
Moab WorkloadManager
Administrator Guide 7.2.8

May 2014

© 2014 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without prior
written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager, Moab
Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing products are either
registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive Computing logo and the Cluster
Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other company and product names may be
trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

Contents

Welcome xi
Moab overview xi

1.0 Philosophy 1
1.1 Value of a Batch System 1
1.2 Philosophy and Goals 2
1.3Workload 3

2.0 Installation and Initial Configuration 7
2.1 Hardware and Software Requirements 7
2.2 Installing Moab 8
2.3 Connecting Moab toMongoDB 15
2.4 Upgrading Moab 17
2.5 Initial Moab Configuration 20
2.6 Initial Moab Testing 22

3.0 Scheduler Basics 25
3.1 Layout of Scheduler Components 25
3.2 Scheduling Environment 27

3.2.1 Scheduling Dictionary 33
3.3 Scheduling Iterations and Job Flow 40
3.4 Configuring the Scheduler 42
3.5 Credential Overview 45

3.5.1 Job Attributes/Flags Overview 71

4.0 Scheduler Commands 79
4.1 Status Commands 82
4.2 JobManagement Commands 83
4.3 Reservation Management Commands 83
4.4 Policy/Configuration Management Commands 84
4.5 End-user Commands 84
4.6 Commands 85

checkjob 85
checknode 94
mcredctl 98
mdiag 101

mdiag -a 104
mdiag -b 105
mdiag -c 105

iii

iv

mdiag -f 109
mdiag -g 111
mdiag -j 111
mdiag -n 112
mdiag -t 118
mdiag -p 118
mdiag -q 121
mdiag -r 121
mdiag -R 125
mdiag -S 129
mdiag -s 130
mdiag -T 130
mdiag -u 132

mjobctl 132
mnodectl 149
moab 155
mrmctl 156
mrsvctl 158
mschedctl 184
mshow 191

mshow -a 192
mshow -a 201

msub 203
Applying the msub Submit Filter 218
Sample Submit Filter Script 219

Submitting Jobs via msub in XML 219
mvcctl 223
mvmctl 228
showbf 232
showq 235
showhist.moab.pl 244
showres 249
showstart 253
showstate 256
showstats 257

showstats -f 268
TIMESPEC 270

4.6.1 Deprecated commands 271
canceljob 271
changeparam 272
diagnose 272
releasehold 273
releaseres 274
resetstats 275

runjob 275
sethold 276
setqos 277
setres 278
setspri 282
showconfig 283

5.0 Prioritizing Jobs and Allocating Resources 285
5.1 Job Prioritization 285

5.1.1 Priority Overview 285
5.1.2 Job Priority Factors 286
5.1.3 Fairshare Job Priority Example 296
5.1.4 Common Priority Usage 298
5.1.5 Prioritization Strategies 300
5.1.6 Manual Job Priority Adjustment 301

5.2 Node Allocation Policies 301
5.3 Node Access Policies 309
5.4 Node Availability Policies 311
5.5 Scheduling Jobs When VMs Exist 317

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management 319
6.1 Fairness Overview 319
6.2 Usage Limits/Throttling Policies 322
6.3 Fairshare 340

6.3.1 Sample FairShare Data File 353
6.4 Charging and Allocation Management 354
6.5 Charging a Workflow 369
6.6 NAMI Queuing 372

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities 375
7.1 Advance Reservations 375

7.1.1 Reservation Overview 375
7.1.2 Administrative Reservations 379
7.1.3 Standing Reservations 381
7.1.4 Reservation Policies 382
7.1.5 Configuring andManaging Reservations 386
7.1.6 Personal Reservations 417

7.2 Partitions 419
7.3 Quality of Service (QoS) Facilities 423

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets 433
8.1 Optimization Overview 433
8.2 Backfill 434
8.3 Node Set Overview 439

v

vi

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation 445
9.1 Moab Performance Evaluation Overview 445
9.2 Accounting: Job and System Statistics 445
9.3 Testing New Versions and Configurations 447
9.4 Answering What If? Questions with the Simulator 448

10.0 General Job Administration 449
10.1 Job Holds 449
10.2 Job Priority Management 451
10.3 Suspend/Resume Handling 451
10.4 Checkpoint/Restart Facilities 452
10.5 Job Dependencies 452
10.6 Job Defaults and Per Job Limits 454
10.7 General Job Policies 455
10.8 Using a Local Queue 457
10.9 Job Deadlines 460
10.10 Job Arrays 462

11.0 General Node Administration 469
11.1 Node Location 470
11.2 Node Attributes 473
11.3 Node Specific Policies 483
11.4 Managing Shared Cluster Resources (Floating Resources) 484
11.5 Managing Node State 488
11.6 Managing Consumable Generic Resources 490
11.7 Enabling Generic Metrics 492
11.8 Enabling Generic Events 496

12.0 Resource Managers and Interfaces 503
12.1 Resource Manager Overview 504
12.2 Resource Manager Configuration 507
12.3 Resource Manager Extensions 537

12.3.1 PBS Resource Manager Extensions 563
12.4 Adding New Resource Manager Interfaces 564
12.5 Managing Resources Directly with the Native Interface 565
12.6 Utilizing Multiple Resource Managers 576
12.7 License Management 578
12.8 Resource Provisioning 580
12.9 Intelligent Platform Management Interface 580
12.10 Resource Manager Translation 583

13.0 Troubleshooting and System Maintenance 585
13.1 Internal Diagnostics/Diagnosing System Behavior and Problems 585
13.2 Logging Facilities 588
13.3 Object Messages 597

13.4 Notifying Administrators of Failures 599
13.5 Issues with Client Commands 600
13.6 Tracking System Failures 601
13.7 Problems with Individual Jobs 603
13.8 Diagnostic Scripts 604

14.0 Improving User Effectiveness 607
14.1 User Feedback Loops 607
14.2 User Level Statistics 608
14.3 Enhancing Wallclock Limit Estimates 608
14.4 Job Start Time Estimates 608
14.5 Providing Resource Availability Information 610
14.6 Collecting Performance Information on Individual Jobs 610

15.0 Cluster Analysis, Testing, and Simulation 611
15.1 Testing New Releases and Policies 611
15.2 Testing NewMiddleware 615
15.3 Simulations 618

15.3.1 Configuring Simulation 618
15.3.2 Configuring Resources for Simulation 620
15.3.3Workload Event Format 621
15.3.4 Interactive Simulation Tutorial 631

15.3.4.1 Checking the Queue Status 632
15.3.4.2 Determining Why Jobs Are Not Running 633
15.3.4.3 Controlling Iterations 633
15.3.4.4 Managing Reservations Applying to the Queue 635
15.3.4.5 Verifying Fair Scheduling 640
15.3.4.6 Taking the System Down for Maintenance 640

16.0 Green computing 643
16.1 About green computing 643
16.2 How-to's 644

16.2.1 Enabling green computing 644
16.2.2 Deploying Adaptive Computing IPMI scripts 647
16.2.3 Choosing which nodes Moab powers on or off 648
16.2.4 Adjusting green pool size 649
16.2.5 Handling power-related events 649
16.2.6 Maximizing scheduling efficiency 650
16.2.7 Troubleshooting green computing 651

17.0 Object triggers 655
17.1 About object triggers 655
17.2 How-to's 657

17.2.1 Creating a trigger 658
17.2.2 Using a trigger to send email 662

vii

viii

17.2.3 Using a trigger to execute a script 663
17.2.4 Using a trigger to perform internal Moab actions 663
17.2.5 Requiring an object threshold for trigger execution 664
17.2.6 Enabling job triggers 664
17.2.7 Modifying a trigger 665
17.2.8 Viewing a trigger 666
17.2.9 Checkpointing a trigger 667

17.3 References 667
17.3.1 Job triggers 667
17.3.2 Node triggers 668
17.3.3 Reservation triggers 670
17.3.4 Resource manager triggers 671
17.3.5 Scheduler triggers 672
17.3.6 Threshold triggers 673
17.3.7 Trigger components 674
17.3.8 Trigger exit codes 682
17.3.9 Node maintenance example 682
17.3.10 Environment creation example 683

17.4 Trigger variables 684
17.4.1 About trigger variables 684
17.4.2 How-to's 685

17.4.2.1 Setting and receiving trigger variables 685
17.4.2.2 Externally injecting variables into job triggers 686
17.4.2.3 Exporting variables to parent objects 686
17.4.2.4 Requiring variables from generations of parent objects 687
17.4.2.5 Requesting name space variables 687

17.4.3 References 688
17.4.3.1 Dependency trigger components 688
17.4.3.2 Trigger variable comparison types 689
17.4.3.3 Internal variables 689

18.0 Miscellaneous 691
18.1 User Feedback Overview 691
18.2 Enabling High Availability Features 692
18.3Malleable Jobs 694
18.4 Identity Managers 695
18.5 Generic System Jobs 699
18.6 Implementing Guaranteed Start Time 702

19.0 Database Configuration 703
19.1 SQLite3 703
19.2 Connecting to a MySQL Database with an ODBC Driver 704
19.3 Connecting to a PostgreSQL Database with an ODBC Driver 707
19.4 Migrating Your Database to Newer Versions of Moab 709
19.5 Importing Statistics from stats/DAY.* to the Moab Database 714

20.0 Accelerators 715
20.1 Scheduling GPUs 715
20.2 Using GPUs with NUMA 716
20.3 NVIDIA GPUs 717
20.4 GPUMetrics 719
20.5 Intel® Xeon Phi™ Coprocessor Configuration 721
20.6 Intel® Xeon Phi™ Co-processor Metrics 725

21.0 VMs 727
21.1 Policy-based VMMigration 727
21.2 Overcommit Factor and Threshold 729
21.3 Overutilization Migration 731
21.4 Green Migration and Consolidation 731

22.0 Workload-Driven Cloud Services 733
22.1 About workload-driven cloud services 733
22.2 Tasks 738

22.2.1 Enabling cloud services 738
22.2.2 Creating a generic system job 739
22.2.3 Creating a cloud workflow 740
22.2.4 Creating a service 743
22.2.5 Canceling a service 744

22.3 References 745
22.3.1 Cloud-specific job template attributes 745
22.3.2 Generic system job trigger requirements 748
22.3.3 VM service example 748

23.0 Preemption 751
23.1 About preemption 751
23.2 Preemption tasks 752

23.2.1 Canceling jobs with preemption 752
23.2.2 Checkpointing jobs with preemption 755
23.2.3 Requeueing jobs with preemption 757
23.2.4 Suspending jobs with preemption 760
23.2.5 Using owner preemption 763
23.2.6 Using QoS preemption 767

23.3 Preemption references 768
23.3.1 Manual preemption commands 768
23.3.2 Preemption flags 769
23.3.3 PREEMPTPOLICY types 770
23.3.4 Simple example of preemption 771
23.3.5 Testing and troubleshooting preemption 774

24.0 Job templates 777
24.1 About job templates 777

ix

x

24.2 Job template how-to's 778
24.2.1 Creating job templates 778
24.2.2 Viewing job templates 779
24.2.3 Applying templates based on job attributes 779
24.2.4 Requesting job templates directly 780
24.2.5 Creating workflows with job templates 781

24.3 Job template references 782
24.3.1 Job template extension attributes 782
24.3.2 Job template matching attributes 793
24.3.3 Job template examples 794
24.3.4 Job template workflow examples 795

25.0 Appendices 797
Appendix A: Moab Parameters 797
Appendix B: Multi-OS Provisioning 949
Appendix D: Adjusting Default Limits 967
Appendix E: Security 971
Appendix G: Integrating Other Resources with Moab 979

Compute Resource Managers 980
Moab-TORQUE Integration Guide 980

TORQUE/PBS Integration Guide - RM Access Control 983
TORQUE/PBS Config - Default Queue Settings 983

Moab-SLURM Integration Guide 984
Installation Notes for Moab and TORQUE for Cray 988

Provisioning Resource Managers 1005
Validating an xCAT Installation for Use with Moab 1006

Hardware Integration 1008
Moab-NUMA Integration Guide 1008

Appendix H: Interfacing with Moab (APIs) 1012
Appendix I: Considerations for Large Clusters 1016
Appendix J: Configuring Moab as a Service 1020
Appendix K: Migrating from 3.2 1021
Appendix R: Node Allocation Plug-in Developer Kit 1023
Appendix S: Scalable Systems Software Specification 1030

Scalable Systems Software Job Object Specification 1030
Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message
Format 1063

Scalable Systems Software Node Object Specification 1087
Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Pro-
tocol 1096

Appendix W: Moab Resource Manager Language Interface Overview 1112
W.1 Moab Resource Manager Language Data Format 1112
W.2 Managing Resources with SLURM 1121
W.3Moab RM Language Socket Protocol Description 1131

SCHEDCFG flags 1135

Moab overview xi

Welcome
Welcome to the Moab Workload Manager 7.2.8 Administrator Guide. This guide is intended for Moab
system administrators and users.

The following sections will help you quickly get started:

l Moab overview on page xi: Gives an overview about Moab basics.

l Philosophy on page 1: Explains the value of using Moab and the philosophy behind what Moab is
designed to do.

l Installing Moab on page 8: Provides instructions about how to install Moab.

l Initial Moab Configuration on page 20: Explains how to configure and set up Moab.

Moab overview
Moab Workload Manager is a highly advanced scheduling and management system designed for clusters,
and on-demand/utility computing systems. At a high level, Moab applies site policies and extensive
optimizations to orchestrate jobs, services, and other workload across the ideal combination of network,
compute, and storage resources. Moab enables true adaptive computing allowing compute resources to
be customized to changing needs and failed systems to be automatically fixed or replaced. Moab
increases system resource availability, offers extensive cluster diagnostics, delivers powerful QoS/SLA
features, and provides rich visualization of cluster performance through advanced statistics, reports, and
charts.

Moab works with virtually all major resource management and resource monitoring tools. From
hardware monitoring systems like IPMI to provisioning systems and storage managers, Moab takes
advantage of domain expertise to allow these systems to do what they do best, importing their state
information and providing them with the information necessary to better do their job. Moab uses its
global information to coordinate the activities of both resources and services, which optimizes overall
performance in-line with high-level mission objectives.

Related topics

l Welcome on page xi

xii Moab overview

1.1 Value of a Batch System 1

1.0 Philosophy
The scheduler's purpose is to optimally use resources in a convenient and manageable way. System
users want to specify resources, obtain quick turnaround on their jobs, and have reliable resource
allocation. On the other hand, administrators want to understand both the workload and the resources
available. This includes current state, problems, and statistics—information about what is happening that
is transparent to the end-user. Administrators need an extensive set of options to enable management
enforced policies and tune the system to obtain desired statistics.

There are other systems that provide batch management; however, Moab is unique in many respects.
Moab matches jobs to nodes, dynamically reprovisions nodes to satisfy workload, and dynamically
modifies workload to better take advantage of available nodes. Moab allows sites to fully visualize
cluster and user behavior. It can integrate and orchestrate resource monitors, databases, identity
managers, license managers, networks, and storage systems, thus providing a cohesive view of the
cluster—a cluster that fully acts and responds according to site mission objectives.

Moab can dynamically adjust security to meet specific job needs. Moab can create real and virtual
clusters on demand and from scratch that are custom-tailored to a specific request. Moab can integrate
visualization services, web farms and application servers. Moab maintains complete accounting and
auditing records, exporting this data to information services on command, and even providing
professional billing statements to cover all used resources and services.

Moab provides user- and application-centric web portals and powerful graphical tools for monitoring and
controlling every conceivable aspect of a cluster's objectives, performance, workload, and usage. Moab is
unique in its ability to deliver a powerful user-centric cluster with little effort. Its design is focused on
ROI, better use of resources, increased user effectiveness, and reduced staffing requirements.

This chapter contains these sections:

l Value of a Batch System on page 1

l Philosophy and Goals on page 2

l Workload on page 3

1.1 Value of a Batch System
Batch systems provide centralized access to distributed resources through mechanisms for submitting,
launching, and tracking jobs on a shared resource. This greatly simplifies use of the cluster's distributed
resources, allowing users a single system image in terms of managing jobs and aggregate compute
resources available. Batch systems should do much more than just provide a global view of the cluster,
though. Using compute resources in a fair and effective manner is complex, so a scheduler is necessary
to determine when, where, and how to run jobs to optimize the cluster. Scheduling decisions can be
categorized as follows:

l Traffic Control

l Mission Policies

l Optimizations

Traffic Control
A scheduler must prevent jobs from interfering. If jobs contend for resources, cluster performance
decreases, job execution is delayed, and jobs may fail. Thus, the scheduler tracks resources and dedicates
requested resources to a particular job, which prevents use of such resources by other jobs.

Mission Policies
Clusters and other HPC platforms typically have specific purposes; to fulfill these purposes, or mission
goals, there are usually rules about system use pertaining to who or what is allowed to use the system.
To be effective, a scheduler must provide a suite of policies allowing a site to map site mission policies
into scheduling behavior.

Optimizations
The compute power of a cluster is a limited resource; over time, demand inevitably exceeds supply.
Intelligent scheduling decisions facilitate higher job volume and faster job completion. Though subject to
the constraints of the traffic control and mission policies, the scheduler must use whatever freedom is
available to maximize cluster performance.

1.2 Philosophy and Goals
Managers want high system utilization and the ability to deliver various qualities of service to various
users and groups. They need to understand how available resources are delivered to users over time.
They also need administrators to tune cycle delivery to satisfy the current site mission objectives.

Determining a scheduler's success is contingent upon establishing metrics and a means to measure them.
The value of statistics is best understood if optimal statistical values are known for a given environment,
including workload, resources, and policies. That is, if an administrator could determine that a site's
typical workload obtained an average queue time of 3.0 hours on a particular system, that would be a
useful statistic; however, if an administrator knew that through proper tuning the system could deliver
an average queue time of 1.2 hours with minimal negative side effects, that would be valuable
knowledge.

Moab development relies on extensive feedback from users, administrators, and managers. At its core, it
is a tool designed to manage resources and provide meaningful information about what is actually
happening on the system.

Management Goals
A manager must ensure that a cluster fulfills the purpose for which it was purchased, so a manager must
deliver cycles to those projects that are most critical to the success of the funding organizations.
Management tasks to fulfill this role may include the following:

1.0 Philosophy

2 1.2 Philosophy and Goals

1.3 Workload 3

l Define cluster mission objectives and performance criteria

l Evaluate current and historical cluster performance

l Instantly graph delivered service

Administration Goals
An administrator must ensure that a cluster is effectively functioning within the bounds of the
established mission goals. Administrators translate goals into cluster policies, identify and correct
cluster failures, and train users in best practices. Given these objectives, an administrator may be tasked
with each of the following:

l Maximize utilization and cluster responsiveness

l Tune fairness policies and workload distribution

l Automate time-consuming tasks

l Troubleshoot job and resource failures

l Instruct users of available policies and in their use regarding the cluster

l Integrate new hardware and cluster services into the batch system

End-user Goals
End-users are responsible for learning about the resources available, the requirements of their
workload, and the policies to which they are subject. Using this understanding and the available tools,
they find ways to obtain the best possible responsiveness for their own jobs. A typical end-user may have
the following tasks:

l Manage current workload

l Identify available resources

l Minimize workload response time

l Track historical usage

l Identify effectiveness of prior submissions

1.3 Workload
Moab can manage a broad spectrum of compute workload types, and it can optimize all four workload
types within the same cluster simultaneously, delivering on the objectives most important to each
workload type. The workload types include the following:

l Batch Workload

l Interactive Workload

l Calendar Workload

l Service Workload

1.0 Philosophy

Batch Workload
Batch workload is characterized by a job command file that typically describes all critical aspects of the
needed compute resources and execution environment. With a batch job, the job is submitted to a job
queue, and is run somewhere on the cluster as resources become available. In most cases, the submitter
will submit multiple batch jobs with no execution time constraints and will process the job results as
they become available.

Moab can enforce rich policies defining how, when, and where batch jobs run to deliver compute
resources to the most important workload and provide general SLA guarantees while maximizing system
utilization and minimizing average response time.

Interactive Workload
Interactive workload differs from batch in that requestors are interested in immediate response and are
generally waiting for the interactive request to be executed before going on to other activities. In many
cases, interactive submitters will continue to be attached to the interactive job, routing keystrokes and
other input into the job and seeing both output and error information in real-time. While interactive
workload may be submitted within a job file, commonly, it is routed into the cluster via a web or other
graphical terminal and the end-user may never even be aware of the underlying use of the batch system.

For managing interactive jobs, the focus is usually on setting aside resources to guarantee immediate
execution or at least a minimal wait time for interactive jobs. Targeted service levels require
management when mixing batch and interactive jobs. Interactive and other jobs types can be dynamically
steered in terms of what they are executing as well as in terms of the quantity of resources required by
the application. Moab can apply dynamic or malleable job facilities to dynamically grow and shrink jobs
as needed to meet these changing constraints.

Calendar Workload
Calendar workload must be executed at a particular time and possibly in a regular periodic manner. For
such jobs, time constraints range from flexible to rigid. For example, some calendar jobs may need to
complete by a certain time, while others must run exactly at a given time each day or each week.

Moab can schedule the future and can thus guarantee resource availability at needed times to allow
calendar jobs to run as required. Furthermore, Moab provisioning features can locate or temporarily
create the needed compute environment to properly execute the target applications.

Service Workload
Moab can schedule and manage both individual applications and long-running or persistent services.
Service workload processes externally-generated transaction requests while Moab provides the
distributed service with needed resources to meet target backlog or response targets to the service.
Examples of service workload include parallel databases, web farms, and visualization services. Moab
can apply cluster, or dynamically-generated on-demand resources to the service.

When handling service workload, Moab observes the application in a highly abstract manner. Using the
JOBCFG parameter, aspects of the service jobs can be discovered or configured with attributes describing
them as resource consumers possessing response time, backlog, state metrics, and associated QoS
targets. In addition, each application can specify the type of compute resource required (OS, arch,
memory, disk, network adapter, data store, and so forth) as well as the support environment (network,
storage, external services, and so forth).

1.0 Philosophy

4 1.3 Workload

1.3 Workload 5

If the QoS response time/backlog targets of the application are not being satisfied by the current
resource allocation, Moab evaluates the needs of this application against all other site mission objectives
and workload needs and determines what it must do to locate or create (that is, provision, customize,
secure) the needed resources. With the application resource requirement specification, a site may also
indicate proximity/locality constraints, partition policies, ramp-up/ramp-down rules, and so forth.

Once Moab identifies and creates appropriate resources, it hands these resources to the application via a
site customized URL. This URL can be responsible for whatever application-specific hand-shaking must be
done to launch and initialize the needed components of the distributed application upon the new
resources. Moab engages in the hand-off by providing needed context and resource information and by
launching the URL at the appropriate time.

Related topics

l Malleable Jobs
l QoS/SLA Enforcement

1.0 Philosophy

6 1.3 Workload

2.1 Hardware and Software Requirements 7

2.0 Installation and Initial Configuration
l Hardware and Software Requirements on page 7

l Installing Moab on page 8

l Connecting Moab to MongoDB on page 15

l Upgrading Moab on page 17

l Initial Moab Configuration on page 20

l Initial Moab Testing on page 22

2.1 Hardware and Software Requirements
l Hardware Requirements

l Supported Platforms

Hardware Requirements
Adaptive Computing recommends a quad-core system with 12 GB of RAM and at least 100 GB of disk
space; such a configuration is sufficient for most operating environments. If you have questions about
unique configuration requirements, contact your account representative.

Supported Platforms
Moab works with a variety of platforms. Many commonly used resource managers, operating systems,
and architectures are supported.

Resource Managers that Integrate with Moab

The following resource managers integrate with Moab:

l SLURM

l TORQUE

Supported Operating Systems

Moab has been tested on the following variants of Linux:

l CentOS (5.7 and 6.3)

l RedHat (5.7 and 6.3)

l Scientific Linux (6.3)

l SuSE (11 SP2)

Moab has historically worked, but has not been tested, on the following operating systems:

l Debian

l AIX

Supported Architectures

Supported hardware architectures:

l Intel/AMD x86-64

2.2 Installing Moab
l Moab Server Installation

l Moab Client Installation

After reading this section you will be able to:

l Install the Moab server.

l Install end-user commands on remote systems.

This section assumes a working knowledge of Linux or Unix based operating systems, including use of
commands such as:

l tar

l make

l vi

Some operating systems use different commands (such as "gmake" and "gtar" instead of "make"
and "tar").

Moab Server Installation
Before installing Moab, view the Prerequisites to verify your platform is supported.

By default, the Moab home directory is configured as /opt/moab, the Moab server daemon is installed
to /opt/moab/sbin/, and the client commands are installed to /opt/moab/bin/. $MOABHOMEDIR is
the location of the etc/, log/, spool/, and stat/ directories and the moab.lic file. The default
location for moab.cfg and moab-private.cfg is /opt/moab/etc/ and is the recommended location
for the license and configuration files.

$MOABHOMEDIR is required whenever the Moab binary is started or when client commands are used. It
is recommended that you insert the $MOABHOMEDIR environment variable and its value into a global
environment variable profile by editing the /etc/profile, /etc/bashrc, or /etc/environment

2.0 Installation and Initial Configuration

8 2.2 Installing Moab

2.2 Installing Moab 9

files (depending on your installation). Doing this will ensure that this environment variable is available
to all users on the system without any action on their part.

All Moab executables are placed in $MOABHOMEDIR/bin or $MOABHOMEDIR/sbin (such as
/opt/moab/bin/).

If you need to export your Moab home directory, run the following:

> export MOABHOMEDIR=/opt/moab

Moab contains a number of architectural parameter settings that you can adjust for non-standard
installations. See Appendix D - Adjusting Default Limits and make any needed changes prior to
using make install.

The following installation assumes that you have done a standard TORQUE installation according to the
TORQUE 4.2 documentation, and that you have prepared TORQUE for a Moab installation, and that you
use a RedHat or CentOS operating system.

To install Moab
The following instructions demonstrate installing Moab on a Red Hat 6 or CentOS 6 system. Run each
step as the root user.

1. Install the required dependencies and packages.

RHEL 5 and CentOS 5:

[root]# yum update
[root]# yum install make curl unixODBC unixODBC-devel perl-CPAN libxml2-devel

RHEL 6, CentOS 6, and Scientific Linux 6:

[root]# yum update
[root]# yum install make libcurl unixODBC unixODBC-devel perl-CPAN libxml2-devel

SLES:

[root]# zypper update
[root]# zypper install make curl unixODBC unixODBC-devel libxml2-devel

2. Run each of the following commands in order.

[root]# tar xzvf moab-7.2.8-xxxx.tar.gz (where xxxx can be one of: generic,
generic-odbc, torque, torque-odbc)
[root]# cd moab-7.2.8
[root]# ./configure <option>

In some cases, you might want to customize the location of the Moab home directory, the server
daemon, and the client commands. You can make these configurations by using the ./configure
options (For a complete list of ./configure options, use ./configure --help.). We strongly
recommend that you configure Moab with the --with-init and --with-profile options. If you

2.0 Installation and Initial Configuration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

are using TORQUE as your resource manager, use the --with-torque option. If you are installing
Moab Accounting Manager, configure Moab with the --with-am option.

Here are some examples of commonly used ./configure options:

Option Description Example

--with-flexlm Causes Moab to install the
license.mon.flexLM.pl
script in the /opt/moab/tools
directory. For more information
about this script, see Interfacing
to FLEXlm on page 567.

[root]# ./configure --with-flexlm

--with-homedir Specifies the location of the Moab
configuration directory and the
MOABHOMEDIR environment
variable. The default location is
/opt/moab.

MOABHOMEDIR is
automatically set on some
distributions during
installation, when the --
with-profile option is
enabled.

[root]# ./configure --with-
homedir=/var/moab

The Moab home directory will be
/var/moab instead of the default
/opt/moab.

--with-init Enables the installation of a
distribution-specific
/etc/init.d/moab service
startup script.
This option is required if you
want to install this script onto a
new system. If you do not set this
option, you must manually set up
the Moab daemon service.
The startup script is located at
OS/EL/etc/init.d/moab.

The TORQUE and Moab
initialization scripts are
provided in the
contrib/init.d
directory as a courtesy
and may be modified at
your discretion to work on
your system.

[root]# ./configure --with-init

2.0 Installation and Initial Configuration

10 2.2 Installing Moab

2.2 Installing Moab 11

Option Description Example

--prefix Specifies the location of the
binaries and libraries of the
Moab install.
The default location is
/opt/moab.

[root]# ./configure --prefix=/usr/local

--with-profile Enables the installation of
distribution-specific
/etc/profile.d/moab.[c]sh
setup script for bash and cshell.
The MOABHOMEDIR, PERL5LIB,
PATH and MANPATH
environment variables are setup
to specify where the new moab
configuration, scripts, binaries
and man pages reside. If you do
not set this option, these scripts
are not installed, and you must
manually perform this set up.
The environment setup scripts
are located at
OS/EL/etc/profile.d/moab.
[c]sh.

[root]# ./configure --with-profile

--with-am Specifies that you want to
configure Moab with Moab
Accounting Manager. <type> can
be mam or native.

There is a similar --
with-torque option
that configures Moab with
TORQUE, but you do not
need to specify this option
if you install the "torque"
tarball version.

[root]# ./configure --with-am=<type>

3. (Only if you are using green computing, or if you are using a resource manager other than TORQUE)
Run the make perldeps command to install the necessary perl modules using CPAN. When first
running CPAN, you will be asked for configuration information. It is recommended that you choose an
automatic configuration. You will be prompted to provide input during module installation; running
the make perldeps command with a script is not recommended.

[root]# make perldeps

4. Install Moab.

2.0 Installation and Initial Configuration

[root]# make install

5. ONLY if you are installing on non-RHEL distributions, copy the appropriate init.d file, set the
permissions on it, and configure Moab to start automatically at system boot.

