operation for the job
on the given file due
to error(s).

0x110-
0a911

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
INVALID_OPSYS

Job '%s' cannot
request OS '%s').

The requested oper-
ating system is not
available for the job.

0x110-
0a912

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
BUFFER_
OVERFLOW

Node buffer is full. Try increasing the
node buffer size.

Moab Workload Manager

1136 Appendices

Appendices 1137

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a913

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_REMOVE_
NODE_WITH_
RESERVATION

Unable to remove
node '%s' because of
reservation ref-
erences.

Remove the reser-
vations from the
node.

0x110-
0a914

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
PURGE_RM_
INACTIVE

Unable to purge job
'%s' because the
resouce manager
'%s' is inactive.

Check the status of
the resource man-
ager.

0x110-
0a915

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
PURGE_RM_NO_
RESOURCES

Unable to purge job
'%s' because the
resouce manager
'%s' is reporting no
resources.

Check the status of
the resource man-
ager.

0x110-
0a916

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_NOT_
DETECTED

Job '%s' in state '%s'
no longer detected
(Last Detected %s >
PurgeTime %s).

The job may have
been purged in the
meantime.

0x110-
0a917

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
BACKFILL_
DEPTH_
REACHED

The backfill depth
(BFDEPTH) has been
reached so no more
jobs will be back-
filled this iteration.

Wait for the next iter-
ation or increase the
depth.

0x110-
0a918

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_NO_
QUEUETIME

No QueueTime has
been specified for
job.

Configure the job
with a queue time.

0x110-
0a91c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
CHECKPOINT_
CREATE_RSV_
FROM_XML

Unable to create a
reservation from
checkpoint XML.

The system may be
low on memory.

0x110-
0a91d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
CACHE_
REMOVAL

Failed to remove job
%s (ID = %s) from
the cache.

The job was missing
from the system hash
table.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a91e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
CRED_VALUE

Invalid credential
value '%s'.

Check the syntax in
the configuration file.

0x110-
0a91f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
CRED_ATTR

Invalid credential
attribute '%s'.

Check the syntax in
the configuration file.

0x110-
0a920

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MAX_
JOBS_EXCEEDED

The maximum num-
ber of jobs has been
exceeded.

Increase the value of
the MAXJOB setting.

0x110-
0a921

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
FAILED_
PROCESSING_
PBS

A job failed while
processing PBS
resources.

May not have been
able to locate host or
vnode.

0x110-
0a922

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_FIND_
PEER

Cannot find client
peer for job %s
(Name: %s).

The resource man-
ager cannot be loc-
ated.

0x110-
0a923

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
INSUFFICIENT_
BALANCE

Insufficient balance
in primary account
'%s' to run job '%s'
(attempting fallback
credentials).

Validate that the user
has access to account.

0x110-
0a924

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_JOB_
SUBMIT_
VALIDATION

Job submission val-
idation failed for job
'%s' -- taking action
'%s'.

Validate that the job
has access.

0x110-
0a925

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_TOO_
MANY_NODE_
SETS

The maximum num-
ber of node sets has
been exceeded.

This is a configurable
setting.

0x110-
0a926

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CLASS_
SET_LIST_
INVALID

The specified class
set list is invalid '%s'.

Check the doc-
umentation for valid
classes.

Moab Workload Manager

1138 Appendices

Appendices 1139

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a928

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_
START

Cannot start
resource manager
'%s' (Reason: %s).

The resource man-
ager may not be avail-
able.

0x110-
0a929

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_STDOUT_
FAIL

Request succeeded
with no stdout.
stderr= '%s'.

The standard out
may not have been
specified.

0x110-
0a92a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
REQ_ATTR

Unsupported req
attribute '%s'.

The attribute is not
one that can be set.

0x110-
0a92b

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNSUPPORTED_
GENERAL_ATTR

Unsupported gen-
eral attribute '%s'.

The attribute is not
one that can be set.

0x110-
0a92e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CREATE_
ACCOUNT

Unable to create
account '%s' on the
account manager.

Verify that the
account manager is
running.

0x110-
0a92f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_QUERY_
ACCOUNT

Unable to query
account '%s' on the
account manager.

Verify that the
account name is cor-
rect.

0x110-
0a930

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
ACCOUNT_ADD_
USER

Unable to add user
'%s' to account '%s'
on the account man-
ager.

Verify that the
account name is cor-
rect.

0x110-
0a931

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
ACCOUNT_
DEPOSIT

Unable to deposit
'%s' credits to
account '%s' on the
account manager.

Verify that the
account name is cor-
rect.

0x110-
0a932

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
ALLOCATE_REQ

Unable to allocate
requirement '%s'
using NAllocPolicy
'%s' (%s).

The system may be
low on memory.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a933

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VALID_
STAT_DATA

Unable to generate
valid statistic data
for external query.

The system may be
low on memory.

0x110-
0a934

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_QOS_
REQUEST

Job '%s' cannot
request QOS '%s').

The requested QOS is
not available for the
job.

0x110-
0a938

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_GRES_
OVERFLOW

GRES overflow. Unable to add
another GRES.

0x110-
0a939

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RM_NO_
RESOURCES

The resouce man-
ager '%s' is report-
ing no resources.

Check the nodes on
the resource man-
ager.

0x110-
0a93d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EMPTY_
FILE

File '%s' is empty. Check the file spe-
cified.

0x110-
0a93f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
PREEMPT_
NONACTIVE_JOB

Cannot preempt
non-active job '%s'
(state: '%s' estate:
'%s').

The job must cur-
rently be active to
preempt it.

0x110-
0a940

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
REQUEUE_
NONSTARTABL-
E_JOB

Cannot requeue
non-startable job
'%s' (canceling
instead).

The job could not be
requeued.

0x110-
0a941

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
RACK_VALUE

Invalid rack value
'%s' specified for
node %s (must be
digit).

Check the value of
the rack parameter.

0x110-
0a942

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ENCODE_
JOB_MESSAGE

Cannot encode job
message.

Check the value of
the rack parameter.

Moab Workload Manager

1140 Appendices

Appendices 1141

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a943

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
PROFILECOUNT_
VAL

Invalid
PROFILECOUNT spe-
cified, modified
internally to %s (see
documentation).

The PROFILECOUNT
value is invalid. Moab
uses the default
value instead.

0x110-
0a944

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
FAIRSHARE_FILE

Cannot load fair-
share file '%s' for
slot %s.

Check for the exist-
ence of the fairshare
file in the file system.

0x110-
0a945

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_REQ_
ATTR_ALREADY_
SET

Requirement attrib-
ute %s '%s' is
already set.

Check the attribute
setting in the con-
figuration file.

0x110-
0a946

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ZERO_
START_TIME

StartTime set to zero
for reservation on
job '%s'.

Check the start time
for the specified job.

0x110-
0a947

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
EXISTING_
RESERVATION

Reservation created
for reserved job '%s'
(existing reservation
'%s' deleted).

Only one reservation
can exist at a time for
the reserved job.

0x110-
0a948

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
PARSE_REQ_
LINE

Cannot parse
requirement line for
job '%s'.

The syntax of the
requirement line is
incorrect.

0x110-
0a949

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
RESOURCE_
TYPE

Unknown resource
type '%s' for job
'%s'.

Check the doc-
umentation for valid
resource types.

0x110-
0a94a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
UNKNOWN_
TRANSACTION_
ATTR

Unknown trans-
action attribute '%s'.

Check the doc-
umentation for valid
transaction attrib-
utes.

0x110-
0a94c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ID_
MANAGER_
DOWN

The identity man-
ager is down.

Check the status of
the identity manager.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a94d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_PROCESS_
ID_LINE

Unable to process
the ID line '%s'.

Check the syntax of
the attribute/value
pairs.

0x110-
0a94e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_ID_
MISSING

Unable to locate the
job ID for a job sub-
mitted to the
resource manager.

Check the job being
submitted .̀

0x110-
0a950

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EMPTY_
NODELIST

The nodelist is
empty for reser-
vation '%s'.

Reservations should
include a node list.

0x110-
0a951

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
FAIRSHARE_PAL

Fairshare does not
allow specified PAL
(%s).

The fairshare
algorithm is reverting
to the original PAL.

0x110-
0a952

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
START_TIME

Cannot find earliest
start time for job
'%s'.

Resources needed to
run the job may
never be available.

0x110-
0a953

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NODE_
MODIFY

Cannot modify node
'%s' Error(%s).

The node could not
be modified.

0x110-
0a954

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_TRIGGER_
RSV_CREATE

Unable to create a
trigger reservation.

Check the reser-
vation time, nodes,
and account.

0x110-
0a955

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
TRIGGER

Trigger '%s' with
PID '%s' does not
exist--completing!

The process may
have already com-
pleted.

0x110-
0a956

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EMPTY_
HOSTLIST

The hostlist is empty
for reservation.

Reservations should
include a hostlist.

Moab Workload Manager

1142 Appendices

Appendices 1143

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a957

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
POLICY_
VIOLATION

Unable to create
requested reser-
vation due to a policy
violation (%s).

Reservations must
conform to existing
policies.

0x110-
0a958

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
CREATE_
FAILURE

Unable to create
requested reser-
vation at time %s
(%s).

Resources are
unavailable at
requested time.

0x110-
0a959

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
OWNER

Cannot process
owner '%s' for stand-
ing reservation '%s'
(%s).

Consult the error
message.

0x110-
0a95a

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
PARTIAL

Partial reservation
%s reserved %s of
%s procs in partition
'%s' to start in %s at
(%s) %s.

Entire reservation
could not be filled.

0x110-
0a95c

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_RSV_
NEGATIVE_
JOBCOUNT

Reservation %s job-
count is %s, should
not decrement less
than 0.

JobCount cannot be
negative.

0x110-
0a95d

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_EMPTY_
REQ_NODELIST

Req node list empty
for job %s:%s in
state %s (job nodel-
ist copied to req
nodelist).

Job should include a
req node list.

0x110-
0a95e

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_TASK_
ALLOCATION_
INFO

Cannot locate task
allocation info for job
%s:%s in state %s.

Job should include a
task list.

0x110-
0a95f

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
THREADPOOL_
SIZE

Invalid ThreadPoolS-
ize '%s' (must be a
non-negative integer
no larger than %s).

Check the size for a
valid value.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a960

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
QUEUE_TIME

Job '%s' has invalid
system queue time
(SQ: %s > ST: %s).

Check the job queue
time value.

0x110-
0a961

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NO_
WCLIMIT

Job '%s' has no
WCLimit specified.

Check the job for the
correct value.

0x110-
0a962

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
INVALID_
PROTOCOL

Invalid protocol '%s'
specified for account
manager '%s'.

Communication with
the account manager
must be over a sup-
ported protocol.

0x110-
0a963

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_NO_
POWER_
INTERFACE

No external power
interface - cannot set
power state '%s' on
node '%s%s%s'.

Cannot set the power
state on the node
without a power
interface.

0x110-
0a964

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
STARTED_ON_
ANOTHER_RM

Job '%s' started
externally: (rc: %s;
errmsg: '%s'; Task-
list: '%s').

Two or more
resource managers
are running side-by-
side and the job is
already running on
one of them.

0x110-
0a965

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
COMMAND_
FAILED_CHILD_
PROCESS

Job submit request
failed with child pro-
cess status code-
e='%s', stderr='%s',
stdout='%s', EMs-
g='%s'.

Review the status
code and error mes-
sage for further
information.

0x110-
0a967

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
REGISTER_JOB

Unable to register
job creation with
account manager for
job '%s', reason:
'%s'.

Check the status of
the account manager.

Moab Workload Manager

1144 Appendices

Appendices 1145

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0a968

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
DEPRECATED_
PARAMETER

Use of the
JOBFAILUREACTION
parameter is deprec-
ated. Use
STARTFAILUREACTI-
ON instead.

Check the doc-
umentation for the
new parameter syn-
tax.

0x110-
0a969

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_AM_
INVALID_
ACTION

Invalid action '%s'
specified in '%s' for
account manager
'%s'.

Check the doc-
umentation for valid
actions for the
account manager.

0x110-
0a9bf

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_ERASING_
JOB

Erasing job '%s' by
address.

The specified job
could not be found
by name. The entire
job table was
searched to find the
matching job.

0x110-
0a9e1

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
INVALID_TASK_
LAYOUT

Job '%s' has invalid
task layout (TPN:%s
* N:%s != T:%s).

The task layout does
not compute.

0x110-
0a9e2

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_JOB_
ACCESS_QOS

Job '%s' does not
have access to QOS
'%s' (QAL: %s).

The QoS is not access-
ible from the job.

0x110-
0a9f8

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_
DUPLICATE_
SYSTEMJID

Duplicate SystemJID
'%s' [JState: %s]
found from RM '%s'.

The SystemJID must
be unique.

0x110-
0a9fc

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_CANNOT_
PING_RM

Cannot ping RM '%s'
because a file was
not specified.

A file path to a valid
file is needed.

0x110-
0aa07

ADMI-
N

sys-
tem.-
moab

WAR-
N

MWM_VM_
CONTAINER_
NODE

Cannot find or add
container node '%s'
for VM '%s'.

The node could not
be found.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0e710

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
ARG_VALUE

Invalid arguments
passed to this func-
tion.

One or more argu-
ments passed to this
function were not
valid. This is an
internal error logged
for informational pur-
poses.

0x110-
0e72b

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_SEND_
SENT_NO_DATA

No data was sent to
the socket when it
should have been.

The send() system
call reported no data
was sent when data
should have been
sent.

0x110-
0e72e

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_SOCKET_
BLOCKED_
UNEXPECTEDLY

Read operations on
the socket were
blocked when it
should have been
available.

A socket operation
reported that the
operation was
blocked. Previous
information indicated
that this operation
should have been
available.

0x110-
0e73f

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_MUTEX_
LOCK

Cannot lock mutex
semaphore using
pthread_mutex_lock
().

This is an operating
system call problem.

0x110-
0e740

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_MUTEX_
UNLOCK

Cannot unlock mutex
semaphore using
pthread_mutex_
unlock().

This is an operating
system call problem.

0x110-
0e771

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_THREAD_
DB_INIT

Thread %s attempt-
ing to re-initialize
database info struct.

Internal error con-
dition.

0x110-
0e84b

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
CORRUPT_
COMMAND_
RECEIVED

Corrupt command
'%s' received.

The communication
packet received from
a Moab client com-
mand is malformed.

Moab Workload Manager

1146 Appendices

Appendices 1147

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0e919

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
CHECKPOINT_
NO_XML

The checkpoint data
does not contain
XML.

Internal error.

0x110-
0e91a

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
CHECKPOINT_
INVALID_XML

The checkpoint data
does not contain
valid XML (%s).

Internal error.

0x110-
0e91b

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
CHECKPOINT_
UPDATE_RSV_
FROM_XML

Unable to update a
reservation from
checkpoint XML.

Internal error.

0x110-
0e927

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_JOB_
ATTR_TO_
STRING

Job attribute '%s'
not yet translated to
string value.

Internal warning.

0x110-
0e92c

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
STATUS_CODE

The status code was
missing from the S3
response.

This is an internal
error.

0x110-
0e92d

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_MISSING_
STATUS_VALUE

The status value was
missing from the S3
response.

This is an internal
error.

0x110-
0e93a

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
SIMULATION_
NO_JOBS

No jobs loaded in
simulation.

Internal simulation
error.

0x110-
0e93b

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
SIMULATION_
JOB_DETECTED_
TRACEBUFFER

Job '%s' previously
detected in tracefile
(MJobTraceBuffer
[%s]/JC: %s; IT: %s).

Internal simulation
error.

0x110-
0e93c

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_
SIMULATION_
JOB_DETECTED

Job '%s' previously
detected in tracefile
(Job/JC: %s; IT: %s).

Internal simulation
error.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x110-
0e93e

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_READ_
COMMAND_
OUTPUT

Cannot read output
of command '%s'.

This is an internal
communications
error.

0x110-
0e94b

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_THREAD_
TIMEOUT

Thread %s killed
(%s micro-second
time out reached).

This is an internal
issue.

0x110-
0e94f

INTER-
NAL

sys-
tem.-
moab

WAR-
N

MWM_INVALID_
XML_RM

Invalid XML data for
resource manager
'%s'.

Check the XML syn-
tax.

0x210-
00067

USER domain.li-
fecycle

ERR-
OR

MWM_JOB_END_
FAILED

Job %s failed. %s The job finished
unsuccessfully.

0x210-
000ca

USER domain.li-
fecycle

ERR-
OR

MWM_NODE_
EVAC_VMS_
ERROR

Error evacuating
VMs off node %s. %s

There was an error
while attempting to
evacuate the VMs off
the node.

0x210-
02882

USER sys-
tem.-
moab

ERR-
OR

MWM_NODE_
MODIFY_
FAILURE

Cannot modify node
state of '%s' Error
(%s).

The node state could
not be modified.

0x210-
02a1a

USER sys-
tem.-
moab

ERR-
OR

MWM_
DEPRECATED_
RM_FEATURE

RM flag
SUBMITJOBSASROOT
not supported with
this version, %s.
Must be >= 2.4.8.

The resource man-
ager version should
be updated to get
support for this fea-
ture.

0x210-
08003

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_TESTING_
ERROR

Testing with argu-
ment1: %s. and argu-
ment2: %s.

Internal error for
testing diagnostics.

0x210-
08263

ADMI-
N

domain.li-
fecycle

ERR-
OR

MWM_VC_
SCHEDULE_
FAILURE

Failed to schedule
virtual container
'%s'.

This is an internal
error.

Moab Workload Manager

1148 Appendices

Appendices 1149

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a718

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FORK_ERROR

Cannot fork the pro-
cess, errno: %s (%s).

The fork() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a719

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
EXEC_PROGRAM

Cannot exec action
'%s', errno: %s (%s).

The exec() system
call failed to execute
the command. This
may be because the
command does not
exist or the per-
missions do not allow
it to be run. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a71b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CHOWN_FILE

Failure changing
ownwership of file:
'%s' to uid:'%s',
gid:'%s', errno: %s
(%s).

The chown() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a71f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PIPE_
READ_FAILED

Failed to read pipe
on command '%s',
errno: %s (%s).

The fread() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a720

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
READ_FILE

Cannot read file '%s',
errno: %s (%s).

The fread() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a721

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
WRITE_TO_FILE

Failure writing to file,
errno: %s (%s).

The write() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a725

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
GET_HOSTNAME

Cannot get hostname
'%s', errno: %s (%s).

The gethostname()
system call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x210-
0a727

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_
SOCKET

Failure creating a
socket, errno: %s
(%s).

The socket() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a728

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CONNECT_TO_
HOST

Failure connecting to
server '%s' on port
%s, errno: %s (%s).

The connect() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a730

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_EPOCH_
FAIL

Epoch Fail, time: '%s'
cannot be converted
to an epoch time,
errno: %s (%s).

The mktime() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a731

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MEMORY_
ALLOCATION_
FAILURE_
MALLOC

Failure allocating
memory (malloc),
allocating '%s' bytes,
errno: %s (%s).

The malloc() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a732

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MEMORY_
ALLOCATION_
FAILURE_
CALLOC

Failure allocating
memory (calloc),
allocating '%s' ele-
ments of size '%s'
bytes, errno: %s
(%s).

The calloc() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

Moab Workload Manager

1150 Appendices

Appendices 1151

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a733

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MEMORY_
ALLOCATION_
FAILURE_
REALLOC

Failure allocating
memory (realloc),
allocating '%s' bytes,
errno: %s (%s).

The realloc() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a734

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
DUPLICATE_
STRING

Failure duplicating
string, errno: %s
(%s).

The strdup() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a735

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CHANGE_
PROCESS_
GROUP

Failure changing pro-
cess group, errno:
%s (%s).

The setpgrp() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a736

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_
THREAD

Failure creating
thread: '%s', errno:
%s (%s).

The pthread_create()
system call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x210-
0a737

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
TRUNCATE_FILE

Failure truncating a
file '%s', errno: %s
(%s).

The truncate() sys-
tem call failed. Use
the errno and asso-
ciated message to
determine possible
causes.

0x210-
0a739

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PIPE_
OPEN_FAILED

Failed to open pipe
on command '%s',
errno: %s (%s)

The popen() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a73d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CHANGE_
DIR_FAILURE

OS call to change dir-
ectory to '%s' failed
errno: %s (%s).

The chdir() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x210-
0a74a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
LOCK_MOAB_
PID_FILE

Cannot lock the PID
file '%s'. Is Moab
already running?

Moab tries to ensure
that only one
instance of itself is
running. In the
default configuration
it will exit if it cannot
obtain a lock.

0x210-
0a74e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CONFIG_
FILE_NOT_
FOUND_ERROR

Cannot locate con-
figuration file in any
predeterminted loc-
ation.

Moab cannot find the
configuration file.
Verify that it is
present and installed
in a proper location.

0x210-
0a757

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MWS_RM_
CONFIGURATIO-
N

The resource man-
ager with Moab Web
Services (%s) does
not have a base URL,
username, and pass-
word configured.

Correctly configure
the Moab Web Ser-
vices resource man-
ager.

0x210-
0a761

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_STRICT_
INVALID_
CONFIG_LINE

Error processing line
#%s: %s - (%s).

Check the line num-
ber in the con-
figuration file.

0x210-
0a767

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NO_
MONGOSERVER_
SPECIFIED

Failed to initialize
connection to Mongo
server. (Moab is con-
figured to use
Mongo, but no
MONGOSERVER is
specified.)

Cannot connect to
the Mongo server
since the
MONGOSERVER para-
meter was unspe-
cified. Add
MONGOSERVER para-
meter to moab.cfg.

Moab Workload Manager

1152 Appendices

Appendices 1153

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a768

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MONGOSERVER_
INITIALIZATIO-
N_FAILED

Failed to initialize
connection to Mongo
server '%s'.

Failed to initialize con-
nection to the con-
figured
MONGOSERVER.
Check the following:
(1) network con-
nection to Mongo
server; and (2) check
MONGOUSER and
MONGOPASSWORD
parameters in moab-
private.cfg.

0x210-
0a76a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MONGOSERVER_
AUTHENTICATI-
ON_FAILURE

Failed to authen-
ticate to Mongo
server (%s).

Check user cre-
dentials.

0x210-
0a76b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MONGOSERVER_
WRITE_FAILURE

Unable to write out
transition object
'%s'.

The BSON inform-
ation is invalid or
missing.

0x210-
0a76c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
MONGOSERVER_
DOWN

The Mongo server is
down.

Check the status of
the server.

0x210-
0a76f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_DB_
CHECKPOINT_
OBJECT

Unable to checkpoint
object to the data-
base (%s).

Make sure the data-
base is running.

0x210-
0a773

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_BACKUP_
SERVER_
CONNECTION_
FAILED

The system was
unable to connect to
the backup server
%s (%s:%s).

Make sure the
backup server's
address is correct.

0x210-
0a776

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
CONNECTION_
REFUSED

Connection to the
server was refused
(%s).

Primary server
refused and no fall-
back server available.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a777

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_CONNECT

Cannot send request
to %s:%s (%s may
not be running).

Unable to connect to
the scheduler pro-
gram.

0x210-
0a779

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CLIENT_
MAX_
CONNECTIONS_
REACHED

Cannot accept con-
nection number %s
(transaction number
%s) from '%s' (limit
reached).

May need to increase
the
CLIENTMAXCONNEC-
TIONS configuration
setting.

0x210-
0a77a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SERVER_
CONNECTION_
FAILED

The system was
unable to connect to
the server %s:%s -
%s.

Make sure the
server's address is
correct and it is run-
ning.

0x210-
0a77c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
COMMUNICATI-
ON_ERROR

Communication
error %s:%s (%s).

General error trying
to communicate with
the host.

0x210-
0a77d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
PARSE_SERVER_
RESPONSE_
STATUS

Cannot parse server
response (status).

The response sent
from the server is
malformed.

0x210-
0a77e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
PARSE_SERVER_
RESPONSE_
DATA

Cannot parse server
response (data).

The response sent
from the server is
malformed.

0x210-
0a77f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
FS_TARGET

Invalid type spe-
cified for FSTarget.

Fairshare target type
is invalid.

0x210-
0a780

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_COULD_
NOT_ADD_FS_
TREE_NODE

Could not add fstree
node %s.

Unable to add a node
to the fairshare con-
figuration tree.

0x210-
0a781

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
ADD_MANAGER_
TO_FS_TREE

Could not add man-
ager %s to fstree.

Unable to add a man-
ager to the fairshare
tree.

Moab Workload Manager

1154 Appendices

Appendices 1155

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a782

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CRED_
MANAGER_
OVERFLOW

CredManager over-
flow, manager %s
not added.

Credential Manager
could not add
another manager.

0x210-
0a783

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CRED_
MANAGER_
OVERFLOW_
CHILD

CredManager over-
flow while adding
managers to child in
fstree.

Fairshare tree con-
figuration problem.

0x210-
0a786

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_SELECT_
TASKS_FOR_JOB

Cannot select tasks
for job %s. (%s)

Cannot select a node
list that matches the
requirements for this
job. This may not be
serious since multiple
passes may occur.

0x210-
0a787

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
GET_TASK_ON_
RESERVATION

Cannot get tasks on
(ERR: %s/no reser-
vation/iteration %s).

Cannot select tasks
that meet the
requirements.

0x210-
0a78a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_BEST_
VAL_ACHIEVED_
BUT_SCHEDULE_
EMPTY

BestVal %s achieved
but schedule is
empty.

Best value has been
set, but the schedule
is empty.

0x210-
0a78b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
SCHEDULING_
FAILURE_NO_
RESERVATION

Scheduling failure
%s (policy viol-
ation/no reser-
vation) iteration: %s.
(%s)

The job was not
scheduled because
no reservations are
available.

0x210-
0a78c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNSUPPORTED_
SERVICE

Service '%s' (%s)
not supported.

A request for an
unsupported service
was sent.

0x210-
0a78d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
CLASS_HOST_
EXPRESSION

Invalid class host
expression received
(%s) : %s.

Failed to expand the
class's host pattern to
a list.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a78e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_TOO_
MANY_
COALLOCATION_
REQUESTS

Too many co-alloc-
ation requests (%s >
%s).

Too many co-alloc-
ation requests were
received.

0x210-
0a78f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
JOBID_COUNTER

Min Job ID '%s' must
be less than Max Job
ID '%s'.

Invalid job id was
encountered.

0x210-
0a790

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
PARAMETER_
NOT_HANDLED

Parameter[%s] '%s'
not handled.

The specified para-
meter was not
handled due to an
unknown format.

0x210-
0a791

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
CIRCULAR_JOB_
DEPENDENCY

Job cannot be
dependent on itself.

The job is trying to
use itself as a
dependency, which
creates a circular
dependency and is
invalid.

0x210-
0a792

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_AM

Cannot create AM
%s.

Could not create
account manager
object.

0x210-
0a793

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
FLUSH_
INTERVAL

%s for AM %s. An invalid flush inter-
val has been entered.

0x210-
0a794

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FAILED_
SERVER_AUTH

Unable to authen-
ticate server.

The server could not
be authenticated.

0x210-
0a795

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NO_
QUOTE

No quote output
provided in
response.

No quote output
provided in response.

0x210-
0a796

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_PARSE_XML

Unable to parse XML
(%s): %s.

Unable to parse XML
data.

Moab Workload Manager

1156 Appendices

Appendices 1157

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a797

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
QUOTE

Invalid quote
amount (%s).

Quote is invalid.

0x210-
0a798

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
RECURRING_
COST

Unable to determine
recurring cost.

Unable to determine
recurring cost.

0x210-
0a799

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
AVAILABLE_
PORT_NOT_
FOUND

Cannot locate an
available port for
listening.

After trying to bind
to a large number of
ports, none were
found to be available.
Check network socket
status for saturation.

0x210-
0a79a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
RESOLVE_IP_
FROM_
HOSTNAME

Cannot resolve IP
address from host-
name '%s', get-
addrinfo() rc: %s
(%s).

There is a failure
matching an IP
address to a host-
name. Check DNS,
/etc/hosts or applic-
able nameservice.

0x210-
0a79b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNKNOWN_
CHECKPOINT_
TYPE

Unexpected check-
point type, %s.

Unknown checkpoint
type while reading
from the file.

0x210-
0a79c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
CHECKPOINT_
FILE_LINE_NOT_
HANDLED

Line '%s' not
handled in check-
Point file '%s'.

Please contact Adapt-
ive Computing for
assistance.

0x210-
0a79d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
ADD_DEFAULT_
GROUP

Cannot add default
group.

Default group cannot
be added.

0x210-
0a79e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
ADD_GROUP

Cannot add group
%s.

Group cannot be
added.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a79f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
ACCOUNT_NOT_
ACCESSIBLE_BY_
JOB

Account '%s' is not
accessible by job
'%s'.

The job is not author-
ized to run under the
listed account.

0x210-
0a7a0

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
DETERMINE_
DEFAULT_
ACCOUNT

Unable to determine
default account for
job '%s', user '%s'.

There is not a default
account type for this
job.

0x210-
0a7a1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_
RESERVATION

Cannot create reser-
vation for job '%s'.

Failed to create reser-
vation for job.

0x210-
0a7a2

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
NODELIST_BAD_
TASKCOUNT

Invalid nodelist for
job %s:%s (inad-
equate taskcount, %s
< %s).

Invalid node list due
to indequate task
count.

0x210-
0a7a3

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
NODELIST_BAD_
NODECOUNT

Invalid nodelist for
job %s:%s (inad-
equate nodecount,
%s < %s).

Invalid node list due
to indequate node
count.

0x210-
0a7a4

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
ALLOCATION_
POLICY

Invalid allocation
policy (%s).

Invalid allocation
policy.

0x210-
0a7a5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NO_
MEMORY_FOR_
ALLOCPARTITIO-
N_VARIABLE

Cannot set
ALLOCPARTITION
variable for job %s
(no memory).

No memory remain-
ing to create job vari-
able.

0x210-
0a7a6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_BASIL_
RSVID_NOT_
FOUND

Cannot locate BASIL
RSVID (job
'ALLOCPARTITION'
variable) that was
just created.

Cannot locate BASIL
reservation id stored
in the
ALLOCPARTITION
variable.

Moab Workload Manager

1158 Appendices

Appendices 1159

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7a7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_ADD_
CLASS_ATTR

Cannot add class for
job %s (Class: %s).

Unable to add a class
requirement attrib-
ute to a job.

0x210-
0a7a8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_ADD_
DRM_ATTR

Cannot set des-
tination RM for job
%s (RM: %s).

Unable to add a des-
tination resource
manager attribute to
a job.

0x210-
0a7a9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
FLAGS_INVALID_
SOURCE

Attempting to set job
flags from invalid
format.

Job flags must be cre-
ated using doc-
umented formats.

0x210-
0a7aa

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SET_SIZE_
ON_
NONEXISTENT_
REQ

Reqirement must be
created before size is
set.

Unable to set the size
of an unallocated
requirement.

0x210-
0a7ab

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
GROUP_TO_JOB_
FAILURE

Cannot add group
for job %s (Group:
%s).

Unable to set a group
attribute on a job.

0x210-
0a7ac

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NULL_
JOB_NAME

Cannot add an
empty name as an
alternate name
attribute for job %s.

No value specified.
Make sure the altern-
ate job name has a
value.

0x210-
0a7ad

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SPACES_
IN_JOB_NAME

Attempted to set a
job name (%s) with
space(s) for job %s.

A job name with
space(s) was spe-
cified. Job names can-
not contain
embedded spaces.

0x210-
0a7ae

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
QOS_TO_JOB_
FAILURE

Cannot add QOS for
job %s (QOS: %s).

Unable to set a QOS
attribute on a job.

0x210-
0a7af

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
SRM_TO_JOB_
FAILURE

Cannot add Submit
RM for job %s (RM:
%s).

Unable to find the
entered name as an
available resource
manager.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7b0

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
VARIABLE_TO_
JOB_FAILURE

Cannot set variable
for job %s (no vari-
able name specified).

Only variables with
names can be added
as a job attribute.

0x210-
0a7b1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
USER_TO_JOB_
FAILURE

Cannot add user for
job %s (User: %s).

Unable to set a user
attribute on a job.

0x210-
0a7b2

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
NODE_TO_JOB_
FAILURE

Cannot add node for
job %s (Node: %s).

Unable to set a node
attribute on a job.

0x210-
0a7b3

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADD_
ACCOUNT_TO_
JOB_FAILURE

Cannot add account
for job %s (Name:
%s).

Failed to add account
to the job.

0x210-
0a7b5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
TIME_STRING

Invalid format for
time specification:
'%s'.

A string that
describes a time can-
not be parsed
because the format is
wrong, or the values
are out of range.

0x210-
0a7b6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FIND_ARRAY_
JOB

Cannot find array
job at index %s for
job '%s'.

Array job is missing.

0x210-
0a7b7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
BUFFER_FULL

Job buffer is full
(ignoring job '%s').

Ignoring job since job
buffer is full. Try
increasing the value
specified for the
MAXJOB parameter.

0x210-
0a7b8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FIND_MASTER_
JOB

Cannot find master
job (%s) for job '%s';
job array slot limits
may not be enforced.

Cannot find the mas-
ter job that is asso-
ciated with a job
array.

Moab Workload Manager

1160 Appendices

Appendices 1161

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7b9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
ACTION_STRING

The action string
(%s) is invalid.

The format of the
action string is
'<operation type>:<-
operation ID>:<-
operation action>'
Example:
job:145+146+147:ca-
ncel where 145,146
and 147 are job IDs.

0x210-
0a7ba

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
OBJECT_TYPE

The object type %s is
invalid.

The format of the
action string is
'<operation type>:<-
operation ID>:<-
operation action>'
Example:
job:145+146+147:ca-
ncel where 145,146
and 147 are job IDs.

0x210-
0a7bb

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_NOT_
FOUND

Unable to locate job
%s.

The named job was
not located in the sys-
tem.

0x210-
0a7bc

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_IN_
BAD_STATE_
FOR_COMPLETE

Completed trigger
action is specified for
job %s but it is in an
invalid state.

The job is not a sys-
tem job and is not
allowed to be started
by the resource man-
ager.

0x210-
0a7bd

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
CANNOT_BE_
HELD

Job %s cannot be
put into hold state.

The resource man-
ager cannot hold the
job, usually because
the job is not in a
state that can be
held.

0x210-
0a7be

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
SET_TRIGVAR

Cannot set trigger
variable on job %s.

The trigger variables
on a job cannot be
set.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7bf

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
SET_REQATTR

Cannot set request
attribute variable on
job %s.

The request attribute
variables on a job
cannot be set.

0x210-
0a7c0

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
ADJUST_GRES

Cannot adjust gen-
eric resources for job
%s.

The generic
resources of the job
could not be mod-
ified.

0x210-
0a7c1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
GRES_VALUE

Invalid value '%s' for
GRes '%s' %s.

The value being set
on the generic
resource is not valid.

0x210-
0a7c2

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
MODIFY_
ATTRIBUTE

Attribute %s cannot
be modified for job
%s.

The job's attribute
could not be mod-
ified.

0x210-
0a7c3

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_COULD_
NOT_SEND_
SIGNAL

Signal %s could not
be sent to job %s.

The resource man-
ager was unable to
send the signal to the
job.

0x210-
0a7c4

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_COULD_
NOT_START_JOB

Could not start job
%s in %s.

The resource man-
ager was unable to
start the job.

0x210-
0a7c5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_REQUEUE_
JOB

Cannot requeue job
%s.

The job could not be
requeued.

0x210-
0a7c6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNHANDLED_
ACTION

The action %s was
not handled.

The action was
undefined in this
function.

0x210-
0a7c7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNRECOGNIZE-
D_ATTRIBUTE

The attribute %s is
not recognized.

The attribute is not
in the lookup table.

Moab Workload Manager

1162 Appendices

Appendices 1163

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7c8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNRECOGNIZE-
D_JOB_ACTION

The job action %s is
not recognized.

The job action is not
in the lookup table.

0x210-
0a7c9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_CANCEL_JOB

Job %s could not be
canceled.

The job could not be
canceled.

0x210-
0a7ca

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_HOLD_JOB

Job %s could not be
held in.

The job was unable
to be put into a hold
state.

0x210-
0a7cb

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
PBS_SBINDIR

Invalid SBINDIR spe-
cified (%s).

Check paths for the
directory containing
pbs_iff.

0x210-
0a7cc

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_CONNECT_
PBS_SRVR

Cannot connect to
PBS server '%s'; rc:
%s (pbs_errno=%s,
'%s').

Make sure the pbs_
server process is run-
ning.

0x210-
0a7cd

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
GET_SRVR_INFO

Cannot get server
info: %s.

Make sure that the
pbs_server process is
running.

0x210-
0a7ce

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
LOAD_SRVR_
INFO

Cannot load PBS
server info: %s.

Make sure that the
pbs_server process is
running.

0x210-
0a7cf

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
LOAD_PBS_
CLUSTER

Cannot load PBS
cluster info: %s.

Make sure that the
pbs_server process is
running.

0x210-
0a7d0

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
LOAD_PBS_
WORKLOAD

Cannot load PBS
workload info: %s.

Make sure that the
pbs_server process is
running.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7d1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
LOAD_PBS_
QUEUE

Cannot load PBS
queue info: %s.

Make sure the path
to the queue con-
figuration is access-
ible by Moab.

0x210-
0a7d3

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
PROCESS_NODE_
INFO

Cannot process node
info.

Make sure the
resource manager is
running.

0x210-
0a7d4

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
BUFFER_FULL

Node buffer is full
(ignoring node '%s').

Try increasing the
node buffer.

0x210-
0a7d5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
CANNOT_START

Job '%s' cannot be
started: (cannot gen-
erate Tasklist).

Check the PBS server
log to see reason of
failure.

0x210-
0a7d6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
CANNOT_START_
TASK_EMPTY

Job '%s' cannot be
started: (empty Task-
list).

Check the PBS server
log to see reason of
failure.

0x210-
0a7d7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
SET_NODE_
COUNT

Cannot set
nodecount for job
'%s' - %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7d8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
SET_WALLTIME

Cannot set walltime
for job '%s' - %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7d9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
SET_TASKLIST

Cannot set Tasklist
for job '%s' - %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7da

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_START_JOB_
RC

Job '%s' cannot be
started: (rc: %s;
errmsg: '%s'; Task-
list: '%s').

Check the PBS server
log to see reason of
failure.

Moab Workload Manager

1164 Appendices

Appendices 1165

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7db

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_SIGNAL_JOB

%s' cannot be sig-
nalled: %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7dc

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_SUSPEND_
JOB

Job '%s' cannot be
suspended: %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7dd

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_RESUME_JOB

Job '%s' cannot be
resumed: %s.

Check the PBS server
log to see reason of
failure.

0x210-
0a7de

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_FIND_
RESOURCE

Failed to find/add
%s generic resource.

Failure to find/add
GPUs/MICs to the
global GRES/MIC
slots.

0x210-
0a7df

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_SET_
CREDENTIALS

Cannot authenticate
job '%s' (U: %s; G:
%s; A: '%s').

Could not set the cre-
dentials on the job.

0x210-
0a7e0

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_REQUEUE

PBS job '%s' cannot
be requeued (rc: %s;
'%s').

Check the PBS server
log to see reason of
failure.

0x210-
0a7e1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_
CHECKPOINT

PBS job '%s' cannot
be checkpointed (rc:
%s; '%s').

Check the PBS server
log to see reason of
failure.

0x210-
0a7e2

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_RELEASE

PBS job '%s' cannot
be released from
hold (rc: %s; '%s').

Check the PBS server
log to see reason of
failure.

0x210-
0a7e5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_FIND_
ACCOUNT

Cannot find account
for job %s (Name:
%s).

Make sure the
account exists.

0x210-
0a7e6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
ARGUMENT

Command '%s' args
not handled.

An unsupported
argument was used.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7e7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
LOGDIR

LogDir '%s' is invalid. Make sure that the
path to the logs dir-
ectory exists.

0x210-
0a7e8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
SPOOLDIR

SpoolDir '%s' is
invalid.

Make sure that the
path to the spool dir-
ectory exists.

0x210-
0a7e9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
STATDIR

StatDir '%s' is
invalid.

Make sure that the
path to the stat dir-
ectory exists.

0x210-
0a7ea

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
TOOLSDIR

ToolsDir '%s' is
invalid.

Make sure that the
path to the tools dir-
ectory exists.

0x210-
0a7eb

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_DAT_
FILE

Cannot cre-
ate/modify dat file:
'%s'.

Moab encountered
an error creating the
dat file.

0x210-
0a7ec

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
FEATURE_NOT_
AVAILABLE_IN_
BUILD

The '%s' feature is
not available in the
build of Moab.

Moab can be con-
figured with various
features. The listed
feature is not avail-
able in the binary
being run.

0x210-
0a7ed

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
FEATURE_NOT_
AVAILABLE_
WITH_LICENSE

The '%s' feature is
not enabled with the
current Moab
license.

Moab can be licensed
with various features.
The listed feature is
not available with the
current license.
Contact Adaptive
Computing for more
information.

Moab Workload Manager

1166 Appendices

Appendices 1167

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7ee

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
RESOURCE_
LIMIT_
EXCEEDED

The maximum num-
ber of '%s' (%s) has
been reached.

Moab has certain
resources that are
limited. This error
occurs when you
have reached or
exceeded those lim-
its. Contact Adaptive
Computing for more
information.

0x210-
0a7f1

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_VM_
MIGRATION_JOB

Failed to create
migration job for VM
%s.

The migration job
was not created.
Check
MIGRATETEMPLATE
on workflow and its
trigger.

0x210-
0a7f2

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
OPEN_
EXTENSION_
INTERFACE

Cannot open exten-
sion interface socket
on port %s.

There was a failure
opening the HTTP
extension service.
This feature will not
work until the prob-
lem is corrected.

0x210-
0a7f3

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
USER_
AUTHENTICATI-
ON

The system was
unable to connect
the given user to job
%s (User: %s, Group:
%s).

Check the credentials
of the given user
and/or group.

0x210-
0a7f4

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
AUTHENTICATI-
ON

The system was
unable to authen-
ticate the user con-
nected with job %s
(User: %s, Group:
%s, Account %s) -
%s.

Check the credentials
of the given user
and/or group.

0x210-
0a7f5

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SEND_
DATA_FAILED

The system was
unable to send data
to the server %s
(%s:%s).

Make sure the
server's address is
correct and that the
server is running.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7f6

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_RECEIVE_
DATA_FAILED

The system was
unable to receive
data from the server
%s (%s:%s).

Make sure the
server's address is
correct and that the
server is running.

0x210-
0a7f7

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
OVERLAP

Job '%s' overlaps an
existing job.

Check the job being
created for overlap.

0x210-
0a7f8

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
CREATION

The system was
unable to create job
'%s'

Verify that the job
being created is cor-
rectly specified.

0x210-
0a7f9

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
STATUS_
ELEMENT

The status element
was missing from the
S3 response.

This is an internal
error.

0x210-
0a7fa

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
WORKFLOW_
JOB

Virtual container
'%s' was marked as
workflow, but could
not find job that cre-
ated it.

This is an internal
error.

0x210-
0a7fb

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
COMBINE_JOBS

Failed to combine
jobs in virtual con-
tainer '%s'.

This is an internal
error.

0x210-
0a7fc

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
SCHEDULE_
TIME_FAILURE

Failed to schedule
virtual container
'%s' for requested
time.

This is an internal
error.

0x210-
0a7fd

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
RESERVATION_
FAILURE

Failed to find a reser-
vation for virtual con-
tainer '%s'.

This is an internal
error.

0x210-
0a7fe

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
RESERVATION_
CREATE_
FAILURE

Failed to create a
reservation for jobs
in virtual container
'%s'.

This is an internal
error.

Moab Workload Manager

1168 Appendices

Appendices 1169

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a7ff

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
RESOURCE_
FAILURE

Requested resources
are not available at
any time for virtual
container '%s'.

This is an internal
error.

0x210-
0a800

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
NONEXISTING_
JOB_USER

Job template %s
requests non-exist-
ent user %s.

Make sure the user
exists.

0x210-
0a801

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
NONEXISTING_
JOB_GROUP

Job template %s
requests non-exist-
ent group %s.

Make sure the group
exists.

0x210-
0a802

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
NONEXISTING_
JOB_QOS

Job template %s
requests non-exist-
ent QoS %s.

Make sure the QoS
exists.

0x210-
0a803

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
CREATE_CLASS

Unable to create
class %s for job tem-
plate %s.

Make sure the class
exists.

0x210-
0a804

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
NONEXISTING_
JOB_ACCOUNT

Job template %s
requests non-exist-
ent account %s.

Make sure the
account exists.

0x210-
0a805

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_INVALID_
WALLTIME_
SPECIFIED

Invalid walltime spe-
cification '%s.

Make sure the format
for walltime is cor-
rect.

0x210-
0a806

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
PARSE_WIKI_
STR

Cannot parse wiki
string for job '%s'.

Make sure the format
for wiki string is cor-
rect.

0x210-
0a807

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
STATS_XML_
ELEMENT

%s is not a valid tem-
plate job stat child
element.

Make sure there is a
stats element in the
XML.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a808

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NULL_
NODE_POINTER

Node pointer is NULL
and cannot be used
to find SMP node.

Node pointer is NULL
and cannot be used
to find SMP node by
node.

0x210-
0a809

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PINDEX_
OUT_OF_RANGE

PIndex is less than -
1 which is out of
range.

PIndex must be
greater than or equal
to -1 to find a node
by partition.

0x210-
0a80a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
FEATURE_OUT_
OF_RANGE

Feature is less than -
1 which is out of
range.

Feature must be
greater than or equal
to -1 to find a node
by feature.

0x210-
0a80b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
INCORRECT_ARG

Incorrect argument
in %s: %s, %s,%s.

Name must point to a
valid string, Feature
must be greater than
or equal to -1, and N
must point to a valid
node.

0x210-
0a80c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
ALLOCATION_
ERROR

Failed to allocate a
node named %s.

Call to MUMalloc
failed, system is prob-
ably low on memory.

0x210-
0a80d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FAILED_
TO_APPEND_
MSMPNODE

Failed to append
smpnode %s to
MSMPNodes.

The call to append
the node to the array
list failed, probably
due to a low memory
condition.

0x210-
0a80e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NULL_
SMPNODE_
POINTER

Cannot initialize
node because
pointer is NULL.

Call to MSMPNodeIni-
tialize must have a
valid pointer to a
valid node.

0x210-
0a80f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NULL_
SMPNODE_
POINTER_IN_
RESET

Cannot reset node
because pointer is
NULL.

Call to MSMPNodeRe-
setStats must have a
valid pointer to a
valid node.

Moab Workload Manager

1170 Appendices

Appendices 1171

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a810

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_RESET_
NODE_FAILED

Call to MSMPNodeRe-
setStats failed.

Call to MSMPNodeRe-
setStats failed. The
most likely cause is
passing a NULL
pointer to SMPNode.

0x210-
0a811

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FREE_
NODE_FAILED

Call to free
MSMPNodes failed.

Call to free
MSMPNodes failed,
most likely due to cor-
rupted memory.

0x210-
0a812

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NULL_
NODE_IN_
UPDATE

Node pointer in %s
cannot be NULL.

Node pointer cannot
be NULL when trying
to update node.

0x210-
0a813

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FIND_NODE

Unable to find SMP
node with node %s.

Unable to find SMP
node by node.

0x210-
0a814

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_EMPTY_
NODE_LIST

Updating node from
list with empty node
list.

Updating node from
node list must not be
called with an empty
node list.

0x210-
0a815

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_BAD_ARG_
IN_FEASIBLE_
JOB

Incorrect argument
to function %s: %s,
%s.

A parameter in the
function was incor-
rect.

0x210-
0a816

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FIND_INDEX_IN_
LIST_FOR_
FEATURE

Could not find index
into NodeSetList for
node feature %s.

Could not find index
into NodeSetList for
node feature.

0x210-
0a817

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_SR

Could not create
standing reservation:
%s.

Failed to create the
named standing
reservation.

0x210-
0a818

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNEXPECTED_
STATISTICS_
TYPE

Unexpected statistics
type: %s.

Number is not a
member of
MMStatTypeEnum
enumeration.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a819

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
PROCESS_VM_
ATTRIBUTE

Cannot process VM
attribute %s for VM
%s.

Either AttrName or
NodeName is not
found in string.

0x210-
0a81a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
FIND_NODE_
FOR_VM

Cannot find node %s
for VM %s.

The node does not
exist or cannot be
found.

0x210-
0a81b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
LOAD_JOB

Cannot load job %s
(state: %s).

There was an error
creating a job in
Moab that was repor-
ted by the resource
manager.

0x210-
0a81c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_
CHECKPOINT_
FILE_ENTRY

Cannot create check-
point file entry.

There was an error
writing a checkpoint
file entry for the asso-
ciated objects.

0x210-
0a81d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
CREATE_
OBJECT_FROM_
CHECKPOINT_
FILE

Cannot create object
from checkpoint file
entry.

There was an error
reading a checkpoint
file entry for the asso-
ciated objects.

0x210-
0a81e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
TASKLIST_TOO_
LARGE

The tasklist for job
'%s' is too large (size
= %s, growth = %s).

The system has a
fixed maximum size
for the task map for
each job.

0x210-
0a81f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
TASKLIST_
MISSING

The tasklist for job
'%s' is missing.

The system requires
that each job has at
least one task
assigned.

0x210-
0a820

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_TASK_
DISTRIBUTION_
UNKNOWN

The system
encountered an
unknown type of
task distribution
(%s).

This is an interal
error.

Moab Workload Manager

1172 Appendices

Appendices 1173

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a822

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
INCOMPATIBLE_
CHARGE_POLICY

Periodic charging dis-
abled due to incom-
patible charge policy
(%s).

The charge policy is
undefined.

0x210-
0a823

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
INCOMPLETE_
JOB_TEMPLATE_
ACTION

The job template
'%s' has an incom-
plete action spe-
cification.

Job templates must
fully specifiy the
action to be per-
formed.

0x210-
0a824

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
INCOMPLETE_
JOB_TEMPLATE_
GENERIC

The job template
'%s' has an incom-
plete generic system
job specification.

Job templates must
fully specifiy the gen-
eric system job.

0x210-
0a825

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
DUPLICATE_
JOB_TEMPLATE_
VMID

The job template
'%s' has a job '%s'
that requests an
existing VMID.

Virtual machine IDs
cannot be shared
across job templates.

0x210-
0a826

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNKNOWN_JOB_
TEMPLATE_
VMID

The requested VMID
'%s' could not be
found or already has
a tracking job.

Virtual machine IDs
can only be assigned
to a single job.

0x210-
0a827

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_MODIFY_JOB

The job '%s' on
account '%s' cannot
be modified in the
resource manager.

The job previously
submitted to the
resource manager
cannot be modified.

0x210-
0a828

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
WORKFLOW_VC_
FAILURE

The system failed to
generate a workflow
virtual container for
job '%s'.

This is an internal
error.

0x210-
0a829

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CREATE_
JOB_TEMPLATE_
FAILURE

The system failed to
create job template
'%s'.

The job could not be
created or one of its
attributes could not
be set.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a82a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_NOT_
FOUND

The system could not
find the virtual con-
tainer for job '%s'.

This is an internal
error.

0x210-
0a82b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
MIGRATION_
FAILED

The system failed to
migrate a remote job
(%s).

Make sure the
resource manager
has not been dis-
abled.

0x210-
0a82c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
START_XML_
FAILURE

The system could not
generate the
coomand line
needed to start job:
'%s'.

The proper com-
mand line could not
be derived from the
XML structure.

0x210-
0a82d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
START_FAILURE_
RESPONSE

The system could not
start job - Reason:
'%s'.

The system was
unable to start the
job for the specified
reason.

0x210-
0a82e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
CANCEL_
FAILURE_
RESPONSE

The system could not
cancel job - Reason:
'%s'.

The system was
unable to cancel the
job for the specified
reason.

0x210-
0a82f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
SIGNAL_
FAILURE_
RESPONSE

The system could not
signal job - Reason:
'%s'.

The system was
unable to signal the
job for the specified
reason.

0x210-
0a830

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
MODIFY_
FAILURE_
RESPONSE

The system could not
modify job - Reason:
'%s'.

The system was
unable to modify the
job for the specified
reason.

0x210-
0a831

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
REQUEUE_
FAILURE_
RESPONSE

The system could not
requeue job -
Reason: '%s'.

The system was
unable to requeue
the job for the spe-
cified reason.

Moab Workload Manager

1174 Appendices

Appendices 1175

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a832

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SEND_
EVENT_FAILURE

The system could
send event '%s' to
resource manager
'%s' (%s).

The system was
unable to send the
event.

0x210-
0a833

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNEXPECTED_
BACKFILL_
POLICY

The system
encountered an
unexpected backfill
policy '%s' (using
'%s' instead).

The backfill policy
did not match a
defined policy.

0x210-
0a834

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
LIST_
ALLOCATION

The system was
unable to allocate a
node list for job '%s'
in partition '%s'.

The system may be
low on memory.

0x210-
0a835

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_BAD_
NODE_IN_
NODELIST

The reservation
nodelist for job' %s'
has an invalid node
at index %s.

Check the nodes spe-
cified for the reser-
vation.

0x210-
0a836

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
RESERVATION_
SPANS_
PARTITIONS

The reservation
request for job '%s'
spans partitions
(node %s partition
%s).

Reservations that
span partitions must
have the COALLOC
flag set.

0x210-
0a837

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ADJUST_
JOB_
RESERVATION_
FAILURE

The system failed to
adjust job '%s' reser-
vation on node %s.

This is an internal
error.

0x210-
0a838

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_OBJECT_
TYPE_INVALID

The object type spe-
cified (%s) is not
valid.

A valid object type
must be specified.

0x210-
0a839

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
OBJECT_ID

The object ID is miss-
ing.

A valid object ID
must be specified.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a83a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
ACTION

The action is missing. A valid action must
be specified.

0x210-
0a83b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PIPE_
BUFFER_FAILED

The system could not
open a bi-directional
pipe.

A valid action must
be specified.

0x210-
0a83c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_STD_OUT_
FAILED

Failed to load stdout
file '%s'.

Check the file name
and path.

0x210-
0a83d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_STD_ERR_
FAILED

Failed to load stderr
file '%s'.

Check the file name
and path.

0x210-
0a841

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CREATE_
NODE_FAILURE

The system was
unable to create
node '%s'.

The system may be
low on memory.

0x210-
0a842

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
PARTITION_
CREATE_
FAILURE

The system was
unable to create a
shared partition for
the global node.

The system may be
low on memory.

0x210-
0a845

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_HT_FIND_
NODE_FAILURE

Cannot find node
'%s' in hash table.

A node by the given
name may not have
been created.

0x210-
0a847

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_HT_FIND_
VM_FAILURE

Cannot find VM '%s'
in hash table.

A VM with the given
name may not have
been created.

0x210-
0a848

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
COMMAND_
FAILED

Command '%s'
failed. StatusCode:
%s; Response: '%s'.

Check the command
syntax and para-
meters.

0x210-
0a849

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_HASH_
TABLE_
INITIALIZATION

There was an unex-
pected hash table ini-
tialization error.

The hash table for
jobs to delete never
initialized correctly.

Moab Workload Manager

1176 Appendices

Appendices 1177

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a84e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_UNABLE_
TO_
AUTHENTICAT-
E_JOB

Unable to authen-
ticate job %s when
UID or GID is empty
(UID=%s, GID=%s).

Either the UID or the
GID field is empty.

0x210-
0a84f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
JOB_
TASKCOUNT

Job does not have a
taskcount specified.

Each job must have
an associated
taskcount.

0x210-
0a850

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FAILED_
EXCLUDE_
NODELIST

The system failed to
add an exclude
nodelist to a sub-
mission.

The job exclude host-
list could not be con-
verted into a string.

0x210-
0a852

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
SUBMIT_VM_
MIGRATION_JOB

Failed to submit
migration job for VM
%s.

Check
MIGRATETEMPLATE
on workflow and its
trigger.

0x210-
0a853

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_WEB_
SERVICES_
WRITE_FAILURE

Error %s
encountered while
trying to write to
web services.

Encountered prob-
lem trying to put
HTTP data to web
server.

0x210-
0a854

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_WEB_
SERVICES_URL_
MISSING

Missing URL in call to
web services.

Web services must
have a valid des-
tination URL.

0x210-
0a855

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_RM_
PARTITION_
CREATE_
FAILURE

The system was
unable to create a
partition for RM '%s'.

The system may be
low on memory.

0x210-
0a856

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PARSE_
MPP_NODES_
FAILURE

The system failed to
parse the MPP nodes
value '%s'.

Check the MPP
names.

0x210-
0a857

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FIND_
MPP_NODES_
FAILURE

The system failed to
find node '%s' in the
MPP nodes value
'%s'.

Check the MPP
names.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a859

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
SET_TYPE_
INVALID

The node set type
specified (%s) is not
valid.

Check the
NODESETLIST option.

0x210-
0a85a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_GRES_
ADD_FAILURE

Unable to add the
GRESTOJOBATTRMA-
P '%s'.

The limit has been
reached.

0x210-
0a85d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NOT_
MWS_RM

The resource man-
ager is not Moab
Web Services.

Make sure the
resource manager
has Moab Web Ser-
vices.

0x210-
0a85e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MWS_RM_
CURL_
CONNECTION

The system could not
intialize a cURL con-
nection to the MWS
RM.

The cURL command
to connect to the
resource manager
has failed.

0x210-
0a85f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MWS_RM_
CURL_
CONNECTION_
EXPANDED

Could not connect to
MWS RM (%s) at
'%s%s' as '%s',
response code: %s;
cURL error: %s (%s);
MWS response: '%s'.

The connection has
failed.

0x210-
0a860

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MWS_RM_
JSON_CLUSTER_
QUERY_EMPTY

JSON cluster query
data from MWS RM
(%s) is null or
empty.

The query must con-
tain valid JSON data.

0x210-
0a861

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MWS_RM_
JSON_
WORKLOAD_
QUERY_EMPTY

JSON workload
query data from
MWS RM (%s) is null
or empty.

The query must con-
tain valid JSON data.

0x210-
0a867

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
TRANSITION_
FAILURE

Unable to transition
a job.

The job was missing
requirements.

Moab Workload Manager

1178 Appendices

Appendices 1179

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a868

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_SET_JOB_
VARIABLE

Unable to set a job
pref variable.

The system is prob-
ably low on memory.

0x210-
0a869

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_ARRAY_
EXPANSION

Unable to expand
the size of an array.

The system is prob-
ably low on memory.

0x210-
0a86c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_FIND_
FAILURE

The system could not
find the virtual con-
tainer '%s'.

Check the name of
the VC.

0x210-
0a86d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_USER_
CREDENTIALS

User '%s' does not
have access to virtual
container '%s'.

Check the rights gran-
ted to the VC.

0x210-
0a86e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VC_
BEING_DELETED

Virtual container
'%s' is being deleted;
cannot add jobs to it.

Only add jobs to VCs
that are not being
deleted.

0x210-
0a86f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
PARTITION_
STATUS

Unable to query the
status of a partition -
%s.

Check to make sure
the resource man-
ager is running.

0x210-
0a870

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_FIND_
JOB_TEMPLATE

The system failed to
find job template
'%s'.

Check the template
name for the given
job.

0x210-
0a873

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_PROCESS_
EVENT

Unable to process
the generic event.

During processing,
unable to get a
description of the
event.

0x210-
0a876

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_CAN_
NEVER_RUN

Unable to allocate
tasks for job at any
time.

Job tasks must match
available resources.

0x210-
0a877

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
NOT_IN_
PARTITION

Node is not asso-
ciated with any par-
tition.

Node must be in a
partition.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0a87a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
COUNT_
EXCEEDS_
LICENSE

The number of
nodes '%s' exceeds
the current license
limit '%s'.

A different license is
needed to use more
nodes.

0x210-
0a87b

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_KILL_
FAILURE

OS call to kill process
(PID: %s) %s failed).

This is an operating
system error.

0x210-
0a87c

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_MISSING_
JOB_
REQUIREMENTS

Job does not have
any requirements
specified.

Each job must have
requirements
attached.

0x210-
0a87d

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
MISSING_
DISPATCH_TIME

Job loaded in alloc
state '%s' with no
dispatch time.

The job must have a
dispatch time.

0x210-
0a87e

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_
UNEXPECTED_
OBJECT_TYPE

The object type '%s'
was not expected in
this operation.

Verify that a valid
object type is given.

0x210-
0a87f

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
TRANSITION_
XML

Unable to create
XML element from
job transition object.

The system may be
low on memory.

0x210-
0a881

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VM_
CREATE_
RESERVATION

Cannot create reser-
vation for VM '%s'.

Failed to create reser-
vation for the given
VM.

0x210-
0aa08

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_VM_
FIELD_VALUE

VM '%s' has an
invalid '%s%s%s'
field value.

The field value for
the VM is invalid.

0x210-
0aa09

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_NODE_
FIELD_VALUE

Node '%s' has an
invalid '%s%s%s'
field value.

The field value for
the node is invalid.

0x210-
0aa0a

ADMI-
N

sys-
tem.-
moab

ERR-
OR

MWM_JOB_
FIELD_VALUE

Job '%s' has an
invalid '%s%s%s'
field value.

The field value for
the job is invalid.

Moab Workload Manager

1180 Appendices

Appendices 1181

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x210-
0c001

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_NOT_
IMPLEMENTED

Function %s has not
been implemented
yet.

This error is used
when we've stubbed
out code but do not
expect it to be called
in production envir-
onments. It's not
helpful except for
internal diagnostics.

0x210-
0e729

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_CANNOT_
SEND_TO_
SOCKET_
DETAILED

Cannot send %s of
%s bytes to socket
descriptor %s -
errno: %s (%s).

The send() system
call failed. Socket is
blocked (select()
indicated socket was
available--check
MTU).

0x210-
0e77b

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_CLIENT_
COUNT_
NEGATIVE

Client count fell
below zero on socket
%s.

This is an internal
error. The number of
client connections
should always be
zero or greater.

0x210-
0e784

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_
HOSTLIST_
MISSING

A hostlist was spe-
cified but now it is
NULL/EMPTY.

The job claims to
have a specified host-
list, but at the cur-
rent point in
processing no list can
be found. This is
most likely an
internal problem.

0x210-
0e7b4

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_
REQATTR_
UNSUPPORTED_
OPERATION

Operation (%s) not
supported on
required attributes
(reqattrs).

See documentation
for supported oper-
ators allows on
required attributes
(reqattrs).

0x210-
0e7ef

INTER-
NAL

sys-
tem.-
moab

ERR-
OR

MWM_VM_NOT_
LINKED_TO_
TRACKING_JOB

VM '%s' not linked to
VMTracking job '%s'
(linked to job '%s').

A VM must be asso-
ciated with a tracking
job.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x310-
02a2c

USER sys-
tem.-
moab

ALER-
T

MWM_NO_
TASKS_FOUND_
ON_JOB

No tasks found for
job '%s'.

Check job submission
arguments for
desired require-
ments.

0x310-
08385

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_EXPIRED_
LICENSE

%s License has
expired.

A license file was
found but it has
expired. Please con-
tact your sales rep-
resentative at
Adaptive Computing
for assistance.

0x310-
08386

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_
EVALUATION_
EXPIRED

%s evaluation period
has expired.

The evaulation
period has expired.
Please contact your
sales representative
at Adaptive Com-
puting for assistance.

0x310-
08387

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_
UNEXPECTED_
LICENSE_ERROR

Moab will now exit.
Unexpected error
while reading
license: %s

Moab was unable to
verify that the license
file was valid. Please
contact your sales
representative at
Adaptive Computing
for assistance.

0x310-
0a712

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_UNABLE_
TO_ALLOCATE_
MEMORY

Unable to allocate
memory.

One or more calls to
allocate memory
failed.

Moab Workload Manager

1182 Appendices

Appendices 1183

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x310-
0a714

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
RESTORE_UID

Cannot restore EUID
to '%s' for server,
errno: %s (%s).

The setuid() system
call failed. There was
a failure resetting the
UID of the process.
This may be because
the process is run-
ning as a different
user. Use the errno
and associated mes-
sage to determine
possible causes.

0x310-
0a715

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
CHANGE_UID

Cannot change UID
to user '%s' (UID:
%s) errno: %s (%s).

The setuid() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x310-
0a716

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
RESTORE_GID

Cannot restore GID
to '%s' for server,
errno: %s (%s).

The setgid() system
call failed. There was
a failure resetting the
GID of the process.
This may be because
the process is run-
ning in a different
group. Use the errno
and associated mes-
sage to determine
possible causes.

0x310-
0a717

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
FORK_INTO_
BACKGROUND

Cannot fork the pro-
cess into the back-
ground, errno: %s
(%s).

The fork() system
call failed. Moab must
do this to daemonize
unless run with the '-
d' flag. This is usually
due to low system
resources.

Moab Workload Manager

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x310-
0a71c

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
CHANGE_
OWNERSHIP_
FILE_FATAL

Cannot change own-
ership of %s file to
uid:%s gid:%s errno:
%s (%s).

The fchown() system
call failed. Use the
errno and associated
message to determ-
ine possible causes.

0x310-
0a745

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
GET_SERVER_
HOSTNAME

Cannot determine
hostname and attrib-
ute '%s' of para-
meter %s is not
specified.

Moab failed to obtain
system host name or
ip address inform-
ation from the oper-
ating system.

0x310-
0a746

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_HA_
MOAB_NOT_
STARTED_ON_
CORRECT_
HOSTS

The server must be
started on host '%s'
or on alternate '%s'
(currently on '%s').

Moab must be star-
ted on either the
primary or alternate
host for high avail-
ability.

0x310-
0a747

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_MOAB_
NOT_STARTED_
ON_CORRECT_
HOST

The server must be
started on host '%s'
(currently on '%s').

Moab must be star-
ted on specified host
as identified by the
SCHEDCFG para-
meter.

0x310-
0a749

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_MOAB_
ALREADY_
RUNNING

Moab is already run-
ning. Cannot open
user interface socket
on port %s.

Cannot open user
interface socket,
which is most likely
caused by Moab
already running.

0x310-
0a74b

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
LOCATE_FULL_
PATH

Cannot locate the full
path for '%s'.

Check the path to
make sure the Moab
executable is in it.
Restart manually to
work around this
problem temporarily.

0x310-
0a74c

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
RESTART_
SCHEDULER

Exec failed when
attempting to restart
the scheduler '%s'
rc: %s.

Please check per-
missions on this
executable to correct
and restart manually
to work around.

Moab Workload Manager

1184 Appendices

Appendices 1185

Code
Escal-
ation
level

Topic
Sev-
erit-
y

Event name Message tem-
plate Comment

0x310-
0a750

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_CANNOT_
CONNECT_TO_
DB_WITH_
STRICT_CONFIG_
CHECK_ON

StrictConfigCheck ON
and cannot connect
to DB--please check
DB engine and con-
figuration (%s).

Moab was unable to
connect to the data-
base and with strict
configuration on
Moab must exit.

0x310-
0a751

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_USER_
NOT_
AUTHORIZED_
TO_RUN_THIS_
PROGRAM

The user '%s' (UID:
%s) is not author-
ized to run this pro-
gram.

The user has insuf-
ficient privileges to
run the program.

0x310-
0a752

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_
PROBLEMS_
WITH_KEY_FILE

Problems with key
file.

Key file does not
exist or ownership of
key file is invalid.

0x310-
0aa0d

ADMI-
N

sys-
tem.-
moab

FATA-
L

MWM_STRICT_
CHECK_EXIT

Exiting because of
strict configuration
check.

Moab is configured to
exit if there are any
errors in con-
figuration files or
file/directory layout.
One of these errors
has occurred.

0x310-
0c002

INTER-
NAL

sys-
tem.-
moab

FATA-
L

MWM_TESTING_
FATAL

Testing with single
argument: %s.

Internal error for
testing diagnostics.

0x310-
0e74f

INTER-
NAL

sys-
tem.-
moab

FATA-
L

MWM_
CORRUPT_
CHECKPOINT_
FILE

Unable to read the
checkpoint file.

Please contact Adapt-
ive Computing for
assistance.

Moab Workload Manager

MWS Event Dictionary

Code Escalation
level Topic Severity Event

name
Message
template Comment

0x02000100 USER INFO Service
Create

The service '
{0}' was cre-
ated

This marks when
a service was cre-
ated.

0x02000101 USER INFO Service
Modify

The service '
{0}' was mod-
ified

This marks when
a service was mod-
ified.

0x02000102 USER INFO Service
Transition

The service '
{0}' took the '
{1}' transition.
It went from
the '{2}' to the
'{3}' phase.

This marks a ser-
vice phase trans-
ition.

0x02000103 USER INFO Service Ter-
minate

The service '
{0}' was ter-
minated

Service ter-
mination means
that the resources
are released and
no more modi-
fications may be
made to the ser-
vice or policies.
However, it still
resides in the data-
base and shows as
"Terminated".

0x02000104 USER INFO Service
Delete

The service '
{0}' was
deleted and is
no longer avail-
able

Service deletion
occurs after ter-
mination and
means that the ser-
vice is fully
removed from the
database and will
no longer be dis-
played in any
queries to MWS.

Moab Workload Manager

1186 Appendices

Appendices 1187

Code Escalation
level Topic Severity Event

name
Message
template Comment

0x02000380 USER INFO Notification
Condition
Create
(User)

The noti-
fication con-
dition '{0}' was
created: {1}

This marks when
a notification con-
dition was created
at the user escal-
ation level.

0x02000500 USER INFO Service
Template
Create

The service
template '{0}'
was created

This marks when
a service template
was created.

0x02000501 USER INFO Service
Template
Modify

The service
template '{0}'
was modified

This marks when
a service template
was modified.

0x02000502 USER INFO Service
Template
Delete

The service
template '{0}'
was deleted
and is no
longer avail-
able

This marks when
a service template
was deleted.

0x02000580 USER INFO Service
Hook Start

The service
hook definition
'{0}' on service
'{1}' was
executed with
an ID of '{2}'

This marks the
execution of a ser-
vice hook defin-
ition for a given
service.

0x02000581 USER INFO Service
Hook End

The running
service hook '
{0}' on service
'{1}' finished
execution with
status '{2}':
{3}

This marks the
end of execution
for a running ser-
vice hook.

0x02000582 USER INFO Service
Hook
Timeout

The running
service hook '
{0}' on service
'{1}' timed out
after {2}
seconds.

This marks the
execution of a ser-
vice hook defin-
ition for a given
service.

Moab Workload Manager

Code Escalation
level Topic Severity Event

name
Message
template Comment

0x02000583 USER INFO Service
Hook Error

There was an
error running
service hook
definition '{0}'
on service '{1}'
with an ID of '
{2}'

This signifies that
internal service
hook processing
has failed and the
service hook could
not be run suc-
cessfully.

0x02004080 POWER_
USER

INFO Policy
Modify

The policy '{0}'
was modified

A policy modi-
fication occurs
when a PUT client
request is
received by Moab
Web Services for
the policy
resource.

0x02004381 POWER_
USER

INFO Notification
Condition
Create
(Power
User)

The noti-
fication con-
dition '{0}' was
created: {1}

This marks when
a notification con-
dition was created
at the power user
escalation level.

0x02008200 ADMIN INFO Permission
Create

The per-
mission '{0}'
was created

This marks when
a permission was
created.

0x02008201 ADMIN INFO Permission
Delete

The per-
mission '{0}'
was deleted

This marks when
a permission was
deleted.

0x02008280 ADMIN INFO Principal
Create

The principal '
{0}' was cre-
ated

This marks when
a principal was cre-
ated.

0x02008281 ADMIN INFO Principal
Modify

The principal '
{0}' was mod-
ified

This marks when
a principal was
modified.

0x02008282 ADMIN INFO Principal
Delete

The principal '
{0}' was
deleted

This marks when
a principal was
deleted.

Moab Workload Manager

1188 Appendices

Appendices 1189

Code Escalation
level Topic Severity Event

name
Message
template Comment

0x02008300 ADMIN INFO Role Create The role '{0}'
was created

This marks when
a role was created.

0x02008301 ADMIN INFO Role
Modify

The role '{0}'
was modified

This marks when
a role was mod-
ified.

0x02008302 ADMIN INFO Role Delete The role '{0}'
was deleted

This marks when
a role was deleted.

0x02008382 ADMIN INFO Notification
Condition
Create
(Admin)

The noti-
fication con-
dition '{0}' was
created: {1}

This marks when
a notification con-
dition was created
at the admin-
istrator escalation
level.

0x02008400 ADMIN INFO Tenant
Create

The tenant '
{0}' was cre-
ated

This marks when
a tenant was cre-
ated.

0x02008401 ADMIN INFO Tenant
Modify

The tenant '
{0}' was mod-
ified

This marks when
a tenant was mod-
ified.

0x02008402 ADMIN INFO Tenant
Delete

The tenant '
{0}' was
deleted

This marks when
a tenant was
deleted.

0x22004180 POWER_
USER

ERROR LDAP Con-
nect

Error com-
municating
with the LDAP
server: {0}

This occurs when
communication
could not be estab-
lished with the
configured LDAP
server.

Moab Workload Manager

Code Escalation
level Topic Severity Event

name
Message
template Comment

0x22008105 ADMIN ERROR Service
Transitions
Missed

Service '{0}' ('
{1}') is in
phase '{2}' but
should be in
phase '{3}'
according to
the state repor-
ted by MWM.
It is probable
that one or
more phase
transitions
were missed.
Any hooks asso-
ciated with
those trans-
itions were
probably not
executed.

This happens
when the phase of
a service as recor-
ded by MWS dif-
fers from the
phase expected
according to the
state of the ser-
vice's jobs as
reported by
MWM. This means
that oneor more
phase transitions
were missed and
thus any hooks on
those transitions
did not execute.
This problem is
most likely caused
by either the mes-
sage queue being
misconfigured or
MWS being down
while MWM is run-
ning.

0x22008480 ADMIN ERROR Health
Retrieval
Failed

The health
summary
could not be
retrieved suc-
cessfully: {1}

This means a ser-
ious error
occurred while
attempting to
retrieve the con-
tents of the health
summary REST
resource from
MWS.

0x22008481 ADMIN ERROR Health
Create
Failed

The noti-
fication con-
dition for the
failed health
check could
not be created:
{1}

This marks when
a notification con-
dition failed to be
created based on
a health check.

Moab Workload Manager

1190 Appendices

Appendices 1191

Appendix D: Adjusting Default Limits
Moab is distributed in a configuration capable of supporting multiple architectures and systems ranging
from a few processors to several thousand processors. However, in spite of its flexibility, for
performance reasons, it still contains a number of default object limits parameters and static structures
defined in header files. These limits constrain such things as the maximum number of jobs, reservations,
and nodes that Moab can handle and are set to values that provide a reasonable compromise between
capability and memory consumption for most sites. However, many site administrators want to increase
some of these settings to extend functionality, or decrease them to save consumed memory. The most
common parameters are listed in what follows. Parameters listed in the Moab configuration file
(moab.cfg) can be modified by restarting Moab. To change parameters listed in moab.h, please contact
technical support.

CLIENTMAXCONNECTIONS

Location moab.cfg (dynamic parameter)

Default 128

Max tested ---

Description Maximum number of connections that can simultaneously connect to Moab.

JOBMAXNODECOUNT

Location moab.cfg (dynamic parameter)

Default 1024

Max tested 8192

Description Maximum number of compute nodes that can be allocated to a job. After changing this parameter,
Moab must be restarted for changes to take effect. The value cannot exceed that of the MAXNODE
on page 973 parameter (specified in moab.cfg). If you specify a value higher than the limit set for
the MAXNODE parameter, the value will match MAXNODE. JOBMAXNODECOUNT can also be
specified within configure using --with-maxjobsize=<NODECOUNT>.

MAXGRES

Location moab.cfg (dynamic parameter)

Default 512

Moab Workload Manager

MAXGRES

Max tested ---

Description Total number of distinct generic resources that can be managed.

MAXJOB

Location moab.cfg (dynamic parameter)

Default 4096

Max tested 500,000

Description Maximum number of jobs that can be evaluated simultaneously. (Can also be specified within con-
figure using --with-maxjobs=<JOBCOUNT>.)

MAXRSVPERNODE

Location moab.cfg (dynamic parameter)

Default 48

Max tested 1024

Description Maximum number of reservations a node can simultaneously support.

MMAX_ATTR

Location moab.h

Default 128

Max tested 512

Description Total number of distinct node attributes (PBS node attributes/LL node features) that can be
tracked.

Moab Workload Manager

1192 Appendices

Appendices 1193

MMAX_CLASS

Location moab.h

Default 24

Max tested 64

Description Total number of distinct job classes/queues available.

MMAX_FSDEPTH

Location moab.h

Default 24

Max tested 32

Description Number of active fairshare windows.

MAXNODE

Location moab.cfg (dynamic parameter

Default 5120

Max tested 160000

Description Maximum number of compute nodes supported.

MMAX_PAR

Location moab.h

Default 32

Max tested 32

Description Maximum number of partitions supported.

Moab Workload Manager

MMAX_QOS

Location moab.h

Default 128

Max tested 128

Description Total number of distinct QoS objects available to jobs.

MMAX_RACK

Location moab.h

Default 200

Max tested 200

Description Total number of distinct rack objects available within cluster.

MMAX_RANGE

Location moab.h

Default 2048

Max tested 2048

Description Total number of distinct timeframes evaluated.

Note: This is proportional to the size of the cluster and the number of simultaneously active jobs in
the cluster. (Can be specified within ./configure using --with-maxrange=<RANGECOUNT>.)
Increasing this value will not increase the size of total memory consumed by Moab but may result
in minor slowdowns in the evaluation and optimization of reservations.

MMAX_REQ_PER_JOB

Location moab.h

Default 5

Moab Workload Manager

1194 Appendices

Appendices 1195

MMAX_REQ_PER_JOB

Max tested 64

Description Total number of unique requirement structures a job can have. Limits the number of -w clauses in
the mshow -a command. It also limits the number of -l nodes=X+Y+Z a normal HPC job can
have.

JOBMAXTASKCOUNT

Location moab.cfg (dynamic parameter

Default 4096

Max tested 250000

Description Total number of tasks allowed per job.

Moab currently possesses hooks to allow sites to create local algorithms for handling site specific needs
in several areas. The contrib directory contains a number of sample local algorithms for various
purposes. The MLocal.c module incorporates the algorithm of interest into the main code. The
following scheduling areas are currently handled via the MLocal.c hooks.

l Local Job Attributes

l Local Node Allocation Policies

l Local Job Priorities

l Local Fairness Policies

Related topics

l Appendix I: Considerations for Large Clusters

Appendix E: Security
Moab provides role and host based authorization, encryption*, and DES, HMAC, and MD5 based
authentication. The following sections describe these features in more detail.

l Authorization

o Role Based Authorization Security Configuration

l Authentication

Moab Workload Manager

o Mauth Authentication

o Munge Authentication

o Server Response Control

o Interface Development Notes

l Host Security

o Minimal Host Security Enforcement

o Medium Host Security Enforcement

o Strict Host Security Enforcement

l Access Portal Security

Authorization

Role Based Authorization Security Configuration

Moab provides access control mechanisms to limit how the scheduling environment is managed. The
primary means of accomplishing this is through limiting the users and hosts that are trusted and have
access to privileged commands and data.

With regard to users, Moab breaks access into three distinct levels.

Level 1 Moab Admin (Administrator Access)

Level 1 Moab administrators have global access to information and unlimited control over scheduling
operations. By default, they are allowed to control scheduler configuration, policies, jobs, reservations,
and all scheduling functions. They are also granted access to all available statistics and state
information. Level 1 administrators are specified using the ADMINCFG[1] parameter.

Level 2 Moab Admin (Operator Access)

Level 2 Moab administrators are specified using the ADMINCFG[2] parameter. By default, the users listed
under this parameter are allowed to change all job attributes and are granted access to all informational
Moab commands.

Level 3 Moab Admin (Help Desk Access)

Level 3 administrators are specified via the ADMINCFG[3] parameter. By default, they are allowed
access to all informational Moab commands. They cannot change scheduler or job attributes.

Configuring Role Based Access

Moab allows site specific tuning of exactly which functions are available to each administrator level.
Moab also provides two additional administrator levels (ADMINCFG[4] and ADMINCFG[5]) that may be
used for site specific needs.

To configure Moab role based access, use the ADMINCFG parameter.

Moab Workload Manager

1196 Appendices

Appendices 1197

ADMINCFG[1] USERS=root,john SERVICES=ALL NAME=admin
ADMINCFG[3] USERS=joe,mary SERVICES=mdiag,mrsvctl,mcredctl NAME=power
ADMINCFG[5] USERS=joy,blake SERVICES=NONE NAME=users
...

A NONE in services will still allow users to run showq and checkjob on their own jobs.

To determine the role of system users and what commands they can run, use the mcredctl -q role
user:<USERID> command.

Using the SERVICES attribute of the ADMINCFG parameter, access to an arbitrary selection of services
can be enabled on a per administrator-level basis. Possible services include the following:

Service Description

changeparam Change any scheduling policy or parameter (This command is deprecated. Use mschedctl -m
instead).

checkjob View detailed information for any job.

checknode View detailed information for any node.

mbal Perform real-time load-balancing of interactive commands.

mcredctl View and modify credential attributes.

mdiag Provide diagnostic reports for resources, workload, and scheduling.

mjobctl Modify, control, and view jobs.

mnodectl Modify, control, and view nodes.

mrmctl Modify, control, and view resource managers.

mrsvctl Modify, control, and view reservations.

mschedctl Modify, control, and view scheduler behavior.

mshow View existing configuration and predicted resource availability.

showstats View all scheduler and credential statistics.

releaseres Release all reservations (This command is deprecated. Use mrsvctl -r instead).

Moab Workload Manager

Service Description

runjob Immediately execute any job (see mjobctl -x).

setqos Set QoS on any job (This command is deprecated. Use mjobctl -m instead).

setres Create any reservation (This command is deprecated. Use mrsvctl -c instead).

setspri Set system priority on any job (This command is deprecated. Use mjobctl -p instead).

showconfig Show all scheduler configuration parameters (This command is deprecated. Use mschedctl -l
instead).

showres Show detailed information for any reservation.

showstate Show detailed information for all jobs, including their locations, and display job error messages, if
any.

Account and Class/Queue Admins

While the ADMINCFG parameter allows organizations to provide controlled access to scheduling objects,
it does not allow for distribution along organizational boundaries. For example, a site may set up a level
3 administrator to be able to view statistics, diagnose jobs, and modify job priorities; it does not provide
a way to differentiate one type of job from another. If a site administrator wanted to allow control based
on the queue or account associated with a job, they would best accomplish this using the credential
MANAGERS attribute.

A credential manager allows a user to be trusted to administer workload and policies for an associated
subgroup of jobs. For example, in the configuration below, a number of queue and account managers are
configured.

CLASSCFG[orion] MANAGERS=johns
CLASSCFG[xray] MANAGERS=steve2
CLASSCFG[gamma] MANAGERS=steve2,jpw
ACCOUNTCFG[bio] MANAGERS=charles

By default, the specified managers can do anything to a job that the actual job owner could do. By
default, this would include the ability to view cumulative and per job statistics, see job details, modify
job priorities and holds, cancel and preempt jobs, and otherwise adjust policies and constraints within
the associated credential.

Authentication (Interface Security)
Moab supports password-challenge, DES, HMAC, and MD5 based authentication. Authentication protocols
may be specified on a per interface basis allowing independent realms of trust with per realm secret
keys and even per realm authentication protocols.

Moab Workload Manager

1198 Appendices

Appendices 1199

Mauth Authentication

Mauth is a tool provided with Moab that provides client authentication services. With mauth enabled,
each client request is packaged with the client ID, a timestamp, and an encrypted key of the entire
request generated using the shared secret key.

This tool is enabled by providing a secret key. A random key is selected when the Moab ./configure
script is run and may be regenerated at any time by rerunning ./configure and rebuilding Moab. If
desired, this random key may be overridden by specifying a new key in the protected .moab.key file as
in the example below:

Moab must be shut down before setting a new secret key. Use the service moab stop or
mschedctl -k commands to shut down Moab.

> vi /opt/moab/etc/.moab.key
(insert key)
> cat /opt/moab/etc/.moab.key
XXXXXXXX
secure file by setting owner read-only permissions
> chmod 400 /opt/moab/etc/.moab.key
verify file is owned by root and permissions allow only root to read file
> ls -l /opt/moab/etc/.moab.key
-r-------- 1 root root 15 2007-04-05 03:47 /opt/moab/.moab.key

All directories in the path containing .moab.key must be owned by the root or primary Moab
user It must not be writable by "other" in its permissions.

If .moab.key is used, this protected file will need to be on each host that is authorized to run
Moab client commands.

By default, this file will be owned by the user root and its contents will be read by the mauth tool
which provides client authorization services. If desired, the ownership of this file can be changed
so long as this file is readable by the Moab server and the mauth tool. This can be accomplished if
the Moab primary administrator, the owner of mauth, and the owner of .moab.key are the same.

By default, it is up to the individual cluster administrators to determine whether to use the
.moab.key file. For sites with source code, the use of .moab.key can be mandated by using
./configure --with-keyfile.

By default, mauth is located in the install bin directory. If an alternate name or alternate file
location is desired, this can be specified by setting the AUTHCMD attribute of the CLIENTCFG
parameter within the moab.cfg file as in the following example.

CLIENTCFG AUTHCMD=/opt/sbin/mauth

Moab Workload Manager

Configuring Peer-Specific Secret Keys

Peer-specific secret keys can be specified using the CLIENTCFG parameter. This key information must be
kept secret and consequently can only be specified in the moab-private.cfg file. With regard to
security, there are two key attributes that can be set. (Other resource managers or clients such as Moab
Accounting Manager or a SLURM/Wiki interface can also use the attributes to configure their
authentication algorithms. The default, unless otherwise stated, is always DES. These attributes are
listed in the table below:

AUTH

Format one of ADMIN1, ADMIN2, or ADMIN3

Default ---

Description Specifies the level of control/information available to requests coming from this source/peer.

Example CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=14335443

AUTHTYPE

Format one of DES,HMAC,HMAC64, or MD5.

Default DES

Description Specifies the encryption algorithm to use when generating the message checksum.

Example CLIENTCFG[AM:mam] AUTHTYPE=HMAC64

HOST

Format <STRING >

Default ---

Description Specifies the hostname of the remote peer. Peer requests coming from this host will be authen-
ticated using the specified mechanism. This parameter is optional.

Example CLIENTCFG[RM:clusterA] HOST=orx.pb13.com KEY=banana6

Moab Workload Manager

1200 Appendices

Appendices 1201

KEY

Format <STRING >

Default ---

Description Specifies the shared secret key to be used to generate the message checksum.

Example CLIENTCFG[RM:clusterA] KEY=banana6

The CLIENTCFG parameter takes a string index indicating which peer service will use the specified
attributes. In most cases, this string is simply the defined name of the peer service. However, for the
special cases of resource and allocation managers, the peer name should be prepended with the prefix
RM: or AM: respectively, as in CLIENTCFG[AM:mam] or CLIENTCFG[RM:devcluster].

The first character of any secret key can be viewed by trusted administrators using specific
diagnostic commands to analyze Moab interfaces. If needed, increase the length of the secret keys
to maintain the desired security level.

Munge Authentication

Moab also integrates with MUNGE, an open source authentication service created by Lawrence
Livermore National Laboratory (http://home.gna.org/munge/). MUNGE works with Moab to authenticate
user credentials being passed between the Moab client and the Moab server or from Moab server to
Moab server.

To set up MUNGE in a cluster or grid, download and install MUNGE on every node in the cluster or grid
by following the installation steps found at http://home.gna.org/munge/. The MUNGE secret key must
reside on each node in the cluster or grid. Before starting the Moab daemon, the MUNGE daemon must
be running on all nodes.

To enable Moab to use MUNGE for authentication purposes, specify the MUNGE executable path in the
moab.cfg file using CLIENTCFG and AUTHCMD as in the following example. The MUNGE executable path
must reside in each client's moab.cfg file as well.

CLIENTCFG AUTHCMD=/usr/bin/munge

Moab requires that the MUNGE and UNMUNGE executable names be "munge" and "unmunge"
respectively. It also assumes that the UNMUNGE executable resides in the same directory as the
MUNGE executable.

ConfiguringMunge Command Options

Moab also integrates with MUNGE command line options. For example, to set up Moab to use a specific
socket that was created when the MUNGE daemon was started, use CLIENTCFG and AUTHCMDOPTIONS to

Moab Workload Manager

http://home.gna.org/munge/

specify the newly created socket. The AUTHCMDOPTIONS attribute, like AUTHCMD, must also reside in
the client's moab.cfg file.

CLIENTCFG AUTHCMD=/usr/bin/munge
CLIENTCFG AUTHCMDOPTIONS="-S /var/run/munge/munge.socket.2"

Server Response Control

If a request is received that is corrupt or cannot be authenticated, Moab will report some limited
information to the client indicating the source of the failure, such as "bad key," "malformed header," and
so forth. In the case of highly secure environments, or to minimize the impact of sniffing or denial of
service attacks, Moab can be configured to simply drop invalid requests. This is accomplished by adding
the DROPBADREQUEST attribute to the CLIENTCFG parameter in the moab-private.cfg file as in the
following example:

CLIENTCFG[DEFAULT] DROPBADREQUEST=TRUE

Interface Development Notes

Sample checksum generation algorithm code can be found in the Socket Protocol Description document.

Host Security for Compute Resources
Host level security can vary widely from one site to another with everything from pure on-your-honor
based clusters to complete encrypted VLAN based network security and government approved per job
scrubbing procedures being used. The following documentation describes some best practices in use
throughout the industry.

Minimal Host Security Enforcement

For minimal host security, no additional configuration is required.

Medium Host Security Enforcement

l Login Access

o PAM — Enable/disable access by modifying /etc/security/access.conf.

l Processes

o Kill all processes associated with job user (dedicated).

o Kill all processes associated with job session (dedicated/shared). Use ps -ju <USER> or
ps -js <SESSID>.

l IPC (Inter-Process Communication)

o Remove shared memory, semaphores, and message queues (use ipcs/ipcrm).

o Remove named pipes.

Moab Workload Manager

1202 Appendices

Appendices 1203

l Network/Global File System Access

o Explicitly unmount user home and global file systems.

l Local Temporary File Systems

o Where possible, mount local file systems read-only.

o Clear /tmp, /scratch and other publicly available local file systems.

o Remove user files with shred; shred is a Linux command that first overwrites files
completely before removing them, preventing remnant data from surviving on the hard
drive.

Strict Host Security Enforcement

l VLAN creation

l Host rebuild

o U.S Dept. of Energy Disk/File Sanitization (SCRUB)

o U.S Dept. of Defense Scrubbing Software (DOD-5520)

Moab Access Portal Security Overview
The Moab Access Portal (MAP) security model is composed of several different components. First, users
will use a Web browser to log in and interact with the Web server running MAP. This communication can
be encrypted using industry standard SSL to protect usernames/passwords and other sensitive
information that may be accessed by the user. (Instructions on how to set up SSL connections with
popular Web servers and servlet engines are readily available on the Internet. A guide for setting up SSL
with Apache is available in the MAP documentation.)

When a user logs in via their Web browser, the JSP interface passes this request to a back-end Java
infrastructure that then uses an encrypted SSH connection to authenticate the user's credentials at the
cluster/grid head node. After the credentials are authenticated and the SSH connection established,
further communication between MAP and the cluster/grid head node occurs over the encrypted SSH
connection. These three components provide an end-to-end security solution for Web-based job
submission and workload management.

Appendix F: Initial Moab Testing
Moab has been designed with a number of key features that allow testing to occur in a no risk
environment. These features allow you to safely run Moab in test mode even with another scheduler
running whether it be an earlier version of Moab or another scheduler altogether. In test mode, Moab
collects real-time job and node information from your resource managers and acts as if it were
scheduling live. However, its ability to actually affect jobs (that is, start, modify, cancel, charge, and so
forth) is disabled.

Moab offers the following test modes to provide a means for verifying such things as proper
configuration and operation:

Moab Workload Manager

http://www.doecirc.energy.gov/documents/CIRC-2325-Sanitizing-Disks.pdf
http://www.dss.mil/isp/fac_clear/download_nispom.html
http://www.adaptivecomputing.com/resources/docs/map/1.6tomcatinstall.php#ssl

l Minimal Configuration Required To Start

o Normal Mode

o Monitor Mode

o Interactive Mode

o Simulation Mode

Scheduler Modes
Central to Moab testing is the MODE attribute of the SCHEDCFG parameter. This parameter attribute
allows administrators to determine how Moab will run. The possible values for MODE are NORMAL,
MONITOR, INTERACTIVE, and SIMULATION. For example, to request monitor mode operation, include
the following in the moab.cfg file:

SCHEDCFG MODE=MONITOR

Normal Mode

If initial evaluation is complete or not required, you can place the scheduler directly into production by
setting the MODE attribute of the SCHEDCFG parameter to NORMAL and (re)starting the scheduler.

Monitor Mode (or Test Mode)

Monitor mode allows evaluation of new Moab releases, configurations, and policies in a risk-free manner.
In monitor mode, the scheduler connects to the resource manager(s) and obtains live resource and
workload information. Using the policies specified in the moab.cfg file, the monitor-mode Moab behaves
identical to a live or normal-mode Moab except the ability to start, cancel, or modify jobs is disabled. In
addition, allocation management does not occur in monitor mode. This allows safe diagnosis of the
scheduling state and behavior using the various diagnostic client commands. Further, the log output can
also be evaluated to see if any unexpected situations have arisen. At any point, the scheduler can be
dynamically changed from monitor to normal mode to begin live scheduling.

To set up Moab in monitor mode, do the following:

> vi moab.cfg
(change the MODE attribute of the SCHEDCFG parameter from NORMAL to MONITOR)

> moab

Remember that Moab running in monitor mode will not interfere with your production scheduler.

RunningMultiple Moab Instances Simultaneously

If running multiple instances of Moab, whether in simulation, normal, or monitor mode, make certain that
each instance resides in a different home directory to prevent conflicts with configuration, log, and
statistics files. Before starting each additional Moab, set the MOABHOMEDIR environment variable in
the execution environment to point to the local home directory. Also, each instance of Moab should run
using a different port to avoid conflicts.

Moab Workload Manager

1204 Appendices

Appendices 1205

If running multiple versions of Moab, not just different Moab modes or configurations, set the
$PATH variable to point to the appropriate Moab binaries.

To point Moab client commands (such as showq) to the proper Moab server, use the appropriate
command line arguments or set the environment variable MOABHOMEDIR in the client execution
environment as in the following example:

point moab clients/server to new configuration
> export MOABHOMEDIR=/opt/moab-monitor
set path to new binaries (optional)
> export PATH=/opt/moab-monitor/bin:/opt/moab-monitor/sbin:$PATH
start Moab server
> moab
query Moab server
> showq

moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

Interactive Mode

Interactive mode allows for evaluation of new versions and configurations in a manner different from
monitor mode. Instead of disabling all resource and job control functions, Moab sends the desired change
request to the screen and asks for permission to complete it. For example, before starting a job, Moab
may post something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying that it correctly meets
desired site policies. Moab will then execute the specified command. This mode is useful in validating
scheduler behavior and can be used until configuration is appropriately tuned and all parties are
comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling mode
to normal after verifying correct behavior.

Simulation Mode

Simulation mode is of value in performing a test drive of the scheduler or when a stable production
system exists and an evaluation is desired of how various policies can improve the current performance.
See the Simulations documentation for more information.

Appendix G: Integrating Other Resources with Moab
Moab can interface with most popular resource managers, many cluster services, and numerous general
protocols. The following links provide additional information.

Moab Workload Manager

Compute Resource Managers
l TORQUE - Integration Guide, TORQUE documentation

l SLURM - Integration Guide, http://www.llnl.gov/linux/slurm

l WIKI - WIKI Integration Guide

l Cray XT/TORQUE - Integration Guide (html, pdf), http://www.cray.com

Provisioning Resource Managers
l xCAT - Validating an xCAT Installation for Use with Moab

Hardware Integration
l NUMA - Integration Guide

Compute Resource Managers
l Moab-TORQUE Integration Guide on page 1206

l Moab-SLURM Integration Guide on page 1210

l Installation Notes for Moab and TORQUE for Cray on page 1214

Moab-TORQUE Integration Guide

l Overview

l Integration Steps

o Install TORQUE

o Install Moab

o Configure TORQUE

o TORQUE/Moab Considerations

l Current Limitations

l Troubleshooting

Install TORQUE
l Install TORQUE

Keep track of the PBS target directory, $PBSTARGDIR

Moab Workload Manager

1206 Appendices

http://www.llnl.gov/linux/slurm
http://docs.adaptivecomputing.com/mwm/pdf/xtinstall.pdf
http://www.cray.com/

Appendices 1207

Install Moab
l Untar the Moab distribution file.

l Change the directory to the moab-<version> directory.

l Run ./configure.

l Specify the PBS target directory ($PBSTARGDIR from step 2.1) when queried by ./configure.

Moab interfaces to PBS by utilizing a few PBS libraries and include files. If you have a non-standard PBS
installation, you may need to modify Makefile and change PBSIP and PBSLP values and references as
necessary for your local site configuration.

The ./configure script automatically sets up Moab so that the user running configure will become the
default Primary Moab Administrator ($MOABADMIN). This can be changed by modifying the ADMINCFG
[1] USERS=<USERNAME> line in the Moab configuration file (moab.cfg). The primary administrator is
the first user listed in the USERS attribute and is the ID under which the Moab daemon runs.

Some Tru64 and IRIX systems have a local libnet library that conflicts with PBS's libnet library. To
resolve this, try setting PBSLIB to '${PBSLIBDIR}/libnet.a -lpbs' in the Moab Makefile.

Moab is 64-bit compatible. If PBS/TORQUE is running in 64-bit mode, Moab likewise needs to be built in
this manner to use the PBS scheduling API (i.e., for IRIX compilers, add -64 to OSCCFLAGS and OSLDFLAGS
variables in the Makefile).

When starting both TORQUE and Moab it is best to have a small delay between starting the servers. In
general (and especially for very fast or very large systems) this is recommended startup procedure:

l Start TORQUE.

l Start Moab with scheduling paused (moab -P) to give it a chance to load everything in the
checkpoint file and to sync with TORQUE.

l Unpause Moab with mschedctl -r.

General Configuration for All Versions of TORQUE
l Make $MOABADMIN a PBS admin.

o By default, Moab only communicates with the pbs_server daemons and the $MOABADMIN
should be authorized to talk to this daemon (See suggestions for more information.).

l (OPTIONAL) Set default PBS queue, nodecount, and walltime attributes. (See suggestions for more
information.)

l (OPTIONAL - TORQUE Only) Configure TORQUE to report completed job information by setting the
qmgrkeep_completed parameter:>

> qmgr -c 'set server keep_completed = 300'

PBS nodes can be configured as time shared or space shared according to local needs. In almost all
cases, space shared nodes provide the desired behavior.

Moab Workload Manager

PBS/TORQUE supports the concept of virtual nodes. Using this feature, Moab can individually
schedule processors on SMP nodes. The online TORQUE documentation describes how to set up the
$PBS_HOME/server_priv/nodes file to enable this capability. (For example, <NODENAME>
np=<VIRTUAL NODE COUNT>)

Version-Specific Configuration for TORQUE
Do not start the pbs_sched daemon. This is the default scheduler for TORQUE; Moab provides this
service.

Moab uses PBS's scheduling port to obtain real-time event information from PBS regarding job and
node transitions. Leaving the default qmgr setting of set server scheduling=True allows Moab to
receive and process this real-time information.

Configure Moab
By default, Moab automatically interfaces with TORQUE/PBS when it is installed. Consequently, in most
cases, the following steps are not required:

l Specify PBS as the primary resource manager by setting RMCFG[base] TYPE=PBS in the Moab
configuration file (moab.cfg).

If a non-standard PBS installation/configuration is being used, additional Moab parameters may be
required to enable the Moab/PBS interface as in the line RMCFG[base] HOST=$PBSSERVERHOST
PORT=$PBSSERVERPORT. See the Resource Manager Overview for more information.

Moab's user interface port is set using the SCHEDCFG parameter and is used for user-scheduler
communication. This port must be different from the PBS scheduler port used for resource
manager-scheduler communication.

TORQUE/Moab Considerations
The default meaning of a node for TORQUE and Moab are not the same. By default, a node is a host in
TORQUE. The node may have one or more execution slots (procs) allocated to it in the $TORQUE_
HOME/server_priv/nodes file. However, the number of nodes recognized by TORQUE is equivalent to the
number of node entries in the $TORQUE_HOME/server_priv/nodes file. A node specification from
qsub such as -1 nodes=2:ppn=2 will direct TORQUE to allocate to execution slots on two separate
nodes.

Moab is more liberal in its interpretations of a node. To Moab, the qsub request above would be
interpreted to mean allocate four tasks with at least two tasks on a node. Where TORQUE would require
two nodes for the request, Moab will place all four tasks on the name node (host) if four execution slots
are available.

If a cluster has four nodes with eight processors each, TORQUE still sees only four nodes. Moab sees 32
nodes. However, if a user made a qsub request with -1 nodes=10, TORQUE would reject the request
because there are only four nodes available. To enable TORQUE to accommodate Moab's more liberal

Moab Workload Manager

1208 Appendices

Appendices 1209

node interpretation, the server parameter available_resources.nodect can be set as a server parameter
in TORQUE. The value of available_resources.nodect should equal at least the number of execution slots
in the cluster.

For our example, cluster available_resources.nodect should be 32. With this parameter set, the user can
now make a request such as -1 nodes=8:ppn=2. In this example, the user is still limited to a
maximum node request of 32.

With available_resources.nodect set in TORQUE, Moab can be directed to honor the default TORQUE
behavior by setting JOBNODEMATCHPOLICY to EXACTNODE.

PBS Features Not Supported by Moab

Moab supports basic scheduling of all PBS node specifications.

Moab Features Not Supported by PBS

PBS does not support the concept of a job QoS or other extended scheduling features by default. This can
be handled using the techniques described in the PBS Resource Manager Extensions section. See the
Resource Manager Extensions Overview for more information.

Troubleshooting
On TRU64 systems, the PBS libpbs library does not properly export a number of symbols required by
Moab. This can be worked around by modifying the Moab Makefile to link the PBS rm.o object file
directly into Moab.

TORQUE/PBS Integration Guide - RM Access Control

Server Configuration
Using the PBS qmgr command, add the Moab administrator as both a manager and operator.

> qmgr
Qmgr: set server managers += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: set server operators += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: quit

For example:

> qmgr
Qmgr: set server managers += staff@*.ucsd.edu
Qmgr: set operators += staff@*.ucsd.edu
Qmgr: quit

If desired, the Moab administrator can be enabled as a manager and operator only on the host on
which Moab is running by replacing "*.<YOURDOMAIN>" with "<MOABSERVERHOSTNAME>".

Moab Workload Manager

Mom Configuration (optional)
If direct Moab to pbs_mom communication is required, the mom_priv/config file on each compute
node where pbs_mom runs should be set as in the following example:

$restricted *.<YOURDOMAIN>
$clienthost <MOABSERVERHOSTNAME>

For security purposes, sites may want to run Moab under a non-root user id. If so, and Moab-pbs_
mom communication is required, the mom_priv/config files must be world-readable and contain
the line '$restricted *.<YOURDOMAIN>'. (i.e., '$restricted *.uconn.edu')

TORQUE/PBS Config - Default Queue Settings

Default Queue
To set the default queue (the queue used by jobs if a queue is not explicitly specified by the user), issue
the following:

>> qmgr
Qmgr: set system default_queue = <QUEUENAME>
Qmgr: quit

Queue Default Node and Walltime Attributes
To set a default of one node and 15 minutes of walltime for a particular queue, issue the following:

> qmgr
Qmgr: set queue <QUEUENAME> resources_default.nodect = 1
Qmgr: set queue <QUEUENAME> resources_default.walltime = 00:15:00
Qmgr: quit

Default System Wide Node and Walltime Attributes
To set system wide defaults, set the following:

> qmgr
Qmgr: set server resources_default.nodect = 1
Qmgr: set server resources_default.walltime = 00:15:00
Qmgr: quit

Moab-SLURM Integration Guide

l Overview

l SLURM Configuration Steps

l Moab Configuration Steps

o Configuration for Standby and Expedite

o Configuration for the Quadrics Switch

Moab Workload Manager

1210 Appendices

Appendices 1211

o Authentication

o Queue/Class Support

o Policies

o Moab Queue and RM Emulation

o SLURM High Availability

Overview
Moab can be used as the scheduler for the SLURM resource manager. In this configuration, the SLURM
handles the job queue and the compute resources while Moab determines when, where and how jobs
should be executed according to current cluster state and site mission objectives.

The documentation below describes how to configure Moab to interface with SLURM.

For Moab-SLURM integration, Moab 6.0 or higher and SLURM 2.2 or higher are recommended.
From the downloads page, the generic version is needed to install SLURM.

SLURM Configuration Steps
To configure SLURM to utilize Moab as the scheduler, the SchedulerType parameters must be set in the
slurm.conf config file located in the SLURM etc directory (/usr/local/etc by default)

slurm.conf
SchedulerType=sched/wiki2

The SchedulerType parameter controls the communication protocol used between Moab and SLURM. This
interface can be customized using the wiki.conf configuration file located in the same directory and
further documented in the SLURM Admin Manual.

Note: To allow sharing of nodes, the SLURM partition should be configured with 'Shared=yes' attribute.

Moab Configuration Steps
By default, Moab is built with WIKI interface support (which is used to interface with SLURM) when
running the standard configure and make process.

To configure Moab to use SLURM, the parameter 'RMCFG' should be set to use the WIKI:SLURM protocol
as in the example below.

moab.cfg

SCHEDCFG[base] MODE=NORMAL
RMCFG[base] TYPE=WIKI:SLURM
...

Note: The RMCFG index (set to base in the example above) can be any value chosen by the site. Also, if
SLURM is running on a node other than the one on which Moab is running, then the SERVER attribute of
the RMCFG parameter should be set.

Moab Workload Manager

http://www.llnl.gov/linux/slurm
https://www.adaptivecomputing.com/myaccount/login.php?url=/resources/downloads/index.php?#moab
http://www.llnl.gov/linux/slurm/moab.html#wiki.conf
http://www.llnl.gov/linux/slurm/moab.html

Note: SLURM possesses a SchedulerPort parameter which is used to communicate with the scheduler.
Moab will auto-detect this port and communicate with SLURM automatically with no explicit
configuration required. Do NOT set Moab's SCHEDCFG[] PORT attribute to this value, this port controls
Moab client communication and setting it to match the SchedulerPort value will cause conflicts. With no
changes, the default configuration will work fine.

Note: If the SLURM client commands/executables are not available on the machine running Moab, SLURM
partition and other certain configuration information will not be automatically imported from SLURM,
thereby requiring a manual setup of this information in Moab. In addition, the SLURM VERSION should be
set as an attribute on the RMCFG parameter. If it is not set, the default is version 1.2.0. The following
example shows how to set this line if SLURM v1.1.24 is running on a host named Node01 (set using the
SERVER attribute).

moab.cfg with SLURM on Host Node01

RMCFG[base] TYPE=WIKI:SLURM SERVER=Node01 VERSION=10124
...

Configuration for Standby and Expedite Support

SLURM's 'Standby' and 'Expedite' options are mapped to the Moab QOS feature. By default, when a
SLURM interface is detected, Moab will automatically create a 'standby' and an 'expedite' QoS. By
default, the 'standby' QoS will be globally accessible to all users and on all nodes and will have a lower
than normal priority. Also by default, the 'expedite' QoS will not be accessible by any user, will have no
node constraints, and will have a higher than normal priority.

Authorizing Users to Use 'Expedite'

To allow users to request 'expedite' jobs, the user will need to be added to the 'expedite' QoS. This can
be accomplished using the MEMBERULIST attribute as in the following example:

MEMBERULIST

allow josh, steve, and user c1443 to submit 'expedite' jobs
QOSCFG[expedite] MEMBERULIST=josh,steve,c1443
...

Excluding Nodes for 'Expedite' and 'Standby' Usage

Both 'expedite' and 'standby' jobs can be independently excluded from certain nodes by creating a QoS-
based standing reservation.

Specifically, this is accomplished by creating a reservation with a logical-not QoS ACL and a hostlist
indicating which nodes are to be exempted as in the following example:

Moab Workload Manager

1212 Appendices

Appendices 1213

MEMBERULIST

block expedite jobs from reserved nodes
SRCFG[expedite-blocker] QOSLIST=!expedite
SRCFG[expedite-blocker] HOSTLIST=c001[3-7],c200
SRCFG[expedite-blocker] PERIOD=INFINITY

block standby jobs from rack 13
SRCFG[standby-blocker] QOSLIST=!standby
SRCFG[standby-blocker] HOSTLIST=R:r13-[0-13]
SRCFG[standby-blocker] PERIOD=INFINITY
...

Quadrics Integration

If managing a cluster with a Quadrics high speed network, significant performance improvement can be
obtained by instructing Moab to allocate contiguous collections of nodes. This can be accomplished by
setting the NODEALLOCATIONPOLICY parameter to CONTIGUOUS as in the example below:

moab.cfg

SCHEDCFG[cluster1] MODE=NORMAL SERVER=head.cluster1.org
RMCFG[slurm] TYPE=wiki:slurm
NODEALLOCATIONPOLICY CONTIGUOUS
...

Setting Up Authentication

By default, Moab will not require server authentication. However, if SLURM's wiki.conf file (default
location is /usr/local/etc) contains the AuthKey parameter or a secret key is specified via SLURM's
configure using the --with-key option, Moab must be configured to honor this setting. Moab
configuration is specified by setting the resource manager AUTHTYPE attribute to CHECKSUM and the
KEY value in the moab-private.cfg file to the secret key as in the example below.

/usr/local/etc/wiki.conf

AuthKey=4322953
...

moab.cfg

RMCFG[slurm] TYPE=wiki:slurm AUTHTYPE=CHECKSUM
...

moab-private.cfg

CLIENTCFG[RM:slurm] KEY=4322953
...

Note: For the CHECKSUM authorization method, the key value specified in the moab-private.cfg
file must be a decimal, octal, or hexadecimal value, it cannot be an arbitrary non-numeric string.

Moab Workload Manager

Queue/Class Support

While SLURM supports the concept of classes and queues, Moab provides a flexible alternative queue
interface system. In most cases, sites can create and manage queues by defining partitions within
SLURM. Internally, these SLURM partitions are mapped to Moab classes which can then be managed and
configured using Moab's CLASSCFG parameter and mdiag -c command.

Policies

By default, SLURM systems only allow tasks from a single job to utilize the resources of a compute node.
Consequently, when a SLURM interface is detected, Moab will automatically set the NODEACCESSPOLICY
parameter to SINGLEJOB. To allow node sharing, the SLURM partition attribute 'Shared' should be set
to FORCE in the slurm.conf as in the example below:

slurm.conf

PartitionName=batch Nodes=node[1-64] Default=YES MaxTime=INFINITE State=UP
Shared=FORCE

Moab Queue and RM Emulation

With a SLURM system, jobs can be submitted either to SLURM or to Moab. If submitted to SLURM, the
standard SLURM job submission language must be used. If jobs are submitted to Moab using the msub
command, then either LSF*, PBS, or Loadleveler* job submission syntax can be used. These jobs will be
translated by Moab and migrated to SLURM using its native job language.

SLURM High Availability

If SLURM high availability mode is enabled, Moab will automatically detect the presence of the SLURM
BackupController and utilize it if the primary fails. To verify SLURM is properly configured, issue the
SLURM command 'scontrol show config | grep Backup'. To verify Moab properly detects this information,
run 'mdiag -R -v | grep FallBack'.

Note: To use SLURM high availability, the SLURM parameter StateSaveLocation must point to a shared
directory which is readable and writable by both the primary and backup hosts. See the slurm.conf
man page for additional information.

Related topics

l SLURM Admin Manual
l SLURM's Moab Integration Guide
l Additional SLURM Documentation
l Wiki Overview

Installation Notes for Moab and TORQUE for Cray

Overview
Moab and TORQUE can be used to manage the batch system for Cray. This document describes how to
configure Moab and TORQUE to bring Moab's unmatched scheduling capabilities to the Cray.

Moab Workload Manager

1214 Appendices

http://www.llnl.gov/linux/slurm/quickstart_admin.html
http://www.llnl.gov/linux/slurm/moab.html
http://www.llnl.gov/linux/slurm/documentation.html

Appendices 1215

New to TORQUE 4.1, TORQUE now handles all communication with ALPS, specifically the pbs_mom.
Previously, communication with ALPS was handled by a combination of Moab, scripts and TORQUE. In the
new model, Moab treats TORQUE as a regular TORQUE cluster without any special configuration.
TORQUE now uses an extra MOM called the alps_reporter MOM to communicate with ALPS regarding
configured and available resources. From the information reported by the alps_reporter mom, TORQUE
creates a virtual node for each Cray compute node. Previously, TORQUE only reported the login nodes.

Note: For clarity this document assumes that your SDB node is mounting a persistent /var filesystem
from the bootnode. If you have chosen not to use persistent /var filesystems please be aware that the
instructions below would have to be modified for your situation.

Upgrade Notes
When upgrading to TORQUE 4.1.0 and using the new Cray model as described in this document, there
should be no running jobs. Jobs may be queued but not running.

Installing TORQUE on a Cray

These instructions are written for a partitioned system, with separate SDB and boot nodes. A
combined SDB/boot node configuration is not supported.

For non-partitioned systems, change sdb-p1 to sdb in these instructions.

Before beginning, note the SDB and login nodes' IDs as you will need them throughout the install process.

crayadm@smw> ssh root@boot-p1
boot# grep sdb /etc/hosts
10.128.0.32 nid00031 c0-0c0s0n3 sdb001 sdb002
10.131.255.253 sdb sdb-p1 syslog syslog-p1 ufs ufs-p1

boot# grep login /etc/hosts
10.128.0.3 nid00002 c0-0c0s1n0 login login-p1 login1 castor-p1

In this example, and throughout this page, the login node has NID 2 and the SDB has NID 31.

1. Copy Moab/TORQUE software to SMW and boot node

workstation> scp -p /cray/css/release/cray/build/batch/moab-
torque/torque.5.0.1.tar.gz crayadm@smw:/home/crayadm/<yourusername>
workstation> scp -p /cray/css/release/cray/build/batch/moab-torque/moab-8.0.1-
SUSE11-linux-x86_64-torque.tar.gz crayadm@smw:/home/crayadm/<yourusername>

crayadm@smw> cd /home/crayadm//<yourusername>
crayadm@smw> scp -p torque-5.0.1.tar.gz root@boot-p1:/rr/current/software
crayadm@smw> scp -p moab-8.0.1-SUSE11-linux-x86_64-torque.tar.gz root@boot-
p1:/rr/current/software

2. Install TORQUE. SSH to the boot node and unpack the TORQUE tarball within xtopview.

Moab Workload Manager

crayadm@smw> ssh root@boot-p1
boot# xtopview -m "Installing TORQUE"
default/:/# cd /software/
default/:/# tar -zxvf torque-5.0.1.tar.gz

(or, if installing on an esMS)
esms# cd /path/to/software/
esms# tar -zxvf torque-5.0.1.tar.gz

3. Configure, build, and install TORQUE within xtopview.

default/:/# cd torque-5.0.1
default/:/# ./configure --prefix=/opt/torque/5.0.1 --with-server-
home=/var/spool/torque --with-default-server=sdb-p1 --enable-syslog --disable-gcc-
warnings --with-debug --with-modulefiles=/opt/modulefiles --with-job-create
CFLAGS="-DCRAY_MOAB_PASSTHRU"

(or, if installing on an esMS)
esms# cd /path/to/software/torque-5.0.1
esms# ./configure --prefix=/opt/torque/5.0.1 --with-server-home=/var/spool/torque -
-with-default-server=this-esms --enable-syslog --disable-gcc-warnings --with-debug
--with-modulefiles=/cm/local/modulefiles CFLAGS="-DCRAY_MOAB_PASSTHRU"

The server name in the example is sdb-p1. Change this to sdb on a non-partitioned system.

4. Make and install TORQUE.

default/:/# make
default/:/# make packages
default/:/# make install
default/:/# ln -sf /opt/torque/5.0.1 /opt/torque/default # The previous default
symlink might need to be deleted first if it exists
default/:/# exit

5. Copy the TORQUE server directory to the Moab server host.

boot# cd /rr/current/var/spool
boot# cp -pr torque /snv/31/var/spool
boot# cp -pr torque /snv/2/var/spool

In this example, the SDB node has NID 31, and the login node NID 2.

6. Set up TORQUE on the SDB node.

Moab Workload Manager

1216 Appendices

Appendices 1217

boot# ssh sdb-p1
sdb# export PATH=/opt/torque/default/sbin:/opt/torque/default/bin:$PATH
sdb# cd /software/torque-5.0.1
sdb# ./torque.setup root
root
pbs_server port is: 15001
trqauthd daemonized - port 15005
trqauthd successfully started
initializing TORQUE (admin: root@boot)

You have selected to start pbs_server in create mode.
If the server database exists it will be overwritten.
do you wish to continue y/(n)?

Type y

sdb# qmgr
Qmgr: set server keep_completed = 60 # Number of seconds to keep completed jobs in
qstat
unset queue batch resources_default.nodes
set server acl_host_enable = true
set server acl_hosts += nid00002
set server acl_hosts += castor-p1 # Where castor-p1 is the hostname of the login
node
set server acl_hosts += sdb-p1
set server submit_hosts += login
set server submit_hosts += login-p1 # Only needed on partitioned systems
set server submit_hosts += castor-p1 # Where castor-p1 is the hostname of the login
node
set server submit_hosts += nid00002 # Where nid00002 is the NID of the login node
set server tcp_timeout = 30
set server query_other_jobs = True
set server disable_server_id_check = True
set queue batch resources_default.mppnppn=16 # On Cascade systems with aprun -j1
set as default
set server cray_enabled = True
set server resources_default.partition = castor # Where "castor" is the same as the
RMCFG[clustername] in moab.cfg
exit

7. Get the number of nodes available on the system.

sdb# echo Node count is $(($(apstat -v | grep XT | awk "{print \$3}")))

In the nodes / nodect commands, put in your system's number of nodes.

sdb# qmgr
set server resources_available.nodes = 20
set server resources_available.nodect = 20
set queue batch resources_available.nodes = 20
set queue batch resources_available.nodect = 20
exit

8. Create TORQUE nodes file.

Moab Workload Manager

sdb# vi /var/spool/torque/server_priv/nodes

castor-p1 alps_login np=1000 # Where "castor-p1" is the hostname of your login
node

sdb-p1 alps_reporter

sdb# exit

The np attribute is the number of processes that can be running at once. This number should be set appropriately
high, depending on the number of nodes on the system.

9. Install the torque_server init.d script on the SDB node.

There is a known issue with some of the init scripts included with TORQUE. If the included init
script doesn't work for you, use the process below to create a workaround torque_server
init.d script for your system.

Moab Workload Manager

1218 Appendices

Appendices 1219

boot# xtopview -n 31 -m "torque_server init.d"
node/31:/ # touch /etc/init.d/torque_server
node/31:/ # xtspec -n 31 /etc/init.d/torque_server
node/31:/ # chmod a+x /etc/init.d/torque_server
node/31:/ # vi /etc/init.d/torque_server

#!/bin/sh
#
pbs_server This script will start and stop the PBS Server
#
BEGIN INIT INFO
Provides: pbs_server
Required-Start: $local_fs network
Should-Start:
Required-Stop:
Should-Stop:
Default-Start: 2 3 5
Default-Stop:
Description: Torque is a versatile batch system for SMPs and clusters
END INIT INFO

PBS_DAEMON=/opt/torque/default/sbin/pbs_server
PBS_HOME=/var/spool/torque
PIDFILE=$PBS_HOME/server_priv/server.lock
export PBS_DAEMON PBS_HOME PIDFILE

Source the library functions
. /etc/rc.status
rc_reset

[-f /etc/sysconfig/pbs_server] && . /etc/sysconfig/pbs_server
[-x $PBS_DAEMON] || exit

How were we called
case "$1" in

start)
echo -n "Starting TORQUE Server: "
ulimit -c unlimited
if [-r $PBS_HOME/server_priv/serverdb]
then

startproc $PBS_DAEMON $SERVER_ARGS
else

startproc $PBS_DAEMON -t create $DAEMON_ARGS
fi
rc_status -v
;;

stop)
echo -n "Shutting down TORQUE Server: "
killproc -p $PIDFILE $PBS_DAEMON
rc_status -v
;;

status)
echo -n "Checking TORQUE Server: "
checkproc -p $PIDFILE pbs_server
rc_status -v
;;

restart)
$0 stop

Moab Workload Manager

$0 start
rc_status
;;

try-restart)
$0 status >/dev/null && $0 restart
rc_status
;;

reload|force-reload)
echo -n "Reloading TORQUE Server: "
killproc -p $PIDFILE pbs_server -HUP
rc_status -v
;;

*)
echo "Usage: torque_server {start|stop|status|try-

restart|restart|force-reload|reload}"
exit 1

esac
rc_exit

10. Install the torque_mom init.d script on the SDB (or other node that runs the alps_reporter service
for TORQUE) and login nodes.

There is a known issue with some of the init scripts included with TORQUE. If the included init
script doesn't work for you, use the process below to create a workaround torque_mom init.d
script for your system.

Moab Workload Manager

1220 Appendices

Appendices 1221

Example 3-177: SDB node

Moab Workload Manager

boot# xtopview -n 31 -m "torque_mom init.d"
node/31:/ # touch /etc/init.d/torque_mom
node/31:/ # xtspec -n 31 /etc/init.d/torque_mom
node/31:/ # chmod +x /etc/init.d/torque_mom
node/31:/ # vi /etc/init.d/torque_mom

#!/bin/sh
#
pbs_mom This script will start and stop the PBS Mom
#
BEGIN INIT INFO
Provides: pbs_mom
Required-Start: $local_fs
Should-Start: pbs_server pbs_sched
Required-Stop:
Should-Stop:
Default-Start: 2 3 5
Default-Stop:
Description: Torque is a versatile batch system for SMPs and clusters
END INIT INFO

PBS_DAEMON=/opt/torque/default/sbin/pbs_mom
PBS_HOME=/var/spool/torque
PIDFILE=$PBS_HOME/mom_priv/mom.lock
export PBS_DAEMON PBS_HOME PIDFILE

ulimit -n 32768
Source the library functions
. /etc/rc.status
rc_reset

[-f /etc/sysconfig/pbs_mom] && . /etc/sysconfig/pbs_mom
[-x $PBS_DAEMON] || exit

args=""
if [-z "$PREVLEVEL"];then
being run manually, don't disturb jobs
args="-p"
fi

How were we called
case "$1" in

start)
echo -n "Starting TORQUE Mom: "
#ulimit -c unlimited
/sbin/startproc $PBS_DAEMON $args $DAEMON_ARGS
rc_status -v
;;

purge)
[-f /var/lock/subsys/pbs_mom] && $0 stop
echo -n "Starting TORQUE Mom with purge: "
startproc $PBS_DAEMON -r $DAEMON_ARGS
rc_status -v
;;

stop)
echo -n "Shutting down TORQUE Mom: "
/sbin/killproc -p $PIDFILE $PBS_DAEMON
rc_status -v
;;

Moab Workload Manager

1222 Appendices

Appendices 1223

status)
echo -n "Checking TORQUE Mom: "
checkproc -p $PIDFILE $PBS_DAEMON
rc_status -v
;;

restart)
$0 stop
sleep 1
$0 start -p
rc_status
;;

try-restart)
$0 status >/dev/null && $0 restart
rc_status
;;

reload|force-reload)
echo -n "Re-reading TORQUE Mom config file: "
killproc -p $PIDFILE -HUP pbs_mom
rc_status -v
;;

*)
echo "Usage: torque_mom {start|stop|status|try-restart|restart|force-

reload|reload|purge}"
exit 1

esac

Example 3-178: Login nodes

boot# xtopview -c login -m "torque_mom init.d"
class/login:/ # touch /etc/init.d/torque_mom
class/login:/ # xtspec -c login /etc/init.d/torque_mom
class/login:/ # chmod +x /etc/init.d/torque_mom
class/login:/ # vi /etc/init.d/torque_mom

Use the same script as the SDB node above

11. Create the MOM configuration file. This must be done on every login node and also the alps_reporter
node (typically the SDB) specified in the TORQUE server_priv/nodes file.

a. First, determine if the ALPS path needs to be configured in the MOM configuration file.

login# which apbasil
/usr/bin/apbasil
No configuration change needed

login# which apbasil
/opt/cray/alps/5.0.2-2.0500.7827.1.1.ari/bin/apbasil
MOM configuration change is needed. This path needs to be declared in the mom_
priv/config file.

b. Create and populate the MOM configuration file on the nodes.

Moab Workload Manager

login and sdb# vi /var/spool/torque/mom_priv/config

$usecp *:/ufs /ufs
$usecp *:/home /home
$usecp *:/home/users /home/users
$usecp *:/scratch /scratch
$usecp *:/lus /lus
$usecp *:/extlus /extlus
$login_node true # For login node
$reporter_mom true # For SDB node
$apbasil_protocol 1.2
$prologalarm 120
$apbasil_path /opt/cray/alps/default/bin/apbasil # Only if needed. Use the path
discovered above.

c. If needed, you can add CPR information to the MOM configuration on the login nodes .

$checkpoint_run_exe /opt/cray/blcr/default/bin/cr_run
$checkpoint_script /opt/cray/cprbatchutils/default/libexec/checkpoint.torque
$restart_script /opt/cray/cprbatchutils/default/libexec/restart.torque
$remote_checkpoint_dirs /lus/scratch/BLCR_checkpoint_dir

12. Create the torque.cfg file (useful if having issues with LDAP users submitting jobs) on the
SDB node.

sdb# vi /var/spool/torque/torque.cfg

QSUBSENDUID true
VALIDATEPATH FALSE

13. Install the trqauthd init.d script on the SDB and login nodes.

boot# xtopview -n <SDB or login> -m "trqauthd"
node/<SDB or login>:/ # cp /software/torque-5.0.1/contrib/init.d/suse.trqauthd
/etc/init.d/trqauthd
node/<SDB or login>:/ # chmod +x /etc/init.d/trqauthd
node/<SDB or login>:/ # vi /etc/init.d/trqauthd

PBS_DAEMON=/opt/torque/default/sbin/trqauthd

14. Start the trqauth daemon on the SDB and login nodes.

<SDB or login># /etc/init.d/trqauthd start

Enabling node features for Cray compute nodes
Node features can be set for Cray compute nodes. To add node features to a Cray compute node, use the
cray_compute keyword on designated nodes in the nodes file.:

node_id cray_compute feature_name
2 cray_compute bigmem

Configuring TORQUE for ALPS 1.3
To configure TORQUE for ALPS 1.3, configure the apbasil_protocol parameter in mom_
priv/config and set the nppcu server parameter. The nppcu parameter has three options that

Moab Workload Manager

1224 Appendices

Appendices 1225

determine whether to use Hyper-Threading:

Table 3-6: nppcu values

Value Description

0 Allow ALPS to choose

1 Hyper-Threading disabled (default)

2 Hyper-Threading enabled

When nppcu is set to 0 or 2, pbs_nodes reports twice as many cores.

apbasil_protocol:

$apbasil_protocol 1.3
$loglevel 3

nppcu:

qmgr -c 'set server nppcu=1'

Installing Moab Workload Manager
1. Unpack the Moab tarball within xtopview.

boot# xtopview -m "Installing Moab"
default/:/# cd /software/
default/:/# tar -zxvf moab-8.0.1-linux-x86_64-torque-xt4.tar.gz
default/:/# cd moab-8.0.1

2. Configure, build, and install Moab within xtopview.

default/:/# ./configure --prefix=/opt/moab/8.0.1 --with-homedir=/var/spool/moab --
with-torque=/opt/torque/default --with-modulefiles=/opt/modulefiles --with-xt4

(or, if installing on an esMS)
default/:/# ./configure --prefix=/opt/moab/8.0.1 --with-homedir=/var/spool/moab --
with-torque=/opt/torque/default --with-modulefiles=/cm/local/modulefiles --with-xt4

default/:/# make install
default/:/# ln -sf /opt/moab/8.0.1 /opt/moab/default # The previous default symlink
may need to be deleted first if it exists
default/:/# exit

3. Configure the moab.cfg file.

Moab Workload Manager

boot# cd /rr/current/var/spool/moab/etc
boot# vi moab.cfg

Change the value of SCHEDCFG[Moab] to SERVER=sdb-p1:42559 # Leave the port
number as whatever default is present

Change ADMINCFG[1] USERS=root to USERS=root,crayadm # Where "crayadm" is the
administrative user

If applicable, change TOOLSDIR from /opt/moab/8.0.1/tools to
/opt/moab/default/tools

Change RMCFG[boot] TYPE=PBS to
RMCFG[castor] TYPE=TORQUE # "castor" can be any logical name for the

partition

For Moab version 6.x, use TYPE=NATIVE:XT4

Example:
RMCFG[tuna] TYPE=TORQUE SUBMITCMD=/opt/torque/default/bin/qsub

FLAGS=asyncstart

Add:
RMPOLLINTERVAL 00:00:10
DEFERTIME 00:05:00
JOBNODEMATCHPOLICY EXACTNODE
NODECFG[DEFAULT] OS=linux ARCH=XT
NODEACCESSPOLICY SINGLEJOB
JOBMIGRATEPOLICY IMMEDIATE
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='PRIORITY'
NODECFG[castor-p1] Partition=login # Use a logical name such as "login" to

keep the MOM nodes in a separate
partition from the compute nodes
"castor-p1" in this case is the hostname

of the login node
CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=castor # Where "castor" is the name

of the partition (see RMCFG[castor] above)
JOBMAXTASKCOUNT <total number of processors>

Comment out USEDATABASE INTERNAL

If using a re-purposed compute node as the alps_reporter MOM, add:
NODECFG[nid00060] Partition=login # Where nid00060 is the nid of the RCN

If necessary to ignore nodes (such as 24 core nodes on a primarily 32 core
system), add:

IGNORENODES 57,58 # Where "57" and "58" are node hostnames

4. Configure the config.xt4.pl file.

Moab Workload Manager

1226 Appendices

Appendices 1227

boot# vi config.xt4.pl

$basilProtocol = "1.2";

Uncomment the %loginReplaceTable line, and update the hostnames:
%loginReplaceTable = (nid00002 => "login-p1"); # Where "login-p1" is the exact
hostname of the login node, for example, "castor-p3"

Uncomment:
$topologyOrdering = 1;

If on a system that has undergone ALPS standardization (See the apbasil notes
above), replace the $torquePath line with:
my $torquePath = "/opt/torque/default/bin:/usr/bin:/opt/cray/alps/default/bin";

5. Copy Moab to the SDB node.

boot# cd /rr/current/var/spool/
boot# cp -pr moab /snv/31/var/spool/

For Moab version 6.x only:
boot# mv /snv/31/var/spool/moab/etc/moab.cfg /snv/31/var/spool/moab/

For all versions:
boot# mkdir -p /snv/2/var/spool/moab/etc /snv/2/var/spool/moab/log
boot# cp moab/etc/moab.cfg /snv/2/var/spool/moab/etc/
boot# cp moab/etc/config.xt4.pl /snv/2/var/spool/moab/etc/

6. Install the moab init.d script

There is a known issue with some of the init scripts included with Moab. If the included init
script doesn't work for you, use the process below to create a workaround moab init.d script
for your system.

Moab Workload Manager

boot# xtopview -n 31 -m "Moab init.d"
node/31:/ # touch /etc/init.d/moab
node/31:/ # xtspec -n 31 /etc/init.d/moab
node/31:/ # chmod a+x /etc/init.d/moab
node/31:/ # vi /etc/init.d/moab
#!/bin/bash
#
Starts the Moab daemon
#
chkconfig: 345 96 6
description: Moab Workload Manager
processname: moab
#
BEGIN INIT INFO
Provides: Moab
Required-Start: $local_fs $syslog $network $named
Required-Stop: $local_fs $syslog $network $named
Default-Start: 3 5
Default-Stop: 0 1 2 6
Short-Description: Moab daemon management
Description: Start Moab Workload Manager
END INIT INFO
#
1. This file should be installed as /etc/init.d/moab
#
2. Start Moab with:
#
/etc/init.d/moab start
#
Source function library.
[-f /etc/rc.status] || exit 0
. /etc/rc.status

export MOABHOMEDIR=/var/spool/moab
export MOABPARCLEANUP=Full
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/torque/default/lib

prog=moab
path=/opt/moab/default/sbin
RETVAL=0

function start()
{

echo -n "Starting $prog: "
ulimit -s unlimited # Increase stack size to unlimited
ulimit -c unlimited # Uncomment to preserve core files

export MOABNOALLOCMASTER=1
sleep 2
startproc $path/moab

RETVAL=$?
echo
[$RETVAL -eq 0] && touch /var/lock/subsys/moab
return $RETVAL

}

Moab Workload Manager

1228 Appendices

Appendices 1229

function stop()
{

echo -n "Shutting down $prog: "
killproc moab
RETVAL=$?
echo
[$RETVAL -eq 0] && rm -f /var/lock/subsys/moab
return $RETVAL

}

function restart()
{

stop
sleep 2
start

}

function condrestart()
{

if [-f /var/lock/subsys/capi] ; then
restart

fi
}

function reload()
{

echo -n $"Reloading $prog: "
schedctl -R
RETVAL=$?
echo
return $RETVAL

}

case "$1" in
start)

start
rc_status -v
;;

status)
status moab
RETVAL=$?
rc_status -v
;;

stop)
stop
rc_status -v
;;

restart)
restart
rc_status -v
;;

condrestart)
condrestart
;;

reload)
reload
rc_status -v
;;

*)

Moab Workload Manager

echo "Usage: $prog {start|stop|restart|reload|status|condrestart}"
exit 1

esac

exit $RETVAL

7. For versions of Moab earlier than 7.1.3 and TORQUE 4.1.4, root must be allowed to submit jobs.

boot# ssh sdb
sdb# module load moab torque
sdb# qmgr
qmgr> set server acl_roots = root
qmgr> exit
sdb# /etc/init.d/torque_server restart

sdb# vi /var/spool/moab/etc/moab.cfg # or /var/spool/moab/moab.cfg for Moab version
6

Add
ALLOWROOTJOBS TRUE

sdb# /etc/init.d/moab restart
or

sdb# mschedctl -R

8. For versions of Moab newer than 7.1.3, the root user can submit jobs as another user.

sdb# qmgr
qmgr> set server managers += root@*
qmgr> exit

sdb# ssh login

login# qsub -I -l mppwidth=1 -P <otherusername>

9. Copy your Moab license file to the SDB node in the /var/spool/moab/ directory.

Provisioning Resource Managers
l Validating an xCAT Installation for Use with Moab on page 1230

Validating an xCAT Installation for Use with Moab

l Introduction to Validating xCAT Configuration

l Verifying Node List

l Reporting Node Status

l Verifying Hardware Management Configuration

l Verifying Provisioning Images

l Verifying VM Migration
Introduction to Validating xCAT Configuration
This document describes a series of steps to validate xCAT configuration prior to configuring Moab to
manage hardware via xCAT. It is assumed the reader is familiar with xCAT and the xCAT configuration on

Moab Workload Manager

1230 Appendices

Appendices 1231

the target site. This document does not provide xCAT configuration documentation or troubleshooting
information; please refer to the xCAT documentation for such information.
Verifying Node List
Verify that all nodes that Moab will manage are known to xCAT with the xCAT nodels command. Ensure
that all expected (and no unexpected) nodes are listed. You may find it useful to create new group names
to identify Moab-managed nodes.

[root@h0 moab]# nodels hyper,compute
h1
h2
h3
h4
h5
h7
kvmm1
kvmm10
kvmm2
kvmm3
kvmm4
kvmm5
kvmm6
kvmm7
kvmm8
[root@h0 moab]#

Reporting Node Status
Verify that all nodes report their status correctly using the xCAT nodestat command. Ensure that all
nodes show the correct status (sshd, installing, noping, and so forth); there should not be any
timeouts or error messages.

[root@h0 moab]# nodestat hyper,compute |sort
h1: pbs,sshd
h2: pbs,sshd
h3: pbs,sshd
h4: pbs,sshd
h5: pbs,sshd
h7: noping
kvmm10: noping
kvmm1: pbs,sshd
kvmm2: pbs,sshd
kvmm3: pbs,sshd
kvmm4: pbs,sshd
kvmm5: pbs,sshd
kvmm6: pbs,sshd
kvmm7: pbs,sshd
kvmm8: noping
kvmm9: noping
[root@h0 moab]#

Verifying Hardware Management Configuration
Verify that all nodes that Moab will manage have hardware management interfaces correctly configured
using the xCAT nodels and rpower commands. After each of the rpower commands, verify the requested
state was achieved with rpower stat.

Moab Workload Manager

https://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk/xCAT-client/share/doc/

[root@h0 moab]# nodels h1,kvmm1 nodehm.mgt nodehm.power
h1: nodehm.power: ilo
h1: nodehm.mgt: ilo
kvmm1: nodehm.power: kvm
kvmm1: nodehm.mgt: kvm
[root@h0 moab]# rpower h1,kvmm1 off
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 stat
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 boot
h1: on reset
kvmm1: on reset
[root@h0 moab]# rpower h1,kvmm1 stat
h1: on
kvmm1: on
[root@h0 moab]#

Verifying Provisioning Images
Verify that all operating system images that Moab uses are configured correctly in xCAT. For stateful
images, test that all combinations of operating system, architecture, and profile install correctly.

[root@h0 moab]# rinstall -o centos5.3 -a x86_64 -p hyper h1
h1: install centos3.2-x86_64-hyper
h1: on reset
[root@n100 ~]# sleep 15 && nodestat n05
n05: ping install centos5.3-x86_64-hyper
[root@h0 moab]#

For stateless images, test that nodes are able to network boot the images.

[root@h0 moab]# nodech h5 nodetype.os=centos5.3 nodetype.arch=x86_64
nodetype.profile=hyper
[root@h0 moab]# nodeset h5 netboot
h5: netboot centos5.3-x86_64-hyper
[root@h0 moab]# rpower h5 boot
h5: on reset
[root@h0 moab]# sleep 60 && nodestat h5
h5: pbs, sshd
[root@h0 moab]#

Verifying VM Migration
If you use VM migration, verify that xCAT can successfully perform migrations using the rmigrate
command.

[root@h0 moab]# rmigrate kvmm7 h1
kvmm7: migrated to h1
[root@h0 moab]# ssh h1 virsh list
Id Name State

33 kvmm1 running
34 kvmm2 running
35 kvmm7 running

Moab Workload Manager

1232 Appendices

Appendices 1233

Related topics

l Native Resource Manager Overview
l Resource Provisioning

Hardware Integration
l Moab-NUMA Integration Guide on page 1233

Moab-NUMA Integration Guide

Scheduling a shared-memory NUMA type system (not the same as a modern SMP-based individual
compute node, which cannot share memory between compute nodes) requires some special configuration.
Additionally, Moab can use NODESETs to guarantee feasibility of large memory jobs and to enforce node
allocation based on the system's interconnect network topology.

Configuration

To integrate Moab and NUMA

1. Configure Moab to schedule large memory jobs. Because Moab creates a partition for each resource
manager by default, you must configure the cluster controlled by the resource manager to be a
shared-memory system to support jobs spanning multiple nodes/blades. To do so, use the PARCFG
parameter.

RMCFG[sys-uv] TYPE=TORQUE
PARCFG[sys-uv] FLAGS=SharedMem

Cluster sys-uv is now configured as a shared-memory system to Moab.

2. Configure NODESETs as shown below.

NODESETISOPTIONAL FALSE
NODESETATTRIBUTE FEATURE
NODESETPOLICY ONEOF
NODESETPRIORITYTYPE FIRSTFIT

The NODESET parameters tell Moab that performing node allocation using node sets is required, that the node set
name is a feature name assigned to compute nodes, that a job must fit within the available nodes of one node set,
and that Moab should use the first node set that contains sufficient available nodes to satisfy the job's request.

3. To configure Moab to perform topology-aware node allocation using node sets, you must create a
node set definition for each set of nodes that has the same number of maximum network "hops" from
any node to every other node within the node set. For an example, see the following sample scenario:

Moab Workload Manager

Use case

The SGI UV 1000 has a two-socket blade with a physical organization of 16 blades within a blade
chassis (SGI term is Intra-Rack Unit or IRU), two blade chassis (IRUs) within a rack, and up to
four racks within a single UV system. The UV 1000 interconnect network has a topology that
requires zero hops between the two sockets on the same physical blade, one hop between an
even-odd blade pair (e.g. blades 0 and 1, 2 and 3, etc.), two hops between all even-numbered or
all odd-numbered blades within an IRU, three hops maximum between all blades within an IRU,
four hops maximum between all even-numbered blades or all odd-numbered blades within a UV
system, and five hops maximum between all blades within a UV system.

a. Define topology-aware node definitions to parallel the compute nodes reachable within a specific
hop count. For the UV 1000, this means the sockets of each blade will belong to six separate node
set definitions; i.e., one each for 0, 1, 2, 3, 4, and 5 hops).

b. Define multiple node sets for different nodes reachable in a specific hop count based on the
context of where they are in the network topology; that is, you must create a separate and
distinct node set definition for each pair of blades reachable with one hop, for each IRU for its
nodes reachable in three hops, etc.

c. Moab node sets are usually defined as compute node features; that is, each node set defined to
Moab should appear as a "feature" name on one or more compute nodes. Which node set/feature
names appear on each compute node depends on where the compute node is in the interconnect
network topology.

Since the SGI UV operating system identifies each blade socket as a separate NUMA node, each
NUMA node within a UV system is traditionally an individual compute node to Moab (although
TORQUE has the ability to redefine a compute node definition by grouping OS NUMA nodes, which
some UV installations do to define a blade as a compute node).

For the sake of illustration, this example assumes each OS NUMA node, which is a UV blade
socket, is also a compute node in Moab. This means each compute node (blade socket) will have
six feature names assigned, where each feature name must reflect both the compute node's
location in the network topology and the hop count the name represents. A feature name is
constructed by using the same root name for a hop count and a number for the topology location
at the hop-count level.

For example, the root feature name "blade" represents the zero-hop count and the numbers "0",
"1,", etc, represent the consecutively numbered blades throughout the entire UV system, which
yields feature names of "blade0" for the first blade in the system, "blade1" for the second blade,
etc, to "blade127" for the last blade in a fully populated 4-rack UV system. To illustrate further,
the root feature name "iru" represents the 3-hops count and the numbers "0" through "7"
represent the eight IRUs within a full 4-rack UV system.

d. For each compute node, configure the correct feature name for each of the hop counts possible
and its location within the topology at the hop-count level (e.g., blade (0 hops), blade pair (1 hop),
odd- or even-numbered nodes within an IRU (2 hops), IRU (3 hops), odd- or even-numbered nodes
within the UV (4 hops), and UV system (5 hops)). The following example illustrates the feature
names assigned to the compute nodes for an SGI UV 1000 system using the following root feature

Moab Workload Manager

1234 Appendices

Appendices 1235

names.

l blade (0 hops)

l pair (1 hop)

l eiru (2 hops for even-numbered blades within an IRU)

l oiru (2 hops for odd-numbered blades within an IRU)

l iru (3 hops)

l esys (4 hops for even-numbered blades within a UV system)

l osys (4 hops for odd-numbered blades within a UV system)

l sys (5 hops)

Note that nodes 0 and 1 are not given any feature names. This is because the operating system
instance for the UV system runs on the first blade and in order to not adversely affect OS
performance, no jobs should run on the same compute resources as the operating system; hence,
these nodes have no node set feature names and therefore will never be chosen to run jobs. In
addition, some of the first feature names at a specific hop count-level are omitted (such as pair0)
since it makes no sense to define them when the first blade is a substantial part of the nodes
making up a node set.

The node name of a UV system has the same name as the UV system's host name plus the NUMA
node's relative socket number.

/var/spool/torque/server_priv/nodes:
sys-uv0
sys-uv1
sys-uv2 blade1 oiru0 iru0 osys sys
sys-uv3 blade1 oiru0 iru0 osys sys
sys-uv4 blade2 pair1 eiru0 iru0 esys sys
sys-uv5 blade2 pair1 eiru0 iru0 esys sys
sys-uv6 blade3 pair1 oiru0 iru0 osys sys
sys-uv7 blade3 pair1 oiru0 iru0 osys sys
sys-uv8 blade4 pair2 eiru0 iru0 esys sys
sys-uv9 blade4 pair2 eiru0 iru0 esys sys
sys-uv10 blade5 pair2 oiru0 iru0 osys sys
sys-uv11 blade5 pair2 oiru0 iru0 osys sys
sys-uv12 blade6 pair3 eiru0 iru0 esys sys
sys-uv13 blade6 pair3 eiru0 iru0 esys sys
sys-uv14 blade7 pair3 oiru0 iru0 osys sys
sys-uv15 blade7 pair3 oiru0 iru0 osys sys
sys-uv16 blade8 pair4 eiru0 iru0 esys sys
sys-uv17 blade8 pair4 eiru0 iru0 esys sys
sys-uv18 blade9 pair4 oiru0 iru0 osys sys
sys-uv19 blade9 pair4 oiru0 iru0 osys sys
sys-uv20 blade10 pair5 eiru0 iru0 esys sys
sys-uv21 blade10 pair5 eiru0 iru0 esys sys
sys-uv22 blade11 pair5 oiru0 iru0 osys sys
sys-uv23 blade11 pair5 oiru0 iru0 osys sys
sys-uv24 blade12 pair6 eiru0 iru0 esys sys
sys-uv25 blade12 pair6 eiru0 iru0 esys sys
sys-uv26 blade13 pair6 oiru0 iru0 osys sys
sys-uv27 blade13 pair6 oiru0 iru0 osys sys
sys-uv28 blade14 pair7 eiru0 iru0 esys sys
sys-uv29 blade14 pair7 eiru0 iru0 esys sys

Moab Workload Manager

sys-uv30 blade15 pair7 oiru0 iru0 osys sys
sys-uv31 blade15 pair7 oiru0 iru0 osys sys
sys-uv32 blade16 pair8 eiru1 iru1 esys sys
sys-uv33 blade16 pair8 eiru1 iru1 esys sys
sys-uv34 blade17 pair9 oiru1 iru1 osys sys
sys-uv35 blade17 pair9 oiru1 iru1 osys sys
...
sys-uv62 blade31 pair15 oiru1 iru1 osys sys
sys-uv63 blade31 pair15 oiru1 iru1 osys sys
sys-uv64 blade32 pair16 eiru2 iru2 esys sys
sys-uv65 blade32 pair16 eiru2 iru2 esys sys
...
sys-uv126 blade63 pair31 oiru3 iru3 osys sys
sys-uv127 blade63 pair31 oiru3 iru3 osys sys
sys-uv128 blade64 pair32 eiru4 iru4 esys sys
sys-uv129 blade64 pair32 eiru4 iru4 esys sys
...
sys-uv190 blade95 pair47 oiru5 iru5 osys sys
sys-uv191 blade95 pair47 oiru5 iru5 osys sys
sys-uv192 blade96 pair48 eiru6 iru6 esys sys
sys-uv193 blade96 pair48 eiru6 iru6 esys sys
...
sys-uv252 blade126 pair63 eiru7 iru7 esys sys
sys-uv253 blade126 pair63 eiru7 iru7 esys sys
sys-uv254 blade127 pair63 oiru7 iru7 osys sys
sys-uv255 blade127 pair63 oiru7 iru7 osys sys

4. Define the order in which Moab should check node sets for available nodes. Since the
NODESETPRIORITYTYPE has a value of FIRSTFIT, the node sets must be ordered from smallest to
largest so Moab will always choose the node set with the fewest nodes required to satisfy the job's
request. This means listing all blades, blade pairs, even and odd IRUs, IRUs, even and odd system, and
system, respectively.

moab.cfg:
NODESETLIST
blade1,blade2,blade3,…,blade127,pair1,pair2,pair3,…,pair63,eiru0,oiru0,eiru1,oiru1,
…,eiru7,oiru7,iru0,iru1,…,iru7,esys,osys,sys

5. Configure Moab to use the PRIORITY NODEALLOCATIONPOLICY. This allocation policy causes Moab to
allocate enough nodes to fulfill a job's processor and memory requirement.

NODEALLOCATIONPOLICY PRIORITY

6. Set NODEACCESSPOLICY to SINGLEJOB to ensure that Moab will schedule large memory requests
correctly and efficiently. This is necessary even when a job uses only the memory of a NUMA node.

NODEACCESSPOLICY SINGLEJOB

The policy SINGLEJOB tells Moab not to allow jobs to share NUMA resources (cores and memory),
which for a shared-memory system is very important for fast job execution. For example, if Moab
scheduled a job to use the cores of a NUMA node where memory is used by another job, both jobs
would execute slowly (up to 10 times more slowly).

Job Submission
Jobs can request processors and memory using the -l nodes=<number of cpus> and -l
mem=<amount of memory> syntaxes. You should not have JOBNODEMATCHPOLICY EXACTNODE
configured on a NUMA system. You must use the sharedmem job flag on submission to force the job to

Moab Workload Manager

1236 Appendices

Appendices 1237

run only on a sharedmem partition or cluster and to indicate that the job can span multiple nodes. For
example:

qsub -l nodes=3,mem=640sgb,flags=sharedmem

Appendix H: Interfacing with Moab (APIs)
Moab provides numerous interfaces allowing it to monitor and manage most services and resources. It
also possesses flexible interfaces to allow it to interact with peer services and applications as both a
broker and an information service. This appendix is designed to provide a general overview and links to
more detailed interface documentation.

l H.1 Moab Query and Control APIs

o Allow external portals and services to obtain information about compute resources,
workload, and usage statistics.

l H.2 Resource Management Interfaces

o Allow Moab to monitor, schedule, and control services and resources.

l H.3 Identity and Credential Management Interfaces

o Allow monitoring and active management of user configuration, credentials, policies, and
usage information.

l H.4 Accounting and Event Interfaces

o Allow import/export of accounting and event information to external entities.

l H.5 Job Submission and Management Interface

o Query resource availability, submit, modify, and manage jobs, and query the status of
active and completed jobs.

l H.6 Grid Services API

o Provide and use information, data, job, and resource management services in a distributed
environment.

Moab interfaces to systems providing various services and using various protocols. This appendix is
designed to assist users who want to enable Moab in new environments using one of the existing
interfaces. It does not cover the steps required to create a new interface.

H.1 Query and Control APIs
The Moab Cluster and Grid Suites provides a (Moab) workload manager server that supports a broad
array of client services. These services can be directly accessed via Moab client commands.

Moab Workload Manager

H.1.1 CLI (Command Line Interface) XML API

All Moab client commands can report results in XML format to allow the information to be easily
integrated into peer services, portals, databases, and other applications. To request that a client
command report its output in XML, specify the --format=xml flag as in the following example:

> showq --format=xml
<Data>
<Object>queue</Object>
<cluster LocalActiveNodes="1" LocalAllocProcs="1" LocalIdleNodes="0"
LocalIdleProcs="3" LocalUpNodes="1"
LocalUpProcs="4" RemoteActiveNodes="0" RemoteAllocProcs="0" RemoteIdleNodes="0"

RemoteIdleProcs="0"
RemoteUpNodes="0" RemoteUpProcs="0" time="1128451812"></cluster>

<queue count="1" option="active">
<job AWDuration="11672" EEDuration="1128451812" Group="[DEFAULT]" JobID="Moab.2"
MasterHost="cw2" PAL="2"
QOS="bug3" ReqAWDuration="54000" ReqNodes="1" ReqProcs="1" RsvStartTime="1128451812"

RunPriority="0"
StartPriority="1" StartTime="1128451812" StatPSDed="11886.580000"

StatPSUtl="11886.580000" State="Running"
SubmissionTime="1128451812" SuspendDuration="0" User="smith"></job>

</queue>
<queue count="1" option="eligible">
<job EEDuration="1128451812" Group="jacksond" JobID="customer.35" QOS="bug"
ReqAWDuration="3600"
ReqProcs="1" StartPriority="1" StartTime="0" State="Idle"

SubmissionTime="1128451812" SuspendDuration="0"
User="johnson"></job>

<queue><queue count="0" option="blocked"></queue>
</Data>

Common Query/Control Services

l jobs

o query status - mdiag -j (XML details)

o submit - msub (XML format)

o cancel - mjobctl -c

l nodes

o query status - mdiag -n (XML details)

o create resource reservation - mrsvctl -c

o destroy resource reservation - mrsvctl -r

H.2 Resource Management Interfaces
Moab can monitor, schedule, and control services and resources using multiple protocols. These
protocols include the following:

l LDAP

l script/flat file

l Resource Manager Specific Interfaces - LSF, SGE, TORQUE, PBSPro, Loadleveler, and so forth

Moab Workload Manager

1238 Appendices

Appendices 1239

Using the resource manager interfaces, Moab can do the following:

l monitor resources (compute host, network, storage, and software license based resources)

o load configuration, architecture, and feature information

o load state, utilization, and workload information

o load policy and ownership information

l manage resources

o dynamically reconfigure and reprovision resource hardware (processors, memory, etc.)

o dynamically reconfigure and reprovision resource software (operating system, application
software, filesystem mounts, etc.)

o dynamically reconfigure and reprovision resource security (VPN's, VLAN's, host security,
etc.)

l monitor workload (batch jobs, interactive jobs, persistent services, dynamic services, distributed
services)

o load state, resource requirement, and required environment information

o load user, group, and credential information

o load utilization, resource allocation, and policy information

l manage workload

o migrate jobs from one resource to another (intra-cluster and inter-cluster)

o modify jobs for translation and optimization purposes

o suspend, resume, checkpoint, restart, and cancel jobs

l query cluster policies and configuration

H.3 Identity and Credential Management Interfaces
Moab's identity and credential management interfaces allow Moab to exchange credential and user
configuration, access, policy, and usage information.

l Identity Manager

l Allocation Manager

l Moab Workload Manager for Grids

H.4 Accounting Interfaces
Moab accounting interfaces allow Moab to export local utilization statistics, events, and accounting
information to site specific scripts.

l Accounting Interface

Moab Workload Manager

H.6 Job Submission and Management Interface
Moab provides interfaces to enable the following services:

l Resource Availability Query

o Determine quantity, state, and configuration of configured resources (idle, busy, and down
nodes)

o Determine quantity and configuration of all available resources (idle nodes)

o Determine resources available subject now and in the future for potential job

o Determine best target cluster destination for potential job

o Determine largest/longest job which could start immediately

o Determine estimated start time for potential job

o Determine earliest guaranteed start time for potential job

l Reserve Resources

o Reserve specific resources for desired time frame

l Submit Job (XML format)

o Submit job to specific cluster

o Submit job to global job queue

l Manage Job

o Hold job

o Adjust job priority

o Modify job executable, args, data requirements, job dependencies, duration, hostcount, or
other attributes

o Suspend/resume job

o Checkpoint/requeue job

o Cancel job

o Migrate job

o Adjust job quality of service (QoS)

l Query Job

o Determine job state, utilization, or output results for idle, active, or completed job

o Determine estimated start time

o Determine guaranteed start time

Moab Workload Manager

1240 Appendices

Appendices 1241

H.7 Grid Interfaces
Moab provides interfaces to allow interaction with various grid brokers and services. These interfaces
allow Moab to provide services as well as utilize services.

Services Utilized

l Information Services (import and utilize information service data in making scheduling decisions)

l Job Migration

l Data Migration

l Credential Mapping

l Security and Delegation

See Moab Workload Manager for Grids for more information on utilized services.

Services Provided

l Information Services (provide resource, workload, and credential information)

l Job Migration

l Data Migration

l Credential Mapping

See Moab Workload Manager Grid Basics for more information on provided services.

Appendix I: Considerations for Large Clusters
l I.1 Resource Manager Scaling

l I.2 Handling Large Numbers of Jobs

l I.3 Handling Large Numbers of Nodes

l I.4 Handling Large Jobs

l I.5 Handling Large SMP Systems

l I.6 Server Sizing

There are several key considerations in getting a batch system to scale.

I.1 Resource Manager Scaling

Proper Resource Manager Configuration

l TORQUE

o General Scaling Overview

Moab Workload Manager

l OpenPBS/PBSPro

o Manage Direct Node Communication with NODEPOLLFREQUENCY

I.2 Handling Large Numbers of Jobs

Set a minimum RMPOLLINTERVAL

With event driven resource managers like TORQUE, each time a job is submitted the resource manager
notifies the scheduler. In an attempt to minimize response time, the scheduler starts a new scheduling
cycle to determine if the newly submitted job can run. In systems with large numbers of jobs submitted
at once, this might not result in the desired behavior for two reasons. First, by scheduling at every job
submission Moab schedules newly submitted jobs onto available resources in a first come, first served
basis rather than evaluating the entire group of new jobs at once and optimizing the placement
accordingly. Second, by launching a scheduling iteration for every job submitted, Moab places a heavy
load on the resource manager. For example, if a user were to submit 1000 new jobs simultaneously, for
each job submitted, the resource manager contacts the scheduler, the scheduler starts a new iteration,
and in this iteration, the scheduler contacts the resource manager requesting updated information on all
jobs and resources available.

Setting a minimum RMPOLLINTERVAL causes the scheduler to not process jobs as quickly as they are
submitted, but rather to wait a minimum amount of time to allow more jobs be submitted and to process
these new jobs in groups.

RMPOLLINTERVAL 30,60

If the system is busy, schedule every 30 seconds. If it is not busy, schedule every 60 seconds.

Reduce command processing time

If your system's scheduling cycle regularly takes longer than the CLIENTTIMEOUT value, you can
configure Moab to fork a copy of itself that will respond to certain information-only client commands
(checkjob, showbf, , and showstart). This enables you to run intense diagnostic commands while Moab is
in the middle of its scheduling process.

In both the client and server configuration, when you set UIMANAGEMENTPOLICY FORK on a submithost,
Moab forks a copy of itself that will listen for client commands on a separate port, which you must
configure with CLIENTUIPORT. This forked process responds to checkjob, showbf, showres, and showstart
until the main scheduling cycle has finished. After that, it is killed and the normal process resumes
responding to client commands. Moab prints a disclaimer at the top of each command that was populated
by the forked process stating that the information may be a few seconds stale.

Example 3-179: Sample configuration

UIMANAGEMENTPOLICY FORK
CLIENTUIPORT 41560

Moab forks a copy of itself on port 41560, where it will watch for checkjob, showbf, showres, and showstart commands
until the main scheduling process completes.

Moab Workload Manager

1242 Appendices

Appendices 1243

Example 3-180: Sample command output

$ checkjob 34

--
NOTE: The following information has been cached by the remote server
and may be slightly out of date.
--

job 34

State: Idle
Creds: user:wightman group:company class:batch
WallTime: 00:00:00 of 00:01:00
SubmitTime: Thu May 22 14:17:06
(Time Queued Total: 00:00:18 Eligible: 00:00:18)

TemplateSets: DEFAULT
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

SystemID: scale
SystemJID: 34

IWD: $HOME/test/scale
SubmitDir: $HOME/test/scale
Executable: sleep 60

Limited Job Checkpointing

Use the LIMITEDJOBCP on page 966 parameter. By default, Moab will checkpoint information about
every job it reads from its resource managers. When a cluster routinely runs more than 15000 jobs, they
may see some speed-ups by limiting which jobs are checkpointed. When LIMITEDJOBCP is set to TRUE,
Moab will only checkpoint jobs that have a hold, a system priority, jobs that have had their QoS modified,
and a few other limited attributes. Some minimal statistical information is lost for jobs that are not
checkpointed.

Minimize Job Processing Time

Use the ENABLEHIGHTHROUGHPUT on page 929 parameter. By default, Moab processes all job
attributes, filters, remap classes, job arrays, and other information when a job is submitted. This
requires full access to the Moab configuration and significantly increases the processing time Moab
needs when jobs are submitted. By setting ENABLEHIGHTHROUGHPUT to TRUE, Moab stores the job
information in an internal queue and returns the job ID immediately. The internal queue is processed
when Moab begins its next scheduling iteration. This enables Moab to process hundreds of jobs per
second rather than 20-30 per second. Because the jobs are processed in a separate queue after the job
has been returned, it is recommended that MAILPROGRAM be configured. Moab will send an email to the
user if a job is rejected.

Because the job is not fully processed, some attributes may change after the job has been submitted. For
example, when a job class is remapped, the new class is not reflected until Moab begins its next
scheduling iteration. Additionally, job arrays are not instantiated until Moab begins its next scheduling
cycle.

Moab Workload Manager

If ENABLEHIGHTHROUGHPUT on page 929 is TRUE, you must set NODEALLOCATIONPOLICY on
page 978 to FIRSTAVAILABLE.

Load all Non-Completed Jobs at Startup

Use the LOADALLJOBCP on page 967 parameter. By default, Moab loads non-complete jobs for active
resource managers only. By setting LOADALLJOBCP to TRUE, Moab will load all non-complete jobs from
all checkpoint files at startup, regardless of whether their corresponding resource manager is active.

Reducing Job Start Time

Use the ASYNCSTART parameter. By default, Moab will launch one job at a time and verify that each job
successfully started before launching a subsequent job. For organizations with large numbers of very
short jobs (less than 2 minutes in duration), the delay associated with confirming successful job start can
lead to productivity losses. If tens or hundreds of jobs must be started per minute, and especially if the
workload is composed primarily of serial jobs, then the resource manager ASYNCSTART flag may be set.
When set, Moab will launch jobs optimistically and confirm success or failure of the job start on the
subsequent scheduling iteration. Also consider adding the ASYNCDELETE flag if users frequently cancel
jobs.

Reducing Job Reservation Creation Time

Use the RMCFG on page 1014 JOBRSVRECREATE on page 598 attribute. By default, Moab destroys and
re-creates job reservations each time a resource manager updates any aspect of a job. Historically, this
stems from the fact that certain resource managers would inadvertently or intentionally migrate job
tasks from originally requested nodes to other nodes. To maintain synchronization, Moab would re-
create reservations each iteration thus incorporating these changes. On most modern resource
managers, these changes never occur, but the effort required to handle this case grows with the size of
the cluster and the size of the queue. Consequently, on very large systems with thousands of nodes and
thousands of jobs, a noticeable delay is present. By setting JOBRSVRECREATE to FALSE on resource
managers that do not exhibit this behavior, significant time savings per iteration can be obtained.

Optimizing Backfill Time

Use the OPTIMIZEDBACKFILL flag. Speeds up backfill when a system reservation is in use.

Constraining Moab Logging - LOGLEVEL

Use the LOGLEVEL on page 969 parameter. When running on large systems, setting LOGLEVEL to 0 or 1 is
normal and recommended. Only increase LOGLEVEL above 0 or 1 if you have been instructed to do so by
Moab support.

Preemption

When preemption is enabled Moab can take considerably more time scheduling jobs for every scheduling
iteration. Preemption increases the number of options available to Moab and therefore takes more time
for Moab to optimally place jobs. If you are running a large cluster or have more than the usual amount

Moab Workload Manager

1244 Appendices

Appendices 1245

of jobs (>10000), consider disabling preemption. If disabling preemption is not possible, consider limiting
its scope to only a small subset of jobs (as both preemptors and preemptees).

Handling Transient Resource Manager Failures

Use the RMCFG MAXITERATIONFAILURECOUNT on page 600 attribute.

Constrain the number of jobs preempted per iteration

Use the JOBMAXPREEMPTPERITERATION parameter.

For very large job count systems, configuration options controlling the maximum supported limits
may need to be adjusted including the maximum number of reservations and the maximum number
of supported evaluation ranges.

Scheduler settings

If using Moab, there are a number of parameters which can be set on the scheduler which may improve
TORQUE performance. In an environment containing a large number of short-running jobs, the
JOBAGGREGATIONTIME parameter can be set to reduce the number of workload and resource queries
performed by the scheduler when an event based interface is enabled. Setting JOBAGGREGATIONTIME
instructs the scheduler to ignore events coming from the resource manager and to scheduling at regular
intervals, rather than around resource manager events. If the pbs_server daemon is heavily loaded and
PBS API timeout errors (i.e. "Premature end of message") are reported within the scheduler, the
TIMEOUT attribute of the RMCFG parameter may be set with a value of between 30 and 90 seconds.

I.3 Handling Large Numbers of Nodes
For very large clusters (>= 10,000 processors) default scheduling behavior may not scale as desired. To
address this, the following parameters should be considered:

Parameter Recommended Settings

RMPOLLINTERVAL In large node environments with large and long jobs, scheduling overhead can be min-
imized by increasing RMPOLLINTERVAL above its default setting. If an event-driven
resource management interface is available, values of two minutes or higher may be used.
Scheduling overhead can be determined by looking at the scheduling load reported by
mdiag -S.

LIMITEDNODECP Startup/shutdown time can be minimized by disabling full node state checkpointing that
includes some statistics covering node availability.

SCHEDCFG
FLAGS="
FASTRSVSTARTUP
on page 1369

When you have reservations on a large number of nodes, it can take Moab a long time to
recreate them on startup. Setting the FASTRSVSTARTUP scheduler flag greatly reduces
startup time.

Moab Workload Manager

* For clusters where the number of nodes or processors exceeds 50,000, the maximum stack size for the
shell in which Moab is started may need to be increased (as Moab may crash if the stack size is too
small). On most Unix/Linux based systems, the command ulimit -s unlimited may be used to increase the
stack size limit before starting Moab. This may be placed in your Moab startup script.

See Appendix D for further information on default and supported object limits.

Avoid adding large numbers of NODECFG lines in the moab.cfg or moab.d/*.cfg files to keep the
Moab boot time low.

For example, adding a configuration line to define features for each node in a large cluster (such as
NODECFG[x] Features+=green,purple) can greatly increase the Moab boot time. If Moab
processes 15 node configuration lines per second for a 50,000-node system, it could add approximately 55
minutes of node configuration processing to the Moab boot time.

In this case, it is better to define the node features in the resource manager configuration.

I.4 Handling Large Jobs
For large jobs, additional parameters beyond those specified for large node systems may be required.
These include settings for the maximum number of tasks per job, and the maximum number of nodes per
job.

I.5 Handling Large SMP Systems
For large-way SMP systems (> 512 processors/node) Moab defaults may need adjustment.

Parameter Recommended Settings

MAXRSVPERNODE By default, Moab does not expect more than 48 jobs per node to be running or have future
reservations. Increasing this parameter to a value larger than the expected maximum num-
ber of jobs per node is advised.

I.6 Server Sizing
See Hardware and Software Requirements for recommendations.

Related topics

l Appendix D: Adjusting Default Limits

Appendix J: Configuring Moab as a Service
Scripts that follow can be used to start up Moab services automatically upon a reboot. To enable a
service script, copy the script to /etc/rc.d/init.d/S97moab, edit the file to make needed
localization changes (adjust binary paths, execution user, etc), and add links to the rc3.dand rc5.d
directories as in the example that follows:

Moab Workload Manager

1246 Appendices

Appendices 1247

> cp mwm.service /etc/rc.d/init.d/S97moab
> vi /etc/rc.d/init.d/S97moab

(make needed localizations)
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc3.d
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc5.d

J.1 Moab Workload Manager Service Scripts
l Moab Workload Manager Script
l Moab Workload Manager + TORQUE Script

J.2 Moab Grid Scheduler Service Script
l sample script

Appendix K: Migrating from 3.2

Overview
This guide is intended to help facilitate migrating from Maui to Moab. If you do not have Moab yet, you
can download a free evaluation version. At a high level, migrating from Maui 3.2 to Moab involves
minimal effort. In fact, Moab fully supports all Maui parameters and commands. Migration can consist of
nothing more than renaming maui.cfg to moab.cfg and launching Moab using the moab command.
With this migration, the biggest single issue is becoming aware of all the new facilities and capabilities
available within Moab. Beyond this, migration consists of a few minor issues that may require attention
such as some statistics and priorities.

Another approach of migrating from Maui to Moab is to configure Moab in Monitor mode and run it
beside Maui. Maui will continue to perform the scheduling and control workload. Moab will simply
monitor the cluster environment using the policies configured in moab.cfg. Moab will not have the
ability to affect workload, providing a safe and risk-free environment to evaluate Moab without affecting
your production environment. You can also have Moab capture resource and workload trace files and
allow Moab to simulate what it would have done if it controlled workload. When you feel comfortable
with and want to run Moab live on your cluster, all you need to do is change the mode to NORMAL, stop
Maui, and restart Moab. Current jobs will remain running and Moab will take over control of scheduling.

As with any migration, we suggest that you back up important files such as the following: maui.cfg,
maui.log and maui.ck.

View the Flash demo of migrating from Maui to Moab.

Migrating from Maui to Moab
1. Install Moab Workload Manager. (Installation Instructions)

2. Copy your maui.cfg file to the MOABHOMEDIR/etc (/opt/moab/etc) and rename it moab.cfg.

3. Stop Maui.

4. Start Moab.

Moab Workload Manager

http://www.adaptivecomputing.com/eval
http://www.clusterresources.com/services/Tutorials/MPortDemo.shtml

5. If Applicable: Re-apply those configurations found in the Statistics and Checkpointing section that
need adjustment after migration as well as any parameters in moab.cfg that point to a Maui file
like maui.log.

Running Maui and Moab Side-By-Side
1. Install Moab Workload Manager on your cluster. (Installation steps will differ slightly from a typical

installation.)

a. Run ./configure.

b. Run make.

c. You will need to set your MOABHOMEDIR environment variable to the location where you built
Moab by typing export MOABHOMDIR=[make directory].

2. To have Moab use all the same policies as Maui, copy maui.cfg to the MOABHOMEDIR/etc and
rename it moab.cfg.

l You can also start your moab.cfg file from scratch. Just use the moab.cfg already in the
MOABHOMEDIR/etc.

3. Make sure that the port in moab.cfg is different than the port used in maui.cfg.

4. In the moab.cfg file, add the parameter, SERVERMODE=MONITOR.

l If you used the moab.cfg from scratch, on the SCHEDCFG line add MODE=MONITOR.

5. You will need to either put the Moab commands in your environment path (located in
MOABHOMEDIR/bin) or run the commands from their location if you still want to use the Maui
commands in your environment path.

6. Run Moab Workload Manager using the moab command located in MOABHOMEDIR/bin.

Other Notes
The following are minor differences between Maui and Moab and changes you may need to make:

File Naming
Moab uses slightly different naming than Maui. The following table displays these changes:

File Maui Moab

executable maui moab

logs maui.log moab.log

configuration file maui.cfg moab.cfg

Moab Workload Manager

1248 Appendices

Appendices 1249

Statistics and Checkpointing
Moab supports Maui version 3.2 or higher workload traces (statistics) allowing it to process historical
statistics based on these traces as well as generate simulations based on them. No changes are required
to use these statistics. See the Simulation Configuration documentation for more information on trace
files. You can also view a flash demonstration of the simulation mode.

Moab does not support the Maui 3.2 checkpointing format. Because of this, state information
checkpointed under Maui will not be available at the time of the migration. The loss of this information
will have the following impact:

l Admin reservations, if any, will need to be re-created.

l Processed credential and scheduler statistics (displayed by showstats) will be lost.

l Admin job system priority configured by the setspri command and QoS assignments configured by
the setqos command, if any, will be lost.

Verify Configuration File Compatibility
The command mdiag -C will perform diagnostics on your new configuration file and may prove helpful in
identifying any issues.

Environment Variables
Scheduler environment variables are supported under Moab with obvious naming changes. Sample
environment variables follow:

Maui Moab

MAUIHOMEDIR MOABHOMEDIR

MAUIDEBUG MOABDEBUG

MAUICRASHVARIBALE MOABCRASHVARIABLE

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

MAUIRECOVERYACTION MOABRECOVERYACTION

MAUI-COMMANDS-PATH MOAB-COMMANDS-PATH

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

Moab Workload Manager

http://www.clusterresources.com/services/Tutorials/MSimDemo.shtml

Appendix R: Node Allocation Plug-in Developer Kit
l R.1 Overview

o R.1.1 Writing the plugin

o R.1.1.1 API & Data Structures

o R.1.2 Moab configuration

o R.1.2.1 Moab.cfg

o R.1.2.2 Syntax rules

o R.1.2.3 Troubleshooting

R.1 Overview
Each time Moab schedules a job, it must choose the nodes on which the job will run. Moab uses the Node
Allocation policy to select the available nodes to be used. Because there are so many different systems
and cluster topologies, you now have the ability to create and use a node allocation plugin for allocating
nodes based on your cluster's interconnect topology.

The plugin policy allows you to write your own algorithm to choose which nodes will be used. This
algorithm is contained in a shared library that Moab loads at run time.

To obtain the Plug-in Developer Kit (PDK) with the header file and example code, contact your sales
representative.

R.1.1 Writing the plugin

A plugin is a shared library that has specific functions and variables that will be called directly from
Moab. The plugin conforms to a C language API. The API is specified through an include file: moab-
plugin.h. This file must be included in the plugin code. The include file provides function definitions,
structures and variables that will be used when communicating with Moab.

When you write the plugin, you need to ensure that the plugin code is robust. If the plugin crashes, Moab
will crash. You will need to handle your own memory appropriately. If the plugin has memory leaks,
Moab will have similar issues. If you want to maintain logs, the plugin will need to be responsible for its
own logging.

R.1.1.1 API and Data Structures

The Application Programmer Interface (API) for the Moab Node Allocation Plugin consists of three data
items and three entry points that must be supplied to Moab by the plugin.

Moab Workload Manager

1250 Appendices

Appendices 1251

Plugin Supplied
Data Description

const char
*PLUGIN_NAME =
"Node Allocation
plugin 1.1";

This character pointer is used by Moab when logging information regarding the operation
of the plugin.

const char
*PLUGIN_TYPE =
PLUGIN_TYPE_
NAME_
NODEALLOCATION;

This character pointer is used by Moab to verify the type of plugin. The value of this data
is supplied by the moab-plugin.h source file. The plugin must set this as shown so that
Moab does not attempt to use a plugin incorrectly. Moab uses this to determine whether
the plugin API type is correct and to allow Moab to correctly communicate with the plugin.

const char
*PLUGIN_VERSION
= PLUGIN_API_
VERSION;

This character pointer is used by Moab to verify the API version number. The value of this
data is supplied by the moab-plugin.h source file. The plugin must set this as shown so
that the correct version of the moab-plugin.h is supplied to Moab. Moab uses this to
determine whether the API version is correct and to allow Moab to correctly communicate
with the plugin.

Load Time
API Description

initialize() int initialize(const char *name, void **data_handle)
The plugin must supply an initialize() entry point. This entry point is called for each use
instance of the plugin. For example, if the plugin is used on two different partitions, the
initialize() entry point will be called once for each partition.

l Name — The name is the unique identifier which is used to distinguish multiple
instances of the plugin and for logging. When configured globally, the name “ALL” will
be given.

l Data handle — The data_handle points to a location where the plugin should store a
pointer to any internal data needed by the plugin between calls to the API. The actual
format and structure of the data is up to the plugin. Moab will supply this pointer back
to the plugin each time a plugin entry point is called. This data can provide context for
the plugin usage instance.

Return codes The initialize() entry point should return one of two return statuses as defined in moab-
plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Moab Workload Manager

Load Time
API Description

Gathering
node info

The initialize() entry point must gather any information about system nodes, their topology,
interconnection, and configuration that it needs to make correct node allocations. Since Moab
does not know what information the plugin may need, the plugin must gather this information
itself.

Memory con-
siderations

The plugin may allocate memory for temporary or persistent data as needed, but must de-alloc-
ate or return the memory when finished. Not returning memory can result in memory leaks
and unstable operation on the part of Moab.

Multiple
access

A given loaded plugin can be used by more than one partition. This means that the plugin must
maintain its internal data in such a way that calls to the plugin for the separate partitions do
not conflict. It is recommended that internal data be allocated and a pointer to the data be kept
in the data_handle described above as opposed to using global or static variables. Any global or
static data will be shared between possible multiple instances of the plugin.

Runti-
me
API

Description

node_
allocate
()

int node_allocate (
 void *data_handle,
 const char *job_name,
 int container_count,
 nalloc_container_t container[])

The plugin must provide a node_allocate() entry point. This entry point is called each time Moab needs
to determine where (on what nodes) a job will eventually run. Note that this entry point can be called
many times before the job is actually scheduled to run.

l Data structures — Moab uses C data structures to pass information and lists of nodes to the
plugin and receive them back from the plugin. See moab-plugin.h for the definitions of
these structures and for information on how they relate to one another.

Moab Workload Manager

1252 Appendices

Appendices 1253

Runti-
me
API

Description

Oper-
ations

A node allocation request consists of one or more requirements. Each of these requirements is
provided within a “container” structure. The container has information regarding the requirement to
be met, the count and list of all nodes that are available to meet the requirement and a place to return
the list of nodes that the plugin has chosen to use for the job.

Command

Mo-
ab
Job
Tas-
k
Cou-
nt

Job
No-
de
Cou-
nt

Job
Tas-
ks
Per
No-
de

No-
de
CF-
G
Pro-
cs

No-
de
AV-
L
Pro-
cs

Plu-
gin
Node
Mapp-
ed TC

require-
ment -
>taskcou-
nt

retur-
n_
nod-
e_
coun-
t

Non-ExactNode

-l nodes=12 12 0 0 8 8 8 12 2

-l nodes-
s=12:ppn=2

24 0 2 8 8 8 24 3

ExactNode

-l nodes=4 4 4 0 8 8 1 4 4

-l nodes-
s=4:ppn=2

8 4 2 8 8 2 8 4

-l nodes=12 12 0 0 8 6 6 12 2

The duty of the plugin is to use the information that it has previously gathered (during the
initialization) to select from the available nodes those that will best fulfill the requirements.

The basic algorithm is to consume all the taskcount and memory on each node until the consumed task
count is greater than or equal to the container's task_count and memory requirements.

A job's taskcount is calculated differently based on the JOBNODEMATCHPOLICY parameter. By default,
it isn't defined and -l nodes=# actually requests the number of tasks without respect to the number
of nodes. In this case, the plugin should consume all the tasks of each chosen node until the taskcount
is greater and/or equal to the container's taskcount requirement. The plugin is for node allocation and
not task placement.

Moab Workload Manager

Runti-
me
API

Description

When the JOBNODEMATCHPOLICY EXACTNODE is configured, then -l nodes=#means the job
wants # of nodes with 1 task per node. In this case, the nodes passed to the plugin will have a
taskcount that is mapped down to what the job can only use on that node. Each node's taskcount
should be consumed on each node until the summed amount is equal to the container's requirement
taskcount requirement.

The following table shows how commands are interpreted by Moab and translated to the plugin and
what is expected of the plugin.

Errors
and
return
codes

The plugin may internally log any errors encountered and must return a success or error status as
defined in moab-plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Mul-
tiple
access
safe

The node_allocate() entry point must support multiple access as described above.

Unload Time
API Description

finish() void finish(void *data_handle)
The plugin must supply a finish() entry point. This entry point is called when Moab is pre-
paring to disable and/or unload an instance of the plugin.

Memory/resource
cleanup

The plugin must de-allocate and free up any resources acquired either during the initialize
() entry point or during any calls to the node_allocate() entry point. When the last entry
point returns, there should be no allocated memory or other resources still in use by the
plugin instance.

Multiple access
safe

The finish() entry point must support multiple access as described above.

R.1.2 Moab configuration

The actual loading of a plugin is accomplished by specifying the plugin in the Moab configuration file,
moab.cfg.

Moab Workload Manager

1254 Appendices

Appendices 1255

R.1.2.1 Moab.cfg

We recommend that you store all Moab plugins in the $MOABHOMEDIR/lib directory (e.g.,
/opt/moab/lib) as shared libraries (*.so). The name of the actual plugin shared library file is up to
the plugin developer, which means you must give the correct name in the moab.cfg file to form the
absolute plugin filename.

If a plug-in's specified shared library filename starts with a forward slash (/), it is an absolute file path
name and Moab simply uses it without alteration. For example, if a plugin's specified shared library
filename is /opt/moab/plugins/plugin.so, Moab will use it as the absolute plugin file path name.

If a plugin's specified shared library filename does not start with a forward slash (/), it is a plugin name
and Moab forms the plugin's absolute path name by concatenating the Moab home directory, "/lib/lib",
the specified plugin name, and ".so" to obtain the absolute path name. For example, if the
$MOABHOMEDIR environment variable contains /opt/moab and the plugin name is plugin, Moab will
create /opt/moab/lib/libplugin.so and use it as the absolute plugin file path name.

R.1.2.2 Syntax rules

In order for Moab to use a plugin for the Node Allocation policy, instead of a built-in Moab policy, you
must configure the policy in the moab.cfg file with the value "PLUGIN:" followed by the plugin's shared
library file name. The examples below assume the environment variable $MOABHOMEDIR has a value of
/opt/moab. Note the use of relative and absolute plugin shared library file path names in the
parameter value and how they affect Moab's construction of the full path name.

Par-
tition Plug-in Name moab.cfg Parameter Moab-derived Full Path

Name

global plugin.so NODEALLOCATIONPOLICY
PLUGIN:plugin.so

/op-
t/moab/lib/libplugin.so

global /us-
r/loc-
al/plugins/plugin.so

NODEALLOCATIONPOLICY
PLUGIN:/us-
r/local/plugins/plugin.so

/us-
r/loc-
al/plugins/plugin.so

abc plugin.so PARCFG[abc]
NODEALLOCATIONPOLICY
=PLUGIN:plugin.so

/op-
t/moab/lib/libplugin.so

xyz /us-
r/loc-
al/plugins/plugin.so

PARCFG[xyz]
NODEALLOCATIONPOLICY=
PLUGIN:/us-
r/local/plugins/plugin.so

/usr/local/plugins/plug
in.so

R.1.2.3 Troubleshooting

There are several commands that can be used to confirm that the Plugin Node Allocation Policy was
loaded properly.

mschedctl -l

Moab Workload Manager

mschedctl -l is used to print out Moab's in memory configurations. If the plugin policy, with its full path,
doesn't show for the configured partition then Moab failed to load the partition. Note that when the
NODEALLOCATIONPOLICY is configured globally, it is configured on the "ALL" partition.

$ mschedctl -l -v|grep ^NODEALLOCATIONPOLICY
NODEALLOCATIONPOLICY[ALL] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[a] PLUGIN:/opt/moab/lib/liblastavailable.so
NODEALLOCATIONPOLICY[b] CONTIGUOUS
NODEALLOCATIONPOLICY[c] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[d] [NONE]

mdiag -C

mdiag -C is used to validate the moab.cfg configuration. With a plugin node allocation policy, Moab will
validate that it can successfully load the plugin and that all of the required symbols are present.

$ mdiag -C
...
INFO: line #35 is valid: 'NODEALLOCATIONPOLICY PLUGIN:firstavailable'
INFO: line #36 is valid: 'PARCFG[a]NODEALLOCATIONPOLICY=PLUGIN:lastavailable'
INFO: line #37 is valid: 'PARCFG[b]NODEALLOCATIONPOLICY=CONTIGUOUS'
INFO: line #38 is valid: 'PARCFG[d]NODEALLOCATIONPOLICY=PLUGIN:firstavailable'

Appendix S: Scalable Systems Software Specification

l SSS Job Object Specification

l SSS Resource Management and Accounting Protocol Message Format

l SSS Node Object Specification

l SSS Resource Management and Accounting Protocol Wire Protocol

Scalable Systems Software Job Object Specification
SSS Job Object Specification
Draft Release Version 3.1.0
26 April 2011

Scott Jackson, PNNLStringDavid Jackson, Ames Lab
Brett Bode, Ames Lab

Status of This Memo
This document describes the job object to be used by Scalable Systems Software compliant components.
It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the job
object passed in the Data field of Requests and Responses. Queries can be issued to a job-cognizant
component in the form of modified XPATH expressions to the Get field to extract specific information
from the job object as described in the SSSRMAP protocol.

Moab Workload Manager

1256 Appendices

Appendices 1257

Abstract
This document describes the syntax and structure of the SSS job object. A job model is described that is
flexible enough to support the specification of very simple jobs as well as jobs with elaborate and
complex specification requirements in a way that avoids complex structures and syntax when it is not
needed. The basic assumption is that a solitary job specification should be usable for all phases of the job
lifecycle and can be used at submission, queuing, staging, reservations, quotations, execution, charging,
accounting, etc. This job specification provides support for multi-step jobs, as well as jobs with disparate
task descriptions. It accounts for operational requirements in a grid or meta-scheduled environment
where the job is executed by multiple hosts in different administrative domains that support different
resource management systems.

Table of Contents
l Scalable Systems Software Job Object Specification

l Table of Contents

l 1.0 Introduction

o 1.1 Goals

o 1.2 Non-Goals

o 1.3 Examples

o 1.3.1 Very Simple Example

o 1.3.2 Moderate Example

o 1.3.3 Elaborate Example

l 2.0 Conventions used in this document

o 2.1 Keywords

o 2.2 Table Column Interpretations

o 2.3 Element Syntax Cardinality

l 3.0 The Job Model

l 4.0 JobGroup Element

o 4.1 JobGroup Properties

o 4.1.1 Simple JobGroup Properties

o 4.1.2 Job

o 4.1.3 JobDefaults

o 4.2 JobGroup Reference

l 5.0 Job and JobDefaults Element

Moab Workload Manager

o 5.1 Job Properties

o 5.1.1 Simple Job Properties

o 5.1.2 Feature Element

o 5.1.3 OutputFile Element

o 5.1.4 ErrorFile Element

o 5.1.5 InputFile Element

o 5.1.6 NotificationList Element

o 5.1.7 ResourceLimit Element

o 5.1.8 Credentials

o 5.1.9 Environment Element

o 5.1.9.1 Variable Element

o 5.1.10 Node Element

o 5.1.11 TaskDistribution Element

o 5.1.12 Dependency Element

o 5.1.13 Consumable Resources

o 5.1.14 Resource Element

o 5.1.15 Extension Element

o 5.1.16 TaskGroup

o 5.1.17 TaskGroupDefaults

o 5.2 Job Reference

l 6.0 TaskGroup and TaskGroupDefaults Element

o 6.1 TaskGroup Properties

o 6.1.1 Simple TaskGroup Properties

o 6.1.2 Task

o 6.1.3 TaskDefaults

o 6.2 TaskGroup Reference

l 7.0 Task and TaskDefaults Element

o 7.1 Task Properties

o 7.1.1 Simple Task Properties

o 7.2 Task Reference

l 8.0 Property Categories

Moab Workload Manager

1258 Appendices

Appendices 1259

o 8.1 Requested Element

o 8.2 Delivered Element

l 9.0 AwarenessPolicy Attribute

l 10. References

l Appendix A

l Units of Measure Abbreviations

1.0 Introduction
This specification proposes a standard XML representation for a job object for use by the various
components in the SSS Resource Management System. This object will be used in multiple contexts and
by multiple components. It is anticipated that this object will be passed via the Data Element of
SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

The representation needs to be inherently flexible. We recognize we will not be able to exhaustively
include the ever-changing job properties and capabilities that constantly arise.

The representation should use the same job object at all stages of that job’s lifecycle. This object will be
used at job submission, queuing, scheduling, charging and accounting, hence it may need to distinguish
between requested and delivered properties.

The design must account for the properties and structure required to function in a meta or grid
environment. It needs to include the capability to support local mapping of properties, global
namespaces, etc.

The equivalent of multi-step jobs must be supported. Each step (job) can have multiple logical task
descriptions.

Many potential users of the specification will not be prepared to implement the complex portions or fine-
granularity that others need. There needs to be a way to allow the more complicated structure to be
added as needed while leaving more straightforward cases simple.

There needs to be guidance for how to understand a given job object when higher order features are not
supported by an implementation, and which parts are required, recommended and optional for
implementers to implement.

It needs to support composite resources.

It should include the ability to specify preferences or fuzzy requirements.

1.2 Non-Goals

Namespace considerations and naming conventions for most property values are outside of the scope of
this document.

