
Moab Accounting Manager
Administrator Guide 7.2.8

May 2014

© 2014 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without prior
written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager, Moab
Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing products are either
registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster
Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other company and product names may be
trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

Contents

Welcome ix

Chapter 1: Overview 1
Background 1
Conceptual Overview 1
Features 2
Interfaces 4
Documentation 6
License 7

Chapter 2: Installation 9
Select a database 9
Install prerequisites 10
Preparation 14
Configuration 15
Compilation 17
Installing the Perl module dependencies from CPAN 17
Installation 18
Database setup 19
General setup 21
Startup 21
Web server setup 22
Accessing the GUI 24
Initialization 24

Chapter 3: Upgrading 25
Preparation 25
Configuration 25
Compilation 25
Server Shutdown 25
Installation 26
Server Startup 26

Chapter 4: Migrating 27
Server shutdown 27
Database copy 27
Preparation 28
Configuration 28
Compilation 29

iii

iv

Perl module dependencies 29
Installation 29
General setup 29
Server startup 29
Run the migration scripts 30
Verify migration 30

Chapter 5: Getting started 31
HPC usage tracking 31

Usage Record Customization (Optional) 31
Record The Usage 32
List usage records 32

HPC charge accounting 32
Usage record customization (optional) 32
Decide on a currency and set the currency precision 33
Define charge rates 33
Create a single non-limiting fund 33
Create an unlimited allocation 34
Issue a refund 34
Examine fund statement 35

HPC allocation enforcement 35
Usage record customization 36
Decide on a currency and set the currency precision 36
Define charge rates 36
Define accountable entities 37
Create funds 37
Make deposits 38
Check the balance 39
Integrate Moab Accounting Manager with Your Brokering System 39
Obtain a usage quote 40
Make a usage lien 40
Charge for the usage 41
Usage refund 41
Examine fund statement 42

Chapter 6: Managing users 45
Creating users 45
Querying users 45
Modifying users 46
Deleting users 47
User auto-generation 47
Default user 47

Chapter 7: Managing accounts 49
Creating accounts 49

Querying accounts 50
Modifying accounts 51
Deleting accounts 52
Account auto-generation 52
Default account 52

Chapter 8: Managing organization 55
Creating organizations 55
Querying organizations 55
Modifying organizations 56
Deleting organizations 56
Organization auto-generation 56
Default organization 57

Chapter 9: Managing funds 59
Creating funds 60
Querying funds 60
Modifying funds 61
Making deposits 62
Querying the balance 63
Personal balance 64
Making withdrawals 64
Making transfers 65
Obtaining a fund statement 66
Deleting funds 67
Fund auto-generation 67
Hierarchical funds 67
Fund priority 68

Chapter 10: Managing allocations 71
Creating allocations 72
Querying allocations 72
Modifying allocations 72
Delete allocations 73
Allocation auto-generation 73
Allocation precedence 74

Chapter 11: Managing liens 75
Creating liens 76
Querying liens 76
Modifying liens 77
Deleting liens 77

Chapter 12: Managing quotes 79
Creating quotes 80

v

vi

Creating quote templates 80
Querying quotes 81
Modifying quotes 81
Deleting quotes 82

Chapter 13: Managing usage records 83
Creating a usage record 83
Querying usage records 84
Modifying a usage record 84
Deleting a usage record 85
Obtaining usage quotes 85
Making a usage lien 86
Charging for usage 87
Issuing usage refunds 88
Customizing the usage record object 88
Usage record property verification 90
Usage record property defaults 90
Usage record property auto-generation 91
Usage record property instantiators 91

Chapter 14: Managing itemized topics 95
Querying itemized charges 95
Displaying itemized charges for a transaction 96

Chapter 15: Managing charge rates 97
Creating charge rates 99
Querying charge rates 101
Modifying charge rates 102
Deleting charge rates 102

Chapter 16: Managing transactions 103
Querying transactions 103
Customizing the transaction object 104

Chapter 17: Managing events 105
Creating events 106
Querying events 106
Deleting events 107

Chapter 18: Managing notifications 109
Querying notifications 109
Deleting notifications 110

Chapter 19: Managing roles 113
Creating roles 113
Querying roles 114

Modifying roles 114
Deleting roles 115

Chapter 20: Managing passwords 117
Setting passwords 117
Querying passwords 117
Deleting passwords 118

Chapter 21: Using the gold shell (goldsh) 119
Usage 119
Command syntax 120
Valid objects 121
Valid actions for an object 122
Valid predicates for an object and action 122
Common options 123
Common actions available for most objects 123
Multi-object queries 129

Chapter 22: Customizing objects 131
Managing objects 131

Creating a custom object 132
Querying objects 132
Modifying an object 132
Deleting an object 133
Object auto-generation 133
Global object-based defaults 134

Managing attributes 134
Adding an attribute to an object 135
Querying attributes 135
Modifying an attribute 136
Removing an attribute from an object 136
Local attribute-based defaults 137

Managing actions 138
Adding an action to an object 138
Querying actions 138
Modifying an action 138
Removing an action from an object 139

Examples creating custom objects 139

Chapter 23: Integration 143
Moab Accounting Manager interface 143
Methods of interacting with Moab Accounting Manager 144

Chapter 24: Configuration files 147
Client configuration 149

vii

viii

GUI configuration 153

ix

Welcome
Welcome to Moab Accounting Manager, version 7.2.8. This guide is intended as a reference for system
administrators.

x

Background 1

Chapter 1: Overview
Moab Accounting Manager is an accounting management system that allows for usage tracking and
charging for resource or service usage in cloud and technical computing environments. It acts much like
a bank in which credits are deposited into funds with constraints designating which entities may access
the funds. As resources or services are utilized, funds are charged and usage recorded. It supports
familiar operations such as deposits, withdrawals, transfers, and refunds. It provides balance and usage
feedback to users, managers, and system administrators.

Since the accounting and billing models vary widely from organization to organization, Moab Accounting
Manager has been designed to be extremely flexible, featuring customizable usage and fund
configurations, and supporting a variety of tracking, charging and allocation models. Attention has been
given to scalability, security, and fault tolerance.

Background
Moab Accounting Manager was originally developed as open source software called the Gold Allocation
Manager at Pacific Northwest National Laboratory (PNNL) under the Department of Energy (DOE)
Scalable Systems Software (SSS) SciDAC project. It has been extended and enhanced by Adaptive
Computing Enterprises, Inc. (formerly Cluster Resources, Inc.) and is in production use at many
commercial, government and educational sites.

Conceptual Overview
Moab Accounting Manager was designed to be used in cloud and technical computing environments for
usage tracking, charge accounting and allocation enforcement. Usage tracking involves simply recording
resource or service usage in customizable usage records. Charge accounting involves calculating and
recording charges for usage for invoicing or cost tracking. Charge accounting may be enabled with the
establishment of a bottomless fund and the defining of charge rates. Allocation enforcement involves
establishing limits on the use of system resources. Allocation enforcement can be enabled by defining
separate funds having limited debit or credit balances.

In this overview, we will assume that you want to track or charge for the usage of some salable or
usable item(s). An item may be a resource such as computer cycles used within a job or virtual machine,
or it may be a service or something else. The use of an item will result in a usage record. The usage
record will track how much and what aspects of the item were used, to whom and what the usage was
attributed, and (optionally) how much the usage cost.

With MAM, it is possible to allocate how much of the resources or services can be used by different
entities. This is done by associating a cost for the usage by deciding on a currency unit (referred to

generically as credits), whether based on a real currency such as dollars, or a reference currency such
as billing units or processor seconds. Next, you will define charge rates in this currency for the
components of your usage (resource or service costs, multipliers, fees, etc.).

Pools of funds called allocations may be created via deposits and can be debit or credit based, finite or
infinite, and may be limited to a time frame in which they can be used. These allocations are deposited
into logical containers called funds which have constraints that distinguish who or what can use the funds
and for what purposes.

A resource or service manager interacts with Moab Accounting Manager to ensure sufficient funds and to
track and charge for usage. A typical usage pattern might be as follows. Before you use a resource or
service, a quote is obtained to see how much it will cost and to verify that you have sufficient funds and
access to the item. If you agree to the quoted price, you can commit your request for the usage. When it
is time for you to start using the resource or service, a hold (called a lien) is placed against your funds
for the quoted amount (in part or in whole). As you use the item, an appropriate fund will be charged and
the lien adjusted. When the final charge is made for actual usage, the remainder of the lien is removed. A
usage record is updated and the transaction and charge history is recorded throughout this process. The
actual sequence of interactions is very flexible and will be defined by the architecture between the
resource or service manager and the accounting system (Moab Accounting Manager).

To recap: Funds, which are containers for a reference currency referred to as credits, are differentiated
by constraints that define the entities (such as users, accounts, machines, classes, organizations, etc.)
that can use the credits. Deposits of time-bounded credits are made into funds creating allocations.
Charge rates are created which define how much it will cost to use certain resources or services. Use of
a resource or service results in a usage record, and will normally involve a quote detailing the cost of
the item before it is used, a lien against your fund while it is being used, and a charge against your fund
after usage has ended. Other bank-like operations that can be performed on funds include withdrawals,
transfers, refunds, balance checks, statement reports, etc. All modifying actions against funds or other
objects are recorded in the transaction history. The current or past state of any object in Moab
Accounting Manager can be queried to produce reports.

Features

Feature Description

Dynamic Char-
ging

Rather than post-processing resource usage records on a periodic basis to rectify fund bal-
ances, charging can occur incrementally throughout usage or at usage completion.

Liens A hold (called a lien) is placed against the funds for the estimated amount of credits before
the usage begins, followed by appropriate charges during and/or at the end of the usage,
thereby preventing accounts from using more resources or services than were allocated to
them.

Customizable
Usage Records

Usage record fields can be configured by the site to track custom usage properties.

Chapter 1: Overview

2 Features

Features 3

Feature Description

Flexible Fund
Allocation

A uniquely flexible design allows resource or service credits to be allocated to arbitrary entit-
ies and purposes.

Expiring Alloc-
ations

Credits may be restricted for use within a designated time period allowing sites to imple-
ment a use-it-or-lose-it policy to prevent year-end resource exhaustion and establishing an
allocation cycle.

Flexible Charging The billing system can track and charge for composite time-based or non-time-based
resource or service usage, and apply flexible charge multipliers and fees.

Guaranteed
Quotes

Users and resource brokers can determine ahead of time the cost of using resources or ser-
vices.

Credit and Debit
Allocations

Allocations feature an optional credit limit allowing support for both debit and credit models.
This feature can also be used to enable overdraft protection for specific funds.

Infinite Alloc-
ations

Deposits can be made with infinite amounts or infinite credit limits when used with a sup-
porting database.

Powerful Query-
ing

A powerful querying and update mechanism (based on SQL queries) that facilitates flexible
reporting and streamlines administrative tasks.

Nonintrusiveness Object-level, attribute-level and correlated defaults may be established for arbitrary objects
such as users, accounts and organizations. Additionally, these objects may be configured to
be automatically created the first time they are seen by the resource management system.
These features allow the accounting system to be used with less impact and involvement
from users and administrators.

Consistency Moab Accounting Manager has been engineered for robustness, consistency and resiliency.
Complex operations are atomic and are automatically rolled back on failure.

Security Multiple security mechanisms for strong authentication and encryption.

Role-Based
Authorization

Fine-grained (instance-level) Role Based Access Controls are provided for all operations
which allows users to view and manipulate only those objects permitted to them.

Chapter 1: Overview

Feature Description

Dynamic Cus-
tomization

Sites can create or modify record types on the fly enabling them to meet their custom
accounting needs. Dynamic object creation allows sites to customize the types of accounting
data they collect without modifying the code. This capability turns this system into a gen-
eralized information service. This capability is extremely powerful and can be used to man-
age all varieties of custom configuration data, or to function as a persistence interface for
other components.

Web Interface A powerful dynamic web-based GUI is provided for easy remote access for users, managers
and administrators which displays only the actions allowed by their role.

Journaling A journaling mechanism preserves the indefinite historical state of all objects and records.
This powerful mechanism allows historical bank statements to be generated, provides an
undo/redo capability and allows commands to be run as if it were any arbitrary time in the
past.

Event Scheduler An event engine can be used to schedule arbitrary MAM commands to run periodically or at
a designated time in the future.

Interfaces
Moab Accounting Manager provides a variety of means of interaction, including command-line interfaces,
graphical user interfaces, application programming interfaces, and communication protocols.

Command-Line Clients
The command-line clients provided feature rich argument sets and built-in documentation. These
commands allow scripting and are the preferred way to interact with Moab Accounting Manager for
basic usage and administration. Use the --help option for usage information or the --man option for a
manual page on any command.

Example 1-1: Listing Users Using a Command-Line Client

glsuser

Interactive Control Program
The goldsh command uses a control language to issue object-oriented requests to the server and display
the results. The commands may be included directly as command-line arguments or read from stdin. Use
the ShowUsage:=True option after a valid Object Action combination for usage information on the
command.

Example 1-2: Listing Users Using the goldsh Control Program

goldsh User Query

Chapter 1: Overview

4 Interfaces

Interfaces 5

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. Do not use this command unless you understand the syntax and
the potential for unintended results.

Web-based Graphical User Interface
A powerful and easy-to-use web-based GUI permits browser access by users, managers and
administrators according to their role definitions.

Example 1-3: Listing Users via theWeb GUI

Click on Manage Users -> List Users

Perl API
You can access the full functionality via the Perl API. Use perldoc to obtain usage information for the
Moab Accounting Manager Perl Gold modules.

Example 1-4: Listing Users Using the Perl API

use Gold;
my $request = new Gold::Request(object => "User", action => "Query");
my $response = $request->getResponse();
foreach my $datum ($response->getData())
{
print $datum->toString(), "\n";
}

Java API
Although deprecated, the Java API may still be usable to interact with Moab Accounting Manager. The
javadoc command can be run on the contrib/java/gold directory to generate documentation for the
Gold java classes.

Example 1-5: Listing Users Using the Java API

import java.util.*;
import gold.*;
public class Test
{
public static void main (String [] args) throws Exception
{
Gold.initialize();
Request request = new Request("User", "Query");
Response response = request.getResponse();
Iterator dataItr = response.getData().iterator();
while (dataItr.hasNext())
{

System.out.println((Datum)dataItr.next()).toString());
}
}
}

SSSRMAPWire Protocol
It is also possible to interact with Moab Accounting Manager by directly using the SSSRMAP Wire
Protocol and Message Format over the network. Documentation for these protocols can be found at SSS

Chapter 1: Overview

http://www.adaptivecomputing.com/resources/docs/gold/

Resource Management and Accounting Documentation.

Example 1-6: Listing Users via the SSSRMAP Wire Protocol

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked
190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Query" object="User"></Request>
</Body>
<Signature>
 <DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
 <SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
 <SecurityToken type="Symmetric" name="scottmo"></SecurityToken>
</Signature>
</Envelope>
0

Documentation
The documentation for Moab Accounting Manager includes this Administrator Guide, release notes, built-
in man pages, module documentation and online documentation.

l Moab Accounting Manager Administrator Guide— The Moab Accounting Manager Administrator
Guide is a comprehensive manual for users and administrators of Moab Accounting Manager and
includes information about features, interfaces, installation, getting started, usage, configuration
and customization. The Administrator Guide can be found under the $PREFIX/doc directory in
.pdf and .html formats. These documents are also available online.

l Release Notes— The Release Notes describe the primary features and fixes included in the
release, along with notes to aid in migration from previous versions and can be found under the
doc directory in the distribution tarball.

l Command Line built-in Man Pages and Usage Synopsis— All command-line clients support a --man
option that provides full documentation of the command options and a --help option that provides
a brief usage synopsis.

l Module Perl Pod Documentation— Documentation for Moab Accounting Manager Perl modules can
be viewed by changing directory to the $PREFIX/lib directory and running perldoc
<modulename>, e.g. perldoc Gold::Request.

l Online Documentation— The Moab Accounting Manager Administrator Guide can be found online
at http://www.adaptivecomputing.com/documentation. The Gold project web page at
http://www.adaptivecomputing.com/resources/docs/gold/files/index.php and includes the
original Gold project documentation.

Chapter 1: Overview

6 Documentation

http://www.adaptivecomputing.com/resources/docs/gold/
http://www.adaptivecomputing.com/documentation
http://www.adaptivecomputing.com/resources/docs/gold/files/index.php

License 7

License
The Moab Accounting Manager software and associated documentation, data and information include
parts which are copyrighted by Adaptive Computing Enterprises, Inc., and parts which are copyrighted by
Battelle Memorial Institute. The terms and conditions for the use and redistribution of these parts are
governed by the Moab Accounting Manager License and the BSD License respectively. Refer to the
LICENSE file for details.

Moab Accounting Manager License
Copyright (C) 2006 - 2012 Pacific Northwest National Laboratory, Battelle Memorial Institute. All rights
reserved.

The Moab Accounting Manager License specifies the terms and conditions for use and redistribution.

The Moab Accounting Manager License applies to the Moab Accounting Manager software offered by
Adaptive Computing Enterprises, Inc. By installing or using this software, Licensee accepts a non-
exclusive license from Adaptive Computing Enterprises, Inc. and is bound to accept acknowledgement of
and abide by the notices and conditions of the Moab Accounting Manager License.

BSD License
Copyright (C) 2003 - 2005 Pacific Northwest National Laboratory, Battelle Memorial Institute. All rights
reserved.

The BSD license specifies the terms and conditions for use and redistribution.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

l Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

l Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

l Neither the name of Battelle nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Chapter 1: Overview

8 License

Select a database 9

Chapter 2: Installation
If you are performing a fresh installation of Moab Accounting Manager, follow the instructions in this
chapter. If you are upgrading an existing version of Moab Accounting Manager to a new maintenance or
fix version where there are no database schema changes, follow the instructions contained in Upgrading
on page 25. If you are upgrading an existing version of Gold Allocation Manager or Moab Accounting
Manager to a new major or minor release where there are database schema changes, follow the
instructions in Migrating on page 27.

Moab Accounting Manager uses the standard configure, make, and make install steps for
installation. However, there are a number of preparation, prerequisite, setup, and customization steps
that need to be performed.

This document provides general installation guidance and provides a number of sample steps referenced
to a particular installation on a Linux platform using the bash shell. These steps indicate the userid in
brackets performing the step. The exact commands to be performed and the user that issues them will
vary based on the platform, shell, installation preferences, etc.

Select a database
Moab Accounting Manager makes use of a database for transactions and data persistence. Three
databases have been tested for use with Moab Accounting Manager thus far: PostgreSQL, MySQL, and
SQLite. Postgres and MySQL are external databases which run in a distinct (possibly remote) process
and communicate over sockets. These databases must be separately installed, configured, and started.
SQLite is an embedded database bundled with SQL queries being performed within the goldd process
itself through library calls. The following information may help you make a choice of databases to use.

Database Description

PostgreSQL PostgreSQL is an open source database. PostgreSQL version 7.2 or higher is required. The
PostgreSQL database has been thoroughly tested in production with Moab Accounting Manager
and all product functionality is available since it was developed using the PostgreSQL database.
Postgres supports multiple connections so Moab Accounting Manager is configured to be a forking
server when using PostgreSQL.
PostgreSQL is recommended since it is an excellent database, has been more thoroughly tested
than the others, and supports all Moab Accounting Manager features.

Database Description

MySQL MySQL is an open source database. MySQL version 4.0.6 or higher is required. Prior versions did
not support UNION which is used by Moab Accounting Manager in time travel. It is possible to use
4.0 with a minor code tweak to the OFFSET line in Database.pm.
MySQL 4.1 is required in order to have support for the (undocumented) Transaction Undo and
Redo functionality since subqueries were not supported until this version.
Infinite Allocations are not supported with MySQL as it does not implement the IEEE Standard 754
for Floating Point Arithmetic.

SQLite SQLite is an open source embedded database bundled with Moab Accounting Manager. It does not
require any configuration and reads and writes from a file. Initial testing has shown Moab
Accounting Manager to perform at least as fast as PostgreSQL for small databases.
SQLite 3.2.8 is required in order to be able to customize objects after installation. Previous versions
did not support the ALTER TABLE ADD COLUMN functionality.
Due to the lack of ALTER TABLE DROP COLUMN functionality, migration of Moab Accounting
Manager data to newer schema versions cannot be supported. Hence, when upgrading from one
major version to another, a fresh database bootstrap is required.
Since SQLite supports only a single connection, Moab Accounting Manager is not configured to be a
forking server when using SQLite. This should probably not be an issue for small to medium sized
clusters.
Due to a lack of support for multi-column IN clauses, the (undocumented) Transaction Undo and
Redo functions are not available.
Infinite Allocations are not supported with SQLite as it does not implement the IEEE Standard 754
for Floating Point Arithmetic.

Install prerequisites
Before installing Moab Accounting Manager, you will need to satisfy the following prerequisites:

Open the server port
Moab Accounting Manager uses a configurable server port (default 7112) for client-server
communication. If you have a firewall enabled, you must either disable the firewall (for example,
iptables, ip6tables) or configure the firewall to allow the server port.

For RedHat-based systems:

[root]# service iptables stop
[root]# chkconfig iptables off

If you are using hte IPv6 firewall:

[root]# service ip6tables stop
[root]# chkconfig ip6tables off

Chapter 2: Installation

10 Install prerequisites

Install prerequisites 11

Disable SELinux
In some distributions (such as RedHat-based systems), Security-Enhanced Linux (SELinux) blocks the use
of setuid perl (used in client authentication). If you are using setuid perl as the security promotion
method (this is the default if available), you will need to disable SELinux.

For RedHat-based systems:

[root]# vi /etc/sysconfig/selinux

SELINUX=disabled

[root]# setenforce 0

C Compiler [REQUIRED]
A C compiler is required in the configure step and to compile the gauth promotion method if designated.

For RedHat-based systems:

[root]# yum install gcc

For SuSE-based systems:

[root]# zypper install gcc

For Debian-based systems:

[root]# apt-get install gcc

Perl [REQUIRED]
The Moab Accounting Manager server and clients are written in Perl. Perl 5.8 or higher is required. It is
usually at a sufficient level at most modern operating systems. Use perl -v to see what level of Perl is
installed.

Suidperl 5.8 or higher [OPTIONAL]
Command line clients and Perl API scripts use a security promotion method (gauth or suidperl) to
authenticate and encrypt communications with the server. It is recommended that you install and use
setuid perl as the security promotion method if it is available for your system. Otherwise configure will
compile and use gauth as the security promotion method. Use suidperl -v to see if suidperl is installed.
See the description for the security.promotion configuration parameter in the Client Configuration
section for more information about the two security promotion methods.

For RedHat-based systems:

[root]# yum install perl-suidperl

For SUSE-based systems:

[root]# chmod 4755 /usr/bin/sperl*

For Debian-based systems:

[root]# apt-get install perl-suid

Chapter 2: Installation

Systems with perl 5.12 or higher do not support suidperl. These systems will need to use the gauth
security promotion method.

Database Server [OPTIONAL]
If you intend to use the PostgreSQL, the MySQL, or other external database, you will need to install it.
PostgreSQL is recommended since it is an excellent database supporting all necessary features and has
been more thoroughly tested than the others. The only thing needed for SQLite is the sqlite3 client for
bootstrapping.

For PostgreSQL on Redhat-based systems:

[root]# yum install postgresql postgresql-libs postgresql-server postgresql-devel
perl-DBD-Pg

For PostgreSQL on SuSE-based systems:

[root]# zypper install postgresql postgresql-libs postgresql-server postgresql-devel
perl-DBD-Pg

For PostgreSQL on Debian-based systems:

[root]# apt-get install postgresql postgresql-common postgresql-client postgresql-
server-dev-9.1 libdbd-pg-perl

For MySQL on Redhat-based systems:

[root]# yum install mysql mysql-devel mysql-server perl-DBD-MySQL

For MySQL on SuSE-based systems:

[root]# zypper install mysql libmysqlclient-dev mysql-server mysql-devel perl-DBD-
mysql

For MySQL on Debian-based systems:

[root]# apt-get install mysql-common mysql-server libmysqlclient-dev libdbd-mysql-perl

For SQLite on RedHat-based systems:

[root]# yum install perl-DBD-SQLite

For SQLite on SuSE-based systems:

[root]# zypper install perl-DBD-SQLite

For SQLite on Debian-based systems:

[root]# apt-get install sqlite3 libdbd-sqlite3-perl

libxml2 [REQUIRED]
LibXML2 is needed by the XML::LibXML perl module to communicate via the SSSRMAP message format.
The libxml2 development package is needed for the XML::LibXML perl module to install properly.

Chapter 2: Installation

12 Install prerequisites

Install prerequisites 13

For RedHat-based systems:

[root]# yum install libxml2-devel

For SUSE-based systems:

[root]# zypper install libxml2 libxml2-devel

For Debian-based systems:

[root]# apt-get install libxml2-dev

gnu readline [OPTIONAL]
The interactive control program (goldsh) can support command-line-editing capabilities if readline
support is enabled.

For RedHat-based systems:

[root]# yum install ncurses-devel readline-devel

For SUSE-based systems:

[root]# zypper install ncurses-devel readline-devel

For Debian-based systems:

[root]# apt-get install ncurses-dev libreadline-dev

Apache Httpd Server with mod_ssl [OPTIONAL]
Moab Accounting Manager provides a web-based GUI so that managers, users, and administrators can
interact with the accounting and allocation system. The web interface utilizes Perl CGI and SSL and needs
to have an httpd server (preferably apache) installed. mod_ssl is also needed and is often bundled as part
of the apache2 server.

For RedHat-based systems:

[root]# yum install httpd mod_ssl

For SUSE-based systems:

[root]# zypper install apache2

For Debian-based systems:

[root]# apt-get install apache2
[root]# a2enmod ssl
[root]# a2ensite default-ssl

OpenSSL [REQUIRED]
OpenSSL is used to encode the secret key and is used in the web interface to encrypt communications
with the server. OpenSSL is preinstalled on most modern operating systems.

For RedHat-based systems:

Chapter 2: Installation

[root]# yum install openssl

For Debian-based systems:

[root]# apt-get install libssl-dev

Perl Module Dependencies [REQUIRED]
Moab Accounting Manager requires the use of a number of Perl modules. These modules may be installed
by the vendor package manager. Alternatively, the required modules can be installed from CPAN by
typing make deps after the make step.

For RedHat 5-based systems:

[root]# yum install perl-CGI-Session perl-Config-Tiny perl-Crypt-CBC perl-Crypt-DES
perl-Crypt-DES_EDE3 perl-DateManip perl-DBI perl-Digest-HMAC perl-Digest-SHA1 perl-
Error perl-Log-Dispatch-FileRotate perl-Log-Log4perl perl-Term-ReadLine-Gnu perl-
TermReadKey perl-XML-LibXML

For RedHat 6-based systems:

[root]# yum install perl-CGI perl-CGI-Session perl-Config-Tiny perl-Crypt-CBC perl-
Crypt-DES perl-Crypt-DES_EDE3 perl-Date-Manip perl-Time-HiRes perl-DBI perl-Digest-
HMAC perl-Digest-SHA1 perl-Error perl-Log-Dispatch-FileRotate perl-Log-Log4perl perl-
Term-ReadLine-Gnu perl-TermReadKey perl-XML-LibXML

For SuSE-based systems:

[root]# zypper install perl-CGI-Session perl-Config-Tiny perl-Crypt-CBC perl-Crypt-DES
perl-Crypt-DES_EDE3 perl-Date-Manip perl-DBI perl-Digest-HMAC perl-Digest-SHA1 perl-
Error perl-Log-Dispatch-FileRotate perl-Log-Log4perl perl-TermReadLine-Gnu perl-
TermReadKey perl-XML-LibXML

For Debian-based system:

[root]# apt-get install libcgi-session-perl libcompress-zlib-perl libconfig-tiny-perl
libcrypt-cbc-perl libcrypt-des-perl libcrypt-des-ede3-perl libdate-manip-perl libdbi-
perl libdigest-hmac-perl libdigest-sha1-perl liberror-perl liblog-dispatch-filerotate-
perl liblog-log4perl-perl libterm-readline-gnu-perl libterm-readkey-perl libxml-
libxml-perl

The Perl Digest::SHA1 package is called libdigest-sha-perl in Ubuntu 12.

If any of the Perl module packages fail to install or are unavailable for your system, you can
install it from CPAN by running cpan MODULENAME, where MODULENAME is the respective perl
module name from the list in the make deps step.

Preparation
To build and install Moab Accounting Manager, you first need to unpack the tar archive and change
directory into the top directory of the distribution. For maximum security, it is recommended that you

Chapter 2: Installation

14 Preparation

Configuration 15

install and run Moab Accounting Manager under its own non-root userid. This user will be referred to as
the accounting admin user.

[root]# useradd -m moab
[root]# passwd moab
[root]# su - moab
[moab]$ mkdir ~/src
[moab]$ cd ~/src
[moab]$ tar -zxvf mam-7.2.tar.gz
[moab]$ cd mam-7.2

Configuration
To configure Moab Accounting Manager, run the configure script provided with the distribution.

The following is a list of configure options:

Option Description

-h,--help Run ./configure --help to see the list of configure options.

--prefix=PREFIX Base installation directory where all subdirectories will be installed unless oth-
erwise designated (defaults to /opt/mam).

--exec-prefix=EPREFIX Directory where architecture-depended subdirectories (such as bin, sbin, lib)
will be installed (defaults to EPREFIX).

--bindir=DIR Client scripts and user executables will be installed to this subdirectory (defaults
to EPREFIX/bin).

--sbindir=DIR System scripts and binaries (including goldd, goldsh, gauth) will be installed to
this subdirectory (defaults to EPREFIX/sbin).

--libdir=DIR Object code libraries and Gold Perl modules will be installed in this subdirectory
(defaults to EPREFIX/lib).

--localstatedir=DIR Home directory where per-configuration subdirectories (such as etc, log, data)
will be installed (defaults to PREFIX).

--sysconfdir=DIR Subdirectory where configuration and stateful files reside (defaults to
LOCALSTATEDIR/etc).

--datarootdir=DIR Directory where documentation subdirectories (such as doc, man) reside (defaults
to PREFIX/share)

Chapter 2: Installation

Option Description

--docdir=DIR Directory where application documentation (pdf, html) resides (defaults to
DATAROOTDIR/doc/mam).

--with-db-name=NAME Name of the SQL database that the server will sync with (defaults to mam).

--with-db-type-
e=Pg|mysql|SQLite

Use --with-db-type to specify the database server type you intend to use with
Moab Accounting Manager. Currently only PostgreSQL (Pg), MySQL (mysql) and
SQLite (SQLite) have been tested for use with Moab Accounting Manager. Post-
gres and MYSQL are external databases which runs in a distinct (possibly remote)
process and communicates over sockets while SQLite is an embedded database
with SQL queries being performed within the goldd process itself through library
calls. Initial testing has shown SQLite to be at least as fast as PostgreSQL for small
installations. The default is to use PostgreSQL.

--with-user=USER Use --with-user to specify the accounting admin userid that the server will run
under and who will have full administrative privileges (defaults to the user run-
ning the configure command). It is recommended that this be a non-privileged
user for the highest security.