* If SLES distribution, do the following *
[root]# cp OS/SUSE/etc/init.d/moab /etc/init.d/moab

[root]# chmod 755 /etc/init.d/moab
[root]# chkconfig --add moab

* If chkconfig doesn't work, try the following *
[root]# update-rc.d moab defaults

6. Modify the Moab configuration file.

[root]# vim /opt/moab/etc/moab.cfg

Do the following:

a. Verify that SUBMITCMD is set up for your TORQUE resource manager (change
RMCFG<hostname> to RMCFG[torque]), and that it points to a valid qsub executable. For
example:

RMCFG[torque] SUBMITCMD=/usr/local/bin/qsub

ADMINCFG[1] USERS=root,tomcat

b. Make sure that you set ENABLEPROXY to TRUE:

ADMINCFG[1] ENABLEPROXY=TRUE

7. If you ran ./configure with the --with-profile option, source the following file to add the MWM
home directory to your current shell $PATH environment.

[root]# . /etc/profile.d/moab.sh

8. Copy your license file into the same directory as moab.cfg (/opt/moab/etc/ by default). For
example:

[root]# cp moab.lic $MOABHOMEDIR/etc/moab.lic

To verify the current status of your license, use moab --about.

Moab checks the status of the license every day just after midnight. At 60 and 45 days before, and
daily from 30 days before license expiration to and including the license expiration date, Moab sends
an e-mail to all level 1 administrators informing them of the pending Moab license expiration. A log
record is also made of the upcoming expiration event. For the notifications to occur correctly,
administrator e-mail notification must be enabled and moab.cfg must contain e-mail addresses for
level 1 administrators:

2.0 Installation and Initial Configuration

12 2.2 Installing Moab

2.2 Installing Moab 13

ADMINCFG[1] USERS=u1,u2,u3[,...]

USERCFG[u1] EMAILADDRESS=u1@company.com
USERCFG[u2] EMAILADDRESS=u2@company.com
USERCFG[u3] EMAILADDRESS=u3@company.com

MAILPROGRAM DEFAULT

Moab has an internal license that enables some functionality for a limited time for evaluation
purposes. If you want to enable adaptive energy management, dynamic multi-OS provisioning,
and other features, or if you want to evaluate Moab for a longer period, contact evaluation
support. Use mdiag -S -v to see which features your license supports.

9. Install and connect MongoDB. See Connecting Moab to MongoDB on page 15 for instructions.

10. Start Moab.

[root]# service moab start

If Moab fails to start because libodbc.so.1 cannot be found and libodbc.so.2 is
available on your system, you must create a symbolic link from libodbc.so.1 to
libodbc.so.2.

[root]# ln -s /usr/lib64/libodbc.so.2 /usr/lib64/libodbc.so.1

If Moab fails to start because libodbc.so.2 cannot be found and libodbc.so.1 is available
on your system, you must create a symbolic link from libodbc.so.2 to libodbc.so.1.

[root]# ln -s /usr/lib64/libodbc.so.1 /usr/lib64/libodbc.so.2

For more information, see the Unix ODBC documentation.

11. Submit a sleep job as a non-root user and verify the job is running.

[root]# su - user
[user]$ echo sleep 150 | msub
[user]$ showq

Moab Client Installation
After installing the Moab server on the head node, Moab can create a "client commands-only" tarball you
can use to install just the Moab client commands on a login/client node. The tarball allows you to install
the binary Moab client command files, with their man pages, using a single tar command. In addition,
the tarball contains a moab.cfg file configured with the Moab host name and port number so you do not
have to manually configure this information on the login/client node.

Command Installation when Server and Client Have Similar Architecture

After installing Moab on the head node, enter the following command:

> make client-pkg

2.0 Installation and Initial Configuration

http://www.adaptivecomputing.com/resources/support.php
http://www.adaptivecomputing.com/resources/support.php
http://www.unixodbc.org/

A tarball is created with the name "client.tgz". Copy the tarball to the root directory of the client node,
log in to the client node as root, and install the client commands using the following command:

> tar xvf client.tgz

The Moab client commands are now available on the login/client node.

Command Installation when Server and Client Have Diverse Architecture

By default, Moab client commands (from any build) are able to communicate and authenticate with any
server. This can be a security risk depending on the type of environment in which Moab is running. If
your site needs secure communication and authentication between Moab client commands and Moab
server, it is recommended that you create a site-specific key and place it in the same directory as your
moab.cfg file. By default, this is $MOABHOMEDIR/etc/.moab.key. When the Moab server and client
commands detect the presence of those two files they will use the key in those files to authenticate and
communicate, instead of the default key.

For more details, please see Mauth Authentication on page 975.

Preparing TORQUE for a Moab Installation
Several steps must be taken before installing Moab with TORQUE to ensure that they will communicate
properly.

To prepare TORQUE for a Moab Installation

1. Edit the nodes file to list all of your nodes somewhere inside of it.

> vim /var/spool/torque/server_priv/nodes

...
node04
node05
node06
...

2. Copy pbs_server to the etc/init.d/ directory.

> cp contrib/init.d/pbs_server /etc/init.d

3. Configure TORQUE to start automatically when the system boots.

> chkconfig --add pbs_server

The chkconfig command is RedHat-specific. If you are using a different operating system,
consult its documentation for a similar command.

4. Specify a TORQUE setup user.

> ./torque.setup root

5. Stop TORQUE and restart it to verify that the startup script runs correctly.

2.0 Installation and Initial Configuration

14 2.2 Installing Moab

2.3 Connecting Moab to MongoDB 15

> qterm
> /etc/init.d/pbs_server start

You can verify that the installation was successful by running the following command:

> pbsnodes

TORQUE returns information about each node. If TORQUE is properly configured, each node should
report state = free to indicate that the server and moms are communicating.

Related topics

l End User Commands

2.3 Connecting Moab toMongoDB
Moab connects to a MongoDB database to store information for use by MWS. This feature allows MWS
and Viewpoint to do very fast queries on various Moab objects without querying Moab directly.

The following instructions assume that the MongoDB server is on the same machine as Moab.

To connect Moab to MongoDB

1. Install MongoDB.

RHEL, CentOS, and Scientific Linux:

Create a file called /etc/yum.repos.d/10gen.repo and add the following lines.

[10gen]
name=10gen Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64
gpgcheck=0
enabled=1

Install mongo20-10gen and mongo20-10gen-server.

[root]# yum install mongo20-10gen mongo20-10gen-server

SLES:

[root]# zypper ar http://download.opensuse.org/repositories/server:/database/SLE_
11_SP2 OpenSuseDatabase
[root]# zypper install mongodb

2. Start MongoDB.

RHEL, CentOS, and Scientific Linux:

[root]# chkconfig mongod on
[root]# service mongod start

SLES:

2.0 Installation and Initial Configuration

[root]# chkconfig mongodb on
[root]# service mongodb start

3. Prepare the MongoDB database by doing the following:

a. Add the required MongoDB users.
[root]# mongo
> use admin;
> db.addUser("admin_user", "secret1");
> db.auth("admin_user", "secret1");

> use moab;
> db.addUser("moab_user", "secret2");
> db.addUser("mws_user", "secret3", true);

> use mws;
> db.addUser("mws_user", "secret3");

Because the admin_user has read and write rights to the admin database, it also has
read and write rights to all other databases. See Control Access to MongoDB Instances with
Authentication for more information.

The passwords used above (secret1, secret2, and secret3) are examples. Choose your
own passwords for these users.

b. Enable authentication in MongoDB.

RHEL, CentOS, and Scientific Linux:

[root]# vi /etc/mongod.conf
...
auth = true
...
[root]# service mongod restart

SLES:

MongoDB authentication is enabled by default in SLES. To verify, check the value of auth as
shown below.

[root]# nano /etc/mongodb.conf
...
auth = true
...
[root]# service mongodb restart

4. In /opt/moab/etc/moab.cfg, set the MONGOSERVER parameter to the correct location of the
MongoDB server. This may be set to localhost. By default, Moab assumes it is on the same server.
MONGOSERVER <host>[:<port>]

You only need to specify a port if you have changed it from the default. When a port is not specified,
Moab assumes the default Mongo port.

5. In /opt/moab/etc/moab-private.cfg, set the MONGOUSER and MONGOPASSWORD parameters
to the MongoDB moab_user credentials you set in step 3.

2.0 Installation and Initial Configuration

16 2.3 Connecting Moab to MongoDB

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/

2.4 Upgrading Moab 17

MONGOUSER moab_user
MONGOPASSWORD secret2

6. Verify that Moab is able to connect to MongoDB.
[root]# service moab restart
[root]# mdiag -S
...
Mongo connection (localhost) is up (credentials are set)
...

2.4 Upgrading Moab
The following instructions will guide you through a 6.1.x, 7.0.x, or 7.1.x to 7.2.0 upgrade. Depending on
which version of Moab you are presently running, upgrade instructions may vary, so unless otherwise
noted, all instructions assume use of a RHEL operating system; notes for SLES users are added in
appropriate places.

Upgrading Moab may require changing the database. Please see the README.database file included in
the Moab distribution for specific version information. Also, please see Migrating Your Database to
Newer Versions of Moab for specific details on migrating your database.

You might want to test the newest version of Moab on your system (before making the new version live)
to verify your policies, scripts, and queues work the way you want them to.

If you are also upgrading TORQUE from an older version (pre-4.0), you may encounter a problem where
Moab core files are regularly created in /opt/moab. This can be caused by old TORQUE library files
used by Moab that try to authorize with the old TORQUE pbs_iff authorization daemon. You can resolve
the problem by removing the old version library files from /usr/local/lib.

To upgrade Moab

1. Untar the distribution file. For example:

> tar -xzvf moab-7.2.8.linux-x86_64-generic.tar.gz

2. Navigate to the unpacked directory.

> cd moab-7.2.8

3. Install the GNU C++ compiler.

> sudo yum install gcc-c++

For SLES, use zypper install <package names> instead of yum install <package
names>.

2.0 Installation and Initial Configuration

4. Create a file called /etc/yum.repos.d/epel.repo and add the following lines.
[epel]
name=Extra Packages for Enterprise Linux 6 - x86_64
mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=epel-6&arch=x86_64
failovermethod=priority
enabled=1
gpgcheck=1
gpgkey=http://download.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-6

SLES users must add a repository to YaST. The URL of the repository is
http://download.opensuse.org/repositories/server:/database/SLE_11_SP2/.

5. Install the Boost C++ headers and shared development libraries.

> sudo yum install mongodb-devel boost-devel

6. Configure the installation package.

Use the same configure options as when Moab was installed previously. If you cannot remember
which options were used previously, check the config.log file in the directory where the previous
version of Moab was installed from.

For a complete list of configure options, use ./configure --help.

7. If you use the ODBC, you must upgrade to the 7.2 schema. See Migrating Your Database to Newer
Versions of Moab on page 709 for more information.

8. Stop Moab.

The Moab server must be stopped before the new version is installed.

> mschedctl -k
moab will be shutdown immediately

While Moab is down, all currently running jobs continue to run on the nodes, the job queue
remains intact, and new jobs cannot be submitted to Moab.

9. Run the make perldeps command to install the necessary perl modules using CPAN. When first
running CPAN, you will be asked for configuration information. It is recommended that you choose an
automatic configuration. You will be prompted to provide input during module installation; running
the make perldeps command with a script is not recommended.

[root]# make
[root]# make perldeps

10. Install Moab.

> sudo make install

Moab should be installed by root. If you cannot install Moab as root, please contact Customer
Support.

2.0 Installation and Initial Configuration

18 2.4 Upgrading Moab

http://download.opensuse.org/repositories/server:/database/SLE_11_SP2/
http://www.adaptivecomputing.com/services/techsupport.php
http://www.adaptivecomputing.com/services/techsupport.php

2.4 Upgrading Moab 19

11. For SLES users only. If you are using a RHEL operating system, proceed to the next step.

l If you are using SLES, convert libmongoclient.a to libmongoclient.so.

cd /usr/lib64
mkdir mongo
cp libmongoclient.a mongo/
cd mongo/
ar -x libmongoclient.a
gcc -shared *.o -o libmongoclient.so
cp libmongoclient.so ../

l If you are using SLES, create symbolic links that Moab will recognize to the boost libraries. The
following script which is run in the /usr/lib64 directory may be useful.

ln -s libboost_date_time.so.1.36.0 libboost_date_time.so.5
ln -s libboost_filesystem.so.1.36.0 libboost_filesystem.so.5
ln -s libboost_graph.so.1.36.0 libboost_graph.so.5
ln -s libboost_iostreams.so.1.36.0 libboost_iostreams.so.5
ln -s libboost_math_c99.so.1.36.0 libboost_math_c99.so.5
ln -s libboost_math_c99f.so.1.36.0 libboost_math_c99f.so.5
ln -s libboost_math_c99l.so.1.36.0 libboost_math_c99l.so.5
ln -s libboost_math_tr1.so.1.36.0 libboost_math_tr1.so.5
ln -s libboost_math_tr1f.so.1.36.0 libboost_math_tr1f.so.5
ln -s libboost_math_tr1l.so.1.36.0 libboost_math_tr1l.so.5
ln -s libboost_mpi.so.1.36.0 libboost_mpi.so.5
ln -s libboost_mpi_python.so.1.36.0 libboost_mpi_python.so.5
ln -s libboost_prg_exec_monitor.so.1.36.0 libboost_prg_exec_monitor.so.5
ln -s libboost_program_options.so.1.36.0 libboost_program_options.so.5
ln -s libboost_python.so.1.36.0 libboost_python.so.5
ln -s libboost_regex.so.1.36.0 libboost_regex.so.5
ln -s libboost_serialization.so.1.36.0 libboost_serialization.so.5
ln -s libboost_signals.so.1.36.0 libboost_signals.so.5
ln -s libboost_system.so.1.36.0 libboost_system.so.5
ln -s libboost_thread.so.1.36.0 libboost_thread.so.5
ln -s libboost_unit_test_framework.so.1.36.0 libboost_unit_test_framework.so.5
ln -s libboost_wave.so.1.36.0 libboost_wave.so.5
ln -s libboost_wserialization.so.1.36.0 libboost_wserialization.so.5
ln -s libboost_thread.so.1.36.0 libboost_thread-mt.so.5

12. Verify the version number is correct before starting the new server version.

> moab --about

Defaults: server=:42559 cfgdir=/opt/moab vardir=/opt/moab
Build dir: /home/admin01/dev/moab/
Build host: node01
Build date: Tue May 17 16:38:27 MST 2011
Build args: NA
Compiled as little endian.
Version: moab server 7.2.0 (revision 992)
Copyright 2012 Adaptive Computing Enterprises, Inc., All Rights Reserved

13. If you are upgrading to Moab 7.2 and use Moab Accounting Manager:

l If you use the native interface (AMCFG on page 802[...] TYPE=native), locate the following entries
in the moab.cfg file:

AMCFG[mam] QUOTEURL=exec:///$HOME/tools/mam/bank.quote.mam.pl
AMCFG[mam] RESERVEURL=exec:///$HOME/tools/mam/bank.reserve.mam.pl

2.0 Installation and Initial Configuration

AMCFG[mam] CHARGEURL=exec://$HOME/tools/mam/bank.charge.mam.pl
AMCFG[mam] DELETEURL=exec:///$HOME/tools/mam/bank.delete.mam.pl
...
AMCFG[mam] RESERVEFAILUREACTION=hold,hold
AMCFG[mam] CREATEFAILUREACTION=ignore

Update the paths to the NAMI scripts to reflect the new mam/usage.*.mam.pl URL, add the
CREATEURL on page 357, UPDATEURL on page 363, and PAUSEURL on page 361 attributes;
replace the RESERVEURL attribute and script name with STARTURL on page 362 and its
corresponding path; replace CHARGEURL with ENDURL on page 358 and its corresponding path;
and replace the RESERVEFAILUREACTION attribute with STARTFAILUREACTION on page 362. You
may also update the CREATEFAILUREACTION on page 357 attribute to specify how Moab
handles different types of create job failures.

AMCFG[mam] QUOTEURL=exec://$TOOLSDIR/mam/usage.quote.mam.pl
AMCFG[mam] CREATEURL=exec://$TOOLSDIR/mam/usage.create.mam.pl
AMCFG[mam] STARTURL=exec://$TOOLSDIR/mam/usage.start.mam.pl
AMCFG[mam] UPDATEURL=exec://$TOOLSDIR/mam/usage.update.mam.pl
AMCFG[mam] PAUSEURL=exec://$TOOLSDIR/mam/usage.pause.mam.pl
AMCFG[mam] ENDURL=exec://$TOOLSDIR/mam/usage.end.mam.pl
AMCFG[mam] DELETEURL=exec://$TOOLSDIR/mam/usage.delete.mam.pl
...
AMCFG[mam] STARTFAILUREACTION=hold,hold
AMCFG[mam] CREATEFAILUREACTION=ignore,ignore

l If you use the gold interface (AMCFG[...] TYPE=GOLD or AMCFG[...] SERVER=gold://...), the
interface name has changed to MAM. Modify the AMCFG TYPE or SERVER attribute to reference
MAM (AMCFG[...] TYPE=MAM or AMCFG [...] SERVER=mam://...). You must also replace the
JOBFAILUREACTION attribute with STARTFAILUREACTION on page 362.

AMCFG[mam] SERVER=mam://my_accounting_server
AMCFG[mam] STARTFAILUREACTION=hold,hold

14. Start Moab.

> moabd

2.5 Initial Moab Configuration
Configuring an RPM-based install of Moab
When Moab is installed via an RPM source, such as with the Moab HPC Suite or Moab Cloud Suite, the
moab.cfg file contains only one directive - an #IMPORT line that imports all the configuration files in
/opt/moab/etc. The usual configuration settings that are normally contained in moab.cfg have been
moved to moab-server.cfg. Moab still reads the moab.cfg file and, due to the #INCLUDE directive,
reads in all the other configuration files as well.

To configure Moab in the case of an RPM install, you can modify the moab.cfg file, the moab-
server.cfg file, or any of the configuration files that are read in by moab.cfg such as the accounting
manager configuration file (am.cfg) or the resource manager configuration file (rm.cfg).

2.0 Installation and Initial Configuration

20 2.5 Initial Moab Configuration

2.5 Initial Moab Configuration 21

The RPMs allow for a client install of Moab, instead of a server install. In this instance, the moab-
server.cfg file is replaced with a moab-client.cfg file. The server and client RPMs cannot be
installed on the same machine.

Basic configuration of Moab
After Moab is installed, there may be minor configuration remaining within the primary configuration
file, moab.cfg. While the configure script automatically sets these parameters, sites may choose to
specify additional parameters. If the values selected in configure are satisfactory, then this section
may be safely ignored.

The parameters needed for proper initial startup include the following:

Parameter Instructions

SCHEDCFG The SCHEDCFG parameter specifies how the Moab server will execute and communicate with
client requests. The SERVER attribute allows Moab client commands to locate the Moab server and
is specified as a URL or in <HOST>[:<PORT>] format. For example:

SCHEDCFG[orion] SERVER=cw.psu.edu

The SERVER attribute can also be set using the environment variable $MOABSERVER.
Using this variable allows you to quickly change to Moab server that client commands will
connect to.

> export MOABSERVER=cluster2:12221

ADMINCFG Moab provides role-based security enabled via multiple levels of admin access. Users who are to
be granted full control of all Moab functions should be indicated by setting the ADMINCFG
parameter. The first user in this USERS attribute list is considered the primary administrator. It is
the ID under which Moab will execute. For example, the following may be used to enable users
greg and thomas as level 1 admins:

ADMINCFG[1] USERS=greg,thomas

Moab may only be launched by the primary administrator user ID.

The primary administrator should be configured as a manager/operator/administrator in
every resource manager with which Moab will interface.

If the msub command will be used, then "root" must be the primary administrator.

Moab's home directory and contents should be owned by the primary administrator.

2.0 Installation and Initial Configuration

Parameter Instructions

RMCFG For Moab to properly interact with a resource manager, the interface to this resource manager
must be defined as described in the Resource Manager Configuration Overview. Further, it is
important that the primary Moab administrator also be a resource manager administrator within
each of those systems. For example, to interface to a TORQUE resource manager, the following may
be used:

RMCFG[torque1] TYPE=pbs

Related topics

l Parameter Overview
l mdiag -C command (for diagnosing current Moab configuration)

2.6 Initial Moab Testing
Moab has been designed with a number of key features that allow testing to occur in a no risk
environment. These features allow you to safely run Moab in test mode even with another scheduler
running whether it be an earlier version of Moab or another scheduler altogether. In test mode, Moab
collects real-time job and node information from your resource managers and acts as if it were
scheduling live. However, its ability to actually affect jobs (that is, start, modify, cancel, charge, and so
forth) is disabled.

Moab offers the following test modes to provide a means for verifying such things as proper
configuration and operation:

l Minimal Configuration Required To Start

o Normal Mode

o Monitor Mode

o Interactive Mode

o Simulation Mode

Scheduler Modes
Central to Moab testing is the MODE attribute of the SCHEDCFG parameter. This parameter attribute
allows administrators to determine how Moab will run. The possible values for MODE are NORMAL,
MONITOR, INTERACTIVE, and SIMULATION. For example, to request monitor mode operation, include
the following in the moab.cfg file:

SCHEDCFG MODE=MONITOR

2.0 Installation and Initial Configuration

22 2.6 Initial Moab Testing

http://www.clusterresources.com/products/torque-resource-manager.php

2.6 Initial Moab Testing 23

NormalMode

If initial evaluation is complete or not required, you can place the scheduler directly into production by
setting the MODE attribute of the SCHEDCFG parameter to NORMAL and (re)starting the scheduler.

Monitor Mode (or TestMode)

Monitor mode allows evaluation of new Moab releases, configurations, and policies in a risk-free manner.
In monitor mode, the scheduler connects to the resource manager(s) and obtains live resource and
workload information. Using the policies specified in the moab.cfg file, the monitor-mode Moab behaves
identical to a live or normal-mode Moab except the ability to start, cancel, or modify jobs is disabled. In
addition, allocation management does not occur in monitor mode. This allows safe diagnosis of the
scheduling state and behavior using the various diagnostic client commands. Further, the log output can
also be evaluated to see if any unexpected situations have arisen. At any point, the scheduler can be
dynamically changed from monitor to normal mode to begin live scheduling.

To set up Moab in monitor mode, do the following:

> vi moab.cfg
(change the MODE attribute of the SCHEDCFG parameter from NORMAL to MONITOR)

> moab

Remember that Moab running in monitor mode will not interfere with your production scheduler.

RunningMultiple Moab Instances Simultaneously

If running multiple instances of Moab, whether in simulation, normal, or monitor mode, make certain that
each instance resides in a different home directory to prevent conflicts with configuration, log, and
statistics files. Before starting each additional Moab, set the MOABHOMEDIR environment variable in
the execution environment to point to the local home directory. Also, each instance of Moab should run
using a different port to avoid conflicts.

If running multiple versions of Moab, not just different Moab modes or configurations, set the
$PATH variable to point to the appropriate Moab binaries.

To point Moab client commands (such as showq) to the proper Moab server, use the appropriate
command line arguments or set the environment variable MOABHOMEDIR in the client execution
environment as in the following example:

point moab clients/server to new configuration
> export MOABHOMEDIR=/opt/moab-monitor
set path to new binaries (optional)
> export PATH=/opt/moab-monitor/bin:/opt/moab-monitor/sbin:$PATH
start Moab server
> moab
query Moab server
> showq

moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

2.0 Installation and Initial Configuration

Interactive Mode

Interactive mode allows for evaluation of new versions and configurations in a manner different from
monitor mode. Instead of disabling all resource and job control functions, Moab sends the desired change
request to the screen and asks for permission to complete it. For example, before starting a job, Moab
may post something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying that it correctly meets
desired site policies. Moab will then execute the specified command. This mode is useful in validating
scheduler behavior and can be used until configuration is appropriately tuned and all parties are
comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling mode
to normal after verifying correct behavior.

Simulation Mode

Simulation mode is of value in performing a test drive of the scheduler or when a stable production
system exists and an evaluation is desired of how various policies can improve the current performance.
See the Simulations documentation for more information.

2.0 Installation and Initial Configuration

24 2.6 Initial Moab Testing

3.1 Layout of Scheduler Components 25

3.0 Scheduler Basics
l Layout of Scheduler Components on page 25

l Scheduling Environment on page 27

o Scheduling Dictionary on page 33

l Scheduling Iterations and Job Flow on page 40

l Configuring the Scheduler on page 42

l Credential Overview on page 45

o Job Attributes/Flags Overview on page 71

3.1 Layout of Scheduler Components
Moab is initially unpacked into a simple one-deep directory structure. What follows demonstrates the
default layout of scheduler components; some of the files (such as log and statistics files) are created
while Moab runs.

l * $(MOABHOMEDIR) (default is /opt/moab and can be modified via the --with-homedir
parameter during ./configure) contains the following files:

Filename Description

.moab.ck Checkpoint file

.moab.pid Lock file

moab.lic License file

contrib/ Directory containing contributed code and plug-ins

docs/ Directory for documentation

etc/ Directory for configuration files

moab.cfg General configuration file

Filename Description

moab.dat Configuration file generated by Moab Cluster Manager

moab-private.cfg Secure configuration file containing private information

lib/ Directory for library files (primarily for tools/)

log/ Directory for log files

moab.log Log file

moab.log.1 l Previous log file

stats/ Directory for statistics files:
o events.<date> – event files
o {DAY|WEEK|MONTH|YEAR}.<date> – usage profiling

data
o FS.<PARTITION>.<epochtime> – fairshare usage

data

samples/ Directory for sample configuration files, simulation trace files, etc.

l $(MOABINSTDIR) (default is /opt/moab and can be modified via the --prefix parameter
during ./configure) contains the following files:

Filename Description

bin/ Directory for client commands (for example, showq, setres, etc.)

sbin/ Directory for server daemons

moab Moab binary

tools/ Directory for resource manager interfaces and local scripts

l /etc/moab.cfg – If the Moab home directory cannot be found at startup, this file is checked to
see if it declares the Moab home directory. If a declaration exists, the system checks the declared
directory to find Moab. The syntax is: MOABHOMEDIR=<DIRECTORY>.

If you want to run Moab from a different directory other than /opt/moab but did not use the --with-
homedir parameter during ./configure, you can set the $MOABHOMEDIR environment variable,

3.0 Scheduler Basics

26 3.1 Layout of Scheduler Components

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php

3.2 Scheduling Environment 27

declare the home directory in the /etc/moab.cfg file, or use the -C command line option when using
the Moab server or client commands to specify the configuration file location.

When Moab runs, it creates a log file, moab.log, in the log/ directory and creates a statistics file in
the stats/ directory with the naming convention events.WWW_MMM_DD_YYYY (for example,
events.Sat_Oct_10_2009). Additionally, a checkpoint file, .moab.ck, and lock file, .moab.pid, are
maintained in the Moab home directory.

Layout of Scheduler Components with Integrated Database Enabled
If USEDATABASE INTERNAL is configured, the layout of scheduler components varies slightly. The
.moab.ck file and usage profiling data (stat/{DAY|WEEK|MONTH|YEAR}.<date>) are stored in the
moab.db database. In addition, the event information is stored in both event files:
(stat/events.<date>) and moab.db.

Related topics

l Commands Overview
l Installation

3.2 Scheduling Environment
Moab functions by manipulating a number of elementary objects, including jobs, nodes, reservations, QoS
structures, resource managers, and policies. Multiple minor elementary objects and composite objects
are also used; these objects are defined in the scheduling dictionary.

l Jobs

o Job States

o Requirement (or Req)

l Nodes

l Advance Reservations

l Policies

l Resources

l Task

l PE

l Class (or Queue)

l Resource Manager (RM)

Moab functions by manipulating a number of elementary objects, including jobs, nodes, reservations, QoS
structures, resource managers, and policies. Multiple minor elementary objects and composite objects
are also used; these objects are defined in the scheduling dictionary.

3.0 Scheduler Basics

Jobs
Job information is provided to the Moab scheduler from a resource manager such as Loadleveler, PBS,
Wiki, or LSF. Job attributes include ownership of the job, job state, amount and type of resources
required by the job, and a wallclock limit indicating how long the resources are required. A job consists
of one or more task groups, each of which requests a number of resources of a given type; for example, a
job may consist of two task groups, the first asking for a single master task consisting of 1 IBM SP node
with at least 512 MB of RAM and the second asking for a set of slave tasks such as 24 IBM SP nodes with
at least 128 MB of RAM. Each task group consists of one or more tasks where a task is defined as the
minimal independent unit of resources. By default, each task is equivalent to one processor. In SMP
environments, however, users may wish to tie one or more processors together with a certain amount of
memory and other resources.

Job States

The job's state indicates its current status and eligibility for execution and can be any of the values listed
in the following tables:

Table 3-1: Pre-execution states

State Definition

Deferred Job that has been held by Moab due to an inability to schedule the job under current conditions.
Deferred jobs are held for DEFERTIME before being placed in the idle queue. This process is
repeated DEFERCOUNT times before the job is placed in batch hold.

Hold Job is idle and is not eligible to run due to a user, (system) administrator, or batch system hold (also,
batchhold, systemhold, userhold).

Idle Job is currently queued and eligible to run but is not executing (also, notqueued).

NotQueued The job has not been queued.

Unknown Moab cannot determine the state of the job.

Table 3-2: Execution states

State Definition

Starting Batch system has attempted to start the job and the job is currently performing pre-start tasks that
may include provisioning resources, staging data, or executing system pre-launch scripts.

Running Job is currently executing the user application.

Suspended Job was running but has been suspended by the scheduler or an administrator; user application is
still in place on the allocated compute resources, but it is not executing.