Moab Workload Manager

1.3 Examples

Example 3-181: Very Simple Example

This example shows a simple job object that captures the requirements of a simple job.

Moab Workload Manager

1260 Appendices

Appendices 1261

<Job>
<Id>PBS.1234.0</Id>
<State>Idle</State>
<User>scottmo</User>
<Executable>/bin/hostname</Executable>
<Processors>16</Processors>
<Duration>3600</Duration>

</Job>

Example 3-182: Moderate Example

This example shows a moderately complex job object that uses features such as required versus
delivered properties.

<Job>
<Id>PBS.1234.0</Id>
<Name>Heavy Water</Name>
<Project>nwchemdev</Project>
<User>peterk</User>
<Application>NWChem</Application>
<Executable>/usr/local/nwchem/bin/nwchem</Executable>
<Arguments>-input basis.in</Arguments>
<InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>
<Machine>Colony</Machine>
<QualityOfService>BottomFeeder</QualityOfService>
<Queue>batch_normal</Queue>
<State>Completed</State>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Charge>25410</Charge>
<Requested>
<Processors op=”GE”>12</Processors>
<Memory op=”GE” units=”GB”>2</Memory>
<Duration>3600</Duration>

</Requested>
<Delivered>
<Processors>16</Processors>
<Memory metric=”Average” units=”GB”>1.89</Memory>
<Duration>1155</Duration>

</Delivered>
<Environment>
<Variable name=”PATH”>/usr/bin:/home/peterk</Variable>

</Environment>
</Job>

Example 3-183: Elaborate Example

This example uses a job group to encapsulate a multi-step job. It shows this protocol’s ability to
characterize complex job processing capabilities. A component that processes this message is free to
retain only that part of the information that it requires. Superfluous information can be ignored by the
component or filtered out (by XSLT for example).

Moab Workload Manager

<JobGroup>
<Id>workflow1</Id>
<State>Active</State>
<Name>ShuttleTakeoff</Name>
<JobDefaults>
<StagedTime>1051557859</StagedTime>
<SubmitHost>asteroid.lbl.gov</SubmitHost>
<SubmitTime>1051556734</SubmitTime>
<Project>GrandChallenge18</Project>
<GlobalUser>C=US,O=LBNL,CN=Keith Jackson</GlobalUser>
<User>keith</User>
<Environment>
<Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>
<Variable name=”PATH”>/usr/bin:~/bin:</Variable>

<Environment>
</JobDefaults>
<Job>
<Id>fr15n05.1234.0</Id>
<Name>Launch Vector Initialization</Name>
<Executable>/usr/local/gridphys/bin/lvcalc</Executable>
<Queue>batch</Queue>
<State>Completed</State>
<Machine>SMP2.emsl.pnl.gov</Machine>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Quote>http://www.pnl.gov/SMP2#654321</Quote>
<Charge units=”USD”>12.75</Charge>
<Requested>
<Duration>3600</Duration>
<Processors>2</Processors>
<Memory>1024</Memory>

</Requested>
<Delivered>
<Duration>1155</Duration>
<Processors consumptionRate=”0.78”>2</Processors>
<Memory metric=”Max”>975</Memory>

</Delivered>
<TaskGroup>
<TaskCount>2</TaskCount>
<TaskDistribution type=”TasksPerNode”>1</TaskDistribution>
<Task>
<Node>node1</Node>
<Process>99353</Process>

</Task>
<Task>
<Node>node12</Node>
<Process>80209</Process>

</Task>
</TaskGroup>

</Job>
<Job>
<Id>fr15n05.1234.1</Id>
<Name>3-Phase Ascension</Name>
<Queue>batch_normal</Queue>
<State>Idle</State>
<Machine>Colony.emsl.pnl.gov</Machine>
<Priority>1032847</Priority>
<Hold>System</Hold>
<StatusMessage>Insufficient funds to start job</StatusMessage>
<Requested>

Moab Workload Manager

1262 Appendices

Appendices 1263

<Duration>43200</Duration>
</Requested>
<TaskGroup>
<TaskCount>1</TaskCount>
<Name>Master</Name>
<Executable>/usr/local/bin/stage-coordinator</Executable>
<Memory>2048<Memory>
<Resource name=”License” type=”ESSL2”>1</Resource>
<Feature>Jumbo-Frame</Feature>

</TaskGroup>
<TaskGroup>
<Name>Slave</Name>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<Executable>/usr/local/bin/stage-slave</Executable>
<NodeCount>4</NodeCount>
<Requested>
<Processors group=”-1”>12</Processors>
<Processors conj=”Or” group=”1”>16</Processors>
<Memory>512</Memory>
<Node aggregation=”Pattern”>fr15n.*</Node>

</Requested>
</TaskGroup>

</Job>
</JobGroup>

2.0 Conventions Used in This Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

The columns of the property tables in this document have the following meanings:

Element
Name Name of the XML element (xsd;element) see [DATATYPES]

Type Data type defined by xsd (XML Schema Definition)as:
l String — xsd:string (a finite length sequence of printable characters)
l Integer — xsd:integer (a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals “true” or “false”)
l DateTime — xsd:int (a 32-bit unsigned long in GMT seconds since the EPOCH)
l Duration — xsd:int (a 32-bit unsigned long measured in seconds)

Description Brief description of the meaning of the property

Moab Workload Manager

http://www.ietf.org/rfc/rfc2119.txt

Element
Name Name of the XML element (xsd;element) see [DATATYPES]

Appearance An indication of whether the given property must appear in the parent element. It assumes the
following meanings:

l MUST — This property is REQUIRED when the parent is specified
l SHOULD — This property is RECOMMENDED when the parent is specified.
l MAY — This property is OPTIONAL when the parent is specified.

Compliance An indication of the relative importance of supporting the given property.
l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Categories Some properties may be categorized into one of several categories. Letters in this column indicate
that the given property can be classified in the following property categories.

l R— This property can be encompassed in a Requested element.
l D — This property can be encompassed in a Delivered element.

2.3 Element Syntax Cardinality

Selected elements in the element syntax sections use regular expression wildcards with the following
meanings:

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies exactly one occurrence.

3.0 The Job Model
The primary object within the job model is a job. A job can be thought of as a single schedulable entity
and will be the object normally seen in job queues.

Moab Workload Manager

1264 Appendices

Appendices 1265

Image 3-16: JobGroup contains Job and JobDefaults, which contain TaskGroup and TaskGroupDefaults

Jobs with dependencies on other jobs may be submitted in a job group. Jobs within a job group form a
DAG (directed acyclic graph) where the nodes are jobs and the edges represent dependencies on the
status of previous jobs. A job group will consist of at least one job. A job group can optionally specify job
defaults which are a set of job properties to be assumed by all jobs within the job group unless
overridden within the job.

A job may consist of multiple tasks, which are the finest grained work unit and represent an endpoint for
executing a given process instance. For example, a job that requests 3 nodes and 4 processors will have 4
tasks, two on one node and one on each of two nodes. Tasks may be grouped into task groups, which are
logical aggregations of tasks and their common properties. Submit filters, prologs, epilogs, notification
scripts, etc. run once only for each job. Whereas task groups function as logical descriptions of tasks and
their properties, they also describe the number of such tasks and the nodes that they run on. As an
example, a master task group (consisting of a single task) might ask for a node with a MATLAB license,

Moab Workload Manager

2GB of memory and an Internet connected network adapter while a slave task group (consisting of 12
tasks) could be targeted for nodes with more CPU bandwidth -- all within the same job and utilizing a
common MPI ring. Tasks (and hence taskgroups) can have different executables or environments, specify
different consumable resources or node properties. A job, therefore, may specify one or more task group.
A job that does not specify an explicit task group is considered as having a single implicit task group. A
job can optionally specify task group defaults which are a set of task group properties to be assumed by
all task groups within the job unless overridden within a task group.

A task group may specify one or more tasks. A task group that does not specify an explicit task is
considered as having a single implicit task. A task group can optionally specify task defaults which are a
set of task properties to be assumed by all tasks within the task group unless overridden within a task.

4.0 JobGroup Element
A JobGroup is an optional element that aggregates one or more interdependent jobs. Some resource
managers support the submission of job groups (multi-step jobs) and queries on the status of an entire
job group.

l A compliant implementation MAY support this element.

l A JobGroup MUST specify one or more JobGroup Properties.

l A JobGroup MUST contain one or more Jobs.

l A JobGroup MAY contain zero or more JobsDefaults.

The following illustrates this element’s syntax:

C<JobGroup>
<!-- JobGroup Properties -->+
<Job/>+
<JobDefaults/>?

</JobGroup>

4.1 JobGroup Properties

JobGroup Properties are properties that apply to the job group as a whole. These include the job group
id, jobs and job defaults, and other simple optional job properties.

Simple JobGroup Properties

Simple (unstructured) job group properties are enumerated in the table below.

Table 3-7: Simple JobGroup Properties

Element
Name Type Description Appearance Compliance

CreationTime DateTime Date and time that the job group was instan-
tiated

MAY MAY

Moab Workload Manager

1266 Appendices

Appendices 1267

Element
Name Type Description Appearance Compliance

Description String Description of the job group MAY MAY

Id String Job group identifier MUST MUST

Name String Name of the job group MAY SHOULD

State String State of the job group as a whole. Valid
states may include NotQueued, Unstarted,
Active, and Completed.

MAY SHOULD

Job

A job group MUST contain one or more jobs.

See the next section for element details.

JobDefaults

A job group MAY contain zero or one job defaults.

See the next section for element details.

4.2 JobGroup Reference

When a simple reference to a predefined job group is needed in an encapsulating element, a JobGroup
element is used with the text content being the job group id:

Moab Workload Manager

<JobGroup> workflow1</JobGroup>

5.0 Job and JobDefaults Element
The Job and JobDefaults elements are of the same structure. A Job element encapsulates a job and may
be expressed as a standalone object. A JobDefaults element may only appear within a JobGroup and
represents the defaults to be taken by all jobs within the job group. Job properties in Job elements
override any properties found in a sibling JobDefaults element.

l A compliant implementation MUST support the Job element.

l A compliant implementation MAY support the JobDefaults element only if it supports the JobGroup
element.

l A job MUST specify one or more Job Properties.

l One or more TaskGroup elements MAY appear at this level.

l Zero or one TaskGroupDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Job>
<!-- Job Properties -->+
<TaskGroup/>*
<TaskGroupDefaults/>?

</Job>

5.1 Job Properties

Job Properties apply to a particular job or as default properties to all jobs. They include the job id, job
credentials, task groups, task group defaults, and other simple optional properties.

Simple Job Properties

Simple (unstructured) job properties are enumerated in the table below.

Table 3-8: Simple Job Properties

Element Name Type Description Appearance Compliance Categories

Application String Type of applic-
ation such as
Gaussian or
Nwchem

MAY MAY

Moab Workload Manager

1268 Appendices

Appendices 1269

Element Name Type Description Appearance Compliance Categories

Architecture String Type archi-
tecture for the
nodes on which
this job must
run

MAY MAY RD

Arguments String The arguments
for the execut-
able

MAY SHOULD

Charge Float The amount
charged for the
job

MAY SHOULD

Checkpointable Boolean Can this job be
checkpointed?

MAY MAY

CpuDuration Duration Number of cpu
seconds used by
the job

MAY SHOULD

DeadlineTime DateTime Date and time
that a job must
end by

MAY MAY

EligibleTime DateTime Date and time
that a job must
start after

MAY MAY

EndTime DateTime Date and time
that a job ended
(independent of
success or fail-
ure)

MAY MUST

Executable String Executable. This
may be an abso-
lute or relative
path or a URI.*

MAY MUST

Moab Workload Manager

Element Name Type Description Appearance Compliance Categories

ExitCode Integer Exit code for the
job

MAY SHOULD

GlobalJob String Globally unique
job identifier
(possibly in the
form of a URI)

MAY SHOULD

Hold String Hold(s) on the
job. There may
be multiple
instances of this
element if there
is more than
one ld on the
job

MAY SHOULD

InitialWorking-Dir-
ectory

String Initial working
directory

MAY SHOULD

Interactive Boolean Is this an inter-
active job?

MAY SHOULD

Id String A local job iden-
tifier assigned to
the job by the
local resource
manager

MUST MUST

Name String Name of the job MAY SHOULD

State String State of the job.
Valid states may
include Idle,
Hold, Running,
Suspended,or
Completed

MAY MUST

Moab Workload Manager

1270 Appendices

Appendices 1271

Element Name Type Description Appearance Compliance Categories

Type String Type of job.
Meaning of this
extension prop-
erty is context
specific.

MAY MAY

Machine String Name of the sys-
tem or cluster
that runs the
job

MAY MUST RD

Network String Type of network
adapter
required by the
job

MAY MAY RD

NodeCount Integer Number of
nodes used by
the job

MAY MUST RD

OperatingSystem String Operating Sys-
tem required by
the job

MAY MAY RD

Partition String Name of the par-
tition in which
the job should
run

MAY MAY RD

Priority Integer Current queue
priority (or
rank)for the job

MAY SHOULD

QualityOfService String Name of the
Quality of Ser-
vice (QoS)

MAY SHOULD RD

Queue String Name of the
Queue (or class)
that the job
runs in

MAY SHOULD RD

Moab Workload Manager

Element Name Type Description Appearance Compliance Categories

Quote String Identifier for a
guaranteed
charge rate
quote obtained
by the job

MAY MAY

Reservation String Identifier for a
reservation
used by the job

MAY MAY RD

ReservationTime DateTime Date and time
that a reser-
vation was
placed for the
job

MAY MAY

ResourceManagerType String Type of
resource man-
ager required to
run this job

MAY MAY RD

Restartable Boolean Can this job be
restarted?

MAY MAY

Shell String Specified the
shell necessary
to interpret the
job script

MAY MAY

StagedTime DateTime Date and time
that a job was
staged to the
local resource
management
system

MAY MAY

StartCount Integer Number of
times the sched-
uler tried to
start the job

MAY MAY

Moab Workload Manager

1272 Appendices

Appendices 1273

Element Name Type Description Appearance Compliance Categories

StartTime DateTime Date and time
that the job star-
ted

MAY MUST

StatusMessage String Natural lan-
guage message
that can be used
to provide detail
on why a job
failed, isn't run-
ning, etc.

MAY SHOULD

SubmitTIme DateTime Date and time
that a job was
submitted

MAY SHOULD

SubmitHost String FQDN of host
where the job
was submitted
from

MAY SHOULD

Suspendable Boolean CAn this job be
suspended?

MAY MAY

SuspendDuration Integer Number of
seconds the job
was in the Sus-
pended state

MAY MAY

TimeCategory String This allows the
specification of
shifts like
PrimeTime for
charging pur-
poses

MAY MAY

Duration Duration Number of
seconds in the
Running state

SHOULD MUST RD

* The Executable may be a script or a binary executable. If it is already on the target system it may be
referenced by an absolute or relative pathname (relative to InitialWorkingDirectory). If it is passed with
the job in a File object (see SSSRMAP), it can be referenced by an absolute or relative URI. An absolute

Moab Workload Manager

URI would specify a URL where the file can be downloaded (like with wget). A relative URI is specified by
preceding an identifier by a pound sign, as in

<Executable>#Script</Executable>

It will be found in a File object included along with the Job object with the Script as an identifier, as in

<File id=”Script”>echo hello world</File>

Feature Element

The Feature element connotes an arbitrary named feature of a node.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List — a comma-separated list of features

o Pattern — a regular expression (perl5) matching desired features

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list
elements. The default list delimiter is a comma.

l This element MAY be categorized as a requested or delivered property by being encompassed by
the appropriate element.

The following is an example of a feature element:

<Feature aggregation=”List”>feature1,feature2</Feature>

OutputFile Element

The OutputFile element specifies the name of the file to which the output stream (stdout) from the job
will be written.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate output file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of output
redirection attributes of type String. A compliant implementation SHOULD support this attribute if
OutputFile is supported. Possible values for this attribute include:

o Append — opens the output file for append

o Close — closes and discards the output stream

o Flush — output is written to output file as it is generated

Moab Workload Manager

1274 Appendices

Appendices 1275

o Keep — leave the output file on the execution host

o Merge — merges the output stream into the error stream

Note that when using the redirectList attributes, the cumulative effect of the ErrorFile and
OutputFile directives may be order dependent.

The following is an example of an OutputFile element:

<OutputFile redirectList=”Append”>~/myjob.out</OutputFile>

ErrorFile Element

The ErrorFile element specifies the name of the file to which the error stream (stderr) from the job
will be written.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate error file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of error
redirection attributes of type String. A compliant implementation SHOULD support this attribute if
ErrorFile is supported. Possible values for this attribute include:

o Close — closes and discards the error stream

o Append — opens the error file for append

o Flush — output is written to output file as it is generated

o Keep — leave the output file on the execution host

o Merge — merges the error stream into the output stream

Note that when using the redirectList attributes, the cumulative effect of the ErrorFile and
OutputFile directives may be order dependent.

The following is an example of an ErrorFile element:

Moab Workload Manager

<ErrorFile redirectList=”Merge”></ErrorFile>

InputFile Element

The InputFile element specifies the name of the file from which the input stream (stdin) for the job
will be read.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate input file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of input
attributes of type String. A compliant implementation SHOULD support this attribute if
InputFile is supported. Possible values for this attribute include:

o Close — closes and discards the input stream

The following is an example of an InputFile element:

<InputFile redirectList=”Close”></InputFile>

NotificationList Element

The NotificationList element specifies the job-related events or conditions for which a notification
will be sent.

l This element’s character content is a comma-separated list of events or conditions for which a
notification should be sent. Possible values for the elements of this list include:

o JobStart — send a notification when the job starts

o JobEnd — send a notification when the job ends

o All — send notifications for all notifiable events

o None — do not send notifications for any events

l This element MAY have a uri attribute of type String which indicates where the notification is to
be sent. A compliant implementation MAY support this attribute if NotificationList is
supported. The uri is in the format: [scheme://]authority with the scheme being smtp and
the authority being an email address by default.

The following is an example of a NotificationList element:

<NotificationList uri=”smith@business.com”>JobStart,JobEnd</NotificationList>

ResourceLimitElement

The ResourceLimit element represents a resource limit with its name and value.

l This element MUST have a name attribute of type String. A compliant implementation MUST
support the name attribute if ResourceLimit is supported.

l This element MAY have a type attribute of type String that may have the values Hard or Soft.
If the limit is enforced by the operating system, a hard limit is one that cannot be increased once

Moab Workload Manager

1276 Appendices

Appendices 1277

it is set while a soft limit may be increased up to the value of the hard limit. If the type attribute
is omitted, both the soft and hard limits are set.

l This element’s character content is the resource limit’s value.

Some typical names include:

Name Description

CoreFileSize Maximum core file size

CpuTime CPU time in seconds

DataSegSize Maximum data size

FileSize Maximum file size

MaxMemorySize Maximum resident set size

MaxProcesses Maximum number of processes

MaxSwap Virtual memory limit

MaxMemLock Maximum locked-in-memory address space

MaxProcessors Maximum processors

MaxMemory Maximum memory

MaxDisk Maximum disk space

MaxNetwork Maximum network bandwidth

MaxFileIO Maximum file i/o

OpenFiles Maximum number of open files

Stacksize Maximum stack size

The following is an example of a ResourceLimit element:

<ResourceLimit name=”CPUTime”>1000000</ResourceLimit>

Moab Workload Manager

Credentials

Credentials are a special group of job properties that characterize an authenticated token or id. They can
be categorized in both requested and delivered forms.

Credential job properties are enumerated in the table below.

Table 3-9: Credential Job Properties

Element
Name Type Description Appearance Compliance Categories

Project String Name of the Project or Charge
Account

MAY SHOULD RD

GlobalUser String Globally unique user identifier.
This may be an X.509 DN for
example

MAY SHOULD RD

Group String Name of the local group id MAY MAY RD

User String Name of the local user id for the
job

MAY MUST RD

Environment Element

The Environment element encapsulates environment variables.

l This element MAY have an export attribute of type Boolean that which if set to True indicates
that all environment variables in the context of the job submission process should be exported in
the job’s execution environment.

l A compliant implementation SHOULD support this element.

l An Environment element MAY appear zero or one times within a given set of Job (or TaskGroup)
Properties.

l An Environment element MAY contain one or more Variable elements.

The following illustrates this element’s syntax:

<Environment>
<Variable/>+

</Environment>

Variable Element

The Variable element represents an environment variable with its name and value.

Moab Workload Manager

1278 Appendices

Appendices 1279

This element MUST have a name attribute of type String. A compliant implementation MUST support the
name attribute if Variable is supported. This element’s character content is the environment variable’s
value.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

Node Element

The Node element represents a node.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List - a comma-separated list of features

o Pattern - a regular expression (perl5) matching desired features

o Range - a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list
elements. The default list delimiter is a comma.

l This element MAY have a count attribute of type Integer that indicates the instance count of the
specified node(s).

l This element MAY be categorized as a requested or delivered property by being encompassed by
the appropriate element.

The following is an example of a Node element:

Moab Workload Manager

<Node aggregation=”Pattern”>node[1-5]</Node>

TaskDistribution Element

The TaskDistribution element describes how tasks are to be mapped to nodes. This mapping may be
expressed as a rule name, a task per node ratio or an arbitrary geometry.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times in a given set of Job (or TaskGroup) Properties.

l This element is of type String.

l This element MAY have a type attribute of type String that provides a hint as to the type of
mapping guidance provided. It may have values including Rule, TasksPerNode,
ProcessorsPerTask or Geometry. A compliant implementation MAY support the type
attribute if the TaskDistribution element is supported.

l It is possible to use Processors, NodeCount and TaskCount elements to specify a set of
mutually contradictory task parameters. When this occurs, components are responsible for
resolving conflicting requirements.

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

Dependency Element

The Dependency element allows a job’s execution to depend on the status of other jobs. In a job group
(multi-step job), some jobs may delay execution until the failure or success of other jobs creating in
general a Directed Acyclic Graph relationship between the jobs. This element’s content is of type String
and represents the job that the current job is dependent upon. Since a job may have two or more
dependencies, this element may appear more than once in a given job scope. A compliant implementation
SHOULD support this element if job groups are supported.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times in a given set of Job (or TaskGroup) Properties.

l This element is of type String and contains the JobId that the current job is dependent upon.

l This element MAY have a condition attribute of type String that indicates the basis for
determining when the current job executes in relation to the specified job. A compliant
implementation MUST support this attribute if this element is supported.
Possible values for this attribute include:

o OnSuccess this job should run after the referenced job only if it completes successfully (this
is the default if the type attribute is omitted)

Moab Workload Manager

1280 Appendices

Appendices 1281

o OnFailure this job should run after the referenced job only if it fails

o OnExit this job should run after the referenced job exits

l If the condition attribute is equal to OnExit, this element MAY have a code attribute of type
Integer that indicates the exit code that will trigger this job to run. If the code attribute is
omitted, then the current job should run after the referenced job for any exit status.

l This element MAY have a designator attribute of type String that indicates that indicates the
property of the job that identifies it as the dependent job. A compliant implementation MAY
support this attribute if this element is supported.
Possible values for this attribute include:

o JobId the job this job is dependent upon is specified by JobId (this is the default if the
designator attribute is omitted)

o JobName the job(s) this job is dependent upon are specified by JobName

The following is an example of a Dependency element:

<Dependency condition=”OnSuccess” designator=”JobId”>PBS.1234.0</Dependency>

Consumable Resources

Consumable Resources are a special group of properties that can have additional attributes and can be
used in multiple contexts. In general a consumable resource is a resource that can be consumed in a
measurable quantity.

l A consumable resource MAY have a context attribute of type String that indicates the sense in
which the resource is used. A compliant implementation MAY support this attribute. Possible
values for this attribute include:

o Configured — run this task only on nodes having the specified configured resources

o Available — run this task only on nodes having the specified available resources. (this is
the default if the context attribute is omitted)

o Used — the task used the indicated resources (this is analogous to being including in a
Delivered block)

o Dedicated — the indicated amount of the resource should be dedicated to the task

l A consumable resource MAY have a units attribute that is of type String that specifies the units
by which it is being measured. If this attribute is omitted, a default unit is implied. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a metric attribute that is of type String that specifies the type
of measurement being described. For example, the measurement may be a Total, an Average, a
Min or a Max. A compliant implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a duration attribute of type Duration that indicates the
amount of time for which that resource was used. This need only be specified if the resource was

Moab Workload Manager

used for a different amount of time than the duration for the job. A compliant implementation MAY
support this attribute if the element is supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that indicates the
average percentage that a resource was used over its duration. For example, an overbooked SMP
running 100 jobs across 32 processors may wish to scale the usage and charge by the average
fraction of processor usage actually delivered. A compliant implementation MAY support this
attribute if the element is supported.

l A consumable resource MAY have a dynamic attribute of type Boolean that indicates whether the
resource allocated for this job should be allowed to grow or shrink dynamically. For example, if
processors is specified with dynamic equal to True, the job may be dynamically allocated more
processors as they become available. The growth bounds can be indicated via the op attribute
which is inherited when a consumable resource element is encapsulated within a Requested
element. A compliant implementation MAY support this attribute if the element is supported.

A list of simple consumable resources is listed in the table below.

Table 3-10: Simple Consumable Resources

Element
Name Type Description Appearance Compliance Categories

Disk Float Amount of disk MAY SHOULD RD

Memory Float Amount of memory MAY SHOULD RD

Network Float Amount of network MAY MAY RD

Processors Integer Number of processors MAY MUST RD

Swap Float Amount of virtual
memory

MAY MAY RD

The following are two examples for specifying a consumable resource:

Moab Workload Manager

1282 Appendices

Appendices 1283

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors duration=”1234” consumptionRate=”0.63”>4</Processors>

Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable
resource is defined by the Resource element.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of job (or task group) properties.

l Like the other consumable resources, this property MAY be categorized as a requested or
delivered property by being encompassed in the appropriate element.

l This element is of type Float.

l This element shares the same properties and attributes as the other consumable resources but it
requires an additional name (and optional type) attribute to describe it.

l It MUST have a name attribute of type String that indicates the type of consumable resource
being measured. A compliant implementation MUST support this attribute if the element is
supported.

l It MAY have a type attribute of type String that distinguishes it within a general resource class.
A compliant implementation SHOULD support this attribute if the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” duration=”750” metric=”KX”>10</Resource>

Extension Element

The Extension element provides a means to pass extensible properties with the job object.

Some applications may find it easier to use a named extension property than discover and handle
elements they do not understand or anticipate by name.

l A compliant implementation MAY support this element.

l This element MUST have a name attribute of type String that gives the extension property’s
name. A compliant implementation MUST support this attribute if this element is supported.

l This element MAY have a type attribute of type String that characterizes the context within
which the property should be understood. A compliant implementation SHOULD support this
attribute if this element is supported.

l This element’s character content, which is of type String, is the extension property’s value.

The following is an example of an Extension element:

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

Moab Workload Manager

TaskGroup

A job MAY specify one or more task groups.

See the next section for element details.

TaskGroupDefaults

A job MAY specify zero or more task group defaults.

See the next section for element details.

5.2 Job Reference

When a simple reference to a predefined job is needed in an encapsulating element, a Job element is
used with the text content being the job id:

<Job> job123</Job>

6.0 TaskGroup and TaskGroupDefaults Element
The TaskGroup and TaskGroupDefaults elements have the same structure. A TaskGroup element
aggregates tasks. A TaskGroupDefaults element may only appear within a Job (or JobDefaults) and
represents the defaults to be taken by all task groups within the job. Task group properties in
TaskGroup elements override any properties found in a sibling TaskGroupDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<TaskGroup>
<!-- TaskGroup Properties -->+
<!-- Job Properties -->*
<Task>+
<TaskDefaults>?

</TaskGroup>

6.1 TaskGroup Properties

TaskGroup Properties apply to a particular task group or as default properties to encompassed task
groups. These properties include the task group id, its tasks, task defaults, and other simple task group
properties.

Moab Workload Manager

1284 Appendices

Appendices 1285

Simple TaskGroup Properties

Simple (unstructured) task group properties are enumerated in Table 6.

Table 3-11: Simple TaskGroup Properties

Element
Name Type Description Appearance Compliance Categories

TaskCount Integer Number of tasks in this
taskgroup

MAY MUST

Id String A task group identifier
unique within the job

MAY MAY

Name String A task group name (such as
Master)

MAY SHOULD

Task

A task group MAY specify zero or more tasks.

See the next section for element details.

TaskDefaults

A task group MAY specify zero or more task defaults.

See the next section for element details.

6.2 TaskGroup Reference

When a simple reference to a predefined task group is needed in an encapsulating element, a TaskGroup
element is used with the text content being the task group id:

Moab Workload Manager

<TaskGroup> tg1</TaskGroup>

7.0 Task and TaskDefaults Element
The Task and TaskDefaults elements have the same structure. A Task element contains information
specific to a task (like the process id or the host it ran on). A TaskDefaults element may only appear
within a TaskGroup (or TaskGroupDefaults) element and represents the defaults for all tasks within
the task group. Task properties in Task elements override any properties found in a sibling
TaskDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Task>
<!-- Task Properties -->+
<!-- Job Properties -->*

</Task>

7.1 Task Properties

Task Properties are properties that apply to a particular task or as default properties to encompassed
tasks. These properties include the task id and other task properties.

Simple Task Properties

Simple (unstructured) task properties are enumerated in the table below.

Table 3-12: Simple Task Properties

Element
Name Type Description Appearance Compliance Categories

Node String Name of the node this task
ran on

MAY MUST

Session Integer Session id for the task group
or job

MAY MAY

Moab Workload Manager

1286 Appendices

Appendices 1287

Element
Name Type Description Appearance Compliance Categories

Id String A task identifier unique
within the taskgroup

MAY MAY

7.2 Task Reference

When a simple reference to a predefined task is needed in an encapsulating element, a Task element is
used with the text content being the task id:

<Task>1</Task>

8.0 Property Categories
Certain properties need to be classified as being in a particular category. This is done when it is
necessary to distinguish between a property that is requested and a property that was delivered. When
no such distinction is necessary, it is recommended that the property not be enveloped in one of these
elements. In general, a property should be enveloped in a category element only if it is expected that the
property will need to be attributed to more than one property category, or if it needs to make use of
some of the special attributes inherited from the category.

8.1 Requested Element

A requested property reflects properties as they were requested. A disparity might occur between the
requested value and the value delivered if a preference was expressed, if multiple options were
specified, or if ranges or pattern matching was specified.

l A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Requested>
<!-- Requested Properties -->+

</Requested>

The following describes the attributes and elements for the example above:

/Requested

This element is used to encapsulate requested properties.

/Requested/<Requested Property>

Requested properties appear at this level.

Requested Properties inherit some additional attributes.

Moab Workload Manager

l A requested property MAY have an op attribute of type String that indicates a conditional
operation on the value. A compliant implementation SHOULD support this attribute. Valid values
for the op attribute include EQ meaning equals (which is the default), NE meaning not equal, LT
meaning less than, GT meaning greater than, LE meaning less than or equal to, GE meaning
greater than or equal to, Match which implies the value is a pattern to be matched.

l A requested property MAY have a conj attribute of type String that indicates a conjunctive
relationship with the previous element. A compliant implementation MAY support this attribute.
Valid values for the conj attribute include And (which is the default), Or, Nand meaning and not,
and Nor meaning or not.

l A requested property MAY have a group attribute of type Integer that indicates expression
grouping and operator precedence much like parenthetical groupings. A compliant implementation
MAY support this attribute. A positive grouping indicates the number of nested expressions being
opened with the property while a negative grouping indicates the number of nested expressions
being closed with the property.

l A requested property MAY have a preference attribute of type Integer that indicates a
preference for the property along with a weight (the weights are taken as a ratio to the sum of all
weights in the same group). A compliant implementation MAY support this attribute. If a group of
positive valued preference alternatives are specified, at least one of the preferences must be
satisfied for the job to run. If a group of negative valued preferences are specified, the
preferences will try to be met according to their weights but the job will still run even if it can’t
satisfy any of the preferred properties. (Weight ranking can be removed by making all weights
the same value (1 or -1 for example).

l A requested property MAY have a performanceFactor attribute of type Float that provides a
hint to the scheduler of what performance tradeoffs to make in terms of resources and start time.
A compliant implementation MAY support this attribute.

The following are four examples of using Requested Properties:

<Requested>
<Processors op=”GE”>8</Processors>
<Processors op=”LE”>16</Processors>
<Duration>3600</Duration>

</Requested>
<Requested>
<NodeCount>1</NodeCount>
<Node aggregation=”Pattern”>fr15.*</Node>

<Requested>
<Requested>
<User group=”1”>scottmo</User>
<Account group=”-1”>mscfops</Account>
<User conj=”Or” group=”1”>amy</User>
<Account group=”-1”>chemistry</Account>

</Requested>
<Requested>
<Memory preference=”2”>1024</Memory>
<Memory preference=”1”>512</Memory>

</Requested>

Moab Workload Manager

1288 Appendices

Appendices 1289

8.2 Delivered Element

A delivered property reflects properties as they were actually utilized, realized or consumed. It reflects
the actual amounts or values that are used, as opposed to a limit, choice or pattern as may be the case
with a requested property.

l A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Delivered>
<!-- Delivered Properties -->+

</Delivered>

The following describes the attributes and elements for the example above:

/Delivered

This element is used to encapsulate delivered properties.

/Delivered/<Delivered Property>

Delivered properties appear at this level.

Delivered Properties inherit some additional attributes.

l A delivered property MAY have a group attribute of type Integer that indicates expression
grouping and operator precedence much like parenthetical groupings. A compliant implementation
MAY support this attribute. A positive grouping indicates the number of nested expressions being
opened with the property while a negative grouping indicates the number of nested expressions
being closed with the property. The purpose of this attribute would be to logically group delivered
properties if they were used in certain aggregations (like a job that spanned machines).

The following are the same four examples distinguishing the delivered amounts and values:

Moab Workload Manager

<Delivered>
<Processors>12</Processors>
<Duration>1234</Duration>

</Delivered>
<Delivered>
<Node>fr15n03</Node>

</Delivered>
<Delivered>
<User>scottmo</User>
<Account>mscfops</Account>

</Delivered>
<Delivered>
<Memory>1024</Memory>

</Delivered>

9.0 AwarenessPolicy Attribute
A word or two should be said about compatibility mechanisms. With all the leeway in the specification
with regard to implementing various portions of the specification, problems might arise if an
implementation simply ignores a portion of a job specification that is critical to the job function in
certain contexts. Given this situation, it might be desirable in some circumstances for jobs to be rejected
by sites that fail to fully support that job’s element or attributes. At other times, it might be desirable
for a job to run, using a best-effort approach to supporting unimplemented features. Consequently, we
define an awarenessPolicy attribute which can be added as an optional attribute to the Job element
or any other containment or property element to indicate how the property (or the default action for the
elements that the containment element encloses) must react when the implementation does not
understand an element or attribute.

An awareness policy of Reject will cause the server to return a failure if it receives a client request in
which it does not support an associated element name or attribute name or value. It is reasonable for an
implementation to ignore (not even look for) an element or attribute that would not be critical to its
function as long as ignoring this attribute or element would not cause an incorrect result. However, any
element or attribute that was present that would be expected to be handled in a manner that the
implementation does not support must result in a failure.

An awareness policy of Warn will accept the misunderstood element or attribute and continue to process
the job object on a best effort basis. However a warning MUST be sent (if possible) to the requestor
enumerating the elements and attributes that are not understood.

An awareness policy of Ignore will accept the unsupported element or attribute and continue to process
the job object on a best effort basis. The action could be to simply ignore the attribute.

l This name of this attribute is awarenessPolicy.

l This attribute is of type String.

l This attribute can have values of Reject, Warn or Ignore.

l A compliant implementation MAY support this attribute.

Moab Workload Manager

1290 Appendices

Appendices 1291

l An implementation that does not support an attribute MUST reject any job object which contains
elements or attributes that it does not support. Furthermore, it SHOULD return a message to the
requestor with an indication of the element or attribute name it did not understand.

l This attribute MAY be present in a property or containment element.

l If an implementation does support the attribute, but it is absent, the default value of Reject is
implied.

l Individual elements in the job object may override the containing object’s awareness policy
default by including this attribute. For example, a job might specify an awarenessPolicy of
Reject at its root (the Job element) but may want to allow a particular subset of elements or
attributes to be ignored if not understood. Conversely, a job with a default awarenessPolicy of
Ignore might want to classify a subset of its optional elements as Reject if they are indispensable
to its correct interpretation. An implementation can opt to check or not check for this attribute at
any level it wants but must assume a Reject policy for any elements it does not check.

10.0 References

ISO 8601

ISO (International Organization for Standardization). Representations of dates and times,
1988-06-15. http://www.iso.ch/markete/8601.pdf

DATATYPES

XML Schema Part 2: Datatypes. Recommendation, 02 MAY 2001.
http://www.w3.org/TR/xmlschema-2/

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

MB Megabyte 2^20 bytes

Moab Workload Manager

http://www.iso.org/iso/home.html
http://www.w3.org/TR/xmlschema-2/

Abbreviation Definition Quantity

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

ZB Zettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

Scalable Systems Software Resource Management and Accounting
Protocol (SSSRMAP) Message Format
Resource Management Interface Specs
Release v. 3.0.4
18 JUL 2005

Scott Jackson
Brett Bode

David Jackson
Kevin Walker

Status of This Memo
This is a specification defining an XML message format used between Scalable Systems Software
components. It is intended that this specification will continue to evolve as these interfaces are
implemented and thoroughly tested by time and experience.

Abstract
This document is a specification describing a message format for the interaction of resource
management and accounting software components developed as part of the Scalable Systems Software
Center. The SSSRMAP Message Format defines a request-response syntax supporting both functional and
object-oriented messages. The protocol is specified in XML Schema Definition. The message elements
defined in this specification are intended to be framed within the Envelope and Body elements defined in
the SSSRMAP Wire Protocol specification document.

Moab Workload Manager

1292 Appendices

Appendices 1293

Table of Contents
l 1.0 Introduction

l 2.0 Conventions Used in this Document

o 2.1 Keywords

o 2.2 XML Case Conventions

o 2.3 Schema Definitions

l 3.0 Encoding

o 3.1 Schema Header and Namespaces

o 3.2 Element Descriptions

o 3.2.1 The Request Element

o 3.2.2 The Object Element

o 3.2.3 The Get Element

o 3.2.4 The Set Element

o 3.2.5 The Where Element

o 3.2.6 The Option Element

o 3.2.7 The Data Element

o 3.2.8 The File Element

o 3.2.9 The Count Element

o 3.2.10 The Response Element

o 3.2.11 The Status Element

o 3.2.12 The Value Element

o 3.2.13 The Code Element

o 3.2.14 The Message Element

o 3.3 Modified XPATH Expressions

o 3.3.1 Sample Modified XPATH expressions

o 3.4 Examples

o 3.4.1 Sample Requests

o 3.4.2 Sample Responses

l 4.0 Error Reporting

l 5.0 References

Moab Workload Manager

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular
infrastructure for resource management and accounting on terascale clusters including resource
scheduling, grid-scheduling, node daemon support, comprehensive usage accounting and user interfaces
emphasizing portability to terascale vendor operating systems. Existing resource management and
accounting components feature disparate APIs (Application Programming Interfaces) requiring various
forms of application coding to interact with other components.

This document proposes a common message format expressed in an XML request-response syntax to be
considered as the foundation of a standard for communications between and among resource
management and accounting software components. In this document this standard is expressed in two
levels of generality. The features of the core SSSRMAP protocol common to all resource management
and accounting components in general are described in the main body of this document. The aspects of
the syntax specific to individual components are described in component-specific binding documents.

2.0 Conventions Used in This Document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119 [RFC2119].

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications
“Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style
capitalizes the first character of each word and compounds the name. LCC style capitalizes the first
character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

l Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

l Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain
(example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of
JOB.ID, Job_ID or job-id).

2.3 Schema Definitions

SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file takes precedence.

Moab Workload Manager

1294 Appendices

Appendices 1295

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages SHALL
be defined in terms of XML schema [XML_SCHEMA].

3.1 Schema Header and Namespaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:sssrmap="http://scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="http://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 Element Descriptions

The following subsections describe the elements that make up SSSRMAP messages. SSSRMAP messages
are transmitted in the Body and Envelope elements as described in the SSSRMAP Wire Protocol
specification [WIRE_PROTOCOL].

The Request Element

The Request element specifies an individual request. An object-oriented request will have at least one
Object element while a functional request will not have one. Depending on context, the Request
element MAY contain one or more Get elements or one or more Set elements and any number of Where
elements. Option, Data, File or Count elements may also be included. If a component supports it,
chunking may be requested where large response data is possible. Setting the chunking attribute to
“True” requests that the server break a large response into multiple chunks (each with their own
envelope) so they can be processed in separate pieces.

Only an action attribute is required. All other attributes are optional.

Attribute Description

action Specifies the action or function to be performed

actor The authenticated user sending the request

id Uniquely maps the request to the appropriate response

chunking Requests that segmentation be used for large response data if set to “True”

chunkSize Requests that the segmentation size be no larger than the specified amount

Moab Workload Manager

<complexType name="RequestType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Object" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Option" minOccurs="0" maxOccurs="unbounded"/>
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:Get" minOccurs="1" maxOccurs="unbounded"/>
<element ref="sssrmap:Set" minOccurs="1" maxOccurs="unbounded"/>

</choice>
<element ref="sssrmap:Where" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</choice>
<attribute name="action" type="string" use="required"/>
<attribute name="actor" type="string" use="required"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunking" type="sssrmap:BoolType" use="optional"/>
<attribute name="chunkSize" type="positiveInteger" use="optional"/>

</complexType>

<element name="Request" type="sssrmap:RequestType"/>

The Object Element

The Object element is used in an object-oriented request to specify the object receiving the action. It is
possible to have multiple Object elements in a request if an implementation supports multi-object
queries.

The object class name is specified as text content. All attributes are optional.

l join – the type of join to be performed with the preceding object

o A join attribute of “Inner” specifies an inner join. This is the default.

o A join attribute of “FullOuter” specifies a full outer join.

o A join attribute of “LeftOuter” specifies a left outer join.

o A join attribute of “RightOuter” specifies a right outer join.

o A join attribute of “Cross” specifies a cross join.

o A join attribute of “Union” specifies a union join.

<complexType name="ObjectType">
<simpleContent>
<extension base="string">
<attribute name="join" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Object" type="sssrmap:ObjectType"/>

The Get Element

The Get element is used to indicate the data fields to be returned in a query. Get is typically used within
requests with action=”query”. Multiple Get elements cause the fields to be returned in the order
specified. If no Get elements are specified, the query will return a default set of fields.

Only a name attribute is required. All other attributes are optional.

Moab Workload Manager

1296 Appendices

Appendices 1297

Attribute Description

name The name of the data field to be returned. This MUST be of the form of a “Modified XPATH expres-
sion” as described in a later section.

op The operator to be used to aggregate or perform an operation on the returned values.
l An op attribute of “Sort” specifies an ascending sort operation
l An op attribute of “Tros” specifies a descending sort operation
l An op attribute of “Sum” returns the sum (only valid for numeric values)
l An op attribute of “Max” returns the maximum value
l An op attribute of “Min” returns the minimum value
l An op attribute of “Count” returns the number of values
l An op attribute of “Average” returns the average of the values
l An op attribute of “GroupBy” signifies that aggregates are grouped by this field

object Specifies the object for which you want the named attribute in a multi-object query.

units The units in which to return the value (if applicable)

<complexType name="GetType">
<attribute name="name" type="string" use="required"/>
<attribute name="object" type="string" use="optional"/>
<attribute name="op" type="sssrmap:GetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</complexType>

<element name="Get" type="sssrmap:GetType"/>

<simpleType name="GetOperatorType">
<restriction base="string">
<enumeration value="Sort"/>
<enumeration value="Tros"/>
<enumeration value="Count"/>
<enumeration value="Sum"/>
<enumeration value="Max"/>
<enumeration value="Min"/>
<enumeration value="Average"/>
<enumeration value="GroupBy"/>

</restriction>
</simpleType>

The Set Element

The Set element is used to specify the object data fields to be assigned values. Set is typically used
within requests with action=”Create” or action=”Modify”. The use of Get or Set elements
within a request is mutually exclusive.

The assignment value (to which the field is being changed) is specified as the text content. A Set element
without a value may be used as an assertion flag. Only the name attribute is required. All other
attributes are optional.

Moab Workload Manager

Attribute Description

name The name of the field being assigned a value. This MUST be of the form of a “Modified XPATH
expression” as described in a later section.

op The operator to be used in assigning a new value to the name. If an op attribute is not specified and
a value is specified, the specified value will be assigned to the named field (“assign”).

l An op attribute of “Assign” assigns value to the named field
l An op attribute of “Inc” increments the named field by the value
l An op attribute of “Dec” decrements the named field by the value

units The units corresponding to the value being set

<complexType name="SetType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:SetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Set" type="sssrmap:SetType"/>

<simpleType name="SetOperatorType">
<restriction base="string">
<enumeration value="Assign"/>
<enumeration value="Inc"/>
<enumeration value="Dec"/>

</restriction>
</simpleType>

TheWhere Element

A Request element may contain one or more Where elements that specify the search conditions for
which objects the action is to be performed on.

The condition value (against which the field is tested) is specified as the text content. A Where element
without a value may be used as a truth test. Only the name attribute is required. All other attributes are
optional.

Attribute Description

name The name of the data field to be tested. This MUST be of the form of a “Modified XPATH expression”
as described in a later section.

Moab Workload Manager

1298 Appendices

Appendices 1299

Attribute Description

op The operator to be used to test the name against the value. If an op attribute is not specified and a
value is specified, the field will be tested whether it is equal to the value (“EQ”).

l An op attribute of “EQ” specifies an equality comparison
l An op attribute of “LT” specifies a “less than” comparison
l An op attribute of “GT” specifies a “greater than” comparison
l An op attribute of “LE” specifies a “less than or equal to” test
l An op attribute of “GE” specifies a “greater than or equal to” test
l An op attribute of “NE” specifies a “not equal to” test
l An op attribute of “Match” specifies a regular expression matching comparison

conj Indicates whether this test is to be anded or ored with the immediately preceding where condition
l A conj attribute of “And” specifies an “and” conjunction
l A conj attribute of “Or” specifies an “or” condition
l A conj attribute of “AndNot” specifies an “and not” conjunction
l A conj attribute of “OrNot” specifies an “or not” condition

group Indicates an increase or decrease of parentheses grouping depth
l A positive number indicates the number of left parentheses to precede the condition, i.e.
group=”2” represents “((condition”.

l A negative number indicates the number of right parentheses to follow the condition, i.e.
group=”-2” represents “condition))”.

object Specifies the object for the first operand in a multi-object query.

subject Specifies the object for the second operand in a multi-object query.

units Indicates the units to be used in the value comparison

Moab Workload Manager

<complexType name="WhereType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>
<attribute name="group" type="integer" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Where" type="sssrmap:WhereType"/>

<simpleType name="WhereOperatorType">
<restriction base="string">
<enumeration value="EQ"/>
<enumeration value="GT"/>
<enumeration value="LT"/>
<enumeration value="GE"/>
<enumeration value="LE"/>
<enumeration value="NE"/>
<enumeration value="Match"/>

</restriction>
</simpleType>

The Option Element

The Option element is used to indicate processing options for the command. An option might be used to
indicate that command usage or special formatting is desired, or that the command is to be invoked with
particular options.

The option value is specified as the text content. An Option element without a value may be used as an
assertion flag. Only the name attribute is required. All other attributes are optional.

Attribute Description

name The name of the field being assigned a value

op The operator to be used to disassert the option
l An op attribute of “Not” specifies that the option is not asserted

conj Indicates whether this test is to be anded or ored with the immediately preceding where condition
l A conj attribute of “And” specifies an “and” conjunction
l A conj attribute of “Or” specifies an “or” condition
l A conj attribute of “AndNot” specifies an “and not” conjunction
l A conj attribute of “OrNot” specifies an “or not” condition

Moab Workload Manager

1300 Appendices

Appendices 1301

<complexType name="OptionType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OptionOperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Option" type="sssrmap:OptionType"/>

<simpleType name="OptionOperatorType">
<restriction base="string">
<enumeration value="Not"/>

</restriction>
</simpleType>

The Data Element

A Request or Response element may have one or more Data elements that allow the supplying of
context-specific data. A request might pass in a structured object via a Data element to be acted upon.
Typically a query will result in a response with the data encapsulated within a Data element.

The following attributes are optional:

Attribute Description

name Object name describing the contents of the data

type Describing the form in which the data is represented
l A type attribute of “XML” indicates the data has internal xml structure and can be
recursively parsed by an XML parser

l A type attribute of “Binary” indicates the data is an opaque dataset consisting of binary
data

l A type attribute of “String” indicates the data is an ASCII string
l A type attribute of “Int” indicates the data is an integer
l A type attribute of “Text” indicates the data is in formatted human-readable text
l A type attribute of “HTML” indicates the data is represented in HTML

<complexType name="DataType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute ref="sssrmap:Type" use="optional"/>

</complexType>

<element name="data" type="sssrmap:DataType"/>

The File Element

A Request or Response element may have one or more File elements of type String that allow the
inclusion of files. The files may be either text or binary and may be referenced by objects inside the Data
element. A file may be compressed using the gzip algorithm [ZIP]. A binary file or a compressed file must

Moab Workload Manager

be base64 encoded as defined in XML Digital Signatures
(“http://www.w3.org/2000/09/xmldsig#base64”). Metadata describing the modes and properties
of the resulting file are passed as parameters. The text or base64 encoded file data forms the string
content of the File element.

The following attributes are optional:

Attribute Description

id Specifies an identifier that allows the file to be referenced from within another object. If more
than one File elements are specified, this attribute is REQUIRED in each of them.

name Specifies the name to give the file upon creation on the target system. This can be an absolute or
relative pathname (relative to the InitialWorkingDirectory).

owner Indicates what owner the file should be changed to. By default it will be changed to the UserId
that the authenticated actor maps to on the target system. Note that this function should succeed
only if the requestor has the privileges to do so (i.e. authenticated as root).

group Indicates what group the file should be changed to. By default it will be set to the primary groupid
of the UserId that the authenticated actor maps to on the target system. Note that this function
should succeed only if the requestor has the proper privileges.

mode Indicates the permissions the file should possess. By default it will be set according to the default
umask for the UserId that the authenticated actor maps to on the target system. Note that this
function should not set permissions for the file that exceed the privileges for the actor. These per-
missions can be specified using either an octal number or symbolic operations (as accepted by the
GNU chmod(1) command).

compressed Indicates whether the file has been compressed
l A compressed attribute of “True” indicates the file has been compressed.
l A compressed attribute of “False” indicates the file has not been compressed. This is the
default.

encoded Indicates whether the file has been base64 encoded
l An encoded attribute of “True” indicates the file has been encoded.
l An encoded attribute of “False” indicates the file has not been encoded. This is the
default.

Moab Workload Manager

1302 Appendices

Appendices 1303

<complexType name="FileType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute name="owner" type=="string" use="optional"/>
<attribute name="group" type="string" use="optional"/>
<attribute name="mode" type="string" use="optional"/>
<attribute name="compressed" type="boolean" use="optional"/>
<attribute name="encoded" type="boolean" use="optional"/>

</complexType>

<element name="file type="sssrmap:FileType"/>

The Count Element

A single Count element may be included within a Request or Response and is context-specific. This
can be used to represent the number of objects acted upon or returned.

<element name="Count" type="positiveInteger"/>

The Response Element

The Response element specifies an individual response. It MUST contain a Status element. It MAY also
contain Count and any number of Data or File elements. If chunking has been requested and is
supported by the server, a large response may be broken up into multiple chunks (each with their own
envelope). The chunkNum attribute can be used to indicate which chunk the current one is. The
chunkMax attribute can be used to determine when all the chunks have been received (all chunks have
been received if chunkNum=chunkMax or chunkMax=0).

It MAY have any of the following attributes:

Attribute Description

id Uniquely maps the response to the corresponding request

chunkNum Integer indicating the current chunk number [1 is implied when this attribute is missing or blank]

chunkMax Integer indicating the number of chunks expected [-1 means unknown but more chunks to follow;
0 means unknown but this is the last chunk; 0 is implied if this attribute is missing or blank]

<complexType name="ResponseType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Status" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:File" minOccurs="0" maxOccurs="unbounded"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>
<attribute name="object" type="string" use="optional"/>
<attribute name="action" type="string" use="optional"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunkNum" type="integer" use="optional"/>
<attribute name="chunkMax" type="integer" use="optional"/>

</complexType>

<element name="Response" type="sssrmap:ResponseType"/>

Moab Workload Manager

The Status Element

A Response element MUST contain a single Status element that indicates whether the reply
represents a success, warning or failure. This element is composed of the child elements Value, Code
and Message. Of these, Value and Code are required, and Message is optional.

<complexType name="StatusType">
<choice minOccurs="1" maxOccurs="unbounded">
<element ref="sssrmap:Value" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Code" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Message" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>
</complexType>

<element name="Status" type="sssrmap:StatusType"/>

The Value Element

The Value element is of type String and MUST have a value of “Success”, “Warning” or “Failure”.

<simpleType name="StatusValueType">
<restriction base="string">
<enumeration value="Success"/>
<enumeration value="Warning"/>
<enumeration value="Failure"/>

</restriction>
</simpleType>

<element name="Value" type="sssrmap:StatusValueType"/>

The Code Element

A Response element must contain a single Code element that specifies the 3-digit status code for the
response. Refer to the next section on Error Reporting for a description and listing of supported status
codes.

<simpleType name="CodeType">
<restriction base="string">
<pattern value="[0-9]{3}"/>

</restriction>
</simpleType>

<element name="Code" type="sssrmap:CodeType"/>

The Message Element

A Response element may contain a single Message element that is context specific to the success or
failure response. The message should be an error message if status is false. If present for a successful
response, it may be used as a human readable message for a user interface.

<element name="Message" type="string"/>

3.3 Modified XPATH Expressions

The name attribute used within the Get, Set and Where Elements MUST have the form of a modified
XPATH expression as defined in this section. Usually this will just be the simple name of the object
property. Some complex objects, such as the SSS Job Object and the SSS Node Object, however, are

Moab Workload Manager

1304 Appendices

Appendices 1305

represented in a structured way with nested elements. In order to define a consistent and flexible way to
access and manipulate these objects as well as keeping the flat XML objects simple and straightforward,
SSSRMAP specifies that a “Modified XPATH” syntax be used.

In essence, “Modified XPATH” is defined to be an XPATH [XPATH] expression with the exception that the
“//” may be omitted from the beginning of the expression when a document search is desired. Thus, on
the server side, a standard XPATH routine can be used by prepending “//” to any expression that does
not begin with a “/”.

The response data should always include all of the structure of the queried object necessary to place the
requested data in its proper context.

See the XPATH specification for a full description of XPATH. The XPath 1.0 Recommendation is
http://www.w3.org/TR/1999/REC-xpath-19991116. The latest version of XPath 1.0 is available
at http://www.w3.org/TR/xpath.

Sample Modified XPATH Expressions

Consider the following hypothetical object(s) (which might be returned within a Data element).

<Job>
<JobId>PBS.1234.0</JobId>
<Requested>
<Memory op=”GE”>512</Memory>
<Processors>2</Processors>
<WallDuration>P3600S</WallDuration>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>
<WallDuration>P1441S</WallDuration>

</Utilized>
</Job>

To get everything above for this job you would not need a Get element:

<Request action=”Query”>
<Object>Job</Object>
<Where name=”JobId”>PBS.1234.0</Where>

</Request>

If you used <Get name=”JobId”/> you would get back:

<Job>
<JobId>PBS.1234.0</JobId>

</Job>

If you used <Get name=”Memory”/> (or name=”/Job/*/Memory”) you would get:

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

Moab Workload Manager

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

If you used <Get name=”Requested/Memory”/> (or name=”/Job/Requested/Memory”) you
would get:

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
</Job>

If you used <Get name=”Memory[@metric=’Average’]”/> (or name=”Memory[@metric]”) you
would get:

<Job>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

3.4 Examples

Sample Requests

Requesting a list of nodes with a certain configured memory threshold (batch format):

<Request action=”Query” id=”1”>
<Object>Node</Object>
<Get name=”Name” />
<Get name=”Configured/Memory” />
<Where name=”Configured/Memory” op=”GE” units=”MB”>512</Where>

</Request>

Activating a couple of users:

<Request action=”Modify”>
<Object>User</Object>
<Set name=”Active”>True</Set>
<Where name=”Name”>scott</Where>
<Where name=”Name” conj=”Or”/>brett</Where>

</Request>

Submitting a simple job:

<Request action=”Submit”>
<Object>Job</Object>
<Data>
<Job>
<User>xdp</User>
<Account>youraccount</Account>
<Command>myprogram</Command>
<InitialWorkingDirectory>/usr/home/scl/xdp</InitialWorkingDirectory>
<RequestedNodes>4</RequestedNodes>
<RequestedWCTime>100</RequestedWCTime>

</Job>
</Data>

</Request>

Moab Workload Manager

1306 Appendices

Appendices 1307

Sample Responses

A response to the available memory nodes query (batch format)

<Response id=”1”>
<Status>
<Value>Success</Value>
<Code>000</Code>

</Status>
<Count>2</Count>
<Data>
<Node>
<Name>fr01n01</Name>
<Configured>
<Memory>512</Memory>

</Configured>
</Node>
<Node>
<Name>fr12n04</Name>
<Configured>
<Memory>1024</Memory>

</Configured>
</Node>

</Data>
</Response>

Two users successfully activated

<Response>
<Status>
<Code>000</Code>
<Message>Two users were successfully modified</Message>

</Status>
<Count>2</Count>

</Response>

A failed job submission:

<Response>
<Status>
<Value>Failure</Value>
<Code>711</Code>
<Message>Invalid account specified. The job was not submitted.</Message>

</Status>
</Response>

4.0 Error Reporting
SSSRMAP requests will return a status and a 3-digit response code to signify success or failure
conditions. When a request is successful, a corresponding response is returned with the status
element set to Success and the code element set to “000”. When a request results in an error detected
by the server, a response is returned with the status element set to Failure and a 3-digit error code
in the code element. An optional human-readable message may also be include in a failure response
providing context-specific detail about the failure. The default message language is US English. (The
status flag makes it easy to signal success or failure and allows the receiving peer some freedom in the
amount of parsing it wants to do on failure [BXXP]).

Moab Workload Manager

Success codes:

Code Response Text in US English

0xx Request was successful

000 General Success

010 Help/usage reply

020 Status reply

030 Subscription successful

035 Notification successful (Ack)

040 Registration successful

050-079 Component-defined

080-099 Application-defined

Warning codes:

Code Response Text in US English

1xx Request was successful but includes a warning

100 General warning (examine message for details)

102 Check result (Did what you asked but may not have been what you intended -- or information is sus-
pect)

110 Wire Protocol or Network warning

112 Redirect

114 Protocol warning (something was wrong with the protocol, but best effort guesses were applied to fulfill
the request)

120 Message Format warning

Moab Workload Manager

1308 Appendices

Appendices 1309

Code Response Text in US English

122 Incomplete specification (request missing some essential information -- best effort guess applied)

124 Format warning (something was wrong with the format but best effort guesses were applied to fulfill
the request)

130 Security warning

132 Insecure request

134 Insufficient privileges (Response was sanitized or reduced in scope due to lack of privileges)

140 Content or action warning

142 No content (The server has processed the request but there is no data to be returned

144 No action taken (nothing acted upon -- i.e. deletion request did not match any objects)

146 Partial content

148 Partial action taken

150-
179

Component-defined

180-
199

Application-defined

Wire protocol codes:

Code Response Text in US English

2xx A problem occurred in the wire protocol or network

200 General wire protocol or network error

210 Network failure

212 Cannot resolve host name

Moab Workload Manager

Code Response Text in US English

214 Cannot resolve service port

216 Cannot create socket

218 Cannot bind socket

220 Connection failure

222 Cannot connect

224 Cannot send data

226 Cannot receive data

230 Connection rejected

232 Timed out

234 Too busy

236 Message too large

240 Framing failure

242 Malformed framing protocol

244 Invalid payload size

246 Unexpected end of file

250-279 Component-defined

280-299 Application-defined

Moab Workload Manager

1310 Appendices

Appendices 1311

Message format codes:

Code Response Text in US English

3xx A problem occurred in the message format

300 General message format error

302 Malformed XML document

304 Validation error(XML Schema)

306 Namespace error

308 Invalid message type (Something other than Request or Response in Body

310 General syntax error in request

311 Object incorrectly (or not) specified

312 Action incorrectly (or not) specified

313 Invalid Action

314 Missing required element or attribute

315 Invalid Object (or Object-Action combination

316 Invalid element or attribute name

317 Illegal value for element or attribute

318 Illegal combination

319 Malformed Data

320 General syntax error in response

321 Status incorrectly (or not)specified

322 Code incorrectly (or not)specified

Moab Workload Manager

Code Response Text in US English

324 Missing required element or attribute

326 Invalid element or attribute name

327 Illegal value for element or attribute

328 Illegal combination

329 Malformed Data

340 Pipelining failure

342 Request identifier is not unique

344 Multiple messages not supported

346 Mixed messages not supported (Both requests and responses in same batch)

348 Request/response count mismatch

350-379 Component-defined

380-399 Application-defined

Security codes:

Code Response Text in US English

4xx A security requirement was not fulfilled

400 General security error

410 Negotiation failure

412 Not understood

414 Not supported

Moab Workload Manager

1312 Appendices

Appendices 1313

Code Response Text in US English

416 Not accepted

420 Authentication failure

422 Signature failed at client

424 Authentication failed at server

426 Signature failed at server

428 Authentication failed at client

430 Encryption failure

432 Encryption failed at client

434 Decryption failed at server

436 Encryption failed at server

438 Decryption failed at client

440 Authorization failure

442 Authorization failed at client

444 Authorization failed at server

450-479 Component-defined

480-499 Application-defined

Event management codes:

Code Response Text in US English

5xx Failure conditions in event messaging

Moab Workload Manager

Code Response Text in US English

500 General Event Management failure

510 Subscription failed

520 Notification failed

550-579 Component-defined

580-599 Application-defined

Reserved codes:

Code Response Text in US English

6xx Reserved for future use

Server application codes:

Code Response Text in US English

7xx A server-side application-specific error occurred

700 General failure

710 Not supported

712 Not understood

720 Internal error

730 Resource unavailable (insufficient resources -- software, hardware or a service I rely upon is down)

740 Business logic

750-779 Component-defined

780-799 Application-defined

Moab Workload Manager

1314 Appendices

Appendices 1315

Client application codes:

Code Response Text in US English

8xx A client-side application-specific error occurred

800 General failure

810 Not supported

812 Not understood

820 Internal error

830 Resource unavailable

840 Business logic

850-879 Component-defined

880-899 Application-defined

Miscellaneous codes:

Code Response Text in US English

9xx Miscellaneous failures

999 Unknown failure

5.0 References
[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[FED_XML] “U.S. Federal XML Guidelines”.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC
2104, February 1997.

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March
1997.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

Moab Workload Manager

http://www.ietf.org/rfc/rfc3080.txt
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.faqs.org/rfcs/rfc3117.html

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash
Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems

[WIRE_PROTOCOL] S. Jackson, B. Bode, D. Jackson, K. Walker, “Systems Software Resource Management
and Accounting Protocol (SSSRMAP) Wire Protocol“, SSS Resource Management and Accounting
Documents, January 2004.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate
Recommendation, 4 March 2002.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”,
April 2000.

[XPath 1.0] J. Clark, S. DeRose, “XML Path Language (XPath) Version 1.0”, 16 November 1999.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft,
expired August 2001.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/

Scalable Systems Software Node Object Specification
SSS Node Object Specification
Release Version 3.1.0
26 April 2011

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Status of This Memo
This is a specification of the node object to be used by Scalable Systems Software compliant components.
It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the node
object passed in the Data field of Requests and Responses. Queries can be issued to a node-cognizant
component in the form of modified XPATH expressions to the Get field to extract specific information
from the node object as described in the SSSRMAP protocol.

Abstract
This document describes the syntax and structure of the SSS node object. This node model takes into
account various node property categories such as whether it represents a configured, available or
utilized property.

Moab Workload Manager

1316 Appendices

http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://www.scidac.org/ScalableSystems
http://sss.scl.ameslab.gov/docs.shtml
http://sss.scl.ameslab.gov/docs.shtml
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.aiai.ed.uk/project/ix/inca/xml-conventions.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
http://www.gzip.org/

Appendices 1317

Table of Contents
l Scalable Systems Software Node Object Specification

l Table of Contents

l 1.0 Introduction

o 1.1 Goals

o 1.2 Examples

o 1.2.1 Simple Example

o 1.2.2 Elaborate Example

l 2.0 Conventions Used in This Document

o 2.1 Keywords

o 2.2 Table Column Interpretations

o 2.3 Element Syntax Cardinality

l 3.0 The Node Model

l 4.0 Node Element

o 4.1 Uncategorized Node Properties

o 4.1.1 Simple Node Properties

o 4.1.2 Extension Element

o 4.2 Property Categories

o 4.2.1 Configured Element

o 4.2.2 Available Element

o 4.2.3 Utilized Element

o 4.3 Categorized Node Properties

o 4.3.1 Consumable Resources

o 4.3.2 Resource Element

l Appendix A

l Units of Measure Abbreviations

1.0 Introduction
This specification proposes a standard XML representation for a node object for use by the various
components in the SSS Resource Management System. This object will be used in multiple contexts and
by multiple components. It is anticipated that this object will be passed via the Data Element of
SSSRMAP Requests and Responses.

Moab Workload Manager

1.1 Goals

There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively include the ever-
changing node properties and capabilities that constantly arise.

The same node object should be used at all stages of its lifecycle. This object needs to distinguish
between configured, available and utilized properties of a node.

Its design takes into account the properties and structure required to function in a meta or grid
environment. It should eventually include the capability of resolving namespace and locality issues,
though the earliest versions will ignore this requirement.

One should not have to make multiple queries to obtain a single piece of information — i.e. there should
not be two mutually exclusive ways to represent a node resource.

It needs to support resource metric as well as unit specifications.

1.2 Examples

Simple Example

This example shows a simple expression of the Node object.

<Node>
<Id>Node64</Id>
<Configured>
<Processors>2</Processors>
<Memory>512</Memory>

</Configured>
</Node>

Elaborate Example

This example shows a more elaborate Node object.

<Node>
<Id>64</Id>
<Name>Netpipe2</Name>
<Feature>BigMem</Feature>
<Feature>NetOC12</Feature>
<Opsys>AIX</Opsys>
<Arch>Power4</Arch>
<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>
<Swap>512</Swap>

</Configured>
<Available>
<Processors>7</Processors>
<Memory metric=”Instantaneous”>143</Memory>

</Available>
<Utilized>
<Processors wallDuration=”3576”>8</Processors>
<Memory metric=”Average” wallDuration=”3576”>400</Memory>

</Utilized>
</Node>

Moab Workload Manager

1318 Appendices

Appendices 1319

2.0 Conventions Used in This Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

In the property tables, the columns are interpreted to have the following meanings:

Property Description

Element
Name

Name of the XML element (xsd:element)

Type Data type defined by xsd (XML Schema Definition) as:

l String — xsd:string(a finite length sequence of printable characters)
l Integer — xsd:integer(a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals “true” or “false”)
l DateTime — xsd:dateTime (discreet time values are represented in ISO 8601 extended
format CCYY-MM-DDThh:mm:ss where CC represents the century, YY the year, MM the
month and DD the day. The letter T is the date/time separator and hh, mm, ss represent
hour, minute and second respectively. This representation may be immediately followed
by a Z to indicate Coordinated Universal Time (UTC) or, to indicate the time zone, i.e. the
difference between the local time and Coordinated Universal Time, immediately followed
by a sign, + or -, followed by the difference from UTC.)

l Duration — xsd:duration (a duration of time is represented in ISO 8601 extended format
PnYnMnDTnHnMnS, where nY represents the number of years, nM the number of
months, nD the number of days, T is the date/time separator, nH the number of hours, nM
the number of minutes and nS the number of seconds. The number of seconds can include
decimal digits to arbitrary precision.)

Description Brief description of the meaning of the property

Appearance This column indicates whether the given property has to appear within the parent element. It
assumes the following meanings:

l MUST — This property is REQUIRED when the parent is specified.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Moab Workload Manager

http://www.ietf.org/rfc/rfc2119.txt

Property Description

Compliance The column indicates whether a compliant implementation has to support the given property.
l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Categories Some properties may be categorized into one of several categories. Letters in this column indicate
that the given property can be classified in the following property categories.

l C — This property can be encompassed in a Configured element.
l A— This property can be encompassed in an Available element.
l U — This property can be encompassed in a Utilized element.

2.3 Element Syntax Cardinality

The cardinality of elements in the element syntax sections may make use of regular expression
wildcards with the following meanings:

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies one and only one occurrence.

3.0 The Node Model
The primary element within the node model is a node. One can speak of some node properties as being a
configured, available or utilized property of the node.

4.0 Node Element
The Node element is the root element of a node object and is used to encapsulate a node.

l A node object MUST have exactly one Node element.

l A compliant implementation MUST support this element.

l A node MUST specify one or more Node Properties.

Moab Workload Manager

1320 Appendices

Appendices 1321

4.1 Uncategorized Node Properties

Uncategorized Node Properties are properties that apply to the node as a whole and do not need to be
distinguished between being configured, available or utilized. These include the node id and other
optional node properties.

Simple Node Properties

Simple (unstructured) node properties are enumerated in the table below.

Table 3-13: Simple Node Properties

Element
Name Type Description Appearance Compliance

Id String Node identifier MUST MUST

Name String Node name or pattern MAY MAY

OpSys String Operating System MAY SHOULD

Arch String Architecture MAY SHOULD

Description String Description of the node MAY MAY

State String State of the node. Valid states may include Offline,
Configured, Unknown, Idle, and Busy.

SHOULD MUST

Features String Arbitrary named features of the node (comma-
delimited string)

MAY SHOULD

Extension Element

The Extension element provides a means to pass extensible properties with the node object. Some
applications may find it easier to deal with a named extension property than discover and handle
elements for which they do not understand or anticipate by name.

l A compliant implementation MAY support this element.

l This element MUST have a name attribute that is of type String and represents the name of the
extension property. A compliant implementation MUST support this attribute if this element is
supported.

l This element MAY have a type attribute that is of type String and provides a hint about the
context within which the property should be understood. A compliant implementation SHOULD
support this attribute if this element is supported.

l The character content of this element is of type String and is the value of the extension property.

The following is an example of an Extension element:

Moab Workload Manager

<Extension type=”Chemistry” name=”Software”>NWChem</Extension>

4.2 Property Categories

Certain node properties (particularly consumable resources) need to be classified as being in a
particular category. This is done when it is necessary to distinguish between a property that is
configured versus a property that is available or utilized. For example, a node might be configured with
16 processors. At a particular time, 8 might be utilized, 7 might be available and 1 disabled. When a node
property must be categorized to be understood properly, the property MUST be enveloped within the
appropriate Property Category Element.

Configured Element

A configured node property reflects resources pertaining to the node that could in principle be used
though they may not be available at this time. This information could be used to determine if a job could
ever conceivably run on a given node.

l A compliant implementation MUST support this element.

The following is an example of using Configured Properties:

<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>

</Configured>

Available Element

An available node property refers to a resource that is currently available for use.

l A compliant implementation SHOULD support this element.

The following is an example of specifying available properties:

<Available>
<Processors>7</Processors>
<Memory units=”MB”>256</Memory>

</Available>

Utilized Element

A utilized node property reflects resources that are currently utilized.

l A compliant implementation SHOULD support this element.

The following is an example of specifying utilized properties:

<Utilized>
<Processors>8</Processors>
<Memory metric=”Average”>207</Memory>

</Utilized>

Moab Workload Manager

1322 Appendices

Appendices 1323

4.3 Categorized Node Properties

Consumable Resources

Consumable Resources are a special group of node properties that can have additional attributes and can
be used in multiple categories. In general a consumable resource is a resource that can be consumed in a
measurable quantity.

l A consumable resource MUST be categorized as being a configured, available or utilized node
property by being a child element of a Configured, Available or Utilized element respectively.

l A consumable resource MAY have a units attribute that is of type String that specifies the units by
which it is being measured. If this attribute is omitted, a default unit is implied. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a metric attribute that is of type String that specifies the type
of measurement being described. For example, the measurement may be a Total, an Average, a
Min or a Max. A compliant implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a wallDuration attribute of type Duration that indicates the
amount of time for which that resource was used. This need only be specified if the resource was
used for a different amount of time than the wallDuration for the step. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that indicates the
average percentage that a resource was used over its wallDuration. For example, an overbooked
SMP running 100 jobs across 32 processors may wish to scale the usage and charge by the
average fraction of processor usage actually delivered. A compliant implementation MAY support
this attribute if the element is supported.

A list of simple consumable resources is listed in the table below.

Table 3-14: Consumable Resource Node Properties

Element
Name Type Description Appearance Compliance Categories

Processors Integer Number of processors MAY MUST CAU

Memory Float Amount of memory MAY SHOULD CAU

Disk Float Amount of disk MAY SHOULD CAU

Swap Float Amount of virtual
memory

MAY MAY CAU

Network Float Amount of network MAY MAY CAU

The following are two examples for specifying a consumable resource:

Moab Workload Manager

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable
resource is defined by the Resource element.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of node properties.

l Like the other consumable resources, this property MUST be categorized as a configured,
available or utilized property by being encompassed in the appropriate elements.

l This element is of type Float.

l It shares the other same properties and attributes as the other consumable resources but it
requires an additional name (and optional type) attribute to describe it.

l This element MUST have a name attribute of type String that indicates the type of consumable
resource being measured. A compliant implementation MUST support this attribute if the element
is supported.

l This element MAY have a type attribute of type String that distinguishes it within a general
resource class. A compliant implementation SHOULD support this attribute if the element is
supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750”
metric=”KX”>10</Resource>

4.4 Node Reference

When a simple reference to a predefined node is needed in an encapsulating element, a Node element is
used with the text content being the node id:

<Node>node1</Node>

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List a comma-separated list of features

o Pattern a regular expression (perl5) matching desired features

o Range a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list elements.
The default list delimiter is a comma.

Moab Workload Manager

1324 Appendices

Appendices 1325

l This element MAY have a count attribute of type Integer that indicates the instance count of the
specified node(s).

The following is another example of a Node element:

<Node aggregation=”Pattern”>node[1-5]</Node>

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

MB Megabyte 2^20 bytes

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

ZB Aettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

Scalable Systems Software Resource Management and Accounting
Protocol (SSSRMAP) Wire Protocol
Resource Management Interface Specs
Release v. 3.0.3
13 May 2004

Scott Jackson
Brett Bode

Moab Workload Manager

David Jackson
Kevin Walker

Status of This Memo
This is a specification defining a wire level protocol used between Scalable Systems Software
components. It is intended that this specification will continue to evolve as these interfaces are
implemented and thoroughly tested by time and experience.

Abstract
This document is a specification describing a connection-oriented XML-based application layer client-
server protocol for the interaction of resource management and accounting software components
developed as part of the Scalable Systems Software Center. The SSSRMAP Wire Protocol defines a
framing protocol that includes provisions for security. The protocol is specified in XML Schema Definition
and rides on the HTTP protocol.

Table of Contents
l Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire
Protocol

l Table of Contents

l 1.0 Introduction

l 2.0 Conventions Used in this Document

o 2.1 Keywords

o 2.2 XML Case Conventions

o 2.3 Schema Definitions

l 3.0 Encoding

o 3.1 Schema Header and Namespaces

o 3.2 The Envelope Element

o 3.3 The Body Element

l 4.0 Transport Layer

l 5.0 Framing

o 5.1 Message Header Requirements

o 5.2 Message Chunk Format

o 5.3 Reply Header Requirements

o 5.4 Reply Chunk Format

Moab Workload Manager

1326 Appendices

Appendices 1327

o 5.5 Message and Reply Tail Requirements and Multiple Chunks

o 5.6 Examples

o 5.6.1 Sample SSSRMAP Message Embedded in HTTP Request

o 5.6.2 Sample SSSRMAP Reply Embedded in HTTP Response

l 6.0 Asynchrony

l 7.0 Security

o 7.1 Security Token

o 7.1.1 The SecurityToken Element

o 7.1.2 Security Token Types

o 7.1.2.1 Symmetric Key

o 7.1.2.2 Asymmetric Key

o 7.1.2.3 Password

o 7.1.2.4 Cleartext

o 7.1.2.5 Kerberos

o 7.1.2.6 GSI (X.509)

o 7.1.3 Example

o 7.2 Authentication

o 7.2.1 The Signature Element

o 7.2.2 The DigestValue Element

o 7.2.3 The SignatureValue Element

o 7.2.4 Signature Example

o 7.3 Confidentiality

o 7.3.1 The EncryptedData Element

o 7.3.2 The EncryptedKey Element

o 7.3.3 The CipherValue Element

o 7.3.4 Encryption Example

l 8.0 Acknowledgements

l 9.0 References

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular
infrastructure for resource management and accounting on terascale clusters including resource

Moab Workload Manager

scheduling, grid-scheduling, node daemon support, comprehensive usage accounting and user interfaces
emphasizing portability to terascale vendor operating systems. Existing resource management and
accounting components feature disparate APIs (Application Programming Interfaces) requiring various
forms of application coding to interact with other components.

This document proposes a wire level protocol expressed in an XML envelope to be considered as the
foundation of a standard for communications between and among resource management and accounting
software components. Individual components additionally need to define the particular XML binding
necessary to represent the message format for communicating with the component.

2.0 Conventions Used in this Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications
“Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style
capitalizes the first character of each word and compounds the name. LCC style capitalizes the first
character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

l Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

l Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain
(example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of
JOB.ID, Job_ID or job-id).

2.3 Schema Definitions

SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file takes precedence.

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages SHALL
be defined in terms of XML schema [XML_SCHEMA].

Moab Workload Manager

1328 Appendices

http://www.ietf.org/rfc/rfc2119.txt

Appendices 1329

3.1 Schema Header and Namespaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="http://www.w3.org/201/XMLSchema"
xmlns:sssrmap="http://www.scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="http://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 The Envelope Element

SSSRMAP messages and replies are encapsulated in the Envelope element. There are two possibilities
for the contents of this element. If the contents are unencrypted, this element MUST contain a Body
element and MAY contain a Signature element (refer to the section on Security). If the contents are
encrypted, this element MUST contain exactly one EncryptedData element (refer to the section on
Security). The Envelope element MAY contain namespace and other xsd-specific information necessary
to validate the document against the schema. In addition, it MAY have any of the following attributes
which may serve as processing clues to the parser:

Attribute Description

type Amessage type providing a hint as to the body contents such as “Request” or “Notification”

component A component type such as “QueueManager” or “LocalScheduler”

name A component name such as “OpenPBS” or “Maui”

version A component version such as “2.2p12” or “3.2.2”

<complexType name=EnvelopeType">
<choice minOccurs="1" maxOccurs="1">
<choice minOccurs="1" maxOccurs="2">
<element ref="sssrmap:Signature" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Body" minOccurs="1" maxOccurs="1"/>

</choice>
<element ref="sssrmap:EncryptedData" minOccurs="1" maxOccurs="1"/>

</choice>
<attribute name="type" type="string" use="optional"/>
<attribute name="component" type="string" use="optional"/>
<attribute name="name" type="string" use="optional"/>
<attribute name="version" type="string" use="optional"/>

</complexType>

<element name="Envelope" type="sssrmap:EnvelopeType"/>

Moab Workload Manager

3.3 The Body Element

l SSSRMAP messages and replies are encapsulated in the Body element. This element MUST
contain exactly one Request or Response element.

<complexType name="BodyType">
<choice minOccurs="1" maxOccurs="1">
<element ref="sssrmap:Request" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Response" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="1" namspace="##other"/>

</choice>
</complexType>

<element name="Body" type="sssrmap:BodyType"/>

4.0 Transport Layer
This protocol will be built over the connection-oriented reliable transport layer TCP/IP. Support for
other transport layers could also be considered, but native support for TCP/IP can be found on most
terascale clusters and automatically handles issues such as reliability and connection fullness for the
application developer implementing the SSSRMAP protocol.

5.0 Framing
Framing specifies how the beginning and ending of each message is delimited. Given that the encoding
will be expressed as one or more XML documents, clients and servers need to know when an XML
document has been fully read in order to be parsed and acted upon.

SSSRMAP uses the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-counting mechanism to
delimit the message segments. HTTP chunked encoding is used. This allows for optional support for
batched messages, large message segmentation and persistent connections.

5.1 Message Header Requirements

The HTTP request line (first line of the HTTP request header) begins with POST and is followed by a URI
and the version of the HTTP protocol that the client understands. It is suggested for this protocol that
the URI consist of a single slash, followed by the protocol name in uppercase (i.e. /SSSRMAP), though this
field is not checked and could be empty, a single slash or any URI.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-
ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Transfer-Encoding must be specified as chunked. The Content-Length must NOT be specified as the
chunk size is specified in the message chunk.

Other properties such as User-Agent, Host and Date are strictly optional.

5.2 Message Chunk Format

A message chunk consists of a chunk size in hexadecimal format (whose value is the number of bytes in
the XML message not including the chunk size and delimiter) delimited by a CR/LF “\r\n” and followed

Moab Workload Manager

1330 Appendices

Appendices 1331

by the message payload in XML that consists of a single XML document having a root element of
Envelope.

5.3 Reply Header Requirements

The HTTP response line (first line of the HTTP response header) begins with HTTP and a version
number, followed by a numeric code and a message indicating what sort of response is made. These
response codes and messages indicate the status of the entire response and are as defined by the HTTP
standard. The most common response is 200 OK, indicating that the message was received and an
appropriate response is being returned.

The Content-Type must be specified as text/xml. Charset may be optionally specified and defaults to US-
ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Transfer-Encoding MUST be specified as chunked. The Content-Length must NOT be specified.

Other properties such as Server, Host and Date are strictly optional.

5.4 Reply Chunk Format

A reply chunk consists of a chunk size in hexadecimal format (whose value is the number of bytes in the
XML reply not including the chunk size and delimiter) delimited by a CR/LF “\r\n” and followed by the
reply payload in XML that consists of a single XML document having a root element of Envelope.

5.5 Message and Reply Tail Requirements and Multiple Chunks

This specification only requires that single chunks be supported. A server may optionally be configured
to handle requests with persistent connections (multiple chunks). It will be the responsibility of clients to
know whether a particular server supports this additional functionality. After all chunks have been sent,
a connection is terminated by sending a zero followed by a carriage return-linefeed combination (0\r\n)
and closing the connection.

5.6 Examples

Sample SSSRMAP Message Embedded in HTTP Request

POST /SSSRMAP HTTP/1.1\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
9A\r\n
<Envelope …/>
0\r\n

Sample SSSRMAP Reply Embedded in HTTP Response

HTTP/1.1 200 OK\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
2B4\r\n
<Envelope …/>
0\r\n

Moab Workload Manager

6.0 Asynchrony
Asynchrony (or multiplexing) allows for the handling of independent exchanges over the same connection.
A widely-implemented approach is to allow pipelining (or boxcarring) by aggregating requests or
responses within the body of the message or via persistent connections and chunking in HTTP 1.1.
Pipelining helps reduce network latency by allowing a client to make multiple requests of a server, but
requires the requests to be processed serially [RFC3117]. Parallelism could be employed to further
reduce server latency by allowing multiple requests to be processed in parallel by multi-threaded
applications.

Segmentation may become necessary if the messages are larger than the available window. With
support for segmentation, the octet-counting requirement that you need to know the length of the whole
message before sending it can be relegated to the segment level – and you can start sending segments
before the whole message is available. Segmentation is facilitated via “chunking” in HTTP 1.1.

The current SSSRMAP strategy supports only a single request or response within the Body element. A
server may optionally support persistent connections from a client via HTTP chunking. Segmentation of
large responses is also optionally supported via HTTP chunking. Later versions of the protocol could
allow pipelined requests and responses in a single Body element.

7.0 Security
SSSRMAP security features include capabilities for integrity, authentication, confidentiality, and non-
repudiation. The absence or presence of the various security features depend upon the type of security
token used and the protection methods you choose to specify in the request.

For compatibility reasons, SSSRMAP specifies six supported security token types. Extensibility features
are included allowing an implementation to use alternate security algorithms and security tokens. It is
also possible for an implementation to ignore security features if it is deemed nonessential for the
component. However, it is highly RECOMMENDED that an implementation support at least the default
security token type in both authentication and encryption.

7.1 Security Token

A security token may be included in either the Signature block, and/or in the EncryptedData block (both
described later) as an implicit or explicit cryptographic key. If this element is omitted, the security token
is assumed to be a secret key shared between the client and the server.

The SecurityToken Element

This element is of type String. If the security token conveys an explicit key, this element’s content is the
value of the key. If the key is natively expressed in a binary form, it must be converted to base64
encoding as defined in XML Digital Signatures (“http://www.w3.org/2000/09/xmldsig#base64”). If the
type is not specified, it is assumed to be of type “Symmetric”.

It may have any of the following optional attributes:

Moab Workload Manager

1332 Appendices

http://www.w3.org/2000/09/xmldsig#base64

Appendices 1333

Attribute Description

type The type of security token (described subsequently)
l A type attribute of “Symmetric” specifies a shared secret key between the client and server.
This is the default.

l A type attribute of “Asymmetric” specifies the use of public private key pairs between the
client and server.

l A type attribute of “Password” encrypts and authenticates with a user password known to
both the client and server.

l A type attribute of “Cleartext” allows the passing of a cleartext username and password
and depends on the use of a secure transport (such as SSL or IPSec).

l A type attribute of “Kerberos5” specifies a kerberos token.
l A type attribute of “X509v3” specifies an X.509 certificate.

name The name of the security token which serves as an identifier for the actor making the request (use-
ful when the key is a password, or when the key value is implicit as when a public key is named but
not included)

<complexType name="SecurityTokenType" mixed="true">
<simpleContent>
<extension base="string">
<attribute name="type" type="string" use="optional">
<attribute name="name" type="string" use="optional">

</extension>
</simpleContent>

</complexType>

<element name="SecurityToken" type="sssrmap:SecurityTokenType"/>

Security Token Types

SSSRMAP defines six standard security token types:

Symmetric Key

The default security token specifies the use of a shared secret key. The secret key is up to 128-bits long
and known by both client and server. When using a symmetric key as a security token, it is not
necessary to specify the type attribute with value “Symmetric” because this is assumed when the
attribute is absent. The name attribute should be specified indicating the actor issuing the request. If the
user provides a password to be sent to the server for authentication, then the password is encrypted
with the secret key using a default method=”kw-tripledes” (XML ENCRYPTION
http://www.w3.org/2001/04/xmlenc#kw-tripledes), base64 encoded and included as the string content of
the SecurityToken element. If the client authenticated the user, then the SecurityToken element is
empty. The same symmetric key is used in both authentication and encryption.

Asymmetric Key

Public and private key pairs can be used to provide non-repudiation of the client (or server). The client
and the server must each have their own asymmetric key pairs. This mode is indicated by specifying the
type attribute as “Asymmetric”. The name attribute should be specified indicating the actor issuing the
request. If the user provides a password to be sent to the server for authentication, then the password is

Moab Workload Manager

http://www.w3.org/2001/04/xmlenc#kw-tripledes

encrypted with the server’s public key using a default method=”rsa-1_5” (XML ENCRYPTION
http://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and included as the string content of the
SecurityToken element. If the client authenticated the user, then the SecurityToken element is empty
.The sender’s private key is used in authentication (signing) while the recipient’s public key is used for
encryption.

Password

This mode allows for a username password combination to be used under the assumption that the server
also knows the password for the user. This security token type is indicated by specifying a value of
“Password” for the type attribute. The password itself is used as the cryptographic key for authentication
and encryption. The name attribute contains the user name of the actor making the request. The
SecurityToken element itself is empty.

Cleartext

This security mode is equivalent to passing the username and password in the clear and depends upon
the use of a secure transport (such as SSL or IPSec). The purpose of including this security token type is
to enable authentication to occur from web browsers over SSL or over internal LANs who use IPSec to
encrypt all traffic. The password (or a hash of the password like in /etc/passwd) would have to be
known by the server for authentication to occur. In this mode, neither encryption nor signing of the hash
is performed at the application layer. This mode is indicated by specifying a value of “Cleartext” for the
type attribute. The name attribute contains the user name of the actor making the request and the string
content of the SecurityToken element is the unencrypted plaintext password.

Kerberos

The use of a Kerberos version 5 token is indicated by specifying “Kerberos5” in the type attribute. The
name attribute is used to contain the kerberos user id of the actor making the request. The
SecurityToken element contains two sub elements. The Authenticator element contains the
authenticator encoded in base64. A Ticket element contains the service-granting ticket, also base64
encoded.

GSI (X.509)

The Grid Security Infrastructure (GSI) which is based on public key encryption, X.509 certificates, and the
Secure Sockets Layer (SSL) communication protocol can be indicated by specifying a type attribute of
“X509v3”. The name attribute contains the userid used that the actor was mapped to in the local system.
The string content of the SecurityToken element is the GSI authentication message including the
X.509 identity of the sender encoded in base64.

Example

<SecurityToken type=”Asymmetric” name=”scottmo”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...
</SecurityToken>

7.2 Authentication

Authentication entails how the peers at each end of the connection are identified and verified.
Authentication is optional in an SSSRMAP message or reply. SSSRMAP uses a digital signature scheme
for authentication that borrows from concepts in XML Digital Signatures [XML_DSIG]. In addition to

Moab Workload Manager

1334 Appendices

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Appendices 1335

authentication, the use of digital signatures also ensures integrity of the message, protecting exchanges
from third-party modification.

When authentication is used, a Signature element is prepended as the first element within the
Envelope element. All of the security modes will create a digest of the data for integrity checking and
store this in base64 encoding in a DigestValue element as a child of the Signature element. The
digital signature is created by encrypting the hash with the appropriate security token and storing this
value in a SignatureValue element as a child of the Signature element. The security token itself is
included as a child of the Security element within a SecurityToken element.

There are a number of procedural practices that must be followed in order to standardize this approach.
The digest (or hash) is created over the contents of the Envelope element (not including the Element
tag or its attributes). This might be over one or more Request or Notify elements (or Response or
Ack elements) and necessarily excludes the Signature Element itself. (Note that any data encryption
is performed after the creation of the digital signature and any decryption is performed before
authenticating so the EncryptedData element will not interfere with this process. Hence, the signature
is always based on the (hashed but) unencrypted data). For the purposes of generating the digest over
the same value, it is assumed that the data is first canonicalized to remove extraneous whitespace,
comments, etc according to the XML Digital Signature algorithm (“http://www.w3.org/TR/2001/REC-
xml-c14n-20010315”) and a transform is applied to remove namespace information. As a rule, any binary
values are always transformed into their base64 encoded values when represented in XML.

The Signature Element

The Signature element MUST contain a DigestValue element that is used for integrity checking. It
MUST also contain a SecurityToken element that is used to indicate the security mode and token
type, and to verify the signature. It MUST contain a SignatureValue element that contains the base64
encrypted value of the signature wrought on the hash UNLESS the security token type indicates Cleartext
mode where a signature would be of no value with the encryption key being sent in the clear -- in this
case we use the password itself for authentication).

<complexType name="SignatureType">
<choice minOccurs="2" maxOccurs="3">
<element ref="sssrmap:DigestValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SignatureValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SecurityToken" minOccurs="0" maxOccurs="1"/>

</choice>
</complexType>

<element name="Signature" type="sssrmap:SignatureType"/>

The DigestValue Element

The DigestValue element contains the cryptographic digest of the message data. As described above,
the hash is generated over the Body element. The data to be hashed must first be canonicalized and
appropriately transformed before generating the digest since typically an application will read in the
XML document into an internal binary form, then marshal (or serialize) the data into a string which is
passed as input to the hash algorithm. Different implementations marshal the data differently so it is
necessary to convert this to a well-defined format before generating the digest or the clients will
generate different digest values for the same XML. The SHA-1 [SHA-1] message digest algorithm
(http://www.w3.org/2000/09/xmldsig#sha1) SHALL be used as the default method for generating the

Moab Workload Manager

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/2000/09/xmldsig#sha1

digest. A method attribute is defined as an extensibility option in case an implementation wants to be
able to specify alternate message digest algorithms.

It MAY have a method attribute:

Attribute Description

method The message digest algorithm.
l A method attribute of “sha1” specifies the SHA-1 message digest algorithm. This is the
default and is implied if this attribute is omitted.

<complexType name="DigestValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="DigestValue" type="sssrmap:DigestValueType"/>

The SignatureValue Element

The SignatureValue element contains the digital signature that serves the authentication (and
potentially non-repudiation) function. The string content of the SignatureValue element is a base64
encoding of the encrypted digest value. The HMAC algorithm [HMAC] based on the SHA1 message digest
(http://www.w3.org/2000/09/xmldsig#hmac-sha1) SHALL be used as the default message authentication
code algorithm for user identification and message integrity. A method attribute is defined as an
extensibility option in case an implementation wants to be able to specify alternate digital signature
algorithms.

It MAY have a method attribute:

Attribute Description

method The digest signature algorithm.
l A method attribute of “hmac-sha1” specifies the HMAC SHA-1 digital signature algorithm.
This is the default and is implied if this attribute is omitted.

<complexType name="SignatureValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="SignatureValue" type="sssrmap:SignatureValueType"/>

Signature Example

Pre-authentication:

Moab Workload Manager

1336 Appendices

http://www.w3.org/2000/09/xmldsig#hmac-sha1

Appendices 1337

<Envelope>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scott</Where>

</Request>
</Body>

</Envelope>

Post-authentication:

<Envelope>
<Signature>
<DigestValue>
LyLsF0Pi4wPU...

</DigestValue>
<SignatureValue>
DJbchm5gK...

</SignatureValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</Signature>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scottmo</Where>

</Request>
</Body>

</Envelope>

7.3 Confidentiality

Confidentiality involves encrypting the sensitive data in the message, protecting exchanges against third-
party interception and modification. Confidentiality is optional in an SSSRMAP message or reply. When
confidentiality is required, SSSRMAP sessions use block cipher encryption with concepts borrowed from
the emerging XML Encryption [XML_ENC] standard.

When confidentiality is used, encryption is performed over all child elements of the Envelope element,
i.e. on the message data as well as any signature (The encrypted data is not signed -- rather the
signature is encrypted). This data is replaced in-place within the envelope with an EncryptedData
element. The data is first compressed using the gzip algorithm [ZIP]. Instead of encrypting this
compressed data with the security token directly, a 192-bit random session key is generated by the
sender and used to perform symmetric encryption on the compressed data. This key is itself encrypted
with the security token and included with the encrypted data as the value of the EncryptedKey
element as a child of the EncryptedData element. The ciphertext resulting from the data being
encrypted with the session key is passed as the value of a CipherValue element (also a child of the
EncryptedData element). As in the case with authentication, the security token itself is included as a
child of the Security element within a SecurityToken element.

Moab Workload Manager

The EncryptedData Element

When SSSRMAP confidentiality is required, the EncryptedData element MUST appear as the only child
element in the Envelope element. It directly replaces the contents of these elements including the data
and any digital signature. It MUST contain an EncryptedKey element that is used to encrypt the data.
It MUST contain a CipherValue element that holds the base64 encoded ciphertext. It MAY also contain
a SecurityToken element that is used to indicate the security mode and token type. If the
SecurityToken element is omitted, a Symmetric key token type is assumed. Confidentiality is not used
when a security token type of “Cleartext” is specified since it would be pointless to encrypt the data with
the encryption key in the clear.

<complexType name="EncryptionDataType">
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:EncryptedKey" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:CipherValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssmap:SecurityToken" minOccurs="1" maxOccurs="1"/>

</choice>
</complexType>

<element name="EncryptedData" type="sssrmap:EncryptedDataType"/>

The EncryptedKey Element

The EncryptedKey element is a random session key encrypted with the security token. This approach
is used for a couple of reasons. In the case where public key encryption is used, asymmetric encryption is
much slower than symmetric encryption and it makes sense to use a symmetric key for encryption and
pass along it along by encrypting it with the recipient’s public key. It is also useful in that the security
token which does not change very often (compared to the session key which changes for every
connection) is used on a very small sampling of data (the session key), whereas if it was used to encrypt
the whole message an attacker could more effectively exploit an attack against the ciphertext. The CMS
Triple DES Key Wrap algorithm “kw-tripledes” SHALL be used as the default method for key encryption.
The session key is encrypted using the security token, base64 encoded and specified as the string content
of the EncryptedKey element. A method attribute is defined as an extensibility option in case an
implementation wants to be able to specify alternate key encryption algorithms.

It is REQUIRED that an implementation use a cryptographically secure Pseudo-Random number
generator. It is RECOMMENDED that the session key be cryptographically generated (such as cyclic
encryption, DES OFB, ANSI X9.17 PRNG, SHA1PRNG, or ANSI X12.17 (used by PGP)).

It MAY have a method attribute:

Attribute Description

method The key encryption algorithm.
l A method attribute of “kw-tripledes” specifies the CMS Triple DES Key Wrap algorithm. This
algorithm is specified by the XML Encryption [XML_ENC] URI
“http://www.w3.org/2001/04/xmlenc#kw-tripledes”. It involves two Triple DES
encryptions, a random and known Initialization Vector (IV) and a CMS key checksum. A 192-
bit key encryption key is generated from the security token, lengthened as necessary by
zero-padding. No additional padding is performed in the encryptions. This is the default and
is implied if this attribute is omitted.

Moab Workload Manager

1338 Appendices

Appendices 1339

<complexType name="EncryptedKeyType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="EncryptedKey" type="sssrmap:EncryptedKeyType"/>

The CipherValue Element

The CipherValue element contains the message (and possibly signature) data encrypted with the random
session key. The ciphertext is compressed using the gzip algorithm [ZIP], encrypted by the designated
method, base64 encoded and included as the string content of the CipherValue element. The Triple DES
algorithm with Cipher Block Chaining (CBC) feedback mode SHALL be used as the default method for
encryption. A method attribute is defined as an extensibility option in case an implementation wants to
be able to specify alternate data encryption algorithms.

It MAY have a method attribute:

Attribute Description

method The data encryption algorithm.
l A method attribute of “tripledes-cbc” specifies the Triple DES algorithm with Cipher Block
Chaining (CBC) feedback mode. This algorithm is specified by the XML Encryption [XML_
ENC] URI identifier “http://www.w3.org/2001/04/xmlenc#tripledes-cbc”. It specifies the
use of a 192-bit encryption key and a 64-bit Initialization Vector (IV). Of the key bits, the
first 64 are used in the first DES operation, the second 64 bits in the middle DES operation,
and the third 64 bits in the last DES operation. The plaintext is first padded to a multiple of
the block size (8 octets) using the padding scheme described in [XMLENC] for Block
Encryption Algorithms (Padding per PKCS #5 will suffice for this). The resulting cipher text
is prefixed by the IV. This is the default and is implied if this attribute is omitted.

<complexType name="CipherValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="CipherValue" type="sssrmap:CipherValueType"/>

Encryption Example

In this example, a simple request is demonstrated without a digital signature for the sake of emphasizing
the encryption plaintext replacement.

Pre-encryption:

Moab Workload Manager

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

<Envelope>
<Body>
<Response>
<Status>true</Status>
<Code>000</Code>
<Count>1</Count>
<Data>
<User>
<EmailAddress>Scott.Jackson@pnl.gov</EmailAddress>

</User>
</Data>

</Response>
</Body>

</Envelope>

Post-encryption:

<Envelope>
<EncryptedData>
<EncryptedKey>
NAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSM...

</EncryptedKey>
<CipherValue>
mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPW...

</CipherValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</EncryptedData>

</Envelope>

8.0 Acknowledgements

9.0 References
[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March
1997.

[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC
2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash
Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

Moab Workload Manager

1340 Appendices

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3080.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://csrc.nist.gov/publications/fips/fips180-1/fips180-1.txt
http://csrc.nist.gov/publications/fips/fips180-1/fips180-1.txt
http://www.scidac.org/ScalableSystems
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.aiai.ed.uk/project/ix/inca/xml-conventions.html
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html
http://www.faqs.org/rfcs/rfc3117.html
http://www.w3.org/TR/xmldsig-core/

Appendices 1341

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate
Recommendation, 4 March 2002.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft,
expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”,
April 2000.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/

Appendix W: Moab Resource Manager Language
Interface Overview
The Moab RM Language (formerly called WIKI) is the language that some resource managers use to
communicate with Moab, specifically a native RM. Generally each line represents a single resource or
workload in Moab. The line contains the name of the resource or workload followed by a set of
<attr>=<val> pairs. Although the Moab RM language follows the same data format for all RMs, each
RM type receives and returns it differently. For instructions and examples on using Moab RM language
with SLURM or a native RM, see W.2 Managing Resources with SLURM on page 1350 and Managing
Resources Directly with the Native Interface on page 650 respectively.

l W.1 Moab Resource Manager Language Data Format

l W.2 Managing Resources with SLURM

l W.3 Moab RM Language Socket Protocol Description

W.1 Moab Resource Manager Language Data Format
l W.1.1 Query Resources Data Format

l W.1.2 Query Workload Data Format

W.1.1 Query Resources Data Format

NAME FORMAT DEFAULT DESCRIPTION

ADISK <INTEGER> 0 Available local disk on node (in
MB)

AFS <fs id="X" size="X" io="Y"
rcount="X" wcount="X" ocoun-
t="X"></fs>[...]

0 Available filesystem state

Moab Workload Manager

http://www.w3.org/TR/xmlenc-core/
http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/
http://www.gzip.org/

NAME FORMAT DEFAULT DESCRIPTION

AMEMORY <INTEGER> 0 Available/free RAM on node (in
MB)

APROC <INTEGER> 1 Available processors on node

ARCH <STRING> --- Compute architecture of node

ARES one or more comma delimited
<NAME>:<VALUE> pairs (ie,
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources
currently available on the node

ASWAP <INTEGER> 0 Available swap on node (in MB)

CCLASS one or more bracket enclosed
<NAME>:<COUNT> pairs (ie,
[batch:5][sge:3])

--- Run classes supported by node.
Typically, one class is 'consumed'
per task. Thus, an 8 processor
node may have 8 instances of
each class it supports present, ie
[batch:8][interactive:8]

CDISK <INTEGER> 0 Configured local disk on node (in
MB)

CFS <STRING> 0 Configured filesystem state

CMEMORY <INTEGER> 0 Configured RAM on node (in MB)

CONTAINERNODE <STRING> --- The physical machine that is host-
ing the virtual machine. Only
valid on VMs.

CPROC <INTEGER> 1 Configured processors on node

CPULOAD <DOUBLE> 0.0 One minute BSD load average

CPUSPEED <INTEGER> --- The node's processor speed in
MHz

Moab Workload Manager

1342 Appendices

Appendices 1343

NAME FORMAT DEFAULT DESCRIPTION

CRES one or more comma delimited
<NAME>:<VALUE> pairs (ie,
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources
supported and tracked on the
node, ie software licenses or tape
drives

CSWAP <INTEGER> 0 Configured swap on node (in
MB)

FEATURE one or more colon delimited
<STRING>'s (ie, WIDE:HSM)

--- Generic attributes, often describ-
ing hardware or software fea-
tures, associated with the node

GEVENT GEVENT[<EVENTNAME>]=<STRING> --- Generic event occurrence and
context data

GMETRIC GMETRIC[<METRICNAME>]
=<DOUBLE>

--- Current value of generic metric,
i.e., 'GMETRIC[temp]=103.5'.

IDLETIME <INTEGER> --- Number of seconds since last
detected keyboard or mouse
activity (often used with desktop
harvesting)

MAXTASK <INTEGER> <CPROC> Maximum number of tasks
allowed on the node at any given
time

NETADDR <STRING> --- The IP address of the machine

NODEINDEX <INTEGER> --- The node's index

OS <STRING> --- Operating system running on
node

OSLIST One or more comma delimited
<STRING>'s with quotes if the string
has spaces (ie. "SAS7 AS3 Core
Baseline Build
v0.1.0","RedHat AS3-U5Devel-
opment Build v0.2").

--- Operating systems accepted by
node

Moab Workload Manager

NAME FORMAT DEFAULT DESCRIPTION

OTHER <ATTR>=<VALUE>
[,<ATTR>=<VALUE>]...

--- Opaque node attributes assigned
to node

PARTITION <STRING> DEFAULT Partition to which node belongs

POWER <BOOLEAN> Whether the machine is on or off

PRIORITY <INTEGER> --- Node allocation priority

RACK <INTEGER> 0 Rack location of the node

SLOT <INTEGER> 0 Slot location of the node

STATE* one of the following: Idle, Running,
Busy, Unknown, Drained, Draining,
or Down

Down State of the node

UPDATETIME* <EPOCHTIME> 0 Time node information was last
updated

VARATTR <ATTR1>=<VAL1>[=<di-
isplayName1>]
[+<ATTR2>=<VAL2>
[=<displayName2>]]...

--- Plus-delimited (+) list of
<ATTR>=<VAL>
[=<displayName>] pairs that
jobs can request. You can replace
any of the equals signs with
colons if desired.
Specifying a display name allows
you to choose a name that will be
displayed in the Mongo database
instead of the unique ID (the
<VALUE>).

If you give two different
attributes the same value
and one of them also has
a display name specified,
both attributes will
appear with the same
display name.

VARIABLE <ATTR>=<VAL> --- Generic variables to be associated
with node

Moab Workload Manager

1344 Appendices

Appendices 1345

NAME FORMAT DEFAULT DESCRIPTION

VMOSLIST <STRING> --- Comma-delimited list (,) of sup-
ported virtual machine operating
systems for this node

XRES one or more comma delimited
<NAME>:<VALUE> pairs (ie,
MATLAB:6,COMPILER:100)

--- Amount of external usage of a
particular generic resource

* indicates required field

Node states have the following definitions:

State Description

Busy Node is running some jobs and will not accept additional jobs

Down Resource Manager problems have been detected. Node is incapable of running jobs.

Draining Node is responding but will not accept new jobs

Idle Node is ready to run jobs but currently is not running any.

Running Node is running some jobs and will accept additional jobs

Unknown Node is capable of running jobs but the scheduler will need to determine if the node state is actually
Idle, Running, or Busy.

W.1.2 Query Workload Data Format

NAME FORMAT DEFAULT DESCRIPTION

ACCOUNT <STRING> --- AccountID associated with job

ARGS <STRING> --- job command-line arguments

COMMENT <STRING> 0 job resource manager extension arguments includ-
ing qos, dependencies, reservation constraints, etc

COMPLETETIME* <EPOCHTIME> 0 time job completed execution

Moab Workload Manager

NAME FORMAT DEFAULT DESCRIPTION

DDISK <INTEGER> 0 quantity of local disk space (in MB) which must be
dedicated to each task of the job

DGRES name:value
[,name:value]

--- Dedicated generic resources per task.

DPROCS <INTEGER> 1 number of processors dedicated per task

DSWAP <INTEGER> 0 quantity of virtual memory (swap, in MB) which
must be dedicated to each task of the job

ENDDATE <EPOCHTIME> [ANY] time by which job must complete

ENV <STRING> --- job environment variables

ERROR <STRING> --- file to contain STDERR

EVENT <EVENT> --- event or exception experienced by job

EXEC <STRING> --- job executable command

EXITCODE <INTEGER> --- job exit code

FLAGS <STRING> --- job flags

GEOMETRY <STRING> --- String describing task geometry required by job

GNAME* <STRING> --- GroupID under which job will run

Moab Workload Manager

1346 Appendices

Appendices 1347

NAME FORMAT DEFAULT DESCRIPTION

HOSTLIST comma or colon
delimited list of host-
names -
suffix the hostlist
with a carat (^) to
mean superset; suf-
fix with an asterisk
(*) to mean subset;
otherwise, the host-
list is interpreted as
an exact set

[ANY] list of required hosts on which job must run. (see
TASKLIST)
A subset means the specified hostlist is used first to
select hosts for the job. If the job requires more
hosts than are in the hostlist, they will be obtained
from elsewhere if possible. If the job does not
require all of the jobs in the hostlist, it will use only
the ones it needs.
A superset means the hostlist is the only source of
hosts that should be considered for running the
job. If the job can't find the necessary resources in
the hosts in this list it should not run. No other
hosts should be considered in allocating the job.

INPUT <STRING> --- file containing STDIN

IWD <STRING> --- job's initial working directory

NAME <STRING> --- User specified name of job

NODES <INTEGER> 1 Number of nodes required by job (See Node Defin-
ition for more info)

OUTPUT <STRING> --- file to contain STDOUT

PARTITIONMASK one or more colon
delimited <STRING>s

[ANY] list of partitions in which job can run

PREF colon delimited list
of <STRING>s

--- List of preferred node features or variables. (See
PREF for more information.)

PRIORITY <INTEGER> --- system priority (absolute or relative - use '+' and '-
' to specify relative)

QOS <INTEGER> 0 quality of service requested

QUEUETIME* <EPOCHTIME> 0 time job was submitted to resource manager

RARCH <STRING> --- architecture required by job

Moab Workload Manager

NAME FORMAT DEFAULT DESCRIPTION

RCLASS list of bracket
enclosed
<STRING>
:<INTEGER> pairs

--- list of <CLASSNAME>:<COUNT> pairs indicating
type and number of class instances required per
task. (ie, [batch:1] or [batch:2][tape:1])

RDISK <INTEGER> 0 local disk space (in MB) required to be configured
on nodes allocated to the job

RDISKCMP one of >=, >, ==, <, or
<=

>= local disk comparison (ie, node must have > 2048
MB local disk)

REJCODE <INTEGER> 0 reason job was rejected

REJCOUNT <INTEGER> 0 number of times job was rejected

REJMESSAGE <STRING> --- text description of reason job was rejected

REQRSV <STRING> --- Name of reservation in which job must run

RESACCESS <STRING> --- List of reservations in which job can run

RFEATURES colon delimited list
<STRING>'s

--- List of features required on nodes

RMEM <INTEGER> 0 real memory (RAM, in MB) required to be con-
figured on nodes allocated to the job

RMEMCMP one of '>=', '>', '==',
'<', or '<='

>= real memory comparison (ie, node must have >=
512MB RAM)

ROPSYS <STRING> --- operating system required by job

RSOFTWARE <RESTYPE>[{+|:}
<COUNT>]
[@<TIMEFRAME>]

--- software required by job

RSWAP <INTEGER> 0 virtual memory (swap, in MB) required to be con-
figured on nodes allocated to the job

Moab Workload Manager

1348 Appendices

Appendices 1349

NAME FORMAT DEFAULT DESCRIPTION

RSWAPCMP one of '>=', '>', '==',
'<', or '<='

>= virtual memory comparison (ie, node must have
==4096 MB virtual memory)

SID <STRING> --- system id (global job system owner)

STARTDATE <EPOCHTIME> 0 earliest time job should be allowed to start

STARTTIME* <EPOCHTIME> 0 time job was started by the resource manager

STATE* one of Idle, Running,
Hold, Suspended,
Completed, or
Removed

Idle State of job

SUSPENDTIME <INTEGER> 0 Number of seconds job has been suspended

TASKLIST one or more comma-
delimited
<STRING>'s

--- list of allocated tasks, or in other words, comma-
delimited list of node ID's associated with each act-
ive task of job (i.e., cl01, cl02, cl01, cl02, cl03) The
tasklist is initially selected by the scheduler at the
time the StartJob command is issued. The resource
manager is then responsible for starting the job on
these nodes and maintaining this task distribution
information throughout the life of the job. (see
HOSTLIST)

TASKS* <INTEGER> 1 Number of tasks required by job (See Task Defin-
ition for more info)

TASKPERNODE <INTEGER> 0 exact number of tasks required per node

UNAME* <STRING> --- UserID under which job will run

UPDATETIME* <EPOCHTIME> 0 Time job was last updated

WCLIMIT* [[HH:]MM:]SS 864000 walltime required by job

* indicates required field

Job states have the following definitions:

Moab Workload Manager

State Definition

Completed Job has completed

Hold Job is in the queue but is not allowed to run

Idle Job is ready to run

Removed Job has been canceled or otherwise terminated externally

Running Job is currently executing

Suspended job has started but execution has temporarily been suspended

Completed and canceled jobs should be maintained by the resource manager for a brief time,
perhaps 1 to 5 minutes, before being purged. This provides the scheduler time to obtain all final
job state information for scheduler statistics.

Related topics

l Managing Resources with SLURM
l Managing Resources Directly with the Native Interface

W.2 Managing Resources with SLURM
This section demonstrates how Moab uses the Moab RM language (formerly called WIKI) to communicate
with SLURM. For SLURM configuration instructions, see the Moab-SLURM Integration Guide.

l W.2.1 Commands

o W.2.1.1 Resource Query

o W.2.1.1.1 Query Resources Request Format

o W.2.1.1.2 Query Resources Response Format

o W.2.1.2 Workload Query

o W.2.1.2.1 Query Workload Request Format

o W.2.1.2.2 Query Workload Response Format

o W.2.1.2.3 Query Workload Example

o W.2.1.3 Start Job

o W.2.1.4 Cancel Job

o W.2.1.5 Suspend Job

Moab Workload Manager

1350 Appendices

Appendices 1351

o W.2.1.6 Resume Job

o W.2.1.7 Requeue Job

o W.2.1.8 Signal Job

o W.2.1.9 Modify Job

o W.2.1.10 JobAddTask

o W.2.1.11 JobRemoveTask

l W.2.2 Rejection Codes

W.2.1 Commands
All commands are requested via a socket interface, one command per socket connection. All fields and
values are specified in ASCII text.

Supported Commands are:

l Query Resources

l Query Workload

l Start Job

l Cancel Job

l Suspend Job

l Resume Job

l Requeue Job

l JOBADDTASK

l JOBRELEASETASK

W.2.1.1 Moab RM Language Query Resources

W.2.1.1.1 Moab RM Language Query Resources Request Format

CMD=GETNODES ARG={<UPDATETIME>:<NODEID>[:<NODEID>]... | <UPDATETIME>:ALL}

Only nodes updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is
specified as the epoch time of interest. Setting <UPDATETIME> to 0 will return information for all nodes.
Specify a colon delimited list of NODEIDs if specific nodes are desired or use the keyword ALL to receive
information for all nodes.

W.2.1.1.2 Moab RM Language Resources Response Format

The query resources response format is one or more line of the following format (separated with a new
line):

<NODEID><ATTR>=<VALUE>[;<ATTR>=<VALUE>]...

<ATTR> is one of the names in the table below and the format of <VALUE> is dependent on <ATTR>.

Moab Workload Manager

Example 3-184: Moab RM language resource query and response

Request:

CMD=GETNODES ARG=0:node001:node002:node003

Response:

node001 UPDATETIME=963004212;STATE=Busy;OS=AIX43;ARCH=RS6000...
node002 UPDATETIME=963004213;STATE=Busy;OS=AIX43;ARCH=RS6000...
...

W.2.1.2 Moab RM Language Query Workload

W.2.1.2.1 Moab RM Language Query Workload Request Format

CMD=GETJOBS ARG={<UPDATETIME>:<JOBID>[:<JOBID>]... | <UPDATETIME>:ALL }

Only jobs updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is
specified as the epoch time of interest. Setting <UPDATETIME> to 0 will return information for all jobs.
Specify a colon delimited list of JOBID's if information for specific jobs is desired or use the keyword ALL
to receive information about all jobs.

W.2.1.2.2 Moab RM Language Query Workload Response Format

SC=<STATUSCODE> ARG=<JOBCOUNT>#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...
[#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...]...

or

SC=<STATUSCODE> RESPONSE=<RESPONSE>

FIELD is either the text name listed below or A<FIELDNUM>
(ie, UPDATETIME or A2)

STATUSCODE values:

l 0 SUCCESS

l -1 INTERNAL ERROR

RESPONSE is a statuscode sensitive message describing error or state details.

W.2.1.2.3 Moab RM Language Query Workload Example

Request:

CMD=GETJOBS ARG=0:ALL

Response:

ARG=2#nebo3001.0:UPDATETIME=9780000320;STATE=Idle;WCLIMIT=3600;...

Moab Workload Manager

1352 Appendices

Appendices 1353

W.2.1.3 StartJob

The StartJob command may only be applied to jobs in the Idle state. It causes the job to begin running
using the resources listed in the NodeID list.

send CMD=STARTJOB ARG=<JOBID> TASKLIST=<NODEID>[:<NODEID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 3-185: Job start

Start job nebo.1 on nodes cluster001 and cluster002

send
CMD=STARTJOB ARG=nebo.1 TASKLIST=cluster001:cluster002
receive
SC=0;RESPONSE=job nebo.1 started with 2 tasks

W.2.1.4 CancelJob

The CancelJob command, if applied to an active job, will terminate its execution. If applied to an idle or
active job, the CancelJob command will change the job's state to Canceled.

send CMD=CANCELJOB ARG=<JOBID> TYPE=<CANCELTYPE>

<CANCELTYPE> is one of the following:

ADMIN (command initiated by scheduler administrator)
WALLCLOCK (command initiated by scheduler because job exceeded its specified wallclock limit)

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 3-186: Job cancel

Cancel job nebo.2

send
CMD=CANCELJOB ARG=nebo.2 TYPE=ADMIN'
receive
SC=0 RESPONSE=job nebo.2 canceled

W.2.1.5 SuspendJob

The SuspendJob command can only be issued against a job in the state Running. This command
suspends job execution and results in the job changing to the Suspended state.

send CMD=SUSPENDJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

Moab Workload Manager

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 3-187: Job suspend

Suspend job nebo.3

send
CMD=SUSPENDJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 suspended

W.2.1.6 ResumeJob

The ResumeJob command can only be issued against a job in the state Suspended. This command
resumes a suspended job returning it to the Running state.

send CMD=RESUMEJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 3-188: Job resume

Resume job nebo.3

send
CMD=RESUMEJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 resumed

W.2.1.7 RequeueJob

The RequeueJob command can only be issued against an active job in the state Starting or Running.
This command requeues the job, stopping execution and returning the job to an idle state in the queue.
The requeued job will be eligible for execution the next time resources are available.

send CMD=REQUEUEJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Moab Workload Manager

1354 Appendices

Appendices 1355

Example 3-189: job requeue

Requeue job nebo.3

send
CMD=REQUEUEJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 requeued

W.2.1.8 SignalJob

The SignalJob command can only be issued against an active job in the state Starting or Running.
This command signals the job, sending the specified signal to the master process. The signaled job will
be remain in the same state it was before the signal was issued.

send CMD=SIGNALJOB ARG=<JOBID> ACTION=signal VALUE=<SIGNAL>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 3-190: Job signal

Signal job nebo.3

send
CMD=SIGNALJOB ARG=nebo.3 ACTION=signal VALUE=13
receive
SC=0 RESPONSE=job nebo.3 signaled

W.2.1.9 ModifyJob

The ModifyJob command can be issued against any active or queued job. This command modifies
specified attributes of the job.

send CMD=MODIFYJOB ARG=<JOBID> [BANK=name] [NODES=num] [PARTITION=name]
[TIMELIMIT=minutes]

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 3-191: Job modify

Signal job nebo.3

send
CMD=MODIFYJOB ARG=nebo.3 TIMELIMIT=9600
receive
SC=0 RESPONSE=job nebo.3 modified

Moab Workload Manager

W.2.1.10 JobAddTask

The JobAddTask command allocates additional tasks to an active job.

send CMD=JOBADDTASK ARG=<JOBID> <NODEID> [<NODEID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 3-192: Job addtask

Add 3 default tasks to job nebo30023.0 using resources located on nodes cluster002,
cluster016, and cluster112.

send
CMD=JOBADDTASK ARG=nebo30023.0 DEFAULT cluster002 cluster016 cluster112
receive
SC=0 RESPONSE=3 tasks added

W.2.1.11 JobRemoveTask

The JobRemoveTask command removes tasks from an active job.

send CMD=JOBREMOVETASK ARG=<JOBID> <TASKID> [<TASKID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 3-193: Job removetask

Free resources allocated to tasks 14, 15, and 16 of job nebo30023.0

send
CMD=JOBREMOVETASK ARG=nebo30023.0 14 15 16
receive
SC=0 RESPONSE=3 tasks removed

W.2.2 Rejection Codes
l 0xx - success - no error

o 00x - success

o 000 - success

o 01x - usage/help reply

o 010 - usage/help reply

o 02x - status reply

o 020 - general status reply

Moab Workload Manager

1356 Appendices

Appendices 1357

l 1xx - warning

o 10x - general warning

o 100 - general warning

o 11x - no content

o 110 - general wire protocol or network warning

o 112 - redirect

o 114 - protocol warning

o 12x - no matching results

o 120 - general message format warning

o 122 - incomplete specification (best guess action/response applied)

o 13x - security warning

o 130 - general security warning

o 132 - insecure request

o 134 - insufficient privileges (response was censored/action reduced in scope)

o 14x - content or action warning

o 140 - general content/action warning

o 142 - no content (server has processed the request but there is no data to be
returned)

o 144 - no action (no object to act upon)

o 146 - partial content

o 148 - partial action

o 15x - component defined

o 18x - application defined

l 2xx - wire protocol/network failure

o 20x - protocol failure

o 200 - general protocol/network failure

o 21x - network failure

o 210 - general network failure

o 212 - cannot resolve host

o 214 - cannot resolve port

Moab Workload Manager

o 216 - cannot create socket

o 218 - cannot bind socket

o 22x - connection failure

o 220 - general connection failure

o 222 - cannot connect to service

o 224 - cannot send data

o 226 - cannot receive data

o 23x - connection rejected

o 230 - general connection failure

o 232 - connection timed-out

o 234 - connection rejected - too busy

o 236 - connection rejected - message too big

o 24x - malformed framing

o 240 - general framing failure

o 242 - malformed framing protocol

o 244 - invalid message size

o 246 - unexpected end of file

o 25x - component defined

o 28x - application defined

l 3xx - messaging format error

o 30x - general messaging format error

o 300 - general messaging format error

o 31x - malformed XML document

o 310 - general malformed XML error

o 32x - XML schema validation error

o 320 - general XML schema validation

o 33x - general syntax error in request

o 330 - general syntax error in response

o 332 - object incorrectly specified

o 334 - action incorrectly specified

o 336 - option/parameter incorrectly specified

Moab Workload Manager

1358 Appendices

Appendices 1359

o 34x - general syntax error in response

o 340 - general response syntax error

o 342 - object incorrectly specified

o 344 - action incorrectly specified

o 346 - option/parameter incorrectly specified

o 35x - synchronization failure

o 350 - general synchronization failure

o 352 - request identifier is not unique

o 354 - request id values do not match

o 356 - request id count does not match

l 4xx - security error occurred

o 40x - authentication failure - client signature

o 400 - general client signature failure

o 402 - invalid authentication type

o 404 - cannot generate security token key - inadequate information

o 406 - cannot canonicalize request

o 408 - cannot sign request

o 41x - negotiation failure

o 410 - general negotiation failure

o 412 - negotiation request malformed

o 414 - negotiation request not understood

o 416 - negotiation request not supported

o 42x - authentication failure

o 420 - general authentication failure

o 422 - client signature failure

o 424 - server authentication failure

o 426 - server signature failure

o 428 - client authentication failure

o 43x - encryption failure

o 430 - general encryption failure

o 432 - client encryption failure

Moab Workload Manager

o 434 - server decryption failure

o 436 - server encryption failure

o 438 - client decryption failure

o 44x - authorization failure

o 440 - general authorization failure

o 442 - client authorization failure

o 444 - server authorization failure

o 45x - component defined failure

o 48x - application defined failure

l 5xx - event management request failure

o 50x - reserved

o 500 - reserved

l 6xx - reserved for future use

o 60x - reserved

o 600 - reserved

l 7xx - server side error occurred

o 70x - server side error

o 700 - general server side error

o 71x - server does not support requested function

o 710 - server does not support requested function

o 72x - internal server error

o 720 - general internal server error

o 73x - resource unavailable

o 730 - general resource unavailable error

o 732 - software resource unavailable error

o 734 - hardware resource unavailable error

o 74x - request violates policy

o 740 - general policy violation

o 75x - component-defined failure

o 78x - application-defined failure

Moab Workload Manager

1360 Appendices

Appendices 1361

l 8xx - client side error occurred

o 80x - general client side error

o 800 - general client side error

o 81x - request not supported

o 810 - request not supported

o 82x - application specific failure

o 820 - general application specific failure

l 9xx - miscellaneous

o 90x - general miscellaneous error

o 900 - general miscellaneous error

o 91x - general insufficient resources error

o 910 - general insufficient resources error

o 99x - general unknown error

o 999 - unknown error

Related topics

l Moab Resource Manager Language Data Format
l Managing Resources Directly with the Native Interface

W.3 Moab RM Language Socket Protocol Description
Moab RM language is formerly known as WIKI. The Moab scheduler uses a simple protocol for socket
connections to the user client and the resource manager as described below:

<SIZE><CHAR>CK=<CKSUM><WS>TS=<TIMESTAMP><WS>AUTH=<AUTH><WS>DT=<DATA>

Attribute Description

<SIZE> 8 character decimal ASCII representation of the size of the packet following '<SIZE><CHAR>'
Leading zeroes must be used to pad this value to 8 characters if necessary.

<CHAR> A single ASCII character

<CKSUM> A 16 character hexadecimal ASCII DES-based checksum calculated using the algorithm below*
and <SEED> selected and kept secret by the site admins. The checksum is performed on the
line from TS= to the end of the message including <DATA>.

<WS> a series of white space characters consisting of either tabs and/or space characters.

Moab Workload Manager

Attribute Description

<TIMESTAMP> ASCII representation of epoch time

<AUTH> Identifier of user requesting service (i.e., USERNAME)

<DT> Data to be sent

An example header follows:

00001057 CK=cdf6d7a7ad45026f TS=922401962 AUTH=sched DT=<DATA>

where <DATA> is replaced by actual message data.

Moab Workload Manager

1362 Appendices

Appendices 1363

W.3.1 Checksum Algorithm ('C' version)

Moab Workload Manager

#define MAX_CKSUM_ITERATION 4

int GetChecksum(
char *Buf,
int BufSize,
char *Checksum,
char *CSKey) /* Note: pass in secret key */
{
unsigned int crc;
unsigned int lword;
unsigned int irword;
int index;
unsigned int Seed;
Seed = (unsigned int)strtoul(CSKey,NULL,0);
crc = 0;
for (index = 0;index < BufSize;index++)
{
crc = (unsigned int)DoCRC((unsigned short)crc,Buf[index]);
}
lword = crc;
irword = Seed;
PSDES(&lword,&irword);
sprintf(Checksum,"%08x%08x",
lword,
irword);
return(SUCCESS);
}

unsigned short DoCRC(
unsigned short crc,
unsigned char onech)
{
int index;
unsigned int ans;
ans = (crc ^ onech << 8);
for (index = 0;index < 8;index++)
{
if (ans & 0x8000)
ans = (ans <<= 1) ^ 4129;
else
ans <<= 1;
}
return((unsigned short)ans);
}

int PSDES(
unsigned int *lword,
unsigned int *irword)
{
int index;
unsigned int ia;
unsigned int ib;
unsigned int iswap;
unsigned int itmph;
unsigned int itmpl;
static unsigned int c1[MAX_CKSUM_ITERATION] = {
0xcba4e531, 0x537158eb, 0x145cdc3c, 0x0d3fdeb2 };
static unsigned int c2[MAX_CKSUM_ITERATION] = {
0x12be4590, 0xab54ce58, 0x6954c7a6, 0x15a2ca46 };
itmph = 0;

Moab Workload Manager

1364 Appendices

Appendices 1365

itmpl = 0;
for (index = 0;index < MAX_CKSUM_ITERATION;index++)
{
iswap = *irword;
ia = iswap ^ c1[index];
itmpl = ia & 0xffff;
itmph = ia >> 16;
ib = (itmpl * itmpl) + ~(itmph*itmph);
ia = (ib >> 16) | ((ib & 0xffff) << 16);
*irword = (*lword) ^ ((ia ^ c2[index]) + (itmpl * itmph));
*lword = iswap;
}
return(SUCCESS);
}

W.3.2 Header Creation (PERL code)
(taken from PNNL's QBank client code)

Moab Workload Manager

##
#
subroutine wiki($COMMAND)
#
Sends command to Moab server and returns the parsed result and status
#
##
sub wiki
{
my($COMMAND,$REQUEST,$result);
my($sockaddr,$hostname);
my($name,$aliases,$proto,$port,$type,$len,$thisaddr);
my($thisport,$thatport,$response,$result);
$COMMAND = shift;
#
Establish socket connection
#
$sockaddr = 'S n a4 x8';
chop ($hostname = `hostname`);
($name,$aliases,$proto)=getprotobyname('tcp');
($name,$aliases,$type,$len,$thisaddr)=gethostbyname($hostname);
($name,$aliases,$type,$len,$thataddr)=gethostbyname($BANKHOST);
$thisport=pack($sockaddr, &AF_INET,0,$thisaddr);
$thatport=pack($sockaddr, &AF_INET,$BANKPORT,$thataddr);
socket(S, &PF_INET,&SOCK_STREAM,$proto) || die "cannot create socket\n";
bind(S,$thisport) || die "cannot bind socket\n";
connect(S,$thatport) || die "cannot connect socket\n";
select(S); $| = 1; # Turn on autoflushing
select(stdout); $| = 1; # Select STDOUT as default output
#
Build and send command
#
$REQUEST="COMMAND=$COMMAND AUTH=$AUTH";
chomp($CHECKSUM = `$QSUM "$REQUEST"`);
$REQUEST .= " CHECKSUM=$CHECKSUM";
my $command=pack "a8 a1 A*",sprintf("%08d",length($REQUEST))," ",$REQUEST;
print S "$command"; # Send Command to server
@REPLY=();
while () { push(@REPLY,$_); } # Listen for Reply
$STATUS=grep(/STATUSCODE=(\d*)/&&$1,@REPLY); # STATUSCODE stored in $STATUS
grep(s/.*RESULT=//,@REPLY); # Parse out the RESULT
return @REPLY;
}

Moab Workload Manager

1366 Appendices

Appendices 1367

W.3.3 Header Processing (PERL code)
sysread(NS,$length,8); # Read length string
sysread(NS,$delimiter,1); # Read delimiter byte
$DEBUG && print STDERR "length=[$length]\tdelimiter=[$delimiter]\n";
while($length) {
$DEBUG && print STDERR "Awaiting $length bytes -- ".`date`;
$length-=sysread(NS,$request,$length); # Read request
sleep 1;
}
%REQUEST=();
chomp($request);
foreach (@REQUEST=&shellwords($request)) # Parse arguments into array
{
($key,$value)=split(/=/,$_);
$REQUEST{$key}=$value unless defined $REQUEST{$key};
}
$request =~ s/\s+CHECKSUM=.*//; # Strip off the checksum
print STDERR "REQUEST=$request\n";
chomp($checksum=`$QSUM "$request"`);
$me=$REQUEST{AUTH};
$command=$REQUEST{COMMAND};
if (!grep($command eq $_,@VALIDCMDS))
{ $REPLY = "STATUSCODE=0 RESULT=$command is not a valid command\n";}
elsif ($checksum ne $REQUEST{CHECKSUM})
{ $REPLY = "STATUSCODE=0 RESULT=Invalid Checksum\n";}
else
{ $REPLY = do $command(@REQUEST); }
$len=sprintf("%08d",length($REPLY)-1);
$delim=' ';
$DEBUG && print STDERR "REPLY=${len}${delim}$REPLY\n";
$buf="$len"."$delim"."$REPLY";
syswrite(NS,$buf,length($buf));
close NS;

SCHEDCFG flags

Flag Description

AGGREGATENODEFEATURES AGGREGATENODEFEATURES causes Moab to aggregate features
reported by the different RMs. For example, if you have two RMs
reporting different features for the same node, Moab will add both
features together (instead of one being overwritten by the other).
In order to set features manually, you can use mnodectl -m features
(for details, seemnodectl on page 233).

ALLOWINFINITEJOBS ALLOWINFINITEJOBS allows infinite wallclock times to be accepted.
Previously, jobs with infinite job times were allowed by default.

Moab Workload Manager

Flag Description

ALLOWMULTICOMPUTE ALLOWMULTICOMPUTE tells Moab how to resolve conflicting
information from different resource managers. If
ALLOWMULTICOMPUTE is specified, Moab will use the STATE and
OS information from the resource manager that reports the node as
online.

CANCELFAILEDDEPENDENCYJOBS Automatically cancels dependency jobs that will never run because of
an unmet requirement. For example, if you ran a job with both an
afterok and afternotok job attached to it and that job was successful,
the afterok job would run, leaving the afternotok job idle in the
queue. If you set CANCELFAILEDDEPENDENCYJOBS, Moab will
cancel the job with the failed dependency and remove it from the
queue. For more information about job dependencies, see Job
Dependencies on page 529.

DISABLEPERJOBNODESETS Disables a job's ability to override the system specified node set. See
13.3 Resource Manager Extensions for more information.

DISABLEPARTIALNODERESERVATIONS Blocks partial node reservations.

ENABLESLURMMEMPERCPU By default Moab calls sbatch or srun with a --mem= request in a
SLURM environment. When you set ENABLESLURMMEMPERCPU,
Moab instead calls --mem-per-cpu=. This is to allow sites with
policies that require the other parameter to use --mem-per-cpu.

ENFORCERESERVEDNODES Without this flag Moab tries to optimize the reservation for a job
before it starts, meaning a job may start on nodes that weren't part of
its reservation. With this flag Moab tries to start jobs only on the
nodes that were reserved.

ENFORCESAMENODESET The same nodeset is not enforced across job requirements by default,
rather each requirement is scheduled separately and the nodesets
are determined on a per-req basis. To have Moab enforce the same
nodeset across all job requirements set this flag.

EXTENDEDGROUPSUPPORT Allows Moab to consider a user's secondary Linux groups when deal-
ing with reservation ACLs.

FASTGROUPLOOKUP Moab will use the system call getgrouplist to gather group inform-
ation. This can significantly improve performance on some LDAP sys-
tems.

Moab Workload Manager

1368 Appendices

Appendices 1369

Flag Description

FASTRSVSTARTUP Speeds up start time if there are existing reservations.

FASTRSVSTARTUP is incompatible with partial node
reservations.

On very large systems, if there is a reservation in the checkpoint file
on all the nodes, it would take a really long time for Moab to start up.
For every node in the reservation, Moab checks every other node.
With this flag, Moab just uses the nodelist that was checkpointed to
create the reservation. It speeds up the startup process because it
doesn't have to check every node. Where Moab would take 8 - 10
minutes to start up with an 18,000 node reservation without the flag,
Moab can start up in 2-3 minutes with the flag.
With the flag you will see one difference in checknode. A reservation
that uses all the procs on a node initially shows that all the procs are
blocked. Without the flag, and as jobs fill on the node, the blocked
resources will be configured - dedicated (ex. 5/6). With the flag, the
blocked resources will always be what the reservation is blocking and
won't change when jobs fill on the node.
Without flag:
Reservations:
brian.1x1 User -00:12:52 -> INFINITY (INFINITY)
Blocked Resources@-00:00:02 Procs: 5/6 (83.33%) Mem: 0/5000
(0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
m.2x1 Job:Running -00:00:02 -> 00:04:58 (00:05:00)
Jobs: m.2

With flag:
Reservations:
brian.1x1 User -00:00:15 -> INFINITY (INFINITY)
Blocked Resources@-00:00:02 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%) Mem: 0/5000
(0.00%)
m.1x1 Job:Running -00:00:02 -> 00:04:58 (00:05:00)
Jobs: m.1

When you set the FASTRVSSTARTUP flag, Moab will also set
the DISABLEPARTIALNODERESERVATIONS flag.

FILELOCKHA This is a High Availability feature. FILELOCKHA prevents scheduling
conflicts between multiple Moab servers.

Moab Workload Manager

Flag Description

FREECOMPLETEDJOBSUBMITSTRING Moab frees the job submit string for completed jobs, decreasing the
amount of memory needed during operation. This is useful in envir-
onments with large job scripts that can create a large memory foot-
print.

IGNOREPIDFILELOCK Moab will not fail if it cannot get a lock on the .moab.pid file. This is
useful when Moab is running on a shared filesystem where file lock-
ing can be unpredictable.

JOBSUSERSVWALLTIME Allows jobs submitted without a walltime request or default walltime
received from a class or queue but with an ADVRES:reservation
to inherit their walltime limit from the reservation instead of the
Moab default. The job walltime limit is then the remaining time of the
reservation to which the job was submitted.

NOCLASSUPDATE While running against TORQUE, Moab will not update classes when it
refreshes each iteration. Moab loads the classes at startup, but does
not refresh them until the next time it is restarted.

NORMALIZETASKDEFINITIONS Instructs Moab to normalize all tasks that it receives via an mshow -a
command. Moab normalizes the task definition to one processor and
then changes the tasks requested to the number of processors
requested. For example, when the following is received by Moab:

mshow -a -w mintasks=1@procs:4+mem:4096

It is changed to this:

mshow -a -w mintasks=4@procs:1+,mem:1024,tpn=4

OPTIMIZEDBACKFILL On large systems that utilize system-wide reservations, backfill can
take a considerable amount of time. This flag speeds up backfill
scheduling by using an alternative BETA backfill algorithm. This flag
will be the default in future versions of Moab.

Moab Workload Manager

1370 Appendices

Appendices 1371

Flag Description

PRIORITYPOLICYBLOCKING By default, a job that violates a policy is placed into the blocked
queue. Jobs with a lower priority, but that do not violate the policy,
will run. This can lead to situations in which small jobs starve out
larger, higher priority jobs.
When you set the PRIORITYPOLICYBLOCKING flag, Moab allows
the job that violates the policy to continue consuming the policy slots
while it remains blocked. With the policy slots consumed, the smaller,
lower priority jobs will not run. The higher priority job will continue
to consume the policy slots until it has consumed enough to actually
run.
Note that because the blocked job consumes policy slots, this will
inevitably lead to lower system utilization.

SHOWREQUESTEDPROCS Shows requested processors regardless of NodeAccessPolicy in
showq. When SINGLEJOB NODEACCESSPOLICY is used and the job
requests one processor, showq displays the job with one processor.

SHOWUSERJOBSONLY Causes Moab, when a non-admin user runs showq, to return only
that user's jobs. If an administrator runs showq when this flag is set,
Moab returns the jobs of all users; no restrictions are placed on
administrators.

STRICTSPOOLDIRPERMISSIONS Enforces at least a 511 permission on the Moab spool directory.

UNMIGRATEONDEFER Forces Moab to unmigrate a job in a grid if it enters a deferred state.

Moab Workload Manager

1372 Appendices

Moab Web Services overview 1373

Moab Web Services

MoabWeb Services overview
Moab Web Services (MWS) is a component of Adaptive Computing Suites that enables programmatic
interaction with Moab Workload Manager via a RESTful interface. MWS lets you create and interact with
Moab objects and properties such as jobs, nodes, virtual machines, and reservations. MWS is the
preferred method for those wishing to create custom user interfaces for Moab and is the primary
method by which Moab Viewpoint communicates with Moab.

MWS communicates with the Moab Workload Manager (Moab) server using the same wire protocol as
the Moab command-line interface. By publishing a standard interface into Moab's intelligence, MWS
significantly reduces the amount of work required to integrate Moab into your solution.

This documentation is intended for developers performing such integrations. If you are a Moab
administrator, and for conceptual information about Moab, see Moab Workload Manager overview on
page 97.

Setup

Moab Web Services setup
This section explains what you need to know in order to get MWS configured, and secured correctly. It
contains the following topics:

l Configuring Moab Web Services on page 1373

l Setting up MWS security on page 1388

l Version and build information on page 1396

Related topics

l Moab Web Services overview on page 1373
l Access control on page 1398

Configuring Moab Web Services
This section describes the location of the MWS configuration files. It also shows some examples of how to
configure logging.

To see a full reference to all configuration and logging parameters available in MWS, see
Configuration on page 1750.

This topic contains these sections:

l Home directory on page 1374

l Configuration files on page 1374

l Logging configuration using mws-config.groovy on page 1374

l LDAP Configuration using mws-config.groovy on page 1380

l PAM (pluggable authentication module) configuration using mws-config.groovy on page 1383

l OAuth configuration using mws-config.groovy on page 1385

Home directory
The MWS home directory contains configuration files, log files, and files that serve features of MWS such
as hooks and plugins. You should set the location of the MWS home directory using the MWS_HOME
property. If you do not set MWS_HOME as a Java property or as an environment variable, then MWS will
use /opt/mws as the default MWS_HOME.

Configuration files
The primary configuration file is MWS_HOME/etc/mws-config.groovy. If this file is missing or
contains errors, MWS will not start.

Configuration files can also be placed in the MWS_HOME/etc/mws.d directory. Any configuration files
here get merged with MWS_HOME/etc/mws-config.groovy. In case of conflict, the configuration in
MWS_HOME/etc/mws.d takes precedence.

If MWS_HOME/etc/log4j.properties exists, MWS will load it as well.

Logging configuration using mws-config.groovy
Shown below is an example that logs all error messages and fatal messages to
/opt/mws/log/mws.log (For information about the format of the MWS logs, see "Standard Log
Format" in the Moab Workload Manager Administrator Guide.). It also logs all stack traces to
/opt/mws/log/stacktrace.log. Note that this example is not configured to log events; for details
on logging events, see Configuring an event log on page 1375.

Moab Web Services

1374 Setup

Setup 1375

Minimal logging configuration

log4j = {
appenders {

rollingFile name: 'stacktrace',
file: '/opt/mws/log/stacktrace.log',
maxFileSize: '1GB'

rollingFile name: 'rootLog',
file: '/opt/mws/log/mws.log',
threshold: org.apache.log4j.Level.ERROR,
maxFileSize: '1GB'

}
root {

debug 'rootLog'
}

}

Alternatively, you may configure a console appender instead of a rolling file, as shown below.

Console logging configuration

log4j = {
appenders {

rollingFile name: 'stacktrace',
file: '/opt/mws/log/stacktrace.log',
maxFileSize: '1GB'

console name: 'consoleLog',
threshold: org.apache.log4j.Level.ERROR

}
root {

debug 'consoleLog'
}

}

You may configure logging by using either MWS_HOME/etc/mws-config.groovy or MWS_
HOME/etc/log4j.properties.

If you do not define any log4j configuration, MWS will write its log files to java.io.tmpdir.
For Tomcat, java.io.tmpdir is generally set to $CATALINA_BASE/temp or CATALINA_
TMPDIR.

Configuring an event log

Logging events to a flat file requires that you make a few changes to the configuration in the log4j
section of the mws-config.groovy file so that events will be logged to the events.log file, and all
other MWS logging information will be sent to the mws.log file.

Causing events.log to roll based on a time window

You can specify how often the events.log file rolls. The following example illustrates the configuration
changes you will need make to mws-config.groovy to cause the events.log file to roll based on a
time window. Note the following three examples:

Moab Web Services

l In this example, mws-config.groovy is configured so that events.log rolls daily at midnight.

Daily rolling events.log configuration in mws-config.groovy

log4j = {
def eventAppender = new org.apache.log4j.rolling.RollingFileAppender(name:

'events', layout: pattern(conversionPattern: "%m%n"))
def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy

(fileNamePattern: '/tmp/events.%d{yyyy-MM-dd}', activeFileName:
'/tmp/events.log')
rollingPolicy.activateOptions()
eventAppender.setRollingPolicy(rollingPolicy)

appenders {
appender eventAppender

rollingFile name: 'rootLog',
file: '/tmp/mws.log',
maxFileSize: '1GB'

}

root {
warn 'rootLog'

}

trace additivity:false, events:'com.ace.mws.events.EventFlatFileWriter'
}

Note the RollingFileAppender and the TimeBasedRollingPolicy lines. These lines configure MWS
to write the event log to the events.log file. Rolled log files will have a date appended to their
name in this format: "yyyy-MM-dd" (for example, events.log.2012-02-28).

l If you want the event log file to roll at the beginning of each month, change the fileNamePattern
TimeBasedRollingPolicy date format to yyyy-MM. For example:

Monthly event logs

def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy
(fileNamePattern: '/tmp/events.%d{yyyy-MM}', activeFileName: '/tmp/events.log')

l If you want the event log file to roll at the beginning of each hour, change the date format to
yyyy-MM-dd_HH:00. For example:

Hourly event logs

def rollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy
(fileNamePattern: '/tmp/events.%d{yyyy-MM-dd_HH:00}', activeFileName:
'/tmp/events.log')

Configuring events.log to roll based on a file size threshold

You can also configure the events.log file to roll when the log size exceeds a specified threshold. The
following example illustrates the configuration changes you will need to make to mws-config.groovy
to cause the events.log file to roll on a size threshold. (In this example, mws-config.groovy is
configured so that events.log rolls when its size exceeds 50 MB.)

Moab Web Services

1376 Setup

Setup 1377

mws-config.groovy configuration that rolls events.log based on file size

log4j = {
appenders {
rollingFile name: 'events',
file: '/tmp/events.log',
maxFileSize: '50MB',
maxBackupIndex:10

rollingFile name: 'rootLog',
file: '/tmp/mws.log',
maxFileSize: '1GB'

}

root {
warn 'rootLog'

}

trace additivity:false, events:'com.ace.mws.events.EventFlatFileWriter'
}

Note that maxFileSize is set to "50MB." This means that when the events.log file exceeds 50 MB, it
will roll.

The name for the rolled log will be "events.log.1". When the new events.log file exceeds 50 MB, it will roll
and be named "events.log.1", while the old "events.log.1" file will be renamed "events.log.2". This process
will continue until the optional maxBackupIndex value is met. In the example above, maxBackIndex is
set to 10. This means that MWS will delete all but the ten most recent events.log files. Using this
feature helps prevent hard drives from filling up.

Additivity

The additivity attribute of the EventFlatFileWriter logger can be either true or false. If you specify
true, events will be logged to the events.log file and the mws.log file. If you specify false, events
will be logged to the events.log file only. (All other MWS logging information will be logged to the
mws.log file, as configured by the rootLog appender.)

To log events to the mws.log file in addition to the events.log file, make the additivity:true
configuration. For example:

Logging events to both events.log and mws.log

trace additivity:true, events:'com.ace.mws.events.EventFlatFileWriter'

For more configuration options, see Apache Extras Companion for log4j.

Deleting old events

If your MongoDB server is version 2.2 or later, MongoDB will automatically delete events older than 30
days (by default). For more information, including how to change this default, see
mws.events.expireAfterSeconds in Configuration on page 1750.

If your MongoDB server is older than version 2.2, MongoDB will store event data indefinitely. However,
if disk space is limited, you may want to regularly delete old, unneeded events from MongoDB. This
section contains some examples of how you can do this.

Moab Web Services

http://logging.apache.org/log4j/companions/extras/apidocs/index.html?org/apache/log4j/rolling/RollingFileAppender.html

Let's say that you want to delete events that are older than 90 days. (There are 86,400,000 milliseconds
in a day, so in this example, 90*86400000 corresponds to 90 days in milliseconds.):

l You could run this script:

Delete events older than 90 days

$ mongo
MongoDB shell version: 2.4.8
connecting to: test
> use mws
> db.event.remove({eventTime:{$lt:new Date(new Date().getTime()-90*86400000)}})
> exit

l To create a script to perform this task:

deleteOldEvents.sh

#!/bin/bash
printf 'use mws_dev\ndb.event.remove({eventTime:{$lt:new Date(new Date().getTime
()-90*86400000)}})\nexit' | mongo

l Now say that you want to set up a cron job ($crontab -e) so that old events are automatically
deleted on a certain day of the week (for example, every Sunday at 2:00 a.m.), you would add an
entry like this:

cron table entry to delete old events

00 02 * * 0 /root/deleteOldEvents.sh

Configuring an audit trail log

Audit logging enables you to track changes to Permissions on page 1571, Roles on page 1633, and
Principals on page 1605.

Moab Web Services

1378 Setup

http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-autotasks.html

Setup 1379

mws-config.groovy configuration that enables audit logging

def auditAppender = new org.apache.log4j.rolling.RollingFileAppender(
name: 'audit',
layout: new com.ace.mws.logging.ACPatternLayout("%j\t\t\t%c{1}\t\t\t%m%n"))

def auditRollingPolicy = new org.apache.log4j.rolling.TimeBasedRollingPolicy(
fileNamePattern: '/opt/mws/log/audit.%d{yyyy-MM-dd}',
activeFileName: '/opt/mws/log/audit.log')

auditRollingPolicy.activateOptions()
auditAppender.setRollingPolicy(auditRollingPolicy)

appenders {
rollingFile name: 'stacktrace',

file: '/opt/mws/log/stacktrace.log',
maxFileSize: '100MB'

rollingFile name: 'rootLog',
file: '/opt/mws/log/mws.log',
maxFileSize: '100MB', //The maximum file size for a single log file
maxBackupIndex: 10, //Retain only the 10 most recent log files, delete older logs

to save space
layout: new com.ace.mws.logging.ACPatternLayout(), //Configures the output format

of each log entry
threshold: org.apache.log4j.Level.ERROR //Ignore any logging entries less verbose

than this threshold

appender eventAppender
appender auditAppender

}

You can customize audit logging in ways you can customize event logging. For example, you can specify
how often the audit.log file rolls. You can also configure the audit.log file to roll when the log size
exceeds a specified threshold.

Follow the same steps indicated in the previous section on Configuring an event log on page 1375
for instruction on customizing audit logging; customization processes are the same for audit
logging as for events logging.

audit.log file format

The default location to which the audit trail log is written is /opt/mws/log/audit.log. The log
format is yyyy-MM-dd HH:mm:ss resource username action data. The following table offers a
description for attributes included in the log format:

Parameter Description

resource The resource--permission, role, principal, or tenant--that changed.

username The user's user name.

action The type of change (create, update, or delete).

data Dependent on what changed.

Moab Web Services

Sample audit.log format:

Audit trail log format

2013-10-30 14:39:32,120 TENANT 'admin' updated resource named 'Engineering2' with
values:

"name": "Engineering3",
"attachedPrincipals": [{"name": "Engineering"}]

LDAP Configuration using mws-config.groovy

Using a supported LDAP directory type

To configure an MWS connection to an LDAP server, add the following parameters to mws-
config.groovy:

Throughout the following examples in this topic, you will see dc=acme,dc=com. "acme" is only
used as an example to illustrate what you would use as your own domain controller if your domain
name was "acme.com." You should replace any references to "acme" with your own organization's
domain name.

Parameter Description

ldap.server The hostname or IP address of the LDAP server.

ldap.port The port the LDAP server is listening on.

ldap.baseDNs A list of distinguished names that are the root entries for LDAP searches.

ldap.bindUser The distinguished name of the bind user.

ldap.password The password of the ldap.bindUser.

ldap.directory.type The type of LDAP directory (e.g. "Microsoft Active Directory"). This parameter can have the
following values:

l Microsoft Active Directory
l OpenLDAP Using InetOrgPerson Schema
l OpenLDAP Using NIS Schema
l OpenLDAP Using Samba Schema

Here is a sample configuration for OpenLDAP.

If you followed the Adaptive Computing tutorial [link]"Setting up OpenLDAP on CentOS 6" your
ldap.directory.type should be set to "OpenLDAP Using InetOrgPerson Schema".

Moab Web Services

1380 Setup

Setup 1381

Sample OpenLDAP configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.directory.type = "OpenLDAP Using InetOrgPerson Schema"

Here is a sample configuration for Microsoft Active Directory.

Sample Active Directory configuration

ldap.server = "192.168.0.5"
ldap.port = 389
ldap.baseDNs = ["CN=Users,DC=acme,DC=com","OU=Europe,DC=acme,DC=com"]
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.directory.type = "Microsoft Active Directory"

To see how to configure a secure connection to the LDAP server, see Securing the LDAP
connection on page 1394.

Using an unsupported LDAP directory type

If you are not using one of the supported directory types, you can explicitly configure MWS to work with
your LDAP schema by using the following parameters:

Parameter Description

ldap.user.objectClass The name of the class used for the LDAP user object. For example:
l user
l person
l inetOrgPerson
l posixAccount

ldap.group.objectClass The name of the class used for the LDAP group object. For example:
l group
l groupOfNames
l posixGroup

ldap.ou.objectClass The name of the class used for the LDAP organizational unit object. for
example:

l organizationalUnit

Moab Web Services

Parameter Description

ldap.user.membership.attribute The attribute field in a user entry to use when loading the user's groups
(optional if ldap.group.membership.attribute is defined). For example:

l memberOf

ldap.group.membership.attribute The attribute field in a group entry to use when loading the group's
members (optional if ldap.user.membership.attribute is defined). For
example:

l member
l memberUid

ldap.user.name.attribute The attribute field to use when loading the username. This field must
uniquely identify a user. For example:

l sAMAccountName
l uid

For example:

Advanced Active Directory configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = ["CN=Users,DC=acme,DC=com","OU=Europe,DC=acme,DC=com"]
ldap.bindUser = "cn=Administrator,cn=Users,DC=acme,DC=com"
ldap.password = "*****"
ldap.user.objectClass = "person"
ldap.group.objectClass = "group"
ldap.ou.objectClass = "organizationalUnit"
ldap.user.membership.attribute = "memberof"
ldap.group.membership.attribute = "member"
ldap.user.name.attribute = "sAMAccountName"

Here is a similar example for OpenLDAP. Note there is no user membership attribute in the OpenLDAP
InetOrgPerson schema and thus ldap.user.membership.attribute is set to null. This is allowable because
the ldap.group.membership.attribute is set.

Advanced OpenLDAP configuration

ldap.server = "myldaphostname"
ldap.port = 389
ldap.baseDNs = ["dc=acme,dc=com"]
ldap.bindUser = "cn=Manager,dc=acme,dc=com"
ldap.password = "*****"
ldap.user.objectClass = "inetOrgPerson"
ldap.group.objectClass = "groupOfNames"
ldap.ou.objectClass = "organizationalUnit"
ldap.user.membership.attribute = null
ldap.group.membership.attribute = "memberUid"
ldap.user.name.attribute = "uid"

Moab Web Services

1382 Setup

Setup 1383

Overriding attributes in a supported LDAP directory type

You can also override attributes in supported directory types. For example, say you are using OpenLDAP
with an NIS Schema. The group objectClass for NIS defaults to "groupOfNames," but you want to use
"groupOfUniqueNames" instead while retaining all other defaults for NIS. You can do this by setting
ldap.directory.type to "OpenLDAP Using NIS Schema" and overriding the ldap.group.objectClass
attribute as follows:

Advanced OpenLDAP configuration

ldap.directory.type = "OpenLDAP Using NIS Schema"
ldap.group.objectClass = "groupOfUniqueNames"

LDAP is not currently used to authenticate users to MWS. LDAP is only used to map principals to
roles, as explained in Principals on page 1605.

The user class in your LDAP schema must have an attribute that uniquely identifies a user (for
example: "uid" or "sAMAccountName").

PAM (pluggable authentication module) configuration using mws-
config.groovy
PAM functions as bridge to the underlying Unix authentication system. PAM treats the user as if it is
local to the Unix machine doing the authenticating and uses whatever the Unix user is authenticating
with, whether it be LDAP or NIS. PAM uses configuration files that specify the how, when, or what for
authentication, session management, and account management. Each configuration file can be different.
For example, sudo configuration file for the "sudo" command will handle authentication differently than
the login configuration file. These configuration files are dynamically read for /etc/pam.d.

Requirements for PAM

In order to use PAM with MWS, the following is required:

l The PAM application package must be installed. For example:

yum install pam

l You must have a PAM configuration file in the /etc/pam.d directory. The following is an
example of what a PAM configuration file might look like:

Moab Web Services

#%PAM-1.0
auth required pam_env.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so uid >= 1000 quiet_success
auth required pam_deny.so

account required pam_unix.so
account sufficient pam_localuser.so
account sufficient pam_succeed_if.so uid < 1000 quiet
account required pam_permit.so

password requisite pam_pwquality.so try_first_pass retry=3 authtok_type=
password sufficient pam_unix.so sha512 shadow nullok try_first_pass use_
authtok
password required pam_deny.so

session optional pam_keyinit.so revoke
session required pam_limits.so
-session optional pam_systemd.so
session [success=1 default=ignore] pam_succeed_if.so service in crond quiet
use_uid
session required pam_unix.so

l (Optional) You must have PAM modules installed for your specific needs.

The PAM application comes with default modules—for example, pam_unix.xo—that will check
username and password credentials with Unix. You may have to install others for your
distribution.

Configuring MWS to use PAM

To configure an MWS connection to PAM, add the following parameter to mws-config.groovy:

Parameter Description

pam.configuration.service The name of the PAM configuration file located in /etc/pam.d.
This parameter and specification tells MWS which PAM configuration file you want
to use.

For example:

pam.configuration.service = "system-auth"

You can configure only one authentication method in mws-config.groovy—LDAP or PAM, but
not both. If you have configured both LDAP and PAM, MWS defaults to using LDAP.

If you need multiple authentication methods, you must add them to your local PAM configuration.
See your distribution documentation for details.

Moab Web Services

1384 Setup

Setup 1385

There is a security risk when authenticating local users through your PAM configuration. This
behavior is highly discouraged and not supported by Adaptive Computing.

For more information about PAM, please see the following SLES and RedHat documentation.

OAuth configuration using mws-config.groovy
OAuth is a security framework designed to simplify authentication in web technologies. In the case of
MWS, OAuth allows trusted client applications to securely delegate authentication to MWS. Once MWS
has authenticated a user by verifying the username and password in LDAP, PAM, or NIS, MWS returns an
access token to the client. The client then presents this access token to MWS to access resources. OAuth
is very flexible and allows MWS to work in many different scenarios by use of grant types. For more
information on OAuth and grant types, please see the following OAuth documentation.

Example using 'password' grant type

Terminology

Resource Owner: The person accessing and manipulating data. For MWS, this would be the person who
logs into the client (the user).

Service Provider: The site or service where protected resources live. This can be (but is not
necessarily) also the identify provider, where usernames and passwords are stored. This is the MWS
service itself.

Client: The application that wants to access a resource. For MWS this is the user interface, potentially
including APIs and command-line tools.

Protected Resource: The data for which protection is desired. For MWS this would be Moab itself, and
interaction with Moab.

Access Token: Instead of user credentials, OAuth uses tokens to issue requests, and the tokens get
signed to indicate authorization.

Register a client in MWS

Oauth requires client registration. Its client credentials are used to validate that the client is allowed to
authenticate on behalf of a resource owner. It involves giving the client its own credentials (username
and password). MWS will first authenticate the client using a client id (username) and client secret
(password), then will authenticate the resource owner.

Add the following line to /opt/mws/etc/mws-config.groovy:

grails.plugin.springsecurity.oauthProvider.clients = [
[
clientId:"THE_CLIENT_ID",
clientSecret:"THE_CLIENT_SECRET",
authorizedGrantTypes:["password"]
]

]

Moab Web Services

http://doc.opensuse.org/products/draft/SLES/SLES-security_sd_draft/cha.pam.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Pluggable_Authentication_Modules.html
http://oauth.net/

Replace THE_CLIENT_ID with client id (username). For example: clientId:"iris". Also, replace
THE_CLIENT_SECRET with client secret (password). For example:
clientSecret:"irisclientpassword",. Note that the values for clientId and clientSecret
are case sensitive.

You can register more than one client. For example:

grails.plugin.springsecurity.oauthProvider.clients = [
[
clientId:"client_id_1",
clientSecret:"client_secret_1",
authorizedGrantTypes:["password"]
],
[
clientId:"client_id_2",
clientSecret:"client_secret_1",
authorizedGrantTypes:["password"]
]

]

Obtain an access token from MWS for a resource owner (logging in)

Before the client can access private data in MWS, the client must obtain an access token that grants
access to the API. The token endpoint url is only used to gain an access token and log in a user.

Getting an access token:

POST http://localhost:8080/mws/rest/oauth/token?api-version=3
Adding header:

"Content-Type: application/x-www-form-urlencoded"
Request body (String):
grant_type=password&client_id=THE_CLIENT_ID&client_secret=THE_CLIENT_
SECRET&username=RESOURCE_OWNER_USERNAME&password=RESOURCE_OWNER_PASSWORD

Example using curl:

curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -v -d 'grant_
type=password&client_id=iris&client_secret=irisclientpassword&username=moab-
admin&password=secret' 'http://localhost:8080/mws/oauth/token'

Produces the following response:

Moab Web Services

1386 Setup

Setup 1387

* About to connect() to localhost port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /mws/oauth/token HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0
zlib/1.2.3 libidn/1.18 libssh2/1.4.2
> Host: localhost:8080
> Accept: */*
> Content-Type: application/x-www-form-urlencoded
> Content-Length: 126
>
< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Cache-Control: no-store
< Pragma: no-cache
< Set-Cookie: JSESSIONID=6CE8F9E7C454575FABCF3D156B153CFD; Path=/mws
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Fri, 18 May 2014 18:16:42 GMT
<
* Connection #0 to host localhost left intact
* Closing connection #0
{"access_token":"b693eec0-6c93-4540-8b2f-1e170be08046","token_type":"bearer","expires_
in":43096}

Send the access token to MWS when requesting protected resource

After the client obtains an access token, it will send the access token to MWS in an HTTP authorization
header for each rest call.

The client is responsible for handling user sessions with each access token, meaning the client has
to request a new access token when a new user logs in.

Requesting an MWS resource (getting list of all nodes for example):

GET http://localhost:8080/mws/rest/nodes?api-version=3&fields=name
Adding authorization header:

"Authorization: Bearer ACCESS_TOKEN"

Example using curl:

curl -X GET -H "Authorization: Bearer b693eec0-6c93-4540-8b2f-1e170be08046" -v
'http://localhost:8080/mws/rest/nodes?api-version=3&fields=name'

Produces the following response:

Moab Web Services

* About to connect() to localhost port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /mws/rest/nodes?api-version=3&fields=name HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.14.0.0
zlib/1.2.3 libidn/1.18 libssh2/1.4.2
> Host: localhost:8080
> Accept: */*
> Authorization: Bearer b693eec0-6c93-4540-8b2f-1e170be08046
>
< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Content-Type: application/json;charset=UTF-8
< Pragma: no-cache
< Set-Cookie: JSESSIONID=6CE8F9E7C454575FABCF3D156B153CFD; Path=/mws
< Content-Type: application/json;charset=UTF-8
< Content-Language: en-US
< Transfer-Encoding: chunked
< Date: Fri, 18 May 2014 18:39:07 GMT
<
{"totalCount":3,"resultCount":3,"results":[{"name":"node1"},{"name":"node2"},
{"name":"node3"}]}

Related topics

l Setting up MWS security on page 1388
l Version and build information on page 1396

Setting up MWS security
When running MWSin production environments, security is a major concern. This section focuses on
securing the connections with MWS:

l The connection between MWS and Moab Workload Manager (see Securing the connection with
Moab on page 1389).

l The connection between MWS and MongoDB (see Securing the connection with MongoDB on
page 1389).

l The connections between clients and MWS (see Securing client connections to MWS on page
1390).

l The connection between MWS and LDAP (see Securing the LDAP connection on page 1394).

l The connection with the message queue (see Securing the connection with the message queue
on page 1395).

Related topics

l Configuring Moab Web Services on page 1373
l Version and build information on page 1396

Moab Web Services

1388 Setup

Setup 1389

Securing the connection with Moab
MWS communicates with Moab via the Moab Wire Protocol, which uses a direct connection between the
two applications. The communication over this connection uses a shared secret key, which is discussed in
the installation instructions (see "Installing Moab Web Services on page 38" in the installation
documentation). However, the communication is not encrypted and is therefore susceptible to
eavesdropping and replay attacks. For this reason, MWS is supported only when running on the same
machine as Moab. This assures that any connections between the two applications occur internally on the
server and are not exposed to external users.

Related topics

l Setting up MWS security on page 1388

Securing the connection with MongoDB
By default, the connection between MWS and MongoDB is not authenticated. To enable authentication,
follow the instructions below. For further reading, see the MongoDB tutorial "Control Access to MongoDB
Instances with Authentication."

To enable an authenticated connection between MWS and MongoDB

1. Add an administrative user to the admin database.

2. Add an MWS user to the mws database.

3. To support MWS API version 2, add an MWS user with "read-only" rights to the moab database.

Here is an example of how to create all the required users. The users in the moab database are
required only for MWS API version 2.

[root]# service mongod start
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);
> use mws;
> db.addUser("mws_user", "secret3");
> exit;

The passwords used here ("secret1," "secret2," and "secret3") are examples. Choose your own
passwords for these users.

4. Add the MWS user credentials (the ones you just created) to the mws-config.groovy file. For
example:

grails.mongo.username = "mws_user"
grails.mongo.password = "secret3"

Moab Web Services

http://docs.mongodb.org/manual/tutorial/enable-authentication/
http://docs.mongodb.org/manual/tutorial/enable-authentication/

5. Enable authentication in the MongoDB configuration file (called /etc/mongodb.conf on many
Linux distributions). In that file, look for #auth = true and uncomment it.

6. Restart MongoDB.

7. Restart Tomcat.

If authentication is enabled in MongoDB, but the MWS user was not properly created or configured, MWS
will not start. In this case, see the log file(s) for additional information.

Related topics

l Setting up MWS security on page 1388

Securing client connections to MWS
All connections to MWS, except those requesting the documentation or the main page, must be
authenticated properly. MWS uses a single-trusted-user authentication model, meaning a single user
exists that has access to all aspects of MWS. The username and password for this user are configured
with the auth.defaultUser properties in the configuration file. For more information, see
Configuration on page 1750.

When using the MWS user interface in a browser, the user will be prompted for username and password.
For information on how to authenticate requests when not using a browser, see Authentication on page
1421.

The username and password in the Basic Authentication header are encoded but not encrypted.
Therefore, it is strongly recommended that MWS be run behind a proxy (like Apache) with SSL
enabled. The instructions below provide an example of how to do this.

Encrypting client connections using Apache and SSL
This section shows how to encrypt client connections to MWS using Apache and SSL. These instructions
have been tested on CentOS™ 6.2 with the "Web Server" software set installed. The same ideas are
applicable to other operating systems, but the details might be different. As shown in the diagram below,
these instructions assume that Tomcat and Apache are running on the same server.

Moab Web Services

1390 Setup

Setup 1391

To encrypt client connections using Apache and SSL

1. Create a self-signed certificate. (If desired, see http://www.openssl.org/docs/HOWTO/certificates.txt
for more information.)

Instead of creating a self-signed certificate, you can buy a certificate from a certificate vendor.
If you do, then the vendor will provide instructions on how to configure Apache with your
certificate.

2. Do the following:

a. Run these commands:

cd /etc/pki/tls/certs
cp -p make-dummy-cert make-dummy-cert.bak
cp -p localhost.crt localhost.crt.bak

b. Edit make-dummy-cert and replace the answers() function with code similar to this:

Moab Web Services

http://www.openssl.org/docs/HOWTO/certificates.txt

answers() {
echo US
echo Utah
echo Provo
echo Adaptive Computing Enterprises, Inc.
echo Engineering
echo test1.adaptivecomputing.com
echo

}

c. Run this command:

./make-dummy-cert localhost.crt

3. Configure Apache to use the new certificate and to redirect MWS requests to Tomcat. To do so, edit
/etc/httpd/conf.d/ssl.conf. Do the following"

a. Comment out this line:

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

b. Add these lines near the end, just above </VirtualHost>:

ProxyPass /mws http://127.0.0.1:8080/mws retry=5
ProxyPassReverse /mws http://127.0.0.1:8080/mws

4. Configure Apache to use SSL for all MWS requests. Add these lines to the end of
/etc/httpd/conf/httpd.conf:

RewriteEngine On
RewriteCond %{HTTPS} off
RewriteRule (/mws.*) https://%{HTTP_HOST}%{REQUEST_URI}

5. Give Apache permission to connect to Tomcat.

setsebool -P httpd_can_network_connect 1

6. Turn on Apache.

chkconfig httpd on
service httpd start

7. Using system-config-firewall-tui, enable "Secure WWW (HTTPS)" and "WWW (HTTP)" as
trusted services.

Moab Web Services

1392 Setup

Setup 1393

Encrypting client connections using Tomcat and SSL
This section shows how to encrypt client connections to MWS using Tomcat and SSL but without
requiring the use of Apache. These instructions have been tested on CentOS™ 6.2 with Tomcat 6.0.

To encrypt client connections using Tomcat and SSL

1. First, you must generate a certificate. Do the following:

a. Use the keytool utility that is shipped with the Oracle Java Runtime Environment. As the Tomcat
user, run the following:

keytool -genkey -alias tomcat -keyalg RSA

b. Specify a password value of "changeit". This will create a .keystore file that contains the new
certificate in the user's home directory.

2. Enable the Tomcat SSL connector. Do the following:

a. Open the server.xml file, usually located in $CATALINA_HOME/conf/ ($CATALINA_HOME
represents the directory where Tomcat is installed).

Moab Web Services

b. Verify the SSL HTTP/1.1 Connector entry is enabled. To do so locate the SSL HTTP/1.1 Connector
entry and uncomment it.

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150"
scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" />

The code above enables SSL access on port 8443. The default for HTTPS is 443, but just as
Tomcat uses 8080 instead of 80 to avoid conflicts, 8443 is used instead of 443.

c. Save the server.xml file.

d. Verify that server.xml is owned by the Tomcat user.

chown -R tomcat:tomcat server.xml

e. Next modify the MWSweb.xml file. Add a security-constraint section to the $CATALINA_
HOME/webapps/mws/WEB-INF/web.xml file found in your Tomcat directory.

<web-app>
…

<security-constraint>
<web-resource-collection>

<web-resource-name>MWS Secure URLs</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
</web-app>

f. Now restart tomcat.

Related topics

l Setting up MWS security on page 1388

Securing the LDAP connection
All connections from MWS to the LDAP server should be secured with SSL or StartTLS to ensure
passwords and other sensitive information are encrypted as they pass to and from the LDAP server. If
the LDAP server does not support SSL or StartTLS, the rest of this section is irrelevant.

Determine whether the LDAP server's certificate is trusted

If the LDAP server's X.509 certificate has been signed by a trusted certificate authority such as Verisign,
Thawte, GeoTrust, and so on, Java will trust the certificate automatically and you won't need to add the
certificate to Java's keystore. Consult your IT department to determine whether the LDAP server
certificate has been signed by a trusted certificate authority. If the LDAP server certificate is signed by a
trusted certificate authority, skip ahead to Configure MWS to connect to LDAP server using SSL or

Moab Web Services

1394 Setup

Setup 1395

StartTLS on page 1395. Otherwise, follow the instructions in Trusting servers in Java on page 79 to add
the certificate to Java's keystore.

Configure MWS to connect to LDAP server using SSL or StartTLS

To configure MWS to connect to LDAP using SSL/TLS

1. Update the ldap.port and ldap.security.type parameters in /opt/mws/etc/mws-
config.groovy.

ldap.port = 636
ldap.security.type = "SSL"

To configure MWS to connect to LDAP using StartTLS

1. Update the ldap.port and ldap.security.type parameters in /opt/mws/etc/mws-
config.groovy.

ldap.port = 389
ldap.security.type = "StartTLS"

The table below lists the possible values for ldap.security.type:

ldap.security.type Default
port Notes

None 389 This is the default if no security type is configured. All data is sent in plain
text.

SSL 636 Requires server certificate. All data is encrypted.

StartTLS 389 Starts as an insecure connection and is upgraded to an SSL/TLS connection.
Requires server certificate. After upgrade all data is encrypted.

Securing the connection with the message queue
MWS supports message queue security with AES. If the moab.messageQueue.secretKey property is set,
then all messages MWS publishes on the message queue will be encrypted. Additionally, MWS can read
messages from Moab Workload Manager that are encrypted with the same key using the
MESSAGEQUEUESECRETKEY parameter. For more information, see Configuration on page 1750.

Encryption is done with AES in CBC mode where inputs are padded with PKCS5 padding. Only 128-bit (16-
byte) keys are supported. Keys should be encoded in Base64.

For example:

moab.messageQueue.secretKey = "1r6RvfqJa6voezy5wAx0hw==" //must be a Base64-encoded
128-bit key

Moab Web Services

http://en.wikipedia.org/wiki/Base64

Important: If MWS is configured to encrypt the message queue and Moab is not (or vice versa)
then the messages from Moab will be ignored. Furthermore, all attempts to access the MWS
service resource will fail.

Related topics

l Resources introduction on page 1424
l Events on page 1506
l Notifications on page 1563
l Notification conditions on page 1558
l Creating events and notifications on page 1682
l Plugin developer's guide on page 1657
l Fields: Events on page 1837
l Plugin event service on page 1733
l Handling events on page 1689
l System events on page 1422
l Securing the connection with the message queue on page 1395

Version and build information
To get detailed version information about MWS, use one of the following three methods:

l Browser on page 1396

l REST request on page 1397

l MANIFEST.MF file on page 1397

Browser
Using a browser, visit the MWS home page (for example, http://localhost:8080/mws/). At the
bottom of the page is the MWS version information. See the screenshot below:

Moab Web Services

1396 Setup

Setup 1397

REST request
Using a REST client or other HTTP client software, send a GET request to the rest/diag/about
resource. Here is an example:

curl -u username:password http://localhost:8080/mws/rest/diag/about?api-version=3

This resource is also described under Diagnostics on page 1499.

MANIFEST.MF file
If MWS fails to start, version and build information can be found in the META-INF/MANIFEST.MF file
inside the MWS WAR file. The version properties begin with Implementation. Below is an excerpt of a
MANIFEST.MF file:

Implementation-Build: 26
Implementation-Build-Date: 2012-06-19_14-18-59
Implementation-Revision: 376079a5e5f552f2fe25e6070fd2e84c646a98fd

Name: Grails Application
Implementation-Title: mws
Implementation-Version: 7.1.0-rc2
Grails-Version: 2.0.3

Related topics

l Setting up MWS security on page 1388

Moab Web Services

Access control

About access control

Access control
This section describes how to manage access control in MWS. Applications are the consumers of MWS.
They include Moab Viewpoint and other applications that need the resources provided by MWS. An
application account consists of four editable fields and resource-specific access control settings:

Table 4-1: Field information

Field Required Default
value

Value
type

Maximum
length Description

Application
Name

Yes -- String 32 The name of the application. Must
start with a letter and may contain
letters, digits, underscores, periods,
hyphens, apostrophes, and spaces.

Username Yes -- String 32 Used for authentication. Must start
with a letter and may contain let-
ters, digits, underscores, periods,
and hyphens.

Description No -- String 1000 The description of the application.

Enabled -- true Boolean -- Controls whether the application is
allowed to access MWS.

Access Con-
trol Set-
tings

Yes All Per-
missions

-- -- The permissions granted to the
application. This is controlled by
selecting specific check boxes in a
grid.

An application account also contains an auto-generated password that is visible only when creating the
account or when resetting its password. Whenever an application sends a REST request to MWS, it needs
to pass its credentials (username and password) in a Basic Authentication header. For more information,
see Authentication on page 1421.

The Application Name is a human-friendly way to identify an application account, but MWS does not use
it during authentication (or at any other time, for that matter).

The Enabled field is set to true automatically when an application account is created. To change the
value of this field, see Modifying an application account on page 1400.

Here is an example of how you might set the fields when creating an application account:

Moab Web Services

1398 Access control

Access control 1399

l Application Name: Moab Viewpoint

l Username: viewpoint

l Description: This application account grants access to Moab Viewpoint for Moab Cloud Suite.

The permissions granted to an application account may be customized while creating or modifying the
account. For more information, see Creating an application account on page 1399 and Modifying an
application account on page 1400.

Managing application accounts
Application accounts are used to grant access to MWS. Every application with an application account
must be granted at least one access control permission to a resource in MWS. To manage application
accounts, see Listing application accounts on page 1399.

Listing application accounts
To list all applications accounts, browse to the MWS home page (for example,
https://servername/mws). Log in as the admin user, click Admin and then Application Accounts.

Each column (except Password) can be sorted in ascending or descending order by clicking on the
column heading.

Creating an application account
To create an application account, go to the Application List page and click Add Application. The
"Application Name" and "Username" are required fields. For more details, see Field information on page
1398.

Access to specific resources and plugin custom web services is granted or revoked by checking or
unchecking the check boxes in the respective resources or plugin web services access control sections.
For each resource, access may be granted to a resource for each method supported by MWS, including
GET, POST, PUT, and DELETE. See the figure below for an example.

In this example, the application has access to all available methods for the Access Control Lists and
Accounts resources as well as to retrieve the Events resource through the GET method, but is denied
the permission to create new events through the POST method.

Access may also be granted to each plugin type's custom web service(s). When new plugin types or
plugin web services are added to MWS, applications must be updated with the new access control
settings. See below for an example.

Moab Web Services

In this example, the application has access to all the custom web services defined for the Test plugin
type. Note that though unsecured web services are listed, access to them cannot be denied (for more
information, see Exposing web services on page 1674).

Displaying an application account
To show information about an application account, go to the Application List page and click the desired
application name.

In addition to displaying the values for fields, grids are also displayed which represent the application's
access control permissions defined for resources and plugin custom web services. Examples of the
resources and the plugin web services access control displays are shown below:

Modifying an application account
To modify an application account, go to the Application List page, click the desired application name, and
then click Edit. See Creating an application account on page 1399 for more information on available
fields and access control settings.

Resetting an application password
To reset an application password, go to the Application List page and click the Reset link for the desired
application. Alternatively, go to the Display Application page for the desired application and click the
Reset link.

Moab Web Services

1400 Access control

API documentation 1401

Deleting an application account
To delete an application account, go to the Application List page, click the desired application name, and
then click Delete. A confirmation message is shown. If the OK button is clicked, the application account is
deleted from the system and cannot be recovered.

Related topics

l Moab Web Services overview on page 1373
l Setting up MWS security on page 1388

API documentation

About the API
Moab Web Services provide a set of RESTful resources that can be used to create, read, update, and
delete various objects in the Moab Workload Manager. This section describes how to use RESTful web
services, explains the JSON data format used for all communications with MWS, describes global URL
parameters used in MWS calls, and contains other helpuful information for using the Moab Web Services
API.

This section contains these topics:

l RESTful web services on page 1401

l Data format on page 1403

l Global URL parameters on page 1403

l Requesting specific API versions on page 1406

l Responses and return codes on page 1407

l Error messages on page 1410

l Pre and post-processing hooks on page 1412

l Authentication on page 1421

Related topics

l Resources introduction on page 1424
l About Moab Web Services plugins on page 1650

RESTful web services
In order to understand how to use MWS, it is first necessary to give a brief introduction to REST. REST
(Representational State Transfer) is a set of guidelines which utilizes the full HTTP (Hypertext Transfer

Moab Web Services

Protocol) specification along with endpoint URLs that describe resources. The HTTP methods used in
REST are comprised of the following:

Method Description

GET Query for a list or a single resource.

POST Creating a resource.

PUT Modifying a resource.

DELETE Deleting a resource.

In comparison to other architectures of web services which use a single HTTP method and service
endpoint to perform multiple types of operations (such as a POST operation to a URL), REST utilizes all
of the available HTTP methods and URLs that directly correlate to resources. For example, RESTful web
services for books in a library may expose many URL endpoints and the HTTP methods available for each
such as GET, POST, PUT, and DELETE. The list below gives the methods, URLs, and descriptions for a
sample set of services. The number 1 represents a unique identifier for books in each case.

Method URL Description

GET /books Retrieves a list of all books in the library.

POST /books Creates a new book.

GET /books/1 Retrieves a single book.

PUT /books/1 Modifies a single books.

DELETE /books/1 Deletes a single book.

Note that in the cases of the POST and PUT operations, additional information may be needed to
describe the resource to be created or the fields that should be modified.

Moab Web Services provides RESTful web services for many resources. The methods and URLs available
are documented in Resources introduction on page 1424.

Related topics

l About the API on page 1401

Moab Web Services

1402 API documentation

API documentation 1403

Data format
JSON (JavaScript Object Notation) is the data format used for all communication with MWS. This format
makes use of two main structures: collections of key/value pairs called objects and ordered lists of
values called arrays. Objects are defined by using curly braces ({}), and arrays are defined by using
square brackets ([]). A JSON object or array may contain several different types of values including
numbers, booleans (true/false), strings, objects, arrays, or the keyword 'null' representing no value. For
example, a simple JSON object might be defined as:

{
"number": 1,
"decimalNumber": 1.2,
"boolean": true,
"string": "Any string",
"dateString": "2013-05-23 17:32:02 UTC",
"object": {
"key": "value"

},
"array": [
"value1",
"value2"

],
"nullValue": null

}

Dates in MWS, for both input and output, use the pattern "yyyy-MM-dd HH:mm:ss ZZZ". For more
details on that pattern, see Joda-Time DateTimeFormat. For a list of valid time zone IDs, see Joda-Time
Available Time Zones.

For more information on JSON, see json.org.

The data format of MWS is defined as follows:

l Input for a POST or PUT must be in JSON format. Set the Content-Type header to
application/json.

l Output is in JSON format and always consists of an object with zero or more key/value pairs.

l The output may also be "pretty-printed" or formatted for human viewing by sending a URL
parameter. For more information, see Global URL parameters on page 1403.

Related topics

l About the API on page 1401

Global URL parameters

All URL parameters are optional.

Moab Web Services

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://www.json.org/

Parameter Valid values Description

api-version Integer Requests a specific API version

pretty true Controls pretty printing of output

fields Comma-separated string Includes only specified fields in output

exclude-fields Comma-separated string Excludes specified fields from output

max Integer The maximum number of items to return

offset Integer The index of the first item to return

API version (api-version)
See Requesting specific API versions on page 1406 for information on this parameter and how it should
be used.

Pretty (pretty)
By default, the output is easy for a machine to read but difficult for humans to read. The pretty
parameter formats the output so that it is easier to read.

Field selection (fields)
The fields parameter will include only the specified fields in the output. For list queries, the field
selection acts on the objects in results and not on the totalCount or results properties themselves.

The format of the fields parameter is a comma-separated list of properties that should be included, as in
id,state. Using periods, sub-objects may also be specified, and fields of these objects may be included
as well. This is done with the same syntax for both single sub-objects and lists of sub-objects, as in
id,requirements.requiredNodeCountMinimum,blockReason.message.

Example 4-1: Example for a job query

Request

GET /rest/jobs?api-
version=3&fields=name,flags,requirements.taskCount,dates.createdDate

Moab Web Services

1404 API documentation

API documentation 1405

Response

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"dates": {"createdDate": "2012-10-17 01:11:54 UTC"},
"flags": ["GLOBALQUEUE"],
"name": "Moab.24",
"requirements": [{"taskCount": 1}]

}]
}

Field exclusion (exclude-fields)
The exclude-fields parameter is the opposite of the fields parameter. All fields will be included in the
output except those that are specified. For list queries, the field exclusion acts on the objects in results
and not on the totalCount or results properties themselves.

The format of the exclude-fields parameter is a comma-separated list of properties that should be
excluded from the output, as in id,state. Using periods, sub-objects may also be specified, and fields of
these objects may be excluded as well. This is done with the same syntax for both single sub-objects and
lists of sub-objects, as in
id,requirements.requiredNodeCountMinimum,blockReason.message.

Example 4-2:

Suppose a query returns the following JSON:

Request with No Field Exclusion

GET /objects

Response

{
"id": "1",
"listOfStrings": [
"string1",
"string2"

],
"listOfObjects": [{
"item1": "value1",
"item2": "value2"

}],
"singleObject": {
"id": "obj1",
"field1": "value1"

}
}

The same query with exclude-fields would return the following output:

Moab Web Services

Request with No Field Exclusion

GET /objects?exclude-fields=id,listOfObjects.item2,singleObject.field1,listOfStrings

Response

{
"listOfObjects": [{"item1": "value1"}],
"singleObject": {"id": "obj1"}

}

Sorting (sort)
Images on page 1514 and Events on page 1506 support sorting based on MongoDB syntax by using the
sort parameter. To sort in ascending order, specify a 1 for the sorting field. To sort in descending order,
specify a -1. Objects can also be sorted on nested fields by using dot notation to separate the sub-fields,
such as field.subfield1.subfield2.

Related topics

l About the API on page 1401

Requesting specific API versions
Because of significant changes in the API introduced in release version 7.2.0, MWS possesses a versioned
API. The api-version URL parameter may be used to change the requested API version for any call to
MWS. The current valid API versions with their corresponding MWS versions are shown in the table
below:

API ver-
sion

MWS
version Documentation Additional notes

2
(deprecated)

7.2.x 7.2.x documentation on http://-
docs.adaptivecomputing.com/

As of the 8.0.1 release, API version 2 is offi-
cially deprecated and will be removed
from Moab Web Services in the next major
release.

3 8.0 Contained within this document --

latest Latest Contained within this document When the latest API version is reques-
ted, it resolves to the latest API version of
MWS, such as api-version=3 for MWS
8.0.1.

Moab Web Services

1406 API documentation

http://docs.mongodb.org/manual/core/read#Querying-Sorting
http://docs.adaptivecomputing.com/
http://docs.adaptivecomputing.com/

API documentation 1407

If no API version is specified, the request is rejected. An API version must be specified with every
call in Moab Web Services 8.0.1 and later.

Resources introduction on page 1424 and Resources reference on page 1760 contain information for
the latest API version. For documentation of previous API versions, please see the table above.

Examples
GET http://localhost:8080/mws/rest/nodes?api-version=2
// Data returned uses API version 2

GET http://localhost:8080/mws/rest/nodes?api-version=latest
// Data returned uses API version 3

Related topics

l About the API on page 1401

Responses and return codes
Various HTTP responses and return codes are generated from MWS operations. These are documented
below according to the operation that they are associated with.

l Listing and showing resources on page 1407

l Creating resources on page 1408

l Modifying resources on page 1409

l Deleting resources on page 1409

l Moab response headers on page 1410

Listing and showing resources
For any successful list or show operation (GET), a 200 OK response code is always returned. No
additional headers beyond those typical of a HTTP response are given in the response.

The body of this response consists of the results of the list or show operation. For a list operation, the
results are wrapped in metadata giving total and result counts. The result count represents the number
of resource records returned in the current request, and the total count represents the number of all
records available. These differ when querying or the max and offset parameters are used. The
following is an example of a list operation response:

Moab Web Services

JSON List Response Body

{
"resultCount":1,
"totalCount":5,
"results":[
{
"id":"Moab.1",
…

}
]

}

For a show operation, the result is given as a single object:

JSON Show Response Body

{
"id":"Moab.1",
…

}

Creating resources
A successful creation (POST) of a resource has two potential response codes:

l If the resource was created immediately, a 201 Created response code is returned.

l If the resource is still being created, a 202 Accepted response code is returned.

In either case, a Location header is added to the response with the full URL which can be used to get
more information about the newly created resource or the task associated with creating the resource (if
a 202 is returned).

Additionally, the body of the response will contain the unique identifier of the newly created resource or
the unique identifier for the task associated with creating the resource (if a 202 is returned).

For example, during creation or submission of a job, a 201 response code is returned with the following
response headers and body:

Job Creation Response Headers

HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Location: /mws/rest/jobs/Moab.21
X-Moab-Status: Success
X-Moab-Code: 000
Content-Type: application/json;charset=utf-8
Content-Length: 16
Date: Wed, 21 Dec 2011 23:04:47 GMT

Job Creation Response Body

{"id":"Moab.21"}

Moab Web Services

1408 API documentation

API documentation 1409

Modifying resources
For any successful resource modification operation (PUT), a 200 OK or 202 Accepted response code is
returned. A 200 response code signifies that the modification was immediately completed. No additional
headers are returned in this case. A 202 response code is used again to signify that the modification is
not yet complete and additional actions are taking place. In this case, a Location header is also
returned with the full URL of the resource describing the additional actions.

In the case of a 200 response code, the body of this response typically consists of an object with a single
messages property containing a list of statuses or results of the modification(s). However, a few
exceptions to this rule exist as documented in Resources introduction on page 1424. In the case of a
202 response code, the format is the same as for a 202 during a creation operation, in that the body
consists of an object with the unique identifier for the task associated with the additional action(s).