--with-pro-
motion=gauth|suidperl

Command-line clients and scripts using the API need to use a security promotion
method to authenticate and encrypt the communication using the symmetric key.
The default is suidperl if it is installed on the system, otherwise the default is
gauth. See the description for the security.promotion configuration parameter
in the Client configuration on page 149 section for more information about the
two security promotion methods.

--with-gold-libs=local|site Use --with-gold-libs to indicate whether you want to install the Gold mod-
ules in a local gold directory (${exec_prefix}/lib) or in the default system
site-perl directory (defaults to local).

--with-cgi-bin=DIR If you intend to use the web GUI, use --with-cgi-bin to specify the directory
where you want the Moab Accounting Manager CGI files to reside (defaults to
/var/www/cgi-bin/mam).

--with-context=hpc|cloud By specifying the accounting context some client commands can be adjusted to
show the proper fields for that context. The default is hpc.

--with[out]-gui=SKIN If you do not intend to use the CGI web GUI, you can specify --without-gui to
not install the CGI scripts. Otherwise, the default is to install the GUI CGI scripts
using the viewpoint skin. You may supply an option argument to specify the
desired skin (either viewpoint or legacy). The viewpoint skin design is more
compatible with Viewpoint (if you intend to access the web GUI from within Moab
Viewpoint). The legacy skin is normally used standalone. The default is view-
point.

Chapter 2: Installation

16 Configuration

Compilation 17

To assume the defaults for a PostgreSQL database, use the following:

[moab]$./configure --with-db-type=Pg

To assume the defaults for a MySQL database, use the following:

[moab]$./configure --with-db-type=mysql

Compilation
To compile the program, type make.

[moab]$ make

If you only need to install the clients on a particular system, you would instead type make
clients-only. If you only need to install the web GUI on a particular system, you would instead
type make gui-only.

Installing the Perl module dependencies from CPAN
If you prefer to install the Perl module dependencies via CPAN rather than using the vendor package
manager as described previously, you can run the make deps command at this stage (as root).

[moab]$ su -c "make deps"

If you only need to install the clients on a particular system, you must type make deps-
clients-only instead. If you only need to install the web GUI on a particular system, you must
type make deps-gui-only instead.

After running make deps initially, it is useful to run it again to see if all of the dependencies
were installed cleanly. If not, you will need to intercede in the dependency installation. You can
verify that this step is complete when make deps shows all modules as being up to date.

On CentOS 5, any CPAN errors you may encounter can be overcome by running cpan
Attribute::Handlers and then make deps again.

This step should install the following Perl modules from CPAN:

l Attribute::Handlers

l CGI::Session

l Compress::Zlib

l Config::Tiny

Chapter 2: Installation

l Crypt::CBC

l Crypt::DES

l Crypt::DES_EDE3

l Date::Manip

l DBI

l DBD::Pg, DBD::MySQL or DBD::SQLite

l Digest::HMAC

l Digest::SHA1

l Error

l Log::Dispatch

l Log::Dispatch::FileRotate

l Log::Log4perl

l Module::Build

l Module::Implementation

l Params::Validate

l SOAP

l Term::ReadLine::Gnu

l Term::ReadKey

l XML::SAX

l XML::LibXML::Common

l XML::LibXML

l XML::NamespaceSupport

Installation
Use make install to install Moab Accounting Manager. You may need to do this as root if any of the
installation or log directories do not already have write permission as the accounting admin user.

[moab]$ su -c "make install"

If you only need to install the clients on a particular system, you must type make install-
clients-only instead. If you only need to install the web GUI on a particular system, you must
type make install-gui-only instead.

To delete the files created by the product installation, you can use make uninstall.

Chapter 2: Installation

18 Installation

Database setup 19

Database setup
If you have chosen to use PostgreSQL or MySQL, you will need to define a database user, create the
Moab Accounting Manager database, and configure the database server to support transactions and
connections from the server host. No setup is needed if you are using SQLite.

Initialize the database
If you are using the PostgreSQL database, the database must be initialized before it can be configured.

For PostgreSQL on RedHat 6-based and Fedora systems:

[root]# service postgresql initdb

For PostgreSQL on RedHat 5-based, SuSE-based, and Debian-based systems, this is achieved by starting
the database service:

[root]# service postgresql start

Configure trusted connections
If you are using the PostgreSQL database, set the host-based client authentication as appropriate. Edit or
add a line in the pg_hba.conf file for the interface from which the Moab Accounting Manager server
will be connecting to the database.

For PostgreSQL on RedHat-based and SuSE-based systems:

[postgres]$ vi /var/lib/pgsql/data/pg_hba.conf
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

You will also need to configure PostgreSQL to accept connections from your host. The listen_
addresses in the examples below represent the network interface on which the Postgres engine will
listen for new connections. For most installations where Moab is on the same machine as MAM, the listen
address is localhost.

For PostgreSQL on RedHat-based and SuSE-based systems:

[postgres]$ vi /var/lib/pgsql/data/postgresql.conf
listen_addresses = 'localhost'

For PostgreSQL on Debian-based systems:

[postgres]$ vi /etc/postgresql/9.1/main/postgresql.conf
listen_addresses = 'localhost'

Enable support for transactions
If you are using the MySQL database you will need to configure the server to support transactions
(MySQL 5.5.5 and later supports transactions by default).

For RedHad-based or SuSE-based systems:

Chapter 2: Installation

[root]# vi /etc/my.cnf
default-storage-engine = INNODB # Place under the [mysqld] section

For Debian-based systems:

[root]# vi /etc/mysql/my.cnf

...
Place under the [mysqld] section
default-storage-engine = INNODB

Start the database
Configure the database to start on system startup. Start (or restart) the database server with the new
configurations in effect.

For PostgreSQL database on RedHat-based and SuSE-based systems:

[root]# chkconfig postgresql on
[root]# service postgresql restart

For PostgreSQL database on Debian-based systems:

[root]# service postgresql restart

For MySQL database on RedHat-based systems:

[root]# chkconfig mysqld on
[root]# service mysqld restart

For MySQL database on SuSE-based systems:

[root]# chkconfig mysql on
[root]# service mysql restart

For MySQL database on Debian-based systems:

[root]# service mysql restart

Create the database
Create the Moab Accounting Manager database and add the accounting admin user as a database
administrator. This must be performed as the database user (postgres or mysql).

For PostgreSQL database:

[postgres]$ psql
create database "mam";
create user moab with password 'changeme';
\q

For MySQL database:

[root]# mysql
create database `mam`;
grant all on *.* to 'moab'@'localhost' identified by 'changeme';
exit

Chapter 2: Installation

20 Database setup

General setup 21

Bootstrap
You will need to populate the Moab Accounting Manager database with an SQL dump that defines the
objects, actions, and attributes necessary to function as an Accounting and Allocation Manager. Use
cloud.sql if you are in a cloud context or hpc.sql if you are in an HPC context.

For PostgreSQL database:

[moab]$ psql mam < hpc.sql # or cloud.sql

For MySQL database:

[moab]$ mysql mam < hpc.sql # or cloud.sql

For SQLite database:

[moab]$ sqlite3 /opt/mam/data/mam.db < hpc.sql # or cloud.sql

General setup
Edit the configuration files as necessary. At a minimum, you should set your database user and password
to match the values you selected during the database setup. Most of the other defaults should be
sufficient to get you up and running. See the Configuration files on page 147 chapter for information on
the configuration files and parameters.

[moab]$ vi /opt/mam/etc/goldd.conf

database.user = moab
database.password = changeme

Edit your environment files as appropriate to configure the PATH. Then add the PATH in your current
environment.

[root]# cp etc/profile.d/*sh /etc/profile.d

Startup
Edit your startup files as appropriate to start the Moab Accounting Manager server. Sample init.d scripts
are provided in etc/init.d/ that can be customized and copied into /etc/init.d/mam.

l For RedHat-based systems:

[root]# cp etc/init.d/mam.redhat /etc/init.d/mam
[root]# chkconfig --add mam
[root]# service mam start

l For SuSE-based systems:

Chapter 2: Installation

[root]# cp etc/init.d/mam.suse /etc/init.d/mam
[root]# chkconfig --add mam
[root]# service mam start

l For Debian-based systems:

[root]# cp etc/init.d/mam.debian /etc/init.d/mam
[root]# update-rc.d mam defaults 95
[root]# service mam start

Alternately, you can start the goldd server daemon manually as the accounting admin user.

[moab]$ goldd

Web server setup
If you want to use the web GUI, you will need to configure your Apache HTTP server to use SSL. The
following shows some sample steps to configure the web GUI. The actual steps you will need to use will
vary according to your distribution and environment. The web server configuration must be modified to
support the invocation of cgi-bin scripts over an SSL connection using a private key and a signed
certificate.

Configure apache to use SSL
Edit the apache configuration files to use SSL, CGI and to define aliases.

l For SUSE-based systems:

[root]# vi /etc/sysconfig/apache2
APACHE_SERVER_FLAGS="-DSSL"

Configure the SSL virtual host definition.

l For RedHat-based systems:

[root]# vi /etc/httpd/conf.d/ssl.conf

l For SUSE-based systems:

[root]# cp /etc/apache2/vhosts.d/vhost-ssl.template /etc/apache2/vhosts.d/mam-
ssl.conf
[root]# vi /etc/apache2/vhosts.d/mam-ssl.conf

l For Debian-based systems:

[root]# vi /etc/apache2/sites-enabled/default-ssl

Add or edit the SSL virtual host definition as appropriate for your environment:

Chapter 2: Installation

22 Web server setup

Web server setup 23

<VirtualHost _default_:443>
...

Configure your cgi-bin directory
 <Directory "/var/www/cgi-bin">
 Options ExecCGI
 AddHandler cgi-script .cgi
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>

 # Create an alias for /cgi-bin pointing to your cgi-bin directory
 # If you chose to install to a cgi-bin subdir, you may want to create an
 # alias for that as well. Comment out any related ScriptAlias entries.
 Alias /cgi-bin/ /var/www/cgi-bin/
 Alias /mam/ /var/www/cgi-bin/mam/
 # Add index.cgi to the DirectoryIndex so you can use the shorter dir name
DirectoryIndex index.cgi

...
</VirtualHost>

Install a Signed Certificate
For the highest security, it is recommended that you install a public key certificate that has been signed
by a certificate authority. The exact steps to do this will be specific to your distribution and the chosen
certificate authority. An overview of this process for CentOS is documented at
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html.

Alternatively, if your network domain can be secured from man-in-the-middle attacks, you could use a
self-signed certificate. Often this does not require any additional steps since in many distributions (e.g.,
RedHat-based), the Apache SSL configuration provides self-signed certificates by default.

The following steps assume you are using self-signed certificates:

Create self-signed SSL certificate and key files. Some distributions (e.g. RedHat) ship with ready-made
certificates.

For SUSE-based systems:

[root]# cd /etc/apache2
[root]# openssl genrsa -out ssl.key/server.key 1024
[root]# openssl req -new -key ssl.key/server.key -x509 -out ssl.crt/server.crt

Restart the HTTP Server
Startup or restart the Apache HTTP server.

For RedHat-based systems:

[root]# service httpd restart

For SUSE-based or Debian-based systems:

[root]# service apache2 restart

Chapter 2: Installation

http://www.centos.org/docs/5/html/Deployment_Guide-en-US/s1-httpd-secure-server.html

Accessing the GUI

In order to use the Web GUI, users will have to generate passwords for themselves using the
gchpasswd client command. Moab Accounting Manager may have to be restarted in order for role
privileges to be reflected in the GUI.

[moab]$ gchpasswd

To access the web gui, open a browser with URL: https://localhost/mam.

Initialization
You are now ready to define users, funds, charge rates, etc., as necessary for your site. The next chapter
(Getting Started) provides a useful primer for this phase of the Moab Accounting Manager setup.

You can run one of the initialization scripts in the test directory to set up a sample initial environment
(with some dummy users, funds, charge rates, etc.) for your desired accounting mode and context.

For HPC allocation enforcement:

[moab]$ test/hpc-allocation-enforcement.sh

For Cloud allocation enforcement:

[moab]$ test/cloud-allocation-enforcement.sh

Chapter 2: Installation

24 Accessing the GUI

Preparation 25

Chapter 3: Upgrading
This chapter assumes that you are updating Moab Accounting Manager to a new version where there
have not been any database schema changes. Instructions for migrating to a new release where there
have been database schema changes can be found in Migrating on page 27.

Moab Accounting Manager uses the standard configure, make and make install steps for upgrades.
This document provides a number of sample steps referenced to a particular installation on a Linux
platform using the bash shell. These steps indicate the userid in brackets performing the step. The exact
commands to be performed and the user that issues them will vary based on the platform, shell,
installation preferences, etc.

Preparation
To build and update Moab Accounting Manager, you first need to unpack the tar archive and change
directory into the top directory of the distribution.

[moab]$ cd ~/src
[moab]$ tar -zxvf mam-7.2.tar.gz
[moab]$ cd mam-7.2

Configuration
To configure Moab Accounting Manager, run the configure script provided with the distribution with
the desired options.

[moab]$./configure

Compilation
To compile the program, type make.

[moab]$ make

Server Shutdown
Stop the server daemon.

[moab]$ goldd -k

Installation
Use make install to install Moab Accounting Manager. You may need to do this as root if any of the
installation or log directories do not already have write permission as the accounting admin user
(moab).

[root]$ make install

Server Startup
Start the server daemon back up.

[moab]$ goldd

Chapter 3: Upgrading

26 Installation

Server shutdown 27

Chapter 4: Migrating
This procedure assumes that you are migrating Moab Accounting Manager to a new major or minor
release where there are database schema changes. It contains instructions on migrating your database
schema to version 7.2.8. You can determine your current database version by running goldsh System
Query. By default, this version will unpack into a separate directory (/opt/mam) which, after modifying
the database and port of the prior installation, will allow us to run or access both versions
simultaneously. Instructions for upgrading to a new maintenance or fix release where there are no
database schema changes can be found in Chapter 3: Upgrading on page 25.

This chapter demonstrates installing the new version of Moab Accounting Manager into a separate
directory and with a distinct database name and port, which will allow us to run or access both the new
and the old versions simultaneously. The migration process Moab Accounting Manager uses the standard
configure, make, and make install steps along with the running one or more migration scripts.
This document provides a number of sample steps referenced to a particular installation on a Linux
platform using the bash shell. These steps indicate the userid in brackets performing the step. The exact
commands to be performed and the user that issues them will vary based on the platform, shell,
installation preferences, etc.

If you are migrating from a version of Gold Allocation manager prior to version 2.2, you will first
need to perform a migration install to Gold Allocation Manager 2.2 using the Gold Allocation
Manager tarball and the associated migration script and procedures.

SQLite databases cannot yet be migrated in most circumstances since current versions do not
support the ALTER TABLE ADD COLUMN syntax.

Server shutdown
Quiesce the former server daemon.

[moab]$ <full_path_to_prior_version>/goldd -k)

Database copy
Dump the prior database to a file.

l For a PostgreSQL database:

[moab]$ pg_dump -U moab -W <old_database_name> > /tmp/old_database_name.sql

l For a MySQL database:

[moab]$ mysqldump -u moab -p <old_database_name> > /tmp/old_database_name.sql

Create a new database to preserve and reference the old data separately.

l For PostgreSQL database:

[postgres]$ psql
create database "mam-7.2";

l For MySQL database:

[root]# mysql
create database `mam-7.2`;

Import the old data into the new database.

l For PostgreSQL database:

[moab]$ psql -U moab -W mam-7.2 < /tmp/<old_db_name>.sql

l For MySQL database:

[moab]$ mysql -u moab -p mam-7.2 < /tmp/<old_db_name>.sql

Preparation
To build and update Moab Accounting Manager, unpack the tar archive and change directory into the top
directory of the distribution.

[moab]$ cd ~/src
[moab]$ tar -zxvf mam-7.2.8.tar.gz
[moab]$ cd mam-7.2.8

Configuration
To configure Moab Accounting Manager, run the configure script provided with the distribution with
the desired options. In this example we are installing the new version of Moab Accounting Manager with
a new prefix, database name, and port. We are also specifying the prior symmetric key used between
Moab Workload Manager and Moab Accounting Manager so that you do not have to change the key in
Moab. This key can be found in the prior auth_key or site.conf file.

[moab]$./configure --prefix=/opt/mam-7.2 --localstatedir=/var/mam-7.2 --with-db-
name=mam-7.2 --with-port=7722 --with-key=<prior_secret_key>

Chapter 4: Migrating

28 Preparation

Compilation 29

Compilation
To compile the program, type make:

[moab]$ make

Perl module dependencies
You may need to rerun make deps if you are installing to a new directory and you chose to install the
former perl libs in a local directory.

[root]# make deps

Installation
Use make install to install Moab Accounting Manager. You will need to do this as root if any of the
installation or log directories do not already have write permission as the accounting admin user
(moab).

[root]# make install

General setup
Edit the configuration files as necessary for your new installation. You will very likely want to merge
your previous configuration settings into your new configuration files.

[moab]$ vi /var/mam-7.2/etc/goldd.conf
database.password = changeme
[moab]$ vi /var/mam-7.2/etc/gold.conf

Edit the new configuration files as necessary to configure the PATH. Then add the PATH in your current
environment.

[root]# cp etc/profile.d/*sh /etc/profile.d
[moab]$. /etc/profile.d/mam.sh

Server startup
Start up the new server daemon.

[moab]$ goldd

Chapter 4: Migrating

Run the migration scripts
Migrate your database to the new schema by running the migration scripts. You may need to run more
than one of the migration scripts if you are skipping releases that have schema changes. These scripts
are designed to be rerunnable, so if you encounter a failure, resolve the failure and rerun the migration
script. If you are unable to resolve the failure and complete the migration, contact support.

Migrating FromMoab Accounting Manager 7.1
If you are migrating from Moab Accounting Manager version 7.1, you will just need to run a single
migration script to migrate the database schema from 7.1 to 7.2.8.

[moab]$ sbin/migrate_7.1-7.2.pl

Migrating FromMoab Accounting Manager 7.0
If you are migrating from Moab Accounting Manager version 7.0, you will need to run two migration
scripts: the first to migrate the database schema from 7.0 to 7.1 and the second to migrate the database
schema from 7.1 to 7.2.8.

[moab]$ sbin/migrate_7.0-7.1.pl
[moab]$ sbin/migrate_7.1-7.2.pl

Migrating From Gold Allocation Manager 2.2
If you are migrating from Gold Allocation Manager version 2.2, you will need to run three migration
scripts: the first to migrate the database schema from 2.2 to 7.0, the second to migrate the database
schema from 7.0 to 7.1 and the third to migrate the database schema from 7.1 to 7.2.8.

[moab]$ sbin/migrate_2.2-7.0.pl
[moab]$ sbin/migrate_7.0-7.1.pl
[moab]$ sbin/migrate_7.1-7.2.pl

Verify migration
Verify that the resulting database schema version is 7.2.8.

[moab]$ goldsh System Query

Name Version Description
----------------------- ------- ------------------
Moab Accounting Manager 7.2.8 Commercial Release

Chapter 4: Migrating

30 Run the migration scripts

HPC usage tracking 31

Chapter 5: Getting started
Moab Accounting Manager can be configured in a myriad of use cases. It can be used in different contexts
such as cloud or High Performance Computing (HPC). It can be used in different accounting modes such as
for usage tracking, charge accounting or allocation enforcement. This chapter will outline a few basic
examples of setting up Moab Accounting Manager for use in a High Performance Computing environment
to track and charge accounts for job resource usage.

If you want to use Moab Accounting Manager solely for recording resource usage but not for charging,
then review the section on HPC usage tracking on page 31. If you want to calculate and record charges,
but not restrict any workload from being serviced, then review the section on HPC charge accounting on
page 32. If you want charge and establish limits on the use of system resources, then review the section
on HPC allocation enforcement on page 35.

You will need to be an Moab Accounting Manager System Administrator to perform the tasks in
this chapter. It is assumed that you have already installed and bootstrapped Moab Accounting
Manager and started the server before performing the steps suggested in this chapter.

HPC usage tracking
When used solely for usage tracking, Moab Accounting Manager logs resource usage in usage records.
This usage can be queried to report what resources were used when and by whom. In this case, there is
no need for charge rates, funds, allocations, liens, or quotes. There is no need to define account
membership. The only real consideration is whether you want to customize the usage record to display
usage properties unique to your site.

Usage Record Customization (Optional)
As an example, we will add a usage record property to track GPU usage. See the section on Customizing
the usage record object on page 88 for additional examples.

Example 5-1: Adding a GPU Field to the Usage Record

$ goldsh Attribute Create Object=UsageRecord Name=GPUs DataType=Integer
Successfully created 1 attribute

Example 5-2: Selecting the Usage Record fields we would like to see via glsusage

We can select the usage records fields that show up in glsusage by editing the usagerecord.show
attribute in the client configuration file (gold.conf). This is the same parameter that would have to be

edited for the new GPU attribute to show up in glsusage. The web GUI will automatically display the new
attribute.

$ vi /var/gold/etc/gold.conf
usagerecord.show =
Id,Instance,User,Account,Machine,Stage,Processors,GPUs,Nodes,Duration,StartTime,EndTim
e

Record The Usage
After a job completes, the usage is recorded (see Creating a usage record on page 83). This step is
normally performed automatically by Moab Accounting Manager via the NAMI API but we can use the
command line interface for the purpose of illustration.

Example 5-3: Record resource usage for our job

$ gmkusage -J job1 -u amy -p chemistry -m colony -P 16 -X GPUs=8 -N 4 -t 720
Successfully created 1 usage record with id 1

List usage records
Let's examine the usage record that was created (see Querying usage records on page 84).

Example 5-4: List Usage Records

$ glsusage
Id Type Instance User Account Machine Processors GPUs Nodes Duration EndT
ime
--- --- -------- ----- ------- ------- ---------- ----- ------ --------- ----

1 Job job1 amy chemistry colony 16 8 4 720

HPC charge accounting
Some sites may want to use Moab Accounting Manager to calculate and record charges, but not to
restrict or prevent any workload from being serviced. In this case, we need only define a single fund with
inexhaustible credits. Moab Accounting Manager will ascribe a charge for resource utilization and
attribute it to the entities using it. Liens, balance queries, and quotes are not needed. The main task is to
define charge rates.

Usage record customization (optional)
It may be desirable to customize the usage record to display usage properties unique to your site. See
the section on Customizing the usage record object on page 88 for examples.

Chapter 5: Getting started

32 HPC charge accounting

HPC charge accounting 33

Decide on a currency and set the currency precision
Since we will be calculating charges, we will need to decide on a currency unit and set the currency
precision. For this example we will define a currency in which one credit represents the value of using
one processor core for one second. We will assume for simplicity that one processor second on one
machine will have the same value as a processor second on another machine. Charges for other resource
types will be given an appropriate value relative to this currency unit. All allocations and charges will be
specified in terms of this currency. The only action to take here would be to set the currency precision to
be the number of decimal places you want Moab Accounting Manager to display when reporting currency
amounts. Since processor seconds can easily be represented as an integer with no decimal places and the
default currency precision is zero, there is no action to take here. If instead we were to have chosen
dollars as the currency base, we would want to set the currency.precision value in goldd.conf,
gold.conf and goldg.conf to 2.

Define charge rates
Since we are charging for usage, we must establish the charge rates for the usage. In our example, we
will establish a charging scheme that charges 1 credit for each processor second utilized by the job as
well as 1 credit for every GigaByte of memory utilized by the job per second.

We will add Processors and Memory as consumable resource charge rates (with a Type of Value Based
Resource) so their values will be multiplied by the amount of time they are used. We will define a
processor charge rate of 1 currency unit that will charge one credit per processor second used and we
will set the memory charge rate to be .001 since we will assume that the memory will be reported in
MegaBytes and we want to charge 1 currency unit for every GigaByte second of memory used. See the
chapter on Managing charge rates on page 97 for more detailed information on setting up charge rates.

Example 5-5: Define Charge Rates for Processors and Memory

$ gmkrate -n Processors -T VBR -z 1
Successfully created 1 charge rate

$ gmkrate -T VBR -n Memory -z .001
Successfully created 1 charge rate

$ glsrate
Name Value Type Rate Description
------- ----- ---- ---- -----------
Memory VBR 0.001
Processors VBR 1

Create a single non-limiting fund
Since we do not want to limit usage in any way, it is probably not necessary to create individual funds. It
may be sufficient to create a single unconstrained fund with unlimited credits. This section will
demonstrate this approach. Usage charges associated with various accounts, users, machines, etc., can be
extracted with usage record queries by applying appropriate filters. If you do wish to track usage via
separate distinct funds (which will additionally allow you to produce separate fund statements), you may
want to follow the steps outlined in the HPC allocation enforcement on page 35 section with the

Chapter 5: Getting started

exception that you will make very large or infinite deposits into the funds. See the chapter on Managing
funds on page 59 for more detailed information on setting up funds.

Example 5-6: Create a single unconstrained fund

$ gmkfund -n "Common Fund"
Successfully created 1 fund with id 1

$ glsfund
Id Name Amount Constraints Description
-- ----------- ------ ----------- -----------
1 Common Fund 0

Create an unlimited allocation
Since we do not wish to limit usage, we need to create a large or an unlimited allocation. We can do this
by depositing infinite credits or by establishing an infinite credit limit (which will allow the fund to have
an unlimited negative balance). See the section on Making deposits on page 62 for additional
information.

The use of infinite allocations requires the use of a database that supports the IEEE Standard 754
for Floating-Point Arithmetic (e.g. PostgreSQL). If you are not using a supporting database type,
you can deposit a very large amount (e.g. 1000000000) instead.

Example 5-7: Creating a single unlimited allocation via an infinite deposit

$ gdedeposit -z Infinity
Successfully deposited inf credits into fund 1

Let's examine the allocated we just created.

$ glsalloc
Id Fund Active StartTime EndTime Amount CreditLimit Deposited Description
-- ------- ------ --------- -------- -------- ----------- --------- -----------
1 1 True -Infinity Infinity Infinity 0 Infinity

$ glsfund
Id Name Amount Constraints Description
-- ----------- -------- ----------- -----------
1 Common Fund Infinity

Since the fund has infinite credits, it will not be necessary to check the balance regularly because it is
not going to change, but let's look at it to see how we have it set up.

$ gbalance
Id Name Available Allocated PercentUsed
-- ----------- --------- --------- -----------
1 Common Fund Infinity Infinity 0.00

Issue a refund
Since this was an imaginary job, refund the fund (see Issuing usage refunds on page 88).

Chapter 5: Getting started

34 HPC charge accounting

HPC allocation enforcement 35

Example 5-8: Issue a refund for our job

$ grefund -J job1
Successfully refunded 12960 credits to usage record 1 instance job1

Notice that the usage charge is now zero because the job has been fully refunded.

$ glsusage -u amy --show
Instance,Charge,User,Account,Machine,Processors,Memory,Duration
Instance Charge User Account Machine Processors Memory Duration
-------- ------ ---- --------- ------- ---------- ------ --------
job1 0 amy chemistry colony 16 2000 720

Examine fund statement
Finally, you can examine the fund statement for our activities (see Obtaining a fund statement on page
66).

If you want to be able to issue separate fund statements for different accounts, users, etc., then
you will need to establish separate funds by following the initial steps outlined in the HPC
allocation enforcement on page 35 section with the exception that you will make very large or
infinite deposits into the funds.

Example 5-9: We can request an itemized fund statement to see the debits and credits for the common fund

$ gstatement
++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++
++++++ +
+
+ Includes fund 1 (Common Fund)
+ Generated on Thu Dec 22 18:26:55 2011.
+ Reporting fund activity from -Infinity to Now.
+++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++ ++++++
++++++ +

Beginning Balance: 0
------------------ -------------------
Total Credits: Infinity
Total Debits: -12960
------------------ -------------------
Ending Balance: Infinity

++++++ ++++++ ++++++ ++++++ ++++++ Credit Detail ++ ++++++ ++++++ ++++++ ++++++ ++++++
+
Object Action Instance Amount Time
----------- ------ -------- -------- -------------------
Fund Deposit Infinity 2011-12-22 17:50:24
UsageRecord Refund job1 12960 2011-12-22 18:13:30
++++++ ++++++ ++++++ ++++++ ++++++ + Debit Detail +++ ++++++ ++++++ ++++++ ++++++
++++++ +

HPC allocation enforcement
With Moab Accounting Manager, one can establish limits on the use of system resources. Rates are
established for the use of resources and resource credits can be apportioned to different parties or

Chapter 5: Getting started

purposes. Some sites establish an allocation cycle where proposals for resource usage are periodically
reviewed and suitable candidates are granted an allocation on the computing system. Other sites limit
consumers to what they "pay" for. In either case, multiple funds are needed; with rosters, allocation
limits, balance and usage feedback, liens, and possibly quotes.

Usage record customization
It may be desirable to customize the usage record to display usage properties unique to your site. See
the section on for examples.

Decide on a currency and set the currency precision
Since we will be calculating charges, we will need to decide on a currency unit and set the currency
precision. For this example we will define the currency to be in dollars (and cents). Deposits into funds
will be made in this currency. Resource charges will be calculated from charge rates based on this
currency. Since dollars and cents are represented as a floating point number with two decimal places we
must specify a currency precision of two.

Example 5-10: Setting the currency precision to two

The currency precision value must be set in the server and client configuration files (goldd.conf and
gold.conf). It must also be set in the GUI configuration file (goldg.conf) if you will be using the web
GUI.

$ vi /var/gold/etc/goldd.conf
currency.precision = 2

$ vi /var/gold/etc/gold.conf
currency.precision = 2

Define charge rates
Since we are charging, we must establish the charge rates for the usage. In our example, we will
establish a charging scheme that charges 1 dollar for each processor hour utilized by the job.

Since we want to charge 1 dollar per hour of usage per processor and because time-based charge rates
are multiplied by the duration in seconds, we need create a charge rate for processors that charges
1/3600th of a dollar per second. See the chapter on Managing charge rates on page 97 for more detailed
information on setting up charge rates.

Example 5-11: Define a Charge Rate for Processors

$ gchrate -n Processors -z .00027778 -T VBR -d "1 dollar per processor-hour
Successfully created 1 charge rate

$ glsrate
Name Value Type Rate Description
----------- ----- ---- ---------- --------------------------
Processors VBR 0.00027778 1 dollar per processor-hour

Chapter 5: Getting started

36 HPC allocation enforcement

HPC allocation enforcement 37

Define accountable entities
Next we must decide to which entities we want to entitle our allocations. In this example, we will
distribute the funds among different accounts. Each account will be assigned a set of user members that
can charge to that account. Moab Accounting Manager can be customized to associate funds with any
number of arbitrary entities such as Users, Groups, Accounts, Organizations, Classes, Machines, etc. We
will start by defining some accounts and the associated user members of the accounts. We will also
associate each account with an organization so that usage reports can be generated for the organization
level as well as the account and user level.

We will create accounts for biology, chemistry, and film and assign them some users. The biology and
chemistry account will be associated with the sciences organization while the film account will be
associated with the arts organization. See the chapter on Managing accounts on page 49 for more
information on setting up accounts.