3.0 Scheduler Basics

28 3.2 Scheduling Environment

3.2 Scheduling Environment 29

Table 3-3: Post-execution states

State Definition

Completed Job has completed running without failure.

Removed Job has run to its requested walltime successfully but has been canceled by the scheduler or
resource manager due to exceeding its walltime or violating another policy; includes jobs canceled
by users or administrators either before or after a job has started.

Vacated Job canceled after partial execution due to a system failure.

Task Group (or Req)

A job task group (or req) consists of a request for a single type of resources. Each task group consists of
the following components:

Component Description

Task Defin-
ition

A specification of the elementary resources that compose an individual task.

Resource
Constraints

A specification of conditions that must be met for resource matching to occur. Only resources
from nodes that meet all resource constraints may be allocated to the job task group.

Task Count The number of task instances required by the task group.

Task List The list of nodes on which the task instances are located.

Task Group
Statistics

Statistics tracking resource utilization.

Nodes
Moab recognizes a node as a collection of resources with a particular set of associated attributes. This
definition is similar to the traditional notion of a node found in a Linux cluster or supercomputer wherein
a node is defined as one or more CPUs, associated memory, and possibly other compute resources such
as local disk, swap, network adapters, and software licenses. Additionally, this node is described by
various attributes such as an architecture type or operating system. Nodes range in size from small
uniprocessor PCs to large symmetric multiprocessing (SMP) systems where a single node may consist of
hundreds of CPUs and massive amounts of memory.

In many cluster environments, the primary source of information about the configuration and status of a
compute node is the resource manager. This information can be augmented by additional information

3.0 Scheduler Basics

sources including node monitors and information services. Further, extensive node policy and node
configuration information can be specified within Moab via the graphical tools or the configuration file.
Moab aggregates this information and presents a comprehensive view of the node configuration, usages,
and state.

While a node in Moab in most cases represents a standard compute host, nodes may also be used to
represent more generalized resources. The GLOBAL node possesses floating resources that are available
cluster wide, and created virtual nodes (such as network, software, and data nodes) track and allocate
resource usage for other resource types.

For additional node information, see General Node Administration.

Advance Reservations
An advance reservation dedicates a block of specific resources for a particular use. Each reservation
consists of a list of resources, an access control list, and a time range for enforcing the access control
list. The reservation ensures the matching nodes are used according to the access controls and policy
constraints within the time frame specified. For example, a reservation could reserve 20 processors and
10 GB of memory for users Bob and John from Friday 6:00 a.m. to Saturday 10:00 p.m. Moab uses advance
reservations extensively to manage backfill, guarantee resource availability for active jobs, allow
service guarantees, support deadlines, and enable metascheduling. Moab also supports both regularly
recurring reservations and the creation of dynamic one-time reservations for special needs. Advance
reservations are described in detail in the Advance Reservations overview.

Policies
A configuration file specifies policies controls how and when jobs start. Policies include job prioritization,
fairness policies, fairshare configuration policies, and scheduling policies.

Resources
Jobs, nodes, and reservations all deal with the abstract concept of a resource. A resource in the Moab
world is one of the following:

Resource Description

processors Specify with a simple count value

memory Specify real memory or RAM in megabytes (MB)

swap Specify virtual memory or swap in megabytes (MB)

disk Specify local disk in megabytes (MB)

In addition to these elementary resource types, there are two higher level resource concepts used within
Moab: Task and the processor equivalent, or (PE).

3.0 Scheduler Basics

30 3.2 Scheduling Environment

3.2 Scheduling Environment 31

Task
A task is a collection of elementary resources that must be allocated together within a single node. For
example, a task may consist of one processor, 512 MB of RAM, and 2 GB of local disk. A key aspect of a
task is that the resources associated with the task must be allocated as an atomic unit, without spanning
node boundaries. A task requesting 2 processors cannot be satisfied by allocating 2 uniprocessor nodes,
nor can a task requesting 1 processor and 1 GB of memory be satisfied by allocating 1 processor on 1
node and memory on another.

In Moab, when jobs or reservations request resources, they do so in terms of tasks typically using a task
count and a task definition. By default, a task maps directly to a single processor within a job and maps
to a full node within reservations. In all cases, this default definition can be overridden by specifying a
new task definition.

Within both jobs and reservations, depending on task definition, it is possible to have multiple tasks from
the same job mapped to the same node. For example, a job requesting 4 tasks using the default task
definition of 1 processor per task can be satisfied by 2 dual processor nodes.

PE
The concept of the processor equivalent, or PE, arose out of the need to translate multi-resource
consumption requests into a scalar value. It is not an elementary resource but rather a derived resource
metric. It is a measure of the actual impact of a set of requested resources by a job on the total
resources available system wide. It is calculated as follows:

PE = MAX(ProcsRequestedByJob / TotalConfiguredProcs,
MemoryRequestedByJob / TotalConfiguredMemory,
DiskRequestedByJob / TotalConfiguredDisk,
SwapRequestedByJob / TotalConfiguredSwap) * TotalConfiguredProcs

For example, if a job requested 20% of the total processors and 50% of the total memory of a 128-
processor MPP system, only two such jobs could be supported by this system. The job is essentially using
50% of all available resources since the system can only be scheduled to its most constrained resource -
memory in this case. The processor equivalents for this job should be 50% of the processors, or PE = 64.

Another example: Assume a homogeneous 100-node system with 4 processors and 1 GB of memory per
node. A job is submitted requesting 2 processors and 768 MB of memory. The PE for this job would be
calculated as follows:

PE = MAX(2/(100*4), 768/(100*1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the memory on a 4-processor node.

The calculation works equally well on homogeneous or heterogeneous systems, uniprocessor or large
SMP systems.

Class (or Queue)
A class (or queue) is a logical container object that implicitly or explicitly applies policies to jobs. In
most cases, a class is defined and configured within the resource manager and associated with one or
more of the following attributes or constraints:

3.0 Scheduler Basics

Attribute Description

Default Job
Attributes

A queue may be associated with a default job duration, default size, or default resource require-
ments.

Host Con-
straints

A queue may constrain job execution to a particular set of hosts.

Job Con-
straints

A queue may constrain the attributes of jobs that may be submitted, including setting limits such
as max wallclock time and minimum number of processors.

Access List A queue may constrain who may submit jobs into it based on such things as user lists and group
lists.

Special
Access

A queue may associate special privileges with jobs including adjusted job priority.

As stated previously, most resource managers allow full class configuration within the resource
manager. Where additional class configuration is required, the CLASSCFG parameter may be used.

Moab tracks class usage as a consumable resource allowing sites to limit the number of jobs using a
particular class. This is done by monitoring class initiators that may be considered to be a ticket to run
in a particular class. Any compute node may simultaneously support several types of classes and any
number of initiators of each type. By default, nodes will have a one-to-one mapping between class
initiators and configured processors. For every job task run on the node, one class initiator of the
appropriate type is consumed. For example, a 3-processor job submitted to the class "batch" consumes
three batch class initiators on the nodes where it runs.

Using queues as consumable resources allows sites to specify various policies by adjusting the class
initiator to node mapping. For example, a site running serial jobs may want to allow a particular 8-
processor node to run any combination of batch and special jobs subject to the following constraints:

l Only 8 jobs of any type allowed simultaneously.

l No more than 4 special jobs allowed simultaneously.

To enable this policy, the site may set the node's MAXJOB policy to 8 and configure the node with 4
special class initiators and 8 batch class initiators.

In virtually all cases, jobs have a one-to-one correspondence between processors requested and class
initiators required. However, this is not a requirement, and with special configuration, sites may choose
to associate job tasks with arbitrary combinations of class initiator requirements.

In displaying class initiator status, Moab signifies the type and number of class initiators available using
the format [<CLASSNAME>:<CLASSCOUNT>]. This is most commonly seen in the output of node status
commands indicating the number of configured and available class initiators, or in job status commands
when displaying class initiator requirements.

3.0 Scheduler Basics

32 3.2 Scheduling Environment

3.2 Scheduling Environment 33

Resource Manager (RM)
While other systems may have more strict interpretations of a resource manager and its
responsibilities, Moab's multi-resource manager support allows a much more liberal interpretation. In
essence, any object that can provide environmental information and environmental control can be used
as a resource manager, including sources of resource, workload, credential, or policy information such as
scripts, peer services, databases, web services, hardware monitors, or even flats files. Likewise, Moab
considers any tool that provides control over the cluster environment, whether that be a license
manager, queue manager, checkpoint facility, provisioning manager, network manager, or storage
manager, to be a resource manager.

Moab aggregates information from multiple unrelated sources into a larger more complete world view
of the cluster that includes all the information and control found within a standard resource manager
such as TORQUE, including node, job, and queue management services. For more information, see the
Resource Managers and Interfaces overview.

Arbitrary Resource

Nodes can also be configured to support various arbitrary resources. Use the NODECFG parameter to
specify information about such resources. For example, you could configure a node to have 256 MB RAM,
4 processors, 1 GB Swap, and 2 tape drives.

3.2.1 Scheduling Dictionary

Account

Definition A credential also known as "project ID." Multiple users may be associated a single account ID and
each user may have access to multiple accounts. (See credential definition and ACCOUNTCFG para-
meter.)

Example ACCOUNT=hgc13

ACL (Access Control List)

Definition In the context of scheduling, an access control list is used and applied much as it is elsewhere. An
ACL defines what credentials are required to access or use particular objects. The principal objects to
which ACLs are applied are reservations and QoSes. ACLs may contain both allow and deny state-
ments, include wildcards, and contain rules based on multiple object types.

Example Reservation META1 contains 4 access statements.
l Allow jobs owned by user "john" or "bob "
l Allow jobs with QoS "premium"
l Deny jobs in class "debug"
l Allow jobs with a duration of less than 1 hour

3.0 Scheduler Basics

http://www.clusterresources.com/products/torque-resource-manager.php

Allocation

Definition A logical, scalar unit assigned to users on a credential basis, providing access to a particular quantity
of compute resources. Allocations are consumed by jobs associated with those credentials.

Example ALLOCATION=30000

Class

Definition (See Queue) A class is a logical container object that holds jobs allowing a site to associate various
constraints and defaults to these jobs. Class access can also be tied to individual nodes defining
whether a particular node will accept a job associated with a given class. Class based access to a node
is denied unless explicitly allowed via resource manager configuration. Within Moab, classes are tied
to jobs as a credential.

Example job "cw.073" is submitted to class batch
node "cl02" accepts jobs in class batch
reservation weekend allows access to jobs in class batch

CPU

Definition A single processing unit. A CPU is a consumable resource. Nodes typically consist of one or more
CPUs. (same as processor)

Credential

Definition An attribute associated with jobs and other objects that determines object identity. In the case of
schedulers and resource managers, credential based policies and limits are often established. At
submit time, jobs are associated with a number of credentials such as user, group , account , QoS, and
class. These job credentials subject the job to various polices and grant it various types of access.
In most cases, credentials set both the privileges of the job and the ID of the actual job executable.

Example Job "cw.24001" possesses the following credentials:

USER=john;GROUP=staff;ACCOUNT=[NONE];
QOS=[DEFAULT];CLASS=batch

Disk

Definition A quantity of local disk available for use by batch jobs. Disk is a consumable resource.

3.0 Scheduler Basics

34 3.2 Scheduling Environment

3.2 Scheduling Environment 35

Execution Environment

Definition A description of the environment in which the executable is launched. This environment may
include attributes such as the following:

l an executable
l command line arguments
l input file
l output file
l local user ID
l local group ID
l process resource limits

Example Job "cw.24001" possesses the following execution environment:

EXEC=/bin/sleep;ARGS="60";
INPUT=[NONE];OUTPUT=[NONE];
USER=loadl;GROUP=staff;

Fairshare

Definition Amechanism that allows historical resource utilization information to be incorporated into job pri-
ority decisions.

Fairness

Definition The access to shared compute resources that each user is granted. Access can be equal or based on
factors such as historical resource usage, political issues, and job value.

Group

Definition A credential typically directly mapping to a user's UNIX group ID.

Job

Definition The fundamental object of resource consumption. A job contains the following components:
l A list of required consumable resources
l A list of resource constraints controlling which resources may be allocated to the
job

l A list of job constraints controlling where, when, and how the job should run
l A list of credentials
l An execution environment

3.0 Scheduler Basics

Job Constraints

Definition A set of conditions that must be fulfilled for the job to start. These conditions are far reaching and
may include one or more of the following:

l When the job may run. (After time X, within Y minutes.)
l Which resources may be allocated. (For example, node must possess at least 512 MB of RAM,
run only in partition or Partition C, or run on HostA and HostB.)

l Starting job relative to a particular event. (Start after job X successfully completes.)

Example RELEASETIME>='Tue Feb 12, 11:00AM'
DEPEND=AFTERANY:cw.2004
NODEMEMORY==256MB

Memory

Definition A quantity of physical memory (RAM). Memory is provided by compute nodes. It is required as a con-
straint or consumed as a consumable resource by jobs. Within Moab, memory is tracked and repor-
ted in megabytes (MB).

Example Node "node001" provides the following resources:
PROCS=1,MEMORY=512,SWAP=1024

"Job cw.24004" consumes the following resources per task:
PROCS=1,MEMORY=256

Node

Definition A node is the fundamental object associated with compute resources. Each node contains the
following components:

l A list of consumable resources
l A list of node attributes

Node Attribute

Definition A node attribute is a non-quantitative aspect of a node. Attributes typically describe the node itself
or possibly aspects of various node resources such as processors or memory. While it is probably not
optimal to aggregate node and resource attributes together in this manner, it is common practice.
Common node attributes include processor architecture, operating system, and processor speed.
Jobs often specify that resources be allocated from nodes possessing certain node attributes.

Example ARCH=AMD,OS=LINUX24,PROCSPEED=950

3.0 Scheduler Basics

36 3.2 Scheduling Environment

3.2 Scheduling Environment 37

Node Feature

Definition A node feature is a node attribute that is typically specified locally via a configuration file. Node fea-
tures are opaque strings associated with the node by the resource manager that generally only have
meaning to the end-user, or possibly to the scheduler. A node feature is commonly associated with a
subset of nodes allowing end-users to request use of this subset by requiring that resources be alloc-
ated from nodes with this feature present. In many cases, node features are used to extend the
information provided by the resource manager.

Example FEATURE=s950,pIII,geology

This may be used to indicate that the node possesses a 950 MHz Pentium III processor and
that the node is owned by the Geology department.

Processor

Definition A processing unit. A processor is a consumable resource. Nodes typically consist of one or more pro-
cessors. (same as CPU)

Quality of Service (QoS)

Definition An object that provides special services, resources, and so forth.

Queue

Definition (see Class)

Reservation

Definition An object that reserves a specific collection or resources for a specific timeframe for use by jobs that
meet specific conditions.

Example Reserve 24 processors and 8 GB of memory from time T1 to time T2 for use by user X or jobs in the
class batch.

Resource

Definition Hardware, generic resources such as software, and features available on a node, including memory,
disk, swap, and processors.

3.0 Scheduler Basics

Resource, Available

Definition A compute node's configured resources minus the maximum of the sum of the resources utilized by
all job tasks running on the node and the resources dedicated; that is, R.Available = R.Configure -
MAX(R.Dedicated,R.Utilized).
In most cases, resources utilized will be associated with compute jobs that the batch system has
started on the compute nodes, although resource consumption may also come from the operating
system or rogue processes outside of the batch system's knowledge or control. Further, in a well-
managed system, utilized resources are less than or equal to dedicated resources and when
exceptions are detected, one or more usage-based limits are activated to preempt the jobs violating
their requested resource usage.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Resources available to user jsmith on node "cl003":

l 2 processors
l 392 MB memory

Resources available to a user other than jsmith on node "cl003":
l 1 processor
l 142 MB memory

Resource, Configured

Definition The total amount of consumable resources available on a compute node for use by job tasks.

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Configured resources for node "cl003":

l 4 processors
l 512 MB memory

3.0 Scheduler Basics

38 3.2 Scheduling Environment

3.2 Scheduling Environment 39

Resource, Consumable

Definition Any object that can be used (that is, consumed and thus made unavailable to another job) by, or
dedicated to a job is considered to be a resource. Common examples of resources are a node's
physical memory or local disk. As these resources may be given to one job and thus become
unavailable to another, they are considered to be consumable. Other aspects of a node, such as its
operating system, are not considered to be consumable since its use by one job does not preclude its
use by another. Note that some node objects, such as a network adapter, may be dedicated under
some operating systems and resource managers and not under others. On systems where the
network adapter cannot be dedicated and the network usage per job cannot be specified or tracked,
network adapters are not considered to be resources, but rather attributes.
Nodes possess a specific quantity of consumable resources such as real memory, local disk, or
processors. In a resource management system, the node manager may choose to report only those
configured resources available to batch jobs. For example, a node may possess an 80-GB hard drive
but may have only 20 GB dedicated to batch jobs. Consequently, the resource manager may report
that the node has 20 GB of local disk available when idle. Jobs may explicitly request a certain
quantity of consumable resources.

Resource, Constraint

Definition A resource constraint imposes a rule on which resources can be used to match a resource request.
Resource constraints either specify a required quantity and type of resource or a required node
attribute. All resource constraints must be met by any given node to establish a match.

Resource, Dedicated

Definition A job may request that a block of resources be dedicated while the job is executing. At other times, a
certain number of resources may be reserved for use by a particular user or group. In these cases,
the scheduler is responsible for guaranteeing that these resources, utilized or not, are set aside and
made unavailable to other jobs.

Example Node " cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Dedicated resources for node "cl003":

l 1 processor
l 250 MB memory

Resource, Utilized

Definition All consumable resources actually used by all job tasks running on the compute node.

3.0 Scheduler Basics

Resource, Utilized

Example Node "cl003" has 4 processors and 512 MB of memory. It is executing 2 tasks of job "clserver.0041"
that are using 1 processor and 60 MB of memory each. One processor and 250 MB of memory are
reserved for user "jsmith" but are not currently in use.
Utilized resources for node "cl003":

l 2 processors
l 120 MB memory

Swap

Definition A quantity of virtual memory available for use by batch jobs. Swap is a consumable resource
provided by nodes and consumed by jobs.

Task

Definition An atomic collection of consumable resources.

User, Global

Definition The user credential used to provide access to functions and resources. In local scheduling, global
user IDs map directly to local user IDs.

User, Local

Definition The user credential under which the job executable will be launched.

Workload

Definition Generalized term.

3.3 Scheduling Iterations and Job Flow
l Scheduling Iterations

o Update State Information

o Handle User Requests

3.0 Scheduler Basics

40 3.3 Scheduling Iterations and Job Flow

3.3 Scheduling Iterations and Job Flow 41

o Perform Next Scheduling Cycle

l Detailed Job Flow

o Determine Basic Job Feasibility

o Prioritize Jobs

o Enforce Configured Throttling Policies

o Determine Resource Availability

o Allocate Resources to Job

o Launch Job

Scheduling Iterations
In any given scheduling iteration, many activities take place, examples of which are listed below:

l Refresh reservations

l Schedule reserved jobs

l Schedule priority jobs

l Backfill jobs

l Update statistics

l Update State Information

l Handle User Requests

l Perform Next Scheduling Cycle

Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up-to-date information on
compute resources, workload, and policy configuration. On most systems, these calls are to a centralized
resource manager daemon that possesses all information. Jobs may be reported as being in any of the
following states listed in the job state table.

Handle User Requests

User requests include any call requesting state information, configuration changes, or job or resource
manipulation commands. These requests may come in the form of user client calls, peer daemon calls, or
process signals.

Perform Next Scheduling Cycle

Moab operates on a polling/event driven basis. When all scheduling activities complete, Moab processes
user requests until a new resource manager event is received or an internal event is generated.
Resource manager events include activities such as a new job submission or completion of an active job,
addition of new node resources, or changes in resource manager policies. Internal events include
administrator schedule requests, reservation activation/deactivation, or the expiration of the
RMPOLLINTERVAL timer.

3.0 Scheduler Basics

Detailed Job Flow

Determine Basic Job Feasibility

The first step in scheduling is determining which jobs are feasible. This step eliminates jobs that have
job holds in place, invalid job states (such as Completed, Not Queued, Deferred), or unsatisfied
preconditions. Preconditions may include stage-in files or completion of preliminary job steps.

Prioritize Jobs

With a list of feasible jobs created, the next step involves determining the relative priority of all jobs
within that list. A priority for each job is calculated based on job attributes such as job owner, job size,
and length of time the job has been queued.

Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many jobs, nodes, processors, and so
forth are allowed on a per credential basis. Jobs that violate these policies are not considered for
scheduling.

Determine Resource Availability

For each job, Moab attempts to locate the required compute resources needed by the job. For a match to
be made, the node must possess all node attributes specified by the job and possess adequate available
resources to meet the "TasksPerNode" job constraint. (Default "TasksPerNode" is 1.) Normally, Moab
determines that a node has adequate resources if the resources are neither utilized by nor dedicated to
another job using the calculation.

R.Available = R.Configured - MAX(R.Dedicated,R.Utilized).

The NODEAVAILABILITYPOLICY on page 873 parameter can be modified to adjust this behavior.

Allocate Resources to Job

If adequate resources can be found for a job, the node allocation policy is then applied to select the best
set of resources. These allocation policies allow selection criteria such as speed of node, type of
reservations, or excess node resources to be figured into the allocation decision to improve the
performance of the job and maximize the freedom of the scheduler in making future scheduling decisions.

Launch Job

With the resources selected and task distribution mapped, the scheduler then contacts the resource
manager and informs it where and how to launch the job. The resource manager then initiates the actual
job executable.

3.4 Configuring the Scheduler
l Adjusting Server Behavior

o Logging

o Checkpointing

3.0 Scheduler Basics

42 3.4 Configuring the Scheduler

3.4 Configuring the Scheduler 43

o Client Interface

o Scheduler Mode

Scheduler configuration is maintained using the flat text configuration file moab.cfg. All configuration
file entries consist of simple <PARAMETER> <VALUE> pairs that are whitespace delimited. Parameter
names are not case sensitive but <VALUE> settings are. Some parameters are array values and should
be specified as <PARAMETER> [<INDEX>] (Example: QOSCFG [hiprio] PRIORITY=1000); the <VALUE>
settings may be integers, floats, strings, or arrays of these. Some parameters can be specified as arrays
wherein index values can be numeric or alphanumeric strings. If no array index is specified for an array
parameter, an index of zero (0) is assumed. The example below includes both array based and non-array
based parameters:

SCHEDCFG[cluster2] SERVER=head.c2.org MODE=NORMAL
LOGLEVEL 6
LOGDIR /var/tmp/moablog

See the parameters documentation for information on specific parameters.

The moab.cfg file is read when Moab is started up or recycled. Also, the mschedctl -m command can be
used to reconfigure the scheduler at any time, updating some or all of the configurable parameters
dynamically. This command can be used to modify parameters either permanently or temporarily. For
example, the command mschedctl -m LOGLEVEL 3will temporarily adjust the scheduler log level. When the
scheduler restarts, the log level restores to the value stored in the Moab configuration files. To adjust a
parameter permanently, the option --flags=persistent should be set.

At any time, the current server parameter settings may be viewed using the mschedctl -l command.

Adjusting Server Behavior
Most aspects of Moab behavior are configurable. This includes both scheduling policy behavior and
daemon behavior. In terms of configuring server behavior, the following realms are most commonly
modified.

Logging

Moab provides extensive and highly configurable logging facilities controlled by parameters.

Parameter Description

LOGDIR Indicates directory for log files.

LOGFACILITY Indicates scheduling facilities to track.

LOGFILE Indicates path name of log file.

LOGFILEMAXSIZE Indicates maximum size of log file before rolling.

LOGFILEROLLDEPTH Indicates maximum number of log files to maintain.

3.0 Scheduler Basics

Parameter Description

LOGLEVEL Indicates verbosity of logging.

Checkpointing

Moab checkpoints its internal state. The checkpoint file records statistics and attributes for jobs, nodes,
reservations, users, groups, classes, and almost every other scheduling object.

Parameter Description

CHECKPOINTEXPIRATIONTIME Indicates how long unmodified data should be kept after the associated object
has disappeared; that is, job priority for a job no longer detected.

CHECKPOINTFILE Indicates path name of checkpoint file.

CHECKPOINTINTERVAL Indicates interval between subsequent checkpoints.

Client Interface

The Client interface is configured using the SCHEDCFG parameter. Most commonly, the attributes SERVER
and PORT must be set to point client commands to the appropriate Moab server. Other parameters such
as CLIENTTIMEOUT may also be set.

Scheduler Mode

The scheduler mode of operation is controlled by setting the MODE attribute of the SCHEDCFG
parameter. The following modes are allowed:

Mode Description

INTERACTIVE Moab interactively confirms each scheduling action before taking any steps. (See interactive
mode overview for more information.)

MONITOR Moab observes cluster and workload performance, collects statistics, interacts with allocation
management services, and evaluates failures, but it does not actively alter the cluster, including
job migration, workload scheduling, and resource provisioning. (See monitor mode overview for
more information.)

NORMAL Moab actively schedules workload according to mission objectives and policies; it creates reser-
vations; starts, cancels, preempts, and modifies jobs; and takes other scheduling actions.

SIMULATION Moab obtains workload and resource information from specified simulation trace files and sched-
ules the defined virtual environment.

3.0 Scheduler Basics

44 3.4 Configuring the Scheduler

3.5 Credential Overview 45

Mode Description

SINGLESTEP Moab behaves as in NORMAL mode but will only schedule a single iteration and then exit.

SLAVE Moab behaves as in NORMAL mode but will only start a job when explicitly requested by a trus-
ted administrator.

TEST Moab behaves as in NORMAL mode, will make reservations, and scheduling decisions, but will
then only log scheduling actions it would have taken if running in NORMAL mode. In most cases,
"TEST" mode is identical toMONITOR mode. (See test mode overview for more information.)

Related topics

l Initial Configuration
l Adding #INCLUDE files to moab.cfg

3.5 Credential Overview
Moab supports the concept of credentials, which provide a means of attributing policy and resource
access to entities such as users and groups. These credentials allow specification of job ownership,
tracking of resource usage, enforcement of policies, and many other features. There are five types of
credentials -user, group, account, class, and QoS. While the credentials have many similarities, each
plays a slightly different role.

l General Credential Attributes

l User Credential

l Group Credential

l Account (or Project) Credential

l Class (or Queue) Credential

l QoS Credential

General Credential Attributes
Internally, credentials are maintained as objects. Credentials can be created, destroyed, queried, and
modified. They are associated with jobs and requests providing access and privileges. Each credential
type has the following attributes:

l Priority Settings

l Usage Limits

l Service Targets

l Credential and Partition Access

3.0 Scheduler Basics

l Statistics

l Credential Defaults, State and Configuration Information

All credentials represent a form of identity, and when applied to a job, express ownership. Consequently,
jobs are subject to policies and limits associated with their owners.

Credential Priority Settings

Each credential may be assigned a priority using the PRIORITY attribute. This priority affects a job's
total credential priority factor as described in the Priority Factors section. In addition, each credential
may also specify priority weight offsets, which adjust priority weights that apply to associated jobs.
These priority weight offsets include FSWEIGHT (See Priority-Based Fairshare for more information.),
QTWEIGHT, and XFWEIGHT.

For example:

set priority weights
CREDWEIGHT 1
USERWEIGHT 1
CLASSWEIGHT 1
SERVICEWEIGHT 1
XFACTORWEIGHT 10
QUEUETIMEWEIGHT 1000
set credential priorities
USERCFG[john] PRIORITY=200
CLASSCFG[batch] PRIORITY=15
CLASSCFG[debug] PRIORITY=100
QOSCFG[bottomfeeder] QTWEIGHT=-50 XFWEIGHT=100
ACCOUNTCFG[topfeeder] PRIORITY=100

Credential Usage Limits

Usage limits constrain which jobs may run, which jobs may be considered for scheduling, and what
quantity of resources each individual job may consume. With usage limits, policies such as MAXJOB,
MAXNODE, and MAXMEM may be enforced against both idle and active jobs. Limits may be applied in
any combination as shown in the example below where usage limits include 32 active processors per
group and 12 active jobs for user john. For a job to run, it must satisfy the most limiting policies of all
associated credentials. The Throttling Policy section documents credential usage limits in detail.

GROUPCFG[DEFAULT] MAXPROC=32 MAXNODE=100
GROUPCFG[staff] MAXNODE=200
USERCFG[john] MAXJOB=12

Service Targets

Credential service targets allow jobs to obtain special treatment to meet usage or response time based
metrics. Additional information about service targets can be found in the Fairshare section.

Credential and Partition Access

Access to partitions and to other credentials may be specified on a per credential basis with credential
access lists, default credentials, and credential membership lists.

3.0 Scheduler Basics

46 3.5 Credential Overview

3.5 Credential Overview 47

Credential Access Lists

You can use the ALIST, PLIST, and QLIST attributes (shown in the following table) to specify the list of
credentials or partitions that a given credential may access.

Credential Attribute

Account ALIST (allows credential to access specified list of accounts

Partition PLIST (allows credential to access specified list of partitions)

QoS QLIST (allows credential to access specified list of QoSes)

Example 3-1:

USERCFG[bob] ALIST=jupiter,quantum
USERCFG[steve] ALIST=quantum

Account-based access lists are only enforced if using an allocation manager or if the
ENFORCEACCOUNTACCESS parameter is set to "TRUE."

Assigning Default Credentials

Use the *DEF attribute (shown in the following table) to specify the default credential or partition for a
particular credential.