For example, when modifying a job, several messages may be returned as follows with the associated
200 response code.

Job Modification Response Headers

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: …
Date: Thu, 22 Dec 2011 16:49:43 GMT

JSON Modify Response Body

{
"messages":[
"gevent processed",
"variables successfully modified"

]
}

Deleting resources
For any successful resource deletion operation (DELETE), a 200 OK or 202 Accepted response code is
returned. A 200 response code signifies that the deletion was immediately completed. No additional
headers are returned in this case. A 202 response code is used again to signify that the deletion is not
yet complete and additional actions are taking place. In this case, a Location header is also returned
with the full URL of the resource describing the additional actions.

In the case of a 200 response code, the body of this response is empty. In the case of a 202 response
code, the format is the same as for a 202 during a creation operation, in that the body consists of an
object with the unique identifier for the task associated with the additional action(s).

For example, when deleting a job, a 200 response code is returned with an empty body as shown below.

Moab Web Services

Job Deletion Response

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Moab-Status: Success
X-Moab-Code: 000
X-Moab-Message:
Content-Type: application/json;charset=utf-8
Content-Length: 0
Date: Thu, 22 Dec 2011 16:49:43 GMT

Moab response headers
In addition to the typical HTTP headers and the Location header described above, several headers are
returned if the operations directly interact with Moab. These headers are described in the following
table:

Name Description

X-Moab-Status One of Success, Warning, or Failure. Describes the overall status of the Moab request.

X-Moab-Code A three digit code specifying the exact error encountered, used only in debugging.

X-Moab-Message An optional message returned by Moab during the request.

Related topics

l About the API on page 1401

Error messages
Below is an explanation of what error message format to expect when an HTTP status code other than
20x is returned. All error codes have a response code of 400 or greater.

l 400 Bad request on page 1411

l 401 Unauthorized on page 1411

l 403 Forbidden on page 1411

l 404 Not found on page 1411

l 405 Method Not Allowed on page 1411

l 500 Internal server error on page 1412

Moab Web Services

1410 API documentation

API documentation 1411

400 Bad request
This response code is returned when the request itself is at fault, such as when trying to modify a
resource with an empty PUT request body or when trying to create a new resource with invalid
parameters. The response body is as follows:

{
"messages":[
"Message describing error",
"Possible prompt to take action"

]
}

401 Unauthorized
This response code is returned when authentication credentials are not supplied or are invalid. The
response body is as follows:

{
"messages":[
"You must be authenticated to access this area"

]
}

403 Forbidden
This response code is returned when the credentials supplied are valid, but the permissions granted are
insufficient for the operation. This occurs when using application accounts (see Access control on page
1398) with limited access.

{
"messages":[
"You are not authorized to access this area"

]
}

404 Not found
This response code is returned when the request specifies a resource that does not exist. The response
body is as follows:

{
"messages":[
"The resource with id 'uniqueId' was not found"

]
}

405 Method Not Allowed
This response code is returned when a resource does not support the specified HTTP method as an
operation. The response body is as follows:

Moab Web Services

{
"messages":[
"The specified HTTP method is not allowed for the requested resource"

]
}

500 Internal server error
This indicates that there was an internal server error while performing the request, or that an operation
failed in an unexpected manner. These are the most serious errors returned by MWS. If additional
information is needed, the MWS log may contain further error data. The response body is as follows:

{
"messages":[
"A problem occurred while processing the request",
"A message describing the error"

]
}

Related topics

l About the API on page 1401

Pre and post-processing hooks
MWS provides functionality to intercept and modify data sent to and returned from web services for all
available resources. This is done by creating hooks in Groovy files located in a sub-directory of the MWS_
HOME directory (by default, /opt/mws/hooks).

Please see Reference on page 1416 in this topic for the full reference for available hooks and
methods available to them.

l Configuring hooks on page 1412

l Defining hooks for a resource on page 1413

l Before hooks on page 1414

l After hooks on page 1415

l Error handling on page 1415

l Defining common hooks on page 1415

l Reference on page 1416

Configuring hooks
The directory of the hooks folder may be changed by providing a value for mws.hooks.location in
the configuration file. If the directory starts with a path separator (ie /path/to/hooks), it will be
treated as an absolute path. Otherwise, it will be used relative to the location of the MWS home
directory (for more information, see Configuring Moab Web Services on page 1373).

Moab Web Services

1412 API documentation

API documentation 1413

For example, if the MWS home directory is set to /opt/mws, the hooks directory by default would be in
/opt/mws/hooks. Changing the mws.hooks.location property to myhooks would result in the
hooks directory being located at /opt/mws/myhooks. Due to the default location of the MWS home
directory, the default directory of the hooks directory is /opt/mws/hooks.

On startup, if the hooks directory does not exist, it will be created with a simple README.txt file with
instructions on how to create hooks, the objects available, and the hooks available. If the folder or file is
unable to be created, a message will be printed on the log with the full location of a README file, copied
into a temporary directory.

Defining hooks for a resource
Hooks are defined for resources by creating groovy class files in the hooks directory (MWS_HOME/hooks
by default). Each groovy file must be named by the resource URL it is associated with and end in
".groovy". The following table shows some possible hook files that may be created. Notice that the
virtual machines hook file is abbreviated as vms, just as the URL for virtual machines is /rest/vms. In
most cases, the hook file names will exactly match the URLs. However, in cases of nested URLs—such as
with "accounting/users"—the hook file name must replace slashes with periods. For example:

Resource Hook filename

Jobs jobs.groovy

Nodes nodes.groovy

Virtual Machines vms.groovy

Accounting Users accounting.users.groovy

Accounting Funds Reports Statement accounting.funds.reports.statement.groovy

Accounting Charge Rates accounting.charge-rates.groovy

url url.groovy

plugins.rm.groovy is a valid hook filename. It works for the following URL:
/rest/plugins/<pluginID or all>/rm/<query or action> (for example,
/rest/plugins/plugin1/rm/cluster-query).

A complete example of a hook file is as follows:

Moab Web Services

Complete Hook File

// Example before hook
def beforeList = {
// Perform actions here
// Return true to allow the API call to execute normally
return true

}

def beforeShow = {
// Perform actions here
// Render messages to the user with a 405 Method Not Allowed
// HTTP response code
renderMessages("Custom message here", 405)
// Return false to stop normal execution of the API call
return false

}

// Example after hook
def afterList = { o ->
if (!isSuccess()) {
// Handle error here
return false

}
// Perform actions here
return o

}

You must convert all actions or queries that are separated by dashes to a camel case. For
example, the hooks called for "cluster-query" should be beforeClusterQuery and
afterClusterQuery.

As the specific format for the hooks for before and after are different, each will be explained
separately.

Before hooks
As shown above, before hooks require no arguments. They can directly act on several properties, objects,
and methods as described in Reference on page 1416. The return value is one of the most important
aspects of a before hook. If it is false, a renderMessages, renderObject, renderList, render,
or redirect method must first be called. This signifies that the API call should be interrupted and the
render or redirect action specified within the hook is to be completed immediately.

A return value of true signifies that the API call should continue normally. Parameters, session
variables, request and response variables may all be modified within a before hook.

If no return value is explicitly given, the result of the last statement in the before hook to be
executed will be returned. This may cause unexpected behavior if the last statement resolves to
false.

For all methods available to before hooks as well as specific examples, see beforeSave on page 1416.

Moab Web Services

1414 API documentation

API documentation 1415

After hooks
After hooks are always passed one argument: the object or list that is to be rendered as JSON. This
may be modified as desired, but note that the object or list value is either a JSONArray or JSONObject.
Therefore, it may not be accessed and modified as a typical groovy Map.

Unlike before hooks, after hooks should not call the render* methods directly. This method will
automatically be called on the resulting object or list returned. The redirect and render methods
should also not be called at this point. Instead, if a custom object or list is desired to be used, the
serializeObject and serializeList methods are available to create suitable results to return.

The return value of an after hook may be one of two possibilities:

l The potentially modified object or list passed as the first argument to the hook. In this case, this
value will override the output object or list unless it is null.

l Null or false. In this case, the original, unmodified object or list will be used in the output.

The return value of the after hook, if not null or false, must be the modified object passed into
the hook or an object or list created with the serialize* methods.

For all methods available to after hooks as well as specific examples, see afterSave on page 1416.

Error handling
After hooks, unlike the before hooks, have the possibility of handling errors encountered during the
course of the request. Handling errors is as simple as adding a one-line check to the hook as shown
above or in the following code:

if (!isSuccess()) {
// Handle error
return false

}

It is recommended that each after hook contain at least these lines of code to prevent confusion on
what the input object or list represents or should look like.

The isSuccess() function is false if and only if the HTTP response code is 400 or higher, such as a 404
Not Found, 400 Bad Request, or 500 Internal Server Error and the cause of the error state was not in the
associated before hook. In other words, objects and lists rendered in the before hook with any HTTP
response code will never run the associated after hook.

When handling errors, the passed in object will always contain a messages property containing a list of
strings describing the error(s) encountered.

Defining common hooks
Sometimes it is beneficial to create hooks which are executed for all calls of a certain type, such as a
beforeList hook that is executed during the course of listing any resource. These are possible using an
all.groovy file. The format of this file is exactly the same as other hook files. The order of execution
is as follows:

Moab Web Services

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

1. Before common hook executed.

2. Before resource-specific hook executed.

3. Normal API call executed.

4. After resource-specific hook executed.

5. After common hook executed.

Reference
This page gives specific examples and reference for implementing hooks in MWS.

Available hooks

The following table lists the available hooks for each resource with their associated HTTP method and
description.

Name HTTP
method Description

beforeList GET Runs before an API call that lists resources (for example, GET /rest/jobs).

afterList GET Runs after an API call that lists resources.

beforeShow GET Runs before an API call that returns a single resource (for example, GET
/rest/jobs/job.1).

afterShow GET Runs after an API call that returns a single resource.

beforeSave POST Runs before an API call that saves a new resource (for example, POST /rest/-
jobs).

afterSave POST Runs after an API call that returns a single resource.

beforeUpdate PUT Runs before an API call that returns a single resource (for example, PUT
/rest/jobs/job.1).

afterUpdate PUT Runs after an API call that returns a single resource.

beforeDelete DELETE Runs before an API call that returns a single resource (for example, DELETE
/rest/jobs/job.1).

afterDelete DELETE Runs after an API call that returns a single resource.

Moab Web Services

1416 API documentation

API documentation 1417

If a resource does not support a certain operation, any hooks for that operation will simply be
ignored—such as beforeSave and afterSave hooks for the Node resource, where saving is not
supported.

Available properties

The following table lists the properties, objects, and methods available in all hooks. Note that although it
is possible to directly call the render* methods in the after hooks, it is not recommended.

Name Type Description

params Map Contains all URL parameters as well as the body of the request as
parsed JSON.

request HttpServletRequest Contains properties of the HTTP request.

response HttpServletResponse Contains properties of the HTTP response which can be modified dir-
ectly.

session HttpSession Contains the session parameters which can be modified directly.

flash Map Temporary storage that stores objects within the session for the next
request only.

controllerName String The name of the controller responding to the request. Only available
in before hooks.

actionName String The name of the action to be run on the controller. Only available in
before hooks.

apiVersion String The API version for the current request (for example, 1 for 7.0 and
7.1, 2 for 7.2).

The parsed JSON may be accessed in before hooks as a simple groovy Map with params
[controllerName].

In addition, several methods are available to the hooks. These are described in the following sections.

Redirect

The redirect method may be used to redirect the request to another API call or an arbitrary URL.

redirect(uri:'/rest/jobs') // uri is used for internal redirection within MWS
redirect(url:'http://adaptivecomputing.com') // url is used for external redirection
redirect(uri:'http://adaptivecomputing.com', params:[lang:'en']) // params may be used
for URL parameters

Moab Web Services

http://docs.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html

The redirect method will use the GET HTTP method for the resulting redirected request.

See the redirect method's documentation for more information.

Rendering objects, lists, or messages

There are several render* methods available to handle any case where objects or lists are desired to
be rendered directly from the hook without continuing to the API call. Three different methods may be
used depending on the desired output object type:

Render object

// Object that should be rendered as JSON
def objectToRender = …
// HTTP response code (bad request)
def responseCode = 400
// Render a simple object
renderObject(objectToRender)
// Render a simple object with a custom response code
renderObject(objectToRender, responseCode)

Render list

// List that should be rendered as JSON
def listToRender = …
// If the totalCount property differs from resultCount, use this value instead
def totalCount = …
// HTTP response code (bad request)
def responseCode = 400
// Render a simple list
// Dynamically adds "resultCount" and "totalCount" properties based on the size of
the input list
renderList(listToRender)
// Render a simple list with a custom "totalCount"
renderList(listToRender, totalCount)
// Render a simple list without changing the "totalCount" but with a custom response
code
renderList(listToRender, null, responseCode)
// Render a simple list with a custom "totalCount" and response code
renderList(listToRender, totalCount, responseCode)

Render message(s)

// Messages
def messageToRender = "Single message"
def messagesListToRender = ["Message 1", "Message 2"]
// HTTP response code (bad request)
def responseCode = 400
// Render messages as an object with a property of "messages" containing a list of the
messages passed in
renderMessages(messageToRender)
renderMessages(messageToRender, responseCode)
// Supports either a single String or list of Strings
renderMessages(messagesListToRender)
renderMessages(messagesListToRender, responseCode)

Moab Web Services

1418 API documentation

http://grails.org/doc/latest/ref/Controllers/redirect.html

API documentation 1419

It is not recommended to call any of these methods from an after hook.

Render

Less commonly used, the render method is also available directly. This may be used to render text
directly, change the content-type of the output, and many other functions. See the render method's
documentation for more information.

It is not recommended to call this method from an after hook.

Serialize objects

The serializeObject and serializeList methods may be used to convert a custom object or list
respectively into a format usable for returning in the after hooks. Simply pass in the object or list and
a serialized version will be returned from the method.

def afterShow = {
def objectToRender = …
def serializedObject = serializeObject(objectToRender)
return serializedObject

}

def afterShow = {
def listToRender = [...]
def serializedList = serializeList(listToRender)
return serializedList

}

Error handling

Error handling is only available in after hooks by using the following check:

if (!isSuccess()) {
// Handle error
return … // False or modified object/list to render

}

Usage examples

Override an API call

The following hook would serve to override an entire API call, the list call in this case, and return a
messages list containing a single element of "Action is not supported" and a HTTP response code of 405
(Method Not Allowed):

def beforeList = {
renderMessages("Action is not supported", 405)
return false

}

To be even more specific and disallow the deletion of virtual machines, the following may be used as the
vms.groovy file:

Moab Web Services

http://grails.org/doc/latest/ref/Controllers/render.html

def beforeDelete = {
renderMessages("Virtual Machine deletion is not allowed", 405)
return false

}

Add an additional property during job creation

To add an additional property to a job definition during creation, create a beforeSave hook in the
jobs.groovy file as follows:

def beforeSave = {
// params[controllerName] is equivalent to params["job"] or params.job
params[controllerName].user = "myuser"

}

This would cause the created job to have a user of myuser.

Redirect based on URL parameter

To redirect an API call if a certain URL parameter exists, create a beforeSave hook in the
jobs.groovy file as follows:

def beforeSave = {
if (params.external) {

redirect(url:'http://example.com/create-job')
return false; // Stop API call

}
}

This would cause an API call of PUT /rest/jobs?external=1 to redirect to GET
http://example.com/create-job.

Remove a property from getting a single job

To remove a property from the output of getting a single job, create an afterShow hook in the
jobs.groovy file as follows:

def afterShow = { o ->
o.discard("group")
return o

}

This will cause the resulting JSON to be missing the group property of the job resource. Note again that
these calls must use the JSONArray and JSONObject classes as mentioned in After hooks on page 1415.

Filter list items

To filter the items in a list nodes request based on user provided query parameter in the URL, use the
following in the nodes.groovy file. A sample request that would activate the filter is
http://localhost:8080/mws/rest/nodes?api-version=3&filter-power=On.

Moab Web Services

1420 API documentation

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html

API documentation 1421

def afterList = { o ->
// Do not filter if the user did not ask for it
if (!params['filter-power'])

return o
// o = {resultCount: x, totalCount: x, results:[...]}

// Using a built-in groovy method findAll to return all
// list items that return true from the block
def results = o.results.findAll { node ->

// Includes the node only if the power equals the user input
return params['filter-power'].equalsIgnoreCase(node.power)

}

// Sets the results on the return object and updates the counts
o.element("results", results)
o.element("resultCount", results.size())
return o

}

To filter the items in a list nodes request based on values within the list itself, such as variable values,
use the following in the nodes.groovy file.

def afterList = { o ->
// o = {resultCount: x, totalCount: x, results:[...]}
// Using a built-in groovy method findAll to return all
// list items that return true from the block
def results = o.results.findAll { node ->

// Includes the node only if the variable "included" is set to "true"
return node.variables?.included=="true"

}

// Sets the results on the return object and updates the counts
o.element("results", results)
o.element("resultCount", results.size())
return o

}

Related topics

l About the API on page 1401

Authentication
MWS uses Basic Authentication for all REST API requests. This means that a username and password
must be provided for each call to resources. There are two types of accounts that can be granted access:
Users and Applications.

l For instructions on how to set the credentials for the default User account, see Setting up MWS
security on page 1388.

l For instructions on how to manage Application accounts, see Access control on page 1398.

To use Basic Authentication, each client request must contain a header that looks like this:

Authorization: Basic YWRhcHRpdmU6YzNVU3R1bkU=

Moab Web Services

The string after the word Basic is the base64 encoding of username : password. In the example above,
YWRhcHRpdmU6YzNVU3R1bkU= is the base64 encoding of adaptive:c3UStunE. For more details, see
section 2 of RFC 2617.

The username and password in the Basic Authentication header are encoded but not encrypted.
Therefore, it is strongly recommended that MWS be run behind a proxy (like Apache) with SSL
enabled. For more information, see Setting up MWS security on page 1388.

Related topics

l About the API on page 1401

System events
The broad category of system events may be broken down into two subcategories: events and
notification conditions.

l Events on page 1422

l Notification conditions on page 1423

Events
Events on page 1506 are created by many components in the system, but most events originate from
Moab Workload Manager and Moab Web Services. Events can be created via the MWS interface or by
being placed on the message queue. The ZeroMQ™ message queue libraries were introduced in Moab and
MWS 7.5.0. The message queue is critical to service lifecycle functionality (see "Service lifecycle" in the
Moab Cloud Suite Installation Guide).

In a typical system, Moab will communicate events to MWS via a "private" message queue, and then
MWS will replicate the events on the "public" message queue, or the message queue that is available to
subscribers with the correct secret keys. In some cases, such as those related to the MWS service
lifecycle, MWS uses events to determine activities or capabilities that are available.

A typical message on the message queue may look like the following (sent with a topic of
system.moab):

Moab Web Services

1422 API documentation

http://www.ietf.org/rfc/rfc2617.txt

API documentation 1423

Sample message on message queue

{
"body" : {

"associatedObjects" : [
{

"id" : "Moab",
"type" : "scheduler"

}
],
"code" : 16777619,
"eventDate" : "2014-02-28T10:57:21.000-0700",
"message" : "A scheduler iteration is ending.",
"origin" : "MSysMainLoop.c, MSysMainLoop, line 959"

},
"messageId" : "843269550",
"messageType" : "event",
"senderId" : "mwm@mwm-server",
"sentDate" : "2014-02-28T10:57:21.000-0700",
"ttl" : 3000

}

Notification conditions
Notification conditions on page 1558 are related to an event, but differ in three distinct areas:

1. Notification conditions are a persistent condition of the system or a component rather than a single
occurrence.

l They are ongoing rather than reoccurring, which is why they are generated from
NotificationConditions.

l They may be observed many times, but the condition is always the same.

l A good test for this is if something "is" wrong rather than something "went" wrong.

2. Notification conditions can be acted on to result in a resolved state, mean the administrator or user
can and must take actions to "fix" the condition or problem.

3. Notification conditions contain state information based on administrator or user input, meaning that
they contain information about the condition (similar to events), but also contain the "status" of the
administrator's view of the notification, whether it is currently open, dismissed, or ignored.

In general, questions may be asked to ascertain whether an event or a notification condition is the right
fit for an occurrence. These questions, along with some sample situations, are provided below.

l Is the occurrence the root cause of a potentially ongoing condition?

o A VM migration failed because the VM's state was unknown. The root cause was that the
state was unknown, not that the VM migration failed. Therefore, VM migration failed would
be an event, while the unknown state would be a notification condition.

o A VM service provision fails because there are no hypervisors that satisfy the
requirements. This would be an event. Note that there may be a notification related to this
failure, such as a service template requires a feature that does not exist on any

Moab Web Services

hypervisors in the system, but this would be distinctly detected and managed from the
provision failure event.

o A request to MWS failed because the connection between Moab and MongoDB was
misconfigured. The failed request may be represented as an event, but a notification
condition should exists that the connection between Moab and MongoDB was down.

l Can an administrator or user affect the outcome of the occurrence?

o The outcome of a VM migration failing is in the past and cannot be changed by the
administrator. However, the outcome of a future VM migration may be changed when the
administrator resolves the root problem (such as VM state is unknown).

Related topics

l Events on page 1506
l Notifications on page 1563
l Notification conditions on page 1558
l Securing the connection with the message queue on page 1395
l Creating events and notifications on page 1682 (for plugin development only)
l Plugin event service on page 1733

Resources

Resources introduction
The sections in this chapter show the MWS resources and the HTTP methods defined on them. The prefix
for these resources depends on how the mws.war file is deployed. A typical prefix would be
http://localhost:8080/mws. Using this example, one absolute resource URI would be
http://localhost:8080/mws/rest/jobs.

This section only contains documentation for the latest API version. Please see the table in
Requesting specific API versions on page 1406 for links to documentation for previous versions.

This chapter contains these sections:

l Access control lists (ACLs) on page 1426

l Accounting Accounts on page 1429

l Accounting Allocations on page 1433

l Accounting Charge rates on page 1437

l Accounting Funds on page 1441

l Accounting Liens on page 1451

l Accounting Organizations on page 1455

Moab Web Services

1424 Resources

Resources 1425

l Accounting Quotes on page 1458

l Accounting Transactions on page 1461

l Accounting Usage records on page 1466

l Accounting Users on page 1480

l Credentials on page 1484

l Diagnostics on page 1499

l Distinct on page 1504

l Events on page 1506

l Images on page 1514

l Job arrays on page 1523

l Jobs on page 1525

l Job templates on page 1547

l Metric types on page 1549

l Nodes on page 1551

l Notifications on page 1563

l Notification conditions on page 1558

l Permissions on page 1571

l Plugins on page 1577

l Plugin types on page 1585

l Policies on page 1589

l Principals on page 1605

l Priority on page 1611

l Reports on page 1614

l Reservations on page 1624

l Resource types on page 1632

l Roles on page 1633

l Standing reservations on page 1639

Related topics

l Resources reference on page 1760

Moab Web Services

Access control lists (ACLs)
This topic describes behavior of the ACL Rules (Access Control List Rules) object in Moab Web Services.
It contains the URLs, request bodies, and responses delivered to and from MWS.

The Fields: Access Control Lists (ACLs) reference contains the type and description of all fields in
the ACL Rules object. It also contains details regarding which fields are valid during PUT and
POST actions.

Supported methods

ACLs are not directly manipulated through a single URL, but with sub-URLs of the other objects
such as Virtual Containers and Reservations.

Resource GET PUT POST DELETE

/rest/reservations/<rsvId>/acl-rules/<aclId> -- Create or update ACL -- Delete ACL

/rest/vcs/<vcId>/acl-rules/<aclId> -- Create or update ACL -- Delete ACL

This topic contains these sections:

l Getting ACLs on page 1426

l Creating or updating ACLs on page 1427

o Create or update ACL on page 1427

l Deleting ACLs on page 1428

o Delete ACL on page 1428

Getting ACLs
Although ACL Rules cannot be retrieved directly using the GET method on any of the acl-rules
resources, ACL Rules are attached to supported objects when querying for them. Each supported object
contains a field named aclRules, which is a collection of the ACL Rules defined on that object.

Supported objects

The following is a list of objects that will return ACL Rules when queried:

l Reservations on page 1624

l Standing reservations on page 1639

Moab Web Services

1426 Resources

Resources 1427

Creating or updating ACLs
The HTTP PUT method is used to create or update ACL Rules. The request body can contain one or more
ACL Rules. If an ACL Rule with the same type and value exists, then it will be overwritten.

Quick reference

PUT http://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-version=3

Create or update ACL

URLs and parameters

PUT http://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-version=3

Parameter Required Type Valid values Description

objectId Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows all the fields that are available for the PUT method, along with some
sample values.

JSON Request Body

{"aclRules": [{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "USER",
"value": "ted"

}]}

Sample response

This message may not match the message returned from Moab exactly, but is given as an example
of the structure of the response.

JSON Request Body

{"messages":["Reservation 'rsv1' successfully modified"]}

Samples

Create or update multiple ACLs on a single object:

Moab Web Services

CPUT http://localhost:8080/mws/rest/reservations/system.21/acl-rules?api-version=3

{"aclRules": [
{
"affinity": "POSITIVE",
"comparator": "LESS_THAN_OR_EQUAL",
"type": "DURATION",
"value": "3600"

},
{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "USER",
"value": "ted"

}
]}

Restrictions

l ACL Rules cannot be added to or updated on Standing Reservations.

Deleting ACLs
The HTTP DELETE method is used to remove ACL Rules.

Quick reference

ACL Rules cannot be removed from Standing Reservations.

DELETE http://localhost:8080/mws/rest/reservations/<rsvId>/acl-rules?api-
version=3/<aclId>

Delete ACL

URLs and parameters

DELETE http://localhost:8080/mws/rest/reservations/<objectId>/acl-rules?api-
version=3/<aclId>

Parameter Required Type Valid val-
ues Description

objectId Yes String -- The unique identifier of the object from which to
remove the ACL Rule.

aclId Yes String -- A string representing the ACL Rule, with the format
type:value.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1428 Resources

Resources 1429

Sample response

This message may not match the message returned from Moab exactly, but is given as an example
of the structure of the response.

JSON Response

{"messages":["Successfully modified reservation 'rsv1'"]}

Restrictions

l ACL Rules cannot be removed from Standing Reservations.

Related topics

l Fields: Access Control Lists (ACLs) on page 1761
l Resources introduction on page 1424

Accounting

Accounting Accounts
This section describes the services available through Moab Web Services for interacting with the
Account object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The Fields: Accounts reference contains the type and description of the default fields for the
Accounts object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/accounts Get all accounts -- -- --

/rest/accounting/accounts/<id> Get single account -- -- --

This topic contains these sections:

l Getting accounts on page 1430

o Get all accounts on page 1430

o Get single account on page 1432

Moab Web Services

Getting accounts
The HTTP GET method is used to retrieve Accounts information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/accounts?api-version=3
GET http://localhost:8080/mws/rest/accounting/accounts/<id>?api-version=3

Get all accounts

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/accounts?api-version=3&proxy-user=<user>
[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-
all=(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action
as defined MAM
user.

proxy-user=amy

query No JSON -- Results are
restricted to
those having
the specified
field values.

The
query

parameter
does not
support
the full
Mongo
query
syntax.
Only
querying
for a
simple,
non-
nested
JSON
object is
allowed.

query={"organ-
ization":"sciences"}

Moab Web Services

1430 Resources

Resources 1431

Parameter Required Type Valid
values Description Example

fields No String -- Comma-sep-
arated list of
field names to
display.

fields=id,organization

sort No JSON -- Sort the results.
Use 1 for
ascending and
-1 for des-
cending. Should
be used in con-
junction with
the fields para-
meter.

sort={"organization":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/accounts?api-version=3&proxy-
user=amy&fields=id,organization&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"organization": "sciences",
"id": "biology"

},
{

"organization": "sciences",
"id": "chemistry"

}
]

}

Moab Web Services

Get single account

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/accounts/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier
of the object.

--

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

fields No String -- Comma-separated list
of field names to dis-
play.

fields=id,organization

show-all No Boolean true
or
false

true shows all fields
including metadata
and hidden fields.
Default is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1432 Resources

Resources 1433

Sample response

GET http://localhost:8080/mws/rest/accounting/accounts/chemistry?api-version=3&proxy-
user=amy&pretty=true

{
"id": "chemistry",
"active": true,
"organization": "",
"description": "Chemistry Dept",
"users": [

{
"id": "amy",
"active": true,
"admin": false

},
{

"id": "bob",
"active": true,
"admin": false

},
{

"id": "dave",
"active": true,
"admin": false

}
]

}

Related topics

l Fields: Accounts on page 1770
l Resources introduction on page 1424

Accounting Allocations
This section describes the services available through Moab Web Services for interacting with the
Allocation object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The Fields: Allocations reference contains the type and description of the default fields for the
Allocation object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/allocations Get all allocations -- -- --

/rest/accounting/allocations/<id> Get single allocation -- -- --

This topic contains these sections:

Moab Web Services

l Getting allocations on page 1434

o Get all allocations on page 1434

o Get single allocation on page 1436

Getting allocations
The HTTP GET method is used to retrieve Allocation information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/allocations?api-version=3
GET http://localhost:8080/mws/rest/accounting/allocations/<id>?api-version=3

Get all allocations

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/allocations?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

query No JSON -- Results are restricted to
those having the
specified field values.

The query
parameter does
not support the
full Mongo query
syntax. Only
querying for a
simple, non-
nested JSON
object is allowed.

query={"active":true}

fields No String -- Comma-separated list of
field names to display.

fields=id,fund,amount

Moab Web Services

1434 Resources

Resources 1435

Parameter Required Type Valid
values Description Example

sort No JSON -- Sort the results. Use 1
for ascending and -1
for descending. Should
be used in conjunction
with the fields para-
meter.

sort={"fund":1}

show-all No Boolean true
or
false

true shows all fields
including metadata and
hidden fields. Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/accounting/allocations?api-version=3&proxy-
user=amy&pretty=true

{
"totalCount": 5,
"resultCount": 5,
"results": [

{
"id": 1,
"fund": 1,
"startTime": "2013-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": true,
"description": ""

},
{

"id": 3,
"fund": 3,
"startTime": "2013-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 0,
"creditLimit": 20000000,
"initialDeposit": 0,
"allocated": 0,
"active": true,
"description": ""

},
{

"id": 2,
"fund": 2,
"startTime": "2013-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 30000000,
"creditLimit": 0,
"initialDeposit": 30000000,
"allocated": 30000000,
"active": true,
"description": ""

}
]

}

Get single allocation

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/allocations/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Moab Web Services

1436 Resources

Resources 1437

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier of
the object.

--

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

fields No String -- Comma-separated list of
field names to display.

fields=id,fund,amount

show-all No Boolean true
or
false

true shows all fields
including metadata and
hidden fields. Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/allocations/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"fund": 1,
"startTime": "2013-07-12 22:16:33 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": true,

}

Related topics

l Fields: Allocations on page 1773
l Resources introduction on page 1424

Accounting Charge rates
This section describes the services available through Moab Web Services for interacting with the
ChargeRate object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The Fields: Charge Rates reference contains the type and description of the default fields for the
ChargeRates object.

Moab Web Services

Resource GET PUT POST DELETE

/rest/accounting/charge-rates Get all charge rates -- -- --

/rest/accounting/charge-rates/<name>/<value> Get single charge rate -- -- --

/rest/accounting/charge-rates/<name> Get single charge rate -- -- --

This topic contains these sections:

l Getting charge rates on page 1438

o Get all charge rates on page 1438

o Get single charge rate on page 1440

Getting charge rates
The HTTP GET method is used to retrieve ChargeRate information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/charge-rates?api-version=3
GET http://localhost:8080/mws/rest/accounting/charge-rates?api-version=3/<name>
[/<value>]

Get all charge rates

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/charge-rates?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action
as defined MAM
user.

proxy-user=amy

Moab Web Services

1438 Resources

Resources 1439

Parameter Required Type Valid
values Description Example

query No JSON -- Results are
restricted to
those having
the specified
field values.

The
query

parameter
does not
support
the full
Mongo
query
syntax.
Only
querying
for a
simple,
non-
nested
JSON
object is
allowed.

query={"name":"Qu-
alityOfService"}

fields No String -- Comma-sep-
arated list of
field names to
display.

fields=id,organization

sort No JSON -- Sort the results.
Use 1 for
ascending and
-1 for des-
cending. Should
be used in con-
junction with
the fields para-
meter.

sort={"organization":1}

Moab Web Services

Parameter Required Type Valid
values Description Example

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/charge-rates?api-version=3&proxy-
user=moab&pretty=true

{
"totalCount": 4,
"resultCount": 4,
"results": [

{
"name": "Processors",
"value": "",
"amount": "1/s",
"description": "1 credit per processor-second"

},
{

"name": "QualityOfService",
"value": "high",
"amount": "*2",
"description": "Charge double for high QOS"

},
{

"name": "QualityOfService",
"value": "low",
"amount": "*.5",
"description": "Charge half for low QOS"

},
{

"name": "QualityOfService",
"value": "",
"amount": "*1",
"description": "No extra charge for \"normal\" QOSes"

}
]

}

Get single charge rate

A regular charge rate is uniquely specified by both its name and its value. A default charge rate
has a null value and is uniquely specified by only its name.

Moab Web Services

1440 Resources

Resources 1441

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/charge-rates?api-version=3/<name>
[/<value>]?proxy-user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

name Yes String -- The name of the
charge rate.

--

value No String -- The value of the
charge rate.

--

fields No String -- Comma-separated
list of field names to
display.

fields=name,value,amount

show-all No Boolean true
or
false

true shows all
fields including
metadata and hid-
den fields. Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/charge-rates/QualityOfService/high?api-
version=3&proxy-user=moab&pretty=true

{
"name": "QualityOfService",
"value": "high",
"amount": "*2",
"description": "Charge double for high QOS"

}

Related topics

l Fields: Charge Rates on page 1777
l Resources introduction on page 1424

Accounting Funds
This section describes the services available through Moab Web Services for interacting with the Fund
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses delivered to and
from MWS as an intermediary for MAM.

Moab Web Services

The Fields: Funds, Fields: Fund Balances, Fields: Fund Statements, and Fields: Fund Statement
Summary reference sections contain the type and description of the default fields in the Fund
object as well as related objects and reports given in the URLs below.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/funds Get all funds -- -- --

/rest/accounting/funds/<id> Get single fund -- -- --

/rest/accounting/funds/balances Get all fund bal-
ances

-- -- --

/rest/accounting/funds/reports/statement Get fund state-
ment

-- -- --

/rest/accounting/funds/reports/statement/summary Get fund state-
ment summary

-- -- --

This topic contains these sections:

l Getting funds on page 1442

o Get all funds on page 1443

o Get single fund on page 1445

o Get all fund balances on page 1447

o Get fund statement on page 1449

o Get fund statement summary on page 1450

Getting funds
The HTTP GET method is used to retrieve Fund information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/funds?api-version=3
GET http://localhost:8080/mws/rest/accounting/funds/<id>?api-version=3
GET http://localhost:8080/mws/rest/accounting/funds/balances?api-version=3
GET http://localhost:8080/mws/rest/accounting/funds/reports/statement?api-version=3
GET http://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3

Moab Web Services

1442 Resources

Resources 1443

Get all funds

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/funds?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=
(true|false)]

Para-
meter

Require-
d Type Descrip-

tion Example

proxy-
user

Yes String Perform
action as
defined MAM
user.

proxy-user=amy

active No Boolea-
n

Lists only act-
ive or non-act-
ive allocations
of the fund.
The fund
amount
becomes the
sum of the
act-
ive/inactive
allocations.

active=true

filter No JSON Query funds
based on
defined MAM
filter.

filter={"account":"chemistry"}

filter-type No String Query funds
based on
defined MAM
filter type.

filter-type=NonExclusive

Moab Web Services

Para-
meter

Require-
d Type Descrip-

tion Example

query No JSON Results are
restricted to
those having
the specified
field values.

The
query

parameter
does
not

support
the
full
Mongo
query

syntax.
Only

querying
for a

simple,
non-
nested
JSON
object
is

allowed.

query={"pri-
ority":"2","allocation.active":"false"}

fields No String Comma-sep-
arated list of
field names
to display.

fields=id,name,amount

sort No JSON Sort the res-
ults. Use 1 for
ascending
and -1 for
descending.
Should be
used in con-
junction with
the fields
parameter.

sort={"id":1}

Moab Web Services

1444 Resources

Resources 1445

Para-
meter

Require-
d Type Descrip-

tion Example

show-all No Boolea-
n
(true
or
false
)

true shows
all fields
including
metadata and
hidden fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/funds?api-version=3&proxy-
user=amy&fields=id,name,amount&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"id": 1,
"name": "biology",
"amount": 50000000

},
{

"id": 2,
"name": "chemistry",
"amount": 99727

}
]

}

Get single fund

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/funds/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Description Example

id Yes String The unique identifier of the object --

proxy-user Yes String Perform action as defined MAM
user.

proxy-user=amy

Moab Web Services

Parameter Required Type Description Example

active No Boolean Lists only active or non-active alloc-
ations of the fund. The fund
amount becomes the sum of the act-
ive/inactive allocations.

active=true

fields No String Comma-separated list of field
names to display.

fields=id,name,amount

show-all No Boolean
(true
or
false)

true shows all fields including
metadata and hidden fields.
Default is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/funds/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"name": "biology",
"priority": 0,
"defaultDeposit": 50000000,
"description": "",
"amount": 50000000,
"allocated": 50000000,
"initialDeposit": 50000000,
"creditLimit": 0,
"allocations": [

{
"id": 1,
"startTime": "2013-08-21 16:57:53 UTC",
"endTime": "infinity",
"amount": 50000000,
"creditLimit": 0,
"initialDeposit": 50000000,
"allocated": 50000000,
"active": false,
"description": ""

}
],
"fundConstraints": [{
"id": 1,
"name": "Account",
"value": "biology"

}]
}

Moab Web Services

1446 Resources

Resources 1447

Get all fund balances

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/funds/balances?api-version=3&proxy-
user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]

Parameter Required Type Description Example

proxy-user Yes String Perform action as defined MAM
user.

proxy-user=amy

filter No JSON Query funds based on defined
MAM filter.

filter={"accoun-
t":"chemistry"}

filter-type No String Query funds based on defined
MAM filter type.

filter-type-
e=NonExclusive

See Global URL parameters on page 1403 for available URL parameters.

Sample response

The fund balances resource is an aggregation of fund data. For more information, see the Fields: Fund
Balances on page 1779 reference section.

Moab Web Services

GET http://localhost:8080/mws/rest/accounting/funds/balances?api-version=3&proxy-
user=amy&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [
{
"id": 2,
"name": 1204,
"priority": 0,
"description": "R&D for Manufacturing",
"creationTime": "2012-02-02 09:34:42 UTC",
"amount": 9060000,
"deposited": 9060000,
"creditLimit": 0,
"reserved": 0,
"allocations": [
{
"id": 2,
"amount": 9060000,
"creditLimit": 0,
"deposited": 9060000

}
],
"fundConstraints": [
{
"id": 2,
"name": "CostCenter",
"value": 1204

}
],
"balance": 9060000,
"available": 9060000,
"allocated": 9060000,
"used": 0,
"percentRemaining": 100,
"percentUsed": 0

},
{
"id": 5,
"name": "",
"priority": 0,
"description": "",
"creationTime": "2012-04-03 09:25:47 UTC",
"amount": 901290219001,
"deposited": 901290219021,
"creditLimit": 30,
"reserved": 84018308897.68,
"allocations": [
{
"id": 6,
"amount": 901290219001,
"creditLimit": 30,
"deposited": 901290219021

}
],
"fundConstraints": [],
"balance": 817271910103.32,
"available": 817271910133.32,
"allocated": 901290219051,

Moab Web Services

1448 Resources

Resources 1449

"used": 20,
"percentRemaining": 100,
"percentUsed": 0

}
]

}

Get fund statement

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/funds/reports/statement?api-
version=3&proxy-user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]
[&start-time=<date_string>][&end-time=<date_string>][&context=<context>]

Parameter Required Type Description Example

proxy-user Yes String Perform action as defined MAM
user.

proxy-user=amy

filter No JSON Query funds based on defined
MAM filter.

filter={"accoun-
t":"chemistry"}

filter-type No String Query funds based on defined
MAM filter type.

filter-type-
e=NonExclusive

start-time No Date, -
infinity,
or now

Filter allocations and transaction
after a start time.

start-time=2012-04-03
15:24:39 UTC

end-time No Date, -
infinity,
or now

Filter allocations and transactions
before an end time.

end-time=2012-04-03
15:24:39 UTC

context No hpc or
cloud

The context to use in Moab
Accounting Manager.

The context parameter
overrides the default
context set for MAM using
the mam.context
configuration parameter.
For more information
about this parameter, see
Configuration on page
1750.

context=hpc

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

The fund statement report provides a snapshot of the current funds. For more information, see Fields:
Fund Statements on page 1797.

GET http://localhost:8080/mws/rest/accounting/funds/reports/statement?api-
version=3&proxy-user=amy&fields=startBalance,endBalance&pretty=true

{
"startBalance":1234.01,
"endBalance":1000

}

Get fund statement summary

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3&proxy-user=<user>[&filter=<filter_options>][&filter-type=<filter_type>]
[&start-time=<date_string>][&end-time=<date_string>]

Parameter Required Type Description Example

proxy-user Yes String Perform action as defined
MAM user.

proxy-user=amy

filter No JSON Query funds based on
defined MAM filter.

filter={"accoun-
t":"chemistry"}

filter-type No String Query funds based on
defined MAM filter type.

filter-type-
e=NonExclusive

start-time No Date, -infin-
ity, or now

Filter allocations and trans-
action after a start time.

start-time=2012-04-03
15:24:39 UTC

end-time No Date, -infin-
ity, or now

Filter allocations and trans-
actions before an end time.

end-time=2012-04-03
15:24:39 UTC

See Global URL parameters on page 1403 for available URL parameters.

Sample response

The fund statement summary is slightly different from the typical fund statement in that the transactions
are provided as summaries grouped by object and action. For more information, see Fields: Fund
Statement Summary on page 1786.

Moab Web Services

1450 Resources

Resources 1451

GET http://localhost:8080/mws/rest/accounting/funds/reports/statement/summary?api-
version=3&proxy-
user=amy&fields=totalCredits,totalDebits,transactions.action,transactions.amount,trans
actions.count&pretty=true

{
"totalCredits":200.02,
"totalDebits":-100,
"transactions":[{

"action":"Deposit",
"amount":200.02,
"count":2

}, {
"action":"Charge",
"amount":-100,
"count":1

}
]

}

Related topics

l Fields: Funds on page 1807
l Resources introduction on page 1424

Accounting Liens
This section describes the services available through Moab Web Services for interacting with the Lien
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses delivered to and
from MWS as an intermediary for MAM.

The Fields: Liens reference contains the type and description of the default fields for the Liens
object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/liens Get all liens -- -- --

/rest/accounting/liens/<id> Get single lien -- -- --

This topic contains these sections:

l Getting liens on page 1452

o Get single lien on page 1454

o Get all liens on page 1452

Moab Web Services

Getting liens
The HTTP GET method is used to retrieve Lien information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/liens?api-version=3
GET http://localhost:8080/mws/rest/accounting/liens/<id>?api-version=3

Get all liens

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/liens?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=
(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

active No Boolean -- Lists only active or
non-active liens.

active=true

filter No JSON -- Query funds
based on defined
MAM filter.

filter={"accoun-
t":"chemistry"}

filter-type No String -- Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

Moab Web Services

1452 Resources

Resources 1453

Parameter Required Type Valid
values Description Example

query No JSON -- Results are
restricted to those
having the
specified field
values.

The query
parameter
does not
support the
full Mongo
query
syntax.
Only
querying
for a
simple,
non-nested
JSON object
is allowed.

query={"alloc-
ations.fund":2}

fields No String -- Comma-separated
list of field names
to display.

fields=id,instance,amount

sort No JSON -- Sort the results.
Use 1 for ascend-
ing and -1 for des-
cending. Should be
used in con-
junction with the
fields parameter.

sort={"instance":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and hid-
den fields. Default
is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/accounting/liens?api-version=3&proxy-
user=amy&filter={"account":"chemistry"}&fields=instance,amount&active=true&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"instance": "job.1",
"amount": 57600

},
{

"instance": "job.2",
"amount": 40762

}
]

}

Get single lien

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/liens/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier of
the object

--

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

active No Boolean -- Lists only active or non-
active liens.

active=true

fields No String -- Comma-separated list of
field names to display.

fields=id,name,amount

show-all No Boolean true
or
false

true shows all fields
including metadata and
hidden fields. Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1454 Resources

Resources 1455

Sample response

GET http://localhost:8080/mws/rest/accounting/liens/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"instance": "job.1",
"usageRecord": 1,
"startTime": "2013-08-21 16:45:57 UTC",
"endTime": "2013-08-21 17:45:57 UTC",
"duration": 3600,
"description": "",
"amount": 57600,
"allocations": [{
"id": 2,
"fund": 2,
"amount": 57600

}]
}

Related topics

l Fields: Liens on page 1815
l Resources introduction on page 1424

Accounting Organizations
This section describes the services available through Moab Web Services for interacting with the
Organization object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The Fields: Organizations reference contains the type and description of the default fields for the
Organization object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/organizations Get all organizations -- -- --

/rest/accounting/organizations/<id> Get single organization -- -- --

This topic contains these sections:

l Getting organizations on page 1456

o Get all organizations on page 1456

o Get single organization on page 1457

Moab Web Services

Getting organizations
The HTTP GET method is used to retrieve Organizations information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/organizations?api-version=3
GET http://localhost:8080/mws/rest/accounting/organizations/<id>?api-version=3

Get all organizations

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/organizations?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action as defined
MAM user.

proxy-user=amy

query No JSON -- Results are restricted to those
having the specified field
values.

The query parameter
does not support the
full Mongo query
syntax. Only querying
for a simple, non-
nested JSON object is
allowed.

query={"deleted":-
false}

fields No String -- Comma-separated list of field
names to display.

fields=id

sort No JSON -- Sort the results. Use 1 for
ascending and -1 for des-
cending. Should be used in
conjunction with the fields
parameter.

sort={"reques-
tedId":-1}

show-all No Boolean true
or
false

true shows all fields includ-
ing metadata and hidden
fields. Default is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1456 Resources

Resources 1457

Sample response

GET http://localhost:8080/mws/rest/accounting/organizations?api-version=3&proxy-
user=moab&fields=id,description&sort={"id":1}&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"description": "Arts College",
"id": "arts"

},
{

"description": "Sciences College",
"id": "sciences"

}
]

}

Get single organization

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/organizations/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier of the object. --

fields No String -- Comma-separated list of field names to
display.

fields=id

show-all No Boolean true
or
false

true shows all fields including
metadata and hidden fields. Default is
false.

show-all-
l=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/organizations/sciences?api-
version=3&proxy-user=moab&pretty=true

{
"description": "Sciences College",
"id": "sciences"

}

Moab Web Services

Related topics

l Fields: Organizations on page 1819
l Resources introduction on page 1424

Accounting Quotes
This section describes the services available through Moab Web Services for interacting with the Quote
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses delivered to and
from MWS as an intermediary for MAM.

The Fields: Quotes reference contains the type and description of the default fields for the Quotes
object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/quotes Get all quotes -- -- --

/rest/accounting/quotes/<id> Get single quote -- -- --

This topic contains these sections:

l Getting quotes on page 1458

o Get all quotes on page 1458

o Get single quote on page 1460

Getting quotes
The HTTP GET method is used to retrieve Quote information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/quotes?api-version=3
GET http://localhost:8080/mws/rest/accounting/quotes/<id>?api-version=3

Get all quotes

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/quotes?api-version=3&proxy-user=<user>
[&active=true][&filter=<filter_options>[&filter-type=<filter_type>]][&query=<query_
conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-all=
(true|false)]

Moab Web Services

1458 Resources

Resources 1459

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform actions as
defined MAM user.

proxy-user=amy

active No Boolean true
or
false

Lists only active or
non-active quotes.

active=true

filter No JSON -- Query funds
based on defined
MAM filter.

filter={"accoun-
t":"chemistry"}

filter-type No String -- Query funds
based on defined
MAM filter type.

filter-type=NonExclusive

query No JSON -- Results are
restricted to those
having the
specified field
values.

The query
parameter
does not
support the
full Mongo
query
syntax.
Only
querying
for a
simple,
non-nested
JSON object
is allowed.

query={"instance":"-
job.1"}

fields No String -- Comma-separated
list of field names
to display.

fields=id,instance,amount

Moab Web Services

Parameter Required Type Valid
values Description Example

sort No JSON -- Sort the results.
Use 1 for ascend-
ing and -1 for des-
cending. Should be
used in con-
junction with the
fields parameter.

sort={"instance":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and hid-
den fields. Default
is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/quotes?api-version=3&proxy-
user=amy&filter={"account":"chemistry"}
&fields=usageRecord,amount&active=true&pretty=true

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"usageRecord": 1,
"amount": 57600

}]
}

Get single quote

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/quotes/<id>?api-version=3&proxy-
user=<user>[&active=(true|false)][&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier of
the object.

--

Moab Web Services

1460 Resources

Resources 1461

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action as
defined MAM user.

proxy-user=amy

active No Boolean true
or
false

Lists only active or non-
active quotes.

active=true

fields No String -- Comma-separated list of
field names to display.

fields=id,name,amount

show-all No Boolean true
or
false

true shows all fields
including metadata and
hidden fields. Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/quotes/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"amount": 57600,
"pinned": true,
"instance": "",
"usageRecord": 1,
"startTime": "2013-08-21 16:45:57 UTC",
"endTime": "2013-08-21 17:57:57 UTC",
"duration": 3600,
"description": "",
"chargeRates": [{
"name": "Processors",
"value": "",
"amount": "1/s"

}]
}

Related topics

l Fields: Quotes on page 1821
l Resources introduction on page 1424

Accounting Transactions
This section describes the services available through Moab Web Services for interacting with the
Transaction object in Moab Accounting Manager. It contains the URLs, request bodies, and responses

Moab Web Services

delivered to and from MWS as an intermediary for MAM.

The Fields: Transactions reference contains the type and description of the default fields for the
Transaction object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/transactions Get all transactions -- -- --

/rest/accounting/transactions/<id> Get single transaction -- -- --

This topic contains these sections:

l Getting transactions on page 1462

o Get all transactions on page 1462

o Get single transaction on page 1465

Getting transactions
The HTTP GET method is used to retrieve Transaction information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/transactions?api-version=3
GET http://localhost:8080/mws/rest/accounting/transactions/<id>?api-version=3

Get all transactions

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/transactions?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

Moab Web Services

1462 Resources

Resources 1463

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

query No JSON -- Results are
restricted to
those having
the specified
field values.

The

query
paramete
r does not
support

the
full

Mongo
query
syntax.

Only
querying

for a
simple,

non-
nested

JSON
object is
allowed.

query={"action":"Charge","ac-
count":"chemistry"}

fields No String -- Comma-sep-
arated list of
field names
to display.

fields=id

Moab Web Services

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

sort No JSON -- Sort the res-
ults. Use 1
for ascend-
ing and -1
for des-
cending.
Should be
used in con-
junction
with the
Accounting
Trans-
actions
parameter.

sort={"id":1}

show-all No Boole-
an

true
or
fals-
e

true shows
all fields
including
metadata
and hidden
fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1464 Resources

Resources 1465

Sample response

GET http://localhost:8080/mws/rest/accounting/transactions?api-version=3&proxy-
user=moab&query={"instance":"job.1"}&fields=object,action,instance,amount&pretty=true

{
"totalCount": 310,
"resultCount": 3,
"results": [

{
"object": "UsageRecord",
"action": "Reserve",
"instance": "job.1",
"amount": 57600

},
{

"object": "UsageRecord",
"action": "Charge",
"instance": "job.1",
"amount": 11520

},
{

"object": "UsageRecord",
"action": "Refund",
"instance": "job.1",
"amount": 11520

}
]

}

Get single transaction

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/transactions/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Parameter Required Type Valid
values Description Example

id Yes String -- The unique identifier of the object. --

fields No String -- Comma-separated list of field names to
display.

fields=id

show-all No Boolean true
or
false

true shows all fields including
metadata and hidden fields. Default is
false.

show-all-
l=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/accounting/transactions/1?api-version=3&proxy-
user=moab&pretty=true

{
"id": 1,
"object": "Organization",
"action": "Create",
"actor": "scottmo",
"key": "sciences",
"child": "",
"count": 1,
"instance": "",
"amount": "",
"delta": "",
"user": "",
"account": "",
"machine": "",
"fund": "",
"allocation": "",
"usageRecord": "",
"duration": "",
"description": ""

}

Related topics

l Fields: Transactions on page 1826
l Resources introduction on page 1424

Accounting Usage records
This section describes the services available through Moab Web Services for interacting with the Usage
Record object in Moab Accounting Manager. It contains the URLs, request bodies, and responses
delivered to and from MWS as an intermediary for MAM.

The Fields: Usage Records reference section contains the type and description of all fields in the
Usage Record object.

Supported methods

Resource GET PUT POST DELETE

/rest/accounting/usage-
records

Get all usage
records

-- -- --

/rest/accounting/usage-record-
s/<id>

Get single usage
record

-- -- --

/rest/accounting/usage-record-
s/quote

-- -- Obtain a quote for
resource usage

--

Moab Web Services

1466 Resources

Resources 1467

This topic contains these sections:

l Getting usage records on page 1467

o Get all usage records on page 1467

o Get single usage record on page 1470

o Obtain a quote for resource usage on page 1471

Getting usage records
The HTTP GET method is used to retrieve Usage Record information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/usage-records?api-version=3
GET http://localhost:8080/mws/rest/accounting/usage-records/<id>?api-version=3
POST http://localhost:8080/mws/rest/accounting/usage-records/quote?api-version=3

Get all usage records

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/usage-records?api-version=3&proxy-
user=<user>[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_
sort>]|&show-all=(true|false)]

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

Moab Web Services

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

query No JSON -- Results are
restricted to
those having
the specified
field values.

The

query
parameter

does
not

support
the
full

Mongo
query

syntax.
Only

querying
for a

simple,
non-

nested
JSON
object
is

allowed.

query={"account":"query"}

fields No String -- Comma-sep-
arated list of
field names
to display.

field-
s=id,instance,charge,user,account

Moab Web Services

1468 Resources

Resources 1469

Para-
meter

Requir-
ed Type

Valid
val-
ues

Descrip-
tion Example

sort No JSON -- Sort the res-
ults. Use 1
for ascend-
ing and -1
for des-
cending.
Should be
used in con-
junction with
the fields
parameter.

sort={"user":1}

show-all No Boolea-
n

true
or
fals-
e

true shows
all fields
including
metadata
and hidden
fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/usage-records?api-version=3&proxy-
user=amy&fields=id,instance,charge,user,account&pretty=true

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"id": 1,
"instance": "job.1",
"charge": 31,
"user": "amy",
"account": "chemistry"

},
{

"id": 2,
"instance": "job.2",
"charge": 30,
"user": "amy",
"account": "biology"

}
}

Moab Web Services

Get single usage record

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/usage-records/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Para-
meter

Require-
d Type

Valid
val-
ues

Descrip-
tion Example

id Yes String -- The unique
identifier of
the object.

code

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

fields No String -- Comma-sep-
arated list
of field
names to
display.

field-
s=id,instance,charge,user,account

show-all No Boolea-
n

true
or
fals-
e

true shows
all fields
including
metadata
and hidden
fields.
Default is
false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1470 Resources

Resources 1471

Sample response

GET http://localhost:8080/mws/rest/accounting/usage-records/1?api-version=3&proxy-
user=amy&pretty=true

{
"id": 1,
"type": "Job",
"instance": "job.1",
"charge": 31,
"stage": "Charge",
"user": "amy",
"group": "faculty",
"account": "chemistry",
"organization": "sciences",
"qualityOfService": "",
"machine": "colony",
"nodes": "",
"processors": 16,
"memory": "",
"disk": "",
"network": "",
"duration": 720,
"startTime": "",
"endTime": "",
"description": ""

}

Obtain a quote for resource usage

URLs and parameters

POST http://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=<object>&proxy-user=<user>&charge-duration=<seconds>

Para-
meter

Requir-
ed Type

Vali-
d
val-
ues

Descrip-
tion Example

proxy-
user

Yes String -- Perform
action as
defined
MAM user.

proxy-user=amy

charge-
duration

Yes Integer -- The quote
duration
of the job
in seconds.

charge-duration=6400

Moab Web Services

Para-
meter

Requir-
ed Type

Vali-
d
val-
ues

Descrip-
tion Example

object-
type

Yes String -- The object
to quote. It
can be job
or service.

object-type=job

itemize No Boolean true
or
fals-
e

Returns
the com-
posite
charge
inform-
ation in
the
response
data.

itemize=true

rate No JSONAr-
ray

-- Uses the
specified
charge
rates in
the quote.
The spe-
cified rates
override
the stand-
ard and
quote
rates. If
the guar-
antee field
is set to
true, these
charge
rates will
be saved
and used
when this
quote is
referenced
in a charge
action.

rate=[{"type":"VBR","-
name":"Memory","rate":1},
{"type":"VBR","name":"Processors","rate":1}]

Moab Web Services

1472 Resources

Resources 1473

Para-
meter

Requir-
ed Type

Vali-
d
val-
ues

Descrip-
tion Example

guar-
antee

No Boolean true
or
fals-
e

Guar-
antees the
quote and
returns a
quote id to
secure the
current
charge
rates. This
results in
the cre-
ation of a
quote
record and
a per-
manent
usage
record.
This para-
meter is
mutually
exclusive
with the
cost-only
parameter.

guarantee=true

Moab Web Services

Para-
meter

Requir-
ed Type

Vali-
d
val-
ues

Descrip-
tion Example

grace-
duration

No Integer -- The guar-
anteed
quote
grace
period in
seconds. If
the quote
duration is
specified
but not
the quote
end time,
the quote
endtime
will be cal-
culated as
the quote
start time
plus the
quote dur-
ation plus
the grace
duration.

grace-duration=6400

cost-only No Integer -- Returns
the cost,
ignoring
all balance
and valid-
ity checks.
This para-
meter is
mutually
exclusive
with the
guarantee
parameter.

cost-only=true

Moab Web Services

1474 Resources

Resources 1475

Para-
meter

Requir-
ed Type

Vali-
d
val-
ues

Descrip-
tion Example

descrip-
tion

No String -- The guar-
anteed
quote
descrip-
tion.

description="ABC Coupon Rate"

start-
time

No Date -- The guar-
anteed
quote start
time in the
format
yyyy-MM-
dd HH:m-
m:ss z, -
Infinity
, Infin-
ity, or
Now.

start-time="2012-04-09 13:49:40 UTC"

end-time No Date -- The guar-
anteed
quote end
time in the
format
yyyy-MM-
dd HH:m-
m:ss z, -
Infinity
, Infin-
ity, or
Now.

end-time="2012-04-09 14:49:40 UTC"

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows all of the fields in a job that could affect the quote.

Moab Web Services

POST http://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=job&charge-duration=300

{
"id": "Moab.1",
"user": "amy",
"group": "group",
"rmName": "machine1",
"templateList": [
"genericVm"
],
"account": "biology",
"qosRequested": "QOS1",
"variables": {
"imageName": "centos5.5-stateless",
"topLevelServiceId": "myService.1",
"serviceId": "vmService.1",
"vmid": "VmService.1",
"pmid": "VmService.1"

},
"requirements": [
{

"requiredProcessorsPerTask": 2,
"genericResources": {

"gold": 100,
"os": 500

},
"requiredNodeCountMinimum": 1,
"requiredMemoryPerTask": 1024,
"requiredClass": "batch"

}
]

}

The request body below shows all of the fields in a service that affect the quote in a default MAM
installation.

Moab Web Services

1476 Resources

Resources 1477

POST http://localhost:8080/mws/rest/accounting/usage-records/quote?api-
version=3&object-type=service&charge-duration=300

{
"name":"service.1",
"user": "amy",
"account": "chemistry"
"attributes":{

"moab":{
"job":{

"resources":{
"procs":1,
"mem":2048,
"OS":500,
"gold":100

},
"variables":{

"Var1": 1524
},
"image":"centos5.5-stateless",
"template":"genericVM",

}
}

}
}

Sample response

l If the quote is not guaranteed:

JSON response

{
"instance": "Moab.1",
"amount": 600

}

l If the quote is guaranteed:

JSON response

{
"id": 1,
"usageRecord": 2,
"instance": "Moab.1",
"amount": 600

}

l If the quote is guaranteed and itemized:

Moab Web Services

JSON response

{
"details": [

{
"name": "Processors",
"value": "2",
"duration": 300,
"rate": 1,
"scalingFactor": 1,
"amount": 600,
"details": "2 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 300

[Duration]"
},

{
"name": "Memory",
"value": "1024",
"duration": 300,
"rate": 1,
"scalingFactor": 1,
"amount": 307200,
"details": "1024 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 300 [Duration]"

}
],
"id": 20,
"instance": "Moab.1",
"usageRecord": 20,
"amount": 307800

}

l If the quote is on a service:

Moab Web Services

1478 Resources

Resources 1479

JSON response

{
"services": [

{
"details": [

{
"name": "Processors",
"value": "22",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 660,
"details": "22 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30

[Duration]"
},

{
"name": "Memory",
"value": "32343242",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 970297260,
"details": "32343242 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30

[Duration]"
}

],
"id": 120,
"instance": "myVmWorkflow",
"usageRecord": 157,
"amount": 970297920

},
{

"details": [{
"name": "Storage",
"value": "2500",
"duration": 30,
"rate": 1.157E-7,
"scalingFactor": 1,
"amount": 0,
"details": "2500 [Storage] * 1.157e-07 [ChargeRate{VBR}{Storage}] * 30

[Duration]"
}],
"id": 122,
"instance": "myExtraStorageWorkflow",
"usageRecord": 159,
"amount": 0

},
{

"details": [
{

"name": "Processors",
"value": "0",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 0,
"details": "0 [Processors] * 1 [ChargeRate{VBR}{Processors}] * 30

[Duration]"
},

{

Moab Web Services

"name": "Memory",
"value": "0",
"duration": 30,
"rate": 1,
"scalingFactor": 1,
"amount": 0,
"details": "0 [Memory] * 1 [ChargeRate{VBR}{Memory}] * 30 [Duration]"

}
],
"id": 123,
"instance": "myPmWorkflow",
"usageRecord": 160,
"amount": 0

}
],
"amount": 970297920

}

Restrictions

The details field is only available with MAM version 7.1.0 or later.

Related topics

l Fields: Usage Records on page 1830
l Resources introduction on page 1424

Accounting Users
This section describes the services available through Moab Web Services for interacting with the User
object in Moab Accounting Manager. It contains the URLs, request bodies, and responses delivered to and
from MWS as an intermediary for MAM.

The Fields: Users reference contains the type and description of all fields in the User object.

Supported methods

Resource GET PUT POST DELETE

rest/accounting/users Get all users -- -- --

rest/accounting/users/<id> Get single user -- -- --

This topic contains these sections:

l Getting users on page 1481

o Get all users on page 1481

o Get single user on page 1483

Moab Web Services

1480 Resources

Resources 1481

Getting users
The HTTP GET method is used to retrieve User information.

Quick reference

GET http://localhost:8080/mws/rest/accounting/users?api-version=3
GET http://localhost:8080/mws/rest/accounting/users/<id>?api-version=3

Get all users

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/users?api-version=3&proxy-user=<user>
[&query=<query_conditions>][&fields=<fields_to_display>[&sort=<fields_to_sort>]|&show-
all=(true|false)]

Parameter Required Type Valid
values Description Example

proxy-user Yes String -- Perform action as
defined MAM
user.

proxy-user=amy

query No JSON -- Results are
restricted to
those having the
specified field
values.

The
query

parameter
does not
support
the full
Mongo
query
syntax.
Only
querying
for a
simple,
non-
nested
JSON
object is
allowed.

query={"active":true}

Moab Web Services

Parameter Required Type Valid
values Description Example

fields No String -- Comma-sep-
arated list of field
names to display.

fields=name,defaultAccount

sort No JSON -- Sort the results.
Use 1 for ascend-
ing and -1 for
descending.
Should be used
in conjunction
with the fields
parameter.

sort={"defaultAccount":1}

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1482 Resources

Resources 1483

Sample response

GET http://localhost:8080/mws/rest/accounting/users?api-version=3&proxy-
user=moab&query={"active":true}&pretty=true

{
"totalCount": 6,
"resultCount": 4,
"results": [

{
"active": true,
"commonName": "",
"phoneNumber": "",
"emailAddress": "",
"defaultAccount": "",
"description": "Accounting Admin",
"id": "scottmo"

},
{

"active": true,
"commonName": "Amy Miller",
"phoneNumber": "(801) 555-1437",
"emailAddress": "amy@hpc.com",
"defaultAccount": "chemistry",
"description": "",
"id": "amy"

},
{

"active": true,
"commonName": "Robert Taylor",
"phoneNumber": "(801) 555-1474",
"emailAddress": "bob@hpc.com",
"defaultAccount": "biology",
"description": "",
"id": "bob"

},
{

"active": true,
"commonName": "David Jones",
"phoneNumber": "(801) 555-1436",
"emailAddress": "dave@hpc.com",
"defaultAccount": "film",
"description": "",
"id": "dave"

}
]

}

Get single user

URLs and parameters

GET http://localhost:8080/mws/rest/accounting/users/<id>?api-version=3&proxy-
user=<user>[&fields=<fields_to_display>|&show-all=(true|false)]

Moab Web Services

Parameter Required Type Valid
values Description Example

id Yes String -- The unique iden-
tifier of the
object

--

fields No String -- Comma-sep-
arated list of field
names to display.

fields=name,defaultAccount

show-all No Boolean true
or
false

true shows all
fields including
metadata and
hidden fields.
Default is false.

show-all=true

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/accounting/users/amy?api-version=3&proxy-
user=moab&pretty=true

{
"active": true,
"commonName": "Amy Miller",
"phoneNumber": "(801) 555-1437",
"emailAddress": "amy@hpc.com",
"defaultAccount": "chemistry",
"description": "",
"id": "amy"

}

Related topics

l Fields: Users on page 1834
l Resources introduction on page 1424

Credentials
This section describes behavior of the Credential object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Credential API is new with API version 2. The supported methods table below requires each
resource to be accessed with a URL parameter of api-version=3.

For more information, see Requesting specific API versions on page 1406.

Moab Web Services

1484 Resources

Resources 1485

The Fields: Credentials reference contains the type and description of all fields in the Credential
object.

Supported methods

Resource GET PUT POST DELETE

/rest/credentials/accounts Get all account
credentials
Get single account
credential

Modify account credentials
on page 1497

-- --

/rest/credentials/classes Get all class
credentials
Get single class
credential

Modify class credentials on
page 1497

-- --

/rest/credentials/groups Get all group
credentials
Get single group
credential

Modify group credentials
on page 1498

-- --

/rest/credentials/qoses Get all QoS
credentials
Get single QoS
credential

Modify QoS credentials on
page 1498

-- --

/rest/credentials/users Get all user
credentials
Get single user
credential

Modify User credentials on
page 1498

-- --

This topic contains these sections:

l Getting credentials on page 1486

o Get all account credentials on page 1486

o Get single account credential on page 1487

o Get all class credentials on page 1488

o Get single class credential on page 1489

o Get all group credentials on page 1490

o Get single group credential on page 1491

Moab Web Services

o Get all QoS credentials on page 1492

o Get single QoS credential on page 1493

o Get all user credentials on page 1494

o Get single user credential on page 1495

l Modifying credentials on page 1496

o Modify account credentials on page 1497

o Modify class credentials on page 1497

o Modify group credentials on page 1498

o Modify QoS credentials on page 1498

o Modify User credentials on page 1498

Getting credentials
The HTTP GET method is used to retrieve Resource Type information.

Quick reference

GET http://localhost:8080/mws/rest/credentials/accounts[/<name>]?api-version=3
GET http://localhost:8080/mws/rest/credentials/classes[/<name>]?api-version=3
GET http://localhost:8080/mws/rest/credentials/groups[/<name>]?api-version=3
GET http://localhost:8080/mws/rest/credentials/qoses[/<name>]?api-version=3
GET http://localhost:8080/mws/rest/credentials/users[/<name>]?api-version=3

Get all account credentials

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/accounts?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1486 Resources

Resources 1487

Sample response

GET http://localhost:8080/mws/rest/credentials/accounts?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "Administration",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}
]

}

Get single account credential

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/credentials/accounts/Administration?api-version=3

{
"name": "Administration",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}

Get all class credentials

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/classes?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1488 Resources

Resources 1489

Sample response

GET http://localhost:8080/mws/rest/credentials/classes?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "highprio",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}
]

}

Get single class credential

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/credentials/classes/highprio?api-version=3

{
"name": "highprio",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}

Get all group credentials

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1490 Resources

Resources 1491

Sample response

GET http://localhost:8080/mws/rest/credentials/groups?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{

"name": "students",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}

Get single group credential

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/credentials/groups/students?api-version=3

{
"name": "students",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]

}

Get all QoS credentials

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/qoses?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1492 Resources

Resources 1493

Sample response

GET http://localhost:8080/mws/rest/credentials/qoses?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "special",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"],
"flags": [

"DEADLINE",
"RESERVEALWAYS",
"DEDICATED"

]
"queue_time_weight": 30,
"expansion_factor_weight": 40,
"quality_of_service_priority": 20

}
]

}

Get single QoS credential

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/credentials/qoses/special?api-version=3

{
"name": "special",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"reservation": "system.1",
"user_access_list": ["adaptive"]
"flags": [
"DEADLINE",
"RESERVEALWAYS",
"DEDICATED"
]
"queue_time_weight": 30,
"expansion_factor_weight": 40,
"quality_of_service_priority": 20

}

Get all user credentials

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/users?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1494 Resources

Resources 1495

Sample response

GET http://localhost:8080/mws/rest/credentials/users?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": [
{
"name": "root",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"email": "root@root.com"

}
]

}

Get single user credential

URLs and parameters

GET http://localhost:8080/mws/rest/credentials/users/<name>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/credentials/users/root?api-version=3

{
"name": "root",
"account_access_list": ["Administration"],
"default_account": "Administration",
"qos_access_list": [
"qos1",
"qos2"

],
"default_qos": "qos1",
"partition_access_list": [
"partition1",
"SHARED"

],
"default_partition": "partition1",
"target_type": "CEILING",
"target": 18.43,
"priority": 53,
"max_job_duration_in_seconds": 234,
"max_idle_jobs": 42,
"max_jobs": 523,
"max_processors": 4,
"max_processor_seconds": 525,
"max_nodes": 75,
"email": "root@root.com"

}

Modifying credentials
The HTTP PUT method is used to modify credentials.

Quick reference

PUT http://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT http://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT http://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT http://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3[&change-
mode=<add|remove|set>]
PUT http://localhost:8080/mws/rest/credentials/users/<name>?api-version=3[&change-
mode=<add|remove|set>]

URL parameters

URL parameters for modifying a credential.

Moab Web Services

1496 Resources

Resources 1497

Credentials para-
meter Required Type Valid val-

ues Description

change-mode No String set
(default)
add
remove

If set, replace existing list with the given one.
If add, add the given field(s) to the existing
list.
If remove, remove the given field(s) from the
existing list.

Moab Workload Manager will automatically add SHARED and the value of default_partition to the
partition_access_list.

Modify account credentials

URLs and parameters

PUT http://localhost:8080/mws/rest/credentials/accounts/<name>?api-version=3[&change-
mode=<add|remove|set>]

See Global URL parameters on page 1403 for available URL parameters.

Sample body

PUT http://localhost:8080/mws/rest/credentials/accounts/biology?api-version=3&change-
mode=add

{
"qos_access_list": [
"qos3",
"qos4"

],
"max_job_duration_in_seconds": 234

}

Modify class credentials

URLs and parameters

PUT http://localhost:8080/mws/rest/credentials/classes/<name>?api-version=3[&change-
mode=<add|remove|set>]

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample body

PUT http://localhost:8080/mws/rest/credentials/classes/highprio?api-version=3

{
"max_idle_jobs": 50,
"max_jobs": 300

}

Modify group credentials

URLs and parameters

PUT http://localhost:8080/mws/rest/credentials/groups/<name>?api-version=3[&change-
mode=<add|remove|set>]

See Global URL parameters on page 1403 for available URL parameters.

Sample body

PUT http://localhost:8080/mws/rest/credentials/groups/students?api-version=3&change-
mode=set

{
"reservation": "system.2",
"user_access_list": ["tom"]

}

Modify QoS credentials

URLs and parameters

PUT http://localhost:8080/mws/rest/credentials/qoses/<name>?api-version=3[&change-
mode=<add|remove|set>]

See Global URL parameters on page 1403 for available URL parameters.

Sample body

PUT http://localhost:8080/mws/rest/credentials/qoses/special?api-version=3

{
"max_processors": 5,
"max_processor_seconds": 500

}

Modify User credentials

URLs and parameters

PUT http://localhost:8080/mws/rest/credentials/users/<name>?api-version=3[&change-
mode=<add|remove|set>]

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1498 Resources

Resources 1499

Sample body

PUT http://localhost:8080/mws/rest/credentials/users/tom?api-version=3

{
"email": "tom@root.com"

}

Related topics

l Fields: Credentials on page 1836
l Resources introduction on page 1424

Diagnostics
This section describes additional REST calls that are available for performing diagnostics on Moab Web
Services.

Supported methods

Resource GET PUT POST DELETE

/rest/diag/about Get version information -- -- --

/rest/diag/auth Diagnose authentication -- -- --

/rest/diag/health/summary Get health summary -- -- --

/rest/diag/health/detail Get health detail -- -- --

/rest/diag/ldap is deprecated. All information that was available in that resource is now
available in /rest/diag/health/detail.

This topic contains these sections:

l Get version information on page 1500

l Diagnose authentication on page 1500

l Connection health information on page 1500

o Get health summary on page 1501

o Get health detail on page 1501

l Diagnostics on page 1499

Moab Web Services

Get version information
The HTTP GET method is used to retrieve version and build information.

Quick reference

GET http://localhost:8080/mws/rest/diag/about?api-version=3

URLs and parameters

GET http://localhost:8080/mws/rest/diag/about?api-version=3

Sample response

The response contains the application suite, version, build date, and revision.

{
"suite": "CLOUD",
"version": "7.2.2",
"buildDate": "2013.03.15_13.12.45",
"revision": "302238e24e327f4aa45ab4c91834216a7fc19d63"

}

Diagnose authentication
The HTTP GET method is used to test for proper authentication. This resource is designed to be used as
a simple validation of credentials and gives no output besides the response code.

Quick reference

GET http://localhost:8080/mws/rest/diag/auth?api-version=3

URLs and parameters

GET http://localhost:8080/mws/rest/diag/auth?api-version=3

Sample response

A successful result is indicated by the 200 response code while a failure is indicated by a 401
response code.

{}

Connection health information
The HTTP GET method is used to retrieve health or status information for connections to external
systems or software. There are two available resources for health, one that returns simple summary
information and another that returns detailed information.

Moab Web Services

1500 Resources

Resources 1501

Quick reference

GET http://localhost:8080/mws/rest/diag/health/summary?api-version=3
GET http://localhost:8080/mws/rest/diag/health/detail?api-version=3

Get health summary

URLs and parameters

GET http://localhost:8080/mws/rest/diag/health/summary?api-version=3

If the MongoDB connection is down, authenticated resources are not available. While this resource
does not possess much detail beyond that of simple connection information, it is still useful as it
does not require authentication and therefore can be used to determine connection problems with
MongoDB.

Sample response

The response contains the connection health for Moab Workload Manager (MWM), Moab Accounting
Manager (MAM), MongoDB, LDAP, ZeroMQ, PAM. A true response value indicates that the connection is
healthy and available, and a false response indicates that the connection is currently down. Likewise,
the mongoConnected property for Moab signifies the state of the Moab to MongoDB connection. The
possible values of this state are UP, DOWN, NOT_CONFIGURED (when the MongoDB server is not
configured in Moab), NOT_SUPPORTED (when Moab is not compiled with MongoDB support), and
UNKNOWN (when MWS cannot communicate with Moab).

{
"mam": {"connected": true},
"mongo": {"connected": true},
"mwm": {
"connected": true,
"mongoConnected": "UP",
"zmqConnected": true

},
"ldap": {"connected": true},
"pam": {"connected": true},
"zmq": {"connected": true},

}

Get health detail

URLs and parameters

GET http://localhost:8080/mws/rest/diag/health/detail?api-version=3

If the MongoDB connection is down, authenticated resources such as this are not available. In this
case, using the Get health summary instead may be required.

Moab Web Services

Sample response

The response contains the connection health and information for Moab Workload Manager (MWM), Moab
Accounting Manager (MAM), MongoDB, LDAP, ZeroMQ, PAM. A "connected": true response value
indicates that the connection is healthy and available, and a false response indicates that the
connection is currently down. Likewise, the mongoConnected property for Moab signifies the state of
the Moab to MongoDB connection. The possible values of this state are UP, DOWN, NOT_CONFIGURED
(when the MongoDB server is not configured in Moab), NOT_SUPPORTED (when Moab is not compiled
with MongoDB support), and UNKNOWN (when MWS cannot communicate with Moab). A message is also
present for all down connections except Moab to MongoDB giving a reason for the error state.

Moab Web Services

1502 Resources

Resources 1503

{
"mam": {
"connected": true,
"adminUser": "root",
"host": "mamhost",
"port": 7741,
"version": "7.5",
"message": null

},
"mongo": {
"connected": true,
"host": "127.0.0.1",
"port": 27017,
"replicaSet": null,
"databaseName": "mws",
"username": {},
"version": "2.4.8",
"message": null

},
"mwm": {
"connected": true,
"adminUser": "root",
"host": "localhost",
"port": 42559,
"version": "7.5",
"licensedFeatures": [
"green",
"provision",
"vm"

],
"state": "RUNNING",
"mongo": {
"connected": "UP",
"credentialsSet": false,
"host": "myhost",
"port": 27017

},
"zmq": {
"connected": true,
"encryptionStatus": "OFF",
"port": 5563

},
"message": null

},
"ldap": {
"connected": true,
"message": null,
"server": "openldapnis.ac",
"port": 389,
"baseDNs": ["dc=testldap,dc=ac"],
"bindUser": "cn=admin,dc=testldap,dc=ac",
"directoryType": "OpenLDAP Using InetOrgPerson Schema",
"securityType": "NONE",
"userObjectClass": "inetOrgPerson",
"groupObjectClass": "groupOfNames",
"ouObjectClass": "organizationalUnit",
"userMembershipAttribute": null,
"groupMembershipAttribute": "member",
"userNameAttribute": "uid"

},
"pam": {
"connected": true,

Moab Web Services

"authenticationModule": "system-auth",
"message": "PAM is configured in MWS."

},
"zmq": {
"connected": true,
"version": "3.2.3",
"message": null,
"mwmSubscriber": {
"connected": true,
"address": "localhost",
"port": 5563,
"message": null

},
"mwsSubscriber": {
"connected": true,
"address": "localhost",
"port": 5564,
"message": null

},
"publisher": {
"connected": true,
"address": "*",
"port": 5564,
"message": null

}
},

}

Related topics

l Resources introduction on page 1424

Distinct
The Distinct resource enables clients to retrieve distinct (unique) values from another MWS resource.
For example, a client can request the list of all featuresReported across all nodes like this:

GET http://localhost:8080/mws/rest/distinct/nodes/featuresReported/?api-version=3

Supported methods

Resource GET PUT POST DELETE

/rest/distinct/<resource>/<field> Get distinct values -- -- --

This topic contains these sections:

l Get distinct values on page 1504

Get distinct values
The HTTP GET method is used to retrieve distinct values from another MWS resource.

Moab Web Services

1504 Resources

Resources 1505

URLs and parameters

GET http://localhost:8080/mws/rest/distinct/<resource>/<field>?api-version=3

Parameter Required Type Valid values Example

resource Yes String The MWS resource to query. nodes

field Yes String The field for which to return the dis-
tinct values.

featuresReported

query No JSON Determines the subset of objects from
which to retrieve the distinct values.

query={"states.-
powerState": "On"}

The Distinct resource has no access control of its own. Rather, it depends on the access control of
the MWS resource being queried.

For example, for a client to run a query like /rest/distinct/nodes/featuresReported, it
must have GET rights on the Nodes resource. For more information, see Access control on page
1398.

Examples

Example 4-3: Get all featuresReported across all nodes

http://localhost:8080/mws/rest/distinct/nodes/featuresReported?api-version=3

{
"totalCount": 1,
"resultCount": 1,
"results": ["vlan1"]

}

Example 4-4: Get all available operating system images across all nodes that are powered on

http://localhost:8080/mws/rest/distinct/nodes/operatingSystem.imagesAvailable?api-
version=3&query={"states.powerState": "On"}

{
"totalCount": 2,
"resultCount": 2,
"results": [
"linux",
"windows"

]
}

Related topics

l Resources introduction on page 1424

Moab Web Services

Events
This section describes the URLs, request bodies, and responses delivered to and from Moab Web Services
for handling events.

The Event API is new with API version 3. The supported methods table below requires each
resource to be accessed with a URL parameter of api-version=3 in order to behave as
documented.

For more information, see Requesting specific API versions on page 1406.

The Fields: Events reference contains the type and description of all fields in the Event object. It
also contains details regarding which fields are valid during POST actions.

Important changes

l The following fields have been renamed in API version 3:

Name in version 1 & 2 Name in version 3

eventTime eventDate

sourceComponent origin

errorMessage.message message

relatedObjects associatedObjects

l The following fields have been removed in API version 3.

MWS will no longer report these fields, even if there are existing events in the database
with these fields.

o eventCategory

o status

o facility

o initiatedBy

o primaryObject (Primary objects are now reported in associatedObjects.)

o errorMessage.originator

o errorMessage.errorCode

o details

Moab Web Services

1506 Resources

Resources 1507

l The following fields are new in API version 3 (see Fields: Events on page 1837):

o arguments

o code

Supported methods

Resource GET PUT POST DELETE

/rest/events Get all events -- Create event --

/rest/events/<id> Get single event -- -- --

This topic contains these sections:

l Getting events on page 1507

o Get all events on page 1507

o Get single event on page 1511

l Creating events on page 1512

o Create event on page 1512

Getting events
The HTTP GET method is used to retrieve Event information. Queries for all objects and a single object
are available.

Quick reference

GET http://localhost:8080/mws/rest/events?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]
GET http://localhost:8080/mws/rest/events/<id>?api-version=3

Get all events

URLs and parameters

GET http://localhost:8080/mws/rest/events?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]

Parameter Required Type Valid values Example

query No JSON Query for specific results.
It is possible to query events by one or
more fields based on MongoDB query
syntax.

query={"sever-
ity":"ERROR"}

Moab Web Services

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Parameter Required Type Valid values Example

sort No JSON Sort the results. Use 1 for ascending
and -1 for descending.

sort={"id":-1}

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1508 Resources

Resources 1509

Sample response

GET http://localhost:8080/mws/rest/events?api-version=3

{
"totalCount":2,
"resultCount":2,
"results":[

{
"arguments":[

],
"associatedObjects":[

{
"type":"VM",
"id":"vm1"

}
],
"tenant":

{
"id":"1234567890abcdef12345678",
"name":"Research"

},
"code":234881023,
"eventDate":"2013-06-10 17:13:31 UTC",
"eventType":"VM Provision",
"message":null,
"origin":"CSA Plugin",
"severity":"INFO",
"id":"51b6093bc4aa708a5bebb6ae"

},
{

"arguments":[
"51b608ddc4aa708a5bebb684"

],
"associatedObjects":[

{
"type":"Service",
"id":"51b608ddc4aa708a5bebb684"

}
],
"tenant":

{
"id":"1234567890abcdef12345678",
"name":"Research"

},
"code":33554944,
"eventDate":"2013-06-10 17:11:59 UTC",
"eventType":"Service Create",
"message":"The service '51b608ddc4aa708a5bebb684' was created",
"origin":"MWS/ServiceEvents/CREATE_1ID",
"severity":"INFO",
"id":"51b608dfc4aa708a5bebb686"

}
]

}

Querying events

It is possible to query events by one or more fields based on MongoDB query syntax. The following
contains examples of simple and complex event queries and event queries by date.

Moab Web Services

http://docs.mongodb.org/manual/reference/operator/

Simple queries:

l To see only events that are of type "Service Create":

http://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"Service
Create"}

l To see only events of type "Service Create" with the severity of "INFO":

http://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"Service
Create","severity":"INFO"}

l To see only events with a code of 33554946

http://localhost:8080/mws/rest/events?api-version=3&query={code:33554946}

More complex queries:

l You can query on embedded JSON objects within the event JSON. For example, to see events
associated with service 51b608ddc4aa708a5bebb684:

http://localhost:8080/mws/rest/events?api-version=3&query=
{"associatedObjects.id":"51b608ddc4aa708a5bebb684"}

l To see only events that are NOT associated with service 51b608ddc4aa708a5bebb684:

http://localhost:8080/mws/rest/events?api-version=3&query=
{"associatedObjects.id":{"$ne":"51b608ddc4aa708a5bebb684"}}

l When the field values of the desired events are a finite set, you can use the $in operator. For
example, to see events that have a severity of either WARN or ERROR:

http://localhost:8080/mws/rest/events?api-version=3&query={"severity":{"$in":
["ERROR","WARN"]}}

Querying events by date

l To see events created before January 27, 2012 at 12:08 a.m. UTC:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$lt":"2012-01-27 12:08:00 UTC"}}

l To see events created before or on January 27, 2012 at 12:08 a.m. UTC:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$lte":"2012-01-27 12:08:00 UTC"}}

l To see all events created after January 27, 2012 at 12:04 a.m. UTC:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$gt":"2012-01-27 12:04:00 UTC"}}

l To see all events created after or on January 27, 2012 at 12:04 a.m. UTC:

Moab Web Services

1510 Resources

Resources 1511

http://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$gte":"2012-01-27 12:04:00 UTC"}}

l To see events created between 12:04 a.m. and 12:08 a.m. UTC inclusive:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventDate":
{"$gte":"2012-01-27 12:04:00 UTC","$lte":"2012-01-27 12:08:00 UTC"}}

l To see events created between 12:04 a.m. and 12:08 a.m. UTC inclusive that have a severity of
ERROR:

http://localhost:8080/mws/rest/events?api-version=3&query=
{"severity":"ERROR","eventDate":{"$gte":"2012-01-27 12:04:00 UTC","$lte":"2012-
01-27 12:08:00 UTC"}}

Sorting

See the sorting section of Global URL parameters on page 1403.

Limiting the number of results

l If you want to limit the number of results of events, you can use the max parameter. For example,
to see only 10 "VM Provision" events:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"VM
Provision"}&sort={"eventDate":1}&max=10

l To see "VM Provision" events 51-60 when sorted by eventDate in descending order, you can
combine max with offset, as follows:

http://localhost:8080/mws/rest/events?api-version=3&query={"eventType":"VM
Provision"}&sort={"eventDate":-1}&max=10&offset=50

Get single event

URLs and parameters

GET http://localhost:8080/mws/rest/events/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/events/51b608dfc4aa708a5bebb686?api-version=3

{
"arguments": ["51b608ddc4aa708a5bebb684"],
"associatedObjects": [{
"type": "Service",
"id": "51b608ddc4aa708a5bebb684"

}],
"tenant":
{
"id":"1234567890abcdef12345678",
"name":"Research"

},
"code": 33554944,
"eventDate": "2013-06-10 17:11:59 UTC",
"eventType": "Service Create",
"message": "The service '51b608ddc4aa708a5bebb684' was created",
"origin": "MWS/ServiceEvents/CREATE_1ID",
"severity": "INFO",
"id": "51b608dfc4aa708a5bebb686"

}

Creating events
The HTTP POST method is used to create an Event.

Quick reference

POST http://localhost:8080/mws/rest/events?api-version=3

Create event

URLs and parameters

POST http://localhost:8080/mws/rest/events?api-version=3

Request body

POST http://localhost:8080/mws/rest/events?api-version=3 Content-Type:application/json

{
"arguments": ["vm1"],
"associatedObjects": [{
"type": "VM",
"id": "vm1"

}],
"code": 234881023,
"eventDate": "2013-06-10 17:13:31 UTC",
"eventType": "VM Provision",
"message": "The virtual machine \"vm1\" was provisioned",
"origin": "CSA Plugin",
"severity": "INFO"

}

Moab Web Services

1512 Resources

Resources 1513

An event's tenant is automatically inherited from the associatedObjects.

Sample response

If the request was successful, the response will be an object with an id property containing the ID of the
newly created events. On failure, the response is an error message.

JSON response

{"arguments":["vm1"],"associatedObjects":[{"_
id":"vm1","id":"vm1","type":"VM","version":0}],"code":234881023,"eventDate":"2013-06-
10 17:13:31 UTC","eventType":"VM
Provision","id":"51b62046c4aa708a5bebc018","message":"The virtual machine vm1 was
provisioned","origin":"CSA Plugin","severity":"INFO","version":0}

Below is an example of events.log output for a successful event request:

2013-06-10T11:13:31.000-06:00 severity="INFO" code="0x0dffffff" type="VM Provision"
origin="CSA Plugin" associatedObject.0.type="VM" associatedObject.0.id="vm1"
arguments=["vm1"] message="The virtual machine \"vm1\" was provisioned"

Note that " (double quote) characters in the input have been replaced by \" characters in the
output. (For other character restrictions, see Restrictions on page 1513.)

Restrictions

Special characters—such as newline, carriage return, and " (double quote) characters—are encoded in
the output of events.log to make events.log easy to parse with scripts and third party tools. For
example, if the input XML contains:

<ErrorMessage>RM says, "Cannot provision vm21"</ErrorMessage>

Then the following will be output to events.log:

error.message="RM says, \"Cannot provision vm21\""

(Notice that " has been replaced with \".)

This table contains the most common encodings. (For more information, see escape sequences for Java
Strings.)

Character Escape sequence

" (double quote) \"

\ (backslash) \\

newline \n

Moab Web Services

http://docs.oracle.com/javase/tutorial/java/data/characters.html
http://docs.oracle.com/javase/tutorial/java/data/characters.html

Character Escape sequence

carriage return \r

tab \t

Other restrictions include:

l origin, eventType, associatedObject.id, and associatedObject.type cannot contain single quotes
(') or double quotes (").

Related topics

l Resources introduction on page 1424
l Notifications on page 1563
l Fields: Notifications on page 2028
l Notification conditions on page 1558
l Fields: Notification Conditions on page 2024
l Fields: Events on page 1837
l System events on page 1422
l Creating events and notifications on page 1682
l Plugin event service on page 1733
l Handling events on page 1689
l Securing the connection with the message queue on page 1395

Images
This section describes behavior of the Image object in Moab Web Services. An image resource is used to
track the different types of operating systems and hypervisors available in the data center. It also tracks
which virtual machines are available on the hypervisors. This section describes the URLs, request bodies,
and responses delivered to and from MWS.

The Fields: Images reference contains the type and description of all fields in the Image object. It
also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/images Get all images -- Create single
image

--

Moab Web Services

1514 Resources

Resources 1515

Resource GET PUT POST DELETE

/rest/images/<id> Get single
image

Modify single
image

-- Delete single
image

/rest/images/<name> Get single
image

Modify single
image

-- Delete single
image

This topic contains these sections:

l Getting images on page 1515

o Get all images on page 1515

o Get single image on page 1516

l Creating images on page 1518

o Create single image on page 1518

l Modifying images on page 1521

o Modify single image on page 1521

l Deleting images on page 1522

o Delete single image on page 1522

Getting images
The HTTP GET method is used to retrieve Image information. You can query all objects or a single
object.

Quick reference

GET http://localhost:8080/mws/rest/images?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]
GET http://localhost:8080/mws/rest/images/<id>?api-version=3
GET http://localhost:8080/mws/rest/images/<name>?api-version=3

Get all images

URLs and parameters

GET http://localhost:8080/mws/rest/images?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]

Moab Web Services

Parameter Required Type Description Example

query No JSON Queries for
specific results.
It is possible to
query images by
one or more fields
based on
MongoDB query
syntax.

query={"type":"state-
ful","osType":"linux"}

sort No JSON Sort the results.
Use 1 for ascend-
ing and -1 for des-
cending.

sort={"name":-1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/images?api-version=3&fields=id,name

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"id": "4fa197e68ca30fc605dd1cf0",
"name": "centos5-stateful"

}]
}

Sorting and querying

See the sorting and querying sections of Global URL parameters on page 1403.

Get single image

URLs and parameters

GET http://localhost:8080/mws/rest/images/<id>?api-version=3
GET http://localhost:8080/mws/rest/images/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the Image.

name Yes String -- The name of the Image.

Moab Web Services

1516 Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Resources 1517

You must specify either id or name, but you do not have to specify both.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

Virtual machine image example:

GET http://localhost:8080/mws/rest/images/centos5-compute-stateful?api-version=3

{
"active":true,
"extensions":{
"xcat":{
"os":"centos",
"architecture":"x86_64",
"profile":"compute"

}
},
"features":[],
"hypervisor":false,
"hypervisorType": null,
"id":"4fa197e68ca30fc605dd1cf0",
"name":"centos5-compute-stateful",
"osType":"linux",
"supportsPhysicalMachine":false,
"supportsVirtualMachine":true,
"templateName":null,
"type":"stateful",
"version":0,
"virtualizedImages":[]

}

Hypervisor image example:

Moab Web Services

GET http://localhost:8080/mws/rest/images/esxi-4.1-stateful?api-version=3

{
"active":true,
"extensions":{
"xcat":{
"hvGroupName":"hvGroup",
"vmGroupName":"vmGroup",
"os":"esxi-4.1",
"architecture":"x86_64",
"profile":"hv"

}
},
"features":[],
"hypervisor":true,
"hypervisorType":"ESX",
"id":"4fa197e68ca30fc605dd1cf0",
"name":"centos5-compute-stateful",
"osType":"linux",
"supportsPhysicalMachine":true,
"supportsVirtualMachine":false,
"templateName":null,
"type":"stateful",
"version":0,
"virtualizedImages":[]

}

The version field contains the current version of the database entry and does not reflect the
version of the operating system. For more information, see Modify single image on page 1521.

Creating images
The HTTP POST method is used to submit Images.

Quick reference

POST http://localhost:8080/mws/rest/images?api-version=3

Create single image

URLs and parameters

POST http://localhost:8080/mws/rest/images?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

Three fields are required to submit an image: name, hypervisor, and osType. Each image must also
support provisioning to either a physical machine or a virtual machine by using the
supportsPhysicalMachine or supportsVirtualMachine fields.

The name field must contain only letters, digits, periods, dashes, and underscores.

Moab Web Services

1518 Resources

Resources 1519

The array of virtualized images are themselves objects that contain image IDs or names. For more
information on available fields and types, see Fields: Images on page 1843.

The following is an example of the most basic image that can be created:

POST http://localhost:8080/mws/rest/images?api-version=3

{
"name": "centos5-stateful",
"osType": "linux",
"hypervisor": false,
"supportsVirtualMachine":true

}

Note that this example does not provide any information for a provisioning manager (such as xCAT) to
actually provision the machine. In order to provide this, you must add an entry to the extensions field
that contains provisioning manager-specific information. Each key in the extensions field corresponds to
the provisioning manager, and certain properties are required based on this key. For example, the xCAT
extension key must be named xcat and must contain certain fields. These extension keys are
documented in Fields: Images on page 1843. See the following examples of creating images with xCAT-
specific provisioning information below.

Sample response

If the request was successful, the response body is the new image that was created exactly as shown in
Get single image. On failure, the response is an error message.

Samples

The virtualizedImages field only accepts input when the image is a hypervisor and expects an array of
image IDs or names, as shown in the following example:

Example payload of hypervisor with 2 vms

{
"hypervisor":true,
"name":"esx5-stateful",
"osType":"linux",
"supportsPhysicalMachine":true,
"type":"stateful",
"hypervisorType":"ESX",
"virtualizedImages": [
{"id": "4fa197e68ca30fc605dd1cf0"},
{"name": "centos5-stateful"}

]
}

The following example shows how to create an image that utilizes a cloned template for a virtual
machine. (Note that the type must be set to linkedclone in order to set the templateName field.)

Moab Web Services

VM Utilizing a Cloned Template

{
"active": true,
"hypervisor": false,
"name": "centos5-compute-stateful",
"osType": "linux",
"type": "linkedclone",
"supportsVirtualMachine":true,
"templateName":"centos5-compute"

}

The following are samples of a virtual machine and a hypervisor image that can be provisioned with
xCAT:

xCAT Virtual Machine Image

{
"active": true,
"features": [],
"hypervisor": false,
"name": "centos5-compute-stateful",
"osType": "linux",
"type": "stateful",
"supportsVirtualMachine":true,
"extensions": {
"xcat": {
"os": "centos",
"architecture": "x86_64",
"profile": "compute"

}
}

}

Moab Web Services

1520 Resources

Resources 1521

xCAT Hypervisor Image

{
"active": true,
"features": [],
"hypervisor": true,
"name": "esxi5-base-stateless",
"osType": "linux",
"virtualizedImages": [
{"name": "centos5-compute-stateless"}

],
"type": "stateless",
"hypervisorType": "ESX",
"supportsPhysicalMachine":true,
"extensions": {
"xcat": {
"os": "esxi5",
"architecture": "x86_64",
"profile": "base",
"hvType": "esx",
"hvGroupName": "esx5hv",
"vmGroupName": "esx5vm"

}
}

}

Modifying images
The HTTP PUT method is used to modify Images.

Quick reference

PUT http://localhost:8080/mws/rest/images/<id>?api-version=3
PUT http://localhost:8080/mws/rest/images/<name>?api-version=3

Modify single image

URLs and parameters

PUT http://localhost:8080/mws/rest/images/<id>?api-version=3
PUT http://localhost:8080/mws/rest/images/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the Image.

name Yes String -- The name of the Image.

You must specify either id or name, but you do not have to specify both. The name field must
contain only letters, digits, periods, dashes, and underscores.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Example request

PUT http://locahost/mws/rest/images/centos5-stateful?api-version=3

{
"name": "centos5-stateful",
"type": "stateful",
"hypervisor": false,
"osType": "linux",
"virtualizedImages": []

}

The version field contains the current version of the database entry and does not reflect the
version of the operating system. This field cannot be updated directly. However, if version is
included in the modify request, it will be used to verify that another client did not update the
object in between the time the data was retrieved and the modify request was delivered.

Sample response

If the request was successful, the response body is the modified image as shown in Get single image. On
failure, the response is an error message.

Deleting images
The HTTP DELETE method is used to delete Images.

Quick reference

DELETE http://localhost:8080/mws/rest/images/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/images/<name>?api-version=3

Delete single image

URLs and parameters

DELETE http://localhost:8080/mws/rest/images/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/images/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the Image.

name Yes String -- The name of the Image.

Only one of id or name are required.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1522 Resources

Resources 1523

Sample response

JSON Response

{}

Related topics

l Fields: Images on page 1843
l Resources introduction on page 1424

Job arrays
This section describes behavior of the Job Array object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Job Arrays reference section contains the type and description of all fields in the Job
Array object.

Supported methods

Resource GET PUT POST DELETE

/rest/job-arrays -- -- Submit job array --

This topic contains these sections:

l Submitting job arrays on page 1523

o Submit job array on page 1524

Submitting job arrays
The HTTP POST method is used to submit Job Arrays.

Quick reference

POST http://localhost:8080/mws/rest/job-arrays?api-version=3[&proxy-user=<username>]

While the Job Array resource only gives access to create job arrays, job arrays are retrieved
using the operations in Getting job information on page 1526.

Restrictions

All restrictions present for Submitting jobs are present for job arrays. In addition, job arrays are only
supported if the ENABLEJOBARRAYS parameter is set to TRUE in the moab.cfg file. For example:

Moab Web Services

ENABLEJOBARRAYS TRUE

Submit job array

URLs and parameters

POST http://localhost:8080/mws/rest/job-arrays?api-version=3[&proxy-user=<username>]

Parameter Required Type Valid values Description

proxy-user No String -- Perform this action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Request body

To submit a job array, only two fields are required: jobPrototype and one of indexValues or
indexRanges. Both index ranges and values may be specified if desired.

The request body below shows all the fields that are available during job array submission, although the
jobPrototype shown is a simple example and does not utilize all fields of a job submission.

The jobPrototype field has the same properties as a typical job submission. Consequently the
api-version of the job array will apply to the jobPrototype like it does when you submit jobs, so
the api-version in the call must match the api-version of the job. Examples of this can be seen in
Submitting jobs on page 1533.

JSON request body

{
"name": "myarray",
"indexRanges": [{
"startIndex": 11,
"endIndex": 25,
"increment": 2

}],
"indexValues": [2, 4, 6, 8, 10],
"slotLimit": 2,
"cancellationPolicy": {
"firstJob": "FAILURE",
"anyJob": "SUCCESS"

},
"jobPrototype": {
"commandFile": "/tmp/test.sh",
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 4}]

}
}

Sample response

The response of this task is the same as submitting a job (see Submit job on page 1534).

Moab Web Services

1524 Resources

Resources 1525

Related topics

l Fields: Job Arrays on page 1851
l Resources introduction on page 1424
l Jobs on page 1525
l Job templates on page 1547

Jobs
This section describes behavior of the Job object in Moab Web Services. It contains the URLs, request
bodies, and responses delivered to and from MWS.

The Job API is new with API version 2. The supported methods table below requires each resource
to be accessed with a URL parameter of api-version=3 in order to behave as documented.

For more information, see Requesting specific API versions on page 1406.

The Fields: Jobs reference contains the type and description of all fields in the Job object. It also
contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/jobs Get all jobs -- Submit
job

--

/rest/jobs/<name> Get single
job

Modify job attributes -- Cancel
job

/rest/jobs/<name>/<modifyAction> -- Perform actions on
job

-- --

This topic contains these sections:

l Getting job information on page 1526

o Get all jobs on page 1526

o Get single job on page 1527

l Submitting jobs on page 1533

o Submit job on page 1534

Moab Web Services

l Modifying jobs on page 1540

o Modify job attributes on page 1540

o Generic resources on page 1543

o Perform actions on job on page 1545

l Deleting (canceling) jobs on page 1546

o Cancel job on page 1546

Getting job information
The HTTP GET method is used to retrieve Job information.

Quick reference

GET http://localhost:8080/mws/rest/jobs/<name>?api-version=3

Get all jobs

URLs and parameters

GET http://localhost:8080/mws/rest/jobs?api-version=3

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query by one or more fields
based on MongoDB query syntax.

query={"isAct-
ive":true}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-1}

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1526 Resources

http://docs.mongodb.org/manual/reference/operator/

Resources 1527

How to get all jobs

GET http://localhost:8080/mws/rest/jobs?api-version=3&fields=name,flags&max=3

{
"totalCount": 8,
"resultCount": 3,
"results": [

{
"flags": ["GLOBALQUEUE"],
"name": "Moab.1"

},
{

"flags": ["GLOBALQUEUE"],
"name": "Moab.2"

},
{

"flags": ["GLOBALQUEUE"],
"name": "Moab.4"

}
]

}

How to get a subset of jobs

Get active jobs

http://localhost:8080/mws/rest/jobs?api-version=3&query={"isActive":true}

Get completed jobs

http://localhost:8080/mws/rest/jobs?api-version=3&query={"isActive":false}

Get jobs owned by a particular user

http://localhost:8080/mws/rest/jobs?api-version=3&query={"credentials.user":"fred"}

Known issues

Some jobs are not returned if DisplayFlags UseBlocking is set in the moab.cfg file.

Get single job

URLs and parameters

GET http://localhost:8080/mws/rest/jobs/<name>?api-version=3

Parameter Required Type Valid values Description

name Yes String -- The name of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

The attributes field is only applicable in API version 2 and later, and the MOAB_TENANT field
only applies if the job is attached to a tenant.

Moab Web Services

1528 Resources

Resources 1529

Sample response

Moab Web Services

JSON response

{
"arrayIndex": null,
"arrayMasterName": null,
"attributes": [],
"blocks": [{
"category": "jobBlock",
"message": null,
"type": null

}],
"bypassCount": 0,
"cancelCount": 0,
"commandFile": "/tmp/test.sh",
"commandLineArgs": null,
"completionCode": null,
"cpuTime": 0,
"credentials": {
"account": null,
"group": "adaptive",
"jobClass": null,
"qos": "NONE",
"qosRequested": null,
"user": "adaptive"

},
"customName": null,
"dates": {
"completedDate": null,
"createdDate": "2012-10-11 17:58:16 UTC",
"deadlineDate": "2037-10-24 12:26:40 UTC",
"dispatchedDate": null,
"earliestRequestedStartDate": null,
"earliestStartDate": "2012-10-11 17:58:18 UTC",
"eligibleDate": "2012-10-11 17:59:19 UTC",
"lastCanceledDate": null,
"lastChargedDate": null,
"lastPreemptedDate": null,
"lastUpdatedDate": "2012-10-11 17:59:19 UTC",
"startDate": null,
"submitDate": "2012-10-11 17:58:16 UTC",
"terminationDate": "2037-10-24 12:26:40 UTC"

},
"deferCount": 0,
"dependencies": [],
"description": null,
"duration": 8639999,
"durationActive": 0,
"durationQueued": 31,
"durationRemaining": 0,
"durationSuspended": 0,
"emailNotifyAddresses": [],
"emailNotifyTypes": [],
"environmentRequested": false,
"environmentVariables": {},
"epilogScript": null,
"flags": ["GLOBALQUEUE"],
"holdDate": null,
"holdReason": null,
"holds": [],
"initialWorkingDirectory": "/tmp",
"isActive": true,

Moab Web Services

1530 Resources

Resources 1531

"jobGroup": null,
"masterNode": null,
"memorySecondsDedicated": 0,
"memorySecondsUtilized": 0,
"messages": [],
"migrateCount": 0,
"minimumPreemptTime": 0,
"mwmName": "Moab",
"name": "Moab.15",
"nodesExcluded": [],
"nodesRequested": [],
"nodesRequestedPolicy": null,
"partitionAccessList": [
"msm",
"SHARED"

],
"partitionAccessListRequested": [
"msm",
"SHARED"

],
"preemptCount": 0,
"priorities": {
"run": 0,
"start": 1,
"system": 0,
"user": 0

},
"processorSecondsDedicated": 0,
"processorSecondsLimit": 0,
"processorSecondsUtilized": 0,
"prologScript": null,
"queueStatus": "blocked",
"rejectPolicies": [],
"requirements": [{
"architecture": null,
"attributes":{
"matlab": [

{
"restriction":"must",
"comparator": "<=",
"value": "7.1",
"displayValue": null

}
],
"MOAB_TENANT": [{

"value": "1234567890aabbccddeeff00",
"displayValue": "ResearchGroup"

}],
"soffice": [

{
"restriction":"must",
"comparator": "%=",
"value": "3.1",
"displayValue": null

}
]

},
"features": [],
"index": 0,
"featuresRequested": [],
"featuresRequestedMode": "AND",
"featuresExcluded": [],

Moab Web Services

"featuresExcludedMode": "AND",
"metrics": {},
"nodeAccessPolicy": null,
"nodeAllocationPolicy": null,
"nodeCount": 0,
"nodes": [],
"nodeSet": null,
"image": null,
"reservation": null,
"resourcesPerTask": {
"processors": {
"dedicated": 1,
"utilized": 0

},
"memory": {
"dedicated": 0,
"utilized": 0

},
"disk": {
"dedicated": 0,
"utilized": null

},
"swap": {
"dedicated": 0,
"utilized": null

}
},
"taskCount": 4,
"tasksPerNode": 0

}],
"reservationRequested": null,
"resourceFailPolicy": null,
"resourceManagerExtension": null,
"resourceManagers": [{
"isDestination": false,
"isSource": true,
"jobName": "Moab.15",
"name": "internal"

}],
"rmStandardErrorFilePath": null,
"rmStandardOutputFilePath": null,
"standardErrorFilePath": null,
"standardOutputFilePath": null,
"startCount": 0,
"states": {
"state": "Idle",
"stateExpected": "Idle",
"stateLastUpdatedDate": null,
"subState": null

},
"submitHost": "0:0:0:0:0:0:0:1",
"systemJobAction": null,
"systemJobType": null,
"targetedJobAction": null,
"targetedJobName": null,
"templates": [{"name": "DEFAULT"}],
"triggers": [],
"variables": {},
"virtualContainers": [],
"virtualMachines": [],
"vmUsagePolicy": null

}

Moab Web Services

1532 Resources

Resources 1533

Job arrays

l If a job is the master of a job array, the response will have some additional fields set as shown in
the following example. The name field is chosen by the Moab, and the customName field comes
from the Fields: Job Arrays name field.

Job array master

{
"name": "Moab.5",
"customName": "myarray",
"flags": [
"ARRAYMASTER",
"GLOBALQUEUE",
"CANCELONFIRSTFAILURE",
"CANCELONANYSUCCESS"

]
}

l If a job is a sub-job of an array, the response will have other fields set as shown in the following
example.

Array sub-job

{
"name": "Moab.5[21]",
"customName": "myarray",
"arrayIndex": 21,
"arrayMasterName": "Moab.5",
"flags": [
"ARRAYJOB",
"GLOBALQUEUE",
"CANCELONFIRSTFAILURE",
"CANCELONANYSUCCESS"

]
}

Submitting jobs
The HTTP POST method is used to submit Jobs.

Quick reference

POST http://localhost:8080/mws/rest/jobs?api-version=3[&proxy-user=<username>]

Restrictions

l No more than one virtual container can be specified in the request. The virtual container must
already exist.

l The credentials.user and credentials.group properties are used to submit a job as the
specified user belonging to the specified group.

Moab Web Services

l Job variables have the following restrictions:

o Variable names cannot contain equals (=), semicolon (;), colon (:), plus (+), question mark
(?), caret (^), backslash (\), or white space.

o Variable values cannot contain semicolon (;), colon (:), plus (+), or caret (^).

l When submitting jobs, the only supported hold type is User.

l The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the moab.cfg file.
For example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

l When the JOBNODEMATCHPOLICY is set to EXACTNODE in Moab, avoid using
requirements.tasksPerNode. Use requirements.resourcesPerTask.processors.dedicated instead.

Submit job

URLs and parameters

POST http://localhost:8080/mws/rest/jobs?api-version=3[&proxy-user=<username>]

Parameter Required Type Valid values Description

proxy-user No String -- Perform the action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1534 Resources

Resources 1535

Request body

Moab Web Services

JSON request body (specified host list)

{
"attributes": [
"attr1",
"attr2"

],
"commandFile": "/tmp/test.sh",
"commandScript": "c2xlZXAgNjAK",
"commandLineArguments": "-x -v",
"credentials": {
"account": "account",
"group": "group",
"jobClass": "BATCH",
"qosRequested": "QOS1",
"user": "saadmin"

},
"customName": "custom name for job",
"dates": {
"earliestRequestedStartDate": "2012-11-08 13:18:47 UTC",
"deadlineDate": "2014-02-17 14:00:00 UTC"

},
"dependencies": [

{
"type": "set",
"name": "vc1.varA"

},
{

"type": "set",
"name": "vc2.varB"

},
{

"type": "set",
"name": "vc3.varC"

}
],
"duration": 600,
"emailNotifyAddresses": [
"user3@ac.com",
"user4@ac.com"

],
"emailNotifyTypes": [
"JobStart",
"JobEnd"

],
"environmentRequested": true,
"environmentVariables": {
"var1": "val1",
"var2": "val2"

},
"epilogScript": "/tmp/epilog.sh",
"flags": [
"RESTARTABLE",
"SUSPENDABLE"

],
"holds": ["User"],
"initialWorkingDirectory": "/tmp",
"jobGroup": "job_group",
"nodesExcluded": [
{"name": "node07"},
{"name": "node08"}

Moab Web Services

1536 Resources

Resources 1537

],
"nodesRequested": [
{"name": "node01"},
{"name": "node02"}

],
"nodesRequestedPolicy": "SUBSET",
"partitionAccessListRequested": [
"p1",
"p2"

],
"priorities": {"user": 5},
"prologScript": "/tmp/prolog.sh",
"requirements": [{
"architecture": "x86_64",
"attributes":{
"matlab": [

{
"restriction":"must",
"comparator": "<=",
"value": "7.1"

}
],
"soffice": [

{
"restriction":"must",
"comparator": "%=",
"value": "3.1"

}
]

},
"featuresRequested": [
"a",
"b",
"c"

],
"featuresRequestedMode": "OR",
"featuresExcluded": [
"d",
"e",
"f"

],
"featuresExcludedMode": "AND",
"nodeAccessPolicy": "SINGLEJOB",
"nodeAllocationPolicy": "PRIORITY",
"nodeCount": 6,
"nodeSet":"FIRSTOF:FEATURE:vlan2",
"image": "linux",
"resourcesPerTask": {
"disk": {"dedicated": 1024},
"memory": {"dedicated": 512},
"processors": {"dedicated": 2},
"swap": {"dedicated": 4096},
"matlab": {"dedicated": 6},
"intellij": {"dedicated": 2}

},
"taskCount": 4,
"tasksPerNode": 14

}],
"reservationRequested": {"name": "rsv.1"},
"resourceFailPolicy": "RETRY",
"resourceManagerExtension": "x=PROC=4",
"standardErrorFilePath": "/tmp/error",

Moab Web Services

"standardOutputFilePath": "/tmp/out",
"submitHost": "admin-node",
"templates": [
{"name": "template1"},
{"name": "template2"}

],
"variables": {
"var1": "val1",
"var2": "val2"

},
"virtualContainers": [{"name": "vc1"}],
"vmUsagePolicy": "CREATEVM"

}

Sample response

The response of this task is one of three possibilities:

l An object with a single messages property containing a list of error messages on failure.

{"messages":["Could not create job - invalid requirements"]}

l An object with a name property containing the name of the newly created job.

{"name":"Moab.1"}

l An object with a name property and a virtualContainers list containing the name of the newly
created virtual container.

{ "name": "Moab.1", "virtualContainers": [{"name": "vc1"}] }

The virtual container will only be reported when a new virtual container has been created
by Moab for the job.

Examples of job submission

This section includes some sample job submission requests.

Example 4-5: Submit job to run on node2 and node3

POST http://localhost:8080/mws/rest/jobs?api-version=3

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/tmp",
"nodesRequested": [
{"name": "node2"},
{"name": "node3"}

]
}

Moab Web Services

1538 Resources

Resources 1539

Example 4-6: Submit job that requires 20 processors

POST http://localhost:8080/mws/rest/jobs?api-version=3

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 20}]

}

Example 4-7: Submit job to run after a certain time

POST http://localhost:8080/mws/rest/jobs?api-version=3

{
"commandFile": "/tmp/test.sh",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"dates": {"earliestRequestedStartDate": "2012-10-11 18:36:35 UTC"},
"initialWorkingDirectory": "/tmp",
"requirements": [{"taskCount": 20}]

}

Example 4-8: Submit job based on msub example

Given this msub command:

msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100 script2.pbs.cmd

Here is an equivalent MWS request:

POST http://localhost:8080/mws/rest/jobs?api-version=3

{
"duration": 3600,
"commandFile": "/home/adaptive/script2.pbs.cmd",
"credentials": {
"group": "adaptive",
"user": "adaptive"

},
"initialWorkingDirectory": "/home/adaptive",
"requirements": [{
"resourcesPerTask": {"memory": {"dedicated": 100}},
"taskCount": 6,
"tasksPerNode": 2

}]
}

Moab Web Services

To emulate what msub does, make commandFile an absolute path, and add credentials.user,
credentials.group, and initialWorkingDirectory.

As shown above, nodes=3:ppn=2 is equivalent to setting taskCount to 6 and tasksPerNode
to 2.

Example 4-9: Submit a job array

For information on how to submit a job array, see Submitting job arrays on page 1523.

Modifying jobs
The HTTP PUT method is used to modify Jobs.

Quick reference

PUT http://localhost:8080/mws/rest/jobs/<name>[/<modifyAction>]?api-version=3[&proxy-
user=<username>]

Restrictions

The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the moab.cfg file. For
example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

Modify job attributes

URLs and parameters

PUT http://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-user=<username>]
[&change-mode=set]

Parameter Required Type Valid values Description

name Yes String -- The name of the object.

proxy-user No String -- Perform the action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Additional URL parameters

Parameter Required Valid values Description

change-mode No set (default)
add
remove

If set, replace all fields with the fields specified.
If add, add the specified fields to existing fields.
If remove, remove the specified fields from existing fields.

Moab Web Services

1540 Resources

Resources 1541

Request body

The request body below shows all the fields that are available when modifying a job, along with some
sample values.

Moab Web Services

JSON request body

{
"credentials": {
"account": "account",
"jobClass": "BATCH",
"qosRequested": "QOS1"

},
"customName": "custom name for job",
"dates": {"earliestRequestedStartDate": "2012-11-08 13:18:47 UTC"},
"duration": 600,
"flags": [
"RESTARTABLE",
"SUSPENDABLE"

],
"holds": ["User"],
"messages": [
{"message": "Message one"},
{"message": "Message two"}

],
"nodesRequested": [

{
"name": "n015"},

{
"name": "n016"
},
{
"name": "n017"
},
{
"name": "n018"
}

],
"partitionAccessListRequested": [
"p1",
"p2"

],
"priorities": {

"system": 3,
"user": 5

},
"requirements": [
{
"features": [
"vlan1",
"vlan2"

],
"resourcesPerTask": [
"matlab": {
"dedicated": 1

},
"tape": {
"dedicated": 2

}
]

}
],
"reservationRequested": {"name": "rsv.1"},
"variables": {
"var1": "val1",
"var2": "val2"

Moab Web Services

1542 Resources

Resources 1543

}
}

Sample response

These messages may not match the messages returned from Moab exactly, but are given as an
example of the structure of the response.

Not all messages are shown for the above request body.

JSON response

{"messages": [
"Account modified successfully",
"Messages modified successfully",
"Variables modified successfully"

]}

Restrictions

l Old messages are not removed from jobs; only new messages are added.

l Job variables have the restrictions documented in Submitting jobs on page 1533.

l Although the client can modify features and resourcesPerTask, Moab only considers these
elements when they appear in the first element of the requirements array. If the requirements
array contains two or more elements, all elements but the first are silently ignored.

Generic resources

Jobs can require configurable, site-specific consumable resources called generic resources. For example,
some jobs may require a matlab license. Only one job at a time may legally consume this license. Matlab
is not a standard resource and may only be available on some sites. Nevertheless Moab allows this to be
configured and tracked as is explained in Managing Consumable Generic Resources on page 573.

You must specify generic resources in the requirements.resourcesPerTask portion of the JSON
document. Any resource in requirement.resourcesPerTask that is not a standard resource is
considered a generic resource. Standard resources include disk, memory, processors, and swap. Assume
a job has the following in requirement.resourcesPerTask:

Moab Web Services

{
"resourcesPerTask":{
"processors":{
"dedicated":4,
"utilized":0

},
"memory":{
"dedicated":2048,
"utilized":0

},
"disk":{
"dedicated":4096,
"utilized":0

},
"swap":{
"dedicated":1024,
"utilized":0

},
"tape":{
"dedicated":1,
"utilized":0

},
"matlab":{
"dedicated":2,
"utilized":0

}
}

}

The standard resources the job requires are:

l 4 processors

l 2048 MB of memory

l 4096 MB of disk

l 1024 MB of swap

The generic resources the job requires are

l 1 tape

l 2 matlab

To modify a job so that it requires 1 matlab license, run the following:

PUT http://localhost:8080/mws/rest/jobs/Moab.2?api-version=3
{
"requirements":[
{
"resourcesPerTask":{
"matlab":{
"dedicated":1

}
}

}
]

}

Moab Web Services

1544 Resources

Resources 1545

Perform actions on job

URLs and parameters

PUT http://localhost:8080/mws/rest/jobs/<name>/<modifyAction>?api-version=3[&proxy-
user=<username>]

Parameter Required Type Valid val-
ues Description

name Yes String -- The name of the object.

modifyAction Yes String cancel
checkpoint
execute
hold
requeue
rerun
resume
suspend
unhold

If cancel, attempts to cancel the job (equivalent to
deleting a job).
If checkpoint, attempts to checkpoint the job. Note
that the OS must support checkpointing for this to
work.
If execute, executes the job (if possible).
If hold, attempts to hold the job using the holds set in
the request body.
If requeue, attempts to requeue the job.
If rerun, attempts to rerun the job.
If resume, attempts to resume the job.
If suspend, attempts to suspend the job.
If unhold, attempts to release the holds set in the
request body.

proxy-user No String -- Perform the action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Request body

Request bodies are only required for holding or unholding jobs. All other actions do not require request
bodies of any kind.

JSON request body to add holds to a job

{"holds": ["User"]}

JSON request body to remove holds from a job

{"holds": ["User"]}

If no holds are specified when unholding a job, all holds will be removed. This is equivalent to
specifying holds as a list with a single element of All.

Moab Web Services

Sample response

This message may not match the message returned from Moab exactly, but is given as an example
of the structure of the response.

JSON response

{"messages": ["Job modified successfully"]}

Deleting (canceling) jobs
The HTTP DELETE method is used to cancel Jobs.

Quick reference

DELETE http://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-
user=<username>]

Restrictions

The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the moab.cfg file. For
example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

Cancel job

URLs and parameters

DELETE http://localhost:8080/mws/rest/jobs/<name>?api-version=3[&proxy-
user=<username>]

Parameter Required Type Valid values Description

name Yes String -- The name of the object.

proxy-user No String -- Perform the action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response for successful DELETE

{}

Moab Web Services

1546 Resources

Resources 1547

Additional information about the DELETE can be found in the HTTP response header X-MWS-
Message.

Related topics

l Fields: Jobs on page 1914
l Resources introduction on page 1424
l Job arrays on page 1523
l Job templates on page 1547

Job templates
This section describes behavior of the Job Template object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Job Templates reference section contains the type and description of all fields in the
Job Template object. It also contains details regarding which fields are valid during PUT and
POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/job-templates Get all job templates -- -- --

/rest/job-templates/<id> Get single job template -- -- --

This topic contains these sections:

l Getting job templates on page 1547

o Get all job templates on page 1548

o Get single job template on page 1548

Getting job templates
The HTTP GET method is used to retrieve Job Template information. Queries for all objects and a single
object are available.

Quick reference

GET http://localhost:8080/mws/rest/job-templates/<id>?api-version=3

Moab Web Services

Get all job templates

URLs and parameters

GET http://localhost:8080/mws/rest/job-templates?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/job-templates?api-version=3&fields=id

{
"totalCount": 14,
"resultCount": 14,
"results": [
{"id": "DEFAULT"},
{"id": "genericVM"},
{"id": "genericVM-setup"},
{"id": "genericVM-destroy"},
{"id": "genericVM-migrate"},
{"id": "genericPM"},
{"id": "genericPM-setup"},
{"id": "genericPM-destroy"},
{"id": "OSStorage"},
{"id": "OSStorage-setup"},
{"id": "OSStorage-destroy"},
{"id": "extraStorage"},
{"id": "extraStorage-setup"},
{"id": "extraStorage-destroy"}

]
}

Get single job template

URLs and parameters

GET http://localhost:8080/mws/rest/job-templates/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1548 Resources

Resources 1549

Sample response

JSON response

{
"account": "account",
"args": "arg1 arg2",
"commandFile": "/tmp/script",
"description": "description",
"genericSystemJob": true,
"id": "genericVM",
"inheritResources": false,
"jobDependencies": [{
"name": "genericVM-setup",
"type": "JOBSUCCESSFULCOMPLETE"

}],
"jobFlags": ["VMTRACKING"],
"jobTemplateFlags": ["SELECT"],
"jobTemplateRequirements": [{
"architecture": "x86_64",
"diskRequirement": 500,
"genericResources": {"tape": 3},
"nodeAccessPolicy": "SINGLEJOB",
"operatingSystem": "Ubuntu 10.04.3",
"requiredDiskPerTask": 200,
"requiredFeatures": ["dvd"],
"requiredMemoryPerTask": 1024,
"requiredProcessorsPerTask": 2,
"requiredSwapPerTask": 512,
"taskCount": 4

}],
"priority": 20,
"qos": "qos",
"queue": "queue",
"durationRequested": 600,
"select": true,
"trigger": null,
"version": 0,
"vmUsagePolicy": "REQUIREPM"

}

Related topics

l Fields: Job Templates on page 1974
l Resources introduction on page 1424
l Jobs on page 1525
l Job arrays on page 1523

Metric types
This section describes behavior of the Metric Type object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Metric Types reference section contains the type and description of all fields in the
Metric Type object.

Moab Web Services

Supported methods

Resource GET PUT POST DELETE

/rest/metric-types Get all metric types -- -- --

This topic contains these sections:

l Getting metric types on page 1550

o Get all metric types on page 1550

Getting metric types
The HTTP GET method is used to retrieve Metric Type information.

Quick reference

GET http://localhost:8080/mws/rest/metric-types?api-version=3

Get all metric types

URLs and parameters

GET http://localhost:8080/mws/rest/metric-types?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/metric-types?api-version=3&fields=id

{
"totalCount": 9,
"resultCount": 9,
"results": [
{"id": "vmcount"},
{"id": "watts"},
{"id": "pwatts"},
{"id": "temp"},
{"id": "cpu"},
{"id": "mem"},
{"id": "io"},
{"id": "ccores"},
{"id": "threads"}

]
}

Related topics

l Fields: Metric Types on page 2003
l Resources introduction on page 1424

Moab Web Services

1550 Resources

Resources 1551

Nodes
This section describes behavior of the Node object in Moab Web Services. It contains the URLs, request
bodies, and responses delivered to and from MWS.

The Node API is new with API version 2. The supported methods table below requires each
resource to be accessed with a URL parameter of api-version=3 in order to behave as
documented.

For more information, see Requesting specific API versions on page 1406.

The Fields: Nodes reference contains the type and description of all fields in the Node object. It
also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/nodes Get all nodes -- -- --

/rest/nodes/<name> Get single node Modify node -- --

This topic contains these sections:

l Getting nodes on page 1551

o Get all nodes on page 1551

o Get single node on page 1552

l Modifying nodes on page 1556

o Modify node on page 1557

Getting nodes
The HTTP GET method is used to retrieve Node information.

Quick reference

GET http://localhost:8080/mws/rest/nodes/<name>?api-version=3

Get all nodes

URLs and parameters

GET http://localhost:8080/mws/rest/nodes?api-version=3

Moab Web Services

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query by one or more
fields based on MongoDB query syntax.

query={"type":"-
compute"}

sort No JSON Sort the results. Use 1 for ascending and -
1 for descending.

sort={"name":-1}

See Global URL parameters on page 1403 for available URL parameters.

This query will not return the DEFAULT or GLOBAL nodes from Moab. However, the Get single
node task may be used to retrieve them individually if desired.

Sample response

GET http://localhost:8080/mws/rest/nodes?api-version=3&fields=name

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"name": "node1"},
{"name": "node2"},
{"name": "node3"}

]
}

Get single node

URLs and parameters

GET http://localhost:8080/mws/rest/nodes/<name>?api-version=3

Parameter Required Type Valid values Description

name Yes String -- The name of the object.

See Global URL parameters on page 1403 for available URL parameters.

The attributes field is only applicable in API version 2 and later, and the MOAB_TENANT field
only applies if the node is attached to a tenant.

Moab Web Services

1552 Resources

http://docs.mongodb.org/manual/reference/operator/

Resources 1553

Sample response

Moab Web Services

JSON response

{
"name": "l26.csa",
"architecture": null,
"classes": ["class1"],
"attributes": {
"MOAB_TENANT": {
"value": "1234567890abcdef12345678",
"displayValue": "ResearchGroup"

},
"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

},
"vcenter-vcenter-adaptive data center-compute nodes": {
"value": null,
"displayValue": null

}
},
"featuresCustom": ["feature1", "feature2"],

Moab Web Services

1554 Resources

Resources 1555

"featuresReported": ["vcenter-vcenter-adaptive data center-compute nodes"],
"index": 26,
"ipAddress": "10.0.8.76",
"isHypervisor": true,
"lastUpdatedDate": "2013-05-24 20:18:11 UTC",
"migrationDisabled": false,
"partition": "mws",
"processorSpeed": null,
"profilingEnabled": false,
"rack": null,
"resourceManagerMessages": {
"torque": null,
"mws": null

},
"slot": null,
"type": "compute",
"messages": [{
"count": 11,
"createdDate": "2012-10-24 04:06:04 UTC",
"expireDate": "2037-10-24 12:26:40 UTC",
"message": "This is a message"

}],
"metrics": {
"vmcount": 0,
"cpuUtilization": 0.275,
"cpuLoad": 0.01115

},
"variables": {
"VCENTER_DATASTORE_LOCAL1": "datastore-415",
"VCENTER_DATASTORE_REMOTE1": "datastore-448"

},
"states": {
"powerState": "On",
"powerStateExpected": null,
"state": "Idle",
"stateExpected": "Idle",
"stateLastUpdatedDate": "2013-05-24 09:33:45 UTC",
"subState": null,
"subStateLast": null,
"subStateLastUpdatedDate": null

},
"operatingSystem": {
"hypervisorType": "esx",
"image": "vcenter-vcenter-esx-5.0",
"imageExpected": null,
"imageLastUpdatedDate": null,
"imagesAvailable": [],
"virtualMachineImages": [
"win2008",
"centos6"

]
},
"resources": {
"processors": {
"configured": 4,
"real": 4,
"dedicated": 0,
"available": 4,
"utilized": -1

},
"memory": {
"configured": 10239,

Moab Web Services

"real": 10239,
"dedicated": 0,
"available": 9227,
"utilized": 0

},
"disk": {
"configured": 0,
"real": 0,
"dedicated": 0,
"available": 0,
"utilized": 0

},
"swap": {
"configured": 0,
"real": 0,
"dedicated": 0,
"available": 0,
"utilized": 0

}
},
"resourceManagers": [{
"name": "mws",
"isMaster": true,
"stateReported": "Active"

}],
"jobs": [],
"reservations": [

{
"name": "system.5",
"type": "user"

},
{

"name": "system.17",
"type": "user"

}
],
"virtualContainers": [],
"virtualMachines": [],
"triggers": []

}

Modifying nodes
The HTTP PUT method is used to modify Nodes.

Quick reference

PUT http://localhost:8080/mws/rest/nodes/<name>?api-version=3[&proxy-user=<username>]

Restrictions

The proxy-user parameter is ignored unless you set ENABLEPROXY=TRUE in the moab.cfg file. For
example:

ADMINCFG[1] USERS=root,ted ENABLEPROXY=TRUE

Moab Web Services

1556 Resources

Resources 1557

Modify node

URLs and parameters

PUT http://localhost:8080/mws/rest/nodes/<name>?api-version=3[&proxy-user=<username>]
[&change-mode=set]

Parameter Required Type Valid values Description

name Yes String -- The name of the object.

proxy-user No String -- Perform the action as this user.

See Global URL parameters on page 1403 for available URL parameters.

Additional URL parameters

Parameter Required Valid val-
ues Description

change-
mode

No set (default)
add
remove

If set, replace all features with the features specified.
If add, add the specified features to existing features.
If remove, remove the specified features from existing
features.

Request body

The request body below shows all the fields that are available when modifying a node, along with some
sample values.

Sample JSON request body to modify a node

{
"featuresCustom": ["feature1", "feature2"],
"messages": [
{"message": "Message one"},
{"message": "Message two"}

],
"metrics": {"pwatts": 211},
"operatingSystem": {"image": "esx4.1"},
"partition": "part1",
"states": {
"powerState": "On",
"state": "Running"

},
"variables": {
"key": "value",
"arbitrary text key": "more value"

}
}

Moab Web Services

Sample response

This message may not match the message returned from Moab exactly, but is given as an example
of the structure of the response.

JSON response

{"messages":[
"Successfully modified os to 'linux'",
"Successfully powered node off"

]}

Related topics

l Fields: Nodes on page 2004
l Resources introduction on page 1424

Notification conditions
This section describes behavior of the Notification Conditions object in Moab Web Services. It contains
the URLs, request bodies, and responses delivered to and from MWS.

The Notification Conditions API is new with API version 3, and is not available with older API
versions. The supported methods table below requires each resource to be accessed with a URL
parameter of api-version=3.

For more information, see Requesting specific API versions on page 1406.

The Fields: Notification Conditions reference contains the type and description of all fields in the
Notification Conditions object.

Supported methods

Resource GET PUT POST DELETE

/rest/notification-con-
ditions

Get all notification con-
ditions

Update notification
condition

-- --

/rest/notification-con-
ditions/<id>

Get single notification
condition

-- -- --

This topic contains these sections:

Moab Web Services

1558 Resources

Resources 1559

l Getting notification conditions on page 1559

o Get all notification conditions on page 1559

o Get single notification condition on page 1561

l Updating notification conditions on page 1561

o Update notification condition on page 1562

Getting notification conditions
The HTTP GET method is used to retrieve Notification Condition information.

Quick reference

GET http://localhost:8080/mws/rest/notification-conditions?api-version=3
GET http://localhost:8080/mws/rest/notification-conditions/<id>?api-version=3

Get all notification conditions

URLs and parameters

GET http://localhost:8080/mws/rest/notification-conditions?api-version=3[&query=
{"escalationLevel":"ADMIN"}][&sort={"observedDate":-1}]

Parameter Required Type Description Example

query No JSON Query for specific results.
It is possible to query
notifications by one or more
fields based on MongoDB
query syntax.

query={"escal-
ationLevel":"ADMIN"}

sort No JSON Sort the results. Use 1 for
ascending and -1 for des-
cending.

sort={"observedDate":-1}

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Sample response

GET http://localhost:8080/mws/rest/notification-conditions?api-version=3&query=
{"escalationLevel":"ADMIN"}&sort={"observedDate":-1}

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"createdDate": "2013-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeUtilizationReport",
"pluginId": "node-report"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'testnode' has not been updated since the last poll,

which is likely due to a misconfiguration.",
"objectId": "testnode",
"objectType": "Node",
"observedDate": "2013-09-10 23:13:33 UTC",
"origin": "MWS/plugins/NodeUtilizationReport/node-report",
"tenant": {

"id":"1234567890abcdef12345678",
"name":"Research"

},
"id": "522fa79de4b0cafeaec6f83e"

},
{

"createdDate": "2013-09-11 17:19:35 UTC",
"details": {

"pluginType": "VCenter",
"pluginId": "vcenter42"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'node1' does not have vcenter tools installed,

therefore the state is unknown and migrations may not work correctly",
"objectId": null,
"objectType": "System",
"observedDate": "2013-09-11 17:19:35 UTC",
"origin": "MWS/plugins/VCenter/vcenter42",
"tenant": {

"id":"1234567890abcdef12345678",
"name":"Research"

},
"id": "5230a627e4b0d51bef490e86"

}
]

}

A notification's tenant is automatically inherited from the objectId and objectType fields. If
no object is associated with the notification condition, the notification is visible to all tenants.

Moab Web Services

1560 Resources

Resources 1561

Get single notification condition

URLs and parameters

GET http://localhost:8080/mws/rest/notification-conditions/<id>?api-version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/notification-
conditions/521a1f18e4b0e3f9031f47f5?api-version=3

{
"createdDate": "2013-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeUtilizationReport",
"pluginId": "node-report"

},
"escalationLevel": "ADMIN",
"expirationDate": null,
"expirationDuration": null,
"message": "The node 'testnode' has not been updated since the last poll, which is

likely due to a misconfiguration.",
"objectId": "testnode",
"objectType": "Node",
"observedDate": "2013-09-10 23:13:33 UTC",
"origin": "MWS/plugins/NodeUtilizationReport/node-report",
"tenant": {

"id":"1234567890abcdef12345678",
"name":"Research"

},
"id": "522fa79de4b0cafeaec6f83e"

}

A notification's tenant is automatically inherited from the objectId and objectType fields. If
no object is associated with the notification condition, the notification is visible to all tenants.

Updating notification conditions
The HTTP PUT method is used to update Notification Condition information. The PUT operation is
idempotent, meaning that is used for both creating new notification conditions and updating existing
ones. If the escalationLevel, origin, message, objectType, and objectId fields match an
existing notification condition, it will be updated. Otherwise, a new condition will be created.

Quick reference

PUT http://localhost:8080/mws/rest/notification-conditions?api-version=3

Moab Web Services

Update notification condition

URLs and parameters

PUT http://localhost:8080/mws/rest/notification-conditions?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows some fields that are available when updating a notification condition,
along with some sample values.

Sample JSON request body to update a notification condition

{
"details": {

"pluginType": "NodeTester",
"pluginId": "my-tester1"

},
"escalationLevel": "ADMIN",
"expirationDuration": 30,
"message": "Node 'node2' is powered off, please check your hardware.",
"objectId": "node2",
"objectType": "Node",
"origin": "NodeTester/my-tester1/Test.groovy:141"

}

Sample response

JSON response

{
"createdDate": "2013-09-10 23:13:33 UTC",
"details": {

"pluginType": "NodeTester",
"pluginId": "my-tester1"

},
"escalationLevel": "ADMIN",
"expirationDate": "2013-09-10 23:14:03 UTC",
"expirationDuration": 30,
"observedDate": "2013-09-10 23:13:33 UTC",
"message": "Node 'node2' is powered off, please check your hardware.",
"objectId": "node2",
"objectType": "Node",
"origin": "NodeTester/my-tester1/Test.groovy:141",
"tenant": {

"id":"1234567890abcdef12345678",
"name":"Research"

},
"id": "5230a627e4b0d51bef490e86"

}

Related topics

l Resources introduction on page 1424
l Events on page 1506

Moab Web Services

1562 Resources

Resources 1563

l Fields: Events on page 1837
l Notifications on page 1563
l Fields: Notifications on page 2028
l Fields: Notification Conditions on page 2024
l Creating events and notifications on page 1682
l Plugin event service on page 1733
l Handling events on page 1689
l System events on page 1422
l Securing the connection with the message queue on page 1395

Notifications
This section describes behavior of the Notifications object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Notifications API is new with API version 3, and is not available with older API versions. The
supported methods table below requires each resource to be accessed with a URL parameter of
api-version=3.

For more information, see Requesting specific API versions on page 1406.

The Fields: Notifications reference contains the type and description of all fields in the
Notifications object.

Supported methods

Resource GET PUT POST DELETE

/rest/notifications/ Get all noti-
fications

-- -- --

/rest/notifications/<id> Get single noti-
fication

-- -- --

/rest/notifications/ignore -- Ignore all notifications -- --

/rest/notifications/<id>/ignore -- Ignore single noti-
fication

-- --

/rest/notifications/unignore -- Unignore all noti-
fications

-- --

Moab Web Services

Resource GET PUT POST DELETE

/rest/notifications/<id>/unignore -- Unignore single noti-
fication

-- --

/rest/notifications/dismiss -- Dismiss all noti-
fications

-- --

/rest/notifications/<id>/dismiss -- Dismiss single noti-
fication

-- --

This topic contains these sections:

l Getting notifications on page 1564

o Get all notifications on page 1564

o Get single notification on page 1566

l Ignoring notifications on page 1567

o Ignore all notifications on page 1567

o Ignore single notification on page 1567

l Unignoring notifications on page 1568

o Unignore all notifications on page 1568

o Unignore single notification on page 1569

l Dismissing notifications on page 1569

o Dismiss all notifications on page 1569

o Dismiss single notification on page 1570

Getting notifications
The HTTP GET method is used to retrieve Notification information.

Quick reference

GET http://localhost:8080/mws/rest/notifications?api-version=3
GET http://localhost:8080/mws/rest/notifications/<id>?api-version=3

Get all notifications

URLs and parameters

GET http://localhost:8080/mws/rest/notifications?api-version=3[&proxy-user=<username>]
[&query={"ignoredDate":null,"dismissedDate":null}][&sort={"observedDate":-1}]

Moab Web Services

1564 Resources

Resources 1565

Para-
meter

Requ-
ired

Ty-
pe Description Example

proxy-
user

No Str-
ing

Perform the action as this user.

Notifications cannot be
created directly. Instead, they

are automatically created for
the current user or proxy-
user specified in the request
from non-expired notification
conditions (see Notification
conditions on page 1558). This
is true no matter the query
specified.

--

query No JS-
ON

Query for specific results.
It is possible to query notifications by
one or more fields based on MongoDB
query syntax. However, typically you
will want to query on
{"ignoredDate":null,"dismisse
dDate":null}.

query=
{"ignoredDate":null,"dis-
missedDate":null}

sort No JS-
ON

Sort the results. Use 1 for ascending
and -1 for descending.

sort={"observedDate":-1}

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Sample response

GET http://localhost:8080/mws/rest/notifications?api-version=3&proxy-
user=<username>&query={"ignoredDate":null,"dismissedDate":null}][&sort=
{"observedDate":-1}

{
"totalCount": 2,
"resultCount": 2,
"results": [

{
"conditionId": "521bdea1e4b019cd33e29c86",
"createdDate": "2013-08-26 23:02:56 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'ZeroMQ Message Queue'

connection, please see the MWS health details page for more information.",
"objectId": "zmq",
"objectType": "Health",
"observedDate": "2013-09-05 17:57:00 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d62f"

},
{

"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2013-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see

the MWS health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2013-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}
]

}

Get single notification

URLs and parameters

GET http://localhost:8080/mws/rest/notifications/<id>?api-version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1566 Resources

Resources 1567

Sample response

GET http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2013-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2013-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

Ignoring notifications
The HTTP PUT method is used to ignore Notifications.

Quick reference

PUT http://localhost:8080/mws/rest/notifications/ignore?api-version=3
PUT http://localhost:8080/mws/rest/notifications/<id>/ignore?api-version=3

Ignore all notifications

URLs and parameters

PUT http://localhost:8080/mws/rest/notifications/ignore?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{"messages":["Updated 10 Notification objects"]}

Ignore single notification

URLs and parameters

PUT http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/ignore?api-
version=3

Moab Web Services

Parameter Required Type Description

id Yes String The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

PUT http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/ignore?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2013-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": null,
"ignoredDate": "2013-09-17 15:34:36 UTC",
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2013-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

Unignoring notifications
The HTTP PUT method is used to unignore Notifications.

Quick reference

PUT http://localhost:8080/mws/rest/notifications/unignore?api-version=3
PUT http://localhost:8080/mws/rest/notifications/<id>/unignore?api-version=3

Unignore all notifications

URLs and parameters

PUT http://localhost:8080/mws/rest/notifications/unignore?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{"messages":["Updated 10 Notification objects"]}

Moab Web Services

1568 Resources

Resources 1569

Unignore single notification

PUT
http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/unignore?api-
version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

PUT
http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/unignore?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2013-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": "null",
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2013-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

Dismissing notifications
The HTTP PUT method is used to dismiss Notifications.

Quick reference

PUT http://localhost:8080/mws/rest/notifications/dismiss?api-version=3
PUT http://localhost:8080/mws/rest/notifications/<id>/dismiss?api-version=3

Dismiss all notifications

URLs and parameters

PUT http://localhost:8080/mws/rest/notifications/dismiss?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

JSON response

{"messages":["Updated 10 Notification objects"]}

Dismiss single notification

URLs and parameters

PUT http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/dismiss?api-
version=3

Parameter Required Type Description

id Yes String The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

PUT http://localhost:8080/mws/rest/notifications/5230ed82e4b065347016d60d/dismiss?api-
version=3

{
"conditionId": "521a1f18e4b0e3f9031f47f5",
"createdDate": "2013-08-25 15:13:28 UTC",
"details": {},
"dismissedDate": "2013-09-17 15:34:36 UTC",
"ignoredDate": null,
"message": "A health check failed for the 'LDAP' connection, please see the MWS

health details page for more information.",
"objectId": "ldap",
"objectType": "Health",
"observedDate": "2013-08-30 18:11:15 UTC",
"origin": "MWS/HealthNotificationJob",
"user": "admin",
"id": "5230ed82e4b065347016d60d"

}

Related topics

l Resources introduction on page 1424
l Events on page 1506
l Fields: Events on page 1837
l Notifications on page 1563
l Fields: Notifications on page 2028
l Creating events and notifications on page 1682
l Plugin event service on page 1733
l Handling events on page 1689

Moab Web Services

1570 Resources

Resources 1571

l System events on page 1422
l Securing the connection with the message queue on page 1395

Permissions
This section describes behavior of the Permissions object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: User's Permissions reference section contains the type and description of fields that
all Permissions have in common.

Supported methods

Resource GET PUT POST DELETE

/rest/permissions Get all permissions -- Create single
permission

--

/rest/permissions/<id> Get single permission -- -- Delete single
permission

/rest/permissions/users/<id> Get a user's per-
missions

-- -- --

/rest/permissions/users Get a current user's
permissions

-- -- --

This topic contains these sections:

l Getting permissions on page 1572

o Get all permissions on page 1572

o Get single permission on page 1573

o Get a user's permissions on page 1573

o Get a current user's permissions on page 1574

l Creating permissions on page 1575

o Create single permission on page 1575

l Deleting permissions on page 1576

o Delete single permission on page 1576

Moab Web Services

Getting permissions
The HTTP GET method is used to retrieve Permission information. You can query all objects or a single
object.

Quick reference

GET http://localhost:8080/mws/rest/permissions?api-version=3
GET http://localhost:8080/mws/rest/permissions/<id>?api-version=3

Get all permissions

URLs and parameters

GET http://localhost:8080/mws/rest/permissions?api-version=3[&query={"field":"value"}
&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query permissions by one or
more fields based on MongoDB query
syntax.

query=
{"type":"CUSTOM"}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/permissions?api-
version=3&fields=resource,action,description

{
"totalCount": 1,
"resultCount": 1,
"results": [{

"resource" : "chart",
"action" : "read",
"description" : "The permission to view all charts."
}]

}

Sorting and querying

See the sorting and querying sections of Global URL parameters on page 1403.

Moab Web Services

1572 Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Resources 1573

Get single permission

URLs and parameters

GET http://localhost:8080/mws/rest/permissions/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the permission.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/permissions/<id>?api-version=3

{
"action" : "create",
"description" : "The permission to create all charts.",
"id" : "50296335e4b0011b0f8394ec",
"label" : "Create Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "NONE",
"version" : 0

}

For permissions with type "domain", scope must be GLOBAL or TENANT. All other permissions
should have scope NONE.

Get a user's permissions

URLs and parameters

GET http://localhost:8080/mws/rest/permissions/users/<name>?api-version=3

Parameter Required Type Valid values Description

name Yes String -- The name of the user.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/permissions/users/bob?api-version=3

[
{
"action": "read",
"description": "The permission to read all charts",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "chart",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "read",
"description": "The permission to read all pages",
"id": "5033b8a5e4b09cc61bedb82d",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "update",
"description": "The permission to update all pages",
"id": "5033b8a5e4b09cc61bedb82f",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

}
]

Get a current user's permissions

URLs and parameters

GET http://localhost/mws/rest/permissions/users/?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1574 Resources

Resources 1575

Sample response

GET http://localhost/mws/rest/permissions/users/?api-version=3

[
{
"action": "read",
"description": "The permission to read all charts",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "chart",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "read",
"description": "The permission to read all pages",
"id": "5033b8a5e4b09cc61bedb82d",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

},
{
"action": "update",
"description": "The permission to update all pages",
"id": "5033b8a5e4b09cc61bedb82f",
"label": "",
"resource": "page",
"resourceFilter": null,
"type": "custom",
"scope": "NONE",
"version": 1

}
]

Creating permissions
The HTTP POST method is used to create Permissions.

Quick reference

POST http://localhost:8080/mws/rest/permissions?api-version=3

Create single permission

URLs and parameters

POST http://localhost:8080/mws/rest/permissions?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Request body

The resource, action, and type are required on each permission.

Api permissions are permissions with the type 'api' and are the only permissions enforced by
MWS.

Api permissions must map to a valid resource. For example, "services" is valid because there is a
resource /mws/rest/services.

Api permissions must have create, read, update, or delete as the action.

The following is an example request body to create a permission:

POST http://localhost:8080/mws/rest/permissions?api-version=3

{
"resource" : "Chart",
"action" : "read",
"type" : "custom",
"scope" : "NONE",
"label" : "Read all charts",
"description" : "The permissions to view all charts."

}

Sample response

If the request was successful, the response body is the new permission that was created exactly as
shown in Get single permission. On failure, the response is an error message.

Deleting permissions
The HTTP DELETE method is used to delete Permissions.

Quick reference

DELETE http://localhost:8080/mws/rest/permissions/<id>?api-version=3

Delete single permission

URLs and parameters

DELETE http://localhost:8080/mws/rest/permission/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the permission.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1576 Resources

Resources 1577

Sample response

JSON response

{}

Related topics

l Fields: User's Permissions on page 2186
l Resources introduction on page 1424

Plugins
This section describes behavior of the Plugins object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Plugins reference contains the type and description of all fields in the Plugin object. It
also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/plugins Get all plu-
gins

-- Create plu-
gin

--

/rest/plugins/reporting-job-
s/<jobName>?api-version=3

Get all plu-
gins report-
ing object

-- -- --

/rest/plugins/reporting-
nodes/<nodeName>?api-version=3

Get all plu-
gins report-
ing object

-- -- --

/rest/plugins/reporting-
vms/<vmName>?api-version=3

Get all plu-
gins report-
ing object

-- -- --

/rest/plugins/<id> Get single
plugin

Modify plu-
gin

-- Delete plu-
gin

/rest/plugins/<id>/poll -- -- Trigger
plugin poll

--

Moab Web Services

Resource GET PUT POST DELETE

/rest/plugins/<id>/services/<serviceName> Access a plu-
gin web ser-
vice

Access a
plugin
web ser-
vice

Access a
plugin
web ser-
vice

Access a
plugin web
service

This topic contains these sections:

l Getting plugins on page 1578

o Get all plugins on page 1578

o Get all plugins reporting object on page 1579

o Get single plugin on page 1580

l Creating plugins on page 1580

o Create plugin on page 1580

l Modifying plugins on page 1581

o Modify plugin on page 1581

o Trigger plugin poll on page 1582

l Deleting plugins on page 1583

o Delete plugin on page 1583

l Accessing Plugin Web Services on page 1583

o Access a plugin web service on page 1584

Getting plugins
The HTTP GET method is used to retrieve Plugin information. Queries for all objects, a single object, and
query by reported object are available.

Quick reference

GET http://localhost:8080/mws/rest/plugins?api-version=3
GET http://localhost:8080/mws/rest/plugins/<id>?api-version=3
GET http://localhost:8080/mws/rest/plugins/reporting-jobs/<jobName>?api-version=3
GET http://localhost:8080/mws/rest/plugins/reporting-nodes/<nodeName>?api-version=3
GET http://localhost:8080/mws/rest/plugins/reporting-vms/<vmName>?api-version=3

Get all plugins

URLs and parameters

GET http://localhost:8080/mws/rest/plugins?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1578 Resources

Resources 1579

Sample response

GET http://localhost:8080/mws/rest/plugins?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "plugin1"},
{"id": "plugin2"},
{"id": "plugin3"}

]
}

Get all plugins reporting object

URLs and parameters

GET http://localhost:8080/mws/rest/plugins/reporting-jobs/<jobName>?api-version=3
GET http://localhost:8080/mws/rest/plugins/reporting-nodes/<nodeName>?api-version=3
GET http://localhost:8080/mws/rest/plugins/reporting-vms/<vmName>?api-version=3

Parameter Required Type Valid values Description

jobName Yes String -- The name of the job to query by.

nodeName Yes String -- The name of the node to query by.

vmName Yes String -- The name of the VM to query by.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

This built-in query returns the same information as Get all plugins, but filters the items to only plugins
that are currently reporting the specified job, node, or VM (see Reporting state data on page 1676). The
list is sorted ascending by the precedence field. In other words, the most authoritative plugin for the
report is listed first. For more information, see Data consolidation on page 1655.

GET http://localhost:8080/mws/rest/plugins/reporting-nodes/node1?api-
version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "plugin1"},
{"id": "plugin2"},
{"id": "plugin3"}

]
}

Moab Web Services

Get single plugin

URLs and parameters

GET http://localhost:8080/mws/rest/plugins/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{
"id":"plugin1",
"pluginType":"Native",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

},
"state":"STARTED",
"nextPollDate":"2011-12-02 17:28:52 UTC",
"lastPollDate":"2011-12-02 17:28:22 UTC"

}

Creating plugins
The HTTP POST method is used to create Plugins.

Quick reference

POST http://localhost:8080/mws/rest/plugins?api-version=3

Create plugin

URLs and parameters

POST http://localhost:8080/mws/rest/plugins?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

When creating a plugin, the id and pluginType fields are required. The request body below shows all
fields that are available when creating a plugin, along with some sample values.

Moab Web Services

1580 Resources

Resources 1581

JSON request body

{
"id":"plugin1",
"pluginType":"Native",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

}
}

Sample response

JSON response for successful POST

{"id": "plugin1"}

Restrictions

While it is possible to create a plugin with arbitrary nested configuration, such as:

…
"config":{
"nestedObject":{
"property1":"value1",
"property2":"value2"

},
"nestedList:["listItem1", "listItem2"]

}

It is not recommended, because the user interface (see Plugin management on page 1720) does not
support editing or viewing any configuration data values other than strings.

Modifying plugins
The HTTP PUT method is used to modify Plugins. Additionally, the POST method may be used to trigger
an immediate poll of a Plugin.

Quick reference

PUT http://localhost:8080/mws/rest/plugins/<id>?api-version=3
POST http://localhost:8080/mws/rest/plugins/<id>/poll?api-version=3

Modify plugin

URLs and parameters

PUT http://localhost:8080/mws/rest/plugins/<id>?api-version=3

Moab Web Services

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows all the fields that are available when modifying a Plugin, along with some
sample values.

JSON request body for plugin modification

{
"state":"STARTED",
"pollInterval":30,
"autoStart":true,
"config":{
"getJobs":"exec:///opt/moab/tools/workload.query.pl"

},
"state":"STARTED"

}

Sample response

JSON response

{"messages":["Plugin plugin1 updated", "Started Plugin 'plugin1'"]}

Trigger plugin poll

URLs and parameters

POST http://localhost:8080/mws/rest/plugins/<id>/poll?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Trigger poll

This resource call will trigger an immediate poll of the specified plugin. It is equivalent to the same
operation on Monitoring and lifecycle controls on page 1723.

Request body

No request body is required.

Moab Web Services

1582 Resources

Resources 1583

Sample response

JSON response

{"messages":["Polled Plugin with ID 'myPlugin'"]}

Deleting plugins
The HTTP DELETE method is used to delete Plugins.

Quick reference

DELETE http://localhost:8080/mws/rest/plugins/<id>?api-version=3

Delete plugin

URLs and parameters

DELETE http://localhost:8080/mws/rest/plugins/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response for successful DELETE

{}

Additional information about a successful DELETE can be found in the HTTP response header X-
MWS-Message.

JSON response for an unsuccessful DELETE

{"messages":["Plugin plugin1 could not be deleted", "Error message describing the
problem"]}

Accessing Plugin Web Services
All HTTP methods can be used to access Plugin Web Services. However, some services only support
specific methods. Check the specific plugin type documentation for more information.

Moab Web Services

Quick reference

GET http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
POST http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
PUT http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
DELETE http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3

Access a plugin web service

URLs and parameters

GET http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
POST http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
PUT http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3
DELETE http://localhost:8080/mws/rest/plugins/<id>/services/<serviceName>
[/<objectId>]?api-version=3

Parameter Required Type Valid val-
ues Description

id Yes String -- The unique identifier of the object.

objectId No String -- An arbitrary ID parameter that will be passed to the
web service.

serviceName Yes String -- The name of the web service, either in CamelCase or
hyphenated.

See Global URL parameters on page 1403 for available URL parameters.

Web service IDs

Translation is done to map CamelCase web service names to hyphenated names in the URL. For example,
a web service method named notifyEvent on a plugin with a name of notifications may be called
with the following URLs:

// CamelCase
/rest/plugins/notifications/services/notifyEvent

// Hyphenated
/rest/plugins/notifications/services/notify-event

HTTPmethod and request body

Because plugin custom web services do not need to distinguish which HTTP method is used (see Custom
web services on page 1654), it is recommended to use GET and POST when making requests to access

Moab Web Services

1584 Resources

http://en.wikipedia.org/wiki/Camel_case

Resources 1585

web services unless documented otherwise. The request body and output may vary for each web service
called. See Plugin types on page 1585 for the requested plugin for available web services, request
parameters, and expected output.

Related topics

l Fields: Plugins on page 2030
l Resources introduction on page 1424
l Plugin types on page 1585

Plugin types
This section describes behavior of the Plugin Type object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Plugin Types reference section contains the type and description of all fields in the
Plugin Type object. It also contains details regarding which fields are valid during PUT and POST
actions.

Supported methods

Resource GET PUT POST DELETE

/rest/plugin-types Get all plugin types Creating or updating plugin
types

-- --

/rest/plugin-
types/<id>

Get single plugin
type

-- -- --

This topic contains these sections:

l Getting plugin types on page 1585

o Get all plugin types on page 1586

o Get single plugin type on page 1586

l Creating or updating plugin types on page 1587

o Update plugin type (file) on page 1587

o Update plugin type (JAR) on page 1589

Getting plugin types
The HTTP GET method is used to retrieve Plugin Type information. Queries for all objects and a single
object are available.

Moab Web Services

Quick reference

GET http://localhost:8080/mws/rest/plugin-types/<id>?api-version=3

Get all plugin types

URLs and parameters

GET http://localhost:8080/mws/rest/plugin-types?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/plugin-types?api-version=3&fields=id

{
"totalCount": 2,
"resultCount": 2,
"results": [
{"id": "vCenter"},
{"id": "Native"}

]
}

Get single plugin type

URLs and parameters

GET http://localhost:8080/mws/rest/plugin-types/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1586 Resources

Resources 1587

Sample response

JSON response

{
"author": "Adaptive Computing Enterprises, Inc.",
"commonsVersion": "0.9.3 > *",
"description": "Polls a VMware® vCenter™ Server for information on the hypervisors

and virtual machines it manages.",
"documentationLink": "",
"email": "",
"eventComponent": 1,
"realizedEventComponent": 513,
"id": "VCenter",
"initialPlugins": { },
"instances": [
{"id":"vcenter"}

],
"issueManagementLink": "",
"license": "APACHE",
"mwsVersion": "7.1.2 > *",
"pollMethod": true,
"scmLink": "",
"title": "VCenter",
"version": "1.0",
"webServices": [],
"website": "http://www.adaptivecomputing.com"

}

Creating or updating plugin types
The HTTP PUT method is used to create or update Plugin Types. The Content-Type HTTP header is
used to determine if the request contains a single class file as plaintext or the binary data of a JAR file.
Each request is explained in the following sections.

Quick reference

PUT http://localhost:8080/mws/rest/plugin-types?api-version=3[&reload-plugins=false]

There is a known issue with dynamically updating plugin types with typed field injection. For more
information, see Add or update plugin types on page 1717.

Update plugin type (file)

URLs and parameters

PUT http://localhost:8080/mws/rest/plugin-types?api-version=3[&reload-plugins=false]

Moab Web Services

Parameter Required Type Valid val-
ues Description

reload-plu-
gins

No String true or
false

Reloads all plugins of this type on successful update.
Defaults to true.

See Global URL parameters on page 1403 for available URL parameters.

Request body

This function is idempotent, meaning it will create the Plugin Type if it does not exist or update it if it
does. The request body is the actual contents of the class file to upload. This web service is an exception
to most as it requires a content type of application/x-groovy or text/plain.

If the application/x-groovy or text/plain content types are not used in the request, it
will be interpreted as JSON, resulting in a failure.

Plaintext upload

package test

import com.adaptc.mws.plugins.*

class UploadPlugin {
static author = "Adaptive Computing"
static description = "A sample plugin class"
String id

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config
def errors = []
if (!myConfig.arbitraryKey)

errors << "Missing arbitraryKey!"
if (errors)

throw new InvalidPluginConfigurationException(errors)
}

public def customService(Map params) {
return params

}
}

If using the curl library to perform plugin type uploading, the equivalent of the command-line
option --data-binary must be used to send the request body. Otherwise compilation errors
may be encountered when uploading the plugin type.

Sample response

The response of this task is the same as the Get all plugin types task. The reason that the return of this
task is a list is to accommodate the possibility of uploading multiple plugin types in a single JAR file as
explained in the next section.

Moab Web Services

1588 Resources

http://curl.haxx.se/

Resources 1589

Update plugin type (JAR)

URLs and parameters

PUT http://localhost:8080/mws/rest/plugin-types?api-version=3&jar-
filename=<filename.jar>[&reload-plugins=false]

Parameter Required Type Valid val-
ues Description

jar-file-
name

Yes String -- The filename of the JAR file that is being uploaded.

reload-plu-
gins

No String true or
false

Reloads all plugins of this type on successful update.
Defaults to true.

See Global URL parameters on page 1403 for available URL parameters.

Request body

This function is idempotent, meaning it will create the Plugin Types if they do not exist or update them
if they do. The request body is the binary contents of the JAR file to upload. This web service is an
exception to most as it requires a content type of application/x-jar.

If the application/x-jar content type is not used in the request, it will be interpreted as
JSON, resulting in a failure.

If using the curl library to perform plugin type uploading, the equivalent of the command-line
option --data-binary must be used to send the request body. Otherwise compilation errors
may be encountered when uploading the plugin type.

Sample response

The response of this task is the same as the Get all plugin types task. Note that when using a JAR file,
multiple plugin types may be uploaded in the same request.

Related topics

l Fields: Plugin Types on page 2035
l Resources introduction on page 1424
l Plugins on page 1577

Policies
This section describes behavior of the Policies object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

Moab Web Services

http://curl.haxx.se/

The Fields: Policies reference section contains the type and description of fields of all Policies.

Supported policies

Name ID

Automatic VM Migration auto-vm-migration

Fairshare fairshare

Hypervisor Allocation Overcommit hv-allocation-overcommit

Migration Exclusion List migration-exclusion-list

Node Allocation node-allocation

Supported methods

Resource GET PUT POST DELETE

/rest/policies Get all policies -- -- --

/rest/policies/<id> Get single policy Modify policy -- --

This topic contains these sections:

l Getting policies on page 1590

o Get all policies on page 1591

o Get single policy on page 1591

l Modifying policies on page 1593

o Modify policy on page 1594

Getting policies
The HTTP GET method is used to retrieve Policies information.

Quick reference

GET http://localhost:8080/mws/rest/policies?api-version=3

Moab Web Services

1590 Resources

Resources 1591

Get all policies

URLs and parameters

GET http://localhost:8080/mws/rest/policies?api-version=3

Para-
meter

Require-
d

Typ-
e

Descrip-
tion Example

query No JSON Query for spe-
cific results.

query={"state":"DISABLED","-
conflicted":"false"}

sort No JSON Sort the res-
ults. Use 1 for
ascending
and -1 for
descending.

sort={"id":-1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/policies?api-version=3&fields=id,state,conflicted

{
"totalCount": 4,
"resultCount": 4,
"results": [{
"conflicted": false,
"state": "DISABLED",
"id": "auto-vm-migration"

},{
"conflicted": false,
"state": "DISABLED",
"id": "hv-allocation-overcommit"

},{
"conflicted": false,
"state": "DISABLED",
"id": "node-allocation"

},{
"conflicted": false,
"state": "DISABLED",
"id": "migration-exclusion-list"

}]
}

Get single policy

URLs and parameters

GET http://localhost:8080/mws/rest/policies/<id>?api-version=3

Moab Web Services

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample responses

Auto VM Migration

{
"conflicted": false,
"description": "Controls how virtual machines are automatically migrated.",
"id": "auto-vm-migration",
"name": "Auto VM Migration",
"potentialConflicts": [],
"priority": 1,
"state": "DISABLED",
"tags": [],
"types": [],
"version": 0,
"genericMetricThresholds":{

"GMETRIC1":1.3
},
"processorUtilizationThreshold":0.5,
"memoryUtilizationThreshold":0.4

}

Fairshare

{
"conflicted": false,
"decayFactor": 0.44,
"depth": 4,
"description": "Control job feasibility and priority decisions based on system

utilization targets for users, groups, accounts, classes, and QoS levels.",
"intervalSeconds": 600,
"name": "Fairshare",
"potentialConflicts": [],
"priority": 16,
"state": "ENABLED",
"tags": [],
"types": [],
"usageMetric": "DEDICATED_PROCESSOR_SECONDS_DELIVERED",
"version": 3,
"id": "fairshare"

}

Moab Web Services

1592 Resources

Resources 1593

Hypervisor Allocation Overcommit

{
"conflicted": false,
"description": "Controls how hypervisors are overallocated with regards to

processors and memory.",
"id": "hv-allocation-overcommit",
"name": "Hypervisor Allocation Overcommit",
"potentialConflicts": [],
"priority": 2,
"state": "DISABLED",
"tags": [],
"types": [],
"version": 0,
"processorAllocationLimit":29.5,
"memoryAllocationLimit":1.2

}

Migration Exclusion List

{
"conflicted": false,
"description": "Controls which machines are excluded from automatic live migration

operations.",
"hvExclusionList": ["blade05", "blade02"],
"name": "Migration Exclusion List",
"potentialConflicts": [],
"priority": 100,
"state": "DISABLED",
"tags": [],
"types": [],
"version": 1,
"vmExclusionList": ["vm1", "vm5"],
"id": "migration-exclusion-list"

}

Node Allocation

{
"conflicted": false,
"description": "Controls how nodes are selected for workload placement.",
"id": "node-allocation",
"name": "Node Allocation",
"potentialConflicts": [],
"priority": 3,
"state": "DISABLED",
"tags": [],
"types": [],
"version": 0,
"nodeAllocationAlgorithm": "CustomPriority",
"customPriorityFunction": "-100*GMETRIC[vmcount]"

}

Modifying policies
The HTTP PUT method is used to modify Policies.

Moab Web Services

Quick reference

PUT http://localhost:8080/mws/rest/policies/<id>?api-version=3

Modify policy

URLs and parameters

PUT http://localhost:8080/mws/rest/policies/<id>?api-version=3[&change-mode=set]

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Additional URL parameters

URL parameters for modifying a Migration Exclusion Lists Policy.

Migration Exclusion
Lists parameter Required Type Valid

values Description

change-mode No String set
(default)
add
remove

If set, replace existing exclusion list(s)
with the given one.
If add, add the given VMs/HVs to the
existing exclusion list(s).
If remove, remove the given VMs/HVs
from the existing exclusion list(s).

Request body

In general, the fields shown in the Fields: Policies reference section are not available for modification.
However, the state field may be modified to a valid PolicyState. All other fields listed in the specific
policy type sections (i.e. AutoVMMigrationPolicy) may be modified unless documented otherwise.

l The request body below shows all the fields that are available when modifying a Auto VM
Migration Policy, along with some sample values.

JSON request body for Auto VM Migration Policy

{
"genericMetricThresholds": {

"GENERICTHRESHOLD": 5
},
"memoryUtilizationThreshold": 0.5,
"processorUtilizationThreshold": 0.4

}

Moab Web Services

1594 Resources

Resources 1595

l The request body below shows all the fields that are available when modifying a Fairshare Policy,
along with some sample values.

JSON request body for Fairshare Policy

{
"decayFactor": 0.44,
"depth": 4,
"intervalSeconds": 600,
"usageMetric": "DEDICATED_PROCESSOR_SECONDS_DELIVERED",

}

l The request body below shows all the fields that are available when modifying a Hypervisor
Allocation Overcommit Policy, along with some sample values.

JSON request body for Hypervisor Allocation Overcommit Policy

{
"processorAllocationLimit":29.5,
"memoryAllocationLimit":1.2

}

l The request body below shows all the fields that are available when modifying a Migration
Exclusion Lists Policy, along with some sample values.

JSON request body for Migration Exclusion Lists Policy

{
"vmExclusionList" : ["vm1","vm3","vm5"],
"hvExclusionList" : ["hv2","hv3","hv6"]

}

l The request body below shows all the fields that are available when modifying a Node Allocation
Policy, along with some sample values.

JSON request body for Node Allocation Policy

{
"nodeAllocationAlgorithm" : "CustomPriority",
"customPriorityFunction" : "-100*GMETRIC[vmcount]"

}

Sample response

JSON response

{
"messages": ["Policy auto-vm-migration updated"]

}

Samples

Enable the Auto VM Migration Policy and set values.

Moab Web Services

PUT http://localhost:8080/mws/rest/policies/auto-vm-migration?api-version=3

{
"state": "enabled",
"migrationAlgorithmType": "overcommit",
"processorUtilizationThreshold": 0.5,
"memoryUtilizationThreshold": 0.4

}

As noted in the Fields: Policies reference section documentation for AutoVMMigrationPolicy,
if the state is set to ENABLED, then the migrationAlgorithmType must not be set to NONE.

Restrictions

All policies:

l Fields cannot be modified while the policy is disabled. Enable the policy to modify the field.

Auto VM Migration

l Arbitrary metrics can be added to genericMetricThresholds, but they cannot be removed once
added.

l The migrationAlgorithmType field cannot be modified while the policy is disabled. Enable the
policy to modify the field.

l Moab is configured with a default limit of 10 generic metrics. If this limit is reached, such as when
arbitrary metrics are added to genericMetricThresholds, the metric will not be reported. To
increase this limit, set the MAXGMETRIC property in the Moab configuration file.

Fairshare

l Updating the usageMetric field will clear all credential-based fairshare interval data.

Related topics

l Fields: Policies on page 2039
l Fairshare on page 1596
l Resources introduction on page 1424

Fairshare
This section describes behavior of the Fairshare object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The supported methods table below requires each resource to be accessed with a URL parameter
of api-version=3.

For more information, see Requesting specific API versions on page 1406.

Moab Web Services

1596 Resources

Resources 1597

Supported methods

Resource GET PUT POST DELETE

/rest/policies/fairshare Get all fairshare
interval data on
page 1598

-- -- --

/rest/policies/fairshare/<credentialType> Get all fairshare
interval data for a
single credential
type on page 1601

-- -- --

/rest/policies/fairshare/<credentialType>/<name> Get all fairshare
interval data for a
single credential
on page 1604

-- -- --

This topic contains these sections:

l Getting credential-based fairshare interval data on page 1597

o Get all fairshare interval data on page 1598

o Get all fairshare interval data for a single credential type on page 1601

o Get all fairshare interval data for a single credential on page 1604

Getting credential-based fairshare interval data
The HTTP GET method is used to retrieve Policies information.

Quick reference

GET http://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/accounts?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/classes?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/groups?api-version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/qoses?api-version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/users?api-version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/accounts/<name>?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/classes/<name>?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/groups/<name>?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/qoses/<name>?api-
version=3
GET http://localhost:8080/mws/rest/policies/fairshare/credentials/users/<name>?api-
version=3

Moab Web Services

Get all fairshare interval data

URLs and parameters

GET http://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1598 Resources

Resources 1599

Sample response

Moab Web Services

GET http://localhost:8080/mws/rest/policies/fairshare/credentials?api-version=3

{
"totalCount": 4,
"resultCount": 4,
"results": [
{
"name": "jbethune",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "USER"

},
{
"name": "jfoote",
"target_type": null,
"target": null,
"interval_data": [
2104.16,
2377.06,
2240.1,
2550

],
"credential_type": "GROUP"

},
{
"name": "NOGROUP",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "GROUP"

},
{
"name": "DEFAULT",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "ACCOUNT"

},
{
"name": "Administration",
"target_type": null,
"target": null,
"interval_data": [
5256.28,
6247.05,
6048.27,
6948.67

],
"credential_type": "ACCOUNT"

}

Moab Web Services

1600 Resources

Resources 1601

]
}

Get all fairshare interval data for a single credential type

URLs and parameters

GET
http://localhost:8080/mws/rest/policies/fairshare/credentials/<accounts|classes|groups
|qoses|users>?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample responses

Moab Web Services

1602 Resources

Resources 1603

GET http://localhost:8080/mws/rest/policies/fairshare/credentials/accounts?api-
version=3

{
"totalCount": 6,
"resultCount": 6,
"results": [
{
"name": "jbethune",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "ACCOUNT"

},
{
"name": "Administration",
"target_type": null,
"target": null,
"interval_data": [
5256.28,
6247.05,
6048.27,
6948.67

],
"credential_type": "ACCOUNT"

},
{
"name": "Shared",
"target_type": null,
"target": null,
"interval_data": [
4261.38,
4951.09,
4480.2,
5000.54

],
"credential_type": "ACCOUNT"

},
{
"name": "Engineering",
"target_type": null,
"target": null,
"interval_data": [
15034.64,
17245.93,
15008.67,
17085

],
"credential_type": "ACCOUNT"

},
{
"name": "Test",
"target_type": null,
"target": null,
"interval_data": [
1808.08,
1873.96,
1568.07,
1757.33

],
"credential_type": "ACCOUNT"

},

Moab Web Services

{
"name": "Research",
"target_type": null,
"target": null,
"interval_data": [
47606.8,
52861.83,
46370.07,
52785

],
"credential_type": "ACCOUNT"

}
]

}

Get all fairshare interval data for a single credential

URLs and parameters

GET
http://localhost:8080/mws/rest/policies/fairshare/credentials/<accounts|classes|groups
|qoses|users>/<name>?api-version=3

Parameter Required Type Valid values Description

name Yes String -- The unique name of the object.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET
http://localhost:8080/mws/rest/policies/fairshare/credentials/accounts/DEFAULT?api-
version=3

{
"name": "DEFAULT",
"target_type": null,
"target": null,
"interval_data": [
0,
0,
0,
0

],
"credential_type": "ACCOUNT"

}

Related topics

l Policies on page 1589
l Resources introduction on page 1424

Moab Web Services

1604 Resources

Resources 1605

Principals
This section describes behavior of the Principal object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Principals reference contains the type and description of all fields in the Principal
object. It also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/principals Get all prin-
cipals

-- Create single
principal

--

/rest/principals/<id> Get single
principal

Modify single
principal

-- Delete single
principal

/rest/principals/<name> Get single
principal

Modify single
principal

-- Delete single
principal

This topic contains these sections:

l Getting principals on page 1605

o Get all principals on page 1606

o Get single principal on page 1607

l Creating principals on page 1608

o Create single principal on page 1608

l Modifying principals on page 1609

o Modify single principal on page 1609

l Deleting principals on page 1611

o Delete single principal on page 1611

Getting principals
The HTTP GET method is used to retrieve Principal information. You can query all objects or a single
object.

Moab Web Services

Quick reference

GET http://localhost:8080/mws/rest/principals?api-version=3[&query={"field":"value"}
&sort={"field":<1|-1>}]
GET http://localhost:8080/mws/rest/principals/<id>?api-version=3
GET http://localhost:8080/mws/rest/principals/<name>?api-version=3

Get all principals

URLs and parameters

GET http://localhost:8080/mws/rest/principals?api-version=3[&query={"field":"value"}
&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query principals by one or
more fields based on MongoDB query syntax.

query=
{"name":"Acme
Principal"}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-
1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/principals?api-version=3&fields=name,group

{
"totalCount": 2,
"resultCount": 2,
"results": [
{
"groups": [{
"name": "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev",
"type": "LDAPGROUP"

}],
"name": "Engineering-Principal"

},
{
"groups": [{
"name": "CN=Marketing,CN=Users,DC=corp,DC=cloud,DC=dev",
"type": "LDAPGROUP"

}],
"name": "Marketing-Principal"

}
]

}

Sorting and Querying

See the sorting and querying sections of Global URL parameters on page 1403.

Moab Web Services

1606 Resources

http://docs.mongodb.org/manual/reference/operator/

Resources 1607

Get single principal

URLs and parameters

GET http://localhost:8080/mws/rest/principals/<id>?api-version=3
GET http://localhost:8080/mws/rest/principals/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the principal.

name Yes String -- The name of the principal.

You must specify either id or name, but you do not have to specify both.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/principals/principal8?api-version=3

{
"attachedRoles": [{

"description": "This is a role for normal users in the Acme BU Group.",
"id": "5033b8eae4b09cc61bedb895",
"name": "Acme-User-Role",
"permissions": [

{
"action": "read",
"description": "The permission to read all nodes",
"id": "5033b842e4b09cc61bedb818",
"label": "",
"resource": "nodes",
"resourceFilter": null,
"type": "api",
"version": 1

},
],
"version": 2

}],
"description": "Principal 8",
"groups": [{

"name": "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev",
"type": "LDAPGROUP"

}],
"id": "5033d33fe4b018b28745fecd",
"name": "principal8",
"users": [

{
"name": "jhammon",
"type": "LDAP"

},
{
"name": "bjones",
"type": "LDAP"

}
],

"version": 0
}

Creating principals
The HTTP POST method is used to submit Principals.

Quick reference

POST http://localhost:8080/mws/rest/principals?api-version=3

Create single principal

URLs and parameters

POST http://localhost:8080/mws/rest/principals?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1608 Resources

Resources 1609

Request body

The name field is required and must contain only letters, digits, periods, dashes, and underscores.

The attachedRoles field expects an array of Role IDs or names:

The following is an example request body to create a principal:

POST http://localhost:8080/mws/rest/principals?api-version=3

{
"name" : "Acme-Principal",
"attachedRoles" : [{"name":"Acme-User-Role"}],
"description" : "A cool principal",
"groups" : [{"name": "CN=Engineering,CN=Users,DC=corp,DC=cloud,DC=dev",

"type":"LDAPGROUP"}],
"users" : [{

"name" : "john",
"type" : "LDAP"

}]
}

Sample response

If the request was successful, the response body is the new principal that was created, exactly as shown
in Get single principal. On failure, the response is an error message.

Modifying principals
The HTTP PUT method is used to modify Principals.

Quick reference

PUT http://localhost:8080/mws/rest/principals/<id>?api-version=3
PUT http://localhost:8080/mws/rest/principals/<name>?api-version=3

Modify single principal

URLs and parameters

PUT http://localhost:8080/mws/rest/principals/<id>?api-version=3
PUT http://localhost:8080/mws/rest/principals/<name>?api-version=3

Parameter Required Type Valid
values Description

id Yes String -- The unique identifier of the Principal.

Moab Web Services

Parameter Required Type Valid
values Description

name Yes String -- The name of the Principal.

The name field must contain only letters, digits,
periods, dashes, and underscores.

change-
mode

Yes String add
remove
set
(default)

If add, add the given objects (ldapGroups, ldapOUs, etc.)
to the objects that already exist.
If remove, delete the given objects from the objects that
already exist.
If set, add the given objects (ldapGroups, ldapOUs, etc.)
and remove the objects that already exist.

See Global URL parameters on page 1403 for available URL parameters.

You must specify either id or name, but you do not have to specify both.

The attachedRoles field expects an array of Role IDs or names:

Example request

PUT http://locahost/mws/rest/principals/Acme-Principal?api-version=3

{

"groups" : [{
"name" : "CN=Marketing,CN=Users,DC=mycompany,DC=com",
"type" : "LDAPGROUP"

},{
"name" : "CN=Sales,CN=Users,DC=mycompany,DC=com",
"type" : "LDAPGROUP"

}],
"users" : [{

"name" : "jhammon",
"type" : "LDAP"

}]
}

The version field contains the current version of the database entry. This field cannot be updated
directly. However, if version is included in the modify request, it will be used to verify that
another client did not update the object between the time that the data was retrieved and the
modify request was delivered.

Sample response

If the request was successful, the response body is the modified principal as shown in Get single
principal. On failure, the response is an error message.

Moab Web Services

1610 Resources

Resources 1611

Deleting principals
The HTTP DELETE method is used to delete Principals.

Quick reference

DELETE http://localhost:8080/mws/rest/principals/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/principals/<name>?api-version=3

Delete single principal

URLs and parameters

DELETE http://localhost:8080/mws/rest/principals/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/principals/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the principal.

name Yes String -- The name of the principal.

See Global URL parameters on page 1403 for available URL parameters.

You must specify either id or name, but you do not have to specify both.

Sample response

JSON response

{}

Related topics

l Fields: Principals on page 2065
l Resources introduction on page 1424

Priority
This section describes behavior of the priority object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

Moab Web Services

Supported methods

Resource GET PUT POST DELETE

/rest/priority Get all priorities on page 1612 Modify priorities on page 1614 -- --

This topic contains these sections:

l Getting priorities on page 1612

o Get all priorities on page 1612

l Modifying priorities on page 1613

o Modify priorities on page 1614

Getting priorities
The HTTP GET method is used to retrieve priority information.

Quick reference

GET http://localhost:8080/mws/rest/priority?api-version=3

Get all priorities

URLs and parameters

GET http://localhost:8080/mws/rest/priority?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1612 Resources

Resources 1613

Sample response

{
"service": {
"weight": 1,
"queue_time": 1,
"x_factor": 0,
"policy_violation": 0,
"bypass": 0

},
"target": {
"weight": 1,
"queue_time": 0,
"x_factor": 0

},
"credential": {
"weight": 1,
"user_credential": 0,
"group_credential": 0,
"account_credential": 0,
"class_credential": 0,
"qos_credential": 0

},
"attribute": {
"weight": 1,
"attribute": 0,
"state": 0

},
"fairshare": {
"weight": 1,
"user_credential": 1000,
"group_credential": 0,
"account_credential": 0,
"class_credential": 0,
"qos_credential": 0,
"jobs_per_user": 0,
"processor_seconds_per_user": 0,
"processors_per_user": 0

},
"resource": {
"weight": 1,
"node": 0,
"disk": 0,
"memory": 0,
"swap": 0,
"processor_equivalent_seconds": 0,
"walltime": 0

},
"usage": {
"weight": 1,
"consumed": 0,
"remaining": 0,
"percentage_consumed": 0

}
}

Modifying priorities
The HTTP PUT method is used to update priority information.

Quick reference

PUT http://localhost:8080/mws/rest/priority?api-version=3

Moab Web Services

Modify priorities

URLs and parameters

PUT http://localhost:8080/mws/rest/priority?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample body

PUT http://localhost:8080/mws/rest/priority?api-version=3

{
"service": {
"weight": 2,
"queue_time": 2,
"x_factor": 1,
"policy_violation": 1,
"bypass": 1

}
}

Related topics

l Resources introduction on page 1424

Reports
This section describes behavior of the reporting framework in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Reports, Fields: Report Samples, and Fields: Report Datapoints reference sections
contain the type and description of all fields in the Report, Sample, and Datapoint objects. They
also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/reports Get all reports (no
data)

-- Create report Delete
report

/rest/reports/<name> Get single report (with
data)

-- -- --

/rest/reports/<id> Get single report (with
data)

-- -- --

Moab Web Services

1614 Resources

Resources 1615

Resource GET PUT POST DELETE

/rest/reports/<name>/datapoints Get datapoints for
single report

-- -- --

/rest/reports/<id>/datapoints Get datapoints for
single report

-- -- --

/rest/reports/<name>/samples Get samples for report -- Create samples
for report

--

/rest/reports/<id>/samples Get samples for report -- Create samples
for report

--

This topic contains these sections:

l Getting reports on page 1615

o Get all reports (no data) on page 1616

o Get single report (with data) on page 1617

o Get datapoints for single report on page 1618

l Getting samples for reports on page 1619

o Get samples for report on page 1620

l Creating reports on page 1620

o Create report on page 1621

l Creating samples on page 1622

o Create samples for report on page 1622

l Deleting reports on page 1623

o Delete report on page 1623

Getting reports
The HTTP GET method is used to retrieve Report information. Queries for all reports with no attached
data and a single report with associated data are available.

Quick reference

GET http://localhost:8080/mws/rest/reports?api-version=3[&query={"field":"value"}
&sort={"field":<1|-1>}]
GET http://localhost:8080/mws/rest/reports/<id>?api-version=3
GET http://localhost:8080/mws/rest/reports/<name>?api-version=3

Moab Web Services

Get all reports (no data)

URLs and parameters

GET http://localhost:8080/mws/rest/reports?api-version=3[&query={"field":"value"}
&sort={"field":<1|-1>}]

Parameter Required Type Description Example

query No JSON Queries for specific results.
It is possible to query reports by one or more
fields based on MongoDB query syntax.

query={"reportS-
ize":4}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"id": "3efe5c670be86ba8560397ff",
"name": "cpu-util"

…
}]

}

Moab Web Services

1616 Resources

http://docs.mongodb.org/manual/reference/operator/

Resources 1617

Samples

GET http://localhost:8080/mws/rest/reports?api-version=3&fields=id,name

{
"totalCount": 3,
"resultCount": 3,
"results": [

{
"id": "3efe5c670be86ba8560397ff",
"name": "cpu-util"

},
{

"id": "3efe5c670be86ba856039800",
"name": "cpu-temp"

},
{

"id": "3efe5c670be86ba856039801",
"name": "cpu-load"

}
]

}

Get single report (with data)

URLs and parameters

GET http://localhost:8080/mws/rest/reports/<id>?api-version=3
GET http://localhost:8080/mws/rest/reports/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

In the example below, the first datapoint has a null data element, which means that the
minimumSampleSize configured for the report was not met when consolidating the datapoint. The
second datapoint contains actual data.

Moab Web Services

JSON response

{
"consolidationFunction": "average",
"datapointDuration": 15,
"datapoints": [

{
"endDate": "2011-12-02 17:28:22 UTC",
"startDate": "2011-12-02 17:28:22 UTC",
"firstSampleDate": null,
"lastSampleDate": null,
"data": null

},
{

"endDate": "2011-12-02 17:28:23 UTC",
"startDate": "2011-12-02 17:28:37 UTC",
"firstSampleDate": "2011-12-02 17:28:23 UTC",
"lastSampleDate": "2011-12-02 17:28:30 UTC",
"data": {
"utilization": 99.89,
"time": 27.433333333333337

}
}

],
"description": "Example of CPU utilization reporting",
"id": "3efe5c670be86ba8560397ff",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 2

}

Get datapoints for single report

URLs and parameters

GET http://localhost:8080/mws/rest/reports/<id>/datapoints?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET http://localhost:8080/mws/rest/reports/<name>/datapoints?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

id Yes String The unique identifier of the report. --

name Yes String The name of the report. --

query No JSON Queries for specific results. query={"reportS-
ize":4}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-1}

Moab Web Services

1618 Resources

Resources 1619

Only one of id or name are required.

It is possible to query reports by one or more fields based on MongoDB query syntax.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

This function is exactly the same as Get single report (with data). No report metadata (i.e.
description, minimumSampleSize, etc.) is returned.

JSON response

{
"resultCount":1,
"totalCount":1,
"results":[

{
"endDate": "2011-12-02 17:28:22 UTC",
"startDate": "2011-12-02 17:28:22 UTC",
"firstSampleDate": null,
"lastSampleDate": null,
"data": null

},
{

"endDate": "2011-12-02 17:28:37 UTC",
"startDate": "2011-12-02 17:28:37 UTC",
"firstSampleDate": "2011-12-02 17:28:23 UTC",
"lastSampleDate": "2011-12-02 17:28:23 UTC",
"data": {
"utilization": 99.89,
"time": 27.433333333333337

}
}

]
}

Getting samples for reports
The HTTP GET method is used to retrieve Sample information.

Quick reference

GET http://localhost:8080/mws/rest/reports/<id>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET http://localhost:8080/mws/rest/reports/<name>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Moab Web Services

http://docs.mongodb.org/manual/reference/operator/

Get samples for report

URLs and parameters

GET http://localhost:8080/mws/rest/reports/<id>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]
GET http://localhost:8080/mws/rest/reports/<name>/samples?api-version=3[&query=
{"field":"value"}&sort={"field":<1|-1>}]

Parameter Required Type Description Example

id Yes String The unique identifier of the report. --

name Yes String The name of the report. --

query No JSON Queries for specific results. query={"reportS-
ize":4}

sort No JSON Sort the results. Use 1 for ascending and -1
for descending.

sort={"name":-1}

Only one of id or name are required.