Example 5-12: Define the biology, chemistry and film accounts

$ gmkaccount -a biology -o sciences -u amy, bob -d "Biology Department"
Successfully created 1 account

$ gmkaccount -a chemistry -o sciences -u amy, dave -d "Chemistry Department"
Successfully created 1 account

$ gmkaccount -a film -o arts -u bob, dave -d "Film Department"
Successfully created 1 account

$ glsaccount
Successfully created 1 account

$glsaccount
Name Active Users Organization Description
------- ------ --------- ------------ -----------------
biology True amy, bob sciences Biology Department
chemistry True amy, dave sciences Chemistry Department

film True bob, dave arts Film Department

Create funds
The next task will be to create the funds which will hold the allocated credits. A fund is much like a
numbered bank account, where credits can be deposited and are defined by constraints that distinguish
who or what can use the contained credits and for what purposes. In this example, we will create a fund
for each of the three accounts. Had we enabled fund auto-generation or used the --create-fund=True
option with the gmkaccount command, a fund would have been created automatically with the creation of
each account. See Managing funds on page 59 for more detailed information on setting up funds.

Note that in most cases, referenced objects will be auto-generated, such as the users that were auto-
generated as they were added to the accounts. Undefined accounts, would have likewise been auto-
generated as they were newly associated with funds, but had we taken that ordering, we would still have
needed to go back and associate the appropriate users, organization, etc. to these accounts. We could
have also created the users explicitly and provided additional detail about each user, before adding them
to the accounts. Of course, even though they were auto-generated, we can still go back and add detailed
information to each user as desired. See Managing users on page 45 for more detailed information on
setting up users.

Chapter 5: Getting started

Example 5-13: Create four account-based funds

$ gmkfund -a biology -n "biology"
Successfully created 1 fund with id 1 and 1 constraint

$ gmkfund -a chemistry -n "chemistry"
Successfully created 1 fund with id 2 and 1 constraints

$ gmkfund -a film -n "film"
Successfully created 1 fund with id 3 and 1 constraints

$ glsfund
ID Name Amount Constraints Description
-- -------- ------- ------------ -----------------------

1 biology 0 Account=biology
2 chemistry 0 Account=chemistry
3 film 0 Account=film

Make deposits
Now we need to allocate credits to these funds by making deposits to them. An allocation has a start and
end time associated with it declaring the time frame in which it can be used (defaulting to negative and
positive infinity). It can also have a credit limit which defines the extent to which the allocation is
allowed to go negative. Multiple allocations (usually with different expenditure time frames) can be
associated with a fund. Judicial use of allocation time frames can be helpful to establish an allocation
cycle and set expectations for credit expenditure. See Making deposits on page 62 for additional
information.

In this example, we will allocate 5000 and 3000 dollars to the biology and chemistry accounts
respectively. The film account will be given a credit limit of 2000 dollars which allows them to charge up
to 2000 dollars before rectifying their fund. When making a deposit we must specify the fund we are
depositing into unless the fund can be unambiguously determined by its constraint references (i.e. there
is only a single fund associated with the account biology). We will create allocations that must be used
within the current year.

Example 5-14: Making Deposits

$ gdeposit -s 2012-01-01 -e 2013-01-01 -z 5000 -a biology
Successfully deposited 5000.00 credits into fund 1

$ gdeposit -s 2012-01-01 -e 2013-01-01 -z 3000 -a chemistry
Successfully deposited 3000.00 credits into fund 2

$ gdeposit -s 2012-01-01 -e 2013-01-01 -L 2000 -a film
Successfully deposited 0.00 credits into fund 3

Let's examine the allocations we just created:

Chapter 5: Getting started

38 HPC allocation enforcement

HPC allocation enforcement 39

$ glsfund

Id Fund
Active StartTime EndTime Amount CreditLimit Deposited Description
-- ------- ------ ------------ ----------- ------- ------------ ---------- ----------

1 1 True 2012-01-01 2013-01-01 5000.00 00.0 5000.00
2 2 True 2012-01-01 2013-01-01 3000.00 0.00 3000.00
3 3 True 2012-01-01 2013-01-01 0.00 2000.00 0.00

$ glsaccount

Id Name Amount Constraints Description
--- ------- ------- ------------- ------------
1 biology 5000.00 Account=biology
2 chemistry 3000.00 Account=chemistry
3 film 0.00 Account=film

Check the balance
We can verify the resulting balance (see Querying the balance on page 63).

Example 5-15: Let's look at amy's balance

$ gbalance -u amy

Id Name Available Allocated PercentUsed
-- --------- --------- --------- -----------
1 biology 5000.00 5000.00 0.00
2 chemistry 3000.00 3000.00 0.00

Integrate Moab Accounting Manager with Your
Brokering System
Now we are ready to run some jobs. Before doing so you will need to integrate Moab Accounting
Manager with your resource management system (see Integration on page 143).

In practice, the billing actions (quote, reserve and charge) will be invoked automatically by your
brokering system (i.e. initiated by Moab or by the resource manager). However, we will demonstrate
these steps manually to illustrate their effects.

Let's simulate the lifecycle of a job.

Example 5-16: We'll assume our job has the following characteristics

Job Id: moab.1
Job Name: heavywater
User Name: amy
Account Name: chemistry
Machine Name: colony
Requested Processors: 16
Estimated WallClock: 3600 seconds
Actual WallClock: 1234 seconds

Chapter 5: Getting started

Obtain a usage quote
When a job is submitted, it is useful to check that the user's fund has enough credits for the requested
usage. This will be verified when the job starts, but by that point the job may have waited some time in
the queue only to find out it never could have run in the first place. The usage quote step (see Obtaining
usage quotes on page 85) can fill this function. Additionally, the quote can be used to determine the
cheapest place to run, and to guarantee the current rates will be used when the usage is charged.

Example 5-17: Let's see how much it will cost to use the resources.

$ gquote -u amy -a chemistry -c batch -m colony -P 16 -t 3600
Successfully quoted 16.00 credits

Make a usage lien
When a job starts or usage begins, the workload manager typically creates a lien (or hold) against the
appropriate allocations based on the estimated duration of the job (see Making a usage lien on page 86).

Example 5-18: Make a lien for the estimated usage of the job

$ greserve -J moab.1 -a chemistry -u amy -m colony -P 16 -t 3600
Successfully reserved 16.00 credits with lien id 1 for instance moab.1 and created
usage record 1

$ glslien
Id Instance Amount StartTime EndTime Duration UsageRecord
 Funds Description
--- -------- ------- ------------------- ------------------- -------- -----------
 -------- -----------
1 moab.1 16.00 2012-05-29 15:20:45 2012-05-29 16:20:45
3600 1 2

This lien will decrease our available balance by the amount reserved.

$ gbalance -u amy -a chemistry -—total -—quiet
2984.00

The actual allocation has not changed.

$ glsalloc -a chemistry
Id Fund Active StartTime EndTime Amount CreditLimit Deposited Description
--- -------- ------ ---------- ---------- ------- ----------- --------- -----------
2 2 True 2012-01-01 2013-01-01 3000.00 0.00 3000.00

This is best illustrated by the detailed balance listing:

$ gbalance -u amy -a chemistry
--show=Id,Name,Amount,Reserved,Balance,CreditLimit,Available
Id Name Amount Reserved Balance CreditLimit Available
--- ---------- ------- --------- ------- ----------- ----------
2 chemistry 3000.00 16.00 2984.00 0.00 2984.00

Note that the lien resulted in the initial creation of a usage record for the job.

Chapter 5: Getting started

40 HPC allocation enforcement

HPC allocation enforcement 41

$ glsusage -u amy -a chemistry
Id Type Instance Charge Stage User Group Project Organization Class QualityOfServi
ce Machine Nodes Processors Memory Desk Network Duration Starttime EndTime Description
-- ---- -------- ------ ------- ---- ----- --------- ------------ ----- --------------
-- ------- ----- ---------- ------ ---- ------- -------- --------- ------- -----------
-
1 Job moab.1 0.00 Reserve amy chemistry sciences

Charge for the usage
After a job completes, any associated liens are removed and a charge is issued against the appropriate
allocations based on the resources and wallclock time actually used by the job (see Charging for usage
on page 87).

Example 5-19: Issue the charge for the job

$ gcharge -J moab.1 -u amy -a chemistry -m colony -P 16 -t 1234
Successfully charged 5.48 credits for instance moab.1
1 lien was removed

Your allocation will now have gone down by the amount of the charge.

$ glsalloc -u amy -a chemistry
Id Fund Active StartTime EndTime Amount CreditLimit Deposited
Description
--- ----- ------ ---------- ---------- ------- ----------- --------- ----------

2 2 True 2012-01-01 2013-01-01 2994.52 0.00 3000.00

However, your balance actually goes up (because the lien that was removed was larger than the actual
charge).

$ gbalance -u amy -a chemistry
--show=ID,Name,Amount,Reserved,Balance,CreditLimit,Available

Id Name Amount Reserved Balance CreditLimit Available
-- --------- ------- -------- ------- ----------- ---------
2 chemistry 2994.52 0.00 2994.52 0.00 2994.52

A usage record for the job was updated as a side-effect of the charge (see Querying usage records on
page 84).

$ glsusage -u amy -a chemistry
Id Type Instance Charge Stage Quote User Group Account Organization Cl
ass QualityOfService Machine Nodes Processors Memory Desk Network Duration S
tarttime EndTime Description
--- --- ---------- ------ ------- ----- ------ ------- -------- ------------ --
--- ---------------- ------- ----- ---------- ------ ---- ------- -------- -
-------- ------- -------------
1 Job moab.1 5.48 Charge amy amy chemistry sciences

Usage refund
Since this was an imaginary job, refund the user's account (see Issuing usage refunds on page 88).

Chapter 5: Getting started

Example 5-20: Issue a refund for the job

$ grefund -J moab.1
Successfully refunded 5.48 credits to usage record 1 for instance moab.1

The balance is back as it was before the job ran.

$ gbalance -u amy -a chemistry
--show=Id,Name,Amount,Reserved,Balanace,CreditLimit,Available
Id Name Amount Reserved Balance CreditLimit Available
-- --------- ------ -------- ------- ----------- ---------
2 chemistry 3000.00 0.00 3000.00 0.00 3000.00

The allocation, of course, is likewise restored.

$ glsalloc -u amy -a chemistry
Id Fund Active StartTime EndTime Amount CreditLimit Deposited Description
--- ----- ------ ---------- ---------- ------- ----------- --------- ------------
2 2 True 2012-01-01 2013-01-01 3000.00 0.00 3000.00

Notice that the usage charge is now zero because the job has been fully refunded.

$ glsusage
Id Type Instance Charge Stage Quote User Group Account Organization Clas
s QualityOfService Machine Nodes Processors Memory Desk Network Duration Sta
rttime EndTime Description
--- --- -------- ------- ------- ----- ------ ------- -------- ------------ ----
-- ---------------
1 Job moab.1 0.00 Reserve amy chemistry sciences

Examine fund statement
Finally, you can examine the fund statement for the activities (see Obtaining a fund statement on page
66).

Chapter 5: Getting started

42 HPC allocation enforcement

HPC allocation enforcement 43

Example 5-21: You can request an itemized fund statement over all time for use amy and the chemistry account
(fund 2)

$ gstatement -u amy -a chemistry
##
#
Includes fund 2 (chemistry for amy)
Generated on Tue May 29 15:48:22 2012
#
Reporting fund activity from -infinity to now.
#
##
Beginning Balance: 0.00
--------------------------- ------------------------------
Total Credits: 3005.48
Total Debits: -5.48
--------------------------- ------------------------------
Ending Balance: 30000.00

############################### Credit Detail ##################################
Object Action Instance Amount Time
------- ---------- ---------- -------- --------------------
Fund Deposit 3000.00 2012-05-29 14:52:15
UsageRecord Refund moab.1 5.48 2012-05-29 15:41:20

############################### Debit Detail ###################################
Object Action Instance Account User Machine Amount Time
------------- -------- --------- ----------- ------ ---------- ------- ---------------

UsageRecord Charge moab.1 chemistry amy colony -5.48 2012-05-
29 15:37:02
############################### End of Report ##################################

Chapter 5: Getting started

44 HPC allocation enforcement

Creating users 45

Chapter 6: Managing users
A user is a person authorized to use a resource or service. Default user properties include the common
name, phone number, email address, default account, and description for that person. A user can be
created, queried, modified, and deleted. By default, a standard user may only query their own user
record.

User queries allow the specification of filter options which narrow down the users that will be returned
to those belonging to the specified account.

Creating users
To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-a
default_account] [-d description] [-X, --extension property_name=property_
value[,property_name=property_value...]] [--debug] [--site site_name] [--help]
[--man] [--quiet] [--verbose] [--version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing gmkuser --man at
the command line.

Example 6-1: Creating a user

$ gmkuser -n "Smith, Robert F." -E "bob@bank.com" -F "(509) 555-1234" bob
Successfully created 1 user

Querying users
To display user information, use the command glsuser:

glsuser [-A | -I] [-a account_name] [-X, --extension property_name=property_
value [,property_name=property_value...]] [--full] [—show attribute_name
[,attribute_name...]] [--long] [--wide] [--raw] [--debug] [--site site_name]
[--help] [--man] [--quiet] [--version] [[-u] user_pattern]

The fields which are displayed by default by this command can be customized by setting the
user.show configuration parameter in gold.conf. Additional detail for this command can be
found in the man page by issuing glsuser --man at the command line.

Example 6-2: Listing standard info about active users

$ glsuser -A
Name Active CommonName PhoneNumber EmailAddress
 DefaultAccount Description
------ --------- ------------------------ --------------------- ----------------------
-- --------------------- ----------------
amy True Wilkes, Amy (509) 555-8765 amy@bank.com
bob True Smith, Robert F. (509) 555-1234 bob@bank.com

Example 6-3: Displaying bob's phone number

$ glsuser —show PhoneNumber bob —quiet
(509) 555-1234

Example 6-4: Listing amy's accounts

$ glsuser —show Accounts amy -l -q

chemistry
biology

Example 6-5: Listing all users belonging to the chemistry account

$ glsuser —show Name -a chemistry -q

amy
dave

Modifying users
To modify a user, use the command gchuser:

gchuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-a
default_account] [-d description] [-X, --extension property_name=property_
value [,property_name=property_value...]] [--debug] [--site site_name] [--
help] [--man] [--quiet] [--verbose] [--version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing gchuser --man at
the command line.

Example 6-6: Activating a user

$ gchuser -A bob
Successfully modified 1 user

Example 6-7: Setting a user's default account

$ gchuser -a chemistry amy
Successfully modified 1 user

Example 6-8: Changing a user's email address

$ gchuser -E "rsmith@cs.univ.edu" bob
Successfully modified 1 user

Chapter 6: Managing users

46 Modifying users

Deleting users 47

Deleting users
To delete a user, use the command grmuser:

grmuser [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing grmuser --man at
the command line.

Example 6-9: Deleting a user

$ grmuser bob
Successfully deleted 1 user

User auto-generation
By default, users will automatically be created when first added as a member to an account or role. It is
also possible to have users be created automatically when first encountered in a usage function (charge,
reserve or quote). In order for user auto-generation to occur, the AutoGen property for the User object
must be set to True. This is the default. Additionally, for user auto-generation to occur when a user is
added as a member of another object (such as Account) via an association table (e.g. AccountUser), the
Values property for the user attribute of the Association (e.g. Name) must be set to @User, indicating
that that value should be constrained to be a valid instance of the User object. For user auto-generation
to occur when initially encountered in a usage function, the Values property of the user attribute of the
UsageRecord object must be similarly set to @User. The auto-creation of users can be completely
disabled by setting the AutoGen property for the User object to False.

Example 6-10: Enable auto-generation of users when initially seen in a charge

$ goldsh Attribute Modify Object==UsageRecord Name==User Values=@User
Successfully modified 1 attribute

Example 6-11: Disable all auto-generation of users

$ goldsh Object Modify Name==User AutoGen=False
Successfully modified 1 object

See Object auto-generation on page 133 for more information about the auto-generation of objects.

Default user
It is possible to set a global default user to which usage would be ascribed in quotes, liens, or charges
where no user is specified. This can be accomplished by setting the DefaultValue property for the User
object to the desired user.

Chapter 6: Managing users

It is also possible to set a custom user default or a specific object, which will result in usage being
ascribed to the specified user when the object is attributed to the usage. This is done by creating a
default usage override modifier. For example, to specify that acmeuser be the default user for usage
associated with the acme organization, you might first create an attribute called DefaultUser for the
Organization Object with the Values property of @?=User. Then you would populate the new
DefaultUser property for the acme organization with the value of acmeuser. See Customizing objects
on page 131 for more information on default and other usage override modifiers.

Example 6-12: Assign a global default user

$ goldsh Object Modify Name==User DefaultValue=anonymous
Successfully modified 1 object

Chapter 6: Managing users

48 Default user

Creating accounts 49

Chapter 7: Managing accounts
An account represents a work entity requiring the use of resources or services for a common purpose.
Users may be designated as members of an account and may be allowed to share its allocations. If the
special 'ANY' user is added to an account, then any user may use funds allocated to the account. The user
members may be designated as active or inactive, and as an administrator for the account. Default
account properties include the description, the organization it is part of, and whether or not it is active.
An account can be created, queried, modified and deleted. An account's user membership can also be
adjusted. By default, a standard user may only query accounts they belong to.

Account queries allow the specification of filter options which narrow down the accounts that will be
returned to those having the specified users in them.

Creating accounts
To create a new account, use the command gmkaccount:

gmkaccount [-A | -I] [-o organization_name] [-d description] [-X, --extension
property_name=property_value [,property_name=property_value...]] [-u [^ | !]
[+ | -]user_name [, [^ | !] [+ | -]user_name...]] [—createFund=True|False] [--
debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]
{[-a] account_name}

Additional detail for this command can be found in the man page by issuing gmkaccount --man
at the command line.

When defining users, the optional caret or exclamation symbol indicates whether the user should be
created as an admin (^) or not (!) for the account. The optional plus or minus sign can precede each
member to indicate whether the member should be created in the active (+) or inactive (-) state. By
default, a user will be created in the active state but not an admin. Multiple users may be passed to the
-u option in a comma-delimited list. Alternatively, multiple -u options may be specified.

If the Fund object's AutoGen property is set to true (see Fund auto-generation on page 67), a fund
will be automatically created for the account (unless overridden with the --createFund option).
The auto-generated fund will be associated with the new account.

Example 7-1: Creating an account

$ gmkaccount -d "Chemistry Department" chemistry
Successfully created 1 account

Example 7-2: Creating an account that can be used by any user

$ gmkaccount -d "Common Account" -u ANY common
Successfully created 1 account.

Example 7-3: Creating an account and specifying user members at the same time

In this example, we make amy the account admin and associate the account with the sciences
organization.

$ gmkaccount -d "Chemistry Department" -u ^amy,bob,dave chemistry -o sciences
Successfully created 1 account

Querying accounts
To display account information, use the command glsaccount:

glsaccount [-A | -I] [-o organization_name][-X, --extension property_
name=property_value [,property_name=property_value...]] [-u user_name] [--
full] [--show attribute_name [,attribute_name...]...] [--long] [--wide] [--
raw] [--debug] [--site site_name] [--help] [--man] [--quiet] [---version] [[-
a] account_pattern]

The fields which are displayed by default by this command can be customized by setting the
account.show configuration parameter in gold.conf. Additional detail for this command can be
found in the man page by issuing glsaccount --man at the command line.

Example 7-4: Listing all info about all accounts

$ glsaccount
Name Active Users Organization Description
------------- --------- ------------ ------------- ----------------------
biology True amy,^bob sciences Biology Department
chemistry True ^amy,^dave sciences Chemistry Department
film True amy,^dave arts Film Department

Example 7-5: Displaying the name and user members of an account in long format

$ glsaccount -—show Name,Users -long chemistry
Name Users
------------- -------
chemistry ^amy
dave

Example 7-6: Listing all account names

$ glsaccount --show Name --quiet
biology
chemistry
film

Chapter 7: Managing accounts

50 Querying accounts

Modifying accounts 51

Example 7-7: Listing all accounts that have dave as a member

$ glsaccount --show Name -u dave --quiet
chemistry
film

Modifying accounts
To modify an account, use the command gchaccount:

gchaccount [-A | -I] [-o organization] [-d description] [-X, --extension
property_name=property_value [,property_name=property_value...]] [--addUser(s)
[^ | !] [+ | -]user_name [, [^ | !] [+ | -]user_name...]] [--addUser(s) [^ |
!] [+ | -]user_name [, [^ | !] [+ | -]user_name...]] [--delUser(s) user_name
[,user_name...]] [--modUser(s) [^ | !] [+ | -]user_name [,user_name...]] [--
debug] [--site site_man] [--help] [--man] [--quiet] [--verbose] [--version]
{[-a] account_name}

Additional detail for this command can be found in the man page by issuing gchaccount --man
at the command line.

User members may be added, removed or modified in an account. When adding user members to an
account, the optional caret or exclamation symbol indicates whether the user should be created as an
admin (^) or not (!) for the account. The optional plus or minus signs can precede each member to
indicate whether the member should be created in the active (+) or inactive (-) state. When modifying
user members of an account, the caret symbol or exclamation symbol indicates the user should be
changed to become an admin (^) or not (!) for the account. The plus or minus signs indicate whether the
user should be changed to become active (+) or inactive (-). If an active or admin modifier is not
specified, that aspect of the user member will remain unchanged. If the user.firstaccountdefault server
parameter is set to true, the first account that a user is added to will additionally become the default
account for that user.

Example 7-8: Deactivating an account

$ gchaccount -I chemistry
Successfully modified 1 account

Example 7-9: Adding users as members of an account

$ gchaccount --add-users jsmith,barney chemistry
Successfully added 2 users

Example 7-10: Deactivating a user in an account

$ gchaccount --mod-user -dave chemistry
Successfully modified 1 user

Chapter 7: Managing accounts

Deleting accounts
To delete an account, use the command grmaccount:

grmaccount [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose]
[--version] {[-a] account_name}

Additional detail for this command can be found in the man page by issuing grmaccount --man
at the command line.

Example 7-11: Deleting an account

$ grmaccount chemistry
Successfully deleted 1 account

Account auto-generation
It is possible to have accounts be created automatically when first encountered in a usage function
(charge, reserve or quote). It is also possible for accounts to be automatically created when initially
added as a member of another object. In order for account auto-generation to occur, the AutoGen
property for the Account object must be set to True. This is the default. For account auto-generation to
occur when initially encountered in a usage function, the Values property of the account attribute of the
UsageRecord object must be set to @Account. Additionally, for account auto-generation to occur when
an account is added as a member of another object (such as the Organization object) via an association
table (e.g. OrganizationAccount), the Values property for the account attribute of the Association (e.g.
Name) must be set to @Account, indicating that that value should be constrained to be a valid instance
of the Account object. The auto-creation of accounts can be completely disabled by setting the AutoGen
property for the Account object to False.

Example 7-12: Enable auto-generation of accounts when initially seen in a charge

$ goldsh Attribute Modify Object==UsageRecord Name==Account Values=@Account
Successfully modified 1 attribute

Example 7-13: Disable all auto-generation of accounts

$ goldsh Object Modify Name==Account AutoGen=False
Successfully modified 1 object

See Object auto-generation on page 133 for more information about the auto-generation of objects.

Default account
It is possible to set a global default account to which usage would be ascribed in quotes, liens, or charges
where no account is specified. This can be accomplished by setting the DefaultValue property for the
Account object to the desired account name.

Chapter 7: Managing accounts

52 Deleting accounts

Default account 53

A per-user default account can be established by setting the DefaultAccount property for the user. If the
user.firstaccountdefault server parameter is set to true, the first account that a user is added to will
automatically become the default account for that user. Otherwise, one can use the gchuser command to
set the default account for the user.

It is also possible to set a custom account default for a specific object, which will result in usage being
ascribed to the specified account when the object is attributed to the usage. This is done by creating a
default usage override modifier. For example, to specify a default account of testing for the beta
organization, you might first create an attribute called DefaultAccount for the Organization Object with
the Values property of @?=Account. Then you would populate the new DefaultAccount property for the
beta organization with the value of testing. See Customizing objects on page 131 for more information
on default and other usage override modifiers.

Example 7-14: Assign a global default account

$ goldsh Object Modify Name==Account DefaultValue=common
Successfully modified 1 object

Chapter 7: Managing accounts

54 Default account

Creating organizations 55

Chapter 8: Managing organization
An organization is a virtual organization in which accounts are grouped. An account may only belong to a
single organization while an organization may have multiple accounts. For example, an account may
represent a project or cost-center while an organization may represent an institutional department or
business division. The purpose of defining organizations is to support the ability to produce reporting for
higher-order organizational entities beyond the individual account. Default organization properties
include a name and a description. An organization can be created, queried, modified, and deleted.

Creating organizations
To create a new organization, use the command gmkorg:

gmkorg [-d description] [-X, --extension property_name=property_value
[,property_name=property_value...]] [--debug] [--site site_man] [--help] [--
man] [--quiet] [--verbose] [--version] {[-o] organization_name}

Additional detail for this command can be found in the man page by issuing gmkorg --man at the
command line.

Example 8-1: Creating an organization

$ gmkorg -d "Sciences Department" sciences
Successfully created 1 organization

Querying organizations
To display organization information, use the command glsorg:

glsorg [-X, --extension property_name=property_value[,property_name=property_
value...]] [--full] [--show attribute_name[,attribute_name...]...] [--raw] [--
debug] [--site site_man] [--help] [--man] [--quiet] [--version] [[-o]
organization_pattern]

The fields which are displayed by default by this command can be customized by setting the
organization.show configuration parameter in gold.conf. Additional detail for this command
can be found in the man page by issuing glsorg --man at the command line.

Example 8-2: Listing all organization names

$ glsorg --show Name -q
+ arts
+ sciences

Modifying organizations
To modify an organization, use the command gchorg:

gchorg [-d description] [-X, --extension property_name=property_value
[,property_name=property_value...]] [--site site_man] [--debug] [--help] [--
man] [--quiet] [--verbose] [--version] {[-o] organization_name}

Additional detail for this command can be found in the man page by issuing gchorg --man at the
command line.

Example 8-3: Changing an organization's description

$ gchorg -d "Art College" art
Successfully modified 1 organization

Deleting organizations
To delete an organization, use the command grmorg:

grmorg [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {[-o] organization_name}

Additional detail for this command can be found in the man page by issuing grmorg --man at the
command line.

Example 8-4: Deleting an organization

$ grmorg arts
Successfully deleted 1 organization

Organization auto-generation
It is possible to have organizations be created automatically when initially added as a member of
another object. In order for organization auto-generation to occur, the AutoGen property for the
Organization object must be set to True. This is the default. For organization auto-generation to occur
when initially encountered in a usage function, the Values property of the organization attribute of the
UsageRecord object must be set to @Organization. Additionally, for organization auto-generation to
occur when an organization is added as a member of another object (such as a hypothetical Site object)

Chapter 8: Managing organization

56 Modifying organizations

Default organization 57

via an association table (e.g. SiteOrganization), the Values property for the organization attribute of the
Association (e.g. Name) must be set to @Organization, indicating that that value should be constrained
to be a valid instance of the Organization object. The auto-creation of organizations can be completely
disabled by setting the AutoGen property for the Organization object to False.

Example 8-5: Enable auto-generation of organizations when initially seen in a charge

$ goldsh Attribute Modify Object==UsageRecord Name==Organization Values=@Organization
Successfully modified 1 attribute

Example 8-6: Disable all auto-generation of organizations

$ goldsh Object Modify Name==Organization AutoGen=False
Successfully modified 1 object

See Object auto-generation on page 133 for more information about the auto-generation of objects.

Default organization
It is possible to set a global default organization to which usage would be ascribed in quotes, liens, or
charges where no organization is specified. This can be accomplished by setting the DefaultValue
property for the Organization object to the desired organization name.

It is also possible to set an organization default for a specific object, which will result in usage being
ascribed to the specified organization when the object is attributed to the usage. This is done by creating
a default usage override modifier. For example, to specify that retail be the default organization for
usage associated with the user amy, you might first create an attribute called DefaultOrganization for
the User Object with the Values property of @?=Organization. Then you would populate the new
DefaultOrganization property for the amy user with the value of retail. See the chapter on Customizing
objects on page 131 for more information on default and other usage override modifiers.

Example 8-7: Assign a global default organization

$ goldsh Object Modify Name==Organization DefaultValue=whitecloud
Successfully modified 1 object

Chapter 8: Managing organization

58 Default organization

59

Chapter 9: Managing funds
A fund is a container for a time-bounded reference currency called credits for which the usage is
restricted by constraints that define how the credits must be used. Much like with a bank, a fund is a
repository for these resource or service credits which are added through deposits and debited through
withdrawals and charges. Each fund has a set of constraints designating which entities (such as Users,
Accounts, Machines, Classes, Organizations, etc.) may access the encapsulated credits or for which
aspects of usage the funds are intended (QualityOfService, GeographicalArea, Feature, etc.). Fund
constraints may also be negated with an exclamation point leading the constraint value.

When credits are deposited into a fund, they are associated with a time period within which they are
valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of billable
units associated with a fund for use during a particular time period.) By using multiple allocations that
expire in regular intervals it is possible to implement a use-it-or-lose-it policy and establish an allocation
cycle. An allocation can have an infinite balance or an infinite credit limit. See the Managing allocations
on page 71 chapter for more information on credit limits and infinite allocations.

Funds may be nested. Hierarchically nested funds may be useful for the delegation of management roles
and responsibilities. Deposit shares may be established that assist to automate a trickle-down effect for
credits deposited at higher level funds. Additionally, an optional overflow feature allows charges against
lower level funds to trickle up the hierarchy.

Funds may have a name which is not necessarily unique for the fund. Funds may also have a priority
which will influence the order of fund selection when charging. Operations include creating, querying,
modifying and deleting funds as well as making deposits, withdrawals, transfers, and balance queries. A
fund (or all funds) may also be reset which means that all of the credits and deposited tallies in all
active allocations associated with the fund are set to zero. By default, a standard user may only query
and view the balance for funds which pertain to them.

Some fund operations (Query, Balance, Deposit, Withdraw, and Refund) allow the specification of filter
options which narrow down the funds that will be acted on for that operation. There are two fund filter
types that can be employed: Exclusive and NonExclusive. If an exclusive filter type is used, the query will
return only the funds for which the specified filters meet all constraints for usage. Another way to think
of an exclusive filter is to ask if usage were to be posted given only the specified filter options as ACLs,
which funds would be eligible for charging? For example, Fund Query FilterType:=Exclusive
Filter:=User=scottmo would not return a fund with the sole constraint Machine=blue because
Machine=blue was not included in the filters. Not only must the filters be a non-conflicting superset of
the fund constraints, but all constraint dependencies must also be satisfied (for example, an appropriate
user may need to be specified with the account). If a non-exclusive filter type is used, the query will
return all funds for which the filters do not specifically exclude the constraints. The query assumes that
if constraints are not specified within the filters, they can be assumed as a wildcard and will return all
funds that are not specifically excluded by the filter. For example, Fund Query
FilterType:=NonExclusive Filter:=User=scottmo would return a fund whose only constraint
was Machine=blue (because it does not conflict) but would not return a fund with the constraint
User=bob (because it does conflict).