Credential Attribute

Account ADEF (specifies default account)

Class CDEF (specifies default class)

QoS QDEF (specifies default QoS)

Example 3-2:

user bob can access accounts a2, a3, and a6. If no account is explicitly requested,
his job will be assigned to account a3
USERCFG[bob] ALIST=a2,a3,a6 ADEF=a3
user steve can access accounts a14, a7, a2, a6, and a1. If no account is explicitly
requested, his job will be assigned to account a2
USERCFG[steve] ALIST=a14,a7,a2,a6,a1 ADEF=a2

Specifying Credential Membership Lists

As an alternate to specifying access lists, administrators may also specify membership lists. This allows
a credential to specify who can access it rather than allowing each credential to specify which

3.0 Scheduler Basics

credentials it can access. Membership lists are controlled using the MEMBERULIST, EXCLUDEUSERLIST
and REQUIREDUSERLIST attributes, shown in the following table:

Credential Attribute

User ---

Account, Group, QoS MEMBERULIST

Class EXCLUDEUSERLIST and REQUIREDUSERLIST

Example 3-3:

account omega3 can only be accessed by users johnh, stevek, jenp
ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp

Example 3-4: Controlling Partition Access on a Per User Basis

A site may specify the user john may access partitions atlas, pluto, and zeus and will default to
partition pluto. To do this, include the following line in the configuration file:

USERCFG[john] PLIST=atlas,pluto,zeus

Example 3-5: Controlling QoS Access on a Per Group Basis

A site may also choose to allow everyone in the group staff to access QoS standard and special
with a default QoS of standard. To do this, include the following line in the configuration file:

GROUPCFG[staff] QLIST=standard,special QDEF=standard

Example 3-6: Controlling Resource Access on a Per Account Basis

An organization wants to allow everyone in the account omega3 to access nodes 20 through 24. To do
this, include the following in the configuration file:

ACCOUNTCFG[omega3] MEMBERULIST=johnh,stevek,jenp
SRCFG[omega3] HOSTLIST=r:20-24 ACCOUNTLIST=omega3

Credential Statistics

Full statistics are maintained for each credential instance. These statistics record current and historical
resource usage, level of service delivered, accuracy of requests, and many other aspects of workload.
Note, though, that you must explicitly enable credential statistics as they are not tracked by default. You
can enable credential statistics by including the following in the configuration file:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE

3.0 Scheduler Basics

48 3.5 Credential Overview

3.5 Credential Overview 49

Job Defaults, Credential State, and General Configuration

Credentials may apply defaults and force job configuration settings via the following parameters:

COMMENT

Description Associates a comment string with the target credential.

Example USERCFG[steve] COMMENT='works for boss, provides good
service'
CLASSCFG[i3] COMMENT='queue for I/O intensive workload'

HOLD

Description Specifies a hold should be placed on all jobs associated with the target credential.

The order in which this HOLD attribute is evaluated depends on the following credential
precedence: USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, QOSCFG, USERCFG
[DEFAULT], GROUPCFG[DEFAULT], ACCOUNTCFG[DEFAULT], CLASSCFG[DEFAULT],
QOSCFG[DEFAULT].

Example GROUPCFG[bert] HOLD=yes

JOBFLAGS

Description Assigns the specified job flag to all jobs with the associated credential.

Example CLASSCFG[batch] JOBFLAGS=suspendable
QOSCFG[special] JOBFLAGS=restartable

NOSUBMIT

Description Specifies whether jobs belonging to this credential can submit jobs using msub.

Example ACCOUNTCFG[general] NOSUBMIT=TRUE
CLASSCFG[special] NOSUBMIT=TRUE

3.0 Scheduler Basics

OVERRUN

Description Specifies the amount of time a job may exceed its wallclock limit before being terminated. (Only
applies to user and class credentials.)

Example CLASSCFG[bigmem] OVERRUN=00:15:00

VARIABLE

Description Specifies attribute-value pairs associated with the specified credential. These variables may be
used in triggers and other interfaces to modify system behavior.

Example GROUPCFG[staff] VARIABLE='nocharge=true'

Credentials may carry additional configuration information. They may specify that detailed statistical
profiling should occur, that submitted jobs should be held, or that corresponding jobs should be marked
as preemptible.

User Credential
The user credential is the fundamental credential within a workload manager; each job requires an
association with exactly one user. In fact, the user credential is the only required credential in Moab; all
others are optional. In most cases, the job's user credential is configured within or managed by the
operating system itself, although Moab may be configured to obtain this information from an independent
security and identity management service.

As the fundamental credential, the user credential has a number of unique attributes.

l Role

l Email Address

l Disable Moab User Email

Role

Moab supports role-based authorization, mapping particular roles to collections of specific users. See the
Security section for more information.

Email Address

Facilities exist to allow user notification in the event of job or system failures or under other general
conditions. This attribute allows these notifications to be mailed directly to the target user.

USERCFG[sally] EMAILADDRESS=sally@acme.com

3.0 Scheduler Basics

50 3.5 Credential Overview

3.5 Credential Overview 51

Disable Moab User Email

You can disable Moab email notifications for a specific user.

USERCFG[john] NOEMAIL=TRUE

Group Credential
The group credential represents an aggregation of users. User-to-group mappings are often specified by
the operating system or resource manager and typically map to a user's UNIX group ID. However, user-
to-group mappings may also be provided by a security and identity management service, or you can
specify such directly within Moab.

With many resource managers such as TORQUE, PBSPro, and LSF, the group associated with a job is
either the user's active primary group as specified within the operating system or a group that is
explicitly requested at job submission time. When a secondary group is requested, the user's default
group and associated policies are not taken into account. Also note that a job may only run under one
group. If more constraining policies are required for these systems, an alternate aggregation scheme
such as the use of Account or QoS credentials is recommended.

To submit a job as a secondary group, refer to your local resource manager's job submission options. For
TORQUE users, see the group_list=g_list option of the qsub -W command.

Account Credential
The account credential is also referred to as the project. This credential is generally associated with a
group of users along the lines of a particular project for accounting and billing purposes. User-to-
accounting mapping may be obtained from a resource manager or allocation manager, or you can
configure it directly within Moab. Access to an account can be controlled via the ALIST and ADEF
credential attributes specified via the Identity Manager or the moab.cfg file.

The MANAGERS attribute (applicable only to the account and class credentials) allows an administrator
to assign a user the ability to manage jobs inside the credential, as if the user is the job owner.

Example 3-7: MANAGERS Attribute

ACCOUNTCFG[general] MANAGERS=ops
ACCOUNTCFG[special] MANAGERS=stevep

If a user is able to access more than one account, the desired account can be specified at job submission
time using the resource-manager specific attribute. For example, with TORQUE this is accomplished
using the -A argument to the qsub command.

Example 3-8: Enforcing Account Usage

Job-to-account mapping can be enforced using the ALIST attribute and the ENFORCEACCOUNTACCESS
parameter.

USERCFG[john] ALIST=proj1,proj3
USERCFG[steve] ALIST=proj2,proj3,proj4
USERCFG[brad] ALIST=proj1
USERCFG[DEFAULT] ALIST=proj2
ENFORCEACCOUNTACCESS TRUE
...

3.0 Scheduler Basics

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm

Class Credential
l Class Job Defaults

l Per Job Min/Max Limits

l Resource Access

l Class Membership Constraints

l Attributes Enabling Class Access to Other Credentials

l Special Class Attributes (such as Managers and Job Prologs)

l Setting Default Classes

l Creating a Remap Class

l Class Attribute Overview

l Enabling Queue Complex Functionality

The concept of the class credential is derived from the resource manager class or queue object. Classes
differ from other credentials in that they more directly impact job attributes. In standard HPC usage, a
user submits a job to a class and this class imposes a number of factors on the job. The attributes of a
class may be specified within the resource manager or directly within Moab. Class attributes include the
following:

l Job Defaults

l Per Job Min/Max Limits

l Resource Access Constraints

l Class Membership Constraints

l Attributes Enabling Class Access to Other Credentials

l Special Class Attributes

When using SLURM, Moab classes have a one-to-one relationship with SLURM partitions of the
same name.

For all classes configured in Moab, a resource manager queue with the same name should be
created.

When TORQUE reports a new queue to Moab a class of the same name is automatically applied to
all nodes.

Class Job Defaults

Classes can be assigned to a default job template that can apply values to job attributes not explicitly
specified by the submitter. Additionally, you can specify shortcut attributes from the table that follows:

3.0 Scheduler Basics

52 3.5 Credential Overview

3.5 Credential Overview 53

Attribute Description

DEFAULT.ATTR Job Attribute

DEFAULT.DISK Required Disk (in MB)

DEFAULT.EXT Job RM Extension

DEFAULT.FEATURES Required Node Features/Properties

DEFAULT.GRES Required Consumable Generic Resources

DEFAULT.MEM Required Memory/RAM (in MB)

DEFAULT.NODESET Node Set Specification

DEFAULT.PROC Required Processor Count

DEFAULT.TPN Tasks Per Node

DEFAULT.WCLIMIT Wallclock Limit

Defaults set in a class/queue of the resource manager will override the default values of the
corresponding class/queue specified in Moab.

RESOURCELIMITPOLICY must be configured in order for the CLASSCFG limits to take effect.

Example 3-9:

CLASSCFG[batch] DEFAULT.DISK=200MB DEFAULT.FEATURES=prod DEFAULT.WCLIMIT=1:00:00
CLASSCFG[debug] DEFAULT.FEATURES=debug DEFAULT.WCLIMIT=00:05:00

Per JobMin/Max Limits

Classes can be assigned a minimum and a maximum job template that constrains resource requests. Jobs
submitted to a particular queue must meet the resource request constraints of these templates. If a job
submission exceeds these limits, the entire job submit fails.

Limit Description

MAX.ARRAYSUBJOBS Max Allowed Jobs in an Array

3.0 Scheduler Basics

Limit Description

MAX.CPUTIME Max Allowed Utilized CPU Time

MAX.NODE Max Allowed Node Count

MAX.PROC Max Allowed Processor Count

MAX.PS Max Requested Processor-Seconds

MIN.NODE Min Allowed Node Count

MIN.PROC Min Allowed Processor Count

MIN.PS Min Requested Processor-Seconds

MIN.TPN Min Tasks Per Node

MIN.WCLIMIT Min Requested Wallclock Limit

MAX.WCLIMIT Max Requested Wallclock Limit

The parameters listed in the preceding table are for classes only, and they function on a per-job
basis. The MAX.* and MIN.* parameters are different from the MAXJOB, MAXNODE, and MAXMEM
parameters described earlier in Credential Usage Limits.

Resource Access

Classes may be associated with a particular set of compute resources. Consequently, jobs submitted to a
given class may only use listed resources. This may be handled at the resource manager level or via the
CLASSCFG HOSTLIST attribute.

Class Membership Constraints

Classes may be configured at either the resource manager or scheduler level to only allow select users
and groups to access them. Jobs that do not meet these criteria are rejected. If specifying class
membership/access at the resource manager level, see the respective resource manager documentation.
Moab automatically detects and enforces these constraints. If specifying class membership/access at the
scheduler level, use the REQUIREDUSERLIST or EXCLUDEUSERLIST attributes of the CLASSCFG parameter.

Under most resource managers, jobs must always be a member of one and only one class.

3.0 Scheduler Basics

54 3.5 Credential Overview

3.5 Credential Overview 55

Attributes Enabling Class Access to Other Credentials

Classes may be configured to allow jobs to access other credentials such as QoSes and Accounts. This is
accomplished using the QDEF, QLIST, ADEF, and ALIST attributes.

Special Class Attributes

The class object also possesses a few unique attributes including JOBPROLOG, JOBEPILOG,
RESFAILPOLICY, and DISABLEAM attributes described in what follows:

MANAGERS

Users listed via the MANAGERS attribute are granted full control over all jobs submitted to or running
within the specified class.

allow john and steve to cancel and modify all jobs submitted to the class/queue
special
CLASSCFG[special] MANAGERS=john,steve

In particular, a class manager can perform the following actions on jobs within a class/queue:

l view/diagnose job (checkjob)

l cancel, requeue, suspend, resume, and checkpoint job (mjobctl)

l modify job (mjobctl)

JOBPROLOG

The JOBPROLOG class performs a function similar to the resource manager level job prolog feature;
however, there are some key differences:

l Moab prologs execute on the head node; resource manager prologs execute on the nodes allocated
to the job.

l Moab prologs execute as the primary Moab administrator, resource manager prologs execute as
root.

l Moab prologs can incorporate cluster environment information into their decisions and actions.
(See Valid Variables.)

l Unique Moab prologs can be specified on a per class basis.

l Job start requests are not sent to the resource manager until the Moab job prolog is successfully
completed.

l Error messages generated by a Moab prolog are attached to jobs and associated objects; stderr
from prolog script is attached to job.

l Moab prologs have access to Moab internal and peer services.

Valid epilog and prolog variables are:

3.0 Scheduler Basics

Variable Description

$TIME Time that the trigger launches

$HOME Moab home directory

$USER User name the job is running under

$JOBID Unique job identifier

$HOSTLIST Entire host list for job

$MASTERHOST Master host for job

The JOBPROLOG class attribute allows a site to specify a unique per-class action to take before a job is
allowed to start. This can be used for environmental provisioning, pre-execution resource checking,
security management, and other functions. Sample uses may include enabling a VLAN, mounting a global
file system, installing a new application or virtual node image, creating dynamic storage partitions, or
activating job specific software services.

A prolog is considered to have failed if it returns a negative number. If a prolog fails, the
associated job will not start.

If a prolog executes successfully, the associated epilog is guaranteed to start, even if the job fails
for any reason. This allows the epilog to undo any changes made to the system by the prolog.

Job Prolog Examples

explicitly specify prolog arguments for special epilog
CLASSCFG[special] JOBPROLOG='$TOOLSDIR/specialprolog.pl $JOBID $HOSTLIST'
use default prolog arguments for batch prolog
CLASSCFG[batch] JOBPROLOG=$TOOLSDIR/batchprolog.pl

JOBEPILOG

The Moab epilog is nearly identical to the prolog in functionality except that it runs after the job
completes within the resource manager but before the scheduler releases the allocated resources for
use by subsequent jobs. It is commonly used for job clean-up, file transfers, signaling peer services, and
undoing other forms of resource customization.

An epilog is considered to have failed if it returns a negative number. If an epilog fails, the
associated job will be annotated and a message will be sent to administrators.

3.0 Scheduler Basics

56 3.5 Credential Overview

3.5 Credential Overview 57

RESFAILPOLICY

This policy allows specification of the action to take on a per-class basis when a failure occurs on a node
allocated to an actively running job. See the Node Availability Overview for more information.

DISABLEAM

You can disable allocation management for jobs in specific classes by setting the DISABLEAM class
attribute to TRUE. For all jobs outside of the specified classes, allocation enforcement will continue to
be enforced.

do not enforce allocations on low priority and debug jobs
CLASSCFG[lowprio] DISABLEAM=TRUE
CLASSCFG[debug] DISABLEAM=TRUE

Setting Default Classes

In many cases, end-users do not want to be concerned with specifying a job class/queue. This is often
handled by defining a default class. Whenever a user does not explicitly submit a job to a particular
class, a default class, if specified, is used. In resource managers such as TORQUE, this can be done at the
resource manager level and its impact is transparent to the scheduler. The default class can also be
enabled within the scheduler on a per resource manager or per user basis. To set a resource manager
default class within Moab, use the DEFAULTCLASS attribute of the RMCFG parameter. For per user
defaults, use the CDEF attribute of the USERCFG parameter.

Creating a Remap Class

If a single default class is not adequate, Moab provides more flexible options with the REMAPCLASS
parameter. If this parameter is set and a job is submitted to the remap class, Moab attempts to
determine the final class to which a job belongs based on the resources requested. If a remap class is
specified, Moab compares the job's requested nodes, processors, memory, and node features with the
class's corresponding minimum and maximum resource limits. Classes are searched in the order in which
they are defined; when the first match is found, Moab assigns the job to that class.

Because Moab remaps at job submission, updates you make to job requirements after submission will not
cause any class changes. Moab does not restart the process.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS. For example:

RMCFG[internal] DEFAULTCLASS=batch

In the example that follows, a job requesting 4 processors and the node feature fast are assigned to the
class quick.

You must specify a default class in order to use remap classes
RMCFG[internal] DEFAULTCLASS=batch

Jobs submitted to 'batch' should be remapped
REMAPCLASS batch

stevens only queue
CLASSCFG[stevens] REQ.FEATURES=stevens REQUIREDUSERLIST=stevens,stevens2

3.0 Scheduler Basics

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

Special queue for I/O nodes
CLASSCFG[io] MAX.PROC=8 REQ.FEATURES=io

General access queues
CLASSCFG[quick] MIN.PROC=2 MAX.PROC=8 REQ.FEATURES=fast|short
CLASSCFG[medium] MIN.PROC=2 MAX.PROC=8
CLASSCFG[DEFAULT] MAX.PROC=64
...

The following attributes can be used to remap jobs to different classes:

l MIN.PROC

l MAX.PROC

l MIN.WCLIMIT

l MAX.WCLIMIT

l REQ.FEATURES

l REQ.FLAGS=INTERACTIVE

l REQUIREDUSERLIST

If the parameter REMAPCLASSLIST is set, then only the listed classes are searched and they are
searched in the order specified by this parameter. If none of the listed classes are valid for a particular
job, that job retains its original class.

The remap class only works with resource managers that allow dynamic modification of a job's
assigned class/queue.

If default credentials are specified on a remap class, a job submitted to that class will inherit
those credentials. If the destination class has different defaults credentials, the new defaults
override the original settings. If the destination class does not have default credentials, the job
maintains the defaults inherited from the remap class.

Class Attribute Overview

The following table enumerates the different parameters for CLASSCFG.

Setting DEFAULT.* on a class does not assign resources or features to that class. Rather, it
specifies resources that jobs will inherit when they are submitted to the class without their own
resource requests. To configure features, use NODECFG.

DEFAULT.ATTR

Format <ATTRIBUTE>[,<ATTRIBUTE>]...

Description One or more comma-delimited generic job attributes.

3.0 Scheduler Basics

58 3.5 Credential Overview

3.5 Credential Overview 59

DEFAULT.ATTR

Example ---

DEFAULT.DISK

Format <INTEGER>

Description Default amount of requested disk space.

Example ---

DEFAULT.EXT

Format <STRING>

Description Default job RM extension.

Example ---

DEFAULT.FEATURES

Format Comma-delimited list of features.

Description Default list of requested node features (a.k.a, node properties). This only applies to compute
resource reqs.

Example ---

DEFAULT.GRES

Format <STRING>[<COUNT>][,<STRING>[<COUNT>]]...

Description Default list of per task required consumable generic resources.

Example CLASSCFG[viz] DEFAULT.GRES=viz:2

3.0 Scheduler Basics

DEFAULT.MEM

Format <INTEGER> (in MB)

Description Default amount of requested memory.

Example ---

DEFAULT.NODE

Format <INTEGER>

Description Default required node count.

Example CLASSCFG[viz] DEFAULT.NODE=5

When a user submits a job to the viz class without a specified node count, the job is assigned 5
nodes.

DEFAULT.NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>[,<SETLIST>]...]

Description Default node set.

Example CLASSCFG[amd]
DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON

DEFAULT.PROC

Format <INTEGER>

Description Default number of requested processors.

Example ---

3.0 Scheduler Basics

60 3.5 Credential Overview

3.5 Credential Overview 61

DEFAULT.TPN

Format <INTEGER>

Description Default number of tasks per node.

Example ---

DEFAULT.WCLIMIT

Format <INTEGER>

Description Default wallclock limit.

Example ---

EXCL.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of excluded (disallowed) features. If delimited by commas, reject job if all features are reques-
ted; if delimited by the pipe symbol (|), reject job if at least one feature is requested.

Example CLASSCFG[intel] EXCL.FEATURES=ATHLON,AMD

EXCL.FLAGS

Format Comma-delimited list of job flags.

Description Set of excluded (disallowed) job flags. Reject job if any listed flags are set.

Example CLASSCFG[batch] EXCL.FLAGS=INTERACTIVE

EXCLUDEUSERLIST

Format Comma-delimited list of users.

3.0 Scheduler Basics

EXCLUDEUSERLIST

Description List of users not permitted access to class.

Example ---

FORCENODEACCESSPOLICY

Format one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

Description Node access policy associated with queue. If set, this value overrides any per job settings spe-
cified by the user at the job level. (See Node Access Policy overview for more information.)

Example CLASSCFG[batch] FORCENODEACCESSPOLICY=SINGLEJOB

FSCAP

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

FSTARGET

Format <DOUBLE>[%]

Description See fairshare policies specification.

Example ---

HOSTLIST

Format Host expression, or comma-delimited list of hosts or host ranges.

Description List of hosts associated with a class. If specified, Moab constrains the availability of a class to only
nodes listed in the class host list.

3.0 Scheduler Basics

62 3.5 Credential Overview

3.5 Credential Overview 63

HOSTLIST

Example CLASSCFG[batch] HOSTLIST=r:abs[45-113]

JOBEPILOG

Format <STRING>

Description Scheduler level job epilog to be run after job is completed by resource manager. (See special class
attributes.)

Example ---

JOBFLAGS

Format Comma-delimited list of job flags.

Description See the flag overview for a description of legal flag values.

Example CLASSCFG[batch] JOBFLAGS=restartable

JOBPROLOG

Format <STRING>

Description Scheduler level job prolog to be run before job is started by resource manager. (See special class
attributes.)

Example ---

MANAGERS

Format <USER>[,<USER>]...

Description Users allowed to control, cancel, preempt, and modify jobs within class/queue. (See special class
attributes.)

Example CLASSCFG[fast] MANAGERS=root,kerry,e43

3.0 Scheduler Basics

MAXJOB

Format <INTEGER>

Description Maximum number of jobs allowed in the class.

Example ---

MAXPROCPERNODE

Format <INTEGER>

Description Maximum number of processors requested per node.

Example ---

MAX.CPUTIME

Format <INTEGER>

Description Maximum allowed utilized CPU time.

Example ---

MAX.NODE

Format <INTEGER>

Description Maximum number of requested nodes per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example CLASSCFG[batch] MAX.NODE=64

Deny jobs requesting over 64 nodes access to the class batch.

MAX.PROC

Format <INTEGER>

3.0 Scheduler Basics

64 3.5 Credential Overview

3.5 Credential Overview 65

MAX.PROC

Description Maximum number of requested processors per job. (Also used when REMAPCLASS is set to cor-
rectly route the job.)

Example CLASSCFG[small] MAX.PROC[USER]=3,6

MAX.PS

Format <INTEGER>

Description Maximum requested processor-seconds.

Example ---

MAX.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Maximum allowed wallclock limit per job. (Also used when REMAPCLASS is set to correctly route
the job.)

Example CLASSCFG[long] MAX.WCLIMIT=96:00:00

MIN.NODE

Format <INTEGER>

Description Minimum number of requested nodes per job. (Also used when REMAPCLASS is set to correctly
route the job.)

Example CLASSCFG[dev] MIN.NODE=16

Jobs must request at least 16 nodes to be allowed to access the class.

MIN.PROC

Format <INTEGER>

3.0 Scheduler Basics

MIN.PROC

Description Minimum number of requested processors per job. (Also used when REMAPCLASS is set to cor-
rectly route the job.)

Example CLASSCFG[dev] MIN.PROC=32

Jobs must request at least 32 processors to be allowed to access the class.

MIN.PS

Format <INTEGER>

Description Minimum requested processor-seconds.

Example ---

MIN.TPN

Format <INTEGER>

Description Minimum required tasks per node per job.

Example ---

MIN.WCLIMIT

Format [[[DD:]HH:]MM:]SS

Description Minimum required wallclock limit per job. (Also used when REMAPCLASS is set to correctly route
the job.)

Example ---

NODEACCESSPOLICY

Format one of SINGLETASK, SINGLEJOB, SINGLEUSER, or SHARED

3.0 Scheduler Basics

66 3.5 Credential Overview

3.5 Credential Overview 67

NODEACCESSPOLICY

Description Default node access policy associated with queue. This value will be overridden by any per job set-
tings specified by the user at the job level. (See Node Access Policy overview.)

Example CLASSCFG[batch] NODEACCESSPOLICY=SINGLEJOB

PARTITION

Format <STRING>

Description Partition name where jobs associated with this class must run.

Example CLASSCFG[batch] PARTITION=p12

PRIORITY

Format <INTEGER>

Description Priority associated with the class. (See Priority overview.)

Example CLASSCFG[batch] PRIORITY=1000

QDEF

Format <QOSID>

Description Default QoS for jobs submitted to this class. You may specify a maximum of four QDEF entries per
credential. Any QoSes specified after the fourth will not be accepted.

In addition to classes, you may also specify QDEF for accounts, groups, and users.

Example CLASSCFG[batch] QDEF=base

Jobs submitted to class batch that do not explicitly request a QoS will have the QoS base assigned.

3.0 Scheduler Basics

QLIST

Format <QOSID>[,<QOSID>]...

Description List of accessible QoSes for jobs submitted to this class.

Example CLASSCFG[batch] QDEF=base
QLIST=base,fast,special,bigio

REQ.FEATURES

Format Comma- or pipe-delimited list of node features.

Description Set of required features. If delimited by commas, all features are required; if delimited by the pipe
symbol (|), at least one feature is required.

Example CLASSCFG[amd] REQ.FEATURES=ATHLON,AMD

REQ.FLAGS

Format REQ.FLAGS can be used with only the INTERACTIVE flag.

Description Sets the INTERACTIVE flag on jobs in this class.

Example CLASSCFG[orion] REQ.FLAGS=INTERACTIVE

REQUIREDACCOUNTLIST

Format Comma-delimited list of accounts.

Description List of accounts allowed to access and use a class (analogous to *LIST for other credentials).

Example CLASSCFG[jasper] REQUIREDACCOUNTLIST=testers,development

3.0 Scheduler Basics

68 3.5 Credential Overview

3.5 Credential Overview 69

REQUIREDUSERLIST

Format Comma-delimited list of users.

Description List of users allowed to access and use a class (analogous to *LIST for other credentials).

Example CLASSCFG[jasper] REQUIREDUSERLIST=john,u13,steve,guest

REQUIREDQOSLIST

Format Comma-delimited list of QoSes

Description List of QoSes allowed to access and use a class (analogous to *LIST for other credentials).

The number of unique QoSes is limited by the Moab Maximum ACL limit, which
defaults to 32.

Example CLASSCFG[jasper] REQUIREDQOSLIST=hi,lo

SYSPRIO

Format <INTEGER>

Description Value of system priority applied to every job submitted to this class.

Example CLASSCFG[special] SYSPRIO=100

WCOVERRUN

Format [[[DD:]HH:]MM:]SS

Description Tolerated amount of time beyond the specified wallclock limit.

Example ---

3.0 Scheduler Basics

Enabling Queue Complex Functionality

Queue complexes allow an organization to build a hierarchy of queues and apply certain limits and rules
to collections of these queues. Moab supports this functionality in two ways. The first way, queue
mapping, is very simple but limited in functionality. The second method provides very rich functionality
but requires more extensive configuration using the Moab hierarchical fairshare facility.

Queue Mapping

Queue mapping allows collections of queues to be mapped to a parent credential object against which
various limits and policies can be applied, as in the following example.

QOSCFG[general] MAXIJOB[USER]=14 PRIORITY=20
QOSCFG[prio] MAXIJOB[USER]=8 PRIORITY=2000
group short, med, and long jobs into 'general' QoS
CLASSCFG[short] QDEF=general FSTARGET=30
CLASSCFG[med] QDEF=general FSTARGET=40
CLASSCFG[long] QDEF=general FSTARGET=30 MAXPROC=200
group interactive and debug jobs into 'prio' QoS
CLASSCFG[inter] QDEF=prio
CLASSCFG[debug] QDEF=prio
CLASSCFG[premier] PRIORITY=10000

QoS Credential
The concept of a quality of service (QoS) credential is unique to Moab and is not derived from any
underlying concept or peer service. In most cases, the QoS credential is used to allow a site to set up a
selection of service levels for end-users to choose from on a long-term or job-by-job basis. QoSes differ
from other credentials in that they are centered around special access where this access may allow use
of additional services, additional resources, or improved responsiveness. Unique to this credential,
organizations may also choose to apply different charge rates to the varying levels of service available
within each QoS. As QoS is an internal credential, all QoS configuration occurs within Moab.

QoS access and QoS defaults can be mapped to users, groups, accounts, and classes, allowing limited
service offering for key users. As mentioned, these services focus around increasing access to special
scheduling capabilities & additional resources and improving job responsiveness. At a high level, unique
QoS attributes can be broken down into the following:

l Usage Limit Overrides

l Service Targets

l Privilege Flags

l Charge Rate

l Access Controls

QoSUsage Limit Overrides

All credentials allow specification of job limits. In such cases, jobs are constrained by the most limiting of
all applicable policies. With QoS override limits, however, jobs are limited by the override, regardless of
other limits specified.

3.0 Scheduler Basics

70 3.5 Credential Overview

3.5 Credential Overview 71

QoS Service Targets

Service targets cause the scheduler to take certain job-related actions as various responsiveness targets
are met. Targets can be set for either job queue time or job expansion factor and cause priority
adjustments, reservation enforcement, or preemption activation. In strict service centric organizations,
Moab can be configured to trigger various events and notifications in the case of failure by the cluster to
meet responsiveness targets.

QoS Privilege Flags

QoSes can provide access to special capabilities. These capabilities include preemption, job deadline
support, backfill, next to run priority, guaranteed resource reservation, resource provisioning, dedicated
resource access, and many others. See the complete list in the QoS Facility Overview section.

QoS Charge Rate

Associated with the QoSes many privileges is the ability to assign end-users costs for the use of these
services. This charging can be done on a per-QoS basis and may be specified for both dedicated and use-
based resource consumption. The Per QoS Charging section covers more details on QoS level costing
configuration while the Charging and Allocation Management section provides more details regarding
general single cluster and multi-cluster charging capabilities.