It is possible to query reports by one or more fields based on MongoDB query syntax.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{
"totalCount": 1,
"resultCount": 1,
"results": [{

"timestamp": "2011-12-02 17:28:37 UTC"
"data":{

"cpu1":2.3,
"cpu2":1.2,
"cpu3":0.0,
"cpu4":12.1

},
…

}]
}

Creating reports
The HTTP POST method is used to create Reports. Operations are available to create reports with or
without historical datapoints.

Moab Web Services

1620 Resources

http://docs.mongodb.org/manual/reference/operator/

Resources 1621

Quick reference

POST http://localhost:8080/mws/rest/reports?api-version=3

Create report

URLs and parameters

POST http://localhost:8080/mws/rest/reports?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

To create a report, several fields are required as documented in Fields: Reports on page 2074.

The request body below shows all the fields that are available during report creation.

JSON request body

{
"name":"cpu-util",
"description":"An example report on cpu utilization",
"consolidationFunction":"average",
"datapointDuration":15,
"minimumSampleSize":1,
"reportSize":2,
"keepSamples":true,
"reportDocumentSize":1024,
"datapoints":[

{
"startDate":"2011-12-01 19:16:57 UTC",
"endDate":"2011-12-01 19:16:57 UTC",
"data":{

"time":30,
"util":99.98

}
}

]
}

Sample response

{
"messages":["Report cpu-util created"],
"id":"3efe5c670be86ba8560397ff",
"name":"cpu-util"

}

Moab Web Services

Samples

POST http://localhost:8080/mws/rest/reports?api-version=3 (Minimal report without
datapoints)

{
"name":"cpu-util",
"datapointDuration":15,
"reportSize":2

}

Creating samples
The HTTP POST method is used to create samples for Reports.

Quick reference

POST http://localhost:8080/mws/rest/reports?api-version=3

Create samples for report

URLs and parameters

POST http://localhost:8080/mws/rest/reports/<id>/samples?api-version=3
POST http://localhost:8080/mws/rest/reports/<name>/samples?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See Global URL parameters on page 1403 for available URL parameters.

Request body

To create samples for a report, simply send data and an optional timestamp to the URL above. The
request body below shows all the fields that are available during sample creation. Note that the data
field can contain arbitrary JSON.

Moab Web Services

1622 Resources

Resources 1623

JSON request body

{
"timestamp":"2011-12-01 19:16:57 UTC",
"agent":"my agent",
"data":{

"cpu1":2.3,
"cpu2":1.2,
"cpu3":0.0,
"cpu4":12.1

}
}

Sample response

{"messages":["1 sample(s) created for report cpu-util"]}

Deleting reports
The HTTP DELETE method is used to delete Reports.

Quick reference

DELETE http://localhost:8080/mws/rest/reports/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/reports/<name>?api-version=3

Delete report

URLs and parameters

DELETE http://localhost:8080/mws/rest/reports/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/reports/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the report.

name Yes String -- The name of the report.

Only one of id or name are required.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{"messages":["Report cpu-util deleted"]}

Moab Web Services

Related topics

l Fields: Reports on page 2074
l Resources introduction on page 1424

Reservations
This section describes behavior of the Reservations object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Reservations reference contains the type and description of all fields in the
Reservations object. It also contains details regarding which fields are valid during PUT and POST
actions.

Supported methods

Resource GET PUT POST DELETE

/rest/reservations Get all reser-
vations

-- Create reser-
vation

--

/rest/reservations/<id> Get single reser-
vation

Modify reser-
vation

-- Release reser-
vation

This topic contains these sections:

l Getting reservations on page 1624

o Get all reservations on page 1625

o Get single reservation on page 1625

l Creating reservations on page 1628

o Create reservation on page 1628

l Modifying reservations on page 1630

o Modify reservation on page 1630

l Releasing reservations on page 1631

o Release reservation on page 1631

Getting reservations
The HTTP GET method is used to retrieve Reservation information. Queries for all objects and a single
object are available.

Moab Web Services

1624 Resources

Resources 1625

Quick reference

GET http://localhost:8080/mws/rest/reservations/<id>?api-version=3

Restrictions

Only admin or user reservations are returned with this call.

Get all reservations

URLs and parameters

GET http://localhost:8080/mws/rest/reservations?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/reservations?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "system.1"},
{"id": "system.2"},
{"id": "system.3"}

]
}

Get single reservation

URLs and parameters

GET http://localhost:8080/mws/rest/reservations/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

Moab Web Services

1626 Resources

Resources 1627

JSON response

{
"accountingAccount": "",
"accountingGroup": "",
"accountingQOS": "",
"accountingUser": "root",
"aclRules": [{
"affinity": "NEUTRAL",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "RESERVATION_ID",
"value": "system.43"

}],
"allocatedNodeCount": 1,
"allocatedProcessorCount": 8,
"allocatedTaskCount": 1,
"allocatedNodes": [

{"id":"node001"}
],
"comments": "",
"creationDate": null,
"duration": 200000000,
"endDate": "2018-03-17 16:49:10 UTC",
"excludeJobs": [
"job1",
"job2"

],
"expireDate": null,
"flags": [
"REQFULL",
"ISACTIVE",
"ISCLOSED"

],
"globalId": "",
"hostListExpression": "",
"id": "system.43",
"idPrefix": "",
"isActive": true,
"isTracked": false,
"label": "",
"maxTasks": 0,
"messages": [],
"owner": {
"name": "adaptive",
"type": "USER"

},
"partitionId": "switchB",
"profile": "",
"requirements": {
"architecture": "",
"featureList": [
"feature1",
"feature2"

],
"featureMode": "",
"memory": 0,
"nodeCount": 0,
"nodeIds": ["node001:1"],
"os": "",
"taskCount": 1

},

Moab Web Services

"reservationGroup": "",
"resources": {"PROCS": 0},
"startDate": "2011-11-14 20:15:50 UTC",
"statistics": {
"caps": 0,
"cips": 2659.52,
"taps": 0,
"tips": 0

},
"subType": "Other",
"taskCount": 0,
"trigger": null,
"triggerIds": [],
"uniqueIndex": "",
"variables": {}

}

Creating reservations
The HTTP POST method is used to create Reservations.

Quick reference

POST http://localhost:8080/mws/rest/reservations?api-version=3

Create reservation

URLs and parameters

POST http://localhost:8080/mws/rest/reservations?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows all the fields that are available when creating a Reservation, along with
some sample values.

Moab Web Services

1628 Resources

Resources 1629

JSON request body

{
"accountingAccount": "",
"accountingGroup": "",
"accountingQOS": "",
"accountingUser": "root",
"aclRules": [{
"affinity": "POSITIVE",
"comparator": "LEXIGRAPHIC_EQUAL",
"type": "GROUP",
"value": "staff"

}],
"comments": "",
"duration": 200000000,
"endDate": "2018-03-17 16:49:10 UTC",
"excludeJobs": [
"job1",
"job2"

],
"flags": [
"SPACEFLEX",
"ACLOVERLAP",
"SINGLEUSE"

],
"hostListExpression": "",
"idPrefix": "",
"label": "myreservation",
"owner": {
"name": "adaptive",
"type": "USER"

},
"partitionId": "",
"profile": "",
"requirements": {
"architecture": "",
"featureList": [
"feature1",
"feature2"

],
"memory": 0,
"os": "",
"taskCount": 1

},
"reservationGroup": "",
"resources": {
"PROCS": 2,
"MEM": 1024,
"DISK": 1024,
"SWAP": 1024,
"other1": 17,
"other2": 42

},
"startDate": "2011-11-14 20:15:50 UTC",
"subType": "Other",
"trigger": {
"eventType":"START",
"actionType":"EXEC",
"action":"date"

},
"variables": {

Moab Web Services

"var1": "val1",
"var2": "val2"

}
}

This example is to create a reservation if no conflicting reservations are found. (This is the equivalent to
mrsvctl -c -h node01 -E.)

JSON request body

{
"flags": [
"DEDICATEDRESOURCE"

],
"hostListExpression": "node01"

}

Sample response

JSON Response for successful POST

{"id": "system.44"}

Modifying reservations
The HTTP PUT method is used to modify Reservations.

Quick reference

PUT http://localhost:8080/mws/rest/reservations/<id>?api-version=3&change-
mode=<add|remove|set>

Modify reservation

URLs and parameters

PUT http://localhost:8080/mws/rest/reservations/<id>?api-version=3&change-
mode=<add|remove|set>

Parameter Required Type Valid val-
ues Description

id Yes String -- The unique identifier of the object.

change-
mode

Yes String add
remove
set

If add, add the given variables to the variables that
already exist.
If remove, delete the given variables from the variables
that already exist.
If set, replace all existing variables with the given
variables.

Moab Web Services

1630 Resources

Resources 1631

See Global URL parameters on page 1403 for available URL parameters.

Request body

The request body below shows all the fields that are available when modifying a Reservation, along with
some sample values.

JSON request body for reservation modify

{
"variables": {
"var1": "val1",
"var2": "val2"

}
}

Sample response

This message may not match the message returned from Moab exactly, but is given as an example
of the structure of the response.

JSON response

{"messages":["reservation 'system.43' attribute 'Variable' changed."]}

Restrictions

You can change the ACL Rules on a reservation, but not using this resource. See Create or update ACL
on page 1427.

Releasing reservations
The HTTP DELETE method is used to release Reservations.

Quick reference

DELETE http://localhost:8080/mws/rest/reservations/<id>?api-version=3

Release reservation

URLs and parameters

DELETE http://localhost:8080/mws/rest/reservations/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

JSON Response for successful DELETE

{}

Related topics

l Fields: Reservations on page 2080
l Resources introduction on page 1424

Resource types
This section describes behavior of the Resource Type object in Moab Web Services. It contains the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Resource Types reference contains the type and description of all fields in the
Resource Type object.

Supported methods

Resource GET PUT POST DELETE

/rest/resource-types Get all resource types -- -- --

This topic contains these sections:

l Getting resource types on page 1632

o Get all resource types on page 1632

Getting resource types
The HTTP GET method is used to retrieve Resource Type information.

Quick reference

GET http://localhost:8080/mws/rest/resource-types?api-version=3

Get all resource types

URLs and parameters

GET http://localhost:8080/mws/rest/resource-types?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

1632 Resources

Resources 1633

Sample response

GET http://localhost:8080/mws/rest/resource-types?api-version=3&fields=id

{
"totalCount": 1,
"resultCount": 1,
"results": [
{"id": "throttle_migrate"}

]
}

Related topics

l Fields: Resource Types on page 2120
l Resources introduction on page 1424

Roles
This section describes behavior of the Role resource in Moab Web Services. The role resource is used to
control access to MWS resources based on the proxy-user. Each role is attached to a principal and
contains a list of proxy-user permissions that the group can use in MWS. This section describes the URLs,
request bodies, and responses delivered to and from MWS.

The Fields: Roles reference section contains the type and description of all fields in the Role
object. It also contains details regarding which fields are valid during PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/roles Get all roles -- Create single role --

/rest/roles/<id> Get single role Modify single role -- Deleting roles

/rest/roles/<name> Get single role Modify single role -- Delete single role

This topic contains these sections:

l Getting roles on page 1634

o Get all roles on page 1634

o Get single role on page 1635

l Creating roles on page 1636

o Create single role on page 1637

Moab Web Services

l Modifying roles on page 1638

o Modify single role on page 1638

l Deleting roles on page 1639

o Delete single role on page 1639

Getting roles
The HTTP GET method is used to retrieve Role information. You can query all objects or a single object.

Quick reference

GET http://localhost:8080/mws/rest/roles?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]
GET http://localhost:8080/mws/rest/roles/<id>?api-version=3
GET http://localhost:8080/mws/rest/roles/<name>?api-version=3

Get all roles

URLs and parameters

GET http://localhost:8080/mws/rest/roles?api-version=3[&query={"field":"value"}&sort=
{"field":<1|-1>}]

Parameter Required Type Valid
values Description Example

query No JSON -- Queries for specific results.
It is possible to query roles by one
or more fields based on MongoDB
query syntax.

query=
{"name":"Acme-
User-Role"}

sort No JSON -- Sort the results. Use 1 for ascend-
ing and -1 for descending.

sort={"name":-
1}

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/roles?api-version=3&fields=id,name

{
"totalCount": 1,
"resultCount": 1,
"results": [{
"id": "4fa197e68ca30fc605dd1cf0",
"name": "Acme-User-Role"

}]
}

Moab Web Services

1634 Resources

http://docs.mongodb.org/manual/reference/operator/
http://docs.mongodb.org/manual/reference/operator/

Resources 1635

Sorting and querying

See the sorting and querying sections of Global URL parameters on page 1403.

Get single role

URLs and parameters

GET http://localhost:8080/mws/rest/roles/<id>?api-version=3
GET http://localhost:8080/mws/rest/roles/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the Role.

name Yes String -- The name of the Role.

You must specify either id or name, but you do not have to specify both.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

GET http://localhost:8080/mws/rest/roles/Acme-User-Role?api-version=3

{
"description" : "This is a role for normal users in the Acme BU Group.",
"id" : "5022e695e4b073f54e47c28d",
"name" : "Acme-User-Role",
"permissions" : [{

"action" : "create",
"description" : "The permission to create all charts.",
"id" : "5022e695e4b073f54e47c28e",
"label" : "Create Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "read",
"description" : "The permission to view all charts.",
"id" : "5022e695e4b073f54e47c28f",
"label" : "View Chart",
"resource" : "chart",
"resourceFilter" : null,
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "update",
"description" : "The permission to modify the africa chart.",
"id" : "5022e695e4b073f54e47c290",
"label" : "Modify Africa Chart",
"resource" : "chart",
"resourceFilter" : {

"name" : "africa"
},
"type" : "custom",
"scope" : "GLOBAL",
"version" : 0

}, {
"action" : "read",
"description" : "The permissions to view John's services.",
"id" : "5022e695e4b073f54e47c291",
"label" : "Read John's services",
"resource" : "services",
"resourceFilter" : {

"user":"john"
},
"type" : "api",
"scope" : "GLOBAL",
"version" : 0

}],
"version" : 2

}

Creating roles
The HTTP POST method is used to submit Roles.

Moab Web Services

1636 Resources

Resources 1637

Quick reference

POST http://localhost:8080/mws/rest/roles?api-version=3

Create single role

URLs and parameters

POST http://localhost:8080/mws/rest/roles?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Request body

The name field is required and must contain only letters, digits, periods, dashes, and underscores.

The following is an example of a request body to create a role:

POST http://localhost:8080/mws/rest/roles?api-version=3

{
"name" : "Acme-User-Role",
"description" : "This is a role for normal users in the Acme BU Group.",
"permissions" :
[

{
"id" : "4fa197e68ca30fc605dd1cf0"
},
{
"id" : "4fa197e68ca30fc605dd1df2"
}

]
}

Sample response

If the request was successful, the response body is the new role that was created, exactly as shown in
Get single role. On failure, the response is an error message.

Samples

The permissions field only expects an array of permission IDs, as shown in the following example:

Example payload of role with 2 permissions

{
"name" : "Acme-User-Role",
"description" : "This is a role for normal users in the Acme BU Group.",
"permissions" :
[

{
"id" : "4fa197e68ca30fc605dd1cf0"
}

]
}

Moab Web Services

Modifying roles
The HTTP PUT method is used to modify Roles.

Quick reference

PUT http://localhost:8080/mws/rest/roles/<id>?api-version=3
PUT http://localhost:8080/mws/rest/roles/<name>?api-version=3

Modify single role

URLs and parameters

PUT http://localhost:8080/mws/rest/roles/<id>?api-version=3
PUT http://localhost:8080/mws/rest/roles/<name>?api-version=3

Parameter Required Type Valid
values Description

id Yes String -- The unique identifier of the Role.

name Yes String -- The name of the Role.

The name field must contain only letters, digits,
periods, dashes, and underscores.

change-
mode

No String add
remove
set
(default)

If add, adds the given permissions to the permissions
that already exist.
If remove, deletes the given permissions from the
permissions that already exist.
If set, adds the given permissions and deletes the
permissions that already exist.

You must specify either id or name, but you do not have to specify both.

See Global URL parameters on page 1403 for available URL parameters.

Example request

PUT http://locahost/mws/rest/role/Acme-User-Role?change-mode=add?api-version=3

{
"permissions":[{"id":"4fa197e68ca30fc605dd1cf0"}]

}

Moab Web Services

1638 Resources

Resources 1639

Sample response

If the request was successful, the response body is the modified role as shown in Get single role. On
failure, the response is an error message.

Deleting roles
The HTTP DELETE method is used to delete Roles.

Quick reference

DELETE http://localhost:8080/mws/rest/roles/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/roles/<name>?api-version=3

Delete single role

URLs and parameters

DELETE http://localhost:8080/mws/rest/roles/<id>?api-version=3
DELETE http://localhost:8080/mws/rest/roles/<name>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the Role.

name Yes String -- The name of the Role.

You must specify either id or name, but you do not have to specify both.

See Global URL parameters on page 1403 for available URL parameters.

Sample response

JSON response

{}

Related topics

l Fields: Roles on page 2121
l Resources introduction on page 1424

Standing reservations
This section describes behavior of the Standing Reservation object in Moab Web Services. It contains
the URLs, request bodies, and responses delivered to and from MWS.

Moab Web Services

The Fields: Standing Reservations reference section contains the type and description of all fields
in the Standing Reservation object. It also contains details regarding which fields are valid during
PUT and POST actions.

Supported methods

Resource GET PUT POST DELETE

/rest/standing-reservations Get all standing reservations -- -- --

/rest/standing-reservations/<id> Get single standing reservation -- -- --

This topic contains these sections:

l Getting standing reservations on page 1640

o Get all standing reservations on page 1640

o Get single standing reservation on page 1641

Getting standing reservations
The HTTP GET method is used to retrieve Standing Reservation information. Queries for all objects and
a single object are available.

Quick reference

GET http://localhost:8080/mws/rest/standing-reservations/<id>?api-version=3

Get all standing reservations

URLs and parameters

GET http://localhost:8080/mws/rest/standing-reservations?api-version=3

See Global URL parameters on page 1403 for available URL parameters.

Sample response

GET http://localhost:8080/mws/rest/standing-reservations?api-version=3&fields=id

{
"totalCount": 3,
"resultCount": 3,
"results": [
{"id": "sr1"},
{"id": "sr2"},
{"id": "sr3"}

]
}

Moab Web Services

1640 Resources

Resources 1641

Get single standing reservation

URLs and parameters

GET http://localhost:8080/mws/rest/standing-reservations/<id>?api-version=3

Parameter Required Type Valid values Description

id Yes String -- The unique identifier of the object.

See Global URL parameters on page 1403 for available URL parameters.

Moab Web Services

Sample response

JSON response

{
"access": "DEDICATED",
"accounts": ["account1"],
"aclRules": [{
"affinity": "POSITIVE",
"comparator": "EQUAL",
"type": "USER",
"value": "adaptive",

}],
"chargeAccount": "account2",
"chargeUser": "user2",
"classes": ["class1"],
"clusters": ["cluster1"],
"comment": "comment",
"days": ["Monday"],
"depth": 2,
"disabled": false,
"endOffset": 86415,
"flags": ["ALLOWJOBOVERLAP"],
"groups": ["group1"],
"hosts": ["host1"],
"id": "fast",
"jobAttributes": ["TEMPLATESAPPLIED"],
"maxJob": 2,
"maxTime": 0,
"messages": ["message1"],
"nodeFeatures": ["feature1"],
"os": "Ubuntu 10.04.3",
"owner": {
"name": "root",
"type": "USER"

},
"partition": "ALL",
"period": "DAY",
"procLimit": {
"qualifier": "<=",
"value": 5

},
"psLimit": {
"qualifier": "<=",
"value": 60

},
"qoses": ["qos1"],
"reservationAccessList": [],
"reservationGroup": "group2",
"resources": {
"PROCS": -1,
"tapes": 1

},
"rollbackOffset": 43200,
"startOffset": 347040,
"taskCount": 0,
"tasksPerNode": 0,
"timeLimit": -1,
"triggers": [],
"type": "type1",
"users": ["user1"]

}

Moab Web Services

1642 Resources

Reporting framework 1643

Related topics

l Fields: Standing Reservations on page 2129
l Resources introduction on page 1424

Reporting framework

Overview of reporting framework
The reporting framework is a set of tools to make time-based reports from numerical data. The
following sections will (1) provide an overview of the framework and the concepts related to it, and (2)
work through an example report (CPU Utilization) with details regarding which web services to use and
with what data.

The REST API reference is located in the Report resource section (see Reports on page 1614).

Concepts
The reporting framework uses 3 core concepts: reports, datapoints, and samples.

l Reports (see Fields: Reports on page 2074): A report is a time-based view of numerical data.

l Report Datapoints (see Fields: Report Datapoints on page 2072): A datapoint is a consolidated
set of data for a certain time period.

l Report Samples (see Fields: Report Samples on page 2127): A sample is a snapshot of a certain
set of data at a particular point in time.

To illustrate, consider the memory utilization of a virtual machine: at any given point in time, you can
get the memory utilization by using your operating system's performance utilities (top for Linux, Task
Manager for Windows):

2400/12040MB

By recording the memory utilization and time constantly for 1 minute, you could gather the following
data:

Time Memory utilization

3:53:55 PM 2400/12040 MB

3:54:13 PM 2410/12040 MB

3:54:27 PM 2406/12040 MB

3:54:39 PM 2402/12040 MB

Moab Web Services

Time Memory utilization

3:54:50 PM 2409/12040 MB

Each of the rows in the table above represent a sample of data. By averaging the rows we can
consolidate them into one or more datapoints:

Start time End time Memory utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

Note that each datapoint covers exactly the same amount of time, and averages all samples within
that period of time.

A report, then, is simply a list of datapoints with some additional configuration information:

Field Value

Name Memory Utilization Report

Datapoint Duration 30 seconds

Report Size 3 datapoints

Datapoints:

Start time End time Memory utilization

3:53:30 PM 3:54:00 PM 2400/12040 MB

3:54:00 PM 3:54:30 PM 2408/12040 MB

3:54:30 PM 3:55:00 PM 2406/12040 MB

Capabilities
While storing simple information like memory utilization is nice, the reporting framework is built to
automatically handle much more complex information.

Moab Web Services

1644 Reporting framework

Reporting framework 1645

Consolidating Samples

Samples are JSON documents which are pushed into the report using the Samples API (see Creating
samples on page 1622). Samples are then stored until the consolidation operation creates a datapoint
out of them. The table below shows how different data types are handled in this operation:

Type Consolidation function handling

Numbers Numerical data is averaged.

Strings Strings are aggregated into an array.

Objects The consolidation function recursively consolidates sub-objects.

Lists Lists are combined into a single flat list containing all elements.

Mixed If samples have different types of data for the same field, the values are aggregated into an array.

Null These values will be ignored unless all values for a sample field are set to null, resulting in a null res-
ult.

If the mixed data types contains at least one number, it will be treated as numerical data. The non-
numerical data will be ignored and the result will be averaged.

Below is an example of how the consolidation function works:

l Samples:

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:53:55
PM

2400 "str1" ["elem1"] "str1" "str1"

3:54:13
PM

2410 "str2" ["elem2",
"elem3"]

["elem1"] ["elem1"]

3:54:27
PM

2405 "str3" ["elem4"] null 5

l Resulting Datapoint after consolidation:

Moab Web Services

Time NumberEx StringEx ListEx MixedEx MixedNumberEx

3:55:00
PM

2405 ["str1",
"str2",
"str3"]

["elem1", "elem2",
"elem3", "elem4"]

["str1",
"elem1"]

5

Minimum number of samples

If your dataset is highly variable (i.e. values contained in samples are not very close together),
converting a single sample into a datapoint may provide misleading information. It may be better to
have a datapoint with an "Unknown" value. This can be accomplished by setting the minimum number of
samples for a datapoint in the report.

The minimumSampleSize field in the Reports reference section (see Reports on page 1614) explains
that if the specified size of samples is not met when the consolidation function is performed, the
datapoint is considered "null" and no data is available for it. When this occurs, the sample data is
discarded and the data field of the datapoint is set to "null".

For information on how to set this option, see the REST API Report Resource section (see Reports on
page 1614).

Report size

Reports have a predetermined number of datapoints, or size, which sets a limit on the amount of data
that can be stored. After the report size has been reached, as newly created datapoints are pushed into
the report, the oldest datapoints will automatically be deleted. This is to aid in managing the storage
capacity of the server hosting MWS.

On report creation, a Mongo collection will be initialized that is the configured report document
size multiplied by the report size. Be careful in setting a large report size or report document
size as this may quickly allocate the entire disk. See the reportDocumentSize and

reportSize fields in Fields: Reports on page 2074 for more information.

Related topics

l Example report (CPU Utilization) on page 1646

Example report (CPU Utilization)
To understand how the behavior and usage of the reporting framework, a sample report covering CPU
Utilization will be shown in this section. It will not cover how to gather or display data for reports, but
will cover some basic operations that are available with Moab Web Services to facilitate reporting.

Creating a report
Before any data is sent to Moab Web Services, a report must first be created. A JSON request body with
a HTTP method of POST must be used to do this.

Moab Web Services

1646 Reporting framework

Reporting framework 1647

POST /rest/reports

{
"name":"cpu-util",
"description":"An example report for cpu utilization",
"consolidationFunction":"average",
"datapointDuration":600,
"reportSize":288

}

This will result in a report being created which can then be retrieved by sending a GET request to
/rest/reports/cpu-util. The datapointDuration of 600 signifies that the datapoint
consolidation should occur once every 10 minutes, while the reportSize (i.e. number of the datapoints)
shows that the report will retain up to 2 days worth of the latest datapoints.

GET /rest/reports/cpu-util

{
"consolidationFunction": "average",
"datapointDuration": 600,
"datapoints": [],
"description": "An example report for cpu utilization",
"id": "aef6f6a3a0bz7bf6449537c9d",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 288,
"version": 0

}

(Note that an ID has been automatically generated and that no datapoints are associated with the
report.)

Adding samples
Until samples are added and associated with the report, datapoint consolidation will generate datapoints
with a data field equal to null. Once samples are added, however, they will be averaged and inserted
into the next datapoint.

Create samples for the cpu-util by sending a POST request as follows:

Moab Web Services

POST /rest/reports/cpu-util/samples

[
{
"agent": "cpu-monitor",
"timestamp":"2012-01-01 12:00:00 UTC",
"data": {
"minutes1": 0.5,
"minutes5": 0,
"minutes15": 0

}
},
{
"agent": "cpu-monitor",
"timestamp":"2012-01-01 12:01:00 UTC",
"data": {
"minutes1": 1,
"minutes5": 0.5,
"minutes15": 0.05

}
},
{
"agent": "cpu-monitor",
"timestamp":"2012-01-01 12:02:00 UTC",
"data": {
"minutes1": 1,
"minutes5": 0.5,
"minutes15": 0.1

}
},
{
"agent": "cpu-monitor",
"timestamp":"2012-01-01 12:03:00 UTC",
"data": {
"minutes1": 0.75,
"minutes5": 1,
"minutes15": 0.25

}
},
{
"agent": "cpu-monitor",
"timestamp":"2012-01-01 12:04:00 UTC",
"data": {
"minutes1": 0,
"minutes5": 1,
"minutes15": 0.85

}
}

]

This sample data contains average load for the last 1, 5, and 15 minute intervals. The samples were
recorded at one-minute intervals starting at noon on January 1st, 2012.

Consolidating data
A consolidation function must run to generate datapoints from the given samples. This scheduled
consolidation will occur at intervals of datapointDuration seconds. For each field in the data object
in samples, all values will be averaged. If non-numeric values are included, the following strategies will
be followed:

Moab Web Services

1648 Reporting framework

Reporting framework 1649

1. All fields which contain a single numeric value in any included sample will be averaged and the non-
numeric or null values will be ignored.

2. All fields which contain a list will be consolidated into a single, flat list.

3. All fields which contain only non-numeric or null values will be consolidated into a single, flat list.

If no historical datapoints are provided in the creation of a report as in this example, the next
consolidation will be scheduled for the current time plus the datapointDuration. In this example, the
scheduled consolidation is at 10 minutes from the creation date. If historical datapoints are included in
the report creation, the latest datapoint's endDate plus the datapointDuration will be used as the
scheduled time. If this date was in the past, the next scheduled consolidation will occur at the
appropriate interval from the last endDate.

Retrieving report data
To retrieve the consolidated datapoints, simply perform a GET request on the report once again.
Alternatively, the GET for a report's datapoints (see Get datapoints for single report on page 1618)
may be used.

GET /rest/reports/cpu-util

{
"consolidationFunction": "average",
"datapointDuration": 600,
"datapoints": [

{
"firstSampleDate": null,
"lastSampleDate": null,
"data": null,
"startDate": "2012-01-01 11:49:00 UTC",
"endDate": "2012-01-01 11:59:00 UTC"

},
{

"firstSampleDate": "2012-01-01 12:00:00 UTC",
"lastSampleDate": "2012-01-01 12:04:00 UTC",
"data": {

"minutes1": 0.65,
"minutes15": 0.25,
"minutes5": 0.6

},
"startDate": "2012-01-01 11:59:00 UTC",
"endDate": "2012-01-01 12:09:00 UTC"

}
],
"description": "An example report for cpu utilization",
"id": "aef6f6a3a0bz7bf6449537c9d",
"keepSamples": false,
"minimumSampleSize": 1,
"name": "cpu-util",
"reportSize": 288,
"version": 0

}

Note that of the two datapoints above, only the second actually contains data, while the other is set to
null. Only samples lying within the datapoint's duration, or from the startDate to the endDate, are
included in the consolidation. Therefore the first datapoint, which covered the 10 minute period just

Moab Web Services

before the samples' recorded timestamps, contained no data. The second, which covers the 10 minute
period matching that of the samples, contains the averaged sample data. This data could be used to
display consolidated report data in a custom interface.

Possible configurations
Configuration options may be changed to affect the process of report generation. These are documented
in Fields: Reports on page 2074 and Fields: Report Samples on page 2127.

Related topics

l Overview of reporting framework on page 1643

Plugins

About Moab Web Services plugins
This chapter describes MWS plugins, their use, and their creation in Moab Workload Manager. The
sections in this chapter provide you with the following information:

l An introduction to the concept of MWS plugins (see Plugin introduction on page 1651).

l A description of the plugin lifecycle (see Lifecycle states on page 1653).

l How plugins are driven by events (Handling events on page 1689).

l How to expose web services from a plugin (Exposing web services on page 1674).

l How plugin utility services may be used (Utility services on page 1655).

l How data report collisions between plugins are consolidated (Data consolidation on page 1655).

l How calls from Moab are routed to MWS plugins (Routing on page 1657).

It contains the following sections:

l Plugin overview on page 1651

l Plugin developer's guide on page 1657

l Plugin type management on page 1715

l Plugin management on page 1720

l Plugin services on page 1725

Related topics

l Configuring Moab Web Services on page 1373

Moab Web Services

1650 Plugins

Plugins 1651

Plugin overview
This section provides an overview of the plugin layer in web services. It contains these topics:

l Plugin introduction on page 1651

l Lifecycle states on page 1653

l Events on page 1654

l Custom web services on page 1654

l Utility services on page 1655

l Data consolidation on page 1655

l Routing on page 1657

Related topics

l About Moab Web Services plugins on page 1650

Plugin introduction
Moab Web Services plugins provide a highly extensible interface to interact with Moab, MWS, and
external resources. Plugins can perform some of the same functions as Moab resource managers (RMs),
while also providing many other features not available to RMs. This section will discuss the main
features of plugins, some basic terminology, and how MWS plugins can interact with Moab.

Features

Plugins can:

l Be created, modified, and deleted without restarting Moab Workload Manageror MWS.

l Be defined in Groovy and uploaded to MWS without restarting.

l Have individual data storage space and configuration.

l Access MWS configuration and RESTful web services.

l Log to a standard location configured in MWS.

l Be polled at a regular interval (configured on a per-plugin basis).

l Be informed of important system events.

l Be individually stopped, started, paused, and resumed.

l Expose secured and unsecured custom web services for external use.

l Be manipulated via a full RESTful API (for more information, see Resources introduction on page
1424).

l Be manipulated via a full user interface in a web browser.

Terminology

There are two distinct terms in the plugin layer: plugin types and plugins (instances).

Moab Web Services

Term Description

plugin
types

Plugin types can be considered plugin templates with built-in logic. In object-oriented
programming languages, this relates to the concept of a class. They possess certain abilities, or
methods, that can be called by Moab Web Services to query or update information about certain
resources. They also can define methods which will be exposed to external clients as web services.
They do not contain any configuration or current data, but they are often tied to a type of
component, such as components that communicate with Moab's WIKI Protocol, or those that are
built on a certain product.
They can define several types of methods:

l Instance methods that return information about the current plugin, such as getState.
(While these are defined in the plugin type, the plugin type itself does not have a state.)

l The poll event method that is called at a configured interval.
l Lifecycle event methods of plugins created from the plugin type, such as beforeStart
and afterStart.

l RM event methods that are called by Moab when certain events occur.
l Web service methods that expose custom functionality as public web services.

Some examples of plugin types include the Native and vCenter plugin types.

plugins
(instances)

Plugins (also called plugin instances) are created from plugin types. They contain current data or
configuration and use the plugin type methods to interact with resources.

Interactions with Moab as a resource manager

The plugin layer in MWS is integrated with Moab Workload Manager via the Native Resource Manager
(RM) interface. When utilizing plugins, MWS is configured as a RM in Moab, as explained in the next
section. Events from Moab are pushed through the RM interface to MWS, which is then pushed to each
plugin in turn. The relationship between MWS, Moab, and plugins is shown in the following image:

Moab Web Services

1652 Plugins

Plugins 1653

For more information, see Data consolidation on page 1655 and Reporting state data on page 1676.

Related topics

l About Moab Web Services plugins on page 1650

Lifecycle states
During the course of a plugin's use, the state of the plugin may change many times. Plugins have four
possible states: Stopped, Started, Paused, and Errored. For the descriptions of each state, see the
Fields: Plugins reference section. The flow of a plugin through the states is shown in the following
image:

Moab Web Services

You can see Handling events on page 1689 for information about the events that occur during
lifecycle state changes.

Related topics

l Plugin introduction on page 1651

Events
Plugins use an event-based model, meaning that methods are called on the plugin when certain criteria
are met or situations arise. Events currently exist for polling, lifecycle state changes, and RM events
from Moab. For more information, see Handling events on page 1689.

Related topics

l Handling events on page 1689
l Plugin introduction on page 1651

Custom web services
Although the events interface typically serves most cases, there are some instances where an event is
not supported that is desired. This is especially true when an external resource is the source of the
event. To address these issues, plugins can expose custom web services to external resources. These web
services may be named freely and do anything they wish within the plugin framework.

For example, suppose a resource needs to notify a plugin that provisioning of a virtual machine has been
completed. Instead of having the plugin poll the resource to verify that the provisioning was finished, the
plugin could expose a custom web service to handle notification from the resource itself.

Moab Web Services

1654 Plugins

Plugins 1655

Sample custom web service

def vmProvisionFinished(Map params) {
// Handle event
return [messages:["Event successfully processed"]]

}

Additionally, plugin types may define web services which are unsecured, meaning that a user or
application account is not required to access it. A full explanation of the syntax and creation of custom
secured and unsecured web services may be seen on Exposing web services on page 1674.

For information how resources can access plugin web services, see Accessing Plugin Web Services on
page 1583.

Related topics

l Plugin introduction on page 1651

Utility services
Several features of plugins are only available by utilizing bundled services. These include:

l Accessing the individual datastore (see Individual datastore on page 1672).

l Reporting state data to Moab through the Resource Manager interface (see Reporting state data
on page 1676).

l Manipulating other plugins and controlling their lifecycle (see Controlling lifecycle on page 1679).

l Accessing REST resources from Moab Web Services (Accessing MWS REST resources on page
1680).

It may also be necessary or desired to create additional utility services when creating new plugin types.
The easiest way to do this is to create a utility service which is called by convention a translator (see
Using translators on page 1694), because it can typically "translate" from a specific resource or API to
data which can be used by the plugin type.

Finally, custom components (see Registering custom components on page 1695) may be used to fulfill
use cases not covered by bundled services or custom translators.

Related topics

l Plugin introduction on page 1651

Data consolidation
At times, plugins can report differing or even contradictory data for nodes, virtual machines, and jobs.
This is called a data "collision". The act of resolving these collisions is called "Consolidation." Plugins also
have the concept of "precedence," where the plugins with the lowest precedence value are considered
more authoritative than the greater precedence values plugins. For example, a plugin with a precedence
value of 1 has a higher precedence and is considered more authoritative than a plugin with a precedence
value of 5. If no precedence is provided when creating plugins, the plugin is automatically assigned to the

Moab Web Services

lowest precedence, or 1 greater than the highest precedence value. The precedence value may not be
less than 1.

When data from one plugin "collides" with another, the data from the highest precedence plugin will be
considered the authoritative source for information. If multiple sets of data (reports) are provided by the
same plugin, the latest set of data will take precedence. Additionally, MWS supports the concept of
treating node and virtual machine data with state information optimistically, pessimistically, or neither.
This is configured using the plugins.stateConsolidationPolicy configuration property in the
MWS configuration file. If this property is set to optimistic and any plugin reports the state for a node
or VM as "Up," the consolidated state will be "Up." Inversely, if the property is set to pessimistic and
any plugin reports the state as "Down," the consolidated state will be "Down." If it is set to null
(neither), consolidation will occur for the state field just as with any other field, with higher precedence
and later reports being considered authoritative.

When MWS is upgraded to a version that supports plugin precedence from an older version,
existing plugins will not have the precedence field set. The administrator should assign precedence
to each plugin manually through the API (see Modifying plugins on page 1581) or through the user
interface (see Modifying a plugin on page 1722) to ensure that the consolidation will occur as
expected. By default, data from a plugin without a precedence defaults to a precedence of 1, or the
highest precedence.

Consolidation examples

Suppose two plugins exist, pluginA and pluginB. Plugin "A" has a precedence of 1, and plugin "B" has a
precedence of 2, meaning that plugin "A" is more authoritative. These plugins both report data for a node
with an ID of node1. However, each reports a different node power state. Plugin "A" reports the power
as ON, while plugin "B" reports the power as OFF. The data collision that occurs due to these two
contradictory reports is resolved by the precedence of the plugins. Since plugin A has a higher
precedence (lower number), it is considered authoritative and the node will be reported as ON.

Now suppose that the plugins also report differing node state for node1. In this case, the node state
would depend on the plugins.stateConsolidationPolicy property. The different combinations of
report values compared to the state consolidation policy and the final reported state are shown in the
table below.

Plugin "A" node
state

Plugin "B" node
state

State consolidation
policy

Consolidated node
state

ON OFF null (neither) ON

OFF ON null (neither) OFF

ON OFF optimistic ON

OFF ON optimistic ON

Moab Web Services

1656 Plugins

Plugins 1657

Plugin "A" node
state

Plugin "B" node
state

State consolidation
policy

Consolidated node
state

ON OFF pessimistic OFF

OFF ON pessimistic OFF

In general, it is recommended that no two plugins report the same resource or that they report different
properties of the same resource. For example, if plugin "A" only modified the power state and plugin "B"
only modified the available disk resource, these two plugins would work in harmony to provide a
consistent view of the node resource.

For more information, see Reporting state data on page 1676 and Resource manager queries on page
1713.

Related topics

l Plugin introduction on page 1651

Routing

Plugin routing is currently in Beta. Interfaces may change significantly in future releases.

Because Moab Web Services is configured as a Resource Manager (RM) in Moab Workload Manager,
events are sometimes triggered by Moab through the RM interface. These actions could be migrating a
virtual machine, starting a job, submitting a job, modifying a node, and so forth. The decisions regarding
which plugins are affected and notified is termed routing.

Currently all plugins receive all commands from Moab. This means that each plugin will receive the
command to start a job if sent from Moab, even if that plugin does not handle the job. This means that
plugins must ensure they handle actions or commands only for resources which they report or handle.

Related topics

l Plugin introduction on page 1651

Plugin developer's guide
Plugin types comprise the methods by which Moab may communicate with resource managers or other
external components. They define all operations that can be performed for a "type" or "class" of plugins,
hence the name "plugin type."

Several plugin types are provided with Moab Web Services, but it is easy to create additional plugin
types and add their functionality to web services. This involves using Groovy, which is based on the Java
programming language. This section describes the general guidelines and specifics of implementing new
plugin types.

Moab Web Services

http://groovy.codehaus.org/
http://en.wikipedia.org/wiki/Java_(programming_language)

API classes and interfaces

There are several packages and classes available to assist in creating plugin types. These can all be
found in the API documentation.

This section contains these topics:

l Requirements on page 1658

l Dynamic methods on page 1659

l Logging on page 1660

l i18n messaging on page 1661

l Configuration on page 1663

l Configuration constraints on page 1664

l Individual datastore on page 1672

l Exposing web services on page 1674

l Reporting state data on page 1676

l Controlling lifecycle on page 1679

l Accessing MWS REST resources on page 1680

l Creating events and notifications on page 1682

l Handling events on page 1689

l Handling exceptions on page 1691

l Managing SSL connections on page 1692

l Utilizing services or custom "helper" classes on page 1693

l Packaging plugins on page 1698

l Example plugin types on page 1707

Related topics

l About Moab Web Services plugins on page 1650

Requirements
This section discusses the requirements to create a basic functional plugin. The
com.adaptc.mws.plugins package contains the abstract class AbstractPlugin that should form the
basis of any new plugin type. However, this class need not be extended to create a functional plugin type.
Only two requirements must be fulfilled for this:

1. The class name must end in Plugin.

2. There must exist id field getter and setter methods:

* public String getId();
* public void setId(String id);

Moab Web Services

1658 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPlugin.java

Plugins 1659

The id field may be stored in whichever way desired as long as the getter and setter are available as
shown above, but will most likely be implemented as follows:

class BasicPlugin {
String id

}

In this case, String id will be expanded by the Groovy compiler to the full getter and setter method
definitions given above. In other words, no explicit method definitions are actually needed. Note that the
BasicPlugin shown above is able to be uploaded as a plugin type to MWS, but does not actually do
anything.

It must also be noted that the AbstractPlugin class already implements an id field. Therefore, a
plugin type that extends this class does not need to define the field as shown in the following example.

import com.adaptc.mws.plugins.AbstractPlugin

class BasicPlugin extends AbstractPlugin {
// No ID field is needed since it exists in AbstractPlugin

}

Related topics

l Plugin developer's guide on page 1657

Dynamic methods

These methods are currently in Beta. Interfaces may change significantly in future releases.

Several methods are dynamically inserted onto each plugin. These methods do not need to be included in
the plugin class, and will be overwritten if included. Additionally, a logger is inserted into each plugin as
discussed in the next section. The inserted methods are shown below (full definitions can be found in
AbstractPlugin and AbstractPluginInfo):

l public void start() throws PluginStartException; (Equivalent to the start method
in the Plugin control service on page 1728.)

l public void stop() throws PluginStopException; (Equivalent to the stop method in
the Plugin control service on page 1728.)

l public Log getLog(); (See Logging on page 1660.)

l public ConfigObject getAppConfig(); (See Configuration on page 1663.)

l public String message(Map parameters); (See i18n messaging on page 1661.)

l public String getPluginType();

l public PluginState getState();

l public Integer getPollInterval();

l public Boolean getAutoStart();

l public Map<String, Object> getConfig(); (See Configuration on page 1663.)

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPlugin.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/AbstractPluginInfo.java

Many of these methods are provided for convenience and are discussed in the linked pages or the
following sections.

Related topics

l Plugin developer's guide on page 1657

Logging
Logging in plugin types uses the Apache Commons Logging and log4j libraries. Each plugin is injected
with a method called getLog which can be used to access the configured logger. It returns an instance of
org.apache.commons.logging.Log. Examples of using the logger are shown below.

The logger may used to register messages to the MWS log at several levels (in order of severity):

1. trace

2. debug

3. info

4. warn

5. error

6. fatal

Each of these levels is available as a method on the logger, for example:

public void poll() {
getLog().debug("getLog() is equivalent to just using 'log' in Groovy")
log.debug("This is a debug message and is used for debugging purposes only")
log.info("This is a informational message")
log.warn("This is a warning")
log.error("This is an error message")

}

Logger name

Each logger in the MWS logging configuration has a name. In the case of plugins, it is comprised of the
full class name, including the package, prepended by "plugins.". For example, a plugin class of
"example.LoggingPlugin" will have access to a logger configured as
plugins.example.LoggingPlugin.

Logging configuration

The logging configuration is done through the MWS configuration file. For more information on
configuring loggers, see Configuring Moab Web Services on page 1373. A good configuration for
developing plugin types may be to add "plugins" at the debug level. Be sure to set the log level threshold
down for the desired appender.

Moab Web Services

1660 Plugins

http://commons.apache.org/proper/commons-logging/
http://logging.apache.org/log4j/2.x/
http://commons.apache.org/proper/commons-logging/apidocs/org/apache/commons/logging/Log.html

Plugins 1661

log4j = {
…
// Appender configuration
...
debug "plugins"

}

Related topics

l Plugin developer's guide on page 1657

i18n messaging
Plugins, translators, and custom components all have access to i18n messages. Utilizing messages
requires the two following steps:

1. Including a file (or multiple files) that ends in "messages.properties" in the plugin JAR file.

2. Using the message method on a plugin type, translator, or custom component.

Including messages in plugin JAR file

Messages are defined using property files. These may be named anything as long as they end with
"messages.properties" and must be placed at the root or top level of the plugin JAR file. If they are
present, they will be loaded automatically. Multiple property files may be used within a single plugin JAR
file.

Each property file consists of an arbitrary amount of lines that define a message property (also called a
code) with letters, numbers, and periods, associated with a human-readable message that can span
multiple lines, have quotes, or contain arguments. These are demonstrated in the following example.

first.message.code=This is the first message
second.message=This message can span multiple lines, \\
and will not show the linebreaks when retrieved

message.with.arguments=This message has arguments: first - {0}, second - {1}, third -
{2}, etc.
message.with.quotes=This message uses single quotes around ''this phrase''.

It is recommended to namespace the messages by using the property definitions and multiple property
files if necessary. For example, suppose a plugin JAR existed which actually contained two plugin types:
Message1Plugin and Message2Plugin. The first suggestion is to namespace the messages for each
plugin by the property definition, such as the following:

message1Plugin.first.message=This is a message for Message1Plugin
message2Plugin.first.message=This is a message for Message2Plugin

These messages could be stored in a file named "messages.properties" in the root of the plugin JAR
file. If there are many messages contained for each plugin type, it may be necessary to split each plugin
type's messages into a separate file, such as "message1-messages.properties" and "message2-
messages.properties". Note that it is essential that each property file ends with
"messages.properties" so that it is registered correctly.

Moab Web Services

http://en.wikipedia.org/wiki/Internationalization_and_localization

It is important that no two message codes are identical within a single plugin JAR file, even if
they are defined in separate property files. If this is done, a conflict will exist with the messages
and behavior is undefined.

Using the message method

Each plugin, translator, and custom component is injected with a method named message. This method
takes a Map as its parameter, which can contain one or several of the following properties:

Parameter Type Description

code String The message property definition
(everything before the equals sign in
the property file for a single message),
for example, first.message.code.

args List<Object> A list of arguments to insert into the
message.

default String A default message to be used when
the message code cannot be resolved.

error org.springframework.context.MessageSourceResolvable An object that represents a hierarchy
of message codes. This is typically
used to display errors.

The most utilized parameters are code and args, as these combined provide great flexibility in
generating messages. If a message cannot be resolved, or in other words the message definition does not
exist, the code will simply be returned as the resolved message. Below are several examples of
messages resolved using the property files given above. While these are contained in the polling method,
the message may be used anywhere within a plugin type.

package example
import com.adaptc.mws.plugins.AbstractPlugin

class MessagingPlugin extends AbstractPlugin {
def poll() {

assert message(code:"first.message.code")=="This is the first message"
assert message(code:"message.with.arguments", args:[

"1st", 2, true
])=="This message has arguments: first - 1st, second - 2, third - true, etc."

assert message(code:"message.with.quotes")=="This message uses single quotes around
'this phrase'."

assert message(code:"invalid.message.code")=="invalid.message.code"
}

}

Related topics

l Plugin developer's guide on page 1657

Moab Web Services

1662 Plugins

Plugins 1663

Configuration
Plugin types can access two different kinds of configuration: an individual plugin's configuration, and the
global MWS application configuration.

Individual plugin configuration

The individual plugin configuration is separate for each instance of a plugin. This may be used to store
current configuration information such as access information for linked resources. It should not be used
to store cached information or non-configuration related data. The individual datastore should be used
instead for these cases (for more information, see Individual datastore on page 1672).

It is accessed by using the getConfig method discussed in Dynamic methods on page 1659.

public void poll() {
def configFromMethod = getConfig()
// OR an even simpler method…
def configFromMethod = config

}

A common case is to retrieve the configuration in the configure method, verify that it matches
predetermined criteria, and utilize it perform initial setup of the plugin (e.g. initialize libraries needed to
communicate with external resources). For example, to verify that the configuration contains the keys
"username" and "password," the following code may be used.

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config
// This checks to make sure the key exists in the configuration Map and that the

value is not empty or null
if (!myConfig.containsKey("username") || !myConfig.username)

throw new InvalidPluginConfigurationException("The username configuration parameter
must be provided")
if (!myConfig.containsKey("password") || !myConfig.password)
throw new InvalidPluginConfigurationException("The password configuration

parameter must be provided")
}

Access MWS configuration

The MWS application configuration can also be accessed in plugin types. This configuration is global for
the entire application and can be modified by the administrator as shown in Configuring Moab Web
Services on page 1373.

It is accessed by using the getAppConfig method discussed in Dynamic methods on page 1659. This is
demonstrated below:

public void poll() {
// Retrieve the current MWS_HOME location
def mwsHome = appConfig.mws.home.location
// OR an even simpler method…
def mwsHome = getAppConfig().mws.home.location

}

Any of the properties shown in the Configuration reference may be accessed. Custom properties may
also be registered and accessed:

Moab Web Services

mws-config.groovy

plugins.custom.property = "This is my custom property"

CustomAppPropertyPlugin

public void poll() {
assert appConfig.plugins.custom.property=="This is my custom property"

}

Related topics

l Plugin developer's guide on page 1657

Configuration constraints
Plugin types can optionally define validation constraints for the polling interval and plugin configuration.
These parameters are then checked against the defined constraints during the creation of a new plugin.
If the validation fails, meaning the configuration provided does not pass the constraints defined by the
plugin type, the plugin will fail to be created with error messages based on the parameters and
constraints defined.

Defining constraints

To define constraints for a plugin type and therefore for all plugins created using it, use the following
syntax:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
// Set plugin's default polling interval
pollInterval defaultValue:60
// The "myParam" configuration parameter is automatically required and cannot be

blank
myParam blank:false
// The "myEnum" configuration parameter is not required and must set to one of the

values in the list
myEnum required:false, inList:["val1", "val2", "val3]
// Insert additional constraints here…

}
}

In the table below, all available constraints are shown, as well as the expected value type, an example,
the default message code, and the message suffix. The message columns are described in greater detail
in the Messaging section below.

Moab Web Services

1664 Plugins

Plugins 1665

Con-
strai-
nt

D-
ef-
au-
lt
va-
lu-
e

T-
y-
p-
e

Exam-
ple
value

Default mes-
sage code

Message
suffix Description

blank -- Bo-
ol-
ea-
n

true default.b-
lank.message

blank If false, the parameter (if present)
cannot be a blank string.

cred-
itCar-
d

-- Bo-
ol-
ea-
n

true default.in-
val-
id.creditCard.message

cred-
itCard.invalid

If true, uses org.a-
pache.-
commons.validator.CreditCardValidator
to determine if the parameter (if
present) is a valid credit card num-
ber.

defau-
ltVal-
ue

-- O-
bj-
ec-
t
or
Cl-
os-
ur-
e

60 -- -- If the parameter is not present, it
will be set to this default value.
Does not return any error mes-
sages. See Default value below for
more information.

email -- Bo-
ol-
ea-
n

true default.in-
val-
id.email.message

email.invalid If true, the parameter (if present)
must be a valid email address.

inList -- Li-
st

["fir-
st",
"seco-
nd"]

default.not.in-
list.message

not.inList The parameter (if present) must
be set to one of the values spe-
cified.

matc-
hes

-- St-
ri-
ng

"[a-z]
[A-Z]
+"

default.-
does-
nt.match.message

matches.in-
valid

The parameter (if present) must
match the specified regular expres-
sion.

Moab Web Services

Con-
strai-
nt

D-
ef-
au-
lt
va-
lu-
e

T-
y-
p-
e

Exam-
ple
value

Default mes-
sage code

Message
suffix Description

max -- In-
te-
ge-
r

10 default.in-
valid.max.message

max.exceeded The parameter (if present) must
not be greater than the defined
value.

*max-
Size

-- In-
te-
ge-
r

10 default.in-
val-
id.max.size.message

maxS-
ize.exceeded

The parameter's (if present) size
must not be greater than the
defined value.

min -- In-
te-
ge-
r

1 default.in-
valid.min.message

min.notmet The parameter (if present) must
not be less than the defined value.

*min-
Size

-- In-
te-
ge-
r

1 default.in-
val-
id.min.size.message

minS-
ize.notmet

The parameter's (if present) size
must not be less than the defined
value.

notEq-
ual

-- O-
bj-
ec-
t

"Inva-
lid
Value"

default.not.equal.-
message

notEqual The parameter (if present) must
not be set to the defined value.

nul-
lable

tru-
e

Bo-
ol-
ea-
n

false default.null.mes-
sage

nullable If true, the parameter (if present)
must be non-null value. See
required for how to enforce the
parameter to be present.

pass-
word

-- Bo-
ol-
ea-
n

true -- -- If true, the parameter (if present)
is hidden from the user both on
input and display when managing
plugin configuration. It is not, how-
ever, hidden in the REST API. Does
not return any error messages.

Moab Web Services

1666 Plugins

Plugins 1667

Con-
strai-
nt

D-
ef-
au-
lt
va-
lu-
e

T-
y-
p-
e

Exam-
ple
value

Default mes-
sage code

Message
suffix Description

range -- Ra-
ng-
e

1..10 default.in-
val-
id.range.message

range.toos-
mall/range.to-
obig

Uses a groovy range to validate
that the value is within a specified
range.

requi-
red

tru-
e

Bo-
ol-
ea-
n

false default.re-
quired.message

required If true, the parameter must be
present and non-null for the plu-
gin to be created successfully.
Implies the nullable:false con-
straint.

scale -- In-
te-
ge-
r

2 -- -- Only valid for Double parameters.
Rounds the parameter (if present)
to the specified number of digits.
Does not return any error mes-
sages.

*size -- Ra-
ng-
e

2 default.in-
valid.size.message

size.toos-
mall/s-
ize.toobig

Uses a groovy range to restrict the
size of a collection, string, or a num-
ber.

*type -- Cl-
as-
s

Integ-
er.-
class

typeMismatch typeMismatch See Type inferencing and con-
version below.

url -- Bo-
ol-
ea-
n

true default.in-
valid.url.message

url.invalid If true, uses org.a-
pache.-
commons.validator.UrlValidator
to determine if the parameter (if
present) is a valid URL. Does not
support exec or file scheme
URLs.

scrip-
table-
Url

-- Bo-
ol-
ea-
n

true default.in-
val-
id.scriptable.url.message

script-
ableUrl.in-
valid

Identical to the url validator, but
adds support for exec and file
scheme URLs.

Moab Web Services

Con-
strai-
nt

D-
ef-
au-
lt
va-
lu-
e

T-
y-
p-
e

Exam-
ple
value

Default mes-
sage code

Message
suffix Description

val-
idato-
r

-- Cl-
os-
ur-
e

(See
Custom
val-
idator)

default.in-
val-
id.validator.message

val-
idator.error

See Custom validator below.

* The user interface (see Plugin management on page 1720) does not support parameters whose type is
a subclass of Collection (a List, for example). Such parameters are therefore not recommended.

The polling interval constraints must always apply to Integer types. If this specification is violated,
the plugin type cannot be added or updated.

Messaging

When defined constraints are violated for a plugin, error messages are retrieved based on the
configuration parameters and the applied constraints using i18n Messaging codes (see i18n messaging
on page 1661). First, the most specific error message will be attempted to be resolved from a message
code generated from the plugin type name, the configuration parameter, and the constraint. This code
takes the format of pluginTypeName.parameterName.suffix where the plugin type's name has a
lowercase first letter and the suffix is shown in the table above. If this message code is not defined, the
default message code (as shown in the table above) will be used.

For example, if the url constraint validation failed for the "ExamplePlugin" plugin type's "endpoint"
configuration parameter, the following message codes would be resolved in order:

l examplePlugin.endpoint.url.invalid

l default.invalid.url.message

Plugin types that have two or more uppercase letters at the start of the name will not be
converted to have a lowercase first letter for error message codes. In other words, for the
example just given using "VCenterPlugin" instead of "ExamplePlugin", the following message
codes would be resolved in order:

VCenterPlugin.endpoint.url.invalid

default.invalid.url.message

Default messages

Default messages may be contained in any messages.properties file included in the plugin JAR file as
explained in i18n Messaging (see i18n messaging on page 1661). Arguments for each constraint vary, but
they always include these argument indices:

Moab Web Services

1668 Plugins

Plugins 1669

l {0}: The configuration parameter name (for example, endpoint).

l {1}: The plugin type class name (for example, my.package.ExamplePlugin).

l {2}: The value of the configuration parameter.

If default messages are not defined in the plugin project, the following messages will be used:

default.doesnt.match.message=The ''{0}'' configuration parameter value ({2}) does not
match the required pattern ''{3}''
default.invalid.url.message=The ''{0}'' configuration parameter value ({2}) is not a
valid URL
default.invalid.scriptable.url.message=The ''{0}'' configuration parameter value ({2})
is not a valid scriptable URL
default.invalid.creditCard.message=The ''{0}'' configuration parameter value ({2}) is
not a valid credit card number
default.invalid.email.message=The ''{0}'' configuration parameter value ({2}) is not a
valid e-mail address
default.invalid.range.message=The ''{0}'' configuration parameter value ({2}) does not
fall within the valid range from {3} to {4}
default.invalid.size.message=The ''{0}'' configuration parameter value ({2}) does not
fall within the valid size range from {3} to {4}
default.invalid.max.message=The ''{0}'' configuration parameter value ({2}) is greater
than the maximum value of {3}
default.invalid.min.message=The ''{0}'' configuration parameter value ({2}) is less
than the minimum value of {3}
default.invalid.max.size.message=The ''{0}'' configuration parameter value ({2})
exceeds the maximum size of {3}
default.invalid.min.size.message=The ''{0}'' configuration parameter value ({2}) is
less than the minimum size of {3}
default.invalid.validator.message=The ''{0}'' configuration parameter value ({2}) does
not pass custom validation
default.not.inlist.message=The ''{0}'' configuration parameter value ({2}) is not
contained within the list [{3}]
default.blank.message=The ''{0}'' configuration parameter cannot be blank
default.not.equal.message=The ''{0}'' configuration parameter value ({2}) cannot be
equal to ''{3}''
default.null.message=The ''{0}'' configuration parameter cannot be null
default.required.message=The ''{0}'' configuration parameter is required and cannot be
null
typeMismatch=The ''{0}'' configuration parameter value ({2}) does not match the
required type ''{3}''

Labels and help messages

Message codes may also be provided for configuration parameters to aid the admin user with human
readable property labels and help messages. Similar to the validation error message codes, labels and
help message codes may be defined using the pluginTypeName.parameterName.label and
pluginTypeName.parameterName.help message codes. These values are used only in plugin type
management (see Plugin type management on page 1715) and are not exposed through the REST API.

Type inferencing and conversion

Due to the dynamic nature of configuration parameters, the expected type or class of values for each
parameter are inferred from constraints. The following rules govern how type is inferred, in priority
order:

Moab Web Services

l If the *type constraint is applied to a parameter, the constraint value will be used as the expected
type.

Only the String, Date, Double, Integer, and Boolean classes are supported for the
*type constraint. If Float or Long is desired, use Double and Integer respectively as
the type.

l If the inList or range constraints are applied to a parameter, the class of the first element in the
constraint value array is used as the expected type.

l If the *minSize or *maxSize constraints are applied to a parameter, java.lang.Collection is
used as the expected type.

l If the max, min, or notEqual constraints are applied to a parameter, the class of the constraint
value is used as the expected type.

l If none of the above apply, java.lang.String is used as the expected type.

If the configuration parameter values can be converted to the expected types, this will occur
automatically. Otherwise, the *type constraint is violated and the applicable error messages will be
generated.

Custom validator

In cases where the built-in constraints prove inadequate for validation, custom validators may be used.
The validator constraint expects a Groovy Closure parameter which has one or (optionally) two
arguments: the value of the configuration parameter and the plugin object. With these parameters,
complex validation logic may be defined. Additionally, custom message codes and arguments may be
defined by validator constraints and these will be used in generating error messages when validation
fails.

For example, suppose that the parameter "user" cannot be set to the same value as parameter "creator."
Additionally, the "creator" parameter must not be equal to either "bob" or "joe." The existing constraints
are inadequate to fulfill this use case, but the following code using validators would perform exactly as
expected:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
user validator:{ val, obj ->

if (val==obj.config.creator)
return "invalid.equal.to.creator"

}
creator validator:{ val ->

if ("val"=="joe")
return ["invalid.equal", "joe"]

if (val=="bob")
return ["invalid.equal", "bob"]

}
}

}

In the examples above, the message codes and output on validation failure is shown below:

Moab Web Services

1670 Plugins

Plugins 1671

Message codes

constrainedPlugin.user.invalid.equal.to.creator=The user configuration parameter value
({2}) must not be equal to the creator parameter.
constrainedPlugin.creator.invalid.equal=The creator configuration parameter must not
be equal to {3}.

Output error messages

For user = "jill", creator = "jill"
"The user configuration parameter value (jill) must not be equal to the creator
parameter."
For user = "jill", creator = "bob"
"The creator configuration parameter must not be equal to bob."

For user = "jill", creator = "joe"
"The creator configuration parameter must not be equal to joe."

The validator Closure may return:

l Nothing (null) or true if the validation succeeded without errors.

l false if a validation error occurred (in this case the default validator message suffix would be
used).

l A string which will be used as the message code suffix in the
pluginTypeName.propertyName.suffix format.

l A list with the first element being the message code suffix, and all other elements being
arguments for the message indexed starting at 3 (as shown in the example above).

All validator constraints automatically have the appConfig property available, which contains the
application configuration as discussed in the Configuration section (see Configuration on page 1663). The
suite property contains the value of the configured MWS suite. Additionally, services may be retrieved
as explained in the next section.

Retrieving services

At times it may be necessary to use Bundled Services in custom validators. A method named getService
which takes a single string parameter of the name of the service (as used during injection) is provided to
be used in these cases. For example, if a plugin needs a valid server certificate file, the SSL Service may
be used as follows:

Moab Web Services

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
certificateFile validator:{ val ->

ISslService sslService = getService("sslService")
try {

sslService.getSocketFactory(val)
} catch(Exception e) {

// Certificate file is invalid, return an error
return ["invalid", e.message]

}
}

}
}

The getService method does not work with translators, custom components, RM services, or the
Individual datastore on page 1672.

Default value

The default value for a configuration parameter might depend on the MWS configuration or other
properties. Therefore, the defaultValue constraint can be set to a closure. The defaultValue closure
does not take any parameters and must return the object to be used as the default value.

For example, if the default value of a parameter must be true if and only if MWS is configured for the
Cloud suite, then the following constraints would satisfy these conditions:

import com.adaptc.mws.plugins.*
class ConstrainedPlugin extends AbstractPlugin {

static constraints = {
myParameter required: true, type: Boolean, defaultValue: {

return suite == Suite.CLOUD
}

}
}

As with validator closures, defaultValue closures have access to appConfig, suite, and
getService.

Related topics

l Plugin developer's guide on page 1657

Individual datastore
Each plugin has access to an individual, persistent datastore which may be used for a variety of reasons.
The datastore is not designed to store Moab data such as nodes, jobs, or virtual machines, but custom,
arbitrary data pertinent only to the individual plugin. This may include storing objects in a persistent
cache, state information for currently running processes, or any other arbitrary data. The individual
datastore has the following properties:

l Data is persisted to the Mongo database and will be available even if the plugin or MWS is
restarted.

Moab Web Services

1672 Plugins

Plugins 1673

l The data must be stored in groups of data called collections. These correspond directly to
MongoDB collections.

l Each plugin may have an arbitrary number of collections.

l Collections are guaranteed not to collide if there are identically named collections between two
plugin types or even two plugin instances.

l Each collection contains multiple objects or entries. These correspond directly to MongoDB
documents.

l The values of entries may be any object which can be serialized to MongoDB: simple types (int or
Integer), Maps, and Lists.

l A collection is automatically created whenever an entry is added to it, it does not need to be
specifically initialized.

To utilize the datastore, the Plugin datastore service must be used. Operations are provided to add,
query, and remove data from each collection.

Simple key/value storage is not currently provided with the datastore. It may easily be done,
however, by storing data in the format of {name:"key", value:"value"} and then retrieving
this entry later by querying on name equals "key."

Example

The example below demonstrates two web services (see Exposing web services on page 1674). The first
adds multiple entries containing various types of data to an arbitrarily named collection. The second
retrieves the data and returns it to the user.

package example
import com.adaptc.mws.plugins.*

class DatastorePlugin extends AbstractPlugin {
IPluginDatastoreService pluginDatastoreService

def storeData(Map params) {
def collectionName = params.collectionName
def data = [[boolVal:true], [stringVal:"String"], [intVal:1], [nullVal:null]]
if (pluginDatastoreService.addData(collectionName, data))

log.info("Data successfully added")
else

log.info("There was an error adding the data")
return [success:true]

}

def retrieveData(Map params) {
def collectionName = params.collectionName
return pluginDatastoreService.getCollection(collectionName)

}
}

Related topics

l Plugin developer's guide on page 1657

Moab Web Services

Exposing web services
Any number of methods may be exposed as public, custom web services by satisfying several criteria:

l The method must declare that it returns Object or def.

l The method must define a single argument of type Map.

l The method must actually return a List or Map.

l The method must not be declared as private or protected; only public or unscoped methods will be
recognized as web services.

Parameters and request body

The Map argument will contain all parameters passed into the web service by the client. See Accessing
Plugin Web Services on page 1583 for additional details.

Parameters may be passed into the web service call as normal URL parameters such as
?param=value¶m2=value2, as key-value pairs in the POST body of a request, or as JSON in the
body.

For the first two cases, the parameters will be available on the Map argument passed into the web
service call as key value pairs matching those of the request. Note that in these cases all keys and
values will be interpreted as strings. However, the parameters object has several helper methods to
convert from Strings to simple types, such as Booleans, integers, doubles, floats, and lists. If the value is
not a valid simple type, null is returned.

Finally, note that the client may optionally include an objectId as the last part of the URL. When this is
done, the id field will be set to this value in the Map argument to the web service.

GET <webServiceUrl>?key=value&key2=true&key3=5&list=1&list=2

def serviceMethod(Map params) {
assert params.key=="value"
assert params.key2=="true"
assert params.bool('key2')==true
assert params.key3=="5"
assert params.int('key3')==5
assert params.list('list')==[1, 2]

// Null is returned if the conversion is invalid
assert params.int('key')==null

}

When the body possesses JSON, the parsed JSON object or array will be available within a parameter
called body in the Map argument. In this scenario, the types of the values are preserved by the JSON
format.

POST <webServiceUrl> with JSON body of
{"key":"value","key2":true,"key3":5}

def serviceMethod(Map params) {
assert params.body.key=="value"
assert params.body.key2==true
assert params.body.key3==5

}

Moab Web Services

1674 Plugins

Plugins 1675

Unsecured web services

There are times when it is desirable to create a plugin with a publicly available web service that does
not require a valid application account in order to access it (for details, see Access control on page
1398). In these cases, the Unsecured annotation may be used on the plugin web service method. No
authentication will be performed on Unsecured web services. An example of using the annotation is given
below.

Sample unsecured custom web service

@Unsecured
def retrievePublicData(Map params) {

return [data:["data item 1", "data item 2"]]
}

Be cautious in using this annotation as it may potentially present a security risk if sensitive data
is returned from the web service.

Returning errors

In order to signify an error occurred or invalid data was provided, the WebServiceException class may
be thrown from any custom web service. This exception contains constructors and fields for a list of
messages and a HTTP response code. For example, suppose that the user provided inadequate
information. The web service could use the following code to notify the user and prompt them to take
action with custom messages.

def service(Map params) {
// Handle invalid input
if (!params.int('a'))

throw new WebServiceException("Invalid parameter 'a' specified, please specify an
integer!", 400)

// Use params.a correctly …
}

For the example above, a 400 response code (bad request) would be returned with a response body as
follows:

{
"messages":[

"Invalid parameter 'a' specified, please specify an integer!"
]

}

If any other exception is thrown from a web service (ie Exception, IllegalArgumentException, etc.), a 500
response code will be returned with the following response body:

{
"messages":[

"A problem occurred while processing the request",
"Message provided in the exception constructor"

]
}

See Responses and return codes on page 1407 for more information on error formats in MWS.

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Unsecured.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/WebServiceException.java

Accessing the HTTP Request Method

The HTTP method used for the request is available from the Map parameters argument. The key used to
access it is stored as a static field in PluginConstants called WEB_SERVICES_METHOD. The value is a
string which can be GET, POST, PUT, or DELETE. The following example demonstrates how this could be
used with the WebServiceException to create a REST API with a plugin.

def serviceMethod(Map params) {
// Check to make sure that this request used the HTTP GET method
// Throw a 405 error (method not supported) if not
if (params[PluginConstants.WEB_SERVICES_METHOD]!="GET")

throw new WebServiceException("Method is not supported", 405)
}

Related topics

l Plugin developer's guide on page 1657

Reporting state data
As long as Moab Workload Manager is configured with MWS as a Resource Manager (RM), plugins may
report state information on jobs, nodes, storage, and virtual machines to Moab. This is done through
Reports that are generated by the plugin and passed to the bundled RM services (Job RM service, Node
RM service, Storage RM service, and Virtual machine RM service). Each report is for a specific type of
object: job, node, storage, or virtual machine. Each contains current state information on the specific
attributes of the type it is for.

Note that storage is a sub-type of node, meaning that it is a specialized node.

Generating reports

To generate a report, simply create a new instance of a report depending on the type of object to be
reported:

Object type Report type

Job JobReport

Node NodeReport

Storage StorageReport

Virtual Machine VirtualMachineReport

Each report has a single required parameter for creating a new instance—the ID of the object which is
being reported. Once the report instance has been created, any property may be modified as shown in
the API documentation links in the table above. The following example shows the creation of a simple
node report and modification of a few properties:

Moab Web Services

1676 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/PluginConstants.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReport.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/NodeReport.java
https://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/StorageReport.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/VirtualMachineReport.java

Plugins 1677

public void poll() {
NodeReport node = new NodeReport("node1")
node.timestamp = new Date()
node.image = "centos-5.4-stateless"
… // Set other properties and persist the report

}

Master and slave reports

At times, you may want to report some additional attributes on objects only if the objects are being
reported by other plugins. For example, you may want to report the power state of a VM, but sometimes
the plugin reporting this data can receive data even after the VM has been destroyed. In this case, you
can set the slaveReport field on any report to true, signifying that the report should only be used if
another plugin is reporting on the same object (in other words, creating "master" reports).

If all reports for an object are "slave" reports, and no "master" reports exist, then the object will
not report to Moab Workload Manager.

Special cases in field values

All complex types, such as Lists, Maps, and objects (not including Enumerated values such as
NodeReportState and JobReportState) have default values set for them and are not required to be
instantiated before use. For example, the metrics property of a node report may be modified as follows:

public void poll() {
NodeReport node = new NodeReport("node1")
// The following assignments are equivalent in their functionality
node.features.add("FEAT1")
node.features << "FEAT2"
// The following assignments are equivalent in their functionality
node.metrics.METRIC1 = 4d
node.metrics["METRIC2"] = 125.5
… // Set other properties and persist the report

}

For the resources and requirements (jobs only) properties, assignments may be made easily
without checking for previously existing values or null objects. For example, resources may be added to
the resources property simply by accessing it as a Map:

public void poll() {
NodeReport node = new NodeReport("node1")
node.resources.RES1.total = 10
node.resources.RES1.available = 3
node.resources["RES2"].total = 10
node.resources["RES2"].available = 10
… // Set other properties and persist the report

}

The job report's requirements property has some additional handling to allow it to be accessed as a
single JobReportRequirement object, such as in the following example:

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/NodeReportState.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReportState.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/JobReportRequirement.java

public void poll() {
JobReport job = new JobReport("job.1")
job.nodeCountMinimum = 4
job.processorCountMinimum = 2
job.requiredNodeFeatures << "FEAT1"
job.preferredNodeFeatures << "FEAT2"
… // Set other properties and persist the report

}

Although multiple requirements may be added to the requirements list to provide consistency
with the MWS Job resource (see Jobs on page 1525), only the first requirement object's properties
will be reported to Moab through the RM interface.

Managing images for nodes

In order to have Moab Workload Manager recognize a node as a virtual machine hypervisor, it must
have a valid associated Image (see Images on page 1514). In particular, the image property on a node
report must set to a valid image name. The image's hypervisorType and virtualizedImages
properties are then used to report the correct hypervisor type and supported virtual machine images to
Moab.

If the image is invalid, it will be ignored and the node will not be recognized as a hypervisor. If the
image is valid, but no hypervisorType value is present, the extensions.xcat.hvType field value
will be used. If that is also not present, the configuration parameter for default hypervisor type (see
Configuration on page 1750) will be used instead.

Persisting a Report

After a report has been generated and all desired fields have been updated, the report must be sent to
one of the three bundled RM services for persisting. If this is not done, the report will be discarded and
will not be considered when reporting state information to Moab. The RM services are shown below
according to the object type that they handle:

Object type RM service

Job Job RM service

Node Node RM service

Storage Storage RM service

Virtual Machine Virtual machine RM service

Each service has two methods: save and update. The difference between these is that the save
method first removes all previous reports from the plugin calling the method, and then persists the new
reports, thereby only persisting the latest reports, while the update method does not remove any
reports before persisting the new reports. Typically, the save method will be used while a plugin is
being polled, while the update method will be used in incremental event based reporting. An example of
using the save method is shown below.

Moab Web Services

1678 Plugins

Plugins 1679

INodeRMService nodeRMService

public void poll() {
NodeReport node = new NodeReport("node1")
// Change the state
node.state = NodeReportState.BUSY
// Persist
nodeRMService.save([node])

}

Once this is done, the reports will be persisted to MongoDB and will be included in RM queries (see
Resource manager queries on page 1713) from Moab Workload Manager or users.

Related topics

l Plugin developer's guide on page 1657

Controlling lifecycle

Plugin control is currently in Beta. Interfaces may change significantly in future releases.

At times a plugin developer may wish to modify the current state of a plugin or even create plugins
programatically. This may be done with the Plugin control service. Operations exist on the service to:

l create plugin instances dynamically with specific configuration.

l retrieve plugin instances by ID or based on configuration properties.

l start or stop plugin instances.

l verify plugin instance configuration.

Creating plugins

Several methods are provided to allow on-the-fly creation of new plugins. Generally, they allow a plugin
with a specific ID and plugin type (as a string or as a Groovy Class) to be created with optional
configuration properties. These properties should match the fields in Plugins on page 1577.

If any configuration properties are omitted, the defaults will be used as described in Setting default
plugin configuration on page 1725. A boolean value is also returned indicating whether the creation
succeeded or not.

Note that the createPlugin methods will initialize the plugin for retrieval or usage and attempt to
start the plugin if the autoStart property is true.

Retrieving plugins

Plugins may be retrieved by using an ID, querying by plugin type, or even querying based on
configuration parameters. Several methods are provided to perform these functions as shown on Plugin
control service on page 1728.

Starting and stopping plugins

Plugins may also be started or stopped on demand. These two methods are exposed directly as start
and stop on the plugin control service. Although each method does not return any data, exceptions are

Moab Web Services

thrown if errors are encountered.

Verifying plugin configuration

Finally, the plugin control service may be used to verify plugin configuration at any point instead of just
when the plugin is started or modified. This may be useful to attempt to modify plugin configuration
directly through the setConfig dynamic method (see Dynamic methods on page 1659) and then verify
that the new configuration is valid for the plugin. Exceptions are thrown if the plugin or the configuration
is invalid.

Examples

If an error state is detected it may be necessary to stop the current plugin instance until corrective
action can be taken. This may be done using the following code:

package example

import com.adaptc.mws.plugins.*

class ErrorPlugin {
IPluginControlService pluginControlService

public void poll() {
// Error is detected, stop plugin instance!
try {

log.warn("An error was detected, trying to stop the plugin ${id}")
pluginControlService.stop(id)
log.warn("The plugin was successfully stopped")

} catch(PluginStopException e) {
log.error("Plugin instance ${id} could not be stopped", e)

}
}

}

Related topics

l Plugin developer's guide on page 1657

Accessing MWS REST resources
Often a plugin type may need to access existing MWS REST Resources in order to extend or complement
default MWS functionality. This may be done with the Moab REST service, which allows a plugin type
developer to utilize the existing Resources documentation see Resources introduction on page 1424) to
perform these tasks.

All accesses to resources require a HTTP method to use (such as GET, POST, PUT, or DELETE) and a
relative URL (such as /rest/jobs). Although it mimics the REST resource interface, no actual requests
are made and no data is transmitted through the network.

Authentication

All resources are available to the Moab REST Service, and no authentication or Application Accounts are
needed.

Moab Web Services

1680 Plugins

Plugins 1681

Caution must be used when developing plugin types, as there are no restrictions to what may be
done with the Moab REST Service. This is especially true when not utilizing hooks as discussed
below.

Hooks

If pre and post-processing hooks are utilized in MWS (Pre and post-processing hooks on page 1412), the
plugin type developer may choose whether or not they are executed when performing a "request"
through the Moab REST service. This is done through the hooks option as documented in Moab REST
service on page 1726.

Verifying API version support

The Moab REST Service provides a method for easily determining which API versions are supported by
the current version of MWS. This method includes checks to make sure that the API version will work as
expected, including verifying any configuration or external services are running.

moabRestService.isAPIVersionSupported(1)
moabRestService.isAPIVersionSupported(2)

Converting string dates

Because the Moab REST Service returns data exactly as given to an external consumer of MWS, including
dates converted to strings, the service provides a method for converting MWS date strings to actual
Date objects.

moabRestService.convertDateString("2011-11-08 13:18:47 MST")

URL parameters

URL parameters, such as query, sort, proxy-user, and others should be not be appended directly to
the URL. Instead, these may be specified with the params option:

// Query images that are hypervisors
moabRestService.get("/rest/images", params:[query:'{"hypervisor":true}'])
// Sort images by osType
moabRestService.get("/rest/images", params:[sort:'{"osType":1}'])

Examples

This code retrieves a list of all nodes, and is equivalent to the Get all nodes task.

Moab Web Services

package example

import com.adaptc.mws.plugins.*
import net.sf.json.*

class RestPlugin {
IMoabRestService moabRestService

public void poll() {
def result = moabRestService.get("/rest/nodes")
// OR with the hook enabled…
def result = moabRestService.get("/rest/nodes", hooks:true)

assert result instanceof MoabRestResponse
assert nodes instanceof List

log.debug("Nodes list:")
nodes.each { JSON node ->

log.debug(node.id)
}

}
}

This code adds a flag to a job, and is equivalent to the Modify job attributes task. This request also
enables the hook (if one is configured) for the "request" and uses a URL parameter. This is the equivalent
of making a call to /rest/jobs/job.1?proxy-user=adaptive.

package example

import com.adaptc.mws.plugins.*
import net.sf.json.*

class RestPlugin {
IMoabRestService moabRestService

public void poll() {
def jobId = "job.1"
def result = moabRestService.put("/rest/jobs/"+jobId, hooks:true, params:['proxy-

user':'adaptive']) {
[flags:["RESTARTABLE"]]

}
assert result.isSuccess()

}
}

Related topics

l Plugin developer's guide on page 1657

Creating events and notifications
Plugins may easily create new events and create or update notification conditions using the Plugin event
service. Previously, this was only possible by utilizing the MWS REST resources. The event service eases
this burden from plugin developers. There are several operations that are available using the service:

Moab Web Services

1682 Plugins

Plugins 1683

l Create a event with or without specifying an event date.

l Create an event from a enumeration annotated with EventEnumeration (see Plugin event
service on page 1733) with or without specifying an event date.

l Create or update a notification condition with or without specifying an observed date or expiration
duration.

Creating events
Events are composed of several properties such as arguments, associated objects, origin, message,
severity, escalation level, and a unique event code. The plugin event service removes the need for magic
strings such as those for event severity ("INFO", "WARN", "FATAL") and also handles creating unique
event codes. In other words, no bitwise manipulation is required to create new events.

The event code is comprised of several elements:

Code ele-
ment Description

Severity If the event is informational, a warning, an error, or fatal.

Escalation
level

Who cares about the event, or who should act on the event.

Component
code

Internally made up of the MWS component code (stored internally) and the plugin event com-
ponent code (see Plugin event component code on page 1683).

Entry code The code representing a unique event for the component (for each plugin event component code).

The plugin event service handles the severity, escalation level, and entry code portions of the code by
the values passed as parameters to the createEvent method. The plugin event component code is
described in the next section.

Plugin event component code

The plugin event component code should be a unique number across all plugin types or projects from 1-
254. This number is combined with the MWS component code to represent each plugin as a unique
component code across all Adaptive Computing products. 0 is reserved for MWS itself and should not be
used. 255 is reserved for plugin types that do not define an event component code and represents an
"unknown" plugin component. Additionally, codes 1-150 are reserved for Adaptive Computing plugins,
while 151-254 are reserved for Professional Services and/or customer-specific plugins.

This code may be specified by setting an eventComponent property (see Fields: Plugin Types on page
2035) on the plugin project file or as a static property on the plugin type. As with all other project
properties, the plugin type value overrides the project value. For example:

Moab Web Services

class MyExampleProject {
…
Integer eventComponent = 2
…

}
ExamplePlugin {

static final eventComponent = 1
…

}
Example2Plugin {

// no eventComponent property
…

}

In this case, the plugin type ExamplePlugin has a plugin event component code of 1, while the
Example2Plugin has a code of 2 since it inherits it from the project properties.

Origin suffix

The origin of an event created through the plugin event service is automatically set by the plugin
framework to MWS/plugins/<plugin type>/<plugin id>. For example, an event created by the
plugin created from the "ExamplePlugin" plugin type with an ID of "plugin1" would generate events with
an origin of MWS/plugins/Example/plugin1.

While this origin is sufficient for an administrator to determine the plugin where the event came from,
the plugin developer may want this to be more specific to a class name or method name. This may be
done using the optional originSuffix parameter to the createEvent method. The origin suffix, as its
name implies, is appended to the end of the generated origin. For the example above, suppose the plugin
developer passed myMethod/switch1 as the origin suffix parameter when creating a new event. The
event would then have an origin of MWS/plugins/Example/plugin1/myMethod/switch1.

Event enumerations

While creating events using the plugin event service is quite simple, often there are related events that
have properties in common, such as the event type prefix or the origin suffix. Additionally, i18n messages
(see i18n messaging on page 1661) are typically used for the event's message. Using the
EventEnumeration annotation (see Plugin event service on page 1733) in combination with a
enumeration simplifies this process. When this is done, each message is pulled from the
messages.properties files using a standard convention, and the event type prefix and the origin
suffix may optionally added as static properties on the enumeration. Using EventEnumeration
requires:

l The annotated element is an enum, not a class or interface.

l Each enumeration value must use the constructor with three arguments: the event name, the
severity, and the escalation level.

l If an event type prefix is specified, it must be defined as "static String EVENT_TYPE_PREFIX = ...",
otherwise the property should not be defined.

l If an origin suffix is specified, it must be defined as "static String ORIGIN_SUFFIX = ...", otherwise
the property should not be defined.

If any of these conditions are not fulfilled, using the EventEnumeration annotation will result in
compilation errors.

Moab Web Services

1684 Plugins

Plugins 1685

Enumeration values are automatically marked as implementing the IPluginEvent interface and may
be used as the first parameter of the createEvent method on the plugin event service. For example:

package example

import com.adaptc.mws.plugins.EventEnumeration
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

public class ExamplePlugin {
void poll() {

// Event 1 takes no arguments
pluginEventService.createEvent(ExampleEvents.EVENT1, null, null)
// Event 2 takes one argument and has an associated object
pluginEventService.createEvent(ExampleEvents.EVENT2, ["arg1"], [new AssociatedObject

(type:"type1", id:"id1")])
}

}

@EventEnumeration
enum ExampleEvents {

EVENT1("Example One", INFO, USER), // Entry code is 0
EVENT2("Example Two", INFO, USER) // Entry code is 1

}

It may be noted that several key properties of events are missing from the enumeration definition and
create event call parameters:

l Message: retrieved automatically from i18n messages (see Messages for event enumerations on
page 1685)

l Event type: generated from the enumeration constructor and optional event type prefix property
(see Event type for event enumerations on page 1686)

l Entry code: generated from the return value of ordinal() on the enumeration value; in other
words, this is generated from the order of the enumeration values

Messages for event enumerations

The message for events created from enumerations is generated using i18n messages (see i18n
messaging on page 1661) with codes in the following format:

l <enumeration type name>.<enumeration value name>.message

l <enumeration type name>.<enumeration value name>.comment

Considering the example in the section above, the message for ExampleEvents.EVENT1 would be
generated using the argument list passed to the createEvent method with the
"ExampleEvents.EVENT1.message" message from messages.properties. This message should contain
arguments if needed, such as "My example with ID {0} was created" and is used as the "message"
property in the created event. The comment, on the other hand, is not persisted with the event and
should be text (typically in paragraph format) describing why the event typically occurs or what actions
should be taken when it does occur. Consider the message to contain instance specific information for the
event (passed as arguments to the message) and the comment to be general documentation concerning
the event.

Moab Web Services

As a best practice, name event enumeration values using the number and short name of each argument
to the message. This makes it easy for the consumer to know which arguments are expected and what
each means. For example, if an event is for connection errors and needs two arguments to the message,
the URL and the error message, the enumeration value should be named "CONNECT_FAILURE_1URL_
2ERROR" or even "CONNECT_TO_1URL_FAILURE_2ERROR". In this way, the consumer knows that the first
argument represents the URL and the second is the error message.

Event type for event enumerations

As described above, the static string field EVENT_TYPE_PREFIX may be defined on the enumeration.
This value is optional and, when present, is prepended with a space to the event name parameter from
the constructor to generate the event type. For example, consider the following enumeration:

package example

import com.adaptc.mws.plugins.EventEnumeration
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

@EventEnumeration
enum MyPluginEvents {

CONNECT("Connect", INFO, ADMIN),
DISCONNECT("Disconnect", INFO, ADMIN)

static String EVENT_TYPE_PREFIX = "My Plugin"
}

If MyPluginEvents.CONNECT and MyPluginEvents.DISCONNECT were used with the plugin event
service, the generated event types would be "My Plugin Connect" and "My Plugin Disconnect"
respectively.

Origin for event enumerations

The origin for event enumeration values automatically contains more information than those for non-
enumerated events, such as those described above. The enumeration type name and value are appended
to the origin. For example, consider the following enumeration and plugin fragment:

…
class ExamplePlugin {

…
assert id=="example1" // plugin ID is example1
pluginEventService.createEvent(ExampleEvents.EVENT1, null, null)
…

}
…
@EventEnumeration
enum ExampleEvents {

EVENT1("Event One", INFO, ADMIN)
...

The origin generated for the created event would be
MWS/plugins/Example/example1/ExampleEvents/EVENT1. The static string field ORIGIN_
SUFFIX may also be defined on the enumeration. This value is optional and, when present, is appended
to the end of the generated origin as described above with the origin suffix parameter to the
createEvent method.

Moab Web Services

1686 Plugins

Plugins 1687

Example

In order to understand all interactions when event enumerations are used, the following is a complete
example.

Plugin type

package example
import com.adaptc.mws.plugins.*

class ConnectPlugin extends AbstractPlugin {
static eventComponent = 1

IPluginEventService pluginEventService

void poll() {
def errorMessage = connect()
if (errorMessage)

pluginEventService.createEvent(ConnectEvents.CONNECT_TO_1URL_FAILURE_2ERROR,
[config.url, errorMessage], null)

else
pluginEventService.createEvent(ConnectEvents.CONNECT_SUCCESS, null, null)

}

// Returns the error message or null/empty on success
private String connect() {

String errorMessage
…
return errorMessage

}
}

Event enumeration

package example
import com.adaptc.mws.plugins.EventEnumeration
import static com.adaptc.mws.plugins.IPluginEventService.Severity.*
import static com.adaptc.mws.plugins.IPluginEventService.EscalationLevel.*

@EventEnumeration
enum ConnectEvents {

CONNECT_SUCCESS("Success", INFO, ADMIN),
CONNECT_TO_1URL_FAILURE_2ERROR("Failure", ERROR, ADMIN)

static String EVENT_TYPE_PREFIX = "Connect"
}

Moab Web Services

messages.properties

ConnectEvents.CONNECT_SUCCESS.message=The plugin was successfully connected!
ConnectEvents.CONNECT_SUCCESS.comment=This occurs when the plugin successfully
connects to the configured URL and

is informational only.
ConnectEvents.CONNECT_TO_1URL_FAILURE_2ERROR.message=The plugin failed to connect to
{0}: {1}
ConnectEvents.CONNECT_TO_1URL_FAILURE_2ERROR.comment=This occurs when the plugin fails
to connect to the configured

URL for any reason. The most common reason is that the service is not running and
needs to be started.

The following are examples of the events created in MWS:

Created events

{"totalCount": 2, "resultCount": 2, "results": [
{

"arguments": ["http://localhost:1000", "The service is not running!"],
"code": 570523649,
"eventDate": "2013-06-12 19:16:50 UTC",
"eventType": "Connect Failure",
"message": "The plugin failed to connect to http://localhost:1000: The service is

not running!",
"origin": "MWS/plugins/Connect/connect/ConnectEvents/CONNECT_TO_1URL_FAILURE_

2ERROR",
"severity": "ERROR",
"id": "51b8c922a816c6a04af2401d",
"associatedObjects": []

},
{

"arguments": [],
"code": 33652736,
"eventDate": "2013-06-12 19:18:07 UTC",
"eventType": "Connect Success",
"message": "The plugin was successfully connected!",
"origin": "MWS/plugins/Connect/connect/ConnectEvents/CONNECT_SUCCESS",
"severity": "INFO",
"id": "51b8c96fa816c6a04af24021",
"associatedObjects": []

}
]}

Unique event codes

The last topic that must be covered in creating events from plugins is that all efforts should be made to
make sure that event codes are unique throughout all Adaptive Computing product suites. Additionally,
the codes should be static, meaning they do not change once established. In order to do this, adhere the
following recommendations:

l Use a unique (across all plugin types) plugin event component code for each plugin type.

l Follow the guidelines for plugin event component codes established above (see Plugin event
component code on page 1683) and ensure it is a number 1-254.

Moab Web Services

1688 Plugins

Plugins 1689

l Use event enumerations where possible, otherwise ensure (through testing if possible) that all
entry codes are unique for each plugin type.

l Ensure (through testing if possible) that the ordinal value of the event enumeration values do not
change.

Creating or updating notification conditions
The plugin event service also makes it easy to create or update notification conditions. Simply use the
updateNotificationCondition method. Just as the MWS notification condition resource, this is an
idempotent operation, meaning it can be called multiple times with the same result. If the notification
condition does not exist, it will be created automatically. If it does exist, the observed date and details
will be updated accordingly.

Examples
Examples are available on Plugin event service on page 1733.

Related topics

l Resources introduction on page 1424
l Events on page 1506
l Notifications on page 1563
l Notification conditions on page 1558
l Plugin developer's guide on page 1657
l Fields: Events on page 1837
l Plugin event service on page 1733
l Handling events on page 1689
l System events on page 1422
l Securing the connection with the message queue on page 1395

Handling events

Plugin events (excepting the poll event) are currently in Beta. Interfaces may change significantly
in future releases.

Plugin types may handle specific events by containing methods defined by the conventions below. All
events are optional.

The polling event

To maintain current information, each plugin is polled at a specified time interval. The following method
definition is required to utilize the polling event.

void poll() { … }

Moab Web Services

Typically this polling method is used to report node and virtual machine information. By default, the
polling interval is set to 30 seconds, but can be modified for all or individual plugins as explained in
Plugin management on page 1720.

When a polling event occurs, the poll method on the target plugin is called. This method may perform
any function desired and should typically make calls to the Node RM service, the Virtual machine RM
service, and the Job RM service services to report the current state of nodes and virtual machines. For
example, the poll method in the Native plugin type is implemented as follows:

This is an extremely simplified version of what is actually implemented in the Native plugin type.

INodeRMService nodeRMService;
IVirtualMachineRMService virtualMachineRMService;

public void poll() {
nodeRMService.save(getNodes());
virtualMachineRMService.save(getVirtualMachines());

}

This simple poll method calls two other helper methods called getNodes and getVirtualMachines
to retrieve node and virtual machine reports. These reports are then sent to the appropriate RM service.
See Reporting state data on page 1676 for more information on the RM services; however, the objective
of this example is to demonstrate one possible use of the poll event handler. Other plugin types, on the
other hand, may use the poll event to update internal data from pertinent resources or make calls to
external APIs.

Lifecycle events

Events are also triggered for certain lifecycle state changes. The following method definitions are
required to receive lifecycle events.

public void configure() throws InvalidPluginConfigurationException { … }
public void beforeStart() { … }
public void afterStart() { … }
public void beforeStop() { … }
public void afterStop() { … }

Each event is described in the table below with the associated state change when the event is triggered.

State
change Event Description

configure Configure Triggered before beforeStart and after the plugin has been configured. May be
used to verify configuration and perform any setup needed any time configuration is
loaded or modified.

beforeStart Start Triggered just before starting a plugin.

afterStart Start Triggered just after a plugin has been started.

Moab Web Services

1690 Plugins

Plugins 1691

State
change Event Description

beforeStop Stop Triggered just before stopping a plugin.

afterStop Stop Triggered just after stopping a plugin.

Currently, no events are triggered for pausing, resuming, erroring, or clearing errors for plugins.

RM events

When MWS is configured as a Moab Resource Manager (see Moab Workload Manager resource
manager integration on page 1708, and more specifically, Configuring Moab Workload Manager on
page 1709), RM events are sent from Moab to each plugin according to the routing specification (see
Routing on page 1657). The following method definitions are required to receive these events.

public boolean jobCancel(String jobName) { … }
public boolean jobModify(String jobName, Map<String, Object> attributes, ModifyMode
modifyMode) { … }
public boolean jobRequeue(String jobName) { … }
public boolean jobResume(String jobName) { … }
public boolean jobStart(String jobName, List<String> nodes, String username) { … }
public boolean jobSubmit(Map<String, Object> job, String submissionString, String
submissionFlags) { … }
public boolean jobSuspend(String jobName) { … }
public boolean nodeModify(List<String> nodes, Map<String, String> attributes,
ModifyMode modifyMode) { … }
public boolean nodePower(List<String> nodes, NodeReportPower state) { … }
public boolean virtualMachinePower(List<String> virtualMachines, NodeReportPower
state) { … }

Related topics

l Events on page 1506
l Notifications on page 1563
l Notification conditions on page 1558
l Plugin developer's guide on page 1657
l Fields: Events on page 1837
l Resources introduction on page 1424
l Plugin event service on page 1733
l Creating events and notifications on page 1682

Handling exceptions

Plugin exceptions are currently in Beta. Interfaces may change significantly in future releases.

The com.adaptc.mws.plugins package contains several exceptions that may be used and in some
cases, should be caught. All exceptions end with "Exception", as in PluginStartException.

There are several specific cases where Exceptions should or can be used:

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/PluginStartException.java

l The reload method on the Plugin control service can throw the
InvalidPluginConfigurationException to signify that the configuration contains errors.

l Various methods on the Plugin control service throw plugin exceptions which must be caught to
diagnose errors when creating plugin types.

l Any exception (including the Exception class) can be thrown from a custom web service to display
a 500 Internal Server Error to the client requesting the service with the given error message.

Related topics

l Plugin developer's guide on page 1657

Managing SSL connections
At times it is desirable to load and use self-signed certificates, certificates generated from a single
trusted certificate authority (CA), or even simple server certificates. It may also be necessary to use
client certificates to communicate with external resources. To ease this process, the SSL service may be
utilized. This service provides methods to load client and server certificates from the filesystem.
Methods are also present to aid in creating connections which automatically trust all server certificates
and connections.

Several points should be noted when using the SSL Service:

l Certificate files may be in the PEM file format and do not need to be in the DER format (as is
typical of Java security).

l Each method returns an instance of SSLSocketFactory, which may then be used to create simple
sockets or, in combination with another client library of choice, create a connection.

l If the client certificate password is non-null, it will be used to decrypt the protected client
certificate.

l This service is not needed when performing SSL communications with trusted certificates, such as
those for HTTPS enabled websites that do not have a self-signed certificate.

l If the file name of the certificate file (client or server) is relative (no leading '/' character), it will
be loaded from the mws.certificates.location configuration parameter (see Configuration
on page 1750).

o The default value of mws.certificates.location is MWS_HOME/etc/ssl.crt.

l Both the client certificate alias and password may be null. In this case, the client certificate
must not be encrypted and the client certificate's default alias (the first subject CN) will be used.

l The lenient socket factory and hostname verifier automatically trust all server certificates.
Because of this, they present a large security hole. Only use these methods in development or in
fully trusted environments.

Example

To create a socket to a server that requires a client certificate, the following code may be used.

Moab Web Services

1692 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/InvalidPluginConfigurationException.java

Plugins 1693

package example

import com.adaptc.mws.plugins.*

class SSLConnectionPlugin extends AbstractPlugin {
ISslService sslService

public void poll() {
// This certificate is not encrypted and will be the only certificate presented to

the
// connecting end of the socket.
// This file will be loaded from MWS_HOME + mws.certificates.location + my-cert.pem.
String clientCert = "my-cert.pem"

def socketFactory = sslService.getSocketFactory(clientCert, null, null)
def socket = socketFactory.createSocket("hostname.com", 443)
// Write and read from the socket as desired…

}
}

To create a HTTPS URL connection to a server that has a self-signed certificate, the following code may
be used. Note that this is very typical of client libraries – they have a method to set the SSL socket
factory used when creating connections.

package example

import com.adaptc.mws.plugins.*

class SSLConnectionPlugin extends AbstractPlugin {
ISslService sslService

public void poll() {
// This certificate represents either the server public certificate or the CA's

certificate.
// Since the path is absolute it will not be loaded from the MWS_HOME directory.
String serverCert = "/etc/ssl/certs/server-cert.pem"

def socketFactory = sslService.getSocketFactory(serverCert)

// Open connection to URL
HttpsURLConnection conn = "https://hostname.com:443/test".toURL().openConnection()
conn.setSSLSocketFactory(socketFactory)

// Retrieve page content and do with as desired…
def pageContent = conn.getInputStream().text

}
}

Related topics

l Plugin developer's guide on page 1657

Utilizing services or custom "helper" classes
There are three general types of services available for use in plugins:

l Bundled services such as the Moab REST service.

l Custom built translators loaded by convention of their name.

Moab Web Services

l Other custom built helper classes registered with Annotations.

These will each be described in this section.

Bundled services
Bundled services are utility classes that are included and injected by default onto all plugin types. It is
not required to use any of these services, but they enable several core features of plugin types as
discussed in Utility services on page 1655.

More information may be found on each bundled service in Plugin services on page 1725.

Using translators
Often a plugin type class file becomes so complex that it is desirable to split some of its logic into
separate utility service classes. The most typical use case for this is to split out the logic for
"translating" from a specific resource API to a format of data that the plugin type can natively
understand and utilize. For this reason, there is a convention defined to easily add these helper classes
called "Translators."

Simply end any class name with "Translator," and it will be automatically injected just as bundled
services onto plugin types, other translators, or even custom registered components. The injection
occurs only if a field exists on the class matching the name of the translator with the first letter lower-
cased. For example, a translator class called "MyTranslator" would be injected on plugin types, other
translators, and custom components that define a field called "myTranslator" as def myTranslator or
MyTranslator myTranslator.

Do not use two upper-case letters to start the class name of a Translator. Doing this may cause
injection to work improperly. For example, use RmTranslator instead of RMTranslator as the class
name.

Be careful not to declare translator and custom component injection such that a cyclic
dependency is created.

Logging in translators

All translators automatically have a "getLog" method injected on them which can be used to access the
configured logger. It returns an instance of org.apache.commons.logging.Log.

package example

class ExampleTranslator {
public void myMethod() {

// log will be translated to getLog() by the groovy compiler
log.info("Starting my method")

}
}

See Logging on page 1660 for more information on logging configuration and usage.

Moab Web Services

1694 Plugins

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/Log.html

Plugins 1695

Example

Suppose that a translator needs to be created to handle a connection to access an external REST
resource. The translator could be defined as follows:

package example

class ExampleTranslator {
public int getExternalNumber() {

def number = … // Make call to external resource
return number

}
}

A plugin type can then use the translator by defining a field called "exampleTranslator". Note that an
instance does not need to be explicitly created.

package example

class ExamplePlugin {
def exampleTranslator
// OR …
//ExampleTranslator exampleTranslator

public void poll() {
// Use the translator
log.info("The current number is "+exampleTranslator.getExternalNumber())

}
}

To extend the example, the translator may also be injected into another translator:

package example

class AnotherTranslator {
def exampleTranslator

public int modifyNumber(int number) {
return number + exampleTranslator.getExternalNumber()

}
}

This translator may be used in the plugin type just as the other translator.

Registering custom components
There are cases where the concept of a "Translator" does not fit the desired use of a utility class. In
these cases, it is possible to register any arbitrary class as a component to be injected just as a
translator would be. This is done using the Spring Framework's annotation
org.springframework.stereotype.Component. When this annotation is used, the class is
automatically registered to be injected just as translators onto plugin types and translators.

All annotations are available in the dependencies declared by the plugins-commons artifact.

Moab Web Services

Do not use two upper-case letters to start the class name of a custom component. Doing this may
cause injection to work improperly. For example, use RmUtility instead of RMUtility as the class
name.

Changing scope

By default, when a custom component is injected, only a single instance is created for all classes which
inject it. This is referred to as the 'singleton' scope. Another scope that is available is 'prototype', which
creates a new instance every time it is injected. This is useful when the class contains state data or
fields that are modified by multiple methods. To change the scope, use the
org.springframework.context.annotation.Scope on the class with a single String parameter
specifying "singleton" or "prototype."

Injecting translators or components

The need may arise to inject translators or other custom components onto custom components. This is
done using the org.springframework.beans.factory.annotation.Autowired or
javax.annotation.Resource annotations. The Autowired annotation is used to inject class
instances by the type (i.e. MyTranslator myTranslator) while the Resource annotation is used to
inject class instances by the name (i.e. def myTranslator). Add the desired annotation to the field
that needs to be injected.

Note that using the Autowired annotation does injection by type which differs from translator
and plugin type injection. These are done by name just as the Resource annotation allows. Due to
this fact, a type of "def" cannot be used when doing injection onto custom components using the
Autowired annotation. See the example below.

Injection of custom components onto translators and plugin types are still done by name, only
fields injected using the Autowired annotation are affected.

Be careful not to declare translator and custom component injection such that a cyclic
dependency is created.

Logging in custom components

Unlike plugins and translators, custom components do not automatically have a "getLog" method injected
on them. In order to log with custom components, you must use the Apache Commons Logging classes to
retrieve a new log. The PluginConstants class contains the value of the logger prefix that is used for
all plugins and translators. The following is an example of how to retrieve and use a logger correctly in a
custom component.

Moab Web Services

1696 Plugins

Plugins 1697

package example

import com.adaptc.mws.plugins.PluginConstants
import org.apache.commons.logging.Log
import org.apache.commons.logging.LogFactory
import org.springframework.stereotype.Component

@Component
class ExampleComponent {

private static final Log log = LogFactory.getLog(PluginConstants.LOGGER_
PREFIX+this.name)

public void myMethod() {
log.info("Starting my method")

}
}

See Logging on page 1660 for more information on logging configuration and usage.

Example

Suppose that a custom utility class is needed to perform complex logic. A custom component could be
defined as follows (notice the optional use of the Scope annotation):

package example

import org.springframework.stereotype.Component
import org.springframework.context.annotation.Scope

@Component
@Scope("prototype")
class ComplexLogicHandler {

def handleLogic() {
… // Perform complex logic and return

}
}

A plugin type or translator could then be defined to inject this component:

package example

class CustomPlugin {
def complexLogicHandler

public void poll() {
complexLogicHandler.handleLogic()

}
}

Now suppose another custom component needs to use the ComplexLogicHandler in its code. It can inject
it using the Autowired annotation:

Moab Web Services

package example

import org.springframework.stereotype.Component
import org.springframework.beans.factory.annotation.Autowired

@Component
class AnotherHandler {

// Note that this is injected by type, so 'def' may not be used
@Autowired
ComplexLogicHandler complexLogicHandler

def wrapLogic() {
complexLogicHandler.handleLogic()

}
}

To perform the same injection but by name (as translators and plugin types are injected), use the
Resource annotation:

package example

import org.springframework.stereotype.Component
import javax.annotation.Resource

@Component
class AnotherHandler {

// Note that this is injected by name based solely on the name defined in
// the annotation. The name of the field itself does not affect the injection.
@Resource(name="complexLogicHandler")
def complexLogicHandler

def wrapLogic() {
complexLogicHandler.handleLogic()

}
}

Related topics

l Plugin developer's guide on page 1657

Packaging plugins
Plugin types may be packaged in two different ways to upload to MWS:

l A simple Groovy file containing a single plugin type definition.

l A JAR file containing one or more plugin types, translators, and custom components.

While each may be uploaded to MWS using the REST API or the User Interface as described in Add or
update plugin types on page 1717, using a JAR file is recommended. Using a simple Groovy file is useful
for testing and generating proof of concept work, but does not allow the use of several features of
plugins.

The principles of packaging a plugin type or set of plugin types in a JAR file are very simple. Simply
compile the classes and package in a typical JAR file. All classes ending in "Plugin" are automatically
attempted to be loaded as a plugin type, all classes ending in "Translator" are attempted to be loaded as
a translator, and all classes annotated as a custom component will be attempted to be loaded. It is
recommended that a build framework is used to help with compiling and packaging the JAR file, such as

Moab Web Services

1698 Plugins

Plugins 1699

Gradle. This makes it easy to declare a dependency on the necessary JAR files used in plugin
development and to debug, compile, and test plugin code.

In addition to using utility services such as translators, packaging plugin types in JAR files allows the
creation of a single project for multiple related plugin types and bundling of external dependencies.
These two features are discussed in the following sections.

Plugin projects and metadata
Each plugin type has information attached to it, called metadata, which describes the origin and purpose
of the plugin type. Additionally, a JAR file may also contain a project file which defines default metadata
attributes for all plugin types in the JAR. Initial plugins, or plugins that will be created on loading of the
JAR file if they do not exist, are also able to be defined on a project file. In all cases, metadata declared
on a plugin type will override the metadata defined on the project file.

To define a project file, simply add a class to JAR file that ends in "Project." This file will attempted to be
loaded as the project file. Every field on a project file, and even the file itself, is optional. All available
fields are shown in the example below.

Moab Web Services

http://www.gradle.org/

class SampleProject {
// Plugin information
String title = "Sample"
String description = "Sample plugin types"
String author = "Our Company."
String website = "http://example.com"
String email = "sample@example.com"
Integer eventComponent = 1
// Versioning properties
String version = "0.1"
String mwsVersion = "7.1 > *"
String commonsVersion = "0.9 > *"
String license = "APACHE"

// Documentation properties
String issueManagementLink = "http://example.com/ticket-system/sample-plugins"
String documentationLink = "http://example.com/docs/sample-plugins"
String scmLink = "http://example.com/git/sample-plugins"

// Plugins that are to be created with these properties only when they do NOT exist
// This does not override any existing plugin instance configuration
def initialPlugins = {

/*
// Multiple instances of plugins may be defined here.
// In this case, 'sample' is the id of the plugin
sample {

pluginType = "Sample"
// All properties except for "pluginType" are optional
pollInterval = 30
autoStart = true
// Although it is possible to set plugin precedence, it is not recommended since

this precedence
// may already be taken and plugin creation will fail in this case
precedence = 5
config {

configParam = "value"
}

}
}
// Another plugin with an ID of 'sample2'
sample2 {

…
*/

}

As can be seen, metadata information about the plugin type(s), versions, and documentation are
available. These are displayed when viewing plugin information in the User Interface or through the
REST API.

Any of these properties except for initialPlugins, mwsVersion, and commonsVersion may be
overwritten by the plugin type class itself by using static properties. A simple example is shown below.

Moab Web Services

1700 Plugins

Plugins 1701

package example

class SamplePlugin {
// Properties may be typed, untyped, final, or otherwise,
// but they MUST be static
static version = "0.2"
static title = "Sample plugin"
static description = "This sample plugin is used to demonstrate metadata information"
static author = "Separate Division"
static eventComponent = 1

… // Rest of the plugin type definition
}

Event component

The eventComponent field is explored in Creating events and notifications on page 1682.

MWS and commons versions

The mwsVersion and commonsVersion fields are used to restrict the versions of MWS and plugin
framework with which the plugin project may be used. Each field is of the format FIRST_VERSION >
LAST_VERSION, where FIRST_VERSION is the first supported MWS or plugin framework version
(inclusive), and LAST_VERSION is the last supported MWS or plugin framework version (inclusive). Each
version must take the format of #.# or #.#.#, as in 7.1, or 7.1.2. An asterisk (*) is used to denote any
version, and may be used for the first or the last version.

Although support for restricting both the MWS and commons versions are provided, it is recommended
to use the commons version restriction always and the MWS version restriction where necessary.
Restrictions on the commons version prevent plugin loading errors while restrictions on the MWS
version prevent runtime errors such as missing support for certain MWS API versions.

Typically the mwsVersion and commonsVersion fields are set as shown above, with the first version
set to a specific number, and the last version set to any (an asterisk). This is the recommended approach
for setting both fields. It is not recommended to use any version (asterisk) for the first version. Some
examples of mwsVersion and commonsVersion values are shown below with explanations of how they
behave.

String mwsVersion = "7.1 > *" // Any MWS version 7.1.0 and greater is supported
(including 7.2, etc)
String mwsVersion = "7.1.3 > *" // Any MWS version 7.1.3 and greater is supported
(including 7.2, etc)
String mwsVersion = "7.1 > 7.1.3" // Any MWS version between 7.1.0 and 7.1.3 is
supported
String mwsVersion = "* > *" // Any MWS version is supported (not recommended!)
String mwsVersion = "* > 7.2" // Any MWS version up to 7.2 is supported (not
recommended!)

String commonsVersion = "0.9 > *" // Any framework version 0.9.0 and greater is
supported (including 1.0, etc)
String commonsVersion = "0.9.3 > *" // Any framework version 0.9.3 and greater is
supported (including 1.0, etc)
String commonsVersion = "0.9 > 0.9.3" // Any framework version between 0.9.0 and 0.9.3
is supported
String commonsVersion = "* > *" // Any framework version is supported (not
recommended!)
String commonsVersion = "* > 1.0" // Any framework version up to 1.0 is supported (not
recommended!)

Moab Web Services

If the mwsVersion or commonsVersion fields are formatted incorrectly, the plugin project will fail to
load. If a plugin project is uploaded to MWS and the version check fails, the project will fail to load with
an error message about the mwsVersion or commonsVersion.

The mwsVersion and commonsVersion fields cannot be overridden by a single plugin type, but
can be set only at the plugin project level. This prevents mixing of MWS and commons version
requirements within a single project.

Initial plugins

The initial plugins closure provides the flexibility to insert plugin instances when the JAR is loaded. This
occurs at two points: when the plugin JAR is first uploaded to MWS, and when MWS is restarted. As
shown in the example above, the ID, pluginType, and other properties may be configured for multiple
plugins.

The nature of Groovy closures means that programmatic definition of initial plugins is possible. This may
even be based on the MWS application configuration. Two properties are automatically available in the
initialPlugins closure:

l appConfig – Contains the MWS application configuration. Any configuration parameter is
available for access as documented on Configuration on page 1750.

l suite – Contains the currently configured suite that MWS is running in. This is equivalent to the
mws.suite configuration parameter, and is an instance of Suite.

Native plugin case study

The Native JAR file utilizes many of the features discussed above. In the root of the JAR file, a compiled
class called NativeProject exists which defines all of the metadata fields, including initialPlugins.
Trying to create an initial plugin presents two distinct problems:

l The plugin should be initialized only if the suite is CLOUD.

l The plugin type configuration must contain an entry referencing the configured
mws.home.location parameter, or the configured MWS_HOME location.

The initialPlugins closure is defined as follows:

Moab Web Services

1702 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Suite.java

Plugins 1703

import com.adaptc.mws.plugins.Suite

class NativeProject {
… // Metadata fields

def initialPlugins = {
// Initialize the cloud-native plugin only if the suite is CLOUD
if (suite==Suite.CLOUD) {

'cloud-native' {
pluginType = "Native"
pollInterval = 30
config {

// Use the appConfig property to retrieve the current MWS_HOME location
getCluster = "file://${appConfig.mws.home.location}/etc/nodes.txt"

}
}

}
}

}

Managing external dependencies
External dependencies (e.g. JAR files) may be included and referenced in JAR files. Certain rules must also
be followed in order to have the dependencies loaded from the JAR file correctly:

The plugin type must bundle all external dependency JARs in the root of the plugin type JAR file.

An entry must be included in the MANIFEST.MF file that references each of these bundled JAR files as a
space separated list:

Class-Path: dependency1.jar dependency2.jar dependency3.jar

Assuming that these rules are followed and that the plugin type is uploaded using the REST API or the
User Interface, the dependent JARs will first be loaded and then the new plugin type and associated files
will be loaded.

Documenting plugin types
Documentation may also be included in JAR files by placing one or more Markdown formatted files in the
root of the project JAR file. These files will be processed dynamically by MWS and presented as
documentation pages for the respective plugin types within the MWS plugin user interface pages.
Markdown is a simple text-to-HTML format used in some of the most popular open-source repositories
such as GitHub and BitBucket. To help provide plugin developers use a single place or file for
documentation, the conventional use of "README.md" as documentation was followed within MWS.

Documentation file naming

Each documentation filename must start with "README" and end with ".md". If only one documentation
file is needed for bundled plugin type(s), it is recommended to call the file "README.md". For multiple
plugin types, the file name must contain the plugin type name without the "Plugin" suffix in the format of
"README-<PluginName>.md". For example, if a plugin project JAR file contained the plugin type classes
"MyPlugin", "ABTestPlugin", and "ImportantPlugin", the documentation files would be located in the root
of the JAR file and would be called "README-My.md", "README-ABTest.md", and "README-Important.md"

Moab Web Services

http://daringfireball.net/projects/markdown/
https://github.com/
https://bitbucket.org/

respectively. If a "README" file does not exist for a certain plugin type, the main "README.md" file (if
provided) will be used as documentation for that plugin type.

Markdown syntax

The Markdown syntax supported by MWS is very close to GitHub Flavored Markdown. Internally, the
pegdown Markdown processor is used to generate the HTML with the TABLES, ABBREVIATIONS,
FENCED_CODE_BLOCKS, SMARTYPANTS, DEFINITIONS, and QUOTES extensions enabled. HTML tags
may also be used directly in order to create more refined formatting of the documentation, but this is
discouraged with the exception of inserting the configuration reference table discussed below.

For example, the TABLES extension may be used to easily create HTML tables:

Name	Notes
Bob | Knows how to use MWS plugins but has never created one
George | Writes MWS plugins in his spare time

The only main difference from standard Markdown processors is that block quotes (marked by lines
prepended with '> ') are shown as highlighted information boxes when displayed in MWS. This may be
used to draw more attention to informational or warning messages without writing custom HTML.

> **Warning:** The use of this plugin type requires that MWS and MWM are configured
correctly as described in
> the MWS user guide.

Configuration reference table

A table of available configuration parameters is often constructed in documentation for each plugin type.
To ease the burden on the plugin developer of maintaining this documentation and the constraints on the
plugin type, a table generated from the constraints (see Configuration constraints on page 1664) and
included messages is available by using the following HTML in the README file(s):

<div class="configuration-table">This section will be replaced by MWS with the
configuration parameters table</div>

The text within the div container may be anything, but should state something helpful such as that it is
placeholder in cases where the documentation may be viewed within other contexts such as on GitHub.

The generated table includes the following columns for each configuration parameter listed in the
constraints: name, key, required, type, description. The "name" and "description" values are retrieved
from the "help" and "label" messages bundled in the plugin JAR (see the labels and help messages section
in Configuration constraints on page 1664 for more information).

Web services reference sections

Documentation for exposed web services (see Exposing web services on page 1674) is also able to be
generated automatically. Instead of a single table as done with configuration parameters, a section with
several tables (possible URL access points, URL parameters, and response fields) and additional
information is generated for each exposed web service. This is available by using the following HTML in
the README file(s):

<div class="webservice-sections">This section will be replaced by MWS with the web
service documentation</div>

Moab Web Services

1704 Plugins

https://help.github.com/articles/github-flavored-markdown
https://github.com/sirthias/pegdown

Plugins 1705

The text within the div container may be anything, but should state something helpful such as that it is
placeholder in cases where the documentation may be viewed within other contexts such as on GitHub.

Changing heading sizes

The generated sections each begin with an <h2> heading with the name of the web service. If a different
heading size (h3, h4, etc.) is desired, this may be done with the following HTML:

<div class="webservice-sections" data-level="3">This section will be replaced by MWS
with the web service documentation</div>

Notice the data-level attribute, which contains the number used in the HTML h tag.

Message codes

Just as with the configuration table, the data for the content is generated automatically from the web
service method name and from i18n messages (see i18n messaging on page 1661) bundled in the plugin
JAR file. Message codes are available to customize the label and description of the web service. Codes
are also available to define an arbitrary number of URL parameters and response fields. These do not
need to be defined, but are helpful. The following table defines each message used in generating the
documentation for web services.

Name Message code Description

Web Ser-
vice Label

<pluginType>.webServices.<webServiceMethod>.label The label used as the
heading for the section,
defaults to the naturally
capitalized method
name if not present.

Web Ser-
vice
Description

<pluginType>.webServices.<webServiceMethod>.help Paragraph text describ-
ing the web service and
its functionality, out-
puts, etc.

Parameter
Key

<pluginType>.webServices.<webServiceMethod>.parameter<n>.key The nth URL parameter,
starting at 1 (example:
id).

Parameter
Label

<pluginType>.webServices.<webServiceMethod>.parameter<n>.label The label for the nth
URL parameter,
defaults to the naturally
capitalized key if not
present.

Moab Web Services

Name Message code Description

Parameter
Type

<pluginType>.webServices.<webServiceMethod>.parameter<n>.type The type for the nth
URL parameter,
defaults to String if
not present.

Parameter
Description

<pluginType>.webServices.<webServiceMethod>.parameter<n>.help The description or help
text for the nth URL
parameter.

Response
Field Key

<pluginType>.webServices.<webServiceMethod>.return<n>.key The nth response field,
starting at 1 (example:
success).

Response
Field Label

<pluginType>.webServices.<webServiceMethod>.return<n>.label The label for the nth
response field, defaults
to the naturally cap-
italized key if not
present.

Response
Field Type

<pluginType>.webServices.<webServiceMethod>.return<n>.type The type for the nth
response field, defaults
to String if not
present.

Response
Field
Description

<pluginType>.webServices.<webServiceMethod>.return<n>.help The description or help
text for the nth
response field.

As an example, suppose that a web service method called "doSomething" exists on a plugin type named
"MyExamplePlugin". This web service expects two URL parameters: id, an integer, and action, a string.
The response body consists of a JSON object with two fields: success, a boolean value, and messages,
a list of strings. The following messages would serve to generate helpful documentation:

Moab Web Services

1706 Plugins

Plugins 1707

messages.properties

web service messages
myExamplePlugin.webServices.doSomething.label=Do Something Important
myExamplePlugin.webServices.doSomething.help=This web service does something important
with the input parameters.
parameters
myExamplePlugin.webServices.doSomething.parameter1.key=id
myExamplePlugin.webServices.doSomething.parameter1.label=ID
myExamplePlugin.webServices.doSomething.parameter1.type=Integer
myExamplePlugin.webServices.doSomething.parameter1.help=The identifier of an object
myExamplePlugin.webServices.doSomething.parameter2.key=action
myExamplePlugin.webServices.doSomething.parameter2.label=Action # same as the default
would be
myExamplePlugin.webServices.doSomething.parameter2.type=String # same as the default
would be
myExamplePlugin.webServices.doSomething.parameter2.help=The action to perform

response fields
myExamplePlugin.webServices.doSomething.return1.key=success
myExamplePlugin.webServices.doSomething.return1.label=Success # same as the default
would be
myExamplePlugin.webServices.doSomething.return1.type=Boolean
myExamplePlugin.webServices.doSomething.return1.help=True if the request succeeded,
false otherwise
myExamplePlugin.webServices.doSomething.return1.key=messages
myExamplePlugin.webServices.doSomething.return1.label=Error Messages
myExamplePlugin.webServices.doSomething.return1.type=List of Strings
myExamplePlugin.webServices.doSomething.return1.help=Error messages describing the
reason why success is false.

Note that if the first URL parameter key is id, the listed resource URLs will include the optional URL
with the id parameter inline, such as
/rest/plugins/<pluginId>/services/<webService>/<id>. Therefore, it is recommended to
use id as parameter 1 if the web service expects a parameter with that key.

Related topics

l Plugin developer's guide on page 1657

Example plugin types
Several plugin types are provided by Adaptive Computing for use in Moab Web Services. Examples of
these include the Native and vCenter plugin types.

A sample plugin type in Groovy would resemble the following:

Moab Web Services

package sample

import com.adaptc.mws.plugins.*

class SamplePlugin extends AbstractPlugin {
static author = "Adaptive Computing"
static description = "A simple plugin in groovy"
static version = "0.1"

INodeRMService nodeRMService

public void configure() throws InvalidPluginConfigurationException {
def myConfig = config // "config" is equivalent to getConfig() in groovy
def errors = []
if (!myConfig.arbitraryKey)

errors << "Missing arbitraryKey!"
if (errors)

throw new InvalidPluginConfigurationException(errors)
}

public void poll() {
NodeReport node = new NodeReport("node1")
node.resources.RES1.total = 5
node.resources.RES1.available = 5
node.state = NodeReportState.IDLE
nodeRMService.save([node])

}

// Access at /rest/plugins/<id>/services/example-service
public def exampleService(Map params) {

return [success:true]
}

}

Related topics

l Plugin developer's guide on page 1657

Moab Workload Manager resource manager integration
Moab Workload Manager possesses the concept of Resource Managers (RMs). While plugins can be
related to RMs, they often provide greater functionality and serve more purposes than a typical RM.
MWS must be represented in Moab as a RM to enable certain plugin features such as state reporting and
handling RM events. This section describes the process of configuring Moab and additional details of its
queries to MWS. It includes the following topics:

l Configuring Moab Workload Manager on page 1709

l Resource manager queries on page 1713

Related topics

l About Moab Web Services plugins on page 1650

Moab Web Services

1708 Plugins

Plugins 1709

Configuring Moab Workload Manager
During each iteration of Moab Workload Manager's cycle, it will query MWS through the RM interface to
access current node, virtual machine, and job information. At this point, all reports are loaded from the
database and consolidated into a single report of each object as explained in Data consolidation on page
1655.

All unset (or null) values for properties on reports are ignored.

In some cases it may be desired to query MWS directly for the current consolidated node, storage,
virtual machine, and job reports. This may be done using the following URLs which return data in a
format that is a subset of the API version 3 interface for each object (i.e. /rest/nodes?api-
version=3, /rest/vms?api-version=3, /rest/jobs?api-version=3).

Query Description

/rest/plugins/all/rm/cluster-
query?api-version=3

Retrieves consolidated node, storage, and virtual machine
reports from all plugins.

/rest/plugins/<ID>/rm/cluster-
query?api-version=3

Retrieves consolidated node, storage, and virtual machine
reports for the specified plugin ID.

/rest/plugins/all/rm/workload-
query?api-version=3

Retrieves consolidated job reports from all plugins.

/rest/plugins/<ID>/rm/workload-
query?api-version=3

Retrieves consolidated job reports for the specified plugin ID.

These queries have no effect on the data itself. In other words, reports are not removed or manipulated
when RM queries are performed. These are manipulated only the RM services as described in Reporting
state data on page 1676.

Examples

The following example uses cURL (see cURL samples on page 1749) to perform the query.

Moab Web Services

$ curl -u moab-admin:changeme! http://localhost:8080/mws/rest/plugins/all/rm/cluster-
query?api-version=3&pretty=true
{

"nodes": {
"n1.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 8191,
"available": 7206

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.008233333333333334,
"vmcount": 0,
"cpuUtilization": 0.2008333333333333

},
"featuresReported": [

"feature1"
],
"ipAddress": "10.0.8.69",
"operatingSystem": {

"hypervisorType": "esx",
"image": "vcenter-vcenter-esx-4.x",
"virtualMachineImages": [

"centos6-v7"
]

},
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-411"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n2.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 10239,
"available": 9227

},
"gres1": {

Moab Web Services

1710 Plugins

Plugins 1711

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.00805,
"vmcount": 0,
"cpuUtilization": 0.19666666666666666

},
"featuresReported": [

"feature1",
"feature2"

],
"ipAddress": "10.0.8.76",
"operatingSystem": {

"hypervisorType": "esx",
"image": "vcenter-vcenter-esx-5.0",
"virtualMachineImages": [

"centos6-v7",
"centos6",
"win2008"

]
},
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-415"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n3.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 10239,
"available": 9229

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.0097,
"vmcount": 0,
"cpuUtilization": 0.2375

},
"featuresReported": [

"feature1"
],
"ipAddress": "10.0.8.72",
"operatingSystem": {

"hypervisorType": "esx",
"image": "vcenter-vcenter-esx-5.0",

Moab Web Services

"virtualMachineImages": [
"centos6-v7",
"centos6",

"win2008"
]

},
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-416"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}
}

},
"n4.test": {

"states": {
"state": "IDLE"

},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 10239,
"available": 9229

},
"gres1": {

"configured": 100
}

},
"metrics": {

"cpuLoad": 0.007883333333333334,
"vmcount": 0,
"cpuUtilization": 0.1925

},
"featuresReported": [

"feature2"
],
"ipAddress": "10.0.8.77",
"operatingSystem": {

"hypervisorType": "esx",
"image": "vcenter-vcenter-esx-5.0",
"virtualMachineImages": [

"centos6-v7",
"centos6",
"win2008"

]
},
"variables": {

"VCENTER_DATASTORE_REMOTE1": "datastore-448",
"VCENTER_DATASTORE_LOCAL1": "datastore-958"

},
"attributes": {

"MOAB_DATACENTER": {
"value": "vcenter-datacenter-401",
"displayValue": "vcenter-vcenter - adaptive data center"

}

Moab Web Services

1712 Plugins

Plugins 1713

}
}

},
"vms": {

"vm1": {
"states": {

"state": "DOWN",
"powerState": "OFF"

},
"host": {

"name": "n1.test"
},
"lastUpdatedDate": 1382386344,
"resources": {

"processors": {
"configured": 4

},
"memory": {

"configured": 12288
}

},
"metrics": {

"vmcount": 1
}

}
},
"storage": {}

}

Related topics

l Moab Workload Manager resource manager integration on page 1708
l Resource manager queries on page 1713

Resource manager queries
Moab Workload Manager must be configured to use MWS as a resource manager. Do the following:

l First, the following lines must be in the Moab Workload Manager configuration file or one of its
included files:

RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=http://localhost:8080/mws

The BASEURL must match the configured URL of MWS.

l The next step is to edit the MWS credential information in the Moab private configuration file
(/opt/moab/etc/moab-private.cfg, by default). Here are the default values:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

Moab Web Services

USERNAME and PASSWORD must match the values of auth.defaultUser.username and
auth.defaultUser.password, respectively, found in the MWS configuration file. The
MWS RM contacts MWS directly using the base URL, username, and password configured.

Optionally, the USERNAME and PASSWORD configuration values may be specified directly in
the Moab configuration file, though this is not recommended. Likewise, the BASEURL
configuration value can be specified in the Moab private configuration file.

l Lastly, to enable such actions as submitting jobs as different users, the ENABLEPROXY=TRUE
option must be present in the ADMINCFG configuration line, and the OSCREDLOOKUP option must
be set to NEVER, as follows:

ADMINCFG[1] USERS=root ENABLEPROXY=TRUE
OSCREDLOOKUP NEVER

l You may also want to configure SSL by using the following options (in either the RMCFG or
CLIENTCFG section):

o SSLCACERT: Lets you specify the absolute path to your SSL CA certificate. (This also enables
the use of self-signed certificates, if desired.) It is recommended that you set this option in
the Moab private configuration file. For example:

CLIENTCFG[RM:mws] SSLCACERT=/path/to/cert.pem

o SSLNOHOSTCHECK: Lets you disable the SSL check to make sure that the actual server
name matches the certificate's server name. For example:

#In moab-private.cfg
CLIENTCFG[RM:mws] SSLNOHOSTCHECK=TRUE

#Or in moab.cfg
RMCFG[mws] SSLNOHOSTCHECK=TRUE

WARNING: This setting could compromise the security of the system and should not
be used in production environments.

o SSLNOPEERCHECK: Lets you disable the SSL check to make sure that the certificate is valid.

#In moab-private.cfg
CLIENTCFG[RM:mws] SSLNOPEERCHECK=TRUE

#Or in moab.cfg
RMCFG[mws] SSLNOPEERCHECK=TRUE

WARNING: This setting could compromise the security of the system and should not
be used in production environments.

Related topics

l Moab Workload Manager resource manager integration on page 1708
l Configuring Moab Workload Manager on page 1709

Moab Web Services

1714 Plugins

Plugins 1715

Plugin type management
Plugin types may be managed and accessed with Moab Web Services dynamically, even while running.
Operations are provided to upload (add or update) plugin types and to list or show current plugin types.
The available fields that are displayed with plugin types are given in Fields: Plugin Types on page 2035.
For more information on how these fields are set, see Plugin projects and metadata on page 1699.

Plugin Type JAR or groovy files should never be manually copied into the MWS_HOME/plugins
directory. They must be managed using the methods shown in this section or through the REST
API (see Plugin types on page 1585).

Bundled plugin types are included automatically in Moab Web Services releases and may be utilized
immediately after startup. See Plugin management on page 1720 for more information on how to utilize
these plugin types.

The plugin type documentation is now located in the plugin type management pages. See Plugin
type documentation on page 1716 for more information.

This section contains these topics:

l Listing plugin types on page 1715

l Displaying plugin types on page 1716

l Plugin type documentation on page 1716

l Add or update plugin types on page 1717

Related topics

l About Moab Web Services plugins on page 1650

Listing plugin types
To list all plugin types, browse to the MWS home page (for example, https://servername/mws). Log
in as the admin user, then click Plugins > Plugin Types.

Moab Web Services

Related topics

l Plugin type management on page 1715

Displaying plugin types
To show information about a plugin type, go to the Plugin Type List page and click the desired plugin
type.

Related topics

l Plugin type management on page 1715

Plugin type documentation
To show the documentation for a plugin type, go to the Plugin Type List page and click the desired
plugin type. Then, click the Open Documentation button. This will display any documentation bundled
with the plugin type.

Related topics

l Plugin type management on page 1715

Moab Web Services

1716 Plugins

Plugins 1717

Add or update plugin types
Plugin types can be uploaded into Moab Web Services using a Groovy file, a Java Archive (JAR) file, or
pasted Groovy code. To access the plugin type upload page, navigate to the Plugin Type List page and
click Add or Update Plugin Type. The default interface of this page enables the uploading of a single
Groovy class file or a JAR file.

When a plugin type is updated, by default all corresponding plugins created from the plugin type will be
recreated. If this behavior is not desired, clear the Do you want to reload all plugins to use this new
version? checkbox before uploading the plugin type.

Single class file

Groovy files containing a single plugin type may be uploaded at the /mws/admin/plugin-
types/create URL.

If the upload failed or an error occurred during initialization of the plugin, an error message will be
displayed.

JAR file

A JAR file, as described in Packaging plugins on page 1698, containing one or more plugins may also be
uploaded using the same process as the Groovy file.

Moab Web Services

http://en.wikipedia.org/wiki/Jar_file

Click Add files..., select the .jar file, and click the Start upload button. If the upload failed or an error
occurred during initialization of the plugin(s), an error message will be displayed.

The JAR upload process differs from the single file in that if successful, the name of the JAR file itself is
displayed instead of the plugin name(s).

Code

To paste or type code directly into MWS and have it be loaded as a single class file, click Type or Paste
Code, and type or paste the code into the presented text box.

Moab Web Services

1718 Plugins

Plugins 1719

When the code is in the box, click Create. If the upload succeeded and the code was able to be compiled
as Groovy, the browser will be redirected to the Show Plugin Type page. If the upload failed or an error
occurred during compilation or initialization of the plugin, an error message will be displayed.

You may need to refer to the MWS log file for additional details and error messages in the case of
a failure.

Related topics

l Plugin type management on page 1715

Moab Web Services

Plugin management
Plugins may be managed and accessed with Moab Web Services dynamically, even while running. This
includes plugin instance and lifecycle management. Additionally, default configuration values may be set
for new plugins. In order to access custom web services, the REST API must be utilized as described in
Accessing Plugin Web Services on page 1583. The available fields that are displayed with plugins are
given in the Fields: Plugins reference.

This section contains these topics:

l Listing plugins on page 1720

l Creating a plugin on page 1720

l Displaying a plugin on page 1721

l Modifying a plugin on page 1722

l Deleting a plugin on page 1723

l Monitoring and lifecycle controls on page 1723

l Setting default plugin configuration on page 1725

Related topics

l About Moab Web Services plugins on page 1650

Listing plugins
To list all plugins, browse to the MWS home page (for example, https://servername/mws). Log in as
the admin user, then click Plugins > Plugins.

Related topics

l Plugin management on page 1720

Creating a plugin
To create a plugin, go to the Plugin List page and click Add Plugin. First, a Plugin Type must be
selected to continue to actually create the plugin.

Moab Web Services

1720 Plugins

Plugins 1721

The page is automatically built to support the plugin type's constraints (see Configuration constraints
on page 1664). The ID field will be automatically filled in with a suggested value, and the Poll Interval
field will be displayed only if the plugin type has a poll method. The required configuration fields are
displayed by default, and optional fields may be selected and added to the configuration from the drop
down at the top of the configuration section. See the Fields: Plugins reference section for more
information on the fields.

Related topics

l Plugin management on page 1720

Displaying a plugin
To show information about a plugin, go to the Plugin List page and click the desired plugin ID.

Moab Web Services

Related topics

l Plugin management on page 1720

Modifying a plugin
To modify a plugin, go to the Plugin List page, click the desired plugin ID, and then click Edit. See the
Fields: Plugins reference section for more information on available fields.

Moab Web Services

1722 Plugins

Plugins 1723

Related topics

l Plugin management on page 1720

Deleting a plugin
To delete a plugin, go to the Plugin List page, click the desired plugin ID, and then click Delete. A
confirmation message is shown. If the OK button is clicked, the plugin is deleted from the system and
cannot be recovered, including all configuration.

Related topics

l Plugin management on page 1720

Monitoring and lifecycle controls
To monitor and control the lifecycle of plugins, browse to the MWS home page (for example,
https://servername/mws). Log in as the admin user, then click Plugins > Plugin Monitoring. This
page displays the current state of all plugins as well as their polling status.

If plugins are created from plugin types which do not have a poll method, their lifecycle controls
will be limited. Any information below which mentions polling does not apply to the 'no-polling'
plugin shown in the screenshots.

Moab Web Services

Active plugins

Active plugins are those which are in the Started or Paused states. These are available to receive events
such as polling. If paused, a plugin will not receive events but is not actually stopped, therefore no stop
events are triggered.

The following images demonstrate the status of plugins in the active states.

Started plugins which can include the relative time of the last poll as well as the time of the next poll in
a countdown format. Action buttons are available to stop or pause the plugin as well as trigger an
immediate poll event.

Paused plugins which can include only the last polling time. Action buttons are available to stop or
resume the plugin, as well as trigger an immediate poll event.

Disabled plugins

Disabled plugins are those which are in the Stopped or Errored states. These plugins do not receive
events such as polling. If errored, a plugin may either be stopped, which represents a "clearing" of the
error, or started normally. However, if no action is taken on an errored plugin, it likely will not start due
to the fact that most plugins are put into the errored state during startup of the plugin.

The following images demonstrate the representation of plugins in the disabled states.

Stopped plugins. A single action button is available to attempt to start the plugin.

Moab Web Services

1724 Plugins

Plugins 1725

An errored plugin. As mentioned previously, action buttons are available to stop the plugin or clear the
error as well as attempt to start the plugin. If the start fails, an error message will be displayed.

Related topics

l Plugin management on page 1720

Setting default plugin configuration
Configuration of default values for plugin configuration parameters involves setting fields in the MWS
configuration file. These values are used if no values are provided when creating a new plugin.
Additionally, the default values will be displayed to the user on the Create Plugin page.

The parameters to configure are documented on Configuration on page 1750 and comprise most values
starting with plugins.

Related topics

l Plugin management on page 1720

Plugin services
To use the built-in services, declare a variable with the correct name as a property in the plugin class.

The convention for each service name is to remove the leading "I" and lower case the resulting first
letter. For example, the property to use the IMoabRestService would be called moabRestService. The
following is an example of using the IPluginControlService in this manner.

Using the IPluginControlService

package example;
import com.adaptc.mws.plugins.*;

class ExamplePlugin {
IPluginControlService pluginControlService;

public poll() {
// Use service…
pluginControlService.stop("pluginId");

}
}

Moab Web Services

Use of the Groovy anonymous type "def" may also be used. For example, the service definition
above would use def pluginControlService instead of IPluginControlService
pluginControlService.

Do not attempt to create a new instance of the services before use, such as in a constructor. The
services will be automatically injected before any methods are called on the plugin.

API documentation

The com.adaptc.mws.plugins package contains interfaces for all bundled services available to
plugin types. These may be used as discussed above. All services begin with "I" and end with "Service", as
in IMoabRestService (Moab REST service on page 1726).

Related topics

l About Moab Web Services plugins on page 1650

Job RM service
The job RM service may be used to report job state data to Moab Workload Manager through the RM
interface. See Reporting state data on page 1676 for more information. It may also be used to retrieve
previous reports made by a plugin. Please note that due to data consolidation (see Data consolidation
on page 1655), old job reports may no longer exist in the database by the time the query is done.

The jobRMService property will be injected with a class of type IJobRMService in all plugin types. Note
that it is not available for injection in translators or custom components.

Related topics

l Plugin services on page 1725

Moab REST service
The Moab REST service may be used to access the MWS RESTful API (see Resources introduction on
page 1424) in plugins. All "requests" made through this service are internal only and no data is actually
transmitted over the network. See Accessing MWS REST resources on page 1680 for more information.

The moabRestService property will be injected with a class of type IMoabRestService in all plugin
types.

Accessing resources

In order to access a resource, a relative URL matching that in the documentation must be used along
with a HTTP method, such as GET, POST, PUT, or DELETE. The method names on IMoabRestService
match the HTTP methods directly. For example, to call a GET operation on /rest/jobs, use the
following code:

moabRestService.get("/rest/jobs")

Moab Web Services

1726 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IMoabRestService.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IJobRMService.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IMoabRestService.java

Plugins 1727

Using parameters correctly

Although the ordering of the parameters for each method on IMoabRestService may seem confusing at
first glance, this is to allow for easy use with Groovy. Examples are given below for each combination of
parameters:

String URL

moabRestService.get("/rest/jobs")

Map options, String URL

moabRestService.get("/rest/jobs", hooks:true, contentType:"application/json")

String URL, Closure data

moabRestService.get("/rest/jobs/job.1") {
[flags:"RESTARTABLE"]

}

Map options, String URL, Closure data

moabRestService.get("/rest/jobs/job.1", hooks:true, contentType:"application/json") {
[flags:"RESTARTABLE"]

}

Options

The following options are valid in each method call supporting the options parameter:

Name Type Default Description

data See Valid data
types on page
1728

-- Specifies the body of the "request." This can be over-
written by the data Closure parameter.

hooks Boolean false Specifies whether or not hooks (see Pre and post-pro-
cessing hooks on page 1412) are run as part of the
"request."

contentType String application/json Indicates the content type used for the request.

params Map -- Indicates URL query parameters to use for the
"request," such as query, sort, proxy-user, or oth-
ers.

Moab Web Services

Valid data types

If the data Closure parameter is specified, it overwrites the data option. In each case, there are four
valid types for the data option or return value of the data closure:

l A non-null JSON instance.

l A valid JSON string. This will be converted into a JSON instance.

l A valid Map instance. This will be converted into a JSONObject instance.

l A valid List instance. This will be converted into a JSONArray instance.

A JSONException may be thrown if the JSON string is invalid or the Map or List contains values
that cannot be serialized to JSON.

Related topics

l Plugin services on page 1725

Node RM service
The node RM service may be used to report node state data to Moab Workload Manager through the RM
interface. See Reporting state data on page 1676 for more information. It may also be used to retrieve
previous reports made by a plugin. Please note that due to data consolidation (see Data consolidation
on page 1655), old node reports may no longer exist in the database by the time the query is done.

The nodeRMService property will be injected with a class of type INodeRMService in all plugin types.
Note that it is not available for injection in translators or custom components.

Related topics

l Plugin services on page 1725

Plugin control service

This service is currently in Beta. Interfaces may change significantly in future releases.

The control service allows lifecycle management operations to be performed on plugins. It also provides
methods to create and retrieve plugins. Note that the plugin control service may be used by other
plugins, allowing one plugin to dynamically create, retrieve, start, or stop plugins.

The pluginControlService property will be injected with a class of type IPluginControlService in all
plugin types.

Moab Web Services

1728 Plugins

http://json-lib.sourceforge.net/apidocs/net/sf/json/JSON.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSON.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONObject.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONArray.html
http://json-lib.sourceforge.net/apidocs/net/sf/json/JSONException.html
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/INodeRMService.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginControlService.java

Plugins 1729

Examples

Create plugin with default configuration

try {
if (pluginControlService.createPlugin("myPlugin", "Native"))

log.info "myPlugin was created successfully!"
else

log.warn "There was an error creating myPlugin"
} catch(PluginStartException e) {

log.warn "There was a problem starting the new plugin: ${e.message}"
} catch(InvalidPluginConfigurationException e) {

log.warn "There were errors with the plugin's configuration: ${e.errors}"
}

Create plugin with custom configuration

if (pluginControlService.createPlugin("myPlugin", "Native", [autoStart:false,
pollInterval:600]))

log.info "myPlugin was created successfully!"
else

log.warn "There was an error creating myPlugin"

Start plugin

try {
pluginControlService.start("myPlugin")

} catch(PluginStartException e) {
log.warn "There was a problem starting the plugin: ${e.message}"

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

} catch(InvalidPluginConfigurationException e) {
log.warn "The plugin has an invalid configuration: ${e.errors}"

}

Stop plugin

try {
pluginControlService.stop("myPlugin")

} catch(PluginStopException e) {
log.warn "There was a problem stopping the plugin: ${e.message}"

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

}

Configure plugin

try {
pluginControlService.configure("myPlugin")

} catch(InvalidPluginException) {
log.warn "The plugin 'myPlugin' is invalid"

} catch(InvalidPluginConfigurationException e) {
log.warn "The plugin has an invalid configuration: ${e.errors}"

}

Moab Web Services

Related topics

l Plugin services on page 1725

Plugin datastore service
The datastore service is provided to allow a plugin to persist data to the database that is isolated from
all other persistent data. In other words, this service provides access to a plugin's individual datastore
(see Individual datastore on page 1672).

The pluginDatastoreService property will be injected with a class of type IPluginDatastoreService
in all plugin types. Note that it is not available for injection in translators or custom components.

Examples

Adding a single custom entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = [:]
… // Add data here to the Map
if (pluginDatastoreService.addData(collectionName, data))

log.info("Data successfully added")
else

log.warn("There was an error adding the data")
}

}

Adding multiple entries

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def dataList = []
dataList.add(/* Custom Map of data here */)
dataList << … // Custom Map of data here
if (pluginDatastoreService.addData(collectionName, dataList))

log.info("Data entries successfully added")
else

log.warn("There was an error adding the data entries")
}

}

Moab Web Services

1730 Plugins

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginDatastoreService.java

Plugins 1731

Updating a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = [:]
… // Add data here to the Map
if (pluginDatastoreService.updateData(collectionName, "key", "value", data))

log.info("Data successfully updated")
else

log.warn("There was an error updating the data")
}

}

Querying if a collection exists

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
if (pluginDatastoreService.exists(collectionName))

log.info("Collection exists")
else

log.warn("The collection does not exist")
}

}

Querying contents of a collection

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def dataList = pluginDatastoreService.getCollection(collectionName)
if (dataList!=null)

log.info("Collection successfully queried")
else

log.warn("The collection does not exist!")
}

}

Moab Web Services

Retrieving a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = pluginDatastoreService.getData(collectionName, "key", "value")
if (data!=null)

log.info("Data successfully retrieved")
else

log.warn("The entry with key==value does not exist")
}

}

Removing a collection

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
def data = pluginDatastoreService.clearCollection(collectionName)
// Data now contains the collection that was cleared
if (data!=null)

log.info("Collection successfully cleared")
else

log.warn("The collection does not exist!")
}

}

Removing a single entry

package example

public class ExamplePlugin {
def pluginDatastoreService

public void poll() {
def collectionName = "collection1"
if (pluginDatastoreService.removeData(collectionName, "key", "value"))

log.info("Data entry successfully removed")
else

log.warn("The entry where key==value does not exist!")
}

}

Related topics

l Plugin services on page 1725

Moab Web Services

1732 Plugins

Plugins 1733

Plugin event service
The event service is provided to ease the burden and reduce boilerplate code for creating new events
and updating notification conditions. For more information on how to use this service, see Creating
events and notifications on page 1682.

The pluginEventService property will be injected with a class of type IPluginEventService in all
plugin types. Note that it is not available for injection in translators or custom components.

Examples

Creating a custom event

package example

import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Create a completely custom event
pluginEventService.createEvent(Severity.INFO, EscalationLevel.USER, 0x4F, "Custom

Type",
"poll", "My event occurred", null, null)

}
}

Creating a custom event with messages

package example

import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Use i18n messages for another event
def args = ["arg1", "arg2"]

pluginEventService.createEvent(Severity.WARN, EscalationLevel.POWER_USER, 0x5F,
"Custom Type",

"poll", message
(code:"examplePlugin.customEvent.message", args:args), args,

// AssociatedObjects or simple maps may be
used

[new AssociatedObject(type:"type1", id:"id1"),
[type:"type2", id:"id2"])

}
}

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IPluginEventService.java

Creating an event from EventEnumeration

package example

import com.adaptc.mws.plugins.EventEnumeration
import com.adaptc.mws.plugins.IPluginEventService.Severity
import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
// Messages are pulled for messages.properties file(s) and the arguments are used

def args = ["arg1", "arg2"]
pluginEventService.createEvent(MyEvents.EVENT_INFO, args, [[type:"type1", id:"id1"])
pluginEventService.createEvent(MyEvents.EVENT_WARN, args, [[type:"type2", id:"id2"])

}
}

@EventEnumeration
enum MyEvents {

EVENT_INFO("Information", INFO, USER),
EVENT_ERROR("Warning", WARN, USER)

static final String EVENT_TYPE_PREFIX = "Example Plugin"
static final String ORIGIN_SUFFIX = "poll"

}

Create or update a notification

package example

import com.adaptc.mws.plugins.IPluginEventService.EscalationLevel
import com.adaptc.mws.plugins.IPluginEventService.AssociatedObject

public class ExamplePlugin {
def pluginEventService

public void poll() {
pluginEventService.updateNotification(EscalationLevel.POWER_USER, "There is an error

with node1",
// If non-null, this must always be an associated object, never a simple map
new AssociatedObject(id:"node1", type:"node"), null)

}
}

Related topics

l Events on page 1506
l Notifications on page 1563
l Notification conditions on page 1558
l Plugin services on page 1725
l Plugin developer's guide on page 1657
l Fields: Events on page 1837

Moab Web Services

1734 Plugins

Plugins 1735

l Resources introduction on page 1424
l Creating events and notifications on page 1682

SSL service
The SSL service may be used to manage and load certificates or keys from disk and create socket
connections. See Managing SSL connections on page 1692 for more information.

The sslService property will be injected with a class of type ISslService in all plugin types.

Related topics

l Plugin services on page 1725

Storage RM service
The storage RM service may be used to report storage state data to Moab Workload Manager through
the RM interface. See Reporting state data on page 1676 for more information. It may also be used to
retrieve previous reports made by a plugin. Please note that due to data consolidation (see Data
consolidation on page 1655), old storage reports may no longer exist in the database by the time the
query is done.

The storageRMService property will be injected with a class of type IStorageRMService in all plugin
types. Note that it is not available for injection in translators or custom components.

Related topics

l Reporting state data on page 1676
l Plugin services on page 1725

Virtual machine RM service
The virtual machine RM service may be used to report virtual machine state data to Moab Workload
Manager through the RM interface. See Reporting state data on page 1676 for more information. It may
also be used to retrieve previous reports made by a plugin. Please note that due to data consolidation
Data consolidation on page 1655, old virtual machine reports may no longer exist in the database by the
time the query is done.

The virtualMachineRMService property will be injected with a class of type
IVirtualMachineRMService in all plugin types. Note that it is not available for injection in translators or
custom components.

Related topics

l Plugin services on page 1725

Moab Web Services

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/ISslService.java
https://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IStorageRMService.java
http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/IVirtualMachineRMService.java

Plugin types

Power Management Plugin
The Power Management plugin is used as a resource manager to Moab to report and manipulate the
power state (On or Off) for each node. Moab considers nodes in the power state On or Off; however,
through TORQUE and scripts, we are able to separate the Off state into those controlled through the
operating system (Standby, Suspend, Hibernate, Shutdown) and those controlled through hardware (Off).
This plugin provides an easy way to integrate with Moab to translate Moab’s Off action into the desired
TORQUE or script action for each node. A cluster will have multiple instances of this plugin when it has
varied hardware integration and/or credentials.

Creating a Power Management Plugin
To create a Power Mangement plugin, see Creating a plugin on page 1720. During plugin creation, refer
to the Configuration on page 1736 section.

Configuration

Configuration Parameters

Name Key Required Type Description

Node Con-
figuration
File

nodeConfigurationFile Yes String File containing list of nodes that use the
scripts and credentials in this plugin
instance. This is also the file to configure a
particular node's off state, or an off state
that will override the default off state for
this instance.

Username
File

usernameFile Yes String File containing username issued to the
scripts with the -u option.

Password File passwordFile Yes String File containing password issued to the
scripts with the -p option.

Node Power
Script

nodePowerScript Yes String Script that powers on and off nodes and
wakes them from a low power state.

Node Query
Script

nodeQueryScript Yes String Script that queries power state using an
intelligent platform management inter-
face.

Moab Web Services

1736 Plugin types

Plugin types 1737

Name Key Required Type Description

Default
Power Off
State

defaultPowerOffState Yes String Actual state (Standby, Suspend, Hibernate,
Shutdown, or Off) nodes will go into when
Moab powers them off.

Max Threads maxThreads Yes Integer Thread count issued to the scripts with
the -t option (defaults to 4).

Plugin Management
For information on managing the IPMI plugin, including stopping it, starting it, and checking on its status,
see the Plugin management on page 1720 section of the MWS Guide.

Web Services

Node Power (Secured)

Resource URLs

Resource

/rest/plugins/<pluginId>/services/nodePower

/rest/plugins/<pluginId>/services/node-power

URL Parameters

Parameter Name Type Description

nodes Moab Nodes String A comma-delimited list of Moab node names. It is required.

power The Power State String The power command Moab issues the node (On or Off).

Response Fields

Field Name Type Description

success Success
Indicator

Boolean True if the power script and/or pbsnodes on page 2356 was successful,
otherwise false.

Moab Web Services

Field Name Type Description

messages Messages List of
Strings

Only present when the request was not successful or the node was not con-
figured with the plugin instance. Contains error messages describing why
the pbsnodes or the power script failed.

Additional Information

This web service was intended for Moab's use only and is exposed for debugging and testing your
customized scripts.

Reload Node Configuration (Secured)

Resource URLs

Resource

/rest/plugins/<pluginId>/services/reloadNodeConfiguration

/rest/plugins/<pluginId>/services/reload-node-configuration

URL Parameters

Parameter Name Type Description

No URL parameters required

Response Fields

Field Name Type Description

success Success
Indicator

Boolean True if the reload succeeded, otherwise false.

messages Messages List of
Strings

Only present when the request failed. Contains error messages describ-
ing why the reload failed.

Additional Information

The reloadNodeConfiguration web service must be run after any change to the node configuration
file for it to take effect.

Moab Web Services

1738 Plugin types

Plugin types 1739

Node Configuration File
The node configuration file is used when the plugin is first instantiated or the
reloadNodeConfiguration web service is called. The plugin expects a file that is readable by the
tomcat user and has a Moab node name on each line. If the user would like to override the default
power-off state of the node, then the node name is followed by a space and the state. For example, a node
configuration file might look like this:

node01.ac
node02.ac
node03.ac Hibernate
node04.ac Suspend

The valid power-off states include Standby, Suspend, Hibernate, Shutdown, and Off. If no power-off state
is provided for the node in the configuration file, then the default power-off state will be used.

The Node Power and Query Script
The plugin uses the power script to power on nodes from all power states and to power off nodes only
into the Off power state. The plugin uses the power state of the node to decide whether to power on the
node with wake or on. If the node is in Standby or Suspend, the plugin will call the script with the wake
parameter. If the node is in Hibernate, Shutdown, or Off, the plugin will call the script with the on
parameter. The plugin calls the power node script with the off parameter to put the node in the Off
state (it uses TORQUE to put the node in the Standby, Suspend, Hibernate, and Shutdown state).

The plugin uses the query script to know if a node is in the Off power state. If the query script reports
the node as Off, the plugin will report the node as Off to Moab. If the query script reports the node as On,
the plugin will look to TORQUE to make sure the node is in a Running power state before it reports it as
On.

The plugin passes the usernameFile, passwordFile, and maxThreads configuration parameters
down to the scripts. The node power script is called with this syntax:

<nodePowerScript> -u <usernameFile> -p <passwordFile> -t <maxThreads> node01 node02
node03 ... <on|off|wake>

The node query script is called with this syntax:

<nodeQueryScript> -u <usernameFile> -p <passwordFile> -t <maxThreads> node01 node02
node03 ...

The plugin expects the scripts to print JSON to standard out. An example query script output would look
like this:

[
{

"name": "node01.ac",
"power": "ON",
"Processor_2_Temp": 61,
"Processor_1_Temp": 54

},
...

]

Moab Web Services

Notice it is a list of nodes where each node has the required fields name and power. All the other key-
value pairs will be reported to Moab as a generic resource as long as the value is a number.

The output for the node power plugin is not required; however, the output is read to give the user a
detailed error message if needed. For both the node power and query scripts, if the field error exists,
the plugin will log an error with all the strings in the list. An example error returned to the plugin would
look like this:

[
{

"command": "ipmitool -I lan -H node01i -U admin -f /opt/moab/etc/power-
management/abc-plugin-password-file sdr type temperature",

"name": "node01.ac",
"error": [

"big error"
]

}
...

]

Troubleshooting
The Power Management plugin logs all errors and warnings to the MWS log file, which is
/opt/mws/log/mws.log by default. The stacktrace.log file, in the same directory as mws.log, can
also be helpful in diagnosing problems. If your MWS supports notifications, they are also helpful in
diagnosing the error states the plugin is in, if any. Just check for notifications from the
PowerManagement plugin type and the instance that you are interested in. When the issue has been
resolved, you can dismiss the notification. For more information, see the Notification and Notification
Condition Resource in the MWS documentation.

Set the appropriate MWS RM precedence

The Create/Edit Plugin pages give the option to set the precedence of the Moab RM plugin. The purpose
of the Power Management Plugin is to report node power; however, if the precedence is too low another
Moab RM plugin with a higher precedence and conflicting node might overwrite the node power. To
check what MWS is reporting to Moab, go to the URL:

http://<MWS host>:8080/mws/rest/plugins/all/rm/cluster-query[?api-version=3]

To check what your plugin instance is reporting to Moab, use the URL:

http://<MWS host>:8080/mws/rest/plugins/<instance-name>/rm/cluster-query[?api-
version=3]

If the power is reported in your instance but not to Moab, please increase the precedence of the Moab
RM plugin.

Configure the MWS RM in Moab

First, the following lines must be in the Moab Workload Manager configuration file or one of its included
files:

Moab Web Services

1740 Plugin types

References 1741

RMCFG[mws] TYPE=MWS
RMCFG[mws] FLAGS=UserSpaceIsSeparate
RMCFG[mws] BASEURL=http://<mws host>:8080/mws

Next, edit the MWS credential information in the Moab private configuration file
(/opt/moab/etc/moab-private.cfg, by default). Here are the default values:

CLIENTCFG[RM:mws] USERNAME=moab-admin PASSWORD=changeme!

For more information see the Resource manager queries section in the MWS documentation.

Configure TORQUE with tomcat administrator

The plugin assumes that TORQUE is installed on the same host as MWS and that tomcat is an
administrator. This can be verified with qmgr on page 2377. Run the command:

qmgr -c 's s managers += tomcat@<mws_host>'

For more information see the Specifying non-root administrators section of the TORQUE documentation.

Make sure the Node and Power scripts work first.

The default scripts are included in /opt/moab/tools/mws/power_management and have their own
documentation with the -h option. They need to have a file that maps each node in the Moab cluster to
the IPMI address that the script will need to call using ipmitool. It also needs a file that includes the IPMI
password. After that is provided and ipmitool is installed and working, the scripts will successfully
implement the interface needed for this plugin.

Related topics

l pbsnodes -m
l Green computing overview

References

Client code samples
The code samples contained in this section of the reference material are provided to help quick start
integration with MWS. They are provided as a convenience and not as fully developed APIs.

All examples use the default configuration of MWS, including the default username and password, and
assume that MWSis deployed at http://localhost:8080/mws.

This section contains these topics:

l Javascript code samples on page 1742

l PHP code samples on page 1743

Moab Web Services

l Perl code samples on page 1747

l Python code examples on page 1749

l cURL samples on page 1749

Related topics

l Configuration on page 1750

Javascript code samples
When utilizing Javascript to interact with MWS, it is recommended to use libraries that provide a simple
browser-independent syntax for performing REST calls. It must also be noted that it is not recommended
to make calls to MWS directly from client- side Javascript, as this will contain the username and
password for MWS and could potentially be retrieved and utilized by a malicious user.

Examples for specific libraries are given below.

jQuery
The jQuery ajax function makes it extremely simple to perform all REST calls. There are also some
shorthand methods which utilize the ajax method in a simple manner—such as getJSON and post—but
these do not have the ability to specify authentication parameters, which is why they are not used below.

In all examples given, it is assumed that the $ variable is mapped to jQuery, which is the default
configuration of jQuery.

GET

$.ajax({
url: "http://localhost:8080/mws/rest/jobs",
dataType: 'json',
username: 'admin',
password: 'secret',
success: new function(data) {
$('.result').html(data);
alert("GET was successful");

)
});

Moab Web Services

1742 References

References 1743

POST

$.ajax({
url: "http://localhost:8080/mws/rest/jobs",
data: {
"commandFile":"/tmp/test.sh",
"initialWorkingDirectory":"/tmp",
"user":"adaptive",
"requirements":[{"requiredNodeCountMinimum":1}]

}
dataType: 'json',
username: 'admin',
password: 'secret',
success: new function(data) {
$('.result').html(data);
alert("GET was successful");

)
});

PUT

$.ajax({
type: 'PUT',
url: 'http://localhost:8080/mws/rest/jobs/Moab.1',
data: {"holds":["user"]},
dataType: "json",
username: 'admin',
password: 'secret',
success: function(data) {
$('.result').html(data);
alert("PUT was successful");

}
});

DELETE

$.ajax({
type: 'DELETE',
url: 'http://localhost:8080/mws/rest/jobs/Moab.1',
username: 'admin',
password: 'secret',
success: function(data) {
$('.result').html(data);
alert("DELETE was successful");

}
});

Related topics

l Client code samples on page 1741

PHP code samples
All of these examples make use of the cURL PHP Extension. While this library is easy to use for GET and
POST requests, it is somewhat more difficult to use for PUT and DELETE requests. Each will be covered
in this topic.

Moab Web Services

http://php.net/manual/en/book.curl.php

Notice the use of the JSON PHP Extension's json_decode and json_encode functions.

GET

<?php
$baseUrl = "http://localhost:8080/mws/rest";
$resource = "/jobs";
$username = "admin";
$password = "secret";
$ch = curl_init();
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
curl_setopt($ch, CURLOPT_TIMEOUT, 10);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_USERPWD, "$username:$password");
curl_setopt($ch, CURLOPT_URL, "$baseUrl$resource");

$responseBody = curl_exec($ch);
$responseInfo = curl_getinfo($ch);
curl_close($ch);

if ($responseInfo["http_code"]!=200 && $responseInfo["http_code"]!=201) {
print_r($responseInfo);
echo $responseBody;

} else {
print_r(json_decode($responseBody));

}
?>

Moab Web Services

1744 References

http://php.net/manual/en/book.json.php

References 1745

POST

<?php
$baseUrl = "http://localhost:8080/mws/rest";
$resource = "/jobs";
$username = "admin";
$password = "secret";
$requestPayload = array(
"commandFile"=>"/tmp/test.sh",
"initialWorkingDirectory"=>"/tmp",
"user"=>"adaptive",
"requirements"=>array(

array("requiredNodeCountMinimum"=>1)
)

);
$ch = curl_init();
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
curl_setopt($ch, CURLOPT_TIMEOUT, 10);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content-Type: application/json"));
curl_setopt($ch, CURLOPT_USERPWD, "$username:$password");
curl_setopt($ch, CURLOPT_URL, "$baseUrl$resource");
// Setup POST request
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($requestPayload));
curl_setopt($ch, CURLOPT_POST, 1);

$responseBody = curl_exec($ch);
$responseInfo = curl_getinfo($ch);
curl_close($ch);

if ($responseInfo["http_code"]!=200 && $responseInfo["http_code"]!=201) {
print_r($responseInfo);
echo $responseBody;

} else {
print_r(json_decode($responseBody));

}
?>

Moab Web Services

PUT

<?php
$baseUrl = "http://localhost:8080/mws/rest";
$resource = "/jobs/Moab.1";
$username = "admin";
$password = "secret";
$requestPayload = array(
"holds"=>array("user")

);
$ch = curl_init();
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
curl_setopt($ch, CURLOPT_TIMEOUT, 10);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content-Type: application/json"));
curl_setopt($ch, CURLOPT_USERPWD, "$username:$password");
curl_setopt($ch, CURLOPT_URL, "$baseUrl$resource");
// Setup PUT request
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($requestPayload));
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "PUT");

$responseBody = curl_exec($ch);
$responseInfo = curl_getinfo($ch);
curl_close($ch);

if ($responseInfo["http_code"]!=200 && $responseInfo["http_code"]!=201) {
print_r($responseInfo);
echo $responseBody;

} else {
print_r(json_decode($responseBody));

}

DELETE

<?php
$baseUrl = "http://localhost:8080/mws/rest";
$resource = "/jobs/Moab.1";
$username = "admin";
$password = "secret";
$requestPayload = array(
"holds"=>array("user")

);
$ch = curl_init();
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
curl_setopt($ch, CURLOPT_TIMEOUT, 10);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content-Type: application/json"));
curl_setopt($ch, CURLOPT_USERPWD, "$username:$password");
curl_setopt($ch, CURLOPT_URL, "$baseUrl$resource");
// Setup DELETE request
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

$responseBody = curl_exec($ch);
$responseInfo = curl_getinfo($ch);
curl_close($ch);

if ($responseInfo["http_code"]!=200 && $responseInfo["http_code"]!=201) {
print_r($responseInfo);
echo $responseBody;

} else {
print_r(json_decode($responseBody));

}

Moab Web Services

1746 References

References 1747

Related topics

l Client code samples on page 1741

Perl code samples
These examples all utilize the LWP::UserAgent module, which must be installed before running them.

GET

#!/usr/bin/perl -w
use strict;
use warnings;
Create a user agent object
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("MyApp/0.1");

Create a request
my $req = HTTP::Request->new(GET => 'http://localhost:8080/mws/rest/images');
$req->content_type('application/json');
$req->authorization_basic("admin", "secret");

Pass request to the user agent and get a response back
my $res = $ua->request($req);

Check the outcome of the response
if ($res->is_success) {
print $res->content;

} else {
print $res->status_line, "n";

}

POST

#!/usr/bin/perl -w
use strict;
use warnings;
Create a user agent object
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("MyApp/0.1");

Create a request
my $req = HTTP::Request->new(POST => 'http://localhost:8080/mws/rest/images');
$req->content_type('application/json');
$req->authorization_basic("admin", "secret");
$req->content('
{"profile":"compute","osVersion":"5","name":"centos5stateless","hypervisor":0,"archite
cture":"x86_64","osName":"centos","osType":"linux","type":"stateless"}');

Pass request to the user agent and get a response back
my $res = $ua->request($req);

Check the outcome of the response
if ($res->is_success) {
print $res->content;

} else {
print $res->status_line, "n";

}

Moab Web Services

PUT

#!/usr/bin/perl -w
use strict;
use warnings;
Create a user agent object
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("MyApp/0.1");

Create a request
my $req = HTTP::Request->new(PUT => 'http://localhost:8080/mws/rest/images/centos5-
stateless');
$req->content_type('application/json');
$req->authorization_basic("admin", "secret");
$req->content('{"osVersion":"5.5"}');

Pass request to the user agent and get a response back
my $res = $ua->request($req);

Check the outcome of the response
if ($res->is_success) {
print $res->content;

} else {
print $res->status_line, "n";

}

DELETE

#!/usr/bin/perl -w
use strict;
use warnings;
Create a user agent object
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("MyApp/0.1");

Create a request
my $req = HTTP::Request->new(DELETE => 'http://localhost:8080/mws/rest/images/centos5-
stateless');
$req->content_type('application/json');
$req->authorization_basic("admin", "secret");

Pass request to the user agent and get a response back
my $res = $ua->request($req);

Check the outcome of the response
if ($res->is_success) {
print $res->content;

} else {
print $res->status_line, "n";

}

Related topics

l Client code samples on page 1741

Moab Web Services

1748 References

References 1749

Python code examples
Notice the use of the json module to build a Python object from the return JSON data. If you want, you an
also use json.dumps to create a JSON string from a Python object.

Simple request (GET)

import httplib
import base64
import string
import json
def get(base, port, url):

conn = httplib.HTTPConnection(base, port, timeout=60)
conn.request('GET', url, None, { 'Authorization' : 'Basic '+string.strip

(base64.encodestring('admin:secret'))})
return conn.getresponse().read()

data = get("localhost", 8080, "/mws/rest/jobs?format=json")
print json.loads(data)

Complex request (POST)

import httplib
import base64
import string
import json
def post(base, port, url, payload):

conn = httplib.HTTPConnection(base, port, timeout=60)
conn.request('POST', url, payload, { 'Authorization' : 'Basic '+string.strip

(base64.encodestring('admin:secret')), 'Content-Type' : 'application/json' })
r = conn.getresponse()
return r.read()

Note that json.dumps may also be used to create the json string from a python object
data = post("localhost", 8080, "/mws/rest/jobs", '
{"commandFile":"/tmp/test.sh","initialWorkingDirectory":"/tmp","user":"adaptive","requ
irements":[{"requiredNodeCountMinimum":1}]}')
print json.loads(data)

Related topics

l Client code samples on page 1741

cURL samples
Unlike the other code samples given in this section, these samples are simple commands that can be run
from any server command line with the curl program installed in order to communicate with MWS.

GET

curl -u admin:secret -X GET -H "Content-Type: application/json"
http://localhost:8080/mws/rest/jobs

Moab Web Services

POST

curl -u admin:secret -X POST -H "Content-Type: application/json"
http://localhost:8080/mws/rest/jobs
-d '

{"commandFile":"/tmp/test.sh","initialWorkingDirectory":"/tmp","user":"adaptive","requ
irements":[{"requiredNodeCountMinimum":1}]}'

PUT

curl -u admin:secret -X PUT -H "Content-Type: application/json"
http://localhost:8080/mws/rest/jobs
-d '{"holds":["user"]}'

DELETE

curl -u admin:secret -X DELETE -H "Content-Type: application/json"
http://localhost:8080/mws/rest/jobs

Related topics

l Client code samples on page 1741

Configuration
These properties can be modified by setting the appropriate values in the mws-config.groovy file.
This file is located in MWS_HOME/etc/ or /opt/mws/etc/ by default as explained in Configuring Moab
Web Services on page 1373.

The configuration file is read not only on startup, but also each time it is changed. Several
properties, including those for Moab Workload Manager (moab), Moab Accounting Manager (mam),
Mongo (grails.mongo), and authentication (auth) are processed after each change and can
affect the runtime behavior of MWS.

Configuration files can also be placed in the MWS_HOME/etc/mws.d directory. Any configuration
files here get merged with MWS_HOME/etc/mws-config.groovy. In case of conflict, the
configuration in MWS_HOME/etc/mws.d takes precedence.

Configuration reference

For all possible values that can be set, please see the Grails reference guide. For project specific settings
(usually the only ones you'll need to change), you may set the following properties:

Property Type Default Description

auth.defaultUser.password String changeme! Unencoded password
of the default admin
user.

Moab Web Services

1750 References

References 1751

Property Type Default Description

auth.defaultUser.username String moab-admin Username of the
default admin user
(only created if no
other users exist).

grails.mongo.host String 127.0.0.1 The MongoDB host to
use (Note that Mon-
goDB runs on
127.0.0.1 and not
localhost by
default).

dataSource_insight.password String changeme! The password for the
username used to log
in to the Insight data-
base.

dataSource_insight.url String jdb-
c:post-
gresql://127.0.0.1:5432/moab_
insight

The JDBC URL for the
Insight database. For
more information, see
Configuring Moab
Web Services on page
1373.

dataSource_insight.username String mws The username used to
log into the Insight
database.

grails.mongo.port Integer 27017 The MongoDB port to
use.

grails.mongo.replicaSet List of
Strings

n/a The MongoDB replica
set servers to use (for
example,
["moab1:27017","-
moab2:27017"]);
note that grails.-
mongo.hostmust be
set to null to use this
option.

grails.mongo.databaseName String mws The MongoDB data-
base name to use.

Moab Web Services

http://jdbc.postgresql.org/documentation/80/connect.html

Property Type Default Description

grails.mongo.username String - (Optional) The user-
name to use when con-
necting to MongoDB.

grails.mongo.password String - (Optional) The pass-
word to use when con-
necting to MongoDB.

grails.mongo.options.connectionsPerHost Integer 50 The number of con-
nections allowed per
host.

grails.-
mongo.-
options.threadsAllowedToBlockForConnectionMultiplier

Integer 5 The number of
threads per con-
nection allowed to wait
for an available con-
nection.

grails.mongo.options.autoConnectRetry Boolean true Controls whether the
system retries auto-
matically on con-
nection errors.

grails.mime.use.accept.header Boolean false When enabled, uses
the HTTP Content-
Accept header to
determine the content
type used for return
data (JSON only for
now).

grails.plu-
gins.springsecurity.basic.realmName

String Moab Web Services The HTTP realm used
when using basic auth.

grails.plugins.springsecurity.active Boolean true Enables or disables
security for MWS as a
whole, including all
providers.

grails.plugins.springsecurity.useBasicAuth Boolean true Enables or disables
basic auth with a
simple user-
name/password.

Moab Web Services

1752 References

References 1753

Property Type Default Description

grails.plu-
gins.springsecurity.oauthProvider.active

Boolean true Enables or disables
the OAuth2 provider.

ldap.baseDNs List of
Strings

- A list of distinguished
names that are the
root entries for LDAP
searches.

ldap.bindUser String - The distinguished
name of the LDAP
bind user.

ldap.directory.type String - The type of LDAP dir-
ectory (for example,
"Microsoft Active Dir-
ectory"). See Con-
figuring Moab Web
Services on page
1373 for valid values..

ldap.password String - The password of the
LDAP bind user

ldap.port Integer - LDAP server's port

ldap.security.server.certificate String - The filename of the
LDAP server's PEM
encoded X.509 cer-
tificate. See Setting up
MWS security on
page 1388 for more
information.

ldap.security.type String - How the connection
between MWS and
LDAP is secured. See
Setting up MWS
security on page
1388 for more
information.

ldap.server String - LDAP server hostname
or IP address

Moab Web Services

Property Type Default Description

mam.server String localhost Moab Accounting Man-
ager server hostname
or IP address

mam.port Integer 7112 Moab Accounting Man-
ager server's port

mam.secretKey String mamsecret Secret key used to com-
municate with Moab
Accounting Manager

moab.databaseName String moab The name of the Mon-
goDB database to use
to retrieve current
Moab data; this should
match the database
setting in Moab.

moab.messageQueue.port Integer 5570 The port on which
Moab publishes Zer-
oMQ messages.

moab.messageQueue.secretKey String - Used to encrypt and
decrypt messages on
the message queue
using AES.
Must be a Base64-
enoded 128-bit (16-
byte) key. For
example:
"1r6RvfqJa6voezy5
wAx0hw=="

moab.port Integer 42559 Moab server's port

moab.secretKey String moabsecret Secret key used to com-
municate with Moab.
See Moab Con-
figuration.

moab.server String localhost Moab server hostname
or IP address

Moab Web Services

1754 References

http://en.wikipedia.org/wiki/Base64

References 1755

Property Type Default Description

mws.cache.duration.default Integer 60 The default number of
seconds to use for cach-
ing objects from Moab.
This is only supported
in certain objects such
as policies.

mws.cache.duration.policy Integer 180 The number of
seconds that the cache
for policies is valid. If
set to null, the default
is used.

mws.certificates.location String etc/ssl.crt The directory (relative
or absolute) where plu-
gin certificates are
stored. See the
Managing SSL con-
nections on page
1692.

mws.events.expireAfterSeconds Integer 2592000 Events older than this
many seconds (30
days by default) will
be deleted from the
database. Effective
only with MongoDB
2.2 or later.

mws.health.check.period Integer 30 The number of
seconds in between
health checks. Used in
creating notification
conditions if problems
exist in configuration
or connections. For
more information, see
Notification con-
ditions on page 1558.

Moab Web Services

Property Type Default Description

mws.hooks.location String hooks The directory (relative
or absolute) where
Hooks are stored. See
Pre and post-pro-
cessing hooks on
page 1412 for more
information.

mws.plugins.location String plugins The directory (relative
or absolute) where Plu-
gins are stored. See
About Moab Web Ser-
vices plugins on page
1650 for more inform-
ation.

mws.messageQueue.port Integer 5564 The port on which
MWS publishes Zer-
oMQ messages.

mws.messageQueue.address String - The IP address on
which MWS publishes
ZeroMQ messages.

mws.services.hooks.syncInterval Integer 30 The number of
seconds between each
time MWS checks for
service phase trans-
ition hooks that com-
pleted or timed out.

mws.services.phases.syncInterval Integer 14400 The number of
seconds between each
time MWS checks with
Moab Workload Man-
ager to verify that the
service phases are cor-
rectly synchronized.

mws.suite String CLOUD The suite or context
that MWS is running
in (see Suite for valid
values)

Moab Web Services

1756 References

http://github.com/adaptivecomputing/plugins-commons/blob/master/commons/src/main/java/com/adaptc/mws/plugins/Suite.java

References 1757

Property Type Default Description

pam.configuration.service String - The name of the PAM
configuration file
located in
/etc/pam.d.
This parameter and
specification tells MWS
which PAM
configuration file you
want to use. For more
information, see PAM
(pluggable
authentication
module)
configuration using
mws-config.groovy
on page 1383.

plugins.pluginType String - Default configuration
value for the plugin
pluginType field
(see Setting default
plugin configuration
on page 1725).

plugins.autoStart Boolean true Default configuration
value for the plugin
autoStart field (see
Setting default plugin
configuration on page
1725).

plugins.pollInterval Integer 30 Default configuration
value for the plugin
pollInterval field
(see Setting default
plugin configuration
on page 1725).

plugins.config Map - Default configuration
value for the plugin
config field (see Set-
ting default plugin
configuration on page
1725).

Moab Web Services

Property Type Default Description

plugins.loadInitialPlugins Boolean true If true, loads the initial
plugins defined for
uploaded or built-in
plugin types (see Plu-
gin projects and
metadata on page
1699).

plugins.stateConsolidationPolicy NodeSta-
tePolicy

null If "optimistic", treats
state data optim-
istically. If "pess-
imistic", treats state
state pessimistically.
May be null. See Data
consolidation on
page 1655 for more
information.

plugins.defaultHypervisorType String ESX This is reported to
Moab when a node
report references a
hypervisor image that
does not have the
hypervisorType or
exten-
sions.xcat.hvType
fields set. See Fields:
Images on page 1843.

Logging reference

The following loggers are available to use for debugging purposes:

Logger Default Description

grails.app debug Most classes in the main MWS
application.

grails.app.bootstrap.BootStrap debug Handles startup and ini-
tialization of MWS.

Moab Web Services

1758 References

References 1759

Logger Default Description

com.ace.mws debug The base logger for MWS spe-
cific functionality not included
in other loggers (this comprises
very few classes).

grails.app.services.com.ace.mws.plugins.PluginUtilityService debug Class for initializing and helper
methods of plugins.

com.ace.mws.hooks.HookUtils debug Helper class for loading hooks
during startup process.

plugins debug All MWS plugins (see About
Moab Web Services plugins
on page 1650).

com.ace.mws.plugins debug MWS plugin helper class, used
to create and initialize plugins.

com.ace.mws.gapi warn Base logger for all Moab con-
nections, requests, and
responses.

com.ace.mws.gapi.Connection info Logger which controls all
requests and responses from
Moab.

com.ace.mws.gapi.parsers info Loggers for parsers of Moab's
data.

com.ace.mws.gapi.serializers info Loggers for all serialization from
MWS to Moab Wire Protocol.

grails.app.service.grails.plugins.reloadconfig info Handles dynamic reloading of
configuration files.

net.sf.json error JSON and XML processing lib-
rary.

org.springframework.security info Authentication/authorization
logger.

Moab Web Services

Logger Default Description

org.codehaus.groovy.grails.web.servlet error Loggers for request handlers.

org.codehaus.groovy.grails.web.mapping error URL mapping.

org.codehaus.groovy.grails.web.mapping.filter error URL mapping.

org.codehaus.groovy.grails.plugins error All grails plugins (MWS
internal).

org.codehaus.groovy.grails.commons error Core application and class-
loading.

Related topics

l Configuring Moab Web Services on page 1373

Resource reference

Resources reference
This section contains the type and description of all possible fields in each MWS resource object. Because
of significant changes in the API introduced between releases, MWS possesses a versioned API. Each
resource contains drop-down sections for each API version.

This section contains these topics:

l Fields: Access Control Lists (ACLs) on page 1761

l Fields: Accounts on page 1770

l Fields: Allocations on page 1773

l Fields: Charge Rates on page 1777

l Fields: Credentials on page 1836

l Fields: Events on page 1837

l Fields: Fund Balances on page 1779

l Fields: Fund Statements on page 1797

l Fields: Fund Statement Summary on page 1786

l Fields: Funds on page 1807

l Fields: Images on page 1843

l Fields: Job Arrays on page 1851

Moab Web Services

1760 References

References 1761

l Fields: Job Templates on page 1974

l Fields: Jobs on page 1914

l Fields: Liens on page 1815

l Fields: Metric Types on page 2003

l Fields: Nodes on page 2004

l Fields: Notification Conditions on page 2024

l Fields: Notifications on page 2028

l Fields: Organizations on page 1819

l Fields: User's Permissions on page 2186

l Fields: Plugins on page 2030

l Fields: Plugin Types on page 2035

l Fields: Policies on page 2039

l Fields: Principals on page 2065

l Fields: Quotes on page 1821

l Fields: Report Datapoints on page 2072

l Fields: Report Samples on page 2127

l Fields: Reports on page 2074

l Fields: Reservations on page 2080

l Fields: Resource Types on page 2120

l Fields: Roles on page 2121

l Fields: Standing Reservations on page 2129

l Fields: Transactions on page 1826

l Fields: Usage Records on page 1830

l Fields: Users on page 1834

Related topics

l Resources introduction on page 1424
l Global URL parameters on page 1403

Fields: Access Control Lists (ACLs)

See the associated Access control lists (ACLs) on page 1426 resource section for more
information on how to use this resource and supported operations.

Moab Web Services

Additional references

Type Value Additional information

Permissions resource acl-rules Permissions on page 1571

Hooks filename acl-rules.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

1762 References

References 1763

API version 3

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Field
Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny access to reserved
resources but they may also be configured to affect a
job's affinity for a particular reservation. By default, jobs
gravitate toward reservations through a mechanism
known as positive affinity. This mechanism allows jobs to
run on the most constrained resources leaving other,
unreserved resources free for use by other jobs that
may not be able to access the reserved resources.
Normally this is a desired behavior. However, sometimes,
it is desirable to reserve resources for use only as a last
resort-using the reserved resources only when there are
no other resources available. This last resort behavior is
known as negative affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make against the ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType Yes The type of the object that is being granted (or denied)
access.

value String Yes The name of the object that is being granted (or denied)
access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Moab Web Services

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

Moab Web Services

1764 References

References 1765

AclType

This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

Moab Web Services

Value Description

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

Moab Web Services

1766 References

References 1767

API version 2

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Field
Name Type PUT Description

affinity AclAffinity Yes Reservation ACLs allow or deny access to reserved
resources but they may also be configured to affect a
job's affinity for a particular reservation. By default, jobs
gravitate toward reservations through a mechanism
known as positive affinity. This mechanism allows jobs to
run on the most constrained resources leaving other,
unreserved resources free for use by other jobs that
may not be able to access the reserved resources.
Normally this is a desired behavior. However, sometimes,
it is desirable to reserve resources for use only as a last
resort-using the reserved resources only when there are
no other resources available. This last resort behavior is
known as negative affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator Yes The type of comparison to make against the ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType Yes The type of the object that is being granted (or denied)
access.

value String Yes The name of the object that is being granted (or denied)
access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Moab Web Services

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

Moab Web Services

1768 References

References 1769

AclType

This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

Moab Web Services

Value Description

QUEUE Not supported

RACK Not supported

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

Related topics

l Access control lists (ACLs) on page 1426

Accounting
Fields: Accounts

See the associated Accounting Accounts on page 1429 resource section for more information on
how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/accounts Permissions on page 1571

Hooks filename accounting.accounts.groovy Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

1770 References

References 1771

API version 3

Account

Users may be designated as members of an account and may be allowed to share its allocations. The
user members may be designated as active or inactive, and as an account admin or not an account
admin. Default account properties include the description, the organization it is part of, and whether
or not it is active. An account's user membership can also be adjusted. By default, a standard user
may only query accounts they belong to.

Field Name Type Description

id String The unique account identifier

active Boolean A boolean indicating whether this account is active or not

creationTime Date The time this account was created

deleted Boolean A boolean indicating whether this account is deleted or not

description String The account description

modificationTime Date The time this account was last modified

organization String The organization to which the account belongs

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

users Set<AccountUser> The users associated with this account

AccountUser

An account user is a person authorized to use an account.

Field Name Type Description

id String The unique user identifier

active Boolean A boolean indicating whether this user is active or not

admin Boolean A boolean indicating wheter this user is an admin or not

Moab Web Services

API version 2

Account

Users may be designated as members of an account and may be allowed to share its allocations. The
user members may be designated as active or inactive, and as an account admin or not an account
admin. Default account properties include the description, the organization it is part of, and whether
or not it is active. An account's user membership can also be adjusted. By default, a standard user
may only query accounts they belong to.

Field Name Type Description

id String The unique account identifier

active Boolean A boolean indicating whether this account is active or not

creationTime Date The time this account was created

deleted Boolean A boolean indicating whether this account is deleted or not

description String The account description

modificationTime Date The time this account was last modified

organization String The organization to which the account belongs

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

users Set<AccountUser> The users associated with this account

AccountUser

An account user is a person authorized to use an account.

Field Name Type Description

id String The unique user identifier

active Boolean A boolean indicating whether this user is active or not

admin Boolean A boolean indicating wheter this user is an admin or not

Moab Web Services

1772 References

References 1773

Related topics

l Accounting Accounts on page 1429

Fields: Allocations

See the associated Accounting Allocations on page 1433 resource section for more information on
how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/allocations Permissions on page 1571

Hooks filename accounting.allocations.groovy Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

Moab Web Services

1774 References

References 1775

Field Name Type Description

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

Moab Web Services

API version 2

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

Moab Web Services

1776 References

References 1777

Field Name Type Description

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

Related topics

l Accounting Allocations on page 1433

Fields: Charge Rates

See the associated Accounting Charge rates on page 1437 resource section for more information
on how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/charge-rates Permissions on page 1571

Hooks filename accounting.charge-rates.-
groovy

Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

ChargeRate

Charge rates establish how much to charge for usage. A charge rate consists of its name, an optional
value and the amount. Both name and value are primary keys and a charge rate is uniquely defined
by both its name and its value. A charge rate value that is null designates the default charge rate.

Field Name Type Description

id Long

amount String The charge rate amount

creationTime Date The date this charge rate was created

deleted Boolean A boolean indicating whether this charge rate is deleted or not

description String The charge rate description

modificationTime Date The date this charge rate was last modified

name String The charge rate name

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

value String The charge rate value. This will be null for default charge rates.

Moab Web Services

1778 References

References 1779

API version 2

ChargeRate

Charge rates establish how much to charge for usage. A charge rate consists of its name, an optional
value and the amount. Both name and value are primary keys and a charge rate is uniquely defined
by both its name and its value. A charge rate value that is null designates the default charge rate.

Field Name Type Description

id Long

amount String The charge rate amount

creationTime Date The date this charge rate was created

deleted Boolean A boolean indicating whether this charge rate is deleted or not

description String The charge rate description

modificationTime Date The date this charge rate was last modified

name String The charge rate name

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

value String The charge rate value. This will be null for default charge rates.

Related topics

l Accounting Charge rates on page 1437

Fields: Fund Balances

See the associated Accounting Funds on page 1441 resource section for more information on how
to use this resource and supported operations.