Creating funds
gmkfund is used to create a new fund. You can specify a fund name, a description, and any number of fund
constraints. If a name is not specified and constraints are specified, a name will be automatically
generated based on the constraints. A new unique id is automatically generated for the fund.

gmkfund [-n fund_name] [-d description] [-X, --extension property_
name=property_value [,property_name=property_value...]] [-c class_name] [-g
group_name] [-m machine_name] [-o organization_name] [-a account_name] [-u
user_name] [, [-C, --constraint constraint_name=[!]constraint_value
[,constraint_name=[!] [constraint_value...]] [--parent parent_fund_id] [--
debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]

Additional detail for this command can be found in the man page by issuing gmkfund --man at
the command line.

It is possible to have funds be created automatically when accounts are created by setting the
Fund object's AutoGen property to true (see Fund auto-generation on page 67). The auto-
generated fund will be associated with the new account.

Example 9-1: Creating a fund valid for the chemistry account

$ gmkfund -a chemistry -n "Chemistry"
Successfully created 1 fund with id 7 and 1 constraint

Example 9-2: Creating a wide-open fund that can be used by anyone for anything

$ gmkfund -n "Windfall"
Successfully created 1 fund with id 8

Example 9-3: Creating a fund valid toward all biology account members except for dave and just the machine
colony

$ gmkfund -C Account=biology,User=!dave,Machine=colony -n "Biology on Colony not for
Dave"
Successfully created 1 fund with id 9 and 3 constraints

Querying funds
To display fund information, use the command glsfund:

glsfund [-A | -I] [-n fund_name] [-X, --extension property_name=property_value
[,property_name=property_value...]] [-u user_name] [-g group_name] [-a
account_name] [-o organization_name] [-c class_name] [-m machine_name] [-f, --
filter filter_name=filter_value[,filter_name=filter_value...]] [-F, --filter-
type Exclusive|(NonExclusive)] [--full] [--show attribute_name [,attribute_
name...]...] [--long] [--wide] [--raw] [-h, --hours] [--debug] [--site site_
man] [--help] [--man] [--quiet] [--version] [[-f] fund_id]

Chapter 9: Managing funds

60 Creating funds

Modifying funds 61

The fields which are displayed by default by this command can be customized by setting the
fund.show configuration parameter in gold.conf. Additional detail for this command can be
found in the man page by issuing glsfund --man at the command line.

Example 9-4: Listing all info about all funds with multi-valued fields displayed in a multi-line format

$ glsfund --long
Id Name Amount Constraints Description
--- --------------- ----------- ------------- ------------
1 Biology 25000000 Account=biology
2 chemistry for amy 34802392 User=amy
 Account=chemistry
3 chemistry not amy 5000000 User=!amy
 Account=chemistry
4 film on colony 0 Account=film
 Machine=colony

Example 9-5: Wide listing all info about all funds useable by amy

$ glsfund -u amy
Id Name Amount Constraints Description
--- --------------- ------------- ------------- -----------
1 biology 25000000 Account=biology
2 chemistry for amy 24802392 Account=chemistry,User=amy
4 film on colony 0 Machine=colony,Account=dance

Modifying funds
To modify a fund, use the command gchfund:

gchfund [-n fund_name] [--priority fund_priority] [-d description] [-X, --
extension property_name=property_value [,property_name=property_value...]][—
add-constraint(s) constraint_name= [!]constraint_value[,constraint_name= [!]
constraint_value...]] [--del-constraint(s) constraint_name[,constraint_
name...]] [--parent parent_fund_id] | --reset [--all]} [-u user_name] [-g
group_name] [-a account_name] [-o organization_name] [-c class_name] [-m
machine_name] [--filter filter_name=filter_value[,filter_name=filter_
value...]] [--filter-type Exclusive|(NonExclusive)] [--debug] [--site site_
name] [--help] [--man] [--quiet] [--verbose] [--version] ([-f] fund_id}

Additional detail for this command can be found in the man page by issuing gchfund --man at
the command line.

Example 9-6: Adding a constraint to a fund so that it can only be used by the acme organization

$ gchfund --add-constraint Organization=acme 7
Successfully created 1 constraint

Example 9-7: Resetting a fund

$ gchfund --reset 1
Successfully reset 4512 credits from 1 allocation

Chapter 9: Managing funds

Making deposits
gdeposit is used to deposit time-bounded resource credits into a fund resulting in the creation or
increase of an allocation. (See Managing allocations on page 71 for information about managing
allocations). The start time will default to -infinity and the end time will default to infinity if not
specified. Filter options can be specified to help select a unique fund for the deposit. If multiple funds are
matched by the filters, the matching funds will be listed and you will be prompted to respecify the
deposit with one of the fund ids. If an allocation for the deposit fund is found having the start and end
times for the deposit, the amount of the allocation will be increased by the deposit amount. Otherwise, a
new allocation will be created for the fund with the amount of the deposit. If no funds match your
criteria, if fund auto-generation is enabled, a fund will be created and the deposit made into it.
Otherwise, the deposit will fail (the fund will need to be first created using gmkfund).

Deposits may be used to extend the debit ceiling by specifying an amount for the deposit (with the -z
option) or extend the credit floor by specifying a credit limit for the deposit (with the -L option) or a
combination of both options may be used. Additionally, Infinity may be used for either of these option
values when Moab Accounting Manager is coupled with a database that supports IEEE Standard 754 for
Floating-Point Arithmetic (e.g. PostgreSQL).

gdeposit [-L credit_limit] [-s start_time] [-e end_time] [-d description] [-f
fund_id] [-i allocation_id] [-u user_name] [-g group_name] [-a account_name]
[-o organization_name] [-c class_name] [-m machine_name] [--filter filter_
name=filter_value[,filter_name=filter_value...]] [--filterType Exclusive|
(NonExclusive)] [--create-fund True|False] [--reset] [-h, --hours] [--debug]
[--site site name] [--help] [--man] [--quiet] [--verbose] [--version] [[-z]
amount]

Additional detail for this command can be found in the man page by issuing gdeposit --man at
the command line.

Example 9-8: Making a deposit into fund 1

$ gdeposit -z 360000000 -f 1
Successfully deposited 360000000 credits into fund 1

Example 9-9: Making a deposit "into" an account

If an account has a single fund then a deposit can be made against the account.

$ gdeposit -z 360000000 -a chemistry
Successfully deposited 360000000 credits into fund 2

Example 9-10: Creating a credit allocation

$ gdeposit -L 10000000000 -f 3
Successfully deposited 0 credits into fund 3

Example 9-11: Making a reset deposit

Reset the active allocations in the fund before making the deposit.

Chapter 9: Managing funds

62 Making deposits

Querying the balance 63

$ gdeposit -f 4 -z 36000000 --reset
Successfully deposited 36000000 credits into fund 4
Successfully reset 12767021 credits from 1 allocation

Example 9-12: Creating an infinite allocation

$ gdeposit -z Infinity -f 5
Successfully deposited inf credits into fund 5

The use of infinite allocations requires the use of a database that supports the IEEE Standard 754
for Floating-Point Arithmetic (e.g. PostgreSQL).

Example 9-13: Making a series of quarterly allocations

$ gdeposit -s 2012-01-01 -e 2012-04-01 -z 25000000 -a biology
Successfully deposited 25000000 credits into fund 6

$ gdeposit -s 2012-04-01 -e 2012-07-01 -z 25000000 -a biology
Successfully deposited 25000000 credits into fund 6

$ gdeposit -s 2012-07-01 -e 2012-10-01 -z 25000000 -a biology
Successfully deposited 25000000 credits into fund 6

$ gdeposit -s 2012-10-01 -e 2013-01-01 -z 25000000 -a biology
Successfully deposited 25000000 credits into fund 6

Querying the balance
To display balance information, use the command gbalance:

gbalance [-u user_name] [-g group_name] [-a account_name] [-o organization_
name] [-c class_name] [-m machine_name] [--filter filter_name=filter_value
[,filter_name=filter_value...]] [--filterType Exclusive|(NonExclusive)] [--
total] [--available] [--ignore-liens] [--ignore-ancestors] [--full] [--show
attribute_name [,attribute_name...]] [--long] [--wide] [--raw] [-h, --hours]
[--site site_name] [--debug] [--help] [--man] [--quiet] [--version]

The fields which are displayed by default by the gbalance command can be customized by setting
the balance.show configuration parameter in gold.conf.

Additional detail for this command can be found in the man page by issuing gbalance --man at
the command line.

Example 9-14: Querying amy's balance

$ gbalance -u amy
Id Name Available Allocated PercentUsed
--- -------- ---------- ---------- -----------
13 biology 2785.87 5000.00 44.28
2 chemistry 1785.87 3000.00 40.47

Chapter 9: Managing funds

Example 9-15: Querying the total balance available to bob for the biology account on a colony cluster

$ gbalance -u bob -m colony -a chemistry --total --available --quiet
2785.87

Example 9-16: List the available balances that amy can charge against along with the constraints on those balances

$ gbalance -u amy —show Balance,Constraints
Balance Constraints
------------- -------------
25000000 Account=biology
34802392 Account=chemistry,User=amy
0 Machine=colony,Account=film

Personal balance
The mybalance has been provided as a wrapper script to show users their personal balance. It provides a
list of balances for the funds that they can charge to:

mybalance [-h, --hours] [--help] [--man]

Additional detail for this command can be found in the man page by issuing mybalance --man at
the command line.

Example 9-17: List my fund balances

$ mybalance
Balance Name
------------- -------------------
25000000 biology
34802302 chemistry for amy

Example 9-18: List my balance in (Processor) hours

$ mybalance -h
Balance Name
------------- -------------------
6944.44 biology
9667.33 chemistry for amy

Making withdrawals
A withdrawal can be used to debit a fund without being associated with the usage charge from some
item. To issue a withdrawal, use the command gwithdraw:

gwithdraw [-f fund_id] [-i allocation_id] [-u user-name] [-g group_name] [-a
account_name] [-o organization_name] [-c class_name] [-m machine_name] [--
filter filter_name=filter_value[,filter_name=filter_value...]] [--filter-type
Exclusive|(NonExclusive)] [-d description] [-h, --hours] [--debug] [--site
site_name] [--help] [--man] [--quiet] [--verbose] [--version {[-z] amount}

Chapter 9: Managing funds

64 Personal balance

Making transfers 65

Additional detail for this command can be found in the man page by issuing gwithdraw --man at
the command line.

Example 9-19: Making a withdrawal

$ gwithdraw -z 12800 -f 1 -d "Grid Tax"
Successfully withdrew 12800 credits from fund 1

Example 9-20: Making a withdrawal "from" an account

If an account has a single fund then a withdrawal can be made against the account.

$ gwithdraw -z 12800 -a biology
Successfully withdrew 12800 credits from fund 1

If more than one fund exists for the account or filter, you will be asked to be more specific:

$ gwithdraw -z 12800 -a chemistry
Multiple funds were matched for the withdrawal.
Please respecify using one of the following fund ids:
2 [chemistry for amy]
3 [chemistry not amy]

Making transfers
To issue a transfer between funds, use the command gtransfer. If the allocation id is specified, then only
credits associated with the specified allocation will be transferred, otherwise, only active credits will be
transferred. Fund transfers preserve the allocation time periods associated with the resource or service
credits from the source to the destination funds. Source and destination filters may be used if they result
in a single source fund and single destination fund.

gtransfer {--from-fund source_fund_id | --from-filter source_filter_name=source_
filter_value[,source_filter_name=source_filter_value...]| -i allocation_id} {-
-to-fund destination_fund_id| --to-filter destination_filter_name=destination_
filter_value[,destination_filter_name=destination_filter_value...]} [-d
description] [-h, --hours] [--debug] [--site site_name] [-?, --help] [--man]
[--quiet] [--verbose] {[-z] amount}

Additional detail for this command can be found in the man page by issuing gtransfer --man at
the command line.

Example 9-21: Transferring credits between two funds

$ gtransfer --from-fund 1 --to-fund 2 10000
Successfully transferred 10000 credits from fund 1 to fund 2

Example 9-22: Transferring credits between two single-fund accounts

$ gtransfer --from-filter Account=biology --to-filter Account=chemistry 10000
Successfully transferred 10000 credits from fund 1 to fund 2

Chapter 9: Managing funds

Obtaining a fund statement
To generate a fund statement, use the command gstatement. For a specified time frame it displays the
beginning and ending balances as well as the total credits and debits to the fund over that period. This is
followed by an itemized report of the debits and credits. Summaries of the debits and credits will be
displayed instead of the itemized report if the --summarize option is specified. If filter options are
specified instead of a fund, then the statement will consist of information merged from all funds valid
toward the specified entities.

gstatement [[-f] fund_id] [-n fund_name] [-u user_name] [-g group_name] [-a
account_name] [-o organization_name] [-c class_name] [-m machine_name] [--
filter filter_name=filter_value[,filter_name=filter_value...]] [--filter-type
Exclusive|(NonExclusive)] [-s start_time] [-e end_time] [--summarize] [-h, --
hours] [--debug] [--site site_man] [--help] [--man] [--version]

Additional detail for this command can be found in the man page by issuing gstatement --man
at the command line.

Example 9-23: Generating a fund statement for all chemistry funds for the fourth quarter of 2011

$ gstatement -a chemistry -s 2011-10-01 -e 2012-01-01
################################# End of Report ################################
$ gstatement -a chemistry -s 2011-10-01 -e 2012-01-01 --summarize
##
#
Includes fund 3 (chemistry not amy)
Includes fund 2 (chemistry for amy)
Generated on Mon Feb 7 18:44:23 2012.
Reporting fund activity from 2011-10-01 to 2012-01-01.
#
##
Beginning Balance: 0
--------------------------- ------------------------------
Total Credits: 90122212
Total Debits: -5308668
--------------------------- ------------------------------
Ending Balance: 84813544
############################### Credit Summary ##################################
Object Action Amount
---------- -------- --------
Fund Deposit 90100000
UsageRecord Refund 22212
############################### Debit Summary ###################################
Object Action Account User Machine Amount Count
------------- --------- --------- ---- -------- ------- -----
UsageRecord Charge chemistry amy colony -19744 239

############################### End of Report ##################################

The fields which are used as default discriminators in the detail section of the gstatement
command (which are by default Account, User, and Machine) can be customized by setting the
statement.show configuration parameter in gold.conf.

Chapter 9: Managing funds

66 Obtaining a fund statement

Deleting funds 67

Deleting funds
To delete a fund, use the command grmfund:

grmfund [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {[-f] fund_id}

Additional detail for this command can be found in the man page by issuing grmfund --man at
the command line.

Example 9-24: Deleting a fund

$ grmfund 2
Successfully deleted 1 fund

Fund auto-generation
It is possible to enable the auto-generation of funds by setting the AutoGen property of the Fund object
to True. When creating a new account, if fund auto-generation is enabled, a fund will automatically be
created for the account (unless overridden with the --create-fund option). The fund will be usable
only by usage attributed to the new account. Additionally, if fund auto-generation is set, a deposit that
does not match an existing fund will automatically generate a fund using the filters as constraint options.
Objects associated with the constraint that have AutoGen set to True will be auto-generated as well
(unless overridden with the --create-fund option).

Example 9-25: Enable auto-generation of funds

$ goldsh Object Modify Name==Fund AutoGen=True
Successfully modified 1 object

Hierarchical funds
A hierarchy can be established between funds. When creating a fund or by modifying it later, one can
specify a parent fund id via the --parent option to establish the object fund as a child of the specified
parent fund. A fund may have multiple children funds but only a single parent fund.

Example 9-26: Establishing a child relationship with another fund

$ gchfund --parent 3 -f 6
Successfully added 1 parent

Deposit shares may be established between the parent fund and its children that assist to automate a
trickle-down effect for funds deposited at higher level funds (DepositShare is an attribute of the
FundFund association object). Deposit shares are integers and are treated as a percentage of each
deposit and the sum of the deposit shares for an fund's children may not exceed 100. If the deposit shares
for the children of a fund totals less than 100, the difference is taken to be the share of the deposit that

Chapter 9: Managing funds

will be allocated to the parent. When a deposit is made into a parent fund, for each child fund that has a
non-zero deposit share a recursive deposit amounting to the designated percentage of the parent deposit
is issued to that child. After the share amounts have been deposited to each of the child funds, the
remaining percentage of the deposit is allocated to the parent fund. This effect is recursive with each
child. If a start time and/or end time are specified in the original deposit, these time frames will be
recursively applied to all descendant deposits. You have to use the goldsh interactive control program to
manage deposit shares. For the FundFund association object, the Fund is the parent and the Id is the
child.

Example 9-27: Establishing a 10% deposit share between a parent and a child fund

$ goldsh FundFund Modify Fund==3 Id==6 DepositShare=10

Fund Id DepositShare Overflow
------ ---- ------------ --------
3 6 10 False

Successfully modified 1 funFund

An overflow policy may be established between the parent fund and its children to enable a trickle-up
effect for charges, liens, and quotes from the lower level funds (Overflow is an attribute of the FundFund
association object). The Overflow attribute is a boolean value (True or False). If the overflow value
between a child and its parent is set to True, any charges, liens, or quotes issued against the child fund
that cannot be satisfied by the balance in the child fund, will recursively issue the unsatisfied portion of
the charge, lien, or quote against the parent fund. If the charge, lien, or quote cannot be satisfied by the
ancestors, no charges, liens, or quotes will result against any of funds. The balance in the descendant
funds will be depleted before ancestor funds. This effect is recursive with each parent. If a parent fund is
linked with overflow to a child fund and a charge, lien, or quote overflows to the parent fund, the
constraints of the parent fund will not be checked against the properties of the item. One must use the
goldsh control program to manage the overflow policy. For the FundFund association object, the Fund is
the parent and the Id is the child.

Example 9-28: Enabling overflow between a parent and a child fund

$ goldsh FundFund Modify Fund==3 Id==6 Overflow=True

Fund Id DepositShare Overflow
------ ---- ------------ --------
3 6 10 True

Successfully modified 1 fundFund

Fund priority
By default, when an item can charge to multiple funds, funds with more constraints are chosen over funds
with fewer constraints. For example, if the user amy is charging against the chemistry account for usage
of an item and there are two viable funds, one with a single constraint (e.g. Account=chemistry) and
another with two constraints (e.g. Account=chemistry and User=amy), credits will be taken from the
more specific fund (with 2 constraints) before they are taken from the more general fund (with 1
constraint). To override this behavior, it is possible to give a priority to a fund. The priority factor of a
fund has higher precedence than the specificity (constraint count) of the fund. Thus, all else being equal,
if a fund with a lower number of constraints is given a higher priority than a fund with a higher number

Chapter 9: Managing funds

68 Fund priority

Fund priority 69

of constraints, the higher priority fund will be depleted first. Other factors, such as the end time of the
allocation or whether there is an existing lien for the item against a fund, have a higher precedence than
the specificity of the fund. If you want the allocations in a particular fund to be chosen before allocations
that expire sooner or that have a lien, you may need to specify fund priorities that are in the millions
(see Allocation precedence on page 74 for a discussion of the manner of sorting allocations for
charging).

Example 9-29: Setting a fund priority

$ gchfund -f 3 --priority 1
Successfully modified 1 fund

Chapter 9: Managing funds

70 Fund priority

71

Chapter 10: Managing allocations
An allocation is a time-bounded pool of resource or service credits associated with a fund. A fund may
have multiple allocations, each for use during a different time period.

An allocation has a start time and an end time that defines the time period during which the allocation
may be used. By default an allocation is created with an unbounded time period (-Infinity to
Infinity). An active flag is automatically updated to True if the allocation is within its valid
timeframe or False if it is not. An allocation that becomes active because the current time is greater
than its start time undergoes an activation which normally registers as a credit to the fund. An
allocation that becomes inactive because the current time is greater than its end time undergoes a
deactivation which normally registers as a debit to the fund.

An allocation may have a credit limit representing the amount by which it can go negative. Thus, by
having a positive balance in the Amount field, the fund is like a debit account, implementing a pay-first
use-later model. By establishing a credit limit instead of depositing an initial balance, the fund will be
like a credit account, implementing a use-first pay-later model. These strategies can be combined by
depositing some amount of funds coupled with a credit limit, implementing a form of overdraft protection
where the funds will be used down to the negative of the credit limit.

An allocation also has a Deposited attribute that is incremented with each crediting deposit. When a
deposit is made, if a matching allocation already exists with the appropriate time period, the existing
allocation is modified. Otherwise, a new allocation is created. If the deposit results in an increased
balance for the fund, the Deposited field is incremented by the same amount. Thus, the Deposited field
seeks to track the total amount deposited to the allocation over its lifetime. An allocation can be reset,
which causes both the Amount and the Deposited fields to be reset to zero.

It is possible for the allocation Amount or Cred

Operations include querying, modifying, resetting and deleting allocations. Allocations can be created by
a fund deposit, creating a fund with allocation auto-generation enabled, refunding a usage record, or a
transfer between funds. Allocations may also be indirectly modified via charges, withdrawals, transfers,
or refunds. By default, a standard user may only query allocations which pertain to them.

Allocation queries allow the specification of filter options which filter the allocations to those with funds
meeting the specified fund constraints. There are two allocation filter types that can be employed:
Exclusive and NonExclusive. If an exclusive filter type is used, the query will return only allocations
relating to funds for which the specified filters meet all constraints. For example, Allocation Query
FilterType:=Exclusive Filter:=User=scottmo would not return an allocation for a fund with
the sole constraint Machine=blue. If a non-exclusive filter type is used, the query will return all
allocations relating to funds for which the filters do not specifically exclude the constraints. The query
assumes that if constraints are not specified within the filters, they can be assumed as a wildcard and
will return all allocations involving funds that are not specifically excluded by the filter. For example,
Allocation Query FilterType:=NonExclusive Filter:=User=scottmo would return an
allocation with a fund whose only constraint was Machine=blue but would not return an allocation with
a fund with the constraint User=bob.

Creating allocations
Allocations are normally created by making fund deposits via the gdeposit command (See Making
deposits on page 62).

Querying allocations
To display allocation information, use the command glsalloc:

glsalloc [-A | -I] [-f fund_id] [-X, --extension property_name=property_value
[,property_name=property_value...]] [-u user_name] [-g group_name] [-a
account_name] [-o organization_name] [-c class_name] [-m machine_name] [--
filter filter_name=filter_value[,filter_name=filter_value...]] [--filter-type
Exclusive|(NonExclusive)] [--include-ancestors] [--full] [—show attribute_name
[,attribute_name...]] [--long] [--wide] [--raw] [-h, --hours] [--debug] [--
site site_man] [--help] [--man] [--quiet] [--version] [[-i] allocation_id]

The fields which are displayed by default by this command can be customized by setting the
allocation.show configuration parameter in gold.conf. Additional detail for this command can
be found in the man page by issuing glsalloc --man at the command line.

Example 10-1: Listing allocations for fund 1

$ glsalloc -f 1
Id Fund Active StartTime EndTime Amount CreditLimit Deposited Des
cription
--- ----- ------- ----------- ---------- --------- ------------- --------- ---

2 1 False 2012-04-01 2012-07-01 25000000 0 250000
3 1 False 2012-07-01 2012-10-01 25000000 0 250000
4 1 False 2012-10-01 2013-01-01 25000000 0 250000
1 1 True 2012-01-01 2012-04-01 24974400 0 250000

Modifying allocations
To modify an allocation, use the command gchalloc:

gchalloc [-s start_time] [-e end_time] [-L credit_limit] [-D deposited] [-d
description] [-X, --extension property_name=property_value[,property_
name=property_value...]] [-h, --hours] [--debug] [--site site_name] [--help]
[--man] [—quiet] [--verbose] {[-i] allocation_id}

Additional detail for this command can be found in the man page by issuing gchalloc --man at
the command line.

Chapter 10: Managing allocations

72 Creating allocations

Delete allocations 73

Example 10-2: Changing the end time for an allocation

$ gchalloc -e "2013-01-01" 4
Successfully modified 1 allocation

Example 10-3: Changing the credit limit for an allocation

$ gchalloc -L 500000000000 -i 2
Successfully modified 1 allocation

Example 10-4: Resetting an allocation

$ gchalloc -e --reset 2
Successfully reset 25000000 credits from 1 allocation

Delete allocations
To delete an allocation, use the command grmalloc:

grmalloc [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {-I | [-i] allocation_id}

Additional detail for this command can be found in the man page by issuing grmalloc --man at
the command line.

Example 10-5: Deleting an allocation

$ grmalloc 4
Successfully deleted 1 allocation

Example 10-6: Purging inactive allocations

$ grmalloc -I
Successfully deleted 2 allocations

Allocation auto-generation
It is possible to enable the auto-generation of allocations by setting the AutoGen property of the
Allocation object to True. When creating a new fund, if allocation auto-generation is enabled, an
allocation will automatically be created for the fund via a deposit. The deposit will use the default
amount and default credit limit (defined in the DefaultValue property of the Allocation Amount and
Allocation CreditLimit attributes). The default action for allocation auto-generation is to create an
allocation with an infinite credit limit.

Example 10-7: Enable auto-generation of allocations

$ goldsh Object Modify Name==Allocation AutoGen=True
Successfully modify 1 object

Chapter 10: Managing allocations

Allocation precedence
When issuing a charge (or a lien or quote) for the usage of a resource or service, the feasible allocations
are sorted according to a weight given to them for that transaction. The weight for each allocation is
calculated as follows: If the instance has a current lien against one or more allocations, these allocations
are given a value of 10000000 + int((2147483647 - <end_epoch_time>) / 86400). Thus,
these reserved allocations will generally have the highest precedence (subject to large fund priorities),
with those that expire sooner being used first. For the remaining non-nested funds, allocations will be
given a value of 100 * int((2147483647 - <end_epoch_time>) / 86400) + 10 * <fund_
priority> + <constraint_count>. Thus, sooner expiring allocations will be used before later
expiring allocations, fund priority will be the next highest factor (assuming small priority values of 1-10),
followed by the number of constraints on the fund (more specific funds will be used before more general
funds). Of course, since priority is configurable, a sufficiently large priority (in the millions) can be used
to override the precedence of earlier expiring allocations or even allocations with liens. Lastly, nested
funds that become feasible because of overflow to ancestor funds have a negative weighting and are used
last, with the earliest expiring allocations being used before later expiring allocations and closer level
ancestors being depleted before ancestor funds that are at more distant levels. These allocations are
given a weight of <distance * 100000> - <end_epoch_time>. After all feasible allocations are
sorted according to the above rules, the charge (or lien or quote) will be applied against the allocations
one by one in sorted order (highest value first) until the request is fulfilled, or until it fails due to
insufficient funds. If a transaction is not able to be satisfied in whole, the entire transaction will fail and
no partial debits will be applied.

Chapter 10: Managing allocations

74 Allocation precedence

75

Chapter 11: Managing liens
A lien is a hold placed against an allocation. Before usage of a resource or service begins, a lien is made
against one or more allocations within the requesting user's applicable fund(s).Subsequent usage
requests will also post liens while the available balance (active allocations minus liens) allows. When the
usage ends, the lien is removed and the actual charge is made to the allocation(s). This procedure
ensures that usage will only be permitted so long as the requestors have sufficient funds.

Associated with a lien is the instance name (name of the item being used such as the job id), the usage
record (which contains the item details), a start time and end time for the lien and a description. The
lien will automatically expire and no longer count against the user's balance after the end time passes.
Each lien will be associated with held amounts from one or more allocations. Operations include
creating, querying, modifying, and deleting liens. By default, a standard user may only query liens
attributed to them.

Lien queries allow the specification of filter options which narrow down the liens that will be returned.
There are two lien filter types that can be employed: AttributedTo and ImpingesUpon. If
ImpingesUpon is used, the query will return all liens associated with funds satisfying the filters. For
example, Lien Query FilterType:=ImpingesUpon Filter:=User=scottmo will return all liens
impinging on Funds usable by scottmo. If AttributedTo is used, the query will return all liens
associated with usage records satisfying the filters. For example, Lien Query
FilterType:=AttributedTo Filter:=User=scottmo will return all liens for resources or
services allocated to scottmo.

When a lien is created via the UsageRecord Reserve action (such as via greserve), if another lien exists
with the same instance name, the default behavior is to leave the old lien in place (and create the new
one along side it). This behavior assumes that the other lien is probably a separate lien created by a
resource or service manager that reuses instance ids. However, alternate behaviors may be specified via
the mutually exclusive Modify or Replace options. If the Replace option is specified, any pre-existing
liens with matching instance names will first be deleted, thereby ensuring only one lien per instance
name at a time. If the Modify option is specified, a pre-existing lien with matching instance name will be
modified to have the new properties (but keeping the same lien id), and can be used to extend a lien.
This might be used with incremental charging to dynamically stretch liens along a little at a time as
needed. (See Making a usage lien on page 86 for a description of the action using these options).

Liens may be granted a grace period (in seconds), which is defined as the difference between the validity
period of the lien (end time minus start time) and the expected duration of the usage. The purpose of a
grace period is to account for the fact that we may not know precisely when the usage will begin and the
lien needs to be remain in force during the lifetime of the usage. One can apply a desired grace period
for a lien by setting the end time longer than the specified duration. Alternatively, a grace duration
option can be specified with the duration when creating a lien via greserve as a helper to computing a
relatively adjusted end time.

Creating liens
Liens are normally created by the resource management system with the greserve command (See
Making a usage lien on page 86).

However, it is also possible to create a manual lien against specified allocations using the gmklien
command. A lien object and its allocation associations will be created. Unlike greserve, no calculated lien
amount will be returned nor will a usage record be created or updated with the lien. Furthermore,
gmklien will not perform any checking to ensure that the specified allocations have a sufficient active
balance to support the lien.

gmklien [-J instance_name|job_id] [-s start_time] {-e end_time | -t lien_
duration] [-d description] [-X, --extension property_name=property_value
[,property_name=property_value...]] {-A allocation_id<-fund_id=sublien_amount
[,allocation_id<-account_id=sublien_amount...]} [--debug] [--site site_name]
[--help] [--man] [—quiet] [--verbose] [--version]

Additional detail for this command can be found in the man page by issuing gmklien --man at
the command line.

Example 11-1: Creating a manual lien

$ gmklien -J weekend_run -t 84600 -A "5<-2=3600"
Successfully created 1 lien

Use of the gmklien command bypasses the normal mechanisms that prevent more liens from
being placed against an allocation than it can support. Use greserve instead if you wish to avoid
the possibility of oversubscribing the allocations.

Querying liens
To display lien information, use the command glslien:

glslien [-A | -I] [-J instance_pattern | job_id_pattern] [-X, --extension
property_name=property_value [,property_name=property_value...]] [-u user_
name] [-g group_name] [-a account_name] [-o organization_name] [-c class_name]
[-m machine_name] [--filter filter_name=filter_value[,filter_name=filter_
value...]] [--filter-type (AttributedTo)|ImpingesUpon] [--full] [--show
attribute_name [,attribute_name...]...] [--long] [--wide] [--raw] [-h, --
hours] [--debug] [--site site_name] [--help] [--man] [--quiet] [--version] [[-
l] lien_id]

The fields which are displayed by default by this command can be customized by setting the
lien.show configuration parameter in gold.conf. Additional detail for this command can be
found in the man page by issuing glslien --man at the command line.