QoSAccess Controls

QoS access control can be enabled on a per QoS basis using the MEMBERULIST attribute or specified on
a per-requestor basis using the QDEF and QLIST attributes of the USERCFG, GROUPCFG, ACCOUNTCFG, and
CLASSCFG parameters. See Managing QoS Access for more detail.

Related topics

l Identity Manager Interface
l Usage Limits

3.5.1 Job Attributes/Flags Overview

Job Attributes

FLAGS

Format: <FLAG>[:<FLAG>]...

Default: ---

Description: Specifies job specific flags.

3.0 Scheduler Basics

FLAGS

Example: FLAGS=ADVRES:RESTARTABLE

The job can be restarted and should only utilize
reserved resources.

PLIST*

Format: <PARTITION_NAME>[^|&]
[:<PARTITION_NAME>[^|&]]...

Default: [ALL]

Description: Specifies the list of partitions the object can access. If no partition list is specified, the object is
granted default access to all partitions.

Example: PLIST=OldSP:Cluster1:O3K

The object can access resources located in theOldSP, Cluster1, and/or O3K partitions.

QDEF

Format: <QOS_NAME>

Default: [DEFAULT]

Description: Specifies the default QoS associated with the object.

Example: QDEF=premium

The object is assigned the default QoS
premium.

QLIST*

Format: <QOS_NAME>[^|&]
[:<QOS_NAME>[^|&]]...

3.0 Scheduler Basics

72 3.5 Credential Overview

3.5 Credential Overview 73

QLIST*

Default: <QDEF>

Description: Specifies the list of QoSes the object can access. If no QoS list is specified, the object is granted
access only to its default partition.

Example: QLIST=premium:express:bottomfeeder

The object can access any of the 3 QoSes listed.

By default, jobs may access QoSes based on the 'logical or' of the access lists associated with all
job credentials. For example, a job associated with user "John," group "staff," and class "batch" may
utilize QoSes accessible by any of the individual credentials. Thus the job's QoS access list, or
QLIST, equals the 'or' of the user, group, and class QLIST's. (i.e., JOBQLIST = USERQLIST |
GROUPQLIST | CLASSQLIST). If the ampersand symbol, '&', is associated with any list, this list is
logically ANDed with the other lists. If the carat symbol, '^', is associated with any object QLIST,
this list is exclusively set, regardless of other object access lists using the following order of
precedence user, group, account, QoS, and class. These special symbols affect the behavior of both
QoS and partition access lists.

Job Flags

ADVRES

Format: ADVRES[:<RESID>]

Default: Use available resources where ever found, whether inside a reservation or not.

Description: Specifies the job may only utilize accessible, reserved resources. If <RESID> is specified, only
resources in the specified reservation may be utilized.

Example: FLAGS=ADVRES:META.1

The job may only utilize resources located in theMETA.1 reservation.

ARRAYJOBPARLOCK

Format: ---

3.0 Scheduler Basics

ARRAYJOBPARLOCK

Default: ---

Description: Specifies that the job array being submitted should not span across multiple partitions. This locks
all sub jobs of the array to a single partition. If you want to lock all job arrays to a single partition,
specify the ARRAYJOBPARLOCK parameter in moab.cfg to force this behavior on a global scale.

Example: > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparlock

ARRAYJOBPARSPAN

Format: ---

Default: ---

Description: Specifies that the job array being submitted should span across multiple partitions. This is the
default behavior in Moab, unless the ARRAYJOBPARLOCK parameter is specified in moab.cfg.
This job flag overrides the ARRAYJOBPARLOCK parameter so that job arrays can be allowed to
span multiple partitions at submit time.

Example: > msub -t moab.[1-5]%3 -l walltime=30,flags=arrayjobparspan

GRESONLY

Format: GRESONLY

Default: False

Description: Uses no compute resources such as processors, memory, and so forth; uses only generic resources.

Example: > msub -l gres=matlab,walltime=300

IGNIDLEJOBRSV

Format: IGNIDLEJOBRSV

Default: N/A

3.0 Scheduler Basics

74 3.5 Credential Overview

3.5 Credential Overview 75

IGNIDLEJOBRSV

Description: Only applies to QoS. IGNIDLEJOBRSV allows jobs to start without a guaranteed walltime. Instead, it
overlaps the idle reservations of real jobs and is preempted 2 minutes before the real job starts.

Example: QOSCFG[standby] JOBFLAGS=IGNIDLEJOBRSV

NOQUEUE

Format: NOQUEUE

Default: Jobs remain queued until they are able to run.

Description: Specifies that the job should be removed it is unable to allocate resources and start execution
immediately.

Example: FLAGS=NOQUEUE

The job should be removed unless it can start running at submit time.

This functionality is identical to the resource manager extension QUEUEJOB:FALSE.

NORMSTART

Format: NORMSTART

Default: Moab passes jobs to a resource manager to schedule.

Description: Specifies that the job is an internal system job and will not be started via an RM.

Example: FLAGS=NORMSTART

The job begins running in Moab without a corresponding RM job.

PREEMPTEE

Format: PREEMPTEE

Default: Jobs may not be preempted by other jobs

3.0 Scheduler Basics

PREEMPTEE

Description: Specifies that the job may be preempted by other jobs which have the PREEMPTOR flag set.

Example: FLAGS=PREEMPTEE

The job may be preempted by other jobs which have the PREEMPTOR flag set.

PREEMPTOR

Format: PREEMPTOR

Default: Jobs may not preempt other jobs

Description: Specifies that the job may preempt other jobs which have the PREEMPTEE flag set.

Example: FLAGS=PREEMPTOR

The job may preempt other jobs which have the PREEMPTEE flag set.

RESTARTABLE

Format: RESTARTABLE

Default: Jobs may not be restarted if preempted.

Description: Specifies jobs can be requeued and later restarted if preempted.

Example: FLAGS=RESTARTABLE

The associated job can be preempted and restarted
at a later date.

SUSPENDABLE

Format: SUSPENDABLE

Default: Jobs may not be suspended if preempted.

3.0 Scheduler Basics

76 3.5 Credential Overview

3.5 Credential Overview 77

SUSPENDABLE

Description: Specifies jobs can be suspended and later resumed if preempted.

Example: FLAGS=SUSPENDABLE

The associated job can be suspended and resumed at
a later date.

SYSTEMJOB

Format: SYSTEMJOB

Default: N/A

Description: Creates an internal system job that does not require resources.

Example: FLAGS=SYSTEMJOB

WIDERSVSEARCHALGO

Format: <BOOLEAN>

Default: ---

Description: When Moab is determining when and where a job can run, it either searches for the most
resources or the longest range of resources. In almost all cases searching for the longest range is
ideal and returns the soonest starttime. In some rare cases, however, a particular job may need
to search for the most resources. In those cases this flag can be used to have the job find the soon-
est starttime. The flag can be specified at submit time, or you can use mjobctl -m to modify the
job after it has been submitted. See the RSVSEARCHALGO parameter.

Example: > msub -l flags=widersvsearchalgo

> mjobctl -m flags+=widersvsearchalgo job.1

Related topics

l Setting Per-Credential Job Flags

3.0 Scheduler Basics

78 3.5 Credential Overview

79

4.0 Scheduler Commands
Moab Commands

Command Description

checkjob Provide detailed status report for specified job

checknode Provide detailed status report for specified node

mcredctl Controls various aspects about the credential objects within Moab

mdiag Provide diagnostic reports for resources, workload, and scheduling

mjobctl Control and modify job

mnodectl Control and modify nodes

moab Control the Moab daemon

mrmctl Query and control resource managers

mrsvctl Create, control and modify reservations

mschedctl Modify scheduler state and behavior

mshow Displays various diagnostic messages about the system and job queues

mshow -a Query and show available system resources

msub Scheduler job submission

mvcctl Create, modify, and delete VCs

mvmctl Create, control and modify VMs

showbf Show current resource availability

Command Description

showhist.moab.pl Show past job information

showq Show queued jobs

showres Show existing reservations

showstart Show estimates of when job can/will start

showstate Show current state of resources

showstats Show usage statistics

showstats -f Show various tables of scheduling/system performance

Moab command options

For many Moab commands, you can use the following options to specify that Moab will run the command
in a different way or different location from the configured default. These options do not change your
settings in the configuration file; they override the settings for this single instance of the command.

Option Description

--about Displays build and version information and the status of your Moab license

--help Displays usage information about the command

--host=<server-
HostName>

Causes Moab to run the client command on the specified host

--
loglevel=
<logLevel>

Causes Moab to write log information to STDERR as the client command is running. For
more information, see Logging Facilities on page 588.

--msg=<message> Causes Moab to annotate the action in the event log

--port=<server-
Port>

Causes Moab to run the command using the port specified

4.0 Scheduler Commands

80

81

Option Description

--
timeout=
<seconds>

Sets the maximum time that the client command will wait for a response from the Moab
server

--version Displays version information

--xml Causes Moab to return the command output in XML format

Commands Providing Maui Compatibility

The following commands are deprecated. Click the link for respective deprecated commands to
see the updated replacement command for each.

Command Description

canceljob Cancel job

changeparam Change in memory parameter settings

diagnose Provide diagnostic report for various aspects of resources, workload, and scheduling

releasehold Release job defers and holds

releaseres Release reservations

runjob Force a job to run immediately

sethold Set job holds

setqos Modify job QoS settings

setres Set an admin/user reservation

setspri Adjust job/system priority of job

showconfig Show current scheduler configuration

4.0 Scheduler Commands

4.1 Status Commands
The status commands organize and present information about the current state and historical statistics
of the scheduler, jobs, resources, users, and accounts. The following table presents the primary status
commands and flags.

Command Description

checkjob Displays detailed job information such as job state, resource requirements, environment, con-
straints, credentials, history, allocated resources, and resource utilization.

checknode Displays detailed node information such as node state, resources, attributes, reservations, history,
and statistics.

mdiag -f Displays summarized fairshare information and any unexpected fairshare configuration.

mdiag -j Displays summarized job information and any unexpected job state.

mdiag -n Displays summarized node information and any unexpected node state.

mdiag -p Displays summarized job priority information.

mschedctl
-f

Resets internal statistics.

showstats
-f

Displays various aspects of scheduling performance across a job duration/job size matrix.

showq [-r|-
i]

Displays various views of currently queued active, idle, and non-eligible jobs.

showstats
-g

Displays current and historical usage on a per group basis.

showstats
-u

Displays current and historical usage on a per user basis.

showstats
-v

Displays high level current and historical scheduling statistics.

4.0 Scheduler Commands

82 4.1 Status Commands

4.2 Job Management Commands 83

4.2 JobManagement Commands
Moab shares job management tasks with the resource manager. Typically, the scheduler only modifies
scheduling relevant aspects of the job such as partition access, job priority, charge account, and hold
state. The following table covers the available job management commands. The Commands Overview
lists all available commands.

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

mdiag -j Displays summarized job information and any unexpected job state.

releasehold
-a

Removes job holds or deferrals.

runjob Starts job immediately, if possible.

sethold Sets hold on job.

setqos Sets/modifies QoS of existing job.

setspri Adjusts job/system priority of job.

Related topics

l Job State Definitions

4.3 Reservation Management Commands
Moab exclusively controls and manages all advance reservation features including both standing and
administrative reservations. The following table covers the available reservation management
commands.

Command Description

mdiag -r Displays summarized reservation information and any unexpected state.

4.0 Scheduler Commands

Command Description

mrsvctl Reservation control.

mrsvctl -r Removes reservations.

mrsvctl -c Creates an administrative reservation.

showres Displays information regarding location and state of reservations.

4.4 Policy/Configuration Management Commands
Moab allows dynamic modification of most scheduling parameters allowing new scheduling policies,
algorithms, constraints, and permissions to be set at any time. Changes made via Moab client commands
are temporary and are overridden by values specified in Moab configuration files the next time Moab is
shut down and restarted. The following table covers the available configuration management commands.

Command Description

mschedctl -l Displays triggers, messages, and settings of all configuration parameters.

mschedctl Controls the scheduler (behavior, parameters, triggers, messages).

mschedctl -m Modifies system values.

4.5 End-user Commands
While the majority of Moab commands are tailored for use by system administrators, a number of
commands are designed to extend the knowledge and capabilities of end-users. The following table
covers the commands available to end-users.

When using Active Directory as a central authentication mechanism, all nodes must be reported
with a different name when booted in both Linux and Windows (for instance, node01-l for Linux
and node01 for Windows). If a machine account with the same name is created for each OS, the
most recent OS will remove the previously-joined machine account. The nodes must report to
Moab with the same host name. This can be done by using aliases (adding all node names to the
/etc/hosts file on the system where Moab is running) and ensuring that the Linux resource
manager reports the node with its global name rather than the Linux-specific one (node01 rather
than node01-l).

4.0 Scheduler Commands

84 4.4 Policy/Configuration Management Commands

4.6 Commands 85

Command Description

canceljob Cancels existing job.

checkjob Displays job state, resource requirements, environment, constraints, credentials, history, allocated
resources, and resource utilization.

msub Submit a new job.

releaseres Releases a user reservation.

setres Create a user reservation.

showbf Shows resource availability for jobs with specific resource requirements.

showq Displays detailed prioritized list of active and idle jobs.

showstart Shows estimated start time of idle jobs.

showstats Shows detailed usage statistics for users, groups, and accounts, to which the end-user has access.

Related topics

l Commands Overview

4.6 Commands

checkjob
Synopsis

checkjob [-l policylevel] [-n nodeid] [-q qosid] [-r reservationid] [-v] [--flags=future] [--blocking] jobid

Overview

checkjob displays detailed job state information and diagnostic output for a specified job. Detailed
information is available for queued, blocked, active, and recently completed jobs. The checkjob command
shows the master job of an array as well as a summary of array sub-jobs, but does not display all sub-
jobs. Use checkjob -v to display all job-array sub-jobs.

4.0 Scheduler Commands

Access

This command can be run by level 1-3 Moab administrators for any job. Also, end users can use checkjob
to view the status of their own jobs.

Arguments

--blocking

Format --blocking

Description Do not use cache information in the output. The --blocking flag retrieves results exclusively
from the scheduler.

Example > checkjob -v --blocking 1234

Display real time data about job 1234.

--flags

Format --flags=future

Description Evaluates future eligibility of job (ignore current resource state and usage limitations).

Example > checkjob -v --flags=future 6235

Display reasons why idle job is blocked ignoring node state and current node
utilization constraints.

-l (Policy level)

Format <POLICYLEVEL>

HARD, SOFT, or OFF

Description Reports job start eligibility subject to specified throttling policy level.

Example > checkjob -l SOFT 6235
> checkjob -l HARD 6235

4.0 Scheduler Commands

86 4.6 Commands

4.6 Commands 87

-n (NodeID)

Format <NODEID>

Description Checks job access to specified node and preemption status with regards to jobs located on that
node.

Example > checkjob -n node113 6235

-q (QoS)

Format <QOSID>

Description Checks job access to specified QoS <QOSID>.

Example > checkjob -q special 6235

-r (Reservation)

Format <RSVID>

Description Checks job access to specified reservation <RSVID>.

Example: > checkjob -r orion.1 6235

-v (Verbose)

Description Sets verbose mode. If the job is part of an array, the -v option shows pertinent array information
before the job-specific information (see Example 2 and Example 3 for differences between
standard output and -v output).

Specifying the double verbose (-v -v) displays additional information about the job. See
the Output table for details.

Example > checkjob -v 6235

4.0 Scheduler Commands

Details

This command allows any Moab administrator to check the detailed status and resource requirements of
an active, queued, or recently completed job. Additionally, this command performs numerous diagnostic
checks and determines if and where the job could potentially run. Diagnostic checks include policy
violations, reservation constraints, preemption status, and job to resource mapping. If a job cannot run, a
text reason is provided along with a summary of how many nodes are and are not available. If the -v
flag is specified, a node by node summary of resource availability will be displayed for idle jobs.

Job Eligibility

If a job cannot run, a text reason is provided along with a summary of how many nodes are and are not
available. If the -v flag is specified, a node by node summary of resource availability will be displayed
for idle jobs. For job level eligibility issues, one of the following reasons will be given:

Reason Description

job has hold in place one or more job holds are currently in place

insufficient idle procs there are currently not adequate processor resources available to start
the job

idle procs do not meet require-
ments

adequate idle processors are available but these do not meet job require-
ments

start date not reached job has specified a minimum start datewhich is still in the future

expected state is not idle job is in an unexpected state

state is not idle job is not in the idle state

dependency is not met job depends on another job reaching a certain state

rejected by policy job start is prevented by a throttling policy

If a job cannot run on a particular node, one of the following 'per node' reasons will be given:

Reason Description

Class Node does not allow required job class/queue

CPU Node does not possess required processors

4.0 Scheduler Commands

88 4.6 Commands

4.6 Commands 89

Reason Description

Disk Node does not possess required local disk

Features Node does not possess required node features

Memory Node does not possess required real memory

Network Node does not possess required network interface

State Node is not Idle or Running

Reservation Access

The -r flag can be used to provide detailed information about job access to a specific reservation

Preemption Status

If a job is marked as a preemptor and the -v and -n flags are specified, checkjob will perform a job by job
analysis for all jobs on the specified node to determine if they can be preempted.

Output

The checkjob command displays the following job attributes:

Attribute Value Description

Account <STRING> Name of account associated with job

Actual Run Time [[[DD:]HH:]MM:]SS Length of time job actually ran.

This info is only displayed in simulation mode.

Allocated Nodes Square bracket delim-
ited list of node and pro-
cessor ids

List of nodes and processors allocated to job

Applied Nodeset** <STRING> Node set used for job's node allocation

Arch <STRING> Node architecture required by job

Attr square bracket delim-
ited list of job attributes

Job Attributes (i.e. [BACKFILL][PREEMPTEE])

4.0 Scheduler Commands

Attribute Value Description

Available Memory** <INTEGER> The available memory requested by job. Moab displays
the relative or exact value by returning a comparison sym-
bol (>, <, >=, <=, or ==) with the value (i.e. Available
Memory <= 2048).

Available Swap** <INTEGER> The available swap requested by job. Moab displays the
relative or exact value by returning a comparison symbol
(>, <, >=, <=, or ==) with the value (i.e. Available Swap
>= 1024).

Average Utilized
Procs*

<FLOAT> Average load balance for a job

Avg Util Resources
Per Task*

<FLOAT>

BecameEligible <TIMESTAMP> The date and time when the job moved from Blocked to
Eligible.

Bypass <INTEGER> Number of times a lower priority job with a later submit
time ran before the job

CheckpointStartTime** [[[DD:]HH:]MM:]SS The time the job was first checkpointed

Class [<CLASS NAME> <CLASS
COUNT>]

Name of class/queue required by job and number of
class initiators required per task.

Dedicated Resources
Per Task*

Space-delimited list of
<STRING>:<INTEGER>

Resources dedicated to a job on a per-task basis

Disk <INTEGER> Amount of local disk required by job (in MB)

Estimated Walltime [[[DD:]HH:]MM:]SS The scheduler's estimated walltime.

In simulation mode, it is the actual walltime.

EnvVariables** Comma-delimited list of
<STRING>

List of environment variables assigned to job

Exec Size* <INTEGER> Size of job executable (in MB)

4.0 Scheduler Commands

90 4.6 Commands

4.6 Commands 91

Attribute Value Description

Executable <STRING> Name of command to run

Features Square bracket delim-
ited list of <STRING>s

Node features required by job

Flags

Group <STRING> Name of UNIX group associated with job

Holds Zero or more of User,
System, and Batch

Types of job holds currently applied to job

Image Size <INTEGER> Size of job data (in MB)

IWD (Initial Working
Directory)

<DIR> Directory to run the executable in

Job Messages** <STRING> Messages attached to a job

Job Submission** <STRING> Job script submitted to RM

Memory <INTEGER> Amount of real memory required per node (in MB)

Max Util Resources
Per Task*

<FLOAT>

NodeAccess*

Nodecount <INTEGER> Number of nodes required by job

Opsys <STRING> Node operating system required by job

Partition Mask ALL or colon delimited
list of partitions

List of partitions the job has access to

PE <FLOAT> Number of processor-equivalents requested by job

Per Partition Pri-
ority**

Tabular Table showing job template priority for each partition

4.0 Scheduler Commands

Attribute Value Description

Priority Analysis** Tabular Table showing how job's priority was calculated:
Job PRIORITY* Cred(User:Group:Class) Serv
(QTime)

QOS <STRING> Quality of Service associated with job

Reservation <RSVID> (<TIME1> -
<TIME2> Duration:
<TIME3>)

RESID specifies the reservation id, TIME1 is the relative
start time, TIME2 the relative end time, TIME3 the dur-
ation of the reservation

Req [<INTEGER>]
TaskCount: <INTEGER>
Partition: <partition>

A job requirement for a single type of resource followed
by the number of tasks instances required and the appro-
priate partition

StartCount <INTEGER> Number of times job has been started by Moab

StartPriority <INTEGER> Start priority of job

StartTime <TIME> Time job was started by the resource management sys-
tem

State One of Idle, Starting,
Running, etc. See Job
States on page 28 for
all possible values.

Current Job State

SubmitTime <TIME> Time job was submitted to resource management system

Swap <INTEGER> Amount of swap disk required by job (in MB)

Task Distribution* Square bracket delim-
ited list of nodes

Time Queued

Total Requested
Nodes**

<INTEGER> Number of nodes the job requested

Total Requested Tasks <INTEGER> Number of tasks requested by job

User <STRING> Name of user submitting job

4.0 Scheduler Commands

92 4.6 Commands

4.6 Commands 93

Attribute Value Description

Utilized Resources
Per Task*

<FLOAT>

WallTime [[[DD:]HH:]MM:]SS of
[[[DD:]HH:]MM:]SS

Length of time job has been running out of the specified
limit

In the above table, fields marked with an asterisk (*) are only displayed when set or when the -v flag is
specified. Fields marked with two asterisks (**) are only displayed when set or when the -v -v flag is
specified.

Example 4-1: checkjob 717

> checkjob 717
job 717
State: Idle
Creds: user:jacksond group:jacksond class:batch
WallTime: 00:00:00 of 00:01:40
SubmitTime: Mon Aug 15 20:49:41
(Time Queued Total: 3:12:23:13 Eligible: 3:12:23:11)

TerminationDate: INFINITY Sat Oct 24 06:26:40
Total Tasks: 1
Req[0] TaskCount: 1 Partition: ALL
Network: --- Memory >= 0 Disk >= 0 Swap >= 0
Opsys: --- Arch: --- Features: ---

IWD: /home/jacksond/moab/moab-4.2.3
Executable: STDIN
Flags: RESTARTABLE,NORMSTART
StartPriority: 5063
Reservation '717' (INFINITY -> INFINITY Duration: 00:01:40)
Note: job cannot run in partition base (idle procs do not meet requirements : 0 of 1
procs found)
idle procs: 4 feasible procs: 0
Rejection Reasons: [State : 3][ReserveTime : 1]
cannot select job 717 for partition GM (partition GM does not support requested class
batch)

The example job cannot be started for two different reasons.

l It is temporarily blocked from partition base because of node state and node
reservation conflicts.

l It is permanently blocked from partition GM because the requested class batch is not
supported in that partition.

Example 4-2: Using checkjob (no -v) on a job array master job:

checkjob array.1
job array.1

AName: array
Job Array Info:
Name: array.1

4.0 Scheduler Commands

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Example 4-3: Using checkjob -v on a job array master job:

$ checkjob -v array.1
job array.1

AName: array
Job Array Info:
Name: array.1
1 : array.1.1 : Running
2 : array.1.2 : Running
3 : array.1.3 : Running
4 : array.1.4 : Running
5 : array.1.5 : Running
6 : array.1.6 : Running
7 : array.1.7 : Idle
8 : array.1.8 : Idle
9 : array.1.9 : Blocked
10 : array.1.10 : Blocked

Sub-jobs: 10
Active: 6 (60.0%)
Eligible: 2 (20.0%)
Blocked: 2 (20.0%)
Complete: 0 (0.0%)

Related topics

l showhist.moab.pl - explains how to query for past job information
l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -j command - display additional detailed information regarding jobs
l showq command - showq high-level job summaries
l JOBCPURGETIME parameter - specify how long information regarding completed jobs is
maintained

l diagnosing job preemption

checknode
Synopsis

checknode options nodeID
ALL

Overview

This command shows detailed state information and statistics for nodes that run jobs.

The following information is returned by this command:

4.0 Scheduler Commands

94 4.6 Commands

4.6 Commands 95

Name Description

Disk Disk space available

Memory Memory available

Swap Swap space available

State Node state

Opsys Operating system

Arch Architecture

Adapters Network adapters available

Features Features available

Classes Classes available

StateTime Time node has been in current state in HH:MM:SS notation

Downtime Displayed only if downtime is scheduled

Load CPU Load (Berkley one-minute load average)

TotalTime Total time node has been detected since statistics initialization expressed in HH:MM:SS
notation

UpTime Total time node has been in an available (Non-Down) state since statistics initialization
expressed in HH:MM:SS notation (percent of time up: UpTime/TotalTime)

ActiveTime Total time node has been busy (allocated to active jobs) since statistics initialization
expressed in HH:MM:SS notation (percent of time busy: BusyTime/TotalTime)

EffNodeAccessPolicy Configured effective node access policy

After displaying this information, some analysis is performed and any unusual conditions are reported.

Access

By default, this command can be run by any Moab Administrator (see ADMINCFG).

4.0 Scheduler Commands

Parameters

Name Description

NODE Node name you want to check. Moab uses regular expressions to return any node that contains the
provided argument. For example, if you ran checknode node1, Moab would return information about
node1, node10, node100, etc. If you want to limit the results to node1 only, you would run checknode
"^node1$".

Flags

Name Description

ALL Returns checknode output on all nodes in the cluster.

-h Help for this command.

-v Returns verbose output.

--xml Output in XML format. Same as mdiag -n --xml.

Example 4-4: checknode

> checknode P690-032
node P690-032

State: Busy (in current state for 11:31:10)
Configured Resources: PROCS: 1 MEM: 16G SWAP: 2000M DISK: 500G
Utilized Resources: PROCS: 1
Dedicated Resources: PROCS: 1
Opsys: AIX Arch: P690
Speed: 1.00 CPULoad: 1.000
Network: InfiniBand,Myrinet
Features: Myrinet
Attributes: [Batch]
Classes: [batch]

Total Time: 5:23:28:36 Up: 5:23:28:36 (100.00%) Active: 5:19:44:22 (97.40%)

Reservations:
Job '13678'(x1) 10:16:12:22 -> 12:16:12:22 (2:00:00:00)
Job '13186'(x1) -11:31:10 -> 1:12:28:50 (2:00:00:00)

Jobs: 13186

Example 4-5: checknode ALL

> checknode ALL
node ahe

State: Idle (in current state for 00:00:30)
Configured Resources: PROCS: 12 MEM: 8004M SWAP: 26G DISK: 1M
Utilized Resources: PROCS: 1 SWAP: 4106M

4.0 Scheduler Commands

96 4.6 Commands

4.6 Commands 97

Dedicated Resources: ---
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 1.400
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:00 (0.00%)

Reservations: ---
node ahe-ubuntu32

State: Running (in current state for 00:00:05)
Configured Resources: PROCS: 12 MEM: 2013M SWAP: 3405M DISK: 1M
Utilized Resources: PROCS: 6 SWAP: 55M
Dedicated Resources: PROCS: 6
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 2.000
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:02 (1.92%)

Reservations:
6x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)
7x2 Job:Running -00:00:06 -> 00:01:54 (00:02:00)
8x2 Job:Running -00:00:05 -> 00:01:55 (00:02:00)

Jobs: 6,7,8
node ahe-ubuntu64

State: Busy (in current state for 00:00:06)
Configured Resources: PROCS: 12 MEM: 2008M SWAP: 3317M DISK: 1M
Utilized Resources: PROCS: 12 SWAP: 359M
Dedicated Resources: PROCS: 12
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
Classes: [batch]
RM[ahe]*: TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 00:01:44 Up: 00:01:44 (100.00%) Active: 00:00:55 (52.88%)

Reservations:
0x2 Job:Running -00:01:10 -> 00:00:50 (00:02:00)
1x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
2x2 Job:Running -00:00:20 -> 00:01:40 (00:02:00)
3x2 Job:Running -00:00:17 -> 00:01:43 (00:02:00)
4x2 Job:Running -00:00:13 -> 00:01:47 (00:02:00)
5x2 Job:Running -00:00:07 -> 00:01:53 (00:02:00)

Jobs: 0,1,2,3,4,5
ALERT: node is in state Busy but load is low (0.000)

4.0 Scheduler Commands

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -n
l showstate

mcredctl
Synopsis

mcredctl [-d credtype[:credid]] [-h credtype:credid] [-l credtype] [-q
{role|limit|profile|accessfrom|accessto|policies} credtype[:credid]] [--format=xml] [-r
{stats|credits|fairshare} credtype[:credid]] [-t <STARTTIME>[,<ENDTIME>]

Overview

The mcredctl command controls various aspects about the credential objects within Moab. It can be used
to display configuration, limits, roles, and relationships for various moab credential objects.

Arguments

In all cases <CREDTYPE> is one of acct, group, user, class, or qos.

In most cases it is necessary to use the --format=xml flag in order to print the output (see
examples below for specific syntax requirements).

-d - DESTROY

Format <TYPE>:<VAL>

Description Purge a credential from moab.cfg (does not delete credential from memory).

Example > mcredctl -d user:john

All references to USERCFG[john] will be commented out of
moab.cfg)

-h - HOLD

Format <TYPE>:<VAL>

Description Toggles whether a given credentials' jobs should be place on hold or not.