Moab Web Services

Additional references

Type Value Additional information

Permissions
resource

accounting/funds/balances Permissions on page 1571

Hooks filename accounting.funds.balances.groovy Pre and post-processing hooks on
page 1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

1780 References

References 1781

API version 3

FundBalance

Represents a report of fund balance.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal The total adjusted allocations. This value is affected
positively by deposits, activations and destination transfers
and affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> Allocations associated with this fund

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

available BigDecimal The total amount available for charging.
amount - reserved + creditLimit

balance BigDecimal The allocation total not blocked by liens.
amount - reserved

capacity BigDecimal The total amount allocated via deposits and credit limits.
allocated + creditLimit

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

modificationTime Date The date this fund was last modified

name String The name of this fund

percentRemaining Double The percentage of allocation remaining.
amount * 100 / allocated

Moab Web Services

Field Name Type Description

percentUsed Double The percentage of allocated used.
used * 100 / allocated

reserved BigDecimal The sum of active lien amounts against this fund

used BigDecimal The total amount used this allocation cycle.
allocated - amount

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

Moab Web Services

1782 References

References 1783

Field Name Type Description

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Moab Web Services

API version 2

FundBalance

Represents a report of fund balance.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal The total adjusted allocations. This value is affected
positively by deposits, activations and destination transfers
and affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> Allocations associated with this fund

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

available BigDecimal The total amount available for charging.
amount - reserved + creditLimit

balance BigDecimal The allocation total not blocked by liens.
amount - reserved

capacity BigDecimal The total amount allocated via deposits and credit limits.
allocated + creditLimit

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

modificationTime Date The date this fund was last modified

name String The name of this fund

percentRemaining Double The percentage of allocation remaining.
amount * 100 / allocated

Moab Web Services

1784 References

References 1785

Field Name Type Description

percentUsed Double The percentage of allocated used.
used * 100 / allocated

reserved BigDecimal The sum of active lien amounts against this fund

used BigDecimal The total amount used this allocation cycle.
allocated - amount

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

Moab Web Services

Field Name Type Description

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Related topics

l Accounting Funds on page 1441

Fields: Fund Statement Summary

Moab Web Services

1786 References

References 1787

See the associated Accounting Funds on page 1441 resource section for more information on how
to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions
resource

accounting/funds/reports/statement Permissions on page 1571

Hooks filename accounting.funds.reports.statement.groovy Pre and post-processing
hooks on page 1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

FundStatementSummary

An fund statement summary is related to and quite similar to the FundStatement report, but differs
in the transactions field by using the FundTransactionSummary.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of the
statement

endTime Date The ending time that the statement covers

funds Set<Fund> The funds that this statement covers.
Only a sub-set of the full fund fields are available
from this property. This includes id, name, priority,
description, and creationTime.

generationTime Date The date that the statement report was generated

startBalance BigDecimal The balance of the funds at the startTime of the
statement

startTime Date The starting time that the statement covers

totalCredits BigDecimal The total number of credits that occurred during
the time period that the statement covers

totalDebits BigDecimal The total number of debits that occurred during
the time period that the statement covers

transactions Set<FundTransactionSummary> Summaries of the specific transactions which
occurred during the time period that this
statement covers.

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such

Moab Web Services

1788 References

References 1789

as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints
may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

Moab Web Services

Field Name Type Description

initialDeposit BigDecimal The initial deposit amount

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

Moab Web Services

1790 References

References 1791

Field Name Type Description

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Moab Web Services

FundTransactionSummary

Represents a Moab Accounting Manager transaction summary, which is a consolidated view of
multiple transactions. The transactions are grouped by object and action, and a total count is given
for the summary.

Field
Name Type Description

id Long

count Long The number of transactions in this grouping of object and action

action String Action name for the transaction

amount BigDecimal Amount of the transaction. A positive or amount signifies a credit, while a
negative or zero amount signifies a debit.

object String Object's name associated with the transaction

Moab Web Services

1792 References

References 1793

API version 2

FundStatementSummary

An fund statement summary is related to and quite similar to the FundStatement report, but differs
in the transactions field by using the FundTransactionSummary.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of the
statement

endTime Date The ending time that the statement covers

funds Set<Fund> The funds that this statement covers.
Only a sub-set of the full fund fields are available
from this property. This includes id, name, priority,
description, and creationTime.

generationTime Date The date that the statement report was generated

startBalance BigDecimal The balance of the funds at the startTime of the
statement

startTime Date The starting time that the statement covers

totalCredits BigDecimal The total number of credits that occurred during
the time period that the statement covers

totalDebits BigDecimal The total number of debits that occurred during
the time period that the statement covers

transactions Set<FundTransactionSummary> Summaries of the specific transactions which
occurred during the time period that this
statement covers.

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such

Moab Web Services

as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints
may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

Moab Web Services

1794 References

References 1795

Field Name Type Description

initialDeposit BigDecimal The initial deposit amount

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

Moab Web Services

Field Name Type Description

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Moab Web Services

1796 References

References 1797

FundTransactionSummary

Represents a Moab Accounting Manager transaction summary, which is a consolidated view of
multiple transactions. The transactions are grouped by object and action, and a total count is given
for the summary.

Field
Name Type Description

id Long

count Long The number of transactions in this grouping of object and action

action String Action name for the transaction

amount BigDecimal Amount of the transaction. A positive or amount signifies a credit, while a
negative or zero amount signifies a debit.

object String Object's name associated with the transaction

Related topics

l Accounting Funds on page 1441

Fields: Fund Statements

See the associated Accounting Funds on page 1441 resource section for more information on how
to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions
resource

accounting/funds/reports/statement Permissions on page 1571

Hooks filename accounting.funds.reports.statement.groovy Pre and post-processing
hooks on page 1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

FundStatement

An fund statement is a report generated from Moab Accounting Manager fund, allocation, and
transaction data. It contains fields detailing the specific time period covered, the starting and ending
balances, the total of the transactions, and fund and transaction details.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of the statement

endTime Date The ending time that the statement covers

funds Set<Fund> The funds that this statement covers.
Only a sub-set of the full fund fields are available from this
property. This includes id, name, priority, description, and
creationTime.

generationTime Date The date that the statement report was generated

startBalance BigDecimal The balance of the funds at the startTime of the statement

startTime Date The starting time that the statement covers

totalCredits BigDecimal The total number of credits that occurred during the time
period that the statement covers

totalDebits BigDecimal The total number of debits that occurred during the time
period that the statement covers

transactions Set<FundTransaction> Details of each specific transaction which occurred during
the time period that this statement covers.

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such
as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints

Moab Web Services

1798 References

References 1799

may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount

Moab Web Services

Field Name Type Description

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

Moab Web Services

1800 References

References 1801

Field Name Type Description

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

FundTransaction

Represents a Moab Accounting Manager transaction.

Moab Web Services

Field
Name Type Description

id Long

account String The account associated with the transaction. For a credit this will likely be zero

action String Action name for the transaction

amount BigDecimal Amount of the transaction. A positive or amount signifies a credit, while a
negative or zero amount signifies a debit.

instance String Instance name

machine String The machine associated with the transaction. For a credit this will likely be zero.
This field is not available in the Cloud context.

object String Object's name associated with the transaction

time Date The date at which the transaction occurred

user String The user associated with the transaction. For a credit this will likely be zero

Moab Web Services

1802 References

References 1803

API version 2

FundStatement

An fund statement is a report generated from Moab Accounting Manager fund, allocation, and
transaction data. It contains fields detailing the specific time period covered, the starting and ending
balances, the total of the transactions, and fund and transaction details.

Field Name Type Description

id Long

endBalance BigDecimal The balance of the funds at the endTime of the statement

endTime Date The ending time that the statement covers

funds Set<Fund> The funds that this statement covers.
Only a sub-set of the full fund fields are available from this
property. This includes id, name, priority, description, and
creationTime.

generationTime Date The date that the statement report was generated

startBalance BigDecimal The balance of the funds at the startTime of the statement

startTime Date The starting time that the statement covers

totalCredits BigDecimal The total number of credits that occurred during the time
period that the statement covers

totalDebits BigDecimal The total number of debits that occurred during the time
period that the statement covers

transactions Set<FundTransaction> Details of each specific transaction which occurred during
the time period that this statement covers.

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such
as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints

Moab Web Services

may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount

Moab Web Services

1804 References

References 1805

Field Name Type Description

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

Moab Web Services

Field Name Type Description

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

FundTransaction

Represents a Moab Accounting Manager transaction.

Moab Web Services

1806 References

References 1807

Field
Name Type Description

id Long

account String The account associated with the transaction. For a credit this will likely be zero

action String Action name for the transaction

amount BigDecimal Amount of the transaction. A positive or amount signifies a credit, while a
negative or zero amount signifies a debit.

instance String Instance name

machine String The machine associated with the transaction. For a credit this will likely be zero.
This field is not available in the Cloud context.

object String Object's name associated with the transaction

time Date The date at which the transaction occurred

user String The user associated with the transaction. For a credit this will likely be zero

Related topics

l Accounting Funds on page 1441

Fields: Funds

See the associated Accounting Funds on page 1441 resource section for more information on how
to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/funds Permissions on page 1571

Hooks filename accounting.funds.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

API version 3

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such
as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints
may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

Moab Web Services

1808 References

References 1809

Field Name Type Description

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

Moab Web Services

Field Name Type Description

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

Moab Web Services

1810 References

References 1811

Field
Name Type Description

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Moab Web Services

API version 2

Fund

A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, an fund is
a repository for these resource or service credits which are added through deposits and debited
through withdrawals and charges. Each fund has a set of constraints designating which entities (such
as Users, Accounts, Machines, Classes, Organizations, etc.) may access the fund or for which aspects
of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund constraints
may also be negated with an exclamation point leading the constraint value.

When credits are deposited into an fund, they are associated with a time period within which they
are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
billable units associated with an fund for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish an allocation cycle.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down
effect for funds deposited at higher level funds. Additionally, an optional overflow feature allows
charges against lower level funds to trickle up the hierarchy.

Funds may have an arbitrary name which is not necessarily unique for the fund. Funds may also have
a priority which will influence the order of fund selection when charging.

Field Name Type Description

id Long The unique fund identifier

allocated BigDecimal Total Adjusted allocations. This value is affected positively
by deposits, activations and destination transfers and
affected negatively by withdrawals, deactivations and
source transfers that have occurred since the last reset.

allocations Set<Allocation> The allocations associated with this fund.

amount BigDecimal The sum of active allocation amounts within this fund. It
does not take into fund current liens.

creationTime Date Date this fund was created

creditLimit BigDecimal The sum of active credit limits within this fund

defaultDeposit String The default deposit amount

Moab Web Services

1812 References

References 1813

Field Name Type Description

deleted Boolean A boolean indicating whether this fund is deleted or not

description String The fund description

fundConstraints Set<FundConstraint> Constraints on fund usage.

initialDeposit BigDecimal The initial deposit amount

modificationTime Date The date this fund was last modified

name String The name of this fund

priority Integer The fund priority

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Allocation

An allocation is a time-bounded pool of resource or service credits associated with an fund. An fund
may have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the
allocation may be used. By default an allocation is created with an unbounded time period (-infinity
to infinity). An active flag is automatically updated to true if the fund is within its valid timeframe or
false if it is not. An allocation may also have a credit limit representing the amount by which it can
go negative. Thus, by having a positive balance in the Amount field, the fund is like a debit fund,
implementing a pay-first use-later model. By establishing a credit limit instead of depositing an
initial balance, the fund will be like a credit fund, implementing a use-first pay-later model. These
strategies can be combined by depositing some amount of funds coupled with a credit limit,
implementing a form of overdraft protection where the funds will be used down to the negative of
the credit limit.

Field Name Type Description

id String The unique identifier for this allocation

active Boolean Indicates whether this allocation is active or not

Moab Web Services

Field Name Type Description

allocated BigDecimal Adjusted allocation. This value stores the effective allocated amount
based on the initial deposit and subsequent allocation adjustments via
deposits, withdrawals or transfers.

amount BigDecimal The amount of this allocation

creationTime Date The date this allocation was created

creditLimit BigDecimal Determines how far in the negative this allocation is permitted to be
used (enforced in quotes and liens)

deleted Boolean A boolean indicating whether this allocation is deleted or not

description String The description of this allocation

endTime Date The date this allocation becomes inactive

fund String The fund Id associated with this allocation

modificationTime Date The date this allocation was last modified

requestId Long The id of the last modifying request

startTime Date The date this allocation becomes active

transactionId Long The id of the last modifying transaction

FundConstraint

Constraints designate which entities (such as Users, Accounts, Machines, Classes, Organizations, etc.)
may access the encapsulated credits in a fund or for which aspects of usage the funds are intended
(QualityOfService, GeographicalArea, etc.).

Field
Name Type Description

id String The unique identifier of this constraint.

fund String The fund ID that this constraint is associated with.

Moab Web Services

1814 References

References 1815

Field
Name Type Description

name String The name of the constraint.

value String The value of the constraint. The constraint may be negated by the used of an
exclamation point leading the value.

Related topics

l Accounting Funds on page 1441

Fields: Liens

See the associated Accounting Liens on page 1451 resource section for more information on how
to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/liens Permissions on page 1571

Hooks filename accounting.liens.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

API version 3

Lien

A lien is a reservation or hold placed against an allocation. Before usage of a resource or service
begins, a lien is placed against one or more allocations within the requesting user's applicable funds.
Subsequent usage requests will also post liens while the available balance (active allocations minus
liens) allows. When the usage ends, the lien is removed and the actual charge is made to the
allocation(s). This procedure ensures that usage will only be permitted so long as the requestors
have sufficient funds.

Field Name Type Description

id Long The unique lien identifier

allocations Set<LienAllocation> The allocation amounts reserved with this lien.

creationTime Date The date this lien was created

deleted Boolean A boolean indicating whether this lien is deleted or not

description String The lien description

duration Long The expected duration of the reserved usage in seconds

endTime Date The time the lien becomes inactive

instance String The lien is against the specified instance (i.e. job id)

modificationTime Date The date this lien was last modified

requestId Long The id of the last modifying request

startTime Date The time the lien becomes active

transactionId Long The id of the last modifying transaction

usageRecord Long The id of the usage record associated with the lien and
containing the usage properties

LienAllocation

Amounts of the allocations that the lien has holds against

Moab Web Services

1816 References

References 1817

Field Name Type Description

id String The child allocation id

amount Long The amount reserved against the allocation by this lien

fund Long The fund that the allocation is in

lien String The parent lien id

Moab Web Services

API version 2

Lien

A lien is a reservation or hold placed against an allocation. Before usage of a resource or service
begins, a lien is placed against one or more allocations within the requesting user's applicable funds.
Subsequent usage requests will also post liens while the available balance (active allocations minus
liens) allows. When the usage ends, the lien is removed and the actual charge is made to the
allocation(s). This procedure ensures that usage will only be permitted so long as the requestors
have sufficient funds.

Field Name Type Description

id Long The unique lien identifier

allocations Set<LienAllocation> The allocation amounts reserved with this lien.

creationTime Date The date this lien was created

deleted Boolean A boolean indicating whether this lien is deleted or not

description String The lien description

duration Long The expected duration of the reserved usage in seconds

endTime Date The time the lien becomes inactive

instance String The lien is against the specified instance (i.e. job id)

modificationTime Date The date this lien was last modified

requestId Long The id of the last modifying request

startTime Date The time the lien becomes active

transactionId Long The id of the last modifying transaction

usageRecord Long The id of the usage record associated with the lien and
containing the usage properties

LienAllocation

Amounts of the allocations that the lien has holds against

Moab Web Services

1818 References

References 1819

Field Name Type Description

id String The child allocation id

amount Long The amount reserved against the allocation by this lien

fund Long The fund that the allocation is in

lien String The parent lien id

Related topics

l Accounting Liens on page 1451

Fields: Organizations

See the associated Accounting Organizations on page 1455 resource section for more information
on how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/organizations Permissions on page 1571

Hooks filename accounting.organizations.groovy Pre and post-processing hooks on
page 1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

Organization

An organization is a virtual organization in which accounts are grouped. An account may only belong
to a single organization while an organization may have multiple accounts. For example, an account
may represent a project or cost-center while an organization may represent an institutional
department or business division. The purpose of defining organizations is to support the ability to
produce reporting for higher-order organizational entities beyond the individual account. Default
organization properties include an id (name in MAM) and a description. An organization can be
created, queried, modified, and deleted.

Field Name Type Description

id String The unique organization identifier

creationTime Date The date this organization was created

deleted Boolean A boolean indicating whether this organization is deleted or not

description String The organization description

modificationTime Date The date this organization was last modified

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Moab Web Services

1820 References

References 1821

API version 2

Organization

An organization is a virtual organization in which accounts are grouped. An account may only belong
to a single organization while an organization may have multiple accounts. For example, an account
may represent a project or cost-center while an organization may represent an institutional
department or business division. The purpose of defining organizations is to support the ability to
produce reporting for higher-order organizational entities beyond the individual account. Default
organization properties include an id (name in MAM) and a description. An organization can be
created, queried, modified, and deleted.

Field Name Type Description

id String The unique organization identifier

creationTime Date The date this organization was created

deleted Boolean A boolean indicating whether this organization is deleted or not

description String The organization description

modificationTime Date The date this organization was last modified

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Related topics

l Accounting Organizations on page 1455

Fields: Quotes

See the associated Accounting Quotes on page 1458 resource section for more information on
how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/quotes Permissions on page 1571

Moab Web Services

Type Value Additional information

Hooks filename accounting.quotes.groovy Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

1822 References

References 1823

API version 3

Quote

Quotes can be used to determine how much it will cost to use a resource or service. Provided the
cost-only option is not specified, this step will additionally verify that the submitter has sufficient
funds and meets all the allocation policy requirements for the usage, and can be used at the
submission of the usage request as an early filter to prevent the usage from getting blocked when it
tries to obtain a lien to start later. If a guaranteed quote is requested, a quote id is returned and can
be used in the subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage record. A
quote id will be returned which can be used with the lien and charge to claim the quoted charge
rates. A cost-only quote can be used to determine how much would be charged for usage without
verifying sufficient funds or checking to see if the charge could succeed.

Field Name Type Description

id Long The unique quote identifier

amount BigDecimal The total amount of the quote

chargeRates Set<QuoteChargeRate> The applied charges that make up this quote.

creationTime Date The date this quote was created

deleted Boolean A boolean indicating whether this quote is deleted or not

description String The quote description

duration Long The expected duration of the quoted usage in seconds

endTime Date The time the quote becomes inactive

instance String The quote instance name. (i.e. job id)

modificationTime Date The date this quote was last modified

pinned Boolean Boolean indicating whether the quote is pinned or not

requestId Long The id of the last modifying request

startTime Date The time the quote becomes active

Moab Web Services

Field Name Type Description

transactionId Long The id of the last modifying transaction

usageRecord Long The usage record id associated with this quote

QuoteChargeRate

Saved charge rates to be used when the quote is referenced

Field Name Type Description

id Long

amount String The charge rate amount

name String The child charge rate name

quote String The parent quote id

value String The child charge rate value

Moab Web Services

1824 References

References 1825

API version 2

Quote

Quotes can be used to determine how much it will cost to use a resource or service. Provided the
cost-only option is not specified, this step will additionally verify that the submitter has sufficient
funds and meets all the allocation policy requirements for the usage, and can be used at the
submission of the usage request as an early filter to prevent the usage from getting blocked when it
tries to obtain a lien to start later. If a guaranteed quote is requested, a quote id is returned and can
be used in the subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quote record and a permanent usage record. A
quote id will be returned which can be used with the lien and charge to claim the quoted charge
rates. A cost-only quote can be used to determine how much would be charged for usage without
verifying sufficient funds or checking to see if the charge could succeed.

Field Name Type Description

id Long The unique quote identifier

amount BigDecimal The total amount of the quote

chargeRates Set<QuoteChargeRate> The applied charges that make up this quote.

creationTime Date The date this quote was created

deleted Boolean A boolean indicating whether this quote is deleted or not

description String The quote description

duration Long The expected duration of the quoted usage in seconds

endTime Date The time the quote becomes inactive

instance String The quote instance name. (i.e. job id)

modificationTime Date The date this quote was last modified

pinned Boolean Boolean indicating whether the quote is pinned or not

requestId Long The id of the last modifying request

startTime Date The time the quote becomes active

Moab Web Services

Field Name Type Description

transactionId Long The id of the last modifying transaction

usageRecord Long The usage record id associated with this quote

QuoteChargeRate

Saved charge rates to be used when the quote is referenced

Field Name Type Description

id Long

amount String The charge rate amount

name String The child charge rate name

quote String The parent quote id

value String The child charge rate value

Related topics

l Accounting Quotes on page 1458

Fields: Transactions

See the associated Accounting Transactions on page 1461 resource section for more information
on how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/transactions Permissions on page 1571

Hooks filename accounting.transactions.groovy Pre and post-processing hooks on
page 1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

1826 References

References 1827

API version 3

Transaction

Moab Accounting Manager logs all modifying transactions in a detailed transaction journal (queries
are not recorded). Previous transactions can be queried but not modified or deleted. By default, a
standard user may only query transactions performed by them.

Field Name Type Description

id Long The unique transaction identifier

account String The account name associated with the transaction

action String The transaction action name

actor String The authenticated user that performed the action

allocation Long The allocation id associated with the transaction

amount BigDecimal The amount

child String If the transaction object is an association, this is the value of the child

creationTime Date The date this transaction was created

deleted Boolean A boolean indicating whether this transaction is deleted or not

delta BigDecimal The effective change (positive or negative) to the balance of an
allocation

description String The description for the transaction

duration Long The duration associated with the transaction in seconds

fund Long The fund id associated with the transaction

instance String The instance name (e.g. the job id)

key String The object primary key value

Moab Web Services

Field Name Type Description

machine String The machine name associated with the transaction (e.g. the cluster
name)

modificationTime Date The date this transaction was last modified

object String The transaction object name

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

usageRecord Long The usage record id associated with the transaction

user String The user name associated with the transaction

Moab Web Services

1828 References

References 1829

API version 2

Transaction

Moab Accounting Manager logs all modifying transactions in a detailed transaction journal (queries
are not recorded). Previous transactions can be queried but not modified or deleted. By default, a
standard user may only query transactions performed by them.

Field Name Type Description

id Long The unique transaction identifier

account String The account name associated with the transaction

action String The transaction action name

actor String The authenticated user that performed the action

allocation Long The allocation id associated with the transaction

amount BigDecimal The amount

child String If the transaction object is an association, this is the value of the child

creationTime Date The date this transaction was created

deleted Boolean A boolean indicating whether this transaction is deleted or not

delta BigDecimal The effective change (positive or negative) to the balance of an
allocation

description String The description for the transaction

duration Long The duration associated with the transaction in seconds

fund Long The fund id associated with the transaction

instance String The instance name (e.g. the job id)

key String The object primary key value

Moab Web Services

Field Name Type Description

machine String The machine name associated with the transaction (e.g. the cluster
name)

modificationTime Date The date this transaction was last modified

object String The transaction object name

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

usageRecord Long The usage record id associated with the transaction

user String The user name associated with the transaction

Related topics

l Accounting Transactions on page 1461

Fields: Usage Records

See the associated Accounting Usage records on page 1466 resource section for more information
on how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/usage-records Permissions on page 1571

Hooks filename accounting.usage-record-
s.groovy

Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

1830 References

References 1831

API version 3

UsageRecord

A usage record tracks the usage of resources and services on your system, recording the charge and
the details of the usage in a usage record.

Usage Record quotes can be used to determine how much it will cost to use a resource or service.
Provided the cost-only option is not specified, this step will additionally verify that the submitter has
sufficient funds and meets all the allocation policy requirements for the usage, and can be used at
the submission of the usage request as an early filter to prevent the usage from getting blocked
when it tries to obtain a lien to start later. If a guaranteed quote is requested, a quote id is returned
and can be used in the subsequent charge to guarantee the rates that were used to form the original
quote. A guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote id will be returned which can be used with the lien and charge to claim the quoted
charge rates. A cost-only quote can be used to determine how much would be charged for usage
without verifying sufficient funds or checking to see if the charge could succeed.

A usage lien can be used to place a hold on the user's fund before usage starts to ensure that the
credits will be there when it completes. The replace option may be specified if you want the new lien
to replace existing liens of the same instance name (associated with the same usage record). The
modify option may be specified to dynamically extend any existing lien with the same instance name
with the specified characteristics instead of creating a new one.

A usage charge debits the appropriate allocations based on the attributes of the usage. The charge is
calculated based on factors including the resources and services used, the usage time, and other
quality-based factors. By default, any liens associated with the charge will be removed. The
incremental option may be specified if you want associated liens to be reduced instead of removed. If
a usage record already exists for the instance being charged it will be updated with the data
properties passed in with the charge request, otherwise a new usage record will be created.

Field Name Type POST Description

id Long No The unique usage record identifier

charge String No The cumulative amount charged

creationTime Date No The date this usage record was created

deleted Boolean No A boolean indicating whether this usage record is deleted or
not

instance String No The usage record instance name (i.e. job id)

modificationTime Date No The date this usage record was last modified

Moab Web Services

Field Name Type POST Description

qualityOfService String No The quality of service associated with the usage

quote Long No The associated quote id

requestId Long No The id of the last modifying request

stage String No The last affecting action (i.e. Create, Quote, Reserve, Query)

transactionId Long No The id of the last modifying transaction

type String No The usage record type

user String No The user name associated with the usage

Moab Web Services

1832 References

References 1833

API version 2

UsageRecord

A usage record tracks the usage of resources and services on your system, recording the charge and
the details of the usage in a usage record.

Usage Record quotes can be used to determine how much it will cost to use a resource or service.
Provided the cost-only option is not specified, this step will additionally verify that the submitter has
sufficient funds and meets all the allocation policy requirements for the usage, and can be used at
the submission of the usage request as an early filter to prevent the usage from getting blocked
when it tries to obtain a lien to start later. If a guaranteed quote is requested, a quote id is returned
and can be used in the subsequent charge to guarantee the rates that were used to form the original
quote. A guaranteed quote has the side effect of creating a quote record and a permanent usage
record. A quote id will be returned which can be used with the lien and charge to claim the quoted
charge rates. A cost-only quote can be used to determine how much would be charged for usage
without verifying sufficient funds or checking to see if the charge could succeed.

A usage lien can be used to place a hold on the user's fund before usage starts to ensure that the
credits will be there when it completes. The replace option may be specified if you want the new lien
to replace existing liens of the same instance name (associated with the same usage record). The
modify option may be specified to dynamically extend any existing lien with the same instance name
with the specified characteristics instead of creating a new one.

A usage charge debits the appropriate allocations based on the attributes of the usage. The charge is
calculated based on factors including the resources and services used, the usage time, and other
quality-based factors. By default, any liens associated with the charge will be removed. The
incremental option may be specified if you want associated liens to be reduced instead of removed. If
a usage record already exists for the instance being charged it will be updated with the data
properties passed in with the charge request, otherwise a new usage record will be created.

Field Name Type POST Description

id Long No The unique usage record identifier

charge String No The cumulative amount charged

creationTime Date No The date this usage record was created

deleted Boolean No A boolean indicating whether this usage record is deleted or
not

instance String No The usage record instance name (i.e. job id)

modificationTime Date No The date this usage record was last modified

Moab Web Services

Field Name Type POST Description

qualityOfService String No The quality of service associated with the usage

quote Long No The associated quote id

requestId Long No The id of the last modifying request

stage String No The last affecting action (i.e. Create, Quote, Reserve, Query)

transactionId Long No The id of the last modifying transaction

type String No The usage record type

user String No The user name associated with the usage

Related topics

l Accounting Usage records on page 1466

Fields: Users

See the associated Accounting Users on page 1480 resource section for more information on how
to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource accounting/users Permissions on page 1571

Hooks filename accounting.users.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

1834 References

References 1835

API version 3

User

A user is a person authorized to use a resource or service. Default user properties include the
common name, phone number, email address, default account, and description for that person.

Field Name Type Description

id String The unique user identifier

active Boolean A boolean indicating whether this user is active or not

creationTime Date The date this user was created

defaultAccount String The default account for this user

deleted Boolean A boolean indicating whether this user is deleted or not

description String The user description

emailAddress String The user's email address

modificationTime Date The date this user was last modified

phoneNumber String The user's phone number

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Moab Web Services

API version 2

User

A user is a person authorized to use a resource or service. Default user properties include the
common name, phone number, email address, default account, and description for that person.

Field Name Type Description

id String The unique user identifier

active Boolean A boolean indicating whether this user is active or not

creationTime Date The date this user was created

defaultAccount String The default account for this user

deleted Boolean A boolean indicating whether this user is deleted or not

description String The user description

emailAddress String The user's email address

modificationTime Date The date this user was last modified

phoneNumber String The user's phone number

requestId Long The id of the last modifying request

transactionId Long The id of the last modifying transaction

Related topics

l Accounting Users on page 1480

Fields: Credentials

See the associated Credentials on page 1484 resource section for more information on how to use
this resource and supported operations.

Moab Web Services

1836 References

References 1837

Additional references

Type Value Additional information

Permissions resource credentials Permissions on page 1571

Hooks filename credentials.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

API version 3

Credential

A credential is an entity, such as a user or a group, that has access to resources. Credentials allow
specification of job ownership, tracking of resource usage, enforcement of policies, and many other
features.

Field Name Type PUT Description

name String No The name of the credential.

API version 2

Credential

A credential is an entity, such as a user or a group, that has access to resources. Credentials allow
specification of job ownership, tracking of resource usage, enforcement of policies, and many other
features.

Field Name Type PUT Description

name String No The name of the credential.

Related topics

l Credentials on page 1484

Fields: Events

See the associated Events on page 1506 resource section for more information on how to use this
resource and supported operations.

Moab Web Services

Additional references

Type Value Additional information

Permissions resource events Permissions on page 1571

Hooks filename events.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

1838 References

References 1839

API version 3

Event

Represents an event originating from any component in the system (MWM, MWS, MAM, etc). Events
are related to, but not the same as, Notifications. See NotificationCondition for an explanation of
when to use an event vs a notification.

Field Name Type POST Description

id String No The unique ID for this event

arguments List<String> Yes The event's arguments

associatedObjects Set<AssociatedObject> Yes Objects relating to the event

code int Yes This is a positive, 32-bit numeric value. Source
code that needs to take action on events based
on which event (error) occurred can switch
based on this value. The top 16 bits are
determined by the severity of the event and
the component that emits it. The bottom 16
bits are assigned by any arbitrary mechanism
convenient to a component. Each component
thus has 64k unique event codes that it can
assign. Once assigned, event codes are
immutable; it can never be the case that error
12345 means one thing in release A, and a
different thing in release B.

eventDate Date Yes The date and time the event occurred, not the
date and time MWS received the event. It is up
to the reporting component to report this time
accurately. Required during POST.

eventType String Yes Signifies what type of event. Cannot contain
single quotes(') or double quotes(").

message String Yes A summary of what happened that caused this
event

origin String Yes The origin of this event. Cannot contain single
quotes(') or double quotes(").

severity EventSeverity Yes Signifies the severity of an event.

Moab Web Services

Field Name Type POST Description

tenant Map<String, String> No The event's tenant (contains tenant id and
name)

AssociatedObject

Represents and uniquely identifies an object associated with an event. (e.g node, job, reservation,
trigger)

Field
Name Type POST Description

id String Yes The object id (e.g. reservation.1, job.21, vm3). Cannot contain single
quotes(') or double quotes(").

type String Yes The type of object (e.g. node, job, reservation). Cannot contain single
quotes(') or double quotes(").

EventSeverity

Value Description

INFO

WARN

ERROR

FATAL

Moab Web Services

1840 References

References 1841

API version 2

EventVersion2

Field Name Type POST Description

id String No The unique ID for this event

details Map<String, Map> Yes A map where detail name maps to detail
value. (e.g. "sourceHypervisor" =>
"blade256", "destinationHypervisor" =>
"blade257", "os" => "centos-5.5-stateless)

errorMessage ErrorMessageVersion2 Yes Details about any errors associated with
the event. If this event was not associated
with any errors this field will be null

eventCategory String Yes Signifies what category of event.

eventTime Date Yes The time the event occurred, not the time
MWS received the event. It is up to the
reporting component to report this time
accurately. Corresponds to eventDate in
API Version 3. Required during POST.

eventType String Yes Signifies what type of event.

facility String Yes A categorization of how this event fits in
with other events.

initiatedBy UserDetailsVersion2 Yes Details about the user that initiated this
event

primaryObject MoabObjectVersion2 Yes Most events will have a "primary object"
associated with it. An event can have at
most ONE primary object. For example, a
JobStart event will have a primary job
object, so the type would be "job" and the
object ID would be the ID of the job.
Primary objects are, however, optional,
depending on the type of event. For
example, a "SchedulerCommand" event
does not have a primary object.

Moab Web Services

Field Name Type POST Description

relatedObjects Set<MoabObjectVersion2> Yes Objects relating to the event that are not
the primary object. Corresponds to
associatedObjects in API Version 3.

severity String Yes Signifies the severity of an event. Severity
can be "FATAL", "ERROR", "WARN", "INFO"

sourceComponent String Yes What Adaptive Computing component
reported this event. Examples: "MWM",
"MWS", "MAM", etc. Corresponds to origin
in API Version 3.

status String Yes The status of the reported event.

ErrorMessageVersion2

Field
Name Type POST Description

errorCode String Yes The original error code generated or detected by the originator.

message String Yes If an event has a status of "failure" or other non-successful operation,
this field should provide a human-friendly error message Corresponds to
Event.message in API Version 3 and above.

originator String Yes The software component or entity that generated or detected the error
(e.g. Moab, Torque, MWS, Viewpoint, RM, Database, etc).

UserDetailsVersion2

Field Name Type POST Description

proxyUser String Yes The proxy user that initiated the event.

user String Yes The user that initiated the event.

MoabObjectVersion2

Moab Web Services

1842 References

References 1843

Field Name Type POST Description

id String Yes The moab object id (e.g. reservation.1, job.21, vm3)

serialization String Yes A serialized representation of the object

type String Yes The moab object type (e.g. node, job, reservation)

Related topics

l Events on page 1506

Fields: Images

See the associated Images on page 1514 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource images Permissions on page 1571

Hooks filename images.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

API version 3

Image

An image is used to track the different types of operating systems and hypervisors available in a
data center. If the image is a hypervisor, it can contain other images which are the available virtual
machines of the hypervisor.

Field Name Type POST PUT Description

id String No No The unique ID of this image.

active Boolean Yes Yes If false, the image is flagged as inactive
and should not be used. Defaults to true.

Moab Web Services

1844 References

References 1845

Field Name Type POST PUT Description

extensions Map<String,
Map>

Yes Yes A map containing maps which represent
settings for provisioning managers. Only
one extension may be present on an
image at a time currently. Valid default
provisioning manager specific extensions
include 'xcat'.

Required properties for 'xcat' when
hypervisor is false:

l os - The name of the operating
system according to xCAT

l architecture - The architecture,
such as x86_64

l profile - The xCAT profile to use
for the image

Required properties for 'xcat' when
hypervisor is true:

l os - The name of the operating
system according to xCAT

l architecture - The architecture,
such as x86_64

l profile - The xCAT profile to use
for the image

l hvGroupName - The name of the
xCAT hypervisor group

l vmGroupName - The name of
the xCAT VM group

features Set<String> Yes Yes The set of features used by the
provisioning manager.

Moab Web Services

Field Name Type POST PUT Description

hypervisor Boolean Yes Yes Whether or not the image is a
hypervisor. Required during POST.
Note that this is related to, but not the
same as, supportsPhysicalMachine. Also,
when this is false, no virtualizedImages
may be specified for an image.

hypervisorType String Yes Yes The type of the hypervisor, which is
indicative of the hypervisor technology
used in this image. Required if this
image is a hypervisor image.

name String Yes Yes The unique human-readable name of
this image. Required during POST.

osType String Yes Yes The type of the operating system such as
'Linux' or 'Windows'. Required during
POST.

supportsPhysicalMachine Boolean Yes Yes Specifies whether the image can be used
to provision a physical machine, defaults
to false. Either this or
supportsVirtualMachine must be set to
true.
Note that this is related to, but not the
same as, hypervisor. Some images may
not be hypervisors but can be
provisioned on a physical machine.

supportsVirtualMachine Boolean Yes Yes Specifies whether the image can be used
to provision a virtual machine, defaults
to false. Either this or
supportsPhysicalMachine must be set to
true.

templateName String Yes Yes The VM template to use for this image.
Only valid if the type is set to a valid
template type such as
'ImageType.LINKED_CLONE'.

Moab Web Services

1846 References

References 1847

Field Name Type POST PUT Description

type ImageType Yes Yes The type of the image. This property
may affect the valid values to use for
other fields. See ImageType for more
information. (See also: templateName.)

virtualizedImages Set<Image> Yes Yes The set of images available on this
hypervisor.

ImageType

Represents an image type, such as stateful or stateless. This is used by provisioning managers and
applications to correctly provision and represent the image.

Certain types are only valid for images configured as templates using the Image.templateName
field. This currently includes ImageType.LINKED_CLONE and ImageType.FULL_CLONE.

Value Description

STATEFUL

STATELESS

STATELITE

LINKED_
CLONE

Template type. When this image type is used, the Image.hypervisor field must be set to false,
Image.supportsVirtualMachine must be true, and Image.supportsPhysicalMachine must be
false.

FULL_
CLONE

Template type. When this image type is used, the Image.hypervisor field must be set to false,
Image.supportsVirtualMachine must be true, and Image.supportsPhysicalMachine must be
false.

Moab Web Services

API version 2

Image

An image is used to track the different types of operating systems and hypervisors available in a
data center. If the image is a hypervisor, it can contain other images which are the available virtual
machines of the hypervisor.

Field Name Type POST PUT Description

id String No No The unique ID of this image.

active Boolean Yes Yes If false, the image is flagged as inactive
and should not be used. Defaults to true.

Moab Web Services

1848 References

References 1849

Field Name Type POST PUT Description

extensions Map<String,
Map>

Yes Yes A map containing maps which represent
settings for provisioning managers. Only
one extension may be present on an
image at a time currently. Valid default
provisioning manager specific extensions
include 'xcat'.

Required properties for 'xcat' when
hypervisor is false:

l os - The name of the operating
system according to xCAT

l architecture - The architecture,
such as x86_64

l profile - The xCAT profile to use
for the image

Required properties for 'xcat' when
hypervisor is true:

l os - The name of the operating
system according to xCAT

l architecture - The architecture,
such as x86_64

l profile - The xCAT profile to use
for the image

l hvGroupName - The name of the
xCAT hypervisor group

l vmGroupName - The name of
the xCAT VM group

features Set<String> Yes Yes The set of features used by the
provisioning manager.

Moab Web Services

Field Name Type POST PUT Description

hypervisor Boolean Yes Yes Whether or not the image is a
hypervisor. Required during POST.
Note that this is related to, but not the
same as, supportsPhysicalMachine. Also,
when this is false, no virtualizedImages
may be specified for an image.

hypervisorType String Yes Yes The type of the hypervisor, which is
indicative of the hypervisor technology
used in this image. Required if this
image is a hypervisor image.

name String Yes Yes The unique human-readable name of
this image. Required during POST.

osType String Yes Yes The type of the operating system such as
'Linux' or 'Windows'. Required during
POST.

supportsPhysicalMachine Boolean Yes Yes Specifies whether the image can be used
to provision a physical machine, defaults
to false. Either this or
supportsVirtualMachine must be set to
true.
Note that this is related to, but not the
same as, hypervisor. Some images may
not be hypervisors but can be
provisioned on a physical machine.

supportsVirtualMachine Boolean Yes Yes Specifies whether the image can be used
to provision a virtual machine, defaults
to false. Either this or
supportsPhysicalMachine must be set to
true.

templateName String Yes Yes The VM template to use for this image.
Only valid if the type is set to a valid
template type such as
'ImageType.LINKED_CLONE'.

Moab Web Services

1850 References

References 1851

Field Name Type POST PUT Description

type ImageType Yes Yes The type of the image. This property
may affect the valid values to use for
other fields. See ImageType for more
information. (See also: templateName.)

virtualizedImages Set<Image> Yes Yes The set of images available on this
hypervisor.

ImageType

Represents an image type, such as stateful or stateless. This is used by provisioning managers and
applications to correctly provision and represent the image.

Certain types are only valid for images configured as templates using the Image.templateName
field. This currently includes ImageType.LINKED_CLONE and ImageType.FULL_CLONE.

Value Description

STATEFUL

STATELESS

STATELITE

LINKED_
CLONE

Template type. When this image type is used, the Image.hypervisor field must be set to false,
Image.supportsVirtualMachine must be true, and Image.supportsPhysicalMachine must be
false.

FULL_
CLONE

Template type. When this image type is used, the Image.hypervisor field must be set to false,
Image.supportsVirtualMachine must be true, and Image.supportsPhysicalMachine must be
false.

Related topics

l Images on page 1514

Fields: Job Arrays

See the associated Job arrays on page 1523 resource section for more information on how to use
this resource and supported operations.

Moab Web Services

Additional references

Type Value Additional information

Permissions resource job-arrays Permissions on page 1571

Hooks filename job-arrays.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

1852 References

References 1853

API version 3

JobArray

Job arrays are an easy way to submit many sub-jobs that perform the same work using the same
script, but operate on different sets of data. Sub-jobs are the jobs created by an array job and are
identified by the array job ID and an index; for example, if 235[1] is an identifier, the number 235 is a
job array ID, and 1 is the sub-job.

Field Name Type POST Description

cancellationPolicy CancellationPolicyInformation Yes Represents the cancellation policy to
use for the job array.

indexRanges List<JobArrayIndexRange> Yes The index ranges used to generate the
sub-job indices. To use hard-coded
values, see indexValues.

indexValues List<Long> Yes The index values to use for the sub-
jobs. To use ranges, see indexRanges.

jobPrototype Job Yes The definition of the job to use for
each sub-job.

name String Yes The name of the job array. In MWS
API version 1, this is stored in the
name field of the created jobs. In MWS
API version 2, this is stored in the
customName field of the created jobs.

slotLimit Long Yes (Optional) The number of sub-jobs in
the array that can run at a time.

CancellationPolicyInformation

Job arrays can be canceled based on the success or failure of the first or any sub-job. This class
represents the failure policies.

Field
Name Type POST Description

anyJob CancellationPolicy Yes The cancellation policy based on the result of any sub-job. May
be used in combination with firstJob.

firstJob CancellationPolicy Yes The cancellation policy based on the result of the first sub-job
(array index 1). May be used in combination with anyJob.

Moab Web Services

CancellationPolicy

This enumeration represents job array cancellation policies, and is to be used in combination with
CancellationPolicyInformation.

Value Description

SUCCESS Cancels the job array if the specified sub-job succeeds.

FAILURE Cancels the job array if the specified sub-job fails.

JobArrayIndexRange

Represents information about a job index expression. This is used when creating job arrays only.

Field
Name Type POST Description

endIndex Long Yes The end of the index range. i.e. 10 for 1-10.

increment Long Yes The increment of the index range, defaults to 1 and must be greater than
0. For a range of 1-10 with an increment of 2, the list of indices will be [1,
3, 5, 7, 9].

startIndex Long Yes The start of the index range. i.e. 1 for 1-10.

Job

This class represents a job in the Moab Workload Manager. A job is a request for compute resources
(CPUs, memory, storage) with which the requester can do work for a given amount of time. In an
HPC environment, this might be a batch script to perform a Monte Carlo simulation. In a cloud
environment, this would be a virtual machine and its associated storage. Moab will evaluate the
request and assign the requested resources to the requester based on policies, current demand, and
other factors in the data center. A job will also usually have some process that Moab starts
automatically at the assigned start time. In an HPC environment, this can be starting a batch script
on the assigned nodes. In a cloud environment, this can be starting provisioning processes to create
the virtual machine and storage and install software on it.

Field Name Type POS
T Description

id String No The unique identifier of this job.
Note: this field is not user-
assigned and is generated by
the database.

Moab Web Services

1854 References

References 1855

Field Name Type POS
T Description

arrayIndex Long No If this job is a sub-job of a
JobArray, this field contains the
index of this job in the array. For
example, if this job is Moab.1
[2], the array index would be 2.

arrayMasterName String No If this job is a sub-job of a
JobArray, this field contains the
name of the job array master.
For example, if this job is
Moab.1[2], the array master
name would be Moab.1.

attributes Set<String> Yes The list of generic attributes
associated with this job.

blocks Set<JobBlock> No Reasons the job is blocked from
running.

bypassCount Integer No The number of times the job has
been backfilled.

cancelCount Integer No The number of times a job has
received a cancel request.

commandFile String Yes The name of the job script file
(absolute path). If commandFile
is set and commandScript is not
set, then MWS must have read
access to the file. If commandFile
and commandScript are both
set, then MWS does not read the
contents of the file, but it does
provide the name of the file to
Moab.

commandLineArguments String Yes The command line arguments
passed to the job script specified
by commandFile or
commandScript.

Moab Web Services

Field Name Type POS
T Description

commandScript String Yes The contents of the job script.
This field must be Base64-
encoded.

completionCode Integer No The exit code from this job.

cpuTime Long No CPU usage time in seconds as
reported by the resource
manager.

credentials JobCredentials Yes The credentials (user and group,
for example) associated with
this job.

customName String Yes The user-specified name of this
job.

dates JobDates Yes Various dates associated with
this job.

deferCount Integer No The number of times a job has
been deferred.

dependencies Set<JobDependency> Yes Dependencies that must be
fulfilled before the job can start.

description String No The description of the job. Can
be set only in a job template.

duration Long Yes The length of time in seconds
requested for the job. Note that
it is possible to set duration to
"INFINITY" if the
AllowInfiniteJobs flag is set on
the scheduler in the moab.cfg.

durationActive Long No The length of time in seconds
the job has been active or
running.

Moab Web Services

1856 References

References 1857

Field Name Type POS
T Description

durationQueued Long No The length of time in seconds
the job has been eligible to run
in the queue.

durationRemaining Long No An estimate of the time
remaining, in seconds, before
the job will complete.

durationSuspended Long No The length of time in seconds
the job has been suspended.

emailNotifyAddresses Set<String> Yes The list of addresses to whom
email is sent by the execution
server.

emailNotifyTypes Set<JobEmailNotifyType> Yes The list of email notify types
attached to the job.

environmentRequested Boolean Yes Setting this field to true tells the
Moab Workload Manager to set
various variables, if populated,
in the job's environment.

environmentVariables Map<String, Map> Yes The list of environment
variables for this job.

epilogScript String Yes The path to the TORQUE epilog
script.

flags Set<JobFlag> Yes The flags that are set on this job.

holdDate Date No The date the most recent hold
was placed on the job.

holdReason JobHoldReason No The reason the job is on hold.

holds Set<JobHoldType> Yes The holds that are set on the job.
The "User" hold type is valid
during POST.

Moab Web Services

Field Name Type POS
T Description

initialWorkingDirectory String Yes The path to the directory in
which the job will be started.

isActive Boolean No True if the job is active, false if
the job is complete.

jobGroup String Yes The job group to which this job
belongs (different from
credentials.group).

masterNode DomainProxy No The first node in the list of
allocated nodes for this job. For
TORQUE jobs, this represents
the "mother superior."

memorySecondsDedicated Double No The memory seconds dedicated
to the job as reported by its
resource manager. Not all
resource managers provide this
information.

memorySecondsUtilized Double No The memory seconds utilized by
the job as reported by its
resource manager. Not all
resource managers provide this
information.

messages Set<Message> No The list of messages associated
with the job. The "message" field
is valid during PUT.

migrateCount Integer No The number of times the job has
been migrated.

minimumPreemptTime Long No The minimum length of time, in
seconds, an active job must be
running before it is eligible for
preemption.

Moab Web Services

1858 References

References 1859

Field Name Type POS
T Description

mwmName String No The name of the Moab Workload
Manager instance that owns this
job.

name String No The name of this job. This name
is unique per instance of Moab
Workload Manager (i.e. not
globally).

nodesExcluded Set<DomainProxy> Yes The list of nodes that should not
be considered for this job.

nodesRequested Set<DomainProxy> Yes The exact set, superset, or
subset of nodes on which this
job must run. (See also:
nodesRequestedPolicy.)

nodesRequestedPolicy JobHostListMode Yes Indicates an exact set, superset,
or subset of nodes on which the
job must run. Only relevant if
nodesRequested is provided.
(See also: nodesRequested.)

partitionAccessList Set<String> No The list of partitions that this job
can access.

partitionAccessListRequest
ed

Set<String> Yes The list of partitions that this job
has requested.

preemptCount Integer No The number of times the job has
been preempted.

priorities JobPriority Yes The list of priorities for the job.

processorSecondsDedicated Double No The processor seconds
dedicated to the job as reported
by its resource manager. Not all
resource managers provide this
information.

Moab Web Services

Field Name Type POS
T Description

processorSecondsLimit Double No The limit for
processorSecondsUtilized.

processorSecondsUtilized Double No The processor seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide this
information.

prologScript String Yes The path to the TORQUE prolog
script.

queueStatus JobQueueStatus No The status of the job in its
queue.

rejectPolicies Set<JobRejectPolicy> No The list of policies enabled when
a job is rejected.

requirements Set<JobRequirement> Yes The list of items required for
this job to run. Only
JobRequirement.features is valid
during PUT.

reservationRequested DomainProxy Yes The reservation that the job
requested.

resourceFailPolicy JobResourceFailPolicyTy
pe

Yes The policy that dictates what
should happen to the job if it is
running and at least one of the
resources it is using fails.

resourceManagerExtension String Yes If provided during POST, this
string will be added to the
resource manager extension
section of the job submission.
Example:
"bandwidth=120;queuejob=fals
e"
Note that the delimiter between
resourceManagerExtension
elements is the semicolon.

Moab Web Services

1860 References

References 1861

Field Name Type POS
T Description

resourceManagers Set<ResourceManager> No The list of resource managers
associated with this job.

rmStandardErrorFilePath String No The path to the remote file
containing the standard error of
the job.

rmStandardOutputFilePath String No The path to the remote file
containing the standard output
of the job.

standardErrorFilePath String Yes The path to the file containing
the standard error of the job.

standardOutputFilePath String Yes The path to the file containing
the standard output of the job.

startCount Integer No The number of times the job has
been started.

states JobStateInformation No Information about the state of
the job.

submitHost String Yes The host from which the job was
submitted.

systemJobAction String No The action the system job will
take.

systemJobType JobSystemJobType No The type of system job. In the
Moab Cloud Suite, this will
usually be "vmtracking" or
"generic."

targetedJobAction JobActionType No The action that this job is
performing on another job.

Moab Web Services

Field Name Type POS
T Description

targetedJobName String No The name of the job on which
this job is performing the
targetedJobAction.

templates Set<DomainProxy> Yes The list of all job templates to be
set on this job.

triggers Set<String> No The list of triggers associated
with this job.

variables Map<String, Map> Yes The list of variables that this job
owns or sets on completion.

virtualContainers Set<DomainProxy> Yes When submitting this job, add it
to the specified existing virtual
container. Valid during POST,
but only one virtual container
can be specified.

virtualMachines Set<DomainProxy> No The list of virtual machines that
are allocated to this job.

vmUsagePolicy VMUsagePolicy Yes The requested Virtual Machine
Usage Policy for this job.

JobBlock

Field Name Type POST Description

category JobBlockCategory No

message String No

type JobBlockType No

JobBlockCategory

Moab Web Services

1862 References

References 1863

Value Description

depend

jobBlock

migrate

JobBlockType

Value Description

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Moab Web Services

Value Description

Priority

RMSubmissionFailure

StartDate

State

SysLimits

JobCredentials

Moab Workload Manager supports the concept of credentials, which provide a means of attributing
policy and resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other features.

Field Name Type POST Description

account String Yes The account credential is also referred to as the project. This
credential is generally associated with a group of users along the
lines of a particular project for accounting and billing purposes.

group String Yes The group credential represents an aggregation of users. User-to-
group mappings are often specified by the operating system or
resource manager and typically map to a user's UNIX group ID.
However, user-to-group mappings may also be provided by a security
and identity management service, or you can specify such directly
within Moab.

jobClass String Yes The concept of the class credential is derived from the resource
manager class or queue object. Classes differ from other credentials
in that they more directly impact job attributes. In standard HPC
usage, a user submits a job to a class and this class imposes a number
of factors on the job. The attributes of a class may be specified within
the resource manager or directly within Moab.

Moab Web Services

1864 References

References 1865

Field Name Type POST Description

qos String No The quality of service assigned to this job.

The concept of a quality of service (QoS) credential is unique to
Moab and is not derived from any underlying concept or peer
service. In most cases, the QoS credential is used to allow a site to set
up a selection of service levels for end-users to choose from on a
long-term or job-by-job basis. QoS's differ from other credentials in
that they are centered around special access where this access may
allow use of additional services, additional resources, or improved
responsiveness. Unique to this credential, organizations may also
choose to apply different charge rates to the varying levels of service
available within each QoS. As QoS is an internal credential, all QoS
configuration occurs within Moab.

qosRequested String Yes The quality of service requested for this job.

user String Yes The user credential is the fundamental credential within a workload
manager; each job requires an association with exactly one user. In
fact, the user credential is the only required credential in Moab; all
others are optional. In most cases, the job's user credential is
configured within or managed by the operating system itself,
although Moab may be configured to obtain this information from an
independent security and identity management service.

JobDates

Field Name Type POST Description

completedDate Date No

createdDate Date No

deadlineDate Date Yes The deadline for completion of the job.

dispatchedDate Date No

earliestRequestedStartDate Date Yes The job will start no sooner than this date.

earliestStartDate Date No

Moab Web Services

Field Name Type POST Description

eligibleDate Date No

lastCanceledDate Date No

lastChargedDate Date No

lastPreemptedDate Date No

lastUpdatedDate Date No

startDate Date No

submitDate Date No

terminationDate Date No

JobDependency

Field
Name Type POST Description

name String Yes The name of the object on on which the job is
dependent.

type JobDependencyType Yes The type of job dependency. Only set is valid for POST.

value String No

JobDependencyType

Represents the type of a job dependency. For now, only the "set" type is supported.

Value Description

set

JobEmailNotifyType

Moab Web Services

1866 References

References 1867

Value Description

JobStart

JobEnd

JobFail

All

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

Moab Web Services

Value Description

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

Moab Web Services

1868 References

References 1869

Value Description

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobHoldReason

Moab Web Services

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject

PolicyViolation

CredAccess

CredHold

PreReq

Data

Security

MissingDependency

JobHoldType

Value Description

User

Moab Web Services

1870 References

References 1871

Value Description

System

Batch

Defer

All

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type POST Description

name String Yes The name of the object.

Message

Field Name Type POST Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String No The message itself.

JobHostListMode

Value Description

superset

subset

Moab Web Services

Value Description

exactset

JobPriority

Field
Name Type POST Description

run Long No

start Long No

system Long No

user Long Yes The user-requested priority for the job. By default, the range is between -
1024 and 0. To enable priority range from -1024 to +1023, set
ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active

blocked

completed

eligible

JobRejectPolicy

Value Description

CANCEL

HOLD

Moab Web Services

1872 References

References 1873

Value Description

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type
P
O
ST

Description

architecture String Yes The architecture required by the job.

attributes Map<String,
JobRequirementAttr
ibute>

Yes Required node attributes with version number
support.

features Set<String> No The list of node features the job is scheduled against.

featuresExclude
d

Set<String> Yes Excluded node features. That is, do not select nodes
with these features. (See also: featuresExcludedMode.)

featuresExclude
dMode

JobRequirementFeat
uresMode

Yes Indicates whether excluded features should be
AND'ed or OR'd. The default is AND. Only relevant if
featuresExcluded is provided. (See also:
featuresExcluded.)

featuresReques
ted

Set<String> Yes Requested node features. (See also:
featuresRequestedMode.)

featuresReques
tedMode

JobRequirementFeat
uresMode

Yes Indicates whether requested features should be
AND'ed or OR'd. The default is AND. Only relevant if
featuresRequested is provided. (See also:
featuresRequested.)

image String Yes The image required by the job.

Moab Web Services

Field Name Type
P
O
ST

Description

index Integer No The index of the requirement, starting with 0.

metrics Map<String,
Double>

No Generic metrics associated with the job as reported by
the resource manager.

nodeAccessPoli
cy

NodeAccessPolicy Yes Specifies how node resources should be accessed.
Note: If the job requirements array has more than one
element that contains nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocation
Policy

NodeAllocationPolic
y

Yes Specifies how node resources should be selected and
allocated to the job. Note: If the job requirements
array has more than one element that contains
nodeAllocationPolicy, only the first occurrence will be
used.

nodeCount Integer Yes The number of nodes required by the job.

nodeSet String Yes The requested node set of the job. This must follow
the format SETSELECTION:SETTYPE[:SETLIST]

l SETSELECTION - ANYOF, ONEOF, or FIRSTOF

l SETTYPE - FEATURE or VARATTR

l SETLIST - For FEATURE, a comma-separated
list of features. For VARATTR, a key=value pair.

Examples:

l ONEOF:FEATURE:fastos,hiprio,bigmem

l FIRSTOF:VARATTR:datacenter=Provo:d
atacenter=SaltLake

nodes Set<AllocatedNode> No Nodes that have been allocated to meet this
requirement.

Moab Web Services

1874 References

References 1875

Field Name Type
P
O
ST

Description

reservation DomainProxy No The allocated reservation (assigned after the job has a
reservation).

resourcesPerT
ask

Map<String,
JobResource>

Yes Contains requirements for disk, memory, processors,
swap, and generic resources. For disk, memory, and
swap, the unit is MB. For each resource, the
"dedicated" field can be set during POST.

taskCount Integer Yes The number of tasks (processors) required by this job.

tasksPerNode Integer Yes The number of tasks to map to each node.

JobRequirementAttribute

Field
Name Type POS

T Description

comparator String Yes The comparison operator. Valid values:

l >= - Greater than or equal to

l > - Greater than

l <= - Less than

l < - Less than

l %= - Equals

l %! - Not equals

l Null - Defaults to %=

l = - (Deprecated) Equivalent to
%=

Moab Web Services

Field
Name Type POS

T Description

displayValu
e

String Yes The display value for the required
attribute.

restriction JobRequirementAttributeRestrictio
n

Yes The restriction of this attribute. May be
null, but defaults to
JobRequirementAttributeRestriction.mu
st.

value String Yes The value of the required attribute.
During POST, if value is missing, blank,
or null, do not provide a comparator.

JobRequirementAttributeRestriction

Represents a restriction for a job requirement attribute.

Value Description

must

JobRequirementFeaturesMode

Value Description

OR

AND

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

Moab Web Services

1876 References

References 1877

Value Description

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

NodeAllocationPolicy

Node Allocation enumeration.

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab defaults to
MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where nodes are allocated in
the order they are presented by the resource manager. This is a very
simple, very fast algorithm.

Moab Web Services

Value Description

LASTAVAILABLE This algorithm selects resources so as to minimize the amount of time
after the job and before the trailing reservation. This algorithm is a
best fit in time algorithm which minimizes the impact of reservation
based node-time fragmentation. It is useful in systems where a large
number of reservations (job, standing, or administrative) are in place.

MINRESOURCE This algorithm prioritizes nodes according to the configured
resources on each node. Those nodes with the fewest configured
resources which still meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum amount of available,
unused cpu power, i.e. [# of CPU's] - [CPU load]. Good algorithm for
timesharing node systems. This algorithm is only applied to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

LOCAL This will call the locally created contrib node allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

MAXBALANCE This algorithm will attempt to allocate the most 'balanced' set of
nodes possible to a job. In most cases, but not all, the metric for
balance of the nodes is node speed. Thus, if possible, nodes with
identical speeds will be allocated to the job. If identical speed nodes
cannot be found, the algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority of various static
and dynamic aspects of compute nodes and allocate them with
preference for higher priority nodes. It is highly flexible allowing
node attribute and usage information to be combined with
reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node first' order. Nodes
will be selected by node speed if specified. If node speed is not
specified, nodes will be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

Moab Web Services

1878 References

References 1879

Value Description

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

AllocatedNode

Field Name Type POST Description

name String No

taskCount Integer No

JobResource

Represents counts of dedicated and utilized resources.

Field
Name Type POST Description

dedicated Integer No The amount of this resource that has been allocated for running
workload.

utilized Integer No The amount of this resource that is currently reported as utilized by
resource managers.

JobResourceFailPolicyType

Moab Web Services

Value Description

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST Description

isDestination Boolean No

isSource Boolean No

jobName String No

name String No

JobStateInformation

Field Name Type POST Description

state JobState No

stateExpected JobState No

stateLastUpdatedDate Date No

subState JobSubState No

Moab Web Services

1880 References

References 1881

JobState

Value Description

Idle

Starting

Running

Removed

Completed

Hold

Deferred

Vacated

NotQueued

Unknown

Staging

Suspended

Blocked

JobSubState

Value Description

Epilogue

Migrated

Preempted

Moab Web Services

Value Description

Prologue

JobSystemJobType

Value Description

generic

osprovision

osprovision2

poweroff

poweron

reset

storage

vmmap

vmmigrate

vmtracking

JobActionType

Value Description

DESTROY

MIGRATE

MODIFY

Moab Web Services

1882 References

References 1883

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Moab Web Services

API version 2

JobArray

Job arrays are an easy way to submit many sub-jobs that perform the same work using the same
script, but operate on different sets of data. Sub-jobs are the jobs created by an array job and are
identified by the array job ID and an index; for example, if 235[1] is an identifier, the number 235 is a
job array ID, and 1 is the sub-job.

Field Name Type POST Description

cancellationPolicy CancellationPolicyInformation Yes Represents the cancellation policy to
use for the job array.

indexRanges List<JobArrayIndexRange> Yes The index ranges used to generate the
sub-job indices. To use hard-coded
values, see indexValues.

indexValues List<Long> Yes The index values to use for the sub-
jobs. To use ranges, see indexRanges.

jobPrototype Job Yes The definition of the job to use for
each sub-job.

name String Yes The name of the job array. In MWS
API version 1, this is stored in the
name field of the created jobs. In MWS
API version 2, this is stored in the
customName field of the created jobs.

slotLimit Long Yes (Optional) The number of sub-jobs in
the array that can run at a time.

CancellationPolicyInformation

Job arrays can be canceled based on the success or failure of the first or any sub-job. This class
represents the failure policies.

Field
Name Type POST Description

anyJob CancellationPolicy Yes The cancellation policy based on the result of any sub-job. May
be used in combination with firstJob.

firstJob CancellationPolicy Yes The cancellation policy based on the result of the first sub-job
(array index 1). May be used in combination with anyJob.

Moab Web Services

1884 References

References 1885

CancellationPolicy

This enumeration represents job array cancellation policies, and is to be used in combination with
CancellationPolicyInformation.

Value Description

SUCCESS Cancels the job array if the specified sub-job succeeds.

FAILURE Cancels the job array if the specified sub-job fails.

JobArrayIndexRange

Represents information about a job index expression. This is used when creating job arrays only.

Field
Name Type POST Description

endIndex Long Yes The end of the index range. i.e. 10 for 1-10.

increment Long Yes The increment of the index range, defaults to 1 and must be greater than
0. For a range of 1-10 with an increment of 2, the list of indices will be [1,
3, 5, 7, 9].

startIndex Long Yes The start of the index range. i.e. 1 for 1-10.

Job

This class represents a job in the Moab Workload Manager. A job is a request for compute resources
(CPUs, memory, storage) with which the requester can do work for a given amount of time. In an
HPC environment, this might be a batch script to perform a Monte Carlo simulation. In a cloud
environment, this would be a virtual machine and its associated storage. Moab will evaluate the
request and assign the requested resources to the requester based on policies, current demand, and
other factors in the data center. A job will also usually have some process that Moab starts
automatically at the assigned start time. In an HPC environment, this can be starting a batch script
on the assigned nodes. In a cloud environment, this can be starting provisioning processes to create
the virtual machine and storage and install software on it.

Field Name Type POS
T Description

id String No The unique identifier of this job.
Note: this field is not user-
assigned and is generated by
the database.

Moab Web Services

Field Name Type POS
T Description

arrayIndex Long No If this job is a sub-job of a
JobArray, this field contains the
index of this job in the array. For
example, if this job is Moab.1
[2], the array index would be 2.

arrayMasterName String No If this job is a sub-job of a
JobArray, this field contains the
name of the job array master.
For example, if this job is
Moab.1[2], the array master
name would be Moab.1.

attributes Set<String> Yes The list of generic attributes
associated with this job.

blocks Set<JobBlock> No Reasons the job is blocked from
running.

bypassCount Integer No The number of times the job has
been backfilled.

cancelCount Integer No The number of times a job has
received a cancel request.

commandFile String Yes The name of the job script file
(absolute path). If commandFile
is set and commandScript is not
set, then MWS must have read
access to the file. If commandFile
and commandScript are both
set, then MWS does not read the
contents of the file, but it does
provide the name of the file to
Moab.

commandLineArguments String Yes The command line arguments
passed to the job script specified
by commandFile or
commandScript.

Moab Web Services

1886 References

References 1887

Field Name Type POS
T Description

commandScript String Yes The contents of the job script.
This field must be Base64-
encoded.

completionCode Integer No The exit code from this job.

cpuTime Long No CPU usage time in seconds as
reported by the resource
manager.

credentials JobCredentials Yes The credentials (user and group,
for example) associated with
this job.

customName String Yes The user-specified name of this
job.

dates JobDates Yes Various dates associated with
this job.

deferCount Integer No The number of times a job has
been deferred.

dependencies Set<JobDependency> Yes Dependencies that must be
fulfilled before the job can start.

description String No The description of the job. Can
be set only in a job template.

duration Long Yes The length of time in seconds
requested for the job. Note that
it is possible to set duration to
"INFINITY" if the
AllowInfiniteJobs flag is set on
the scheduler in the moab.cfg.

durationActive Long No The length of time in seconds
the job has been active or
running.

Moab Web Services

Field Name Type POS
T Description

durationQueued Long No The length of time in seconds
the job has been eligible to run
in the queue.

durationRemaining Long No An estimate of the time
remaining, in seconds, before
the job will complete.

durationSuspended Long No The length of time in seconds
the job has been suspended.

emailNotifyAddresses Set<String> Yes The list of addresses to whom
email is sent by the execution
server.

emailNotifyTypes Set<JobEmailNotifyType> Yes The list of email notify types
attached to the job.

environmentRequested Boolean Yes Setting this field to true tells the
Moab Workload Manager to set
various variables, if populated,
in the job's environment.

environmentVariables Map<String, Map> Yes The list of environment
variables for this job.

epilogScript String Yes The path to the TORQUE epilog
script.

flags Set<JobFlag> Yes The flags that are set on this job.

holdDate Date No The date the most recent hold
was placed on the job.

holdReason JobHoldReason No The reason the job is on hold.

holds Set<JobHoldType> Yes The holds that are set on the job.
The "User" hold type is valid
during POST.

Moab Web Services

1888 References

References 1889

Field Name Type POS
T Description

initialWorkingDirectory String Yes The path to the directory in
which the job will be started.

isActive Boolean No True if the job is active, false if
the job is complete.

jobGroup String Yes The job group to which this job
belongs (different from
credentials.group).

masterNode DomainProxy No The first node in the list of
allocated nodes for this job. For
TORQUE jobs, this represents
the "mother superior."

memorySecondsDedicated Double No The memory seconds dedicated
to the job as reported by its
resource manager. Not all
resource managers provide this
information.

memorySecondsUtilized Double No The memory seconds utilized by
the job as reported by its
resource manager. Not all
resource managers provide this
information.

messages Set<Message> No The list of messages associated
with the job. The "message" field
is valid during PUT.

migrateCount Integer No The number of times the job has
been migrated.

minimumPreemptTime Long No The minimum length of time, in
seconds, an active job must be
running before it is eligible for
preemption.

Moab Web Services

Field Name Type POS
T Description

mwmName String No The name of the Moab Workload
Manager instance that owns this
job.

name String No The name of this job. This name
is unique per instance of Moab
Workload Manager (i.e. not
globally).

nodesExcluded Set<DomainProxy> Yes The list of nodes that should not
be considered for this job.

nodesRequested Set<DomainProxy> Yes The exact set, superset, or
subset of nodes on which this
job must run. (See also:
nodesRequestedPolicy.)

nodesRequestedPolicy JobHostListMode Yes Indicates an exact set, superset,
or subset of nodes on which the
job must run. Only relevant if
nodesRequested is provided.
(See also: nodesRequested.)

partitionAccessList Set<String> No The list of partitions that this job
can access.

partitionAccessListRequest
ed

Set<String> Yes The list of partitions that this job
has requested.

preemptCount Integer No The number of times the job has
been preempted.

priorities JobPriority Yes The list of priorities for the job.

processorSecondsDedicated Double No The processor seconds
dedicated to the job as reported
by its resource manager. Not all
resource managers provide this
information.

Moab Web Services

1890 References

References 1891

Field Name Type POS
T Description

processorSecondsLimit Double No The limit for
processorSecondsUtilized.

processorSecondsUtilized Double No The processor seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide this
information.

prologScript String Yes The path to the TORQUE prolog
script.

queueStatus JobQueueStatus No The status of the job in its
queue.

rejectPolicies Set<JobRejectPolicy> No The list of policies enabled when
a job is rejected.

requirements Set<JobRequirement> Yes The list of items required for
this job to run. Only
JobRequirement.features is valid
during PUT.

reservationRequested DomainProxy Yes The reservation that the job
requested.

resourceFailPolicy JobResourceFailPolicyTy
pe

Yes The policy that dictates what
should happen to the job if it is
running and at least one of the
resources it is using fails.

resourceManagerExtension String Yes If provided during POST, this
string will be added to the
resource manager extension
section of the job submission.
Example:
"bandwidth=120;queuejob=fals
e"
Note that the delimiter between
resourceManagerExtension
elements is the semicolon.

Moab Web Services

Field Name Type POS
T Description

resourceManagers Set<ResourceManager> No The list of resource managers
associated with this job.

rmStandardErrorFilePath String No The path to the remote file
containing the standard error of
the job.

rmStandardOutputFilePath String No The path to the remote file
containing the standard output
of the job.

standardErrorFilePath String Yes The path to the file containing
the standard error of the job.

standardOutputFilePath String Yes The path to the file containing
the standard output of the job.

startCount Integer No The number of times the job has
been started.

states JobStateInformation No Information about the state of
the job.

submitHost String Yes The host from which the job was
submitted.

systemJobAction String No The action the system job will
take.

systemJobType JobSystemJobType No The type of system job. In the
Moab Cloud Suite, this will
usually be "vmtracking" or
"generic."

targetedJobAction JobActionType No The action that this job is
performing on another job.

Moab Web Services

1892 References

References 1893

Field Name Type POS
T Description

targetedJobName String No The name of the job on which
this job is performing the
targetedJobAction.

templates Set<DomainProxy> Yes The list of all job templates to be
set on this job.

triggers Set<String> No The list of triggers associated
with this job.

variables Map<String, Map> Yes The list of variables that this job
owns or sets on completion.

virtualContainers Set<DomainProxy> Yes When submitting this job, add it
to the specified existing virtual
container. Valid during POST,
but only one virtual container
can be specified.

virtualMachines Set<DomainProxy> No The list of virtual machines that
are allocated to this job.

vmUsagePolicy VMUsagePolicy Yes The requested Virtual Machine
Usage Policy for this job.

JobBlock

Field Name Type POST Description

category JobBlockCategory No

message String No

type JobBlockType No

JobBlockCategory

Moab Web Services

Value Description

depend

jobBlock

migrate

JobBlockType

Value Description

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Moab Web Services

1894 References

References 1895

Value Description

Priority

RMSubmissionFailure

StartDate

State

SysLimits

JobCredentials

Moab Workload Manager supports the concept of credentials, which provide a means of attributing
policy and resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other features.

Field Name Type POST Description

account String Yes The account credential is also referred to as the project. This
credential is generally associated with a group of users along the
lines of a particular project for accounting and billing purposes.

group String Yes The group credential represents an aggregation of users. User-to-
group mappings are often specified by the operating system or
resource manager and typically map to a user's UNIX group ID.
However, user-to-group mappings may also be provided by a security
and identity management service, or you can specify such directly
within Moab.

jobClass String Yes The concept of the class credential is derived from the resource
manager class or queue object. Classes differ from other credentials
in that they more directly impact job attributes. In standard HPC
usage, a user submits a job to a class and this class imposes a number
of factors on the job. The attributes of a class may be specified within
the resource manager or directly within Moab.

Moab Web Services

Field Name Type POST Description

qos String No The quality of service assigned to this job.

The concept of a quality of service (QoS) credential is unique to
Moab and is not derived from any underlying concept or peer
service. In most cases, the QoS credential is used to allow a site to set
up a selection of service levels for end-users to choose from on a
long-term or job-by-job basis. QoS's differ from other credentials in
that they are centered around special access where this access may
allow use of additional services, additional resources, or improved
responsiveness. Unique to this credential, organizations may also
choose to apply different charge rates to the varying levels of service
available within each QoS. As QoS is an internal credential, all QoS
configuration occurs within Moab.

qosRequested String Yes The quality of service requested for this job.

user String Yes The user credential is the fundamental credential within a workload
manager; each job requires an association with exactly one user. In
fact, the user credential is the only required credential in Moab; all
others are optional. In most cases, the job's user credential is
configured within or managed by the operating system itself,
although Moab may be configured to obtain this information from an
independent security and identity management service.

JobDates

Field Name Type POST Description

completedDate Date No

createdDate Date No

deadlineDate Date Yes The deadline for completion of the job.

dispatchedDate Date No

earliestRequestedStartDate Date Yes The job will start no sooner than this date.

earliestStartDate Date No

Moab Web Services

1896 References

References 1897

Field Name Type POST Description

eligibleDate Date No

lastCanceledDate Date No

lastChargedDate Date No

lastPreemptedDate Date No

lastUpdatedDate Date No

startDate Date No

submitDate Date No

terminationDate Date No

JobDependency

Field
Name Type POST Description

name String Yes The name of the object on on which the job is
dependent.

type JobDependencyType Yes The type of job dependency. Only set is valid for POST.

value String No

JobDependencyType

Represents the type of a job dependency. For now, only the "set" type is supported.

Value Description

set

JobEmailNotifyType

Moab Web Services

Value Description

JobStart

JobEnd

JobFail

All

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

Moab Web Services

1898 References

References 1899

Value Description

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

Moab Web Services

Value Description

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobHoldReason

Moab Web Services

1900 References

References 1901

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject

PolicyViolation

CredAccess

CredHold

PreReq

Data

Security

MissingDependency

JobHoldType

Value Description

User

Moab Web Services

Value Description

System

Batch

Defer

All

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type POST Description

name String Yes The name of the object.

Message

Field Name Type POST Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

expireDate Date No The date this message expires.

message String No The message itself.

JobHostListMode

Value Description

superset

subset

Moab Web Services

1902 References

References 1903

Value Description

exactset

JobPriority

Field
Name Type POST Description

run Long No

start Long No

system Long No

user Long Yes The user-requested priority for the job. By default, the range is between -
1024 and 0. To enable priority range from -1024 to +1023, set
ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active

blocked

completed

eligible

JobRejectPolicy

Value Description

CANCEL

HOLD

Moab Web Services

Value Description

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type
P
O
ST

Description

architecture String Yes The architecture required by the job.

attributes Map<String,
JobRequirementAttr
ibute>

Yes Required node attributes with version number
support.

features Set<String> No The list of node features the job is scheduled against.

featuresExclude
d

Set<String> Yes Excluded node features. That is, do not select nodes
with these features. (See also: featuresExcludedMode.)

featuresExclude
dMode

JobRequirementFeat
uresMode

Yes Indicates whether excluded features should be
AND'ed or OR'd. The default is AND. Only relevant if
featuresExcluded is provided. (See also:
featuresExcluded.)

featuresReques
ted

Set<String> Yes Requested node features. (See also:
featuresRequestedMode.)

featuresReques
tedMode

JobRequirementFeat
uresMode

Yes Indicates whether requested features should be
AND'ed or OR'd. The default is AND. Only relevant if
featuresRequested is provided. (See also:
featuresRequested.)

image String Yes The image required by the job.

Moab Web Services

1904 References

References 1905

Field Name Type
P
O
ST

Description

index Integer No The index of the requirement, starting with 0.

metrics Map<String,
Double>

No Generic metrics associated with the job as reported by
the resource manager.

nodeAccessPoli
cy

NodeAccessPolicy Yes Specifies how node resources should be accessed.
Note: If the job requirements array has more than one
element that contains nodeAccessPolicy, only the first
occurrence will be used.

nodeAllocation
Policy

NodeAllocationPolic
y

Yes Specifies how node resources should be selected and
allocated to the job. Note: If the job requirements
array has more than one element that contains
nodeAllocationPolicy, only the first occurrence will be
used.

nodeCount Integer Yes The number of nodes required by the job.

nodeSet String Yes The requested node set of the job. This must follow
the format SETSELECTION:SETTYPE[:SETLIST]

l SETSELECTION - ANYOF, ONEOF, or FIRSTOF

l SETTYPE - FEATURE or VARATTR

l SETLIST - For FEATURE, a comma-separated
list of features. For VARATTR, a key=value pair.

Examples:

l ONEOF:FEATURE:fastos,hiprio,bigmem

l FIRSTOF:VARATTR:datacenter=Provo:d
atacenter=SaltLake

nodes Set<AllocatedNode> No Nodes that have been allocated to meet this
requirement.

Moab Web Services

Field Name Type
P
O
ST

Description

reservation DomainProxy No The allocated reservation (assigned after the job has a
reservation).

resourcesPerT
ask

Map<String,
JobResource>

Yes Contains requirements for disk, memory, processors,
swap, and generic resources. For disk, memory, and
swap, the unit is MB. For each resource, the
"dedicated" field can be set during POST.

taskCount Integer Yes The number of tasks (processors) required by this job.

tasksPerNode Integer Yes The number of tasks to map to each node.

JobRequirementAttribute

Field
Name Type POS

T Description

comparator String Yes The comparison operator. Valid values:

l >= - Greater than or equal to

l > - Greater than

l <= - Less than

l < - Less than

l %= - Equals

l %! - Not equals

l Null - Defaults to %=

l = - (Deprecated) Equivalent to
%=

Moab Web Services

1906 References

References 1907

Field
Name Type POS

T Description

displayValu
e

String Yes The display value for the required
attribute.

restriction JobRequirementAttributeRestrictio
n

Yes The restriction of this attribute. May be
null, but defaults to
JobRequirementAttributeRestriction.mu
st.

value String Yes The value of the required attribute.
During POST, if value is missing, blank,
or null, do not provide a comparator.

JobRequirementAttributeRestriction

Represents a restriction for a job requirement attribute.

Value Description

must

JobRequirementFeaturesMode

Value Description

OR

AND

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

Moab Web Services

Value Description

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

NodeAllocationPolicy

Node Allocation enumeration.

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab defaults to
MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where nodes are allocated in
the order they are presented by the resource manager. This is a very
simple, very fast algorithm.

Moab Web Services

1908 References

References 1909

Value Description

LASTAVAILABLE This algorithm selects resources so as to minimize the amount of time
after the job and before the trailing reservation. This algorithm is a
best fit in time algorithm which minimizes the impact of reservation
based node-time fragmentation. It is useful in systems where a large
number of reservations (job, standing, or administrative) are in place.

MINRESOURCE This algorithm prioritizes nodes according to the configured
resources on each node. Those nodes with the fewest configured
resources which still meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum amount of available,
unused cpu power, i.e. [# of CPU's] - [CPU load]. Good algorithm for
timesharing node systems. This algorithm is only applied to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

LOCAL This will call the locally created contrib node allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

MAXBALANCE This algorithm will attempt to allocate the most 'balanced' set of
nodes possible to a job. In most cases, but not all, the metric for
balance of the nodes is node speed. Thus, if possible, nodes with
identical speeds will be allocated to the job. If identical speed nodes
cannot be found, the algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority of various static
and dynamic aspects of compute nodes and allocate them with
preference for higher priority nodes. It is highly flexible allowing
node attribute and usage information to be combined with
reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node first' order. Nodes
will be selected by node speed if specified. If node speed is not
specified, nodes will be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

Moab Web Services

Value Description

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

AllocatedNode

Field Name Type POST Description

name String No

taskCount Integer No

JobResource

Represents counts of dedicated and utilized resources.

Field
Name Type POST Description

dedicated Integer No The amount of this resource that has been allocated for running
workload.

utilized Integer No The amount of this resource that is currently reported as utilized by
resource managers.

JobResourceFailPolicyType

Moab Web Services

1910 References

References 1911

Value Description

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST Description

isDestination Boolean No

isSource Boolean No

jobName String No

name String No

JobStateInformation

Field Name Type POST Description

state JobState No

stateExpected JobState No

stateLastUpdatedDate Date No

subState JobSubState No

Moab Web Services

JobState

Value Description

Idle

Starting

Running

Removed

Completed

Hold

Deferred

Vacated

NotQueued

Unknown

Staging

Suspended

Blocked

JobSubState

Value Description

Epilogue

Migrated

Preempted

Moab Web Services

1912 References

References 1913

Value Description

Prologue

JobSystemJobType

Value Description

generic

osprovision

osprovision2

poweroff

poweron

reset

storage

vmmap

vmmigrate

vmtracking

JobActionType

Value Description

DESTROY

MIGRATE

MODIFY

Moab Web Services

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Related topics

l Job arrays on page 1523

Fields: Jobs

See the associated Jobs on page 1525 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource jobs Permissions on page 1571

Hooks filename jobs.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

1914 References

References 1915

API version 3

Job

This class represents a job in the Moab Workload Manager. A job is a request for compute resources
(CPUs, memory, storage) with which the requester can do work for a given amount of time. In an
HPC environment, this might be a batch script to perform a Monte Carlo simulation. In a cloud
environment, this would be a virtual machine and its associated storage. Moab will evaluate the
request and assign the requested resources to the requester based on policies, current demand, and
other factors in the data center. A job will also usually have some process that Moab starts
automatically at the assigned start time. In an HPC environment, this can be starting a batch script
on the assigned nodes. In a cloud environment, this can be starting provisioning processes to create
the virtual machine and storage and install software on it.

Field Name Type POS
T

PU
T Description

id String No No The unique identifier of this
job. Note: this field is not
user-assigned and is
generated by the database.

arrayIndex Long No No If this job is a sub-job of a
JobArray, this field contains
the index of this job in the
array. For example, if this job
is Moab.1[2], the array
index would be 2.

arrayMasterName String No No If this job is a sub-job of a
JobArray, this field contains
the name of the job array
master. For example, if this
job is Moab.1[2], the array
master name would be
Moab.1.

attributes Set<String> Yes No The list of generic attributes
associated with this job.

blocks Set<JobBlock> No No Reasons the job is blocked
from running.

bypassCount Integer No No The number of times the job
has been backfilled.

Moab Web Services

Field Name Type POS
T

PU
T Description

cancelCount Integer No No The number of times a job
has received a cancel request.

commandFile String Yes No The name of the job script file
(absolute path). If
commandFile is set and
commandScript is not set,
then MWS must have read
access to the file. If
commandFile and
commandScript are both set,
then MWS does not read the
contents of the file, but it does
provide the name of the file
to Moab.

commandLineArguments String Yes No The command line arguments
passed to the job script
specified by commandFile or
commandScript.

commandScript String Yes No The contents of the job script.
This field must be Base64-
encoded.

completionCode Integer No No The exit code from this job.

cpuTime Long No No CPU usage time in seconds as
reported by the resource
manager.

credentials JobCredentials Yes Yes The credentials (user and
group, for example)
associated with this job.

customName String Yes Yes The user-specified name of
this job.

dates JobDates Yes Yes Various dates associated with
this job.

Moab Web Services

1916 References

References 1917

Field Name Type POS
T

PU
T Description

deferCount Integer No No The number of times a job
has been deferred.

dependencies Set<JobDependency> Yes No Dependencies that must be
fulfilled before the job can
start.

description String No No The description of the job.
Can be set only in a job
template.

duration Long Yes Yes The length of time in seconds
requested for the job. Note
that it is possible to set
duration to "INFINITY" if the
AllowInfiniteJobs flag is set on
the scheduler in the moab.cfg.

durationActive Long No No The length of time in seconds
the job has been active or
running.

durationQueued Long No No The length of time in seconds
the job has been eligible to
run in the queue.

durationRemaining Long No No An estimate of the time
remaining, in seconds, before
the job will complete.

durationSuspended Long No No The length of time in seconds
the job has been suspended.

emailNotifyAddresses Set<String> Yes No The list of addresses to whom
email is sent by the execution
server.

emailNotifyTypes Set<JobEmailNotifyTyp
e>

Yes No The list of email notify types
attached to the job.

Moab Web Services

Field Name Type POS
T

PU
T Description

environmentRequested Boolean Yes No Setting this field to true tells
the Moab Workload Manager
to set various variables, if
populated, in the job's
environment.

environmentVariables Map<String, Map> Yes No The list of environment
variables for this job.

epilogScript String Yes No The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes Yes The flags that are set on this
job.

holdDate Date No No The date the most recent hold
was placed on the job.

holdReason JobHoldReason No No The reason the job is on hold.

holds Set<JobHoldType> Yes Yes The holds that are set on the
job. The "User" hold type is
valid during POST.

initialWorkingDirectory String Yes No The path to the directory in
which the job will be started.

isActive Boolean No No True if the job is active, false
if the job is complete.

jobGroup String Yes No The job group to which this
job belongs (different from
credentials.group).

masterNode DomainProxy No No The first node in the list of
allocated nodes for this job.
For TORQUE jobs, this
represents the "mother
superior."

Moab Web Services

1918 References

References 1919

Field Name Type POS
T

PU
T Description

memorySecondsDedicate
d

Double No No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

memorySecondsUtilized Double No No The memory seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide
this information.

messages Set<Message> No Yes The list of messages
associated with the job. The
"message" field is valid
during PUT.

migrateCount Integer No No The number of times the job
has been migrated.

minimumPreemptTime Long No No The minimum length of time,
in seconds, an active job must
be running before it is eligible
for preemption.

mwmName String No No The name of the Moab
Workload Manager instance
that owns this job.

name String No No The name of this job. This
name is unique per instance of
Moab Workload Manager (i.e.
not globally).

nodesExcluded Set<DomainProxy> Yes No The list of nodes that should
not be considered for this job.

Moab Web Services

Field Name Type POS
T

PU
T Description

nodesRequested Set<DomainProxy> Yes No The exact set, superset, or
subset of nodes on which this
job must run. (See also:
nodesRequestedPolicy.)

nodesRequestedPolicy JobHostListMode Yes No Indicates an exact set,
superset, or subset of nodes
on which the job must run.
Only relevant if
nodesRequested is provided.
(See also: nodesRequested.)

partitionAccessList Set<String> No No The list of partitions that this
job can access.

partitionAccessListReque
sted

Set<String> Yes Yes The list of partitions that this
job has requested.

preemptCount Integer No No The number of times the job
has been preempted.

priorities JobPriority Yes Yes The list of priorities for the
job.

processorSecondsDedicat
ed

Double No No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

processorSecondsLimit Double No No The limit for
processorSecondsUtilized.

processorSecondsUtilize
d

Double No No The processor seconds
utilized by the job as reported
by its resource manager. Not
all resource managers
provide this information.

Moab Web Services

1920 References

References 1921

Field Name Type POS
T

PU
T Description

prologScript String Yes No The path to the TORQUE
prolog script.

queueStatus JobQueueStatus No No The status of the job in its
queue.

rejectPolicies Set<JobRejectPolicy> No No The list of policies enabled
when a job is rejected.

requirements Set<JobRequirement> Yes Yes The list of items required for
this job to run. Only
JobRequirement.features is
valid during PUT.

reservationRequested DomainProxy Yes Yes The reservation that the job
requested.

resourceFailPolicy JobResourceFailPolicy
Type

Yes No The policy that dictates what
should happen to the job if it
is running and at least one of
the resources it is using fails.

resourceManagerExtensi
on

String Yes No If provided during POST, this
string will be added to the
resource manager extension
section of the job submission.
Example:
"bandwidth=120;queuejob=f
alse"
Note that the delimiter
between
resourceManagerExtension
elements is the semicolon.

resourceManagers Set<ResourceManager> No No The list of resource managers
associated with this job.

rmStandardErrorFilePath String No No The path to the remote file
containing the standard error
of the job.

Moab Web Services

Field Name Type POS
T

PU
T Description

rmStandardOutputFilePat
h

String No No The path to the remote file
containing the standard
output of the job.

standardErrorFilePath String Yes No The path to the file containing
the standard error of the job.

standardOutputFilePath String Yes No The path to the file containing
the standard output of the
job.

startCount Integer No No The number of times the job
has been started.

states JobStateInformation No No Information about the state of
the job.

submitHost String Yes No The host from which the job
was submitted.

systemJobAction String No No The action the system job will
take.

systemJobType JobSystemJobType No No The type of system job. In the
Moab Cloud Suite, this will
usually be "vmtracking" or
"generic."

targetedJobAction JobActionType No No The action that this job is
performing on another job.

targetedJobName String No No The name of the job on which
this job is performing the
targetedJobAction.

templates Set<DomainProxy> Yes No The list of all job templates to
be set on this job.

Moab Web Services

1922 References

References 1923

Field Name Type POS
T

PU
T Description

triggers Set<String> No No The list of triggers associated
with this job.

variables Map<String, Map> Yes Yes The list of variables that this
job owns or sets on
completion.

virtualContainers Set<DomainProxy> Yes No When submitting this job, add
it to the specified existing
virtual container. Valid during
POST, but only one virtual
container can be specified.

virtualMachines Set<DomainProxy> No No The list of virtual machines
that are allocated to this job.

vmUsagePolicy VMUsagePolicy Yes No The requested Virtual
Machine Usage Policy for this
job.

JobBlock

Field Name Type POST PUT Description

category JobBlockCategory No No

message String No No

type JobBlockType No No

JobBlockCategory

Value Description

depend

jobBlock

Moab Web Services

Value Description

migrate

JobBlockType

Value Description

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

RMSubmissionFailure

Moab Web Services

1924 References

References 1925

Value Description

StartDate

State

SysLimits

JobCredentials

Moab Workload Manager supports the concept of credentials, which provide a means of attributing
policy and resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other features.

Field Name Type POST PUT Description

account String Yes Yes The account credential is also referred to as the project.
This credential is generally associated with a group of users
along the lines of a particular project for accounting and
billing purposes.

group String Yes No The group credential represents an aggregation of users.
User-to-group mappings are often specified by the
operating system or resource manager and typically map to
a user's UNIX group ID. However, user-to-group mappings
may also be provided by a security and identity
management service, or you can specify such directly within
Moab.

jobClass String Yes Yes The concept of the class credential is derived from the
resource manager class or queue object. Classes differ from
other credentials in that they more directly impact job
attributes. In standard HPC usage, a user submits a job to a
class and this class imposes a number of factors on the job.
The attributes of a class may be specified within the
resource manager or directly within Moab.

Moab Web Services

Field Name Type POST PUT Description

qos String No No The quality of service assigned to this job.

The concept of a quality of service (QoS) credential is
unique to Moab and is not derived from any underlying
concept or peer service. In most cases, the QoS credential is
used to allow a site to set up a selection of service levels for
end-users to choose from on a long-term or job-by-job
basis. QoS's differ from other credentials in that they are
centered around special access where this access may allow
use of additional services, additional resources, or improved
responsiveness. Unique to this credential, organizations
may also choose to apply different charge rates to the
varying levels of service available within each QoS. As QoS is
an internal credential, all QoS configuration occurs within
Moab.

qosRequested String Yes Yes The quality of service requested for this job.

user String Yes No The user credential is the fundamental credential within a
workload manager; each job requires an association with
exactly one user. In fact, the user credential is the only
required credential in Moab; all others are optional. In most
cases, the job's user credential is configured within or
managed by the operating system itself, although Moab
may be configured to obtain this information from an
independent security and identity management service.

JobDates

Field Name Type POST PUT Description

completedDate Date No No

createdDate Date No No

deadlineDate Date Yes No The deadline for completion of the job.

dispatchedDate Date No No

earliestRequestedStartDate Date Yes Yes The job will start no sooner than this date.

Moab Web Services

1926 References

References 1927

Field Name Type POST PUT Description

earliestStartDate Date No No

eligibleDate Date No No

lastCanceledDate Date No No

lastChargedDate Date No No

lastPreemptedDate Date No No

lastUpdatedDate Date No No

startDate Date No No

submitDate Date No No

terminationDate Date No No

JobDependency

Field
Name Type POST PUT Description

name String Yes No The name of the object on on which the job is
dependent.

type JobDependencyType Yes No The type of job dependency. Only set is valid
for POST.

value String No No

JobDependencyType

Represents the type of a job dependency. For now, only the "set" type is supported.

Value Description

set

Moab Web Services

JobEmailNotifyType

Value Description

JobStart

JobEnd

JobFail

All

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

Moab Web Services

1928 References

References 1929

Value Description

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

Moab Web Services

Value Description

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

Moab Web Services

1930 References

References 1931

Value Description

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobHoldReason

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject

PolicyViolation

CredAccess

CredHold

PreReq

Data

Security

MissingDependency

JobHoldType

Moab Web Services

Value Description

User

System

Batch

Defer

All

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type POST PUT Description

name String Yes No The name of the object.

Message

Field Name Type POST PUT Description

count Integer No No The number of times this message has occurred.

createdDate Date No No The date this message was created.

expireDate Date No No The date this message expires.

message String No Yes The message itself.

JobHostListMode

Value Description

superset

Moab Web Services

1932 References

References 1933

Value Description

subset

exactset

JobPriority

Field
Name Type POST PUT Description

run Long No No

start Long No No

system Long No No

user Long Yes Yes The user-requested priority for the job. By default, the range is
between -1024 and 0. To enable priority range from -1024 to
+1023, set ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active

blocked

completed

eligible

JobRejectPolicy

Value Description

CANCEL

Moab Web Services

Value Description

HOLD

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type

P
O
S
T

P
U
T

Description

architecture String Ye
s

N
o

The architecture required by the job.

attributes Map<String,
JobRequirementAtt
ribute>

Ye
s

N
o

Required node attributes with version number
support.

features Set<String> No Y
e
s

The list of node features the job is scheduled
against.

featuresExclu
ded

Set<String> Ye
s

N
o

Excluded node features. That is, do not select
nodes with these features. (See also:
featuresExcludedMode.)

featuresExclu
dedMode

JobRequirementFe
aturesMode

Ye
s

N
o

Indicates whether excluded features should be
AND'ed or OR'd. The default is AND. Only relevant
if featuresExcluded is provided. (See also:
featuresExcluded.)

featuresReque
sted

Set<String> Ye
s

N
o

Requested node features. (See also:
featuresRequestedMode.)

Moab Web Services

1934 References

References 1935

Field Name Type

P
O
S
T

P
U
T

Description

featuresReque
stedMode

JobRequirementFe
aturesMode

Ye
s

N
o

Indicates whether requested features should be
AND'ed or OR'd. The default is AND. Only relevant
if featuresRequested is provided. (See also:
featuresRequested.)

image String Ye
s

N
o

The image required by the job.

index Integer No N
o

The index of the requirement, starting with 0.

metrics Map<String,
Double>

No N
o

Generic metrics associated with the job as reported
by the resource manager.

nodeAccessPo
licy

NodeAccessPolicy Ye
s

N
o

Specifies how node resources should be accessed.
Note: If the job requirements array has more than
one element that contains nodeAccessPolicy, only
the first occurrence will be used.

nodeAllocatio
nPolicy

NodeAllocationPol
icy

Ye
s

N
o

Specifies how node resources should be selected
and allocated to the job. Note: If the job
requirements array has more than one element
that contains nodeAllocationPolicy, only the first
occurrence will be used.

nodeCount Integer Ye
s

N
o

The number of nodes required by the job.

Moab Web Services

Field Name Type

P
O
S
T

P
U
T

Description

nodeSet String Ye
s

N
o

The requested node set of the job. This must follow
the format SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF, ONEOF, or
FIRSTOF

l SETTYPE - FEATURE or VARATTR

l SETLIST - For FEATURE, a comma-
separated list of features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:fastos,hiprio,bigm
em

l FIRSTOF:VARATTR:datacenter=Provo
:datacenter=SaltLake

nodes Set<AllocatedNod
e>

No N
o

Nodes that have been allocated to meet this
requirement.

reservation DomainProxy No N
o

The allocated reservation (assigned after the job
has a reservation).

resourcesPer
Task

Map<String,
JobResource>

Ye
s

N
o

Contains requirements for disk, memory,
processors, swap, and generic resources. For disk,
memory, and swap, the unit is MB. For each
resource, the "dedicated" field can be set during
POST.

taskCount Integer Ye
s

N
o

The number of tasks (processors) required by this
job.

tasksPerNode Integer Ye
s

N
o

The number of tasks to map to each node.

Moab Web Services

1936 References

References 1937

JobRequirementAttribute

Field
Name Type POS

T
PU
T Description

comparato
r

String Yes No The comparison operator. Valid
values:

l >= - Greater than or equal to

l > - Greater than

l <= - Less than

l < - Less than

l %= - Equals

l %! - Not equals

l Null - Defaults to %=

l = - (Deprecated) Equivalent
to %=

displayVal
ue

String Yes No The display value for the required
attribute.

restriction JobRequirementAttributeRestri
ction

Yes No The restriction of this attribute. May
be null, but defaults to
JobRequirementAttributeRestriction.
must.

value String Yes No The value of the required attribute.
During POST, if value is missing,
blank, or null, do not provide a
comparator.

JobRequirementAttributeRestriction

Represents a restriction for a job requirement attribute.

Moab Web Services

Value Description

must

JobRequirementFeaturesMode

Value Description

OR

AND

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

NodeAllocationPolicy

Node Allocation enumeration.

Moab Web Services

1938 References

References 1939

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab defaults to
MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where nodes are allocated in
the order they are presented by the resource manager. This is a very
simple, very fast algorithm.

LASTAVAILABLE This algorithm selects resources so as to minimize the amount of time
after the job and before the trailing reservation. This algorithm is a
best fit in time algorithm which minimizes the impact of reservation
based node-time fragmentation. It is useful in systems where a large
number of reservations (job, standing, or administrative) are in place.

MINRESOURCE This algorithm prioritizes nodes according to the configured
resources on each node. Those nodes with the fewest configured
resources which still meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum amount of available,
unused cpu power, i.e. [# of CPU's] - [CPU load]. Good algorithm for
timesharing node systems. This algorithm is only applied to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

LOCAL This will call the locally created contrib node allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

Moab Web Services

Value Description

MAXBALANCE This algorithm will attempt to allocate the most 'balanced' set of
nodes possible to a job. In most cases, but not all, the metric for
balance of the nodes is node speed. Thus, if possible, nodes with
identical speeds will be allocated to the job. If identical speed nodes
cannot be found, the algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority of various static
and dynamic aspects of compute nodes and allocate them with
preference for higher priority nodes. It is highly flexible allowing
node attribute and usage information to be combined with
reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node first' order. Nodes
will be selected by node speed if specified. If node speed is not
specified, nodes will be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

AllocatedNode

Field Name Type POST PUT Description

name String No No

taskCount Integer No No

Moab Web Services

1940 References

References 1941

JobResource

Represents counts of dedicated and utilized resources.

Field
Name Type POST PUT Description

dedicated Integer No No The amount of this resource that has been allocated for
running workload.

utilized Integer No No The amount of this resource that is currently reported as
utilized by resource managers.

JobResourceFailPolicyType

Value Description

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST PUT Description

isDestination Boolean No No

isSource Boolean No No

jobName String No No

name String No No

Moab Web Services

JobStateInformation

Field Name Type POST PUT Description

state JobState No No

stateExpected JobState No No

stateLastUpdatedDate Date No No

subState JobSubState No No

JobState

Value Description

Idle

Starting

Running

Removed

Completed

Hold

Deferred

Vacated

NotQueued

Unknown

Staging

Suspended

Moab Web Services

1942 References

References 1943

Value Description

Blocked

JobSubState

Value Description

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic

osprovision

osprovision2

poweroff

poweron

reset

storage

vmmap

vmmigrate

vmtracking

Moab Web Services

JobActionType

Value Description

DESTROY

MIGRATE

MODIFY

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Moab Web Services

1944 References

References 1945

API version 2

Job

This class represents a job in the Moab Workload Manager. A job is a request for compute resources
(CPUs, memory, storage) with which the requester can do work for a given amount of time. In an
HPC environment, this might be a batch script to perform a Monte Carlo simulation. In a cloud
environment, this would be a virtual machine and its associated storage. Moab will evaluate the
request and assign the requested resources to the requester based on policies, current demand, and
other factors in the data center. A job will also usually have some process that Moab starts
automatically at the assigned start time. In an HPC environment, this can be starting a batch script
on the assigned nodes. In a cloud environment, this can be starting provisioning processes to create
the virtual machine and storage and install software on it.

Field Name Type POS
T

PU
T Description

id String No No The unique identifier of this
job. Note: this field is not
user-assigned and is
generated by the database.

arrayIndex Long No No If this job is a sub-job of a
JobArray, this field contains
the index of this job in the
array. For example, if this job
is Moab.1[2], the array
index would be 2.

arrayMasterName String No No If this job is a sub-job of a
JobArray, this field contains
the name of the job array
master. For example, if this
job is Moab.1[2], the array
master name would be
Moab.1.

attributes Set<String> Yes No The list of generic attributes
associated with this job.

blocks Set<JobBlock> No No Reasons the job is blocked
from running.

bypassCount Integer No No The number of times the job
has been backfilled.

Moab Web Services

Field Name Type POS
T

PU
T Description

cancelCount Integer No No The number of times a job
has received a cancel request.

commandFile String Yes No The name of the job script file
(absolute path). If
commandFile is set and
commandScript is not set,
then MWS must have read
access to the file. If
commandFile and
commandScript are both set,
then MWS does not read the
contents of the file, but it does
provide the name of the file
to Moab.

commandLineArguments String Yes No The command line arguments
passed to the job script
specified by commandFile or
commandScript.

commandScript String Yes No The contents of the job script.
This field must be Base64-
encoded.

completionCode Integer No No The exit code from this job.

cpuTime Long No No CPU usage time in seconds as
reported by the resource
manager.

credentials JobCredentials Yes Yes The credentials (user and
group, for example)
associated with this job.

customName String Yes Yes The user-specified name of
this job.

dates JobDates Yes Yes Various dates associated with
this job.

Moab Web Services

1946 References

References 1947

Field Name Type POS
T

PU
T Description

deferCount Integer No No The number of times a job
has been deferred.

dependencies Set<JobDependency> Yes No Dependencies that must be
fulfilled before the job can
start.

description String No No The description of the job.
Can be set only in a job
template.

duration Long Yes Yes The length of time in seconds
requested for the job. Note
that it is possible to set
duration to "INFINITY" if the
AllowInfiniteJobs flag is set on
the scheduler in the moab.cfg.

durationActive Long No No The length of time in seconds
the job has been active or
running.

durationQueued Long No No The length of time in seconds
the job has been eligible to
run in the queue.

durationRemaining Long No No An estimate of the time
remaining, in seconds, before
the job will complete.

durationSuspended Long No No The length of time in seconds
the job has been suspended.

emailNotifyAddresses Set<String> Yes No The list of addresses to whom
email is sent by the execution
server.

emailNotifyTypes Set<JobEmailNotifyTyp
e>

Yes No The list of email notify types
attached to the job.

Moab Web Services

Field Name Type POS
T

PU
T Description

environmentRequested Boolean Yes No Setting this field to true tells
the Moab Workload Manager
to set various variables, if
populated, in the job's
environment.

environmentVariables Map<String, Map> Yes No The list of environment
variables for this job.

epilogScript String Yes No The path to the TORQUE
epilog script.

flags Set<JobFlag> Yes Yes The flags that are set on this
job.

holdDate Date No No The date the most recent hold
was placed on the job.

holdReason JobHoldReason No No The reason the job is on hold.

holds Set<JobHoldType> Yes Yes The holds that are set on the
job. The "User" hold type is
valid during POST.

initialWorkingDirectory String Yes No The path to the directory in
which the job will be started.

isActive Boolean No No True if the job is active, false
if the job is complete.

jobGroup String Yes No The job group to which this
job belongs (different from
credentials.group).

masterNode DomainProxy No No The first node in the list of
allocated nodes for this job.
For TORQUE jobs, this
represents the "mother
superior."

Moab Web Services

1948 References

References 1949

Field Name Type POS
T

PU
T Description

memorySecondsDedicate
d

Double No No The memory seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

memorySecondsUtilized Double No No The memory seconds utilized
by the job as reported by its
resource manager. Not all
resource managers provide
this information.

messages Set<Message> No Yes The list of messages
associated with the job. The
"message" field is valid
during PUT.

migrateCount Integer No No The number of times the job
has been migrated.

minimumPreemptTime Long No No The minimum length of time,
in seconds, an active job must
be running before it is eligible
for preemption.

mwmName String No No The name of the Moab
Workload Manager instance
that owns this job.

name String No No The name of this job. This
name is unique per instance of
Moab Workload Manager (i.e.
not globally).

nodesExcluded Set<DomainProxy> Yes No The list of nodes that should
not be considered for this job.

Moab Web Services

Field Name Type POS
T

PU
T Description

nodesRequested Set<DomainProxy> Yes No The exact set, superset, or
subset of nodes on which this
job must run. (See also:
nodesRequestedPolicy.)

nodesRequestedPolicy JobHostListMode Yes No Indicates an exact set,
superset, or subset of nodes
on which the job must run.
Only relevant if
nodesRequested is provided.
(See also: nodesRequested.)

partitionAccessList Set<String> No No The list of partitions that this
job can access.

partitionAccessListReque
sted

Set<String> Yes Yes The list of partitions that this
job has requested.

preemptCount Integer No No The number of times the job
has been preempted.

priorities JobPriority Yes Yes The list of priorities for the
job.

processorSecondsDedicat
ed

Double No No The processor seconds
dedicated to the job as
reported by its resource
manager. Not all resource
managers provide this
information.

processorSecondsLimit Double No No The limit for
processorSecondsUtilized.

processorSecondsUtilize
d

Double No No The processor seconds
utilized by the job as reported
by its resource manager. Not
all resource managers
provide this information.

Moab Web Services

1950 References

References 1951

Field Name Type POS
T

PU
T Description

prologScript String Yes No The path to the TORQUE
prolog script.

queueStatus JobQueueStatus No No The status of the job in its
queue.

rejectPolicies Set<JobRejectPolicy> No No The list of policies enabled
when a job is rejected.

requirements Set<JobRequirement> Yes Yes The list of items required for
this job to run. Only
JobRequirement.features is
valid during PUT.

reservationRequested DomainProxy Yes Yes The reservation that the job
requested.

resourceFailPolicy JobResourceFailPolicy
Type

Yes No The policy that dictates what
should happen to the job if it
is running and at least one of
the resources it is using fails.

resourceManagerExtensi
on

String Yes No If provided during POST, this
string will be added to the
resource manager extension
section of the job submission.
Example:
"bandwidth=120;queuejob=f
alse"
Note that the delimiter
between
resourceManagerExtension
elements is the semicolon.

resourceManagers Set<ResourceManager> No No The list of resource managers
associated with this job.

rmStandardErrorFilePath String No No The path to the remote file
containing the standard error
of the job.

Moab Web Services

Field Name Type POS
T

PU
T Description

rmStandardOutputFilePat
h

String No No The path to the remote file
containing the standard
output of the job.

standardErrorFilePath String Yes No The path to the file containing
the standard error of the job.

standardOutputFilePath String Yes No The path to the file containing
the standard output of the
job.

startCount Integer No No The number of times the job
has been started.

states JobStateInformation No No Information about the state of
the job.

submitHost String Yes No The host from which the job
was submitted.

systemJobAction String No No The action the system job will
take.

systemJobType JobSystemJobType No No The type of system job. In the
Moab Cloud Suite, this will
usually be "vmtracking" or
"generic."

targetedJobAction JobActionType No No The action that this job is
performing on another job.

targetedJobName String No No The name of the job on which
this job is performing the
targetedJobAction.

templates Set<DomainProxy> Yes No The list of all job templates to
be set on this job.

Moab Web Services

1952 References

References 1953

Field Name Type POS
T

PU
T Description

triggers Set<String> No No The list of triggers associated
with this job.

variables Map<String, Map> Yes Yes The list of variables that this
job owns or sets on
completion.

virtualContainers Set<DomainProxy> Yes No When submitting this job, add
it to the specified existing
virtual container. Valid during
POST, but only one virtual
container can be specified.

virtualMachines Set<DomainProxy> No No The list of virtual machines
that are allocated to this job.

vmUsagePolicy VMUsagePolicy Yes No The requested Virtual
Machine Usage Policy for this
job.

JobBlock

Field Name Type POST PUT Description

category JobBlockCategory No No

message String No No

type JobBlockType No No

JobBlockCategory

Value Description

depend

jobBlock

Moab Web Services

Value Description

migrate

JobBlockType

Value Description

ActivePolicy

BadUser

Dependency

EState

FairShare

Hold

IdlePolicy

LocalPolicy

NoClass

NoData

NoResource

NoTime

PartitionAccess

Priority

RMSubmissionFailure

Moab Web Services

1954 References

References 1955

Value Description

StartDate

State

SysLimits

JobCredentials

Moab Workload Manager supports the concept of credentials, which provide a means of attributing
policy and resource access to entities such as users and groups. These credentials allow specification
of job ownership, tracking of resource usage, enforcement of policies, and many other features.

Field Name Type POST PUT Description

account String Yes Yes The account credential is also referred to as the project.
This credential is generally associated with a group of users
along the lines of a particular project for accounting and
billing purposes.

group String Yes No The group credential represents an aggregation of users.
User-to-group mappings are often specified by the
operating system or resource manager and typically map to
a user's UNIX group ID. However, user-to-group mappings
may also be provided by a security and identity
management service, or you can specify such directly within
Moab.

jobClass String Yes Yes The concept of the class credential is derived from the
resource manager class or queue object. Classes differ from
other credentials in that they more directly impact job
attributes. In standard HPC usage, a user submits a job to a
class and this class imposes a number of factors on the job.
The attributes of a class may be specified within the
resource manager or directly within Moab.

Moab Web Services

Field Name Type POST PUT Description

qos String No No The quality of service assigned to this job.

The concept of a quality of service (QoS) credential is
unique to Moab and is not derived from any underlying
concept or peer service. In most cases, the QoS credential is
used to allow a site to set up a selection of service levels for
end-users to choose from on a long-term or job-by-job
basis. QoS's differ from other credentials in that they are
centered around special access where this access may allow
use of additional services, additional resources, or improved
responsiveness. Unique to this credential, organizations
may also choose to apply different charge rates to the
varying levels of service available within each QoS. As QoS is
an internal credential, all QoS configuration occurs within
Moab.

qosRequested String Yes Yes The quality of service requested for this job.

user String Yes No The user credential is the fundamental credential within a
workload manager; each job requires an association with
exactly one user. In fact, the user credential is the only
required credential in Moab; all others are optional. In most
cases, the job's user credential is configured within or
managed by the operating system itself, although Moab
may be configured to obtain this information from an
independent security and identity management service.

JobDates

Field Name Type POST PUT Description

completedDate Date No No

createdDate Date No No

deadlineDate Date Yes No The deadline for completion of the job.

dispatchedDate Date No No

earliestRequestedStartDate Date Yes Yes The job will start no sooner than this date.

Moab Web Services

1956 References

References 1957

Field Name Type POST PUT Description

earliestStartDate Date No No

eligibleDate Date No No

lastCanceledDate Date No No

lastChargedDate Date No No

lastPreemptedDate Date No No

lastUpdatedDate Date No No

startDate Date No No

submitDate Date No No

terminationDate Date No No

JobDependency

Field
Name Type POST PUT Description

name String Yes No The name of the object on on which the job is
dependent.

type JobDependencyType Yes No The type of job dependency. Only set is valid
for POST.

value String No No

JobDependencyType

Represents the type of a job dependency. For now, only the "set" type is supported.

Value Description

set

Moab Web Services

JobEmailNotifyType

Value Description

JobStart

JobEnd

JobFail

All

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

Moab Web Services

1958 References

References 1959

Value Description

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

Moab Web Services

Value Description

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

Moab Web Services

1960 References

References 1961

Value Description

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobHoldReason

Value Description

Admin

NoResources

SystemLimitsExceeded

BankFailure

CannotDebitAccount

InvalidAccount

RMFailure

RMReject

PolicyViolation

CredAccess

CredHold

PreReq

Data

Security

MissingDependency

JobHoldType

Moab Web Services

Value Description

User

System

Batch

Defer

All

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type POST PUT Description

name String Yes No The name of the object.

Message

Field Name Type POST PUT Description

count Integer No No The number of times this message has occurred.

createdDate Date No No The date this message was created.

expireDate Date No No The date this message expires.

message String No Yes The message itself.

JobHostListMode

Value Description

superset

Moab Web Services

1962 References

References 1963

Value Description

subset

exactset

JobPriority

Field
Name Type POST PUT Description

run Long No No

start Long No No

system Long No No

user Long Yes Yes The user-requested priority for the job. By default, the range is
between -1024 and 0. To enable priority range from -1024 to
+1023, set ENABLEPOSUSERPRIORITY in the moab.cfg file.

JobQueueStatus

Value Description

active

blocked

completed

eligible

JobRejectPolicy

Value Description

CANCEL

Moab Web Services

Value Description

HOLD

IGNORE

MAIL

RETRY

JobRequirement

Field Name Type

P
O
S
T

P
U
T

Description

architecture String Ye
s

N
o

The architecture required by the job.

attributes Map<String,
JobRequirementAtt
ribute>

Ye
s

N
o

Required node attributes with version number
support.

features Set<String> No Y
e
s

The list of node features the job is scheduled
against.

featuresExclu
ded

Set<String> Ye
s

N
o

Excluded node features. That is, do not select
nodes with these features. (See also:
featuresExcludedMode.)

featuresExclu
dedMode

JobRequirementFe
aturesMode

Ye
s

N
o

Indicates whether excluded features should be
AND'ed or OR'd. The default is AND. Only relevant
if featuresExcluded is provided. (See also:
featuresExcluded.)

featuresReque
sted

Set<String> Ye
s

N
o

Requested node features. (See also:
featuresRequestedMode.)

Moab Web Services

1964 References

References 1965

Field Name Type

P
O
S
T

P
U
T

Description

featuresReque
stedMode

JobRequirementFe
aturesMode

Ye
s

N
o

Indicates whether requested features should be
AND'ed or OR'd. The default is AND. Only relevant
if featuresRequested is provided. (See also:
featuresRequested.)

image String Ye
s

N
o

The image required by the job.

index Integer No N
o

The index of the requirement, starting with 0.

metrics Map<String,
Double>

No N
o

Generic metrics associated with the job as reported
by the resource manager.

nodeAccessPo
licy

NodeAccessPolicy Ye
s

N
o

Specifies how node resources should be accessed.
Note: If the job requirements array has more than
one element that contains nodeAccessPolicy, only
the first occurrence will be used.

nodeAllocatio
nPolicy

NodeAllocationPol
icy

Ye
s

N
o

Specifies how node resources should be selected
and allocated to the job. Note: If the job
requirements array has more than one element
that contains nodeAllocationPolicy, only the first
occurrence will be used.

nodeCount Integer Ye
s

N
o

The number of nodes required by the job.

Moab Web Services

Field Name Type

P
O
S
T

P
U
T

Description

nodeSet String Ye
s

N
o

The requested node set of the job. This must follow
the format SETSELECTION:SETTYPE
[:SETLIST]

l SETSELECTION - ANYOF, ONEOF, or
FIRSTOF

l SETTYPE - FEATURE or VARATTR

l SETLIST - For FEATURE, a comma-
separated list of features. For VARATTR, a
key=value pair.

Examples:

l ONEOF:FEATURE:fastos,hiprio,bigm
em

l FIRSTOF:VARATTR:datacenter=Provo
:datacenter=SaltLake

nodes Set<AllocatedNod
e>

No N
o

Nodes that have been allocated to meet this
requirement.

reservation DomainProxy No N
o

The allocated reservation (assigned after the job
has a reservation).

resourcesPer
Task

Map<String,
JobResource>

Ye
s

N
o

Contains requirements for disk, memory,
processors, swap, and generic resources. For disk,
memory, and swap, the unit is MB. For each
resource, the "dedicated" field can be set during
POST.

taskCount Integer Ye
s

N
o

The number of tasks (processors) required by this
job.

tasksPerNode Integer Ye
s

N
o

The number of tasks to map to each node.

Moab Web Services

1966 References

References 1967

JobRequirementAttribute

Field
Name Type POS

T
PU
T Description

comparato
r

String Yes No The comparison operator. Valid
values:

l >= - Greater than or equal to

l > - Greater than

l <= - Less than

l < - Less than

l %= - Equals

l %! - Not equals

l Null - Defaults to %=

l = - (Deprecated) Equivalent
to %=

displayVal
ue

String Yes No The display value for the required
attribute.

restriction JobRequirementAttributeRestri
ction

Yes No The restriction of this attribute. May
be null, but defaults to
JobRequirementAttributeRestriction.
must.

value String Yes No The value of the required attribute.
During POST, if value is missing,
blank, or null, do not provide a
comparator.

JobRequirementAttributeRestriction

Represents a restriction for a job requirement attribute.

Moab Web Services

Value Description

must

JobRequirementFeaturesMode

Value Description

OR

AND

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

NodeAllocationPolicy

Node Allocation enumeration.

Moab Web Services

1968 References

References 1969

Value Description

FIRSTSET

MINGLOBAL

MINLOCAL

PLUGIN

NONE No node allocation policy is specified. Moab defaults to
MINRESOURCE when this is the case.

FIRSTAVAILABLE Simple first come, first served algorithm where nodes are allocated in
the order they are presented by the resource manager. This is a very
simple, very fast algorithm.

LASTAVAILABLE This algorithm selects resources so as to minimize the amount of time
after the job and before the trailing reservation. This algorithm is a
best fit in time algorithm which minimizes the impact of reservation
based node-time fragmentation. It is useful in systems where a large
number of reservations (job, standing, or administrative) are in place.

MINRESOURCE This algorithm prioritizes nodes according to the configured
resources on each node. Those nodes with the fewest configured
resources which still meet the job's resource constraints are selected.

CPULOAD Nodes are selected which have the maximum amount of available,
unused cpu power, i.e. [# of CPU's] - [CPU load]. Good algorithm for
timesharing node systems. This algorithm is only applied to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

LOCAL This will call the locally created contrib node allocation algorithm.

CONTIGUOUS This algorithm will allocate nodes in contiguous (linear) blocks as
required by the Compaq RMS system.

Moab Web Services

Value Description

MAXBALANCE This algorithm will attempt to allocate the most 'balanced' set of
nodes possible to a job. In most cases, but not all, the metric for
balance of the nodes is node speed. Thus, if possible, nodes with
identical speeds will be allocated to the job. If identical speed nodes
cannot be found, the algorithm will allocate the set of nodes with the
minimum node speed 'span' or range.

PRIORITY This algorithm allows a site to specify the priority of various static
and dynamic aspects of compute nodes and allocate them with
preference for higher priority nodes. It is highly flexible allowing
node attribute and usage information to be combined with
reservation affinity.

FASTEST This algorithm will select nodes in 'fastest node first' order. Nodes
will be selected by node speed if specified. If node speed is not
specified, nodes will be selected by processor speed. If neither is
specified, nodes will be selected in a random order.

PROCESSORLOAD Alias for CPULOAD.

NODESPEED Alias for FASTEST.

INREPORTEDORDER Alias for FIRSTAVAILABLE.

INREVERSEREPORTEDORDER Alias for LASTAVAILABLE.

CUSTOMPRIORITY Alias for PRIORITY.

PROCESSORSPEEDBALANCE Alias for MAXBALANCE.

MINIMUMCONFIGUREDRESOURCES Alias for MINRESOURCE.

AllocatedNode

Field Name Type POST PUT Description

name String No No

taskCount Integer No No

Moab Web Services

1970 References

References 1971

JobResource

Represents counts of dedicated and utilized resources.

Field
Name Type POST PUT Description

dedicated Integer No No The amount of this resource that has been allocated for
running workload.

utilized Integer No No The amount of this resource that is currently reported as
utilized by resource managers.

JobResourceFailPolicyType

Value Description

CANCEL

FAIL

HOLD

IGNORE

NOTIFY

REQUEUE

ResourceManager

Field Name Type POST PUT Description

isDestination Boolean No No

isSource Boolean No No

jobName String No No

name String No No

Moab Web Services

JobStateInformation

Field Name Type POST PUT Description

state JobState No No

stateExpected JobState No No

stateLastUpdatedDate Date No No

subState JobSubState No No

JobState

Value Description

Idle

Starting

Running

Removed

Completed

Hold

Deferred

Vacated

NotQueued

Unknown

Staging

Suspended

Moab Web Services

1972 References

References 1973

Value Description

Blocked

JobSubState

Value Description

Epilogue

Migrated

Preempted

Prologue

JobSystemJobType

Value Description

generic

osprovision

osprovision2

poweroff

poweron

reset

storage

vmmap

vmmigrate

vmtracking

Moab Web Services

JobActionType

Value Description

DESTROY

MIGRATE

MODIFY

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Related topics

l Jobs on page 1525

Fields: Job Templates

See the associated Job templates on page 1547 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource job-templates Permissions on page 1571

Moab Web Services

1974 References

References 1975

Type Value Additional information

Hooks filename job-templates.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

API version 3

JobTemplate

This class represents a job template in the Moab Workload Manager. Job templates are used for two
primary purposes: (1) to provide a means of generically matching and categorizing jobs, and (2) to
provide a means of setting arbitrary default or forced attributes for certain jobs.

Field Name Type Description

id String The unique identifier for this job
template.

account String The account under which this job will
run for billing purposes.

args String Command-line arguments that get
passed to commandFile.

commandFile String The path to the file that is executed
when the job runs. This is the script
that will actually call all the work of the
job. Can be null.

description String The description of the job.

durationRequested Long The amount of time (in seconds)
requested for the job.

genericSystemJob Boolean True if this template will instantiate a
generic system job.

inheritResources Boolean True if jobs instantiated from this
template inherit resources.

jobDependencies Set<JobTemplateDependency> The list of dependencies for this job
template.

jobFlags Set<JobFlag> Job flags for this template.

jobTemplateFlags Set<JobTemplateFlag> Job template flags for this template.

jobTemplateRequirements Set<JobTemplateRequirement> The requirements for this job template.

Moab Web Services

1976 References

References 1977

Field Name Type Description

priority Long Relative job priority.

qos String The Quality of Service for the job.

queue String The class or queue in which the job will
run.

select Boolean True if job template can be directly
requested by job at submission.

trigger Trigger The trigger that is typically assigned to
generic system jobs.

vmUsagePolicy VMUsagePolicy The virtual machine usage policy.

JobTemplateDependency

Field
Name Type Description

name String The name of the template on which this template
depends.

type JobDependencyTypeVersion1 The type of the dependency.

JobDependencyTypeVersion1

Value Description

JOBSTART Job may start at any time after specified jobs have started execution.

JOBSUCCESSFULCOMPLETE Job may be start at any time after all specified jobs have successfully
completed.

JOBFAILEDCOMPLETE Job may start at any time after any specified jobs have completed
unsuccessfully.

Moab Web Services

Value Description

JOBCOMPLETE Job may start at any time after all specified jobs have completed regardless of
completion status.

BEFORE Job may start at any time before specified jobs have started execution. NOTE:
Only reported to Moab and then reported back. Moab currently cannot
internally handle this type of dependency.

BEFOREANY Job may start at any time before all specified jobs have completed regardless
of completion status. NOTE: Only reported to Moab and then reported back.
Moab currently cannot internally handle this type of dependency.

BEFOREOK Job may start at any time before all specified jobs have successfully
completed. NOTE: Only reported to Moab and then reported back. Moab
currently cannot internally handle this type of dependency.

BEFORENOTOK Job may start at any time before any specified jobs have completed
unsuccessfully. NOTE: Only reported to Moab and then reported back. Moab
currently cannot internally handle this type of dependency.

HIBERNATE Job was set to Hibernate mode.

SYNCWITH Job will wait until it can start simultaneously with a master job

SYNCCOUNT This job will wait until it can start simultaneously with synccount jobs of type
syncwith that have all specified this synccount job is their master job.

SET Job will wait until a variable on a Moab object is set before starting.

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

Moab Web Services

1978 References

References 1979

Value Description

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

Moab Web Services

Value Description

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

Moab Web Services

1980 References

References 1981

Value Description

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobTemplateFlag

This enumeration specifies the flag types of a job template.

Value Description

GLOBALRSVACCESS

HIDDEN

HWJOB

PRIVATE

SYNCJOBID

TEMPLATEISDYNAMIC True if the template is dynamic (not specified via moab.cfg).

SELECT True if a job can select this template.

Moab Web Services

JobTemplateRequirement

Field Name Type Description

architecture String The architecture requirement.

diskRequirement Integer The amount of disk space required (in MB).

genericResources Map<String,
Integer>

Consumable generic attributes associated with
individual nodes or the special pseudo-node global,
which provides shared cluster (floating)
consumable resources.

nodeAccessPolicy NodeAccessPolicy The node access policy. Specifies how node
resources will be shared by a job.

operatingSystem String The operating system requirement.

requiredDiskPerTask Integer Disk space (in MB).

requiredFeatures Set<String> The features required by this template.

requiredMemoryPerTask Integer Memory (in MB).

requiredProcessorsPerTask Integer Number of processors.

requiredSwapPerTask Integer Swap space (in MB).

taskCount Integer The number of tasks required.

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

Moab Web Services

1982 References

References 1983

Value Description

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

Moab Web Services

Field
Name Type Description

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

Moab Web Services

1984 References

References 1985

Field
Name Type Description

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

Moab Web Services

Value Description

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Moab Web Services

1986 References

References 1987

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

Moab Web Services

Value Description

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

Moab Web Services

1988 References

References 1989

Value Description

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Moab Web Services

API version 2

JobTemplate

This class represents a job template in the Moab Workload Manager. Job templates are used for two
primary purposes: (1) to provide a means of generically matching and categorizing jobs, and (2) to
provide a means of setting arbitrary default or forced attributes for certain jobs.

Field Name Type Description

id String The unique identifier for this job
template.

account String The account under which this job will
run for billing purposes.

args String Command-line arguments that get
passed to commandFile.

commandFile String The path to the file that is executed
when the job runs. This is the script
that will actually call all the work of the
job. Can be null.

description String The description of the job.

durationRequested Long The amount of time (in seconds)
requested for the job.

genericSystemJob Boolean True if this template will instantiate a
generic system job.

inheritResources Boolean True if jobs instantiated from this
template inherit resources.

jobDependencies Set<JobTemplateDependency> The list of dependencies for this job
template.

jobFlags Set<JobFlag> Job flags for this template.

jobTemplateFlags Set<JobTemplateFlag> Job template flags for this template.

jobTemplateRequirements Set<JobTemplateRequirement> The requirements for this job template.

Moab Web Services

1990 References

References 1991

Field Name Type Description

priority Long Relative job priority.

qos String The Quality of Service for the job.

queue String The class or queue in which the job will
run.

select Boolean True if job template can be directly
requested by job at submission.

trigger Trigger The trigger that is typically assigned to
generic system jobs.

vmUsagePolicy VMUsagePolicy The virtual machine usage policy.

JobTemplateDependency

Field
Name Type Description

name String The name of the template on which this template
depends.

type JobDependencyTypeVersion1 The type of the dependency.

JobDependencyTypeVersion1

Value Description

JOBSTART Job may start at any time after specified jobs have started execution.

JOBSUCCESSFULCOMPLETE Job may be start at any time after all specified jobs have successfully
completed.

JOBFAILEDCOMPLETE Job may start at any time after any specified jobs have completed
unsuccessfully.

Moab Web Services

Value Description

JOBCOMPLETE Job may start at any time after all specified jobs have completed regardless of
completion status.

BEFORE Job may start at any time before specified jobs have started execution. NOTE:
Only reported to Moab and then reported back. Moab currently cannot
internally handle this type of dependency.

BEFOREANY Job may start at any time before all specified jobs have completed regardless
of completion status. NOTE: Only reported to Moab and then reported back.
Moab currently cannot internally handle this type of dependency.

BEFOREOK Job may start at any time before all specified jobs have successfully
completed. NOTE: Only reported to Moab and then reported back. Moab
currently cannot internally handle this type of dependency.

BEFORENOTOK Job may start at any time before any specified jobs have completed
unsuccessfully. NOTE: Only reported to Moab and then reported back. Moab
currently cannot internally handle this type of dependency.

HIBERNATE Job was set to Hibernate mode.

SYNCWITH Job will wait until it can start simultaneously with a master job

SYNCCOUNT This job will wait until it can start simultaneously with synccount jobs of type
syncwith that have all specified this synccount job is their master job.

SET Job will wait until a variable on a Moab object is set before starting.

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

Moab Web Services

1992 References

References 1993

Value Description

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

Moab Web Services

Value Description

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

Moab Web Services

1994 References

References 1995

Value Description

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

JobTemplateFlag

This enumeration specifies the flag types of a job template.

Value Description

GLOBALRSVACCESS

HIDDEN

HWJOB

PRIVATE

SYNCJOBID

TEMPLATEISDYNAMIC True if the template is dynamic (not specified via moab.cfg).

SELECT True if a job can select this template.

Moab Web Services

JobTemplateRequirement

Field Name Type Description

architecture String The architecture requirement.

diskRequirement Integer The amount of disk space required (in MB).

genericResources Map<String,
Integer>

Consumable generic attributes associated with
individual nodes or the special pseudo-node global,
which provides shared cluster (floating)
consumable resources.

nodeAccessPolicy NodeAccessPolicy The node access policy. Specifies how node
resources will be shared by a job.

operatingSystem String The operating system requirement.

requiredDiskPerTask Integer Disk space (in MB).

requiredFeatures Set<String> The features required by this template.

requiredMemoryPerTask Integer Memory (in MB).

requiredProcessorsPerTask Integer Number of processors.

requiredSwapPerTask Integer Swap space (in MB).

taskCount Integer The number of tasks required.

NodeAccessPolicy

This enumeration describes how node resources will be shared by various tasks.

Value Description

NONE

SHARED Tasks from any combination of jobs may utilize available resources.

SHAREDONLY Only jobs requesting shared node access may utilize available resources.

Moab Web Services

1996 References

References 1997

Value Description

SINGLEJOB Tasks from a single job may utilize available resourceses.

SINGLETASK A single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may utilize available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node.

SINGLEGROUP Any number of tasks from the same group may utilize node.

SINGLEACCOUNT Any number of tasks from the same account may utilize node.

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

Moab Web Services

Field
Name Type Description

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

Moab Web Services

1998 References

References 1999

Field
Name Type Description

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

Moab Web Services

Value Description

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Moab Web Services

2000 References

References 2001

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

Moab Web Services

Value Description

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

VMUsagePolicy

This enumeration describes the virtual machine requirements of a job

Value Description

REQUIREPM Requires a physical machine.

PREFPM Prefers a physical machine.

Moab Web Services

2002 References

References 2003

Value Description

CREATEVM Creates a virtual machine.

CREATEPERSISTENTVM Creates a virtual machine that doesn't go away after the job is done.

REQUIREVM Requires a virtual machine.

PREFVM Prefers a virtual machine.

Related topics

l Job templates on page 1547

Fields: Metric Types

See the associated Metric types on page 1549 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource metric-types Permissions on page 1571

Hooks filename metric-types.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

API version 3

MetricType

Represents a metric visible and known to Moab Workload Manager.

Field Name Type Description

id String The unique ID of this metric type.

Moab Web Services

API version 2

MetricType

Represents a metric visible and known to Moab Workload Manager.

Field Name Type Description

id String The unique ID of this metric type.

Related topics

l Metric types on page 1549

Fields: Nodes

See the associated Nodes on page 1551 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource nodes Permissions on page 1571

Hooks filename nodes.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

2004 References

References 2005

API version 3

Node

This class represents a node in the Moab Workload Manager. Moab recognizes a node as a collection
of resources with a particular set of associated attributes. This definition is similar to the traditional
notion of a node found in a Linux cluster or supercomputer wherein a node is defined as one or more
CPUs, associated memory, and possibly other compute resources such as local disk, swap, network
adapters, and software licenses. Additionally, this node is described by various attributes such as an
architecture type or operating system. Nodes range in size from small uniprocessor PCs to large
symmetric multiprocessing (SMP) systems where a single node may consist of hundreds of CPUs and
massive amounts of memory.

Field Name Type P
UT Description

id String No The unique identifier of this node. Note:
this field is not user-assigned and is
generated by the database.

architecture String No This node's processor architecture.

attributes Map<String, Map> No Attributes is a map of attribute names to
tuples (maps) that describe the
scheduling attributes of a node. Each
tuple should contain the following
entries:

l value - the attribute value

l displayValue - the attribute
display value

classes Set<String> No The classes that this node can be
scheduled for.

featuresCustom Set<String> Yes The features this node advertises which
are customizable at run-time. This can be
used to define node sets. (See also:
featuresReported.)

Moab Web Services

Field Name Type P
UT Description

featuresReported Set<String> No The features this node advertises which
are reported by resource managers or
are present in the Moab Workload
Manager configuration. This can be used
to define node sets. (See also:
featuresCustom.)

index Integer No The index for this node as reported by
the resource manager.

ipAddress String No This node's IPv4 address.

isHypervisor Boolean No True if the node is a hypervisor, false
otherwise. This is based on the
NodeOperatingSystemInformation.hyper
visorType field. If hypervisorType is
present, the node is a hypervisor. If it is
null, then it is not a hypervisor.

jobs Set<DomainProxy> No Jobs associated with this node.

lastUpdatedDate Date No The timestamp of the last moment when
this node was updated. There is no
guarantee that all user modifications to a
node would be picked up. This will also
be changed every RMPOLLINTERVAL
even if a resource manager does not
report information on this node.

messages Set<Message> Yes The list of messages attached to this
node. They can be attached by admins,
the resource manager layer, or triggers.

Moab Web Services

2006 References

References 2007

Field Name Type P
UT Description

metrics Map<String, Double> Yes Metrics are the measurable, quantitative,
and changing aspects of this node. They
are used to define workload placement,
attach triggers, etc. There are some built-
in metrics:

l speed - A number from 0.0 to 1.0
describing the relative speed of
the system for computational
tasks. This is a composite metric,
and is defined on a per-site basis.

l cpuLoad - This is the CPU load
on this node. This value is
defined at the resource manager
layer, but is generally defined on
a per-operating system basis. For
example, Unix-based OS's use
some aspect of the Unix load
average, as reported by the
resource manager layer, while
Windows-based OS's use CPU
utilization.

migrationDisabled Boolean No True if VM migration is disabled on this
node.

name String No The name of this node. This name is
unique per instance of Moab Workload
Manager (i.e. not globally).

operatingSystem NodeOperatingSystemInfor
mation

Yes Describes the current or expected
operating system image information for
this node. The operatingSystem.image
field can be changed using PUT.

partition String Yes The partition this node belongs to.

processorSpeed Integer No The speed, in MHz, or the processors on
this node.

Moab Web Services

Field Name Type P
UT Description

profilingEnabled Boolean No Indicates whether historical data
gathering and reporting is enabled for
this node. This is also controlled by the
same setting on the default node (i.e. all
nodes). If set to false (default), node
statistics are not gathered.

rack Integer No The rack where this node is located in
the datacenter/cluster.

reservations Set<DomainProxy> No Reservations associated with this node.

resourceManagerMes
sages

Map<String, Map> No The resource manager messages for this
node. Each key is the name of a resource
manager, and the value is the message
that the resource manager has posted
onto the node.

resourceManagers Set<NodeResourceManage
r>

No The resource managers that are
reporting or have previously reported
this node. Each object also contains
information on the resource manager
reports.

resources Map<String, Resource> No Contains references of a string
representing a resource name to a
resource object detailing the amount of
the resource that is available, configured,
etc.
Each key is the name of the resource,
which equates to the generic resource
identifier or one of "processors",
"memory", "disk", or "swap". This name
may be used as an id in the resource
types web service.

slot Integer No The slot in the rack where this node is
located.

Moab Web Services

2008 References

References 2009

Field Name Type P
UT Description

states NodeStateInformation Yes This node's state. The states.powerState
and states.state fields can be changed
using PUT.

triggers Set<DomainProxy> No Triggers associated with this node.

type NodeType No The type of this node is governed by the
types of resources it offers.

variables Map<String, Map> Yes Variables is a map of key-value pairs,
synonymous, but not directly related to,
environment variables. They provide the
mechanism to store arbitrary metdata
which is useful to external systems in
memory on this node.

virtualContainers Set<DomainProxy> No The set of virtual containers that directly
(not recursively) contain this node.

virtualMachines Set<DomainProxy> No Virtual machines associated with this
node.

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type PUT Description

name String No The name of the object.

Message

Field Name Type PUT Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

Moab Web Services

Field Name Type PUT Description

expireDate Date No The date this message expires.

message String Yes The message itself.

NodeOperatingSystemInformation

Describes the current or expected operating system image information for a node.

Field Name Type PUT Description

hypervisorType String No The hypervisor technology that this node uses. May be
null if the node is not a hypervisor.

image String Yes The name of the operating system currently running on
this node. In cloud mode, this corresponds to the ID or
name of an image in the image management API in
MWS. (See also: Image.id, Image.name.)

imageExpected String No The name of the image that was requested to run on
this node (i.e. with mnodectl -m os=myOs). In cloud
mode, this corresponds to the ID or name of an image in
the image management API in MWS. (See also: Image.id,
Image.name.)

imageLastUpdatedDate Date No The last time the image of this node was modified.

imagesAvailable Set<String> No The list of image names that can be applied to this
node. In cloud mode, this corresponds to IDs or names
of images in the image management API in MWS. (See
also: Image.id, Image.name.)

virtualMachineImages Set<String> No The list of virtual machine image names the node is
capable of supporting. In cloud mode, this corresponds
to IDs or names of images in the image management
API in MWS. (See also: Image.id, Image.name.)

NodeResourceManager

Moab Web Services

2010 References

References 2011

Field Name Type PUT Description

isMaster Boolean No Indicates whether this resource manager is the "master" of this
Node. If true, it means that this resource manager has the final say
on all properties reported about this Node. Note that the first
resource manager to report a node is the master resource
manager.

name String No The name of the resource manager, according to Moab. This name
appears in both the RMCFG parameter, and when diagnosing
resource managers (e.g. mdiag -R).

stateReported NodeState No The state reported by this resource manager. See the State section
for more details.

NodeState

This enumeration tracks the state of a node.

Value Description

NONE The node is set to none by the resource manager.

DOWN The node is not available for workload.

IDLE The node is available for workload but is not running anything.

BUSY The node is running workload and cannot accept more.

RUNNING The node is running workload and can accept more.

DRAINED The node has been sent the drain request and has no workload on it.

DRAINING The node has been sent the drain request, but still has workload on it.

FLUSH The node is being reprovisioned.

RESERVED The node is being reserved. This is an internal Moab state.

UNKNOWN The state of the node is unknown.

Moab Web Services

Resource

Represents counts of resources available, configured, etc.

Field
Name Type PUT Description

available Integer No The amount of this resource that is currently available for allocation to
workload.

configured Integer No The amount of this resource that is considered possible to schedule.
Overcommit specifically applies to this, in other words, configured =
overcommitFactor * real.

dedicated Integer No The amount of this resource that has been allocated for running
workload. When used in a job submission, this number is the amount of
the resource required by the job.

real Integer No The amount of this resource that physically exists on the node.
Overcommit specifically doesn't apply to this. Note that overcommit
currently only applies to "processors" and "memory", and so, for most
cases, real and configured will always be the same.

utilized Integer No The amount of this resource that is currently reported as utilized by
resource managers.

NodeStateInformation

Field Name Type PUT Description

powerState NodePower Yes The state of the node's power system, as reported by
the RM layer. Modifying the powerState is possible,
and, if Moab is configured properly, a request will be
made to modify the power state accordingly.

powerStateExpected NodePower No The expected state of the node's power system. If a
user has requested that a node be powered off (e.g.
by modifying the powerState attribute to
NodePower.OFF), the requested state will be shown
in this field until the state change is completed. If
there is no pending power change request, this will
be null.

Moab Web Services

2012 References

References 2013

Field Name Type PUT Description

state NodeState Yes The scheduling state of the Node, as reported by the
resource management layer.

stateExpected NodeState No The scheduling state of the Node, as expected by
Moab. For example, Moab may think that a Node is
"Busy" because it has allocated all configured
resources, but a resource manager may report the
state as "Running" based on actual utilization of the
resources.

stateLastUpdatedDate Date No A timestamp recording when the state of the Node
was last modified.

subState String No A text description of the state of the Node, with the
intention of giving more details. Resource Managers
may use this field to further describe the state being
reported. Resource Managers should provide
documented meaning to the possible sub-states that
they can report.

subStateLast String No The previous sub-state of the Node as reported by
the resource management layer.

subStateLastUpdatedDate Date No A timestamp recording when the sub-state was last
modified.

NodePower

Represents the various options for a Node's power state.

Value Description

NONE

ON

OFF

NodeType

Represents the type of node as reported by a resource manager.

Moab Web Services

Value Description

Compute

License

Network

Storage

Moab Web Services

2014 References

References 2015

API version 2

Node

This class represents a node in the Moab Workload Manager. Moab recognizes a node as a collection
of resources with a particular set of associated attributes. This definition is similar to the traditional
notion of a node found in a Linux cluster or supercomputer wherein a node is defined as one or more
CPUs, associated memory, and possibly other compute resources such as local disk, swap, network
adapters, and software licenses. Additionally, this node is described by various attributes such as an
architecture type or operating system. Nodes range in size from small uniprocessor PCs to large
symmetric multiprocessing (SMP) systems where a single node may consist of hundreds of CPUs and
massive amounts of memory.

Field Name Type P
UT Description

id String No The unique identifier of this node. Note:
this field is not user-assigned and is
generated by the database.

architecture String No This node's processor architecture.

attributes Map<String, Map> No Attributes is a map of attribute names to
tuples (maps) that describe the
scheduling attributes of a node. Each
tuple should contain the following
entries:

l value - the attribute value

l displayValue - the attribute
display value

classes Set<String> No The classes that this node can be
scheduled for.

featuresCustom Set<String> Yes The features this node advertises which
are customizable at run-time. This can be
used to define node sets. (See also:
featuresReported.)

Moab Web Services

Field Name Type P
UT Description

featuresReported Set<String> No The features this node advertises which
are reported by resource managers or
are present in the Moab Workload
Manager configuration. This can be used
to define node sets. (See also:
featuresCustom.)

index Integer No The index for this node as reported by
the resource manager.

ipAddress String No This node's IPv4 address.

isHypervisor Boolean No True if the node is a hypervisor, false
otherwise. This is based on the
NodeOperatingSystemInformation.hyper
visorType field. If hypervisorType is
present, the node is a hypervisor. If it is
null, then it is not a hypervisor.

jobs Set<DomainProxy> No Jobs associated with this node.

lastUpdatedDate Date No The timestamp of the last moment when
this node was updated. There is no
guarantee that all user modifications to a
node would be picked up. This will also
be changed every RMPOLLINTERVAL
even if a resource manager does not
report information on this node.

messages Set<Message> Yes The list of messages attached to this
node. They can be attached by admins,
the resource manager layer, or triggers.

Moab Web Services

2016 References

References 2017

Field Name Type P
UT Description

metrics Map<String, Double> Yes Metrics are the measurable, quantitative,
and changing aspects of this node. They
are used to define workload placement,
attach triggers, etc. There are some built-
in metrics:

l speed - A number from 0.0 to 1.0
describing the relative speed of
the system for computational
tasks. This is a composite metric,
and is defined on a per-site basis.

l cpuLoad - This is the CPU load
on this node. This value is
defined at the resource manager
layer, but is generally defined on
a per-operating system basis. For
example, Unix-based OS's use
some aspect of the Unix load
average, as reported by the
resource manager layer, while
Windows-based OS's use CPU
utilization.

migrationDisabled Boolean No True if VM migration is disabled on this
node.

name String No The name of this node. This name is
unique per instance of Moab Workload
Manager (i.e. not globally).

operatingSystem NodeOperatingSystemInfor
mation

Yes Describes the current or expected
operating system image information for
this node. The operatingSystem.image
field can be changed using PUT.

partition String Yes The partition this node belongs to.

processorSpeed Integer No The speed, in MHz, or the processors on
this node.

Moab Web Services

Field Name Type P
UT Description

profilingEnabled Boolean No Indicates whether historical data
gathering and reporting is enabled for
this node. This is also controlled by the
same setting on the default node (i.e. all
nodes). If set to false (default), node
statistics are not gathered.

rack Integer No The rack where this node is located in
the datacenter/cluster.

reservations Set<DomainProxy> No Reservations associated with this node.

resourceManagerMes
sages

Map<String, Map> No The resource manager messages for this
node. Each key is the name of a resource
manager, and the value is the message
that the resource manager has posted
onto the node.

resourceManagers Set<NodeResourceManage
r>

No The resource managers that are
reporting or have previously reported
this node. Each object also contains
information on the resource manager
reports.

resources Map<String, Resource> No Contains references of a string
representing a resource name to a
resource object detailing the amount of
the resource that is available, configured,
etc.
Each key is the name of the resource,
which equates to the generic resource
identifier or one of "processors",
"memory", "disk", or "swap". This name
may be used as an id in the resource
types web service.

slot Integer No The slot in the rack where this node is
located.

Moab Web Services

2018 References

References 2019

Field Name Type P
UT Description

states NodeStateInformation Yes This node's state. The states.powerState
and states.state fields can be changed
using PUT.

triggers Set<DomainProxy> No Triggers associated with this node.

type NodeType No The type of this node is governed by the
types of resources it offers.

variables Map<String, Map> Yes Variables is a map of key-value pairs,
synonymous, but not directly related to,
environment variables. They provide the
mechanism to store arbitrary metdata
which is useful to external systems in
memory on this node.

virtualContainers Set<DomainProxy> No The set of virtual containers that directly
(not recursively) contain this node.

virtualMachines Set<DomainProxy> No Virtual machines associated with this
node.

DomainProxy

A reference to an object contained within an object. For example, a Virtual Machine object contains a
reference to the Node on which it is running. That reference is represented by this class.

Field Name Type PUT Description

name String No The name of the object.

Message

Field Name Type PUT Description

count Integer No The number of times this message has occurred.

createdDate Date No The date this message was created.

Moab Web Services

Field Name Type PUT Description

expireDate Date No The date this message expires.

message String Yes The message itself.

NodeOperatingSystemInformation

Describes the current or expected operating system image information for a node.

Field Name Type PUT Description

hypervisorType String No The hypervisor technology that this node uses. May be
null if the node is not a hypervisor.

image String Yes The name of the operating system currently running on
this node. In cloud mode, this corresponds to the ID or
name of an image in the image management API in
MWS. (See also: Image.id, Image.name.)

imageExpected String No The name of the image that was requested to run on
this node (i.e. with mnodectl -m os=myOs). In cloud
mode, this corresponds to the ID or name of an image in
the image management API in MWS. (See also: Image.id,
Image.name.)

imageLastUpdatedDate Date No The last time the image of this node was modified.

imagesAvailable Set<String> No The list of image names that can be applied to this
node. In cloud mode, this corresponds to IDs or names
of images in the image management API in MWS. (See
also: Image.id, Image.name.)

virtualMachineImages Set<String> No The list of virtual machine image names the node is
capable of supporting. In cloud mode, this corresponds
to IDs or names of images in the image management
API in MWS. (See also: Image.id, Image.name.)

NodeResourceManager

Moab Web Services

2020 References

References 2021

Field Name Type PUT Description

isMaster Boolean No Indicates whether this resource manager is the "master" of this
Node. If true, it means that this resource manager has the final say
on all properties reported about this Node. Note that the first
resource manager to report a node is the master resource
manager.

name String No The name of the resource manager, according to Moab. This name
appears in both the RMCFG parameter, and when diagnosing
resource managers (e.g. mdiag -R).

stateReported NodeState No The state reported by this resource manager. See the State section
for more details.

NodeState

This enumeration tracks the state of a node.

Value Description

NONE The node is set to none by the resource manager.

DOWN The node is not available for workload.

IDLE The node is available for workload but is not running anything.

BUSY The node is running workload and cannot accept more.

RUNNING The node is running workload and can accept more.

DRAINED The node has been sent the drain request and has no workload on it.

DRAINING The node has been sent the drain request, but still has workload on it.

FLUSH The node is being reprovisioned.

RESERVED The node is being reserved. This is an internal Moab state.

UNKNOWN The state of the node is unknown.

Moab Web Services

Resource

Represents counts of resources available, configured, etc.

Field
Name Type PUT Description

available Integer No The amount of this resource that is currently available for allocation to
workload.

configured Integer No The amount of this resource that is considered possible to schedule.
Overcommit specifically applies to this, in other words, configured =
overcommitFactor * real.

dedicated Integer No The amount of this resource that has been allocated for running
workload. When used in a job submission, this number is the amount of
the resource required by the job.

real Integer No The amount of this resource that physically exists on the node.
Overcommit specifically doesn't apply to this. Note that overcommit
currently only applies to "processors" and "memory", and so, for most
cases, real and configured will always be the same.

utilized Integer No The amount of this resource that is currently reported as utilized by
resource managers.

NodeStateInformation

Field Name Type PUT Description

powerState NodePower Yes The state of the node's power system, as reported by
the RM layer. Modifying the powerState is possible,
and, if Moab is configured properly, a request will be
made to modify the power state accordingly.

powerStateExpected NodePower No The expected state of the node's power system. If a
user has requested that a node be powered off (e.g.
by modifying the powerState attribute to
NodePower.OFF), the requested state will be shown
in this field until the state change is completed. If
there is no pending power change request, this will
be null.

Moab Web Services

2022 References

References 2023

Field Name Type PUT Description

state NodeState Yes The scheduling state of the Node, as reported by the
resource management layer.

stateExpected NodeState No The scheduling state of the Node, as expected by
Moab. For example, Moab may think that a Node is
"Busy" because it has allocated all configured
resources, but a resource manager may report the
state as "Running" based on actual utilization of the
resources.

stateLastUpdatedDate Date No A timestamp recording when the state of the Node
was last modified.

subState String No A text description of the state of the Node, with the
intention of giving more details. Resource Managers
may use this field to further describe the state being
reported. Resource Managers should provide
documented meaning to the possible sub-states that
they can report.

subStateLast String No The previous sub-state of the Node as reported by
the resource management layer.

subStateLastUpdatedDate Date No A timestamp recording when the sub-state was last
modified.

NodePower

Represents the various options for a Node's power state.

Value Description

NONE

ON

OFF

NodeType

Represents the type of node as reported by a resource manager.

Moab Web Services

Value Description

Compute

License

Network

Storage

Related topics

l Nodes on page 1551

Fields: Notification Conditions

See the associated Notification conditions on page 1558 resource section for more information on
how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource notification-conditions Permissions on page 1571

Hooks filename notification-con-
ditions.groovy

Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

Yes Distinct on page 1504

Moab Web Services

2024 References

References 2025

API version 3

NotificationCondition

A notification condition is related to an Event, but differs in three distinct areas:

l Notification conditions are a persistent condition of the system or a component rather than a
single occurrence.

o They are ongoing rather than reoccurring, which is why they are generated from
NotificationConditions.

o They may be observed many times, but the condition is always the same.

o A good test for this is if something "is" wrong rather than something "went" wrong.

l Notification conditions can be acted on to result in a resolved state, mean the administrator
or user can and must take actions to "fix" the condition or problem.

l Notification conditions contain state information based on administrator or user input,
meaning that they contain information about the condition (similar to events), but also contain
the "status" of the administrator's view of the notification, whether it is currently open,
dismissed, or ignored.

In general, questions may be asked to ascertain whether an Event or a Notification Condition is the
right fit for an occurrence. These questions, along with some sample situations, are provided below.

l Is the occurrence the root cause of a potentially ongoing condition?

o A VM migration failed because the VM's state was unknown. The root cause was that
the state was unknown, not that the VM migration failed. Therefore, VM migration
failed would be an event, while the unknown state would be a notification condition.

o A VM service provision fails because there are no hypervisors that satisfy the
requirements. This would be an event. Note that there may be a notification related to
this failure, such as a service template requires a feature that does not exist on any
hypervisors in the system, but this would be distinctly detected and managed from the
provision failure event.

Moab Web Services

o A request to MWS failed because the connection between MWM and MongoDB was
misconfigured. The failed request may be represented as an event, but a notification
condition should exists that the connection between MWM and MongoDB was down.

l Can an administrator or user affect the outcome of the occurrence?

o The outcome of a VM migration failing is in the past and cannot be changed by the
administrator. However, the outcome of a future VM migration may be changed when
the administrator resolves the root problem (i.e. VM state is unknown).

A notification condition is an observed condition for which Notifications are created. These
conditions are created or updated on every PUT request based on the
NotificationCondition.escalationLevel, NotificationCondition.origin, NotificationCondition.message,
NotificationCondition.objectType, and NotificationCondition.objectId fields. When notifications are
requested, these observed conditions are used to create the notifications for the requesting user.

While notification conditions may not be deleted, they "expire" after a specified amount of time and
are no longer considered as active conditions for which notifications are created.

Field Name Type PUT Description

id String No The identifier of the condition.

createdDate Date No The date that the condition first started appearing.

details Map<String,
Map>

No Arbitrary storage of details for this notification. This
could include "pluginType", "pluginId", etc.

escalationLevel EscalationLevel No The escalation level of the condition. This indicates who
should care about the condition or who can respond to
it. This may NOT be EscalationLevel.INTERNAL.

expirationDate Date No The date at which the condition is considered
"expired" and notifications are no longer created for it.
This is typically set using the expirationDuration field.

Moab Web Services

2026 References

References 2027

Field Name Type PUT Description

expirationDuration Long No The duration in seconds that may pass before a
notification will not be created for a user. Effectively
this can disable notifications from being created if they
are too old. When this field is set, it will set the
expirationDate field automatically each time the
condition is updated or on creation. This field must be
set to 1 or greater or else set to null.

message String No Amessage detailing the notification and why it exists,
with possible action items.

objectId String No The identifier of the object which this notification
affects, such as "node1" or "vm1".

objectType String No The object type that this notification affects, such as
"Node", "VM", "System", etc.

observedDate Date No The latest date that the condition was observed. If this
field is not set in an update request, it will
automatically be set to the current date.

origin String No The origin of the notification.

tenant Map<String,
Map>

No The tenant that this notification came from. (contains
tenant id and name)

EscalationLevel

Value Description

USER

POWER_USER

ADMIN

INTERNAL

Related topics

l Notification conditions on page 1558

Moab Web Services

Fields: Notifications

See the associated Notifications on page 1563 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource notifications Permissions on page 1571

Hooks filename notifications.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

2028 References

References 2029

API version 3

Notification

Notifications, while related to Events, are used for different purposes. See NotificationCondition for
more information on when notifications should be used as opposed to events.

Notifications are a per-user representation of all notification conditions present in the system at
any one time. When an administrator or user requests this resource, notifications are automatically
created from the notification conditions that they have access to (determined by the
Notification.tenant or the NotificationCondition.escalationLevel fields).

Notifications are expected to contain messages and details that may be understood by a user or
admin depending on the escalation level, and contain fields that control whether the user or admin
will be notified of future updates to their corresponding condition.

Notifications cannot be deleted, but they can be marked as ignored (see Notification.ignoredDate or
dismissed (see Notification.dismissedDate).

Field Name Type PUT Description

id String No The identifier of the notification.

conditionId String No The identifier of the NotificationCondition from which this
notification was created.

createdDate Date No The date that the notification condition first appeared.

details Map<String,
Map>

No Arbitrary storage of details for this notification. This could
include "pluginType", "pluginId", etc.

dismissedDate Date No The date that the notification was dismissed by a user or admin,
meaning that they acknowledged the notification and wanted to
know of future updates to this notification. This field is cleared
every time the attached notification condition is
updated/observed again. (See also: conditionId.)

ignoredDate Date No The date that the notification was ignored by a user or admin,
meaning that they acknowledged the notification now and in
the future and did not wish to know of any updates. This field is
never cleared, even if the attached notification condition is
updated/observed again.

message String No Amessage detailing the notification and why it exists, with
possible action items.

Moab Web Services

Field Name Type PUT Description

objectId String No The identifier of the object which this notification affects, such
as "node1" or "vm1".

objectType String No The object type that this notification affects, such as "Node",
"VM", "System", etc.

observedDate Date No The latest date that the notification condition was observed. If
this field, ignoredDate, and dismissedDate are not set during an
update (i.e. a user/admin is not ignoring or dismissing the
notification), this field will automatically be set to the current
date.

origin String No The origin of the notification.

user String No The user that this notification was created for.

Related topics

l Notifications on page 1563

Fields: Plugins

See the associated Plugins on page 1577 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource plugins Permissions on page 1571

Hooks filename plugins.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

2030 References

References 2031

API version 3

PluginInstance

This class represents a configured plugin created from a plugin type.

Field
Name Type POST PUT Description

id String Yes No Unique identifier for the plugin. Must contain at least
one letter and must also start with a letter. Reserved
IDs are "all" and "moab". If these are used an error
with be returned.

autoStart Boolean Yes Yes Whether the plugin should start automatically when
created.

config Map<String,
Map>

Yes Yes The configuration of the plugin. Plugin types may
define constraints on the configuration, therefore it is
recommended to view the plugin type's
documentation for more information on required and
optional fields. Regardless, the plugin configuration
supports arbitrary keys and values.

dateCreated Date No No The date that this plugin was created.

lastPollDate Date No No The date of the last polling event that occurred. This
may be null if the plugin is in the STOPPED state or
has not yet been polled.

lastUpdated Date No No The date that this plugin was last updated.

nextPollDate Date No No The date of the next polling event that is scheduled to
occur. This may be null if the plugin is in the STOPPED
state.

pluginType String Yes No The plugin name as in Native or Example for the
plugin called ExamplePlugin.

pollInterval Integer Yes Yes The polling interval to use for the plugin in seconds.
This is ignored if the plugin type does not support
polling.

Moab Web Services

Field
Name Type POST PUT Description

precedence Long Yes Yes The precedence of this plugin, with the lowest value
being the highest precedence. Minimum of 1. This is
used when doing data consolidation when reporting
current state data. Lower numbers results in a higher
precedence (i.e. 1 is higher precedence than 10).
If not specified during creation, this will be
automatically set to 1 for the first plugin created, then
1 greater for each subsequently created plugin (i.e. 1
for plugin1, 2 for plugin2, etc). It is always set to 1
greater than the plugin with the greatest precedence
number (i.e. 11 if two plugins exist with precedence 1
and 10).

state PluginState No No The current state of the plugin. Defaults to
PluginState.STOPPED.

PluginState

Represents the current state of a plugin.

Value Description

STOPPED The plugin is created and ready for use, but is not currently receiving any events

STARTED The plugin is currently receiving events and is working correctly.

PAUSED The plugin is currently not receiving any events but is also not stopped.
This should be used when polling or other events should stop only temporarily without firing
the stop events.

ERRORED MWS has detected an error with the plugin and has automatically stopped it. Errors could be
due to the following reasons:

1. An invalid configuration was detected when running the AbstractPlugin.configure method.

2. An unexpected exception was thrown during an event, such as during polling.

Moab Web Services

2032 References

References 2033

API version 2

PluginInstance

This class represents a configured plugin created from a plugin type.

Field
Name Type POST PUT Description

id String Yes No Unique identifier for the plugin. Must contain at least
one letter and must also start with a letter. Reserved
IDs are "all" and "moab". If these are used an error
with be returned.

autoStart Boolean Yes Yes Whether the plugin should start automatically when
created.

config Map<String,
Map>

Yes Yes The configuration of the plugin. Plugin types may
define constraints on the configuration, therefore it is
recommended to view the plugin type's
documentation for more information on required and
optional fields. Regardless, the plugin configuration
supports arbitrary keys and values.

dateCreated Date No No The date that this plugin was created.

lastPollDate Date No No The date of the last polling event that occurred. This
may be null if the plugin is in the STOPPED state or
has not yet been polled.

lastUpdated Date No No The date that this plugin was last updated.

nextPollDate Date No No The date of the next polling event that is scheduled to
occur. This may be null if the plugin is in the STOPPED
state.

pluginType String Yes No The plugin name as in Native or Example for the
plugin called ExamplePlugin.

pollInterval Integer Yes Yes The polling interval to use for the plugin in seconds.
This is ignored if the plugin type does not support
polling.

Moab Web Services

Field
Name Type POST PUT Description

precedence Long Yes Yes The precedence of this plugin, with the lowest value
being the highest precedence. Minimum of 1. This is
used when doing data consolidation when reporting
current state data. Lower numbers results in a higher
precedence (i.e. 1 is higher precedence than 10).
If not specified during creation, this will be
automatically set to 1 for the first plugin created, then
1 greater for each subsequently created plugin (i.e. 1
for plugin1, 2 for plugin2, etc). It is always set to 1
greater than the plugin with the greatest precedence
number (i.e. 11 if two plugins exist with precedence 1
and 10).

state PluginState No No The current state of the plugin. Defaults to
PluginState.STOPPED.

PluginState

Represents the current state of a plugin.

Value Description

STOPPED The plugin is created and ready for use, but is not currently receiving any events

STARTED The plugin is currently receiving events and is working correctly.

PAUSED The plugin is currently not receiving any events but is also not stopped.
This should be used when polling or other events should stop only temporarily without firing
the stop events.

ERRORED MWS has detected an error with the plugin and has automatically stopped it. Errors could be
due to the following reasons:

1. An invalid configuration was detected when running the AbstractPlugin.configure method.

2. An unexpected exception was thrown during an event, such as during polling.

Related topics

l Plugins on page 1577

Moab Web Services

2034 References

References 2035

Fields: Plugin Types

See the associated Plugin types on page 1585 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource plugin-types Permissions on page 1571

Hooks filename plugin-types.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

API version 3

PluginType

Represents a MWS plugin type. All fields in this class are generated from plugin project and type
metadata and cannot be modified directly. Consequentially, all fields are only valid for
list/show/GET operations.

Field Name Type PUT Description

id String No The unique identifier of the plugin type. This is
based on the class name of the plugin. Ex:

Plugin Class Name -> ID
NativePlugin -> Native
MSMPlugin -> MSM
MyExamplePlugin -> MyExample

author String No The main author (company or person) of the plugin
type.

commonsVersion String No A string representing the restriction on which
version of the plugin framework (plugins-commons
dependency) is required for the plugin type. In the
format 'COMMONS_VERSION > *', meaning that any
version greater or equal to COMMONS_VERSION is
valid.

description String No The full description of the plugin type.

documentationLink String No A full URL to the complete documentation for the
plugin type.

email String No The email of the author.

eventComponent Integer No The event component ID of the plugin type. This
should be unique for each plugin type and should
be 1 or greater.

initialPlugins Map<String,
Map>

No Represents the plugins that are initially configured
when the plugin type is loaded. Each key represents
the plugin ID.

issueManagementLink String No A full URL to the issue management system or
project for the plugin type.

Moab Web Services

2036 References

References 2037

Field Name Type PUT Description

license String No The license of this plugin type, typically APACHE.

mwsVersion String No A string representing the restriction on which
version of MWS is required for the plugin type. In
the format 'MWS_VERSION > *', meaning that any
version greater or equal to MWS_VERSION is valid.

pollMethod boolean No Indicates whether the plugin type has a defined
'poll' method (event handler) or not.

realizedEventComponent Integer No The fully realized event component ID of the plugin
type, including the MWS bits. This should take the
form of 0x201. If the eventComponent is not set, this
will be 0x2FF, meaning the component ID is an
unknown plugin type.

scmLink String No A full URL to the Source Control Management (SCM)
system or project for the plugin type.

title String No A short name describing the plugin type.

website String No The website of the author.

Moab Web Services

API version 2

PluginType

Represents a MWS plugin type. All fields in this class are generated from plugin project and type
metadata and cannot be modified directly. Consequentially, all fields are only valid for
list/show/GET operations.

Field Name Type PUT Description

id String No The unique identifier of the plugin type. This is
based on the class name of the plugin. Ex:

Plugin Class Name -> ID
NativePlugin -> Native
MSMPlugin -> MSM
MyExamplePlugin -> MyExample

author String No The main author (company or person) of the plugin
type.

commonsVersion String No A string representing the restriction on which
version of the plugin framework (plugins-commons
dependency) is required for the plugin type. In the
format 'COMMONS_VERSION > *', meaning that any
version greater or equal to COMMONS_VERSION is
valid.

description String No The full description of the plugin type.

documentationLink String No A full URL to the complete documentation for the
plugin type.

email String No The email of the author.

eventComponent Integer No The event component ID of the plugin type. This
should be unique for each plugin type and should
be 1 or greater.

initialPlugins Map<String,
Map>

No Represents the plugins that are initially configured
when the plugin type is loaded. Each key represents
the plugin ID.

issueManagementLink String No A full URL to the issue management system or
project for the plugin type.

Moab Web Services

2038 References

References 2039

Field Name Type PUT Description

license String No The license of this plugin type, typically APACHE.

mwsVersion String No A string representing the restriction on which
version of MWS is required for the plugin type. In
the format 'MWS_VERSION > *', meaning that any
version greater or equal to MWS_VERSION is valid.

pollMethod boolean No Indicates whether the plugin type has a defined
'poll' method (event handler) or not.

realizedEventComponent Integer No The fully realized event component ID of the plugin
type, including the MWS bits. This should take the
form of 0x201. If the eventComponent is not set, this
will be 0x2FF, meaning the component ID is an
unknown plugin type.

scmLink String No A full URL to the Source Control Management (SCM)
system or project for the plugin type.

title String No A short name describing the plugin type.

website String No The website of the author.

Related topics

l Plugin types on page 1585

Fields: Policies

See the associated Policies on page 1589 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource policies Permissions on page 1571

Hooks filename policies.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

API version 3

Policy

A Moab Workload Manager policy which can affect scheduling decisions such as resource allocation.
A policy contains state, identifying information, a priority, and metadata about the policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently activated
that potentially conflict with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect to
others. It is possible that more than one policy has the same
priority.
The higher the number, the greater the priority. Minimum is
0.

state PolicyState Yes Defines the current state of the policy: enabled or disabled.
Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering or
querying policies.

types Set<String> No A set of categories or types that the policy is included in. This
may be used to filter or query on groups of policies.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Moab Web Services

2040 References

References 2041

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

AutoVMMigrationPolicy

The Moab policy used to enabled and configure policy-based VM migration. Using information about
data center applications and server load, Moab can aim to keep VMs in the data center optimally
distributed across all hypervisors.

This class inherits fields from Policy.

Field Name Type
P
U
T

Description

id String No The unique identifier for the policy. Must
contain only lowercase letters and dashes, such
as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are
currently activated that potentially conflict with
this policy. If true, it signifies a potential
conflict.

description String No The user friendly description of the policy.

genericMetricThresho
lds

Map<String,
Double>

Ye
s

A map of generic metric pairings where each
value must be greater than or equal to 0 such
as:

METRIC1 => 5.6 METRIC2 => 0.0
METRIC3 => 102.4

memoryUtilizationTh
reshold

Double Ye
s

Defines the utilization threshold for memory.
This must be greater than 0 and less than or
equal to 1. A value of 1 effectively disables the
threshold.

migrationAlgorithmT
ype

AutoVMMigrationPo
licyType

Ye
s

Configures the VM migration algorithm utilized
when the policy is active. Defaults to NONE.
When ENABLED, this must not be set to NONE.

Moab Web Services

Field Name Type
P
U
T

Description

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict
with this policy.

priority Integer No Indicates the absolute priority of the policy with
respect to others. It is possible that more than
one policy has the same priority.
The higher the number, the greater the
priority. Minimum is 0.

processorUtilizationT
hreshold

Double Ye
s

Defines the load utilization threshold for
processors. This must be greater than 0 and
less than or equal to 1. A value of 1 effectively
disables the threshold.

state PolicyState Ye
s

Defines the current state of the policy: enabled
or disabled. Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in
filtering or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This may be used to filter or query
on groups of policies.

AutoVMMigrationPolicyType

Represents the algorithm used to migrate VMs when the AutoVMMigrationPolicy is used.

Moab Web Services

2042 References

References 2043

Value Description

NONE Used when the Auto VM Migration policy is currently disabled in Moab and before any
settings are saved the first time.

For example, if the policy is disabled on the first read of Moab policies, the
AutoVMMigrationPolicy.migrationAlgorithmType will be set to NONE. If the policy is
enabled and the type is set to OVERCOMMIT, followed by a disabling of the policy, it will
then be represented as having a state of DISABLED with a migrationAlgorithmType of
OVERCOMMIT.

OVERCOMMIT Use the "overcommit" algorithm for migration. The goal of this algorithm is to equalize
loads across hypervisors as migrations are queued due to overcommit conditions. This
places VMs to be migrated on the least-loaded hypervisor available.

CONSOLIDATION Use the "consolidation" algorithm for migration. The goal of this algorithm is to load
hypervisors as close to thresholds as possible, without exceeding them. This policy places
VMs to be migrated on the most loaded hypervisor possible, within these constraints. A
second loop of this policy will select lightly-loaded hypervisors to be evacuated
completely.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

HVAllocationOvercommitPolicy

The Hypervisor Allocation Overcommit policy controls how many virtual machines can be placed on
a hypervisor. By enabling this policy, you are allowing Moab to allocate more resoures to a set of
virtual machines than a hypervisor may actually have. This is possible due to virtualization. In other
words, this policy allows you to set the high-water mark for virtual machine allocation for
hypervisors. At least one of these limits must be greater than 1.0, or the policy will not be able to
set to a state of PolicyState.ENABLED.

This class inherits fields from Policy.

Moab Web Services

Field Name Type PU
T Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-
migration'.

conflicted Boolean No Signifies whether any other policies are currently
activated that potentially conflict with this policy. If true,
it signifies a potential conflict.

description String No The user friendly description of the policy.

memoryAllocationLim
it

Double Yes Setting this to 1 effectively disables the allocation
overcommit based on memory. If this and
processorAllocationLimit are both set to 1.0 (the default),
the policy state cannot be set to PolicyState.ENABLED.

name String No The user friendly name of the policy.

potentialConflicts Set<Strin
g>

No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect
to others. It is possible that more than one policy has the
same priority.
The higher the number, the greater the priority.
Minimum is 0.

Moab Web Services

2044 References

References 2045

Field Name Type PU
T Description

processorAllocationLi
mit

Double Yes The Allocation Limit defines the upper bound or
maximum amount of VCPUs that can be created on any
given hypervisor (HV). For example, if you have a
hypervisor with 12 processors or cores (Moab sees them
as 12 processors), and have an Allocation Limit of 2.0 for
procs, then Moab will not allow, under any condition,
more than 24 VCPU's to be allocated on this hypervisor.
Remember: a VM can have one or more VCPU's. So, in
this example, the HV could only support 8 VM's if they all
had 3 VPCU's each. It could support 4 VM's if they had 6
VPCU's each, and so forth
From
http://www.adaptivecomputing.com/resources/docs/m
wm/7-1-1/Content/topics/vm/allocation_limits_and_
utilization_threshold.html
Setting this to 1 effectively disables the allocation
overcommit based on processors. If this and
memoryAllocationLimit are both set to 1.0 (the default),
the policy state cannot be set to PolicyState.ENABLED.

state PolicyStat
e

Yes Defines the current state of the policy: enabled or
disabled. Defaults to PolicyState.DISABLED.

tags Set<Strin
g>

No A set of strings that can be used to aid in filtering or
querying policies.

types Set<Strin
g>

No A set of categories or types that the policy is included in.
This may be used to filter or query on groups of policies.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

Moab Web Services

NodeAllocationPolicy

Node allocation is the process of selecting the best resources to allocate to a job from a list of
available resources. Moab contains a number of allocation algorithms that address this in the
NodeAllocationPolicy.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy.
Must contain only lowercase letters
and dashes, such as 'auto-vm-
migration'.

conflicted Boolean No Signifies whether any other policies
are currently activated that
potentially conflict with this policy. If
true, it signifies a potential conflict.

customPriorityFunction String Yes Defines the priority function when
the CustomPriority algorithm is used.

description String No The user friendly description of the
policy.

name String No The user friendly name of the policy.

nodeAllocationAlgorithm NodeAllocationAlgorithm Yes Configures the node allocation
algorithm utilized when the policy is
active. Defaults to NONE. When
ENABLED, this must not be set to
NONE.

potentialConflicts Set<String> No A set of policy IDs that may
potentially conflict with this policy.

priority Integer No Indicates the absolute priority of the
policy with respect to others. It is
possible that more than one policy
has the same priority.
The higher the number, the greater
the priority. Minimum is 0.

Moab Web Services

2046 References

References 2047

Field Name Type PUT Description

state PolicyState Yes Defines the current state of the
policy: enabled or disabled. Defaults
to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to
aid in filtering or querying policies.

types Set<String> No A set of categories or types that the
policy is included in. This may be
used to filter or query on groups of
policies.

NodeAllocationAlgorithm

Represents the algorithm used to allocate Nodes when the NodeAllocationPolicy is used.

Value Description

NONE

InReportedOrder

InReverseReportedOrder

CustomPriority

ProcessorLoad

MinimumConfiguredResources

Contiguous

ProcessorSpeedBalance

NodeSpeed

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Moab Web Services

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

MigrationExclusionListPolicy

Specify which virtual machines and hypervisors to exclude from automatic migration operations.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently activated
that potentially conflict with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

hvExclusionList List<String> Yes The list of hypervisor IDs on the exclusion list.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect to
others. It is possible that more than one policy has the same
priority.
The higher the number, the greater the priority. Minimum
is 0.

state PolicyState Yes Defines the current state of the policy: enabled or disabled.
Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering or
querying policies.

Moab Web Services

2048 References

References 2049

Field Name Type PUT Description

types Set<String> No A set of categories or types that the policy is included in.
This may be used to filter or query on groups of policies.

vmExclusionList List<String> Yes The list of VM IDs on the exclusion list.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairsharePolicy

Fairshare allows historical resource utilization information to be incorporated into job feasibility
and priority decisions. This feature allows site administrators to set system utilization targets for
users, groups, accounts, classes, and QoS levels. Administrators can also specify the time frame over
which resource utilization is evaluated in determining whether the goal is being reached.
Parameters allow sites to specify the utilization metric, how historical information is aggregated,
and the effect of fairshare state on scheduling behavior. You can specify fairshare targets for any
credentials (such as user, group, and class) that administrators want such information to affect.
http://docs.adaptivecomputing.com/mwm/archive/6-0-4/6.3fairshare.php

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain
only lowercase letters and dashes, such as 'auto-
vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently
activated that potentially conflict with this policy.
If true, it signifies a potential conflict.

Moab Web Services

Field Name Type PUT Description

decayFactor Double Yes Specifies decay rate applied to past fairshare
interval when computing effective fairshare
usage. Values may be in the range of 0.01 to 1.0.
A smaller value causes more rapid decay causing
aged usage to contribute less to the overall
effective fairshare usage. A value of 1.0 indicates
that no decay will occur and all fairshare intervals
will be weighted equally when determining
effective fairshare usage.

depth Integer Yes Number of fairshare windows factored into
current fairshare utilization. Note: The number of
available fairshare windows is bounded by the
MAX_FSDEPTH value (32 in Moab).

description String No The user friendly description of the policy.

intervalSeconds Long Yes Specifies the length of each fairshare window in
seconds.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict
with this policy.

priority Integer No Indicates the absolute priority of the policy with
respect to others. It is possible that more than
one policy has the same priority.
The higher the number, the greater the priority.
Minimum is 0.

state PolicyState Yes Defines the current state of the policy: enabled or
disabled. Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering
or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This may be used to filter or query
on groups of policies.

Moab Web Services

2050 References

References 2051

Field Name Type PUT Description

usageMetric FairshareUsageMetric Yes As Moab runs, it records how available resources
are used. Each iteration it updates fairshare
resource utilization statistics. Resource utilization
is tracked in accordance with the usage metric
allowing various aspects of resource consumption
information to be measured. The usage metric
allows selection of both the types of resources to
be tracked as well as the method of tracking. It
provides the option of tracking usage by
dedicated or consumed resources, where
dedicated usage tracks what the scheduler
assigns to the job and consumed usage tracks
what the job actually uses.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairshareUsageMetric

Specifies the unit of tracking FairsharePolicy usage.
http://docs.adaptivecomputing.com/mwm/archive/6-0-4/6.3fairshare.php#fspolicy

Value Description

NONE

DEDICATED_
PROCESSOR_
SECONDS_DELIVERED

Usage tracked by processor seconds dedicated to each job relative to other
processor seconds dedicated to other jobs on the system. (Useful in dedicated node
environments.)

DEDICATED_
PROCESSOR_
SECONDS_AVAILABLE

Usage tracked by processor seconds dedicated to each job relative to all available
processor seconds dedicated to other jobs on the system. (Useful in dedicated node
environments.)

Moab Web Services

Value Description

DEDICATED_
PROCESSOR_
EQUIVALENT_
SECONDS_DELIVERED

Usage tracked by processor-equivalent seconds dedicated to each job relative to
other processor-equivalent seconds dedicated to other jobs on the system. (Useful
in dedicated and shared nodes environments).

UTILIZED_
PROCESSOR_
SECONDS_DELIVERED

Usage tracked by processor seconds used by each job relative to other processor
seconds used by other jobs on the system. (Useful in shared node/SMP
environments.)

Moab Web Services

2052 References

References 2053

API version 2

Policy

A Moab Workload Manager policy which can affect scheduling decisions such as resource allocation.
A policy contains state, identifying information, a priority, and metadata about the policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently activated
that potentially conflict with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect to
others. It is possible that more than one policy has the same
priority.
The higher the number, the greater the priority. Minimum is
0.

state PolicyState Yes Defines the current state of the policy: enabled or disabled.
Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering or
querying policies.

types Set<String> No A set of categories or types that the policy is included in. This
may be used to filter or query on groups of policies.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Moab Web Services

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

AutoVMMigrationPolicy

The Moab policy used to enabled and configure policy-based VM migration. Using information about
data center applications and server load, Moab can aim to keep VMs in the data center optimally
distributed across all hypervisors.

This class inherits fields from Policy.

Field Name Type
P
U
T

Description

id String No The unique identifier for the policy. Must
contain only lowercase letters and dashes, such
as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are
currently activated that potentially conflict with
this policy. If true, it signifies a potential
conflict.

description String No The user friendly description of the policy.

genericMetricThresho
lds

Map<String,
Double>

Ye
s

A map of generic metric pairings where each
value must be greater than or equal to 0 such
as:

METRIC1 => 5.6 METRIC2 => 0.0
METRIC3 => 102.4

memoryUtilizationTh
reshold

Double Ye
s

Defines the utilization threshold for memory.
This must be greater than 0 and less than or
equal to 1. A value of 1 effectively disables the
threshold.

migrationAlgorithmT
ype

AutoVMMigrationPo
licyType

Ye
s

Configures the VM migration algorithm utilized
when the policy is active. Defaults to NONE.
When ENABLED, this must not be set to NONE.

Moab Web Services

2054 References

References 2055

Field Name Type
P
U
T

Description

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict
with this policy.

priority Integer No Indicates the absolute priority of the policy with
respect to others. It is possible that more than
one policy has the same priority.
The higher the number, the greater the
priority. Minimum is 0.

processorUtilizationT
hreshold

Double Ye
s

Defines the load utilization threshold for
processors. This must be greater than 0 and
less than or equal to 1. A value of 1 effectively
disables the threshold.

state PolicyState Ye
s

Defines the current state of the policy: enabled
or disabled. Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in
filtering or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This may be used to filter or query
on groups of policies.

AutoVMMigrationPolicyType

Represents the algorithm used to migrate VMs when the AutoVMMigrationPolicy is used.

Moab Web Services

Value Description

NONE Used when the Auto VM Migration policy is currently disabled in Moab and before any
settings are saved the first time.

For example, if the policy is disabled on the first read of Moab policies, the
AutoVMMigrationPolicy.migrationAlgorithmType will be set to NONE. If the policy is
enabled and the type is set to OVERCOMMIT, followed by a disabling of the policy, it will
then be represented as having a state of DISABLED with a migrationAlgorithmType of
OVERCOMMIT.

OVERCOMMIT Use the "overcommit" algorithm for migration. The goal of this algorithm is to equalize
loads across hypervisors as migrations are queued due to overcommit conditions. This
places VMs to be migrated on the least-loaded hypervisor available.

CONSOLIDATION Use the "consolidation" algorithm for migration. The goal of this algorithm is to load
hypervisors as close to thresholds as possible, without exceeding them. This policy places
VMs to be migrated on the most loaded hypervisor possible, within these constraints. A
second loop of this policy will select lightly-loaded hypervisors to be evacuated
completely.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

HVAllocationOvercommitPolicy

The Hypervisor Allocation Overcommit policy controls how many virtual machines can be placed on
a hypervisor. By enabling this policy, you are allowing Moab to allocate more resoures to a set of
virtual machines than a hypervisor may actually have. This is possible due to virtualization. In other
words, this policy allows you to set the high-water mark for virtual machine allocation for
hypervisors. At least one of these limits must be greater than 1.0, or the policy will not be able to
set to a state of PolicyState.ENABLED.

This class inherits fields from Policy.

Moab Web Services

2056 References

References 2057

Field Name Type PU
T Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-
migration'.

conflicted Boolean No Signifies whether any other policies are currently
activated that potentially conflict with this policy. If true,
it signifies a potential conflict.

description String No The user friendly description of the policy.

memoryAllocationLim
it

Double Yes Setting this to 1 effectively disables the allocation
overcommit based on memory. If this and
processorAllocationLimit are both set to 1.0 (the default),
the policy state cannot be set to PolicyState.ENABLED.

name String No The user friendly name of the policy.

potentialConflicts Set<Strin
g>

No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect
to others. It is possible that more than one policy has the
same priority.
The higher the number, the greater the priority.
Minimum is 0.

Moab Web Services

Field Name Type PU
T Description

processorAllocationLi
mit

Double Yes The Allocation Limit defines the upper bound or
maximum amount of VCPUs that can be created on any
given hypervisor (HV). For example, if you have a
hypervisor with 12 processors or cores (Moab sees them
as 12 processors), and have an Allocation Limit of 2.0 for
procs, then Moab will not allow, under any condition,
more than 24 VCPU's to be allocated on this hypervisor.
Remember: a VM can have one or more VCPU's. So, in
this example, the HV could only support 8 VM's if they all
had 3 VPCU's each. It could support 4 VM's if they had 6
VPCU's each, and so forth
From
http://www.adaptivecomputing.com/resources/docs/m
wm/7-1-1/Content/topics/vm/allocation_limits_and_
utilization_threshold.html
Setting this to 1 effectively disables the allocation
overcommit based on processors. If this and
memoryAllocationLimit are both set to 1.0 (the default),
the policy state cannot be set to PolicyState.ENABLED.

state PolicyStat
e

Yes Defines the current state of the policy: enabled or
disabled. Defaults to PolicyState.DISABLED.

tags Set<Strin
g>

No A set of strings that can be used to aid in filtering or
querying policies.

types Set<Strin
g>

No A set of categories or types that the policy is included in.
This may be used to filter or query on groups of policies.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

Moab Web Services

2058 References

References 2059

NodeAllocationPolicy

Node allocation is the process of selecting the best resources to allocate to a job from a list of
available resources. Moab contains a number of allocation algorithms that address this in the
NodeAllocationPolicy.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy.
Must contain only lowercase letters
and dashes, such as 'auto-vm-
migration'.

conflicted Boolean No Signifies whether any other policies
are currently activated that
potentially conflict with this policy. If
true, it signifies a potential conflict.

customPriorityFunction String Yes Defines the priority function when
the CustomPriority algorithm is used.

description String No The user friendly description of the
policy.

name String No The user friendly name of the policy.

nodeAllocationAlgorithm NodeAllocationAlgorithm Yes Configures the node allocation
algorithm utilized when the policy is
active. Defaults to NONE. When
ENABLED, this must not be set to
NONE.

potentialConflicts Set<String> No A set of policy IDs that may
potentially conflict with this policy.

priority Integer No Indicates the absolute priority of the
policy with respect to others. It is
possible that more than one policy
has the same priority.
The higher the number, the greater
the priority. Minimum is 0.

Moab Web Services

Field Name Type PUT Description

state PolicyState Yes Defines the current state of the
policy: enabled or disabled. Defaults
to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to
aid in filtering or querying policies.

types Set<String> No A set of categories or types that the
policy is included in. This may be
used to filter or query on groups of
policies.

NodeAllocationAlgorithm

Represents the algorithm used to allocate Nodes when the NodeAllocationPolicy is used.

Value Description

NONE

InReportedOrder

InReverseReportedOrder

CustomPriority

ProcessorLoad

MinimumConfiguredResources

Contiguous

ProcessorSpeedBalance

NodeSpeed

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Moab Web Services

2060 References

References 2061

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

MigrationExclusionListPolicy

Specify which virtual machines and hypervisors to exclude from automatic migration operations.

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain only
lowercase letters and dashes, such as 'auto-vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently activated
that potentially conflict with this policy. If true, it signifies a
potential conflict.

description String No The user friendly description of the policy.

hvExclusionList List<String> Yes The list of hypervisor IDs on the exclusion list.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict with this
policy.

priority Integer No Indicates the absolute priority of the policy with respect to
others. It is possible that more than one policy has the same
priority.
The higher the number, the greater the priority. Minimum
is 0.

state PolicyState Yes Defines the current state of the policy: enabled or disabled.
Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering or
querying policies.

Moab Web Services

Field Name Type PUT Description

types Set<String> No A set of categories or types that the policy is included in.
This may be used to filter or query on groups of policies.

vmExclusionList List<String> Yes The list of VM IDs on the exclusion list.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairsharePolicy

Fairshare allows historical resource utilization information to be incorporated into job feasibility
and priority decisions. This feature allows site administrators to set system utilization targets for
users, groups, accounts, classes, and QoS levels. Administrators can also specify the time frame over
which resource utilization is evaluated in determining whether the goal is being reached.
Parameters allow sites to specify the utilization metric, how historical information is aggregated,
and the effect of fairshare state on scheduling behavior. You can specify fairshare targets for any
credentials (such as user, group, and class) that administrators want such information to affect.
http://docs.adaptivecomputing.com/mwm/archive/6-0-4/6.3fairshare.php

This class inherits fields from Policy.

Field Name Type PUT Description

id String No The unique identifier for the policy. Must contain
only lowercase letters and dashes, such as 'auto-
vm-migration'.

conflicted Boolean No Signifies whether any other policies are currently
activated that potentially conflict with this policy.
If true, it signifies a potential conflict.

Moab Web Services

2062 References

References 2063

Field Name Type PUT Description

decayFactor Double Yes Specifies decay rate applied to past fairshare
interval when computing effective fairshare
usage. Values may be in the range of 0.01 to 1.0.
A smaller value causes more rapid decay causing
aged usage to contribute less to the overall
effective fairshare usage. A value of 1.0 indicates
that no decay will occur and all fairshare intervals
will be weighted equally when determining
effective fairshare usage.

depth Integer Yes Number of fairshare windows factored into
current fairshare utilization. Note: The number of
available fairshare windows is bounded by the
MAX_FSDEPTH value (32 in Moab).

description String No The user friendly description of the policy.

intervalSeconds Long Yes Specifies the length of each fairshare window in
seconds.

name String No The user friendly name of the policy.

potentialConflicts Set<String> No A set of policy IDs that may potentially conflict
with this policy.

priority Integer No Indicates the absolute priority of the policy with
respect to others. It is possible that more than
one policy has the same priority.
The higher the number, the greater the priority.
Minimum is 0.

state PolicyState Yes Defines the current state of the policy: enabled or
disabled. Defaults to PolicyState.DISABLED.

tags Set<String> No A set of strings that can be used to aid in filtering
or querying policies.

types Set<String> No A set of categories or types that the policy is
included in. This may be used to filter or query
on groups of policies.

Moab Web Services

Field Name Type PUT Description

usageMetric FairshareUsageMetric Yes As Moab runs, it records how available resources
are used. Each iteration it updates fairshare
resource utilization statistics. Resource utilization
is tracked in accordance with the usage metric
allowing various aspects of resource consumption
information to be measured. The usage metric
allows selection of both the types of resources to
be tracked as well as the method of tracking. It
provides the option of tracking usage by
dedicated or consumed resources, where
dedicated usage tracks what the scheduler
assigns to the job and consumed usage tracks
what the job actually uses.

PolicyState

Represents the state of a policy. A policy may only be enabled or disabled.

Value Description

ENABLED The policy is enabled or active.

DISABLED The policy is disabled or inactive.

FairshareUsageMetric

Specifies the unit of tracking FairsharePolicy usage.
http://docs.adaptivecomputing.com/mwm/archive/6-0-4/6.3fairshare.php#fspolicy

Value Description

NONE

DEDICATED_
PROCESSOR_
SECONDS_DELIVERED

Usage tracked by processor seconds dedicated to each job relative to other
processor seconds dedicated to other jobs on the system. (Useful in dedicated node
environments.)