Chapter 11: Managing liens

76 Creating liens

Modifying liens 77

Example 11-2: Listing all info about all liens for amy

$ glslien -u amy
Id Instance Amount StartTime EndTime UsageRecord Funds
 Description
--- ------------ -------- -------------------- -------------------- ------------ -----
----- ----------- -------------
3 PBS.1234.4 57600 2012-04-06 21:21:48 2012-04-06 22:31:48 7 2

Example 11-3: Listing all info about all liens that impinge against dave's balance

$ glsres -u dave --filter-type ImpingesUpon
Id Instance Amount StartTime EndTime UsageRecord Funds
 Description
--- ----------- -------- -------------------- -------------------- ----------- -----
----- -----------
4 batch.12 7600 2012-04-06 15:30:34 2012-04-06 15:41:50 244 3

Modifying liens
To modify a lien, use the command gchlien:

gchlien [-s start_time] [-e end_time] [-t lien_duration] [-d description] [-X, -
-extension property_name=property_value [,property_name=property_value...]] [—
debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]
{[-l] lien_id}

Additional detail for this command can be found in the man page by issuing gchlien --man at
the command line.

Example 11-4: Changing the expiration time of a lien

$ gchlien -e "2012-06-06 14:43:02" 1
Successfully modified 1 lien

Deleting liens
To delete a lien, use the command grmlien:

grmlien [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {-I | -J instance_name | job_id | [-l] lien_id}

Additional detail for this command can be found in the man page by issuing grmlien --man at
the command line.

Example 11-5: Deleting a lien by instance (or job id)

$ grmlien -J PBS.1234.0
Successfully deleted 1 lien

Chapter 11: Managing liens

Example 11-6: Deleting a lien by Lien Id

$ grmlien 1
Successfully deleted 1 lien

Example 11-7: Purging stale liens

$ grmlien -I
Successfully deleted 2 liens

Chapter 11: Managing liens

78 Deleting liens

79

Chapter 12: Managing quotes
A quotation provides a way to determine beforehand how much would be charged for a job. When a
guaranteed quote is requested, the charge rates applicable to the usage request are saved and a quote id
is returned. Charge rates may be specified with the quote or the standard rates may be used in the quote
calculation. When the lien and the final charge are issued, the quote id can be referenced to ensure that
the saved quote charge rates are used instead of current standard values. A quotation has an expiration
time after which it cannot be used. A quotation may also be used to verify that the given job has
sufficient funds and meets the policies necessary for the charge to succeed.

Associated with a quote is the id, the instance name (name of the item being used such as the job id), the
amount quoted (assuming full use of the quoted resources or services), the usage record (which contains
the usage details), a start and end time for the quote, a duration (how long the item is expected to be
used), a boolean indicating whether the quote is pinned or unpinned, and a description. Each guaranteed
quote will be associated with one or more saved charge rates. Operations include creating, querying,
modifying and deleting quotes. By default, a standard user may only query quotes attributed to them.

Quote queries allow the specification of filter options which narrow down the quotes that will be
returned. The query will return all quotes associated with usage records satisfying the filters. For
example, Quote Query Filter:=User=scottmo will return all quotes for resources or services
allocated to scottmo.

A quote may be pinned (restricted to a particular instance) or unpinned (allowed to be used by any
number of different instances). If a quote is pinned and has not been tied to a particular instance when
initially created, it will be tied to the first instance that claims it. Once pinned to an instance, it can then
be used repeatedly by that same instance until the quote expires, but not by any other instance. If a
quote is not pinned, any instances may use the quoted rates while the quote is active.

A quote may be granted a grace period, which is defined as the difference between the validity period of
the quote (end time minus start time) and the expected duration of the usage in seconds. The purpose of
a grace period is to account for the fact that we may not know precisely when the usage will begin and
the quote needs to be valid during the time of completion of the usage in order for the guaranteed
charge rates to be applied. One can apply a desired grace period for a quote by setting the end time
longer than the specified duration. Alternatively, a grace duration option can be specified with the
duration when creating a quote via gquote as a helper to computing a relatively adjusted end time.

A distinction may be made between quotes and quote templates, both of which use the Quote object. A
quote will always return a cost estimate and will be associated with a specific usage record. A quote
template provides a way to bundle together a package of special charge rates that can be applied to
quotes, liens, and charges. Quote templates use the same Quote object as regular quotes but they are not
associated with a usage record and do not generate a quote amount.

In calculating a price, a quote will use (in order of lower to higher precedence) the standard charge
rates, the charge rates from a specified quote template, the specified override charge rates, or an
externally specified charge amount. In saving guaranteed charge rates, the standard charge rates

pertaining to the specified usage record properties will be used unless overridden by a specified quote
template or specified charge rates.

There are several key purposes for using quotes and quote templates. First, a quote may be requested to
discover the cost of using a resource or service. If this is your sole purpose, then you may want to use
the gquote command with the --costOnly option. Second, a quote can be used to check whether the
requestor has sufficient access and funds to use the requested resource. This may be accomplished by
invoking the gquote command without the --costOnly option. Third, a quote or a quote template can
be used to lock-in current or specified charge rates for use in future liens and charges. If the details of
the usage are known and you would like to get a quote amount with a quote id that can be referenced to
guarantee the quoted charge rates, you may use the gquote command with the --guarantee option.
Override charge rates may be factored in to the cost estimate of the quote by using the gquote command
with the --rate option. If specific override charge rates need to be saved or guaranteed for future use
within a quote, lien, or charge without generating a cost estimate, create a pinned quote template by
using the gmkquote command with the --pin and -R options. If it is necessary to create a quote
template that can be used to override the standard charge rates for multiple instances, use the
gmkquote command with the --nopin and -R options.

Creating quotes
Quotes are normally generated by the resource management system with the gquote command before an
instance uses requested resources or services (see Obtaining usage quotes on page 85).

Creating quote templates
Quote templates may be created by using the gmkquote command. Quote templates provide a way to
bundle together a package of special charge rates that can be applied to quotes, liens, and charges.

gmkquote [[--pin] [-J instance_name|job_id | --nopin] [-s start_time] {-e end_
time | -t quote_duration} [-d description] [-X, --extension property_
name=property_value [,property_name=property_value...]] {-R charge_rate_
type:charge_rate_name[{charge_rate_instance}]=charge_rate_amount[,charge_rate_
type:charge_rate_name[{charge_rate_instance}]=charge_rate_amount...]} [--
debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]

Additional detail for this command can be found in the man page by issuing gmkquote --man at
the command line.

Example 12-1: Creating a pinned quote template

$ gmkquote --pin -J vpc.1 -t 86400 -R
VBR:Processors=1.5,NBM:QualityOfService{Premium}=1.7
Successfully created 1 quote template with id 17

Chapter 12: Managing quotes

80 Creating quotes

Querying quotes 81

Example 12-2: Creating an unpinned quote template

$ gmkquote --nopin -t 86400 -R VBR:Disk=2.5,NBR:License{Matlab}=4
Successfully created 1 quote template with id 18

Use of the gmkquote command will not result in a cost estimate or the creation of a usage record.
Use gquote instead if you wish to obtain a quote for usage.

Querying quotes
To display quotation information, use the command glsquote:

glsquote [-A | -I] [-J instance_name|job_id [-X, --extension property_
name=property_value [,property_name=property_value...]] [-u user_name] [-g
group_name] [-a account_name] [-o organization_name] [-c class_name] [-m
machine_name] [--filter filter_name=filter_value[,filter_name=filter_
value...]] [--filter-type (AttributedTo)|ImpingesUpon] [--full] [--show
attribute_name[,attribute_name...]] [--long] [--wide] [--raw] [-h, --hours]]
[--debug] [--site site_name[--help] [--man] [--quiet] [--version] [[-q] quote_
id]

The fields which are displayed by default by this command can be customized by setting the
quote.show configuration parameter in gold.conf. Additional detail for this command can be
found in the man page by issuing glsquote --man at the command line.

Example 12-3: Listing all quotes for user amy on machine colony

$ glsquote -u amy -m colony
Id Amount Pinned Instance UsageRecord StartTime EndTime D
uration ChargeRates Description
--- ------- ------ --------- ----------- ------------------- ------------------- -
-------- ------------- ------------------ --------- ------ --------------------------
----- ----------------
1 57600 True 242 2012-04-06 12:49:53 2012-04-
13 13:09:58 3600 VBR:Processors:1

Modifying quotes
To modify a quote, use the command gchquote:

gchquote [-s start_time] [-e expiration_time] [-d description] [-X, --extension
property_name=property_value [,property_name=property_value...]] [—debug] [--
site site_name] [--help] [--man] [--quiet] [--verbose] [--version] {[-q]
quote_id}

Chapter 12: Managing quotes

Additional detail for this command can be found in the man page by issuing gchquote --man at
the command line.

Example 12-4: Changing the expiration time of a quote

$ gchquote -e "2012-05-01" 1
Successfully modified 1 quote

Deleting quotes
To delete a quote, use the command grmquote:

grmquote [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [-
-version] {-I | [-q] quote_id}

Additional detail for this command can be found in the man page by issuing grmquote --man at
the command line.

Example 12-5: Deleting a quote

$ grmquote 1
Successfully deleted 1 quote

Example 12-6: Purging stale quotes

$ grmquote -I
Successfully deleted 2 quotes

Chapter 12: Managing quotes

82 Deleting quotes

Creating a usage record 83

Chapter 13: Managing usage records
Moab Accounting Manager can track the usage of resources and services on your system, recording the
charge and the details of the usage in a usage record. A usage record is created when a resource or
service manager requests a guaranteed quote for usage, places a lien for usage, or charges for the usage
of an item. Usage records can also be created directly via UsageRecord Create (gmkusage). A refund can
be invoked to credit a charge amount back to the originating fund. Usage records can also be queried,
modified, or deleted. By default, a standard user may only query usage records attributed to them.

In a typical use case, a quote might be used to discover how much it would cost to use an item (resource
or service) and to verify the user had sufficient access to the item and funds to cover the requested
usage. Just before the item is about to be used, a lien (or hold) might be placed against the user's
allocated credits for the requested usage. After the usage is complete, a charge for the actual usage can
be debited from their fund and the lien removed.

As is the case for other Moab Accounting Manager objects, usage records are highly customizable. One
may remove most usage record properties and add new usage record properties. Refer to the section
Customizing the usage record object on page 88 for examples of customizing usage records.

Creating a usage record
In most cases, usage records will be created by the resource management system via the API or with the
gquote, the greserve or the gcharge command.

However, it is also possible to create usage records directly using the gmkusage command:

gmkusage [-T usage_record_type] [-u user_name] [-g group_name] [-a account_
name] [-o organization] [-c class_name] [-Q quality_of_service] [-m machine_
name] [-N nodes] [-P processors] [-M memory] [-D disk] [-n network] [-t usage_
duration] [-s start_time] [-S service_id] [-e end_time] [-d description] [-X |
--extension property=value[,property_name=property_value...]] [--debug] [--
site site_name] [--help] [--man] [--quiet] [--verbose] [--version] {[-J]
instance_name|job_id}

Additional detail for this command can be found in the man page by issuing gmkusage --man at
the command line.

Example 13-1: Creating a usage record

$ gmkusage -u jsmith -a chem -m cluster -X Charge=2468 -P 2 -t 1234 -J PBS.1234.0
Successfully created 1 usage record with id 246

The fields which are displayed by default by this command can be customized by setting the
usagerecord.show configuration parameter in gold.conf.

Use of the gmkusage command to record usage will not result in the debiting of a user's allocation.
Use gcharge instead if you wish to charge for the usage.

Querying usage records
To display usage record information, use the command glsusage:

glsusage [-T usage_record_type] [[-J] instance_name_pattern|job_id_pattern] [-u
user_name] [-g group_name] [-a account_name] [-o organization_name] [-c class_
name] [-m machine_name] [--stage stage] [-s start_time] [-S service_id] [-e
end_time] [-X, --extension property_name=property_value [,property_
name=property_value...]] [--full] [--show attribute_name [,attribute_name...]]
[--raw] [-h, --hours] [--debug] [--site site_name] [--help] [--man] [--quiet]
[--verbose] [[-j] usage_record_id]

The fields which are displayed by default by this command can be customized by setting the
usagerecord.show configuration parameter in gold.conf. Additional detail for this command can
be found in the man page by issuing glsusage --man at the command line.

Example 13-2: Show specific info about usage tallied by amy

$ glsusage --show=Type,Instance,Account,Machine,Charge -u amy
Type Instance Account Machine Charge
----- ---------- ---------- ---------- -------
Job PBS.1234.0 chemistry colony 22212

Modifying a usage record
It is possible to modify a usage record by using the command gchusage:

gchusage [-T usage_record_type] [-u user_name] [-g group_name] [-a account_
name] [-o organization] [-c class_name] [-Q quality_of_service] [-m machine_
name] [-N nodes] [-P processors] [-M memory] [-D disk] [-n network] [-t usage_
duration] [-s start_time] [-S service_id] [-e end_time] [-d description] [-X,
--extension property_name=property_value[,property_name=property_value...]] [-
-debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]
{[-j] usage_record_id | -J instance_name|job_id}

Additional detail for this command can be found in the man page by issuing gchusage --man at
the command line.

Chapter 13: Managing usage records

84 Querying usage records

Deleting a usage record 85

Example 13-3: Changing a usage record

$ gchusage -Q HalfPrice -X Charge=1234 -d "Benchmark" -J PBS.1234.0
Successfully modified 1 usage record

Changing a recorded charge in this manner will not change the allocated balance (see Issuing
usage refunds on page 88 to refund a charge).

Deleting a usage record
To delete a usage record, use the command grmusage:

grmusage [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [-
-version] [[-j] usage_record_id|-J] instance_name|job_id]

Additional detail for this command can be found in the man page by issuing grmusage --man at
the command line.

Example 13-4: Deleting a usage record

$ grmusage -J PBS.1234.0
Successfully deleted 1 usage record

Obtaining usage quotes
Usage quotes can be used to determine how much it will cost to use a resource or service. Provided the
cost-only option is not specified, this step will additionally verify that the submitter has sufficient funds
and meets all the allocation policy requirements for the usage, and can be used at the submission of the
usage request as an early filter to prevent the usage from getting blocked when it tries to obtain a lien
to start later. If a guaranteed quote is requested, a quote id is returned and can be used in the
subsequent charge to guarantee the rates that were used to form the original quote. A guaranteed quote
has the side effect of creating a quote record and a permanent usage record. A quote id will be returned
which can be used with the lien and charge to claim the quoted charge rates. A cost-only quote can be
used to determine how much would be charged for usage without verifying sufficient funds or checking to
see if the charge could succeed. A breakdown of the charges in the quote can be returned by specifying
the --itemize option with the --verbose option.

To request a usage quote, use the command gquote:

gquote [-T usage_record_type] [-u user_name] [-g group_name] [-a account_name]
[-o organization] [-c class_name] [-Q quality_of_service] [-m machine_name] [-
N nodes] [-P processors] [-M memory] [-D disk] [-n network] [-X, --extension
property name=property_value[,property_name=property_value...]] [-t quote_
duration] [-G grace_duration]] [-s quote_start_time] [-S service_id] [-e
quote_end_time] [-d quote_description] [-z quote_amount] [--cost-only | --
guarantee] [-R charge_rate_type:charge_rate_name[{charge_rate_instance}]

Chapter 13: Managing usage records

=charge_rate_amount[,charge_rate_type:charge_rate_name[{charge_rate_instance}]
=charge_rate_amount...]] [--debug] [--site site_name] [--help] [--man] [--
quiet] [--verbose] [--version] [[-j] usage_record_id] [-q quote_template_id]
[-J] instance_name|job_id]

Additional detail for this command can be found in the man page by issuing gquote --man at the
command line.

Example 13-5: Requesting a quote

$ gquote -a chemistry -u amy -m colony -P 2 -t 3600
Successfully quoted 7200 credits

Example 13-6: Requesting a guaranteed quote

$ gquote -a chemistry -u amy -m colony -P 16 -t 3600 --guarantee
Successfully quoted 57600 credits with quote id 1 and usage record id 86

$ glsquote
Id Amount UsageRecord StartTime EndTime Duration Used Cha
rgeRates Description
--- ------- ----------- ------------------- ------------------- --------- ----- ---
------------- -------------
1 57600 86 2012-04-06 10:09:58 2012-04-
06 11:09:58 3600 0 VBR:Processors:1

It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server configuration on page 147).

Making a usage lien
A usage lien can be used to place a hold on the user's fund before usage starts to ensure that the credits
will be there when it completes. The replace option may be specified if you want the new lien to replace
existing liens of the same instance name (associated with the same usage record). The modify option
may be specified to dynamically extend any existing lien with the same instance name with the specified
characteristics instead of creating a new one. See Managing liens on page 75 for more information about
these options.

To create a usage lien use the command greserve:

greserve [-T usage_record_type] [-u user_name] [-g group_name] [-a account_name]
[-o organization] [-c class_name] [-Q quality_of_service] [-m machine_name] [-
N nodes] [-P processors] [-M memory] [-D disk] [-n network] [-X, --extension
property name=property_value[,property_name=property_value...]] [-t lien_
duration] [-G grace_duration]] [-s lien_start_time] [-S service_id] [-e lien_
end_time] [-d lien_description] [-z lien_amount] [--replace|--modify] [-R
charge_rate_type:charge_rate_name[{charge_rate_instance}]=charge_rate_amount
[,charge_rate_type:charge_rate_name[{charge_rate_instance}]=charge_rate_
amount...]] [--itemize] [--debug] [--site site_name] [--help] [--man] [--

Chapter 13: Managing usage records

86 Making a usage lien

Charging for usage 87

quiet] [--verbose] [--version] [-q quote_id] [[-j] usage_record_id] {-J]
instance_name|job_id}

Additional detail for this command can be found in the man page by issuing greserve --man at
the command line.

Example 13-7: Creating a lien

$ greserve -J PBS.1234.0 -a chemistry -u amy -m colony -P 2 -t 3600
Successfully reserved 7200 credits with lien id 37 for instance PBS.1234.0 and created
usage record id 87

Charging for usage
A usage charge debits the appropriate allocations based on the attributes of the usage. The charge is
calculated based on factors including the resources and services used, the usage time, and other quality-
based factors (see Managing charge rates on page 97). By default, any liens associated with the charge
will be removed. The incremental option may be specified if you want associated liens to be reduced
instead of removed. If a usage record already exists for the instance being charged it will be updated
with the data properties passed in with the charge request, otherwise a new usage record will be
created.

A quote id can be specified to use a previously quoted set of charge rates. This will also ensure the
charge will update the usage record instantiated with the quote. A lien id can be specified to help match
up a charge with its lien (this may assist in deleting the correct lien if instance ids are not unique). This
will also ensure the charge will update the usage record that may have been instantiated by the lien.

Although, by default, Moab Accounting Manager will calculate the charge for the usage using its default
charge rates or using the charge rates saved by a referenced quote or quote template, it is possible to
specify override charge rates via the rate option. Alternatively, it is possible to designate an externally
calculated charge by specifying the charge amount with the Charge option (-z option to gcharge).

To charge for a usage use the command gcharge:

gcharge [-T usage_record_type] [-u user_name] [-g group_name] [-a account_name]
[-o organization] [-c class_name] [-Q quality_of_service] [-m machine_name] [-
N nodes] [-P processors] [-M memory] [-D disk] [-n network] [-x usage_state]
[-X, --extension property name=property_value[,property_name=property_
value...]] [-t charge_duration] [-s charge_start_time] [-S service_id] [-e
charge_end_time] [-d charge_description] [-z charge_amount] [--incremental] [-
R charge_rate_type:charge_rate_name[{charge_rate_instance}]=charge_rate_amount
[,charge_rate_type:charge_rate_name[{charge_rate_instance}]=charge_rate_
amount...]] [-h, --hours] [--itemize] [--debug] [--site site_name] [--help] [-
-man] [--quiet] [--verbose] [--version] [[-j] usage_record_id] [-q quote_id]
[-l lien_id] {-J instance_name|job_id}

Additional detail for this command can be found in the man page by issuing gcharge --man at
the command line.

Chapter 13: Managing usage records

Example 13-8: Issuing a usage charge

$ gcharge -J PBS.1234.0 -a chemistry -u amy -m colony -P 2 -t 1234
Successfully charged 2468 credits for instance PBS.1234.0
1 lien was removed

Issuing usage refunds
A charged amount can be credited back in part or in whole by issuing a usage refund. This action
attempts to lookup the referenced usage record to ensure that the refund does not exceed the original
charge and so that the charge entry can be updated. If multiple matches are found (such as the case
when instance names (such as job ids) are non-unique), this command will return the list of matched
usage records with unique ids so that the correct usage record can be specified for the refund.

To issue a refund for a usage charge, use the command grefund:

grefund [-z amount] [-f fund_id] [-d description] [-A] [-h, --hours] [--debug]
[--site site_name] [--help] [--man] [--quiet] [--verbose] [--version] [-J]
instance_name|job_id | [-j] usage_record_id]

Additional detail for this command can be found in the man page by issuing grefund --man at
the command line.

Example 13-9: Issuing a usage refund

$ grefund -J PBS.1234.0
Successfully refunded 19744 credits for instance PBS.1234.0

Customizing the usage record object
The usage record object as natively defined can be customized with the attributes you want to track in
your use cases. The chapter on Customizing objects on page 131 goes into some detail on the
customization syntax. However, since this may be a common requirement, this section will provide a few
examples on modifying, adding and deleting usage record attributes and getting them to be tracked and
show up in queries.

Usage record discriminators are those properties which are considered primary differentiators between
usage, lien, and quote records. Usage record discriminators are used in the dynamic web portal as filters
for the listing, modification, and deletion of usage records, liens, and quotes. The default usage record
discriminators are Type, User, Group, Account, Organization, Class, QualityOfService, and Machine. Any
new attributes added to the usage record object will become usage record discriminators. Removing a
discriminator attribute from the usage record object will necessarily remove it as a usage record
discriminator as well. It will be necessary to log out and back in after adding or removing a
discriminator in order for it to be reflected in the web GUI.

Chapter 13: Managing usage records

88 Issuing usage refunds

Customizing the usage record object 89

Example 13-10: Setting VM as the default Usage Record Type

As installed, the usage record type defaults to Job. The default value can be set to NULL if there should
be no default value, or to any other default value. This example will demonstrate how to set the default
usage record type to VM.

$ goldsh Attribute Modify Object=UsageRecord Name=Type DefaultValue=VM
Successfully modified 1 attribute

Example 13-11: Adding a UsageRecord Application Field (and descriminator)

Let's say you would like to track the application run by your usage scenarios. First, you would add
Application as an Attribute of the UsageRecord Object.

$ goldsh Attribute Create Object=UsageRecord Name=Application DataType=String
Successfully created 1 attribute

If you want the new attribute to show up in glsusage, you must add it to the usagerecord.show string in
gold.conf.

$ vi /opt/mam/etc/gold.conf
usagerecord.show =
Id,Instance,User,Group,Organization,Account,QualityOfService,Machine,Stage,Charge,Proc
essors,Nodes,Application,Duration,StartTime,EndTime,Description

If you want to filter the usage records by Application, (such as listing all usage records associated with
the specified application), use the -X (or --extension) option in glsusage.

$ glsusage -X Application=foo --show=Type,Instance,Charge,User,Application
Type Instance Charge User Application
---- ---------- ------ ---- -----------
Job PBS.1234.0 19744 amy foo

You could also use Application as the basis of a ChargeRate. See Name-Based Resources or Name-Based
Multipliers in the Managing charge rates on page 97 chapter for details on how to do this.

Although the initial step above allows the application value to be tracked in the usage record, it is also
possible to add it as an attribute of the Transaction table so that it will be automatically populated from
actions having assignments, conditions, options and data values referring to the Application.

$ goldsh Attribute Create Object=Transaction Name=Application DataType=String
Successfully created 1 attribute

Additionally, the gstatement client command can show Application as one of its discriminators (which are
Account, User, and Machine by default) in its debit detail. These statement discriminators are specified
by the --show argument to gstatement and can be configured with the statement.show configuration
parameter in gold.conf.

Example 13-12: Removing the UsageRecord Class Field

Let's say you were not interested in tracking the class. First, you would delete Class as an Attribute of
the UsageRecord Object.

$ goldsh Attribute Delete Object==UsageRecord Name==Class
Successfully deleted 1 attribute

Next, we need to make sure glsusage doesn't try to list the class.

Chapter 13: Managing usage records

$ vi /opt/mam/etc/gold.conf
usagerecord.show =
Id,Instance,User,Account,Machine,QualityOfService,Stage,Charge,Processors,Nodes,Applic
ation,Duration,StartTime,EndTime,Description

If the attribute you want to delete is also an attribute in the Transaction table, you could delete it from
there as well.

Usage record property verification
If a usage record property has an object associated with it, you may want to verify that when that usage
record property is specified in a scheduling action (Charge, Reserve, Quote), it verifies that that property
is a valid instance of its object type. You can apply a simple verification to a usage record property by
setting the property's Values attribute to an @ sign followed by the name of the object.

Example 13-13: Ensure that an organization specified in a charge actually exists

$ goldsh Attribute Modify Object==UsageRecord Name==Organization Values=@Organization
Successfully modified 1 attribute

See Managing attributes on page 134 for more information about setting the Values attribute.

Usage record property defaults
It is possible to set defaults for usage record properties when they are not specified in the usage data
for a charge, lien, or quote. There are two cases which must be considered — when the property has an
object associated with it and when the property does not.

If a property does not have an object associated with it, simply set the DefaultValue attribute for the
property's UsageRecord Attribute object to the desired value.

Example 13-14: Setting a system-wide simple default class of batch for usage functions

$ goldsh Attribute Modify Object==UsageRecord Name==Class DefaultValue=batch
Successfully modified 1 attribute

If a property does have an object associated with it, you will need to both set the DefaultValue attribute
for the property's UsageRecord Attribute object to the desired value AND set the DefaultValue attribute
for the corresponding object to the desired value.

Example 13-15: Setting a system-wide simple default user of anonymous for usage functions

$ goldsh Attribute Modify Object==UsageRecord Name==User DefaultValue=anonymous
Successfully modified 1 attribute

See Global object-based defaults on page 134 for more information about setting default values for
objects. See Local attribute-based defaults on page 137 for more information about setting default
values for attributes.

Chapter 13: Managing usage records

90 Usage record property verification

Usage record property auto-generation 91

Usage record property auto-generation
It is possible for usage record properties which have object definitions to automatically create the
referenced objects the first time they are encountered in a usage function (charge, reserve or quote). To
do this, the referenced object must be set to AutoGen=True and the Values attribute for the
UsageRecord attribute corresponding to the object must be set to a string consisting of the @ sign
followed by the object name.

Example 13-16: Setting the Usage Record Type to auto-generate Items for usage functions

For example, let's assume there were many usage record types that could be charged for (Food, Book,
Haircut) and that you had already created an Item object. It would be possible to automatically generate
a new Item instance each time a new usage record type was referenced in a charge operation.

$ goldsh Object Modify Name==Item AutoGen=True
Successfully modified 1 object

$ goldsh Attribute Modify Object==UsageRecord Name==Type Values=@Item
Successfully modified 1 attribute

See Object auto-generation on page 133 for more information about the auto-generation of objects.

Usage record property instantiators
It is possible to establish a dynamic correlation between usage record properties in which one usage
record property can instantiate another. For example, if a user is specified in a charge but no account is
specified then the user's default account should be applied to the fund constraints and logged; or if an
account is specified in a charge but not its organization then the organization corresponding to that
account should be looked up and applied to the fund constraints and logged. Three usage record property
instantiator types are currently supported and are configured by prefixing the property instance's Values
foreign object reference with the appropriate characters: Assign if not defined (@?=), Assign if not
different (@!=), Assign always (@:=). We shall look at each of these individually and in different terms.

Applying a correlated default (@?=) — If property X is specified with the value x in the usage record and
property Y is not specified in the usage record and if the object instance referred to by x has a
correlated default value of y' for property Y', then y' will be applied as the default value for property Y
in the usage record. For example, we could establish the notion of a default account for a user.

Example 13-17: Establishing a default account for a user

First we add a DefaultAccount attribute (the name is arbitrary) to the User object and give it a
Values property of @?=Account.

$ goldsh Attribute Create Object=User Name=DefaultAccount DataType=String
Values="\"@?=Account\"" Description="\"Default Account\""
Successfully created 1 attribute

Then we can establish the default account for user scottmo to be chemistry.

User Modify Name==scottmo DefaultAccount=chemistry
Successfully modifed 1 user

Chapter 13: Managing usage records

Subsequently, when a Charge, Lien, or Quote is issued that specifies the User scottmo but does not
specify the Account, the chemistry Account will be applied to the charge as if originally specified in the
usage record charge data.

Applying a correlated verification (@!=) — If property X is specified with the value x in the usage record
and property Y is specified with the value y in the usage record and if the object instance referred to by
x has a correlated verification value of y' for the property Y' and if y' does not equal y, then fail with
an error message. Additionally, if property X is specified with the value x in the usage record and
property Y is not specified in the usage record and if the object instance referred to by x has a
correlated verification value of y' for property Y', then y' will be applied as the default value for
property Y in the usage record. For example, we could establish a parent-child relationship between
organizations and accounts in which explicitly specified incongruities result in a failure.

Example 13-18: Establishing an override hierarchy with accounts and organizations

First we add a VerifyOrganization attribute (the name is arbitrary) to the Account object and give
it a Values property of @!=Organization.

$ goldsh Attribute Create Object=Account Name=VerifyOrganization DataType=String
Values="\"@!=Organization\"" Description="\"Verify Organization\""
Successfully created 1 attribute

Then we can establish the verify organization for account chemistry to be sciences.

$ goldsh Account Modify Name==chemistry VerifyOrganization=sciences
Successfully modifed 1 account

Subsequently, when a Charge, Lien, or Quote is issued that specifies the Account chemistry and
specifies the wrong Organization (e.g. arts), the transaction will fail with an error message. Additionally,
when a Charge, Lien, or Quote is issued that specifies the Account chemistry but does not specify the
Organization, the Organization sciences will be applied to the charge as if originally specified in the
usage record charge data.

Applying a correlated override (@:=) — If property X is specified with the value x in the usage record and
if the object instance referred to by x has a correlated override value of y' for property Y', then y' will
be applied as the override value for property Y in the usage record. For example, we could establish a
parent-child relationship between organizations and accounts in which explicitly specified incongruities
are silently overridden with the value from the child.

Example 13-19: Establishing an override hierarchy with accounts and organizations

First we add an OverrideOrganization attribute (the name is arbitrary) to the Account object and
give it a Values property of @:=Organization.

$ goldsh Attribute Create Object=Account Name=OverrideOrganization DataType=String
Values="\"@:=Organization\"" Description="\"Override Organization\""
Successfully created 1 attribute

Then we can establish the override organization for account chemistry to be sciences.