4.0 Scheduler Commands

98 4.6 Commands

4.6 Commands 99

-h - HOLD

Example > mcredctl -h user:john

User [john] will be put on hold.

-l - LIST

Format <TYPE>

Description List the various sub-objects of the specified credential.

Example > mcredctl -l user --format=xml

List all users within Moab in XML.

> mcredctl -l group --format=xml

List all groups within Moab in XML.

-q - QUERY

Format {role | accessfrom | accessto | limit| profile | policies}
limit <TYPE>
policies <TYPE>
role <USER>:<USERID>
profile <TYPE>[:<VAL>]
accessfrom <TYPE>[:<VAL>]
accessto <TYPE>[:<VAL>]

Description: Display various aspects of a credential (formatted in XML)

4.0 Scheduler Commands

-q - QUERY

Example: > mcredctl -q role user:bob --format=xml

View user bob's administrative role within Moab in XML

> mcredctl -q limit acct --format=xml

Display limits for all accounts in XML

> mcredctl -q policies user:bob

View limits organized by credential for user bob on each partition and
resource manager

-r - RESET

Format <TYPE>

Description Resets the credential within Moab.

Example > mcredctl -r user:john

Resets the credential
of user john

-t - TIMEFRAME

Format <STARTTIME>[,<ENDTIME>]

Description Can be used in conjunction with the -q profile option to display profiling information for the spe-
cified timeframe.

Example > mcredctl -q profile user -t 14:30_06/20

Credential Statistics XML Output

Credential statistics can be requested as XML (via the --format=xml argument) and will be written to
STDOUT in the following format:

> mcredctl -q profile user --format=xml -o time:1182927600,1183013999
<Data>

4.0 Scheduler Commands

100 4.6 Commands

4.6 Commands 101

<user ...>
<Profile ...>
</Profile>

</user>
</Data>

Example 4-6: Deleting a group

> mcredctl -d group:john
GROUPCFG[john] Successfully purged from config files

Example 4-7: List users in XML format

> mcredctl -l user --format=xml
<Data><user ID="john"</user><user ID="john"></user><user ID="root"></user><user
ID="dev"></user></Data>

Example 4-8: Display information about a user

> mcredctl -q role user:john --format=xml
<Data><user ID="test" role="admin5"></user></Data>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

mdiag
Synopsis

mdiag -a [accountid]

mdiag -b [-l policylevel] [-t partition]

mdiag -c [classid]

mdiag -C [configfile] // diagnose config file syntax

mdiag -e [-w <starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>] --xml

mdiag -f [-o user|group|acct|qos|class] [-v]

mdiag -g [groupid]

mdiag -G [Green]

mdiag -j [jobid] [-t <partition>] [-v] [--blocking]

mdiag -L [-v] // diagnose usage limits

mdiag -n [-A <creds>] [-t partition] [nodeid] [-v]

mdiag -p [-t partition] [-v] // diagnose job priority

mdiag -q [qosid]

mdiag -r [reservationid] [-v] [-w type=<type>] [--blocking]

mdiag -R [resourcemanagername] [-v]

4.0 Scheduler Commands

mdiag -s [standingreservationid] [--blocking] mdiag -S [-v] // diagnose scheduler mdiag -t [-v] // diagnose
partitions

mdiag -T [triggerid] [-v] [--blocking]

mdiag -u [userid]

mdiag [--format=xml]

Overview

The mdiag command is used to display information about various aspects of the cluster and the results of
internal diagnostic tests. In summary, it provides the following:

l current object health and state information

l current object configuration (resources, policies, attributes, etc.)

l current and historical performance/utilization information

l reports on recent failure

l object messages

Some mdiag options gather information from the Moab cache which prevents them from interrupting the
scheduler, but the --blocking option can be used to bypass the cache and interrupt the scheduler.

Arguments

Argument Description

-a [accountid] Display account information

-b Display information on jobs blocked by policies, holds, or other factors.

If blocked job diagnostics are specified, the -t option is also available to constrain the
report to analysis of particular partition. Also, with blocked job diagnosis, the -l option
can be used to specify the analysis policy level.

-c [classid] Display class information

-C [file] With the vast array of options in the configuration file, the -C option does not validate function,
but it does analyze the configuration file for syntax errors including use of invalid parameters,
deprecated parameters, and some illegal values. If you start Moab with the -e flag, Moab eval-
uates the configuration file at startup and quits if an error exists.

4.0 Scheduler Commands

102 4.6 Commands

4.6 Commands 103

Argument Description

-e Moab will do a query for all events whose eventtime starts at <starttime> and matches the
search criteria. This works only when Moab is configured with ODBC MySQL. The syntax is:
mdiag -e[-w <starttime>|<eventtypes>|
<oidlist>|<eidlist>|<objectlist>] --xml

l starttime default is -
l

l eventtypes default is command delimited, the default is all event types (possible values
can be found in the EventType table in the Moab database)

l oidlist is a comma-delimited list of object ids, the default is all objects ids
l eidlist is a comma-delimited list of specific event ids, the default is all event ids
l objectlist is a comma-delimited list of object types, the default is all object types
(possible values can be found in the ObjectType table in the Moab database)

-f Display fairshare information

-g [groupid] display group information

-G [Green] display power management information

-j [jobid] display job information

-L display limits

-n [nodeid] display nodes

If node diagnostics are specified, the -t option is also available to constrain the report
to a particular partition.

-p display job priority.

If priority diagnostics are specified, the -t option is also available to constrain the
report to a particular partition.

-q [qosid] display QoS information

-r [reser-
vationid]

display reservation information

-R [rmid] display resource manager information

4.0 Scheduler Commands

Argument Description

-s [srsv] display standing reservation information

-S display general scheduler information

-t display configuration, usage, health, and diagnostic information about partitions maintained by
Moab

-T [triggerid] display trigger information

-u [userid] display user information

--format=xml display output in XML format

XML Output

Information for most of the options can be reported as XML as well. This is done with the command
mdiag -<option> <CLASS_ID> --format=xml. For example, XML-based class information will be
written to STDOUT in the following format:

<Data>
<class <ATTR>="<VAL>" ... >
<stats <ATTR>="<VAL>" ... >
<Profile <ATTR>="<VAL>" ... >
</Profile>

</stats>
</class>

<Data>
...

</Data>

Of the mdiag options, only -G and -L cannot be reported as XML.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l checkjob
l checknode

mdiag -a
Synopsis

mdiag -a [accountid]

4.0 Scheduler Commands

104 4.6 Commands

4.6 Commands 105

Overview

The mdiag -a command provides detailed information about the accounts (aka projects) Moab is currently
tracking. This command also allows an administrator to verify correct throttling policies and access
provided to and from other credentials.

Example 4-9: Generating information about accounts

> mdiag -a
evaluating acct information
Name Priority Flags QDef QOSList*
PartitionList Target Limits
engineering 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXPROC=400,500
marketing 1 - low low [A]

5.00 MAXJOB=100,110 MAXPS=54000,54500
it 10 - DEFAULT DEFAULT,high,urgent,low [A]

100.00 MAXPROC=100,1250 MAXPS=12000,12500
FSWEIGHT=1000

development 100 - high high,urgent,low [A]
[B] 30.00 MAXJOB=50,75 MAXNODE=100,120
research 100 - high DEFAULT,high,low [A]
[B] 30.00 MAXNODE=400,500 MAXPS=900000,1000000
DEFAULT 0 - - - -

0.00 -

Related topics

l Account credential

mdiag -b
Synopsis

mdiag -b [-l policylevel] [-t partition]

Overview

The mdiag -b command returns information about blocked jobs.

mdiag -c
Synopsis

mdiag -c [-v] [classid]

Overview

The mdiag -c command provides detailed information about the classes Moab is currently tracking. This
command also allows an administrator to verify correct throttling policies and access provided to and
from other credentials.

The term class is used interchangeably with the term queue and generally refers to resource
manager queue.

4.0 Scheduler Commands

XML Attributes

Name Description

ADEF Accounts a class has access to.

CAPACITY Number of procs available to the class.

DEFAULT.ATTR Default attributes attached to a job.

DEFAULT.DISK Default required disk attached to a job.

DEFAULT.FEATURES Default required node features attached to a job.

DEFAULT.GRES Default generic resources attached to a job.

DEFAULT.MEM Default required memory attached to a job.

DEFAULT.NODESET Default specified node set attached to a job.

DEFAULT.WCLIMIT Default wallclock limit attached to a job.

EXCL.FEATURES List of excluded (disallowed) node features.

EXCL.FLAGS List of excluded (disallowed) job flags.

FSTARGET The class' fairshare target.

HOLD If TRUE this credential has a hold on it, FALSE otherwise.

HOSTLIST The list of hosts in this class.

JOBEPILOG Scheduler level job epilog to be run after job is completed by resource manager (script
path).

JOBFLAGS Default flags attached to jobs in the class.

JOBPROLOG Scheduler level job prolog to be run before job is started by resource manager (script
path).

ID The unique ID of this class.

4.0 Scheduler Commands

106 4.6 Commands

4.6 Commands 107

Name Description

LOGLEVEL The log level attached to jobs in the class.

MAX.PROC The max processors per job in the class.

MAX.PS The max processor-seconds per job in the class.

MAX.WCLIMIT The max wallclock limit per job in the class.

MAXIJOB The max idle jobs in the class.

MAXIPROC The max idle processors in the class.

MAXJOBPERUSER The max jobs per user.

MAXNODEPERJOB The max nodes per job.

MAXNODEPERUSER The max nodes per user.

MAXPROCPERJOB The max processors per job.

MAXPROCPERNODE The max processors per node.

MAXPROCPERUSER The max processors per user.

MIN.NODE The minimum nodes per job in the class.

MIN.PROC The minimum processors per job in the class.

MIN.WCLIMIT The minimum wallclock limit per job in the class.

NODEACCESSPOLICY The node access policy associated with jobs in the class.

OCDPROCFACTOR Dedicated processor factor.

OCNODE Overcommit node.

PRIORITY The class' associated priority.

PRIORITYF Priority calculation function.

4.0 Scheduler Commands

Name Description

REQ.FEATURES Required features for a job to be considered in the class.

REQ.FLAGS Required flags for a job to be considered in the class.

REQ.IMAGE Required image for a job to be considered in the class.

REQUIREDUSERLIST The list of users who have access to the class.

RM The resource manager reporting the class.

STATE The class' state.

WCOVERRUN Tolerated amount of time beyond the specified wallclock limit.

Example 4-10: Generating information about classes

> mdiag -c
Class/Queue Status
ClassID Priority Flags QDef QOSList* PartitionList
Target Limits
DEFAULT 0 --- --- --- ---
0.00 ---
batch 1 --- --- --- [A][B]
70.00 MAXJOB=33:200,250
MAX.WCLIMIT=10:00:00 MAXPROCPERJOB=128

long 1 --- low low [A]
10.00 MAXJOB=3:100,200
MAX.WCLIMIT=1:00:00:00 MAXPROCPERJOB=128

fast 100 --- high high [B]
10.00 MAXJOB=8:100,150
MAX.WCLIMIT=00:30:00 MAXPROCPERJOB=128

bigmem 1 --- low,high low ---
10.00 MAXJOB=1:100,200
MAXPROCPERJOB=128

In the example above, class fast has MAXJOB soft and hard limits of 100 and 150 respectively and is currently running 8
jobs.

The Limits column will display limits in the following format:
<USAGE>:<HARDLIMIT>[,<SOFTLIMIT>]

Related topics

l showstats command - display general statistics

4.0 Scheduler Commands

108 4.6 Commands

4.6 Commands 109

mdiag -f
Synopsis

mdiag -f [-o user|group|acct|qos|class] [--flags=relative] [-w par=<PARTITIONID>]

Overview

The mdiag -f command is used to display at a glance information about the fairshare configuration and
historic resource utilization. The fairshare usage may impact job prioritization, job eligibility, or both
based on the credential FSTARGET and FSCAP attributes and by the fairshare priority weights as
described in the Job Prioritization Overview. The information presented by this command includes
fairshare configuration and credential fairshare usage over time.

The command hides information about credentials which have no fairshare target and no fairshare cap.

If an object type (<OTYPE>) is specified, then only information for that credential type (user, group, acct,
class, or qos) will be displayed. If the relative flag is set, then per user fairshare usage will be
displayed relative to each non-user credential (see the second example below).

Relative output is only displayed for credentials which have user mappings. For example, if there
is no association between classes and users, no relative per user fairshare usage class breakdown
will be provided.

Example 4-11: Standard Fairshare Output

> mdiag -f
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 85.3 476.1 478.9 478.5 475.5 482.8
USER

mattp 2.51 ------- 2.20 2.69 2.21 2.65 2.65 3.01
jsmith 12.82 ------- 12.66 15.36 10.96 8.74 8.15 13.85
kyliem 3.44 ------- 3.93 2.78 4.36 3.11 3.94 4.25
tgh 4.94 ------- 4.44 5.12 5.52 3.95 4.66 4.76
walex 1.51 ------- 3.14 1.15 1.05 1.61 1.22 1.60
jimf 4.73 ------- 4.67 4.31 5.67 4.49 4.93 4.92
poy 4.64 ------- 4.43 4.61 4.58 4.76 5.36 4.90
mjackson 0.66 ------- 0.35 0.78 0.67 0.77 0.55 0.43
tfw 17.44 ------- 16.45 15.59 19.93 19.72 21.38 15.68
gjohn 2.81 ------- 1.66 3.00 3.16 3.06 2.41 3.33
ljill 10.85 ------- 18.09 7.23 13.28 9.24 14.76 6.67
kbill 11.10 ------- 7.31 14.94 4.70 15.49 5.42 16.61
stevei 1.58 ------- 1.41 1.34 2.09 0.75 3.30 2.15
gms 1.54 ------- 1.15 1.74 1.63 1.40 1.38 0.90
patw 5.11 ------- 5.22 5.11 4.85 5.20 5.28 5.78
wer 6.65 ------- 5.04 7.03 7.52 6.80 6.43 2.83
anna 1.97 ------- 2.29 1.68 2.27 1.80 2.37 2.17
susieb 5.69 ------- 5.58 5.55 5.57 6.48 5.83 6.16
GROUP

dallas 13.25 15.00 14.61 12.41 13.19 13.29 15.37 15.09
sanjose* 8.86 15.00 6.54 9.55 9.81 8.97 8.35 4.16

4.0 Scheduler Commands

seattle 10.05 15.00 9.66 10.23 10.37 9.15 9.94 10.54
austin* 30.26 15.00 29.10 30.95 30.89 28.45 29.53 29.54
boston* 3.44 15.00 3.93 2.78 4.36 3.11 3.94 4.25
orlando* 26.59 15.00 29.83 26.77 22.56 29.49 25.53 28.18
newyork* 7.54 15.00 6.33 7.31 8.83 7.54 7.34 8.24
ACCT

engineering 31.76 30.00 32.25 32.10 31.94 30.07 30.74 31.14
marketing 8.86 5.00 6.54 9.55 9.81 8.97 8.35 4.16
it 9.12 5.00 7.74 8.65 10.92 8.29 10.64 10.40
development* 24.86 30.00 24.15 24.76 25.00 24.84 26.15 26.78
research 25.40 30.00 29.32 24.94 22.33 27.84 24.11 27.53
QOS

DEFAULT* 0.00 50.00 ------- ------- ------- ------- ------- -------
high* 83.69 90.00 86.76 83.20 81.71 84.35 83.19 88.02
urgent 0.00 5.00 ------- ------- ------- ------- ------- -------
low* 12.00 5.00 7.34 12.70 14.02 12.51 12.86 7.48
CLASS

batch* 51.69 70.00 53.87 52.01 50.80 50.38 48.67 52.65
long* 18.75 10.00 16.54 18.36 20.89 18.36 21.53 16.28
fast* 15.29 10.00 18.41 14.98 12.58 16.80 15.15 18.21
bigmem 14.27 10.00 11.17 14.65 15.73 14.46 14.65 12.87

An asterisk (*) next to a credential name indicates that that credential has exceeded its fairshare
target.

Example 4-12: Grouping User Output by Account

> mdiag -f -o acct --flags=relative
FairShare Information
Depth: 6 intervals Interval Length: 00:20:00 Decay Rate: 0.50
FS Policy: DEDICATEDPES
System FS Settings: Target Usage: 0.00
FSInterval % Target 0 1 2 3 4 5
FSWeight ------- ------- 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312
TotalUsage 100.00 ------- 23.8 476.1 478.9 478.5 475.5 482.8
ACCOUNT

dallas 13.12 15.00 15.42 12.41 13.19 13.29 15.37 15.09
mattp 19.47 ------- 15.00 21.66 16.75 19.93 17.26 19.95
walex 9.93 ------- 20.91 9.28 7.97 12.14 7.91 10.59
stevei 12.19 ------- 9.09 10.78 15.85 5.64 21.46 14.28
anna 14.77 ------- 16.36 13.54 17.18 13.55 15.44 14.37
susieb 43.64 ------- 38.64 44.74 42.25 48.74 37.92 40.81

sanjose* 9.26 15.00 8.69 9.55 9.81 8.97 8.35 4.16
mjackson 7.71 ------- 6.45 8.14 6.81 8.62 6.54 10.29
gms 17.61 ------- 21.77 18.25 16.57 15.58 16.51 21.74
wer 74.68 ------- 71.77 73.61 76.62 75.80 76.95 67.97

seattle 10.12 15.00 10.16 10.23 10.37 9.15 9.94 10.54
tgh 49.56 ------- 46.21 50.05 53.26 43.14 46.91 45.13
patw 50.44 ------- 53.79 49.95 46.74 56.86 53.09 54.87

austin* 30.23 15.00 25.58 30.95 30.89 28.45 29.53 29.54
jsmith 42.44 ------- 48.77 49.62 35.47 30.70 27.59 46.90
tfw 57.56 ------- 51.23 50.38 64.53 69.30 72.41 53.10

boston* 3.38 15.00 3.78 2.78 4.36 3.11 3.94 4.25
kyliem 100.00 ------- 100.00 100.00 100.00 100.00 100.00 100.00

orlando* 26.20 15.00 30.13 26.77 22.56 29.49 25.53 28.18
poy 17.90 ------- 16.28 17.22 20.30 16.15 20.98 17.39

4.0 Scheduler Commands

110 4.6 Commands

4.6 Commands 111

ljill 37.85 ------- 58.60 26.99 58.87 31.33 57.79 23.67
kbill 44.25 ------- 25.12 55.79 20.83 52.52 21.23 58.94

newyork* 7.69 15.00 6.24 7.31 8.83 7.54 7.34 8.24
jimf 61.42 ------- 69.66 58.94 64.20 59.46 67.21 59.64
gjohn 38.58 ------- 30.34 41.06 35.80 40.54 32.79 40.36

Related topics

l Fairshare Overview

mdiag -g
Synopsis

mdiag-g [groupid]

Overview

The mdiag -g command is used to present information about groups.

mdiag -j
Synopsis

mdiag -j [jobid] [-t <partition>] [-v] [-w] [--flags=policy] [--xml] [--blocking]

Overview

The mdiag -j command provides detailed information about the state of jobs Moab is currently tracking.
This command also performs a large number of sanity and state checks. The job configuration and status
information, as well as the results of the various checks, are presented by this command. The command
gathers information from the Moab cache which prevents it from interrupting the scheduler, but the --
blocking option can be used to bypass the cache and interrupt the scheduler. If the -v (verbose) flag is
specified, additional information about less common job attributes is displayed. If --flags=policy is
specified, information about job templates is displayed.

If used with the -t <partition> option on a running job, the only thing mdiag -j shows is if the job is
running on the specified partition. If used on job that is not running, it shows if the job is able to run on
the specified partition.

The -w flag enables you to specify specific job states (Such as Running, Completed, Idle, or ALL. See Job
States on page 28 for all valid options.) or jobs associated with a given credential (user, acct, class,
group, qos). For example:

mdiag -j -w user=david # Displays only David's jobs
mdiag -j -w state=Idle,Running # Displays only idle or running jobs

The mdiag -j command does not show all subjobs of an array unless you use mdiag -j --xml. In
the XML, the master job element contains a child element called ArraySubJobs that contains the
subjobs in the array. Using mdiag -j -v --xml shows the completed sub-jobs as well.

4.0 Scheduler Commands

XMLOutput

If XML output is requested (via the --format=xml argument), XML based node information will be written
to STDOUT in the following format:

<Data>
<job ATTR="VALUE" ... > </job>
...

</Data>

For information about legal attributes, refer to the XML Attributes table.

To show jobs in XML, use mdiag -j --xml -w
[completed=true|system=true|ALL=true] to limit or filter jobs. This is for XML use only.

Related topics

l checkjob
l mdiag

mdiag -n
Synopsis

mdiag -n [-t partitionid] [-A creds] [-w <CONSTRAINT>] [-v] [--format=xml] [nodeid]

Overview

The mdiag -n command provides detailed information about the state of nodes Moab is currently tracking.
This command also performs a large number of sanity and state checks. The node configuration and
status information as well as the results of the various checks are presented by this command.

Arguments

Flag Argument Description

[-A] {user|group|account|qos|class|job}:
<OBJECTID>

report if each node is accessible by requested job or credential

[-t] <partitionid> report only nodes from specified partition

[-v] --- show verbose output (do not truncate columns and add columns
for additional node attributes)

[-w] nodestate=drained display only jobs associated with the specified constraint:
nodestate (See DISPLAYFLAGS for more information.)

Output

This command presents detailed node information in whitespace-delineated fields.

4.0 Scheduler Commands

112 4.6 Commands

4.6 Commands 113

The output of this command can be extensive and the values for a number of fields may be truncated. If
truncated, the -v flag can be used to display full field content.

Column Format

Name <NODE NAME>

State <NODE STATE>

Procs <AVAILABLE PROCS>:<CONFIGURED PROCS>

Memory <AVAILABLE MEMORY>:<CONFIGURED MEMORY>

Disk <AVAILABLE DISK>:<CONFIGURED DISK>

Swap <AVAILABLE SWAP>:<CONFIGURED SWAP>

Speed <RELATIVE MACHINE SPEED>

Opsys <NODE OPERATING SYSTEM>

Arch <NODE HARDWARE ARCHITECTURE>

Par <PARTITION NODE IS ASSIGNED TO>

Load <CURRENT 1 MINUTE BSD LOAD>

Rsv <NUMBER OF RESERVATIONS ON NODE>

Classes <CLASS NAME>

Network <NETWORK NAME>...

Features <NODE FEATURE>...

Examples

Example 4-13:

> mdiag -n

compute node summary
Name State Procs Memory Opsys

opt-001 Busy 0:2 2048:2048 SuSE

4.0 Scheduler Commands

opt-002 Busy 0:2 2048:2048 SuSE
opt-003 Busy 0:2 2048:2048 SuSE
opt-004 Busy 0:2 2048:2048 SuSE
opt-005 Busy 0:2 2048:2048 SuSE
opt-006 Busy 0:2 2048:2048 SuSE
WARNING: swap is low on node opt-006
opt-007 Busy 0:2 2048:2048 SuSE
opt-008 Busy 0:2 2048:2048 SuSE
opt-009 Busy 0:2 2048:2048 SuSE
opt-010 Busy 0:2 2048:2048 SuSE
opt-011 Busy 0:2 2048:2048 SuSE
opt-012 Busy 0:2 2048:2048 SuSE
opt-013 Busy 0:2 2048:2048 SuSE
opt-014 Busy 0:2 2048:2048 SuSE
opt-015 Busy 0:2 2048:2048 SuSE
opt-016 Busy 0:2 2048:2048 SuSE
x86-001 Busy 0:1 512:512 Redhat
x86-002 Busy 0:1 512:512 Redhat
x86-003 Busy 0:1 512:512 Redhat
x86-004 Busy 0:1 512:512 Redhat
x86-005 Idle 1:1 512:512 Redhat
x86-006 Idle 1:1 512:512 Redhat
x86-007 Idle 1:1 512:512 Redhat
x86-008 Busy 0:1 512:512 Redhat
x86-009 Down 1:1 512:512 Redhat
x86-010 Busy 0:1 512:512 Redhat
x86-011 Busy 0:1 512:512 Redhat
x86-012 Busy 0:1 512:512 Redhat
x86-013 Busy 0:1 512:512 Redhat
x86-014 Busy 0:1 512:512 Redhat
x86-015 Busy 0:1 512:512 Redhat
x86-016 Busy 0:1 512:512 Redhat
P690-001 Busy 0:1 16384:16384 AIX
P690-002 Busy 0:1 16384:16384 AIX
P690-003 Busy 0:1 16384:16384 AIX
P690-004 Busy 0:1 16384:16384 AIX
P690-005 Busy 0:1 16384:16384 AIX
P690-006 Busy 0:1 16384:16384 AIX
P690-007 Idle 1:1 16384:16384 AIX
P690-008 Idle 1:1 16384:16384 AIX
WARNING: node P690-008 is missing ethernet adapter
P690-009 Busy 0:1 16384:16384 AIX
P690-010 Busy 0:1 16384:16384 AIX
P690-011 Busy 0:1 16384:16384 AIX
P690-012 Busy 0:1 16384:16384 AIX
P690-013 Busy 0:1 16384:16384 AIX
P690-014 Busy 0:1 16384:16384 AIX
P690-015 Busy 0:1 16384:16384 AIX
P690-016 Busy 0:1 16384:16384 AIX
----- --- 6:64 745472:745472 -----

Total Nodes: 36 (Active: 30 Idle: 5 Down: 1)

Warning messages are interspersed with the node configuration information with all warnings
preceded by the keyword WARNING.

XMLOutput

If XML output is requested (via the --format=xml argument), XML based node information will be written
to STDOUT in the following format:

4.0 Scheduler Commands

114 4.6 Commands

4.6 Commands 115

mdiag -n --format=xml
<Data>
<node> <ATTR>="<VAL>" ... </node>
...

</Data>

XML Attributes

Name Description

AGRES Available generic resources

ALLOCRES Special allocated resources (like vlans)

ARCH The node's processor architecture.

AVLCLASS Classes available on the node.

AVLETIME Time when the node will no longer be available (used in Utility centers)

AVLSTIME Time when the node will be available (used in Utility centers)

CFGCLASS Classes configured on the node

ENABLEPROFILING If true, a node's state and usage is tracked over time.

FEATURES A list of comma-separated custom features describing a node.

GEVENT A user-defined event that allows Moab to perform some action.

GMETRIC A list of comma-separated consumable resources associated with a node.

GRES generic resources on the node

ISDELETED Node has been deleted

ISDYNAMIC Node is dynamic (used in Utility centers)

JOBLIST The list of jobs currently running on a node.

LOAD Current load as reported by the resource manager

LOADWEIGHT Load weight used when calculating node priority

4.0 Scheduler Commands

Name Description

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXLOAD See Node Policies for details.

MAXPROC See Node Policies for details.

MAXPROCPERUSER See Node Policies for details.

NETWORK The ability to specify which networks are available to a given node is limited to only a few
resource managers. Using the NETWORK attribute, administrators can establish this node
to network connection directly through the scheduler. The NODECFG parameter allows this
list to be specified in a comma-delimited list.

NODEID The unique identifier for a node.

NODESTATE The state of a node.

OS A node's operating system.

OSLIST Operating systems the node can run

OSMODACTION URL for changing the operating system

OWNER Credential type and name of owner

PARTITION The partition a node belongs to. See Node Location for details.

POWER The state of the node's power. Either ON or OFF.

PRIORITY The fixed node priority relative to other nodes.

PROCSPEED A node's processor speed information specified in MHz.

RACK The rack associated with a node's physical location.

RADISK The total available disk on a node.

4.0 Scheduler Commands

116 4.6 Commands

4.6 Commands 117

Name Description

RAMEM The total available memory available on a node.

RAPROC The total number of processors available on a node.

RASWAP The total available swap on a node.

RCMEM The total configured memory on a node.

RCPROC The total configured processors on a node.

RCSWAP The total configured swap on a node.

RESCOUNT Number of reservations on the node

RSVLIST List of reservations on the node

RESOURCES Deprecated (use GRES)

RMACCESSLIST A comma-separated list of resource managers who have access to a node.

SIZE The number of slots or size units consumed by the node.

SLOT The first slot in the rack associated with the node's physical location.

SPEED A node's relative speed.

SPEEDWEIGHT speed weight used to calculate node's priority

STATACTIVETIME Time node was active

STATMODIFYTIME Time node's state was modified

STATTOTALTIME Time node has been monitored

STATUPTIME Time node has been up

TASKCOUNT The number of tasks on a node.

4.0 Scheduler Commands

Related topics

l checknode

mdiag -t
Synopsis

mdiag -t [-v] [-v] [partitionid]

Overview

The mdiag -t command is used to present configuration, usage, health, and diagnostic information about
partitions maintained by Moab. The information presented includes partition name, limits, configured and
available resources, allocation weights and policies.

Examples

Example 4-14: Standard partition diagnostics

> mdiag -t
Partition Status
...

mdiag -p
Synopsis

mdiag -p [-t partition] [-v]

Overview

The mdiag -p command is used to display at a glance information about the job priority configuration and
its effects on the current eligible jobs. The information presented by this command includes priority
weights, priority components, and the percentage contribution of each component to the total job
priority.

The command hides information about priority components which have been deactivated (i.e. by setting
the corresponding component priority weight to 0). For each displayed priority component, this command
gives a small amount of context sensitive information. The following table documents this information. In
all cases, the output is of the form <PERCENT>(<CONTEXT INFO>) where <PERCENT> is the
percentage contribution of the associated priority component to the job's total priority.

By default, this command only shows information for jobs which are eligible for immediate
execution. Jobs which violate soft or hard policies, or have holds, job dependencies, or other job
constraints in place will not be displayed. If priority information is needed for any of these jobs,
use the -v flag or the checkjob command.