DEDICATED_
PROCESSOR_
SECONDS_AVAILABLE

Usage tracked by processor seconds dedicated to each job relative to all available
processor seconds dedicated to other jobs on the system. (Useful in dedicated node
environments.)

Moab Web Services

2064 References

References 2065

Value Description

DEDICATED_
PROCESSOR_
EQUIVALENT_
SECONDS_DELIVERED

Usage tracked by processor-equivalent seconds dedicated to each job relative to
other processor-equivalent seconds dedicated to other jobs on the system. (Useful
in dedicated and shared nodes environments).

UTILIZED_
PROCESSOR_
SECONDS_DELIVERED

Usage tracked by processor seconds used by each job relative to other processor
seconds used by other jobs on the system. (Useful in shared node/SMP
environments.)

Related topics

l Policies on page 1589

Fields: Principals

See the associated Principals on page 1605 resource section for more information on how to use
this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource principals Permissions on page 1571

Hooks filename principals.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

API version 3

Principal

A principal maps to a set of ldap users, ldap groups, pam users, and/or pam groups. MWS roles are
attached to the principals to authorize the group to use the specific MWS roles.

Field
Name Type POS

T
PU
T Description

id String No No The unique ID of this principal.

attachedRol
es

Set<Rol
e>

Yes Yes The MWS roles this principal is authorized to use.

description String Yes Yes The principal description.

groups List<Ma
p>

Yes Yes The groups associated with this principal. Each group has a
name and a type. The valid types of groups are LDAPOU,
LDAPGROUP, PAMGROUP, and SSO. Example group:
{"name":
"CN=Engineering,CN=Users,DC=corp,DC=cloud,DC
=dev", "type": "LDAPGROUP"} or {"name":
"engineering", "type": "PAMGROUP"}

name String Yes Yes The unique human-readable name of this principal.
Required during POST.

users List<Ma
p>

Yes Yes The users associated with this principal. Each user has a
name and type. The valid types of users are LDAP and PAM.
Example user: {"name": "jhammon", "type":
"LDAP"} or {"name": "jhammon", "type": "PAM"}

Role

A role defines a set of permissions that are based on the proxy-user. If no proxy user is specified
then access to objects in MWS are limited to its application permissions. For example if the
application has permission to update all resources in MWS and no proxy-user is specified in the
request then the request can access all resources in MWS.

Field
Name Type POST PUT Description

id String No No The unique ID of this role.

Moab Web Services

2066 References

References 2067

Field
Name Type POST PUT Description

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name of this role.
Required during POST.

permissions List<Permission> Yes Yes The set of permissions enforced based on the
proxy-user.

scope PrivilegeScope No No

Permission

Represents a permission

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on the
resource.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*', all fields are
accessible, otherwise requests must match dot
delimited path. Currently only checked when
doing writable actions. Example - attributes.*:
create|update

label String No No A human readable label for this permission.

resource String No No The resource the permission applies to.

resourceFilter Map<String,
Map>

No No Amap used to limit which resource instances this
permission applies to. If this is null then the
permission will apply to all instances of the
resource. For api permissions the filter uses
mongo query syntax.

Moab Web Services

Field Name Type POST PUT Description

scope PrivilegeScope No No Whether this permission applies to the principal's
tenant-associated resources or globally

type String No No The type of the permission. Only 'api' type
permissions are enforced.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Moab Web Services

2068 References

References 2069

API version 2

Principal

A principal maps to a set of ldap users, ldap groups, pam users, and/or pam groups. MWS roles are
attached to the principals to authorize the group to use the specific MWS roles.

Field
Name Type POS

T
PU
T Description

id String No No The unique ID of this principal.

attachedRol
es

Set<Rol
e>

Yes Yes The MWS roles this principal is authorized to use.

description String Yes Yes The principal description.

groups List<Ma
p>

Yes Yes The groups associated with this principal. Each group has a
name and a type. The valid types of groups are LDAPOU,
LDAPGROUP, PAMGROUP, and SSO. Example group:
{"name":
"CN=Engineering,CN=Users,DC=corp,DC=cloud,DC
=dev", "type": "LDAPGROUP"} or {"name":
"engineering", "type": "PAMGROUP"}

name String Yes Yes The unique human-readable name of this principal.
Required during POST.

users List<Ma
p>

Yes Yes The users associated with this principal. Each user has a
name and type. The valid types of users are LDAP and PAM.
Example user: {"name": "jhammon", "type":
"LDAP"} or {"name": "jhammon", "type": "PAM"}

Role

A role defines a set of permissions that are based on the proxy-user. If no proxy user is specified
then access to objects in MWS are limited to its application permissions. For example if the
application has permission to update all resources in MWS and no proxy-user is specified in the
request then the request can access all resources in MWS.

Field
Name Type POST PUT Description

id String No No The unique ID of this role.

Moab Web Services

Field
Name Type POST PUT Description

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name of this role.
Required during POST.

permissions List<Permission> Yes Yes The set of permissions enforced based on the
proxy-user.

scope PrivilegeScope No No

Permission

Represents a permission

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on the
resource.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*', all fields are
accessible, otherwise requests must match dot
delimited path. Currently only checked when
doing writable actions. Example - attributes.*:
create|update

label String No No A human readable label for this permission.

resource String No No The resource the permission applies to.

resourceFilter Map<String,
Map>

No No Amap used to limit which resource instances this
permission applies to. If this is null then the
permission will apply to all instances of the
resource. For api permissions the filter uses
mongo query syntax.

Moab Web Services

2070 References

References 2071

Field Name Type POST PUT Description

scope PrivilegeScope No No Whether this permission applies to the principal's
tenant-associated resources or globally

type String No No The type of the permission. Only 'api' type
permissions are enforced.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Moab Web Services

Related topics

l Principals on page 1605

Fields: Report Datapoints

See the associated Reports on page 1614 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource reports/datapoints Permissions on page 1571

Hooks filename reports.datapoints.groovy Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

Yes Distinct on page 1504

Moab Web Services

2072 References

References 2073

API version 3

Datapoint

A metric that measures system state over a specified period of time. For example, a datapoint may
contain data on CPU utilization by specific users. A datapoint is generated by the consolidation of
zero or more Samples. It could be said that a datapoint represents a smoothing of samples.

Field Name Type Description

id Long

data Map<String,
Map>

The actual consolidated sample data. This property may be 'null' if the
Report.minimumSampleSize was not met when consolidating the
datapoint.

endDate Date The ending date that the datapoint covers.

firstSampleDate Date The date of the first sample consolidated in this datapoint. (See also:
Sample.timestamp.)

lastSampleDate Date The date of the last sample consolidated in this datapoint. (See also:
Sample.timestamp.)

startDate Date The beginning date that the datapoint covers.

Moab Web Services

API version 2

Datapoint

A metric that measures system state over a specified period of time. For example, a datapoint may
contain data on CPU utilization by specific users. A datapoint is generated by the consolidation of
zero or more Samples. It could be said that a datapoint represents a smoothing of samples.

Field Name Type Description

id Long

data Map<String,
Map>

The actual consolidated sample data. This property may be 'null' if the
Report.minimumSampleSize was not met when consolidating the
datapoint.

endDate Date The ending date that the datapoint covers.

firstSampleDate Date The date of the first sample consolidated in this datapoint. (See also:
Sample.timestamp.)

lastSampleDate Date The date of the last sample consolidated in this datapoint. (See also:
Sample.timestamp.)

startDate Date The beginning date that the datapoint covers.

Related topics

l Reports on page 1614

Fields: Reports

See the associated Reports on page 1614 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource reports Permissions on page 1571

Hooks filename reports.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

2074 References

References 2075

API version 3

Report

A set of time-based values that share similar context. For example, a report may contain data on CPU
or power utilization for all nodes in a cluster.

A report is composed of metadata and a collection of Datapoints. Samples are also associated with
reports, but these are consolidated using the Report.consolidationFunction to create Datapoints.

If the datapoint documents are being truncated in any way or there are warnings about documents
being too large, it may be necessary to increase the Report.reportDocumentSize.

Field Name Type POS
T Description

id String No The unique identifier for the report. This is
automatically assigned and will be ignored if
specified duration creation.

consolidationFunctio
n

String Yes The consolidation function is the process used to
convert a set of samples into a datapoint. Currently
the only supported function is "average", which is
used if none is specified.

datapointDuration Long Yes Required. How long the datapoints are, in seconds.

datapoints List<Datapoin
t>

Yes This is the set of datapoints that have been
consolidated for the report or are desired to be
included in the report during creation time. In the
latter case, these represent historical data created
outside of the reporting framework.
Only present when getting a single report.

description String Yes A description of the report.

keepSamples Boolean Yes Controls if samples are retained after consolidation.
Defaults to false, which means that after
consolidation, samples are discarded.

minimumSampleSize Integer Yes If number of samples is below this number, the
datapoint data field is "null". Defaults to 1.

name String Yes Required. A unique name identifying the report.
Valid characters are all alphanumeric characters,
dashes (-), periods (.), and underscores (_).

Moab Web Services

Field Name Type POS
T Description

reportDocumentSize Long Yes The maximum size in bytes of each datapoint
document stored for this report. This option is
provided to maximize the amount of disk space
used for a single report. The default value for this
option is 100*1024, or 100 KB. The maximum
value of this option is 16*1024*1024 (16777216)
or 16 MB, which represents the maximum
document size in MongoDB. See also
http://www.mongodb.org/display/DOCS/Documen
ts.
Keep in mind that when creating a new report,
MongoDB will initialize all needed space for all
possible datapoint documents up front. This can
easily fill a disk unless this parameter is modified.

reportSize Long Yes Required. The size of the report in datapoints. After
this number of datapoints is reached, the old
datapoints will be discarded.

WARNING: On report creation, a Mongo collection
will be initialized that is the maximum size of a
single entry (currently 16 MB) multiplied by the
report size. Be careful in setting a large report size
as this will quickly allocate the entire disk if many
reports with large report sizes are created.

Datapoint

A metric that measures system state over a specified period of time. For example, a datapoint may
contain data on CPU utilization by specific users. A datapoint is generated by the consolidation of
zero or more Samples. It could be said that a datapoint represents a smoothing of samples.

Field Name Type POST Description

id Long No

data Map<String,
Map>

No The actual consolidated sample data. This property may be
'null' if the Report.minimumSampleSize was not met when
consolidating the datapoint.

endDate Date No The ending date that the datapoint covers.

Moab Web Services

2076 References

References 2077

Field Name Type POST Description

firstSampleDate Date No The date of the first sample consolidated in this datapoint.
(See also: Sample.timestamp.)

lastSampleDate Date No The date of the last sample consolidated in this datapoint.
(See also: Sample.timestamp.)

startDate Date No The beginning date that the datapoint covers.

Moab Web Services

API version 2

Report

A set of time-based values that share similar context. For example, a report may contain data on CPU
or power utilization for all nodes in a cluster.

A report is composed of metadata and a collection of Datapoints. Samples are also associated with
reports, but these are consolidated using the Report.consolidationFunction to create Datapoints.

If the datapoint documents are being truncated in any way or there are warnings about documents
being too large, it may be necessary to increase the Report.reportDocumentSize.

Field Name Type POS
T Description

id String No The unique identifier for the report. This is
automatically assigned and will be ignored if
specified duration creation.

consolidationFunctio
n

String Yes The consolidation function is the process used to
convert a set of samples into a datapoint. Currently
the only supported function is "average", which is
used if none is specified.

datapointDuration Long Yes Required. How long the datapoints are, in seconds.

datapoints List<Datapoin
t>

Yes This is the set of datapoints that have been
consolidated for the report or are desired to be
included in the report during creation time. In the
latter case, these represent historical data created
outside of the reporting framework.
Only present when getting a single report.

description String Yes A description of the report.

keepSamples Boolean Yes Controls if samples are retained after consolidation.
Defaults to false, which means that after
consolidation, samples are discarded.

minimumSampleSize Integer Yes If number of samples is below this number, the
datapoint data field is "null". Defaults to 1.

name String Yes Required. A unique name identifying the report.
Valid characters are all alphanumeric characters,
dashes (-), periods (.), and underscores (_).

Moab Web Services

2078 References

References 2079

Field Name Type POS
T Description

reportDocumentSize Long Yes The maximum size in bytes of each datapoint
document stored for this report. This option is
provided to maximize the amount of disk space
used for a single report. The default value for this
option is 100*1024, or 100 KB. The maximum
value of this option is 16*1024*1024 (16777216)
or 16 MB, which represents the maximum
document size in MongoDB. See also
http://www.mongodb.org/display/DOCS/Documen
ts.
Keep in mind that when creating a new report,
MongoDB will initialize all needed space for all
possible datapoint documents up front. This can
easily fill a disk unless this parameter is modified.

reportSize Long Yes Required. The size of the report in datapoints. After
this number of datapoints is reached, the old
datapoints will be discarded.

WARNING: On report creation, a Mongo collection
will be initialized that is the maximum size of a
single entry (currently 16 MB) multiplied by the
report size. Be careful in setting a large report size
as this will quickly allocate the entire disk if many
reports with large report sizes are created.

Datapoint

A metric that measures system state over a specified period of time. For example, a datapoint may
contain data on CPU utilization by specific users. A datapoint is generated by the consolidation of
zero or more Samples. It could be said that a datapoint represents a smoothing of samples.

Field Name Type POST Description

id Long No

data Map<String,
Map>

No The actual consolidated sample data. This property may be
'null' if the Report.minimumSampleSize was not met when
consolidating the datapoint.

endDate Date No The ending date that the datapoint covers.

Moab Web Services

Field Name Type POST Description

firstSampleDate Date No The date of the first sample consolidated in this datapoint.
(See also: Sample.timestamp.)

lastSampleDate Date No The date of the last sample consolidated in this datapoint.
(See also: Sample.timestamp.)

startDate Date No The beginning date that the datapoint covers.

Related topics

l Reports on page 1614

Fields: Reservations

See the associated Reservations on page 1624 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource reservations Permissions on page 1571

Hooks filename reservations.groovy Pre and post-processing hooks on page 1412

Distinct query-supported No Distinct on page 1504

Moab Web Services

2080 References

References 2081

API version 3

Reservation

A reservation is the mechanism by which Moab guarantees the availability of a set of resources at a
particular time. Each reservation consists of three major components: (1) a set of resources, (2) a
time frame, and (3) an access control list. It is a scheduler role to ensure that the access control list
is not violated during the reservation's lifetime (that is, its time frame) on the resources listed. For
example, a reservation may specify that node002 is reserved for user Tom on Friday. The scheduler
is thus constrained to make certain that only Tom's jobs can use node002 at any time on Friday.

Field Name Type POST PUT Description

id String No No The unique ID of the
reservation.

accountingAccount String Yes No Accountable Account.

accountingGroup String Yes No Accountable Group.

accountingQOS String Yes No Accountable QOS.

accountingUser String Yes No Accountable User.

aclRules Set<AclRule> Yes No The set of access control
rules associated with
this reservation.

allocatedNodeCount Integer No No The number of
allocated nodes for this
reservation.

allocatedNodes Set<DomainProxyVersion1> No No The nodes allocated to
the reservation.

allocatedProcessorCount Integer No No The number of
allocated processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's comments
or description.

Moab Web Services

Field Name Type POST PUT Description

creationDate Date No No Creation date.
Automatically set by
Moab when a user
creates the reservation.

duration Long Yes No The duration of the
reservation (in
seconds).

endDate Date Yes No The end date of the
reservation. This is
especially useful for
one-time reservations,
which have an exact
time for when a
reservation ends.

excludeJobs Set<String> Yes No The list of jobs to
exclude. Client must
also set the IGNJOBRSV
reservation flag.
Otherwise, results are
undefined. Used only
during reservation
creation.

expireDate Date No No The date/time when
the reservation expires
and vacates.

flags Set<ReservationFlag> Yes No The flags associated
with the reservation.

globalId String No No Global reservation ID.

Moab Web Services

2082 References

References 2083

Field Name Type POST PUT Description

hostListExpression String Yes No The list of nodes a user
can select to reserve.
This may or may not be
the nodes that are
currently allocated to
this reservation. Note:
Either
hostListExpression or
taskCount must be set
to create a reservation.

idPrefix String Yes No The user-specified
prefix for this
reservation. If provided,
Moab combines the
idPrefix with an integer,
and the combination is
the unique identifier
for this reservation.

isActive Boolean No No State whether or not
this reservation is
currently active.

isTracked Boolean No No States whether
reservation resource
usage is tracked.

label String Yes No When a label is
assigned to a
reservation, the
reservation can then be
referenced by that label
as well as by the
reservation name.

maxTasks Integer No No The maximum number
of tasks for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

Moab Web Services

Field Name Type POST PUT Description

owner EmbeddedCredential Yes No The owner of the
reservation

partitionId String Yes No The ID of the partition
this reservation is for.

profile String Yes No The profile that this
reservation is using. A
profile is a specification
of attributes that all
reservations share.
Used only during
reservation creation.

requirements ReservationRequirement Yes No The reservation's
requirements.

reservationGroup String Yes No The reservation group
to which the
reservation belongs.

resources Map<String, Integer> Yes No The reservation's
resources. This field is a
map, where the key is
PROCS, MEM DISK,
SWAP, or one or more
user-defined keys.

startDate Date Yes No The start time for the
reservation. This is
especially useful for
one-time reservations,
which have an exact
time for when a
reservation starts.

statistics ReservationStatistics No No The reservation's
statistical information.

subType String Yes No The reservation sub-
type.

Moab Web Services

2084 References

References 2085

Field Name Type POST PUT Description

taskCount Integer No No The number of tasks
that must be allocated
to satisfy the
reservation request.
Note: Either
hostListExpression or
taskCount must be set
to create a reservation.

trigger Trigger Yes No Trigger for reservation.
Used only during
reservation creation.

triggerIds Set<String> No No The IDs of the triggers
attached to this
reservation.

uniqueIndex String No No The globally-unique
reservation index.

variables Map<String, Map> Yes Yes The set of variables for
this reservation.

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Moab Web Services

Field
Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or deny access to
reserved resources but they may also be
configured to affect a job's affinity for a
particular reservation. By default, jobs
gravitate toward reservations through a
mechanism known as positive affinity. This
mechanism allows jobs to run on the most
constrained resources leaving other,
unreserved resources free for use by other
jobs that may not be able to access the
reserved resources. Normally this is a desired
behavior. However, sometimes, it is desirable
to reserve resources for use only as a last
resort-using the reserved resources only
when there are no other resources available.
This last resort behavior is known as negative
affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to make against the
ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType No Yes The type of the object that is being granted
(or denied) access.

value String No Yes The name of the object that is being granted
(or denied) access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

Moab Web Services

2086 References

References 2087

Value Description

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

AclType

This enumeration describes the values available for the type of an ACL Rule.

Moab Web Services

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

Moab Web Services

2088 References

References 2089

Value Description

RACK Not supported

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The id of the object.

ReservationFlag

The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this Reservation, but not start during it (unless
they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations, but not user or other reservations.

CHARGE Charge the idle cycles in the accounting manager.

Moab Web Services

Value Description

NOVMMIGRATIONS Override the VM Migration Policy and don't migrate VMs that overlap
this reservation.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job (when using
exclusive).

ADVRES If set, the reservation is created in advance of needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation when it is released.

ALLOWGRID The reservation is set up for use in a grid environment.

ALLOWPRSV Personal reservations can be created within the space of this
standing reservation (and ONLY this standing reservation). By
default, when a standing reservation is given the flag ALLOWPRSV, it
is given the ACL rule USER==ALL+ allowing all jobs and all users
access.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job
ADVRES flag.

DEDICATEDNODE If set, only one active reservation is allowed on a node.

DEDICATEDRESOURCE The reservation is only placed on resources that are not reserved by
any other reservation, including jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one job can run in the
reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

Moab Web Services

2090 References

References 2091

Value Description

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of whether there are
other reservations currently residing on the nodes.

IGNSTATE Request ignores existing resource reservations, allowing the
reservation to be forced onto available resources even if this conflicts
with other reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor status for resources
contained in the reservation.

PARENTLOCK The reservation can only be destroyed by destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-adminstrator, non-standing reservation,
user-created reservation.

REQFULL The reservation will fail if all resources requested cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule VC command. This
pertains to reservations creating while scheduling MWS Services, and
these are filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after completion of the first
job to use the reserved resources.

SPACEFLEX The reservation is allowed to adjust resources allocated over time in
an attempt to optimize resource utilization.

Moab Web Services

Value Description

STANDINGRSV If set, the reservation was created by a standing reservation instance.

STATIC Makes a reservation ineligible to modified or canceled by an
administrator.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved time frame in an
attempt to optimize resource utilization.

TRIGHASFIRED The reservation has one or more triggers that have fired on it.

WASACTIVE The reservation was previously active.

EVACVMS Evacuate virtual machines on the node when the reservation starts.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch time.

expireTime Date No No The time the message will be deleted in epoch time.

index Integer No No The index of the message relative to other messages in
Moab's memory.

message String No Yes The comment information itself.

messageCount Integer No No The number of times this message has been displayed.

priority Double No No An optional priority that can be attached to the comment.

EmbeddedCredential

Moab Web Services

2092 References

References 2093

Field Name Type POST PUT Description

name String No No

type CredentialType No No

CredentialType

Value Description

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

ReservationRequirement

Represents all the types of requirements a user can request while creating a reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

featureList Set<String> Yes No The list of features required for this reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this reservation.

Moab Web Services

Field Name Type POST PUT Description

os String Yes No Required Operating System.

taskCount Integer Yes No Required task count.

ReservationStatistics

Represents some basic statistical information that is kept about the usage of reservations. All
metrics that are kept track relate to processor-seconds usage.

Field
Name Type POST PUT Description

caps Double No No The current active processor-seconds in the last reported
iteration.

cips Double No No The current idle processor-seconds in the last reported
iteration.

taps Double No No The total active processor-seconds over the life of the
reservation.

tips Double No No The total idle processor-seconds over the life of the
reservation.

Trigger

Field
Name Type POST PUT Description

id String No No Trigger id - internal ID used by moab to track
triggers

action String No No For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers,
signifies PREEMPTPOLICY to apply to jobs that
are running on allocated resources. For
changeparam atype triggers, specifies the
parameter to change and its new value (using
the same syntax and behavior as the
changeparam command).

Moab Web Services

2094 References

References 2095

Field
Name Type POST PUT Description

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String No No

eventType TriggerEventType No No

expireTime Date No No Time at which trigger should be terminated if it
has not already been activated.

failOffset Date No No Specifies the time (in seconds) that the
threshold condition must exist before the
trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals.
Can be used with TriggerEventType.EPOCH to
create a Standing Trigger.
Defaults to false

maxRetry Integer No No Specifies the number of times Action will be
attempted before the trigger is designated a
failure.

multiFire Boolean No No Specifies whether this trigger can fire multiple
times. Defaults to false.

name String No No Trigger name - can be auto assigned by moab or
requested. Alphanumeric up to 16 characters in
length

objectId String No No The ID of the object which this is attached to.

Moab Web Services

Field
Name Type POST PUT Description

objectType String No No The type of object which this is attached to.
Possible values:

l vm - Virtual Machine

offset Date No No Relative time offset from event when trigger can
fire.

period TriggerPeriod No No Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified
period. Can be used with EType epoch to create
a standing trigger.

rearmTime Date No No Time between MultiFire triggers; rearm time is
enforced from the trigger event time.

requires String No No Variables this trigger requires to be set or not
set before it will fire. Preceding the string with
an exclamation mark (!) indicates this variable
must NOT be set. Used in conjunction with Sets
to create trigger dependencies.

sets String No No Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon
trigger failure. Preceding the string with a caret
(^) indicates this variable is to be exported to
the parent object when the current object is
destroyed through a completion event. Used in
conjunction with Requires to create trigger
dependencies.

Moab Web Services

2096 References

References 2097

Field
Name Type POST PUT Description

threshold String No No Reservation usage threshold - When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported
with job, node, credential, and reservation
triggers. See Threshold Triggers in the Moab
Workload Manager documentation for more
information.

timeout Date No No Time allotted to this trigger before it is marked
as unsuccessful and its process (if any) killed.

unsets String No No Variable this trigger destroys upon success or
failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Moab Web Services

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

Moab Web Services

2098 References

References 2099

Value Description

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

Moab Web Services

Value Description

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Moab Web Services

2100 References

References 2101

API version 2

Reservation

A reservation is the mechanism by which Moab guarantees the availability of a set of resources at a
particular time. Each reservation consists of three major components: (1) a set of resources, (2) a
time frame, and (3) an access control list. It is a scheduler role to ensure that the access control list
is not violated during the reservation's lifetime (that is, its time frame) on the resources listed. For
example, a reservation may specify that node002 is reserved for user Tom on Friday. The scheduler
is thus constrained to make certain that only Tom's jobs can use node002 at any time on Friday.

Field Name Type POST PUT Description

id String No No The unique ID of the
reservation.

accountingAccount String Yes No Accountable Account.

accountingGroup String Yes No Accountable Group.

accountingQOS String Yes No Accountable QOS.

accountingUser String Yes No Accountable User.

aclRules Set<AclRule> Yes No The set of access control
rules associated with
this reservation.

allocatedNodeCount Integer No No The number of
allocated nodes for this
reservation.

allocatedNodes Set<DomainProxyVersion1> No No The nodes allocated to
the reservation.

allocatedProcessorCount Integer No No The number of
allocated processors.

allocatedTaskCount Integer No No The number of
allocated tasks.

comments String Yes No Reservation's comments
or description.

Moab Web Services

Field Name Type POST PUT Description

creationDate Date No No Creation date.
Automatically set by
Moab when a user
creates the reservation.

duration Long Yes No The duration of the
reservation (in
seconds).

endDate Date Yes No The end date of the
reservation. This is
especially useful for
one-time reservations,
which have an exact
time for when a
reservation ends.

excludeJobs Set<String> Yes No The list of jobs to
exclude. Client must
also set the IGNJOBRSV
reservation flag.
Otherwise, results are
undefined. Used only
during reservation
creation.

expireDate Date No No The date/time when
the reservation expires
and vacates.

flags Set<ReservationFlag> Yes No The flags associated
with the reservation.

globalId String No No Global reservation ID.

Moab Web Services

2102 References

References 2103

Field Name Type POST PUT Description

hostListExpression String Yes No The list of nodes a user
can select to reserve.
This may or may not be
the nodes that are
currently allocated to
this reservation. Note:
Either
hostListExpression or
taskCount must be set
to create a reservation.

idPrefix String Yes No The user-specified
prefix for this
reservation. If provided,
Moab combines the
idPrefix with an integer,
and the combination is
the unique identifier
for this reservation.

isActive Boolean No No State whether or not
this reservation is
currently active.

isTracked Boolean No No States whether
reservation resource
usage is tracked.

label String Yes No When a label is
assigned to a
reservation, the
reservation can then be
referenced by that label
as well as by the
reservation name.

maxTasks Integer No No The maximum number
of tasks for this
reservation.

messages Set<MessageVersion1> No No Messages for the
reservation.

Moab Web Services

Field Name Type POST PUT Description

owner EmbeddedCredential Yes No The owner of the
reservation

partitionId String Yes No The ID of the partition
this reservation is for.

profile String Yes No The profile that this
reservation is using. A
profile is a specification
of attributes that all
reservations share.
Used only during
reservation creation.

requirements ReservationRequirement Yes No The reservation's
requirements.

reservationGroup String Yes No The reservation group
to which the
reservation belongs.

resources Map<String, Integer> Yes No The reservation's
resources. This field is a
map, where the key is
PROCS, MEM DISK,
SWAP, or one or more
user-defined keys.

startDate Date Yes No The start time for the
reservation. This is
especially useful for
one-time reservations,
which have an exact
time for when a
reservation starts.

statistics ReservationStatistics No No The reservation's
statistical information.

subType String Yes No The reservation sub-
type.

Moab Web Services

2104 References

References 2105

Field Name Type POST PUT Description

taskCount Integer No No The number of tasks
that must be allocated
to satisfy the
reservation request.
Note: Either
hostListExpression or
taskCount must be set
to create a reservation.

trigger Trigger Yes No Trigger for reservation.
Used only during
reservation creation.

triggerIds Set<String> No No The IDs of the triggers
attached to this
reservation.

uniqueIndex String No No The globally-unique
reservation index.

variables Map<String, Map> Yes Yes The set of variables for
this reservation.

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Moab Web Services

Field
Name Type POST PUT Description

affinity AclAffinity No Yes Reservation ACLs allow or deny access to
reserved resources but they may also be
configured to affect a job's affinity for a
particular reservation. By default, jobs
gravitate toward reservations through a
mechanism known as positive affinity. This
mechanism allows jobs to run on the most
constrained resources leaving other,
unreserved resources free for use by other
jobs that may not be able to access the
reserved resources. Normally this is a desired
behavior. However, sometimes, it is desirable
to reserve resources for use only as a last
resort-using the reserved resources only
when there are no other resources available.
This last resort behavior is known as negative
affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator No Yes The type of comparison to make against the
ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType No Yes The type of the object that is being granted
(or denied) access.

value String No Yes The name of the object that is being granted
(or denied) access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

Moab Web Services

2106 References

References 2107

Value Description

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

AclType

This enumeration describes the values available for the type of an ACL Rule.

Moab Web Services

Value Description

USER User

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

Moab Web Services

2108 References

References 2109

Value Description

RACK Not supported

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

DomainProxyVersion1

Field Name Type POST PUT Description

id String No No The id of the object.

ReservationFlag

The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this Reservation, but not start during it (unless
they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations, but not user or other reservations.

CHARGE Charge the idle cycles in the accounting manager.

Moab Web Services

Value Description

NOVMMIGRATIONS Override the VM Migration Policy and don't migrate VMs that overlap
this reservation.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job (when using
exclusive).

ADVRES If set, the reservation is created in advance of needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation when it is released.

ALLOWGRID The reservation is set up for use in a grid environment.

ALLOWPRSV Personal reservations can be created within the space of this
standing reservation (and ONLY this standing reservation). By
default, when a standing reservation is given the flag ALLOWPRSV, it
is given the ACL rule USER==ALL+ allowing all jobs and all users
access.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job
ADVRES flag.

DEDICATEDNODE If set, only one active reservation is allowed on a node.

DEDICATEDRESOURCE The reservation is only placed on resources that are not reserved by
any other reservation, including jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one job can run in the
reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

Moab Web Services

2110 References

References 2111

Value Description

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of whether there are
other reservations currently residing on the nodes.

IGNSTATE Request ignores existing resource reservations, allowing the
reservation to be forced onto available resources even if this conflicts
with other reservations.

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor status for resources
contained in the reservation.

PARENTLOCK The reservation can only be destroyed by destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-adminstrator, non-standing reservation,
user-created reservation.

REQFULL The reservation will fail if all resources requested cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule VC command. This
pertains to reservations creating while scheduling MWS Services, and
these are filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after completion of the first
job to use the reserved resources.

SPACEFLEX The reservation is allowed to adjust resources allocated over time in
an attempt to optimize resource utilization.

Moab Web Services

Value Description

STANDINGRSV If set, the reservation was created by a standing reservation instance.

STATIC Makes a reservation ineligible to modified or canceled by an
administrator.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved time frame in an
attempt to optimize resource utilization.

TRIGHASFIRED The reservation has one or more triggers that have fired on it.

WASACTIVE The reservation was previously active.

EVACVMS Evacuate virtual machines on the node when the reservation starts.

MessageVersion1

Field Name Type POST PUT Description

author String No No The author of the message.

creationTime Date No No The time the message was created in epoch time.

expireTime Date No No The time the message will be deleted in epoch time.

index Integer No No The index of the message relative to other messages in
Moab's memory.

message String No Yes The comment information itself.

messageCount Integer No No The number of times this message has been displayed.

priority Double No No An optional priority that can be attached to the comment.

EmbeddedCredential

Moab Web Services

2112 References

References 2113

Field Name Type POST PUT Description

name String No No

type CredentialType No No

CredentialType

Value Description

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

ReservationRequirement

Represents all the types of requirements a user can request while creating a reservation.

Field Name Type POST PUT Description

architecture String Yes No Required architecture.

featureList Set<String> Yes No The list of features required for this reservation.

featureMode String No No Required feature mode.

memory Integer Yes No Required node memory, in MB.

nodeCount Integer No No Required number of nodes.

nodeIds Set<String> No No The list of node IDs required for this reservation.

Moab Web Services

Field Name Type POST PUT Description

os String Yes No Required Operating System.

taskCount Integer Yes No Required task count.

ReservationStatistics

Represents some basic statistical information that is kept about the usage of reservations. All
metrics that are kept track relate to processor-seconds usage.

Field
Name Type POST PUT Description

caps Double No No The current active processor-seconds in the last reported
iteration.

cips Double No No The current idle processor-seconds in the last reported
iteration.

taps Double No No The total active processor-seconds over the life of the
reservation.

tips Double No No The total idle processor-seconds over the life of the
reservation.

Trigger

Field
Name Type POST PUT Description

id String No No Trigger id - internal ID used by moab to track
triggers

action String No No For exec atype triggers, signifies executable and
arguments. For jobpreempt atype triggers,
signifies PREEMPTPOLICY to apply to jobs that
are running on allocated resources. For
changeparam atype triggers, specifies the
parameter to change and its new value (using
the same syntax and behavior as the
changeparam command).

Moab Web Services

2114 References

References 2115

Field
Name Type POST PUT Description

actionType TriggerActionType No No

blockTime Date No No Time (in seconds) Moab will suspend normal
operation to wait for trigger execution to finish.
Use caution as Moab will completely stop normal
operation until BlockTime expires.

description String No No

eventType TriggerEventType No No

expireTime Date No No Time at which trigger should be terminated if it
has not already been activated.

failOffset Date No No Specifies the time (in seconds) that the
threshold condition must exist before the
trigger fires.

flags Set<TriggerFlag> No No

interval Boolean No No When used in conjunction with MultiFire and
RearmTime trigger will fire at regular intervals.
Can be used with TriggerEventType.EPOCH to
create a Standing Trigger.
Defaults to false

maxRetry Integer No No Specifies the number of times Action will be
attempted before the trigger is designated a
failure.

multiFire Boolean No No Specifies whether this trigger can fire multiple
times. Defaults to false.

name String No No Trigger name - can be auto assigned by moab or
requested. Alphanumeric up to 16 characters in
length

objectId String No No The ID of the object which this is attached to.

Moab Web Services

Field
Name Type POST PUT Description

objectType String No No The type of object which this is attached to.
Possible values:

l vm - Virtual Machine

offset Date No No Relative time offset from event when trigger can
fire.

period TriggerPeriod No No Can be used in conjunction with Offset to have a
trigger fire at the beginning of the specified
period. Can be used with EType epoch to create
a standing trigger.

rearmTime Date No No Time between MultiFire triggers; rearm time is
enforced from the trigger event time.

requires String No No Variables this trigger requires to be set or not
set before it will fire. Preceding the string with
an exclamation mark (!) indicates this variable
must NOT be set. Used in conjunction with Sets
to create trigger dependencies.

sets String No No Variable values this trigger sets upon success or
failure. Preceding the string with an exclamation
mark (!) indicates this variable is set upon
trigger failure. Preceding the string with a caret
(^) indicates this variable is to be exported to
the parent object when the current object is
destroyed through a completion event. Used in
conjunction with Requires to create trigger
dependencies.

Moab Web Services

2116 References

References 2117

Field
Name Type POST PUT Description

threshold String No No Reservation usage threshold - When reservation
usage drops below Threshold, trigger will fire.
Threshold usage support is only enabled for
reservations and applies to percent processor
utilization. gmetric thresholds are supported
with job, node, credential, and reservation
triggers. See Threshold Triggers in the Moab
Workload Manager documentation for more
information.

timeout Date No No Time allotted to this trigger before it is marked
as unsuccessful and its process (if any) killed.

unsets String No No Variable this trigger destroys upon success or
failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Moab Web Services

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

Moab Web Services

2118 References

References 2119

Value Description

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

Moab Web Services

Value Description

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Related topics

l Reservations on page 1624

Fields: Resource Types

See the associated Resource types on page 1632 resource section for more information on how to
use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource resource-types Permissions on page 1571

Hooks filename resource-types.groovy Pre and post-processing hooks on page 1412

Moab Web Services

2120 References

References 2121

Type Value Additional information

Distinct query-supported No Distinct on page 1504

API version 3

ResourceType

Represents a resource type in Moab Workload Manager.

Field Name Type Description

id String The unique ID of this resource type.

API version 2

ResourceType

Represents a resource type in Moab Workload Manager.

Field Name Type Description

id String The unique ID of this resource type.

Related topics

l Resource types on page 1632

Fields: Roles

See the associated Roles on page 1633 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource roles Permissions on page 1571

Hooks filename roles.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

API version 3

Role

A role defines a set of permissions that are based on the proxy-user. If no proxy user is specified
then access to objects in MWS are limited to its application permissions. For example if the
application has permission to update all resources in MWS and no proxy-user is specified in the
request then the request can access all resources in MWS.

Field
Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name of this role.
Required during POST.

permissions List<Permission> Yes Yes The set of permissions enforced based on the
proxy-user.

scope PrivilegeScope No No

Permission

Represents a permission

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on the
resource.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*', all fields are
accessible, otherwise requests must match dot
delimited path. Currently only checked when
doing writable actions. Example - attributes.*:
create|update

label String No No A human readable label for this permission.

Moab Web Services

2122 References

References 2123

Field Name Type POST PUT Description

resource String No No The resource the permission applies to.

resourceFilter Map<String,
Map>

No No Amap used to limit which resource instances this
permission applies to. If this is null then the
permission will apply to all instances of the
resource. For api permissions the filter uses
mongo query syntax.

scope PrivilegeScope No No Whether this permission applies to the principal's
tenant-associated resources or globally

type String No No The type of the permission. Only 'api' type
permissions are enforced.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

Moab Web Services

Value Description

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Moab Web Services

2124 References

References 2125

API version 2

Role

A role defines a set of permissions that are based on the proxy-user. If no proxy user is specified
then access to objects in MWS are limited to its application permissions. For example if the
application has permission to update all resources in MWS and no proxy-user is specified in the
request then the request can access all resources in MWS.

Field
Name Type POST PUT Description

id String No No The unique ID of this role.

description String Yes Yes The role description.

name String Yes Yes The unique human-readable name of this role.
Required during POST.

permissions List<Permission> Yes Yes The set of permissions enforced based on the
proxy-user.

scope PrivilegeScope No No

Permission

Represents a permission

Field Name Type POST PUT Description

id String No No The unique ID of this role.

action String No No The action that can be performed on the
resource.

description String No No A description of this permission.

fieldPath String No No Field level ACL control, if null or '*', all fields are
accessible, otherwise requests must match dot
delimited path. Currently only checked when
doing writable actions. Example - attributes.*:
create|update

label String No No A human readable label for this permission.

Moab Web Services

Field Name Type POST PUT Description

resource String No No The resource the permission applies to.

resourceFilter Map<String,
Map>

No No Amap used to limit which resource instances this
permission applies to. If this is null then the
permission will apply to all instances of the
resource. For api permissions the filter uses
mongo query syntax.

scope PrivilegeScope No No Whether this permission applies to the principal's
tenant-associated resources or globally

type String No No The type of the permission. Only 'api' type
permissions are enforced.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

Moab Web Services

2126 References

References 2127

Value Description

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Related topics

l Roles on page 1633

Fields: Report Samples

See the associated Reports on page 1614 resource section for more information on how to use this
resource and supported operations.

Additional references

Type Value Additional information

Permissions resource reports/samples Permissions on page 1571

Hooks filename reports.samples.groovy Pre and post-processing hooks on page 1412

Distinct query-supported Yes Distinct on page 1504

Moab Web Services

API version 3

Sample

A single snapshot of system state. It can contain all the same information as Datapoint.data in the
sample's data field.

Field
Name Type POST Description

id Long No

agent String No A unique identifier for the agent that recorded this sample.

data Map<String,
Map>

No Arbitrary data that was recorded for this sample. Defaults to an
empty object if none is supplied.

timestamp Date No The date and time at which this sample was recorded. Defaults to
the current date if none is supplied.

API version 2

Sample

A single snapshot of system state. It can contain all the same information as Datapoint.data in the
sample's data field.

Field
Name Type POST Description

id Long No

agent String No A unique identifier for the agent that recorded this sample.

data Map<String,
Map>

No Arbitrary data that was recorded for this sample. Defaults to an
empty object if none is supplied.

timestamp Date No The date and time at which this sample was recorded. Defaults to
the current date if none is supplied.

Related topics

l Reports on page 1614

Moab Web Services

2128 References

References 2129

Fields: Standing Reservations

See the associated Standing reservations on page 1639 resource section for more information on
how to use this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource standing-reservations Permissions on page 1571

Hooks filename standing-reser-
vations.groovy

Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

No Distinct on page 1504

Moab Web Services

API version 3

StandingReservation

This class represents a standing reservation.

A standing reservation is any reservation that is not a one-time reservation. This includes
reservations that recur every day or every week, or infinite reservations.

Field Name Type Description

id String The unique ID of the standing reservation.

access ReservationAccess If set to ReservationAccess.SHARED, allows a standing
reservation to use resources already allocated to other
non-job reservations. Otherwise, these other
reservations block resource access.

accounts Set<String> Specifies that jobs with the associated accounts may
use the resources contained within this reservation.

aclRules Set<AclRule> The set of access control rules associated with this
standing reservation.

chargeAccount String Specifies the account to which Moab will charge all idle
cycles within the reservation (via the allocation
manager).

chargeUser String Specifies the user to which Moab will charge all idle
cycles within the reservation (via the allocation
manager).
Must be used in conjunction with chargeAccount

classes Set<String> Specifies that jobs with the associated classes/queues
may use the resources contained within this
reservation.

clusters Set<String> Specifies that jobs originating within the listed clusters
may use the resources contained within this
reservation.

comment String Specifies a descriptive message associated with the
standing reservation and all child reservations

Moab Web Services

2130 References

References 2131

Field Name Type Description

days Set<String> Specifies which days of the week the standing
reservation is active.
Valid values are Mon, Tue, Wed, Thu, Fri, Sat, Sun, or
[ALL].

depth Integer Specifies the depth of standing reservations to be
created, starting at depth 0 (one per period).

disabled Boolean Specifies if the standing reservation should no longer
spawn child reservations.

endOffset Long The ending offset, in seconds, from the beginning of
the current period (DAY or WEEK), for this standing
reservation. See examples at startOffset.

flags Set<ReservationFlag> Specifies special reservation attributes.

groups Set<String> Specifies the groups allowed access to this standing
reservation.

hosts Set<String> Specifies the set of hosts that the scheduler can search
for resources to satisfy the reservation. If specified
using the class:X format, Moab only selects hosts that
support the specified class. If TASKCOUNT is also
specified, only TASKCOUNT tasks are reserved.
Otherwise, all matching hosts are reserved.

jobAttributes Set<JobFlag> Specifies job attributes that grant a job access to the
reservation.
Values can be specified with a != assignment to only
allow jobs NOT requesting a certain feature inside the
reservation.

maxJob Integer Specifies the maximum number of jobs that can run in
the reservation.

maxTime Integer Specifies the maximum time for jobs allowable. Can be
used with affinity to attract jobs with same maxTime.

messages Set<String> Messages associated with the reservation.

Moab Web Services

Field Name Type Description

nodeFeatures Set<String> Specifies the required node features for nodes that are
part of the standing reservation.

os String Specifies the operating system that should be in place
during the reservation. Moab provisions this OS at
reservation start and restores the original OS at
reservation completion.

owner EmbeddedCredential Specifies the owner of the reservation. Setting
ownership for a reservation grants the user
management privileges, including the power to release
it.
Setting a user as the owner of a reservation gives that
user privileges to query and release the reservation.
For sandbox reservations, sandboxes are applied to a
specific peer only if owner is set to
CLUSTER:<PEERNAME>

partition String Specifies the partition in which to create the standing
reservation. Defaults to ALL.

period TimeWindow Period of the Standing reservation. Defaults to
TimeWindow.DAY.

procLimit IntLimit Specifies the processor limit for jobs requesting access
to this standing reservation.

psLimit IntLimit Specifies the processor-second limit for jobs requesting
access to this standing reservation.

qoses Set<String> Specifies that jobs with the listed QoS names can access
the reserved resources.

reservationAccessList Set<Reservation> A list of reservations to which the specified reservation
has access.

reservationGroup String The group of the reservation.

Moab Web Services

2132 References

References 2133

Field Name Type Description

resources Map<String, Integer> Specifies what resources constitute a single standing
reservation task. (Each task must be able to obtain all
of its resources as an atomic unit on a single node.)
Supported resources currently include the following:

l PROCS (number of processors)

l MEM (real memory in MB)

l DISK (local disk in MB)

l SWAP (virtual memory in MB)

rollbackOffset Integer Specifies the minimum time in the future at which the
reservation may start. This offset is rolling meaning the
start time of the reservation will continuously roll back
into the future to maintain this offset. Rollback offsets
are a good way of providing guaranteed resource
access to users under the conditions that they must
commit their resources in the future or lose dedicated
access. See QoS Credential in the Moab Workload
Manager documentation for more information on
quality of service and service level agreements.

startOffset Long The starting offset, in seconds, from the beginning of
the current period (DAY or WEEK), for this standing
reservation. If period is DAY, the offset is from
midnight (00:00) of the current day. If period is
WEEK, the offset is from midnight Sunday of the
current week.
Example 1: For a standing reservation that begins at
9:00 and ends at 17:00 every day, period is DAY,
startOffset is 32400 (9*60*60), and endOffset is
61200 (17*60*60).
Example 2: For a standing reservation that begins at
9:00 Monday and ends at 17:00 Friday every week,
period is WEEK, startOffset is 118800 ((24+9)
*60*60), and endOffset is 493200 (((5*24)+17)
*60*60).

Moab Web Services

Field Name Type Description

taskCount Integer Specifies how many tasks should be reserved for the
reservation
Default is 0 (unlimited tasks).

tasksPerNode Integer Specifies the minimum number of tasks per node that
must be available on eligible nodes.
Default is 0 (no TPN constraint)

timeLimit Integer Specifies the maximum allowed overlap between the
standing reservation and a job requesting resource
access.
Default is null (-1 in moab)

triggers Set<Trigger> Triggers associated with the reservation.

type String The type of the reservation.

users Set<String> Specifies which users have access to the resources
reserved by this reservation.

ReservationAccess

The access type of a standing reservation. If set to SHARED, allows a standing reservation to use
resources already allocated to other non-job reservations. Otherwise, these other reservations block
resource access.

Value Description

DEDICATED

SHARED

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Moab Web Services

2134 References

References 2135

Field
Name Type Description

affinity AclAffinity Reservation ACLs allow or deny access to reserved resources but
they may also be configured to affect a job's affinity for a
particular reservation. By default, jobs gravitate toward
reservations through a mechanism known as positive affinity. This
mechanism allows jobs to run on the most constrained resources
leaving other, unreserved resources free for use by other jobs that
may not be able to access the reserved resources. Normally this is
a desired behavior. However, sometimes, it is desirable to reserve
resources for use only as a last resort-using the reserved
resources only when there are no other resources available. This
last resort behavior is known as negative affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator The type of comparison to make against the ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType The type of the object that is being granted (or denied) access.

value String The name of the object that is being granted (or denied) access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

Moab Web Services

Value Description

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

AclType

This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

Moab Web Services

2136 References

References 2137

Value Description

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

Moab Web Services

Value Description

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

ReservationFlag

The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this Reservation, but not start during it (unless
they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations, but not user or other reservations.

CHARGE Charge the idle cycles in the accounting manager.

NOVMMIGRATIONS Override the VM Migration Policy and don't migrate VMs that overlap
this reservation.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job (when using
exclusive).

Moab Web Services

2138 References

References 2139

Value Description

ADVRES If set, the reservation is created in advance of needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation when it is released.

ALLOWGRID The reservation is set up for use in a grid environment.

ALLOWPRSV Personal reservations can be created within the space of this
standing reservation (and ONLY this standing reservation). By
default, when a standing reservation is given the flag ALLOWPRSV, it
is given the ACL rule USER==ALL+ allowing all jobs and all users
access.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job
ADVRES flag.

DEDICATEDNODE If set, only one active reservation is allowed on a node.

DEDICATEDRESOURCE The reservation is only placed on resources that are not reserved by
any other reservation, including jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one job can run in the
reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of whether there are
other reservations currently residing on the nodes.

IGNSTATE Request ignores existing resource reservations, allowing the
reservation to be forced onto available resources even if this conflicts
with other reservations.

Moab Web Services

Value Description

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor status for resources
contained in the reservation.

PARENTLOCK The reservation can only be destroyed by destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-adminstrator, non-standing reservation,
user-created reservation.

REQFULL The reservation will fail if all resources requested cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule VC command. This
pertains to reservations creating while scheduling MWS Services, and
these are filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after completion of the first
job to use the reserved resources.

SPACEFLEX The reservation is allowed to adjust resources allocated over time in
an attempt to optimize resource utilization.

STANDINGRSV If set, the reservation was created by a standing reservation instance.

STATIC Makes a reservation ineligible to modified or canceled by an
administrator.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved time frame in an
attempt to optimize resource utilization.

Moab Web Services

2140 References

References 2141

Value Description

TRIGHASFIRED The reservation has one or more triggers that have fired on it.

WASACTIVE The reservation was previously active.

EVACVMS Evacuate virtual machines on the node when the reservation starts.

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

Moab Web Services

Value Description

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

Moab Web Services

2142 References

References 2143

Value Description

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

EmbeddedCredential

Moab Web Services

Field Name Type Description

name String

type CredentialType

CredentialType

Value Description

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

TimeWindow

This enumeration represents some common time windows. It can be used when for many purposes,
but was created specifically for statistics.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Moab Web Services

2144 References

References 2145

Value Description

YEAR

INFINITY

IntLimit

Field Name Type Description

qualifier String One of:

l <

l <=

l ==

l >=

l >

value Integer

Reservation

A reservation is the mechanism by which Moab guarantees the availability of a set of resources at a
particular time. Each reservation consists of three major components: (1) a set of resources, (2) a
time frame, and (3) an access control list. It is a scheduler role to ensure that the access control list
is not violated during the reservation's lifetime (that is, its time frame) on the resources listed. For
example, a reservation may specify that node002 is reserved for user Tom on Friday. The scheduler
is thus constrained to make certain that only Tom's jobs can use node002 at any time on Friday.

Field Name Type Description

id String The unique ID of the reservation.

accountingAccount String Accountable Account.

accountingGroup String Accountable Group.

Moab Web Services

Field Name Type Description

accountingQOS String Accountable QOS.

accountingUser String Accountable User.

aclRules Set<AclRule> The set of access control rules associated
with this reservation.

allocatedNodeCount Integer The number of allocated nodes for this
reservation.

allocatedNodes Set<DomainProxyVersion1> The nodes allocated to the reservation.

allocatedProcessorCount Integer The number of allocated processors.

allocatedTaskCount Integer The number of allocated tasks.

comments String Reservation's comments or description.

creationDate Date Creation date. Automatically set by Moab
when a user creates the reservation.

duration Long The duration of the reservation (in seconds).

endDate Date The end date of the reservation. This is
especially useful for one-time reservations,
which have an exact time for when a
reservation ends.

excludeJobs Set<String> The list of jobs to exclude. Client must also
set the IGNJOBRSV reservation flag.
Otherwise, results are undefined. Used only
during reservation creation.

expireDate Date The date/time when the reservation expires
and vacates.

flags Set<ReservationFlag> The flags associated with the reservation.

globalId String Global reservation ID.

Moab Web Services

2146 References

References 2147

Field Name Type Description

hostListExpression String The list of nodes a user can select to reserve.
This may or may not be the nodes that are
currently allocated to this reservation. Note:
Either hostListExpression or taskCount must
be set to create a reservation.

idPrefix String The user-specified prefix for this
reservation. If provided, Moab combines the
idPrefix with an integer, and the
combination is the unique identifier for this
reservation.

isActive Boolean State whether or not this reservation is
currently active.

isTracked Boolean States whether reservation resource usage is
tracked.

label String When a label is assigned to a reservation, the
reservation can then be referenced by that
label as well as by the reservation name.

maxTasks Integer The maximum number of tasks for this
reservation.

messages Set<MessageVersion1> Messages for the reservation.

owner EmbeddedCredential The owner of the reservation

partitionId String The ID of the partition this reservation is for.

profile String The profile that this reservation is using. A
profile is a specification of attributes that all
reservations share. Used only during
reservation creation.

requirements ReservationRequirement The reservation's requirements.

reservationGroup String The reservation group to which the
reservation belongs.

Moab Web Services

Field Name Type Description

resources Map<String, Integer> The reservation's resources. This field is a
map, where the key is PROCS, MEM DISK,
SWAP, or one or more user-defined keys.

startDate Date The start time for the reservation. This is
especially useful for one-time reservations,
which have an exact time for when a
reservation starts.

statistics ReservationStatistics The reservation's statistical information.

subType String The reservation sub-type.

taskCount Integer The number of tasks that must be allocated
to satisfy the reservation request. Note:
Either hostListExpression or taskCount must
be set to create a reservation.

trigger Trigger Trigger for reservation. Used only during
reservation creation.

triggerIds Set<String> The IDs of the triggers attached to this
reservation.

uniqueIndex String The globally-unique reservation index.

variables Map<String, Map> The set of variables for this reservation.

DomainProxyVersion1

Field Name Type Description

id String The id of the object.

MessageVersion1

Moab Web Services

2148 References

References 2149

Field Name Type Description

author String The author of the message.

creationTime Date The time the message was created in epoch time.

expireTime Date The time the message will be deleted in epoch time.

index Integer The index of the message relative to other messages in Moab's memory.

message String The comment information itself.

messageCount Integer The number of times this message has been displayed.

priority Double An optional priority that can be attached to the comment.

ReservationRequirement

Represents all the types of requirements a user can request while creating a reservation.

Field Name Type Description

architecture String Required architecture.

featureList Set<String> The list of features required for this reservation.

featureMode String Required feature mode.

memory Integer Required node memory, in MB.

nodeCount Integer Required number of nodes.

nodeIds Set<String> The list of node IDs required for this reservation.

os String Required Operating System.

taskCount Integer Required task count.

Moab Web Services

ReservationStatistics

Represents some basic statistical information that is kept about the usage of reservations. All
metrics that are kept track relate to processor-seconds usage.

Field Name Type Description

caps Double The current active processor-seconds in the last reported iteration.

cips Double The current idle processor-seconds in the last reported iteration.

taps Double The total active processor-seconds over the life of the reservation.

tips Double The total idle processor-seconds over the life of the reservation.

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

Moab Web Services

2150 References

References 2151

Field
Name Type Description

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

Moab Web Services

Field
Name Type Description

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

Moab Web Services

2152 References

References 2153

Value Description

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Moab Web Services

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

Moab Web Services

2154 References

References 2155

Value Description

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

Moab Web Services

Field
Name Type Description

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

Moab Web Services

2156 References

References 2157

Field
Name Type Description

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

Moab Web Services

API version 2

StandingReservation

This class represents a standing reservation.

A standing reservation is any reservation that is not a one-time reservation. This includes
reservations that recur every day or every week, or infinite reservations.

Field Name Type Description

id String The unique ID of the standing reservation.

access ReservationAccess If set to ReservationAccess.SHARED, allows a standing
reservation to use resources already allocated to other
non-job reservations. Otherwise, these other
reservations block resource access.

accounts Set<String> Specifies that jobs with the associated accounts may
use the resources contained within this reservation.

aclRules Set<AclRule> The set of access control rules associated with this
standing reservation.

chargeAccount String Specifies the account to which Moab will charge all idle
cycles within the reservation (via the allocation
manager).

chargeUser String Specifies the user to which Moab will charge all idle
cycles within the reservation (via the allocation
manager).
Must be used in conjunction with chargeAccount

classes Set<String> Specifies that jobs with the associated classes/queues
may use the resources contained within this
reservation.

clusters Set<String> Specifies that jobs originating within the listed clusters
may use the resources contained within this
reservation.

comment String Specifies a descriptive message associated with the
standing reservation and all child reservations

Moab Web Services

2158 References

References 2159

Field Name Type Description

days Set<String> Specifies which days of the week the standing
reservation is active.
Valid values are Mon, Tue, Wed, Thu, Fri, Sat, Sun, or
[ALL].

depth Integer Specifies the depth of standing reservations to be
created, starting at depth 0 (one per period).

disabled Boolean Specifies if the standing reservation should no longer
spawn child reservations.

endOffset Long The ending offset, in seconds, from the beginning of
the current period (DAY or WEEK), for this standing
reservation. See examples at startOffset.

flags Set<ReservationFlag> Specifies special reservation attributes.

groups Set<String> Specifies the groups allowed access to this standing
reservation.

hosts Set<String> Specifies the set of hosts that the scheduler can search
for resources to satisfy the reservation. If specified
using the class:X format, Moab only selects hosts that
support the specified class. If TASKCOUNT is also
specified, only TASKCOUNT tasks are reserved.
Otherwise, all matching hosts are reserved.

jobAttributes Set<JobFlag> Specifies job attributes that grant a job access to the
reservation.
Values can be specified with a != assignment to only
allow jobs NOT requesting a certain feature inside the
reservation.

maxJob Integer Specifies the maximum number of jobs that can run in
the reservation.

maxTime Integer Specifies the maximum time for jobs allowable. Can be
used with affinity to attract jobs with same maxTime.

messages Set<String> Messages associated with the reservation.

Moab Web Services

Field Name Type Description

nodeFeatures Set<String> Specifies the required node features for nodes that are
part of the standing reservation.

os String Specifies the operating system that should be in place
during the reservation. Moab provisions this OS at
reservation start and restores the original OS at
reservation completion.

owner EmbeddedCredential Specifies the owner of the reservation. Setting
ownership for a reservation grants the user
management privileges, including the power to release
it.
Setting a user as the owner of a reservation gives that
user privileges to query and release the reservation.
For sandbox reservations, sandboxes are applied to a
specific peer only if owner is set to
CLUSTER:<PEERNAME>

partition String Specifies the partition in which to create the standing
reservation. Defaults to ALL.

period TimeWindow Period of the Standing reservation. Defaults to
TimeWindow.DAY.

procLimit IntLimit Specifies the processor limit for jobs requesting access
to this standing reservation.

psLimit IntLimit Specifies the processor-second limit for jobs requesting
access to this standing reservation.

qoses Set<String> Specifies that jobs with the listed QoS names can access
the reserved resources.

reservationAccessList Set<Reservation> A list of reservations to which the specified reservation
has access.

reservationGroup String The group of the reservation.

Moab Web Services

2160 References

References 2161

Field Name Type Description

resources Map<String, Integer> Specifies what resources constitute a single standing
reservation task. (Each task must be able to obtain all
of its resources as an atomic unit on a single node.)
Supported resources currently include the following:

l PROCS (number of processors)

l MEM (real memory in MB)

l DISK (local disk in MB)

l SWAP (virtual memory in MB)

rollbackOffset Integer Specifies the minimum time in the future at which the
reservation may start. This offset is rolling meaning the
start time of the reservation will continuously roll back
into the future to maintain this offset. Rollback offsets
are a good way of providing guaranteed resource
access to users under the conditions that they must
commit their resources in the future or lose dedicated
access. See QoS Credential in the Moab Workload
Manager documentation for more information on
quality of service and service level agreements.

startOffset Long The starting offset, in seconds, from the beginning of
the current period (DAY or WEEK), for this standing
reservation. If period is DAY, the offset is from
midnight (00:00) of the current day. If period is
WEEK, the offset is from midnight Sunday of the
current week.
Example 1: For a standing reservation that begins at
9:00 and ends at 17:00 every day, period is DAY,
startOffset is 32400 (9*60*60), and endOffset is
61200 (17*60*60).
Example 2: For a standing reservation that begins at
9:00 Monday and ends at 17:00 Friday every week,
period is WEEK, startOffset is 118800 ((24+9)
*60*60), and endOffset is 493200 (((5*24)+17)
*60*60).

Moab Web Services

Field Name Type Description

taskCount Integer Specifies how many tasks should be reserved for the
reservation
Default is 0 (unlimited tasks).

tasksPerNode Integer Specifies the minimum number of tasks per node that
must be available on eligible nodes.
Default is 0 (no TPN constraint)

timeLimit Integer Specifies the maximum allowed overlap between the
standing reservation and a job requesting resource
access.
Default is null (-1 in moab)

triggers Set<Trigger> Triggers associated with the reservation.

type String The type of the reservation.

users Set<String> Specifies which users have access to the resources
reserved by this reservation.

ReservationAccess

The access type of a standing reservation. If set to SHARED, allows a standing reservation to use
resources already allocated to other non-job reservations. Otherwise, these other reservations block
resource access.

Value Description

DEDICATED

SHARED

AclRule

This class represents a rule that can be in Moab's access control list (ACL) mechanism.

The basic AclRule information is the object's name and type. The type directly maps to an AclType
value. The default mechanism Moab uses to check the ACL for a particular item is if the user or
object coming in has ANY of the values in the ACL, then the user or object is given access. If no
values match the user or object in question, the user or object is rejected access.

Moab Web Services

2162 References

References 2163

Field
Name Type Description

affinity AclAffinity Reservation ACLs allow or deny access to reserved resources but
they may also be configured to affect a job's affinity for a
particular reservation. By default, jobs gravitate toward
reservations through a mechanism known as positive affinity. This
mechanism allows jobs to run on the most constrained resources
leaving other, unreserved resources free for use by other jobs that
may not be able to access the reserved resources. Normally this is
a desired behavior. However, sometimes, it is desirable to reserve
resources for use only as a last resort-using the reserved
resources only when there are no other resources available. This
last resort behavior is known as negative affinity.

Defaults to AclAffinity.POSITIVE.

comparator ComparisonOperator The type of comparison to make against the ACL object.

Defaults to ComparisonOperator.EQUAL.

type AclType The type of the object that is being granted (or denied) access.

value String The name of the object that is being granted (or denied) access.

AclAffinity

This enumeration describes the values available for describing how a rule is used in establishing
access to an object in Moab. Currently, these ACL affinities are used only for granting access to
reservations.

Value Description

NEGATIVE Access to the object is repelled using this rule until access is the last choice.

NEUTRAL Access to the object is not affected by affinity.

POSITIVE Access to the object is looked at as the first choice.

PREEMPTIBLE Access to the object given the rule gives preemptible status to the accessor. Supported only
during GET.

Moab Web Services

Value Description

REQUIRED The rule in question must be satisified in order to gain access to the object. Supported only
during GET.

UNAVAILABLE The rule does not have its affinity available. Supported only during GET.

ComparisonOperator

This enumeration is used when Moab needs to compare items. One such use is in Access Control Lists
(ACLs).

Value Description

GREATER_THAN Valid values: ">", "gt"

GREATER_THAN_OR_EQUAL Valid values: ">=", "ge"

LESS_THAN Valid values: "<", "lt"

LESS_THAN_OR_EQUAL Valid values: "<=", "le"

EQUAL Valid values: "==", "eq", "="

NOT_EQUAL Valid values: "!=", "ne", "<>"

LEXIGRAPHIC_SUBSTRING Valid value: "%<"

LEXIGRAPHIC_NOT_EQUAL Valid value: "%!"

LEXIGRAPHIC_EQUAL Valid value: "%="

AclType

This enumeration describes the values available for the type of an ACL Rule.

Value Description

USER User

Moab Web Services

2164 References

References 2165

Value Description

GROUP Group

ACCOUNT Account or Project

CLASS Class or Queue

QOS Quality of Service

CLUSTER Cluster

JOB_ID Job ID

RESERVATION_ID Reservation ID

JOB_TEMPLATE Job Template

JOB_ATTRIBUTE Job Attribute

DURATION Duration in Seconds

PROCESSOR_SECONDS Processor Seconds

JPRIORITY Not supported

MEMORY Not supported

NODE Not supported

PAR Not supported

PROC Not supported

QTIME Not supported

QUEUE Not supported

RACK Not supported

Moab Web Services

Value Description

SCHED Not supported

SYTEM Not supported

TASK Not supported

VC Not supported

XFACTOR Not supported

ReservationFlag

The flag types of a reservation.

Value Description

ALLOWJOBOVERLAP Allows jobs to overlap this Reservation, but not start during it (unless
they have ACL access).

APPLYPROFRESOURCES Only apply resource allocation info from profile.

DEADLINE Reservation should be scheduled against a deadline.

IGNIDLEJOBS Ignore idle job reservations.

IGNJOBRSV Ignore job reservations, but not user or other reservations.

CHARGE Charge the idle cycles in the accounting manager.

NOVMMIGRATIONS Override the VM Migration Policy and don't migrate VMs that overlap
this reservation.

OWNERPREEMPTIGNOREMINTIME Owner ignores preemptmintime for this reservation.

PROVISION Reservation should be capable of provisioning.

NOACLOVERLAP Reservation will not look at ACLs to overlap job (when using
exclusive).

Moab Web Services

2166 References

References 2167

Value Description

ADVRES If set, the reservation is created in advance of needing it.

ADVRESJOBDESTROY Cancel any jobs associated with the reservation when it is released.

ALLOWGRID The reservation is set up for use in a grid environment.

ALLOWPRSV Personal reservations can be created within the space of this
standing reservation (and ONLY this standing reservation). By
default, when a standing reservation is given the flag ALLOWPRSV, it
is given the ACL rule USER==ALL+ allowing all jobs and all users
access.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job
ADVRES flag.

DEDICATEDNODE If set, only one active reservation is allowed on a node.

DEDICATEDRESOURCE The reservation is only placed on resources that are not reserved by
any other reservation, including jobs and other reservations.

EXCLUDEJOBS Makes a reservation job exclusive, where only one job can run in the
reservation.

ENDTRIGHASFIRED A trigger has finished firing.

ENFORCENODESET Enforce node sets when creating reservation.

EXCLUDEALLBUTSB Reservation only shares resources with sandboxes.

EXCLUDEMYGROUP Exclude reservations within the same group.

IGNRSV Forces the reservation onto nodes regardless of whether there are
other reservations currently residing on the nodes.

IGNSTATE Request ignores existing resource reservations, allowing the
reservation to be forced onto available resources even if this conflicts
with other reservations.

Moab Web Services

Value Description

ISACTIVE If set, the reservation is currently active.

ISCLOSED If set, the reservation is closed.

ISGLOBAL If set the reservation applies to all resources.

OWNERPREEMPT The owner of the reservation is given preemptor status for resources
contained in the reservation.

PARENTLOCK The reservation can only be destroyed by destroying its parent.

PREEMPTEE The reservation is preemptible.

PLACEHOLDER The reservation is a placeholder for resources.

PRSV The reservation is a non-adminstrator, non-standing reservation,
user-created reservation.

REQFULL The reservation will fail if all resources requested cannot be allocated.

SCHEDULEVCRSV The reservation was created as part of a schedule VC command. This
pertains to reservations creating while scheduling MWS Services, and
these are filtered from the MWS output of reservations.

SINGLEUSE The reservation is automatically removed after completion of the first
job to use the reserved resources.

SPACEFLEX The reservation is allowed to adjust resources allocated over time in
an attempt to optimize resource utilization.

STANDINGRSV If set, the reservation was created by a standing reservation instance.

STATIC Makes a reservation ineligible to modified or canceled by an
administrator.

SYSTEMJOB The reservation was created by a system job.

TIMEFLEX The reservation is allowed to adjust the reserved time frame in an
attempt to optimize resource utilization.

Moab Web Services

2168 References

References 2169

Value Description

TRIGHASFIRED The reservation has one or more triggers that have fired on it.

WASACTIVE The reservation was previously active.

EVACVMS Evacuate virtual machines on the node when the reservation starts.

JobFlag

This enumeration specifies the flag types of a job.

Value Description

NONE

BACKFILL The job is using backfill to run.

COALLOC The job can use resources from multiple resource managers and
partitions.

ADVRES The job requires the use of a reservation.

NOQUEUE The job will attempt to execute immediately or fail.

ARRAYJOB The job is part of a job array.

ARRAYJOBPARLOCK This array job will only run in one partition.

ARRAYJOBPARSPAN This array job will span partitions (default).

ARRAYMASTER This job is the master of a job array.

BESTEFFORT The job will succeed if even partial resources are available.

RESTARTABLE The job is restartable.

SUSPENDABLE The job is suspendable.

HASPREEMPTED This job preempted other jobs to start.

Moab Web Services

Value Description

PREEMPTEE The job is a preemptee and therefore can be preempted by other jobs.

PREEMPTOR The job is a preemptor and therefore can preempt other jobs.

RSVMAP The job is based on a reservation.

SPVIOLATION The job was started with a soft policy violation.

IGNNODEPOLICIES The job will ignore node policies.

IGNPOLICIES The job will ignore idle, active, class, partition, and system policies.

IGNNODESTATE The job will ignore node state in order to run.

IGNIDLEJOBRSV The job can ignore idle job reservations. The job granted access to all
idle job reservations.

INTERACTIVE The job needs to interactive input from the user to run.

FSVIOLATION The job was started with a fairshare violation.

GLOBALQUEUE The job is directly submitted without doing any authentication.

NORESOURCES The job is a system job that does not need any resources.

NORMSTART The job will not query a resource manager to run.

CLUSTERLOCKED The job is locked into the current cluster and cannot be migrated
elsewhere. This is for grid mode.

FRAGMENT The job can be run across multiple nodes in individual chunks.

SYSTEMJOB The job is a system job which simply runs on the same node that Moab
is running on. This is usually used for running scripts and other
executables in workflows.

ADMINSETIGNPOLICIES The IGNPOLICIES flag was set by an administrator.

Moab Web Services

2170 References

References 2171

Value Description

EXTENDSTARTWALLTIME The job duration (walltime) was extended at job start.

SHAREDMEM The job will share its memory across nodes.

BLOCKEDBYGRES The job's generic resource requirement caused the job to start later.

GRESONLY The job is requesting only generic resources, no compute resources.

TEMPLATESAPPLIED The job has had all applicable templates applied to it.

META META job, just a container around resources.

WIDERSVSEARCHALGO This job prefers the wide search algorithm.

VMTRACKING The job is a VMTracking job for an externally-created VM (via job
template).

DESTROYTEMPLATESUBMITTED A destroy job has already been created from the template for this job.

PROCSPECIFIED The job requested processors on the command line.

CANCELONFIRSTFAILURE Cancel job array on first array job failure.

CANCELONFIRSTSUCCESS Cancel job array on first array job success.

CANCELONANYFAILURE Cancel job array on any array job failure.

CANCELONANYSUCCESS Cancel job array on any array job success.

CANCELONEXITCODE Cancel job array on a specific exit code.

NOVMMIGRATE Do not migrate the virtual machine that this job sets up.

PURGEONSUCCESSONLY Only purge the job if it completed successfully

EmbeddedCredential

Moab Web Services

Field Name Type Description

name String

type CredentialType

CredentialType

Value Description

USER

GROUP

ACCOUNT

CLASS

QOS

NOT_SPECIFIED

TimeWindow

This enumeration represents some common time windows. It can be used when for many purposes,
but was created specifically for statistics.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Moab Web Services

2172 References

References 2173

Value Description

YEAR

INFINITY

IntLimit

Field Name Type Description

qualifier String One of:

l <

l <=

l ==

l >=

l >

value Integer

Reservation

A reservation is the mechanism by which Moab guarantees the availability of a set of resources at a
particular time. Each reservation consists of three major components: (1) a set of resources, (2) a
time frame, and (3) an access control list. It is a scheduler role to ensure that the access control list
is not violated during the reservation's lifetime (that is, its time frame) on the resources listed. For
example, a reservation may specify that node002 is reserved for user Tom on Friday. The scheduler
is thus constrained to make certain that only Tom's jobs can use node002 at any time on Friday.

Field Name Type Description

id String The unique ID of the reservation.

accountingAccount String Accountable Account.

accountingGroup String Accountable Group.

Moab Web Services

Field Name Type Description

accountingQOS String Accountable QOS.

accountingUser String Accountable User.

aclRules Set<AclRule> The set of access control rules associated
with this reservation.

allocatedNodeCount Integer The number of allocated nodes for this
reservation.

allocatedNodes Set<DomainProxyVersion1> The nodes allocated to the reservation.

allocatedProcessorCount Integer The number of allocated processors.

allocatedTaskCount Integer The number of allocated tasks.

comments String Reservation's comments or description.

creationDate Date Creation date. Automatically set by Moab
when a user creates the reservation.

duration Long The duration of the reservation (in seconds).

endDate Date The end date of the reservation. This is
especially useful for one-time reservations,
which have an exact time for when a
reservation ends.

excludeJobs Set<String> The list of jobs to exclude. Client must also
set the IGNJOBRSV reservation flag.
Otherwise, results are undefined. Used only
during reservation creation.

expireDate Date The date/time when the reservation expires
and vacates.

flags Set<ReservationFlag> The flags associated with the reservation.

globalId String Global reservation ID.

Moab Web Services

2174 References

References 2175

Field Name Type Description

hostListExpression String The list of nodes a user can select to reserve.
This may or may not be the nodes that are
currently allocated to this reservation. Note:
Either hostListExpression or taskCount must
be set to create a reservation.

idPrefix String The user-specified prefix for this
reservation. If provided, Moab combines the
idPrefix with an integer, and the
combination is the unique identifier for this
reservation.

isActive Boolean State whether or not this reservation is
currently active.

isTracked Boolean States whether reservation resource usage is
tracked.

label String When a label is assigned to a reservation, the
reservation can then be referenced by that
label as well as by the reservation name.

maxTasks Integer The maximum number of tasks for this
reservation.

messages Set<MessageVersion1> Messages for the reservation.

owner EmbeddedCredential The owner of the reservation

partitionId String The ID of the partition this reservation is for.

profile String The profile that this reservation is using. A
profile is a specification of attributes that all
reservations share. Used only during
reservation creation.

requirements ReservationRequirement The reservation's requirements.

reservationGroup String The reservation group to which the
reservation belongs.

Moab Web Services

Field Name Type Description

resources Map<String, Integer> The reservation's resources. This field is a
map, where the key is PROCS, MEM DISK,
SWAP, or one or more user-defined keys.

startDate Date The start time for the reservation. This is
especially useful for one-time reservations,
which have an exact time for when a
reservation starts.

statistics ReservationStatistics The reservation's statistical information.

subType String The reservation sub-type.

taskCount Integer The number of tasks that must be allocated
to satisfy the reservation request. Note:
Either hostListExpression or taskCount must
be set to create a reservation.

trigger Trigger Trigger for reservation. Used only during
reservation creation.

triggerIds Set<String> The IDs of the triggers attached to this
reservation.

uniqueIndex String The globally-unique reservation index.

variables Map<String, Map> The set of variables for this reservation.

DomainProxyVersion1

Field Name Type Description

id String The id of the object.

MessageVersion1

Moab Web Services

2176 References

References 2177

Field Name Type Description

author String The author of the message.

creationTime Date The time the message was created in epoch time.

expireTime Date The time the message will be deleted in epoch time.

index Integer The index of the message relative to other messages in Moab's memory.

message String The comment information itself.

messageCount Integer The number of times this message has been displayed.

priority Double An optional priority that can be attached to the comment.

ReservationRequirement

Represents all the types of requirements a user can request while creating a reservation.

Field Name Type Description

architecture String Required architecture.

featureList Set<String> The list of features required for this reservation.

featureMode String Required feature mode.

memory Integer Required node memory, in MB.

nodeCount Integer Required number of nodes.

nodeIds Set<String> The list of node IDs required for this reservation.

os String Required Operating System.

taskCount Integer Required task count.

Moab Web Services

ReservationStatistics

Represents some basic statistical information that is kept about the usage of reservations. All
metrics that are kept track relate to processor-seconds usage.

Field Name Type Description

caps Double The current active processor-seconds in the last reported iteration.

cips Double The current idle processor-seconds in the last reported iteration.

taps Double The total active processor-seconds over the life of the reservation.

tips Double The total idle processor-seconds over the life of the reservation.

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

Moab Web Services

2178 References

References 2179

Field
Name Type Description

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

Moab Web Services

Field
Name Type Description

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

TriggerActionType

This enumeration specifies the action type of a trigger.

Value Description

CANCEL Only apply to reservation triggers

CHANGE_
PARAM

JOB_
PREEMPT

This indicates that the trigger should preempt all jobs currently allocating resources assigned
to the trigger's parent object. Only apply to reservation triggers.

MAIL

THRESHOLD

INTERNAL

Moab Web Services

2180 References

References 2181

Value Description

EXEC

TriggerEventType

This enumeration specifies the event type of a trigger.

Value Description

CANCEL

CHECKPOINT

CREATE

END

EPOCH

FAIL

HOLD

MIGRATE

MODIFY

PREEMPT

STANDING

START

THRESHOLD

TriggerFlag

This enumeration specifies a flag belonging to a trigger.

Moab Web Services

Value Description

ATTACH_ERROR If the trigger outputs anything to stderr, Moab will attach this as a message to the trigger
object.

CLEANUP If the trigger is still running when the parent object completes or is canceled, the trigger
will be killed.

CHECKPOINT Moab should always checkpoint this trigger. See Checkpointing a Trigger in the Moab
Workload Manager documentation for more information.

GLOBAL_VARS The trigger will look in the name space of all nodes with the globalvars flag in addition to
its own name space. A specific node to search can be specified using the following format:
globalvars+node_id

INTERVAL Trigger is periodic.

MULTIFIRE Trigger can fire multiple times.

OBJECT_XML_
STDIN

Trigger passes its parent's object XML information into the trigger's stdin. This only
works for exec triggers with reservation type parents.

USER The trigger will execute under the user ID of the object's owner. If the parent object is
sched, the user to run under may be explicitly specified using the format
user+<username>, for example flags=user+john:

GLOBAL_
TRIGGER

The trigger will be (or was) inserted into the global trigger list.

ASYNCHRONOUS An asynchronous trigger.

LEAVE_FILES Do not remove stderr and stdout files.

PROBE The trigger's stdout will be monitored.

PROBE_ALL The trigger's stdout will be monitored.

GENERIC_
SYSTEM_JOB

The trigger belongs to a generic system job (for checkpointing).

Moab Web Services

2182 References

References 2183

Value Description

REMOVE_STD_
FILES

The trigger will delete stdout/stderr files after it has been reset.

RESET_ON_
MODIFY

The trigger resets if the object it is attached to is modified, even if multifire is not set.

SOFT_KILL By default, a SIGKILL (kill -9) signal is sent to the kill the script when a trigger times
out. This flag will instead send a SIGTERM (kill -15) signal to kill the script. The SIGTERM
signal will allow the script to trap the signal so that the script can clean up any residual
information on the system (instead of just dying, as with the SIGKILL signal).
NOTE: A timed-out trigger will only receive one kill signal. This means that if you specify
this flag, a timed-out trigger will only receive the SIGTERM signal, and never the
SIGKILL signal.

TriggerPeriod

This enumeration specifies the period of a trigger.

Value Description

MINUTE

HOUR

DAY

WEEK

MONTH

Trigger

Field
Name Type Description

id String Trigger id - internal ID used by moab to track triggers

Moab Web Services

Field
Name Type Description

action String For exec atype triggers, signifies executable and arguments. For
jobpreempt atype triggers, signifies PREEMPTPOLICY to apply to jobs
that are running on allocated resources. For changeparam atype
triggers, specifies the parameter to change and its new value (using
the same syntax and behavior as the changeparam command).

actionType TriggerActionType

blockTime Date Time (in seconds) Moab will suspend normal operation to wait for
trigger execution to finish. Use caution as Moab will completely stop
normal operation until BlockTime expires.

description String

eventType TriggerEventType

expireTime Date Time at which trigger should be terminated if it has not already been
activated.

failOffset Date Specifies the time (in seconds) that the threshold condition must
exist before the trigger fires.

flags Set<TriggerFlag>

interval Boolean When used in conjunction with MultiFire and RearmTime trigger will
fire at regular intervals. Can be used with TriggerEventType.EPOCH
to create a Standing Trigger.
Defaults to false

maxRetry Integer Specifies the number of times Action will be attempted before the
trigger is designated a failure.

multiFire Boolean Specifies whether this trigger can fire multiple times. Defaults to
false.

name String Trigger name - can be auto assigned by moab or requested.
Alphanumeric up to 16 characters in length

objectId String The ID of the object which this is attached to.

Moab Web Services

2184 References

References 2185

Field
Name Type Description

objectType String The type of object which this is attached to. Possible values:

l vm - Virtual Machine

offset Date Relative time offset from event when trigger can fire.

period TriggerPeriod Can be used in conjunction with Offset to have a trigger fire at the
beginning of the specified period. Can be used with EType epoch to
create a standing trigger.

rearmTime Date Time between MultiFire triggers; rearm time is enforced from the
trigger event time.

requires String Variables this trigger requires to be set or not set before it will fire.
Preceding the string with an exclamation mark (!) indicates this
variable must NOT be set. Used in conjunction with Sets to create
trigger dependencies.

sets String Variable values this trigger sets upon success or failure. Preceding
the string with an exclamation mark (!) indicates this variable is set
upon trigger failure. Preceding the string with a caret (^) indicates
this variable is to be exported to the parent object when the current
object is destroyed through a completion event. Used in conjunction
with Requires to create trigger dependencies.

threshold String Reservation usage threshold - When reservation usage drops below
Threshold, trigger will fire.
Threshold usage support is only enabled for reservations and
applies to percent processor utilization. gmetric thresholds are
supported with job, node, credential, and reservation triggers. See
Threshold Triggers in the Moab Workload Manager documentation
for more information.

timeout Date Time allotted to this trigger before it is marked as unsuccessful and
its process (if any) killed.

unsets String Variable this trigger destroys upon success or failure.

Related topics

l Standing reservations on page 1639

Moab Web Services

Fields: User's Permissions

See the associated Permissions on page 1571 resource section for more information on how to use
this resource and supported operations.

Additional references

Type Value Additional information

Permissions resource permissions/users Permissions on page 1571

Hooks filename permissions.users.groovy Pre and post-processing hooks on page
1412

Distinct query-sup-
ported

Yes Distinct on page 1504

Moab Web Services

2186 References

References 2187

API version 3

UserPermission

Field Name Type Description

id String The unique ID of the cached user permission.

name String The unique name of the user.

permissions List<Permission> The list of permissions.

Permission

Represents a permission

Field Name Type Description

id String The unique ID of this role.

action String The action that can be performed on the resource.

description String A description of this permission.

fieldPath String Field level ACL control, if null or '*', all fields are accessible, otherwise
requests must match dot delimited path. Currently only checked when
doing writable actions. Example - attributes.*: create|update

label String A human readable label for this permission.

resource String The resource the permission applies to.

resourceFilter Map<String,
Map>

Amap used to limit which resource instances this permission applies
to. If this is null then the permission will apply to all instances of the
resource. For api permissions the filter uses mongo query syntax.

scope PrivilegeScope Whether this permission applies to the principal's tenant-associated
resources or globally

type String The type of the permission. Only 'api' type permissions are enforced.

Moab Web Services

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Moab Web Services

2188 References

References 2189

API version 2

UserPermission

Field Name Type Description

id String The unique ID of the cached user permission.

name String The unique name of the user.

permissions List<Permission> The list of permissions.

Permission

Represents a permission

Field Name Type Description

id String The unique ID of this role.

action String The action that can be performed on the resource.

description String A description of this permission.

fieldPath String Field level ACL control, if null or '*', all fields are accessible, otherwise
requests must match dot delimited path. Currently only checked when
doing writable actions. Example - attributes.*: create|update

label String A human readable label for this permission.

resource String The resource the permission applies to.

resourceFilter Map<String,
Map>

Amap used to limit which resource instances this permission applies
to. If this is null then the permission will apply to all instances of the
resource. For api permissions the filter uses mongo query syntax.

scope PrivilegeScope Whether this permission applies to the principal's tenant-associated
resources or globally

type String The type of the permission. Only 'api' type permissions are enforced.

Moab Web Services

PrivilegeScope

Some permissions and roles ignore tenants and apply globally. Others apply only to the resources
associated with the principal's tenants.

Value Description

GLOBAL Describes a role or permission that applies globally, irrespective of the principal's tenants. This
scope can be applied to any role or permission.

TENANT Describes a role or permission that applies only to the resources associated with the principal's
tenants. This scope can be applied to any role, but only to those permissions associated with
tenanted resources (e.g. nodes, services, etc.).

NONE Scope doesn't apply to some permissions. As of right now, all non-domain permissions (e.g. those
created by Viewpoint) don't need a scope. NONE should therefore be assigned to all non-domain
permissions.

Related topics

l Permissions on page 1571

TORQUE Resource Manager

Introduction
This section contains some basic introduction information to help you get started using TORQUE. It
contains these topics:

l What is a Resource Manager? on page 2190

l What are Batch Systems? on page 2190

l Basic Job Flow on page 2191

What is a Resource Manager?
While TORQUE has a built-in scheduler, pbs_sched, it is typically used solely as a resource manager with
a scheduler making requests to it. Resources managers provide the low-level functionality to start, hold,
cancel, and monitor jobs. Without these capabilities, a scheduler alone cannot control jobs.

What are Batch Systems?
While TORQUE is flexible enough to handle scheduling a conference room, it is primarily used in batch
systems. Batch systems are a collection of computers and other resources (networks, storage systems,
license servers, and so forth) that operate under the notion that the whole is greater than the sum of the

TORQUE Resource Manager

2190 Introduction

Introduction 2191

parts. Some batch systems consist of just a handful of machines running single-processor jobs, minimally
managed by the users themselves. Other systems have thousands and thousands of machines executing
users' jobs simultaneously while tracking software licenses and access to hardware equipment and
storage systems.

Pooling resources in a batch system typically reduces technical administration of resources while
offering a uniform view to users. Once configured properly, batch systems abstract away many of the
details involved with running and managing jobs, allowing higher resource utilization. For example, users
typically only need to specify the minimal constraints of a job and do not need to know the individual
machine names of each host on which they are running. With this uniform abstracted view, batch systems
can execute thousands and thousands of jobs simultaneously.

Batch systems are comprised of four different components: (1) Master Node, (2) Submit/Interactive
Nodes, (3) Compute Nodes, and (4) Resources.

Component Description

Master Node A batch system will have a master node where pbs_server runs. Depending on the needs of
the systems, a master node may be dedicated to this task, or it may fulfill the roles of other
components as well.

Submit/Interactive
Nodes

Submit or interactive nodes provide an entry point to the system for users to manage their
workload. For these nodes, users are able to submit and track their jobs. Additionally, some
sites have one or more nodes reserved for interactive use, such as testing and troubleshoot-
ing environment problems. These nodes have client commands (such as qsub and qhold).

Computer Nodes Compute nodes are the workhorses of the system. Their role is to execute submitted jobs.
On each compute node, pbs_mom runs to start, kill, and manage submitted jobs. It com-
municates with pbs_server on the master node. Depending on the needs of the systems, a
compute node may double as the master node (or more).

Resources Some systems are organized for the express purpose of managing a collection of resources
beyond compute nodes. Resources can include high-speed networks, storage systems,
license managers, and so forth. Availability of these resources is limited and needs to be
managed intelligently to promote fairness and increased utilization.

Basic Job Flow
The life cycle of a job can be divided into four stages: (1) creation, (2) submission, (3) execution, and (4)
finalization.

TORQUE Resource Manager

Stage Description

Creation Typically, a submit script is written to hold all of the parameters of a job. These parameters could
include how long a job should run (walltime), what resources are necessary to run, and what to
execute. The following is an example submit file:

#PBS -N localBlast
#PBS -S /bin/sh
#PBS -l nodes=1:ppn=2,walltime=240:00:00
#PBS -M user@my.organization.com
#PBS -m ea
source ~/.bashrc
cd $HOME/work/dir
sh myBlast.sh -i -v

This submit script specifies the name of the job (localBlast), what environment to use (/bin/sh),
that it needs both processors on a single node (nodes=1:ppn=2), that it will run for at most 10
days, and that TORQUE should email "user@my.organization.com" when the job exits or aborts.
Additionally, the user specifies where and what to execute.

Submission A job is submitted with the qsub command. Once submitted, the policies set by the administration
and technical staff of the site dictate the priority of the job and therefore, when it will start execut-
ing.

Execution Jobs often spend most of their lifecycle executing. While a job is running, its status can be queried
with qstat.

Finalilzation When a job completes, by default, the stdout and stderr files are copied to the directory
where the job was submitted.

Related topics

l Overview

Overview
This section contains some basic information about TORQUE, including how to install and configure it on
your system. For details, see these topics:

l TORQUE Installation Overview on page 2193

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200

l Advanced configuration on page 2207

l Manual Setup of Initial Server Configuration on page 2221

l Server Node File Configuration on page 2222

l Testing Server Configuration on page 2224

TORQUE Resource Manager

2192 Overview

Overview 2193

l TORQUE on NUMA Systems on page 2227

l TORQUE Multi-MOM on page 2231

TORQUE Installation Overview
This section contains information about TORQUE architecture and explains how to install TORQUE. It
also describes how to install tpackages on compute nodes and how to enable TORQUE as a service.

For details, see these topics:

l TORQUE Architecture on page 2193

l Installing TORQUE on page 2193

l Compute Nodes on page 2198

l Enabling TORQUE as a Service on page 2199

Related topics

l Troubleshooting on page 2316

TORQUE Architecture
A TORQUE cluster consists of one head node and many compute nodes. The head node runs the pbs_
server daemon and the compute nodes run the pbs_mom daemon. Client commands for submitting and
managing jobs can be installed on any host (including hosts not running pbs_server or pbs_mom).

The head node also runs a scheduler daemon. The scheduler interacts with pbs_server to make local
policy decisions for resource usage and allocate nodes to jobs. A simple FIFO scheduler, and code to
construct more advanced schedulers, is provided in the TORQUE source distribution. Most TORQUE users
choose to use a packaged, advanced scheduler such as Maui or Moab.

Users submit jobs to pbs_server using the qsub command. When pbs_server receives a new job, it
informs the scheduler. When the scheduler finds nodes for the job, it sends instructions to run the job
with the node list to pbs_server. Then, pbs_server sends the new job to the first node in the node list and
instructs it to launch the job. This node is designated the execution host and is called Mother Superior.
Other nodes in a job are called sister MOMs.

Related topics

l TORQUE Installation Overview on page 2193

l Installing TORQUE on page 2193

Installing TORQUE
These instructions describe how to install and start TORQUE.

TORQUE Resource Manager

http://www.adaptivecomputing.com/resources/docs/maui

Requirements

Supported Operating Systems

l CentOS 6.5 or later

l Red Hat 6.5 or later

l Scientific Linux 6.5 or later

l SUSE Linux Enterprise Server 11 SP3 or later

CentOS 5.9, Red Hat 5.9 and Scientific Linux 5.9 are supported, largely to continue support for
clusters where the compute nodes operating systems cannot be upgraded. We recommend that
the TORQUE head node run on the supported operating systems listed above.

Software Requirements

l libxml2-devel package (package name may vary)

l openssl-devel package (package name may vary)

l Tcl/Tk version 8 or later if you plan to build the GUI portion of TORQUE or use a Tcl based
scheduler

l If you use cpusets, libhwloc 1.1 or later is required (for TORQUE 4.0.0 and later)

If you build TORQUE from source (i.e. clone from github), the following additional software is
required:

l gcc

l gcc-c++

l A posix compatible version of make

l libtool 1.5.22

l boost-devel 1.36.0

TORQUE Resource Manager

2194 Overview

Overview 2195

Prerequisites

l TORQUE requires certain ports to be open for essential communication:

o For client communication to pbs_server, all privileged ports must be open (ports
under 1024).

o For pbs_server communication to pbs_mom, the default port is 15003.

o For pbs_mom to pbs_server, the default port is 15001.

For more information on how to configure the ports that TORQUE uses for communication, see
Configuring Ports on page 2204.

Important: If you intend to use TORQUE 5.0.x with Moab, you must run Moab version
8.0.x or later. TORQUE 5.0.x will not work with versions earlier than Moab 8.0.x.

l Make sure your host (with the correct IP address) is in your /etc/hosts file.

l The libxml2-devel, openssl-devel, and boost-devel packages must be installed
(These packages should already be installed from following the steps in the Preparing for
installation on page 24).

RHEL 6.5 and CentOS 6.5, and Scientific Linux 6.5:

[root]# yum install openssl-devel libtool-devel libxml2-devel boost-devel gcc
gcc-c++

SLES

[root]# zypper install openssl-devel libtool-devel libxml2-devel boost-devel
gcc gcc-c++

RHEL 5 and CentOS 5, and Scientific Linux 5:

[root]# yum install openssl-devel libtool-devel libxml2-devel gcc gcc-c++

Important: TORQUE requires Boost version 1.36.0 or greater. The boost-devel package
provided with RHEL 5, CentOS 5, and Scientific Linux 5 is older than this requirement. A
new option, --with-boost-path has been added to configure (see Customizing the Install
on page 2207 in the TORQUE Administrator Guide for more information). This allows you
to point TORQUE to a specific version of boost during make. One way to
compileTORQUE without installing Boost is to simply download the Boost version you
plan to use from: http://www.boost.org/users/history/. Next, untar Boost—you do not
need to build it or install it. When you run TORQUE configure, use the --with-boost-path
option pointed to the extracted Boost directory.

To install TORQUE

1. Switch the user to root.

[user]$ su -

TORQUE Resource Manager

http://www.boost.org/users/history/

2. Download the latest 5.0.1 build from the Adaptive Computing website. It can also be downloaded via
command line (github method or the tarball distribution).

l Clone the source from github:

If you clone the source from github, the libtool package must be installed.

RHEL 6 and Scientific Linux 6:
[root]# yum install git libtool

SLES:
[root]# zypper install libtool

[root]# git clone https://github.com/adaptivecomputing/torque.git -b 5.0.1 5.0.1
[root]# cd 5.0.1
[root]# ./autogen.sh

If you are using CentOS 5, use these instructions for installing libtool:

[root]# cd /tmp
[root]# wget http://ftpmirror.gnu.org/libtool/libtool-2.4.2.tar.gz
[root]# tar -xzvf libtool-2.4.2.tar.gz
[root]# cd libtool-2.4.2
[root]# ./configure --prefix=/usr
[root]# make
[root]# make install
[root]# cd /tmp
[root]# git clone https://github.com/adaptivecomputing/torque.git -b
5.0.1 5.0.1
[root]# cd 5.0.1
[root]# ./autogen.sh

l Get the tarball source distribution:

[root]# wget http://www.adaptivecomputing.com/download/torque/torque-
5.0.1.tar.gz -O torque-5.0.1.tar.gz

[root]# tar -xzvf torque-5.0.1.tar.gz
[root]# cd torque-5.0.1/

3. Run each of the following commands in order.

[root]# ./configure
[root]# make
[root]# make install

For information on what options are available to customize the ./configure command, see
Customizing the Install on page 2207.

4. Configure the trqauthd daemon to start automatically at system boot.

TORQUE Resource Manager

2196 Overview

http://www.adaptivecomputing.com/support/download-center/

Overview 2197

* If RHEL distribution, do the following *
[root]# cp contrib/init.d/trqauthd /etc/init.d/
[root]# chkconfig --add trqauthd
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
[root]# service trqauthd start

* If SLES distribution, do the following *
[root]# cp contrib/init.d/suse.trqauthd /etc/init.d/trqauthd
[root]# chkconfig --add trqauthd
[root]# echo /usr/local/lib > /etc/ld.so.conf.d/torque.conf
[root]# ldconfig
[root]# service trqauthd start

5. The make packages command can be used to create self-extracting packages that can be copied and
executed on your nodes. For information on creating packages and deploying them, see Compute
Nodes on page 2198.

You will also want to scp the init.d scripts to the compute nodes and install them there.

6. Verify that the /var/spool/torque/server_name file exists and contains the correct name of
the server.

[root]# echo <pbs_server's_hostname> > /var/spool/torque/server_name

7. By default, TORQUE installs all binary files to /usr/local/bin and /usr/local/sbin. Make
sure the path environment variable includes these directories for both the installation user and the
root user.

[root]# export PATH=/usr/local/bin/:/usr/local/sbin/:$PATH

8. Initialize serverdb by executing the torque.setup script.

[root]# ./torque.setup root

9. Add nodes to the /var/spool/torque/server_priv/nodes file. For information on syntax and
options for specifying compute nodes, see Specifying Compute Nodes on page 2202.

10. Configure the MOMs if necessary (see Configuring TORQUE on Compute Nodes on page 2203 in the
TORQUE Administrator Guide).

11. Configure pbs_server and pbs_mom to start automatically at system boot, and then start their
daemons.

TORQUE Resource Manager

* If RHEL distribution, do the following *
[root]# cp contrib/init.d/pbs_server contrib/init.d/pbs_mom /etc/init.d
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom
[root]# service pbs_server restart
[root]# service pbs_mom start

* If SLES distribution, do the following *
[root]# cp contrib/init.d/suse.pbs_server /etc/init.d/pbs_server
[root]# cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
[root]# chkconfig --add pbs_server
[root]# chkconfig --add pbs_mom
[root]# service pbs_server restart
[root]# service pbs_mom start

Related topics

l Preparing for installation on page 24
l Installing Moab Workload Manager on page 34
l Component documentation on page 95

Compute Nodes
Use the Adaptive Computing tpackage system to create self-extracting tarballs which can be distributed
and installed on compute nodes. The tpackages are customizable. See the INSTALL file for additional
options and features.

If you installed TORQUE using the RPMs, you must install and configure your nodes manually by
modifying the /var/spool/torque/mom_priv/config file of each one. This file is identical for
all compute nodes and can be created on the head node and distributed in parallel to all systems.

[root]# vi /var/spool/torque/mom_priv/config

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

[root]# service pbs_mom restart

To create tpackages

1. Configure and make as normal, and then run make packages.

> make packages
Building ./torque-package-clients-linux-i686.sh ...
Building ./torque-package-mom-linux-i686.sh ...
Building ./torque-package-server-linux-i686.sh ...
Building ./torque-package-gui-linux-i686.sh ...
Building ./torque-package-devel-linux-i686.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on
your production machines. Use --help for options.

2. Copy the desired packages to a shared location.

TORQUE Resource Manager

2198 Overview

Overview 2199

> cp torque-package-mom-linux-i686.sh /shared/storage/
> cp torque-package-clients-linux-i686.sh /shared/storage/

3. Install the tpackages on the compute nodes.

Adaptive Computing recommends that you use a remote shell, such as SSH, to install tpackages on
remote systems. Set up shared SSH keys if you do not want to supply a password for each host.

The only required package for the compute node is mom-linux. Additional packages are
recommended so you can use client commands and submit jobs from compute nodes.

The following is an example of how to copy and install mom-linux in a distributed fashion.

> for i in node01 node02 node03 node04 ; do scp torque-package-mom-linux-i686.sh
${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do scp torque-package-clients-linux-
i686.sh ${i}:/tmp/. ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-mom-linux-
i686.sh --install ; done
> for i in node01 node02 node03 node04 ; do ssh ${i} /tmp/torque-package-clients-
linux-i686.sh --install ; done

Alternatively, you can use a tool like xCAT instead of dsh.

To use a tool like xCAT

1. Copy the tpackage to the nodes.

> prcp torque-package-linux-i686.sh noderange:/destinationdirectory/

2. Install the tpackage.

> psh noderange /tmp/torque-package-linux-i686.sh --install

Although optional, it is possible to use the TORQUE server as a compute node and install a pbs_mom
with the pbs_server daemon.

Related topics

l Installing TORQUE on page 2193

l TORQUE Installation Overview on page 2193

Enabling TORQUE as a Service

Enabling TORQUE as a service is optional. In order to run TORQUE as a service, you must enable
trqauthd. (see Configuring trqauthd for Client Commands on page 2205).

The method for enabling TORQUE as a service is dependent on the Linux variant you are using. Startup
scripts are provided in the contrib/init.d/ directory of the source package. To enable TORQUE as a
service, run the following on the host for the appropriate TORQUE daemon:

TORQUE Resource Manager

l RedHat (as root)

> cp contrib/init.d/pbs_mom /etc/init.d/pbs_mom
> chkconfig --add pbs_mom
> cp contrib/init.d/pbs_server /etc/init.d/pbs_server
> chkconfig --add pbs_server

l SuSE (as root)

> cp contrib/init.d/suse.pbs_mom /etc/init.d/pbs_mom
> insserv -d pbs_mom
> cp contrib/init.d/suse.pbs_server /etc/init.d/pbs_server
> insserv -d pbs_server

l Debian (as root)

> cp contrib/init.d/debian.pbs_mom /etc/init.d/pbs_mom
> update-rc.d pbs_mom defaults
> cp contrib/init.d/debian.pbs_server /etc/init.d/pbs_server
> update-rc.d pbs_server defaults

You will need to customize these scripts to match your system.

These options can be added to the self-extracting packages. For more details, see the INSTALL file.

Related topics

l TORQUE Installation Overview on page 2193
l Installing TORQUE on page 2193
l Configuring trqauthd for Client Commands on page 2205

Initializing/Configuring TORQUE on the Server (pbs_
server)
The TORQUE server (pbs_server) contains all the information about a cluster. It knows about all of the
MOM nodes in the cluster based on the information in the $TORQUE_HOME/server_priv/nodes file
(See Configuring TORQUE on Compute Nodes on page 2203). It also maintains the status of each MOM
node through updates from the MOMs in the cluster (see pbsnodes on page 2356). All jobs are submitted
via qsub to the server, which maintains a master database of all jobs and their states.

Schedulers such as Moab Workload Manager receive job, queue, and node information from pbs_server
and submit all jobs to be run to pbs_server.

The server configuration is maintained in a file named serverdb, located in $TORQUE_HOME/server_
priv. The serverdb file contains all parameters pertaining to the operation of TORQUE plus all of the
queues which are in the configuration. For pbs_server to run, serverdb must be initialized.

You can initialize serverdb in two different ways, but the recommended way is to use the
./torque.setup script:

TORQUE Resource Manager

2200 Overview

Overview 2201

l As root, execute ./torque.setup from the build directory (see ./torque.setup on page 2201).

l Use pbs_server -t create (see Initializing/Configuring TORQUE on the Server (pbs_server) on
page 2200).

Restart pbs_server after initializing serverdb.

> qterm
> pbs_server

./torque.setup
The torque.setup script uses pbs_server -t create to initialize serverdb and then adds a user as
a manager and operator of TORQUE and other commonly used attributes. The syntax is as follows:

/torque.setup username

> ./torque.setup ken
> qmgr -c 'p s'

#
Create queues and set their attributes.
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = ken@kmn
set server operators = ken@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6
set server mom_job_sync = True
set server keep_completed = 300

pbs_server -t create
The -t create option instructs pbs_server to create the serverdb file and initialize it with a
minimum configuration to run pbs_server.

> pbs_server -t create

To see the configuration and verify that TORQUE is configured correctly, use qmgr:

TORQUE Resource Manager

> qmgr -c 'p s'

#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

A single queue named batch and a few needed server attributes are created.

This section contains these topics:

l Specifying Compute Nodes on page 2202

l Configuring TORQUE on Compute Nodes on page 2203

l Finalizing Configurations on page 2207

Related topics

l Appendix C: Node Manager (MOM) Configuration on page 2435
l Advanced configuration on page 2207

Specifying Compute Nodes
The environment variable TORQUE_HOME is where configuration files are stored. If you used the default
locations during installation, you do not need to specify the TORQUE_HOME environment variable.

The pbs_server must recognize which systems on the network are its compute nodes. Specify each node
on a line in the server's nodes file. This file is located at TORQUE_HOME/server_priv/nodes. In most
cases, it is sufficient to specify just the names of the nodes on individual lines; however, various
properties can be applied to each node.

Only a root user can access the server_priv directory.

Syntax of nodes file:

node-name[:ts] [np=] [gpus=] [properties]

l The node-name must match the hostname on the node itself, including whether it is fully qualified
or shortened.

l The [:ts] option marks the node as timeshared. Timeshared nodes are listed by the server in the
node status report, but the server does not allocate jobs to them.

l The [np=] option specifies the number of virtual processors for a given node. The value can be
less than, equal to, or greater than the number of physical processors on any given node.

l The [gpus=] option specifies the number of GPUs for a given node. The value can be less than,
equal to, or greater than the number of physical GPUs on any given node.

TORQUE Resource Manager

2202 Overview

Overview 2203

l The node processor count can be automatically detected by the TORQUE server if auto_node_np
is set to TRUE. This can be set using this command:

qmgr -c set server auto_node_np = True

Setting auto_node_np to TRUE overwrites the value of np set in TORQUE_HOME/server_
priv/nodes.

l The [properties] option allows you to specify arbitrary strings to identify the node. Property
strings are alphanumeric characters only and must begin with an alphabetic character.

l Comment lines are allowed in the nodes file if the first non-white space character is the pound
sign (#).

The following example shows a possible node file listing.

TORQUE_HOME/server_priv/nodes:

Nodes 001 and 003-005 are cluster nodes
#
node001 np=2 cluster01 rackNumber22
#
node002 will be replaced soon
node002:ts waitingToBeReplaced
node002 will be replaced soon
#
node003 np=4 cluster01 rackNumber24
node004 cluster01 rackNumber25
node005 np=2 cluster01 rackNumber26 RAM16GB
node006
node007 np=2
node008:ts np=4
...

Related topics

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200

Configuring TORQUE on Compute Nodes
If using TORQUE self-extracting packages with default compute node configuration, no additional steps
are required and you can skip this section.

If installing manually, or advanced compute node configuration is needed, edit the TORQUE_HOME/mom_
priv/config file on each node. The recommended settings follow.

TORQUE_HOME/mom_priv/config:

$pbsserver headnode # hostname running pbs server
$logevent 225 # bitmap of which events to log

This file is identical for all compute nodes and can be created on the head node and distributed in
parallel to all systems.

Related topics

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200

TORQUE Resource Manager

Configuring Ports
You can optionally configure the various ports that TORQUE uses for communication. Most ports can be
configured multiple ways. The ports you can configure are:

l pbs_server listening port

l pbs_mom listening port

l port pbs_server uses to communicate to the pbs_mom

l port pbs_mom uses to communicate to the pbs_server

l port client commands use to communicate to the pbs_server

l port trqauthd uses to communicate to the pbs_server

If you are running pbspro on the same system, be aware that it uses the same environment
variables and /etc/services entries.

Configuring the pbs_server listening port
To configure the port the pbs_server listens on, follow any of these steps:

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs port_num/tcp.

l Start pbs_server with the -p option.

$ pbs_server -p port_num

l Edit the $PBS_HOME/server_name file and change server_name to server_name:<port_
num>

l Start pbs_server with the -H option.

$ pbs_server -H server_name:port_num

Configuring the pbs_mom listening port
To configure the port the pbs_mom listens on, follow any of these steps:

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

l Start pbs_mom with the -M option.

$ pbs_mom -M port_num

l Edit the nodes file entry for that list: add mom_service_port=port_num.

Configuring the port pbs_server uses to communicate with pbs_mom
To configure the port the pbs_server uses to communicate with pbs_mom, follow any of these steps:

TORQUE Resource Manager

2204 Overview

Overview 2205

l Set an environment variable called PBS_MOM_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs_mom port_num/tcp.

l Start pbs_mom with the -M option.

$ pbs_server -M port_num

Configuring the port pbs_mom uses to communicate with pbs_server
To configure the port the pbs_mom uses to communicate with pbs_server, follow any of these steps:

l Set an environment variable called PBS_BATCH_SERVICE_PORT to the port desired.

l Edit the /etc/services file and set pbs port_num/tcp.

l Start pbs_mom with the -S option.

$ pbs_mom -p port_num

l Edit the nodes file entry for that list: add mom_service_port=port_num.

Configuring the port client commands use to communicate with pbs_
server
To configure the port client commands use to communicate with pbs_server, follow any of these steps:

l Edit the /etc/services file and set pbs port_num/tcp.

l Edit the $PBS_HOME/server_name file and change server_name to server_name:<port_
num>

Configuring the port trqauthd uses to communicate with pbs_server
To configure the port trqauthd uses to communicate with pbs_server, follow any of these steps:

l Edit the $PBS_HOME/server_name file and change server_name to server_name:<port_
num>

Related topics

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200
l pbs_server
l pbs_mom
l trqauthd
l client commands

Configuring trqauthd for Client Commands
trqauthd is a daemon used by TORQUE client utilities to authorize user connections to pbs_server. Once
started, it remains resident. TORQUE client utilities then communicate with trqauthd on port 15005 on
the loopback interface. It is multi-threaded and can handle large volumes of simultaneous requests.

TORQUE Resource Manager

Running trqauthd
trqauthd must be run as root. It must also be running on any host where TORQUE client commands will
execute.

By default, trqauthd is installed to /usr/local/bin.

trqauthd can be invoked directly from the command line or by the use of init.d scripts which are located
in the contrib/init.d directory of the TORQUE source.

There are three init.d scripts for trqauthd in the contrib/init.d directory of the TORQUE source
tree:

Script Description

debian.trqauthd Used for apt-based systems (debian, ubuntu are the most common variations of this)

suse.trqauthd Used for suse-based systems

trqauthd An example for other package managers (Redhat, Scientific, CentOS, and Fedora are some com-
mon examples)

You should edit these scripts to be sure they will work for your site.

Inside each of the scripts are the variables PBS_DAEMON and PBS_HOME. These two variables should be
updated to match your TORQUE installation. PBS_DAEMON needs to point to the location of trqauthd.
PBS_HOME needs to match your TORQUE installation.

Choose the script that matches your dist system and copy it to /etc/init.d. If needed, rename it to
trqauthd.

To start the daemon
/etc/init.d/trqauthd start

To stop the daemon
/etc/init.d/trqauthd stop

OR

service trqauthd start/stop

If you receive an error that says "Could not open socket in trq_simple_connect. error 97" and you
use a CentOS, RedHat, or Scientific Linux 6+ operating system, check your /etc/hosts file for
multiple entries of a single host name pointing to the same IP address. Delete the duplicate(s),
save the file, and launch trqauthd again.

TORQUE Resource Manager

2206 Overview

Overview 2207

Related topics

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200

Finalizing Configurations
After configuring the serverdb and the server_priv/nodes files, and after ensuring minimal MOM
configuration, restart the pbs_server on the server node and the pbs_mom on the compute nodes.

Compute Nodes:

> pbs_mom

Server Node:

> qterm -t quick
> pbs_server

After waiting several seconds, the pbsnodes -a command should list all nodes in state free.

Related topics

l Initializing/Configuring TORQUE on the Server (pbs_server) on page 2200

Advanced configuration
This section contains information about how you can customize the installation and configure the server
to ensure that the server and nodes are communicating correctly. For details, see these topics:

l Customizing the Install on page 2207

l Server Configuration on page 2215

Related topics

l Appendix B: Server Parameters on page 2417

Customizing the Install
The TORQUE configure command has several options available. Listed below are some suggested options
to use when running ./configure.

l By default, TORQUE does not install the admin manuals. To enable this, use --enable-docs.

l By default, only children MOM processes use syslog. To enable syslog for all of TORQUE, use --
enable-syslog.

TORQUE Resource Manager

Table 4-2: Optional Features

Option Description

--disable-cli-
ents

Directs TORQUE not to build and install the TORQUE client utilities such as qsub, qstat, qdel,
etc.

--disable-
FEATURE

Do not include FEATURE (same as --enable-FEATURE=no).

--disable-lib-
tool-lock

Avoid locking (might break parallel builds).

--disable-mom Do not include the MOM daemon.

--disable-
mom-check-
spool

Don't check free space on spool directory and set an error.

--disable-
posixmemlock

Disable the MOM's use of mlockall. Some versions of OSs seem to have buggy POSIX MEMLOCK.

--disable-priv-
ports

Disable the use of privileged ports for authentication. Some versions of OSX have a buggy bind
() and cannot bind to privileged ports.

--disable-
qsub-keep-
override

Do not allow the qsub -k flag to override -o -e.

--disable-
server

Do not include server and scheduler.

--disable-
shell-pipe

Give the job script file as standard input to the shell instead of passing its name via a pipe.

--disable-
spool

If disabled, TORQUE will create output and error files directly in $HOME/.pbs_spool if it exists
or in $HOME otherwise. By default, TORQUE will spool files in TORQUE_HOME/spool and copy
them to the users home directory when the job completes.

--disable-
xopen-net-
working

With HPUX and GCC, don't force usage of XOPEN and libxnet.

--enable-acct-x Enable adding x attributes to accounting log.

TORQUE Resource Manager

2208 Overview

Overview 2209

Option Description

--enable-array Setting this under IRIX enables the SGI Origin 2000 parallel support. Normally autodetected
from the /etc/config/array file.

--enable-blcr Enable BLCR support.

--enable-cpa Enable Cray's CPA support.

--enable-cpu-
set

Enable Linux 2.6 kernel cpusets.

It is recommended that you turn on this feature to prevent a job from expanding across
more CPU cores than it is assigned.

--enable-debug Prints debug information to the console for pbs_server and pbs_mom while they are running.
(This is different than --with-debugwhich will compile with debugging symbols.)

--enable-
dependency-
tracking

Do not reject slow dependency extractors.

--enable-fast-
install[=PKGS]

Optimize for fast installation [default=yes].

--enable-
FEATURE
[=ARG]

Include FEATURE [ARG=yes].

--enable-file-
sync

Open files with sync on each write operation. This has a negative impact on TORQUE per-
formance. This is disabled by default.

--enable-force-
nodefile

Forces creation of nodefile regardless of job submission parameters. Not on by default.

--enable-gcc-
warnings

Enable gcc strictness and warnings. If using gcc, default is to error on any warning.

--enable-geo-
metry-
requests

TORQUE is compiled to use procs_bitmap during job submission.

--enable-gui Include the GUI-clients.

TORQUE Resource Manager

Option Description

--enable-main-
tainer-mode

This is for the autoconf utility and tells autoconf to enable so called rebuild rules. See main-
tainer mode for more information.

--enable-
maxdefault

Turn on the RESOURCEMAXDEFAULT flag.

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server defaults to
a job that didn't have defaults specified. If a setting still did not have a value after that,
TORQUE applied the queue and server maximum values to a job (meaning, the
maximum values for an applicable setting were applied to jobs that had no specified or
default value).
In TORQUE 2.4.5 and later, the queue and server maximum values are no longer used
as a value for missing settings. To re-enable this behavior in TORQUE 2.4.5 and later,
use --enable-maxdefault.

--enable-
nochildsignal

Turn on the NO_SIGCHLD flag.

--enable-
nodemask

Enable nodemask-based scheduling on the Origin 2000.

--enable-
pemask

Enable pemask-based scheduling on the Cray T3e.

--enable-
plock-dae-
mons[=ARG]

Enable daemons to lock themselves into memory: logical-or of 1 for pbs_server, 2 for pbs_sched-
uler, 4 for pbs_mom (no argument means 7 for all three).

--enable-quick-
commit

Turn on the QUICKCOMMIT flag.

--enable-
shared[=PKGS]

Build shared libraries [default=yes].

--enable-shell-
use-argv

Enable this to put the job script name on the command line that invokes the shell. Not on by
default. Ignores --enable-shell-pipe setting.

--enable-sp2 Build PBS for an IBM SP2.

--enable-srfs Enable support for SRFS on Cray.

TORQUE Resource Manager

2210 Overview

http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html
http://www.gnu.org/software/hello/manual/automake/maintainer_002dmode.html

Overview 2211

Option Description

--enable-static
[=PKGS]

Build static libraries [default=yes].

--enable-sys-
log

Enable (default) the use of syslog for error reporting.

--enable-tcl-
qstat

Setting this builds qstat with Tcl interpreter features. This is enabled if Tcl is enabled.

--enable-unix-
sockets

Enable the use of Unix Domain sockets for authentication.

Table 4-3: Optional packages

Option Description

--with-blcr=DIR BLCR installation prefix (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-include=DIR Include path for libcr.h (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-lib=DIR Lib path for libcr (Available in versions 2.5.6 and 3.0.2 and later).

--with-blcr-bin=DIR Bin path for BLCR utilities (Available in versions 2.5.6 and 3.0.2 and later).

TORQUE Resource Manager

Option Description

--with-boost-path=DIR Set the path to the Boost header files to be used during make. This option does not
require Boost to be built or installed.

The --with-boost-path value must be a directory containing a sub-directory called
boost that contains the boost .hpp files.
For example, if downloading the boost 1.55.0 source tarball to the adaptive user's
home directory:

[adaptive]$ cd ~
[adaptive]$ wget
http://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_
0.tar.gz/download
[adaptive]$ tar xzf boost_1_55_0.tar.gz
[adaptive]$ ls boost_1_55_0
boost
boost-build.jam
...

In this case use --with-boost-path=/home/adaptive/boost_1_55_0 during
configure.

Another example would be to use an installed version of Boost. If the installed
Boost header files exist in /usr/include/boost/*.hpp, use --with-boost-
path=/usr/include.

--with-cpa-include=DIR Include path for cpalib.h.

--with-cpa-lib=DIR Lib path for libcpalib.

--with-debug=no Do not compile with debugging symbols.

--with-default-server-
r=HOSTNAME

Set the name of the computer that clients will access when no machine name is
specified as part of the queue name. It defaults to the hostname of the machine on
which PBS is being compiled.

--with-environ=PATH Set the path containing the environment variables for the daemons. For SP2 and
AIX systems, suggested setting is to /etc/environment. Defaults to the file "pbs_
environment" in the server-home. Relative paths are interpreted within the con-
text of the server-home.

--with-gnu-ld Assume the C compiler uses GNU ld [default=no].

--with-mail-
domain=MAILDOMAIN

Override the default domain for outgoing mail messages, i.e. "user@maildomain".
The default maildomain is the hostname where the job was submitted from.

TORQUE Resource Manager

2212 Overview

Overview 2213

Option Description

--with-modulefiles[=DIR] Use module files in specified directory [/etc/modulefiles].

--with-momlogdir Use this directory for MOM logs.

--with-momlogsuffix Use this suffix for MOM logs.

--without-PACKAGE Do not use PACKAGE (same as --with-PACKAGE=no).

--without-readline Do not include readline support (default: included if found).

--with-PACKAGE[=ARG] Use PACKAGE [ARG=yes].

--with-pam=DIR Directory that holds the system PAM modules. Defaults to /lib(64)/security on
Linux.

--with-pic Try to use only PIC/non-PIC objects [default=use both].

--with-qstatrc-file=FILE Set the name of the file that qstat will use if there is no ".qstatrc" file in the dir-
ectory where it is being invoked. Relative path names will be evaluated relative to
the server home directory (see above). If this option is not specified, the default
name for this file will be set to "qstatrc" (no dot) in the server home directory.

--with-rcp One of "scp", "rcp", "mom_rcp", or the full path of a remote file copy program. scp
is the default if found, otherwise mom_rcp is used. Some rcp programs don't
always exit with valid error codes in case of failure. mom_rcp is a copy of BSD rcp
included with this source that has correct error codes, but it is also old, unmain-
tained, and doesn't have large file support.

--with-sched=TYPE Sets the scheduler type. If TYPE is "c", the scheduler will be written in C. If TYPE is
"tcl" the server will use a Tcl based scheduler. If TYPE is "basl", TORQUE will use
the rule based scheduler. If TYPE is "no", then no scheduling is done. "c" is the
default.

--with-sched-code=PATH Sets the name of the scheduler to use. This only applies to BASL schedulers and
those written in the C language. For C schedulers this should be a directory name
and for BASL schedulers a filename ending in ".basl". It will be interpreted relative
to srctree/src/schedulers.SCHD_TYPE/samples. As an example, an appropriate
BASL scheduler relative path would be "nas.basl". The default scheduler code for
"C" schedulers is "fifo".

TORQUE Resource Manager

Option Description

--with-scp In TORQUE 2.1 and later, SCP is the default remote copy protocol. See --with-rcp
if a different protocol is desired.

--with-sendmail[=FILE] Sendmail executable to use.

--with-server-home=DIR Set the server home/spool directory for PBS use. Defaults to /var/spool/torque.

--with-server-name-file-
e=FILE

Set the file that will contain the name of the default server for clients to use. If this
is not an absolute pathname, it will be evaluated relative to the server home dir-
ectory that either defaults to /usr/spool/PBS or is set using the --with-server-
home option to configure. If this option is not specified, the default name for this
file will be set to "server_name".

--with-tcl Directory containing tcl configuration (tclConfig.sh).

--with-tclatrsep=CHAR Set the Tcl attribute separator character this will default to "." if unspecified.

--with-tclinclude Directory containing the public Tcl header files.

--with-tclx Directory containing tclx configuration (tclxConfig.sh).

--with-tk Directory containing tk configuration (tkConfig.sh).

--with-tkinclude Directory containing the public Tk header files.

--with-tkx Directory containing tkx configuration (tkxConfig.sh).

--with-tmpdir=DIR Set the tmp directory that pbs_mom will use. Defaults to "/tmp". This is a Cray-spe-
cific feature.

--with-xauth=PATH Specify path to xauth program.

HAVE_WORDEXP
Wordxp() performs a shell-like expansion, including environment variables. By default, HAVE_WORDEXP
is set to 1 in src/pbs_config.h. If set to 1, will limit the characters that can be used in a job name to
those allowed for a file in the current environment, such as BASH. If set to 0, any valid character for the
file system can be used.

If a user would like to disable this feature by setting HAVE_WORDEXP to 0 in src/include/pbs_
config.h, it is important to note that the error and the output file names will not expand environment

TORQUE Resource Manager

2214 Overview

Overview 2215

variables, including $PBS_JOBID. The other important consideration is that characters that BASH
dislikes, such as (), will not be allowed in the output and error file names for jobs by default.

Related topics

l Advanced configuration on page 2207
l Server Configuration on page 2215

Server Configuration
See these topics for details:

l Server configuration overview on page 2215

l Name service configuration on page 2215

l Configuring job submission hosts on page 2216

l Configuring TORQUE on a multi-homed server on page 2217

l Architecture specific notes on page 2217

l Specifying non-root administrators on page 2217

l Setting up email on page 2217

l Using MUNGE authentication on page 2218

l Server Configuration on page 2215

l MOM Hierarchy (optional)

Server configuration overview
There are several steps to ensure that the server and the nodes are completely aware of each other and
able to communicate directly. Some of this configuration takes place within TORQUE directly using the
qmgr command. Other configuration settings are managed using the pbs_server nodes file, DNS files
such as /etc/hosts and the /etc/hosts.equiv file.

Name service configuration
Each node, as well as the server, must be able to resolve the name of every node with which it will
interact. This can be accomplished using /etc/hosts, DNS, NIS, or other mechanisms. In the case of
/etc/hosts, the file can be shared across systems in most cases.

A simple method of checking proper name service configuration is to verify that the server and the
nodes can "ping" each other.

TORQUE Resource Manager

Configuring job submission hosts

Using RCmd authentication

When jobs can be submitted from several different hosts, these hosts should be trusted via the R*
commands (such as rsh and rcp). This can be enabled by adding the hosts to the /etc/hosts.equiv file of
the machine executing the pbs_server daemon or using other R* command authorization methods. The
exact specification can vary from OS to OS (see the man page for ruserok to find out how your OS
validates remote users). In most cases, configuring this file is as simple as adding a line to your
/etc/hosts.equiv file, as in the following:

/etc/hosts.equiv:

#[+ | -] [hostname] [username]
mynode.myorganization.com
.....

Either of the hostname or username fields may be replaced with a wildcard symbol (+). The (+) may be
used as a stand-alone wildcard but not connected to a username or hostname, e.g., +node01 or
+user01. However, a (-) may be used in that manner to specifically exclude a user.

Following the Linux man page instructions for hosts.equiv may result in a failure. You cannot
precede the user or hostname with a (+). To clarify, node1 +user1 will not work and user1 will
not be able to submit jobs.

For example, the following lines will not work or will not have the desired effect:

+node02 user1
node02 +user1

These lines will work:

node03 +
+ jsmith
node04 -tjones

The most restrictive rules must precede more permissive rules. For example, to restrict user tsmith but
allow all others, follow this format:

node01 -tsmith
node01 +

Please note that when a hostname is specified, it must be the fully qualified domain name (FQDN) of the
host. Job submission can be further secured using the server or queue acl_hosts and acl_host_enabled
parameters (for details, see Queue Attributes on page 2277).

Using the "submit_hosts" service parameter

Trusted submit host access may be directly specified without using RCmd authentication by setting the
server submit_hosts parameter via qmgr as in the following example:

> qmgr -c 'set server submit_hosts = host1'
> qmgr -c 'set server submit_hosts += host2'
> qmgr -c 'set server submit_hosts += host3'

TORQUE Resource Manager

2216 Overview

Overview 2217

Use of submit_hosts is potentially subject to DNS spoofing and should not be used outside of
controlled and trusted environments.

Allowing job submission from compute hosts

If preferred, all compute nodes can be enabled as job submit hosts without setting .rhosts or
hosts.equiv by setting the allow_node_submit parameter to true.

Configuring TORQUE on a multi-homed server
If the pbs_server daemon is to be run on a multi-homed host (a host possessing multiple network
interfaces), the interface to be used can be explicitly set using the SERVERHOST parameter.

Architecture specific notes
With some versions of Mac OS/X, it is required to add the line $restricted *.<DOMAIN> to the pbs_
mom configuration file. This is required to work around some socket bind bugs in the OS.

Specifying non-root administrators
By default, only root is allowed to start, configure and manage the pbs_server daemon. Additional trusted
users can be authorized using the parameters managers and operators. To configure these parameters
use the qmgr command, as in the following example:

> qmgr
Qmgr: set server managers += josh@*.fsc.com
Qmgr: set server operators += josh@*.fsc.com

All manager and operator specifications must include a user name and either a fully qualified domain
name or a host expression.

To enable all users to be trusted as both operators and administrators, place the + (plus)
character on its own line in the server_priv/acl_svr/operators and server_priv/acl_
svr/managers files.

Setting up email
Moab relies on emails from TORQUE about job events. To set up email, do the following:

To set up email

1. Use the --with-sendmail configure option at configure time. TORQUE needs to know where the
email application is. If this option is not used, TORQUE tries to find the sendmail executable. If it isn't
found, TORQUE cannot send emails.

> ./configure --with-sendmail=<path_to_executable>

2. Set mail_domain in your server settings. If your domain is clusterresources.com, execute:

TORQUE Resource Manager

> qmgr -c 'set server mail_domain=clusterresources.com'

3. (Optional) You can override the default mail_body_fmt and mail_subject_fmt values via qmgr:

> qmgr -c 'set server mail_body_fmt=Job: %i \n Name: %j \n On host: %h \n \n %m \n
\n %d'
> qmgr -c 'set server mail_subject_fmt=Job %i - %r'

By default, users receive e-mails on job aborts. Each user can select which kind of e-mails to receive by
using the qsub -m option when submitting the job. If you want to dictate when each user should receive
e-mails, use a submit filter (for details, see Appendix J: Job Submission Filter ("qsub wrapper") on
page 2479).

Using MUNGE authentication
MUNGE is an authentication service that creates and validates user credentials. It was developed by
Lawrence Livermore National Laboratory (LLNL) to be highly scalable so it can be used in large
environments such as HPC clusters. To learn more about MUNGE and how to install it, see
http://code.google.com/p/munge/.

Configuring TORQUE to use MUNGE is a compile time operation. When you are building TORQUE, use -
enable-munge-auth as a command line option with ./configure.

> ./configure -enable-munge-auth

You can use only one authorization method at a time. If -enable-munge-auth is configured, the
privileged port ruserok method is disabled.

TORQUE does not link any part of the MUNGE library into its executables. It calls the MUNGE and
UNMUNGE utilities which are part of the MUNGE daemon. The MUNGE daemon must be running on the
server and all submission hosts. The TORQUE client utilities call MUNGE and then deliver the encrypted
credential to pbs_server where the credential is then unmunged and the server verifies the user and host
against the authorized users configured in serverdb.

Authorized users are added to serverdb using qmgr and the authorized_users parameter. The syntax for
authorized_users is authorized_users=<user>@<host>. To add an authorized user to the server you
can use the following qmgr command:

> qmgr -c 'set server authorized_users=user1@hosta
> qmgr -c 'set server authorized_users+=user2@hosta

The previous example adds user1 and user2 from hosta to the list of authorized users on the server.
Users can be removed from the list of authorized users by using the -= syntax as follows:

> qmgr -c 'set server authorized_users-=user1@hosta

Users must be added with the <user>@<host> syntax. The user and the host portion can use the '*'
wildcard to allow multiple names to be accepted with a single entry. A range of user or host names can
be specified using a [a-b] syntax where a is the beginning of the range and b is the end.

> qmgr -c 'set server authorized_users=user[1-10]@hosta

This allows user1 through user10 on hosta to run client commands on the server.

TORQUE Resource Manager

2218 Overview

http://code.google.com/p/munge/

Overview 2219

Related topics

l Advanced configuration on page 2207

MOM Hierarchy

Mom hierarchy is designed for large systems to configure how information is passed directly to
the pbs_server.

The MOM hierarchy allows you to override the compute nodes' default behavior of reporting status
updates directly to the pbs_server. Instead, you configure compute nodes so that each node sends its
status update information to another compute node. The compute nodes pass the information up a tree
or hierarchy until eventually the information reaches a node that will pass the information directly to
pbs_server. This can significantly reduce network traffic and ease the load on the pbs_server in a large
system.

MOM hierarchy example

The following example illustrates how information is passed to the pbs_server without and with mom_
hierarchy.

TORQUE Resource Manager

The dotted lines indicates an alternate path if the hierarchy-designated node goes down.

The following is the mom_hierachy_file for the with mom_hierarchy example:

<path>
 <level>hostA,hostB</level>
 <level>hostB,hostC,hostD</level>
</path>
<path>
 <level>hostE,hostF</level>
 <level>hostE,hostF,hostG</level>
</path>

Setting up the MOM hierarchy

The name of the file that contains the configuration information is named mom_hierarchy. By default, it
is located in the /var/spool/torque/server_priv directory. The file uses syntax similar to XML:

TORQUE Resource Manager

2220 Overview

Overview 2221

<path>
 <level>comma-separated node list</level>
 <level>comma-separated node list</level>
 ...
</path>
...

The <path></path> tag pair identifies a group of compute nodes. The <level></level> tag pair contains
a comma-separated list of compute node names listed by their hostnames. Multiple paths can be defined
with multiple levels within each path.

Within a <path></path> tag pair the levels define the hierarchy. All nodes in the top level communicate
directly with the server. All nodes in lower levels communicate to the first available node in the level
directly above it. If the first node in the upper level goes down, the nodes in the subordinate level will
then communicate to the next node in the upper level. If no nodes are available in an upper level then
the node will communicate directly to the server.

If an upper level node has gone down and then becomes available, the lower level nodes will eventually
find that the node is available and start sending their updates to that node.

If you want to specify MOMs on a different port than the default, you must list the node in the
form: hostname:mom_manager_port.

For example:

<path>
 <level>hostname:mom_manager_port,... </level>
 ...
</path>
...

Putting the MOM hierarchy on the MOMs

You can put the MOM hierarchy file directly on the MOMs. The default location is
/var/spool/torque/mom_priv/mom_hierarchy. This way, the pbs_server doesn't have to send the
hierarchy to all the MOMs during each pbs_server startup. The hierarchy file still has to exist on the
pbs_server and if the file versions conflict, the pbs_server version overwrites the local MOM file. When
using a global file system accessible from both the MOMs and the pbs_server, it is recommended that the
hierarchy file be symbolically linked to the MOMs.

Once the hierarchy file exists on the MOMs, start pbs_server with the -n option which tells pbs_server to
not send the hierarchy file on startup. Instead, pbs_server waits until a MOM requests it.

Manual Setup of Initial Server Configuration
On a new installation of TORQUE, the server database must be initialized using the command pbs_
server -t create. This command creates a file in $TORQUEHOME/server_priv named serverdb
which contains the server configuration information.

The following output from qmgr shows the base configuration created by the command pbs_server -t
create:

TORQUE Resource Manager

qmgr -c 'p s'
#
Set server attributes.
#
set server acl_hosts = kmn
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 6

This is a bare minimum configuration and it is not very useful. By using qmgr, the server configuration
can be modified to set up TORQUE to do useful work. The following qmgr commands will create a queue
and enable the server to accept and run jobs. These commands must be executed by root.

pbs_server -t create
qmgr -c "set server scheduling=true"
qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"
qmgr -c "set server default_queue=batch"

When TORQUE reports a new queue to Moab a class of the same name is automatically applied to
all nodes.

In this example, the configuration database is initialized and the scheduling interface is activated using
('scheduling=true'). This option allows the scheduler to receive job and node events which allow it to
be more responsive (See scheduling on page 2434 for more information). The next command creates a
queue and specifies the queue type. Within PBS, the queue must be declared an 'execution queue in
order for it to run jobs. Additional configuration (i.e., setting the queue to started and enabled)
allows the queue to accept job submissions, and launch queued jobs.

The next two lines are optional, setting default node and walltime attributes for a submitted job.
These defaults will be picked up by a job if values are not explicitly set by the submitting user. The final
line, default_queue=batch, is also a convenience line and indicates that a job should be placed in the
batch queue unless explicitly assigned to another queue.

Additional information on configuration can be found in the admin manual and in the qmgr main page.

Related topics

l TORQUE Installation Overview on page 2193

Server Node File Configuration
This section contains information about configuring server node files. It explains how to specify node
virtual processor counts and GPU counts, as well as how to specify node features or properties. For
details, see these topics:

l Basic Node Specification on page 2223

l Specifying Virtual Processor Count for a Node on page 2223

TORQUE Resource Manager

2222 Overview

Overview 2223

l Specifying GPU Count for a Node on page 2224

l Specifying Node Features (Node Properties) on page 2224

Related topics

l TORQUE Installation Overview on page 2193
l Appendix B: Server Parameters on page 2417
l Moab node feature overview

Basic Node Specification
For the pbs_server to communicate with each of the MOMs, it needs to know which machines to contact.
Each node that is to be a part of the batch system must be specified on a line in the server nodes file.
This file is located at TORQUE_HOME/server_priv/nodes. In most cases, it is sufficient to specify just
the node name on a line as in the following example:

server_priv/nodes:

node001
node002
node003
node004

Related topics

l Server Node File Configuration on page 2222

Specifying Virtual Processor Count for a Node
By default each node has one virtual processor. Increase the number using the np attribute in the nodes
file. The value of np can be equal to the number of physical cores on the node or it can be set to a value
which represents available "execution slots" for the node. The value used is determined by the
administrator based on hardware, system, and site criteria.

The following example shows how to set the np value in the nodes file. In this example, we are assuming
that node001 and node002 have four physical cores. The administrator wants the value of np for node001
to reflect that it has four cores. However, node002 will be set up to handle multiple virtual processors
without regard to the number of physical cores on the system.

server_priv/nodes:

node001 np=4
node002 np=12
...

Related topics

l Server Node File Configuration on page 2222

TORQUE Resource Manager

Specifying GPU Count for a Node
Administrators can manually set the number of GPUs on a node or if they are using NVIDIA GPUs and
drivers, they can have them detected automatically. For more information about how to set up TORQUE
with GPUS, see Accelerators on page 794.

To manually set the number of GPUs on a node, use the gpus attribute in the nodes file. The value of
GPUs is determined by the administrator based on hardware, system, and site criteria.

The following example shows how to set the GPU value in the nodes file. In the example, we assume
node01 and node002 each have two physical GPUs. The administrator wants the value of node001 to
reflect the physical GPUs available on that system and adds gpus=2 to the nodes file entry for node001.
However, node002 will be set up to handle multiple virtual GPUs without regard to the number of
physical GPUs on the system.

server_priv/nodes:

node001 gpus=1
node002 gpus=4
...

Related topics

l Server Node File Configuration on page 2222

Specifying Node Features (Node Properties)
Node features can be specified by placing one or more white space-delimited strings on the line for the
associated host as in the following example:

server_priv/nodes:

node001 np=2 fast ia64
node002 np=4 bigmem fast ia64 smp
...

These features can be used by users to request specific nodes when submitting jobs. For example:

qsub -l nodes=1:bigmem+1:fast job.sh

This job submission will look for a node with the bigmem feature (node002) and a node with the fast
feature (either node001 or node002).

Related topics

l Server Node File Configuration on page 2222

Testing Server Configuration
If you have initialized TORQUE using the torque.setup script or started TORQUE using pbs_server -t
create and pbs_server is still running, terminate the server by calling qterm. Next, start pbs_server
again without the -t create arguments. Follow the script below to verify your server configuration.

TORQUE Resource Manager

2224 Overview

Overview 2225

The output for the examples below is based on the nodes file example in Specifying node features and
Server configuration.

TORQUE Resource Manager

verify all queues are properly configured
> qstat -q

server:kmn

Queue Memory CPU Time Walltime Node Run Que Lm State
----- ------ -------- -------- ---- --- --- -- -----
batch -- -- -- -- 0 0 -- ER
 --- ---
 0 0

view additional server configuration
> qmgr -c 'p s'
#
Create queues and set their attributes
#
#
Create and define queue batch
#
create queue batch
set queue batch queue_type = Execution
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server acl_hosts = kmn
set server managers = user1@kmn
set server operators = user1@kmn
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server node_check_rate = 150
set server tcp_timeout = 300
set server job_stat_rate = 45
set server poll_jobs = True
set server mom_job_sync = True
set server keep_completed = 300
set server next_job_number = 0

verify all nodes are correctly reporting
> pbsnodes -a
node001
 state=free
 np=2
 properties=bigmem,fast,ia64,smp
 ntype=cluster
 status=rectime=1328810402,varattr=,jobs=,state=free,netload=6814326158,gres=,loadave
=0.21,ncpus=6,physmem=8193724kb,
availmem=13922548kb,totmem=16581304kb,idletime=3,nusers=3,nsessions=18,sessions=1876
1120 1912 1926 1937 1951 2019 2057 28399 2126 2140 2323 5419 17948 19356 27726 22254
29569,uname=Linux kmn 2.6.38-11-generic #48-Ubuntu SMP Fri Jul 29 19:02:55 UTC 2011
x86_64,opsys=linux
 mom_service_port = 15002
 mom_manager_port = 15003
 gpus = 0
submit a basic job - DO NOT RUN AS ROOT
> su - testuser
> echo "sleep 30" | qsub

verify jobs display
> qstat

Job id Name User Time Use S Queue
------ ----- ---- -------- -- -----

TORQUE Resource Manager

2226 Overview

Overview 2227

0.kmn STDIN knielson 0 Q batch

At this point, the job should be in the Q state and will not run because a scheduler is not running yet.
TORQUE can use its native scheduler by running pbs_sched or an advanced scheduler (such as Moab
Workload Manager). See Integrating Schedulers for TORQUE on page 2304 for details on setting up an
advanced scheduler.

Related topics

l TORQUE Installation Overview on page 2193

TORQUE on NUMA Systems
Starting in TORQUE version 3.0, TORQUE can be configured to take full advantage of Non-Uniform
Memory Architecture (NUMA) systems. The following instructions are a result of development on SGI
Altix and UV hardware.

For details, see these topics:

l TORQUE NUMA Configuration on page 2227

l Building TORQUE with NUMA Support on page 2227

TORQUE NUMA Configuration
There are three steps to configure TORQUE to take advantage of NUMA architectures:

1. Configure TORQUE with --enable-numa-support.

2. Create the mom_priv/mom.layout file.

3. Configure server_priv/nodes.

Related topics

l TORQUE on NUMA Systems on page 2227

Building TORQUE with NUMA Support
To turn on NUMA support for TORQUE the --enable-numa-support option must be used during the
configure portion of the installation. In addition to any other configuration options, add the --enable-
numa-support option as indicated in the following example:

$./configure --enable-numa-support

Don't use MOM hierarchy with NUMA.

When TORQUE is enabled to run with NUMA support, there is only a single instance of pbs_mom (MOM)
that is run on the system. However, TORQUE will report that there are multiple nodes running in the
cluster. While pbs_mom and pbs_server both know there is only one instance of pbs_mom, they manage
the cluster as if there were multiple separate MOM nodes.

TORQUE Resource Manager

The mom.layout file is a virtual mapping between the system hardware configuration and how the
administrator wants TORQUE to view the system. Each line in mom.layout equates to a node in the
cluster and is referred to as a NUMA node.

Automatically Creating mom.layout (Recommended)
A perl script named mom_gencfg is provided in the contrib/ directory that generates the
mom.layout file for you. The script can be customized by setting a few variables in it. To automatically
create the mom.layout file, follow these instructions (these instructions are also included in the script):

1. Verify hwloc version 1.1 or higher is installed - see contrib/hwloc_install.sh.

2. Install Sys::Hwloc from CPAN.

3. Verify $PBS_HOME is set to the proper value.

4. Update the variables in the 'Config Definitions' section of the script. Especially update firstNodeId
and nodesPerBoard if desired. The firstNodeId variable should be set above 0 if you have a root
cpuset that you wish to exclude and the nodesPerBoard variable is the number of NUMA nodes per
board. Each node is defined in /sys/devices/system/node, in a subdirectory node<node
index>

5. Back up your current file in case a variable is set incorrectly or neglected.

6. Run the script.
7.

$./mom_gencfg

Manually Creating mom.layout
To properly set up the mom.layout file, it is important to know how the hardware is configured. Use
the topology command line utility and inspect the contents of /sys/devices/system/node. The hwloc
library can also be used to create a custom discovery tool.

Typing topology on the command line of a NUMA system produces something similar to the following:

TORQUE Resource Manager

2228 Overview

Overview 2229

Partition number: 0
6 Blades
72 CPUs
378.43 Gb Memory Total

Blade ID asic NASID Memory

 0 r001i01b00 UVHub 1.0 0 67089152 kB
 1 r001i01b01 UVHub 1.0 2 67092480 kB
 2 r001i01b02 UVHub 1.0 4 67092480 kB
 3 r001i01b03 UVHub 1.0 6 67092480 kB
 4 r001i01b04 UVHub 1.0 8 67092480 kB
 5 r001i01b05 UVHub 1.0 10 67092480 kB

CPU Blade PhysID CoreID APIC-ID Family Model Speed L1(KiB) L2(KiB) L3(KiB)

 0 r001i01b00 00 00 0 6 46 2666 32d/32i 256 18432
 1 r001i01b00 00 02 4 6 46 2666 32d/32i 256 18432
 2 r001i01b00 00 03 6 6 46 2666 32d/32i 256 18432
 3 r001i01b00 00 08 16 6 46 2666 32d/32i 256 18432
 4 r001i01b00 00 09 18 6 46 2666 32d/32i 256 18432
 5 r001i01b00 00 11 22 6 46 2666 32d/32i 256 18432
 6 r001i01b00 01 00 32 6 46 2666 32d/32i 256 18432
 7 r001i01b00 01 02 36 6 46 2666 32d/32i 256 18432
 8 r001i01b00 01 03 38 6 46 2666 32d/32i 256 18432
 9 r001i01b00 01 08 48 6 46 2666 32d/32i 256 18432
 10 r001i01b00 01 09 50 6 46 2666 32d/32i 256 18432
 11 r001i01b00 01 11 54 6 46 2666 32d/32i 256 18432
 12 r001i01b01 02 00 64 6 46 2666 32d/32i 256 18432
 13 r001i01b01 02 02 68 6 46 2666 32d/32i 256 18432
 14 r001i01b01 02 03 70 6 46 2666 32d/32i 256 18432

From this partial output, note that this system has 72 CPUs on 6 blades. Each blade has 12 CPUs grouped
into clusters of 6 CPUs. If the entire content of this command were printed you would see each Blade ID
and the CPU ID assigned to each blade.

The topology command shows how the CPUs are distributed, but you likely also need to know where
memory is located relative to CPUs, so go to /sys/devices/system/node. If you list the node
directory you will see something similar to the following:

ls -al
total 0
drwxr-xr-x 14 root root 0 Dec 3 12:14 .
drwxr-xr-x 14 root root 0 Dec 3 12:13 ..
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_cpu
-r--r--r-- 1 root root 4096 Dec 3 14:58 has_normal_memory
drwxr-xr-x 2 root root 0 Dec 3 12:14 node0
drwxr-xr-x 2 root root 0 Dec 3 12:14 node1
drwxr-xr-x 2 root root 0 Dec 3 12:14 node10
drwxr-xr-x 2 root root 0 Dec 3 12:14 node11
drwxr-xr-x 2 root root 0 Dec 3 12:14 node2
drwxr-xr-x 2 root root 0 Dec 3 12:14 node3
drwxr-xr-x 2 root root 0 Dec 3 12:14 node4
drwxr-xr-x 2 root root 0 Dec 3 12:14 node5
drwxr-xr-x 2 root root 0 Dec 3 12:14 node6
drwxr-xr-x 2 root root 0 Dec 3 12:14 node7
drwxr-xr-x 2 root root 0 Dec 3 12:14 node8
drwxr-xr-x 2 root root 0 Dec 3 12:14 node9
-r--r--r-- 1 root root 4096 Dec 3 14:58 online
-r--r--r-- 1 root root 4096 Dec 3 14:58 possible

The directory entries node0, node1,...node11 represent groups of memory and CPUs local to each other.
These groups are a node board, a grouping of resources that are close together. In most cases, a node
board is made up of memory and processor cores. Each bank of memory is called a memory node by the

TORQUE Resource Manager

operating system, and there are certain CPUs that can access that memory very rapidly. Note under the
directory for node board node0 that there is an entry called cpulist. This contains the CPU IDs of all
CPUs local to the memory in node board 0.

Now create the mom.layout file. The content of cpulist 0-5 are local to the memory of node board 0,
and the memory and cpus for that node are specified in the layout file by saying nodes=0. The cpulist for
node board 1 shows 6-11 and memory node index 1. To specify this, simply write nodes=1. Repeat this for
all twelve node boards and create the following mom.layout file for the 72 CPU system.

nodes=0
nodes=1
nodes=2
nodes=3
nodes=4
nodes=5
nodes=6
nodes=7
nodes=8
nodes=9
nodes=10
nodes=11

Each line in the mom.layout file is reported as a node to pbs_server by the pbs_mom daemon.

The mom.layout file does not need to match the hardware layout exactly. It is possible to combine node
boards and create larger NUMA nodes. The following example shows how to do this:

nodes=0-1

The memory nodes can be combined the same as CPUs. The memory nodes combined must be contiguous.
You cannot combine mem 0 and 2.

Configuring server_priv/nodes
The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM
daemon and multiple MOM nodes. So, configure the server_priv/nodes file with the num_node_
boards and numa_board_str attributes. The attribute num_node_boards tells pbs_server how many numa
nodes are reported by the MOM. Following is an example of how to configure the nodes file with num_
node_boards:

numa-10 np=72 num_node_boards=12

This line in the nodes file tells pbs_server there is a host named numa-10 and that it has 72 processors
and 12 nodes. The pbs_server divides the value of np (72) by the value for num_node_boards (12) and
determines there are 6 CPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of CPUs per node board, but a system
does not need to be configured with the same number of CPUs per node board. For systems with non-
uniform CPU distributions, use the attribute numa_board_str to let pbs_server know where CPUs are
located in the cluster.

The following is an example of how to configure the server_priv/nodes file for non-uniformly
distributed CPUs:

Numa-11 numa_board_str=6,8,12

TORQUE Resource Manager

2230 Overview

Overview 2231

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 6, 8, and 12 CPUs
respectively. Note that the attribute np is not used. The np attribute is ignored because the number of
CPUs per node is expressly given.

Enforcement of memory resource limits
TORQUE can better enforce memory limits with the use of the utility memacctd. The memacctd utility is
provided by SGI on SuSe Linux Enterprise Edition (SLES). It is a daemon that caches memory footprints
when it is queried. When configured to use the memory monitor, TORQUE queries memacctd. It is up to
the user to make sure memacctd is installed. See the SGI memacctd man page for more information.

To configure TORQUE to use memacctd for memory enforcement

1. Start memacctd as instructed by SGI.

2. Reconfigure TORQUE with --enable-memacct. This will link in the necessary library when
TORQUE is recompiled.

3. Recompile and reinstall TORQUE.

4. Restart all MOM nodes.

5. (Optional) Alter the qsub filter to include a default memory limit for all jobs that are not submitted
with memory limit.

Related topics

l TORQUE NUMA Configuration on page 2227
l TORQUE on NUMA Systems on page 2227

TORQUE Multi-MOM
Starting in TORQUE version 3.0 users can run multiple MOMs on a single node. The initial reason to
develop a multiple MOM capability was for testing purposes. A small cluster can be made to look larger
since each MOM instance is treated as a separate node.

When running multiple MOMs on a node each MOM must have its own service and manager ports
assigned. The default ports used by the MOM are 15002 and 15003. With the multi-mom alternate ports
can be used without the need to change the default ports for pbs_server even when running a single
instance of the MOM.

For details, see these topics:

l Multi-MOM Configuration on page 2231

l Stopping pbs_mom in Multi-MOM Mode on page 2233

Multi-MOM Configuration
There are three steps to setting up multi-MOM capability:

TORQUE Resource Manager

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=linux&db=man&fname=/usr/share/catman/man8/memacctd.8.html

1. Configure server_priv/nodes on page 2232

2. /etc/hosts file on page 2232

3. Starting pbs_mom with multi-MOM options on page 2232

Configure server_priv/nodes
The attributes mom_service_port and mom_manager_port were added to the nodes file syntax to
accommodate multiple MOMs on a single node. By default pbs_mom opens ports 15002 and 15003 for the
service and management ports respectively. For multiple MOMs to run on the same IP address they need
to have their own port values so they can be distinguished from each other. pbs_server learns about the
port addresses of the different MOMs from entries in the server_priv/nodes file. The following is an
example of a nodes file configured for multiple MOMs:

hosta np=2
hosta-1 np=2 mom_service_port=30001 mom_manager_port=30002
hosta-2 np=2 mom_service_port=31001 mom_manager_port=31002
hosta-3 np=2 mom_service_port=32001 mom_manager_port=32002

Note that all entries have a unique host name and that all port values are also unique. The entry hosta
does not have a mom_service_port or mom_manager_port given. If unspecified, then the MOM defaults to
ports 15002 and 15003.

/etc/hosts file
Host names in the server_priv/nodes file must be resolvable. Creating an alias for each host enables
the server to find the IP address for each MOM; the server uses the port values from the server_
priv/nodes file to contact the correct MOM. An example /etc/hosts entry for the previous server_
priv/nodes example might look like the following:

192.65.73.10 hosta hosta-1 hosta-2 hosta-3

Even though the host name and all the aliases resolve to the same IP address, each MOM instance can
still be distinguished from the others because of the unique port value assigned in the server_
priv/nodes file.

Starting pbs_mom with multi-MOM options
To start multiple instances of pbs_mom on the same node, use the following syntax (see pbs_mom on
page 2344 for details):

pbs_mom -m -M <port value of MOM_service_port> -R <port value of MOM_manager_port> -A
<name of MOM alias>

Continuing based on the earlier example, if you want to create four MOMs on hosta, type the following
at the command line:

pbs_mom -m -M 30001 -R 30002 -A hosta-1
pbs_mom -m -M 31001 -R 31002 -A hosta-2
pbs_mom -m -M 32001 -R 32002 -A hosta-3
pbs_mom

TORQUE Resource Manager

2232 Overview

Submitting and Managing Jobs 2233

Notice that the last call to pbs_mom uses no arguments. By default pbs_mom opens on ports 15002 and
15003. No arguments are necessary because there are no conflicts.

Related topics

l TORQUE Multi-MOM on page 2231
l Stopping pbs_mom in Multi-MOM Mode on page 2233

Stopping pbs_mom in Multi-MOMMode
Terminate pbs_mom by using the momctl -s command (for details, see momctl). For any MOM using
the default manager port 15003, the momctl -s command stops the MOM. However, to terminate MOMs
with a manager port value not equal to 15003, you must use the following syntax:

momctl -s -p <port value of MOM_manager_port>

The -p option sends the terminating signal to the MOM manager port and the MOM is terminated.

Related topics

l TORQUE Multi-MOM on page 2231
l Multi-MOM Configuration on page 2231

Submitting andManaging Jobs
This section contains information about how you can submit and manage jobs with TORQUE. For details,
see the following topics:

l Job Submission on page 2234

l Monitoring Jobs on page 2250

l Canceling Jobs on page 2250

l Job Preemption on page 2251

l Keeping Completed Jobs on page 2251

l Job Checkpoint and Restart on page 2252

l Job Exit Status on page 2262

l Service Jobs on page 2266

TORQUE Resource Manager

Job Submission
Job submission is accomplished using the qsub command, which takes a number of command line
arguments and integrates such into the specified PBS command file. The PBS command file may be
specified as a filename on the qsub command line or may be entered via STDIN.

l The PBS command file does not need to be executable.

l The PBS command file may be piped into qsub (i.e., cat pbs.cmd | qsub).

l In the case of parallel jobs, the PBS command file is staged to, and executed on, the first allocated
compute node only. (Use pbsdsh to run actions on multiple nodes.)

l The command script is executed from the user's home directory in all cases. (The script may
determine the submission directory by using the $PBS_O_WORKDIR environment variable)

l The command script will be executed using the default set of user environment variables unless
the -V or -v flags are specified to include aspects of the job submission environment.

l PBS directives should be declared first in the job script.

#PBS -S /bin/bash
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of properly declared PBS directives.

#PBS -S /bin/bash
SOMEVARIABLE=42
#PBS -m abe
#PBS -M <yourEmail@company.com>
echo sleep 300

This is an example of improperly declared PBS directives. PBS directives below "SOMEVARIABLE=42" are ignored.

By default, job submission is allowed only on the TORQUE server host (host on which pbs_server
is running). Enablement of job submission from other hosts is documented in Server Configuration
on page 2215.

Versions of TORQUE earlier than 2.4.5 attempted to apply queue and server defaults to a job that
didn't have defaults specified. If a setting still did not have a value after that, TORQUE applied the
queue and server maximum values to a job (meaning, the maximum values for an applicable
setting were applied to jobs that had no specified or default value).

In TORQUE 2.4.5 and later, the queue and server maximum values are no longer used as a value
for missing settings.

This section contains these topics:

l Multiple Job Submission on page 2235

l Requesting Resources on page 2237

TORQUE Resource Manager

2234 Submitting and Managing Jobs

Submitting and Managing Jobs 2235

l Requesting Generic Resources on page 2244

l Requesting Floating Resources on page 2244

l Requesting Other Resources on page 2245

l Exported Batch Environment Variables on page 2245

l Enabling Trusted Submit Hosts on page 2247

l Example Submit Scripts on page 2247

Related topics

l Maui Documentation
l http://www.lunarc.lu.se
l http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts
l Appendix J: Job Submission Filter ("qsub wrapper") on page 2479 – Allow local checking and
modification of submitted job

Multiple Job Submission
Sometimes users will want to submit large numbers of jobs based on the same job script. Rather than
using a script to repeatedly call qsub, a feature known as job arrays now exists to allow the creation of
multiple jobs with one qsub command. Additionally, this feature includes a new job naming convention
that allows users to reference the entire set of jobs as a unit, or to reference one particular job from the
set.

Job arrays are submitted through the -t option to qsub, or by using #PBS -t in your batch script. This
option takes a comma-separated list consisting of either a single job ID number, or a pair of numbers
separated by a dash. Each of these jobs created will use the same script and will be running in a nearly
identical environment.

> qsub -t 0-4 job_script
1098[].hostname

> qstat -t
1098[0].hostname ...
1098[1].hostname ...
1098[2].hostname ...
1098[3].hostname ...
1098[4].hostname ...

Versions of TORQUE earlier than 2.3 had different semantics for the -t argument. In these
versions, -t took a single integer number—a count of the number of jobs to be created.

Each 1098[x] job has an environment variable called PBS_ARRAYID, which is set to the value of the array
index of the job, so 1098[0].hostname would have PBS_ARRAYID set to 0. This allows you to create job
arrays where each job in the array performs slightly different actions based on the value of this
variable, such as performing the same tasks on different input files. One other difference in the
environment between jobs in the same array is the value of the PBS_JOBNAME variable.

TORQUE Resource Manager

http://www.lunarc.lu.se/Support/SpecialTopics/ExampleScripts/MatlabScripts/MatlabScript
http://www.clusters.umaine.edu/wiki/index.php/Example_Submission_Scripts

These two examples are equivalent in TORQUE 2.2
> qsub -t 0-99
> qsub -t 100

You can also pass comma delimited lists of ids and ranges:
> qsub -t 0,10,20,30,40
> qsub -t 0-50,60,70,80

Running qstat displays a job summary, which provides an overview of the array's state. To see each job
in the array, run qstat -t.

The qalter, qdel, qhold, and qrls commands can operate on arrays—either the entire array or a range
of that array. Additionally, any job in the array may be accessed normally by using that job's ID, just as
you would with any other job. For example, running the following command would run only the specified
job:

qrun 1098[0].hostname

Slot Limit
The slot limit is a way for administrators to limit the number of jobs from a job array that can be
eligible for scheduling at the same time. When a slot limit is used, TORQUE puts a hold on all jobs in the
array that exceed the slot limit. When an eligible job in the array completes, TORQUE removes the hold
flag from the next job in the array. Slot limits can be declared globally with the max_slot_limit
parameter, or on a per-job basis with qsub -t.

Related topics

l Job Submission on page 2234

Managing Multi-node Jobs
By default, when a multi-node job runs, the Mother Superior manages the job across all the sister nodes
by communicating with each of them and updating pbs_server. Each of the sister nodes sends its
updates and stdout and stderr directly to the Mother Superior. When you run an extremely large job
using hundreds or thousands of nodes, you may want to reduce the amount of network traffic sent from
the sisters to the Mother Superior by specifying a job radix. Job radix sets a maximum number of nodes
with which the Mother Superior and resulting intermediate MOMs communicate and is specified using
the -W on page 2406 option for qsub.

For example, if you submit a smaller, 12-node job and specify job_radix=3, Mother Superior and each
resulting intermediate MOM is only allowed to receive communication from 3 subordinate nodes.

Image 4-1: Job radix example

TORQUE Resource Manager

2236 Submitting and Managing Jobs

Submitting and Managing Jobs 2237

The Mother Superior picks three sister nodes with which to communicate the job information. Each
of those nodes (intermediate MOMs) receives a list of all sister nodes that will be subordinate to it. They
each contact up to three nodes and pass the job information on to those nodes. This pattern continues
until the bottom level is reached. All communication is now passed across this new hierarchy. The stdout
and stderr data is aggregated and sent up the tree until it reaches the Mother Superior, where it is
saved and copied to the .o and .e files.

Job radix is meant for extremely large jobs only. It is a tunable parameter and should be adjusted
according to local conditions in order to produce the best results.

Requesting Resources
Various resources can be requested at the time of job submission. A job can request a particular node, a
particular node attribute, or even a number of nodes with particular attributes. Either native TORQUE
resources or external scheduler resource extensions may be specified. The native TORQUE resources are
listed in the following table:

Resource Format Description

arch string Specifies the administrator defined system architecture required. This
defaults to whatever the PBS_MACH string is set to in "local.mk".

cput seconds, or
[[HH:]MM;]SS

Maximum amount of CPU time used by all processes in the job.

TORQUE Resource Manager

Resource Format Description

cpuclock string Specify the CPU clock frequency for each node requested for this job. A
cpuclock request applies to every processor on every node in the request.
Specifying varying CPU frequencies for different nodes or different processors
on nodes in a single job request is not supported.
Not all processors support all possible frequencies or ACPI states. If the
requested frequency is not supported by the CPU, the nearest frequency is
used.
ALPS 1.4 or later is required when using cpuclock on Cray.
The clock frequency can be specified via:

l a number that indicates the clock frequency (with or without the SI
unit suffix).

qsub -l cpuclock=1800,nodes=2 script.sh
qsub -l cpuclock=1800mhz,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to 1800 MHz.

l a Linux power governor policy name. The governor names are:
o performance: This governor instructs Linux to operate each

logical processor at its maximum clock frequency.
This setting consumes the most power and workload executes
at the fastest possible speed.

o powersave: This governor instructs Linux to operate each
logical processor at its minimum clock frequency.
This setting executes workload at the slowest possible speed.
This setting does not necessarily consume the least amount of
power since applications execute slower, and may actually
consume more energy because of the additional time needed
to complete the workload's execution.

o ondemand: This governor dynamically switches the logical
processor's clock frequency to the maximum value when
system load is high and to the minimum value when the
system load is low.
This setting causes workload to execute at the fastest possible
speed or the slowest possible speed, depending on OS load.
The system switches between consuming the most power and
the least power.

TORQUE Resource Manager

2238 Submitting and Managing Jobs

Submitting and Managing Jobs 2239

Resource Format Description

The power saving benefits of ondemand might be
non-existent due to frequency switching latency if the
system load causes clock frequency changes too often.
This has been true for older processors since changing
the clock frequency required putting the processor into
the C3 "sleep" state, changing its clock frequency, and
then waking it up, all of which required a significant
amount of time.
Newer processors, such as the Intel Xeon E5-2600
Sandy Bridge processors, can change clock frequency
dynamically and much faster.

o conservative: This governor operates like the ondemand
governor but is more conservative in switching between
frequencies. It switches more gradually and uses all possible
clock frequencies.
This governor can switch to an intermediate clock frequency if
it seems appropriate to the system load and usage, which the
ondemand governor does not do.

qsub -l cpuclock=performance,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to the performance power governor policy.

l an ACPI performance state (or P-state) with or without the P prefix. P-
states are a special range of values (0-15) that map to specific
frequencies. Not all processors support all 16 states, however, they all
start at P0. P0 sets the CPU clock frequency to the highest
performance state which runs at the maximum frequency. P15 sets
the CPU clock frequency to the lowest performance state which runs
at the lowest frequency.

qsub -l cpuclock=3,nodes=2 script.sh
qsub -l cpuclock=p3,nodes=2 script.sh

This job requests 2 nodes and specifies their CPU frequencies
should be set to a performance state of 3.

When reviewing job or node properties when cpuclock was used, be mindful
of unit conversion. The OS reports frequency in Hz, not MHz or GHz.

TORQUE Resource Manager

Resource Format Description

epilogue string Specifies a user owned epilogue script which will be run before the system
epilogue and epilogue.user scripts at the completion of a job. The syntax is
epilogue=<file>. The file can be designated with an absolute or relative
path.
For more information, see Appendix G: Prologue and Epilogue Scripts on
page 2469.

feature string Specifies a property or feature for the job. Feature corresponds to TORQUE
node properties and Moab features.

qsub script.sh -l procs=10,feature=bigmem

file size The amount of total disk requested for the job. (Ignored on Unicos.)

host string Name of the host on which the job should be run. This resource is provided
for use by the site's scheduling policy. The allowable values and effect on job
placement is site dependent.

mem size Maximum amount of physical memory used by the job. Ignored on Darwin,
Digital Unix, Free BSD, HPUX 11, IRIX, NetBSD, and SunOS. Not implemented
on AIX and HPUX 10.
The mem resource will only work for single-node jobs. If your job requires
multiple nodes, use pmem instead.

ncpus integer The number of processors in one task where a task cannot span nodes.

You cannot request both ncpus and nodes in the same job.

nice integer Number between -20 (highest priority) and 19 (lowest priority). Adjust the
process execution priority.

TORQUE Resource Manager

2240 Submitting and Managing Jobs

Submitting and Managing Jobs 2241

Resource Format Description

nodes {<node_count> |
<hostname>}
[:ppn=<ppn>]
[:gpus=<gpu>]
[:<property>
[:<property>]...]
[+ ...]

Number and/or type of nodes to be reserved for exclusive use by the job. The
value is one or more node_specs joined with the + (plus) character: node_spec
[+node_spec...]. Each node_spec is a number of nodes required of the type
declared in the node_spec and a name of one or more properties desired for
the nodes. The number, the name, and each property in the node_spec are
separated by a : (colon). If no number is specified, one (1) is assumed. The
name of a node is its hostname. The properties of nodes are:

l ppn=# - Specify the number of virtual processors per node requested
for this job.
The number of virtual processors available on a node by default is 1,
but it can be configured in the $TORQUE_HOME/server_
priv/nodes file using the np attribute (see Server Node File
Configuration on page 2222). The virtual processor can relate to a
physical core on the node or it can be interpreted as an "execution
slot" such as on sites that set the node np value greater than the
number of physical cores (or hyper-thread contexts). The ppn value is
a characteristic of the hardware, system, and site, and its value is to be
determined by the administrator.

l gpus=# - Specify the number of GPUs per node requested for this job.
The number of GPUs available on a node can be configured in the
$TORQUE_HOME/server_priv/nodes file using the gpu attribute (see
Server Node File Configuration on page 2222). The GPU value is a
characteristic of the hardware, system, and site, and its value is to be
determined by the administrator.

l property - A string assigned by the system administrator specifying a
node's features. Check with your administrator as to the node names
and properties available to you.

TORQUE does not have a TPN (tasks per node) property. You can
specify TPN in Moab Workload Manager with TORQUE as your
resource manager, but TORQUE does not recognize the property when
it is submitted directly to it via qsub.

See qsub -l nodes on page 2243 for examples.

By default, the node resource is mapped to a virtual node (that is,
directly to a processor, not a full physical compute node). This
behavior can be changed within Maui or Moab by setting the
JOBNODEMATCHPOLICY parameter. See Appendix A: Moab
Parameters on page 902 for more information.

opsys string Specifies the administrator defined operating system as defined in the MOM
configuration file.

TORQUE Resource Manager

Resource Format Description

other string Allows a user to specify site specific information. This resource is provided for
use by the site's scheduling policy. The allowable values and effect on job
placement is site dependent.

This does not work for msub using Moab and Maui.

pcput seconds, or
[[HH:]MM:]SS

Maximum amount of CPU time used by any single process in the job.

pmem size Maximum amount of physical memory used by any single process of the job.
(Ignored on Fujitsu. Not implemented on Digital Unix and HPUX.)

procs procs=<integer> (Applicable in version 2.5.0 and later.) The number of processors to be allocated
to a job. The processors can come from one or more qualified node(s). Only
one procs declaration may be used per submitted qsub command.
> qsub -l nodes=3 -1 procs=2

procs_bit-
map

string A string made up of 1's and 0's in reverse order of the processor cores
requested. A procs_bitmap=1110means the job requests a node that has
four available cores, but the job runs exclusively on cores two, three, and four.
With this bitmap, core one is not used.
For more information, see Scheduling Cores on page 2275.

prologue string Specifies a user owned prologue script which will be run after the system
prologue and prologue.user scripts at the beginning of a job. The syntax is
prologue=<file>. The file can be designated with an absolute or relative
path.
For more information, see Appendix G: Prologue and Epilogue Scripts on
page 2469.

pvmem size Maximum amount of virtual memory used by any single process in the job.
(Ignored on Unicos.)

size integer For TORQUE, this resource has no meaning. It is passed on to the scheduler for
interpretation. In the Moab scheduler, the size resource is intended for use in
Cray installations only.

software string Allows a user to specify software required by the job. This is useful if certain
software packages are only available on certain systems in the site. This
resource is provided for use by the site's scheduling policy. The allowable val-
ues and effect on job placement is site dependent. (See License Management
on page 663 for more information.)

TORQUE Resource Manager

2242 Submitting and Managing Jobs

Submitting and Managing Jobs 2243

Resource Format Description

vmem size Maximum amount of virtual memory used by all concurrent processes in the
job. (Ignored on Unicos.)

walltime seconds, or
[[HH:]MM:]SS

Maximum amount of real time during which the job can be in the running
state.

size

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the form
integer[suffix]. The suffix is a multiplier defined in the following table ("b" means bytes [the default] and
"w" means words). The size of a word is calculated on the execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Example 4-10: qsub -l nodes

Usage Description

> qsub -l nodes=12 Request 12 nodes of any type

> qsub -l nodes=2:server+14 Request 2 "server" nodes and 14 other nodes (a
total of 16) - this specifies two node_specs,
"2:server" and "14"

> qsub -l nodes-
s=server:hippi+10:noserver+3:bigmem:hippi

Request (a) 1 node that is a "server" and has a
"hippi" interface, (b) 10 nodes that are not serv-
ers, and (c) 3 nodes that have a large amount of
memory and have hippi

> qsub -l nodes=b2005+b1803+b1813 Request 3 specific nodes by hostname

TORQUE Resource Manager

Usage Description

> qsub -l nodes=4:ppn=2 Request 2 processors on each of four nodes

> qsub -l nodes=1:ppn=4 Request 4 processors on one node

> qsub -l nodes=2:blue:ppn=2+red:ppn=3+b1014 Request 2 processors on each of two blue nodes,
three processors on one red node, and the com-
pute node "b1014"

Example 4-11:

This job requests a node with 200MB of available memory:

> qsub -l mem=200mb /home/user/script.sh

Example 4-12:

This job will wait until node01 is free with 200MB of available memory:

> qsub -l nodes=node01,mem=200mb /home/user/script.sh

Related topics

l Job Submission on page 2234

Requesting Generic Resources
When generic resources have been assigned to nodes using the server's nodes file, these resources can
be requested at the time of job submission using the other field. (See Managing Consumable Generic
Resources on page 573 for details on configuration within Moab).

Example 4-13: Generic

This job will run on any node that has the generic resource matlab.

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

Related topics

l Requesting Resources on page 2237
l Job Submission on page 2234

Requesting Floating Resources
When floating resources have been set up inside Moab, they can be requested in the same way as
generic resources. Moab will automatically understand that these resources are floating and will

TORQUE Resource Manager

2244 Submitting and Managing Jobs

Submitting and Managing Jobs 2245

schedule the job accordingly. (See Managing Shared Cluster Resources (Floating Resources) on page
567 for details on configuration within Moab.)

Example 4-14: Floating

This job will run on any node when there are enough floating resources available.

> qsub -l other=matlab /home/user/script.sh

This can also be requested at the time of job submission using the -W x=GRES:matlab flag.

Related topics

l Requesting Resources on page 2237
l Job Submission on page 2234

Requesting Other Resources
Many other resources can be requested at the time of job submission using the Moab Workload Manager.
See Resource Manager Extensions on page 618 for a list of these supported requests and correct syntax.

Related topics

l Requesting Resources on page 2237
l Job Submission on page 2234

Exported Batch Environment Variables
When a batch job is started, a number of variables are introduced into the job's environment that can be
used by the batch script in making decisions, creating output files, and so forth. These variables are
listed in the following table:

Variable Description

PBS_JOBNAME User specified jobname

PBS_ARRAYID Zero-based value of job array index for this job (in version 2.2.0 and later)

PBS_GPUFILE Line-delimited list of GPUs allocated to the job located in $TORQUE_HOME/aux/jobidgpu.
Each line follows the following format:
<host>-gpu<number>

For example, myhost-gpu1.

PBS_O_
WORKDIR

Job's submission directory

TORQUE Resource Manager

Variable Description

PBS_
ENVIRONMENT

N/A

PBS_TASKNUM Number of tasks requested

PBS_O_HOME Home directory of submitting user

PBS_MOMPORT Active port for MOM daemon

PBS_O_
LOGNAME

Name of submitting user

PBS_O_LANG Language variable for job

PBS_
JOBCOOKIE

Job cookie

PBS_JOBID Unique pbs job id

PBS_NODENUM Node offset number

PBS_NUM_
NODES

Number of nodes allocated to the job

PBS_NUM_PPN Number of procs per node allocated to the job

PBS_O_SHELL Script shell

PBS_O_HOST Host on which job script is currently running

PBS_QUEUE Job queue

PBS_NODEFILE File containing line delimited list of nodes allocated to the job

PBS_NP Number of execution slots (cores) for the job

PBS_O_PATH Path variable used to locate executables within job script

TORQUE Resource Manager

2246 Submitting and Managing Jobs

Submitting and Managing Jobs 2247

Related topics

l Requesting Resources on page 2237
l Job Submission on page 2234

Enabling Trusted Submit Hosts
By default, only the node running the pbs_server daemon is allowed to submit jobs. Additional nodes can
be trusted as submit hosts by taking any of the following steps:

l Set the allow_node_submit server parameter (see Allowing job submission from compute
hosts on page 2217).

Allows any host trusted as a compute host to also be trusted as a submit host.

l Set the submit_hosts server parameter (see Using the "submit_hosts" service parameter on
page 2216).

Allows specified hosts to be trusted as a submit host.

l Use .rhosts to enable ruserok() based authentication (see Using RCmd authentication on page
2216).

See Configuring job submission hosts on page 2216 for more information.

When you enable allow_node_submit on page 2418, you must also enable the allow_proxy_user
on page 2418 parameter to allow user proxying when submitting and running jobs.

Related topics

l Job Submission on page 2234

Example Submit Scripts
The following is an example job test script:

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

TORQUE Resource Manager

Related topics

l Job Submission on page 2234

Job Files
TORQUE 4.5.0 was updated to accept XML-based job files in addition to the binary job files. The change
allows job files to be more human-readable and easier to parse. Below is a sample job file in the new
XML format:

TORQUE Resource Manager

2248 Submitting and Managing Jobs

Submitting and Managing Jobs 2249

<?xml version="1.0"?>
<job>
<version>131842</version>
<state>1</state>
<substate>10</substate>
<server_flags>33</server_flags>
<start_time>0</start_time>
<jobid>340</jobid>
<fileprefix>340</fileprefix>
<queue>batch</queue>
<destination_queue></destination_queue>
<record_type>1</record_type>
<mom_address>0</mom_address>
<mom_port>11</mom_port>
<mom_rmport>0</mom_rmport>
<attributes>
<Job_Name flags="1">job2.sh</Job_Name>
<Job_Owner flags="1">echan@moabServer.cn</Job_Owner>
<job_state flags="1">Q</job_state>
<queue flags="3">batch</queue>
<server flags="1">company.com</server>
<Checkpoint flags="1">u</Checkpoint>
<ctime flags="1">1384292754</ctime>
<Error_Path flags="1">moabServer.cn:/home/echan/work/job2.sh.e340</Error_Path>
<Hold_Types flags="1">n</Hold_Types>
<Join_Path flags="1">n</Join_Path>
<Keep_Files flags="1">n</Keep_Files>
<Mail_Points flags="1">a</Mail_Points>
<mtime flags="1">1384292754</mtime>
<Output_Path flags="1">moabServer.cn:/home/echan/work/job2.sh.o340</Output_Path>
<Priority flags="1">0</Priority>
<qtime flags="1">1384292754</qtime>
<Rerunable flags="1">True</Rerunable>
<Resource_List>
<epilogue flags="1">/tmp/epilogue.sh</epilogue>
<neednodes flags="1">moabServer:ppn=1</neednodes>
<nodect flags="1">1</nodect>
<nodes flags="1">moabServer:ppn=1</nodes>

</Resource_List>
<substate flags="1">10</substate>
<Variable_List flags="1">PBS_O_QUEUE=batch

PBS_O_HOME=/home/echan
PBS_O_LOGNAME=echan
PBS_O_
PATH=/home/echan/eclipse:/usr/lib/lightdm/lightdm:/usr/local/sbin:/usr/local/bin:/usr/
sbin:/usr/bin:/sbin:/bin:/usr/games:/opt/moab/bin:/opt/moab/sbin
PBS_O_SHELL=/bin/bash
PBS_O_LANG=en_US
PBS_O_WORKDIR=/home/echan/work
PBS_O_HOST=moabServer.cn
PBS_O_SERVER=moabServer
</Variable_List>

<euser flags="1">echan</euser>
<egroup flags="5">company</egroup>
<hop_count flags="1">1</hop_count>
<queue_rank flags="1">2</queue_rank>
<queue_type flags="1">E</queue_type>
<etime flags="1">1384292754</etime>
<submit_args flags="1">-l nodes=lei:ppn=1 -l epilogue=/tmp/epilogue.sh

./job2.sh</submit_args>
<fault_tolerant flags="1">False</fault_tolerant>
<job_radix flags="1">0</job_radix>

TORQUE Resource Manager

<submit_host flags="1">lei.ac</submit_host>
</attributes>

</job>

The above job was submitted with this submit command:

qsub -l nodes=moabServer:ppn=1 -l epilogue=/tmp/epilogue.sh ./job2.sh

Related topics

l Job Submission on page 2234

Monitoring Jobs
TORQUE allows users and administrators to monitor submitted jobs with the qstat command. If the
command is run by a non-administrative user, it will output just that user's jobs. For example:

> qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...

Related topics

l Submitting and Managing Jobs on page 2233

Canceling Jobs
TORQUE allows users and administrators to cancel submitted jobs with the qdel command. The job will
be sent TERM and KILL signals killing the running processes. When the top-level job script exits, the job
will exit. The only parameter is the ID of the job to be canceled.

If a job is canceled by an operator or manager, an email notification will be sent to the user. Operators
and managers may add a comment to this email with the -m option.

$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
4807 scatter user01 12:56:34 R batch
...
$ qdel -m "hey! Stop abusing the NFS servers" 4807
$

Related topics

l Submitting and Managing Jobs on page 2233

TORQUE Resource Manager

2250 Submitting and Managing Jobs

Submitting and Managing Jobs 2251

Job Preemption
TORQUE supports job preemption by allowing authorized users to suspend and resume jobs. This is
supported using one of two methods. If the node supports OS-level preemption, TORQUE will recognize
that during the configure process and enable it. Otherwise, the MOM may be configured to launch a
custom checkpoint script in order to support preempting a job. Using a custom checkpoint script requires
that the job understand how to resume itself from a checkpoint after the preemption occurs.

Configuring a checkpoint script on a MOM
To configure the MOM to support a checkpoint script, the $checkpoint_script parameter must be
set in the MOM's configuration file found in TORQUE_HOME/mom_priv/config. The checkpoint script
should have execute permissions set. A typical configuration file might look as follows:

mom_priv/config:

$pbsserver node06
$logevent 255
$restricted *.mycluster.org
$checkpoint_script /opt/moab/tools/mom-checkpoint.sh

The second thing that must be done to enable the checkpoint script is to change the value of MOM_
CHECKPOINT to 1 in /src/include/pbs_config.h. (In some instances, MOM_CHECKPOINT may
already be defined as 1.) The new line should be as follows:

/src/include/pbs_config.h:

#define MOM_CHECKPOINT 1

Related topics

l Submitting and Managing Jobs on page 2233

Keeping Completed Jobs
TORQUE provides the ability to report on the status of completed jobs for a configurable duration after
the job has completed. This can be enabled by setting the keep_completed on page 2282 attribute on the
job execution queue or the keep_completed on page 2424 parameter on the server. This should be set to
the number of seconds that jobs should be held in the queue. If you set keep_completed on the job
execution queue, completed jobs will be reported in the C state and the exit status is seen in the exit_
status job attribute.

TORQUE Resource Manager

If the Mother Superior and TORQUE server are on the same server, expect the following behavior:

l When keep_completed is set, the job spool files will be deleted when the specified time
arrives and TORQUE purges the job from memory.

l When keep_completed is not set, TORQUE deletes the job spool files upon job completion.

l If you manually purge a job (qdel -p) before the job completes or time runs out, TORQUE
will never delete the spool files.

By maintaining status information about completed (or canceled, failed, etc.) jobs, administrators can
better track failures and improve system performance. This allows TORQUE to better communicate with
Moab Workload Manager and track the status of jobs. This gives Moab the ability to track specific
failures and to schedule the workload around possible hazards. (See NODEFAILURERESERVETIME in
Appendix A: Moab Parameters on page 902 for more information.)

Related topics

l Submitting and Managing Jobs on page 2233

Job Checkpoint and Restart
While TORQUE has had a job checkpoint and restart capability for many years, this was tied to machine
specific features. Now TORQUE supports BLCR—an architecture independent package that provides for
process checkpoint and restart.

The support for BLCR is only for serial jobs, not for any MPI type jobs.

This section contains these topics:

l Introduction to BLCR on page 2252

l Configuration Files and Scripts on page 2253

l Starting a Checkpointable Job on page 2260

l Checkpointing a Job on page 2261

l Restarting a Job on page 2261

l Acceptance Tests on page 2262

Related topics

l Submitting and Managing Jobs on page 2233

Introduction to BLCR
BLCR is a kernel level package. It must be downloaded and installed from BLCR.

TORQUE Resource Manager

2252 Submitting and Managing Jobs

https://ftg.lbl.gov/projects/CheckpointRestart/

Submitting and Managing Jobs 2253

After building and making the package, it must be installed into the kernel with commands as follows.
These can be installed into the file /etc/modules but all of the testing was done with explicit
invocations of modprobe.

Installing BLCR into the kernel:

/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_imports.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr_vmadump.ko
/sbin/insmod /usr/local/lib/blcr/2.6.12-1.234/blcr.ko

The BLCR system provides four command line utilities:

l cr_checkpoint

l cr_info

l cr_restart

l cr_run

For more information about BLCR, see the BLCR Administrator's Guide.

Related topics

l Job Checkpoint and Restart on page 2252

Configuration Files and Scripts
Configuring and Building TORQUE for BLCR:

> ./configure --enable-unixsockets=no --enable-blcr
> make
> sudo make install

Depending on where BLCR is installed you may also need to use the following configure options to specify
BLCR paths:

Option Description

--with-blcr-include=DIR include path for libcr.h

--with-blcr-lib=DIR lib path for libcr

--with-blcr-bin=DIR bin path for BLCR utilities

The pbs_mom configuration file located in /var/spool/torque/mom_priv must be modified to
identify the script names associated with invoking the BLCR commands. The following variables should
be used in the configuration file when using BLCR checkpointing.

TORQUE Resource Manager

http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

Variable Description

$checkpoint_inter-
val

How often periodic job checkpoints will be taken (minutes)

$checkpoint_script The name of the script file to execute to perform a job checkpoint

$restart_script The name of the script file to execute to perform a job restart

$checkpoint_run_
exe

The name of an executable program to be run when starting a checkpointable job (for
BLCR, cr_run)

The following example shows the contents of the configuration file used for testing the BLCR feature in
TORQUE.

The script files below must be executable by the user. Be sure to use chmod to set the
permissions to 754.

Example 4-15: Script file permissions

chmod 754 blcr*
ls -l
total 20
-rwxr-xr-- 1 root root 2112 2008-03-11 13:14 blcr_checkpoint_script
-rwxr-xr-- 1 root root 1987 2008-03-11 13:14 blcr_restart_script
-rw-r--r-- 1 root root 215 2008-03-11 13:13 config
drwxr-x--x 2 root root 4096 2008-03-11 13:21 jobs
-rw-r--r-- 1 root root 7 2008-03-11 13:15 mom.lock

Example 4-16: mom_priv/config

$checkpoint_script /var/spool/torque/mom_priv/blcr_checkpoint_script
$restart_script /var/spool/torque/mom_priv/blcr_restart_script
$checkpoint_run_exe /usr/local/bin/cr_run
$pbsserver makua.cridomain
$loglevel 7

TORQUE Resource Manager

2254 Submitting and Managing Jobs

Submitting and Managing Jobs 2255

Example 4-17: mom_priv/blcr_checkpoint_script

TORQUE Resource Manager

#! /usr/bin/perl
##
#
Usage: checkpoint_script
#
This script is invoked by pbs_mom to checkpoint a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $signalNum, $checkpointDir, $checkpointName);
my $usage =
 "Usage: $0 \n";

Note that depth is not used in this script but could control a limit to the number
of checkpoint
image files that are preserved on the disk.
#
Note also that a request was made to identify whether this script was invoked by the
job's
owner or by a system administrator. While this information is known to pbs_server,
it
is not propagated to pbs_mom and thus it is not possible to pass this to the script.

Therefore, a workaround is to invoke qmgr and attempt to set a trivial variable.
This will fail if the invoker is not a manager.

if (@ARGV == 7)
{

($sessionId, $jobId, $userId, $checkpointDir, $checkpointName, $signalNum $depth)
=

@ARGV;
}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_checkpoint";
$cmd .= " --signal $signalNum" if $signalNum;
$cmd .= " --tree $sessionId";
$cmd .= " --file $checkpointName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{

TORQUE Resource Manager

2256 Submitting and Managing Jobs

Submitting and Managing Jobs 2257

 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;

 openlog('checkpoint_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;
 logPrint($level, $message);
 die($message);
}

TORQUE Resource Manager

Example 4-18: mom_priv/blcr_restart_script

TORQUE Resource Manager

2258 Submitting and Managing Jobs

Submitting and Managing Jobs 2259

#! /usr/bin/perl
##
#
Usage: restart_script
#
This script is invoked by pbs_mom to restart a job.
#
##
use strict;
use Sys::Syslog;

Log levels:
0 = none -- no logging
1 = fail -- log only failures
2 = info -- log invocations
3 = debug -- log all subcommands
my $logLevel = 3;

logPrint(2, "Invoked: $0 " . join(' ', @ARGV) . "\n");

my ($sessionId, $jobId, $userId, $checkpointDir, $restartName);
my $usage =
 "Usage: $0 \n";
if (@ARGV == 5)
{

($sessionId, $jobId, $userId, $checkpointDir, $restartName) =
@ARGV;

}
else { logDie(1, $usage); }

Change to the checkpoint directory where we want the checkpoint to be created
chdir $checkpointDir
 or logDie(1, "Unable to cd to checkpoint dir ($checkpointDir): $!\n")
 if $logLevel;

my $cmd = "cr_restart";
$cmd .= " $restartName";
my $output = `$cmd 2>&1`;
my $rc = $? >> 8;
logDie(1, "Subcommand ($cmd) failed with rc=$rc:\n$output")
 if $rc && $logLevel >= 1;
logPrint(3, "Subcommand ($cmd) yielded rc=$rc:\n$output")
 if $logLevel >= 3;
exit 0;

##
logPrint($message)
Write a message (to syslog) and die
##
sub logPrint
{
 my ($level, $message) = @_;
 my @severity = ('none', 'warning', 'info', 'debug');

 return if $level > $logLevel;
 openlog('restart_script', '', 'user');
 syslog($severity[$level], $message);
 closelog();
}

##
logDie($message)
Write a message (to syslog) and die
##
sub logDie
{
 my ($level, $message) = @_;

 logPrint($level, $message);

TORQUE Resource Manager

 die($message);
}

Related topics

l Job Checkpoint and Restart on page 2252

Starting a Checkpointable Job
Not every job is checkpointable. A job for which checkpointing is desirable must be started with the -c
command line option. This option takes a comma-separated list of arguments that are used to control
checkpointing behavior. The list of valid options available in the 2.4 version of TORQUE is show below.

Option Description

none No checkpointing (not highly useful, but included for completeness).

enabled Specify that checkpointing is allowed, but must be explicitly invoked by either the qhold or
qchkpt commands.

shutdown Specify that checkpointing is to be done on a job at pbs_mom shutdown.

periodic Specify that periodic checkpointing is enabled. The default interval is 10 minutes and can be
changed by the $checkpoint_interval option in the MOM configuration file, or by spe-
cifying an interval when the job is submitted.

interval=minutes Specify the checkpoint interval in minutes.

depth=number Specify a number (depth) of checkpoint images to be kept in the checkpoint directory.

dir=path Specify a checkpoint directory (default is /var/spool/torque/checkpoint).

Example 4-19: Sample test program

#include "stdio.h"
int main(int argc, char *argv[])
{
int i;

for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}

Example 4-20: Instructions for building test program

> gcc -o test test.c

TORQUE Resource Manager

2260 Submitting and Managing Jobs

Submitting and Managing Jobs 2261

Example 4-21: Sample test script

#!/bin/bash ./test

Example 4-22: Starting the test job

> qstat
> qsub -c enabled,periodic,shutdown,interval=1 test.sh
77.jakaa.cridomain
> qstat
Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
77.jakaa test.sh jsmith 0 Q batch
>

If you have no scheduler running, you might need to start the job with qrun.

As this program runs, it writes its output to a file in /var/spool/torque/spool. This file can be
observed with the command tail -f.

Related topics

l Job Checkpoint and Restart on page 2252

Checkpointing a Job
Jobs are checkpointed by issuing a qhold command. This causes an image file representing the state of
the process to be written to disk. The directory by default is /var/spool/torque/checkpoint.