$ goldsh Account Modify Name==chemistry OverrideOrganization=sciences
Successfully modifed 1 account

Chapter 13: Managing usage records

92 Usage record property instantiators

Usage record property instantiators 93

Subsequently, when a Charge, Reserve or Quote is issued that specifies the Account chemistry and
specifies either the wrong Organization (e.g. arts) or no Organization, the Organization sciences will
be silently applied to the charge as if originally specified in the usage record charge data.

Chapter 13: Managing usage records

94 Usage record property instantiators

Querying itemized charges 95

Chapter 14: Managing itemized topics
The itemized charge table provides an ability to display the components of a composite charge in a line
item format. Each charge transaction will write the components of its charge into the charge record so
that you can get a line-item breakdown of each charge for usage including the names, values, rates,
scaling factors, charge amounts and details listed for each component of the charge. This capability is
enabled by setting charge.itemization = true in the goldd.conf (it is false by default).

Itemized charges may only be queried. They are created automatically in charge transactions and there
are no command line clients to change or remove them.

Additionally, an itemize option can be specified for quotes, liens, and charges to include an itemized
charge breakdown in the response data instead of a single line with the amount.

Querying itemized charges
To display itemized charge information, use the command glscharge:

glscharge [-j usage_record_id] [-J instance_name] [-n usage_property_name] [-s
start_time] [-e end_time] [--full] [-- show attribute_name[,attribute_
name...]] [-- raw] [-h, --hours] [-- debug] [--site site_name] [--help] [--
man] [--quiet] [--version]

Additional detail for this command can be found in the man page by issuing glscharge --man at
the command line.

Example 14-1: Listing all itemized charge information

$ glscharge
UsageRecord Instance Name Value Duration Rate ScalingFactor Amount Creatio
nTime Description
----------- -------- ---------- ----- -------- --------- ------------- ------ -------
------------ -----------
24 job.1 Storage 100 86400 1.157e-07 1 1 2012-
04-05 17:49:41
25 job.2 Processors 4 86400 5.787e-07 1 20 2012-
04-05 17:49:42
25 job.2 Memory 4096 86400 1.13e-08 1 4 2012-
04-05 17:49:42
26 job.3 Processors 1 86400 5.787e-05 1 5 2012-
04-05 17:49:43
26 job.3 Memory 1004 86400 1.13e-08 1 1 2012-
04-05 17:49:43

Displaying itemized charges for a transaction
In addition to the itemized charge table, Moab Accounting Manager captures the itemized charges for
usage record charges, liens, and guaranteed quotes in the details of the transaction. The itemized
charges show the details for the formula used to calculate the charge for the transaction. To display the
itemized charges for a scheduling transaction, parse the details from the command glstxn --full -A
Charge|Reserve|Quote:

Example 14-2: Extract the itemized charges for a job charge

$ glstxn -A Charge -J PBS.1234.1 -q --show Details | perl -pe 's/.*(ItemizedCharges
[^,]*).*/\1/'
ItemizedCharges:=(((16 [Processors] * 1 [ChargeRate{VBR}{Processors}]) + (2000
[Memory] * 0.001 [ChargeRate{VBR}{Memory}])) * 1234 [Duration]) = 22212

Chapter 14: Managing itemized topics

96 Displaying itemized charges for a transaction

97

Chapter 15: Managing charge rates
Charge Rates establish how much to charge for usage. Charge rates are applied when usage properties
matching the charge rate names are found in the usage data. In order for a charge rate of a given name
to be applied, a usage record attribute of the same name must exist.

There are four major categories of charge rates: Resource, Usage, Multiplier, and Fee. These are
distinguished by the way they are factored into the charge calculation. Resource charge rates are
additive charges that are multiplied by the amount of time that they are used in seconds. Usage charge
rates are additive charges that are not multiplied by time. Multiplier charge rates apply multipliers to
the sum of the Resource and Usage charges. Fee charge rates are added after the multipliers have been
applied.

Each of the major charge rate types has two sub-types: value-based and name-based.

l Name-based charge rates charge rates are used for usage properties that take strings for values
(e.g. QualityOfService=premium or Account=chemistry). The charge rate that is applied
will be determined by a lookup of the usage property value to see if there is a matching charge
rate value. A default rate may be specified by creating a name-based charge rate with an empty
charge rate value. Multiple values may be assigned to the same rate via separate charge rate
definitions or by combining the values in a single charge rate value separated by commas.

l Value-based charge rates are used for usage properties that take numbers for values (e.g.
Processors=2 or CpuTime=12.67). The charge rate that is applied will be multiplied by the
usage property value. The charge rate value is commonly left blank to be taken as the default
rate for the full range of usage property values. A particular value may also be specified as the
charge rate value which means that that rate will only be used if the usage property value exactly
matches the charge rate value. A half-bounded expression may be used by specifying a less than or
greater than sign with an optional equal sign, followed by the number. For example, the charge
rate value <=4 would match a usage property value of x if x <= 4. A charge rate value may also
be specified as a range (of the form <number>[-<number>]). For example, the range 1-4 would be
match a usage property value of x if 1 <= x <= 4. If you need to be more specific about the
boundedness of the ranges, you may replace the dash with a less than sign with an optional equal
sign on either side of it to indicate whether the endpoints are included. For example, the range
1<4 would match if 1 < x < 4, 1=<4 would match if 1 <= x < 4, 1<=4 would match if 1 <
x <=4 and 1=<=4 would match if 1 <= x <= 4. So you might use ranges like 1=<2, 2=<4,
4=<8, and >=8. Multiple values or value ranges having the same charge rate may be specified in a
single expression separated by commas.

Thus there are eight composite types of charge rates referred to by their acronyms: VBR (Value-Based
Resource), NBR (Name-Based Resource), VBU (Value-Based Usage), NBU (Name-Based Usage), VBM
(Value-Based Multiplier), NBM (Name-Based Multiplier), VBF (Value-Based Fee) and NBF (Name-Based
Fee).

Composite
type Description

Value-
Based
Resource

Value-Based Resource (or Consumable Resource) Charge Rates define how much it costs per unit
of time to use a consumable resource like processors, memory, telescope time, generic resources
that are charged per time used, etc. These resource metrics must first be multiplied by the usage
duration in seconds before being added to the total charge. Value-Based Resource Charge Rates
are of Type "VBR", with the Name being the resource name (such as Processors) and the given
Rate (such as 1) being multiplied by the consumed resource value (such as 8).

Name-
Based
Resource

Name-Based Resource Charge Rates define how much it costs per unit of time to use a named
resource like license, etc. The cost for the named resource must first be multiplied by the usage
duration in seconds before being added to the total charge. Name-Based Resource Charge Rates
are of Type "NBR", with the Name being the resource name (such as License), the Value being the
resource value (such as matlab), and having the given Rate (such as 5).

Value-
Based
Usage

Value-Based Usage Charge Rates define how much to charge for metrics of total resource usage
such as cputime, power consumed, generic resources or licenses that are charged flat fees per use,
etc. These usage metrics are added to the total charge without being multiplied by the duration.
Value-Based Usage Charge Rates are of Type "VBU", with the Name being the resource name
(such as Power) and the given Rate (such as .001) being multiplied by the consumed resource
value (such as 40000).

Name-
Based
Usage

Name-Based Usage Charge Rates define how much it costs to use a named attribute having a flat
charge such as feature, etc. These usage metrics are added to the total charge without being mul-
tiplied by multiplied by the duration. Name-Based Usage Charge Rates are of Type "NBU", with
the Name being the resource name (such as Feature), the Instance being the usage value (such as
GPU), and having the given flat Rate (such as 200).

Value-
Based Mul-
tiplier

Value-Based Multiplier Charge Rates are scaled multipliers which apply a multiplicative charge
factor based on a numeric scaling factor. These incoming scaling factors are multiplied against the
Value-Based Multiplier Rate and then are multiplied against the total of the resource and usage
charges. Value Based Multiplier Charge Rates are of Type "VBM", with the Name being the mul-
tiplier name (such as Discount) and the given Rate (such as 1) being multiplied with the scaling
factor (such as .5) before being multiplied to the total charge.

Name-
Based Mul-
tiplier

Name-Based Multiplier Charge Rates are quality based multipliers which apply a multiplicative
charge factor based on a quality of the usage such as quality of service, nodetype, class, user, time
of day, etc. These charge multipliers are determined by a hash or lookup table based on the value
of the usage attribute. These rates are multiplied against the total of the resource and usage
charges. Name-Based Multiplier Charge Rates are of Type "NBM", with the Name being the mul-
tiplier name (such as QualityOfService), the Value being the quality instance (such as Premium),
and having the given multiplier Rate (such as 2).

Chapter 15: Managing charge rates

98

Creating charge rates 99

Composite
type Description

Value-
Based Fee

Value-Based Fee Charge Rates define how much to charge for scaled or enumerated fees such as
setup fees, shipping charges, etc. which should be added after the multipliers are applied. These
fees are added to the total charge. Value-Based Fee Charge Rates are of Type "VBF", with the
Name being the fee name (such as Shipping) and the given Rate (such as 25) being multiplied by
the scaling or counted value (such as 4).

Name-
Based Fee

Name-Based Fee Charge Rates define how much it costs to use a named attribute having a flat
charge such as feature, etc. which should be added after the multipliers are applied. These fees
are added to the total charge. Name-Based Fee Charge Rates are of Type "NBF", with the Name
being the fee name (such as Zone), the Value being the fee value (such as Asia), and having the
given flat Rate (such as 100).

By default, usage charges are calculated according to the following formula: For each value-based
resource charge rate matching a usage property in the usage record data, a value-based resource charge
is calculated by multiplying the usage property value by the charge rate and by the duration of time it
was used. For each name-based resource charge rate matching a usage property name and value in the
usage record data, a name-based resource charge is calculated by multiplying the charge rate by the
duration of time it was used. For each value-based usage charge type matching a usage property in the
usage record data, a value-based usage charge is calculated by multiplying the usage property value by
the charge rate. For each name-based usage charge type matching a usage property name and value in
the usage record data, a name-based usage charge is given by the charge rate. These value-based and
name-based resource charges and the value-based and name-based usage charges are added together.
Then, for each value-based multiplier charge rate matching a usage property in the usage record data, a
value-based multiplier is calculated by multiplying the usage property value of the charge rate. For each
name-based multiplier charge rate matching a usage property name and value in the usage record data,
a name-based multiplier is given by the charge rate. The sum of the resource and usage charges is then
multiplied by the product of the applicable value-based and name-based multipliers. Next, for each value-
based fee charge type matching a usage property in the usage record data, a value-based fee charge is
calculated by multiplying the usage property value by the charge rate. For each name-based fee charge
type matching a usage property name and value in the usage record data, a name-based fee charge is
given by the charge rate for that fee. Finally, these value-based and name-based fee charges are added
to the multiplied usage charge subtotal.

In short, the formula can be represented by (((((Σ(VBR*value)+Σ(NBR)+Σ(MVBR*value))
*duration)+(Σ(VBU*value)+Σ(NBU))) *Π(VBM*value)*Π(NBM))+(Σ(VBF*value)+Σ
(NBF))).

Creating charge rates
To create a new charge rate, use the command gmkrate:

Chapter 15: Managing charge rates

gmkrate -n charge_rate_name [-x charge_rate_value] -T charge_rate_type [-d
description] [-- debug] [--site site_name] [--help] [--man] [--quiet] [--
verbose] [--version] {[-z] charge_rate_amount}

Additional detail for this command can be found in the man page by issuing gmkrate --man at
the command line.

If a usage record attribute does not exist for the name of the charge rate you are creating, you
must first create the corresponding usage record property. See Customizing the usage record
object on page 88.

Example 15-1: Creating a value-based resource charge rate

$ gmkrate -T VBR -n Memory -z 0.001
Successfully created 1 charge rate

Example 15-2: Creating a name-based resource charge rate

$ gmkrate -T NBR -n License -x Matlab -z 5
Successfully created 1 charge rate

Example 15-3: Creating a value-based usage charge rate

$ gmkrate -T VBU -n CpuTime -z l
Successfully created 1 charge rate

Example 15-4: Creating a name-based usage charge rate

$ gmkrate -T NBU -n Feature -x GPU -z 200
Successfully created 1 charge rate

Example 15-5: Creating a value-based multiplier charge rate

$ gmkrate -T VBM -n Discount -z 1
Successfully created 1 charge rate

Example 15-6: Creating a couple of name-based multiplier charge rates and a default rate

$ gmkrate -T NBM -n QualityOfService -x Premium -z 2
Successfully created 1 charge rate

$ gmkrate -T NBM -n QualityOfService -J BottomFeeder -z 0.5
Successfully created 1 charge rate

$ gmkrate -T NBM -n QualityOfService -z 1
Successfully created 1 charge rate

Example 15-7: Creating a value-based fee charge rate

$ gmkrate -T VBF -n Shipping -z 25
Successfully created 1 charge rate

Example 15-8: Creating a name-based fee charge rate

$ gmkrate -T NBF -n Zone -x Asia -z 200
Successfully created 1 charge rate

Chapter 15: Managing charge rates

100 Creating charge rates

Querying charge rates 101

Example 15-9: Creating a couple of conditional value-based resource charge rates

$ gmkrate -T VBR -n Disk -x User=dave? -z 0.2
Successfully created 1 charge rate

$ gmkrate -T Disk -n User -x User=mike? -z 0.5
Successfully created 1 charge rate

Example 15-10: Creating some value-based resource charge rate ranges and a default

$ $ gmkrate -T VBR -n Processors -x 1-4 -z 2
Successfully created 1 charge rate

$ gmkrate -T VBR -n Processors -x 5-8 -z 1.5
Successfully created 1 charge rate

$ gmkrate -T VBR -n Processors -z 1
Successfully created 1 charge rate

Example 15-11: Creating some value-based usage charge rate ranges for floating point values

$ $ gmkrate -T VBU -n Power -x '<2' -z 0.005
Successfully created 1 charge rate

$ $ gmkrate -T VBU -n Power -x '2=<4' -z 0.004
Successfully created 1 charge rate

$ $ gmkrate -T VBU -n Power -x '>=4' -z 0.003
Successfully created 1 charge rate

Example 15-12: Assigning multiple classes to run for free

$ $ gmkrate -T NBM -n Class -x dev,test -z 0
Successfully created 1 charge rate

Querying charge rates
To display charge rate information, use the command glsrate:

glsrate [-n charge_rate_name] [-x charge_rate_value] [-T charge_rate_type] [--
full] [--show attribute_name][,attribute_name...]] [--raw] [-- debug] [--site
site_name] [--help] [--man] [--quiet] [--version]

Additional detail for this command can be found in the man page by issuing glsrate --man at
the command line.

Chapter 15: Managing charge rates

Example 15-13: Listing all charge rates

$ glsrate
Name Value Type Rate Description
----------------- ---------- ---- ------- ------------
CpuTime VBU 1
Discount VBM 1
Disk User=dave? VBR 0.2
Disk User=mike? VBR 0.5
Feature GPU NBU 200
License Matlab NBR 5
Memory VBR 0.001
Power VBU 0.001
Processors VBR 1
Processors 1-4 VBR 2
Processors 5-8 VBR 1.5
QualityOfService NBM 1
QualityOfService BottomFeeder NBM 0.5
QualityOfService Premium NBM 2
Shipping VBF 25
Zone Asia NBF 200

Modifying charge rates
To modify a charge rate, use the command gchrate:

gchrate [-n choice="plain" charge_rate_name [-x charge_rate_value] [-T charge_
rate_type] [-z charge_rate_amount] [-d description] [-- debug] [--site site_
name] [--help] [--man] [--quiet] [--verbose] [--version]

Additional detail for this command can be found in the man page by issuing gchrate --man at
the command line.

Example 15-14: Changing a charge rate

$ gchrate -T VBR -n Memory -z 0.05
Successfully modified 1 charge rate

Deleting charge rates
To delete a charge rate, use the command grmrate:

gmrate [-n choice="plain"charge_rate_name] [-x charge_rate_instance] [-- debug]
[--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]

Additional detail for this command can be found in the man page by issuing grmrate --man at
the command line.

Example 15-15: Deleting a charge rate

$ grmrate -T VBR -n Memory
Successfully deleted 1 charge rate

Chapter 15: Managing charge rates

102 Modifying charge rates

Querying transactions 103

Chapter 16: Managing transactions
Moab Accounting Manager logs all modifying transactions in a detailed transaction journal (queries are
not recorded). Previous transactions can be queried but not modified or deleted. By default, a standard
user may only query transactions performed by them.

Querying transactions
To display transaction information, use the command glstrans:

glstrans [-O object] [-A action] [-k primary_key_value] [-U actor] [-f fund_id]
[-i allocation_id] [-u user_name] [-r account_name] [-m machine_name] [-j
usage_record_id] [-J instance_name|job_id] [-s start_time] [-e end_time] [-T
transaction_id] [-R request_id] [-X, --extension property_name=property_value
[,property_name=property_value...]] [--show attribute_name[,attribute_
name...]] [--raw] [-h, --hours] [--debug] [--site site_name] [--help] [--man]
[--quiet] [--version]

The fields which are displayed by default by this command can be customized by setting the
transaction.show configuration parameter in gold.conf. Additional detail for this command can
be found in the man page by issuing glstrans --man at the command line.

Example 16-1: List all deposits made in 2012

$ glstrans -A Deposit -s 2012-01-01 -e 2013-01-01

Example 16-2: List everything done by amy since the beginning of 2012

$ glstrans -U amy -s 2012-01-01

Example 16-3: List all transactions related to job moab.1

$ glstrans -J moab.1

Example 16-4: List all transactions affecting charge rates

$ glstrans -O ChargeRate

Customizing the transaction object
The transaction record as natively defined can be customized with the attributes you want to track in
your use cases. It is possible to add additional attributes to the Transaction table so that it will be
automatically populated from actions having assignments, conditions, options and data values referring
to the attribute.

Transaction discriminators are those properties which are considered primary differentiators between
transaction records (besides the metadata differentiators of object, action, and instance). Transaction
discriminators are used in the dynamic web portal as filters for the listing of transaction records. Any
new attributes added to the Transaction object will become transaction discriminators. Removing a
discriminator attribute from the transaction object will necessarily remove it as a transaction
discriminator as well. It will be necessary to log out and back in after adding or removing a
discriminator in order for it to be reflected in the web GUI.

Example 16-5: Adding an Organization field to the Transaction record (which also makes it a discriminator)

$ goldsh Attribute Create Object=Transaction Name=Organization DataType=String
Successfully created 1 attribute

Chapter 16: Managing transactions

104 Customizing the transaction object

105

Chapter 17: Managing events
Moab Accounting Manager has an internal event scheduler that can be configured to execute Moab
Accounting Manager actions at a designated time in the future or on a periodic basis. Valid actions on an
event include Create, Query, Fire, Modify, Refresh and Delete. Event attributes include Id, FireCommand,
ArmTime, FireTime, RearmPeriod, EndTime, Notify, RearmOnFailure, FailureCommand, CatchUp and
Description.

There are two server configuration parameters which affect event scheduling: event.scheduler which
specifies whether the event scheduler is enabled or not (it is disabled by default) and event.pollinterval
which is the period in minutes that the event scheduler uses to fire events. The poll interval must divide
evenly into the number of minutes in a day (1440).

The command(s) to be fired by an event are expressed in a serialized form of the request identical to the
syntax used in the interactive control program (goldsh). There are two commands that can be configured
in an event: the FireCommand which is the command to be executed when the event is fired, and the
FailureCommand which is the command to be executed if the fired command results in an unsuccessful
response status. The FireTime is the target time for the event to be triggered by the event scheduler.
The actual fire time may be dependent on the state of the server and will be recorded in the
CreationTime property of the corresponding "Event Fire" Transaction. An event may also be fired
manually with the Event Fire action.

The RearmPeriod is a time period expression specifying when the event will be rearmed. This period
expression is of the form: "<period>[[@<instant>][~|^]|!]" where period may be something like
1 day, 2 hours, or 5 minutes. Instant locks the period to a specific instant within the time period such as
1 day @ hour 12 or 1 month @ day 3. The modifiers indicate whether the time period should be
relative to now (!), or relative to the start of this (~) designator (month or minute, etc.), or relative to
the start of the first (^) designator (month or minute, etc.). For example, assuming the FireTime was
7:15, if you specified 4 hours ! as the rearm period it would be rearmed at 11:15, if you specified 4
hours ~ as the rearm period it would be rearmed at 11:00, and if you specified 4 hours ^ as the
rearm period it would be rearmed at 8:00.

The ArmTime is the time the event was last armed or fired. This field is used as a reference time to be
able to derive how long the event has been waiting to happen. This field will be initially set to mark the
moment the first FireTime is set and updated thereafter to indicate the last time the event was fired. In
the case where an event does not have a FireTime set, this field may be set manually and used in a
similar manner. If we consider the time between event firings as "laps", this could be thought of as the
Lap Start Time. If the RearmOnFailure boolean is set to False, the event will not be rearmed if the
command was unsuccessful. If set to True, the event will be evaluated for rearming even if the command
response has a status of Failure. The standard default is False. If the CatchUp boolean is set to True
and the server was down during the time this event should have fired, the event scheduler will attempt
to make up for the past due events by progressively firing them (rearming based on previous arm time)
until catching up to the present. The actions will still show as having occurred in the present rather than
in the past. If set to False, and the server is brought back up after an outage, the event scheduler will

still fire immediately for a past due event, but it will only fire once and then rearm relative to the
current time.

A Notification method can be specified via the Notify parameter and is of the form: [+-=][<delivery_
method>:] [<recipient>][,[+-=][<delivery_method>:][<recipient>]]*. If the term is a
-, the notification is sent only on failure. If the term is a +, the notification is sent only on success.
Otherwise the notification is always sent. There can be multiple notify expressions separated by a
comma. All applicable notifications will be sent. See the chapter on Managing notifications on page 109
for more information about delivery method and recipient.

Creating events
To create a new event, use the command goldsh Event Create:

goldsh Event Create FireCommand="<goldsh Command to Execute When Fired>"
[FireTime=YYYY-MM-DD[hh:mm:ss]|Now] [RearmPeriod=<Repeat Frequency>]
[EndTime=YYYY-MM-DD[hh:mm:ss]] [FailureCommand=<goldsh Command to Execute on
Failure>] [RearmOnFailure=True|(False)] [ArmTime=YYYY-MM-DD[hh:mm:ss]|Now]
[CatchUp=(True)|False] [Notify=<Notification URL>] [Description=<Event
Description>] [ShowUsage:=True]

Example 17-1: Creating an automatic allocation renewal event

$ goldsh Event Create FireCommand="\"Fund Deposit Filter:=Account=chemistry
Amount:=10000 Reset:=True\"" FireTime="\"2013-01-01\"" RearmPeriod="\"3 months^\""
Successfully created 1 event

Querying events
To display event information, use the command glsevent:

glsevent [-s start_time] [-e end_time] [--full] [--show attribute_name
[,attribute_name...]] [--raw] [--debug] [--site site_name] [--help] [--man] [-
-quiet] [--version] [[-E] event_id]

The fields which are displayed by default by this command can be customized by setting the event-
show configuration parameter in gold.conf. Additional detail for this command can be found in
the man page by issuing glsevent --man at the command line.

Chapter 17: Managing events

106 Creating events

Deleting events 107

Example 17-2: Listing all events

$ glsevent
Id FireCommand FireTime ArmTime

RearmPeriod EndTime Notify RearmOnFailure FailureCommand CatchUp
CreationTime Description
-- -- ---------- -------
------------ ----------- ------- ------ -------------- -------------- ------- --------
----------- -----------
1 Fund Deposit Filter:=Account=biology Amount:=10000 Reset:=True 2013-01-01 2012-
11-07 13:34:22 3 months^ False True 2012-
11-07 13:34:22
2 Fund Deposit Filter:=Account=chemistry Amount:=10000 Reset:=True 2013-01-01 2012-
11-07 13:34:47 3 months^ False True 2012-
11-07 13:34:47

Deleting events
To delete an event, use the command grmevent:

grmevent [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [-
-version] {[-E] event_id}

Additional detail for this command can be found in the man page by issuing grmevent --man at
the command line.

Example 17-3: Deleting an event

$ grmevent 1
Successfully deleted 1 event

Chapter 17: Managing events

108 Deleting events

Querying notifications 109

Chapter 18: Managing notifications
When event commands are executed (asynchronously), the success or failure of the operation is
communicated back to the initiator via a notification. When an event is created, you may specify the
Notify option which will associate a notification method with the event. Currently there is only one
DeliveryMethod implemented which is Store. With the Store delivery method, command response
information is stored as instances of the Notification object. These messages can later be retrieved by
the initiator via a Notification Query. Payments can also route a notification method down to their
associated events via a Notify option.

The notification attributes include Id (autogenerated), Type, Event, Status, Code, Message, Key,
Recipient, EndTime and CreationTime. Stored notifications can be queried on any of these conditions.
The notification type distinguishes what type of command resulted in the notification (Fire or Failure).
The notification key is the value of the primary key of the object instance that the command acted on
(e.g. the Payment Id). The recipient could be a user name or any tag that identifies the intended reader
for the notification. The Notification Query supports a Delete option, which if set to True, will delete the
notifications after they have been queried. Additionally, stored notification have an EndTime after which
they are automatically deleted by Gold. The Notification actions include Send, Refresh, Create, Query,
Delete and Modify.

There are two server configuration parameters which affect notifications: notification.deliverymethod
which dictates which deliverymethod is used by default if unspecified and notification.duration which
defines how long notifications stick around if the Store delivery method is used.

Querying notifications
To display event information, use the command glsnot:

glsnot [-E event_id] [-T notification_type] [-k primary_key_value] [-k primary_
key_value] -u recipient] [-x status] [-s start_time] [-e end_time] [--delete]
[--full] [--show attribute_name[,attribute_name...]] [--raw] [--debug] [--site
site_name] [--help] [--man] [--quiet] [--version] [[-N] notification_id]

The fields which are displayed by default by this command can be customized by setting the event-
show configuration parameter in gold.conf. Additional detail for this command can be found in
the man page by issuing glsnot --man at the command line.

Example 18-1: Listing all failure notifications

$ glsnot -x Failure
Id Event Type Status Code Message

 Key Recipient EndTim
e CreationTime
-- ----- ---- ------- ---- ---
--
--- --- --------- ------
------------- -------------------
4 20 Fire Failure 782 Payment Begin failed starting payment: Failed creating paym
ent starting lien: Insufficient balance to reserve usage (Instance Moab.1)
\nClearing the event fire time.\nThe controlling event has been deleted. 9 amy 2
012-04-23 13:35:01 2012-04-09 13:35:01

Deleting notifications
To delete a notification, use the command grmnot:

grmnot [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--
version] {[-N] notification_id}

Additional detail for this command can be found in the man page by issuing grmnot --man at the
command line.

Example 18-2: Deleting a notification

$ grmnot 4
Successfully deleted 1 notification

Example 18-3: Deleting all successful notifications

To delete many notifications, query them with the --delete option:

Chapter 18: Managing notifications

110 Deleting notifications

Deleting notifications 111

$ glsnot -x Success --delete
Id Event Type Status Code Message

 Key Re
cipient EndTime CreationTime
-- ----- ---- ------- ---- ---
--
--
--- --- --
------- ------------------- -------------------
4 20 Fire Failure 782 Payment Begin failed starting payment: Failed creating paym
ent starting lien: Insufficient balance to reserve usage (Instance Moab.1)
\ nClearing the event fire time.\ nThe controlling event has been deleted.
 9
 amy 2012-04-23 13:35:01 2012-04-
09 13:35:01se True 2012-04-
09 13:15:09 Use Payment
1 11 Fire Success 000 Payment Begin: Successfully charged 10 credits for instance
 Moab.1\ nSuccessfully charged 20 credits for instance Moab.2\ nSuccessfully charged 2
0 credits for instance Moab.3\ nSuccessfully started payment (6)
 and created 3 liens\ nClearing the event fire time.\ nThe controlling event has been
deleted. 6 scottmo 2012-04-23 13:28:02 2012-04-09 13:28:02
2 14 Fire Success 000 Payment Begin: Successfully charged 10 credits for instance
 Moab.1\ nSuccessfully charged 20 credits for instance Moab.2\ nSuccessfully charged 2
0 credits for instance Moab.3\ nSuccessfully started payment (7)
 and created 3 liens\ nClearing the event fire time.\ nThe controlling event has been
deleted. 7 amy 2012-04-23 13:31:02 2012-04-09 13:31:02
3 17 Fire Success 000 Payment Begin: Successfully charged 10 credits for instance
 Moab.1\ nSuccessfully charged 20 credits for instance Moab.2\ nSuccessfully charged 2
0 credits for instance Moab.3\ nSuccessfully started payment (8)
 and created 3 liens\ nClearing the event fire time.\ nThe controlling event has been
deleted. 8 amy 2012-04-23 13:32:02 2012-04-09 13:32:02
Successfully deleted 3 notifications

Chapter 18: Managing notifications

112 Deleting notifications

Creating roles 113

Chapter 19: Managing roles
Moab Accounting Manager uses instance-level role-based access controls to determine what users can
perform what functions. Named roles are created, actions are associated with the roles, and users are
assigned to these roles.

The actions for a role consist of a set of tuples of object, action and instance permitted by the role. In
other words, each role action defines an object (whether specific or ANY), the action that can be taken on
that object (whether specific or ANY) and the instance of the object that action can be taken on (whether
specific or ANY).

In the base configuration, there are three default roles: SystemAdmin, Anonymous and OVERRIDE.
Other configurations, such as the bank configuration, add additional roles. Roles can be added as desired.
The three base roles are required for proper function of Moab Accounting Manager and should not be
deleted. By default, the SystemAdmin role can perform any action on any object. This role is usually
assigned to the super user. The Anonymous role is intended to define the actions available to your
standard unprivileged user. This may include the ability to set your password, query certain public
objects and modify objects that belong to you (implemented via the OVERRIDE role). The OVERRIDE role
is a special role type that defines those actions that should use special business logic intrinsic to the
routine that handles that object and action. For example, in the bank configuration, the OVERRIDE logic
for the Account Query routine will only allow the standard user to see information about accounts for
which he or she is a member. A given user's privileges will be the superset of the actions of all roles that
apply to that user.

The instance indicates which specific instances of the object the action can be performed on. There are
several special instance types that can be used in certain situations. The ANY instance is supported by all
objects and permits the specified action on all instances of the specified object. The SELF instance
applies to the user's own instance if the object is User, or to objects that have a User attribute
associated with the user. The MEMBERS instance applies to objects for which the user is a direct
member. The ADMIN instance applies to objects for which the user is designated as an administrator.
Unless otherwise specified, the instance will default to a value of ANY.

Creating roles
To create a new role, use the command gmkrole. Users and actions may be associated with the role at
creation time. When assigning actions to a role, the object, action and instance must be specified in the
form shown. Multiple actions or users may be specified for the role.

gmkrole [-d description] [-u user_name[,user_name...]] [-A object_name->action_
name[{instance_name}] [,object_name->action_name[{instance_name}]...]] [--
debug] [--site site_name] [--help] [--man] [--quiet] [--verbose] [--version]
{[-r] role_name}

Additional detail for this command can be found in the man page by issuing gmkrole --man at the
command line.