4.0 Scheduler Commands

118 4.6 Commands

4.6 Commands 119

Format

Flag Name Format Default Description Example

-v VERBOSE --- --- Display verbose priority information. If
specified, display priority breakdown
information for blocked, eligible, and
active jobs.

By default, only information for
eligible jobs is displayed. To
view blocked jobs in addition to
eligible, run mdiag -p -v -v.

> mdiag -p -v

Display
priority
summa
ry
informa
tion for
eligible
and
active
jobs

Output

Priority Com-
ponent Format Description

Target <PERCENT>()

QoS <PERCENT>(<QOS>:<QOSPRI>) QOS— QoS associated with job
QOSPRI— Priority assigned to the QoS

FairShare <PERCENT>
(
<USR>
:<GRP>:<ACC>:<QOS>:<CLS>)

USR— user fs usage - user fs target
GRP— group fs usage - group fs target
ACC— account fs usage - account fs target
QOS— QoS fs usage - QoS fs target
CLS— class fs usage - class fs target

Service <PERCENT>(<QT>:<XF>:<Byp>) QTime— job queue time which is applicable towards
priority (in minutes)
XF— current theoretical minimum XFactor is job were
to start immediately
Byp— number of times job was bypassed by lower pri-
ority jobs via backfill

4.0 Scheduler Commands

Priority Com-
ponent Format Description

Resource <PERCENT>
(<NDE>:<PE>:<PRC>:<MEM>)

NDE— nodes requested by job
PE— Processor Equivalents as calculated by all
resources requested by job
PRC— processors requested by job
MEM— real memory requested by job

Examples

Example 4-15: mdiag -p

diagnosing job priority information (partition: ALL)

Job PRIORITY* Cred(QOS) FS(Accnt) Serv(QTime)
Weights -------- 1(1) 1(1) 1(1)

13678 1321* 7.6(100.0) 0.2(2.7) 92.2(1218.)
13698 235* 42.6(100.0) 1.1(2.7) 56.3(132.3)
13019 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13030 8699 0.6(50.0) 0.3(25.4) 99.1(8674.)
13099 8537 0.6(50.0) 0.3(25.4) 99.1(8512.)
13141 8438 0.6(50.0) 0.2(17.6) 99.2(8370.)
13146 8428 0.6(50.0) 0.2(17.6) 99.2(8360.)
13153 8360 0.0(1.0) 0.1(11.6) 99.8(8347.)
13177 8216 0.0(1.0) 0.1(11.6) 99.8(8203.)
13203 8127 0.6(50.0) 0.3(25.4) 99.1(8102.)
13211 8098 0.0(1.0) 0.1(11.6) 99.8(8085.)
...
13703 137 36.6(50.0) 12.8(17.6) 50.6(69.2)
13702 79 1.3(1.0) 5.7(4.5) 93.0(73.4)

Percent Contribution -------- 0.9(0.9) 0.4(0.4) 98.7(98.7)

* indicates system prio set on job

The mdiag -p command only displays information for priority components actually utilized. In the above example, QOS,
Account Fairshare, and QueueTime components are utilized in determining a job's priority. Other components, such as
Service Targets, and Bypass are not used and thus are not displayed. (See the Priority Overview for more information)
The output consists of a header, a job by job analysis of jobs, and a summary section.
The header provides column labeling and provides configured priority component and subcomponent weights. In the
above example, QOSWEIGHT is set to 1000 and FSWEIGHT is set to 100. When configuring fairshare, a site also has the
option of weighting the individual components of a job's overall fairshare, including its user, group, and account
fairshare components. In this output, the user, group, and account fairshare weights are set to 5, 1, and 1 respectively.
The job by job analysis displays a job's total priority and the percentage contribution to that priority of each of the
priority components. In this example, job 13019 has a total priority of 8699. Both QOS and Fairshare contribute to the
job's total priority although these factors are quite small, contributing 0.6% and 0.3% respectively with the fairshare
factor being contributed by an account fairshare target. For this job, the dominant factor is the service subcomponent
qtime which is contributing 99.1% of the total priority since the job has been in the queue for approximately 8600
minutes.
At the end of the job by job description, a Totals line is displayed which documents the average percentage
contributions of each priority component to the current idle jobs. In this example, the QOS, Fairshare, and Service
components contributed an average of 0.9%, 0.4%, and 98.7% to the jobs' total priorities.

4.0 Scheduler Commands

120 4.6 Commands

4.6 Commands 121

Related topics

l Job Priority Overview
l Moab Cluster Manager - Priority Manager

mdiag -q
Synopsis

mdiag -q [qosid]

Overview

The mdiag -q command is used to present information about each QoS maintained by Moab. The
information presented includes QoS name, membership, scheduling priority, weights and flags.

Examples

Example 4-16: Standard QoS Diagnostics

> mdiag -q
QOS Status
System QOS Settings: QList: DEFAULT (Def: DEFAULT) Flags: 0
Name * Priority QTWeight QTTarget XFWeight XFTarget QFlags
JobFlags Limits
DEFAULT 1 1 3 1 5.00 PREEMPTEE
[NONE] [NONE]
Accounts: it research
Classes: batch

[ALL] 0 0 0 0 0.00 [NONE]
[NONE] [NONE]
high 1000 1 2 1 10.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development research
Classes: fast

urgent 10000 1 1 1 7.00 PREEMPTOR
[NONE] [NONE]
Accounts: engineering it development

low 100 1 5 1 1.00 PREEMPTEE
[NONE] [NONE]
Accounts: engineering marketing it development research
Classes: long bigmem

mdiag -r
Synopsis

mdiag -r [reservationid] [-v] [-w type=<type>]

Overview

The mdiag -r command allows administrators to look at detailed reservation information. It provides the
name, type, partition, starttime and endtime, proc and node counts, as well as actual utilization figures.
It also provides detailed information about which resources are being used, how many nodes, how much
memory, swap, and processors are being associated with each task. Administrators can also view the
Access Control Lists for each reservation as well as any flags that may be active in the reservation. The

4.0 Scheduler Commands

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php

command gathers information from the Moab cache which prevents it from waiting for the scheduler, but
the --blocking option can be used to bypass the cache and allow waiting for the scheduler.

The -w flag filters the output according to the type of reservation. The allowable reservation types are
Job, and User.

Examples

Example 4-17:

> mdiag -r
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
engineer.0.1 User A -6:29:00 INFINITY INFINITY 0 0
7

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==low-:==high+ JATTR==PREEMPTEE+
CL: RSV==engineer.0.1
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr10n01 fr10n03 fr10n05 fr10n07 fr10n09 fr10n11 fr10n13

fr10n15')
Active PH: 43.77/45.44 (96.31%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

research.0.2 User A -6:29:00 INFINITY INFINITY 0 0
8

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==batch+:==long+:==fast+:==bigmem+ QOS==high+:==low- JATTR==PREEMPTEE+
CL: RSV==research.0.2
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr3n01 fr3n03 fr3n05 fr3n07 fr3n07 fr3n09 fr3n11 fr3n13

fr3n15')
Active PH: 51.60/51.93 (99.36%)
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 1:00:00:00 Days: ALL)

fast.0.3 User A 00:14:05 5:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.0.3
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
fast.1.4 User A 1:00:14:05 1:05:14:05 5:00:00 0 0
16

Flags: STANDINGRSV IGNSTATE OWNERPREEMPT
ACL: CLASS==fast+ QOS==high+:==low+:==urgent+:==DEFAULT+ JATTR==PREEMPTEE+
CL: RSV==fast.1.4
Task Resources: PROCS: [ALL]
Attributes (HostExp='fr12n01 fr12n02 fr12n03 fr12n04 fr12n05 fr12n06 fr12n07

fr12n08 fr12n09 fr12n10 fr12n11 fr12n12 fr12n13 fr12n14 fr12n15 fr12n16')
SRAttributes (TaskCount: 0 StartTime: 00:00:00 EndTime: 5:00:00 Days:

Mon,Tue,Wed,Thu,Fri)
job2411 Job A -00:01:00 00:06:30 Each tile contains a
summary information about the service it represents, including the following:

ACL: JOB==job2411=
CL: JOB==job2411 USER==jimf GROUP==newyork ACCT==it CLASS==bigmem QOS==low

JATTR==PREEMPTEE DURATION==00:07:30 PROC==6 PS==2700

4.0 Scheduler Commands

122 4.6 Commands

4.6 Commands 123

job1292 Job A 00:00:00 00:07:30 00:07:30 0 0
4

ACL: JOB==job1292=
CL: JOB==job1292 USER==jimf GROUP==newyork ACCT==it CLASS==batch QOS==DEFAULT

JATTR==PREEMPTEE DURATION==00:07:30 PROC==4 PS==1800

Example 4-18:

With the -v option, a nodes line is included for each reservation and shows how many nodes are in the
reservation as well as how many tasks are on each node.

> mdiag -r -v
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
Moab.6 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.6=
CL: JOB==Moab.6 USER==tuser1 GROUP==tgroup1 CLASS==fast QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.6

Moab.4 Job B -00:01:05 00:00:35 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.4=
CL: JOB==Moab.4 USER==tuser1 GROUP==tgroup1 CLASS==batch QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node002:1'
Rsv-Group: Moab.4

Moab.5 Job A -00:01:05 00:00:35 00:01:40 3 3
6

Flags: ISACTIVE
ACL: JOB==Moab.5=
CL: JOB==Moab.5 USER==tuser1 GROUP==tgroup1 ACCT==marketing CLASS==long

QOS==low JPRIORITY<=0 DURATION==00:01:40 PROC==6 PS==600
Task Resources: PROCS: [ALL]
SubType: JobReservation
Nodes='node008:1,node007:1,node006:1'
Rsv-Group: Moab.5

Moab.7 Job A -00:01:04 00:00:36 00:01:40 1 1
1

Flags: ISACTIVE
ACL: JOB==Moab.7=
CL: JOB==Moab.7 USER==tuser1 GROUP==tgroup1 CLASS==bigmen QOS==starter

JPRIORITY<=0 DURATION==00:01:40 PROC==1 PS==100
SubType: JobReservation
Nodes='node005:1'
Rsv-Group: Moab.7

Moab.2 Job A -00:01:07 3:58:53 4:00:00 1 2
2

Flags: ISACTIVE
ACL: JOB==Moab.2=

4.0 Scheduler Commands

CL: JOB==Moab.2 USER==tuser1 GROUP==tgroup1 QOS==starter JPRIORITY<=0
DURATION==4:00:00 PROC==2 PS==28800

SubType: JobReservation
Nodes='node009:1'
Rsv-Group: Moab.2

Moab.8 Job A 3:58:53 7:58:53 4:00:00 8 16
16

Flags: PREEMPTEE
ACL: JOB==Moab.8=
CL: JOB==Moab.8 USER==tuser1 GROUP==tgroup1 ACCT==development CLASS==bigmen

QOS==starter JPRIORITY<=0 DURATION==4:00:00 PROC==16 PS==230400
SubType: JobReservation

Nodes='node009:1,node008:1,node007:1,node006:1,node005:1,node004:1,node003:1,node001:
1'

Attributes (Priority=148)
Rsv-Group: idle

system.3 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.3=
CL: RSV==system.3
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node254:1'
Attributes (HostExp='node254')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.2 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.2=
CL: RSV==system.2
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node255:1'
Attributes (HostExp='node255')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

system.1 User bas -00:01:08 INFINITY INFINITY 1 1
2

Flags: ISCLOSED,ISACTIVE
ACL: RSV==system.1=
CL: RSV==system.1
Accounting Creds: User:root
Task Resources: PROCS: [ALL]
SubType: Other
Nodes='node256:1'
Attributes (HostExp='node256')
Active PH: 0.00/0.01 (0.00%)
History: 1322773208:PROCS=2

4.0 Scheduler Commands

124 4.6 Commands

4.6 Commands 125

mdiag -R
Synopsis

mdiag -R [-v] [-V job] [resourcemanagerid]

Overview

The mdiag -R command is used to present information about configured resource managers. The
information presented includes name, host, port, state, type, performance statistics and failure
notifications.

4.0 Scheduler Commands

Examples

4.0 Scheduler Commands

126 4.6 Commands

4.6 Commands 127

Example 4-19:

4.0 Scheduler Commands

> $ mdiag -R -v
diagnosing resource managers

RM[internal] State: --- Type: SSS ResourceType: COMPUTE
Max Fail/Iteration: 0
JobCounter: 6
Partition: SHARED
RM Performance: AvgTime=0.00s MaxTime=0.00s (55353 samples)
RM Languages: -
RM Sub-Languages: -

RM[torque] State: Active Type: PBS ResourceType: COMPUTE
Timeout: 30000.00 ms
Version: '4.2.4'
Job Submit URL: exec:///opt/torque-4.2/bin/qsub
Objects Reported: Nodes=1 (12 procs) Jobs=1
Nodes Reported: 1 (N/A)
Flags: executionServer
Partition: torque
Event Management: EPORT=15004 (last event: 00:03:07)
NOTE: SSS protocol enabled
Submit Command: /opt/torque-4.2/bin/qsub
DefaultClass: batch
Total Jobs Started: 1
RM Performance: AvgTime=0.00s MaxTime=35.00s (220097 samples)
RM Languages: PBS
RM Sub-Languages: PBS

RM[torque] Failures:
clusterquery (683 of 55349 failed)

-12days 'cannot connect to PBS server '' (pbs_errno=15033, 'Batch protocol
error')'

NOTE: use 'mrmctl -f messages <RMID>' to clear stats/failures

RM[FLEXlm] State: Active Type: NATIVE ResourceType: LICENSE
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/flexlm/license.mon.flexLM.pl
Licenses Reported: 6 types (250 of 282 available)
Partition: SHARED
License Stats: Avg License Avail: 239.01 (978 iterations)
Iteration Summary: Idle: 396.42 Active: 150.92 Busy: -447.34
License biocol 50 of 50 available (Idle: 100.00% Active: 0.00%)
License cloudform 100 of 100 available (Idle: 100.00% Active: 0.00%)
License mathworks 8 of 25 available (Idle: 52.00% Active: 48.00%)
License verity 25 of 25 available (Idle: 100.00% Active: 0.00%)
Event Management: (event interface disabled)
RM Performance: AvgTime=0.00s MaxTime=0.61s (1307618 samples)

clusterquery: AvgTime=0.02s MaxTime=0.61s (9465 samples)
queuequery: AvgTime=0.00s MaxTime=0.00s (1 samples)

rminitialize: AvgTime=0.00s MaxTime=0.00s (1 samples)
getdata: AvgTime=0.17s MaxTime=0.60s (978 samples)

RM Languages: NATIVE
RM Sub-Languages: NATIVE

AM[mam] Type: MAM State: 'Active'
Host: localhost
Port: 7112
Timeout: 15
Thread Pool Size: 2
Charge Policy: DEBITALLWC
Validate Job Submission: TRUE
Create Failure Action: CANCEL,HOLD
Start Failure Action: CANCEL,HOLD

AM[mam] Failures:

4.0 Scheduler Commands

128 4.6 Commands

4.6 Commands 129

Fri Jun 21 14:32:45 Create 'Failure registering job Create (1) with
accounting manager -- server rejected request with status code 740 - Insufficient
funds: There are no valid allocations to satisfy the quote'

mdiag -S
Synopsis

mdiag -S [-v]

Overview

The mdiag -S command is used to present information about the status of the scheduler.

This command will report on the following aspects of scheduling:

l General Scheduler Configuration

o Reports short and long term scheduler load

o Reports detected overflows of node, job, reservation, partition, and other scheduler object
tables

l High Availability

o Configuration

o Reports health of HA primary

o Reports health of HA backup

l Scheduling Status

o Reports if scheduling is paused

o Reports if scheduling is stopped

l System Reservation Status

o Reports if global system reservation is active

l Message Profiling/Statistics Status

Examples

Example 4-20:

> mdiag -S
Moab Server running on orion-1:43225 (Mode: NORMAL)
Load(5m) Sched: 12.27% RMAction: 1.16% RMQuery: 75.30% User: 0.29% Idle: 10.98%
Load(24h) Sched: 10.14% RMAction: 0.93% RMQuery: 74.02% User: 0.11% Idle: 13.80%
HA Fallback Server: orion-2:43225 (Fallback is Ready)
Note: system reservation blocking all nodes
Message: profiling enabled (531 of 600 samples/5:00 interval)

4.0 Scheduler Commands

mdiag -s
Synopsis

mdiag -s [reservationid] [-v]>]

Overview

The mdiag -s command allows administrators to look at detailed standing reservation information. It
provides the name, type, partition, starttime and endtime, period, task count, host list, and a list of child
instances.

Examples

Example 4-21:

> mdiag -s
standing reservation overview
RsvID Type Par StartTime EndTime Duration Period
----- ---- --- --------- ------- -------- ------

TestSR User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
Depth: 2
RsvList: testSR.1,testSR.2,testSR.3
HostExp: 'node1,node2,node4,node8'

test2 User --- 00:00:00 --- 00:00:00 DAY
Days: ALL
TaskCount: 4
Depth: 1
RsvList: test2.4,test2.5

mdiag -T
Synopsis

mdiag -T [triggerid] [-v] [--blocking]

Overview

The mdiag -T command is used to present information about each Trigger. The information presented
includes Name, State, Action, Event Time. The command gathers information from the Moab cache which
prevents it from waiting for the scheduler, but the --blocking option can be used to bypass the cache and
allow waiting for the scheduler.

Examples

Example 4-22:

> mdiag -T
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

sched_trig.0 sched:Moab end exec -

4.0 Scheduler Commands

130 4.6 Commands

4.6 Commands 131

Blocked
3 node:node010 threshol exec -
Blocked
5 job:Moab.7 preempt exec -
Blocked
6 job:Moab.8 preempt exec -
Blocked
4* job:Moab.5 start exec -00:00:36
Failure
* indicates trigger has completed

Example 4-23:

> mdiag -T -v
TrigID Object ID Event AType ActionDate
State
--------------------- -------------------- -------- ------ -------------------- ------

sched_trig.0 sched:Moab end exec -
Blocked
Name: sched_trig
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: date
NOTE: trigger can launch

3 node:node010 threshol exec -
Blocked
Flags: globaltrig
BlockUntil: INFINITY ActiveTime: ---
Threshold: CPULoad > 3.00 (current value: 0.00)
Action Data: date
NOTE: trigger cannot launch - threshold not satisfied - threshold type not

supported

5 job:Moab.7 preempt exec -
Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME

6 job:Moab.8 preempt exec -
Blocked
Flags: user,globaltrig
BlockUntil: INFINITY ActiveTime: ---
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
NOTE: trigger cannot launch - parent job Moab.8 is in state Idle

4* job:Moab.5 start exec Mon Jan 16 12:33:00
Failure
Launch Time: -00:02:17
Flags: globaltrig
Last Execution State: Failure (ExitCode: 0)
BlockUntil: 00:00:00 ActiveTime: 00:00:00
Action Data: $HOME/tools/preemptnotify.pl $OID $OWNER $HOSTNAME
ALERT: trigger failure detected
Message: 'exec '/usr/test/moab/tools/preemptnotify.pl' cannot be located or is

not executable'

* indicates trigger has completed

4.0 Scheduler Commands

mdiag -u
Synopsis

mdiag -u [userid]

Overview

The mdiag -u command is used to present information about user records maintained by Moab. The
information presented includes user name, UID, scheduling priority, default job flags, default QoS level,
List of accessible QoS levels, and list of accessible partitions.

Examples

Example 4-24:

> mdiag -u
evaluating user information
Name Priority Flags QDef QOSList* PartitionList
Target Limits

jvella 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

[NONE] 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
reynolds 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Administration
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

mshaw 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Test
Message: profiling enabled (584 of 3000 samples/00:15:00 interval)

kforbes 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Shared
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

gastor 0 [NONE] [NONE] [NONE] [NONE]
0.00 [NONE]
ALIST=Engineering
Message: profiling enabled (597 of 3000 samples/00:15:00 interval)

Note that only users which have jobs which are currently queued or have been queued since Moab was
most recently started are listed.

Related topics

l showstats command (display user statistics)

mjobctl
Synopsis

mjobctl -c jobexp

4.0 Scheduler Commands

132 4.6 Commands

4.6 Commands 133

mjobctl -c -w attr=val

mjobctl -C jobexp

mjobctl -e jobid

mjobctl -F jobexp

mjobctl -h [User|System|Batch|Defer|All] jobexp

mjobctl -m attr{+=|=|-=}val jobexp

mjobctl -N [<SIGNO>] jobexp

mjobctl -n <JOBNAME>

mjobctl -p <PRIORITY> jobexp

mjobctl -q {diag|starttime|hostlist} jobexp

mjobctl -r jobexp

mjobctl -R jobexp

mjobctl -s

mjobctl -w attr{+=|=|-=}val jobexp

mjobctl -x [-w flags=val] jobexp

Overview

The mjobctl command controls various aspects of jobs. It is used to submit, cancel, execute, and
checkpoint jobs. It can also display diagnostic information about each job. The mjobctl command enables
the Moab administrator to control almost all aspects of job behavior. See 11.0 General Job
Administration for more details on jobs and their attributes.

Format

-c - Cancel

Format JOBEXP

Description Cancel a job.

Use -w (following a -c flag) to specify job cancellation according to given credentials or job
attributes. See -c -w for more information.

Example: > mjobctl -c job1045

Cancel job job1045.

4.0 Scheduler Commands

-c -w - Cancel Where

Format <ATTR>=<VALUE>

where <ATTR>=[user | account | qos | class | reqreservation(RsvName) | state (JobState) | job-
name(JobName, not job ID)] | partition

Description Cancel a job based on a given credential or job attribute.

Use -w following a -c flag to specify job cancellation according to credentials or job attributes. (See
examples.)
See Job States on page 28 for a list of all valid job states.
Also, you can cancel jobs from given partitions using -w partition=<PAR1>[<PAR2>...]];
however, you must also either use another -w flag to specify a job or use the standard job
expression.

Example > mjobctl -c -w state=USERHOLD

Cancels all jobs that currently have a USERHOLD on them.

> mjobctl -c -w user=user1 -w acct=acct1

Cancels all jobs assigned to user1 or acct1.

-C - Checkpoint

Format JOBEXP

Description Checkpoint a job. See Checkpoint/Restart Facilities on page 452 for more information.

Example > mjobctl -C job1045

Checkpoint job job1045.

-e - Rerun

Format JOBID

Description Rerun the completed TORQUE job. This works only for jobs that are completed and show up in
TORQUE as completed. This flag does not work with other resource managers.

4.0 Scheduler Commands

134 4.6 Commands

4.6 Commands 135

-e - Rerun

Example > mjobctl -e job1045

Rerun job job1045.

-F - Force Cancel

Format JOBEXP

Description Forces a job to cancel and ignores previous cancellation attempts.

Example > mjobctl -F job1045

Force cancel job job1045.

-h - Hold

Format <HOLDTYPE><JOBEXP>

<HOLDTYPE> = { user | batch | system | defer | ALL }

Default user

Description Set or release a job hold

See Job Holds for more information

Example > mjobctl -h user job1045

Set a user hold on job job1045.

> mjobctl -u all job1045

Unset all holds on job job1045.

4.0 Scheduler Commands

http://www.adaptivecomputing.com/resources/docs/mwm/Content/topics/jobAdministration/jobholds.html

-m - Modify

Format <ATTR>{ += | =| -= } <VAL>

<ATTR>={ account | arraylimit | awduration| class | deadline | depend | eeduration | env | fea-
tures | feature | flags | gres | group | hold | hostlist | jobdisk | jobmem | jobname | jobswap | log-
level | messages | minstarttime | nodecount | notificationaddress | partition | priority | queue | qos
| reqreservation | rmxstring | reqawduration | sysprio | trig | trigvar | userprio | var | wclimit}

Description Modify a specific job attribute.

If an mjobctl -m attribute can affect how a job starts, then it generally cannot affect a job
that is already running. For example, it is not feasible to change the hostlist of a job that is
already running.

The userprio attribute allows you to specify user priority. For job priority, use the '-p' flag.
Modification of the job dependency is also communicated to the resource manager in the case of
SLURM and PBS/Torque.
Adding --flags=warnifcompleted causes a warning message to print when a job completes.
To define values for awduration, eeduration, minstarttime (Note that the minstarttime
attribute performs the same function as msub -a.), reqawduration, and wclimit, use the time
spec format.
A non-active job's partition list can be modified by adding or subtracting partitions. Note, though,
that when adding or subtracting multiple partitions, each partition must have its own -m
partition{+= | = | -=}name on the command line. (See example for adding multiple
partitions.)
To modify a job's generic resources, use the following format: gres{ += | = | -= }
<gresName>[:<count>]. <gresName> is a single resource, not a list. <count> is an integer that, if
not specified, is assumed to be 1. Modifying a job's generic resources causes Moab to append the
new gres (+=), subtract the specified gres (-=), or clear out all existing generic resources attached
to the job and override them with the newly-specified one (=).

4.0 Scheduler Commands

136 4.6 Commands

4.6 Commands 137

-m - Modify

Example > mjobctl -m reqawduration+=600 1664

Add 10 minutes to the job walltime.

> mjobctl -m eeduration=-1 1664

Reset job's effective queue time, to when the job was submitted.

> mjobctl -m var=Flag1=TRUE 1664

Set the job variable Flag1 to TRUE.

> mjobctl -m notificationaddress="name@server.com"

Sets the notification e-mail address associated with a job to name@server.com.

> mjobctl -m partition+=p3 -m partition+=p4 Moab.5

Adds multiple partitions (p3 and p4) to job Moab.5.

> mjobctl -m arraylimit=10 sim.25

Changes the concurrently running sub-job limit to 10 for array sim.25.

> mjobctl -m gres=matlab:1 job0201

Overrides all generic resources applied to job job0201 and replaces them with 1
matlab.

> mjobctl -m userprio-=100 Moab.4

Reduces the user priority of Moab.4 by 100.

-N - Notify

Format [signal=]<SIGID>JOBEXP

Description Send a signal to all jobs matching the job expression.

4.0 Scheduler Commands

-N - Notify

Example > mjobctl -N INT 1664

Send an interrupt signal to job 1664.

> mjobctl -N 47 1664

Send signal 47 to job 1664.

-n - Name

Format

Description Select jobs by job name.

Example

-p - Priority

Format [+|+=|-=]<VAL><JOBID> [--flags=relative]

Description Modify a job's system priority.

4.0 Scheduler Commands

138 4.6 Commands

4.6 Commands 139

-p - Priority

Example Priority is the job priority plus the system priority. Each format affects the job and system
priorities differently. Using the format <VAL><JOBID> or +<VAL><JOBID> will set the system
priority to the maximum system priority plus the specified value. Using +=<VAL><JOBID> or
<VAL><JOBID> --flags=relative will relatively increase the job's priority and set the system
priority. Using the format -=<VAL> <JOBID> sets the system priority to 0, and does not change
priority based on <VAL> (it will not decrease priority by that number).
For the following example, job1045 has a priority of 10, which is composed of a job priority of 10
and a system priority of 0.

> mjobctl -p +1000 job1045

The system priority changes to the max system priority plus 1000 points, ensuring that
this job will be higher priority than all normal jobs. In this case, the job priority of 10 is
not added, so the priority of job1045 is now 1000001000.

> mjobctl -p -=1 job1045

The system priority of job1045 resets to 0. The job priority is still 10, so the overall
priority becomes 10.

> mjobctl -p 3 job1045 --flags=relative

Adds 3 points to the relative system priority. The priority for job1045 changes from 10
to 13.

-q - Query

Format [diag(ALL)| hostlist | starttime| template] <JOBEXP>

Description Query a job.

4.0 Scheduler Commands

-q - Query

Example > mjobctl -q diag job1045

Query job job1045.

> mjobctl -q diag ALL --format=xml

Query all jobs and return the output in machine-readable XML.

> mjobctl -q starttime job1045

Query starttime of job job1045.

> mjobctl -q template <job>

Query job templates. If the <job> is set to ALL or empty, it will return information for all
job templates.

> mjobctl -q wiki <jobName>

Query a job with the output displayed in a WIKI string. The job's name may be replaced
with ALL.

--flags=completed will only work with the diag option.

-r - Resume

Format JOBEXP

Description Resume a job.

Example > mjobctl -r
job1045

Resume
job
job1045.

-R - Requeue

Format JOBEXP

4.0 Scheduler Commands

140 4.6 Commands

4.6 Commands 141

-R - Requeue

Description Requeue a job.

Example > mjobctl -R
job1045

Requeue
job
job1045.

-s - Suspend

Format JOBEXP

Description Suspend a job. For more information, see Suspend/Resume Handling.

Example > mjobctl -s job1045

Suspend job job1045.

-u - Unhold

Format [<TYPE>[,<TYPE>]]JOBEXP

<TYPE> = [user | system | batch | defer | ALL]

Default ALL

Description Release a hold on a job

See Job Holds on page 449 for more information.

Example > mjobctl -u user,system scrib.1045

Release user and system holds on job
scrib.1045.

4.0 Scheduler Commands

-w - Where

Format [CompletionTime | StartTime][<= | = | >=]<EPOCH_TIME>

Description Add a where constraint clause to the current command. As it pertains to CompletionTime |
StartTime, the where constraint only works for completed jobs. CompletionTime filters according
to the completed jobs' completion times; StartTime filters according to the completed jobs' start
times.

Example > mjobctl -q diag ALL --flags=COMPLETED --format=xml
-w CompletionTime>=1246428000 -w CompletionTime<=1254376800

Prints all completed jobs still in memory that completed between July 1, 2009 and October
1, 2009.

-x - Execute

Format JOBEXP

Description Execute a job. The -w option allows flags to be set for the job. Allowable flags are, ignore-
policies, ignorenodestate, and ignorersv.

Example > mjobctl -x job1045

Execute job job1045.