This default can be altered at the queue level with the qmgr command. For example, the command qmgr
-c set queue batch checkpoint_dir=/tmp would change the checkpoint directory to /tmp for
the queue 'batch'.

The default directory can also be altered at job submission time with the -c dir=/tmp command line
option.

The name of the checkpoint directory and the name of the checkpoint image file become attributes of the
job and can be observed with the command qstat -f. Notice in the output the names checkpoint_dir
and checkpoint_name. The variable checkpoint_name is set when the image file is created and will not
exist if no checkpoint has been taken.

A job can also be checkpointed without stopping or holding the job with the command qchkpt.

Related topics

l Job Checkpoint and Restart on page 2252

Restarting a Job

Restarting a job in the Held state
The qrls command is used to restart the hibernated job. If you were using the tail -f command to
watch the output file, you will see the test program start counting again.

TORQUE Resource Manager

It is possible to use the qalter command to change the name of the checkpoint file associated with a job.
This could be useful if there were several job checkpoints and it restarting the job from an older image
was specified.

Restarting a job in the Completed state
In this case, the job must be moved to the Queued state with the qrerun command. Then the job must go
to the Run state either by action of the scheduler or if there is no scheduler, through using the qrun
command.

Related topics

l Job Checkpoint and Restart on page 2252

Acceptance Tests
A number of tests were made to verify the functioning of the BLCR implementation. See Appendix M:
BLCR Acceptance Tests on page 2488 for a description of the testing.

Related topics

l Job Checkpoint and Restart on page 2252

Job Exit Status
Once a job under TORQUE has completed, the exit_status attribute will contain the result code
returned by the job script. This attribute can be seen by submitting a qstat -f command to show the
entire set of information associated with a job. The exit_status field is found near the bottom of the
set of output lines.

TORQUE Resource Manager

2262 Submitting and Managing Jobs

Submitting and Managing Jobs 2263

Example 4-23: qstat -f (job failure)

Job Id: 179.host
 Job_Name = STDIN
 Job_Owner = user@host
 job_state = C
 queue = batchq server = host
 Checkpoint = u ctime = Fri Aug 29 14:55:55 2008
 Error_Path = host:/opt/moab/STDIN.e179
 exec_host = node1/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Fri Aug 29 14:55:55 2008
 Output_Path = host:/opt/moab/STDIN.o179
 Priority = 0
 qtime = Fri Aug 29 14:55:55 2008
 Rerunable = True Resource_List.ncpus = 2
 Resource_List.nodect = 1
 Resource_List.nodes = node1
 Variable_List = PBS_O_HOME=/home/user,PBS_O_LOGNAME=user,
 PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:,PBS_O_
SHELL=/bin/bash,PBS_O_HOST=host,
 PBS_O_WORKDIR=/opt/moab,PBS_O_QUEUE=batchq
 sched_hint = Post job file processing error; job 179.host on host node1/0Ba
 d UID for job execution REJHOST=pala.cridomain MSG=cannot find user 'user' in
password file
 etime = Fri Aug 29 14:55:55 2008
 exit_status = -1

The value of Resource_List.* is the amount of resources requested.

This code can be useful in diagnosing problems with jobs that may have unexpectedly terminated.

If TORQUE was unable to start the job, this field will contain a negative number produced by the pbs_
mom. Otherwise, if the job script was successfully started, the value in this field will be the return value
of the script.

Example 4-24: TORQUE supplied exit codes

Name Value Description

JOB_EXEC_OK 0 Job execution successful

JOB_EXEC_FAIL1 -1 Job execution failed, before files, no retry

JOB_EXEC_FAIL2 -2 Job execution failed, after files, no retry

JOB_EXEC_RETRY -3 Job execution failed, do retry

JOB_EXEC_INITABT -4 Job aborted on MOM initialization

JOB_EXEC_INITRST -5 Job aborted on MOM init, chkpt, no migrate

TORQUE Resource Manager

Name Value Description

JOB_EXEC_INITRMG -6 Job aborted on MOM init, chkpt, ok migrate

JOB_EXEC_BADRESRT -7 Job restart failed

JOB_EXEC_CMDFAIL -8 Exec() of user command failed

JOB_EXEC_STDOUTFAIL -9 Could not create/open stdout stderr files

JOB_EXEC_OVERLIMIT_MEM -10 Job exceeded a memory limit

JOB_EXEC_OVERLIMIT_WT -11 Job exceeded a walltime limit

JOB_EXEC_OVERLIMIT_CPUT -12 Job exceeded a CPU time limit

TORQUE Resource Manager

2264 Submitting and Managing Jobs

Submitting and Managing Jobs 2265

Example 4-25: Exit code from C program

$ cat error.c

#include
#include

int
main(int argc, char *argv)
{

exit(256+11);
}

$ gcc -o error error.c

$ echo ./error | qsub
180.xxx.yyy

$ qstat -f
Job Id: 180.xxx.yyy
 Job_Name = STDIN
 Job_Owner = test.xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:00
 job_state = C
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Wed Apr 30 11:29:37 2008
 Error_Path = xxx.yyy:/home/test/STDIN.e180
 exec_host = node01/0
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Wed Apr 30 11:29:37 2008
 Output_Path = xxx.yyy:/home/test/STDIN.o180
 Priority = 0
 qtime = Wed Apr 30 11:29:37 2008
 Rerunable = True

Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 14107
 substate = 59
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
 bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 180.xxx.yyy
 queue_rank = 8
 queue_type = E
 comment = Job started on Wed Apr 30 at 11:29

etime = Wed Apr 30 11:29:37 2008
 exit_status = 11
 start_time = Wed Apr 30 11:29:37 2008
 start_count = 1

TORQUE Resource Manager

Notice that the C routine exit passes only the low order byte of its argument. In this case, 256+11 is
really 267 but the resulting exit code is only 11 as seen in the output.

Related topics

l Job Checkpoint and Restart on page 2252
l Submitting and Managing Jobs on page 2233

Service Jobs
TORQUE service jobs are a special kind of job that is treated differently by TORQUE than normal batch
jobs. TORQUE service jobs are not related to Moab's dynamic service jobs. A TORQUE service job cannot
dynamically grow and shrink in size over time.

Jobs are marked as service jobs at the time they are submitted to Moab or TORQUE. Just like a normal
job, a script file is specified with the job. In a batch job, the contents of the script file are taken by
TORQUE and executed on the compute nodes. For a service job, however, the script file is assumed to
respond to certain command-line arguments. Instead of just executing the script, TORQUE will use these
command-line arguments to start, stop, and check on the status of the job. Listed below are the three
command-line arguments that must be supported by any script submitted as part of a TORQUE service
job:

l start: The script should take this argument and launch its service/workload. The script should
remain executing/running until the service stops.

l stop: The script should take this argument and stop the service/workload that was earlier
started.

l status: The script should take this argument and return, via standard out, either "running" if the
service/workload is running as expected or "stopped" if the service is not running.

This feature was created with long-running services in mind. The command-line arguments should be
familiar to users who interact with Unix services, as each of the service scripts found in /etc/init.d/
also accept and respond to the arguments as explained above.

For example, if a user wants to start the Apache 2 server on a compute node, they can use a TORQUE
service job and specify a script which will start, stop, and check on the status of the "httpd" daemon--
possibly by using the already present /etc/init.d/httpd script.

If you wish to submit service jobs only through TORQUE, no special version of Moab is required.
If you wish to submit service jobs using Moab's msub, then Moab 5.4 is required.

For details, see these topics:

l Submitting Service Jobs on page 2267

l Submitting Service Jobs in MCM on page 2267

l Managing Service Jobs on page 2267

TORQUE Resource Manager

2266 Submitting and Managing Jobs

Submitting and Managing Jobs 2267

Submitting Service Jobs
There is a new option to qsub, "-s" which can take either a 'y' or 'n' (yes or no, respectively). When "-s y"
is present, then the job is marked as a service job.

qsub -l walltime=100:00:00,nodes=1 -s y service_job.py

The example above submits a job to TORQUE with a walltime of 100 hours, one node, and it is marked as
a service job. The script "service_job.py" will be used to start, stop, and check the status of the
service/workload started on the compute nodes.

Moab, as of version 5.4, is able to accept the "-s y" option when msub is used for submission. Moab will
then pass this information to TORQUE when the job is migrated.

Related topics

l Service Jobs on page 2266

Submitting Service Jobs in MCM
Submitting a service job in MCM requires the latest Adaptive Computing Suite snapshot of MCM. It also
requires MCM to be started with the "--future=2" option.

Once MCM is started, open the Create Workload window and verify Show Advanced Options is checked.
Notice that there is a Service checkbox that can be selected in the Flags/Options area. Use this to
specify the job is a service job.

Related topics

l Service Jobs on page 2266

Managing Service Jobs
Managing a service job is done much like any other job; only a few differences exist.

Examining the job with qstat -f will reveal that the job has the service = True attribute. Non-
service jobs will not make any mention of the "service" attribute.

Canceling a service job is done with qdel, mjobctl -c, or through any of the GUI's as with any other job.
TORQUE, however, cancels the job by calling the service script with the "stop" argument instead of
killing it directly. This behavior also occurs if the job runs over its wallclock and TORQUE/Moab is
configured to cancel the job.

If a service job completes when the script exits after calling it with "start," or if TORQUE invokes the
script with "status" and does not get back "running," it will not be terminated by using the "stop"
argument.

Related topics

l Service Jobs on page 2266

TORQUE Resource Manager

Managing Nodes
This section contains information about adding and configuring compute nodes. It explains how to work
with host security for systems that require dedicated access to compute nodes. It also contains
information about scheduling specific cores on a node at job submission.

For details, see these topics:

l Adding Nodes on page 2268

l Node Properties on page 2269

l Changing Node State on page 2269

l Host Security on page 2272

l Linux cpuset Support on page 2274

l Scheduling Cores on page 2275

Adding Nodes
TORQUE can add and remove nodes either dynamically with qmgr or by manually editing the TORQUE_
HOME/server_priv/nodes file (see Initializing/Configuring TORQUE on the Server (pbs_server) on
page 2200).

Run-time node changes
TORQUE can dynamically add nodes with the qmgr command. For example, the following command will
add node node003:

> qmgr -c "create node node003"

The above command appends the $TORQUE_HOME/server_priv/nodes file with:

node003

Nodes can also be removed with a similar command:

> qmgr -c "delete node node003"

Typically, an administrator will want to change the state of a node instead of remove it (for
details, see Changing Node State on page 2269).

When you make changes to nodes – whether by using qmgr or directly editing the nodes file – you
must restart pbs_server for those changes to take effect.

Related topics

l Managing Nodes on page 2268

TORQUE Resource Manager

2268 Managing Nodes

Managing Nodes 2269

Node Properties
TORQUE can associate properties with nodes to aid in identifying groups of nodes. It's typical for a site
to conglomerate a heterogeneous set of resources. To identify the different sets, properties can be given
to each node in a set. For example, a group of nodes that has a higher speed network connection could
have the property "ib". TORQUE can set, update, or remove properties either dynamically with qmgr or
by manually editing the nodes file.

Run-time node changes
TORQUE can dynamically change the properties of a node with the qmgr command. For example, note the
following to give node001 the properties of "bigmem" and "dualcore":

> qmgr -c "set node node001 properties = bigmem"
> qmgr -c "set node node001 properties += dualcore"

To relinquish a stated property, use the "-=" operator.

Manual node changes
The properties of each node are enumerated in TORQUE_HOME/server_priv/nodes. The feature(s)
must be in a space delimited list after the node name. For example, to give node001 the properties of
"bigmem" and "dualcore" and node002 the properties of "bigmem" and "matlab," edit the nodes file to
contain the following:

server_priv/nodes:

node001 bigmem dualcore
node002 np=4 bigmem matlab

For changes to the nodes file to be activated, pbs_server must be restarted.

For a full description of this file, please see the PBS Administrator Guide.

Related topics

l Job Submission on page 2234
l Managing Nodes on page 2268

Changing Node State
A common task is to prevent jobs from running on a particular node by marking it offline with pbsnodes
-o nodename. Once a node has been marked offline, the scheduler will no longer consider it available
for new jobs. Simply use pbsnodes -c nodename when the node is returned to service.

Also useful is pbsnodes -l, which lists all nodes with an interesting state, such as down, unknown, or
offline. This provides a quick glance at nodes that might be having a problem. (See pbsnodes for details.)

TORQUE Resource Manager

Related topics

l Managing Nodes on page 2268

Changing Node Power States
In TORQUE 5.0.1 and later, the pbsnodes -m command can modify the power state of nodes. Node cannot
go from one low-power state to another low-power state. They must be brought up to the Running state
and then moved to the new low-power state. The supported power states are:

State Description

Running l Physical machine is actively working
l Power conservation is on a per-device basis
l Processor power consumption controlled by P-states

Standby l System appears off
l Processor halted (OS executes a "halt" instruction)
l Processor maintains CPU and system cache state
l RAM refreshed to maintain memory state
l Machine in low-power mode
l Requires interrupt to exit state
l Lowest-latency sleep state - has no effect on software

Suspend l System appears off
l Processor and support chipset have no power
l OS maintains CPU, system cache, and support chipset state in memory
l RAM in slow refresh
l Machine in lowest-power state
l Usually requires specific interrupt (keyboard, mouse) to exit state
l Third lowest-latency sleep state - system must restore power to processor and support
chipset

Hibernate l System is off
l Physical machine state and memory saved to disk
l Requires restoration of power and machine state to exit state
l Second highest-latency sleep state - system performs faster boot using saved machine state
and copy of memory

Shutdown l Equivalent to shutdown now command as root

In order to wake nodes and bring them up to a running state:

TORQUE Resource Manager

2270 Managing Nodes

Managing Nodes 2271

l the nodes must support, and be configured to use, Wake-on-LAN (WOL).

l the pbsnodes command must report the node's MAC address correctly.

To configure nodes to use Wake-on-LAN

1. Enable WOL in the BIOS for each node. If needed, contact your hardware manufacturer for details.

2. Use the ethtool command to determine what types of WOL packets your hardware supports. TORQUE
uses the g packet. If the g packet is not listed, you cannot use WOL with TORQUE.

[root]# ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal
Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: p
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

This Ethernet interface supports the gWOL packet, but is currently set to use the p packet.

3. If your Ethernet interface supports the g packet, but is configured for a different packet, use ethtool -
s <interface> wol g to configure it to use g.

TORQUE Resource Manager

[root]# ethtool -s eth0 wol g
[root]# ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full
 1000baseT/Full

Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 2
Transceiver: internal
Auto-negotiation: on
MDI-X: off
Supports Wake-on: pumbg
Wake-on: g
Current message level: 0x00000007 (7)

drv probe link
Link detected: yes

Now the power state of your nodes can be modified and they can be woken up from power-saving states.

Related topics

l pbsnodes on page 2356

Host Security

Enabling PAM with TORQUE
TORQUE is able to take advantage of the authentication services provided through Pluggable
Authentication Modules (PAM) to help administrators manage access to compute nodes by users. The
PAM module available in TORQUE is located in the PAM security directory. This module, when used in
conjunction with other PAM modules, restricts access to the compute node unless the user has a job
currently running on the node. The following configurations are examples only. For more information
about PAM, see the PAM (Pluggable Authentication Modules) documentation from LinuxDocs.

To enable TORQUE PAM configure TORQUE using the --with-pam option. Using --with-pam is
sufficient but if your PAM security modules are not in the default /lib/security or
/lib64/security directory, you can specify the location using --with-pam=<DIR> where <DIR> is
the directory where you want the modules to be installed. When TORQUE is installed the files pam_
pbssimpleauth.la and pam_pbssimpleauth.so appear in /lib/security, /lib64/security,
or the directory designated on the configuration line.

PAM is very flexible and policies vary greatly from one site to another. The following example restricts
users trying to access a node using SSH. Administrators need to assess their own installations and decide
how to apply the TORQUE PAM restrictions.

TORQUE Resource Manager

2272 Managing Nodes

http://www.linuxdocs.org/HOWTOs/User-Authentication-HOWTO/x101.html

Managing Nodes 2273

In this example, after installing TORQUE with PAM enabled, you would add the following two lines to
/etc/pam.d/sshd:

account required pam_pbssimpleauth.so
account required pam_access.so

In /etc/security/access.conf make sure all users who access the compute node are added to the
configuration. This is an example which allows the users root, george, allen, and michael access.

-:ALL EXCEPT root george allen michael torque:ALL

With this configuration, if user george has a job currently running on the compute node, george can use
ssh to login to the node. If there are currently no jobs running, george is disconnected when attempting
to login.

TORQUE PAM is good at keeping users out who do not have jobs running on a compute node. However, it
does not have the ability to force a user to log out once they are in. To accomplish this use epilogue or
prologue scripts to force users off the system.

Legacy TORQUE PAM configuration
There is an alternative PAM configuration for TORQUE that has been available since 2006. It can be
found in the contrib/pam_authuser directory of the source tree. Adaptive Computing does not
currently support this method but the instructions are given here for those who are currently using it
and for those who wish to use it.

For systems requiring dedicated access to compute nodes (for example, users with sensitive data),
TORQUE prologue and epilogue scripts provide a vehicle to leverage the authentication provided by
linux-PAM modules. (See Appendix G: Prologue and Epilogue Scripts on page 2469 for more
information.)

To allow only users with running jobs (and root) to access compute nodes

1. Untar contrib/pam_authuser.tar.gz (found in the src tar ball).

2. Compile pam_authuser.c with make and make install on every compute node.

3. Edit /etc/system-auth as described in README.pam_authuser, again on every compute node.

4. Either make a tarball of the epilogue* and prologue* scripts (to preserve the symbolic link) and
untar it in the mom_priv directory, or just copy epilogue* and prologue* to mom_priv/.

The prologue* scripts are Perl scripts that add the user of the job to /etc/authuser. The epilogue*
scripts then remove the first occurrence of the user from /etc/authuser. File locking is employed in
all scripts to eliminate the chance of race conditions. There is also some commented code in the
epilogue* scripts, which, if uncommented, kills all processes owned by the user (using pkill), provided
that the user doesn't have another valid job on the same node.

prologue and epilogue scripts were added to the pam_authuser tarball in version 2.1 of TORQUE.

Related topics

l Managing Nodes on page 2268

TORQUE Resource Manager

Linux cpuset Support
l cpuset overview on page 2274

l cpuset support on page 2274

l cpuset configuration on page 2274

l cpuset advantages / disadvantages on page 2275

cpuset overview
Linux kernel 2.6 cpusets are logical, hierarchical groupings of CPUs and units of memory. Once created,
individual processes can be placed within a cpuset. The processes will only be allowed to run/access the
specified CPUs and memory. cpusets are managed in a virtual file system mounted at /dev/cpuset.
New cpusets are created by simply making new directories. cpusets gain CPUs and memory units by
simply writing the unit number to files within the cpuset.

cpuset support

All nodes using cpusets must have the hwloc library version 1.2 or higher installed.

When started, pbs_mom will create an initial top-level cpuset at /dev/cpuset/torque. This cpuset
contains all CPUs and memory of the host machine. If this "torqueset" already exists, it will be left
unchanged to allow the administrator to override the default behavior. All subsequent cpusets are
created within the torqueset.

When a job is started, the jobset is created at /dev/cpuset/torque/$jobid and populated with the
CPUs listed in the exec_host job attribute. Also created are individual tasksets for each CPU within
the jobset. This happens before prologue, which allows it to be easily modified, and it happens on all
nodes.

The top-level batch script process is executed in the jobset. Tasks launched through the TM interface
(pbsdsh and PW's mpiexec) will be executed within the appropriate taskset.

On job exit, all tasksets and the jobset are deleted.

cpuset configuration

To configure cpuset

1. As root, mount the virtual filesystem for cpusets:

mkdir /dev/cpuset
mount -t cpuset none /dev/cpuset

Do this for each MOM that is to use cpusets.

TORQUE Resource Manager

2274 Managing Nodes

Managing Nodes 2275

2. Because cpuset usage is a build-time option in TORQUE, you must add --enable-cpuset to your
configure options:

./configure --enable-cpuset

3. Use this configuration for the MOMs across your system.

cpuset advantages / disadvantages
Presently, any job can request a single CPU and proceed to use everything available in the machine. This
is occasionally done to circumvent policy, but most often is simply an error on the part of the user.
cpuset support will easily constrain the processes to not interfere with other jobs.

Jobs on larger NUMA systems may see a performance boost if jobs can be intelligently assigned to
specific CPUs. Jobs may perform better if striped across physical processors, or contained within the
fewest number of memory controllers.

TM tasks are constrained to a single core, thus a multi-threaded process could seriously suffer.

Related topics

l Managing Nodes on page 2268
l Geometry Request Configuration on page 2275

Scheduling Cores
In TORQUE 2.4 and later, you can request specific cores on a node at job submission by using geometry
requests. To use this feature, specify the procs_bitmap resource request of qsub-l (see qsub) at job
submission.

For details about scheduling cores, see these topics:

l Geometry Request Configuration on page 2275

l Geometry Request Usage on page 2276

l Geometry Request Considerations on page 2276

Geometry Request Configuration
A Linux kernel of 2.6 or later is required to use geometry requests, because this feature uses Linux
cpusets in its implementation. In order to use this feature, the cpuset directory has to be mounted. For
more information on how to mount the cpuset directory, see Linux cpuset Support on page 2274. If the
operating environment is suitable for geometry requests, configure TORQUE with the --enable-
geometry-requests option.

> ./configure --prefix=/home/john/torque --enable-geometry-requests

TORQUE is configured to install to /home/john/torque and to enable the geometry requests feature.

TORQUE Resource Manager

The geometry request feature uses a subset of the cpusets feature. When you configure TORQUE
using --enable-cpuset and --enable-geometry-requests at the same time, and use -l
procs_bitmap=X, the job will get the requested cpuset. Otherwise, the job is treated as if only -
-enable-cpuset was configured.

Related topics

l Scheduling Cores on page 2275

Geometry Request Usage
Once enabled, users can submit jobs with a geometry request by using the procs_bitmap=<string>
resource request. procs_bitmap requires a numerical string made up of 1's and 0's. A 0 in the bitmap
means the job cannot run on the core that matches the 0's index in the bitmap. The index is in reverse
order of the number of cores available. If a job is submitted with procs_bitmap=1011, then the job
requests a node with four free cores, and uses only cores one, two, and four.

The geometry request feature requires a node that has all cores free. A job with a geometry
request cannot run on a node that has cores that are busy, even if the node has more than enough
cores available to run the job.

qsub -l procs_bitmap=0011 ossl.sh

The job ossl.sh is submitted with a geometry request of 0011.

In the above example, the submitted job can run only on a node that has four cores. When a suitable node
is found, the job runs exclusively on cores one and two.

Related topics

l Scheduling Cores on page 2275

Geometry Request Considerations
As previously stated, jobs with geometry requests require a node with all of its cores available. After the
job starts running on the requested cores, the node cannot run other jobs, even if the node has enough
free cores to meet the requirements of the other jobs. Once the geometry requesting job is done, the
node is available to other jobs again.

Related topics

l Scheduling Cores on page 2275

Scheduling Accelerator Hardware
TORQUE works with accelerators (such as NVIDIA GPUs and Intel MICs) and can collect and report
metrics from them or submit workload to them. This feature requires the use of the Moab scheduler. See
Accelerators on page 794 for information on configuring accelerators in TORQUE.

TORQUE Resource Manager

2276 Managing Nodes

Setting Server Policies 2277

Setting Server Policies
This section explains how to set up and configure your queue. It lists the queue attributes and describes
how to set up a routing queue. This section also explains how to set up TORQUE to run in high
availability mode. For details, see these topics:

l Queue Configuration on page 2277

l Server High Availability on page 2291

Queue Configuration
Under TORQUE, queue configuration is accomplished using the Server High Availability command. With
this tool, the first step is to create the queue. This is accomplished using the create subcommand of
qmgr as in the following example:

> qmgr -c "create queue batch queue_type=execution"

Once created, the queue must be configured to be operational. At a minimum, this includes setting the
options started and enabled. Further configuration is possible using any combination of the attributes
listed in what follows.

For Boolean attributes, T, t, 1, Y, and y are all synonymous with "TRUE," and F, f, 0, N, and n all mean
"FALSE."

For queue_type, E and R are synonymous with "Execution" and "Routing" (respectively).

See these topics for more details:

l Queue Attributes on page 2277

l Example Queue Configuration on page 2288

l Setting a Default Queue on page 2289

l Mapping a Queue to Subset of Resources on page 2289

l Creating a Routing Queue on page 2289

Related topics

l Appendix B: Server Parameters on page 2417
l qalter on page 2360 - command which can move jobs from one queue to another

Queue Attributes
This section lists the following queue attributes:

l acl_groups on page 2278

l acl_group_enable on page 2279

l acl_group_sloppy on page 2279

TORQUE Resource Manager

l acl_hosts on page 2279

l acl_host_enable on page 2280

l acl_logic_or on page 2280

l acl_users on page 2280

l acl_user_enable on page 2281

l disallowed_types on page 2281

l enabled on page 2281

l features_required on page 2282

l keep_completed on page 2282

l kill_delay on page 2282

l max_queuable on page 2283

l max_running on page 2283

l max_user_queuable on page 2283

l max_user_run on page 2284

l priority on page 2284

l queue_type on page 2284

l required_login_property on page 2284

l resources_available on page 2285

l resources_default on page 2285

l resources_max on page 2285

l resources_min on page 2286

l route_destinations on page 2286

l started on page 2286

This section also lists some queue resource limits (see Assigning queue resource limits on page 2287).

For Boolean attributes, T, t, 1, Y, and y are all synonymous with "TRUE," and F, f, 0, N, and n all
mean "FALSE."

acl_groups

Format <GROUP>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

TORQUE Resource Manager

2278 Setting Server Policies

Setting Server Policies 2279

acl_groups

Description Specifies the list of groups which may submit jobs to the queue. If acl_group_enable is set to true,
only users with a primary group listed in acl_groups may utilize the queue.

If the PBSACLUSEGROUPLIST variable is set in the pbs_server environment, acl_groups
checks against all groups of which the job user is a member.

Example > qmgr -c "set queue batch acl_groups=staff"
> qmgr -c "set queue batch acl_groups+=ops@h1"
> qmgr -c "set queue batch acl_groups+=staff@h1"

Used in conjunction with acl_group_enable.

acl_group_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from groups specified by the acl_groups
parameter.

Example qmgr -c "set queue batch acl_group_enable=true"

acl_group_sloppy

Format <BOOLEAN>

Default FALSE

Description If TRUE, acl_groups will be checked against all groups of which the job users is a member.

Example ---

acl_hosts

Format <HOST>[+<HOST>]...

Default ---

TORQUE Resource Manager

acl_hosts

Description Specifies the list of hosts that may submit jobs to the queue.

Example qmgr -c "set queue batch acl_hosts=h1+h1+h1"

Used in conjunction with acl_host_enable.

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from hosts specified by the acl_hosts
parameter.

Example qmgr -c "set queue batch acl_host_enable=true"

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description If TRUE, user and group acls are logically OR'd together, meaning that either acl may be met to
allow access. If FALSE or unset, then both acls are AND'd, meaning that both acls must be satisfied.

Example qmgr -c "set queue batch acl_logic_or=true"

acl_users

Format <USER>[@<HOST>][+<USER>[@<HOST>]]...

Default ---

Description Specifies the list of users who may submit jobs to the queue. If acl_user_enable is set to TRUE,
only users listed in acl_users may use the queue.

TORQUE Resource Manager

2280 Setting Server Policies

Setting Server Policies 2281

acl_users

Example > qmgr -c "set queue batch acl_users=john"
> qmgr -c "set queue batch acl_users+=steve@h1"
> qmgr -c "set queue batch acl_users+=stevek@h1"

Used in conjunction with acl_user_enable.

acl_user_enable

Format <BOOLEAN>

Default FALSE

Description If TRUE, constrains TORQUE to only allow jobs submitted from users specified by the acl_users
parameter.

Example qmgr -c "set queue batch acl_user_enable=true"

disallowed_types

Format <type>[+<type>]...

Default ---

Description Specifies classes of jobs that are not allowed to be submitted to this queue. Valid types are inter-
active, batch, rerunable, nonrerunable, fault_tolerant (as of version 2.4.0 and later), fault_intol-
erant (as of version 2.4.0 and later), and job_array (as of version 2.4.1 and later).

Example qmgr -c "set queue batch disallowed_types = interactive"
qmgr -c "set queue batch disallowed_types += job_array"

enabled

Format <BOOLEAN>

Default FALSE

Description Specifies whether the queue accepts new job submissions.

TORQUE Resource Manager

enabled

Example qmgr -c "set queue batch enabled=true"

features_required

Format feature1[feature2[,feature3...]]

Default ---

Description Specifies that all jobs in this queue will require these features in addition to any they may have
requested. A feature is a synonym for a property.

Example qmgr -c 's q batch features_required=fast'

keep_completed

Format <INTEGER>

Default 0

Description Specifies the number of seconds jobs should be held in the Completed state after exiting. For more
information, see Keeping Completed Jobs on page 2251.

Example qmgr -c "set queue batch keep_completed=120"

kill_delay

Format <INTEGER>

Default 2

Description Specifies the number of seconds between sending a SIGTERM and a SIGKILL to a job in a specific
queue that you want to cancel. It is possible that the job script, and any child processes it spawns,
can receive several SIGTERM signals before the SIGKILL signal is received.

All MOMs must be configured with $exec_with_exec true in order for kill_delay to
work, even when relying on default kill_delay settings.

TORQUE Resource Manager

2282 Setting Server Policies

Setting Server Policies 2283

kill_delay

Example qmgr -c "set queue batch kill_delay=30"

max_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs allowed in the queue at any given time (includes idle, run-
ning, and blocked jobs).

Example qmgr -c "set queue batch max_queuable=20"

max_running

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs in the queue allowed to run at any given time.

Example qmgr -c "set queue batch max_running=20"

max_user_queuable

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, allowed in the queue at any given time (includes
idle, running, and blocked jobs). Version 2.1.3 and greater.

Example qmgr -c "set queue batch max_user_queuable=20"

TORQUE Resource Manager

max_user_run

Format <INTEGER>

Default unlimited

Description Specifies the maximum number of jobs, per user, in the queue allowed to run at any given time.

Example qmgr -c "set queue batch max_user_run=10"

priority

Format <INTEGER>

Default 0

Description Specifies the priority value associated with the queue.

Example qmgr -c "set queue batch priority=20"

queue_type

Format One of e, execution, r, or route (see Creating a Routing Queue on page 2289)

Default ---

Description Specifies the queue type.

This value must be explicitly set for all queues.

Example qmgr -c "set queue batch queue_type=execution"

required_login_property

Format <STRING>

Default ---

TORQUE Resource Manager

2284 Setting Server Policies

Setting Server Policies 2285

required_login_property

Description Adds the specified login property as a requirement for all jobs in this queue.

Example qmgr -c 's q <queuename> required_login_property=INDUSTRIAL'

resources_available

Format <STRING>

Default ---

Description Specifies to cumulative resources available to all jobs running in the queue. See qsub will not
allow the submission of jobs requesting many processors on page 2326 for more inform-
ation.

Example qmgr -c "set queue batch resources_available.nodect=20"

You must restart pbs_server for changes to take effect.
Also, resources_available is constrained by the smallest of queue.resources_available and
server.resources_available.

resources_default

Format <STRING>

Default ---

Description Specifies default resource requirements for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_default.walltime=3600"

resources_max

Format <STRING>

Default ---

TORQUE Resource Manager

resources_max

Description Specifies the maximum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_max.nodect=16"

resources_min

Format <STRING>

Default ---

Description Specifies the minimum resource limits for jobs submitted to the queue.

Example qmgr -c "set queue batch resources_min.nodect=2"

route_destinations

Format <queue>[@<host>]

Default ---

Description Specifies the potential destination queues for jobs submitted to the associated routing queue.

This attribute is only valid for routing queues (see Creating a Routing Queue on
page 2289).

Example > qmgr -c "set queue route route_destinations=fast"
> qmgr -c "set queue route route_destinations+=slow"
> qmgr -c "set queue route route_destinations+=medium@hostname"

To set multiple queue specifications, use multiple commands:

> qmgr -c 's s route_destinations=batch'
> qmgr -c 's s route_destinations+=long'
> qmgr -c 's s route_destinations+=short'

started

Format <BOOLEAN>

TORQUE Resource Manager

2286 Setting Server Policies

Setting Server Policies 2287

started

Default FALSE

Description Specifies whether jobs in the queue are allowed to execute.

Example qmgr -c "set queue batch started=true"

Assigning queue resource limits
Administrators can use resources limits to help direct what kind of jobs go to different queues. There are
four queue attributes where resource limits can be set: resources_available, resources_default,
resources_max, and resources_min. The list of supported resources that can be limited with these
attributes are arch, mem, nodect, nodes, procct, pvmem, vmem, and walltime.

Resource Format Description

arch string Specifies the administrator defined system architecture required.

mem size Amount of physical memory used by the job. (Ignored on Darwin, Digital Unix, Free
BSD, HPUX 11, IRIX, NetBSD, and SunOS. Also ignored on Linux if number of nodes is
not 1. Not implemented on AIX and HPUX 10.)

ncpus integer Sets the number of processors in one task where a task cannot span nodes.

You cannot request both ncpus and nodes in the same queue.

nodect integer Sets the number of nodes available. By default, TORQUE will set the number of nodes
available to the number of nodes listed in the $TORQUE_HOME/server_
priv/nodes file. nodect can be set to be greater than or less than that number. Gen-
erally, it is used to set the node count higher than the number of physical nodes in the
cluster.

nodes integer Specifies the number of nodes.

procct integer Sets limits on the total number of execution slots (procs) allocated to a job. The
number of procs is calculated by summing the products of all node and ppn entries
for a job.
For example qsub -l nodes=2:ppn=2+3:ppn=4 job.sh would yield a procct of
16. 2*2 (2:ppn=2) + 3*4 (3:ppn=4).

pvmem size Amount of virtual memory used by any single process in a job.

TORQUE Resource Manager

Resource Format Description

vmem size Amount of virtual memory used by all concurrent processes in the job.

walltime seconds,
or [[HH:]
MM:]SS

Amount of real time during which a job can be in a running state.

size

The size format specifies the maximum amount in terms of bytes or words. It is expressed in the form
integer[suffix]. The suffix is a multiplier defined in the following table ("b" means bytes [the default] and
"w" means words). The size of a word is calculated on the execution server as its word size.

Suffix Multiplier

b w 1

kb kw 1024

mb mw 1,048,576

gb gw 1,073,741,824

tb tw 1,099,511,627,776

Related topics

l Queue Configuration on page 2277
l Example Queue Configuration on page 2288

Example Queue Configuration
The following series of qmgr commands will create and configure a queue named batch:

qmgr -c "create queue batch queue_type=execution"
qmgr -c "set queue batch started=true"
qmgr -c "set queue batch enabled=true"
qmgr -c "set queue batch resources_default.nodes=1"
qmgr -c "set queue batch resources_default.walltime=3600"

This queue will accept new jobs and, if not explicitly specified in the job, will assign a nodecount of 1 and
a walltime of 1 hour to each job.

Related topics

l Queue Configuration on page 2277

TORQUE Resource Manager

2288 Setting Server Policies

Setting Server Policies 2289

Setting a Default Queue
By default, a job must explicitly specify which queue it is to run in. To change this behavior, the server
parameter default_queue may be specified as in the following example:

qmgr -c "set server default_queue=batch"

Related topics

l Queue Configuration on page 2277

Mapping a Queue to Subset of Resources
TORQUE does not currently provide a simple mechanism for mapping queues to nodes. However,
schedulers such as Moab and Maui can provide this functionality.

The simplest method is using default_resources.neednodes on an execution queue, setting it to a
particular node attribute. Maui/Moab will use this information to ensure that jobs in that queue will be
assigned nodes with that attribute. For example, suppose we have some nodes bought with money from
the chemistry department, and some nodes paid by the biology department.

$TORQUE_HOME/server_priv/nodes:
node01 np=2 chem
node02 np=2 chem
node03 np=2 bio
node04 np=2 bio
qmgr:
set queue chem resources_default.neednodes=chem
set queue bio resources_default.neednodes=bio

This example does not preclude other queues from accessing those nodes. One solution is to use
some other generic attribute with all other nodes and queues.

More advanced configurations can be made with standing reservations and QoSs.

Related topics

l Queue Configuration on page 2277

Creating a Routing Queue
A routing queue will steer a job to a destination queue based on job attributes and queue constraints. It
is set up by creating a queue of queue_type "Route" with a route_destinations attribute set, as in the
following example.

TORQUE Resource Manager

http://www.adaptivecomputing.com/resources/docs/maui/

qmgr

routing queue
create queue route
set queue route queue_type = Route
set queue route route_destinations = reg_64
set queue route route_destinations += reg_32
set queue route route_destinations += reg
set queue route enabled = True
set queue route started = True

queue for jobs using 1-15 nodes
create queue reg
set queue reg queue_type = Execution
set queue reg resources_min.ncpus = 1
set queue reg resources_min.nodect = 1
set queue reg resources_default.ncpus = 1
set queue reg resources_default.nodes = 1
set queue reg enabled = True
set queue reg started = True

queue for jobs using 16-31 nodes
create queue reg_32
set queue reg_32 queue_type = Execution
set queue reg_32 resources_min.ncpus = 31
set queue reg_32 resources_min.nodes = 16
set queue reg_32 resources_default.walltime = 12:00:00
set queue reg_32 enabled = True
set queue reg_32 started = True

queue for jobs using 32+ nodes
create queue reg_64
set queue reg_64 queue_type = Execution
set queue reg_64 resources_min.ncpus = 63
set queue reg_64 resources_min.nodes = 32
set queue reg_64 resources_default.walltime = 06:00:00
set queue reg_64 enabled = True
set queue reg_64 started = True

have all jobs go through the routing queue
set server default_queue = batch
set server resources_default.ncpus = 1
set server resources_default.walltime = 24:00:00
 ...

In this example, the compute nodes are dual processors and default walltimes are set according to the
number of processors/nodes of a job. Jobs with 32 nodes (63 processors) or more will be given a default
walltime of 6 hours. Also, jobs with 16-31 nodes (31-62 processors) will be given a default walltime of 12
hours. All other jobs will have the server default walltime of 24 hours.

The ordering of the route_destinations is important. In a routing queue, a job is assigned to the first
possible destination queue based on the resources_max, resources_min, acl_users, and acl_groups
attributes. In the preceding example, the attributes of a single processor job would first be checked
against the reg_64 queue, then the reg_32 queue, and finally the reg queue.

Adding the following settings to the earlier configuration elucidates the queue resource requirements:

qmgr

set queue reg resources_max.ncpus = 30
set queue reg resources_max.nodect = 15
set queue reg_16 resources_max.ncpus = 62
set queue reg_16 resources_max.nodect = 31

TORQUE Resource Manager

2290 Setting Server Policies

Setting Server Policies 2291

The time of enforcement of server and queue defaults is important in this example. TORQUE applies
server and queue defaults differently in job centric and queue centric modes. For job centric mode,
TORQUE waits to apply the server and queue defaults until the job is assigned to its final execution
queue. For queue centric mode, it enforces server defaults before it is placed in the routing queue. In
either mode, queue defaults override the server defaults. TORQUE defaults to job centric mode. To set
queue centric mode, set queue_centric_limits, as in what follows:

qmgr

set server queue_centric_limits = true

An artifact of job centric mode is that if a job does not have an attribute set, the server and routing
queue defaults are not applied when queue resource limits are checked. Consequently, a job that
requests 32 nodes (not ncpus=32) will not be checked against a min_resource.ncpus limit. Also, for the
preceding example, a job without any attributes set will be placed in the reg_64 queue, since the server
ncpus default will be applied after the job is assigned to an execution queue.

Routine queue defaults are not applied to job attributes in versions 2.1.0 and before.

If the error message "qsub: Job rejected by all possible destinations" is reported
when submitting a job, it may be necessary to add queue location information, (i.e., in the routing
queue's route_destinations attribute, change "batch" to "batch@localhost").

Related topics

l Queue Configuration on page 2277
l Queue Attributes on page 2277

Server High Availability
You can now run TORQUE in a redundant or high availability mode. This means that there can be
multiple instances of the server running and waiting to take over processing in the event that the
currently running server fails.

The high availability feature is available in the 2.3 and later versions of TORQUE. TORQUE 2.4
includes several enhancements to high availability (see Server High Availability on page 2291).

Contact Adaptive Computing before attempting to implement any type of high availability.

For more details, see these sections:

l Redundant server host machines on page 2292

l Server High Availability on page 2291

l Enhanced high availability with Moab on page 2293

l How commands select the correct server host on page 2294

TORQUE Resource Manager

l Job names on page 2294

l Persistence of the pbs_server process on page 2294

l High availability of the NFS server on page 2294

l Installing TORQUE in high availability mode on page 2295

l Installing TORQUE in high availability mode on headless nodes on page 2299

l Example setup of high availability on page 2303

Redundant server host machines
High availability enables Moab HPC Suite to continue running even if pbs_server is brought down. This is
done by running multiple copies of pbs_server which have their torque/server_priv directory
mounted on a shared file system.

Do not use symbolic links when sharing the TORQUE home directory or server_priv directories. A
workaround for this is to use mount --rbind /path/to/share /var/spool/torque. Also,
it is highly recommended that you only share the server_priv and not the entire
$TORQUEHOMEDIR.

The torque/server_name must include the host names of all nodes that run pbs_server. All MOM
nodes also must include the host names of all nodes running pbs_server in their torque/server_name
file. The syntax of the torque/server_name is a comma delimited list of host names.

For example:

host1,host2,host3

When configuring high availability, do not use $pbsserver to specify the host names. You must use
the $TORQUEHOMEDIR/server_name file.

All instances of pbs_server need to be started with the --ha command line option that allows the
servers to run at the same time. Only the first server to start will complete the full startup. The second
server to start will block very early in the startup when it tries to lock the file torque/server_
priv/server.lock. When the second server cannot obtain the lock, it will spin in a loop and wait for
the lock to clear. The sleep time between checks of the lock file is one second.

Notice that not only can the servers run on independent server hardware, there can also be multiple
instances of the pbs_server running on the same machine. This was not possible before as the second one
to start would always write an error and quit when it could not obtain the lock.

Enabling high availability
To use high availability, you must start each instance of pbs_server with the --ha option.

Prior to version 4.0, TORQUE with HA was configured with an --enable-high-availability option.
That option is no longer required.

TORQUE Resource Manager

2292 Setting Server Policies

Setting Server Policies 2293

Three server options help manage high availability. The server parameters are lock_file, lock_file_
update_time, and lock_file_check_time.

The lock_file option allows the administrator to change the location of the lock file. The default location
is torque/server_priv. If the lock_file option is used, the new location must be on the shared
partition so all servers have access.

The lock_file_update_time and lock_file_check_time parameters are used by the servers to determine if
the primary server is active. The primary pbs_server will update the lock file based on the lock_file_
update_time (default value of 3 seconds). All backup pbs_servers will check the lock file as indicated by
the lock_file_check_time parameter (default value of 9 seconds). The lock_file_update_time must be less
than the lock_file_check_time. When a failure occurs, the backup pbs_server takes up to the lock_file_
check_time value to take over.

> qmgr -c "set server lock_file_check_time=5"

In the above example, after the primary pbs_server goes down, the backup pbs_server takes up to 5
seconds to take over. It takes additional time for all MOMs to switch over to the new pbs_server.

The clock on the primary and redundant servers must be synchronized in order for high
availability to work. Use a utility such as NTP to ensure your servers have a synchronized time.

Do not use anything but a plain simple NFS fileshare that is not used by anybody or anything else
(i.e., only Moab can use the fileshare).

Do not use any general-purpose NAS, do not use any parallel file system, and do not use company-
wide shared infrastructure to set up Moab high availability using "native" high availability.

Enhanced high availability with Moab
When TORQUE is run with an external scheduler such as Moab, and the pbs_server is not running on the
same host as Moab, pbs_server needs to know where to find the scheduler. To do this, use the -l option
as demonstrated in the example below (the port is required and the default is 15004).

> pbs_server -l <moabhost:port>

If Moab is running in HA mode, add a -l option for each redundant server.

> pbs_server -l <moabhost1:port> -l <moabhost2:port>

If pbs_server and Moab run on the same host, use the --ha option as demonstrated in the example
below.

> pbs_server --ha

The root user of each Moab host must be added to the operators and managers lists of the server. This
enables Moab to execute root level operations in TORQUE.

TORQUE Resource Manager

How commands select the correct server host
The various commands that send messages to pbs_server usually have an option of specifying the server
name on the command line, or if none is specified will use the default server name. The default server
name comes either from the environment variable PBS_DEFAULT or from the file torque/server_
name.

When a command is executed and no explicit server is mentioned, an attempt is made to connect to the
first server name in the list of hosts from PBS_DEFAULT or torque/server_name. If this fails, the next
server name is tried. If all servers in the list are unreachable, an error is returned and the command
fails.

Note that there is a period of time after the failure of the current server during which the new server is
starting up where it is unable to process commands. The new server must read the existing configuration
and job information from the disk, so the length of time that commands cannot be received varies.
Commands issued during this period of time might fail due to timeouts expiring.

Job names
Job names normally contain the name of the host machine where pbs_server is running. When job names
are constructed, only the server name in $PBS_DEFAULT or the first name from the server specification
list, $TORQUE_HOME/server_name, is used in building the job name.

Persistence of the pbs_server process
The system administrator must ensure that pbs_server continues to run on the server nodes. This could
be as simple as a cron job that counts the number of pbs_server's in the process table and starts some
more if needed.

High availability of the NFS server

Before installing a specific NFS HA solution please contact Adaptive Computing Support for a
detailed discussion on NFS HA type and implementation path.

One consideration of this implementation is that it depends on NFS file system also being redundant. NFS
can be set up as a redundant service. See the following.

l Setting Up A Highly Available NFS Server

l Making NFS Work On Your Network

l Sourceforge Linux NFS FAQ

l NFS v4 main site

There are also other ways to set up a shared file system. See the following:

l Red Hat Global File System

l Data sharing with a GFS storage cluster

TORQUE Resource Manager

2294 Setting Server Policies

http://www.howtoforge.com/high_availability_nfs_drbd_heartbeat
http://www.networkcomputing.com/netdesign/nfs1.html
http://nfs.sourceforge.net/
http://www.nfsv4.org/
http://www.redhat.com/rhel/add-ons/high_availability.html
http://www.redhat.com/magazine/006apr05/features/gfs/

Setting Server Policies 2295

Installing TORQUE in high availability mode
The following procedure demonstrates a TORQUE installation in high availability (HA) mode.

Requirements

l gcc (GCC) 4.1.2

l BASH shell

l Servers configured the following way:

o 2 main servers with identical architecture:

o server1 — Primary server running TORQUE with a shared file system (this
example uses NFS)

o server2 — Secondary server running with TORQUE with a shared file system
(this example uses NFS)

o fileServer — Shared file system (this example uses NFS)

o Compute nodes

To install TORQUE in HA mode

1. Stop all firewalls or update your firewall to allow traffic from TORQUE services.

> service iptables stop
> chkconfig iptables off

If you are unable to stop the firewall due to infrastructure restriction, open the following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

2. Disable SELinux
> vi /etc/sysconfig/selinux

SELINUX=disabled

3. Update your main ~/.bashrc profile to ensure you are always referencing the applications to be
installed on all servers.

TORQUE
export TORQUEHOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUEHOME}/lib

Update system paths
export PATH=${TORQUEHOME}/bin:${TORQUEHOME}/sbin:$ {PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in the
/etc/hosts file.

TORQUE Resource Manager

5. Configure the NFS Mounts by following these steps:

a. Create mount point folders on fileServer.

fileServer# mkdir -m 0755 /var/spool/torque
fileServer# mkdir -m 0750 /var/spool/torque/server_priv

b. Update /etc/exports on fileServer. The IP addresses should be that of server2.

/var/spool/torque/server_priv 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems.

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them.

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps:

a. Create the directory reference and mount them.

server1# mkdir /var/spool/torque/server_priv

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on startup.

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs
rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install TORQUE by following these steps:

a. Download and extract TORQUE 5.0.1 on server1.

server1# wget http://github.com/adaptivecomputing/torque/ branches/5.0.1/torque-
5.0.1.tar.gz
server1# tar -xvzf torque-5.0.1.tar.gz

b. Navigate to the TORQUE directory and compile TORQUE on server1.

server1# configure
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make install on
server1.

server1# make install

TORQUE Resource Manager

2296 Setting Server Policies

Setting Server Policies 2297

If the installation directory is not shared, repeat step 8a-b (downloading and installing TORQUE)
on server2.

9. Start trqauthd.
server1# /etc/init.d/trqauthd start

10. Configure TORQUE for HA.

a. List the host names of all nodes that run pbs_server in the torque/server_name file. You
must also include the host names of all nodes running pbs_server in the torque/server_name
file of each MOM node. The syntax of torque/server_name is a comma-delimited list of host
names.

server1
server2

b. Create a simple queue configuration for TORQUE job queues on server1.

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”
server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

c. Add the root users of TORQUE to the TORQUE configuration as an operator and manager.

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because server_priv/* is a shared drive, you do not need to repeat this step on Server
2.

d. You must update the lock file mechanism for TORQUE in order to determine which server is the
primary. To do so, use the lock_file_update_time and lock_file_check_time
parameters. The primary pbs_server will update the lock file based on the specified lock_file_
update_time (default value of 3 seconds). All backup pbs_servers will check the lock file as
indicated by the lock_file_check_time parameter (default value of 9 seconds). The lock_
file_update_time must be less than the lock_file_check_time. When a failure occurs,
the backup pbs_server takes up to the lock_file_check_time value to take over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

TORQUE Resource Manager

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

e. List the servers running pbs_server in the TORQUE acl_hosts file.

server1# qmgr -c “set server acl_hosts += server1”
server1# qmgr -c “set server acl_hosts += server2”

Because server_priv/* is a shared drive, you do not need to repeat this step on
server2.

f. Restart the running pbs_server in HA mode.

server1# qterm

g. Start the pbs_server on the secondary server.

server1# pbs_server --ha -l server2:port
server2# pbs_server --ha -l server1:port

11. Check the status of TORQUE in HA mode.

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active TORQUE server from either node.

Drop one of the pbs_servers to verify that the secondary server picks up the request.

server1# qterm
server2# qmgr -c “p s”

Stop the pbs_server on server2 and restart pbs_server on server1 to verify that both nodes can
handle a request from the other.

12. Install a pbs_mom on the compute nodes.

a. Copy the install scripts to the compute nodes and install.

b. Navigate to the shared source directory of TORQUE and run the following:

node1# torque-package-mom-linux-x86_64.sh --install
node2# torque-package-clients-linux-x86_64.sh --install

Repeat this for each compute node. Verify that the /var/pool/ torque/server-name file
shows all your compute nodes.

c. On server1 or server2, configure the nodes file to identify all available MOMs. To do so, edit
the /var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

TORQUE Resource Manager

2298 Setting Server Policies

Setting Server Policies 2299

Change the np flag to reflect number of available processors on that node.

d. Recycle the pbs_servers to verify that they pick up the MOM configuration.

server1# qterm; pbs_server --ha -l server2:port
server2# qterm; pbs_server --ha -l server1:port

e. Start the pbs_mom on each execution node.

node5# pbs_mom
node6# pbs_mom

Installing TORQUE in high availability mode on headless nodes
The following procedure demonstrates a TORQUE installation in high availability (HA) mode on nodes
with no local hard drive.

Requirements

l gcc (GCC) 4.1.2

l BASH shell

l Servers (these cannot be two VMs on the same hypervisor) configured the following way:

o 2 main servers with identical architecture

o server1 — Primary server running TORQUE with a file system share (this
example uses NFS)

o server2 — Secondary server running with TORQUE with a file system share
(this example uses NFS)

o Compute nodes

o fileServer — A shared file system server (this example uses NFS)

To install TORQUE in HA mode on a node with no local hard drive

1. Stop all firewalls or update your firewall to allow traffic from TORQUE services.

> service iptables stop
> chkconfig iptables off

If you are unable to stop the firewall due to infrastructure restriction, open the following ports:

l 15001[tcp,udp]

l 15002[tcp,udp]

l 15003[tcp,udp]

2. Disable SELinux
> vi /etc/sysconfig/selinux

SELINUX=disabled

TORQUE Resource Manager

3. Update your main ~/.bashrc profile to ensure you are always referencing the applications to be
installed on all servers.

TORQUE
export TORQUEHOME=/var/spool/torque

Library Path

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TORQUEHOME}/lib

Update system paths
export PATH=${TORQUEHOME}/bin:${TORQUEHOME}/sbin:$ {PATH}

4. Verify server1 and server2 are resolvable via either DNS or looking for an entry in the
/etc/hosts file.

5. Configure the NFS Mounts by following these steps:

a. Create mount point folders on fileServer.

fileServer# mkdir -m 0755 /var/spool/torque

b. Update /etc/exports on fileServer. The IP addresses should be that of server2.

/var/spool/torque/ 192.168.0.0/255.255.255.0(rw,sync,no_root_squash)

c. Update the list of NFS exported file systems.

fileServer# exportfs -r

6. If the NFS daemons are not already running on fileServer, start them.

> systemctl restart rpcbind.service
> systemctl start nfs-server.service
> systemctl start nfs-lock.service
> systemctl start nfs-idmap.service

7. Mount the exported file systems on server1 by following these steps:

a. Create the directory reference and mount them.

server1# mkdir /var/spool/torque

Repeat this process for server2.

b. Update /etc/fstab on server1 to ensure that NFS mount is performed on startup.

fileServer:/var/spool/torque/server_priv /var/spool/torque/server_priv nfs
rsize= 8192,wsize=8192,timeo=14,intr

Repeat this step for server2.

8. Install TORQUE by following these steps:

TORQUE Resource Manager

2300 Setting Server Policies

Setting Server Policies 2301

a. Download and extract TORQUE 5.0.1 on server1.

server1# wget http://github.com/adaptivecomputing/torque/ branches/5.0.1/torque-
5.0.1.tar.gz
server1# tar -xvzf torque-5.0.1.tar.gz

b. Navigate to the TORQUE directory and compile TORQUE with the HA flag on server1.

server1# configure --prefix=/var/spool/torque
server1# make
server1# make install
server1# make packages

c. If the installation directory is shared on both head nodes, then run make install on
server1.

server1# make install

If the installation directory is not shared, repeat step 8a-b (downloading and installing TORQUE)
on server2.

9. Start trqauthd.
server1# /etc/init.d/trqauthd start

10. Configure TORQUE for HA.

a. List the host names of all nodes that run pbs_server in the torque/server_name file. You
must also include the host names of all nodes running pbs_server in the torque/server_name
file of each MOM node. The syntax of torque/server_name is a comma-delimited list of host
names.

server1,server2

b. Create a simple queue configuration for TORQUE job queues on server1.

server1# pbs_server -t create
server1# qmgr -c “set server scheduling=true”
server1# qmgr -c “create queue batch queue_type=execution”
server1# qmgr -c “set queue batch started=true”
server1# qmgr -c “set queue batch enabled=true”
server1# qmgr -c “set queue batch resources_default.nodes=1”
server1# qmgr -c “set queue batch resources_default.walltime=3600”
server1# qmgr -c “set server default_queue=batch”

Because TORQUEHOME is a shared drive, you do not need to repeat this step on server2.

c. Add the root users of TORQUE to the TORQUE configuration as an operator and manager.

server1# qmgr -c “set server managers += root@server1”
server1# qmgr -c “set server managers += root@server2”
server1# qmgr -c “set server operators += root@server1”
server1# qmgr -c “set server operators += root@server2”

Because TORQUEHOME is a shared drive, you do not need to repeat this step on server2.

TORQUE Resource Manager

d. You must update the lock file mechanism for TORQUE in order to determine which server is the
primary. To do so, use the lock_file_update_time and lock_file_check_time
parameters. The primary pbs_server will update the lock file based on the specified lock_file_
update_time (default value of 3 seconds). All backup pbs_servers will check the lock file as
indicated by the lock_file_check_time parameter (default value of 9 seconds). The lock_
file_update_time must be less than the lock_file_check_time. When a failure occurs,
the backup pbs_server takes up to the lock_file_check_time value to take over.

server1# qmgr -c “set server lock_file_check_time=5”
server1# qmgr -c “set server lock_file_update_time=3”

Because TORQUEHOME is a shared drive, you do not need to repeat this step on server2.

e. List the servers running pbs_server in the TORQUE acl_hosts file.

server1# qmgr -c “set server acl_hosts += server1”
server1# qmgr -c “set server acl_hosts += server2”

Because TORQUEHOME is a shared drive, you do not need to repeat this step on server2.

f. Restart the running pbs_server in HA mode.

server1# qterm

g. Start the pbs_server on the secondary server.

server1# pbs_server --ha -l server2:port
server2# pbs_server --ha -l server1:port

11. Check the status of TORQUE in HA mode.

server1# qmgr -c “p s”
server2# qmgr -c “p s”

The commands above returns all settings from the active TORQUE server from either node.

Drop one of the pbs_servers to verify that the secondary server picks up the request.

server1# qterm
server2# qmgr -c “p s”

Stop the pbs_server on server2 and restart pbs_server on server1 to verify that both nodes can
handle a request from the other.

12. Install a pbs_mom on the compute nodes.

a. On server1 or server2, configure the nodes file to identify all available MOMs. To do so, edit
the / var/spool/torque/server_priv/nodes file.

node1 np=2
node2 np=2

TORQUE Resource Manager

2302 Setting Server Policies

Setting Server Policies 2303

Change the np flag to reflect number of available processors on that node.

b. Recycle the pbs_servers to verify that they pick up the MOM configuration.

server1# qterm; pbs_server --ha -l server2:port
server2# qterm; pbs_server --ha -l server1:port

c. Start the pbs_mom on each execution node.

server1# pbs_mom -d <mom-server1>
server2# pbs_mom -d <mom-server2>

Example setup of high availability
1. The machines running pbs_server must have access to a shared server_priv/ directory (usually

an NFS share on a MoM).

2. All MoMs must have the same content in their server_name file. This can be done manually or via
an NFS share. The server_name file contains a comma-delimited list of the hosts that run pbs_
server.

List of all servers running pbs_server
server1,server2

3. The machines running pbs_server must be listed in acl_hosts.

> qmgr -c "set server acl_hosts += server1"
> qmgr -c "set server acl_hosts += server2"

4. Start pbs_server with the --ha option.

[root@server1]$ pbs_server --ha

[root@server2]$ pbs_server --ha

Related topics

l Setting Server Policies on page 2277
l Queue Configuration on page 2277

Setting min_threads and max_threads
There are two threadpools in TORQUE, one for background tasks and one for incoming requests from the
MOMs and through the API (client commands, Moab, and so forth). The min_threads on page 2429 and
max_threads on page 2429 parameters control the number of total threads used for both, not for each
individually. The incoming requests' threadpool has three-quarters of min_threads for its minimum, and
three-quarters of max_threads for its maximum, with the background pool receiving the other one-
quarter.

Additionally, pbs_server no longer allows incoming requests to pile up indefinitely. When the threadpool
is too busy for incoming requests, it indicates such, returning PBSE_SERVER_BUSY with the

TORQUE Resource Manager

accompanying message that "Pbs Server is currently too busy to service this request. Please retry this
request." The threshold for this message, if the request is from a manager, is that at least two threads
be available in the threadpool. If the request comes from a non-manager, 5% of the threadpool must be
available for the request to be serviced. Note that availability is calculated based on the maximum
threads and not based on the current number of threads allocated.

If an undesirably large number of requests are given a busy response, one option is to increase the
number of maximum threads for the threadpool. If the load on the server is already very high, then this
is probably not going to help, but if the CPU load is lower, then it may help. Remember that by default
the threadpool shrinks down once the extra threads are no longer needed. This is controlled via the
thread_idle_seconds on page 2435 server parameter.

Any change in the min_threads, max_threads, or thread_idle_seconds parameters requires a
restart of pbs_server to take effect.

Integrating Schedulers for TORQUE
Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic
and will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or
Moab Workload Manager, are highly recommended. If you are using Maui or Moab, see Moab-TORQUE
Integration Guide on page 1206. If using pbs_sched, simply start the pbs_sched daemon.

If you are installing Moab Cluster Manager, TORQUE and Moab were configured at installation for
interoperability and no further action is required.

Configuring DataManagement
This section contains information about SCP-based data management with TORQUE. It describes how to
use TORQUE with NFS and other networked filesystems. It also outlines file staging requirements. For
details, see these topics:

l SCP Setup on page 2304

l NFS and Other Networked Filesystems on page 2307

l File stage-in/stage-out on page 2308

SCP Setup
To use SCP-based data management, TORQUE must be authorized to migrate data to any of the compute
nodes. If this is not already enabled within the cluster, this can be achieved with the process described
below. This process enables uni-directional access for a particular user from a source host to a
destination host.

TORQUE Resource Manager

2304 Integrating Schedulers for TORQUE

Configuring Data Management 2305

These directions were written using OpenSSH version 3.6 and may not transfer correctly to older
versions.

To set up TORQUE for SCP, follow the directions in each of these topics:

l Generating SSH Key on Source Host on page 2305

l Copying Public SSH Key to each Destination Host on page 2305

l Configuring the SSH Daemon on Each Destination Host on page 2306

l Validating Correct SSH Configuration on page 2306

l Enabling Bi-directional SCP Access on page 2306

l Compiling TORQUE to Support SCP on page 2307

l Troubleshooting on page 2307

Related topics

l Configuring Data Management on page 2304

Generating SSH Key on Source Host
On the source host as the transfer user, execute the following:

> ssh-keygen -t rsa

This will prompt for a passphrase (optional) and create two files (id_rsa and id_rsa.pub) inside
~/.ssh/.

Related topics

l SCP Setup on page 2304
l Copying Public SSH Key to each Destination Host on page 2305

Copying Public SSH Key to each Destination Host
Transfer public key to each destination host as the transfer user:

Easy key copy:

ssh-copy-id [-i [identity_file]] [user@]machine

Manual steps to copy keys:

> scp ~/.ssh/id_rsa.pub destHost:~ (enter password)

Create an authorized_keys file on each destination host:

> ssh destHost (enter password)
> cat id_rsa.pub >> .ssh/authorized_keys

If the .ssh directory does not exist, create it with 700 privileges (mkdir .ssh; chmod 700 .ssh):

TORQUE Resource Manager

http://www.openssh.org/

> chmod 700 .ssh/authorized_keys

Related topics

l Generating SSH Key on Source Host on page 2305
l SCP Setup on page 2304

Configuring the SSH Daemon on Each Destination Host
Some configuration of the SSH daemon may be required on the destination host. (Because this is not
always the case, see Validating Correct SSH Configuration on page 2306 and test the changes made to
this point. If the tests fail, proceed with this step and then try testing again.) Typically, this is done by
editing the /etc/ssh/sshd_config file (root access needed). To verify correct configuration, see that
the following attributes are set (not commented):

RSAAuthentication yes
PubkeyAuthentication yes

If configuration changes were required, the SSH daemon will need to be restarted (root access needed):

> /etc/init.d/sshd restart

Related topics

l SCP Setup on page 2304

Validating Correct SSH Configuration
If all is properly configured, the following command issued on the source host should succeed and not
prompt for a password:

> scp destHost:/etc/motd /tmp

If this is your first time accessing destination from source, it may ask you if you want to add the
fingerprint to a file of known hosts. If you specify yes, this message should no longer appear and
should not interfere with scp copying via TORQUE. Also, it is important that the full hostname
appear in the known_hosts file. To do this, use the full hostname for destHost, as in
machine.domain.org instead of just machine.

Related topics

l SCP Setup on page 2304

Enabling Bi-directional SCP Access
The preceding steps allow source access to destination without prompting for a password. The reverse,
however, is not true. Repeat the steps, but this time using the destination as the source, etc. to enable bi-
directional SCP access (i.e. source can send to destination and destination can send to source without
password prompts.)

TORQUE Resource Manager

2306 Configuring Data Management

Configuring Data Management 2307

Related topics

l SCP Setup on page 2304

Compiling TORQUE to Support SCP

In TORQUE 2.1 and later, SCP is the default remote copy protocol. These instructions are only
necessary for earlier versions.

TORQUE must be re-configured (and then rebuilt) to use SCP by passing in the --with-scp flag to the
configure script:

> ./configure --prefix=xxx --with-scp
> make

If special SCP flags are required in your local setup, these can be specified using the $rcpcmd
parameter.

Related topics

l SCP Setup on page 2304

Troubleshooting
If, after following all of the instructions in this section (see SCP Setup on page 2304), TORQUE is still
having problems transferring data with SCP, set the PBSDEBUG environment variable and restart the
pbs_mom for details about copying. Also check the MOM log files for more details.

Related topics

l SCP Setup on page 2304

NFS and Other Networked Filesystems
When a batch job starts, its stdin file (if specified) is copied from the submission directory on the
remote submission host. This file is placed in the $PBSMOMHOME directory on the mother superior node
(i.e., /usr/spool/PBS/spool). As the job runs, stdout and stderr files are generated and placed in this
directory using the naming convention $JOBID.OU and $JOBID.ER.

When the job completes, the MOM copies the files into the directory from which the job was submitted.
By default, this file copying will be accomplished using a remote copy facility such as rcp or scp.

If a shared file system such as NFS, DFS, or AFS is available, a site can specify that the MOM should take
advantage of this by specifying the $usecp directive inside the MOM configuration file (located in the
$PBSMOMHOME/mom_priv directory) using the following format:

$usecp <HOST>:<SRCDIR> <DSTDIR>

TORQUE Resource Manager

<HOST> can be specified with a leading wildcard ('*') character. The following example demonstrates
this directive:

mom_priv/config

/home is NFS mounted on all hosts
$usecp *:/home /home
submission hosts in domain fte.com should map '/data' directory on submit host to
'/usr/local/data' on compute host
$usecp *.fte.com:/data /usr/local/data

If for any reason the MOM daemon is unable to copy the output or error files to the submission
directory, these files are instead copied to the undelivered directory also located in $PBSMOMHOME.

Related topics

l Configuring Data Management on page 2304

File stage-in/stage-out
File staging requirements are specified using the stagein and stageout directives of the qsub
command. Stagein requests occur before the job starts execution, while stageout requests happen after a
job completes.

On completion of the job, all staged-in and staged-out files are removed from the execution system. The
file_list is in the form local_file@hostname:remote_file[,...] regardless of the direction
of the copy. The name local_file is the name of the file on the system where the job executed. It may
be an absolute path or relative to the home directory of the user. The name remote_file is the
destination name on the host specified by hostname. The name may be absolute or relative to the user's
home directory on the destination host. The use of wildcards in the file name is not recommended.

The file names map to a remote copy program (rcp/scp/cp, depending on configuration) called on the
execution system in the following manner:

For stagein: rcp/scp hostname:remote_file local_file

For stageout: rcp/scp local_file hostname:remote_file

Examples
stage /home/john/input_source.txt from node13.fsc to /home/john/input_
destination.txt on master compute node
> qsub -l nodes=1,walltime=100 -W stagein=input_
source.txt@node13.fsc:/home/john/input_destination.txt

stage /home/bill/output_source.txt on master compute node to /tmp/output_
destination.txt on node15.fsc
> qsub -l nodes=1,walltime=100 -W stageout=/tmp/output_
source.txt@node15.fsc:/home/bill/output_destination.txt

$ fortune >xxx;echo cat xxx|qsub -W stagein=xxx@`hostname`:xxx
199.myhost.mydomain
$ cat STDIN*199
Anyone who has had a bull by the tail knows five or six more things
than someone who hasn't.
-- Mark Twain

TORQUE Resource Manager

2308 Configuring Data Management

MPI (Message Passing Interface) Support 2309

Related topics

l Configuring Data Management on page 2304

MPI (Message Passing Interface) Support
A message passing library is used by parallel jobs to augment communication between the tasks
distributed across the cluster. TORQUE can run with any message passing library and provides limited
integration with some MPI libraries.

For more information, see these topics:

l MPICH on page 2309

l Open MPI on page 2310

MPICH
One of the most popular MPI libraries is MPICH available from Argonne National Lab. If using this
release, you may want to consider also using the mpiexec tool for launching MPI applications. Support for
mpiexec has been integrated into TORQUE.

MPIExec Overview
mpiexec is a replacement program for the script mpirun, which is part of the mpich package. It is used to
initialize a parallel job from within a PBS batch or interactive environment. mpiexec uses the task
manager library of PBS to spawn copies of the executable on the nodes in a PBS allocation.

Reasons to use mpiexec rather than a script (mpirun) or an external daemon (mpd):

l Starting tasks with the task manager (TM) interface is much faster than invoking a separate rsh *
once for each process.

l Resources used by the spawned processes are accounted correctly with mpiexec, and reported in
the PBS logs, because all the processes of a parallel job remain under the control of PBS, unlike
when using mpirun-like scripts.

l Tasks that exceed their assigned limits of CPU time, wallclock time, memory usage, or disk space
are killed cleanly by PBS. It is quite hard for processes to escape control of the resource manager
when using mpiexec.

l You can use mpiexec to enforce a security policy. If all jobs are forced to spawn using mpiexec and
the PBS execution environment, it is not necessary to enable rsh or ssh access to the compute
nodes in the cluster.

For more information, see the mpiexec homepage.

MPIExec Troubleshooting
Although problems with mpiexec are rare, if issues do occur, the following steps may be useful:

TORQUE Resource Manager

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mpich.org/
http://www.anl.gov/
http://www.osc.edu/~djohnson/mpiexec/
http://www.osc.edu/~djohnson/mpiexec/

l Determine current version using mpiexec --version and review the change log available on
the MPI homepage to determine if the reported issue has already been corrected.

l Send email to the mpiexec mailing list at mpiexec@osc.edu.

l Browse the mpiexec user list archives for similar problems and resolutions.

l Read the FAQ contained in the README file and the mpiexec man pages contained within the
mpiexec distribution.

l Increase the logging of mpiexec operation with mpiexec --verbose (reports messages to
stderr).

l Increase logging of the master and slave resource manager execution daemons associated with
the job (with TORQUE, use $loglevel to 5 or higher in $TORQUEROOT/mom_priv/config
and look for 'tm' messages after associated join job messages).

l Use tracejob (included with TORQUE) or qtracejob (included with OSC's pbstools package) to
isolate failures within the cluster.

l If the message 'exec: Error: get_hosts: pbs_connect: Access from host not
allowed, or unknown host' appears, this indicates that mpiexec cannot communicate with
the pbs_server daemon. In most cases, this indicates that the $TORQUEROOT/server_name file
points to the wrong server or the node cannot resolve the server's name. The qstat command can
be run on the node to test this.

General MPI Troubleshooting
When using MPICH, some sites have issues with orphaned MPI child processes remaining on the system
after the master MPI process has been terminated. To address this, TORQUE epilogue scripts can be
created that properly clean up the orphaned processes (see Appendix G: Prologue and Epilogue
Scripts on page 2469).

Related topics

l MPI (Message Passing Interface) Support on page 2309

Open MPI
Open MPI is a new MPI implementation that combines technologies from multiple projects to create the
best possible library. It supports the TM interface for integration with TORQUE. More information is
available in the FAQ.

Related topics

l MPI (Message Passing Interface) Support on page 2309

TORQUE Resource Manager

2310 MPI (Message Passing Interface) Support

http://www.osc.edu/~djohnson/mpiexec/index.php#Changes
http://www.osc.edu/~djohnson/mpiexec/index.php
mailto:mpiexec@osc.edu
http://www.open-mpi.org/community/lists/users/
http://www.open-mpi.org/
http://www.open-mpi.org/faq

Resources 2311

Resources
A primary task of any resource manager is to monitor the state, health, configuration, and utilization of
managed resources. TORQUE is specifically designed to monitor compute hosts for use in a batch
environment. TORQUE is not designed to monitor non-compute host resources such as software licenses,
networks, file systems, and so forth, although these resources can be integrated into the cluster using
some scheduling systems.

With regard to monitoring compute nodes, TORQUE reports about a number of attributes broken into
three major categories:

l Configuration on page 2311

l Utilization on page 2312

l Node states on page 2312

Configuration
Configuration includes both detected hardware configuration and specified batch attributes.

Attribute Description Details

Architecture
(arch)

operating sys-
tem of the
node

The value reported is a derivative of the operating system installed.

Node
Features
(properties)

arbitrary
string attrib-
utes asso-
ciated with the
node

No node features are specified by default. If required, they are set using the
nodes file located in the TORQUE_HOME/server_priv directory. They may
specify any string and are most commonly used to allow users to request cer-
tain subsets of nodes when submitting jobs.

Local Disk
(size)

configured
local disk

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>] parameter is set, TORQUE will report, in kilobytes, configured disk
space within the specified directory.

Memory
(physmem)

local
memory/RAM

Local memory/RAM is monitored and reported in kilobytes.

TORQUE Resource Manager

Attribute Description Details

Processors
(ncpus/np)

real/virtual
processors

The number of processors detected by TORQUE is reported via the ncpus
attribute. However, for scheduling purposes, other factors are taken into
account. In its default configuration, TORQUE operates in "dedicated" mode
with each node possessing a single virtual processor. In dedicated mode, each
job task will consume one virtual processor and TORQUE will accept workload
on each node until all virtual processors on that node are in use. While the
number of virtual processors per node defaults to 1, this may be configured
using the nodes file located in the TORQUE_HOME/server_priv directory.
An alternative to dedicated mode is "timeshared" mode. If TORQUE's time-
shared mode is enabled, TORQUE will accept additional workload on each
node until the node'smaxload limit is reached.

Swap (tot-
mem)

virtual
memory/Swap

Virtual memory/Swap is monitored and reported in kilobytes.

Utilization
Utilization includes information regarding the amount of node resources currently in use as well as
information about who or what is consuming it.

Attribute Description Details

Disk (size) local disk
availability

By default, local disk space is not monitored. If the MOM configuration size
[fs=<FS>] parameter is set, TORQUE will report configured and currently avail-
able disk space within the specified directory in kilobytes.

Memory
(availmem)

real
memory/RAM

Available real memory/RAM is monitored and reported in kilobytes.

Network
(netload)

local network
adapter
usage

Reports total number of bytes transferred in or out by the network adapter.

Processor
Utilization
(loadave)

node's cpu
load average

Reports the node's 1 minute bsd load average.

Node states
State information includes administrative status, general node health information, and general usage
status.

TORQUE Resource Manager

2312 Resources

Accounting Records 2313

Attribute Description Details

Idle Time
(idletime)

time since local key-
board/mouse activity has been
detected

Time in seconds since local keyboard/mouse activity has been
detected.

State
(state)

monitored/admin node state A node can be in one or more of the following states:
l busy - node is full and will not accept additional work
l down - node is failing to report, is detecting local failures
with node

l free - node is ready to accept additional work
l job-exclusive - all available virtual processors are
assigned to jobs

l job-sharing - node has been allocated to run multiple
shared jobs and will remain in this state until jobs are
complete

l offline - node has been instructed by an admin to no
longer accept work

l reserve - node has been reserved by the server
l time-shared - node always allows multiple jobs to run
concurrently

l unknown - node has not been detected

Accounting Records
TORQUE maintains accounting records for batch jobs in the following directory:

$TORQUEROOT/server_priv/accounting/<TIMESTAMP>

$TORQUEROOT defaults to /usr/spool/PBS and <TIMESTAMP> is in the format: YYYYMMDD.

These records include events, time stamps, and information on resources requested and used.

Records for four different event types are produced and are described in the following table:

Record
marker

Record
type Description

A abort Job has been aborted by the server

C checkpoint Job has been checkpointed and held

D delete Job has been deleted

TORQUE Resource Manager

Record
marker

Record
type Description

E exit Job has exited (either successfully or unsuccessfully)

Q queue Job has been submitted/queued

R rerun Attempt to rerun the job has been made

S start Attempt to start the job has been made (if the job fails to properly start, it may have
multiple job start records)

T restart Attempt to restart the job (from checkpoint) has been made (if the job fails to prop-
erly start, it may have multiple job start records)

Accounting Variables
The following table offers accounting variable descriptions. Descriptions for accounting variables not
indicated in the table, particularly those prefixed with Resources_List, are available at Job Submission
on page 2234.

Variable Description

ctime Time job was created

etime Time job became eligible to run

qtime Time job was queued

start Time job started to run

A sample record in this file can look like the following:

TORQUE Resource Manager

2314 Accounting Records

Job Logging 2315

08/26/2014 17:07:44;Q;11923.napali;queue=batch
08/26/2014 17:07:50;S;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-
03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6
08/26/2014 17:08:04;E;11923.napali;user=dbeer group=company jobname=STDIN queue=batch
ctime=1409094464 qtime=1409094464 etime=1409094464 start=1409094470 owner=dbeer@napali
exec_host=napali/0+napali/1+napali/2+napali/3+napali/4+napali/5+torque-devtest-
03/0+torque-devtest-03/1+torque-devtest-03/2+torque-devtest-03/3+torque-devtest-
03/4+torque-devtest-03/5 Resource_List.neednodes=2:ppn=6 Resource_List.nodect=2
Resource_List.nodes=2:ppn=6 session=11352 total_execution_slots=12 unique_node_count=2
end=1409094484 Exit_status=265 resources_used.cput=00:00:00 resources_used.mem=82700kb
resources_used.vmem=208960kb resources_used.walltime=00:00:14 Error_Path=/dev/pts/11
Output_Path=/dev/pts/11

The value of Resource_List.* is the amount of resources requested, and the value of
resources_used.* is the amount of resources actually used.

total_execution_slots and unique_node_count display additional information regarding the job
resource usage.

Job Logging
New in TORQUE 2.5.3 is the ability to log job information for completed jobs. The information stored in
the log file is the same information produced with the command qstat -f. The log file data is stored
using an XML format. Data can be extracted from the log using the utility showjobs found in the
contrib/ directory of the TORQUE source tree. Custom scripts that can parse the XML data can also be
used.

For details about job logging, see these topics:

l Job Log Location and Name on page 2315

l Enabling Job Logs on page 2316

Job Log Location and Name
When job logging is enabled (see Enabling Job Logs on page 2316), the job log is kept at $TORQUE_
HOME/job_logs. The naming convention for the job log is the same as for the server log or MOM log.
The log name is created from the current year/month/day.

For example, if today's date is 26 October, 2010 the log file is named 20101026.

A new log file is created each new day that data is written to the log.

TORQUE Resource Manager

Related topics

l Enabling Job Logs on page 2316
l Job Logging on page 2315

Enabling Job Logs
There are five new server parameters used to enable job logging. These parameters control what
information is stored in the log and manage the log files.

Parameter Description

record_job_
info

This must be set to true in order for job logging to be enabled. If not set to true, the remaining
server parameters are ignored.

record_job_
script

If set to true, this adds the contents of the script executed by a job to the log.

job_log_file_
max_size

This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked
every five minutes and if the current day file size is greater than or equal to this value, it is rolled
from <filename> to <filename.1> and a new empty log is opened. If the current day file size exceeds
the maximum size a second time, the <filename.1> log file is rolled to <filename.2>, the current log is
rolled to <filename.1>, and a new empty log is opened. Each new log causes all other logs to roll to
an extension that is one greater than its current number. Any value less than 0 is ignored by pbs_
server (meaning the log will not be rolled).

job_log_file_
roll_depth

This sets the maximum number of new log files that are kept in a day if the job_log_file_max_size
parameter is set. For example, if the roll depth is set to 3, no file can roll higher than <filename.3>.
If a file is already at the specified depth, such as <filename.3>, the file is deleted so it can be
replaced by the incoming file roll, <filename.2>.

job_log_
keep_days

This maintains logs for the number of days designated. If set to 4, any log file older than 4 days
old is deleted.

Related topics

l Job Log Location and Name on page 2315
l Job Logging on page 2315

Troubleshooting
There are a few general strategies that can be followed to determine the cause of unexpected behavior.
These are a few of the tools available to help determine where problems occur. See these topics for
details:

TORQUE Resource Manager

2316 Troubleshooting

Troubleshooting 2317

l Host Resolution on page 2317

l Firewall Configuration on page 2317

l TORQUE Log Files on page 2318

l Using "tracejob" to Locate Job Failures on page 2319

l Using GDB to Locate Job Failures on page 2321

l Other Diagnostic Options on page 2321

l Stuck Jobs on page 2322

l Frequently Asked Questions (FAQ) on page 2323

l Compute Node Health Check on page 2328

l Debugging on page 2330

Host Resolution
The TORQUE server host must be able to perform both forward and reverse name lookup on itself and
on all compute nodes. Likewise, each compute node must be able to perform forward and reverse name
lookup on itself, the TORQUE server host, and all other compute nodes. In many cases, name resolution is
handled by configuring the node's /etc/hosts file although DNS and NIS services may also be used.
Commands such as nslookup or dig can be used to verify proper host resolution.

Invalid host resolution may exhibit itself with compute nodes reporting as down within the output
of pbsnodes-a and with failure of the momctl -d3 command.

Related topics

l Troubleshooting on page 2316

Firewall Configuration
Be sure that, if you have firewalls running on the server or node machines, you allow connections on the
appropriate ports for each machine. TORQUE pbs_mom daemons use UDP ports 1023 and below if
privileged ports are configured (privileged ports is the default). The pbs_server and pbs_mom daemons
use TCP and UDP ports 15001-15004 by default.

Firewall based issues are often associated with server to MOM communication failures and messages
such as 'premature end of message' in the log files.

Also, the tcpdump program can be used to verify the correct network packets are being sent.

Related topics

l Troubleshooting on page 2316

TORQUE Resource Manager

TORQUE Log Files

pbs_server and pbs_mom log files
The pbs_server keeps a daily log of all activity in the TORQUE_HOME/server_logs directory. The pbs_
mom also keeps a daily log of all activity in the TORQUE_HOME/mom_logs/ directory. These logs
contain information on communication between server and MOM as well as information on jobs as they
enter the queue and as they are dispatched, run, and terminated. These logs can be very helpful in
determining general job failures. For MOM logs, the verbosity of the logging can be adjusted by setting
the $loglevel parameter in the mom_priv/config file. For server logs, the verbosity of the logging can
be adjusted by setting the server log_level attribute in qmgr.

For both pbs_mom and pbs_server daemons, the log verbosity level can also be adjusted by setting the
environment variable PBSLOGLEVEL to a value between 0 and 7. Further, to dynamically change the log
level of a running daemon, use the SIGUSR1 and SIGUSR2 signals to increase and decrease the active
loglevel by one. Signals are sent to a process using the kill command.

For example, kill -USR1 `pgrep pbs_mom` would raise the log level up by one.

The current loglevel for pbs_mom can be displayed with the command momctl -d3.

trqauthd log files
As of TORQUE 4.1.3, trqauthd logs its events in the $TORQUE_HOME/client_logs directory. It names
the log files in the format <YYYYMMDD>, creating a new log daily as events occur.

You might see some peculiar behavior if you mount the client_logs directory for shared access
via network-attached storage.

When trqauthd first gets access on a particular day, it writes an "open" message to the day's log
file. It also writes a "close" message to the last log file it accessed prior to that, which is usually
the previous day's log file, but not always. For example, if it is Monday and no client commands
were executed over the weekend, trqauthd writes the "close" message to Friday's file.

Since the various trqauthd binaries on the submit hosts (and potentially, the compute nodes) each
write an "open" and "close" message on the first access of a new day, you'll see multiple
(seemingly random) accesses when you have a shared log.

The trqauthd records the following events along with the date and time of the occurrence:

l When trqauthd successfully starts. It logs the event with the IP address and port.

l When a user successfully authenticates with trqauthd.

l When a user fails to authenticate with trqauthd.

l When trqauthd encounters any unexpected errors.

TORQUE Resource Manager

2318 Troubleshooting

Troubleshooting 2319

Example 4-26: trqauthd logging sample

2012-10-05 15:05:51.8404 Log opened
2012-10-05 15:05:51.8405 TORQUE authd daemon started and listening on IP:port
101.0.1.0:12345
2012-10-10 14:48:05.5688 User hfrye at IP:port abc:12345 logged in

Related topics

l Troubleshooting on page 2316

Using "tracejob" to Locate Job Failures

Overview
The tracejob utility extracts job status and job events from accounting records, MOM log files, server log
files, and scheduler log files. Using it can help identify where, how, a why a job failed. This tool takes a
job id as a parameter as well as arguments to specify which logs to search, how far into the past to
search, and other conditions.

Syntax
tracejob [-a|s|l|m|q|v|z] [-c count] [-w size] [-p path] [-n <DAYS>] [-f
filter_type] <JOBID>

-p : path to PBS_SERVER_HOME
-w : number of columns of your terminal
-n : number of days in the past to look for job(s) [default 1]
-f : filter out types of log entries, multiple -f's can be specified
 error, system, admin, job, job_usage, security, sched, debug,
 debug2, or absolute numeric hex equivalent
-z : toggle filtering excessive messages
-c : what message count is considered excessive
-a : don't use accounting log files
-s : don't use server log files
-l : don't use scheduler log files
-m : don't use MOM log files
-q : quiet mode - hide all error messages
-v : verbose mode - show more error messages

TORQUE Resource Manager

Example
> tracejob -n 10 1131

Job: 1131.icluster.org

03/02/2005 17:58:28 S enqueuing into batch, state 1 hop 1
03/02/2005 17:58:28 S Job Queued at request of dev@icluster.org, owner =
 dev@icluster.org, job name = STDIN, queue = batch
03/02/2005 17:58:28 A queue=batch
03/02/2005 17:58:41 S Job Run at request of dev@icluster.org
03/02/2005 17:58:41 M evaluating limits for job
03/02/2005 17:58:41 M phase 2 of job launch successfully completed
03/02/2005 17:58:41 M saving task (TMomFinalizeJob3)
03/02/2005 17:58:41 M job successfully started
03/02/2005 17:58:41 M job 1131.koa.icluster.org reported successful start on 1 node
(s)
03/02/2005 17:58:41 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1
 Resource_List.nodes=1 Resource_List.walltime=00:01:40
03/02/2005 18:02:11 M walltime 210 exceeded limit 100
03/02/2005 18:02:11 M kill_job
03/02/2005 18:02:11 M kill_job found a task to kill
03/02/2005 18:02:11 M sending signal 15 to task
03/02/2005 18:02:11 M kill_task: killing pid 14060 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14061 task 1 with sig 15
03/02/2005 18:02:11 M kill_task: killing pid 14063 task 1 with sig 15
03/02/2005 18:02:11 M kill_job done
03/02/2005 18:04:11 M kill_job
03/02/2005 18:04:11 M kill_job found a task to kill
03/02/2005 18:04:11 M sending signal 15 to task
03/02/2005 18:06:27 M kill_job
03/02/2005 18:06:27 M kill_job done
03/02/2005 18:06:27 M performing job clean-up
03/02/2005 18:06:27 A user=dev group=dev jobname=STDIN queue=batch ctime=1109811508

 qtime=1109811508 etime=1109811508 start=1109811521
 exec_host=icluster.org/0 Resource_List.neednodes=1 Resource_
List.nodect=1

Resource_List.nodes=1 Resource_List.walltime=00:01:40
session=14060
 end=1109811987 Exit_status=265 resources_used.cput=00:00:00
 resources_used.mem=3544kb resources_used.vmem=10632kb

resources_used.walltime=00:07:46

...

The tracejob command operates by searching the pbs_server accounting records and the pbs_
server, MOM, and scheduler logs. To function properly, it must be run on a node and as a user
which can access these files. By default, these files are all accessible by the user root and only
available on the cluster management node. In particular, the files required by tracejob are
located in the following directories:

TORQUE_HOME/server_priv/accounting

TORQUE_HOME/server_logs

TORQUE_HOME/mom_logs

TORQUE_HOME/sched_logs

TORQUE Resource Manager

2320 Troubleshooting

Troubleshooting 2321

tracejob may only be used on systems where these files are made available. Non-root users
may be able to use this command if the permissions on these directories or files are changed
appropriately.

The value of Resource_List.* is the amount of resources requested, and the value of
resources_used.* is the amount of resources actually used.

Related topics

l Troubleshooting on page 2316

Using GDB to Locate Job Failures
If either the pbs_mom or pbs_server fail unexpectedly (and the log files contain no information on the
failure) gdb can be used to determine whether or not the program is crashing. To start pbs_mom or pbs_
server under GDB export the environment variable PBSDEBUG=yes and start the program (i.e., gdb
pbs_mom and then issue the run subcommand at the gdb prompt).

GDB may run for some time until a failure occurs and at which point, a message will be printed to the
screen and a gdb prompt again made available. If this occurs, use the gdb where subcommand to
determine the exact location in the code. The information provided may be adequate to allow local
diagnosis and correction. If not, this output may be sent to the mailing list or to help for further
assistance.

See the PBSCOREDUMP parameter for enabling creation of core files (see Using "tracejob" to
Locate Job Failures on page 2319).

Related topics

l Troubleshooting on page 2316

Other Diagnostic Options
When PBSDEBUG is set, some client commands will print additional diagnostic information.

$ export PBSDEBUG=yes
$ cmd

To debug different kinds of problems, it can be useful to see where in the code time is being spent. This
is called profiling and there is a Linux utility "gprof" that will output a listing of routines and the amount
of time spent in these routines. This does require that the code be compiled with special options to
instrument the code and to produce a file, gmon.out, that will be written at the end of program execution.

The following listing shows how to build TORQUE with profiling enabled. Notice that the output file for
pbs_mom will end up in the mom_priv directory because its startup code changes the default directory
to this location.

TORQUE Resource Manager

http://www.gnu.org/software/gdb/
mailto:help@supercluster.org

./configure "CFLAGS=-pg -lgcov -fPIC"
make -j5
make install
pbs_mom ... do some stuff for a while ...
momctl -s
cd /var/spool/torque/mom_priv
gprof -b `which pbs_mom` gmon.out |less
#

Another way to see areas where a program is spending most of its time is with the valgrind program.
The advantage of using valgrind is that the programs do not have to be specially compiled.

valgrind --tool=callgrind pbs_mom

Related topics

l Troubleshooting on page 2316

Stuck Jobs
If a job gets stuck in TORQUE, try these suggestions to resolve the issue:

l Use the qdel command to cancel the job.

l Force the MOM to send an obituary of the job ID to the server.

> qsig -s 0 <JOBID>

l You can try clearing the stale jobs by using the momctl command on the compute nodes where
the jobs are still listed.

> momctl -c 58925 -h compute-5-20

l Setting the qmgr server setting mom_job_sync to True might help prevent jobs from hanging.

> qmgr -c "set server mom_job_sync = True"

To check and see if this is already set, use:

> qmgr -c "p s"

l If the suggestions above cannot remove the stuck job, you can try qdel -p. However, since the -p
option purges all information generated by the job, this is not a recommended option unless the
above suggestions fail to remove the stuck job.

> qdel -p <JOBID>

l The last suggestion for removing stuck jobs from compute nodes is to restart the pbs_mom.

For additional troubleshooting, run a tracejob on one of the stuck jobs. You can then create an online
support ticket with the full server log for the time period displayed in the trace job.

Related topics

l Troubleshooting on page 2316

TORQUE Resource Manager

2322 Troubleshooting

http://support.clusterresources.com/
http://support.clusterresources.com/

Troubleshooting 2323

Frequently Asked Questions (FAQ)
l Cannot connect to server: error=15034 on page 2323

l Deleting 'stuck' jobs on page 2323

l Which user must run TORQUE? on page 2324

l Scheduler cannot run jobs - rc: 15003 on page 2324

l PBS_Server: pbsd_init, Unable to read server database on page 2324

l qsub will not allow the submission of jobs requesting many processors on page 2326

l qsub reports 'Bad UID for job execution' on page 2326

l Why does my job keep bouncing from running to queued? on page 2326

l How do I use PVM with TORQUE? on page 2327

l My build fails attempting to use the TCL library on page 2327

l My job will not start, failing with the message 'cannot send job to mom, state=PRERUN' on
page 2327

l How do I determine what version of TORQUE I am using? on page 2327

l How do I resolve autogen.sh errors that contain "error: possibly undefined macro: AC_MSG_
ERROR"? on page 2327

l How do I resolve compile errors with libssl or libcrypto for TORQUE 4.0 on Ubuntu 10.04? on
page 2328

l Why are there so many error messages in the client logs (trqauthd logs) when I don't notice
client commands failing? on page 2328

Cannot connect to server: error=15034
This error occurs in TORQUE clients (or their APIs) because TORQUE cannot find the server_name file
and/or the PBS_DEFAULT environment variable is not set. The server_name file or PBS_DEFAULT
variable indicate the pbs_server's hostname that the client tools should communicate with. The server_
name file is usually located in TORQUE's local state directory. Make sure the file exists, has proper
permissions, and that the version of TORQUE you are running was built with the proper directory
settings. Alternatively you can set the PBS_DEFAULT environment variable. Restart TORQUE daemons if
you make changes to these settings.

Deleting 'stuck' jobs
To manually delete a "stale" job which has no process, and for which the mother superior is still alive,
sending a sig 0 with qsig will often cause MOM to realize the job is stale and issue the proper JobObit
notice. Failing that, use momctl -c to forcefully cause MOM to purge the job. The following process
should never be necessary:

TORQUE Resource Manager

l Shut down the MOM on the mother superior node.

l Delete all files and directories related to the job from TORQUE_HOME/mom_priv/jobs.

l Restart the MOM on the mother superior node.

If the mother superior MOM has been lost and cannot be recovered (i.e. hardware or disk failure), a job
running on that node can be purged from the output of qstat using the qdel on page 2371 -p command or
can be removed manually using the following steps:

To remove job X

1. Shut down pbs_server.

> qterm

2. Remove job spool files.

> rm TORQUE_HOME/server_priv/jobs/X.SC TORQUE_HOME/server_priv/jobs/X.JB

3. Restart pbs_server

> pbs_server

Which user must run TORQUE?
TORQUE (pbs_server & pbs_mom) must be started by a user with root privileges.

Scheduler cannot run jobs - rc: 15003
For a scheduler, such as Moab or Maui, to control jobs with TORQUE, the scheduler needs to be run be a
user in the server operators / managers list (see qmgr). The default for the server operators /
managers list is root@localhost. For TORQUE to be used in a grid setting with Silver, the scheduler
needs to be run as root.

PBS_Server: pbsd_init, Unable to read server database
If this message is displayed upon starting pbs_server it means that the local database cannot be read.
This can be for several reasons. The most likely is a version mismatch. Most versions of TORQUE can
read each other's databases. However, there are a few incompatibilities between OpenPBS and TORQUE.
Because of enhancements to TORQUE, it cannot read the job database of an OpenPBS server (job
structure sizes have been altered to increase functionality). Also, a compiled in 32-bit mode cannot read
a database generated by a 64-bit pbs_server and vice versa.

TORQUE Resource Manager

2324 Troubleshooting

http://www.adaptivecomputing.com/resources/docs/maui

Troubleshooting 2325

To reconstruct a database (excluding the job database)

1. First, print out the old data with this command:

%> qmgr -c "p s"
#
Create queues and set their attributes.
#
#
Create and define queue batch
create queue batch
set queue batch queue_type = Execution
set queue batch acl_host_enable = False
set queue batch resources_max.nodect = 6
set queue batch resources_default.nodes = 1
set queue batch resources_default.walltime = 01:00:00
set queue batch resources_available.nodect = 18
set queue batch enabled = True
set queue batch started = True
#
Set server attributes.
#
set server scheduling = True
set server managers = griduser@oahu.icluster.org
set server managers += scott@*.icluster.org
set server managers += wightman@*.icluster.org
set server operators = griduser@oahu.icluster.org
set server operators += scott@*.icluster.org
set server operators += wightman@*.icluster.org
set server default_queue = batch
set server log_events = 511
set server mail_from = adm
set server resources_available.nodect = 80
set server node_ping_rate = 300
set server node_check_rate = 600
set server tcp_timeout = 6

2. Copy this information somewhere.

3. Restart pbs_server with the following command:

> pbs_server -t create

4. When you are prompted to overwrite the previous database, enter y, then enter the data exported by
the qmgr command as in this example:

> cat data | qmgr

5. Restart pbs_server without the flags:

> qterm
> pbs_server

This will reinitialize the database to the current version.

Reinitializing the server database will reset the next jobid to 1

TORQUE Resource Manager

qsub will not allow the submission of jobs requesting many processors
TORQUE's definition of a node is context sensitive and can appear inconsistent. The qsub -l
nodes=<X> expression can at times indicate a request for X processors and other time be interpreted
as a request for X nodes. While qsub allows multiple interpretations of the keyword nodes, aspects of the
TORQUE server's logic are not so flexible. Consequently, if a job is using -l nodes to specify processor
count and the requested number of processors exceeds the available number of physical nodes, the
server daemon will reject the job.

To get around this issue, the server can be told it has an inflated number of nodes using the
resources_available attribute. To take effect, this attribute should be set on both the server and
the associated queue as in the example below. (See resources_available for more information.)

> qmgr
Qmgr: set server resources_available.nodect=2048
Qmgr: set queue batch resources_available.nodect=2048

The pbs_server daemon will need to be restarted before these changes will take effect.

qsub reports 'Bad UID for job execution'
[guest@login2]$ qsub test.job
qsub: Bad UID for job execution

Job submission hosts must be explicitly specified within TORQUE or enabled via RCmd security
mechanisms in order to be trusted. In the example above, the host 'login2' is not configured to be
trusted. This process is documented in Configuring job submission hosts on page 2216.

Why does my job keep bouncing from running to queued?
There are several reasons why a job will fail to start. Do you see any errors in the MOM logs? Be sure
to increase the loglevel on MOM if you don't see anything. Also be sure TORQUE is configured with --
enable-syslog and look in /var/log/messages (or wherever your syslog writes).

Also verify the following on all machines:

l DNS resolution works correctly with matching forward and reverse

l Time is synchronized across the head and compute nodes

l User accounts exist on all compute nodes

l User home directories can be mounted on all compute nodes

l Prologue scripts (if specified) exit with 0

If using a scheduler such as Moab or Maui, use a scheduler tool such as checkjob to identify job start
issues.

TORQUE Resource Manager

2326 Troubleshooting

http://www.adaptivecomputing.com/resources/docs/maui

Troubleshooting 2327

How do I use PVM with TORQUE?
l Start the master pvmd on a compute node and then add the slaves

l mpiexec can be used to launch slaves using rsh or ssh (use export PVM_RSH=/usr/bin/ssh to
use ssh)

Access can be managed by rsh/ssh without passwords between the batch nodes, but denying it
from anywhere else, including the interactive nodes. This can be done with xinetd and sshd
configuration (root is allowed to ssh everywhere). This way, the pvm daemons can be started and
killed from the job script.

The problem is that this setup allows the users to bypass the batch system by writing a job script that
uses rsh/ssh to launch processes on the batch nodes. If there are relatively few users and they can more
or less be trusted, this setup can work.

My build fails attempting to use the TCL library
TORQUE builds can fail on TCL dependencies even if a version of TCL is available on the system. TCL is
only utilized to support the xpbsmon client. If your site does not use this tool (most sites do not use
xpbsmon), you can work around this failure by rerunning configure with the --disable-gui
argument.

My job will not start, failing with the message 'cannot send job to mom,
state=PRERUN'
If a node crashes or other major system failures occur, it is possible that a job may be stuck in a corrupt
state on a compute node. TORQUE 2.2.0 and higher automatically handle this when the mom_job_sync
parameter is set via qmgr (the default). For earlier versions of TORQUE, set this parameter and restart
the pbs_mom daemon.

This error can also occur if not enough free space is available on the partition that holds TORQUE.

How do I determine what version of TORQUE I am using?
There are times when you want to find out what version of TORQUE you are using. An easy way to do
this is to run the following command:

qmgr

> qmgr -c "p s" | grep pbs_ver

How do I resolve autogen.sh errors that contain "error: possibly
undefined macro: AC_MSG_ERROR"?
Verify the pkg-config package is installed.

TORQUE Resource Manager

How do I resolve compile errors with libssl or libcrypto for TORQUE 4.0
on Ubuntu 10.04?
When compiling TORQUE 4.0 on Ubuntu 10.04 the following errors might occur:

libtool: link: gcc -Wall -pthread -g -D_LARGEFILE64_SOURCE -o .libs/trqauthd trq_auth_
daemon.o trq_main.o -ldl -lssl -lcrypto -L/home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs /home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs/libtorque.so -lpthread -lrt -pthread
/usr/bin/ld: cannot find -lssl
collect2: ld returned 1 exit status
make[3]: *** [trqauthd] Error 1

libtool: link: gcc -Wall -pthread -g -D_LARGEFILE64_SOURCE -o .libs/trqauthd trq_auth_
daemon.o trq_main.o -ldl -lssl -lcrypto -L/home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs /home/adaptive/torques/torque-
4.0.0/src/lib/Libpbs/.libs/libtorque.so -lpthread -lrt -pthread
/usr/bin/ld: cannot find -lcrypto
collect2: ld returned 1 exit status
make[3]: *** [trqauthd] Error 1

To resolve the compile issue, use these commands:

> cd /usr/lib
> ln -s /lib/libcrypto.so.0.9. libcrypto.so
> ln -s /lib/libssl.so.0.9.8 libssl.so

Why are there so many error messages in the client logs (trqauthd logs)
when I don't notice client commands failing?
If a client makes a connection to the server and the trqauthd connection for that client command is
authorized before the client's connection, the trqauthd connection is rejected. The connection is retried,
but if all retry attempts are rejected, trqauthd logs a message indicating a failure. Some client
commands then open a new connection to the server and try again. The client command fails only if all
its retries fail.

Related topics

l Troubleshooting on page 2316

Compute Node Health Check
TORQUE provides the ability to perform health checks on each compute node. If these checks fail, a
failure message can be associated with the node and routed to the scheduler. Schedulers (such as Moab)
can forward this information to administrators by way of scheduler triggers, make it available through
scheduler diagnostic commands, and automatically mark the node down until the issue is resolved. (See
the RMMSGIGNORE parameter in Appendix A: Moab Parameters on page 902 for more information.)

Additionally, Michael Jennings at LBNL has authored an open-source bash node health check script
project. It offers an easy way to perform some of the most common node health checking tasks, such as
verifying network and filesystem functionality. More information is available on the project's page.

For more information about node health checks, see these topics:

TORQUE Resource Manager

2328 Troubleshooting

http://warewulf.lbl.gov/trac/wiki/Node Health Check

Troubleshooting 2329

l Configuring MOMs to Launch a Health Check on page 2329

l Creating the Health Check Script on page 2329

l Adjusting Node State Based on the Health Check Output on page 2330

l Example Health Check Script on page 2330

Related topics

l Troubleshooting on page 2316

Configuring MOMs to Launch a Health Check
The health check feature is configured via the mom_priv/config file using the parameters described
below:

Parameter Format Default Description

$node_
check_
script

<STRING> N/A (Required) Specifies the fully qualified pathname of the health
check script to run

$node_
check_inter-
val

<INTEGER> 1 (Optional) Specifies the number of MOM intervals between health
checks (by default, each MOM interval is 45 seconds long - this is
controlled via the $status_update_time on page 2450 node para-
meter. The integer may be followed by a list of event names (cur-
rently supported are jobstart and jobend). (For more
information, see pbs_mom.)

Related topics

l Compute Node Health Check on page 2328

Creating the Health Check Script
The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compile executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, as of TORQUE 1.0.1, the pbs_mom daemon blocks until the health check
is completed and does not possess a built-in timeout. Consequently, it is advisable to keep the launch
script execution time short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword ERROR to stdout followed by an error
message. When a failure is detected, the ERROR keyword should be printed to stdout before any other
data. The message (up to 1024 characters) immediately following the ERROR keyword must all be
contained on the same line. The message is assigned to the node attribute 'message' of the associated
node.

TORQUE Resource Manager

Related topics

l Compute Node Health Check on page 2328

Adjusting Node State Based on the Health Check Output
If the health check reports an error, the node attribute "message" is set to the error string returned.
Cluster schedulers can be configured to adjust a given node's state based on this information. For
example, by default, Moab sets a node's state to down if a node error message is detected. The node
health script continues to run at the configured interval (see Configuring MOMs to Launch a Health
Check on page 2329 for more information), and if it does not generate the error message again during
one of its later executions, Moab picks that up at the beginning of its next iteration and restores the node
to an online state.

Related topics

l Compute Node Health Check on page 2328

Example Health Check Script
As mentioned, the health check can be a shell script, PERL, Python, C-executable, or anything which can
be executed from the command line capable of setting STDOUT. The example below demonstrates a very
simple health check:

#!/bin/sh
/bin/mount | grep global
if [$? != "0"]
 then
 echo "ERROR cannot locate filesystem global"
fi

Related topics

l Compute Node Health Check on page 2328

Debugging
TORQUE supports a number of diagnostic and debug options including the following:

PBSDEBUG environment variable - If set to 'yes', this variable will prevent pbs_server, pbs_mom, and/or
pbs_sched from backgrounding themselves allowing direct launch under a debugger. Also, some client
commands will provide additional diagnostic information when this value is set.

PBSLOGLEVEL environment variable - Can be set to any value between 0 and 7 and specifies the logging
verbosity level (default = 0)

PBSCOREDUMP environment variable - If set, it will cause the offending resource manager daemon to
create a core file if a SIGSEGV, SIGILL, SIGFPE, SIGSYS, or SIGTRAP signal is received. The core dump will
be placed in the daemon's home directory ($PBSHOME/mom_priv for pbs_mom and
$PBSHOME/server_priv for pbs_server).

TORQUE Resource Manager

2330 Troubleshooting

Troubleshooting 2331

To enable core dumping in a Red Hat system, you must add the following line to the
/etc/init.d/pbs_mom and /etc/init.d/pbs_server scripts:

export DAEMON_COREFILE_LIMIT=unlimited

NDEBUG #define - if set at build time, will cause additional low-level logging information to be output to
stdout for pbs_server and pbs_mom daemons.

tracejob reporting tool - can be used to collect and report logging and accounting information for specific
jobs (for more information, see Using "tracejob" to Locate Job Failures on page 2319).

PBSLOGLEVEL and PBSCOREDUMP must be added to the $PBSHOME/pbs_environment file, not
just the current environment. To set these variables, add a line to the pbs_environment file as
either "variable=value" or just "variable". In the case of "variable=value", the environment
variable is set up as the value specified. In the case of "variable", the environment variable is set
based upon its value in the current environment.

TORQUE error codes

Error code name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job identifier

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_IFF_NOT_FOUND 15008 "pbs_iff" not found; unable to authenticate

PBSE_MUNGE_NOT_FOUND 15009 "munge" executable not found; unable to authenticate

PBSE_BADHOST 15010 Access from host not allowed

TORQUE Resource Manager

Error code name Number Description

PBSE_JOBEXIST 15011 Job already exists

PBSE_SYSTEM 15012 System error occurred

PBSE_INTERNAL 15013 Internal server error occurred

PBSE_REGROUTE 15014 Parent job of dependent in rte queue

PBSE_UNKSIG 15015 Unknown signal name

PBSE_BADATVAL 15016 Bad attribute value

PBSE_MODATRRUN 15017 Cannot modify attribute in run state

PBSE_BADSTATE 15018 Request invalid for job state

PBSE_UNKQUE 15020 Unknown queue name

PBSE_BADCRED 15021 Invalid credential in request

PBSE_EXPIRED 15022 Expired credential in request

PBSE_QUNOENB 15023 Queue not enabled

PBSE_QACESS 15024 No access permission for queue

PBSE_BADUSER 15025 Bad user - no password entry

PBSE_HOPCOUNT 15026 Max hop count exceeded

PBSE_QUEEXIST 15027 Queue already exists

PBSE_ATTRTYPE 15028 Incompatible queue attribute type

PBSE_QUEBUSY 15029 Queue busy (not empty)

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 Feature/function not supported

TORQUE Resource Manager

2332 Troubleshooting

Troubleshooting 2333

Error code name Number Description

PBSE_QUENOEN 15032 Cannot enable queue,needs add def

PBSE_PROTOCOL 15033 Protocol (ASN.1) error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

PBSE_NOSERVER 15036 No server to connect to

PBSE_UNKRESC 15037 Unknown resource

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue defined

PBSE_NORERUN 15040 Job not rerunnable

PBSE_ROUTEREJ 15041 Route rejected by all destinations

PBSE_ROUTEEXPD 15042 Time in route queue expired

PBSE_MOMREJECT 15043 Request to MOM failed

PBSE_BADSCRIPT 15044 (qsub) Cannot access script file

PBSE_STAGEIN 15045 Stage-In of files failed

PBSE_RESCUNAV 15046 Resources temporarily unavailable

PBSE_BADGRP 15047 Bad group specified

PBSE_MAXQUED 15048 Max number of jobs in queue

PBSE_CKPBSY 15049 Checkpoint busy, may be retries

PBSE_EXLIMIT 15050 Limit exceeds allowable

PBSE_BADACCT 15051 Bad account attribute value

TORQUE Resource Manager

Error code name Number Description

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job id after clean init

PBSE_NOSYNCMSTR 15055 No master in sync set

PBSE_BADDEPEND 15056 Invalid dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based request protocol

PBSE_EXECTHERE 15059 Cannot execute there

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Requirement rejected -server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Named node is not in the list

PBSE_UNKNODEATR 15065 Node-attribute not recognized

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Bad node-attribute value

PBSE_MUTUALEX 15070 State values are mutually exclusive

PBSE_GMODERR 15071 Error(s) during global modification of nodes

TORQUE Resource Manager

2334 Troubleshooting

Troubleshooting 2335

Error code name Number Description

PBSE_NORELYMOM 15072 Could not contact MOM

PBSE_NOTSNODE 15073 No time-shared nodes

PBSE_JOBTYPE 15074 Wrong job type

PBSE_BADACLHOST 15075 Bad ACL entry in host list

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for user

PBSE_BADDISALLOWTYPE 15077 Bad type in "disallowed_types" list

PBSE_NOINTERACTIVE 15078 Interactive jobs not allowed in queue

PBSE_NOBATCH 15079 Batch jobs not allowed in queue

PBSE_NORERUNABLE 15080 Rerunable jobs not allowed in queue

PBSE_NONONRERUNABLE 15081 Non-rerunable jobs not allowed in queue

PBSE_UNKARRAYID 15082 Unknown array ID

PBSE_BAD_ARRAY_REQ 15083 Bad job array request

PBSE_TIMEOUT 15084 Time out

PBSE_JOBNOTFOUND 15085 Job not found

PBSE_NOFAULTTOLERANT 15086 Fault tolerant jobs not allowed in queue

PBSE_NOFAULTINTOLERANT 15087 Only fault tolerant jobs allowed in queue

PBSE_NOJOBARRAYS 15088 Job arrays not allowed in queue

PBSE_RELAYED_TO_MOM 15089 Request was relayed to a MOM

PBSE_MEM_MALLOC 15090 Failed to allocate memory for memmgr

PBSE_MUTEX 15091 Failed to allocate controlling mutex (lock/unlock)

TORQUE Resource Manager

Error code name Number Description

PBSE_TRHEADATTR 15092 Failed to set thread attributes

PBSE_THREAD 15093 Failed to create thread

PBSE_SELECT 15094 Failed to select socket

PBSE_SOCKET_FAULT 15095 Failed to get connection to socket

PBSE_SOCKET_WRITE 15096 Failed to write data to socket

PBSE_SOCKET_READ 15097 Failed to read data from socket

PBSE_SOCKET_CLOSE 15098 Socket closed

PBSE_SOCKET_LISTEN 15099 Failed to listen in on socket

PBSE_AUTH_INVALID 15100 Invalid auth type in request

PBSE_NOT_IMPLEMENTED 15101 Functionality not yet implemented

PBSE_QUENOTAVAILABLE 15102 Queue is not available

Related topics

l Troubleshooting on page 2316

Appendices
The appendices provide tables of commands, parameters, configuration options, error codes, the Quick
Start Guide, and so forth.

l Appendix A: Commands Overview on page 2337

l Appendix B: Server Parameters on page 2417

l Appendix C: Node Manager (MOM) Configuration on page 2435

l Appendix D: Diagnostics and Error Codes on page 2454

l Appendix E: Considerations before Upgrading on page 2462

l Appendix F: Large Cluster Considerations on page 2463

TORQUE Resource Manager

2336 Appendices

Appendices 2337

l Appendix G: Prologue and Epilogue Scripts on page 2469

l Appendix H: Running Multiple TORQUE Servers and MOMs on the Same Node on page 2477

l Appendix I: Security Overview on page 2478

l Appendix J: Job Submission Filter ("qsub wrapper") on page 2479

l Appendix K: "torque.cfg" Configuration File on page 2480

l Appendix L: TORQUE Quick Start Guide on page 2485

l Appendix M: BLCR Acceptance Tests on page 2488

Appendix A: Commands Overview

Client commands

Command Description

momctl Manage/diagnose MOM (node execution) daemon

pbsdsh Launch tasks within a parallel job

pbsnodes View/modify batch status of compute nodes

qalter Modify queued batch jobs

qchkpt Checkpoint batch jobs

qdel Delete/cancel batch jobs

qgpumode Specifies new mode for GPU

qgpureset Reset the GPU

qhold Hold batch jobs

qmgr Manage policies and other batch configuration

qmove on page
2380

Move batch jobs

TORQUE Resource Manager

Command Description

qorder on page
2381

Exchange order of two batch jobs in any queue

qrerun Rerun a batch job

qrls Release batch job holds

qrun Start a batch job

qsig Send a signal to a batch job

qstat View queues and jobs

qsub Submit jobs

qterm Shutdown pbs server daemon

tracejob Trace job actions and states recorded in TORQUE logs (see Using "tracejob" to Locate Job
Failures on page 2319)

Binary executables

Command Description

pbs_iff Interprocess authentication service

pbs_mom Start MOM (node execution) daemon

pbs_server Start server daemon

pbs_track Tell pbs_mom to track a new process

Related topics

l Appendix C: Node Manager (MOM) Configuration on page 2435
l Appendix B: Server Parameters on page 2417

momctl
(PBS MOM Control)

TORQUE Resource Manager

2338 Appendices

Appendices 2339

Synopsis
momctl -c { <JOBID> | all }
momctl -C
momctl -d { <INTEGER> | <JOBID> }
momctl -f <FILE>
momctl -h <HOST>[,<HOST>]...
momctl -p <PORT_NUMBER>
momctl -q <ATTRIBUTE>
momctl -r { <FILE> | LOCAL:<FILE> }
momctl -s

Overview
The momctl command allows remote shutdown, reconfiguration, diagnostics, and querying of the pbs_
mom daemon.

Format

-c — Clear

Format { <JOBID> | all }

Default ---

Description Makes the MOM unaware of the job's existence. It does
not clean up any processes associated with the job.

Example momctl - node1 -c 15406

-C — Cycle

Format ---

Default ---

Description Cycle pbs_mom(s)

Example momctl - node1 -C

Cycle pbs_mom on node1.

TORQUE Resource Manager

-d — Diagnose

Format { <INTEGER> | <JOBID> }

Default 0

Description Diagnose MOM(s)
(For more details, see Diagnose detail on page 2343 below.)

Example momctl - node1 -d 2

Print level 2 and lower diagnose information for the MOM on node1.

-f — Host File

Format <FILE>

Default ---

Description A file containing only comma or whitespace (space, tab, or new line) delimited hostnames

Example momctl -f hosts.txt -d

Print diagnose information for the MOMs running on the hosts specified in hosts.txt.

-h — Host List

Format <HOST>[,<HOST>]...

Default localhost

Description A comma separated list of hosts

Example momctl -h node1,node2,node3 -d

Print diagnose information for the MOMs running on node1, node2, and node3.

-p — Port

Format <PORT_NUMBER>

TORQUE Resource Manager

2340 Appendices

Appendices 2341

-p — Port

Default TORQUE's default port number

Description The port number for the specified MOM(s)

Example momctl -p 5455 -h node1 -d

Request diagnose information over port 5455 on node1.

-q — Query

Format <ATTRIBUTE>

Default ---

Description Query <ATTRIBUTE> on specified MOM, where <ATTRIBUTE> is a property listed by pbsnodes -a
(see Query attributes on page 2342 for a list of attributes)

Example momctl -q physmem

Print the amount of physmem on localhost.

-r — Reconfigure

Format { <FILE> | LOCAL:<FILE> }

Default ---

Description Reconfigure MOM(s) with remote or local config file, <FILE>. This does not work if $remote_recon-
fig is not set to true when the MOM is started.

Example momctl -r /home/user1/new.config -h node1

Reconfigure MOM on node1 with /home/user1/new.cofig on node1.

-s — Shutdown

Format

Default ---

TORQUE Resource Manager

-s — Shutdown

Description Shutdown pbs_mom

Example momctl -s

Terminates pbs_mom process on localhost.

Query attributes

Attribute Description

arch node hardware architecture

availmem available RAM

loadave 1 minute load average

ncpus number of CPUs available on the system

netload total number of bytes transferred over all network interfaces

nsessions number of sessions active

nusers number of users active

physmem configured RAM

sessions list of active sessions

totmem configured RAM plus configured swap

TORQUE Resource Manager

2342 Appendices

Appendices 2343

Diagnose detail

Level Description

0 Display the following information:
l Local hostname
l Expected server hostname
l Execution version
l MOM home directory
l MOM config file version (if specified)
l Duration MOM has been executing
l Duration since last request from pbs_server daemon
l Duration since last request to pbs_server daemon
l RM failure messages (if any)
l Log verbosity level
l Local job list

1 All information for level 0 plus the following:
l Interval between updates sent to server
l Number of initialization messages sent to pbs_server
daemon

l Number of initialization messages received from pbs_server
daemon

l Prolog/epilog alarm time
l List of trusted clients

2 All information from level 1 plus the following:
l PID
l Event alarm status

3 All information from level 2 plus the following:
l syslog enabled

TORQUE Resource Manager

Example 4-27: MOM diagnostics

momctl -d 1

Host: nsrc/nsrc.fllcl.com Server: 10.10.10.113 Version: torque_1.1.0p4
HomeDirectory: /usr/spool/PBS/mom_priv
ConfigVersion: 147
MOM active: 7390 seconds
Last Msg From Server: 7389 seconds (CLUSTER_ADDRS)
Server Update Interval: 20 seconds
Server Update Interval: 20 seconds
Init Msgs Received: 0 hellos/1 cluster-addrs
Init Msgs Sent: 1 hellos
LOGLEVEL: 0 (use SIGUSR1/SIGUSR2 to adjust)
Prolog Alarm Time: 300 seconds
Trusted Client List: 12.14.213.113,127.0.0.1
JobList: NONE

diagnostics complete

Example 4-28: System shutdown

> momctl -s -f /opt/clusterhostfile

shutdown request successful on node001
shutdown request successful on node002
shutdown request successful on node003
shutdown request successful on node004
shutdown request successful on node005
shutdown request successful on node006

pbs_mom
Start a pbs batch execution mini-server.

Synopsis
pbs_mom [-a alarm] [-A alias] [-C chkdirectory] [-c config] [-d directory] [-h
hostname]
[-L logfile] [-M MOMport] [-R RPPport] [-p|-r] [-P purge] [-w] [-x]

Description
The pbs_mom command is located within the TORQUE_HOME directory and starts the operation of a
batch Machine Oriented Mini-server (MOM) on the execution host. To ensure that the pbs_mom command
is not runnable by the general user community, the server will only execute if its real and effective uid is
zero.

The first function of pbs_mom is to place jobs into execution as directed by the server, establish
resource usage limits, monitor the job's usage, and notify the server when the job completes. If they
exist, pbs_mom will execute a prologue script before executing a job and an epilogue script after
executing the job.

The second function of pbs_mom is to respond to resource monitor requests. This was done by a
separate process in previous versions of PBS but has now been combined into one process. It provides
information about the status of running jobs, memory available, etc.

TORQUE Resource Manager

2344 Appendices

Appendices 2345

The last function of pbs_mom is to respond to task manager requests. This involves communicating with
running tasks over a TCP socket as well as communicating with other MOMs within a job (a.k.a. a
"sisterhood").

pbs_mom will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the mom_logs directory below the home directory of the server. If the log file cannot be
opened, the diagnostic message is written to the system console.

Options

Flag Name Description

-a alarm Used to specify the alarm timeout in seconds for computing a resource. Every time a
resource request is processed, an alarm is set for the given amount of time. If the request
has not completed before the given time, an alarm signal is generated. The default is 5
seconds.

-A alias Used to specify this multimom's alias name. The alias name needs to be the same name
used in the mom.hierarchy file. It is only needed when running multiple MOMs on the
same machine. For more information, see TORQUE Multi-MOM on page 2231.

-C chkdirectory Specifies The path of the directory used to hold checkpoint files. (Currently this is only
valid on Cray systems.) The default directory is TORQUE_HOME/spool/checkpoint
(see the -d option). The directory specified with the -C option must be owned by root
and accessible (rwx) only by root to protect the security of the checkpoint files.

-c config Specifies an alternative configuration file, see description below. If this is a relative file
name it will be relative to TORQUE_HOME/mom_priv, (see the -d option). If the specified
file cannot be opened, pbs_mom will abort. If the -C option is not supplied, pbs_mom will
attempt to open the default configuration file "config" in TORQUE_HOME/mom_priv. If
this file is not present, pbs_mom will log the fact and continue.

-d directory Specifies the path of the directory which is the home of the server's working files,
TORQUE_HOME. This option is typically used along with -M when debugging MOM. The
default directory is given by $PBS_SERVER_HOME which is typically /usr/spool/PBS.

-h hostname Set MOM's hostname. This can be useful on multi-homed networks.

-L logfile Specify an absolute path name for use as the log file. If not specified, MOM will open a
file named for the current date in the TORQUE_HOME/mom_logs directory (see the -d
option).

-M port Specifies the port number on which the mini-server (MOM) will listen for batch requests.

TORQUE Resource Manager

Flag Name Description

-p n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
On any restart of MOM, the new mini-server will not be the parent of any running jobs,
MOM has lost control of her offspring (not a new situation for a mother). With the -p
option, MOM will allow the jobs to continue to run and monitor them indirectly via
polling. This flag is redundant in that this is the default behavior when starting the
server. The -p option is mutually exclusive with the -R and -q options.

-P purge Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -P option, it is assumed that either the entire system has been restarted or the
MOM has been down so long that it can no longer guarantee that the pid of any running
process is the same as the recorded job process pid of a recovering job. Unlike the -p
option, no attempt is made to try and preserve or recover running jobs. All jobs are ter-
minated and removed from the queue.

-q n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -q option, MOM will allow the processes belonging to jobs to continue to run,
but will not attempt to monitor them. The -q option is mutually exclusive with the -p and
-R options.

-R port Specifies the port number on which the mini-server (MOM) will listen for resource mon-
itor requests, task manager requests and inter-MOM messages. Both a UDP and a TCP
port of this number will be used.

-r n/a Specifies the impact on jobs which were in execution when the mini-server shut down.
With the -r option, MOM will kill any processes belonging to jobs, mark the jobs as
terminated, and notify the batch server which owns the job. The -r option is mutually
exclusive with the -p and -q options.
Normally the mini-server is started from the system boot file without the -p or the -r
option. The mini-server will make no attempt to signal the former session of any job
which may have been running when the mini-server terminated. It is assumed that on
reboot, all processes have been killed. If the -r option is used following a reboot, process
IDs (pids) may be reused and MOM may kill a process that is not a batch session.

-w wait_for_
server

When started with -w, pbs_moms wait until they get their MOM hierarchy file from pbs_
server to send their first update, or until 10 minutes pass. This reduces network traffic
on startup and can bring up clusters faster.

-x n/a Disables the check for privileged port resource monitor connections. This is used mainly
for testing since the privileged port is the only mechanism used to prevent any ordinary
user from connecting.

TORQUE Resource Manager

2346 Appendices

Appendices 2347

Configuration file
The configuration file, located at mom_priv/config by default, can be specified on the command line at
program start with the -C flag. The use of this file is to provide several types of run time information to
pbs_mom: static resource names and values, external resources provided by a program to be run on
request via a shell escape, and values to pass to internal set up functions at initialization (and re-
initialization).

See the Parameters on page 2435 page for a full list of pbs_mom parameters.

Each item type is on a single line with the component parts separated by white space. If the line starts
with a hash mark (pound sign, #), the line is considered to be a comment and is skipped.

Static Resources

For static resource names and values, the configuration file contains a list of resource names/values
pairs, one pair per line and separated by white space. An example of static resource names and values
could be the number of tape drives of different types and could be specified by:

l tape3480 4

l tape3420 2

l tapedat 1

l tape8mm 1

Shell Commands

If the first character of the value is an exclamation mark (!), the entire rest of the line is saved to be
executed through the services of the system(3) standard library routine.

The shell escape provides a means for the resource monitor to yield arbitrary information to the
scheduler. Parameter substitution is done such that the value of any qualifier sent with the query, as
explained below, replaces a token with a percent sign (%) followed by the name of the qualifier. For
example, here is a configuration file line which gives a resource name of "escape":

escape !echo %xxx %yyy

If a query for "escape" is sent with no qualifiers, the command executed would be echo %xxx %yyy.

If one qualifier is sent, escape[xxx=hi there], the command executed would be echo hi there
%yyy.

If two qualifiers are sent, escape[xxx=hi][yyy=there], the command executed would be echo hi
there.

If a qualifier is sent with no matching token in the command line, escape[zzz=snafu], an error is
reported.

Resources
Resource Manager queries can be made with momctl -q options to retrieve and set pbs_mom options.
Any configured static resource may be retrieved with a request of the same name. These are resource
requests not otherwise documented in the PBS ERS.

TORQUE Resource Manager

Request Description

cycle Forces an immediate MOM cycle.

status_update_time Retrieve or set the $status_update_time parameter.

check_poll_time Retrieve or set the $check_poll_time parameter.

configversion Retrieve the config version.

jobstartblocktime Retrieve or set the $jobstartblocktime parameter.

enablemomrestart Retrieve or set the $enablemomrestart parameter.

loglevel Retrieve or set the $loglevel parameter.

down_on_error Retrieve or set the EXPERIMENTAL $down_on_error parameter.

diag0 - diag4 Retrieves varied diagnostic information.

rcpcmd Retrieve or set the $rcpcmd parameter.

version Retrieves the pbs_mom version.

Health check
The health check script is executed directly by the pbs_mom daemon under the root user id. It must be
accessible from the compute node and may be a script or compiled executable program. It may make any
needed system calls and execute any combination of system utilities but should not execute resource
manager client commands. Also, the pbs_mom daemon blocks until the health check is completed and
does not possess a built-in timeout. Consequently, it is advisable to keep the launch script execution time
short and verify that the script will not block even under failure conditions.

If the script detects a failure, it should return the keyword "Error" to stdout followed by an error
message. The message (up to 256 characters) immediately following the Error string will be assigned to
the node attribute message of the associated node.

If the script detects a failure when run from "jobstart", then the job will be rejected. You can use this
behavior with an advanced scheduler, such as Moab Workload Manager, to cause the job to be routed to
another node. TORQUE currently ignores Error messages by default, but you can configure an advanced
scheduler to react appropriately.

If the experimental $down_on_error MOM setting is enabled, the MOM will set itself to state down and
report to pbs_server. Additionally, the experimental $down_on_error server attribute can be
enabled which has the same effect but moves the decision to pbs_server. It is redundant to have MOM's

TORQUE Resource Manager

2348 Appendices

Appendices 2349

$down_on_error and pbs_servers down_on_error features enabled. See "down_on_error" in pbs_
server_attributes(7B).

Files

File Description

$PBS_SERVER_HOME/server_name Contains the hostname running pbs_server

$PBS_SERVER_HOME/mom_priv The default directory for configuration files, typically
(/usr/spool/pbs)/mom_priv

$PBS_SERVER_HOME/mom_logs Directory for log files recorded by the server

$PBS_SERVER_HOME/mom_priv/-
prologue

The administrative script to be run before job execution

$PBS_SERVER_HOME/mom_priv/e-
pilogue

The administrative script to be run after job execution

Signal handling
pbs_mom handles the following signals:

Signal Description

SIGHUP Causes pbs_mom to re-read its configuration file, close and reopen the log file, and rein-
itialize resource structures.

SIGALRM Results in a log file entry. The signal is used to limit the time taken by certain children
processes, such as the prologue and epilogue.

SIGINT and SIGTERM Results in pbs_mom exiting without terminating any running jobs. This is the action for
the following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM, and SIGSHUTDN.

SIGUSR1, SIGUSR2 Causes the MOM to increase and decrease logging levels, respectively.

SIGPIPE, SIGINFO Are ignored.

SIGBUS, SIGFPE,
SIGILL, SIGTRAP, and
SIGSYS

Cause a core dump if the PBSCOREDUMP environmental variable is defined.

All other signals have their default behavior installed.

TORQUE Resource Manager

Exit status
If the pbs_mom command fails to begin operation, the server exits with a value greater than zero.

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_scheduler_basl(8B)
l pbs_scheduler_tcl(8B)
l PBS External Reference Specification
l PBS Administrators Guide

pbs_server
(PBS Server) pbs batch system manager

Synopsis
pbs_server [-a active] [-c] [-d config_path] [-f force overwrite] [-p port] [-
A acctfile]
[-l location] [-L logfile] [-S scheduler_port]
[-H hostname] [-t type] [--ha]
[-n don't send hierarchy] [--about] [-v] [--version]

Description
The pbs_server command starts the operation of a batch server on the local host. Typically, this
command will be in a local boot file such as /etc/rc.local. If the batch server is already in execution,
pbs_server will exit with an error. To ensure that the pbs_server command is not runnable by the
general user community, the server will only execute if its real and effective uid is zero.

The server will record a diagnostic message in a log file for any error occurrence. The log files are
maintained in the server_logs directory below the home directory of the server. If the log file cannot be
opened, the diagnostic message is written to the system console.

As of TORQUE 4.0, the pbs_server is multi-threaded which leads to quicker response to client commands,
is more robust, and allows for higher job throughput.

TORQUE Resource Manager

2350 Appendices

Appendices 2351

Options

Option Name Description

-A acctfile Specifies an absolute path name of the file to use as the accounting file. If not specified,
the file name will be the current date in the PBS_HOME/server_priv/accounting
directory.

-a active Specifies if scheduling is active or not. This sets the server attribute scheduling. If the
option argument is "true" ("True", "t", "T", or "1"), the server is active and the PBS job
scheduler will be called. If the argument is "false" ("False", "f", "F", or "0), the server is
idle, and the scheduler will not be called and no jobs will be run. If this option is not spe-
cified, the server will retain the prior value of the scheduling attribute.

-c wait_for_
moms

This directs pbs_server to send the MOM hierarchy only to MOMs that request it for the
first 10 minutes. After 10 minutes, it attempts to send the MOM hierarchy to MOMs
that haven't requested it already. This greatly reduces traffic on start up.

-d config_dir-
ectory

Specifies the path of the directory which is home to the server's configuration files,
PBS_HOME. A host may have multiple servers. Each server must have a different con-
figuration directory. The default configuration directory is given by the symbol $PBS_
SERVER_HOME which is typically var/spool/torque.

-f force over-
write

Forces an overwrite of the server database. This can be useful to bypass the yes/no
prompt when running something like pbs_server -t create and can ease installation
and configuration of TORQUE via scripts.

-H hostname Causes the server to start under a different hostname as obtained from gethostname
(2). Useful for servers with multiple network interfaces to support connections from cli-
ents over an interface that has a hostname assigned that differs from the one that is
returned by gethost name(2).

--ha high_avail-
ability

Starts server in high availability mode (for details, see Server High Availability on
page 2291).

-L logfile Specifies an absolute path name of the file to use as the log file. If not specified, the file
will be the current date in the PBS_HOME/server_logs directory (see the -d option).

-l location Specifies where to find Moab when it does not reside on the same host as TORQUE.

-n no send This directs pbs_server to not send the hierarchy to all the MOMs on startup. Instead,
the hierarchy is only sent if a MOM requests it. This flag works only in conjunction with
the local MOM hierarchy feature.

TORQUE Resource Manager

Option Name Description

-p port Specifies the port number on which the server will listen for batch requests. If multiple
servers are running on a single host, each must have its own unique port number. This
option is for use in testing with multiple batch systems on a single host.

-S scheduler_
port

Specifies the port number to which the server should connect when contacting the
scheduler. The argument scheduler_conn is of the same syntax as under the -M option.

-t type Specifies the impact on jobs which were in execution, running, when the server shut
down. If the running job is not rerunnable or restartable from a checkpoint image, the
job is aborted. If the job is rerunnable or restartable, then the actions described below
are taken. When the type argument is:

l hot – All jobs are requeued except non-rerunnable jobs that were executing.
Any rerunnable job which was executing when the server went down will be
run immediately. This returns the server to the same state as when it went
down. After those jobs are restarted, then normal scheduling takes place for all
remaining queued jobs.
If a job cannot be restarted immediately because of a missing resource, such as
a node being down, the server will attempt to restart it periodically for up to 5
minutes. After that period, the server will revert to a normal state, as if warm
started, and will no longer attempt to restart any remaining jobs which were
running prior to the shutdown.

l warm – All rerunnable jobs which were running when the server went down
are requeued. All other jobs are maintained. New selections are made for which
jobs are placed into execution. Warm is the default if -t is not specified.

l cold – All jobs are deleted. Positive confirmation is required before this direction
is accepted.

l create – The server will discard any existing configuration files, queues and jobs,
and initialize configuration files to the default values. The server is idled.

Files

File Description

TORQUE_HOME/server_
priv

Default directory for configuration files, typically /usr/spool/pbs/server_
priv

TORQUE_HOME/server_
logs

Directory for log files recorded by the server

Signal handling
On receipt of the following signals, the server performs the defined action:

TORQUE Resource Manager

2352 Appendices

Appendices 2353

Action Description

SIGHUP The current server log and accounting log are closed and reopened. This allows for the prior log to
be renamed and a new log started from the time of the signal.

SIGINT Causes an orderly shutdown of pbs_server.

SIGUSR1,
SIGURS2

Causes server to increase and decrease logging levels, respectively.

SIGTERM Causes an orderly shutdown of pbs_server.

SIGSHUTDN On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly shutdown of the
server.

SIGPIPE This signal is ignored.

All other signals have their default behavior installed.

Exit status
If the server command fails to begin batch operation, the server exits with a value greater than zero.

Related topics

l pbs_mom(8B)
l pbsnodes(8B)
l qmgr(1B)
l qrun(8B)
l qsub(1B)
l qterm(8B)

Non-Adaptive Computing topics

l pbs_connect(3B)
l pbs_sched_basl(8B)
l pbs_sched_tcl(8B)
l qdisable(8B)
l qenable(8B)
l qstart(8B)
l qstop(8B)
l PBS External Reference Specification

pbs_track
Starts a new process and informs pbs_mom to start tracking it.

TORQUE Resource Manager

Synopsis
pbs_track -j <JOBID> [-b] <executable> [args]

Description
The pbs_track command tells a pbs_mom daemon to monitor the lifecycle and resource usage of the
process that it launches using exec(). The pbs_mom is told about this new process via the Task Manager
API, using tm_adopt(). The process must also be associated with a job that already exists on the pbs_
mom.

By default, pbs_track will send its PID to TORQUE via tm_adopt(). It will then perform an exec(), causing
<executable> to run with the supplied arguments. pbs_track will not return until the launched process
has completed because it becomes the launched process.

This command can be considered related to the pbsdsh command which uses the tm_spawn() API call.
The pbsdsh command asks a pbs_mom to launch and track a new process on behalf of a job. When it is
not desirable or possible for the pbs_mom to spawn processes for a job, pbs_track can be used to allow
an external entity to launch a process and include it as part of a job.

This command improves integration with TORQUE and SGI's MPT MPI implementation.

Options

Option Description

-j
<JOBID>

Job ID the new process should be associated with.

-b Instead of having pbs_track send its PID to TORQUE, it will fork() first, send the child PID to TORQUE,
and then execute from the forked child. This essentially "backgrounds" pbs_track so that it will return
after the new process is launched.

Operands
The pbs_track command accepts a path to a program/executable (<executable>) and, optionally, one or
more arguments to pass to that program.

Exit status
Because the pbs_track command becomes a new process (if used without -b), its exit status will match
that of the new process. If the -b option is used, the exit status will be zero if no errors occurred before
launching the new process.

If pbs_track fails, whether due to a bad argument or other error, the exit status will be set to a non-zero
value.

TORQUE Resource Manager

2354 Appendices

Appendices 2355

Related topics

l pbsdsh(1B)

Non-Adaptive Computing topics

l tm_spawn(3B)

pbsdsh
The pbsdsh command distributes tasks to nodes under pbs.

Some limitations exist in the way that pbsdsh can be used. Please note the following situations are
not currently supported:

l Running multiple instances of pbsdsh concurrently within a single job.

l Launching a large number of processes in succession (causes pbdsdsh to hang).

Synopsis
pbsdsh [-c copies] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-n node] [-o] [-s] [-u] [-v] program [args]
pbsdsh [-h nodename] [-o] [-v] program [args]

Description
Executes (spawns) a normal Unix program on one or more nodes under control of the Portable Batch
System, PBS. Pbsdsh uses the Task Manager API (see tm_spawn(3)) to distribute the program on the
allocated nodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all nodes allocated to the
PBS job. The spawns take place concurrently – all execute at (about) the same time.

Users will find the PBS_TASKNUM, PBS_NODENUM, and the PBS_VNODENUM environmental variables
useful. They contain the TM task id, the node identifier, and the cpu (virtual node) identifier.

Note that under particularly high workloads, the pbsdsh command may not function properly.

Options

Option Name Description

-c copies The program is spawned on the first Copies nodes allocated. This option is mutually
exclusive with -n.

-h hostname The program is spawned on the node specified.

TORQUE Resource Manager

Option Name Description

-n node The program is spawned on one node which is the n-th node allocated. This option is
mutually exclusive with -c.

-o --- Directs tasks stdout and stderr to the corresponding streams of pbsdsh. Otherwise, tasks
stdout and/or stderr go to the job.

-s --- If this option is given, the program is run in turn on each node, one after the other.

-u --- The program is run once on each node (unique). This ignores the number of allocated
processors on a given node.

-v --- Verbose output about error conditions and task exit status is produced.

Operands
The first operand, program, is the program to execute.

Additional operands are passed as arguments to the program.

Standard error
The pbsdsh command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the command, the exit status will be a value
of zero.

If the pbsdsh command fails to process any operand, or fails to contact the MOM daemon on the localhost
the command exits with a value greater than zero.

Related topics

l qsub(1B)

Non-Adaptive Computing topics

l tm_spawn(3B)

pbsnodes
PBS node manipulation.

TORQUE Resource Manager

2356 Appendices

Appendices 2357

Synopsis
pbsnodes [-{a|x}] [-q] [-s server] [node|:property]
pbsnodes -l [-q] [-s server] [state] [nodename|:property ...]
pbsnodes -m <running|standby|suspend|hibernate|shutdown> <host list>
pbsnodes [-{c|d|o|r}] [-q] [-s server] [-n -l] [-N "note"] [node|:property]

Description
The pbsnodes command is used to mark nodes down, free or offline. It can also be used to list nodes and
their state. Node information is obtained by sending a request to the PBS job server. Sets of nodes can
be operated on at once by specifying a node property prefixed by a colon. (For more information, see
Node states.)

Nodes do not exist in a single state, but actually have a set of states. For example, a node can be
simultaneously "busy" and "offline". The "free" state is the absence of all other states and so is never
combined with other states.

In order to execute pbsnodes with other than the -a or -l options, the user must have PBS Manager or
Operator privilege.

Options

O-
p-
t-
i-
o-
n

Description

-
a

All attributes of a node or all nodes are listed. This is the default if no flag is given.

-
x

Same as -a, but the output has an XML-like format.

-
c

Clear OFFLINE from listed nodes.

-
d

Print MOM diagnosis on the listed nodes. Not yet implemented. Usemomctl instead.

TORQUE Resource Manager

O-
p-
t-
i-
o-
n

Description

-
m

Set the hosts in the specified host list to the requested power state. If a compute node does not support the
energy-saving power state you request, the command returns an error and leaves the state unchanged.
In order for the command to wake a node from a low-power state, Wake-on-LAN (WOL) must be enabled for the
node.

In order for the command to wake a node from a low-power state, Wake-on-LAN must be enabled for
the node and it must support the gWOL packet. For more information, see Changing Node Power

States on page 2270.

The allowable power states are:
l Running: The node is up and running.
l Standby: CPU is halted but still powered. Moderate power savings but low latency entering and leaving
this state.

l Suspend: Also known as Suspend-to-RAM. Machine state is saved to RAM. RAM is put into self-refresh
mode. Much more significant power savings with longer latency entering and leaving state.

l Hibernate: Also known as Suspend-to-disk. Machine state is saved to disk and then powered down.
Significant power savings but very long latency entering and leaving state.

l Shutdown: Equivalent to shutdown now command as root.
The host list is a space-delimited list of node host names.

TORQUE Resource Manager

2358 Appendices

Appendices 2359

O-
p-
t-
i-
o-
n

Description

pbsnodes -m shutdown node01 node02 node03 node04

With this command, pbs_server tells the pbs_mom associated with nodes01-04 to shut down the node.

The pbsnodes output shows the current power state of nodes. In this example, note that pbsnodes returns the
MAC addresses of the nodes.

pbsnodes
nuc1

state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765676,macaddr=0b:25:22:92:7b:26

,cpuclock=Fixed,varattr=,jobs=,state=free,netload=1242652020,gres=,loadave=0.16,ncpus=6,physmem
=16435852kb,availmem=24709056kb,totmem=33211016kb,idletime=4636,nusers=3,nsessions=12,sessions=
2758 998 1469 2708 2797 2845 2881 2946 4087 4154 4373 6385,uname=Linux bdaw 3.2.0-60-generic
#91-Ubuntu SMP Wed Feb 19 03:54:44 UTC 2014 x86_64,opsys=linux

note = This is a node note
mom_service_port = 15002
mom_manager_port = 15003

nuc2
state = free
power_state = Running
np = 4
ntype = cluster
status = rectime=1395765678,macaddr=2c:a8:6b:f4:b9:35

,cpuclock=OnDemand:800MHz,varattr=,jobs=,state=free,netload=12082362,gres=,loadave=0.00,ncpus=4
,physmem=16300576kb,availmem=17561808kb,totmem=17861144kb,idletime=67538,nusers=2,nsessions=7,s
essions=2189 2193 2194 2220 2222 2248 2351,uname=Linux nuc2 2.6.32-431.el6.x86_64 #1 SMP Fri
Nov 22 03:15:09 UTC 2013 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003

-
o

Add the OFFLINE state. This is different from being marked DOWN. OFFLINE prevents new jobs from running on
the specified nodes. This gives the administrator a tool to hold a node out of service without changing anything
else. The OFFLINE state will never be set or cleared automatically by pbs_server; it is purely for the manager or
operator.

-
p

Purge the node record from pbs_server. Not yet implemented.

-
r

Reset the listed nodes by clearing OFFLINE and adding DOWN state. pbs_server will ping the node and, if they
communicate correctly, free the node.

TORQUE Resource Manager

O-
p-
t-
i-
o-
n

Description

-
l

List node names and their state. If no state is specified, only nodes in the DOWN, OFFLINE, or UNKNOWN states
are listed. Specifying a state string acts as an output filter. Valid state strings are "active", "all", "busy", "down",
"free", "job-exclusive", "job-sharing", "offline", "reserve", "state-unknown", "time-shared", and "up".

l Using all displays all nodes and their attributes.
l Using active displays all nodes which are job-exclusive, job-sharing, or busy.
l Using up displays all nodes in an "up state". Up states include job-exclusive, job-sharing, reserve, free,
busy and time-shared.

l All other strings display the nodes which are currently in the state indicated by the string.

-
N

Specify a "note" attribute. This allows an administrator to add an arbitrary annotation to the listed nodes. To
clear a note, use -N "" or -N n.

-
n

Show the "note" attribute for nodes that are DOWN, OFFLINE, or UNKNOWN. This option requires -l.

-
q

Suppress all error messages.

-
s

Specify the PBS server's hostname or IP address.

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l PBS External Reference Specification

qalter
Alter batch job.

Synopsis
qalter [-a date_time][-A account_string][-c interval][-e path_name]
[-h hold_list][-j join_list][-k keep_list][-l resource_list]
[-m mail_options][-M mail_list][-n][-N name][-o path_name]
[-p priority][-r y|n][-S path_name_list][-u user_list]
[-v variable_list][-W additional_attributes]

TORQUE Resource Manager

2360 Appendices

Appendices 2361

[-t array_range]
job_identifier ...

Description
The qalter command modifies the attributes of the job or jobs specified by job_identifier on the
command line. Only those attributes listed as options on the command will be modified. If any of the
specified attributes cannot be modified for a job for any reason, none of that job's attributes will be
modified.

The qalter command accomplishes the modifications by sending a Modify Job batch request to the batch
server which owns each job.

Options

Option Name Description

-a date_time Replaces the time at which the job becomes eligible for execution. The date_time
argument syntax is:
[[[[CC]YY]MM]DD]hhmm[.SS]

If the month, MM, is not specified, it will default to the current month if the specified
day DD, is in the future. Otherwise, the month will be set to next month. Likewise, if the
day, DD, is not specified, it will default to today if the time hhmm is in the future.
Otherwise, the day will be set to tomorrow.
This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-A account_
string

Replaces the account string associated with the job. This attribute cannot be altered
once the job has begun execution.

TORQUE Resource Manager

Option Name Description

-c checkpoint_
interval

Replaces the interval at which the job will be checkpointed. If the job executes upon a
host which does not support checkpointing, this option will be ignored.
The interval argument is specified as:

l n – No checkpointing is to be performed.
l s – Checkpointing is to be performed only when the server executing the job is
shutdown.

l c – Checkpointing is to be performed at the default minimum cpu time for the
queue from which the job is executing.

l c=minutes – Checkpointing is performed at intervals of the specified amount of
time in minutes. Minutes are the number of minutes of CPU time used, not
necessarily clock time.

This value must be greater than zero. If the number is less than the default
checkpoint time, the default time will be used.

This attribute can be altered once the job has begun execution, but the new value
does not take effect unless the job is rerun.

-e path_name Replaces the path to be used for the standard error stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name
is the path name on that host in the syntax recognized by POSIX 1003.1. The
argument will be interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the qalter
command will expand the path name relative to the current working directory
of the command. The command will supply the name of the host upon which it
is executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then the
qalter command will not expand the path name. The execution server will
expand it relative to the home directory of the user on the system specified by
hostname.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

TORQUE Resource Manager

2362 Appendices

Appendices 2363

Option Name Description

-h hold_list Updates the types of holds on the job. The hold_list argument is a string of one or more
of the following characters:

l u – Add the USER type hold.
l s – Add the SYSTEM type hold if the user has the appropriate level of privilege.
(Typically reserved to the batch administrator.)

l o – Add the OTHER (or OPERATOR) type hold if the user has the appropriate
level of privilege. (Typically reserved to the batch administrator and batch
operator.)

l n – Set to none and clear the hold types which could be applied with the user's
level of privilege. Repetition of characters is permitted, but "n" may not appear
in the same option argument with the other three characters.

This attribute can be altered once the job has begun execution, but the hold will not
take effect unless the job is rerun.

-j join Declares which standard streams of the job will be merged together. The join
argument value may be the characters "oe" and "eo", or the single character "n".
An argument value of oe directs that the standard output and standard error streams
of the job will be merged, intermixed, and returned as the standard output. An
argument value of eo directs that the standard output and standard error streams of
the job will be merged, intermixed, and returned as the standard error.
A value of n directs that the two streams will be two separate files. This attribute can
be altered once the job has begun execution, but it will not take effect unless the job is
rerun.

If using either the -e or the -o option and the -j eo|oe option, the -j option
takes precedence and all standard error and output messages go to the chosen
output file.

TORQUE Resource Manager

Option Name Description

-k keep Defines which if either of standard output or standard error of the job will be retained
on the execution host. If set for a stream, this option overrides the path name for that
stream.
The argument is either the single letter "e", "o", or "n", or one or more of the letters "e"
and "o" combined in either order.

l n – No streams are to be retained.
l e – The standard error stream is to retained on the execution host. The stream
will be placed in the home directory of the user under whose user id the job
executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l o – The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the
sequence number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.

This attribute cannot be altered once the job has begun execution.

-l resource_
list

Modifies the list of resources that are required by the job. The resource_list argument
is in the following syntax:
resource_name[=[value]][,resource_name[=[value]],...]

For the complete list of resources that can be modified, see Requesting Resources on
page 2237.
If a requested modification to a resource would exceed the resource limits for jobs in
the current queue, the server will reject the request.
If the job is running, only certain resources can be altered. Which resources can be
altered in the run state is system dependent. A user may only lower the limit for those
resources.

-m mail_
options

Replaces the set of conditions under which the execution server will send a mail
message about the job. The mail_options argument is a string which consists of the
single character "n", or one or more of the characters "a", "b", and "e".
If the character "n" is specified, no mail will be sent.
For the letters "a", "b", and "e":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job ends.

TORQUE Resource Manager

2364 Appendices

Appendices 2365

Option Name Description

-M user_list Replaces the list of users to whom mail is sent by the execution server when it sends
mail about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

-n node-
exclusive

Sets or unsets exclusive node allocation on a job. Use the y and n options to enable or
disable the feature. This affects only cpusets and compatible schedulers.

> qalter ... -n y #enables exclusive node allocation on a job
> qalter ... -n n #disables exclusive node allocation on a job

-N name Renames the job. The name specified may be up to and including 15 characters in
length. It must consist of printable, nonwhite space characters with the first character
alphabetic.

-o path Replaces the path to be used for the standard output stream of the batch job. The
path argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned and path_name
is the path name on that host in the syntax recognized by POSIX. The argument will be
interpreted as follows:

l path_name – Where path_name is not an absolute path name, then the qalter
command will expand the path name relative to the current working directory
of the command. The command will supply the name of the host upon which it
is executing for the hostname component.

l hostname:path_name – Where path_name is not an absolute path name, then the
qalter command will not expand the path name. The execution server will
expand it relative to the home directory of the user on the system specified by
hostname.

This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-p priority Replaces the priority of the job. The priority argument must be an integer between -
1024 and +1023 inclusive.
This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-r [y/n] Declares whether the job is rerunable (see the qrerun command). The option
argument c is a single character. PBS recognizes the following characters: y and n. If
the argument is "y", the job is marked rerunable.
If the argument is "n", the job is marked as not rerunable.

TORQUE Resource Manager

Option Name Description

-S path Declares the shell that interprets the job script.
The option argument path_list is in the form:
path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the host
name that matched the name of the execution host. If no matching host is found, then
the path specified (without a host) will be selected.
If the -S option is not specified, the option argument is the null string, or no entry
from the path_list is selected, the execution will use the login shell of the user on the
execution host.
This attribute can be altered once the job has begun execution, but it will not take
effect unless the job is rerun.

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t
1,10,50-100

If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.
An optional "slot limit" can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be the
last thing specified in the array_request and is delimited from the array by a percent
sign (%).

qalter weatherSimulationArray[] -t %20

Here, the array weatherSimulationArray[] is configured to allow a maximum of 20
concurrently running jobs.
Slot limits can be applied at job submit time with qsub, or can be set in a global server
parameter policy with max_slot_limit.

-u user_list Replaces the user name under which the job is to run on the execution system.
The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given for per specified host. Only one of the user
specifications may be supplied without the corresponding host specification. That user
name will be used for execution on any host not named in the argument list.
This attribute cannot be altered once the job has begun execution.

-W additional_
attributes

The -W option allows for the modification of additional job attributes.
Note if white space occurs anywhere within the option argument string or the equal
sign, "=", occurs within an attribute_value string, then the string must be enclosed with
either single or double quote marks.
To see the attributes PBS currently supports within the -W option, see Table 4-4: -W
additional_attributes on page 2367.

TORQUE Resource Manager

2366 Appendices

Appendices 2367

Table 4-4: -W additional_attributes

TORQUE Resource Manager

Attribute Description

depend=dependency_
list

Redefines the dependencies between this and other jobs. The dependency_list is in the
form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id according to type. If argument is
a count, it must be greater than 0. If it is a job id and is not fully specified in the form:
seq_number.server.name, it will be expanded according to the default server rules.
If argument is null (the preceding colon need not be specified), the dependency of the
corresponding type is cleared (unset).

l synccount:count – This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

l syncwith:jobid – This job is an additional member of a set of jobs to be executed
at the same time. In the above and following dependency types, jobid is the job
identifier of the first job in the set.

l after:jobid [:jobid...] – This job may be scheduled for execution at any point after
jobs jobid have started execution.

l afterok:jobid [:jobid...] – This job may be scheduled for execution only after jobs
jobid have terminated with no errors. See the csh warning under "Extended
Description".

l afternotok:jobid [:jobid...] – This job may be scheduled for execution only after
jobs jobid have terminated with errors. See the csh warning under "Extended
Description".

l afterany:jobid [:jobid...] – This job may be scheduled for execution after jobs jobid
have terminated, with or without errors.

l on:count – This job may be scheduled for execution after count dependencies on
other jobs have been satisfied. This dependency is used in conjunction with any
of the 'before' dependencies shown below. If job A has on:2, it will wait for two
jobs with 'before' dependencies on job A to be fulfilled before running.

l before:jobid [:jobid...] – When this job has begun execution, then jobs jobid... may
begin.

l beforeok:jobid [:jobid...] – If this job terminates execution without errors, then jobs
jobid... may begin. See the csh warning under "Extended Description".

l beforenotok:jobid [:jobid...] – If this job terminates execution with errors, then jobs
jobid... may begin. See the csh warning under "Extended Description".

l beforeany:jobid [:jobid...] – When this job terminates execution, jobs jobid... may
begin.
If any of the before forms are used, the job referenced by jobid must have been
submitted with a dependency type of on.
If any of the before forms are used, the jobs referenced by jobid must have the
same owner as the job being altered. Otherwise, the dependency will not take
effect.

Error processing of the existence, state, or condition of the job specified to qalter is a
deferred service, i.e. the check is performed after the job is queued. If an error is
detected, the job will be deleted by the server. Mail will be sent to the job submitter
stating the error.

TORQUE Resource Manager

2368 Appendices

Appendices 2369

Attribute Description

group_list=g_list Alters the group name under which the job is to run on the execution system.
The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification. That group
name will used for execution on any host not named in the argument list.

stagein=file_list
stageout=file_list

Alters which files are staged (copied) in before job start or staged out after the job
completes execution. The file_list is in the form:
local_file@hostname:remote_file[,...]

The name local_file is the name on the system where the job executes. It may be an
absolute path or a path relative to the home directory of the user. The name remote_file
is the destination name on the host specified by hostname. The name may be absolute or
relative to the user's home directory on the destination host.

Operands
The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard error
Any error condition, either in processing the options or the operands, or any error received in reply to
the batch requests will result in an error message being written to standard error.

Exit status
Upon successful processing of all the operands presented to the qalter command, the exit status will be a
value of zero.

If the qalter command fails to process any operand, the command exits with a value greater than zero.

Copyright
Portions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition,
Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group
Base Specifications Issue 6, Copyright © 2001-2003 by the Institute of Electrical and Electronics
Engineers, Inc and The Open Group. In the event of any discrepancy between this version and the original
IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee
document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html.

TORQUE Resource Manager

http://www.opengroup.org/unix/online.html

Related topics

l qdel
l qhold
l qrls
l qsub

Non-Adaptive Computing topics

l Batch Environment Services
l qmove
l touch

qchkpt
Checkpoint pbs batch jobs.

Synopsis
qchkpt <JOBID>[<JOBID>] ...

Description
The qchkpt command requests that the PBS MOM generate a checkpoint file for a running job.

This is an extension to POSIX.2d.

The qchkpt command sends a Chkpt Job batch request to the server as described in the general section.

Options
None.

Operands
The qchkpt command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples
> qchkpt 3233 request a checkpoint for job 3233

Standard error
The qchkpt command will write a diagnostic message to standard error for each error occurrence.

TORQUE Resource Manager

2370 Appendices

Appendices 2371

Exit status
Upon successful processing of all the operands presented to the qchkpt command, the exit status will be
a value of zero.

If the qchkpt command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qhold(1B)
l qrls(1B)
l qalter(1B)
l qsub(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_holdjob(3B),
l pbs_rlsjob(3B)
l pbs_job_attributes(7B)
l pbs_resources_unicos8(7B)

qdel
(delete job)

Synopsis
qdel [{-a <asynchronous delete>|-m <message>|-p|-W <delay>|-t <array_range>}]
<JOBID>[<JOBID>]... | 'all' | 'ALL'

Description
The qdel command deletes jobs in the order in which their job identifiers are presented to the command.
A job is deleted by sending a Delete Job batch request to the batch server that owns the job. A job that
has been deleted is no longer subject to management by batch services.

A batch job may be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a SIGKILL signal. The
time delay between the two signals is an attribute of the execution queue from which the job was run
(set table by the administrator). This delay may be overridden by the -W option.

See the PBS ERS section 3.1.3.3, "Delete Job Request", for more information.

TORQUE Resource Manager

Options

Option Name Description

-a asynchronous
delete

Performs an asynchronous delete. The server responds to the user before con-
tacting the MOM. The option qdel -a all performs qdel all due to restrictions
from being single-threaded.

-W delay Specifies the wait delay between the sending of the SIGTERM and SIGKILL signals.
The argument is the length of time in seconds of the delay.

-p purge Forcibly purges the job from the server. This should only be used if a running job
will not exit because its allocated nodes are unreachable. The admin should make
every attempt at resolving the problem on the nodes. If a job's mother superior
recovers after purging the job, any epilogue scripts may still run. This option is only
available to a batch operator or the batch administrator.

-m message Specify a comment to be included in the email. The argument message specifies the
comment to send. This option is only available to a batch operator or the batch
administrator.

-t array_range The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list (examples: -t 1-100 or -t 1,10,50-
100).
If an array range isn't specified, the command tries to operate on the entire array.
The command acts on the array (or specified range of the array) just as it would on
an individual job.

Operands
The qdel command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

or

all

Examples
> qdel 1324
> qdel 1324-3 To delete one job of a job array
> qdel all To delete all jobs (Version 2.3.0 and later)

Standard error
The qdel command will write a diagnostic messages to standard error for each error occurrence.

TORQUE Resource Manager

2372 Appendices

Appendices 2373

Exit status
Upon successful processing of all the operands presented to the qdel command, the exit status will be a
value of zero.

If the qdel command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qsub(1B)
l qsig(1B)

Non-Adaptive Computing topics

l pbs_deljob(3B)

qgpumode
(GPU mode)

Synopsis
qgpumode -H host -g gpuid -m mode

Description
The qgpumode command specifies the mode for the GPU. This command triggers an immediate update of
the pbs_server.

For additional information about options for configuring GPUs, see NVIDIA GPUs on page 796.

Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

TORQUE Resource Manager

Option Description

-m Specifies the new mode for the GPU:
l 0 (Default/Shared): Default/shared compute mode. Multiple threads can use
cudaSetDevice() with this device.

l 1 (Exclusive Thread): Compute-exclusive-thread mode. Only one thread in one process is
able to use cudaSetDevice() with this device.

l 2 (Prohibited): Compute-prohibited mode. No threads can use cudaSetDevice() with this
device.

l 3 (Exclusive Process): Compute-exclusive-process mode. Many threads in one process are
able to use cudaSetDevice() with this device.

qgpumode -H node01 -g 0 -m 1

This puts the first GPU on node01 into mode 1 (exclusive)

qgpumode -H node01 -g 0 -m 0

This puts the first GPU on node01 into mode 0 (shared)

Related topics

l qgpureset on page 2374

qgpureset
(reset GPU)

Synopsis
qgpureset -H host -g gpuid -p -v

Description
The qgpureset command resets the GPU.

Options

Option Description

-H Specifies the host where the GPU is located.

-g Specifies the ID of the GPU. This varies depending on the version of the Nvidia driver used. For driver
260.x, it is 0, 1, and so on. For driver 270.x, it is the PCI bus address, i.e., 0:5:0.

TORQUE Resource Manager

2374 Appendices

Appendices 2375

Option Description

-p Specifies to reset the GPU's permanent ECC error count.

-v Specifies to reset the GPU's volatile ECC error count.

Related topics

l qgpumode on page 2373

qhold
(hold job)

Synopsis
qhold [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

Description
The qhold command requests that the server place one or more holds on a job. A job that has a hold is
not eligible for execution. There are three supported holds: USER, OTHER (also known as operator), and
SYSTEM.

A user may place a USER hold upon any job the user owns. An "operator", who is a user with "operator
privilege," may place ether an USER or an OTHER hold on any job. The batch administrator may place
any hold on any job.

If no -h option is given, the USER hold will be applied to the jobs described by the job_identifier operand
list.

If the job identified by job_identifier is in the queued, held, or waiting states, then the hold type is added
to the job. The job is then placed into held state if it resides in an execution queue.

If the job is in running state, then the following additional action is taken to interrupt the execution of
the job. If checkpoint/restart is supported by the host system, requesting a hold on a running job will (1)
cause the job to be checkpointed, (2) the resources assigned to the job will be released, and (3) the job is
placed in the held state in the execution queue.

If checkpoint/restart is not supported, qhold will only set the requested hold attribute. This will have no
effect unless the job is rerun with the qrerun command.

TORQUE Resource Manager

Options

Option Name Description

-h hold_
list

The hold_list argument is a string consisting of one or more of the letters "u", "o", or "s" in
any combination. The hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id ranges
can be combined in a comma delimited list (examples: -t 1-100 or -t 1,10,50-100) .
If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.

Operands
The qhold command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Example
> qhold -h u 3233 place user hold on job 3233

Standard error
The qhold command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qhold command, the exit status will be a
value of zero.

If the qhold command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qrls(1B)
l qalter(1B)
l qsub(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_holdjob(3B)

TORQUE Resource Manager

2376 Appendices

Appendices 2377

l pbs_rlsjob(3B)
l pbs_job_attributes(7B)
l pbs_resources_unicos8(7B)

qmgr
(PBS Queue Manager) PBS batch system manager.

Synopsis
qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

Description
The qmgr command provides an administrator interface to query and configure batch system parameters
(see Appendix B: Server Parameters on page 2417).

The command reads directives from standard input. The syntax of each directive is checked and the
appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or deleting a queue
requires PBS Manager privilege. Setting or unsetting server or queue attributes requires PBS Operator
or Manager privilege.

By default, the user root is the only PBS Operator and Manager. To allow other users to be
privileged, the server attributes operators and managers will need to be set (i.e., as root, issue
'qmgr -c 'set server managers += <USER1>@<HOST>'). See TORQUE/PBS Integration
Guide - RM Access Control on page 1209.

If qmgr is invoked without the -c option and standard output is connected to a terminal, qmgr will write a
prompt to standard output and read a directive from standard input.

Commands can be abbreviated to their minimum unambiguous form. A command is terminated by a new
line character or a semicolon, ";", character. Multiple commands may be entered on a single line. A
command may extend across lines by escaping the new line character with a back-slash "\".

Comments begin with the "#" character and continue to end of the line. Comments and blank lines are
ignored by qmgr.

Options

Option Name Description

-a --- Abort qmgr on any syntax errors or any requests rejected by a server.

-c command Execute a single command and exit qmgr.

TORQUE Resource Manager

Option Name Description

-e --- Echo all commands to standard output.

-n --- No commands are executed, syntax checking only is performed.

-z --- No errors are written to standard error.

Operands
The server operands identify the name of the batch server to which the administrator requests are sent.
Each server conforms to the following syntax:

host_name[:port]

where host_name is the network name of the host on which the server is running and port is the port
number to which to connect. If port is not specified, the default port number is used.

If server is not specified, the administrator requests are sent to the local server.

Standard input
The qmgr command reads standard input for directives until end of file is reached, or the exit or quit
directive is read.

Standard output
If Standard Output is connected to a terminal, a command prompt will be written to standard output
when qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to standard output.

Standard error
If the -z option is not specified, the qmgr command will write a diagnostic message to standard error for
each error occurrence.

Directive syntax
A qmgr directive is one of the following forms:

command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]

where command is the command to perform on an object.

Commands are:

TORQUE Resource Manager

2378 Appendices

Appendices 2379

Command Description

active Sets the active objects. If the active objects are specified, and the name is not given in a qmgr cmd
the active object names will be used.

create Is to create a new object, applies to queues and nodes.

delete Is to destroy an existing object, applies to queues and nodes.

set Is to define or alter attribute values of the object.

unset Is to clear the value of attributes of the object.

This form does not accept an OP and value, only the attribute name.

list Is to list the current attributes and associated values of the object.

print Is to print all the queue and server attributes in a format that will be usable as input to the qmgr
command.

names Is a list of one or more names of specific objects The name list is in the form:
[name][@server][,queue_name[@server]...]

with no intervening white space. The name of an object is declared when the object is first created.
If the name is @server, then all the objects of specified type at the server will be affected.

attr Specifies the name of an attribute of the object which is to be set or modified. If the attribute is one
which consist of a set of resources, then the attribute is specified in the form:
attribute_name.resource_name

OP Operation to be performed with the attribute and its value:
l "=" – set the value of the attribute. If the attribute has an existing value, the current value
is replaced with the new value.

l "+=" – increase the current value of the attribute by the amount in the new value.
l "-=" – decrease the current value of the attribute by the amount in the new value.

value The value to assign to an attribute. If the value includes white space, commas or other special char-
acters, such as the "#" character, the value string must be enclosed in quote marks (").

The following are examples of qmgr directives:

TORQUE Resource Manager

create queue fast priority=10,queue_type=e,enabled = true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

Exit status
Upon successful processing of all the operands presented to the qmgr command, the exit status will be a
value of zero.

If the qmgr command fails to process any operand, the command exits with a value greater than zero.

Related topics

l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_queue_attributes (7B)
l pbs_server_attributes (7B)
l qstart (8B), qstop (8B)
l qenable (8B), qdisable (8)
l PBS External Reference Specification

qmove
Move PBS batch jobs.

Synopsis
qmove destination jobId [jobId ...]

Description
To move a job is to remove the job from the queue in which it resides and instantiate the job in another
queue. The qmove command issues a Move Job batch request to the batch server that currently owns
each job specified by jobId.

A job in the Running, Transiting, or Exiting state cannot be moved.

Operands
The first operand, the new destination, is one of the following:

queue

@server

TORQUE Resource Manager

2380 Appendices

Appendices 2381

queue@server

If the destination operand describes only a queue, then qmove will move jobs into the queue of the
specified name at the job's current server. If the destination operand describes only a batch server, then
qmove will move jobs into the default queue at that batch server. If the destination operand describes
both a queue and a batch server, then qmove will move the jobs into the specified queue at the specified
server.

All following operands are jobIds which specify the jobs to be moved to the new destination. The qmove
command accepts one or more jobId operands of the form: sequenceNumber[.serverName]
[@server]

Standard error
The qmove command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qmove command, the exit status will be a
value of zero.

If the qmove command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qsub on page 2395

Related topics(non-Adaptive Computing topics)

l pbs_movejob(3B)

qorder
Exchange order of two PBS batch jobs in any queue.

Synopsis
qorder job1_identifier job2_identifier

Description
To order two jobs is to exchange the jobs' positions in the queue(s) in which the jobs reside. The two jobs
must be located on the same server. No attribute of the job, such as priority, is changed. The impact of
changing the order in the queue(s) is dependent on local job schedule policy. For information about your
local job schedule policy, contact your systems administrator.

A job in the running state cannot be reordered.

TORQUE Resource Manager

Operands
Both operands are job_identifiers that specify the jobs to be exchanged. The qorder command
accepts two job_identifier operands of the following form:
sequence_number[.server_name][@server]

The two jobs must be in the same location, so the server specification for the two jobs must agree.

Standard error
The qorder command will write diagnostic messages to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qorder command, the exit status will be a
value of zero.

If the qorder command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qsub on page 2395
l qmove on page 2380

Related topics(non-Adaptive Computing topics)

l pbs_orderjob(3B)
l pbs_movejob(3B)

qrerun
(Rerun a batch job)

Synopsis
qrerun [{-f}] <JOBID>[<JOBID>] ...

Description
The qrerun command directs that the specified jobs are to be rerun if possible. To rerun a job is to
terminate the session leader of the job and return the job to the queued state in the execution queue in
which the job currently resides.

If a job is marked as not rerunable then the rerun request will fail for that job. If the mini-server running
the job is down, or it rejects the request, the Rerun Job batch request will return a failure unless -f is
used.

Using -f violates IEEE Batch Processing Services Standard and should be handled with great care. It
should only be used under exceptional circumstances. The best practice is to fix the problem mini-server
host and let qrerun run normally. The nodes may need manual cleaning (see the -r option on the qsub
and qalter commands).

TORQUE Resource Manager

2382 Appendices

Appendices 2383

Options

Option Description

-f Force a rerun on a job

qrerun -f 15406

The qrerun all command is meant to be run if all of the compute nodes go down. If the machines
have actually crashed, then we know that all of the jobs need to be restarted. The behavior if you
don't run this would depend on how you bring up the pbs_mom daemons, but by default would be to
cancel all of the jobs.

Running the command makes it so that all jobs are requeued without attempting to contact the
moms on which they should be running.

Operands
The qrerun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Standard error
The qrerun command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qrerun command, the exit status will be a
value of zero.

If the qrerun command fails to process any operand, the command exits with a value greater than zero.

Examples
> qrerun 3233

(Job 3233 will be re-run.)

Related topics

l qsub(1B)
l qalter(1B)

TORQUE Resource Manager

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_rerunjob(3B)

qrls
(Release hold on PBS batch jobs)

Synopsis
qrls [{-h <HOLD LIST>|-t <array_range>}] <JOBID>[<JOBID>] ...

Description
The qrls command removes or releases holds which exist on batch jobs.

A job may have one or more types of holds which make the job ineligible for execution. The types of
holds are USER, OTHER, and SYSTEM. The different types of holds may require that the user issuing the
qrls command have special privileges. A user may always remove a USER hold on their own jobs, but
only privileged users can remove OTHER or SYSTEM holds. An attempt to release a hold for which the
user does not have the correct privilege is an error and no holds will be released for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an execution_time is
still pending, the job will change to the waiting state.

Options

Command Name Description

-h hold_
list

Defines the types of hold to be released from the jobs. The hold_list option argument is
a string consisting of one or more of the letters "u", "o", and "s" in any combination. The
hold type associated with each letter is:

l u – USER
l o – OTHER
l s – SYSTEM

-t array_
range

The array_range argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t 1,10,50-
100
If an array range isn't specified, the command tries to operate on the entire array. The
command acts on the array (or specified range of the array) just as it would on an
individual job.

TORQUE Resource Manager

2384 Appendices

Appendices 2385

Operands
The qrls command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

Examples
> qrls -h u 3233 release user hold on job 3233

Standard error
The qrls command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qrls command, the exit status will be a
value of zero.

If the qrls command fails to process any operand, the command exits with a value greater than zero.

Related topics

Related topics

l qsub(1B)
l qalter(1B)
l qhold(1B)

Non-Adaptive Computing topics)

l pbs_alterjob(3B)
l pbs_holdjob(3B)
l pbs_rlsjob(3B)

qrun
(Run a batch job)

Synopsis
qrun [{-H <HOST>|-a}] <JOBID>[<JOBID>] ...

Overview
The qrun command runs a job.

TORQUE Resource Manager

Format

-H

Format <STRING> Host Identifier

Default ---

Description Specifies the host within the cluster on which the job(s) are to be run. The host argument is the
name of a host that is a member of the cluster of hosts managed by the server. If the option is not
specified, the server will select the "worst possible" host on which to execute the job.

Example qrun -H hostname 15406

-a

Format ---

Default ---

Description Run the job(s) asynchronously.

Example qrun -a 15406

Command details
The qrun command is used to force a batch server to initiate the execution of a batch job. The job is run
regardless of scheduling position or resource requirements.

In order to execute qrun, the user must have PBS Operation or Manager privileges.

Examples
> qrun 3233

(Run job 3233.)

qsig
(Signal a job)

TORQUE Resource Manager

2386 Appendices

Appendices 2387

Synopsis
qsig [{-s <SIGNAL>}] <JOBID>[<JOBID>] ...
[-a]

Description
The qsig command requests that a signal be sent to executing batch jobs. The signal is sent to the session
leader of the job. If the -s option is not specified, SIGTERM is sent. The request to signal a batch job will
be rejected if:

l The user is not authorized to signal the job.

l The job is not in the running state.

l The requested signal is not supported by the system upon which the job is executing.

The qsig command sends a Signal Job batch request to the server which owns the job.

Options

Option Name Description

-s signal Declares which signal is sent to the job.
The signal argument is either a signal name, e.g. SIGKILL, the signal name without
the SIG prefix, e.g. KILL, or an unsigned signal number, e.g. 9. The signal name
SIGNULL is allowed; the server will send the signal 0 to the job which will have no
effect on the job, but will cause an obituary to be sent if the job is no longer
executing. Not all signal names will be recognized by qsig. If it doesn't recognize
the signal name, try issuing the signal number instead.
Two special signal names, "suspend" and "resume", are used to suspend and
resume jobs. Cray systems use the Cray-specific suspend()/resume() calls.
On non-Cray system, suspend causes a SIGTSTP to be sent to all processes in the
job's top task, wait 5 seconds, and then send a SIGSTOP to all processes in all tasks
on all nodes in the job. This differs from TORQUE 2.0.0 which did not have the
ability to propagate signals to sister nodes. Resume sends a SIGCONT to all
processes in all tasks on all nodes.
When suspended, a job continues to occupy system resources but is not executing
and is not charged for walltime. The job will be listed in the "S" state. Manager or
operator privilege is required to suspend or resume a job.

Interactive jobs may not resume properly because the top-level shell will
background the suspended child process.

-a asynchronously Makes the command run asynchronously.

Operands
The qsig command accepts one or more job_identifier operands of the form:

TORQUE Resource Manager

sequence_number[.server_name][@server]

Examples
> qsig -s SIGKILL 3233 send a SIGKILL to job 3233
> qsig -s KILL 3233 send a SIGKILL to job 3233
> qsig -s 9 3233 send a SIGKILL to job 3233

Standard error
The qsig command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qsig command, the exit status will be a
value of zero.

If the qsig command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qsub(1B)

Non-Adaptive Computing topics

l pbs_sigjob(3B)
l pbs_resources_*(7B) where * is system type
l PBS ERS

qstat
Show status of PBS batch jobs.

Synopsis
qstat [-c on page 2389] [-f [-1]][-W site_specific] [job_identifier... |
destination...] [time]
qstat [-a|-i|-r|-e] [-c on page 2389] [-n [-1]] [-s] [-G|-M] [-R] [-u user_
list]
[job_identifier... | destination...]
qstat -Q [-f [-1]] [-c on page 2389] [-W site_specific] [destination...]
qstat -q [-c on page 2389] [-G|-M] [destination...]
qstat -B [-c on page 2389] [-f [-1]][-W site_specific] [server_name...]
qstat -t [-c on page 2389]

Description
The qstat command is used to request the status of jobs, queues, or a batch server. The requested status
is written to standard out.

TORQUE Resource Manager

2388 Appendices

Appendices 2389

When requesting job status, synopsis format 1 or 2, qstat will output information about each job_
identifier or all jobs at each destination. Jobs for which the user does not have status privilege are not
displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output information
about each destination.

You can configure TORQUE with CFLAGS='DTXT' to change the alignment of text in qstat output.
This noticeably improves qstat -r output.

Options

Option Description

-c Completed jobs are not displayed in the output. If desired, you can set the PBS_QSTAT_NO_COMPLETE
environment variable to cause all qstat requests to not show completed jobs by default.

-f Specifies that a full status display be written to standard out. The [time] value is the amount of wall-
time, in seconds, remaining for the job. [time] does not account for walltime multipliers.

-a All jobs are displayed in the alternative format (see Standard output on page 2391). If the operand is
a destination id, all jobs at that destination are displayed. If the operand is a job id, information about
that job is displayed.

-e If the operand is a job id or not specified, only jobs in executable queues are displayed. Setting the
PBS_QSTAT_EXECONLY environment variable will also enable this option.

-i Job status is displayed in the alternative format. For a destination id operand, statuses for jobs at that
destination which are not running are displayed. This includes jobs which are queued, held or waiting.
If an operand is a job id, status for that job is displayed regardless of its state.

-r If an operand is a job id, status for that job is displayed. For a destination id operand, statuses for jobs
at that destination which are running are displayed; this includes jobs which are suspended. Note that
if there is no walltime given for a job, then elapsed time does not display.

-n In addition to the basic information, nodes allocated to a job are listed.

-1 In combination with -n, the -1 option puts all of the nodes on the same line as the job ID. In com-
bination with -f, attributes are not folded to fit in a terminal window. This is intended to ease the pars-
ing of the qstat output.

-s In addition to the basic information, any comment provided by the batch administrator or scheduler is
shown.

TORQUE Resource Manager

Option Description

-G Show size information in giga-bytes.

-M Show size information, disk or memory in mega-words. A word is considered to be 8 bytes.

-R In addition to other information, disk reservation information is shown. Not applicable to all systems.

-t Normal qstat output displays a summary of the array instead of the entire array, job for job. qstat -t
expands the output to display the entire array. Note that arrays are now named with brackets
following the array name; for example:
dbeer@napali:~/dev/torque/array_changes$ echo sleep 20 | qsub -t 0-299 189
[].napali

Individual jobs in the array are now also noted using square brackets instead of dashes; for example,
here is part of the output of qstat -t for the preceding array:
189[299].napali STDIN[299] dbeer 0 Q batch

-u Job status is displayed in the alternative format. If an operand is a job id, status for that job is
displayed. For a destination id operand, statuses for jobs at that destination which are owned by the
user(s) listed in user_list are displayed. The syntax of the user_list is:
user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g. "*.nasa.gov". User_name without a "@host" is
equivalent to "user_name@*", that is at any host.

-Q Specifies that the request is for queue status and that the operands are destination identifiers.

-q Specifies that the request is for queue status which should be shown in the alternative format.

-B Specifies that the request is for batch server status and that the operands are the names of servers.

Operands
If neither the -Q nor the -B option is given, the operands on the qstat command must be either job
identifiers or destinations identifiers.

If the operand is a job identifier, it must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submittal time (see qsub). If the
.server_name is omitted, the name of the default server will be used. If @server is supplied, the request
will be for the job identifier currently at that Server.

If the operand is a destination identifier, it is one of the following three forms:

TORQUE Resource Manager

2390 Appendices

Appendices 2391

l queue

l @server

l queue@server

If queue is specified, the request is for status of all jobs in that queue at the default server. If the
@server form is given, the request is for status of all jobs at that server. If a full destination identifier,
queue@server, is given, the request is for status of all jobs in the named queue at the named server.

If the -Q option is given, the operands are destination identifiers as specified above. If queue is specified,
the status of that queue at the default server will be given. If queue@server is specified, the status of
the named queue at the named server will be given. If @server is specified, the status of all queues at
the named server will be given. If no destination is specified, the status of all queues at the default
server will be given.

If the -B option is given, the operand is the name of a server.

Standard output

Displaying job status

If job status is being displayed in the default format and the -f option is not specified, the following items
are displayed on a single line, in the specified order, separated by white space:

l the job identifier assigned by PBS.

l the job name given by the submitter.

l the job owner.

l the CPU time used.

l the job state:

Item Description

C Job is completed after having run.

E Job is exiting after having run.

H Job is held.

Q Job is queued, eligible to run or routed.

R Job is running.

T Job is being moved to new location.

TORQUE Resource Manager

Item Description

W Job is waiting for its execution time (-a option) to be reached.

S (Unicos only) Job is suspended.

l the queue in which the job resides.

If job status is being displayed and the -f option is specified, the output will depend on whether qstat was
compiled to use a Tcl interpreter. See Configuration on page 2394 for details. If Tcl is not being used,
full display for each job consists of the header line:

Job Id: job identifier

Followed by one line per job attribute of the form:

attribute_name = value

If any of the options -a, -i, -r, -u, -n, -s, -G, or -M are provided, the alternative display format for jobs is
used. The following items are displayed on a single line, in the specified order, separated by white space:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the job name given by the submitter

l the session id (if the job is running)

l the number of nodes requested by the job

l the number of cpus or tasks requested by the job

l the amount of memory requested by the job

l either the cpu time, if specified, or wall time requested by the job, (hh:mm)

l the jobs current state

l the amount of cpu time or wall time used by the job (hh:mm)

If the -r option is provided, the line contains:

l the job identifier assigned by PBS

l the job owner

l the queue in which the job currently resides

l the number of nodes requested by the job

l the number of cpus or tasks requested by the job

l the amount of memory requested by the job

l either the cpu time or wall time requested by the job

TORQUE Resource Manager

2392 Appendices

Appendices 2393

l the jobs current state

l the amount of cpu time or wall time used by the job

l the amount of SRFS space requested on the big file system

l the amount of SRFS space requested on the fast file system

l the amount of space requested on the parallel I/O file system

The last three fields may not contain useful information at all sites or on all systems

Displaying queue status

If queue status is being displayed and the -f option was not specified, the following items are displayed
on a single line, in the specified order, separated by white space:

l the queue name

l the maximum number of jobs that may be run in the queue concurrently

l the total number of jobs in the queue

l the enable or disabled status of the queue

l the started or stopped status of the queue

l for each job state, the name of the state and the number of jobs in the queue in that state

l the type of queue, execution or routing

If queue status is being displayed and the -f option is specified, the output will depend on whether qstat
was compiled to use a Tcl interpreter. See Configuration on page 2394 for details. If Tcl is not being
used, the full display for each queue consists of the header line:

Queue: queue_name

Followed by one line per queue attribute of the form:

attribute_name = value

If the -Q option is specified, queue information is displayed in the alternative format: The following
information is displayed on a single line:

l the queue name

l the maximum amount of memory a job in the queue may request

l the maximum amount of cpu time a job in the queue may request

l the maximum amount of wall time a job in the queue may request

l the maximum amount of nodes a job in the queue may request

l the number of jobs in the queue in the running state

l the number of jobs in the queue in the queued state

l the maximum number (limit) of jobs that may be run in the queue concurrently

TORQUE Resource Manager

l the state of the queue given by a pair of letters:

o either the letter E if the queue is Enabled or D if Disabled

and

o either the letter R if the queue is Running (started) or S if Stopped.

Displaying server status

If batch server status is being displayed and the -f option is not specified, the following items are
displayed on a single line, in the specified order, separated by white space:

l the server name

l the maximum number of jobs that the server may run concurrently

l the total number of jobs currently managed by the server

l the status of the server

l for each job state, the name of the state and the number of jobs in the server in that state

If server status is being displayed and the -f option is specified, the output will depend on whether qstat
was compiled to use a Tcl interpreter. See Configuration on page 2394 for details. If Tcl is not being
used, the full display for the server consists of the header line:

Server: server name

Followed by one line per server attribute of the form:

attribute_name = value

Standard error
The qstat command will write a diagnostic message to standard error for each error occurrence.

Configuration
If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a full display
causes a check to be made for a script file to use to output the requested information. The first location
checked is $HOME/.qstatrc. If this does not exist, the next location checked is administrator
configured. If one of these is found, a Tcl interpreter is started and the script file is passed to it along
with three global variables. The command line arguments are split into two variable named flags and
operands . The status information is passed in a variable named objects . All of these variables are Tcl
lists. The flags list contains the name of the command (usually "qstat") as its first element. Any other
elements are command line option flags with any options they use, presented in the order given on the
command line. They are broken up individually so that if two flags are given together on the command
line, they are separated in the list. For example, if the user typed:

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

TORQUE Resource Manager

2394 Appendices

Appendices 2395

The operands list contains all other command line arguments following the flags. There will always be at
least one element in operands because if no operands are typed by the user, the default destination or
server name is used. The objects list contains all the information retrieved from the server(s) so the Tcl
interpreter can run once to format the entire output. This list has the same number of elements as the
operands list. Each element is another list with two elements.

The first element is a string giving the type of objects to be found in the second. The string can take the
values "server", "queue", "job" or "error".

The second element will be a list in which each element is a single batch status object of the type given
by the string discussed above. In the case of "error", the list will be empty. Each object is again a list.
The first element is the name of the object. The second is a list of attributes.

The third element will be the object text.

All three of these object elements correspond with fields in the structure batch_status which is described
in detail for each type of object by the man pages for pbs_statjob(3), pbs_statque(3), and pbs_statserver
(3). Each attribute in the second element list whose elements correspond with the attrl structure. Each
will be a list with two elements. The first will be the attribute name and the second will be the attribute
value.

Exit status
Upon successful processing of all the operands presented to the qstat command, the exit status will be a
value of zero.

If the qstat command fails to process any operand, the command exits with a value greater than zero.

Related topics

l qalter(1B)
l qsub(1B)

Non-Adaptive Computing topics

l pbs_alterjob(3B)
l pbs_statjob(3B)
l pbs_statque(3B)
l pbs_statserver(3B)
l pbs_submit(3B)
l pbs_job_attributes(7B)
l pbs_queue_attributes(7B)
l pbs_server_attributes(7B)
l qmgr query_other_jobs parameter (allow non-admin users to see other users' jobs
l pbs_resources_*(7B) where * is system type
l PBS ERS

qsub
Submit PBS job.

TORQUE Resource Manager

Synopsis
qsub [-a date_time] [-A account_string] [-b secs] [-c checkpoint_options]
[-C directive_prefix] [-d path] [-D path] [-e path] [-f] [-F] [-h]
[-I] [-j join] [-k keep] [-l resource_list]
[-m mail_options] [-M user_list] [-n] [-N name] [-o path]
[-p priority] [-P user[:group]] [-q destination] [-r c] [-S path_to_shell(s)]
[-t array_request] [-u user_list]
[-v variable_list] [-V] [-W additional_attributes] [-x] [-X] [-z] [script]

Description
To create a job is to submit an executable script to a batch server. The batch server will be the default
server unless the -q option is specified. The command parses a script prior to the actual script execution;
it does not execute a script itself. All script-writing rules remain in effect, including the "#!" at the head
of the file (see discussion of PBS_DEFAULT under Environment variables on page 2411). Typically, the
script is a shell script which will be executed by a command shell such as sh or csh.

Options on the qsub command allow the specification of attributes which affect the behavior of the job.

The qsub command will pass certain environment variables in the Variable_List attribute of the job.
These variables will be available to the job. The value for the following variables will be taken from the
environment of the qsub command: HOME, LANG, LOGNAME, PATH, MAIL, SHELL, and TZ. These values
will be assigned to a new name which is the current name prefixed with the string "PBS_O_". For
example, the job will have access to an environment variable named PBS_O_HOME which have the value
of the variable HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the batch job:

Variable Description

PBS_O_HOST The name of the host upon which the qsub command is running.

PBS_SERVER The hostname of the pbs_server which qsub submits the job to.

PBS_O_QUEUE The name of the original queue to which the job was submitted.

PBS_O_
WORKDIR

The absolute path of the current working directory of the qsub command.

PBS_ARRAYID Each member of a job array is assigned a unique identifier (see -t option).

PBS_
ENVIRONMENT

Set to PBS_BATCH to indicate the job is a batch job, or to PBS_INTERACTIVE to indicate the job
is a PBS interactive job (see -I option).

PBS_GPUFILE The name of the file containing the list of assigned GPUs. For more information about how to
set up TORQUE with GPUS, see Accelerators on page 794.

TORQUE Resource Manager

2396 Appendices

Appendices 2397

Variable Description

PBS_JOBID The job identifier assigned to the job by the batch system. It can be used in the stdout and
stderr paths. TORQUE replaces $PBS_JOBID with the job's jobid (for example, #PBS -o /tm-
p/$PBS_JOBID.output).

PBS_JOBNAME The job name supplied by the user.

PBS_NODEFILE The name of the file contains the list of nodes assigned to the job (for parallel and cluster sys-
tems).

PBS_QUEUE The name of the queue from which the job is executed.