Example 19-1: Creating a Manager role

$ gmkrole -r Manager -d "Manages Roles and Responsibilities"
Successfully created 1 role

Querying roles
To display the role information, use the command glsrole:

glsrole [--full] [--show attribute_name[,attribute_name...]] [--long] [--wide]
[--raw] [--debug] [--site site_name] [--help] [--man] [--quiet] [--version]
[[-r] role_name]

Additional detail for this command can be found in the man page by issuing glsrole --man at
the command line.

Example 19-2: Listing all roles along with users and descriptions

$ glsrole --show=Name,Users,Description
Name Users Description
----------- ----- --

AccountAdmin Can update or view an account they are admin for
Anonymous ANY Things that can be done by anybody
OVERRIDE ANY A custom authorization method will be invoked
Schedule root Scheduler relevant Transactions
SystemAdmin scottmo Can update or view any object
UserServices User Services

Example 19-3: Listing information about the scheduler role

$ glsrole --long Scheduler
Name Users Actions Description
----------- ----- ------------------------ ---------------------------------------

Scheduler root UsageRecord->Create(ANY) Scheduler relevant Transactions
 UsageRecord->Quote(ANY)
 UsageRecord->Reserve(ANY)
 UsageRecord->Charge(ANY)
 Lien->Delete(ANY)

Modifying roles
To modify a role, use the command gchrole:

gchrole [-d description] [--AddUser(s) user_name{,user_name...]] [--addAction(s)
object_name->action_name[{instance_name}][,object_name->action_name[{instance_

Chapter 19: Managing roles

114 Querying roles

Deleting roles 115

name}]...]] [--delUser(s) user_name[,user_name...]] [--del-action(s) object_
name->action_name[{instance_name}] [,object_name->action_name [{instance_
name}]...]] [--debug] [--site site_name] [-?, --help] [--man] [--quiet] [-v, -
-verbose] [-V, --version] [[-r] role_name]

Additional detail for this command can be found in the man page by issuing gchrole --man at
the command line.

Users may be added to a role or removed from a role. Actions also may be added to a role or removed
from a role. When specifying actions, the instance will default to a value of ANY.

Example 19-4: Adding a user to a role

Let's add dave to our new Manager role:

$ gchrole --add-user dave -r Manager
Successfully added 1 user

Example 19-5: Associating an action with a role

Allow the Manager to change role responsibilities:

$ gchrole --add-action "RoleAction->ANY" Manager -v
Successfully added 1 action

Deleting roles
To delete a role, use the command grmrole:

grmrole [--debug] [-S, --site site_name] [--help] [--man] [--quiet] [--verbose]
[--version] [[-r] role_name]

Additional detail for this command can be found in the man page by issuing grmrole --man at
the command line.

Users may be added to a role or removed from a role. Actions also may be added to a role or removed
from a role. When specifying actions, the instance will default to a value of ANY.

Example 19-6: Deleting the Manager role

Let's add dave to our new Manager role:

$ grmrole Manager
Successfully deleted 1 role and 2 associations

Chapter 19: Managing roles

116 Deleting roles

Setting passwords 117

Chapter 20: Managing passwords
Passwords must be established for each user who wishes to use the web-based GUI. Passwords must be
at least eight characters and are stored in encrypted form. A gchpasswd command line client exists to
aid a user or administrator in setting or changing a password. Other operations (deleting or listing
password entries) must be performed using the interactive control program (goldsh). By default, a
standard user may only set or change their own password. A system administrator may set or change
any user's password.

Because Moab Accounting Manager caches password information for faster responsiveness, it will
be necessary to restart the server after running gchpasswd for the GUI to accept that password
change.

Setting passwords
To set a new password, use the command gchpasswd. If the user name is not specified via an option or as
the unique argument, then the invoking user will be taken as the user whose password will be set. The
invoker will be prompted for the new password.

gchpasswd [--debug] [--site site_name] [--help] [--man] [--quiet] [--verbose]
[--version] {[-u] user_name}

Additional detail for this command can be found in the man page by issuing gchpasswd --man at
the command line.

Example 20-1: Setting a password

$ gchpasswd amy

Enter your new password:
Successfully created 1 password

Querying passwords
To display password information, use the command goldsh Password Query:

goldsh Password Query [Show:=<"Field1,Field2,...">] [User==<User Name>]
[ShowUsage:=True]

Example 20-2: List the users who have set passwords

$ goldsh Password Query Show:=User
User

amy
gold

Deleting passwords
To delete a password, use the command goldsh Password Delete:

goldsh Password Delete User==<User Name>]

The goldsh control program allows you to make powerful and sweeping modifications to Moab
Accounting Manager objects. Misuse of this command could result in the inadvertent deletion of all
passwords.

Example 20-3: Deleting a password

$ goldsh Password Delete User==amy
User Password
------ --
amy HZYzwD20o1XIE/gxRYyFKP2sumkCluHm
Successfully deleted 1 password

Chapter 20: Managing passwords

118 Deleting passwords

Usage 119

Chapter 21: Using the gold shell (goldsh)
goldsh is an interactive control program that can access all of the advanced functionality in Moab
Accounting Manager.

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. Inadvertant mistakes could result in modifications that are very
difficult to reverse.

Usage
Goldsh commands can be invoked directly from the command line as arguments, or read from stdin
(interactively or redirected from a file).
goldsh [--debug] [--site site_name] [--help] [--man] [--raw]
[--quiet] [--verbose] [--version] [<Command>]

Additional detail for this command can be found in the man page by issuing goldsh --man at the
command line.

Example 21-1: Specifying the command as direct arguments

$ goldsh System Query

Name Version Description
----------------------- ------- ------------------
Moab Accounting Manager 7.0.0 Commercial Release

Example 21-2: Using the interactive prompt

$ goldsh

gold> System Query

Name Version Description
----------------------- ------- ------------------
Moab Accounting Manager 7.0.0 Commercial Release
gold> quit

Example 21-3: Reading commands from a file

$ cat >commands.gold <<EOF
System Query
quit
EOF
$ goldsh <commands.gold

Name Version Description
----------------------- ------- ------------------
Moab Accounting Manager 7.0.0 Commercial Release

Command syntax
goldsh commands are of the form:
<Object> [=<Alias>] [,<Object> [=<Alias>]...] <Action> [[<Con-
junction>] [<Open_Parenthesis>...] [<Object>.] <Name> <Oper-
ator> [<Subject>.] <Value> [<Close_Parenthesis>...] ...]

The basic form of a command is <Object> <Action> [<Name><Operator><Value>]*. When an
action is performed on more than one object, such as in a multi-object query, the objects are specified in
a comma-separated list. Commands may accept zero or more predicates which may function as fields to
return, conditions, update values, processing options, etc. Predicates, in their simplest form, are
expressed as Name, Operator, Value tuples. Predicates may be combined via conjunctions with grouping
specified with parentheses. When performing multi-object queries, names and values may need to be
associated with their respective objects.

Valid conjunctions include:

Conjunction Meaning

&& and

|| or

&! and not

|! or not

Open parentheses may be any number of literal open parentheses '('.

Name is the name of the condition, assignment, or option. When performing a multi-object query, a name
may need to be prepended by its associated object separated by a period.

Valid operators include:

Chapter 21: Using the gold shell (goldsh)

120 Command syntax

Valid objects 121

Operator Meaning

== equals

< less than

> greater than

<= less than or equal to

>= greater than or equal to

!= not equal to

~ matches

= is assigned

+= is incremented by

-= is decremented by

:= option

:! not option

Value is the value of the selection list, condition, assignment, or option. When performing a multi-object
query, a value may need to be prepended by its associated object (called the subject) separated by a
period.

Close parentheses may be any number of literal closing parentheses ')'.

Valid objects
To list the objects available for use with commands in goldsh commands, use the goldsh command: Object
Query

Chapter 21: Using the gold shell (goldsh)

Example 21-4: Listing all objects

gold> Object Query Show:="Sort(Name)"
Name

Account
AccountUser
Action
Allocation
Attribute
ChargeRate
Constrainst
Fund
FundFund
Lien
LienAllocation
Object
Organization
Password
Quote
QuoteChargeRate
Role
RoleAction
RoleUser
System
Transaction
UsageRecord
User

Valid actions for an object
To list the actions that can be performed on an object, use the goldsh command: Action Query

Example 21-5: Listing all actions associated with the Fund object

gold> Action Query Object==Fund Show:="Sort(Name)"
Name

Balance
Create
Delete
Deposit
Modify
Query
Transfer
Undelete
Withdraw

Valid predicates for an object and action
By appending the option ShowUsage:=True to a command, the syntax of the command is returned,
expressed in SSSRMAP XML Message Format.

Chapter 21: Using the gold shell (goldsh)

122 Valid actions for an object

Common options 123

Example 21-6: Show the usage for Allocation Query

gold> Allocation Query ShowUsage:=True
<Request action="Query">
 <Object>Allocation<Object>

[<Get name="Id" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
[<Get name="Fund" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
[<Get name="StartTime" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
[<Get name="EndTime" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
[<Get name="Amount" [op="Sort|Tros|Count|GroupBy|Max|Min|Sum|Average"]></Get>]
[<Get name="CreditLimit" [op="Sort|Tros|Count|GroupBy|Max|Min|Sum|Average"]

></Get>]
[<Get name="Deposited" [op="Sort|Tros|Count|GroupBy|Max|Min|Sum|Average"]></Get>]
[<Get name="Active" [op="Sort|Tros|Count|GroupBy"]></Get>]
[<Get name="Description" [op="Sort|Tros|Count|GroupBy|Max|Min"]></Get>]
[<Where name="Id" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>Integer Number}</Where>]
[<Where name="Fund" [op="EQ|NE|GT|GE|LT|LE|Match|NotMatch (EQ)"] [conj="And|Or

(And)"] [group="<Integer Number>Fund Name}</Where>]
[<Where name="StartTime" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>YYYY-MM-DD[hh:mm:ss]|-infinity|infinity|now</Where>]
[<Where name="EndTime" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>YYYY-MM-DD[hh:mm:ss]|-infinity|infinity|now</Where>]
[<Where name="Amount" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>Decimal Number}</Where>]
[<Where name="CreditLimit" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>Decimal Number}</Where>]
[<Where name="Deposited" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>Decimal Number}</Where>]
[<Where name="Active" [op="EQ|NE (EQ)"] [conj="And|Or (And)"]

[group="<Integer Number>True|False</Where>]
[<Where name="Description" [op="EQ|NE|GT|GE|LT|LE|Match|NotMatch (EQ)"]

[conj="And|Or (And)"] [group="<Integer Number>Description}</Where>]
[<Option name="Filter">True|False (False)</Option>]
[<Option name="FilterType">Exclusive|NonExclusive (NonExclusive)</Option>]
[<Option name="IncludeAncestors">True|False (False)</Option>]
[<Option name="Time">YYYY-MM-DD[hh:mm:ss]</Option>]
[<Option name="Unique">True|False (False)</Option>]
[<Option name="Limit">{Integer Number}</Option>]
[<Option name="Offset">Integer Number}</Option>]
[<Option name="ShowHidden">True|False (False)</Option>]
[<Option name="ShowUsage">True|False (False)</Option>]

<Request>

Common options
There are a number of options that may be specified for all commands. These options include:
ShowUsage

ShowUsage— This option may be included with any command to cause the command to return a usage
message in SSSRMAP XML Message Format.

Common actions available for most objects
There are a number of actions that are available for most objects. These actions include Query, Create,
Modify, Delete, and Undelete. Commands involving these actions inherit some common structure unique

Chapter 21: Using the gold shell (goldsh)

to the action type.

Query action
The Query action is used to query objects. It accepts selections that describe the attributes (fields) to
return (including aggregation operations on those attributes), conditions that select which objects to
return the attributes for, and other options unique to queries.

Selections Selections use the Show option to specify a list of the attributes to return for the selected object. If
selections are not specified, a default set of attributes (defaulting to those not marked as hidden)
will be returned.
Name = Show

Op = :=

Value = "attribute1,attribute2,attribute3,..."

Aggregation operators may be applied to attributes by enclosing the target attribute in parenthesis
and prepending the name of the desired operator. The aggregation operators that can be applied
depend on the datatype of the attribute.
Valid selection operators include:
Sort — Ascending sort
Tros — Descending sort
Count — Count
Max — Maximum value
Min — Minimum value
Average — Average value
Sum— Sum
GroupBy — Group other aggregations by this attribute
Additionally, aliases can be applied to selections so that columns can be renamed as desired. Aliases
are expressed by adding =<Alias> to the target attribute name (and after the trailing parenthesis
of the aggregation, if specified).
For example: Allocation Query Show:="GroupBy)Fund),Sum(Amount)=Total"

Chapter 21: Using the gold shell (goldsh)

124 Common actions available for most objects

Common actions available for most objects 125

Conditions Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested
Valid condition operators include:
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match
Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar
to file globbing. * matches zero or more unspecified characters and ?matches exactly one
unspecified character. For example mscf*matches objects having the specified attributes whose
values start with the letters mscf, while mscf?matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Options Options indicate processing options that affect the result.
Name = Name of the option
Op = :=
Value = Value of the option
Valid options for query actions include:
ShowHidden:=True|False (False) Includes hidden attributes in the result
Time:=YYYY-MM-DD[hh:mm:ss] Run the command as if it were the specified time
Unique:=True|False (False) Display only unique results (like DISTINCT in SQL)
Limit:={Integer Number} Limit the results to the number of objects specified

Example 21-7: Return the number of inactive liens

gold> Lien Query EndTime<now Show:="Count(Id)"

Id

8

Create action
The Create action is used to create a new object. It accepts assignments that describe the values of the
attributes to be set.

Assignments Assignments specify values to be assigned to attributes in the new object.
Name = Name of the attribute being assigned a value
Op = = (is assigned)
Value = The new value being assigned to the attribute

Chapter 21: Using the gold shell (goldsh)

Example 21-8: Add a new account member

gold> AccountUser Create Account=chemistry Name=scottmo
Account Name Active Admin
------------- ---------- --------- -------
chemistry scottmo True False
Successfully created 1 accountUser

Modify action
The Modify action is used to modify existing objects. It accepts conditions that select which objects will
be modified and predicates that describe the values of the attributes to be set.

Assignments Assignments specify values to be assigned to attributes in the selected objects.
Name = Name of the attribute being assigned a value
Op = assignment operators {=, +=, -=}
Value = The value being assigned to the attribute
Valid assignment operators include:
= is assigned
+= is incremented by
-= is decremented by

Conditions Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested
Valid condition operators include:
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match
Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar
to file globbing. *matches zero or more unspecified characters and ?matches exactly one
unspecified character. For example mscf*matches objects having the specified attributes whose
values start with the letters mscf, while mscf?matches objects having the specified attributes
whose values start with mscf and have a total of exactly five characters.

Chapter 21: Using the gold shell (goldsh)

126 Common actions available for most objects

Common actions available for most objects 127

Example 21-9: Change/set scottmo's phone number and email address

gold> User Modify Name==scottmo PhoneNumber="(509) 376-2204"
EmailAddress="scottmo@adaptivecomputing.com"
Name Active CommonName PhoneNumber EmailAddress
 DefaultAccount Description
---------- --------- ------------------------- --------------------- -----------------
-------------- --------------------- ----------------
scottmo True Jackson, Scott M. (509) 376-
2204 scottmo@adaptivecomputing.com
Successfully modified 1 user

Example 21-10: Extend all liens against account chemistry by 10 days

gold> Lien Modify EndTime+=864000 Instance=="PBS.1234.0"
Id Fund Amount Instance UsageRecord User Project Machine EndTime
 Description
--- ---------- --------- ----------- ----------- ------ ---------- ---------- -------
--------------------- ----------------
1 2 57600 PBS.1234.0 1 amy chemistry colony 2012-
04-06 10:47:30
Successfully modified 1 lien

Delete action
The Delete action is used to delete objects. It accepts conditions that select which objects are to be
deleted.

Conditions Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested
Valid condition operators include:
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match
Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. *matches zero or more unspecified characters and ?matches exactly one unspecified
character. For example mscf*matches objects having the specified attributes whose values start
with the letters mscf, while mscf?matches objects having the specified attributes whose values
start with mscf and have a total of exactly five characters.

Chapter 21: Using the gold shell (goldsh)

Example 21-11: Get rid of the pesky Jacksons

gold> User Delete CommonName~"Jackson*"
Name Active CommonName PhoneNumber EmailAddress
 DefaultAccount Description
---------- --------- ------------------------- --------------------- -----------------
-------------- --------------------- ----------------
scottmo True Jackson, Scott M. (509) 376-
2204 scottmo@adaptivecomputing.gov
Successfully deleted 1 user and 1 association

Undelete action
The Undelete action is used to restore deleted objects. It accepts conditions that select which objects are
to be undeleted.

Conditions Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested
Valid condition operators include:
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
~ Matches
!~ Does not match
Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to
file globbing. *matches zero or more unspecified characters and ?matches exactly one unspecified
character. For example mscf*matches objects having the specified attributes whose values start
with the letters mscf, while mscf?matches objects having the specified attributes whose values
start with mscf and have a total of exactly five characters.

Example 21-12: Resurrect the deleted users that were active

gold> User Undelete Active==True
Name Active CommonName PhoneNumber EmailAddress
 DefaultAccount Description
---------- --------- ------------------------- --------------------- -----------------
-------------- --------------------- ----------------
scottmo True Jackson, Scott M. (509) 376-
2204 scottmo@adaptivecomputing.com
Successfully undeleted 1 user and 1 association

Chapter 21: Using the gold shell (goldsh)

128 Common actions available for most objects

Multi-object queries 129

Multi-object queries
Goldsh supports multi-object queries (table joins). Multiple objects are specified via a comma-separated
list and attributes need to be prefixed by the associated object.

Example 21-13: Print the sums for active balance and allocated amounts grouped by account

gold> Allocation,Constraint Query
Show:="GroupBy(Constraint.Value)=Account,Sum(Allocation.Amount)=Balance,Sum
(Allocation.Deposited)=Allocation"
Constraint.Fund==Allocation.Fund Constraint.Name==Account
Allocation.Active==True

Account Balance Allocation
------------- ------------- -------------
biology 193651124 360000000
chemistry 296167659 360000000

Example 21-14: Show all active accounts for amy's privileges

gold> RoleUser,RoleAction Query
Show:="RoleAction.Object,RoleAction.Name=Action"
RoleUser.Role==RoleAction.Role && (RoleUser.Name==amy ||
RoleUser.Name==ANY) Unique:=True

Object Action
------------------ -------
Account Query
AccountUser Query
Action Query
Allocation Query
Attribute Query
ChargeRate Query
Constraint Query
Fund Balance
Fund Query
FundFund Query
Lien Query
LienAllocation Query
Object Query
Organization Query
Password ANY
Quote Query
QuoteChargeRate Query
Role Query
RoleAction Query
RoleUser Query
System Query
Transaction Query
UsageRecord Query
User Query

Although the forgoing was a good example of a join request, it should be understood that it is not a
straightforward way to determine the full extent of a user's privileges. Some of the actions may be
tied to specific object instances and many of them are associated with an override method which
may not actually permit the user access to any instances of the object. Using

Show:="RoleUser.Role,RoleUser.Name=User,RoleAction.Object,RoleAction.Name=Ac
tion,RoleAction.Instance" may be revealing in this regard. See the chapter on Managing roles

on page 113 for more information about managing roles.

Chapter 21: Using the gold shell (goldsh)

130 Multi-object queries

Managing objects 131

Chapter 22: Customizing objects
Moab Accounting Manager provides the ability to dynamically create new objects or customize or delete
existing objects through the interactive control program (goldsh).

The object customizations described in this chapter will be noticeable in subsequent goldsh
queries (and in the web GUI after a fresh login). For installations with a database that supports
multiple connections (e.g. PostgreSQL) these changes will be visible immediately while others (e.g.
SQLite) will require the server to be restarted. Client commands may need to be modified to
properly interact with changed objects or attributes.

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. Inadvertent mistakes could result in modifications that are very
difficult to reverse.

Managing objects
In Moab Accounting Manager, Objects correspond to tables in the repository which have Attributes (such
as Name and Color) and Actions (such as Query and Modify). A specific instance of an object is described
as an Instance and has Properties (the specific values of the attributes for that object). The instance is
uniquely referred to via its primary key(s) (such as its Name or Id).

An object must have a name and may have a description. An object may be set to auto-generate its
instances when first seen (see Object auto-generation on page 133) and/or a default value may be
designated for the object (see Global object-based defaults on page 134).

Objects may reference other objects. If a single instance of an object references only a single instance of
another object (for example, a usage record may only have one user), then it is sufficient for the first
object to have an attribute field for the second object (the UsageRecord object has an attribute called
User). However, if there may be a many-to-many relationship between objects (for example, an account
may have multiple users and a user may belong to multiple accounts), then it is necessary to maintain a
separate object as an association table (e.g. AccountUser). When creating an association object, the
object should be given an appropriate name (e.g. AccountUser), it should be marked as an association
(Association=True), and an object needs to be designated for the parent (e.g. Account) and the child
(e.g. User). The association object itself may have additional attributes that provide qualitative
information about the association (e.g. a particular AccountUser association may be active or be an
administrator).

Creating a custom object
To create a new object, use the command goldsh Object Create. When an object is created, the 5 default
actions are automatically created for the object: Create, Delete, Modify, Query and Undelete. A number
of default metadata attributes are created as well: CreationTime, ModificationTime, Deleted, RequestId
and TransactionId. These attributes are normally hidden in regular queries.

goldsh Object Create Name=<Object Name> [AutoGen=True|(False)]
[DefaultValue=<Default Value>] [Description=<Description>]
[Association=True|False)] [Child=<Child Object>] [Parent=<Parent Object>]
[ShowUsage:=True]

Example 22-1: Creating a Node Object

$ goldsh Object Create Name=Node Description=\"Node Information\"
Successfully created 1 object and 5 actions

Example 22-2: Add a node name attribute

$ goldsh Attribute Create Object=Node Name=Name DataType=String PrimaryKey=True
Successfully created 1 attribute

Example 22-3: Add a processor count attribute

$ goldsh Attribute Create Object=Node Name=Processors DataType=Integer
Successfully created 1 attribute

Querying objects
To display object information, use the command goldsh Object Query.

goldsh Object Query [Name=<Object Name>]
[Show:=Name,AutoGen,DefaultValue,Description,Association,Parent,Child]
[ShowUsage:=True]

Example 22-4: List Information for the Node Object

$ goldsh Object Query Name==Node

Name Association Parent Child DefaultValue AutoGen Description
---- ----------- ------ ----- ------------ ------- ----------------
Node False False Node Information

Modifying an object
It is possible to modify an object by using the command goldsh Object Modify.

goldsh Object Query [Name=<Object Name>] [AutoGen=True|False]
[DefaultValue=Default Value>] [Description=Description>] [Association=True|
(False)] [Child=Child Object>] [Parent=Parent Object>] [ShowUsage:=True]

Chapter 22: Customizing objects

132 Managing objects

Managing objects 133

Example 22-5: Changing the Node object's description

$ goldsh Object Modify Name==Node Description="\"Host Information\""
Successfully modified 1 object

Deleting an object
To delete an object, use the command goldsh Object Delete. When an object is deleted, all associated
attributes, actions and other associations are automatically deleted as well.

goldsh Object Delete [Name=<Object Name>] [ShowUsage:=True]

Example 22-6: Deleting the Node Object

$ goldsh Object Delete Name==Node
Successfully deleted 1 object

This is a very dangerous operation and could result in the deletion of all object definitions
requiring database repair. The goldsh control program allows you to make powerful and sweeping
modifications to many objects with a single command. Be sure to specify conditions for the object
you want to delete.

Object auto-generation
It is possible to have object instances be automatically generated the first time they are referenced in
designated contexts. For example, you might want a user be auto-generated when newly added to an
account. You could have an organization auto-generated when specified as the default for a user. You
could have a cost-center be auto-generated when referenced in a usage record. To do this, the referenced
object must be set to AutoGen=True and the Values property for the attribute that you want to trigger
the auto-generation must be set to a string consisting of the @ sign followed by the object name.

Example 22-7: Auto-generate an account's organization

For example, let's assume that your accounts belong to specific organizations that you may want to run a
report against but you don't want to define all of the organizations up front. It would be possible to
automatically generate a new organization instance each time an undefined organization is specified for
an account.

$ goldsh Object Modify Name==Organization AutoGen=True
Successfully modified 1 object

$ goldsh Attribute Modify Object==Account Name==Organization Values=@Organization
Successfully modified 1 attribute

See Usage record property auto-generation on page 91 for a discussion of auto-generating objects
referenced in usage records.

Chapter 22: Customizing objects

Global object-based defaults
It is possible to set a global default for an object that will be applied to all attributes referencing this
object. When a new instance of an object is being created which has an attribute referring to another
object via its Values property, if that attribute has not been specified and you want it to default to the
global default, you will need to set the DefaultValue attribute for the referenced object to the desired
value.

Example 22-8: Setting a system-wide simple default organization called general

$ goldsh Object Modify Name==Organization DefaultValue=general
Successfully modified 1 object

Thereafter each (non-association) object which has an attribute with a Values property set to
@Organization will default to general if that attribute is not specified. Perhaps we would want the
default value to be taken for the organization when a new account is created.

$ goldsh Attribute Modify Object==Account Name==Organization Values=@Organization
Successfully modified 1 attribute

See Local attribute-based defaults on page 137 for more information about setting default values for
attributes. See Usage record property defaults on page 90 for more information about setting default
values for usage record properties.

Managing attributes
Objects can have any number of fields called Attributes. When an object is first created, a number of
attributes are created for the object by default. These are: CreationTime (time the object was first
created), ModificationTime (time the object was last updated), Deleted (whether the object is deleted
or not), RequestId (request id that resulted in the last modification of the object), TransactionId
(transaction id that resulted in the last modification of the object).

An attribute must have a name and be associated with an object.

An attribute will have a data type which can be one of (AutoGen, TimeStamp, Boolean, Float, Integer,
Currency, String) and defaults to String. A data type of AutoGen means the field will be a primary key of
type integer which will assume the next auto-incremented value from the g_key_generator table.
TimeStamps are epoch times stored in integer format. Booleans are strings constrained to the values of
True or False (or unset). Float is used to store decimal or floating point values. Currency is like Float
but may have special business logic for handling currency values.

An object may have zero or more attributes which are primary keys (PrimaryKey==True), the
combination of which are used to uniquely identify an object instance. Moab Accounting Manager will try
to ensure that there can only be one object instance with the exact same set of values of its primary
keys.

A required attribute (Required==True), must be either specified or be derived via a default value or
other dynamic mechanism when the object is created. It can also not be unset.

A fixed attribute (Fixed==True), may not be changed from its initial value.

Chapter 22: Customizing objects

134 Managing attributes

Managing attributes 135

An attribute may be constrained to certain values via the Values attribute. The values may be
constrained to members of a list expressed as a parenthesized comma-delimited list of strings (i.e.
Values="(Brazil,China,France,Russia,USA)"). Alternatively, the values may be constrained to
be an instance of a particular object type (like a foreign key constraint) by assigning to the Values
attribute the name of an object prefixed by the @ sign (e.g. Values="@Account" -- which would
constrain the value of this attribute to be a valid account name). Stronger versions of the @-prefixed
object-constrained values may be used in Quote, Reserve and Charge actions to enforce dynamic
interactions between usage record properties such as to assign default values if not defined (e.g.
Values="@?=Account"), verification values which evoke an error if they differ (e.g.
Values="@!=Account"), or designated values which always overwrite the value (e.g.
Values="@:=Account"). See Usage record property instantiators on page 91 for more information.

A default value may be assigned to an attribute via the DefaultValue attribute. When a new instance of
an object is created, if a property is not specified for the attribute, the default value will be used.

The Sequence attribute determines which order an object's attributes will be listed in for queries if no
selection list is specified in the query. Attributes with smaller sequence numbers will appear before
attributes with larger sequence numbers. The Sequence attribute is also used to enforce a proper
attribute display ordering in the web GUI.

The Hidden attribute specifies whether an attribute should be shown in a query by default or not.
Hidden attributes can be seen in queries by specifying the ShowHidden option with a value of True.

The Description field is a location to describe the meaning of the attribute and is used in the GUI for
field descriptions.

Adding an attribute to an object
To create a new attribute for an object, use the command goldsh Attribute Create:

goldsh Attribute Create Object=<Object Name> Name=<Attribute Name>
[DataType=AutoGen|TimeStamp|Boolean|Float|Integer|Currency|(String)]
[PrimaryKey=True|(False)] [Required=True|(False)] [Fixed=True|(False)]
[Values=<Foreign Key or List of Values>] [DefaultValue=<Default Value>]
[Sequence=<Integer Number>] [Hidden=<True|(False)>]
[Description=<Description>] [ShowUsage:=True]

Example 22-9: Adding a Country Attribute to User

$ goldsh Attribute Create Object=User Name=Country Values=\"\
(Brazil,China,France,Russia,USA\)" DefaultValue=USA
Successfully created 1 attribute

Example 22-10: Tracking Submission Time in Usage records

$ goldsh Attribute Create Object=UsageRecord Name=SubmissionTime DataType=TimeStamp
Successfully created 1 attribute

Querying attributes
To display attribute information, use the command goldsh Attribute Query:

Chapter 22: Customizing objects

goldsh Attribute Query Object=<Object Name> Name=<Attribute Name>
[Show:=Object,Name,DataType,PrimaryKey,Required,Fixed,Values,DefaultValue,Sequ
ence,Hidden,Description] [ShowHidden:=True] [ShowUsage:=True]

Example 22-11: List the attributes of the Node object

$ goldsh Attribute Query Object==Node

Object Name DataType PrimaryKey Required Fixed Values DefaultValue Sequen
ce Hidden Description
------ ---------------- --------- ---------- -------- ----- ------ ------------ ------
-- ------ -----------------------------
Node Processors Integer False False False 20
 False
Node Name String True True True 10
 False
Node TransactionId Integer False False True 990
 True Last Modifying Transaction Id
Node RequestId Integer False False True 980
 True Last Modifying Request Id
Node Deleted Boolean False False True 970
 True Is this object deleted?
Node ModificationTime TimeStamp False False True 960
 True Last Updated
Node CreationTime TimeStamp False False True 950
 True First Created

Modifying an attribute
To modify an attribute, use the command goldsh Attribute Modify:

goldsh Attribute Modify Object==<Object Name> Name==<Attribute Name> [Required=True|
(False)] [Fixed=True|(False)] [Values=<Foreign Key or List of Values>]
[DefaultValue=<Default Value>] [Sequence=<Integer Number>] [Hidden=<True|
(False)>] [Description=<Description>] [ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. A mistake made using this command could result in the
inadvertent modification of all attributes.

Example 22-12: Change User Organization values to not be restricted to the set of organization instances

$ goldsh Attribute Modify Object==User Name==Organization Values=NULL
Successfully modified 1 attribute

Removing an attribute from an object
To delete an attribute, use the command goldsh Attribute Delete:

goldsh Attribute Delete Object==<Object Name> Name==<Attribute Name> [ShowUsage:=True]

Chapter 22: Customizing objects

136 Managing attributes

Managing attributes 137

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. A mistake made using this command could result in the
inadvertent deletion of all attributes.

When using Moab Accounting Manager as an Allocation Manager, certain objects and attributes
are assumed to exist. For example, a call to UsageRecord Charge would fail if you had deleted the
Allocation Amount attribute. The Attribute Undelete command might come in useful in such a
case.

Example 22-13: Removing the Organization attribute from Account

$ goldsh Attribute Delete Object==Account Name==Organization
Successfully deleted 1 attribute

Example 22-14: Perhaps we don't care to track the QualityOfService attribute in a Usage record

$ goldsh Attribute Delete Object==UsageRecord Name==QualityOfService
Successfully deleted 1 attribute

Local attribute-based defaults
It is possible to set a specific default for an object attribute that will be applied when an instance of that
object is created but the attribute is not specified. This type of default is intended for attributes which do
not refer to another object or which should vary from the object global default. This default value is
assigned to an attribute via the DefaultValue attribute. When a new instance of the associated object is
created, if a property is not specified for the attribute, the specified default value will be used. A local
attribute default will have precedence over a global object default.

goldsh Attribute Delete Object==<Object Name> Name==<Attribute Name>
[ShowUsage:=True]

Example 22-15: Setting a default organization just for the account object

$ goldsh Attribute Modify Object==Account Name==Organization DefaultValue=university
Successfully modified 1 attribute

Example 22-16: Setting a default phone for the user object

$ goldsh Attribute Modify Object==User Name==Phone DefaultValue="\"NoPhone\""
Successfully modified 1 attribute

See Global object-based defaults on page 134 for more information about setting default values for
objects.

See Usage record property defaults on page 90 for more information about setting default values for
usage record properties.

Chapter 22: Customizing objects

Managing actions
Moab Accounting Manager defines which actions can be performed by which objects. When an object is
first created, five basic actions are created for the object by default. These are: Create, Modify, Query,
Delete and Undelete. Specific code must exist in Moab Accounting Manager modules in order for objects
to support additional actions.

An action is uniquely specified by its name and the object with which it is associated. An action also has a
description and a boolean display attribute which governs whether this action should be displayed in the
web GUI or not.

Adding an action to an object
To specify that an action is allowed for an object, use the command goldsh Action Create:

goldsh Action Create Object=<Object Name> Name=<Action Name> [Display=True|(False)]
[Description=<Description>] [ShowUsage:=True]

Example 22-17: Adding a Modify Action to Transaction

$ goldsh Action Create Object=Transaction Name=Modify Description=Modify
Successfully created 1 action

Querying actions
To display action information, use the command goldsh Action Query:

goldsh Action Query [Object==<Object Name>] [Name==<Attribute Name>]
[Show:=Object,Name,Display,Description] [ShowUsage:=True]

Example 22-18: List the actions of the Node object

$ goldsh Action Query Object==Node
Object Name Display Description
------ -------- ------- -----------
Node Create False Create
Node Delete False Delete
Node Modify False Modify
Node Query False Query
Node Undelete False Undelete

Modifying an action
To modify an action, use the command goldsh Action Modify:

goldsh Action Modify [Object==<Object Name>] [Name==<Attribute Name>]
[Display=True|(False)] [Description=<Description>] [ShowUsage:=True]

Chapter 22: Customizing objects

138 Managing actions

Examples creating custom objects 139

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. A mistake made using this command could result in the
inadvertent modification of all actions.

Example 22-19: Display all Node actions but Undelete in the web GUI

$ goldsh Action Modify Object==Node Name!=Undelete Display=True
Successfully modified 4 actions

Removing an action from an object
To delete an action from an object, use the command goldsh Action Delete:

goldsh Action Delete [Object==<Object Name>] [Name==<Attribute Name>]
[ShowUsage:=True]

The goldsh control program allows you to make powerful and sweeping modifications to many
objects with a single command. A mistake made using this command could result in the
inadvertent modification of all actions.

When using Moab Accounting Manager as an allocation manager, certain actions are assumed to
exist. Be careful what you delete!

Example 22-20: Do not allow accounts to be deleted

$ goldsh Action Delete Object==Account Name==Delete
Successfully deleted 1 action

Examples creating custom objects
Creating a custom object normally involves defining a new object and adding attributes to the object.

Example 22-21: Creating a License object to track license usage and charges.

Invoke the Moab Accounting Manager control program in interactive mode.

$ goldsh

Create the License Object.

gold> Object Create Name=License Description=License
Successfully created 1 object and 5 actions

Next, define its attributes. Give each record a unique id (so the record can be more easily modified), a
license type that can be one of (Matlab,Mathematica,Compiler,AutoCAD,Oracle), the user who is using it,
the start and end time, how many instances of the license were used, and how much was charged.

Chapter 22: Customizing objects

gold> Attribute Create Object=License Name=Id DataType=AutoGen PrimaryKey=True
Description="Record Id"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=Type DataType=String Required=True Values="
(Matlab,Mathematica,Compiler,AutoCAD,Oracle)" Fixed=True Description="License Type"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=User Required=True Values="@User"
Description="User Name"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=StartTime DataType=TimeStamp
Description="Start Time"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=EndTime DataType=TimeStamp Description="End
Time"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=Count DataType=Integer Description="Number
of Licenses Used"
Successfully created 1 attribute
gold> Attribute Create Object=License Name=Charge DataType=Currency
Description="Amount Charged"
Successfully created 1 attribute

Finally, since we would like to manage licenses from the web GUI, set Display=True.

gold> Action Modify Object=License Name!=Undelete Display=True
Successfully modified 4 actions

When done, exit the goldsh prompt.

gold> quit

That's about it. Licenses should now be able to be managed via the GUI and goldsh. The data source will
need to use one of the methods of interacting with Moab Accounting Manager (see Methods of
interacting with Moab Accounting Manager on page 144) in order to push license record usage info to
Moab Accounting Manager.

Apart from being used as an Allocation Manager, Moab Accounting Manager can be used as a generalized
information service. It can be used to manage just about any object-oriented information over the web.
For example, Moab Accounting Manager could be used to provide meta-schedulers with machine/user
mappings, or node/resource information.

Example 22-22: Using Moab Accounting Manager as a Grid Map File.

Invoke the goldsh control program in interactive mode.

$ goldsh

Create the GridMap Object.

gold> Object Create Name=GridMap Description="Online Grid Map File"
Successfully created 1 object and 5 actions

Next, define its attributes. Each entry will consist of a userid (which will serve as the primary key) and a
required public X.509 certificate.

Chapter 22: Customizing objects

140 Examples creating custom objects

Examples creating custom objects 141

gold> Attribute Create Object=GridMap Name=User PrimaryKey=True Values=@User
Description="User Name"
Successfully created 1 attribute
gold> Attribute Create Object=GridMap Name=Certificate DataType=String Required=True
Description="X.509 Public Key"
Successfully created 1 attribute

Exit the goldsh prompt.

gold> quit

From this point, a peer service will need to use one of the methods of interacting with Moab Accounting
Manager (see Interaction Methods) in order to query the GridMap information.

Chapter 22: Customizing objects

142 Examples creating custom objects

Moab Accounting Manager interface 143

Chapter 23: Integration
Integrating with Moab Accounting Manager
Moab Workload Manager can be configured to interact with Moab Accounting Manager to track and
charge for resources utilized by jobs and reservations in either an HPC or Cloud accounting context. If
you are operating in an HPC context, you will need to use Moab HPC Suite — Enterprise Edition in order
to have support for Moab Accounting Manager. The Moab Cloud Suite includes support for Moab
Accounting Manager in a cloud context.

There are two accounting manager interface types that Moab can use to interact with Moab Accounting
Manager: MAM, which is the direct SSS wire protocol, and Native, in which customizable scripts are
invoked to communicate with Moab Accounting Manager. For cloud accounting contexts, it is necessary to
use the Native accounting manager interface because of support which is built into the accounting scripts
and the customizability of that interface. For HPC accounting contexts, it is recommended to use the
MAM accounting manager interface because it is faster and has the best support for HPC policies. The
Native accounting manager interface can be used in an HPC context if higher customizability is needed,
but some HPC policies are not yet implemented for this interface.

Moab Accounting Manager interface
If you are installing Moab HPC Suite — Enterprise Edition from RPM, the suite RPM will synchronize the
shared secret keys between Moab Workload Manager and Moab Accounting Manager automatically. The
AMCFG lines in /opt/moab/etc/moab.d/am.cfg will need to be uncommented and edited as
necessary.

Example 23-1: Integrating with Moab HPC Suite— Enterprise Edition RPM

Uncomment and edit the AMCFG lines as applicable.

$ vi /var/moab/etc/moab.d/am.cfg

AMCFG[mam] TYPE=MAM HOST=localhost PORT=7112
AMCFG[mam] STARTFAILUREACTION=IGNORE,IGNORE CHARGEPOLICY=DEBITALLWC

If you are installing Moab HPC Suite — Enterprise Edition from tarball, configure Moab Workload
Manager using the --with-am option. After installing Moab Accounting Manager, copy the token.value
in /opt/mam/etc/site.conf into the KEY in /opt/moab/etc/moab-private.cfg.

Example 23-2: Integrating with Moab HPC Suite— Enterprise Edition tarball

Configure Moab to use the accounting manager.

$./configure --with-am ...

Synchronize the KEY in moab-private.cfg with the token.value in site.conf.

$ vi /var/moab/etc/moab-private.cfg

CLIENTCFG[AM:mam] KEY=UiW7EihzKyUyVQg6dKirDhV3 AUTHTYPE=HMAC64

Native Accounting Manager Interface
If you are installing Moab Cloud Suite from RPM, the suite RPM will synchronize the shared secret keys
between Moab Workload Manager and Moab Accounting Manager automatically. The AMCFG lines in
/opt/moab/etc/moab.d/am.cfg will need to be uncommented and edited as necessary.

Example 23-3: Integrating with Moab Cloud Suite RPM

Uncomment and edit the AMCFG lines as applicable.

$.vi /var/moab/etc/moab.d/am.cfg

AMCFG[mam] TYPE=NATIVE
AMCFG[mam] QuoteURL=exec://$TOOLSDIR/mam/usage.quote.mam.pl
AMCFG[mam] CreateURL=exec://$TOOLSDIR/mam/usage.create.mam.pl
AMCFG[mam] StartURL=exec://$TOOLSDIR/mam/usage.start.mam.pl
AMCFG[mam] UpdateURL=exec://$TOOLSDIR/mam/usage.update.mam.pl
AMCFG[mam] PauseURL=exec://$TOOLSDIR/mam/usage.pause.mam.pl
AMCFG[mam] EndURL=exec://$TOOLSDIR/mam/usage.end.mam.pl
AMCFG[mam] DeleteURL=exec://$TOOLSDIR/mam/usage.delete.mam.pl
AMCFG[mam] FLUSHINTERVAL=DAY
AMCFG[mam] StartFailureAction=IGNORE

Methods of interacting with Moab Accounting
Manager

There are essentially five ways of interacting with Moab Accounting Manager. Let's consider a simple
usage charge in each of the different ways.

Example 23-4: Integrating with Moab HPC Suite— Enterprise Edition Tarball

Using the appropriate command-line client
From inside a script, or by invoking a system command, you can use a command-line client (one of the
"g" commands in the bin directory).

Example 23-5: To issue a charge at the completion of job usage, you could use gcharge:

gcharge -J Moab.1234 -a chemistry -u amy -m colony -P 2 -t 3600 -X Duration=3600

Using the interactive control program
The interactive control program, goldsh, will issue a charge for a job expressed in xml.

Example 23-6: To issue a charge you must invoke the Charge action on the Job object:

goldsh UsageRecord Charge
Data:="<UsageRecord><Instance>Moab.1234</Instance><Account>chemistry</Account><User>am
y</User><Machine>colony</Machine><Processors>2</Processors><Duration>3600</Duration></
UsageRecord>" Duration:=3600

Chapter 23: Integration

144 Methods of interacting with Moab Accounting Manager

Methods of interacting with Moab Accounting Manager 145

Use the Perl API
If your resource management system is written in Perl or if it can invoke a Perl script, you can access
the full functionality via the Perl API.

Example 23-7: To make a charge via this interface you might do something like:

use Gold;

my $request = new Gold::Request(object => "UsageRecord", action => "Charge");
my $usageRecord = new Gold::Datum("UsageRecord");
$usageRecord->setValue("Instance", "Moab.1234");
$usageRecord->setValue("Account", "chemistry");
$usageRecord->setValue("User", "amy");
$usageRecord->setValue("Machine", "colony");
$usageRecord->setValue("Processors", "2");
$usageRecord->setValue("Duration", "3600");
$request->setDatum($usageRecord);
$request->setOption("Duration", "3600");
my $response = $request->getResponse();
print $response->getStatus(), ": ", $response->getMessage(), "\n";

Use the Java API
Although deprecated, the Java API may still be usable to interact with Moab Accounting Manager. The
javadoc command can be run on the contrib/java/gold directory to generate documentation for the
gold java classes.

Example 23-8: To make a charge via this interface you might do something like:

import java.util.*;
import gold.*;

public class Test
{
 public static void main(String [] args} throws Exception
{
 Gold.initialize();
 Request request = new Request("UsageRecord", "Charge");
 Datum usageRecord = new Datum("UsageRecord");
 usageRecord.setValue("Instance", "Moab.1234");
 usageRecord.setValue("Account", "chemistry");
 usageRecord.setValue("User", "amy");
 usageRecord.setValue("Machine", "colony");
 usageRecord.setValue("Processors", "2");
 usageRecord.setValue("Duration", "3600");
 request.setDatum(usageRecord);
 request.setOption("Duration", "3600");
 Response response = request.getResponse();
 System.out.println(response.getStatus() + ": " + response.getMessage() + "\n");
 }
}

Communicating via the SSSRMAP Protocol
Finally, it is possible to interact with Moab Accounting Manager by directly using the SSSRMAP Wire
Protocol and Message Format over the network (see SSS Resource Management and Accounting
documentation). This will entail building the request body in XML, appending an XML digital signature,
combining these in an XML envelope framed in an HTTP POST, sending it to the server, and parsing the
similarly formed response. The Moab Workload Manager communicates with Moab Accounting Manager
via this method.

Chapter 23: Integration

http://www.adaptivecomputing.com/resources/docs/gold/
http://www.adaptivecomputing.com/resources/docs/gold/

Example 23-9: The message might look something like:

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
 <Body>
 <Request action="Charge" actor="scottmo">
 <Object>UsageRecord</Object>
 <Data>
 <UsageRecord>
 <Instance>Moab.1234</Instance>
 <Account>chemistry</Account>
 <User>amyh</User>
 <Machine>colony</Machine>
 <Processors>2</Processors>
 <Duration>3600</Duration>
 </UsageRecord>
 </Data>
 <Option name="Duration">3600</Option>
 </Request>
 <//Body>
 <Signature>
 <DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
 <SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
 <SecurityToken type="Symmetric"></SecurityToken>
 </Signature>
</Envelope>
0

Chapter 23: Integration

146 Methods of interacting with Moab Accounting Manager

147

Chapter 24: Configuration files
Moab Accounting Manager uses four configuration files: one for the connection information
(site.conf), one for the server (goldd.conf), one for the clients (gold.conf) and one for the
graphical user interface (goldg.conf). For configuration parameters that have hard-coded defaults, the
default value is specified within brackets.

Site configuration
The site configuration file specifies the connection information for the current site such as the server
host name, port, backup server, default security method and the symmetric key. Optionally, it may also
have blocks that specify connection information for other sites. This file should be readable only by the
accounting admin user.

Example 24-1: The following is an example site.conf file

server.host = red-head1
backup.host = red-head2
server.port = 7071
token.type = Symmetric
token.value = pBaIapJqbfLd8NiyzTJefFXW

[white]
server.host = white-head1
server.port = 7071
token.value = Fl7wOkioUpyjdqJ8ckvWK_ta

[blue]
server.host = blue-head1
server.port = 7071
token.valne = gVSeQ8Diz5O3pzj01y4inGWq

The following configuration parameters may be set in the site configuration file (site.conf).

backup.host — The hostname of the backup server. Each site can have both a primary server and a hot-
standby backup server. They should either point to the same database or separate instances of
replicated database. If backup.host is specified, clients will try communicating with the primary server
first, and if the connection fails, they will try communicating with the backup server.

server.host — The hostname of the server

server.port [7112] — The port that the server listens on

token-type [Symmetric] — Indicates the default security token type to be used in both authentication
and encryption. Valid token types include Password and Symmetric. The default is Symmetric.

token.value—When using the Symmetric token type, token.value is the secret key. It is a base64-
encoded symmetric key used between clients and the server for authentication and encryption.

Server configuration
The following configuration parameters may be set in the server configuration file (goldd.conf).

Parameter Description

currency.itemization [false] Enables (true) or disables (false) the storing of itemized charges to
the Charge table for charge transactions.

currency.precision [0] Indicates the number of decimal places in the resource credit cur-
rency. For example, if you are will be dealing with an integer billable
unit like processor-seconds, use 0 (which is the default). If you will be
charging dollars and cents, then use 2. This parameter should be the
same in the goldd.conf and gold.conf files.

database.datasource [DBI:Pg:db-
name=mam;host=localhost]

The Perl DBI data source name for the database you wish to connect
to

database.password The password to be used for the database connection (if any)

database.user The username to be used for the database connection (if any)

event.scheduler [false] Specifies whether the event scheduler is enabled (true) or not
(false)

event.pollinterval [5] The period in minutes that the event scheduler uses to check and fire
events. The poll interval must divide evenly into the number of
minutes in a day (1440).

log4perl.appender.Log.filename Used by log4perl to set the base name of the log file

log4perl.appender.Log.max Used by log4perl to set the number of rolling backup logs

log4perl.appender.Log.size Used by log4perl to set the size the log will grow to before it is
rotated

log4perl.appender.Log.Threshold Used by log4perl to set the debug level written to the log. The log-
ging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and
FATAL

log4perl.appender.Screen.Threshold Used by log4perl to set the debug level written to the screen. The
logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR,
and FATAL

notification.deliverymethod [store] Specifies which delivery method is used by default if unspecified

Chapter 24: Configuration files

148

Client configuration 149

Parameter Description

notification.duration [1209600] Defines how long in seconds that stored notifications persist before
being automatically deleted. The default is two weeks.

response.chunksize [0] Indicates the line length in the data response that will trigger message
segmentation (or truncation). A value of 0 (zero) means unlimited, i.e.
that the server will not truncate or segment large responses unless
overridden by a chunksize specification in a client request. The
response chunksize will be taken to be the smaller of the client and
server chunksize settings.

security.authentication [true] Indicates whether incoming message authentication is required

security.encryption [false] Indicates whether incoming message encryption is required

super.user [root] The primary Moab Accounting Manager system admin which by
default can perform all actions on all objects. The super user is some-
times used as the actor in cases where an action is invoked from
within another action.

user.firstaccountdefault [false] If set to true, the first account that a user is added to will become the
default account for that user.

Client configuration
The following configuration parameters may be set in the client configuration file (gold.conf):

Parameter Description

accounting.context [hpc] By specifying the accounting context (either
hpc or cloud), the behavior of some client
commands are adjusted to show the proper
fields for that context. The default is hpc.

account.show [Name,Active,Users,Organization,Description] The default fields shown by glsaccount

allocation.show [Id,Fun-
d,Active,StartTime,EndTime,Amount,CreditLimit,Deposited]

The default fields shown by glsalloc

Chapter 24: Configuration files

Parameter Description

balance.show [Id,Name,A-
mount,Reserved,Balance,CreditLimit,Available]

The default fields shown by gbalance

currency.precision [0] Indicates the number of decimal places in
the credit currency. For example, if you will
be dealing with integer billable units like
processor-seconds, use 0 (which is the
default). If you will be charging dollars and
cents, then use 2. This parameter should be
the same in the goldd.conf and gold.-
conf files.

event.show [Id,FireCommand,FireTime,ArmTime,Rearm
Period,EndTime,Notify,RearmOnFailure,Failu
reCommand,CatchUp,CreationTime,Descripti
on]
-- The default fields shown by glsevent

fund.show [Id,Name,Amount,Constraints,Description] The default fields shown by glsfund

lien.show [Id,In-
stance,A-
mount,StartTime,EndTime,UsageRecord,Funds,Description]

The default fields shown by glslien

log4perl.appender.Log.filename Used by log4perl to set the base name of
the log file

log4perl.appender.Log.max Used by log4perl to set the number of
rolling backup logs

log4perl.appender.Log.size Used by log4perl to set the size the log will
grow to before it is rotated

log4perl.appender.Log.Threshold Used by log4perl to set the debug level writ-
ten to the log. The logging threshold can be
one of TRACE, DEBUG, INFO, WARN, ERROR,
and FATAL.

log4perl.appender.Screen.Threshold Used by log4perl to set the debug level writ-
ten to the screen. The logging threshold can
be one of TRACE, DEBUG, INFO, WARN,
ERROR, and FATAL.

Chapter 24: Configuration files

150 Client configuration

Client configuration 151

Parameter Description

notification.show [Id,Event,Type,Status,Code,Message,Key,Reci
pient,EndTime,CreationTime]
--The default fields shown by glsnot

organization.show [Name,Description] The default fields shown by glsorg

quote.show [Id,A-
moun-
t,Pinned,Instance,UsageRecord,StartTime,EndTime,Duration,ChargeRates,Description]

The default fields shown by glsquote

response.chunking [false] Indicates whether large responses should
be chunked (segmented). If set to false,
large responses will be truncated

response.chunksize [1000] Indicates the line length in the data
response that will trigger message seg-
mentation (or truncation). A value of 0
(zero) means unlimited, i.e., that the client
will accept the chunksize set by the server.
The response chunksize will be taken to be
the smaller of the client and server chunks-
ize settings.

security.authentication [true] Indicates whether outgoing message are
signed

security.encryption [false] Indicates whether outgoing messages are
encrypted

Chapter 24: Configuration files

Parameter Description

server.promotion [suidperl] When using the symmetric key for security
authentication or encryption, since the
site.conf file is readable only by the
accounting admin user, a method must be
employed to temporarily elevate privileges
in order to encrypt the communication with
the symmetric key. One of two security pro-
motion methods may be selected: suid-
perl or gauth. Suiperl allows a Perl script
to temporarily elevate privileges to the
owner of the script if the setuid bit is set on
the file. This method is recommended when
suidperl can be installed on the system. If
you prefer not to use suidperl or if it is not
available for your system (such as with Perl
5.12 and higher), you will need to use the
gauth security promotion method. Gauth is a
setuid binary that allows the request body
to be passed in as standard input and
returns the authenticated digest and sig-
nature. Currently, only suidperl can be used
for encryption of client communication. The
security promotion method should be con-
figured at install time by specifying the --
with-promotion configuration parameter
and defaults to suidperl when it is available.

statement.show [Account,User,Machine] The default discriminator fields in gstate-
ment

transaction.show [Id,Ob-
ject,Ac-
tion,Actor,Name,Child,Instance,Count,Amount,Delta,User,Account,Machine,Fund,Allocation,UsageRecord,Duration,Description]

The default fields shown by glstrans

usagerecord.show [Id,Type,In-
stance,Charge,Stage,Quote,User-
,Group,Account,Organization,Class,QualityOfService,Machine,Nodes,Processors,Memory,Disk,Network,Duration,StartTime,EndTime,Description]

The default fields shown by glsusage

user.show [Name,Act-
ive,Com-
monName,PhoneNumber,EmailAddress,DefaultAccount,Description]

The default fields shown by glsuser

Chapter 24: Configuration files

152 Client configuration

GUI configuration 153

GUI configuration
The following configuration parameters may be set in the GUI configuration file (goldg.conf).

Parameter Description

currency.enablehours [false] If set to true, the graphical user interface will include a ShowHours radio
button (defaulting to True) for certain panels (e.g. Fund Balance, Deposit,
Query, Statement, Transfer, Withdraw) that will allow the currency inputs
or outputs to be divided by 3600.

currency.precision [0] Indicates the number of decimal places in the credit currency. For example,
if you will be dealing with integer billable units like processor-seconds, use
0 (which is the default). If you will be charging dollars and cents, then use
2. This parameter should be the same in the goldd.conf and gold.-
conf files.

gui.style [viewpoint] Modifies the appearance and behavior of the web GUI to be consistent with
use within viewpoint or for standalone use. Valid values are legacy or
viewpoint. The default is viewpoint.

log4perl.appender.Log.filename Used by log4perl to set the base name of the log file

log4perl.appender.Log.max Used by log4perl to set the number of rolling backup logs

log4perl.appender.Log.size Used by log4perl to set the size the log will grow to before it is rotated

log4perl.appender.Log.Threshold Used by log4perl to set the debug level written to the log. The logging
threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

response.chunking [false] Indicates whether large responses should be chunked (segmented). If set
to false, large responses will be truncated.

response.chunksize [1000] Indicates the line length in the data response that will trigger message seg-
mentation (or truncation). A value of 0 (zero) means unlimited, i.e. that the
client will accept the chunksize set by the server. The response chunksize
will be taken to be the smaller of the client and server chunksize settings.

security.authentication [true] Indicates whether outgoing message are signed

security.encryption [false] Indicates whether outgoing messages are encrypted

Chapter 24: Configuration files

Parameter Description

server.promotion [suidperl] When using the symmetric key for security authentication or encryption,
since the site.conf file is readable only by the accounting admin user, a
method must be employed to temporarily elevate privileges in order to
encrypt the communication with the symmetric key. One of two security
promotion methods may be selected: suidperl or gauth. Suidperl allows
a Perl script to temporarily elevate privileges to the owner of the script if
the setuid bit is set on the file. This method is recommended when suidperl
can be installed on the system. If you prefer not to use suidperl, or if it is
not available for your system (such as with Perl 5.12 and higher), you will
need to use the gauth security promotion method. Gauth is a setuid binary
that allows the request body to be passed in as standard input and returns
the authenticated digest and signature. Currently, only suidperl can be
used for encryption of client communication. The security promotion
method should be configured at install time by specifying the --with-pro-
motion configuration parameter and defaults to suidperl when it is avail-
able.

statement.discriminators The Fund Statement page will group summary entries in the debit detail
by these transaction properties.

Chapter 24: Configuration files

154 GUI configuration

	 Welcome
	Chapter 1: Overview
	 Background
	 Conceptual Overview
	 Features
	 Interfaces
	 Documentation
	 License

	Chapter 2: Installation
	 Select a database
	 Install prerequisites
	 Preparation
	 Configuration
	 Compilation
	 Installing the Perl module dependencies from CPAN
	 Installation
	 Database setup
	 General setup
	 Startup
	 Web server setup
	 Accessing the GUI
	 Initialization

	Chapter 3: Upgrading
	 Preparation
	 Configuration
	 Compilation
	 Server Shutdown
	 Installation
	 Server Startup

	Chapter 4: Migrating
	 Server shutdown
	 Database copy
	 Preparation
	 Configuration
	 Compilation
	 Perl module dependencies
	 Installation
	 General setup
	 Server startup
	 Run the migration scripts
	 Verify migration

	Chapter 5: Getting started
	 HPC usage tracking
	 Usage Record Customization (Optional)
	 Record The Usage
	 List usage records

	 HPC charge accounting
	 Usage record customization (optional)
	 Decide on a currency and set the currency precision
	 Define charge rates
	 Create a single non-limiting fund
	 Create an unlimited allocation
	 Issue a refund
	 Examine fund statement

	 HPC allocation enforcement
	 Usage record customization
	 Decide on a currency and set the currency precision
	 Define charge rates
	 Define accountable entities
	 Create funds
	 Make deposits
	 Check the balance
	 Integrate Moab Accounting Manager with Your Brokering System
	 Obtain a usage quote
	 Make a usage lien
	 Charge for the usage
	 Usage refund
	 Examine fund statement

	Chapter 6: Managing users
	 Creating users
	 Querying users
	 Modifying users
	 Deleting users
	 User auto-generation
	 Default user

	Chapter 7: Managing accounts
	 Creating accounts
	 Querying accounts
	 Modifying accounts
	 Deleting accounts
	 Account auto-generation
	 Default account

	Chapter 8: Managing organization
	 Creating organizations
	 Querying organizations
	 Modifying organizations
	 Deleting organizations
	 Organization auto-generation
	 Default organization

	Chapter 9: Managing funds
	 Creating funds
	 Querying funds
	 Modifying funds
	 Making deposits
	 Querying the balance
	 Personal balance
	 Making withdrawals
	 Making transfers
	 Obtaining a fund statement
	 Deleting funds
	 Fund auto-generation
	 Hierarchical funds
	 Fund priority

	Chapter 10: Managing allocations
	 Creating allocations
	 Querying allocations
	 Modifying allocations
	 Delete allocations
	 Allocation auto-generation
	 Allocation precedence

	Chapter 11: Managing liens
	 Creating liens
	 Querying liens
	 Modifying liens
	 Deleting liens

	Chapter 12: Managing quotes
	 Creating quotes
	 Creating quote templates
	 Querying quotes
	 Modifying quotes
	 Deleting quotes

	Chapter 13: Managing usage records
	 Creating a usage record
	 Querying usage records
	 Modifying a usage record
	 Deleting a usage record
	 Obtaining usage quotes
	 Making a usage lien
	 Charging for usage
	 Issuing usage refunds
	 Customizing the usage record object
	 Usage record property verification
	 Usage record property defaults
	 Usage record property auto-generation
	 Usage record property instantiators

	Chapter 14: Managing itemized topics
	 Querying itemized charges
	 Displaying itemized charges for a transaction

	Chapter 15: Managing charge rates
	 Creating charge rates
	 Querying charge rates
	 Modifying charge rates
	 Deleting charge rates

	Chapter 16: Managing transactions
	 Querying transactions
	 Customizing the transaction object

	Chapter 17: Managing events
	 Creating events
	 Querying events
	 Deleting events

	Chapter 18: Managing notifications
	 Querying notifications
	 Deleting notifications

	Chapter 19: Managing roles
	 Creating roles
	 Querying roles
	 Modifying roles
	 Deleting roles

	Chapter 20: Managing passwords
	 Setting passwords
	 Querying passwords
	 Deleting passwords

	Chapter 21: Using the gold shell (goldsh)
	 Usage
	 Command syntax
	 Valid objects
	 Valid actions for an object
	 Valid predicates for an object and action
	 Common options
	 Common actions available for most objects
	 Multi-object queries

	Chapter 22: Customizing objects
	 Managing objects
	 Creating a custom object
	 Querying objects
	 Modifying an object
	 Deleting an object
	 Object auto-generation
	 Global object-based defaults

	 Managing attributes
	 Adding an attribute to an object
	 Querying attributes
	 Modifying an attribute
	 Removing an attribute from an object
	 Local attribute-based defaults

	 Managing actions
	 Adding an action to an object
	 Querying actions
	 Modifying an action
	 Removing an action from an object

	 Examples creating custom objects

	Chapter 23: Integration
	 Moab Accounting Manager interface
	 Methods of interacting with Moab Accounting Manager

	Chapter 24: Configuration files
	 Client configuration
	 GUI configuration