Options

Option Name Description

-a date_time Declares the time after which the job is eligible for execution.
The date_time argument is in the form:
[[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the first two digits of the year (the century), YY is the second two digits of
the year,MM is the two digits for the month, DD is the day of the month, hh is the hour,
mm is the minute, and the optional SS is the seconds.
If the month (MM) is not specified, it will default to the current month if the specified
day (DD) is in the future. Otherwise, the month will be set to next month. Likewise, if
the day (DD) is not specified, it will default to today if the time (hhmm) is in the
future. Otherwise, the day will be set to tomorrow.
For example, if you submit a job at 11:15 am with a time of -a 1110, the job will be
eligible to run at 11:10 am tomorrow.

-A account_
string

Defines the account string associated with the job. The account_string is an undefined
string of characters and is interpreted by the server which executes the job. See sec-
tion 2.7.1 of the PBS ERS.

-b seconds Defines the maximum number of seconds qsub will block attempting to contact pbs_
server. If pbs_server is down, or for a variety of communication failures, qsub will
continually retry connecting to pbs_server for job submission.
This value overrides the CLIENTRETRY parameter in torque.cfg. This is a non-
portable TORQUE extension. Portability-minded users can use the PBS_CLIENTRETRY
environmental variable. A negative value is interpreted as infinity. The default is 0.

TORQUE Resource Manager

Option Name Description

-c checkpoint_
options

Defines the options that will apply to the job. If the job executes upon a host which
does not support checkpoint, these options will be ignored.
Valid checkpoint options are:

l none – No checkpointing is to be performed.
l enabled – Specify that checkpointing is allowed but must be explicitly invoked
by either the qhold or qchkpt commands.

l shutdown – Specify that checkpointing is to be done on a job at pbs_mom
shutdown.

l periodic – Specify that periodic checkpointing is enabled. The default interval is
10 minutes and can be changed by the $checkpoint_interval option in the
MOM config file or by specifying an interval when the job is submitted

l interval=minutes – Checkpointing is to be performed at an interval of minutes,
which is the integer number of minutes of wall time used by the job. This value
must be greater than zero.

l depth=number – Specify a number (depth) of checkpoint images to be kept in
the checkpoint directory.

l dir=path – Specify a checkpoint directory (default is
/var/spool/torque/checkpoint).

-C directive_
prefix

Defines the prefix that declares a directive to the qsub command within the script file.
(See the paragraph on script directives under Extended description on page 2412.)
If the -C option is presented with a directive_prefix argument that is the null string,
qsub will not scan the script file for directives.

-d path Defines the working directory path to be used for the job. If the -d option is not spe-
cified, the default working directory is the home directory. This option sets the envir-
onment variable PBS_O_INITDIR.

-D path Defines the root directory to be used for the job. This option sets the environment vari-
able PBS_O_ROOTDIR.

TORQUE Resource Manager

2398 Appendices

Appendices 2399

Option Name Description

-e path Defines the path to be used for the standard error stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and path_name
is the path name on that host in the syntax recognized by POSIX.

When specifying a directory for the location you need to include a trailing
slash.

The argument will be interpreted as follows:
l path_name – where path_name is not an absolute path name, then the qsub
command will expand the path name relative to the current working directory
of the command. The command will supply the name of the host upon which it
is executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name, then the
qsub command will not expand the path name relative to the current working
directory of the command. On delivery of the standard error, the path name
will be expanded relative to the user's home directory on the hostname
system.

l path_name – where path_name specifies an absolute path name, then the qsub
will supply the name of the host on which it is executing for the hostname.

l hostname:path_name – where path_name specifies an absolute path name, the
path will be used as specified.

If the -e option is not specified, the default file name for the standard error stream
will be used. The default name has the following form:

l job_name.esequence_number – where job_name is the name of the job (see the -n
name option) and sequence_number is the job number assigned when the job is
submitted.

-f --- Job is made fault tolerant. Jobs running on multiple nodes are periodically polled by
mother superior. If one of the nodes fails to report, the job is canceled by mother
superior and a failure is reported. If a job is fault tolerant, it will not be canceled based
on failed polling (no matter how many nodes fail to report). This may be desirable if
transient network failures are causing large jobs not to complete, where ignoring one
failed polling attempt can be corrected at the next polling attempt.

If TORQUE is compiled with PBS_NO_POSIX_VIOLATION (there is no config
option for this), you have to use -W fault_tolerant=true to mark the job
as fault tolerant.

TORQUE Resource Manager

Option Name Description

-F --- Specifies the arguments that will be passed to the job script when the script is
launched. The accepted syntax is:
qsub -F "myarg1 myarg2 myarg3=myarg3value" myscript2.sh

Quotation marks are required. qsub will fail with an error message if the
argument following -F is not a quoted value. The pbs_mom server will pass the
quoted value as arguments to the job script when it launches the script.

-h --- Specifies that a user hold be applied to the job at submission time.

-I --- Declares that the job is to be run "interactively". The job will be queued and scheduled
as any PBS batch job, but when executed, the standard input, output, and error
streams of the job are connected through qsub to the terminal session in which qsub is
running. Interactive jobs are forced to not rerunable. See Extended description on
page 2412 for additional information of interactive jobs.

-j join Declares if the standard error stream of the job will be merged with the standard
output stream of the job.
An option argument value of oe directs that the two streams will be merged,
intermixed, as standard output. An option argument value of eo directs that the two
streams will be merged, intermixed, as standard error.
If the join argument is n or the option is not specified, the two streams will be two
separate files.

If using either the -e or the -o option and the -j eo|oe option, the -j option
takes precedence and all standard error and output messages go to the chosen
output file.

TORQUE Resource Manager

2400 Appendices

Appendices 2401

Option Name Description

-k keep Defines which (if either) of standard output or standard error will be retained on the
execution host. If set for a stream, this option overrides the path name for that stream.
If not set, neither stream is retained on the execution host.
The argument is either the single letter "e" or "o", or the letters "e" and "o" combined
in either order. Or the argument is the letter "n".

l e – The standard error stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.esequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l o – The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name.osequence

where job_name is the name specified for the job, and sequence is the sequence
number component of the job identifier.

l eo – Both the standard output and standard error streams will be retained.
l oe – Both the standard output and standard error streams will be retained.
l n – Neither stream is retained.

-l resource_
list

Defines the resources that are required by the job and establishes a limit to the
amount of resource that can be consumed. If not set for a generally available resource,
such as CPU time, the limit is infinite. The resource_list argument is of the form:
resource_name[=[value]][,resource_name[=[value]],...]

In this situation, you should request the more inclusive resource first. For
example, a request for procs should come before a gres request.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l
gres=gpus:X. This allows users who are using NUMA systems to make requests such
as -l ncpus=20:gpus=5 indicating they are not concerned with the GPUs in relation
to the NUMA nodes they request, they only want a total of 20 cores and 5 GPUs.
For more information, see Requesting Resources on page 2237.
For information on specifying multiple types of resources for allocation, see Multi-Req
Support on page 532.

TORQUE Resource Manager

Option Name Description

-m mail_
options

Defines the set of conditions under which the execution server will send a mail
message about the job. The mail_options argument is a string which consists of either
the single character "n", or one or more of the characters "a", "b", and "e".
If the character "n" is specified, no normal mail is sent. Mail for job cancels and other
events outside of normal job processing are still sent.
For the letters "a", "b", and "e":

l a – Mail is sent when the job is aborted by the batch system.
l b – Mail is sent when the job begins execution.
l e – Mail is sent when the job terminates.

If the -m option is not specified, mail will be sent if the job is aborted.

-M user_list Declares the list of users to whom mail is sent by the execution server when it sends
mail about the job.
The user_list argument is of the form:
user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job owner.

-n node-
exclusive

Allows a user to specify an exclusive-node access/allocation request for the job. This
affects only cpusets and compatible schedulers (see Linux cpuset Support on page
2274).

-N name Declares a name for the job. The name specified may be an unlimited number of
characters in length. It must consist of printable, nonwhite space characters with the
first character alphabetic.
If the -N option is not specified, the job name will be the base name of the job script
file specified on the command line. If no script file name was specified and the script
was read from the standard input, then the job name will be set to STDIN.

TORQUE Resource Manager

2402 Appendices

Appendices 2403

Option Name Description

-o path Defines the path to be used for the standard output stream of the batch job. The path
argument is of the form:
[hostname:]path_name

where hostname is the name of a host to which the file will be returned, and path_name
is the path name on that host in the syntax recognized by POSIX.

When specifying a directory for the location you need to include a trailing
slash.

The argument will be interpreted as follows:
l path_name – where path_name is not an absolute path name, then the qsub
command will expand the path name relative to the current working directory
of the command. The command will supply the name of the host upon which it
is executing for the hostname component.

l hostname:path_name – where path_name is not an absolute path name, then the
qsub command will not expand the path name relative to the current working
directory of the command. On delivery of the standard output, the path name
will be expanded relative to the user's home directory on the hostname
system.

l path_name – where path_name specifies an absolute path name, then the qsub
will supply the name of the host on which it is executing for the hostname.

l hostname:path_namewhere path_name specifies an absolute path name, the
path will be used as specified.

If the -o option is not specified, the default file name for the standard output stream
will be used. The default name has the following form:

l job_name.osequence_number – where job_name is the name of the job (see the -n
name option) and sequence_number is the job number assigned when the job is
submitted.

-p priority Defines the priority of the job. The priority argument must be a integer between -
1024 and +1023 inclusive. The default is no priority which is equivalent to a priority
of zero.

-P user
[:group]

Allows a root user or manager to submit a job as another user. TORQUE treats proxy
jobs as though the jobs were submitted by the supplied username. This feature is avail-
able in TORQUE 2.4.7 and later, however, TORQUE 2.4.7 does not have the ability to
supply the [:group] option; it is available in TORQUE 2.4.8 and later.

TORQUE Resource Manager

Option Name Description

-q destination Defines the destination of the job. The destination names a queue, a server, or a queue
at a server.
The qsub command will submit the script to the server defined by the destination
argument. If the destination is a routing queue, the job may be routed by the server to
a new destination.
If the -q option is not specified, the qsub command will submit the script to the default
server. (See Environment variables on page 2411 and the PBS ERS section 2.7.4,
"Default Server".)
If the -q option is specified, it is in one of the following three forms:

l queue
l @server
l queue@server

If the destination argument names a queue and does not name a server, the job will
be submitted to the named queue at the default server.
If the destination argument names a server and does not name a queue, the job will
be submitted to the default queue at the named server.
If the destination argument names both a queue and a server, the job will be
submitted to the named queue at the named server.

-r y/n Declares whether the job is rerunable (see the qrerun command). The option
argument is a single character, either y or n.
If the argument is "y", the job is rerunable. If the argument is "n", the job is not
rerunable. The default value is y, rerunable.

-S path_list Declares the path to the desires shell for this job.
qsub script.sh -S /bin/tcsh

If the shell path is different on different compute nodes, use the following syntax:
path[@host][,path[@host],...]
qsub script.sh -S /bin/tcsh@node1,/usr/bin/tcsh@node2

Only one path may be specified for any host named. Only one path may be specified
without the corresponding host name. The path selected will be the one with the host
name that matched the name of the execution host. If no matching host is found, then
the path specified without a host will be selected, if present.
If the -S option is not specified, the option argument is the null string, or no entry
from the path_list is selected, the execution will use the user's login shell on the
execution host.

TORQUE Resource Manager

2404 Appendices

Appendices 2405

Option Name Description

-t array_
request

Specifies the task ids of a job array. Single task arrays are allowed.
The array_request argument is an integer id or a range of integers. Multiple ids or id
ranges can be combined in a comma delimited list. Examples: -t 1-100 or -t
1,10,50-100

An optional slot limit can be specified to limit the amount of jobs that can run
concurrently in the job array. The default value is unlimited. The slot limit must be the
last thing specified in the array_request and is delimited from the array by a percent
sign (%).

qsub script.sh -t 0-299%5

This sets the slot limit to 5. Only 5 jobs from this array can run at the same time.
You can use qalter to modify slot limits on an array. The server parametermax_slot_
limit can be used to set a global slot limit policy.

-u user_list Defines the user name under which the job is to run on the execution system.
The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given per specified host. Only one of the user
specifications may be supplied without the corresponding host specification. That user
name will used for execution on any host not named in the argument list. If unset, the
user list defaults to the user who is running qsub.

-v variable_
list

Expands the list of environment variables that are exported to the job.
In addition to the variables described in the "Description" section above, variable_list
names environment variables from the qsub command environment which are made
available to the job when it executes. The variable_list is a comma separated list of
strings of the form variable or variable=value. These variables and their values
are passed to the job. Note that -v has a higher precedence than -V, so identically
named variables specified via -v will provide the final value for an environment
variable in the job.

-V --- Declares that all environment variables in the qsub commands environment are to be
exported to the batch job.

TORQUE Resource Manager

Option Name Description

-W additional_
attributes

The -W option allows for the specification of additional job attributes. The general
syntax of -W is in the form:
-W attr_name=attr_value.
You can use multiple -W options with this syntax:
-W attr_name1=attr_value1 -W attr_name2=attr_value2.

If white space occurs anywhere within the option argument string or the equal
sign, "=", occurs within an attribute_value string, then the string must be
enclosed with either single or double quote marks.

PBS currently supports the following attributes within the -W option:
l depend=dependency_list – Defines the dependency between this and other jobs.
The dependency_list is in the form:
type[:argument[:argument...][,type:argument...]

The argument is either a numeric count or a PBS job id according to type. If
argument is a count, it must be greater than 0. If it is a job id and not fully
specified in the form seq_number.server.name, it will be expanded
according to the default server rules which apply to job IDs on most
commands. If argument is null (the preceding colon need not be specified), the
dependency of the corresponding type is cleared (unset). For more
information, see depend=dependency_list valid dependencies on page 2407.

l group_list=g_list – Defines the group name under which the job is to run on the
execution system. The g_list argument is of the form:
group[@host][,group[@host],...]

Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification.
That group name will used for execution on any host not named in the
argument list. If not set, the group_list defaults to the primary group of the
user under which the job will be run.

l interactive=true – If the interactive attribute is specified, the job is an
interactive job. The -I option is an alternative method of specifying this
attribute.

l job_radix=<int> – To be used with parallel jobs. It directs the Mother Superior of
the job to create a distribution radix of size <int> between sisters. See
Managing Multi-node Jobs on page 2236.

l stagein=file_list
l stageout=file_list – Specifies which files are staged (copied) in before job start
or staged out after the job completes execution. On completion of the job, all
staged-in and staged-out files are removed from the execution system. The
file_list is in the form:
local_file@hostname:remote_file[,...]

regardless of the direction of the copy. The name local_file is the name of the
file on the system where the job executed. It may be an absolute path or
relative to the home directory of the user. The name remote_file is the
destination name on the host specified by hostname. The name may be

TORQUE Resource Manager

2406 Appendices

Appendices 2407

Option Name Description

absolute or relative to the user's home directory on the destination host. The
use of wildcards in the file name is not recommended. The file names map to a
remote copy program (rcp) call on the execution system in the follow manner:

o For stagein: rcp hostname:remote_file local_file

o For stageout: rcp local_file hostname:remote_file

Data staging examples:
-W stagein=/tmp/input.txt@headnode:/home/user/input.txt

-W stageout=/tmp/output.txt@headnode:/home/user/output.txt

If TORQUE has been compiled with wordexp support, then variables can be
used in the specified paths. Currently only $PBS_JOBID, $HOME, and $TMPDIR
are supported for stagein.

l umask=XXX – Sets umask used to create stdout and stderr spool files in pbs_
mom spool directory. Values starting with 0 are treated as octal values,
otherwise the value is treated as a decimal umask value.

-x --- By default, if you submit an interactive job with a script, the script will be parsed for
PBS directives but the rest of the script will be ignored since it's an interactive job. The
-x option allows the script to be executed in the interactive job and then the job
completes. For example:
script.sh
#!/bin/bash
ls
---end script---
qsub -I script.sh
qsub: waiting for job 5.napali to start
dbeer@napali:#
<displays the contents of the directory, because of the ls
command>
qsub: job 5.napali completed

-X --- Enables X11 forwarding. The DISPLAY environment variable must be set.

-z --- Directs that the qsub command is not to write the job identifier assigned to the job to
the commands standard output.

depend=dependency_list valid dependencies

For job dependencies to work correctly, you must set the keep_completed on page 2424 server
parameter.

TORQUE Resource Manager

Dependency Description

synccount:count This job is the first in a set of jobs to be executed at the same
time. Count is the number of additional jobs in the set.

syncwith:jobid This job is an additional member of a set of jobs to be
executed at the same time. In the above and following depend-
ency types, jobid is the job identifier of the first job in the set.

after:jobid[:jobid...] This job may be scheduled for execution at any point after
jobs jobid have started execution.

afterok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with no errors. See the csh warning under
Extended description on page 2412.

afternotok:jobid[:jobid...] This job may be scheduled for execution only after jobs jobid
have terminated with errors. See the csh warning under
Extended description on page 2412.

afterany:jobid[:jobid...] This job may be scheduled for execution after jobs jobid have
terminated, with or without errors.

on:count This job may be scheduled for execution after count depend-
encies on other jobs have been satisfied. This form is used in
conjunction with one of the "before" forms (see below).

before:jobid[:jobid...] When this job has begun execution, then jobs jobid... may
begin.

beforeok:jobid[:jobid...] If this job terminates execution without errors, then jobs
jobid... may begin. See the csh warning under Extended
description on page 2412.

beforenotok:jobid[:jobid...] If this job terminates execution with errors, then jobs jobid...
may begin. See the csh warning under Extended description
on page 2412.

TORQUE Resource Manager

2408 Appendices

Appendices 2409

Dependency Description

beforeany:jobid[:jobid...] When this job terminates execution, jobs jobid... may begin.
If any of the before forms are used, the jobs referenced by
jobid must have been submitted with a dependency type of
on.
If any of the before forms are used, the jobs referenced by
jobid must have the same owner as the job being submitted.
Otherwise, the dependency is ignored.

Array dependencies make a job depend on an array or part of an array. If no count is given, then the entire
array is assumed. For examples, see Dependency examples on page 2410.

afterstartarray:arrayid[count] After this many jobs have started from arrayid, this job may
start.

afterokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with no errors.

afternotokarray:arrayid[count] This job may be scheduled for execution only after jobs in
arrayid have terminated with errors.

afteranyarray:arrayid[count] This job may be scheduled for execution after jobs in arrayid
have terminated, with or without errors.

beforestartarray:arrayid[count] Before this many jobs have started from arrayid, this job may
start.

beforeokarray:arrayid[count] If this job terminates execution without errors, then jobs in
arrayid may begin.

beforenotokarray:arrayid[count] If this job terminates execution with errors, then jobs in
arrayid may begin.

beforeanyarray:arrayid[count] When this job terminates execution, jobs in arrayid may
begin.
If any of the before forms are used, the jobs referenced by
arrayid must have been submitted with a dependency type of
on.
If any of the before forms are used, the jobs referenced by
arrayid must have the same owner as the job being
submitted. Otherwise, the dependency is ignored.

TORQUE Resource Manager

Dependency Description

Error processing of the existence, state, or condition of the job on which the newly submitted job is a
deferred service, i.e. the check is performed after the job is queued. If an error is detected, the new job will
be deleted by the server. Mail will be sent to the job submitter stating the error.

Dependency examples
qsub -W depend=afterok:123.big.iron.com /tmp/script

qsub -W depend=before:234.hunk1.com:235.hunk1.com

/tmp/script

qsub script.sh -W depend=afterokarray:427[]

(This assumes every job in array 427 has to finish successfully for the dependency to be satisfied.)

qsub script.sh -W depend=afterokarray:427[][5]

(This means that 5 of the jobs in array 427 have to successfully finish in order for the dependency to be
satisfied.)

Operands
The qsub command accepts a script operand that is the path to the script of the job. If the path is
relative, it will be expanded relative to the working directory of the qsub command.

If the script operand is not provided or the operand is the single character "-", the qsub command reads
the script from standard input. When the script is being read from Standard Input, qsub will copy the file
to a temporary file. This temporary file is passed to the library interface routine pbs_submit. The
temporary file is removed by qsub after pbs_submit returns or upon the receipt of a signal which would
cause qsub to terminate.

Standard input
The qsub command reads the script for the job from standard input if the script operand is missing or is
the single character "-".

Input files
The script file is read by the qsub command. qsub acts upon any directives found in the script.

When the job is created, a copy of the script file is made and that copy cannot be modified.

Standard output
Unless the -z option is set, the job identifier assigned to the job will be written to standard output if the
job is successfully created.

TORQUE Resource Manager

2410 Appendices

Appendices 2411

Standard error
The qsub command will write a diagnostic message to standard error for each error occurrence.

Environment variables
The values of some or all of the variables in the qsub commands environment are exported with the job
(see the -v and -v options).

The environment variable PBS_DEFAULT defines the name of the default server. Typically, it corresponds
to the system name of the host on which the server is running. If PBS_DEFAULT is not set, the default is
defined by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string which identifies directives in the
script.

The environment variable PBS_CLIENTRETRY defines the maximum number of seconds qsub will block
(see the -b option). Despite the name, currently qsub is the only client that supports this option.

torque.cfg
The torque.cfg file, located in PBS_SERVER_HOME (/var/spool/torque by default) controls the
behavior of the qsub command. This file contains a list of parameters and values separated by
whitespace.

l QSUBSLEEP – takes an integer operand which specifies time to sleep when running qsub command.
Used to prevent users from overwhelming the scheduler.

l SUBMITFILTER – specifies the path to the submit filter used to pre-process job submission. The
default path is libexecdir/qsub_filter, which falls back to /usr/local/sbin/torque_submitfilter for
backwards compatibility. This torque.cfg parameter overrides this default.

l SERVERHOST

l QSUBHOST

l QSUBSENDUID

l XAUTHPATH

l CLIENTRETRY

l VALIDATEGROUP

l DEFAULTCKPT

l VALIDATEPATH

l RERUNNABLEBYDEFAULT

For example:

QSUBSLEEP 2

RERUNNABLEBYDEFAULT false

TORQUE Resource Manager

Extended description

Script Processing:

A job script may consist of PBS directives, comments and executable statements. A PBS directive
provides a way of specifying job attributes in addition to the command line options. For example:

:
#PBS -N Job_name
#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the script that begins
with the characters "#!" or the character ":" will be ignored and scanning will start with the next line.
Scanning will continue until the first executable line, that is a line that is not blank, not a directive line,
nor a line whose first nonwhite space character is "#". If directives occur on subsequent lines, they will
be ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of characters
starting with the first nonwhite space character on the line and of the same length as the directive prefix
matches the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as they appear on
the command line. The option character is to be preceded with the "-" character.

If an option is present in both a directive and on the command line, that option and its argument, if any,
will be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its argument, if any,
will be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

l The value of the -c option argument if the option is specified on the command line.

l The value of the environment variable PBS_DPREFIX if it is defined.

l The four character string #PBS.

If the -c option is found in a directive in the script file, it will be ignored.

User Authorization:

When the user submits a job from a system other than the one on which the PBS Server is running, the
name under which the job is to be executed is selected according to the rules listed under the -u option.
The user submitting the job must be authorized to run the job under the execution user name. This
authorization is provided if:

l The host on which qsub is run is trusted by the execution host (see /etc/hosts.equiv).

l The execution user has an .rhosts file naming the submitting user on the submitting host.

TORQUE Resource Manager

2412 Appendices

Appendices 2413

C-Shell .logout File:

The following warning applies for users of the c-shell, csh. If the job is executed under the csh and a
.logout file exists in the home directory in which the job executes, the exit status of the job is that of
the .logout script, not the job script. This may impact any inter-job dependencies. To preserve the job
exit status, either remove the .logout file or place the following line as the first line in the .logout
file:

set EXITVAL = $status

and the following line as the last executable line in .logout:

exit $EXITVAL

Interactive Jobs:

If the -I option is specified on the command line or in a script directive, or if the "interactive" job
attribute declared true via the -W option, -W interactive=true, either on the command line or in a
script directive, the job is an interactive job. The script will be processed for directives, but will not be
included with the job. When the job begins execution, all input to the job is from the terminal session in
which qsub is running.

When an interactive job is submitted, the qsub command will not terminate when the job is submitted.
qsub will remain running until the job terminates, is aborted, or the user interrupts qsub with an SIGINT
(the control-C key). If qsub is interrupted prior to job start, it will query if the user wishes to exit. If the
user response "yes", qsub exits and the job is aborted.

One the interactive job has started execution, input to and output from the job pass through qsub.
Keyboard generated interrupts are passed to the job. Lines entered that begin with the tilde (~)
character and contain special sequences are escaped by qsub. The recognized escape sequences are:

Sequence Description

~. qsub terminates execution. The batch job is also terminated.

~susp Suspend the qsub program if running under the C shell. "susp" is the suspend character (usually
CNTL-Z).

~asusp Suspend the input half of qsub (terminal to job), but allow output to continue to be displayed. Only
works under the C shell. "asusp" is the auxiliary suspend character, usually CNTL-Y.

Exit status
Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

Related topics

l qalter(1B)
l qdel(1B)

TORQUE Resource Manager

l qhold(1B)
l qrls(1B)
l qsig(1B)
l qstat(1B)
l pbs_server(8B)

Non-Adaptive Computing topics

l pbs_connect(3B)
l pbs_job_attributes(7B)
l pbs_queue_attributes(7B)
l pbs_resources_irix5(7B)
l pbs_resources_sp2(7B)
l pbs_resources_sunos4(7B)
l pbs_resources_unicos8(7B)
l pbs_server_attributes(7B)
l qselect(1B)
l qmove(1B)
l qmsg(1B)
l qrerun(1B)

qterm
Terminate processing by a PBS batch server.

Synopsis
qterm [-t type] [server...]

Description
The qterm command terminates a batch server. When a server receives a terminate command, the
server will go into the "Terminating" state. No new jobs will be allowed to be started into execution or
enqueued into the server. The impact on jobs currently being run by the server depends

In order to execute qterm, the user must have PBS Operation or Manager privileges.

TORQUE Resource Manager

2414 Appendices

Appendices 2415

Options

Option Name Description

-t type Specifies the type of shut down. The types are:
l immediate – If checkpointing is supported, all running jobs are to immediately stop
execution. If checkpointing is supported, running jobs that can be checkpointed are
checkpointed, terminated, and requeued. If checkpoint is not supported or the job
cannot be checkpointed, running jobs are requeued if the rerunable attribute is
true. Otherwise, jobs are killed.

l delay – If checkpointing is supported, running jobs that can be checkpointed are
checkpointed, terminated, and requeued. If a job cannot be checkpointed, but can
be rerun, the job is terminated and requeued. Otherwise, running jobs are allowed
to continue to run.

Note, the operator or administrator may use the qrerun and qdel
commands to remove running jobs.

l quick – This is the default action if the -t option is not specified. This option is used
when you wish that running jobs be left running when the server shuts down. The
server will cleanly shutdown and can be restarted when desired. Upon restart of
the server, jobs that continue to run are shown as running; jobs that terminated
during the server's absence will be placed into the exiting state.

Operands
The server operand specifies which servers are to shut down. If no servers are given, then the default
server will be terminated.

Standard error
The qterm command will write a diagnostic message to standard error for each error occurrence.

Exit status
Upon successful processing of all the operands presented to the qterm command, the exit status will be a
value of zero.

If the qterm command fails to process any operand, the command exits with a value greater than zero.

Related topics(non-Adaptive Computing topics)

l pbs_server(8B)
l qmgr(8B)
l pbs_resources_aix4(7B)
l pbs_resources_irix5(7B)
l pbs_resources_sp2(7B)

TORQUE Resource Manager

l pbs_resources_sunos4(7B)
l pbs_resources_unicos8(7B)

trqauthd
(TORQUE authorization daemon)

Synopsis
trqauthd -D
trqauthd -d

Description
The trqauthd daemon, introduced in TORQUE 4.0.0, replaced the pbs_iff authentication process. When
users connect to pbs_server by calling one of the TORQUE utilities or by using the TORQUE APIs, the new
user connection must be authorized by a trusted entity which runs as root. The advantage of trqauthd's
doing this rather than pbs_iff is that trqauthd is resident, meaning you do not need to be loaded every
time a connection is made; multi-threaded; scalable; and more easily adapted to new functionality than
pbs_iff.

Beginning in TORQUE 4.2.6, trqauthd can remember the currently active pbs_server host, enhancing high
availability functionality. Previously, trqauthd tried to connect to each host in the $TORQUE_
HOME/<server_name> file until it could successfully connect. Because it now remembers the active
server, it tries to connect to that server first. If it fails to connect, it will go through the <server_name>
file and try to connect to a host where an active pbs_server is running.

Options

-D — Debug

Format ---

Default ---

Description Run trqauthd in debug mode.

Example trqauthd -D

-d — Terminate

Format ---

TORQUE Resource Manager

2416 Appendices

Appendices 2417

-d — Terminate

Default ---

Description Terminate trqauthd.

Example trqauthd -d

Appendix B: Server Parameters
TORQUE server parameters are specified using the qmgr command. The set subcommand is used to
modify the server object. For example:

> qmgr -c 'set server default_queue=batch'

Parameters

acl_hosts

Format <HOST>[,<HOST>]... or <HOST>[range] or <HOST*> where the asterisk (*) can appear anywhere in
the host name

Default (Only the host running pbs_servermay submit jobs.)

Description Specifies a list of hosts from which jobs may be submitted. Hosts in the server nodes file located at
$TORQUE/server_priv/nodes cannot be added to the list using the acl_hosts parameter (see
Server Node File Configuration on page 2222). To submit batch or interactive jobs (see Server
Configuration on page 2215) through hosts that are specified in the server nodes file, use the
submit_hosts parameter.

Qmgr: set queue batch acl_hosts = "hostA,hostB"
Qmgr: set queue batch acl_hosts += "hostE,hostF,hostG"

In version 2.5 and later, the wildcard (*) character can appear anywhere in the host name, and
ranges are supported; these specifications also work for managers and operators.

Qmgr: set server acl_hosts = "galaxy*.tom.org"
Qmgr: set server acl_hosts += "galaxy[0-50].tom.org"
Qmgr: set server managers+=tom@galaxy[0-50].tom.org

TORQUE Resource Manager

acl_host_enable

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that the acl_hosts value is enabled.

acl_logic_or

Format <BOOLEAN>

Default FALSE

Description When set to TRUE,the user and group queue ACL's are logically OR'd. When set to FALSE, they are
AND'd.

allow_node_submit

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that users can submit jobs directly from any trusted compute host
directly or from within batch jobs (see Configuring job submission hosts on page 2216).

When you enable allow_node_submit, you must also enable the allow_proxy_user on
page 2418 parameter to allow user proxying when submitting and running jobs.

allow_proxy_user

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that users can proxy from one user to another. Proxy requests will be
either validated by ruserok() or by the scheduler (see Job Submission on page 2234).

TORQUE Resource Manager

2418 Appendices

Appendices 2419

auto_node_np

Format <BOOLEAN>

Default DISABLED

Description When set to TRUE, automatically configures a node's np (number of processors) value based on
the ncpus value from the status update. Requires full manager privilege to set or alter.

automatic_requeue_exit_code

Format <LONG>

Default ---

Description This is an exit code, defined by the admin, that tells pbs_server to requeue the job instead of con-
sidering it as completed. This allows the user to add some additional checks that the job can run
meaningfully, and if not, then the job script exits with the specified code to be requeued.

checkpoint_defaults

Format <STRING>

Default ---

Description Specifies for a queue the default checkpoint values for a job that does not have checkpointing
specified. The checkpoint_defaults parameter only takes effect on execution queues.

set queue batch checkpoint_defaults="enabled, periodic, interval=5"

clone_batch_delay

Format <INTEGER>

Default 1

Description Specifies the delay (in seconds) between clone batches (see clone_batch_size).

TORQUE Resource Manager

clone_batch_size

Format <INTEGER>

Default 256

Description Job arrays are created in batches of size X. X jobs are created, and after the clone_batch_delay, X
more are created. This repeats until all are created.

copy_on_rerun

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, TORQUE will copy the output and error files over to the user-specified directory
when the grerun command is executed (i.e. a job preemption). Output and error files are only
created when a job is in running state before the preemption occurs.

pbs_server and pbs_mom need to be on the same version.

When you change the value, you must perform a pbs_server restart for the change to
effect.

cray_enabled

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies that this instance of pbs_server has Cray hardware that reports to it.
See Installation Notes for Moab and TORQUE for Cray on page 1214.

default_queue

Format <STRING>

Default ---

Description Indicates the queue to assign to a job if no queue is explicitly specified by the submitter.

TORQUE Resource Manager

2420 Appendices

Appendices 2421

disable_server_id_check

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, makes it so the user for the job doesn't have to exist on the server. The user
must still exist on all the compute nodes or the job will fail when it tries to execute.

If you have disable_server_id_check set to TRUE, a user could request a group to which
they do not belong. Setting VALIDATEGROUP to TRUE in the torque.cfg file prevents

such a scenario (see Appendix K: "torque.cfg" Configuration File on page 2480).

display_job_server_suffix

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, TORQUE will display both the job ID and the host name. When set to FALSE,
only the job ID will be displayed.

If set to FALSE, the environment variable NO_SERVER_SUFFIX must be set to TRUE for
pbs_track to work as expected.

interactive_jobs_can_roam

Format <BOOLEAN>

Default FALSE

Description By default, interactive jobs run from the login node that they submitted from. When TRUE, inter-
active jobs may run on login nodes other than the one where the jobs were submitted to. See
Installation Notes for Moab and TORQUE for Cray on page 1214.

job_exclusive_on_use

Format <BOOLEAN>

Default FALSE

TORQUE Resource Manager

job_exclusive_on_use

Description When job_exclusive_on_use is set to TRUE, pbsnodes will show job-exclusive on a node when
there's at least one of its processors running a job. This differs with the default behavior which is
to show job-exclusive on a node when all of its processors are running a job.

Example set server job_exclusive_on_use=TRUE

job_force_cancel_time

Format <INTEGER>

Default Disabled

Description If a job has been deleted and is still in the system after x seconds, the job will be purged from the
system. This is mostly useful when a job is running on a large number of nodes and one node goes
down. The job cannot be deleted because the MOM cannot be contacted. The qdel fails and none
of the other nodes can be reused. This parameter can used to remedy such situations.

job_log_file_max_size

Format <INTEGER>

Default ---

Description This specifies a soft limit (in kilobytes) for the job log's maximum size. The file size is checked
every five minutes and if the current day file size is greater than or equal to this value, it is rolled
from <filename> to <filename.1> and a new empty log is opened. If the current day file size
exceeds the maximum size a second time, the <filename.1> log file is rolled to <filename.2>, the
current log is rolled to <filename.1>, and a new empty log is opened. Each new log causes all
other logs to roll to an extension that is one greater than its current number. Any value less than 0
is ignored by pbs_server (meaning the log will not be rolled).

job_log_file_roll_depth

Format <INTEGER>

Default ---

TORQUE Resource Manager

2422 Appendices

Appendices 2423

job_log_file_roll_depth

Description This sets the maximum number of new log files that are kept in a day if the job_log_file_max_size
parameter is set. For example, if the roll depth is set to 3, no file can roll higher than <file-
name.3>. If a file is already at the specified depth, such as <filename.3>, the file is deleted so it
can be replaced by the incoming file roll, <filename.2>.

job_log_keep_days

Format <INTEGER>

Default ---

Description This maintains logs for the number of days designated. If set to 4, any log file older than 4 days old
is deleted.

job_nanny

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, enables the experimental "job deletion nanny" feature. All job cancels will cre-
ate a repeating task that will resend KILL signals if the initial job cancel failed. Further job cancels
will be rejected with the message "job cancel in progress." This is useful for temporary failures
with a job's execution node during a job delete request.

job_stat_rate

Format <INTEGER>

Default 300 (30 in TORQUE 1.2.0p5 and earlier)

Description If the mother superior has not sent an update by the specified time, at the specified time pbs_
server requests an update on job status from the mother superior.

job_start_timeout

Format <INTEGER>

TORQUE Resource Manager

job_start_timeout

Default ---

Description Specifies the pbs_server to pbs_mom TCP socket timeout in seconds that is used when the pbs_
server sends a job start to the pbs_mom. It is useful when the MOM has extra overhead involved
in starting jobs. If not specified, then the tcp_timeout parameter is used.

job_sync_timeout

Format <INTEGER>

Default 60

Description When a stray job is reported on multiple nodes, the server sends a kill signal to one node at a time.
This timeout determines how long the server waits between kills if the job is still being reported
on any nodes.

keep_completed

Format <INTEGER>

Default ---

If you ran torque.setup on TORQUE installation, the default is 300.

Description The amount of time a job will be kept in the queue after it has entered the completed state. keep_
completed must be set for job dependencies to work.
For more information, see Keeping Completed Jobs on page 2251.

lock_file

Format <STRING>

Default torque/server_priv/server.lock

Description Specifies the name and location of the lock file used to determine which high availability server
should be active.
If a full path is specified, it is used verbatim by TORQUE. If a relative path is specified, TORQUE will
prefix it with torque/server_priv.

TORQUE Resource Manager

2424 Appendices

Appendices 2425

lock_file_update_time

Format <INTEGER>

Default 3

Description Specifies how often (in seconds) the thread will update the lock file.

lock_file_check_time

Format <INTEGER>

Default 9

Description Specifies how often (in seconds) a high availability server will check to see if it should become act-
ive.

log_events

Format Bitmap

Default ---

Description By default, all events are logged. However, you can customize things so that only certain events
show up in the log file. These are the bitmaps for the different kinds of logs:
#define PBSEVENT_ERROR 0x0001 /* internal errors */
#define PBSEVENT_SYSTEM 0x0002 /* system (server) events */
#define PBSEVENT_ADMIN 0x0004 /* admin events */
#define PBSEVENT_JOB 0x0008 /* job related events */
#define PBSEVENT_JOB_USAGE 0x0010 /* End of Job accounting */
#define PBSEVENT_SECURITY 0x0020 /* security violation events */
#define PBSEVENT_SCHED 0x0040 /* scheduler events */
#define PBSEVENT_DEBUG 0x0080 /* common debug messages */
#define PBSEVENT_DEBUG2 0x0100 /* less needed debug messages */
#define PBSEVENT_FORCE 0x8000 /* set to force a message */

If you want to log only error, system, and job information, use qmgr to set log_events to 11:

set server log_events = 11

TORQUE Resource Manager

log_file_max_size

Format <INTEGER>

Default 0

Description Specifies a soft limit, in kilobytes, for the server's log file. The file size is checked every 5 minutes,
and if the current day file size is greater than or equal to this value then it will be rolled from X to
X.1 and a new empty log will be opened. Any value less than or equal to 0 will be ignored by pbs_
server (the log will not be rolled).

log_file_roll_depth

Format <INTEGER>

Default 1

Description Controls how deep the current day log files will be rolled, if log_file_max_size is set, before they are
deleted.

log_keep_days

Format <INTEGER>

Default 0

Description Specifies how long (in days) a server or MOM log should be kept.

log_level

Format <INTEGER>

Default 0

Description Specifies the pbs_server logging verbosity. Maximum value is 7.

mail_body_fmt

Format A printf-like format string

TORQUE Resource Manager

2426 Appendices

Appendices 2427

mail_body_fmt

Default PBS Job Id: %i Job Name: %j Exec host: %h %m %d

Description Override the default format for the body of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:
\n new line
\t tab
\\ backslash
\' single quote
\" double quote
%d details concerning the message
%h PBS host name
%i PBS job identifier
%j PBS job name
%m long reason for message
%r short reason for message
%% a single %

mail_domain

Format <STRING>

Default ---

Description Override the default domain for outgoing mail messages. If set, emails will be addressed to <user-
>@<hostdomain>. If unset, the job's Job_Owner attribute will be used. If set to never, TORQUE
will never send emails.

mail_from

Format <STRING>

Default adm

Description Specify the name of the sender whenTORQUEsends emails.

mail_subject_fmt

Format A printf-like format string

TORQUE Resource Manager

mail_subject_fmt

Default PBS JOB %i

Description Override the default format for the subject of outgoing mail messages. A number of printf-like
format specifiers and escape sequences can be used:
\n new line
\t tab
\\ backslash
\' single quote
\" double quote
%d details concerning the message
%h PBS host name
%i PBS job identifier
%j PBS job name
%m long reason for message
%r short reason for message
%% a single %

managers

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch administrator privileges. The host, sub-domain, or domain name may
be wildcarded by the use of an asterisk character (*). Requires full manager privilege to set or
alter.

max_job_array_size

Format <INTEGER>

Default Unlimited

Description Sets the maximum number of jobs that can be in a single job array.

max_slot_limit

Format <INTEGER>

TORQUE Resource Manager

2428 Appendices

Appendices 2429

max_slot_limit

Default Unlimited

Description This is the maximum number of jobs that can run concurrently in any job array. Slot limits can be
applied at submission time with qsub, or it can be modified with qalter.

qmgr -c 'set server max_slot_limit=10'

No array can request a slot limit greater than 10. Any array that does not request a slot limit
receives a slot limit of 10. Using the example above, slot requests greater than 10 are rejected with
the message: "Requested slot limit is too large, limit is 10."

max_threads

Format <INTEGER>

Default The value of min_threads ((2 * the number of procs listed in /proc/cpuinfo) + 1) * 20

Description This is the maximum number of threads that should exist in the thread pool at any time. See Set-
ting min_threads and max_threads on page 2303 for more information.

max_user_queuable

Format <INTEGER>

Default Unlimited

Description When set, max_user_queuable places a system-wide limit on the amount of jobs that an
individual user can queue.

qmgr -c 'set server max_user_queuable=500'

min_threads

Format <INTEGER>

Default (2 * the number of procs listed in /proc/cpuinfo) + 1. If TORQUE is unable to read
/proc/cpuinfo, the default is 10.

Description This is the minimum number of threads that should exist in the thread pool at any time. See Set-
ting min_threads and max_threads on page 2303 for more information.

TORQUE Resource Manager

moab_array_compatible

Format <BOOLEAN>

Default TRUE

Description This parameter places a hold on jobs that exceed the slot limit in a job array. When one of the act-
ive jobs is completed or deleted, one of the held jobs goes to a queued state.

mom_job_sync

Format <BOOLEAN>

Default TRUE

Description When set to TRUE, specifies that the pbs_serverwill synchronize its view of the job queue and
resource allocation with compute nodes as they come online. If a job exists on a compute node, it
will be automatically cleaned up and purged. (Enabled by default in TORQUE 2.2.0 and higher.)
Jobs that are no longer reported by the mother superior are automatically purged by pbs_server.
Jobs that pbs_server instructs the MOM to cancel have their processes killed in addition to being
deleted (instead of leaving them running as in versions of TORQUE prior to 4.1.1).

next_job_number

Format <INTEGER>

Default ---

Description Specifies the ID number of the next job. If you set your job number too low and TORQUE repeats a
job number that it has already used, the job will fail. Before setting next_job_number to a number
lower than any number that TORQUE has already used, you must clear out your .e and .o files.

If you use Moab Workload Manager and have configured it to synchronize job IDs with
TORQUE), then Moab will generate the job ID and next_job_number will have no effect on
the job ID. See Resource Manager Configuration on page 588 for more information.

node_check_rate

Format <INTEGER>

Default 600

TORQUE Resource Manager

2430 Appendices

Appendices 2431

node_check_rate

Description Specifies the minimum duration (in seconds) that a node can fail to send a status update before
being marked down by the pbs_server daemon.

node_pack

Format <BOOLEAN>

Default ---

Description Controls how multiple processor nodes are allocated to jobs. If this attribute is set to TRUE, jobs will
be assigned to the multiple processor nodes with the fewest free processors. This packs jobs into
the fewest possible nodes leaving multiple processor nodes free for jobs which need many pro-
cessors on a node. If set to false, jobs will be scattered across nodes reducing conflicts over memory
between jobs. If unset, the jobs are packed on nodes in the order that the nodes are declared to
the server (in the nodes file). Default value: unset - assigned to nodes as nodes in order that were
declared.

node_ping_rate

Format <INTEGER>

Default 300

Description Specifies the maximum interval (in seconds) between successive "pings" sent from the pbs_server
daemon to the pbs_mom daemon to determine node/daemon health.

no_mail_force

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, eliminates all e-mails when mail_options (see qsub on page 2395) is set to
"n". The job owner won't receive e-mails when a job is deleted by a different user or a job failure
occurs. If no_mail_force is unset or is FALSE, then the job owner receives e-mails when a job is
deleted by a different user or a job failure occurs.

TORQUE Resource Manager

np_default

Format <INTEGER>

Default ---

Description Allows the administrator to unify the number of processors (np) on all nodes. The value can be
dynamically changed. A value of 0 tells pbs_server to use the value of np found in the nodes file.
The maximum value is 32767.

operators

Format <user>@<host.sub.domain>[,<user>@<host.sub.domain>...]

Default root@localhost

Description List of users granted batch operator privileges. Requires full manager privilege to set or alter.

pass_cpuclock

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, the pbs_server daemon passes the option and its value to the pbs_mom daemons
for direct implementation by the daemons, making the CPU frequency adjustable as part of a
resource request by a job submission.
If set to FALSE, the pbs_server daemon creates and passes a PBS_CPUCLOCK job environment
variable to the pbs_mom daemons that contains the value of the cpuclock attribute used as part of
a resource request by a job submission. The CPU frequencies on the MOMs are not adjusted. The
environment variable is for use by prologue and epilogue scripts, enabling administrators to log
and research when users are making cpuclock requests, as well as researchers and developers to
perform CPU clock frequency changes using a method outside of that employed by the TORQUE
pbs_mom daemons.

poll_jobs

Format <BOOLEAN>

Default TRUE (FALSE in TORQUE 1.2.0p5 and earlier)

TORQUE Resource Manager

2432 Appendices

Appendices 2433

poll_jobs

Description If set to TRUE, pbs_serverwill poll job info from MOMs over time and will not block on handling
requests which require this job information.
If set to FALSE, no polling will occur and if requested job information is stale, pbs_servermay block
while it attempts to update this information. For large systems, this value should be set to TRUE.

query_other_jobs

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, specifies whether or not non-admin users may view jobs they do not own.

record_job_info

Format <BOOLEAN>

Default FALSE

Description This must be set to TRUE in order for job logging to be enabled.

record_job_script

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, this adds the contents of the script executed by a job to the log.

For record_job_script to take effect, record_job_info on page 2433 must be set
to TRUE.

resources_available

Format <STRING>

Default ---

TORQUE Resource Manager

resources_available

Description Allows overriding of detected resource quantity limits (see Assigning queue resource limits on
page 2287). pbs_servermust be restarted for changes to take effect. Also, resources_available is
constrained by the smallest of queue.resources_available and the server.resources_available.

scheduling

Format <BOOLEAN>

Default ---

Description Allows pbs_server to be scheduled. When FALSE, pbs_server is a resource manager that works on
its own. When TRUE, TORQUE allows a scheduler, such as Moab or Maui, to dictate what pbs_server
should do.

submit_hosts

Format "<HOSTNAME>[,<HOSTNAME>]..."

Default ---

Description Indicates which hosts included in the server nodes file located at $TORQUE/server_
priv/nodes (see Server Node File Configuration on page 2222) can submit batch or inter-
active jobs (see Configuring job submission hosts on page 2216). For more information on
adding hosts that are not included in the first nodes file, see the acl_hosts parameter.

tcp_timeout

Format <INTEGER>

Default 300

Description Specifies the timeout for idle TCP connections. If no communication is received by the server on
the connection after the timeout, the server closes the connection. There is an exception for
connections made to the server on port 15001 (default); timeout events are ignored on the server
for such connections established by a client utility or scheduler. Responsibility rests with the client
to close the connection first (See Appendix F: Large Cluster Considerations on page 2463 for
additional information.).

If you use Moab Workload Manager, prevent communication errors by giving tcp_timeout
at least twice the value of the Moab RMPOLLINTERVAL.

TORQUE Resource Manager

2434 Appendices

Appendices 2435

thread_idle_seconds

Format <INTEGER>

Default 300

Description This is the number of seconds a thread can be idle in the thread pool before it is deleted. If
threads should not be deleted, set to -1. TORQUE will always maintain at leastmin_threads num-
ber of threads, even if all are idle.

Appendix C: Node Manager (MOM) Configuration
Under TORQUE, MOM configuration is accomplished using the mom_priv/config file located in the PBS
directory on each execution server. You must create this file and insert any desired lines in a text editor
(blank lines are allowed). When you modify the mom_priv/config file, you must restart pbs_mom.

The following examples demonstrate two methods of modifying the mom_priv/config file:

> echo "\$loglevel 3" > /var/spool/torque/mom_priv/config

> vim /var/spool/torque/mom_priv/config
...
$loglevel 3

For details, see these topics:

l Parameters on page 2435

l Node Features and Generic Consumable Resource Specification on page 2453

l Command-line Arguments on page 2453

Related topics

l Appendix A: Commands Overview on page 2337
l Appendix G: Prologue and Epilogue Scripts on page 2469

Parameters
These parameters go in the mom_priv/config file. They control various behaviors for the MOMs.

arch

Format <STRING>

Description Specifies the architecture of the local machine. This information is used by the scheduler only.

TORQUE Resource Manager

arch

Example arch ia64

$attempt_to_make_dir

Format <BOOLEAN>

Description When set to TRUE, specifies that you want TORQUE to attempt to create the output directories for
jobs if they do not already exist.
Default is FALSE.

TORQUE uses this parameter to make the directory as the user and not as root. TORQUE
will create the directory (or directories) ONLY if the user has permissions to do so.

Example $attempt_to_make_dir true

$clienthost

Format <STRING>

Description Specifies the machine running pbs_server.

This parameter is deprecated. Use
$pbsserver.

Example $clienthost node01.teracluster.org

$check_poll_time

Format <STRING>

Description Amount of time between checking running jobs, polling jobs, and trying to resend obituaries for
jobs that haven't sent successfully. Default is 45 seconds.

Example $check_poll_time 90

TORQUE Resource Manager

2436 Appendices

Appendices 2437

$configversion

Format <STRING>

Description Specifies the version of the config file data.

Example $configversion 113

$cputmult

Format <FLOAT>

Description CPU time multiplier.

If set to 0.0, MOM level cputime enforcement is
disabled.

Example $cputmult 2.2

$down_on_error

Format <BOOLEAN>

Description Causes the MOM to report itself as state "down" to pbs_server in the event of a failed health check.
This feature is experimental. For more information, see Parameters on page 2435.

Example $down_on_error true

$enablemomrestart

Format <BOOLEAN>

Description Enables automatic restarts of the MOM. If enabled, the MOM will check if its binary has been
updated and restart itself at a safe point when no jobs are running; thus making upgrades easier.
The check is made by comparing the mtime of the pbs_mom executable. Command-line args, the
process name, and the PATH env variable are preserved across restarts. It is recommended that
this not be enabled in the config file, but enabled when desired with momctl (see Parameters on
page 2435 for more information.)

Example $enablemomrestart true

TORQUE Resource Manager

$exec_with_exec

Format <BOOLEAN>

Description pbs_mom uses the exec command to start the job script rather than the TORQUE default method,
which is to pass the script's contents as the input to the shell. This means that if you trap signals in
the job script, they will be trapped for the job. Using the default method, you would need to con-
figure the shell to also trap the signals. Default is FALSE.

Example $exec_with_exec true

$ext_pwd_retry

Format <INTEGER>

Description (Available in TORQUE 2.5.10, 3.0.4, and later.) Specifies the number of times to retry checking the
password. Useful in cases where external password validation is used, such as with LDAP.
The default value is 3 retries.

Example $ext_pwd_retry = 5

$ideal_load

Format <FLOAT>

Description Ideal processor load.

Example $ideal_load 4.0

$igncput

Format <BOOLEAN>

Description Ignores limit violation pertaining to CPU time. Default is FALSE.

Example $igncput true

TORQUE Resource Manager

2438 Appendices

Appendices 2439

$ignmem

Format <BOOLEAN>

Description Ignores limit violations pertaining to physical memory. Default is FALSE.

Example $ignmem true

$ignvmem

Format <BOOLEAN>

Description Ignores limit violations pertaining to virtual memory. Default is FALSE.

Example $ignvmem true

$ignwalltime

Format <BOOLEAN>

Description Ignore walltime (do not enable MOM based walltime limit enforcement).

Example $ignwalltime true

$jobdirectory_sticky

Format <BOOLEAN>

Description When this option is set (true), the job directory on the MOM can have a sticky bit set. The default
is false.

Example $jobdirectory_sticky true

$job_exit_wait_time

Format <INTEGER>

TORQUE Resource Manager

$job_exit_wait_time

Description This is the timeout to clean up parallel jobs after one of the sister nodes for the parallel job goes
down or is otherwise unresponsive. The MOM sends out all of its kill job requests to sisters and
marks the time. Additionally, the job is placed in the substate JOB_SUBSTATE_EXIT_WAIT. The
MOM then periodically checks jobs in this state and if they are in this state for more than the spe-
cified time, death is assumed and the job gets cleaned up. Default is 10 minutes.

Example $job_exit_wait_time 300

$job_output_file_unmask

Format <STRING>

Description Uses the specified umask when creating job output and error files. Values can be specified in base
8, 10, or 16; leading 0 implies octal and leading 0x or 0X hexadecimal. A value of "userdefault" will
use the user's default umask. This parameter is in version 2.3.0 and later.

Example $job_output_file_umask 027

$job_starter

Format <STRING>

Description Specifies the fully qualified pathname of the job starter. If this parameter is specified, instead of
executing the job command and job arguments directly, the MOM will execute the job starter,
passing the job command and job arguments to it as its arguments. The job starter can be used to
launch jobs within a desired environment.

Example $job_starter /var/torque/mom_priv/job_starter.sh
> cat /var/torque/mom_priv/job_starter.sh
#!/bin/bash
export FOOHOME=/home/foo
ulimit -n 314
$*

$log_directory

Format <STRING>

TORQUE Resource Manager

2440 Appendices

Appendices 2441

$log_directory

Description Changes the log directory. Default is TORQUE_HOME/mom_logs/. TORQUE_HOME default is
/var/spool/torque/ but can be changed in the ./configure script. The value is a string and
should be the full path to the desired MOM log directory.

Example $log_directory /opt/torque/mom_logs/

$log_file_suffix

Format <STRING>

Description Optional suffix to append to log file names. If %h is the suffix, pbs_mom appends the hostname for
where the log files are stored if it knows it, otherwise it will append the hostname where the MOM
is running.

Example $log_file_suffix %h = 20100223.mybox
$log_file_suffix foo = 20100223.foo

$logevent

Format <STRING>

Description Specifies a bitmap for event types to log.

Example $logevent 255

$loglevel

Format <INTEGER>

Description Specifies the verbosity of logging with higher numbers specifying more verbose logging. Values
may range between 0 and 7.

Example $loglevel 4

$log_file_max_size

Format <INTEGER>

TORQUE Resource Manager

$log_file_max_size

Description Soft limit for log file size in kilobytes. Checked every 5 minutes. If the log file is found to be greater
than or equal to log_file_max_size the current log file will be moved from X to X.1 and a new empty
file will be opened.

Example $log_file_max_size = 100

$log_file_roll_depth

Format <INTEGER>

Description Specifies how many times a log fill will be rolled before it is deleted.

Example $log_file_roll_depth = 7

$log_keep_days

Format <INTEGER>

Description Specifies how many days to keep log files. pbs_mom deletes log files older than the specified num-
ber of days. If not specified, pbs_mom won't delete log files based on their age.

Example $log_keep_days 10

$max_conn_timeout_micro_sec

Format <INTEGER>

Description Specifies how long pbs_mom should wait for a connection to be made. Default value is 10000
(.1 sec).

Example $max_conn_timeout_micro_sec 30000

This sets the connection timeout on the MOM to .3 seconds..

$max_join_job_wait_time

Format <INTEGER>

TORQUE Resource Manager

2442 Appendices

Appendices 2443

$max_join_job_wait_time

Description The interval to wait for jobs stuck in a prerun state before deleting them from the MOMs and
requeueing them on the server. Default is 10 minutes.

Example $max_join_job_wait_time 300

$max_load

Format <FLOAT>

Description Maximum processor load.

Example $max_load 4.0

$memory_pressure_duration

Format <INTEGER>

Description (Applicable in version 3.0 and later.) Memory pressure duration sets a limit to the number of times
the value of memory_pressure_threshold can be exceeded before a process is terminated. This can
only be used with $memory_pressure_threshold.

Example $memory_pressure_duration 5

$memory_pressure_threshold

Format <INTEGER>

Description (Applicable in version 3.0 and later.) The memory_pressure of a cpuset provides a simple per-cpuset
running average of the rate that the processes in a cpuset are attempting to free up in-use
memory on the nodes of the cpuset to satisfy additional memory requests. The memory_pressure_
threshold is an integer number used to compare against the reclaim rate provided by the
memory_pressure file. If the threshold is exceeded and memory_pressure_duration is set, then the
process terminates after exceeding the threshold by the number of times set in memory_pressure_
duration. If memory_pressure duration is not set, then a warning is logged and the process
continues. Memory_pressure_threshold is only valid with memory_pressure enabled in the root
cpuset.
To enable, log in as the super user and execute the command echo 1 >>
/dev/cpuset/memory_pressure_enabled. See the cpuset man page for more information
concerning memory pressure.

TORQUE Resource Manager

$memory_pressure_threshold

Example $memory_pressure_threshold 1000

$mom_hierarchy_retry_time

Format <SECONDS>

Description Specifies the amount of time that a MOM waits to retry a node in the hierarchy path after a failed
connection to that node. The default is 90 seconds.

Example $mom_hierarchy_retry_time 30

$mom_host

Format <STRING>

Description Sets the local hostname as used by pbs_mom.

Example $mom_host node42

$node_check_script

Format <STRING>

Description Specifies the fully qualified pathname of the health check script to run (see Compute Node
Health Check on page 2328 for more information).

Example $node_check_script /opt/batch_tools/nodecheck.pl

$node_check_interval

Format <STRING>

TORQUE Resource Manager

2444 Appendices

Appendices 2445

$node_check_interval

Description Specifies the number of MOM intervals between subsequent executions of the specified health
check. This value default to 1 indicating the check is run every MOM interval (see Compute Node
Health Check on page 2328 for more information).
$node_check_interval has two special strings that can be set:

l jobstart – makes the node health script run when a job is started.
l jobend – makes the node health script run after each job has completed on a node.

Example $node_check_interval 5

$nodefile_suffix

Format <STRING>

Description Specifies the suffix to append to a host names to denote the data channel network adapter in a
multi-homed compute node.

Example $nodefile_suffix i

with the suffix of "i" and the control channel adapter with the name node01, the data channel
would have a hostname of node01i.

$nospool_dir_list

Format <STRING>

Description If this is configured, the job's output is spooled in the working directory of the job or the specified
output directory.
Specify the list in full paths, delimited by commas. If the job's working directory (or specified
output directory) is in one of the paths in the list (or a subdirectory of one of the paths in the list),
the job is spooled directly to the output location. $nospool_dir_list * is accepted.
The user that submits the job must have write permission on the folder where the job is written,
and read permission on the folder where the file is spooled.
Alternatively, you can use the $spool_as_final_name parameter to force the job to spool directly to
the final output.

This should generally be used only when the job can run on the same machine as where
the output file goes, or if there is a shared filesystem. If not, this parameter can slow down
the system or fail to create the output file.

Example $nospool_dir_list /home/mike/jobs/,/var/tmp/spool/

TORQUE Resource Manager

opsys

Format <STRING>

Description Specifies the operating system of the local machine. This information is used by the scheduler only.

Example opsys RHEL3

$pbsclient

Format <STRING>

Description Specifies machines which the MOM daemon will trust to run resource manager commands via
momctl. This may include machines where monitors, schedulers, or admins require the use of this
command.

Example $pbsclient node01.teracluster.org

$pbsserver

Format <STRING>

Description Specifies the machine running pbs_server.

This parameter replaces the deprecated parameter
$clienthost.

Example $pbsserver node01.teracluster.org

$prologalarm

Format <INTEGER>

Description Specifies maximum duration (in seconds) which the MOM will wait for the job prologue or job epi-
logue to complete. The default value is 300 seconds (5 minutes). The maximum value is 300 and
when set to anything higher than that, it is treated as 300.

Example $prologalarm 60

TORQUE Resource Manager

2446 Appendices

Appendices 2447

$rcpcmd

Format <STRING>

Description Specifies the full path and optional additional command line args to use to perform remote copies.

Example mom_priv/config:
$rcpcmd /usr/local/bin/scp -i /etc/sshauth.dat

$remote_reconfig

Format <STRING>

Description Enables the ability to remotely reconfigure pbs_mom with a new config file. Default is disabled.
This parameter accepts various forms of true, yes, and 1. For more information on how to recon-
figure MOMs, seemomctl-r.

Example $remote_reconfig true

$remote_checkpoint_dirs

Format <STRING>

Description Specifies which server checkpoint directories are remotely mounted. It tells the MOM which dir-
ectories are shared with the server. Using remote checkpoint directories eliminates the need to
copy the checkpoint files back and forth between the MOM and the server. All entries must be on
the same line, separated by a space.

Example $remote_checkpoint_dirs /checkpointFiles /bigStorage /fast

This informs the MOM that the /checkpointFiles, /bigStorage, and /fast
directories are remotely mounted checkpoint directories.

$reduce_prolog_checks

Format <STRING>

Description If enabled, TORQUE will only check if the file is a regular file and is executable, instead of the nor-
mal checks listed on the prologue and epilogue page. Default is FALSE.

TORQUE Resource Manager

$reduce_prolog_checks

Example $reduce_prolog_checks true

$reject_job_submission

Format <BOOLEAN>

Description If set to TRUE, jobs will be rejected and the user will receive the message, "Jobs cannot be run on
mom %s." Default is FALSE.

Example $reject_job_submission job01

$resend_join_job_wait_time

Format <INTEGER>

Description This is the timeout for the Mother Superior to re-send the join job request if it didn't get a reply
from all the sister MOMs. The resend happens only once. Default is 5 minutes.

Example $resend_join_job_wait_time 120

$restricted

Format <STRING>

Description Specifies hosts which can be trusted to access MOM services as non-root. By default, no hosts are
trusted to access MOM services as non-root.

Example $restricted *.teracluster.org

$rpp_throttle

Format <INTEGER>

Description This integer is in microseconds and causes a sleep after every RPP packet is sent. It is for systems
that experience job failures because of incomplete data.

Example $rpp_throttle 100

(will cause a 100 microsecond sleep)

TORQUE Resource Manager

2448 Appendices

Appendices 2449

size[fs=<FS>]

Format N/A

Description Specifies that the available and configured disk space in the <FS> filesystem is to be reported to
the pbs_server and scheduler.

To request disk space on a per job basis, specify the file resource as in qsub -l
nodes=1,file=1000kb.

Unlike most MOM config options, the size parameter is not preceded by a "$" character.

Example size[fs=/localscratch]

The available and configured disk space in the /localscratch filesystem will be reported.

$source_login_batch

Format <STRING>

Description Specifies whether or not MOM will source the /etc/profile, etc. type files for batch jobs. Para-
meter accepts various forms of true, false, yes, no, 1 and 0. Default is TRUE. This parameter is in
version 2.3.1 and later.

Example $source_login_batch False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$source_login_interactive

Format <STRING>

Description Specifies whether or not MOM will source the /etc/profile, etc. type files for interactive jobs.
Parameter accepts various forms of true, false, yes, no, 1 and 0. Default is TRUE. This parameter is
in version 2.3.1 and later.

Example $source_login_interactive False

MOM will bypass the sourcing of /etc/profile, etc. type files.

$spool_as_final_name

Format <BOOLEAN>

TORQUE Resource Manager

$spool_as_final_name

Description This makes the job write directly to its output destination instead of a spool directory. This allows
users easier access to the file if they want to watch the jobs output as it runs.

Example $spool_as_final_name true

$status_update_time

Format <INTEGER>

Description Specifies the number of seconds between subsequent MOM-to-server update reports. Default is
45 seconds.

Example status_update_time:
$status_update_time 120

MOM will send server update reports every 120 seconds.

$thread_unlink_calls

Format <BOOLEAN>

Description Threads calls to unlink when deleting a job. Default is false. If it is set to TRUE, pbs_mom will use a
thread to delete the job's files.

Example thread_unlink_calls:
$thread_unlink_calls true

$timeout

Format <INTEGER>

Description Specifies the number of seconds before a TCP connection on the MOM will timeout. Default is 300
seconds.
In version 3.x and earlier, this specifies the number of seconds before MOM-to-MOM messages will
timeout if RPP is disabled. Default is 60 seconds.

Example $timeout 120

A TCP connection will wait up to 120 seconds before timing out.
For 3.x and earlier, MOM-to-MOM communication will allow up to 120 seconds before timing out.

TORQUE Resource Manager

2450 Appendices

Appendices 2451

$tmpdir

Format <STRING>

Description Specifies a directory to create job-specific scratch space (see Creating Per-Job Temporary Dir-
ectories).

Example $tmpdir /localscratch

$usecp

Format <HOST>:<SRCDIR> <DSTDIR>

Description Specifies which directories should be staged (see NFS and Other Networked Filesystems on
page 2307)

Example $usecp *.fte.com:/data /usr/local/data

$use_smt

Format <BOOLEAN>

Description Indicates that the user would like to use SMT. If set, each logical core inside of a physical core will
be used as a normal core for cpusets. This parameter is on by default.

If SMT is used, you will need to set the np attribute so that each logical processor is
counted.

Example $use_smt false

$varattr

Format <INTEGER> <STRING>

TORQUE Resource Manager

$varattr

Description Provides a way to keep track of dynamic attributes on nodes.
<INTEGER> is how many seconds should go by between calls to the script to update the dynamic
values. If set to -1, the script is read only one time.
<STRING> is the script path. This script should check for whatever dynamic attributes are desired,
and then output lines in this format:
name=value

Include any arguments after the script's full path. These features are visible in the output of
pbsnodes-a
varattr=Matlab=7.1;Octave=1.0.
For information about using $varattr to request dynamic features in Moab, see Resource
Manager Extensions on page 618.

Example $varattr 25 /usr/local/scripts/nodeProperties.pl arg1 arg2 arg3

$wallmult

Format <FLOAT>

Description Sets a factor to adjust walltime usage by multiplying a default job time to a common reference
system. It modifies real walltime on a per-MOM basis (MOM configuration parameters). The factor
is used for walltime calculations and limits in the same way that cputmult is used for cpu time.

If set to 0.0, MOM level walltime enforcement is disabled.

Example $wallmult 2.2

$xauthpath

Format <STRING>

Description Specifies the path to the xauth binary to enable X11 forwarding.

Example $xauthpath /opt/bin/xauth/

Related topics

l Appendix C: Node Manager (MOM) Configuration on page 2435

TORQUE Resource Manager

2452 Appendices

Appendices 2453

Node Features and Generic Consumable Resource Specification
Node features (a.k.a. "node properties") are opaque labels which can be applied to a node. They are not
consumable and cannot be associated with a value. (Use generic resources described below for these
purposes). Node features are configured within the nodes file on the pbs_server head node. This file can
be used to specify an arbitrary number of node features.

Additionally, per node consumable generic resources may be specified using the format "<ATTR> <VAL>"
with no leading dollar ("$") character. When specified, this information is routed to the scheduler and can
be used in scheduling decisions. For example, to indicate that a given host has two tape drives and one
node-locked matlab license available for batch jobs, the following could be specified:

mom_priv/config:

$clienthost 241.13.153.7
tape 2
matlab 1

Dynamic consumable resource information can be routed in by specifying a path preceded by an
exclamation point. (!) as in the example below. If the resource value is configured in this manner, the
specified file will be periodically executed to load the effective resource value.

mom_priv/config:

$clienthost 241.13.153.7
tape !/opt/rm/gettapecount.pl
matlab !/opt/tools/getlicensecount.pl

Related topics

l Appendix C: Node Manager (MOM) Configuration on page 2435

Command-line Arguments
Below is a table of pbs_mom command-line startup flags.

Flag Description

a <integer> Alarm time in seconds.

c <file> Config file path.

C <dir-
ectory>

Checkpoint path.

d <dir-
ectory>

Home directory.

L <file> Log file.

TORQUE Resource Manager

Flag Description

M <integer> MOM port to listen on.

p Perform 'poll' based job recovery on restart (jobs persist until associated processes terminate).

P On restart, deletes all jobs that were running on MOM (Available in 2.4.X and later).

q On restart, requeues all jobs that were running on MOM (Available in 2.4.X and later).

r On restart, kills all processes associated with jobs that were running on MOM, and then requeues
the jobs.

R <integer> MOM 'RM' port to listen on.

S <integer> pbs_server port to connect to.

v Display version information and exit.

x Disable use of privileged port.

? Show usage information and exit.

For more details on these command-line options, see pbs_mom on page 2344.

Related topics

l Appendix C: Node Manager (MOM) Configuration on page 2435

Appendix D: Diagnostics and Error Codes
TORQUE has a diagnostic script to assist you in giving TORQUE Support the files they need to support
issues. It should be run by a user that has access to run all TORQUE commands and access to all TORQUE
directories (this is usually root).

The script (contrib/diag/tdiag.sh) is available in TORQUE 2.3.8, TORQUE 2.4.3, and later. The
script grabs the node file, server and MOM log files, and captures the output of qmgr -c 'p s'. These
are put in a tar file.

The script also has the following options (this can be shown in the command line by entering
./tdiag.sh -h):

USAGE: ./torque_diag [-d DATE] [-h] [-o OUTPUT_FILE] [-t TORQUE_HOME]

TORQUE Resource Manager

2454 Appendices

Appendices 2455

l DATE should be in the format YYYYmmdd. For example, " 20091130" would be the date for
November 30th, 2009. If no date is specified, today's date is used.

l OUTPUT_FILE is the optional name of the output file. The default output file is torque_
diag<today's_date>.tar.gz. TORQUE_HOME should be the path to your TORQUE directory.
If no directory is specified, /var/spool/torque is the default.

Table 4-5: TORQUE error codes

Error code name Number Description

PBSE_FLOOR 15000 No error

PBSE_UNKJOBID 15001 Unknown job ID error

PBSE_NOATTR 15002 Undefined attribute

PBSE_ATTRRO 15003 Cannot set attribute, read only or insufficient permission

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 Unauthorized Request

PBSE_IFF_NOT_FOUND 15008 trqauthd unable to authenticate

PBSE_MUNGE_NOT_FOUND 15009 Munge executable not found, unable to authenticate

PBSE_BADHOST 15010 Access from host not allowed, or unknown host

PBSE_JOBEXIST 15011 Job with requested ID already exists

PBSE_SYSTEM 15012 System error

PBSE_INTERNAL 15013 PBS server internal error

PBSE_REGROUTE 15014 Dependent parent job currently in routing queue

PBSE_UNKSIG 15015 Unknown/illegal signal name

TORQUE Resource Manager

Error code name Number Description

PBSE_BADATVAL 15016 Illegal attribute or resource value for

PBSE_MODATRRUN 15017 Cannot modify attribute while job running

PBSE_BADSTATE 15018 Request invalid for state of job

PBSE_UNKQUE 15020 Unknown queue

PBSE_BADCRED 15021 Invalid credential

PBSE_EXPIRED 15022 Expired credential

PBSE_QUNOENB 15023 Queue is not enabled

PBSE_QACESS 15024 Access to queue is denied

PBSE_BADUSER 15025 Bad UID for job execution

PBSE_HOPCOUNT 15026 Job routing over too many hops

PBSE_QUEEXIST 15027 Queue already exists

PBSE_ATTRTYPE 15028 Incompatible type

PBSE_QUEBUSY 15029 Cannot delete busy queue

PBSE_QUENBIG 15030 Queue name too long

PBSE_NOSUP 15031 No support for requested service

PBSE_QUENOEN 15032 Cannot enable queue, incomplete definition

PBSE_PROTOCOL 15033 Batch protocol error

PBSE_BADATLST 15034 Bad attribute list structure

PBSE_NOCONNECTS 15035 No free connections

PBSE_NOSERVER 15036 No server specified

TORQUE Resource Manager

2456 Appendices

Appendices 2457

Error code name Number Description

PBSE_UNKRESC 15037 Unknown resource type

PBSE_EXCQRESC 15038 Job exceeds queue resource limits

PBSE_QUENODFLT 15039 No default queue specified

PBSE_NORERUN 15040 Job is not rerunnable

PBSE_ROUTEREJ 15041 Job rejected by all possible destinations (check syntax, queue
resources, …)

PBSE_ROUTEEXPD 15042 Time in Route Queue Expired

PBSE_MOMREJECT 15043 Execution server rejected request

PBSE_BADSCRIPT 15044 (qsub) cannot access script file

PBSE_STAGEIN 15045 Stage-in of files failed

PBSE_RESCUNAV 15046 Resource temporarily unavailable

PBSE_BADGRP 15047 Bad GID for job execution

PBSE_MAXQUED 15048 Maximum number of jobs already in queue

PBSE_CKPBSY 15049 Checkpoint busy, may retry

PBSE_EXLIMIT 15050 Resource limit exceeds allowable

PBSE_BADACCT 15051 Invalid Account

PBSE_ALRDYEXIT 15052 Job already in exit state

PBSE_NOCOPYFILE 15053 Job files not copied

PBSE_CLEANEDOUT 15054 Unknown job id after clean init

PBSE_NOSYNCMSTR 15055 No master found for sync job set

TORQUE Resource Manager

Error code name Number Description

PBSE_BADDEPEND 15056 Invalid Job Dependency

PBSE_DUPLIST 15057 Duplicate entry in list

PBSE_DISPROTO 15058 Bad DIS based Request Protocol

PBSE_EXECTHERE 15059 Cannot execute at specified host because of checkpoint or
stagein files

PBSE_SISREJECT 15060 Sister rejected

PBSE_SISCOMM 15061 Sister could not communicate

PBSE_SVRDOWN 15062 Request not allowed: Server shutting down

PBSE_CKPSHORT 15063 Not all tasks could checkpoint

PBSE_UNKNODE 15064 Unknown node

PBSE_UNKNODEATR 15065 Unknown node-attribute

PBSE_NONODES 15066 Server has no node list

PBSE_NODENBIG 15067 Node name is too big

PBSE_NODEEXIST 15068 Node name already exists

PBSE_BADNDATVAL 15069 Illegal value for

PBSE_MUTUALEX 15070 Mutually exclusive values for

PBSE_GMODERR 15071 Modification failed for

PBSE_NORELYMOM 15072 Server could not connect to MOM

PBSE_NOTSNODE 15073 No time-share node available

PBSE_JOBTYPE 15074 Wrong job type

TORQUE Resource Manager

2458 Appendices

Appendices 2459

Error code name Number Description

PBSE_BADACLHOST 15075 Bad ACL entry in host list

PBSE_MAXUSERQUED 15076 Maximum number of jobs already in queue for user

PBSE_BADDISALLOWTYPE 15077 Bad type in disallowed_types list

PBSE_NOINTERACTIVE 15078 Queue does not allow interactive jobs

PBSE_NOBATCH 15079 Queue does not allow batch jobs

PBSE_NORERUNABLE 15080 Queue does not allow rerunable jobs

PBSE_NONONRERUNABLE 15081 Queue does not allow nonrerunable jobs

PBSE_UNKARRAYID 15082 Unknown Array ID

PBSE_BAD_ARRAY_REQ 15083 Bad Job Array Request

PBSE_BAD_ARRAY_DATA 15084 Bad data reading job array from file

PBSE_TIMEOUT 15085 Time out

PBSE_JOBNOTFOUND 15086 Job not found

PBSE_NOFAULTTOLERANT 15087 Queue does not allow fault tolerant jobs

PBSE_NOFAULTINTOLERANT 15088 Queue does not allow fault intolerant jobs

PBSE_NOJOBARRAYS 15089 Queue does not allow job arrays

PBSE_RELAYED_TO_MOM 15090 Request was relayed to a MOM

PBSE_MEM_MALLOC 15091 Error allocating memory - out of memory

PBSE_MUTEX 15092 Error allocating controling mutex (lock/unlock)

PBSE_THREADATTR 15093 Error setting thread attributes

PBSE_THREAD 15094 Error creating thread

TORQUE Resource Manager

Error code name Number Description

PBSE_SELECT 15095 Error in socket select

PBSE_SOCKET_FAULT 15096 Unable to get connection to socket

PBSE_SOCKET_WRITE 15097 Error writing data to socket

PBSE_SOCKET_READ 15098 Error reading data from socket

PBSE_SOCKET_CLOSE 15099 Socket close detected

PBSE_SOCKET_LISTEN 15100 Error listening on socket

PBSE_AUTH_INVALID 15101 Invalid auth type in request

PBSE_NOT_IMPLEMENTED 15102 This functionality is not yet implemented

PBSE_QUENOTAVAILABLE 15103 Queue is currently not available

PBSE_TMPDIFFOWNER 15104 tmpdir owned by another user

PBSE_TMPNOTDIR 15105 tmpdir exists but is not a directory

PBSE_TMPNONAME 15106 tmpdir cannot be named for job

PBSE_CANTOPENSOCKET 15107 Cannot open demux sockets

PBSE_CANTCONTACTSISTERS 15108 Cannot send join job to all sisters

PBSE_CANTCREATETMPDIR 15109 Cannot create tmpdir for job

PBSE_BADMOMSTATE 15110 Mom is down, cannot run job

PBSE_SOCKET_INFORMATION 15111 Socket information is not accessible

PBSE_SOCKET_DATA 15112 Data on socket does not process correctly

PBSE_CLIENT_INVALID 15113 Client is not allowed/trusted

PBSE_PREMATURE_EOF 15114 Premature End of File

TORQUE Resource Manager

2460 Appendices

Appendices 2461

Error code name Number Description

PBSE_CAN_NOT_SAVE_FILE 15115 Error saving file

PBSE_CAN_NOT_OPEN_FILE 15116 Error opening file

PBSE_CAN_NOT_WRITE_FILE 15117 Error writing file

PBSE_JOB_FILE_CORRUPT 15118 Job file corrupt

PBSE_JOB_RERUN 15119 Job can not be rerun

PBSE_CONNECT 15120 Can not establish connection

PBSE_JOBWORKDELAY 15121 Job function must be temporarily delayed

PBSE_BAD_PARAMETER 15122 Parameter of function was invalid

PBSE_CONTINUE 15123 Continue processing on job. (Not an error)

PBSE_JOBSUBSTATE 15124 Current sub state does not allow trasaction.

PBSE_CAN_NOT_MOVE_FILE 15125 Error moving file

PBSE_JOB_RECYCLED 15126 Job is being recycled

PBSE_JOB_ALREADY_IN_QUEUE 15127 Job is already in destination queue.

PBSE_INVALID_MUTEX 15128 Mutex is NULL or otherwise invalid

PBSE_MUTEX_ALREADY_
LOCKED

15129 The mutex is already locked by this object

PBSE_MUTEX_ALREADY_
UNLOCKED

15130 The mutex has already been unlocked by this object

PBSE_INVALID_SYNTAX 15131 Command syntax invalid

PBSE_NODE_DOWN 15132 A node is down. Check the MOM and host

TORQUE Resource Manager

Error code name Number Description

PBSE_SERVER_NOT_FOUND 15133 Could not connect to batch server

PBSE_SERVER_BUSY 15134 Server busy. Currently no available threads

Appendix E: Considerations before Upgrading
TORQUE is flexible in regards to how it can be upgraded. In most cases, a TORQUE "shutdown" followed
by a configure, make, make install procedure as documented in this guide is all that is required. See
Installing TORQUE on page 2193 for more information. This process will preserve existing configuration
and in most cases, existing workload.

A few considerations are included below:

l If upgrading from OpenPBS, PBSPro, or TORQUE 1.0.3 or earlier, queued jobs whether active or
idle will be lost. In such situations, job queues should be completely drained of all jobs.

l If not using the pbs_mom -r or -p flag (see Command-line Arguments on page 2453), running
jobs may be lost. In such cases, running jobs should be allowed to be completed or should be
requeued before upgrading TORQUE.

l pbs_mom and pbs_server daemons of differing versions may be run together. However, not all
combinations have been tested and unexpected failures may occur.

l When upgrading from early versions of TORQUE (pre-4.0) and Moab, you may encounter a
problem where Moab core files are regularly created in /opt/moab. This can be caused by old
TORQUE library files used by Moab that try to authorize with the old TORQUE pbs_iff
authorization daemon. You can resolve the problem by removing the old version library files from
/usr/local/lib.

To upgrade

1. Build new release (do not install).

2. Stop all TORQUE daemons (see qterm and momctl -s).

3. Install new TORQUE (use make install).

4. Start all TORQUE daemons.

Rolling upgrade
If you are upgrading to a new point release of your current version (for example, from 4.2.2 to 4.2.3) and
not to a new major release from your current version (for example, from 4.1 to 4.2), you can use the
following procedure to upgrade TORQUE without taking your nodes offline.

TORQUE Resource Manager

2462 Appendices

Appendices 2463

Because TORQUE version 4.1.4 changed the way that pbs_server communicates with the MOMs, it
is not recommended that you perform a rolling upgrade of TORQUE from version 4.1.3 to 4.1.4.

To perform a rolling upgrade in TORQUE

1. Enable the pbs_mom on page 2344 flag on the MOMs you want to upgrade. The enablemomrestart
option causes a MOM to check if its binary has been updated and restart itself at a safe point when
no jobs are running. You can enable this in the MOM configuration file, but it is recommended that
you use momctl instead.

> momctl -q enablemomrestart=1 -h :ALL

The enablemomrestart flag is enabled on all nodes.

2. Replace the pbs_mom binary, located in /usr/local/bin by default. pbs_mom will continue to run
uninterrupted because the pbs_mom binary has already been loaded in RAM.
> torque-package-mom-linux-x86_64.sh --install

The next time pbs_mom is in an idle state, it will check for changes in the binary. If pbs_mom detects
that the binary on disk has changed, it will restart automatically, causing the new pbs_mom version
to load.

After the pbs_mom restarts on each node, the enablemomrestart parameter will be set back to
false (0) for that node.

If you have cluster with high utilization, you may find that the nodes never enter an idle state so
pbs_mom never restarts. When this occurs, you must manually take the nodes offline and wait for
the running jobs to complete before restarting pbs_mom. To set the node to an offline state, which
will allow running jobs to complete but will not allow any new jobs to be scheduled on that node,
use pbsnodes -o <nodeName>. After the new MOM has started, you must make the node active
again by running pbsnodes -c <nodeName>.

Appendix F: Large Cluster Considerations
TORQUE has enhanced much of the communication found in the original OpenPBS project. This has
resulted in a number of key advantages including support for:

l larger clusters.

l more jobs.

l larger jobs.

l larger messages.

In most cases, enhancements made apply to all systems and no tuning is required. However, some
changes have been made configurable to allow site specific modification. The configurable communication
parameters are: node_check_rate, node_ping_rate, and tcp_timeout.

For details, see these topics:

TORQUE Resource Manager

l Scalability Guidelines on page 2464

l End-user Command Caching on page 2464

l Moab and TORQUE Configuration for Large Clusters on page 2466

l Starting TORQUE in Large Environments on page 2467

l Other Considerations on page 2467

Scalability Guidelines
In very large clusters (in excess of 1,000 nodes), it may be advisable to tune a number of communication
layer timeouts. By default, PBS MOM daemons timeout on inter-MOM messages after 60 seconds. In
TORQUE 1.1.0p5 and higher, this can be adjusted by setting the timeout parameter in the mom_
priv/config file (see Appendix C: Node Manager (MOM) Configuration on page 2435). If 15059
errors (cannot receive message from sisters) are seen in the MOM logs, it may be necessary to increase
this value.

Client-to-server communication timeouts are specified via the tcp_timeout server option using the qmgr
command.

On some systems, ulimit values may prevent large jobs from running. In particular, the open file
descriptor limit (i.e., ulimit -n) should be set to at least the maximum job size in procs + 20.
Further, there may be value in setting the fs.file-max in sysctl.conf to a high value, such
as:

/etc/sysctl.conf:
fs.file-max = 65536

Related topics

l Appendix F: Large Cluster Considerations on page 2463

End-user Command Caching

qstat
In a large system, users may tend to place excessive load on the system by manual or automated use of
resource manager end user client commands. A simple way of reducing this load is through the use of
client command wrappers which cache data. The example script below will cache the output of the
command 'qstat -f' for 60 seconds and report this info to end users.

TORQUE Resource Manager

2464 Appendices

Appendices 2465

#!/bin/sh

USAGE: qstat $@

CMDPATH=/usr/local/bin/qstat
CACHETIME=60
TMPFILE=/tmp/qstat.f.tmp

if ["$1" != "-f"] ; then
 #echo "direct check (arg1=$1) "
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-n "$2"] ; then
 #echo "direct check (arg2=$2)"
 $CMDPATH $1 $2 $3 $4
 exit $?
fi

if [-f $TMPFILE] ; then
 TMPFILEMTIME=`stat -c %Z $TMPFILE`
else
 TMPFILEMTIME=0
fi

NOW=`date +%s`

AGE=$(($NOW - $TMPFILEMTIME))

#echo AGE=$AGE

for i in 1 2 3;do
 if ["$AGE" -gt $CACHETIME] ; then
 #echo "cache is stale "

 if [-f $TMPFILE.1] ; then
 #echo someone else is updating cache

 sleep 5

 NOW=`date +%s`

 TMPFILEMTIME=`stat -c %Z $TMPFILE`

AGE=$(($NOW - $TMPFILEMTIME))
 else
 break;
 fi
 fi
done

if [-f $TMPFILE.1] ; then
 #echo someone else is hung

 rm $TMPFILE.1
fi

if ["$AGE" -gt $CACHETIME] ; then
 #echo updating cache

 $CMDPATH -f > $TMPFILE.1

mv $TMPFILE.1 $TMPFILE

fi

#echo "using cache"

TORQUE Resource Manager

cat $TMPFILE

exit 0

The above script can easily be modified to cache any command and any combination of arguments by
changing one or more of the following attributes:

l script name

l value of $CMDPATH

l value of $CACHETIME

l value of $TMPFILE

For example, to cache the command pbsnodes -a, make the following changes:

l Move original pbsnodes command to pbsnodes.orig.

l Save the script as 'pbsnodes'.

l Change $CMDPATH to pbsnodes.orig.

l Change $TMPFILE to /tmp/pbsnodes.a.tmp.

Related topics

l Appendix F: Large Cluster Considerations on page 2463

Moab and TORQUE Configuration for Large Clusters
There are a few basic configurations for Moab and TORQUE that can potentially improve performance on
large clusters.

Moab configuration

In the moab.cfg file, add:

1. RMPOLLINTERVAL 30,30 - This sets the minimum and maximum poll interval to 30 seconds.

2. RMCFG[<name>] FLAGS=ASYNCSTART - This tells Moab not to block until it receives a
confirmation that the job starts.

3. RMCFG[<name>] FLAGS=ASYNCDELETE - This tells Moab not to block until it receives a
confirmation that the job was deleted.

TORQUE configuration

1. Follow the Starting TORQUE in large environments recommendations.

2. Increase job_start_timeout on pbs_server. The default is 300 (5 minutes), but for large clusters
the value should be changed to something like 600 (10 minutes). Sites running very large parallel
jobs might want to set this value even higher.

3. Use a node health check script on all MOM nodes. This helps prevent jobs from being scheduled on
bad nodes and is especially helpful for large parallel jobs.

TORQUE Resource Manager

2466 Appendices

Appendices 2467

4. Make sure that ulimit -n (maximum file descriptors) is set to unlimited, or a very large number,
and not the default.

5. For clusters with a high job throughput it is recommended that the server parameter max_threads
be increased from the default. The default is (2 * number of cores + 1) * 10.

Related topics

l Appendix F: Large Cluster Considerations on page 2463

Starting TORQUE in Large Environments
If running TORQUE in a large environment, use these tips to help TORQUE start up faster.

Fastest possible start up

1. Create a MOM hierarchy, even if your environment has a one-level MOM hierarchy (meaning all
MOMs report directly to pbs_server), and copy the file to the mom_priv directory on the MOMs.

2. Start pbs_server with the -n option. This specifies that pbs_server won't send the hierarchy to the
MOMs unless a MOM requests it.

3. Start the MOMs normally.

If no daemons are running

1. Start pbs_server with the -c option.

2. Start the MOMs without the -w option.

If MOMs are running and just restarting pbs_server

1. Start pbs_server without the -c option.

If restarting a MOM or all MOMs

1. Start pbs_server without the -w option. Starting it with -w causes the MOMs to appear to be down.

Related topics

l Appendix F: Large Cluster Considerations on page 2463

Other Considerations

job_stat_rate
In a large system, there may be many users, many jobs, and many requests for information. To speed up
response time for users and for programs using the API the job_stat_rate can be used to tweak when the
pbs_server daemon will query MOMs for job information. By increasing this number, a system will not be
constantly querying job information and causing other commands to block.

TORQUE Resource Manager

poll_jobs
The poll_jobs parameter allows a site to configure how the pbs_server daemon will poll for job
information. When set to TRUE, the pbs_server will poll job information in the background and not block
on user requests. When set to FALSE, the pbs_server may block on user requests when it has stale job
information data. Large clusters should set this parameter to TRUE.

Internal settings
On large, slow, and/or heavily loaded systems, it may be desirable to increase the pbs_tcp_timeout
setting used by the pbs_mom daemon in MOM-to-MOM communication. This setting defaults to 20
seconds and requires rebuilding code to adjust. For client-server based communication, this attribute can
be set using the qmgr command. For MOM-to-MOM communication, a source code modification is
required. To make this change, edit the $TORQUEBUILDDIR/src/lib/Libifl/tcp_dis.c file and
set pbs_tcp_timeout to the desired maximum number of seconds allowed for a MOM-to-MOM request
to be serviced.

A system may be heavily loaded if it reports multiple 'End of File from addr' or 'Premature end of
message' failures in the pbs_mom or pbs_server logs.

Scheduler settings
If using Moab, there are a number of parameters which can be set on the scheduler which may improve
TORQUE performance. In an environment containing a large number of short-running jobs, the
JOBAGGREGATIONTIME parameter (see Appendix A: Moab Parameters on page 902) can be set to
reduce the number of workload and resource queries performed by the scheduler when an event based
interface is enabled. If the pbs_server daemon is heavily loaded and PBS API timeout errors (i.e.
"Premature end of message") are reported within the scheduler, the "TIMEOUT" attribute of the RMCFG
parameter may be set with a value of between 30 and 90 seconds.

File system
TORQUE can be configured to disable file system blocking until data is physically written to the disk by
using the --disable-filesync argument with configure. While having filesync enabled is more
reliable, it may lead to server delays for sites with either a larger number of nodes, or a large number
of jobs. Filesync is enabled by default.

Network ARP cache
For networks with more than 512 nodes it is mandatory to increase the kernel's internal ARP cache size.
For a network of ~1000 nodes, we use these values in /etc/sysctl.conf on all nodes and servers:

TORQUE Resource Manager

2468 Appendices

Appendices 2469

/etc/sysctl.conf

Don't allow the arp table to become bigger than this
net.ipv4.neigh.default.gc_thresh3 = 4096
Tell the gc when to become aggressive with arp table cleaning.
Adjust this based on size of the LAN.
net.ipv4.neigh.default.gc_thresh2 = 2048
Adjust where the gc will leave arp table alone
net.ipv4.neigh.default.gc_thresh1 = 1024
Adjust to arp table gc to clean-up more often
net.ipv4.neigh.default.gc_interval = 3600
ARP cache entry timeout
net.ipv4.neigh.default.gc_stale_time = 3600

Use sysctl -p to reload this file.

The ARP cache size on other Unixes can presumably be modified in a similar way.

An alternative approach is to have a static /etc/ethers file with all hostnames and MAC addresses
and load this by arp -f /etc/ethers. However, maintaining this approach is quite cumbersome when
nodes get new MAC addresses (due to repairs, for example).

Related topics

l Appendix F: Large Cluster Considerations on page 2463

Appendix G: Prologue and Epilogue Scripts
TORQUE provides administrators the ability to run scripts before and/or after each job executes. With
such a script, a site can prepare systems, perform node health checks, prepend and append text to output
and error log files, cleanup systems, and so forth.

The following table shows which MOM runs which script. All scripts must be in the TORQUE_HOME/mom_
priv/ directory and be available on every compute node. The "Mother Superior" is the pbs_mom on the
first node allocated for a job. While it is technically a sister node, it is not a "Sister" for the purposes of
the following table.

The execution directory for each script is TORQUE_HOME/mom_priv/.

Script Execution location Execute
as File permissions

prologue Mother Superior root Readable and executable by
root and NOT writable by
anyone but root (e.g., -r-
x-----)

epilogue root

prologue.user user Readable and executable by
root and other (e.g., -r-x--
-r-x)epilogue.user user

TORQUE Resource Manager

Script Execution location Execute
as File permissions

prologue.parallel Sister root Readable and executable by
root and NOT writable by
anyone but root (e.g., -r-
x-----)

epilogue.parallel root

prologue.user.parallel user Readable and executable by
root and other (e.g., -r-x--
-r-x)epilogue.user.parallel user

epilogue.precancel Mother Superior
This script runs after a job cancel
request is received from pbs_server
and before a kill signal is sent to the job
process.

user Readable and executable by
root and other (e.g., -r-x--
-r-x)

epilogue.parallel is available in version 2.1 and later.

This section contains these topics:

l Script Order of Execution on page 2470

l Script Environment on page 2471

l Per Job Prologue and Epilogue Scripts on page 2472

l Prologue and Epilogue Scripts Time Out on page 2473

l Prologue Error Processing on page 2473

Script Order of Execution
When jobs start, the order of script execution is prologue followed by prologue.user. On job exit,
the order of execution is epilogue.user followed by epilogue unless a job is canceled. In that case,
epilogue.precancel is executed first. epilogue.parallel is executed only on the Sister nodes
when the job is completed.

The epilogue and prologue scripts are controlled by the system administrator. However,
beginning in TORQUE version 2.4 a user epilogue and prologue script can be used on a per job
basis. (See Per Job Prologue and Epilogue Scripts on page 2472 for more information.)

Root squashing is now supported for epilogue and prologue scripts.

Related topics

l Appendix G: Prologue and Epilogue Scripts on page 2469

TORQUE Resource Manager

2470 Appendices

Appendices 2471

Script Environment
The prologue and epilogue scripts can be very simple. On most systems, the script must declare the
execution shell using the #!<SHELL> syntax (for example, "#!/bin/sh"). In addition, the script may
want to process context sensitive arguments passed by TORQUE to the script.

Prologue Environment
The following arguments are passed to the prologue, prologue.user, and prologue.parallel
scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name (TORQUE 1.2.0p4 and higher only)

argv[5] list of requested resource limits (TORQUE 1.2.0p4 and higher only)

argv[6] job execution queue (TORQUE 1.2.0p4 and higher only)

argv[7] job account (TORQUE 1.2.0p4 and higher only)

Epilogue Environment
TORQUE supplies the following arguments to the epilogue, epilogue.user, epilogue.precancel,
and epilogue.parallel scripts:

Argument Description

argv[1] job id

argv[2] job execution user name

argv[3] job execution group name

argv[4] job name

TORQUE Resource Manager

Argument Description

argv[5] session id

argv[6] list of requested resource limits

argv[7] list of resources used by job

argv[8] job execution queue

argv[9] job account

argv[10] job exit code

The epilogue.precancel script is run after a job cancel request is received by the MOM and before
any signals are sent to job processes. If this script exists, it is run whether the canceled job was active
or idle.

The cancel job command (qdel) will take as long to return as the epilogue.precancel script
takes to run. For example, if the script runs for 5 minutes, it takes 5 minutes for qdel to return.

For all scripts, the environment passed to the script is empty. However, if you submit the job using msub
rather than qsub, some Moab environment variables are available in the TORQUE prologue and epilogue
script environment: MOAB_CLASS, MOAB_GROUP, MOAB_JOBARRAYINDEX, MOAB_JOBARRAYRANGE,
MOAB_JOBID, MOAB_JOBNAME, MOAB_MACHINE, MOAB_NODECOUNT, MOAB_NODELIST, MOAB_
PARTITION, MOAB_PROCCOUNT, MOAB_QOS, MOAB_TASKMAP, and MOAB_USER. See msub on page 290
for more information.

Also, standard input for both scripts is connected to a system dependent file. Currently, for all systems
this is /dev/null. Except for epilogue scripts of an interactive job, prologue.parallel,
epilogue.precancel, and epilogue.parallel, the standard output and error are connected to
output and error files associated with the job. For an interactive job, since the pseudo terminal
connection is released after the job completes, the standard input and error point to /dev/null. For
prologue.parallel and epilogue.parallel, the user will need to redirect stdout and stderr
manually.

Related topics

l Appendix G: Prologue and Epilogue Scripts on page 2469

Per Job Prologue and Epilogue Scripts
TORQUE supports per job prologue and epilogue scripts when using the qsub -l option. The syntax is:

qsub -l prologue=<prologue_script_path> epilogue=<epilogue_script_path>
<script>.

TORQUE Resource Manager

2472 Appendices

Appendices 2473

The path can be either relative (from the directory where the job is submitted) or absolute. The files
must be owned by the user with at least execute and read privileges, and the permissions must not be
writeable by group or other.

/home/usertom/dev/

-r-x------ 1 usertom usertom 24 2009-11-09 16:11 prologue_script.sh
-r-x------ 1 usertom usertom 24 2009-11-09 16:11 epilogue_script.sh

Example 4-29:

$ qsub -l prologue=/home/usertom/dev/prologue_
script.sh,epilogue=/home/usertom/dev/epilogue_script.sh job14.pl

This job submission executes the prologue script first. When the prologue script is complete,
job14.pl runs. When job14.pl completes, the epilogue script is executed.

Related topics

l Appendix G: Prologue and Epilogue Scripts on page 2469

Prologue and Epilogue Scripts Time Out
TORQUE takes preventative measures against prologue and epilogue scripts by placing an alarm around
the scripts execution. By default, TORQUE sets the alarm to go off after 5 minutes of execution. If the
script exceeds this time, it will be terminated and the node will be marked down. This timeout can be
adjusted by setting the $prologalarm parameter in the mom_priv/config file.

While TORQUE is executing the epilogue, epilogue.user, or epilogue.precancel scripts,
the job will be in the E (exiting) state.

If an epilogue.parallel script cannot open the .OU or .ER files, an error is logged but the script is
continued.

Related topics

l Appendix G: Prologue and Epilogue Scripts on page 2469

Prologue Error Processing
If the prologue script executes successfully, it should exit with a zero status. Otherwise, the script
should return the appropriate error code as defined in the table below. The pbs_mom will report the
script's exit status to pbs_server which will in turn take the associated action. The following table
describes each exit code for the prologue scripts and the action taken.

Error Description Action

-4 The script timed out Job will be requeued

TORQUE Resource Manager

Error Description Action

-3 The wait(2) call returned an error Job will be requeued

-2 Input file could not be opened Job will be requeued

-1 Permission error
(script is not owned by root, or is writable by others)

Job will be requeued

0 Successful completion Job will run

1 Abort exit code Job will be aborted

>1 other Job will be requeued

Example 4-30:

Following are example prologue and epilogue scripts that write the arguments passed to them in the
job's standard out file:

prologue

Script #!/bin/sh
echo "Prologue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo ""

exit 0

stdout Prologue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1

TORQUE Resource Manager

2474 Appendices

Appendices 2475

epilogue

Script #!/bin/sh
echo "Epilogue Args:"
echo "Job ID: $1"
echo "User ID: $2"
echo "Group ID: $3"
echo "Job Name: $4"
echo "Session ID: $5"
echo "Resource List: $6"
echo "Resources Used: $7"
echo "Queue Name: $8"
echo "Account String: $9"
echo ""

exit 0

stdout Epilogue Args:
Job ID: 13724.node01
User ID: user1
Group ID: user1
Job Name: script.sh
Session ID: 28244
Resource List: neednodes=node01,nodes=1,walltime=00:01:00
Resources Used: cput=00:00:00,mem=0kb,vmem=0kb,walltime=00:00:07
Queue Name: batch
Account String:

Example 4-31:

The Ohio Supercomputer Center contributed the following scripts:

"prologue creates a unique temporary directory on each node assigned to a job before the job begins to
run, and epilogue deletes that directory after the job completes.

Having a separate temporary directory on each node is probably not as good as having a good,
high performance parallel filesystem.

TORQUE Resource Manager

prologue

#!/bin/sh
Create TMPDIR on all the nodes
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
prologue gets 3 arguments:
1 -- jobid
2 -- userid
3 -- grpid
#
jobid=$1
user=$2
group=$3
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i mkdir -m 700 $tmp \&\& chown $user.$group $tmp
done
exit 0

epilogue

#!/bin/sh
Clear out TMPDIR
Copyright 1999, 2000, 2001 Ohio Supercomputer Center
epilogue gets 9 arguments:
1 -- jobid
2 -- userid
3 -- grpid
4 -- job name
5 -- sessionid
6 -- resource limits
7 -- resources used
8 -- queue
9 -- account
#
jobid=$1
nodefile=/var/spool/pbs/aux/$jobid
if [-r $nodefile] ; then
 nodes=$(sort $nodefile | uniq)
else
 nodes=localhost
fi
tmp=/tmp/pbstmp.$jobid
for i in $nodes ; do
 ssh $i rm -rf $tmp
done
exit 0

prologue, prologue.user, and prologue.parallel scripts can have dramatic effects on job
scheduling if written improperly.

Related topics

l Appendix G: Prologue and Epilogue Scripts on page 2469

TORQUE Resource Manager

2476 Appendices

Appendices 2477

Appendix H: Running Multiple TORQUE Servers and
MOMs on the Same Node
TORQUE can be configured to allow multiple servers and MOMs to run on the same node. This example
will show how to configure, compile and install two different TORQUE servers and MOMs on the same
node. For details, see these topics:

l Configuring the first TORQUE on page 2477

l Configuring the second TORQUE on page 2477

l Bringing the first TORQUE server online on page 2477

l Bringing the second TORQUE server online on page 2478

Configuring the first TORQUE
./configure --with-server-home=/usr/spool/PBS1 --bindir=/usr/spool/PBS1/bin --
sbindir=/usr/spool/PBS1/sbin

Then make and make install will place the first TORQUE into /usr/spool/PBS1 with the executables
in their corresponding directories.

Configuring the second TORQUE
./configure --with-server-home=/usr/spool/PBS2 --bindir=/usr/spool/PBS2/bin --
sbindir=/usr/spool/PBS2/sbin

Then make and make install will place the second TORQUE into /usr/spool/PBS2 with the
executables in their corresponding directories.

Bringing the first TORQUE server online
Each command, including pbs_server and pbs_mom, takes parameters indicating which servers and ports
to connect to or listen on (when appropriate). Each of these is documented in their corresponding man
pages (configure with --enable-docs).

In this example the first TORQUE server will accept batch requests on port 35000, communicate with the
MOMs on port 35001, and communicate via RPP on port 35002. The first TORQUE MOM will try to
connect to the server on port 35000, it will listen for requests from the server on port 35001 and will
communicate via RPP on port 35002. (Each of these command arguments is discussed in further details
on the corresponding man page. In particular, -t create is only used the first time a server is run.)

> pbs_server -p 35000 -M 35001 -R 35002 -t create
> pbs_mom -S 35000 -M 35001 -R 35002

Afterwards, when using a client command to make a batch request it is necessary to specify the server
name and server port (35000):

> pbsnodes -a -s node01:35000

Submitting jobs can be accomplished using the -q option ([queue][@host[:port]]):

TORQUE Resource Manager

> qsub -q @node01:35000 /tmp/script.pbs

Bringing the second TORQUE server online
In this example the second TORQUE server will accept batch requests on port 36000, communicate with
the MOMS on port 36002, and communicate via RPP on port 36002. The second TORQUE MOM will try to
connect to the server on port 36000, it will listen for requests from the server on port 36001 and will
communicate via RPP on port 36002.

> pbs_server -p 36000 -M 36001 -R 36002 -t create
> pbs_mom -S 36000 -M 36001 -R 36002

Afterward, when using a client command to make a batch request it is necessary to specify the server
name and server port (36002):

> pbsnodes -a -s node01:36000
> qsub -q @node01:36000 /tmp/script.pbs

Appendix I: Security Overview
The authorization model for TORQUE changed in version 4.0.0 from pbs_iff to a daemon called
trqauthd. The job of the trqauthd daemon is the same as pbs_iff. The difference is that trqauthd
is a resident daemon whereas pbs_iff is invoked by each client command. pbs_iff is not scalable and
is prone to failure under even small loads. trqauthd is very scalable and creates the possibility for
better security measures in the future.

trqauthd and pbs_iff authorization theory
The key to security of both trqauthd and pbs_iff is the assumption that any host which has been
added to the TORQUE cluster has been secured by the administrator. Neither trqauthd nor pbs_iff
do authentication. They only do authorization of users. Given that the host system is secure the following
is the procedure by which trqauthd and pbs_iff authorize users to pbs_server.

1. Client utility makes a connection to pbs_server on a dynamic port.

2. Client utility sends a request to trqauthd with the user name and port.

3. trqauthd verifies the user ID and then sends a request to pbs_server on a privileged port with
the user ID and dynamic port to authorize the connection.

4. trqauthd reports results of the server to client utility.

Both trqauthd and pbs_iff use Unix domain sockets for communication from the client utility. Unix
domain sockets have the ability to verify that a user is who they say they are by using security features
that are part of the file system.

TORQUE Resource Manager

2478 Appendices

Appendices 2479

Appendix J: Job Submission Filter ("qsub wrapper")
When a "submit filter" exists, TORQUE will send the command file (or contents of STDIN if piped to qsub)
to that script/executable and allow it to evaluate the submitted request based on specific site policies.
The resulting file is then handed back to qsub and processing continues. Submit filters can check user
jobs for correctness based on site policies. They can also modify user jobs as they are submitted. Some
examples of what a submit filter might evaluate and check for are:

l Memory Request - Verify that the job requests memory and rejects if it does not.

l Job event notifications - Check if the job does one of the following and rejects it if it:

o explicitly requests no notification.

o requests notifications but does not provide an email address.

l Walltime specified - Verify that the walltime is specified.

l Global Walltime Limit - Verify that the walltime is below the global max walltime.

l Test Walltime Limit - If the job is a test job, this check rejects the job it if it requests a walltime
longer than the testing maximum.

The script below reads the original submission request from STDIN and shows how you could insert
parameters into a job submit request:

#!/bin/sh
add default memory constraints to all requests
that did not specify it in user's script or on command line
echo "#PBS -l mem=16MB"
while read i
do
echo $i
done

TORQUE Resource Manager

If you use a qsub script that includes #PBS directives to pass arguments instead of on the
command line; for example,

#!/bin/sh
#
#This is an example script example.sh
#
#These commands set up the Grid Environment for your job:
#PBS -N ExampleJob
#PBS -l nodes=1,walltime=00:01:00
#PBS -q np_workq
#PBS -M YOURUNIQNAME@umich.edu
#PBS -m abe

#print the time and date
date

#wait 10 seconds
sleep 10

#print the time and date again
date

then your submit filter script must detect these directives and print them to stdout in order for
qsub to see them.

The same command line arguments passed to qsub will be passed to the submit filter and in the same
order. Exit status of -1 will cause qsub to reject the submission with a message stating that it failed due
to administrative policies.

The "submit filter" must be executable, must be available on each of the nodes where users may submit
jobs, and by default must be located at ${libexecdir}/qsub_filter (for version 2.1 and older:
/usr/local/sbin/torque_submitfilter). At run time, if the file does not exist at this new
preferred path then qsub will fall back to the old hard-coded path. The submit filter location can be
customized by setting the SUBMITFILTER parameter inside the file (see Appendix K: "torque.cfg"
Configuration File on page 2480), as in the following example:

torque.cfg:

SUBMITFILTER /opt/torque/submit.pl
...

Initial development courtesy of Oak Ridge National Laboratories.

Appendix K: "torque.cfg" Configuration File

CLIENTRETRY

Format <INT>

TORQUE Resource Manager

2480 Appendices

Appendices 2481

CLIENTRETRY

Default 0

Description Seconds between retry attempts to talk to pbs_server.

Example CLIENTRETRY 10

TORQUE waits 10 seconds after a failed attempt before it attempts to talk to
pbs_server again.

DEFAULTCKPT

For mat One of None, Enabled, Shutdown, Periodic, Interval=minutes, depth=number, or dir=path

Default None

Description Default value for job's checkpoint attribute. For a description of all possible values, see qsub on
page 2395.

This default setting can be overridden at job submission with the qsub -c option.

Example DEFAULTCKPT Shutdown

By default, TORQUE checkpoints at pbs_mom shutdown.

FAULT_TOLERANT_BY_DEFAULT

Format <BOOLEAN>

Default FALSE

Description Sets all jobs to fault tolerant by default. (See qsub -f for more information on fault tolerance.)

Example FAULT_TOLERANT_BY_DEFAULT TRUE

Jobs are fault tolerant by default. They will not be canceled based on failed polling, no
matter how many nodes fail to report.

TORQUE Resource Manager

HOST_NAME_SUFFIX

Format <STRING>

Default ---

Description Specifies a hostname suffix. When qsub submits a job, it also submits the username of the sub-
mitter and the name of the host from which the user submitted the job. TORQUE appends the
value of HOST_NAME_SUFFIX to the hostname. This is useful for multi-homed systems that may
have more than one name for a host.

Example HOST_NAME_SUFFIX -ib

When a job is submitted, the -ib suffix is appended to the host name.

QSUBHOST

Format <HOSTNAME>

Default ---

Description The hostname given as the argument of this option will be used as the PBS_O_HOST variable for
job submissions. By default, PBS_O_HOST is the hostname of the submission host. This option
allows administrators to override the default hostname and substitute a new name.

Example QSUBHOST host1

The default hostname associated with a job is host1.

QSUBSENDUID

Format N/A

Default ---

Description Integer for job's PBS_OUID variable. Specifying the parameter name anywhere in the config file
enables the feature. Removing the parameter name disables the feature.

Example QSUBSENDUID

TORQUE assigns a unique ID to a job when it is submitted by qsub.

TORQUE Resource Manager

2482 Appendices

Appendices 2483

QSUBSLEEP

Format <INT>

Default 0

Description Specifies time, in seconds, to sleep between a user's submitting and TORQUE's starting a qsub com-
mand. Used to prevent users from overwhelming the scheduler.

Example QSUBSLEEP 2

When a job is submitted with qsub, it will sleep for 2 seconds.

RERUNNABLEBYDEFAULT

Format <BOOLEAN>

Default TRUE

Description Specifies if a job is re-runnable by default. Setting this to false causes the re-runnable attribute
value to be false unless the users specifies otherwise with the qsub -r option. (New in
TORQUE 2.4.)

Example RERUNNABLEBYDEFAULT FALSE

By default, qsub jobs cannot be rerun.

SERVERHOST

Format <STRING>

Default localhost

Description If set, the qsub on page 2395 command will open a connection to the host specified by the
SERVERHOST string.

Example SERVERHOST orion15

The server will open socket connections and and communicate using serverhost orion15.

TORQUE Resource Manager

SUBMITFILTER

Format <STRING>

Default ${libexecdir}/qsub_filter (for version 2.1 and older: /usr/local/sbin/torque_submitfilter)

Description Specifies the location of the submit filter (see Appendix J: Job Submission Filter ("qsub wrap-
per") on page 2479 used to pre-process job submission.

Example SUBMITFILTER /usr/local/sbin/qsub_filter

The location of the submit filter is specified as /usr/local/sbin/qsub_filter.

TRQ_IFNAME

Format <STRING>

Default null

Description Allows you to specify a specific network interface to use for outbound TORQUE requests. The
string is the name of a network interface, such as eth0 or eth1, depending on which interface you
want to use.

Example TRQ_IFNAME eth1

Outbound TORQUE requests are handled by eth1.

VALIDATEGROUP

Format <BOOLEAN>

Default FALSE

Description Validate submit user's group on qsub commands. For TORQUE builds released after 2/8/2011,
VALIDATEGROUP also checks any groups requested in group_list at the submit host. Set
VALIDATEGROUP to "TRUE" if you set disable_server_id_check to TRUE.

Example VALIDATEGROUP TRUE

qsub verifies the submitter's group ID.

TORQUE Resource Manager

2484 Appendices

Appendices 2485

VALIDATEPATH

Format <BOOLEAN>

Default TRUE

Description Validate local existence of '-d' working directory.

Example VALIDATEPATH FALSE

qsub does not validate the path.

Appendix L: TORQUE Quick Start Guide

Initial installation
TORQUE is now hosted at https://github.com under the adaptivecomputing organization. To download
source, you will need to use the git utility. For example:

[root]# git clone https://github.com/adaptivecomputing.com/torque.git -b 5.0.1 5.0.1

To download a different version, replace each 5.0.1 with the desired version. After downloading a copy of
the repository, you can list the current branches by typing git branch -a from within the directory of
the branch you cloned.

If you're checking source out from git, read the README.building-40 file in the repository.

Extract and build the distribution on the machine that will act as the "TORQUE server" - the machine
that will monitor and control all compute nodes by running the pbs_server daemon. See the example
below:

> tar -xzvf torque.tar.gz
> cd torque
> ./configure
> make
> make install

OSX 10.4 users need to change the #define __TDARWIN in src/include/pbs_config.h to
#define __TDARWIN_8.

After installation, verify you have PATH environment variables configured for /usr/local/bin/
and /usr/local/sbin/. Client commands are installed to /usr/local/bin and server
binaries are installed to /usr/local/sbin.

TORQUE Resource Manager

https://github.com/
https://help.github.com/articles/set-up-git

In this document, TORQUE_HOME corresponds to where TORQUE stores its configuration files. The
default is /var/spool/torque.

Initialize/Configure TORQUE on the server (pbs_server)
l Once installation on the TORQUE server is complete, configure the pbs_server daemon by
executing the command torque.setup <USER> found packaged with the distribution source
code, where <USER> is a username that will act as the TORQUE admin. This script will set up a
basic batch queue to get you started. If you experience problems, make sure that the most recent
TORQUE executables are being executed, or that the executables are in your current PATH.

If you are upgrading from TORQUE 2.5.9, run pbs_server -u before running torque.setup.

[root]# pbs_server -u

l If doing this step manually, be certain to run the command pbs_server -t create to create
the new batch database. If this step is not taken, the pbs_server daemon will be unable to start.

l Proper server configuration can be verified by following the steps listed in Testing server
configuration.

Install TORQUE on the compute nodes
To configure a compute node do the following on each machine (see page 19, Section 3.2.1 of PBS
Administrators Manual for full details):

l Create the self-extracting, distributable packages with make packages (See the INSTALL file for
additional options and features of the distributable packages) and use the parallel shell command
from your cluster management suite to copy and execute the package on all nodes (i.e. xCAT users
might do prcp torque-package-linux-i686.sh main:/tmp/; psh main
/tmp/torque-package-linux-i686.sh --install). Optionally, distribute and install the
clients package.

Configure TORQUE on the compute nodes
l For each compute host, the MOM daemon must be configured to trust the pbs_server daemon. In
TORQUE 2.0.0p4 and earlier, this is done by creating the TORQUE_HOME/mom_priv/config file
and setting the $pbsserver parameter. In TORQUE 2.0.0p5 and later, this can also be done by
creating the TORQUE_HOME/server_name file and placing the server hostname inside.

l Additional config parameters may be added to TORQUE_HOME/mom_priv/config (see
Appendix C: Node Manager (MOM) Configuration on page 2435 for details).

Configure data management on the compute nodes
Data management allows jobs' data to be staged in/out or to and from the server and compute nodes.

TORQUE Resource Manager

2486 Appendices

Appendices 2487

l For shared filesystems (i.e., NFS, DFS, AFS, etc.) use the $usecp parameter in the mom_
priv/config files to specify how to map a user's home directory.

(Example: $usecp gridmaster.tmx.com:/home /home)

l For local, non-shared filesystems, rcp or scp must be configured to allow direct copy without
prompting for passwords (key authentication, etc.)

Update TORQUE server configuration
On the TORQUE server, append the list of newly configured compute nodes to the TORQUE_
HOME/server_priv/nodes file:

server_priv/nodes

computenode001.cluster.org
computenode002.cluster.org
computenode003.cluster.org

Start the pbs_mom daemons on compute nodes
l Next start the pbs_mom daemon on each compute node by running the pbs_mom executable.

Run the trqauthd daemon to run client commands (see Configuring trqauthd for Client Commands on
page 2205). This enables running client commands.

Verifying correct TORQUE installation
The pbs_server daemon was started on the TORQUE server when the torque.setup file was executed
or when it was manually configured. It must now be restarted so it can reload the updated configuration
changes.

shutdown server
> qterm # shutdown server

start server
> pbs_server

verify all queues are properly configured
> qstat -q

view additional server configuration
> qmgr -c 'p s'

verify all nodes are correctly reporting
> pbsnodes -a

submit a basic job
>echo "sleep 30" | qsub

verify jobs display
> qstat

At this point, the job will not start because there is no scheduler running. The scheduler is enabled in the
next step below.

TORQUE Resource Manager

Enabling the scheduler
Selecting the cluster scheduler is an important decision and significantly affects cluster utilization,
responsiveness, availability, and intelligence. The default TORQUE scheduler, pbs_sched, is very basic
and will provide poor utilization of your cluster's resources. Other options, such as Maui Scheduler or
Moab Workload Manager are highly recommended. If using Maui/Moab, see Moab-TORQUE Integration
Guide on page 1206. If using pbs_sched, start this daemon now.

If you are installing ClusterSuite, TORQUE and Moab were configured at installation for
interoperability and no further action is required.

Startup/Shutdown service script for TORQUE/Moab (OPTIONAL)
Optional startup/shutdown service scripts are provided as an example of how to run TORQUE as an OS
service that starts at bootup. The scripts are located in the contrib/init.d/ directory of the
TORQUE tarball you downloaded. In order to use the script you must:

l Determine which init.d script suits your platform the best.

l Modify the script to point to TORQUE's install location. This should only be necessary if you used a
non-default install location for TORQUE (by using the --prefix option of ./configure).

l Place the script in the /etc/init.d/ directory.

l Use a tool like chkconfig to activate the start-up scripts or make symbolic links (S99moab and
K15moab, for example) in desired runtimes (/etc/rc.d/rc3.d/ on Redhat, etc.).

Related topics

l Advanced configuration on page 2207

Appendix M: BLCR Acceptance Tests
This section contains a description of the testing done to verify the functionality of the BLCR
implementation. For details, see these topics:

l Test Environment on page 2488

l Test 1 - Basic Operation on page 2489

l Test 2 - Persistence of Checkpoint Images on page 2491

l Test 3 - Restart after Checkpoint on page 2492

l Test 4 - Multiple Checkpoint/Restart on page 2493

l Test 5 - Periodic Checkpoint on page 2493

l Test 6 - Restart from Previous Image on page 2494

Test Environment
All these tests assume the following test program and shell script, test.sh.

TORQUE Resource Manager

2488 Appendices

Appendices 2489

#include
int main(int argc, char *argv[])
{
int i;

 for (i=0; i<100; i++)
{

 printf("i = %d\n", i);
 fflush(stdout);
 sleep(1);
 }
}
#!/bin/bash

/home/test/test

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

Test 1 - Basic Operation

Introduction
This test determines if the proper environment has been established.

Test steps
Submit a test job and the issue a hold on the job.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999

Possible failures
Normally the result of qhold is nothing. If an error message is produced saying that qhold is not a
supported feature then one of the following configuration errors might be present.

l The TORQUE images may have not be configured with --enable-blcr

l BLCR support may not be installed into the kernel with insmod.

l The config script in mom_priv may not exist with $checkpoint_script defined.

l The config script in mom_priv may not exist with $restart_script defined.

l The config script in mom_priv may not exist with $checkpoint_run_exe defined.

l The scripts referenced in the config file may not exist.

l The scripts referenced in the config file may not have the correct permissions.

TORQUE Resource Manager

Successful results
If no configuration was done to specify a specific directory location for the checkpoint file, the default
location is off of the TORQUE directory, which in my case is /var/spool/torque/checkpoint.

Otherwise, go to the specified directory for the checkpoint image files. This was done by either
specifying an option on job submission, i.e. -c dir=/home/test or by setting an attribute on the
execution queue. This is done with the command qmgr -c 'set queue batch checkpoint_
dir=/home/test'.

Doing a directory listing shows the following.

find /var/spool/torque/checkpoint
/var/spool/torque/checkpoint
/var/spool/torque/checkpoint/999.xxx.yyy.CK
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630
find /var/spool/torque/checkpoint |xargs ls -l
-r-------- 1 root root 543779 2008-03-11 14:17
/var/spool/torque/checkpoint/999.xxx.yyy.CK/ckpt.999.xxx.yyy.1205266630

/var/spool/torque/checkpoint:
total 4
drwxr-xr-x 2 root root 4096 2008-03-11 14:17 999.xxx.yyy.CK

/var/spool/torque/checkpoint/999.xxx.yyy.CK:
total 536
-r-------- 1 root root 543779 2008-03-11 14:17 ckpt.999.xxx.yyy.1205266630

Doing a qstat -f command should show the job in a held state, job_state = H. Note that the attribute
checkpoint_name is set to the name of the file seen above.

If a checkpoint directory has been specified, there will also be an attribute checkpoint_dir in the output of
qstat -f.

TORQUE Resource Manager

2490 Appendices

Appendices 2491

$ qstat -f
Job Id: 999.xxx.yyy
 Job_Name = test.sh
 Job_Owner = test@xxx.yyy
 resources_used.cput = 00:00:00
 resources_used.mem = 0kb
 resources_used.vmem = 0kb
 resources_used.walltime = 00:00:06
 job_state = H
 queue = batch
 server = xxx.yyy
 Checkpoint = u
 ctime = Tue Mar 11 14:17:04 2008
 Error_Path = xxx.yyy:/home/test/test.sh.e999
 exec_host = test/0
 Hold_Types = u
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Tue Mar 11 14:17:10 2008
 Output_Path = xxx.yyy:/home/test/test.sh.o999
 Priority = 0
 qtime = Tue Mar 11 14:17:04 2008
 Rerunable = True
 Resource_List.neednodes = 1
 Resource_List.nodect = 1
 Resource_List.nodes = 1
 Resource_List.walltime = 01:00:00
 session_id = 9402 substate = 20
 Variable_List = PBS_O_HOME=/home/test,PBS_O_LANG=en_US.UTF-8,
 PBS_O_LOGNAME=test,
 PBS_O_PATH=/usr/local/perltests/bin:/home/test/bin:/usr/local/s
bin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games,
 PBS_O_SHELL=/bin/bash,PBS_SERVER=xxx.yyy,
 PBS_O_HOST=xxx.yyy,PBS_O_WORKDIR=/home/test,
 PBS_O_QUEUE=batch
 euser = test
 egroup = test
 hashname = 999.xxx.yyy
 queue_rank = 3
 queue_type = E comment = Job started on Tue Mar 11 at 14:17
 exit_status = 271
 submit_args = test.sh
 start_time = Tue Mar 11 14:17:04 2008
 start_count = 1
 checkpoint_dir = /var/spool/torque/checkpoint/999.xxx.yyy.CK
 checkpoint_name = ckpt.999.xxx.yyy.1205266630

The value of Resource_List.* is the amount of resources requested.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

Test 2 - Persistence of Checkpoint Images

Introduction
This test determines if the checkpoint files remain in the default directory after the job is removed from
the TORQUE queue.

TORQUE Resource Manager

Note that this behavior was requested by a customer but in fact may not be the right thing to do as it
leaves the checkpoint files on the execution node. These will gradually build up over time on the node
being limited only by disk space. The right thing would seem to be that the checkpoint files are copied to
the user's home directory after the job is purged from the execution node.

Test steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation on page 2489), delete the job and then wait
until the job leaves the queue after the completed job hold time. Then look at the contents of the default
checkpoint directory to see if the files are still there.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qdel 999
> sleep 100
> qstat
>
> find /var/spool/torque/checkpoint
... files ...

Possible failures
The files are not there, did Test 1 actually pass?

Successful results
The files are there.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

Test 3 - Restart after Checkpoint

Introduction
This test determines if the job can be restarted after a checkpoint hold.

Test steps
Assuming the steps of Test 1 (see Test 1 - Basic Operation on page 2489), issue a qrls command. Have
another window open into the /var/spool/torque/spool directory and tail the job.

Successful results
After the qrls, the job's output should resume.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

TORQUE Resource Manager

2492 Appendices

Appendices 2493

Test 4 - Multiple Checkpoint/Restart

Introduction
This test determines if the checkpoint/restart cycle can be repeated multiple times.

Test steps
Start a job and then while tailing the job output, do multiple qhold/qrls operations.

> qsub -c enabled test.sh
999.xxx.yyy
> qhold 999
> qrls 999
> qhold 999
> qrls 999
> qhold 999
> qrls 999

Successful results

After each qrls, the job's output should resume. Also tried "while true; do qrls 999; qhold 999; done" and
this seemed to work as well.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

Test 5 - Periodic Checkpoint

Introduction
This test determines if automatic periodic checkpoint will work.

Test steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint
directory for checkpoint images to be generated about every minute.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy

Successful results
After each qrls, the job's output should resume. Also tried "while true; do qrls 999; qhold 999; done" and
this seemed to work as well.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

TORQUE Resource Manager

Test 6 - Restart from Previous Image

Introduction
This test determines if the job can be restarted from a previous checkpoint image.

Test steps
Start the job with the option -c enabled,periodic,interval=1 and look in the checkpoint
directory for checkpoint images to be generated about every minute. Do a qhold on the job to stop it.
Change the attribute checkpoint_name with the qalter command. Then do a qrls to restart the job.

> qsub -c enabled,periodic,interval=1 test.sh
999.xxx.yyy
> qhold 999
> qalter -W checkpoint_name=ckpt.999.xxx.yyy.1234567
> qrls 999

Successful results
The job output file should be truncated back and the count should resume at an earlier number.

Related topics

l Appendix M: BLCR Acceptance Tests on page 2488

TORQUE Resource Manager

2494 Appendices

	 Welcome
	 Moab HPC Suite Release Notes
	 Moab HPC Suite - Basic Edition 8.0.1 release notes
	 New Features
	 Differences
	 Installation and Upgrade Information
	 Known Issues
	 Resolved issues

	 Installation and Configuration
	 Requirements
	 Manual installation
	 Installation
	 Preparing for installation
	 Installing TORQUE
	 Installing Moab Workload Manager
	 Installing Moab Web Services

	 Additional configuration
	 Configuring SSL in Tomcat
	 Setting up OpenLDAP on CentOS 6
	 Moab Workload Manager configuration options
	 Trusting servers in Java

	 Upgrading
	 Preparing for upgrade
	 Upgrading MongoDB
	 Upgrading TORQUE
	 Upgrading Moab Workload Manager
	 Upgrading MWS

	 RPM installation
	 Installing Moab HPC Suite - Basic Edition
	 Configuration
	 Configuring TORQUE
	 Configuring Moab Workload Manager
	 Configuring Moab Web Services

	 Additional configuration
	 Configuring SSL in Tomcat
	 Setting up OpenLDAP on CentOS 6
	 Trusting servers in Java

	 Upgrading
	 Upgrading Moab HPC Suite - Basic Edition
	 Upgrading from MongoDB 2.0 to 2.4.x

	 Troubleshooting
	 Component documentation

	 Moab Workload Manager
	 Moab Workload Manager overview
	 Philosophy
	 Value of a Batch System
	 Philosophy and Goals
	 Workload

	 Scheduler Basics
	 Initial Moab Configuration
	 Layout of Scheduler Components
	 Scheduling Environment
	 Scheduling Dictionary

	 Scheduling Iterations and Job Flow
	 Configuring the Scheduler
	 Credential Overview
	 Job Attributes/Flags Overview

	 Scheduler Commands
	 Status Commands
	 Job Management Commands
	 Reservation Management Commands
	 Policy/Configuration Management Commands
	 End-user Commands
	 Commands
	 checkjob
	 checknode
	 mcredctl
	 mdiag
	mdiag -a
	mdiag -b
	mdiag -c
	mdiag -f
	mdiag -g
	mdiag -j
	mdiag -n
	mdiag -t
	mdiag -p
	mdiag -q
	mdiag -r
	mdiag -S
	mdiag -s
	mdiag -T
	mdiag -u

	 mjobctl
	 mnodectl
	 moab
	 mrmctl
	 mrsvctl
	 mschedctl
	 mshow
	mshow -a
	mshow -a

	 msub
	Applying the msub submit filter
	Submitting Jobs via msub in XML

	 mvcctl (Moab Virtual Container Control)
	 mvmctl
	 showbf
	 showq
	 showhist.moab.pl
	 showres
	 showstart
	 showstate
	 showstats
	showstats -f
	TIMESPEC

	 Deprecated commands
	canceljob
	changeparam
	diagnose
	releasehold
	releaseres
	resetstats
	runjob
	sethold
	setqos
	setres
	setspri
	showconfig

	 Prioritizing Jobs and Allocating Resources
	 Job Prioritization
	 Priority Overview
	 Job Priority Factors
	 Fairshare Job Priority Example
	 Common Priority Usage
	 Prioritization Strategies
	 Manual Job Priority Adjustment

	 Node Allocation Policies
	 Node Access Policies
	 Node Availability Policies
	 Task Distribution Policies

	 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management
	 Fairness Overview
	 Usage Limits/Throttling Policies
	 Fairshare
	 Sample FairShare Data File

	 Controlling Resource Access - Reservations, Partitions, and QoS Facilities
	 Advance Reservations
	 Reservation Overview
	 Administrative Reservations
	 Standing Reservations
	 Reservation Policies
	 Configuring and Managing Reservations
	 Personal Reservations

	 Partitions
	 Quality of Service (QoS) Facilities

	 Optimizing Scheduling Behavior – Backfill and Node Sets
	 Optimization Overview
	 Backfill
	 Node Set Overview

	 Evaluating System Performance - Statistics, Profiling, and Testing
	 Moab Performance Evaluation Overview
	 Accounting: Job and System Statistics
	 Testing New Versions and Configurations

	 General Job Administration
	 Job Holds
	 Job Priority Management
	 Suspend/Resume Handling
	 Checkpoint/Restart Facilities
	 Job Dependencies
	 Job Defaults and Per Job Limits
	 General Job Policies
	 Using a Local Queue
	 Job Deadlines
	 Job Arrays

	 General Node Administration
	 Node Location
	 Node Attributes
	 Node Specific Policies
	 Managing Shared Cluster Resources (Floating Resources)
	 Managing Node State
	 Managing Consumable Generic Resources
	 Enabling Generic Metrics
	 Enabling Generic Events

	 Resource Managers and Interfaces
	 Resource Manager Overview
	 Resource Manager Configuration
	 Resource Manager Extensions
	 PBS Resource Manager Extensions

	 Adding New Resource Manager Interfaces
	 Managing Resources Directly with the Native Interface
	 Utilizing Multiple Resource Managers
	 License Management
	 Resource Provisioning
	 Managing Networks
	 Intelligent Platform Management Interface
	 Resource Manager Translation

	 Troubleshooting and System Maintenance
	 Internal Diagnostics/Diagnosing System Behavior and Problems
	 Logging Overview
	 Object Messages
	 Notifying Administrators of Failures
	 Issues with Client Commands
	 Tracking System Failures
	 Problems with Individual Jobs
	 Diagnostic Scripts

	 Improving User Effectiveness
	 User Feedback Loops
	 User Level Statistics
	 Enhancing Wallclock Limit Estimates
	 Job Start Time Estimates
	 Providing Resource Availability Information
	 Collecting Performance Information on Individual Jobs

	 Cluster Analysis and Testing
	 Testing New Releases and Policies
	 Testing New Middleware

	 Green computing
	 Green computing overview
	 How-to's
	 Deploying Adaptive Computing IPMI scripts
	 Choosing which nodes Moab powers on or off
	 Enabling green computing
	 Adjusting green pool size
	 Handling power-related events
	 Maximizing scheduling efficiency
	 Putting idle nodes in power-saving states
	 Troubleshooting green computing

	 Object triggers
	 About object triggers
	 How-to's
	 Creating a trigger
	 Creating VM triggers
	 Using a trigger to send email
	 Using a trigger to execute a script
	 Using a trigger to perform internal Moab actions
	 Requiring an object threshold for trigger execution
	 Enabling job triggers
	 Modifying a trigger
	 Viewing a trigger
	 Checkpointing a trigger

	 References
	 Job triggers
	 Node triggers
	 Reservation triggers
	 Resource manager triggers
	 Scheduler triggers
	 Threshold triggers
	 Trigger components
	 Trigger exit codes
	 Node maintenance example
	 Environment creation example

	 Trigger variables
	 About trigger variables
	 How-to's
	Setting and receiving trigger variables
	Externally injecting variables into job triggers
	Exporting variables to parent objects
	Requiring variables from generations of parent objects
	Requesting name space variables

	 References
	Dependency trigger components
	Trigger variable comparison types
	Internal variables

	 Miscellaneous
	 User Feedback Overview
	 Enabling High Availability Features
	 Malleable Jobs
	 Identity Managers
	 Generic System Jobs

	 Database Configuration
	 SQLite3
	 Connecting to a MySQL Database with an ODBC Driver
	 Connecting to a PostgreSQL Database with an ODBC Driver
	 Connecting to an Oracle Database with an ODBC Driver
	 Installing the Oracle Instant Client

	 Migrating Your Database to Newer Versions of Moab
	 Importing Statistics from stats/DAY.* to the Moab Database

	 Accelerators
	 Scheduling GPUs
	 Using GPUs with NUMA
	 NVIDIA GPUs
	 GPU Metrics
	 Intel® Xeon Phi™ Coprocessor Configuration
	 Intel® Xeon Phi™ Co-processor Metrics

	 Preemption
	 About preemption
	 How-to's
	 Canceling jobs with preemption
	 Checkpointing jobs with preemption
	 Requeueing jobs with preemption
	 Suspending jobs with preemption
	 Using owner preemption
	 Using QoS preemption

	 References
	 Manual preemption commands
	 Preemption flags
	 PREEMPTPOLICY types
	 Simple example of preemption
	 Testing and troubleshooting preemption

	 Job templates
	 About job templates
	 How-to's
	 Creating job templates
	 Viewing job templates
	 Applying templates based on job attributes
	 Requesting job templates directly
	 Creating workflows with job templates

	 References
	 Job template extension attributes
	 Job template matching attributes
	 Job template examples
	 Job template workflow examples

	 Moab Workload Manager for Grids
	 Grid Basics
	 Grid Configuration Basics
	 Centralized Grid Management (Master/Slave)
	 Hierarchal Grid Management
	 Localized Grid Management
	 Resource Control and Access
	 Workload Submission and Control
	 Reservations in the Grid
	 Grid Usage Policies
	 Grid Scheduling Policies
	 Grid Credential Management
	 Grid Data Management
	 Grid Security
	 Grid Diagnostics and Validation

	 Data staging
	 About data staging
	 How-to's
	 Configuring the SSH keys for the data staging transfer script
	 Configuring data staging
	 Staging data to or from a shared file system
	 Staging data to or from a shared file system in a grid
	Configuring the $CLUSTERHOST variable

	 Staging data to or from a compute node
	 Configuring data staging with advanced options

	 References
	 Sample user job script

	 Appendices
	 Appendix A: Moab Parameters
	 Appendix B: Multi-OS Provisioning
	 Event Dictionary
	 Appendix D: Adjusting Default Limits
	 Appendix E: Security
	 Appendix F: Initial Moab Testing
	 Appendix G: Integrating Other Resources with Moab
	 Compute Resource Managers
	Moab-TORQUE Integration Guide
	TORQUE/PBS Integration Guide - RM Access Control
	TORQUE/PBS Config - Default Queue Settings

	Moab-SLURM Integration Guide
	Installation Notes for Moab and TORQUE for Cray

	 Provisioning Resource Managers
	Validating an xCAT Installation for Use with Moab

	 Hardware Integration
	Moab-NUMA Integration Guide

	 Appendix H: Interfacing with Moab (APIs)
	 Appendix I: Considerations for Large Clusters
	 Appendix J: Configuring Moab as a Service
	 Appendix K: Migrating from 3.2
	 Appendix R: Node Allocation Plug-in Developer Kit
	 Appendix S: Scalable Systems Software Specification
	 Scalable Systems Software Job Object Specification
	 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
	 Scalable Systems Software Node Object Specification
	 Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol

	 Appendix W: Moab Resource Manager Language Interface Overview
	 W.1 Moab Resource Manager Language Data Format
	 W.2 Managing Resources with SLURM
	 W.3 Moab RM Language Socket Protocol Description

	 SCHEDCFG flags

	 Moab Web Services
	 Moab Web Services overview
	 Setup
	 Moab Web Services setup
	 Configuring Moab Web Services
	 Setting up MWS security
	 Securing the connection with Moab
	 Securing the connection with MongoDB
	 Securing client connections to MWS
	 Securing the LDAP connection
	 Securing the connection with the message queue

	 Version and build information

	 Access control
	 About access control
	 Access control

	 API documentation
	 About the API
	 RESTful web services
	 Data format
	 Global URL parameters
	 Requesting specific API versions
	 Responses and return codes
	 Error messages
	 Pre and post-processing hooks
	 Authentication
	 System events

	 Resources
	 Resources introduction
	 Access control lists (ACLs)
	 Accounting
	 Accounting Accounts
	 Accounting Allocations
	 Accounting Charge rates
	 Accounting Funds
	 Accounting Liens
	 Accounting Organizations
	 Accounting Quotes
	 Accounting Transactions
	 Accounting Usage records
	 Accounting Users

	 Credentials
	 Diagnostics
	 Distinct
	 Events
	 Images
	 Job arrays
	 Jobs
	 Job templates
	 Metric types
	 Nodes
	 Notification conditions
	 Notifications
	 Permissions
	 Plugins
	 Plugin types
	 Policies
	 Fairshare

	 Principals
	 Priority
	 Reports
	 Reservations
	 Resource types
	 Roles
	 Standing reservations

	 Reporting framework
	 Overview of reporting framework
	 Example report (CPU Utilization)

	 Plugins
	 About Moab Web Services plugins
	 Plugin overview
	 Plugin introduction
	 Lifecycle states
	 Events
	 Custom web services
	 Utility services
	 Data consolidation
	 Routing

	 Plugin developer's guide
	 Requirements
	 Dynamic methods
	 Logging
	 i18n messaging
	 Configuration
	 Configuration constraints
	 Individual datastore
	 Exposing web services
	 Reporting state data
	 Controlling lifecycle
	 Accessing MWS REST resources
	 Creating events and notifications
	 Handling events
	 Handling exceptions
	 Managing SSL connections
	 Utilizing services or custom "helper" classes
	 Packaging plugins
	 Example plugin types

	 Moab Workload Manager resource manager integration
	 Configuring Moab Workload Manager
	 Resource manager queries

	 Plugin type management
	 Listing plugin types
	 Displaying plugin types
	 Plugin type documentation
	 Add or update plugin types

	 Plugin management
	 Listing plugins
	 Creating a plugin
	 Displaying a plugin
	 Modifying a plugin
	 Deleting a plugin
	 Monitoring and lifecycle controls
	 Setting default plugin configuration

	 Plugin services
	 Job RM service
	 Moab REST service
	 Node RM service
	 Plugin control service
	 Plugin datastore service
	 Plugin event service
	 SSL service
	 Storage RM service
	 Virtual machine RM service

	 Plugin types
	 Power Management Plugin

	 References
	 Client code samples
	 Javascript code samples
	 PHP code samples
	 Perl code samples
	 Python code examples
	 cURL samples

	 Configuration
	 Resource reference
	 Resources reference
	 Fields: Access Control Lists (ACLs)
	 Accounting
	Fields: Accounts
	Fields: Allocations
	Fields: Charge Rates
	Fields: Fund Balances
	Fields: Fund Statement Summary
	Fields: Fund Statements
	Fields: Funds
	Fields: Liens
	Fields: Organizations
	Fields: Quotes
	Fields: Transactions
	Fields: Usage Records
	Fields: Users

	 Fields: Credentials
	 Fields: Events
	 Fields: Images
	 Fields: Job Arrays
	 Fields: Jobs
	 Fields: Job Templates
	 Fields: Metric Types
	 Fields: Nodes
	 Fields: Notification Conditions
	 Fields: Notifications
	 Fields: Plugins
	 Fields: Plugin Types
	 Fields: Policies
	 Fields: Principals
	 Fields: Report Datapoints
	 Fields: Reports
	 Fields: Reservations
	 Fields: Resource Types
	 Fields: Roles
	 Fields: Report Samples
	 Fields: Standing Reservations
	 Fields: User's Permissions

	 TORQUE Resource Manager
	 Introduction
	 Overview
	 TORQUE Installation Overview
	 TORQUE Architecture
	 Installing TORQUE
	 Compute Nodes
	 Enabling TORQUE as a Service

	 Initializing/Configuring TORQUE on the Server (pbs_server)
	 Specifying Compute Nodes
	 Configuring TORQUE on Compute Nodes
	 Configuring Ports
	 Configuring trqauthd for Client Commands
	 Finalizing Configurations

	 Advanced configuration
	 Customizing the Install
	 Server Configuration
	 MOM Hierarchy

	 Manual Setup of Initial Server Configuration
	 Server Node File Configuration
	 Basic Node Specification
	 Specifying Virtual Processor Count for a Node
	 Specifying GPU Count for a Node
	 Specifying Node Features (Node Properties)

	 Testing Server Configuration
	 TORQUE on NUMA Systems
	 TORQUE NUMA Configuration
	 Building TORQUE with NUMA Support

	 TORQUE Multi-MOM
	 Multi-MOM Configuration
	 Stopping pbs_mom in Multi-MOM Mode

	 Submitting and Managing Jobs
	 Job Submission
	 Multiple Job Submission
	 Managing Multi-node Jobs
	 Requesting Resources
	 Requesting Generic Resources
	 Requesting Floating Resources
	 Requesting Other Resources
	 Exported Batch Environment Variables
	 Enabling Trusted Submit Hosts
	 Example Submit Scripts
	 Job Files

	 Monitoring Jobs
	 Canceling Jobs
	 Job Preemption
	 Keeping Completed Jobs
	 Job Checkpoint and Restart
	 Introduction to BLCR
	 Configuration Files and Scripts
	 Starting a Checkpointable Job
	 Checkpointing a Job
	 Restarting a Job
	 Acceptance Tests

	 Job Exit Status
	 Service Jobs
	 Submitting Service Jobs
	 Submitting Service Jobs in MCM
	 Managing Service Jobs

	 Managing Nodes
	 Adding Nodes
	 Node Properties
	 Changing Node State
	 Changing Node Power States
	 Host Security
	 Linux cpuset Support
	 Scheduling Cores
	 Geometry Request Configuration
	 Geometry Request Usage
	 Geometry Request Considerations

	 Scheduling Accelerator Hardware

	 Setting Server Policies
	 Queue Configuration
	 Queue Attributes
	 Example Queue Configuration
	 Setting a Default Queue
	 Mapping a Queue to Subset of Resources
	 Creating a Routing Queue

	 Server High Availability
	 Setting min_threads and max_threads

	 Integrating Schedulers for TORQUE
	 Configuring Data Management
	 SCP Setup
	 Generating SSH Key on Source Host
	 Copying Public SSH Key to each Destination Host
	 Configuring the SSH Daemon on Each Destination Host
	 Validating Correct SSH Configuration
	 Enabling Bi-directional SCP Access
	 Compiling TORQUE to Support SCP
	 Troubleshooting

	 NFS and Other Networked Filesystems
	 File stage-in/stage-out

	 MPI (Message Passing Interface) Support
	 MPICH
	 Open MPI

	 Resources
	 Accounting Records
	 Job Logging
	 Job Log Location and Name
	 Enabling Job Logs

	 Troubleshooting
	 Host Resolution
	 Firewall Configuration
	 TORQUE Log Files
	 Using "tracejob" to Locate Job Failures
	 Using GDB to Locate Job Failures
	 Other Diagnostic Options
	 Stuck Jobs
	 Frequently Asked Questions (FAQ)
	 Compute Node Health Check
	 Configuring MOMs to Launch a Health Check
	 Creating the Health Check Script
	 Adjusting Node State Based on the Health Check Output
	 Example Health Check Script

	 Debugging

	 Appendices
	 Appendix A: Commands Overview
	 momctl
	 pbs_mom
	 pbs_server
	 pbs_track
	 pbsdsh
	 pbsnodes
	 qalter
	 qchkpt
	 qdel
	 qgpumode
	 qgpureset
	 qhold
	 qmgr
	 qmove
	 qorder
	 qrerun
	 qrls
	 qrun
	 qsig
	 qstat
	 qsub
	 qterm
	 trqauthd

	 Appendix B: Server Parameters
	 Appendix C: Node Manager (MOM) Configuration
	 Parameters
	 Node Features and Generic Consumable Resource Specification
	 Command-line Arguments

	 Appendix D: Diagnostics and Error Codes
	 Appendix E: Considerations before Upgrading
	 Appendix F: Large Cluster Considerations
	 Scalability Guidelines
	 End-user Command Caching
	 Moab and TORQUE Configuration for Large Clusters
	 Starting TORQUE in Large Environments
	 Other Considerations

	 Appendix G: Prologue and Epilogue Scripts
	 Script Order of Execution
	 Script Environment
	 Per Job Prologue and Epilogue Scripts
	 Prologue and Epilogue Scripts Time Out
	 Prologue Error Processing

	 Appendix H: Running Multiple TORQUE Servers and MOMs on the Same Node
	 Appendix I: Security Overview
	 Appendix J: Job Submission Filter ("qsub wrapper")
	 Appendix K: "torque.cfg" Configuration File
	 Appendix L: TORQUE Quick Start Guide
	 Appendix M: BLCR Acceptance Tests
	 Test Environment
	 Test 1 - Basic Operation
	 Test 2 - Persistence of Checkpoint Images
	 Test 3 - Restart after Checkpoint
	 Test 4 - Multiple Checkpoint/Restart
	 Test 5 - Periodic Checkpoint
	 Test 6 - Restart from Previous Image

	Bookmarks
	mwm
	mws
	torque
	gcc
	mongoInstallation
	requirements
	messageQueue
	installing
	pw
	addOU
	addUser
	addGroup
	addUserToGroup
	option
	option
	withProfile
	option
	pw
	generalIssues
	moabLocalHostName
	moabLicenseNotFound
	otherMoabIssues
	changePasswords
	mwsIssues
	errorsDuringStartup
	outOfSemaphores
	connectionWaitTimeout
	javaHeapSpace
	permGenSpace
	severe
	maxNumberConcurentClient
	traffic
	mission
	optimizations
	batch
	interactive
	calendar
	service
	databaselayout
	jobdefinition
	jobstates
	hold
	completed
	vacated
	reqdefinition
	nodedefinition
	reservationdefinition
	policydefinition
	resourcedefinition
	taskdefinition
	PEoverview
	classdefinition
	rmdefinition
	Account
	Class
	Credential
	Execution_Environment
	Fairshare
	Group
	Job
	Job_Constraints
	Node_Attribute
	Processor
	QOS
	Queue
	Reservation
	Resource_Configured
	Resource_Consumable
	Resource_Constraints
	Resource_Dedicated
	Resource_Utilized
	Resource_Utilized
	SchedulingIterations
	UpdateStateInformation
	HandleUserRequests
	PerformNextSchedulinCycle
	DetailedJobFlow
	BasicJobFeasibility
	PrioritizeJobs
	EnforceThrottlingPolicies
	ResourceAvailability
	AllocateResources
	LaunchJob
	behavior
	logging
	checkpointing
	client
	schedmode
	monitor
	schedmodenormal
	schedmodetest
	jobIdOffset
	attributes
	priority
	usage
	service
	partition
	cal
	cdef
	membership
	statistics
	state
	comment
	hold
	jobflags
	variable
	user
	userrole
	useremail
	disableuseremail
	group
	account
	class
	classjobDefaults
	classminMax
	classresource
	classmembership
	classaccess
	classspecial
	validtrigvariables
	resfailpolicy
	disableam
	defaultclass
	remapclass
	classcfgparameters
	default.attr
	default.disk
	default.features
	default.gres
	default.gres
	default.mem
	default.node
	default.nodeset
	default.proc
	excl.features
	excludeuserlist
	excludeuserlist
	forcenodeaccesspolicy
	hostlist
	hostlist
	jobepilog
	jobprolog
	managers
	maxjob
	maxprocpernode
	max.node
	max.node
	max.proc
	max.wclimit
	min.node
	min.node
	min.proc
	min.tpn
	min.wclimit
	min.wclimit
	nodeaccesspolicy
	classpartition
	priority
	qdef
	qdef
	qlist
	req.features
	requiredaccountlist
	requiredaccountlist
	requireduserlist
	sysprio
	wcoverrun
	wcoverrun
	queuecomplex
	qos
	qosusageLimit
	qosserviceTargets
	qosprivilegeFlags
	qoschargeRate
	qosaccess
	jobflags
	arrayjobparlock
	arrayjobparspan
	PURGEONSUCCESSONLY
	widersvsearchalgo
	blocking
	flags
	exact
	l
	l
	n
	q
	r
	v
	preemption
	Output
	ex2
	ex3
	dataStaging
	destroy
	hold
	list
	query
	query
	reset
	timeframe
	xml
	C
	e
	mdiag-green
	t
	xml
	synopsis
	xml
	synopsis
	w
	xml
	verbose
	cancel
	cancelwhere
	cancelwhere
	checkpoint
	rerun
	forcecancel
	hold
	modify
	modify
	modify
	notify
	notify
	name
	p
	priority
	p
	priority
	query
	query
	resume
	requeue
	requeue
	suspend
	unhold
	where
	where
	execute
	jobexp
	jobexp
	xml
	MODIFY
	QUERY
	QUERY
	FEATURES
	GEVENT
	GMETRIC
	MESSAGE
	MESSAGE
	NODEEXP
	OS
	POWER
	POWER
	STATE
	VARIABLE
	VARIABLE
	about
	loglevel
	version
	C
	d
	e
	P
	R
	s
	S
	v
	flush
	flush
	list
	modify
	ping
	ping
	reload
	ACL
	SUBTYPE
	CREATE
	CREATE
	CLEAR
	DURATION
	DURATION
	DESCRIPTION
	ENDTIME
	ENDTIME
	EXCLUSIVE
	FEATURES
	FLAGS
	RSVGROUP
	HOSTLIST
	HOSTLIST
	INDEX
	LIST
	LIST
	MODIFY
	MODIFY
	MODIFY
	MODIFY
	NAME
	NAME
	OWNER
	PARTITION
	PROFILE
	QUERY
	RELEASE
	RELEASE
	RESOURCES
	STARTTIME
	SET
	rsvaccesslist
	SET
	TASKS
	TRIGGER
	TRIGGER
	VARIABLE
	JOBLIST
	JOBLIST
	RESVID
	example1
	example2
	example3
	example4
	example7
	example8
	example9
	ANNOTATE
	CREATE
	CREATE
	DESTROY
	FLUSH
	KILL
	LIST
	LIST
	LOG
	MODIFY
	PAUSE
	QUERY
	QUERY
	RECYCLE
	RESUME
	STOP
	STOP
	STEP
	flags
	future
	policy
	tid
	verbose
	i
	o
	T
	w
	x
	table2
	arch
	class
	duration
	gres
	jobfeature
	jobflags
	minprocs
	offset
	os
	tpn
	var
	a
	eligible
	account
	interval
	C
	directive
	directory
	e
	error
	e
	environment
	scriptflags
	h
	hold
	interactive
	join
	keep
	continue
	l
	resource
	l
	mail
	M
	maillist
	M
	name
	o
	output
	o
	priority
	destination
	r
	rerun
	S
	shell
	t
	jobarrays
	user
	v
	variable
	v
	verbose
	W
	additional
	x
	silent
	stagingData
	stagein
	stageinfile
	stageinsize
	workflowjobids
	script
	globalJobSubmitFilter
	triggers
	add
	create
	destroy
	modify
	query
	remove_object
	execute_action
	destroy
	force
	modify
	migrate
	query
	constraint
	b
	c
	g
	i
	l
	n
	o
	p
	R
	u
	v
	w
	blocking
	noblock
	defaultexample
	state
	proc
	remaining
	active
	eligible
	blocked
	activeexample
	completedexample
	jobid
	cs
	cccode
	username
	whereexample
	account
	class
	endDate
	endDate
	group
	jobid
	days
	days
	qos
	startDate
	user
	o
	r
	hist
	rsv
	prio
	blocking
	duration
	e
	f
	g
	l
	jobid
	proccount
	s3
	acct
	class
	full
	group
	template
	node
	qos
	sched
	timeframe
	tree
	user
	verbose
	accountStats
	groupStats
	nodeStats
	verboseStats
	userStats
	fairshareStats
	absoluteTimeframe
	relativeTimeframe
	statisticTypes
	avgqtime
	eststarttime
	JOBID
	a
	b
	cred
	fs
	ceilingsFloors
	res
	serv
	queuetimesubcomponent
	xfactorsub
	bypasssub
	startcountsub
	deadlinesub
	spviolation
	userprio
	target
	usage
	attr
	cred
	service
	cap
	userprio
	node
	heterogeneous
	sharednodes
	rsv
	nonflat
	selectionFactors
	resource
	CPULOAD
	FIRSTAVAILABLE
	LASTAVAILABLE
	PRIORITY
	MINRESOURCE
	CONTIGUOUS
	MAXBALANCE
	user
	PLUGIN
	pref
	prefspec
	selectingpref
	shared
	sharedonly
	singlejob
	singletask
	singleuser
	uniqueuser
	nodeavail
	nodecat
	notification
	triggers
	transientnodefailures
	jobrealloc
	fail
	ignore
	fairness
	basic
	maxjob
	maxmem
	maxnode
	maxnode
	maxpe
	maxproc
	maxps
	maxps
	maxsubmitjobs
	maxwc
	multi
	override
	idle
	limits
	perPartition
	usageBased
	config
	soft
	walltime
	Fairshare
	parameters
	fspolicy
	percentfs
	fswindow
	fsdata
	using
	targets
	fscap
	priority
	credspecific
	fsexample
	fstree
	treeconfig
	treepolicies
	resources
	timeframe
	acl
	jobmapping
	rsvspec
	rsvbehavior
	rsvgroup
	annotate
	profiles
	optimize
	priorityrsv
	rsvretry
	rsvalloc
	rsvattributes
	timeframe
	acl
	flagoverview
	byname
	evacvms
	ignidlejobs
	ignjobrsv
	ignrsv
	ignstate
	noacloverlap
	ownerpreempt
	ownerpreemptignoremintime
	configsr
	standingResAtt
	ACCESS
	ACCOUNTLIST
	ACCOUNTLIST
	charge
	CHARGEACCOUNT
	CHARGEACCOUNT
	CHARGEUSER
	CLASSLIST
	CLUSTERLIST
	COMMENT
	d
	DAYS
	DAYS
	DEPTH
	DISABLE
	ENDTIME
	FLAGS
	GROUPLIST
	HOSTLIST
	JOBATTRLIST
	JOBATTRLIST
	MAXTIME
	NODEFEATURES
	OWNER
	PARTITION
	PARTITION
	PERIOD
	PROCLIMIT
	QOSLIST
	REQUIREDTPN
	ROLLBACKOFFSET
	rsvaccesslist
	RSVGROUP
	STARTTIME
	TASKCOUNT
	TIMELIMIT
	TPN
	TRIGGER
	USERLIST
	overview
	resources
	stacking
	multipleACLTypes
	affinity
	aclmodifiers
	not
	partitions
	allocation
	rollbckrsv
	modifyresources
	configadminrsv
	enable
	accounting
	defaults
	limits
	binding
	jobmapping
	jobconstraints
	overview
	defining
	managing
	reqaccess
	requesting
	settings
	misc
	overview
	privileges
	special
	service
	qflags
	deadline
	preemptconfig
	preemptee
	preemptor
	trigger
	reqrid
	policy
	thresholds
	preemption
	preemptees
	access
	memberulist
	request
	specialattributes
	overview
	algorithm
	backfilltype
	config
	overview
	config
	fixedConfigExample
	policy
	attribute
	delay
	list
	priority
	dynamicExample
	nodesetplus
	nestednodesets
	jobsubmit
	classnodesets
	overview
	realtime
	fairshare
	monitor
	interactive
	user
	system
	batch
	defer
	overview
	syntax
	multinode
	multireq
	jobsize
	malleable
	proxy
	overview
	qosDeadlines
	deadlineAtSubmission
	deadlineInQos
	termination
	conflict
	overview
	enabling
	subjobdefs
	envvariables
	control
	reporting
	cancellation
	submittingArrays
	partitions
	racks
	queues
	open
	selection
	configattr
	access
	enableprofiling
	features
	flags
	gres
	maxioin
	maxjobperuser
	maxpeperjob
	network
	nodeindex
	oslist
	overcommit
	partition
	POWERPOLICY
	preemptmaxcpuload
	preemptminmemavail
	preemptpolicy
	priority
	priorityf
	procspeed
	provrm
	rack
	radisk
	rcdisk
	rcmem
	rcproc
	rcswap
	size
	slot
	speed
	trigger
	vmocthreshold
	nodefeatures
	maxload
	maxpe
	access
	global
	license
	gresFeatures
	down
	idle
	busy
	running
	drained
	race
	gmetric
	gmetricconfig
	gmetricusage
	geventconfig
	action
	named
	gmetric
	geventreport
	vmdetection
	geventattr
	mancreate
	scheduler
	commands
	flow
	details
	conflicts
	diag
	define
	table
	adminexec
	adminexec
	authtype
	bandwidth
	bandwidth
	checkpointsig
	checkpointtimeout
	client
	clusterqueryurl
	configfile
	datarm
	defaulthighspeedadapter
	description
	env
	eport
	failtime
	flags
	fnlist
	host
	ignhnodes
	jobcancelurl
	jobextendduration
	jobextendduration
	jobidformat
	jobmodifyurl
	jobrsvrecreate
	jobstarturl
	jobsubmiturl
	jobsuspendurl
	jobvalidateurl
	maxdsop
	maxdsop
	maxiterationfailurecount
	maxjobperminute
	maxjobs
	maxjobs
	minetime
	nmport
	nodefailurersvprofile
	nodestatepolicy
	omap
	port
	provduration
	ptystring
	ptystring
	resourcecreateurl
	resourcetype
	resourcetype
	rmstarturl
	rmstopurl
	sbindir
	sbindir
	server
	slurmflags
	softtermsig
	softtermsig
	stagethreshold
	startcmd
	submitcmd
	submitpolicy
	suspendsig
	syncjobid
	systemmodifyurl
	systemqueryurl
	targetusage
	timeout
	type
	usevnodes
	version
	vmownerrm
	workloadqueryurl
	urlspec
	syncJobIDs
	details
	types
	name
	location
	rmflags
	proxyjobsubmission
	interactions
	overview
	config
	advres
	bandwidth
	bandwidth
	cpuclock
	cpuclock
	cpuclock
	ddisk
	deadline
	deadline
	depend
	dmem
	epilogue
	epilogue
	excludenodes
	feature
	gattr
	geometry
	gmetric
	gpus
	gpus
	gres
	software
	hostlist
	jgroup
	jobrejectpolicy
	maxmem
	mem
	mics
	mics
	minpreempttime
	minprocspeed
	minprocspeed
	minwclimit
	mstagein
	mstagein
	mstageout
	mstageout
	naccesspolicy
	naccesspolicy
	nallocpolicy
	ncpus
	nmatchpolicy
	nodeset
	nodesetcount
	nodesetdelay
	nodesetisoptional
	opsys
	pmem
	pmem
	pref
	procs
	prologue
	pvmem
	qos
	queuejob
	queuejob
	reqattr
	resfailpolicy
	rmtype
	signal
	spriority
	template
	template
	termtime
	tpn
	trig
	trl1
	trl1
	trl2
	vc
	vmem
	examples
	dynamicFeatures
	addparam
	interfaces
	wiki
	sss
	overview
	config
	configrm
	resources
	clusterquery
	flatclusterquerydata
	flexlm
	nagios
	supermon
	rtype
	newtools
	clusterqueryspec
	jobcancelurl
	jobmodify
	nodemodify
	nodepowerurl
	workloadquery
	availability
	local
	rm
	direct
	requesting
	overview
	config
	vlan
	13.10.1
	13.10.2
	13.10.3
	13.10.4
	13.10.5
	13.10.6
	13.10.7
	13.11.1
	13.11.2
	logconfig
	logFormat
	logsearch
	logevent
	eventformat
	eventexport
	logsyslog
	managingverbosity
	overview
	diag
	eval
	monitor
	test
	interactive
	newreleases
	newpolicies
	policyspec
	policybehavior
	sidebyside
	mwmMWS
	duration
	nodeidlepowerthreshold
	ipmiAccess
	queryScript
	comparisonOperators
	required
	atype
	action
	cancelAction
	changeParamAction
	jobPreemptAction
	jobPreemptAction
	mailAction
	execAction
	internalAction
	etype
	etypecancel
	etypecheckpoint
	etypecreate
	etypediscover
	etypeend
	etypefail
	etypehold
	etypemodify
	etypepreempt
	etypestanding
	etypestart
	etypethreshold
	eventModifiers
	rearmTime
	offset
	offset
	period
	threshold
	actionModifiers
	organizational
	sets
	requires
	overview
	nfsconfig
	nfsconfirm
	other
	malleablejobs
	overview
	basicconfig
	createcred
	fairnesspolicies
	dataformat
	conflicts
	refresh
	gSystemJob
	trigger
	template
	inheritres
	from7.5
	from7.2.6
	from7.2
	from7.1
	from7.0
	from6.1
	torqueConfig
	260xDriver
	270xDriver
	gpuStatus
	newSupport
	cpuclock
	flags
	gname
	gname
	gres
	group
	noderange
	priority
	procrange
	qos
	rarch
	rfeatures
	ropsys
	select
	software
	templatedepend
	uname
	user
	user
	jmax
	jmin
	jdef
	jset
	jstat
	p2poverview
	p2pgrid
	p2pgridscalability
	p2pgridresourceaccess
	p2gridloadbalancing
	p2pgridssi
	p2pgridha
	grid_relationships
	centralized_management
	hierarchal_management
	local_management
	p2psubmit
	p2pjobs
	p2poverview
	p2pinitialconfig
	slavemode
	p2pconfigs
	p2pex1
	p2pbidirectional
	p2pex3
	p2presourceview
	p2pdirect
	p2pmap
	p2pgridsandbox
	percluster
	localjobs
	p2pworkloadview
	p2poverview
	p2pjobresourcelimits
	p2pcredusagelimits
	p2pgeneral
	p2psource
	p2paffinity
	p2pparallocation
	perPartition
	p2poverview
	p2pcredmapping
	p2poverview
	configuring
	p2pscpkeys
	diagnostics
	p2pmgmtoverview
	p2pdiagoverview
	a
	accountcfg
	accountinginterfaceurl
	accountweight
	admin1
	admincfg
	aggregatenodeactions
	aggregatenodeactionstime
	arrayjobparlock
	attrattrweight
	attrgresweight
	attrstateweight
	attrweight
	b
	backfilldepth
	backfillpolicy
	bfchunkduration
	bfchunksize
	bfminvirtualwalltime
	bfvirtualwalltimeconflictpolicy
	bfvirtualwalltimescalingfactor
	bypassweight
	c
	checkpointexpirationtime
	checkpointfile
	checkpointinterval
	checkpointwithdatabase
	childstderrcheck
	classcfg
	classweight
	clientcfg
	clientmaxconnections
	clienttimeout
	credweight
	d
	deadlinepolicy
	defercount
	deferstartcount
	defertime
	disablesamecredpreemption
	disableslavejobsubmit
	disablethresholdtriggers
	diskweight
	displayflags
	e
	enablefsviolationpreemption
	enablehighthroughput
	enablejobarrays
	enablenegjobpriority
	enableposuserpriority
	enablespviolationpreemption
	enablevmdestroy
	enforceaccountaccess
	enforcegresaccess
	f
	featurepartitionheader
	featureprocspeedheader
	feedbackprogram
	filtercmdfile
	forcersvsubtype
	fsaccountweight
	fscap
	fsclassweight
	fsdecay
	fsdepth
	fsenablecappriority
	fsgroupweight
	fsinterval
	fsjpuweight
	fspolicy
	fsppuweight
	fspspuweight
	fsqosweight
	fstargetisabsolute
	fstree
	fsuserweight
	fsweight
	g
	geventcfg
	grescfg
	groupcfg
	groupweight
	guaranteedpreemption
	halockchecktime
	halockupdatetime
	h
	i
	idcfg
	ignoreclasses
	ignorejobs
	ignorenodes
	ignorepreempteepriority
	ignoreusers
	include
	instantstage
	j
	jobactiononnodefailure
	jobcfg
	jobcpurgetime
	jobextendstartwalltime
	jobidweight
	jobmatchcfg
	jobmaxnodecount
	jobmaxoverrun
	jobmaxpreemptperiteration
	jobmigratepolicy
	jobnameweight
	jobnodematchpolicy
	jobpreemptmaxactivetime
	jobpreemptminactivetime
	jobprioaccrualpolicy
	jobprioexceptions
	jobpriof
	jobpurgetime
	jobrejectpolicy
	jobretrytime
	k
	l
	limitedjobcp
	limitednodecp
	loadalljobcp
	logdir
	logfacility
	logfile
	logfilemaxsize
	logfilerolldepth
	loglevel
	m
	mailprogram
	maxgmetric
	maxjob
	maxrsvpernode
	memweight
	messagequeueaddress
	messagequeueport
	minadminstime
	msubqueryinterval
	n
	nodeaccesspolicy
	nodeallocationpolicy
	nodeallocresfailurepolicy
	nodeavailabilitypolicy
	nodebusystatedelaytime
	nodecatcredlist
	nodecfg
	nodedownstatedelaytime
	nodedrainstatedelaytime
	nodefailurereservetime
	nodeidformat
	nodemaxload
	nodepollfrequency
	nodesetattribute
	nodesetdelay
	nodesetisoptional
	nodesetlist
	nodesetplus
	nodesetpolicy
	nodesetprioritytype
	nodesynctime
	nodetojobattrmap
	nodeweight
	notificationprogram
	o
	p
	parallocationpolicy
	parcfg
	peweight
	preemptpolicy
	preemptpriojobselectweight
	preemptrtimeweight
	preemptsearchdepth
	prioritytargetduration
	prioritytargetproccount
	procweight
	profilecount
	profileduration
	q
	qoscfg
	qosrejectpolicy
	qosweight
	queuetimeweight
	r
	recordeventlist
	rejectdosscripts
	rejectnegpriojobs
	remapclass
	remapclasslist
	resourcecap
	reservationdepth
	reservationpolicy
	reservationqoslist
	reservationretrytime
	resourcelimitmultiplier
	resourcelimitpolicy
	restartinterval
	resourcequerydepth
	resourceweight
	resweight
	rmcfg
	rmpollinterval
	rsvnodeallocationpolicy
	rsvprofile
	rsvsearchalgo
	s
	schedcfg
	serversubmitfilter
	serversubmitfilter
	serviceweight
	siminitialqueuedepth
	simworkloadtracefile
	spviolationweight
	srcfg
	startcountweight
	statdir
	statprocmin
	statprocstepcount
	statprocstepsize
	stattimemin
	stattimestepcount
	stattimestepsize
	submitfilter
	syscfg
	swapweight
	t
	targetqueuetimeweight
	targetweight
	targetxfactorweight
	toolsdir
	u
	usageconsumedweight
	usageexecutiontimeweight
	usagepercentweight
	usageremainingweight
	usageweight
	useanypartitionprio
	usedatabase
	usemoabjobid
	usercfg
	userprioweight
	userweight
	usesyslog
	v
	vmmig
	vmocthreshold
	vmstaleaction
	vmstaletime
	w
	walltimeweight
	wcaccuracyweight
	wcviolationaction
	wikievents
	x
	y
	z
	xfactorcap
	xfactorweight
	xfminwclimit
	xcatconfigreqs
	msminstall
	msm-xcat
	msmconfig
	configvalidate
	troubleshooting
	deployingimages
	mgmtnode
	moabconfigfile
	verifyinstall
	xcatpluginparams
	Description
	Module
	Loglevel
	Loglevel
	PollInterval
	TimeOut
	NodeRange
	CQxCATSessions
	DORVitals
	PowerString
	DoNodeStat
	DoNodeStat
	DoxCATStats
	LockDir
	HVxCATPasswdKey
	FeatureGroups
	FeatureGroups
	DefaultVMCProc
	DefaultVMDisk
	DefaultVMCMemory
	KVMStoragePath
	ESXStore
	ESXCFGPath
	VMInterfaces
	XenHostInterfaces
	KVMHostInterfaces
	KVMHostInterfaces
	VMSovereign
	UseStates
	ImagesTabName
	VerifyRPower
	VerifyRPower
	RPowerTimeOut
	QueueRPower
	RPowerQueueAge
	RPowerQueueSize
	MaskOSWhenOff
	ModifyTORQUE
	ReportNETADDR
	UseOpIDs
	UseOpIDs
	VMIPRange
	xCATHost
	jobnodecount
	MMAX_ATTR
	ranges
	tasks
	authorization
	role
	services
	services
	interface
	mauth
	secretkey
	munge
	svrrespose
	interfacedev
	hostsec
	minimal
	medium
	strict
	map
	minimal
	normal
	monitor
	interactive
	simulation
	installpbs
	installmoab
	configpbs
	torquemoab
	troubleshooting
	overview
	slurmconfig
	moabconfig
	qos
	quadrics
	authentication
	class
	policies
	emulation
	ha
	introduction
	nodelist
	nodestatus
	hardware
	images
	vm
	api
	rm
	id
	accounting
	jobsubmission
	grid
	rm
	jobs
	latency
	jobrsvrecreate
	nodes
	smp
	server
	statistics
	overview
	plugin
	data
	moab
	cfg
	syntax
	troubleshooting
	Scalable
	Table
	1.0
	1.1
	1.2
	1.3
	1.3.1
	1.3.2
	1.3.3
	2.0
	2.1
	2.2
	2.3
	3.0
	4.0
	4.1
	4.1.1
	4.1.2
	4.1.3
	4.2
	5.0
	5.1
	5.1.1
	5.1.2
	5.1.3
	5.1.4
	5.1.5
	5.1.6
	5.1.7
	5.1.8
	5.1.9
	5.1.9.1
	5.1.10
	5.1.11
	5.1.12
	5.1.13
	5.1.14
	5.1.15
	5.1.16
	5.1.17
	5.2
	6.0
	6.1
	6.1.1
	6.1.2
	6.1.3
	6.2
	7.0
	7.1
	7.1.1
	7.2
	8.0
	8.1
	8.2
	9.0
	10.0
	Appendix
	Units
	1.0
	2.0
	2.1
	2.2
	2.3
	3.0
	3.1
	3.2
	3.2.1
	3.2.2
	3.2.3
	3.2.4
	3.2.5
	3.2.6
	3.2.7
	3.2.8
	3.2.9
	3.2.10
	3.2.11
	3.2.12
	3.2.13
	3.2.14
	3.3
	3.3.1
	3.4
	3.4.1
	3.4.2
	4.0
	6.0
	Scalable
	Table
	1.0
	1.1
	1.2
	1.2.1
	1.2.2
	2.0
	2.1
	2.2
	2.3
	3.0
	4.0
	4.1
	4.1.1
	4.1.2
	4.2
	4.2.1
	4.2.2
	4.2.3
	4.3
	4.3.1
	4.3.2
	Appendix
	Units
	Scalable
	Table
	1.0
	2.0
	2.1
	2.2
	2.3
	3.0
	3.1
	3.2
	3.3
	4.0
	5.0
	5.1
	5.2
	5.3
	5.4
	5.5
	5.6
	5.6.1
	5.6.2
	6.0
	7.0
	7.1
	7.1.1
	7.1.2
	7.1.2.1
	7.1.2.2
	7.1.2.3
	7.1.2.5
	7.1.2.6
	7.1.3
	7.2
	7.2.1
	7.2.2
	7.2.3
	7.2.4
	7.3
	7.3.1
	7.3.2
	7.3.3
	7.3.4
	8.0
	9.0
	resourceformat
	afs
	workloadattr
	hostlist
	tasklist
	commands
	getnodes
	resformat
	resrespformat
	getjobs
	jobformat
	jobrespformat
	jobexample
	startjob
	canceljob
	suspendjob
	resumejob
	requeuejob
	signaljob
	modifyjob
	jobaddtask
	rejcodes
	cancelfaileddependencyjobs
	disablepartialnodereservations
	fastrsvstartup
	homeDirectory
	configurationFiles
	loggingConfiguration
	configuringEvents
	ldapConfiguration
	pamConfiguration
	oauthConfiguration
	encryptApacheSSL
	configureSecurity
	browser
	restRequest
	manifest
	fieldInfo
	listing
	creating
	modifying
	listingShowing
	deleting
	responseHeaders
	400
	401
	403
	404
	405
	500
	configHooks
	defineHooks
	beforeHooks
	afterHooks
	errorHandling
	definingCommonHooks
	reference
	beforeSave
	afterSave
	events
	notificationConditions
	gettingAcls
	creatingAcls
	createUpdateAcl
	deletingAcls
	deleteAcl
	gettingAccounts
	getAllAccounts
	fields
	getSingleAccount
	gettingAllocations
	getAllAllocations
	getSingleAllocation
	gettingChargeRates
	getAllChargeRates
	getSingleChargeRate
	gettingFunds
	getAllFunds
	getSingleFund
	getAllFundBalances
	getFundStatement
	getFundStatementSummary
	gettingLiens
	getAllLiens
	getSingleLien
	gettingOrganizations
	getAllOrganizations
	getSingleOrganization
	gettingQuotes
	getAllQuotes
	getSingleQuote
	gettingTransactions
	getAllTransactions
	getSingleTransaction
	gettingUsageRecords
	getAllUsageRecords
	getSingleUsageRecord
	obtainQuoteForResourcesUsage
	gettingUsers
	getAllUsers
	getSingleUser
	gettingCred
	getAllAccountCred
	getSingleAccountCred
	getAllClassCred
	getSingleClassCred
	getAllGroupCred
	getSingleGroupCred
	getAllQosCred
	getSingleQosCred
	getAllUserCred
	getSingleUserCred
	modifyingCred
	modifyAccountCred
	modifyClassCred
	modifyGroupCred
	modifyQosCred
	modifyUserCred
	restDiagHealthDetail
	getVersionInfo
	diagnoseAuthentication
	connectionHealthInfo
	getHealthSummary
	getHealthDetail
	getDistinctValues
	gettingEvents
	getAllEvents
	getSingleEvent
	creatingEvents
	createEvent
	restrictions
	gettingImages
	getAllImages
	getSingleImage
	creatingImages
	createSingleImage
	modifyingImages
	modifySingleImage
	deletingImages
	deleteSingleImage
	submittingJobArrays
	submitJobArray
	gettingJobInfo
	getAllJobs
	getSingleJob
	submittingJobs
	submitJob
	modifyingJobs
	modifyJobAttributes
	genericResources
	performActionsOnJob
	deletingCancelingJobs
	cancelJob
	getingJobTemplates
	getAllJobTemplates
	getSingleJobTemplate
	gettingMetricTypes
	getAllMetricTypes
	gettingNodes
	getAllNodes
	getSingleNode
	modifyingNodes
	modifyNode
	gettingNotificationConditions
	getAllNotificationConditions
	getSingleNotificationCondition
	updatingNotificationConditions
	updateNotificationCondition
	gettingNotifications
	getAllNotifications
	getSingleNotification
	ignoringNotifications
	ignoreAllNotifications
	ignoreSingleNotification
	unignoringNotifications
	unignoreAllNotifications
	unignoreSingleNotification
	dismissingNotifications
	dismissAllNotifications
	dismissNotification
	gettingPermissions
	getAllPermissions
	getSinglePermission
	getUsersPermission
	getCurrentUsersPermission
	creatingPermissions
	createSinglePermission
	deletingPermissions
	deleteSinglePermission
	gettingPlugins
	getAllPlugins
	getAllPluginsReportingObject
	getSinglePlugin
	creatingPlugins
	createPlugin
	modifyingPlugins
	modifyPlugin
	triggerPluginPoll
	deletingPlugins
	deletePlugin
	accessingPluginWebServices
	accessPluginWebService
	gettingPluginTypes
	getAllPluginTypes
	getSinglePluginType
	creatingUpdatingPluginTypes
	updatePluginTypeFile
	updatePluginTypeJar
	gettingPolicies
	getAllPolicies
	getSinglePolicy
	modifyingPolicies
	modifyPolicy
	gettingFairshare
	getAllFairshare
	getAllFairshareForSingleCredType
	getAllFairshareForSingleCred
	gettingPrincipals
	getAllPrincipals
	getSinglePrincipal
	creatingPrincipals
	createSinglePrincipals
	modifyingPrincipals
	modifySinglePrincipal
	deletingPrincipals
	deleteSinglePrincipal
	gettingPriorities
	getAllPriorities
	modifyingPriorities
	modifyPriorities
	gettingReports
	getAllReportsNoData
	getSingleReportWithData
	getDatapointsForSingleReport
	gettingSamplesForReports
	getSamplesForReport
	creatingReports
	createReport
	creatingSamples
	createSamplesForReport
	deletingReports
	deleteReport
	gettingReservations
	getAllReservations
	getSingleReservation
	creatingReservations
	createReservation
	modifyingReservations
	modifyReservation
	releasingReservations
	releaseReservation
	gettingResourceTypes
	getAllResourceTypes
	gettingRoles
	getAllRoles
	getSingleRole
	creatingRoles
	createSingleRole
	modifyingRoles
	modifySingleRole
	deletingRoles
	deleteSingleRole
	gettingStandingReservations
	getAllStandingReservations
	getSingleStandingReservation
	pluginTypes
	pluginsInstances
	defaultValueTable
	inList
	max
	maxSize
	min
	minSize
	notEqual
	range
	url
	validator
	messaging
	typeInferencing
	customValidator
	defaultValue
	pluginEventComponentCode
	messagesForEventEnum
	eventTypeForEventEnum
	usingTranslators
	registeringCustomComponents
	pluginProjectsMetadata
	validDataTypes
	AclAffinity
	ComparisonOperator
	AclType
	AccountUser
	FundBalance-allocated
	FundBalance-amount
	FundBalance-creditLimit
	FundBalance-reserved
	FundBalance-used
	Allocation
	FundConstraint
	FundStatementSummary-endTime
	FundStatementSummary-startTime
	FundStatementSummary-transactions
	Fund
	Allocation
	FundConstraint
	FundTransactionSummary
	FundTransactionSummary-count
	FundTransactionSummary-action
	FundTransactionSummary-object
	FundStatement
	FundStatement-endTime
	FundStatement-startTime
	Fund
	Allocation
	FundConstraint
	FundTransaction
	Allocation
	FundConstraint
	LienAllocation
	QuoteChargeRate
	User
	Event
	AssociatedObject
	EventSeverity
	ErrorMessageVersion2
	UserDetailsVersion2
	MoabObjectVersion2
	Image
	Image-id
	Image-hypervisor
	Image-name
	Image-supportsPhysicalMachine
	Image-supportsVirtualMachine
	Image-templateName
	Image-type
	Image-virtualizedImages
	ImageType
	ResourceManager
	JobArray
	JobArray-indexRanges
	JobArray-indexValues
	CancellationPolicyInformation
	CancellationPolicyInformation-anyJob
	CancellationPolicyInformation-firstJob
	CancellationPolicy
	JobArrayIndexRange
	Job-nodesRequested
	Job-nodesRequestedPolicy
	JobBlock
	JobBlockCategory
	JobBlockType
	JobCredentials
	JobDates
	JobDependency
	JobDependencyType
	JobEmailNotifyType
	JobFlag
	JobHoldReason
	JobHoldType
	DomainProxy
	Message
	JobHostListMode
	JobPriority
	JobQueueStatus
	JobRejectPolicy
	JobRequirement
	JobRequirement-features
	JobRequirement-featuresExcluded
	JobRequirement-featuresExcludedMode
	JobRequirement-featuresRequested
	JobRequirement-featuresRequestedMode
	JobRequirementAttribute
	JobRequirementAttributeRestriction
	JobRequirementFeaturesMode
	NodeAccessPolicy
	NodeAllocationPolicy
	AllocatedNode
	JobResource
	JobResourceFailPolicyType
	ResourceManager
	JobStateInformation
	JobState
	JobSubState
	JobSystemJobType
	JobActionType
	VMUsagePolicy
	Job
	Job-nodesRequested
	Job-nodesRequestedPolicy
	JobBlock
	JobBlockCategory
	JobBlockType
	JobCredentials
	JobDates
	JobDependency
	JobDependencyType
	JobEmailNotifyType
	JobFlag
	JobHoldReason
	JobHoldType
	DomainProxy
	Message
	JobHostListMode
	JobPriority
	JobQueueStatus
	JobRejectPolicy
	JobRequirement
	JobRequirement-features
	JobRequirement-featuresExcluded
	JobRequirement-featuresExcludedMode
	JobRequirement-featuresRequested
	JobRequirement-featuresRequestedMode
	JobRequirementAttribute
	JobRequirementAttributeRestriction
	JobRequirementFeaturesMode
	NodeAccessPolicy
	NodeAllocationPolicy
	AllocatedNode
	JobResource
	JobResourceFailPolicyType
	ResourceManager
	JobStateInformation
	JobState
	JobSubState
	JobSystemJobType
	JobActionType
	VMUsagePolicy
	JobTemplateDependency
	JobDependencyTypeVersion1
	JobFlag
	JobTemplateFlag
	JobTemplateRequirement
	NodeAccessPolicy
	Trigger
	TriggerActionType
	TriggerEventType
	TriggerFlag
	TriggerPeriod
	VMUsagePolicy
	Node-featuresCustom
	Node-featuresReported
	DomainProxy
	Message
	NodeOperatingSystemInformation
	NodeOperatingSystemInformation-hypervisorType
	NodeResourceManager
	NodeState
	Resource
	NodeStateInformation
	NodeStateInformation-powerState
	NodePower
	NodeType
	NotificationCondition
	NotificationCondition-escalationLevel
	NotificationCondition-expirationDate
	NotificationCondition-expirationDuration
	NotificationCondition-message
	NotificationCondition-objectId
	NotificationCondition-objectType
	NotificationCondition-origin
	EscalationLevel
	Notification
	Notification-conditionId
	Notification-dismissedDate
	Notification-ignoredDate
	PluginState
	PluginType-eventComponent
	Policy
	AutoVMMigrationPolicy
	AutoVMMigrationPolicy-migrationAlgorithmType
	AutoVMMigrationPolicyType
	HVAllocationOvercommitPolicy-memoryAllocationLimit
	HVAllocationOvercommitPolicy-processorAllocationLimit
	NodeAllocationPolicy
	NodeAllocationAlgorithm
	FairsharePolicy
	PolicyState
	FairshareUsageMetric
	Role
	Permission
	PrivilegeScope
	Datapoint
	Datapoint-data
	Report-consolidationFunction
	Report-minimumSampleSize
	Report-reportDocumentSize
	Datapoint
	AclRule
	AclAffinity
	ComparisonOperator
	AclType
	DomainProxyVersion1
	ReservationFlag
	MessageVersion1
	EmbeddedCredential
	CredentialType
	ReservationRequirement
	ReservationStatistics
	Trigger
	TriggerActionType
	TriggerEventType
	TriggerFlag
	TriggerPeriod
	Permission
	PrivilegeScope
	Sample
	Sample-data
	Sample-timestamp
	StandingReservation-chargeAccount
	StandingReservation-period
	StandingReservation-startOffset
	ReservationAccess
	AclRule
	AclAffinity
	ComparisonOperator
	AclType
	ReservationFlag
	JobFlag
	EmbeddedCredential
	CredentialType
	TimeWindow
	IntLimit
	Reservation
	DomainProxyVersion1
	MessageVersion1
	ReservationRequirement
	ReservationStatistics
	TriggerActionType
	TriggerEventType
	TriggerFlag
	TriggerPeriod
	Trigger
	Permission
	PrivilegeScope
	Batch
	Basic
	torque.setup
	serverListen
	momListen
	serverToMom
	momToServer
	commandsToServer
	trqauthdToServer
	--with-rcp
	serverConfigOverview
	nameServiceConfig
	configJobSubHost
	usingRcmdAuth
	usingSubmitHostsParam
	allowJobSubmission
	configMultiHomedServer
	archSpecNotes
	specNonRootAdmins
	settingEmail
	usingMUNGEAuth
	configserver_priv
	ectHosts
	startingpbs_mom
	slotLimit
	cpuclock
	procs_bitmap
	qsub
	support
	adDisad
	acl_groups
	acl_groups
	acl_group_enable
	acl_group_sloppy
	acl_hosts
	acl_hosts
	acl_host_enable
	acl_logic_or
	acl_users
	acl_users
	acl_user_enable
	disallowed_types
	enabled
	enabled
	features_required
	keep_completed
	kill_delay
	kill_delay
	max_queuable
	max_running
	max_user_queuable
	max_user_run
	queue_type
	required_login_property
	required_login_property
	resources_available
	resources_default
	resources_max
	resources_max
	resources_min
	route_destinations
	started
	started
	queueResourceLimits
	redundServHostMach
	enhancedHighAvailMoab
	howCommandsSelect
	jobNames
	persistence
	highAvailNFS
	installingHa
	installingHaOnHeadlessNode
	exampleHighAvail
	utilization
	nodeStates
	cannotConnect
	delStuckJobs
	whichUser
	pbs
	qsubNotAllow
	qsubReport
	jobBouncing
	pvm
	buildFails
	jobNotStart
	autogen
	compileErrors
	errorLogs
	-c
	-C
	-d
	-f
	-h
	-p
	-p
	-q
	-r
	-s
	-s
	queryAtt
	diagnoseDetail
	-a
	-A
	-c
	-d
	-h
	-L
	-M
	-p
	-R
	-r
	w
	-x
	healthCheck
	-a
	c
	-d
	-f
	-H
	-ha
	-L
	-l
	-p
	-S
	-t
	-j
	-b
	-c
	-h
	-n
	-o
	-s
	-u
	-v
	-a
	-x
	-c
	-d
	-m
	-o
	-r
	-l
	-N
	-n
	-q
	-s
	-A
	-c
	-e
	-h
	-j
	-k
	-l
	-M
	-N
	-o
	-p
	-r
	-S
	-t
	-u
	-W
	-Wadditional
	-a
	-w
	-p
	-m
	-t
	-H
	-g
	-m
	-H
	-g
	-p
	-v
	-h
	-t
	-a
	-c
	-e
	-n
	-z
	-f
	-h
	-t
	-H
	-a
	-s
	-a
	-f
	-a
	-e
	-i
	-n
	-1
	-s
	-G
	-M
	-R
	-t
	-u
	-Q
	-q
	-B
	standardOutput
	qsub
	-A
	-b
	-C
	-d
	-e
	-f
	-h
	-I
	-j
	-k
	-l
	-M
	-N
	-o
	-P
	-q
	-r
	-S
	-t
	-u
	-v
	-V
	-W
	-x
	-z
	dependencies
	dependencyExamples
	environmentVar
	extendedDesc
	-d
	-d
	acl_hosts
	allow_node_submit
	allow_proxy_user
	clone_batch_delay
	clone_batch_size
	default_queue
	disable_server_id_check
	job_log_file_max_size
	job_stat_rate
	lock_file
	lock_file_update_time
	lock_file_check_time
	log_level
	mail_body_fmt
	mail_body_fmt
	mail_subject_fmt
	mail_subject_fmt
	max_slot_limit
	max_slot_limit
	max_threads
	min_threads
	next_job_number
	node_check_rate
	node_check_rate
	node_ping_rate
	operators
	pass_cpuclock
	poll_jobs
	poll_jobs
	record_job_info
	resources_available
	scheduling
	submist_hosts
	tcp_timeout
	thread_idle_seconds
	arch
	$clienthost
	$exec_with_exec
	$loglevel
	$memory_pressure_threshold
	$memory_pressure_threshold
	$pbsserver
	$prologalarm
	size
	$status_update_time
	$usecp
	$varattr
	$varattr
	configureFirst
	configureSecond
	bringingFirst
	bringingSecond
	SERVERHOST
	VALIDATEGROUP
	startup