> mjobctl -x -w flags=ignorepolicies job1046

Execute job job1046 and ignore policies, such as MaxJobPerUser.

Parameters

JOB EXPRESSION

Format <STRING>

4.0 Scheduler Commands

142 4.6 Commands

4.6 Commands 143

JOB EXPRESSION

Descrip-
tion

The name of a job or a regular expression for several jobs. The flags that support job expressions
can use node expression syntax as described in Node Selection. Using x: indicates the following
string is to be interpreted as a regular expression, and using r: indicates the following string is to
be interpreted as a range. Job expressions do not work for array sub-jobs.

Moab uses regular expressions conforming to the POSIX 1003.2 standard. This standard is
somewhat different than the regular expressions commonly used for filename matching in
Unix environments (see man 7 regex). To interpret a job expression as a regular expression,
use x: or in the Moab configuration file (moab.cfg), set the parameter USEJOBREGEX to
TRUE (and take note of the following caution).

If you set USEJOBREGEX to TRUE, Moab treats allmjobctl job expressions as regular
expressions regardless of whether wildcards are specified. This should be used with

extreme caution since there is high potential for unintended consequences. For example,
specifying canceljob m.1 will not only cancel m.1, but also m.11,m.12,m13, and so on.

In most cases, it is necessary to quote the job expression (for example, job13[5-9]) to
prevent the shell from intercepting and interpreting the special characters.

The mjobctl command accepts a comma delimited list of job expressions. Example usage
might be mjobctl -r job[1-2],job4 or mjobctl -c job1,job2,job4.

Example: > mjobctl -c "x:80.*"
job '802' cancelled
job '803' cancelled
job '804' cancelled
job '805' cancelled
job '806' cancelled
job '807' cancelled
job '808' cancelled
job '809' cancelled

Cancel all jobs starting with 80.

> mjobctl -m priority+=200 "x:74[3-5]"
job '743' system priority modified
job '744' system priority modified
job '745' system priority modified

> mjobctl -h x:17.*
This puts a hold on any job that has a 17 that is followed by an unlimited amount
of any
character and includes jobs 1701, 17mjk10, and 17DjN_JW-07

> mjobctl -h r:1-17
This puts a hold on jobs 1 through 17.

4.0 Scheduler Commands

XMLOutput

mjobctl information can be reported as XML as well. This is done with the command mjobctl -q diag
<JOB_ID>.

XML Attributes

Name Description

Account The account assigned to the job

AllocNodeList The nodes allocated to the job

Args The job's executable arguments

AWDuration The active wall time consumed

BlockReason The block message index for the reason the job is not eligible

Bypass Number of times the job has been bypassed by other jobs

Calendar The job's timeframe constraint calendar

Class The class assigned to the job

CmdFile The command file path

CompletionCode The return code of the job as extracted from the RM

CompletionTime The time of the job's completion

Cost The cost of executing the job relative to an allocation manager

CPULimit The CPU limit for the job

Depend Any dependencies on the status of other jobs

DRM The master destination RM

DRMJID The master destination RM job ID

EEDuration The duration of time the job has been eligible for scheduling

4.0 Scheduler Commands

144 4.6 Commands

4.6 Commands 145

Name Description

EFile The stderr file

Env The job's environment variables set for execution

EnvOverride The job's overriding environment variables set for execution

EState The expected state of the job

EstHistStartTime The estimated historical start time

EstPrioStartTime The estimated priority start time

EstRsvStartTime The estimated reservation start time

EstWCTime The estimated walltime the job will execute

ExcHList The excluded host list

Flags Command delimited list of Moab flags on the job

GAttr The requested generic attributes

GJID The global job ID

Group The group assigned to the job

Hold The hold list

Holdtime The time the job was put on hold

HopCount The hop count between the job's peers

HostList The requested host list

IFlags The internal flags for the job

IsInteractive If set, the job is interactive

IsRestartable If set, the job is restartable

4.0 Scheduler Commands

Name Description

IsSuspendable If set, the job is suspendable

IWD The directory where the job is executed

JobID The job's batch ID.

JobName The user-specified name for the job

JobGroup The job ID relative to its group

LogLevel The individual log level for the job

MasterHost The specified host to run primary tasks on

Messages Any messages reported by Moab regarding the job

MinPreemptTime The minimum amount of time the job must run before being eligible for preemption

Notification Any events generated to notify the job's user

OFile The stdout file

OldMessages Any messages reported by Moab in the old message style regarding the job

OWCLimit The original wallclock limit

PAL The partition access list relative to the job

QueueStatus The job's queue status as generated this iteration

QOS The QoS assigned to the job

QOSReq The requested QoS for the job

ReqAWDuration The requested active walltime duration

ReqCMaxTime The requested latest allowed completion time

ReqMem The total memory requested/dedicated to the job

4.0 Scheduler Commands

146 4.6 Commands

4.6 Commands 147

Name Description

ReqNodes The number of requested nodes for the job

ReqProcs The number of requested procs for the job

ReqReservation The required reservation for the job

ReqRMType The required RM type

ReqSMinTime The requested earliest start time

RM The master source resource manager

RMXString The resource manager extension string

RsvAccess The list of reservations accessible by the job

RsvStartTime The reservation start time

RunPriority The effective job priority

Shell The execution shell's output

SID The job's system ID (parent cluster)

Size The job's computational size

STotCPU The average CPU load tracked across all nodes

SMaxCPU The max CPU load tracked across all nodes

STotMem The average memory usage tracked across all nodes

SMaxMem The max memory usage tracked across all nodes

SRMJID The source RM's ID for the job

StartCount The number of the times the job has tried to start

StartPriority The effective job priority

4.0 Scheduler Commands

Name Description

StartTime The most recent time the job started executing

State The state of the job as reported by Moab

StatMSUtl The total number of memory seconds utilized

StatPSDed The total number of processor seconds dedicated to the job

StatPSUtl The total number of processor seconds utilized by the job

StdErr The path to the stderr file

StdIn The path to the stdin file

StdOut The path to the stdout file

StepID StepID of the job (used with LoadLeveler systems)

SubmitHost The host where the job was submitted

SubmitLanguage The RM language that the submission request was performed

SubmitString The string containing the entire submission request

SubmissionTime The time the job was submitted

SuspendDuration The amount of time the job has been suspended

SysPrio The admin specified job priority

SysSMinTime The system specified min. start time

TaskMap The allocation taskmap for the job

TermTime The time the job was terminated

User The user assigned to the job

UserPrio The user specified job priority

4.0 Scheduler Commands

148 4.6 Commands

4.6 Commands 149

Name Description

UtlMem The utilized memory of the job

UtlProcs The number of utilized processors by the job

Variable

VWCTime The virtual wallclock limit

Examples

Example 4-25:

> mjobctl -q diag ALL --format=xml
<Data><job AWDuration="346" Class="batch" CmdFile="jobsleep.sh" EEDuration="0"
EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test" JobID="11578"
QOS="high"
RMJID="11578.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1" ReqProcs="1"
StartCount="1"
StartPriority="1" StartTime="1083861225" StatMSUtl="903.570" StatPSDed="364.610"
StatPSUtl="364.610"
State="Running" SubmissionTime="1083861225" SuspendDuration="0" SysPrio="0"
SysSMinTime="00:00:00"
User="test"><req AllocNodeList="hana" AllocPartition="access" ReqNodeFeature="[NONE]"
ReqPartition="access"></req></job><job AWDuration="346" Class="batch"
CmdFile="jobsleep.sh"
EEDuration="0" EState="Running" Flags="RESTARTABLE" Group="test" IWD="/home/test"
JobID="11579"
QOS="high" RMJID="11579.lolo.icluster.org" ReqAWDuration="00:10:00" ReqNodes="1"
ReqProcs="1"
StartCount="1" StartPriority="1" StartTime="1083861225" StatMSUtl="602.380"
StatPSDed="364.610"
StatPSUtl="364.610" State="Running" SubmissionTime="1083861225" SuspendDuration="0"
SysPrio="0"
SysSMinTime="00:00:00" User="test"><req AllocNodeList="lolo" AllocPartition="access"
ReqNodeFeature="[NONE]" ReqPartition="access"></req></job></Data>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l setspri
l canceljob
l runjob

mnodectl
Synopsis

mnodectl -m attr{=|-=}val nodeexp
mnodectl -q [cat|diag|profile|wiki] nodeexp

4.0 Scheduler Commands

Overview

Change specified attributes for a given node expression.

Access

By default, this command can be run by any Moab Administrator.

Format

-m - Modify

Format <ATTR>{=|-=}<VAL>

Where <ATTR> is one of the following:
FEATURES
GEVENT,
GMETRIC,
MESSAGE,
OS,
POWER,
STATE,
VARIABLE
and -=, in this case, clears the attribute; it does not decrement the attribute's value.

Changing OS and POWER require a Moab Adaptive Computing Suite license and a
provisioning resource manager.

Description Modify the state or attribute of specified node(s)

Example > mnodectl -m features=fastio,highmem node1
> mnodectl -m gevent=cpufail:'cpu02 has failed w/ec:0317' node1
> mnodectl -m gmetric=temp:131.2 node1
> mnodectl -m message='cpufailure:cpu02 has failed w/ec:0317' node1
> mnodectl -m OS=RHAS30 node1
> mnodectl -m power=off node1
> mnodectl -m state=idle node1
> mnodectl -m variable=IP=10.10.10.100,Location=R1S2 node1

-q - Query

Format {cat | diag | profile | wiki}

Description Query node categories or node profile information (see ENABLEPROFILING for nodes).

The diag and profile options must use --xml.

4.0 Scheduler Commands

150 4.6 Commands

4.6 Commands 151

-q - Query

Example > mnodectl -q cat ALL
node categorization stats from Mon Jul 10 00:00:00 to Mon Jul 10 15:30:00
Node: moab
Categories:

busy: 96.88%
idle: 3.12%

Node: maka
Categories:

busy: 96.88%
idle: 3.12%

Node: pau
Categories:

busy: 96.88%
idle: 3.12%

Node: maowu
Categories:

busy: 96.88%
down-hw: 3.12%

Cluster Summary:
busy: 96.88%

down-hw: 0.78%
idle: 2.34%

> mnodectl -v -q profile
...

> mnodectl -q wiki <ALL>
GLOBAL STATE=Idle PARTITION=SHARED
n0 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n1 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n2 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n3 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n4 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n5 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n6 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n7 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n8 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED
n9 STATE=Idle PARTITION=base APROC=4 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED

Query a node with the output displayed in a WIKI string.

Parameters

4.0 Scheduler Commands

FEATURES

Format <STRING>
One of the following:

l a comma-delimited list of features
l [NONE] (to clear features on the node)

Description Sets the features on a node.

These node features will be overwritten when an RM reports
features.

Example mnodectl -m features=fastio,highmem node1
mnodectl -m features=[NONE] node1

GEVENT

Format <EVENT>:<MESSAGE>

Description Creates a generic event on the node to which Moab may respond (see Enabling Generic Events).

Example mnodectl -m gevent=powerfail:'power has failed' node1

GMETRIC

Format <ATTR>:<VALUE>

Description Sets the value for a generic metric on the node (see Enabling Generic Metrics).

When a gmetric set in Moab conflicts with what the resource manager reports, Moab uses
the set gmetric until the next time the resource manager reports a different number.

Example mnodectl -m gmetric=temp:120 node1

MESSAGE

Format '<MESSAGE>'

4.0 Scheduler Commands

152 4.6 Commands

4.6 Commands 153

MESSAGE

Description Sets a message to be displayed on the node.

Example mnodectl -m message='powerfailure: power has failed'
node1

NODEEXP

Format <STRING>
Where <NODEEXP> is a node name, regex or ALL

Description Identifies one or more nodes.

Example node1— applies only to node1
fr10n* - all nodes starting with fr10n
ALL - all known nodes

OS

Format <STRING>

Description Operating System (see Resource Provisioning).

Example mnodectl node1 -m OS=RHELAS30

POWER

Format {off|on}

4.0 Scheduler Commands

POWER

Description Set the power state of a node. Action will NOT be taken if the node is already in the specified state.

If you power off a node, a green policy will try to turn it back on. If you want the node to
remain powered off, you must associate a reservation with it.

If you request to power off a node that has active work on it, Moab will return a status
indicating that the node is busy (with a job or VM) and will not be powered off. You will
see one of these messages:
l Ignoring node <name>: power ON in process (indicates node is currently
powering on)

l Ignoring node <name>: power OFF in process (indicates node is currently
powering off)

l Ignoring node <name>: has active VMs running (indicates the node is
currently running active VMs)

l Ignoring node <name>: has active jobs running (indicates the node is
currently running active jobs)

Once you resolve the activity on the node (by preempting or migrating the jobs or VMs, for
example), you can attempt to power the node off again.
You can use the --flags=force option to cause a force override. However, doing this will
power off the node regardless of whether or not its jobs get migrated or preempted (i.e.,
you run the risk of losing the VMs/jobs entirely). For example:

> mnodectl node1 -m power=off --flags=force

Example > mnodectl node1 -m power=off

STATE

Format {drained|idle}

Description Remove (drained) or add (idle) a node from scheduling.

Example mnodectl node1 -m state=drained

Moab ignores node1 when scheduling.

VARIABLE

Format <name>[=<value>],<name>[=<value>]...

4.0 Scheduler Commands

154 4.6 Commands

4.6 Commands 155

VARIABLE

Description Set a list of variables for a node.

Example > mnodectl node1 -m
variable=IP=10.10.10.100,Location=R1S2

Related topics

l Moab Client Installation — explains how to distribute this command to client nodes
l mdiag -n
l showres -n
l checknode
l showstats -n — report current and historical node statistics

moab
Synopsis

moab --about --help --loglevel=<LOGLEVEL> --version [-c <CONFIG_FILE>] [-C] [-d] [-e] [-h] [-P
[<PAUSEDURATION>]] [-R <RECYCLEDURATION>] [-s] [-S [<STOPITERATION>]] [-v]

Parameters

Parameter Description

--about Displays build environment and version information.

--loglevel Sets the server loglevel to the specified value.

--version Displays version information.

-c Configuration file the server should use.

-C Clears checkpoint files (.moab.ck, .moab.ck.1).

-d Debug mode (does not background itself).

4.0 Scheduler Commands

Parameter Description

-e Forces Moab to exit if there are any errors in the configuration file, if it can't connect to the con-
figured database, or if it can't find these directories:

l statdir

l logdir

l spooldir

l toolsdir

-P Starts Moab in a paused state for the duration specified.

-R Causes Moab to automatically recycle every time the specified duration transpires.

-s Starts Moab in the state that was most recently checkpointed.

-S Suspends/stops scheduling at specified iteration (or at startup if no iteration is specified).

-v Same as --version.

mrmctl
Synopsis

mrmctl -f [fobject] {rmName|am:[amid]} mrmctl -l [rmid|am:[amid]] mrmctl -m <attr>=<value> [rmid|am:
[amid]] mrmctl -p {rmid|am:[amid]} mrmctl -R {am|id}[:rmid]}}

Overview

mrmctl allows an admin to query, list, modify, and ping the resource managers and allocation managers
in Moab. mrmctl also allows for a queue (often referred to as a class) to be created for a resource
manager.

Access

By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-f - Flush Statistics

Format [<fobject>] where fobject is optional and one of messages or stats.

4.0 Scheduler Commands

156 4.6 Commands

4.6 Commands 157

-f - Flush Statistics

Default If no fobject is specified, then reported failures and performance data will be flushed. If no
resource manager id is specified, the first resource manager will be flushed.

Description Clears resource manager statistics. If messages is specified, then reported failures, performance
data, and messages will be flushed.

Example > mrmctl -f base

Moab will clear the statistics for RM base.

-l - List

Format N/A

Default All RMs and AMs (when no RM/AM is specified)

Description List Resource and Allocation Manager(s)

Example > mrmctl -l

Moab will list all resource and
allocation managers.

-m - Modify

Format N/A

Default All RMs and AMs (when no RM/AM is specified).

Description Modify Resource and Allocation Manager(s).

Example > mrmctl -m state=disabled peer13

-p - Ping

Format N/A

4.0 Scheduler Commands

-p - Ping

Default First RM configured.

Description Ping Resource Manager.

Example > mrmctl -p base

Moab will
ping RM
base.

-R - Reload

Format {am|id}[:rmid]}}

Description Dynamically reloads server information for the identity manager service if id is specified; if am is
specified, reloads the allocation manager service.

Example > mrmctl -R id

Reloads the identity manager on demand.

Resource manager interfaces can be enabled/disabled using the modify operation to change the
resource manager state as in the following example:

disable active resource manager interface
> mrmctl -m state=disabled torque
restore disabled resource manager interface
> mrmctl -m state=enabled torque

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mdiag -R
l mdiag -c

mrsvctl
Synopsis

mrsvctl -c [-a acl] [-b subtype] [-d duration] [-D description] [-e endtime] [-E] [-f features] [-F flags] [-g
rsvgroup] [-h hostexp] [-n name] [-o owner] [-p partition] [-P profile] [-R resources] [-s starttime] [-S
setvalue] [-t tasks] [-T trigger] [-V variable] [-x joblist]

4.0 Scheduler Commands

158 4.6 Commands

4.6 Commands 159

mrsvctl -C [-g standing_reservationid] {reservationid}

mrsvctl -l [{reservationid | -i index}]

mrsvctl -m <duration|endtime|reqtaskcount|starttime>{=|+=|-=}<VAL> <hostexp>{+=|-=}<VAL> <variable>
{+=KEY=VAL|-=KEY_TO_REMOVE} {reservationid | -i index}

mrsvctl -q {reservationid | -i index} [--blocking]

mrsvctl -r {reservationid | -i index}

Overview

mrsvctl controls the creation, modification, querying, and releasing of reservations.

The timeframe covered by the reservation can be specified on either an absolute or relative basis. Only
jobs with credentials listed in the reservation's access control list can utilize the reserved resources.
However, these jobs still have the freedom to utilize resources outside of the reservation. The
reservation will be assigned a name derived from the ACL specified. If no reservation ACL is specified,
the reservation is created as a system reservation and no jobs will be allowed access to the resources
during the specified timeframe (valuable for system maintenance, etc). See the Reservation Overview for
more information.

Reservations can be viewed using the -q flag and can be released using the -r flag.

By default, reservations are not exclusive and may overlap with other reservations and jobs. Use
the '-E' flag to adjust this behavior.

Access

By default, this command can be run by level 1 and level 2 Moab administrators (see ADMINCFG).

Format

-a

Name ACL

Format <TYPE>==<VAL>[,<TYPE>==<VAL>]...

Where <TYPE> is one of the following:
ACCT,
CLASS,
DURATION,
GROUP,
JATTR,
PROC,
QOS,
RSV, or
USER

4.0 Scheduler Commands

-a

Descrip-
tion

List of limitations for access to the reserved resources (See also: ACL Modifiers).

Example > mrsvctl -c -h node01 -a USER==john+,CLASS==batch-

Moab will make a reservation on node01 allowing access to user john and restricting
access from class batch when other resources are available to class batch

> mrsvctl -m -a USER-=john system.1

Moab will remove user john from the system.1 reservation

4.0 Scheduler Commands

160 4.6 Commands

4.6 Commands 161

-a

Notes l When you specify multiple credentials, a user must only match one of them in order to
access the reservation. To require one or more of the listed limitations for reservation
access, each required specification must end with an asterisk (*). If a user meets the
required limitation(s), he or she has access to the reservation (without meeting any that are
not marked required).

l There are three different assignment operators that can be used for modifying most
credentials in the ACL. The operator == will reassess the list for that particular credential
type. The += operator will append to the list for that credential type, and -= will remove
from the list. Two other operators are used to specify DURATION and PROC: >= (greater
than) and <= (less than).

l To add multiple credentials of the same type with one command, use a colon to separate
them. To separate lists of different credential types, use commas. For example, to reassign
the user list to consist of users Joe and Bob, and to append the group MyGroup to the
groups list on the system.1 reservation, you could use the command mrsvctl -m -a
USER==Joe:Bob,GROUP+=MyGroup system.1.

l Any of the ACL modifiers may be used. When using them, it is often useful to put single
quotes on either side of the assignment command. For example, mrsvctl -m -a
'USER==&Joe' system.1.

l Some flags are mutually exclusive. For example, the ! modifier means that the credential is
blocked from the reservation and the & modifier means that the credential must run on
that reservation. Moab will take the most recently parsed modifier. Modifiers may be placed
on either the left or the right of the argument, so USER==&JOE and USER==JOE& are
equivalent. Moab parses each argument starting from right to left on the right side of the
argument, then from left to right on the left side. So, if the command was USER==!JOE&,
Moab would keep the equivalent of USER==!JOE because the ! would be the last one
parsed.

l You can set a reservation to have a time limit for submitted jobs using DURATION and the *
modifier. For example, mrsvctl -m -a 'DURATION<=*1:00:00' system.1 would
cause the system.1 reservation to not accept any jobs with a walltime greater than one
hour. Similarly, you can set a reservation to have a processor limit using PROC and the
* modifier. mrsvctl -a 'PROC>=2*' system.2 would cause the system.2
reservation to only allow jobs requesting more than 2 procs to run on it.

l You can verify the ACL of a reservation using the mdiag -r command.

mrsvctl -m -a 'USER==Joe:Bob,GROUP-=BadGroup,ACCT+=GoodAccount,DURATION<=*1:00:00'
system.1

Moab will reassign the USER list to be Joe and Bob, will remove BadGroup from the
GROUP list, append GoodAccount to the ACCT list, and only allow jobs that have a
submitted walltime of an hour or less on the system.1 reservation.

mrsvctl -m -a 'USER==Joe,USER==Bob' system.1

Moab will assign the USER list to Joe, and then reassign it again to Bob. The final result
will be that the USER list will just be Bob. To add Joe and Bob, use mrsvctl -m -a

4.0 Scheduler Commands

-a

USER==Joe:Bob system.1 or mrsvctl -m -a USER==Joe,USER+=Bob
system.1.

-b

Name SUBTYPE

Format One of the node category values or node category shortcuts.

Description Add subtype to reservation.

Example > mrsvctl -c -b SoftwareMaintenance -t ALL

Moab will associate the reserved nodes with the node category
SoftwareMaintenance.

-c

Name CREATE

Format <ARGUMENTS>

Description Creates a reservation.

The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude
certain nodes from being part of the reservation because they are running specific jobs.
The -F flag instructsmrsvctl to still consider nodes with current running jobs.

4.0 Scheduler Commands

162 4.6 Commands

4.6 Commands 163

-c

Examples > mrsvctl -c -t ALL

Moab will create a reservation across all system resources.

> mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5
and moab6 will not be assigned to the reservation.

> mrsvctl -c -d INFINITY

Moab will create an infinite reservation.

-C

Name CLEAR

Format <RSVID> | -g <SRSVID>

Description Clears any disabled time slots from standing reservations and allows the recreation of disabled
reservations

Example > mrsvctl -C -g testing

Moab will clear any disabled timeslots from the standing reservation testing.

-d

Name DURATION

Format [[[DD:]HH:]MM:]SS

Default INFINITY

Description Duration of the reservation (not needed if ENDTIME is specified)

4.0 Scheduler Commands

-d

Example > mrsvctl -c -h node01 -d 5:00:00

Moab will create a reservation on node01 lasting 5 hours.

mrsvctl -c -d INFINITY

Moab will create a reservation with a duration of
INFINITY (no endtime).

-D

Name DESCRIPTION

Format <STRING>

Description Human-readable description of reservation or purpose

Example > mrsvctl -c -h node01 -d 5:00:00 -D 'system maintenance to test
network'

Moab will create a reservation on node01 lasting 5 hours.

-e

Name ENDTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default INFINITY

Description Absolute or relative time reservation will end (not required if Duration specified). ENDTIME also
supports an epoch timestamp.

4.0 Scheduler Commands

164 4.6 Commands

4.6 Commands 165

-e

Example > mrsvctl -c -h node01 -e +3:00:00

Moab will create a reservation on node01 ending in 3 hours.

-E

Name EXCLUSIVE

Description When specified, Moab will only create a reservation if there are no other reservations (exclusive or
otherwise) which would conflict with the time and space constraints of this reservation. If excep-
tions are desired, the rsvaccesslist attribute can be set or the ignrsv flag can be used.

Example > mrsvctl -c -h node01 -E

Moab will only create a reservation on node01 if no conflicting reservations are found.

This flag is only used at the time of reservation creation. Once the reservation is created,
Moab allows jobs into the reservation based on the ACL. Also, once the exclusive
reservation is created, it is possible that Moab will overlap it with jobs that match the ACL.

-f

Name FEATURES

Format <STRING>[:<STRING>]...

Description List of node features which must be possessed by the reserved resources. You can use a backslash
and pipe to delimit features to indicate that Moab can use one or the other.

Example > mrsvctl -c -h node[0-9] -f fast\|slow

Moab will create a reservation on nodes matching the expression and which also have
either the feature fast or the feature slow.

4.0 Scheduler Commands

-F

Name FLAGS

Format <flag>[[,<flag>]...]

Description Comma-delimited list of flags to set for the reservation (see Managing Reservations for flags).

Example > mrsvctl -c -h node01 -F ignstate

Moab will create a reservation on node01 ignoring any conflicting node states.

-g

Name RSVGROUP

Format <STRING>

Description For a create operation, create a reservation in this reservation group. For list and modify oper-
ations, take actions on all reservations in the specified reservation group. The -g option can also be
used in conjunction with the -r option to release a reservation associated with a specified group.
See Reservation Group for more information.

Example > mrsvctl -c -g staff -h 'node0[1-9]'

Moab will create a reservation on nodes matching the node expression given and assign it
to the reservation group staff.

-h

Name host list

Format class:<classname>[,<classname>]...
or
<STRING>
or
'r:<nodeNameStart>[<beginRange>-<endRange>]'
or
ALL

4.0 Scheduler Commands

166 4.6 Commands

4.6 Commands 167

-h

Description Host expression or a class mapping indicating the nodes which the reservation will allocate.

When you specify a <STRING>, the HOSTLIST attribute is always treated as a regular
expression. foo10 will map to foo10, foo101, foo1006, etc. To request an exact host

match, the expression can be bounded by the carat and dollar op expression markers as in
^foo10$.

Example > mrsvctl -c -h 'r:node0[1-9]'

Moab will create a reservation on nodes node01, node02, node03, node04, node05,
node06, node07, node08, and node09.

> mrsvctl -c -h class:batch

Moab will create a reservation on all nodes which support class/queue batch.

-i

Name INDEX

Format <STRING>

Description Use the reservation index instead of full reservation ID.

Example > mrsvctl -m -i 1 starttime=+5:00

Moab will create a reservation on nodes matching the
expression given.

-l

Name LIST

Format <RSV_ID> or ALL

RSV_ID can be the name of a reservation or a regular expression.

Default ALL

4.0 Scheduler Commands

-l

Description List reservation(s).

Example > mrsvctl -l system*

Moab will list all of the reservations whose names start
with system.

-m

Name MODIFY

Format <ATTR>=<VAL>[-m <ATTR2>=<VAL2>]...

Where <ATTR> is one of the following:

flags

duration duration{+=|-=|=}<RELTIME>

endtime endtime{+=|-=}<RELTIME> or endtime=<ABSTIME>

hostexp hostexp[+=|-=]<node>[,<node>]

variable variable[+=key1=val1|-=key_to_remove]

reqtaskcount reqtaskcount{+=|-=|=}<TASKCOUNT>

starttime starttime{+=|-=}<RELTIME> or starttime=<ABSTIME>

Description Modify aspects of a reservation.

4.0 Scheduler Commands

168 4.6 Commands

4.6 Commands 169

-m

Example > mrsvctl -m duration=2:00:00 system.1

Moab sets the duration of reservation system.1 to be exactly two hours, thus modifying
the endtime of the reservation.

> mrsvctl -m starttime+=5:00:00 system.1

Moab advances the starttime of system.1 five hours from its current starttime (without
modifying the duration of the reservation).

> mrsvctl -m endtime-=5:00:00 system.1

Moab moves the endtime of reservation system.1 ahead five hours from its current
endtime (without modifying the starttime; thus, this action is equivalent to modifying the
duration of the reservation).

> mrsvctl -m starttime=15:00:00_7/6/08 system.1

Moab sets the starttime of reservation system.1 to 3:00 p.m. on July 6, 2008.

> mrsvctl -m starttime-=5:00:00 system.1

Moab moves the starttime of reservation system.1 ahead five hours.

> mrsvctl -m starttime+=5:00:00 system.1

Moab moves the starttime of reservation system.1 five hours from the current time.

> mrsvctl -m -duration+=5:00:00 system.1

Moab extends the duration of system.1 by five hours.

> mrsvctl -m flags+=ADVRES system.1

Moab adds the flag ADVRES to reservation system.1.

> mrsvctl -m variable+key1=val1 system.1

4.0 Scheduler Commands

-m

Moab adds the variable key1 with the value key2 to system.1.

> mrsvctl -m variable+=key1=val1 variable+=key2=val2 system.1

Moab adds the variable key1 with the value val1, and variable key2 with val2 to
system.1. (Note that each variable flag requires a distinct -m entry.)

> mrsvctl -m variable-=key1 system.1

Moab deletes the variable key1 from system.1.

> mrsvctl -m variable-=key1 -m variable-=key2 system.1

Moab deletes the variables key1 and key2 from system.1.

4.0 Scheduler Commands

170 4.6 Commands

4.6 Commands 171

-m

Notes: l Modifying the starttime does not change the duration of the reservation, so the endtime
changes as well. The starttime can be changed to be before the current time, but if the
change causes the endtime to be before the current time, the change is not allowed.

l Modifying the endtime changes the duration of the reservation as well (and vice versa). An
endtime cannot be placed before the starttime or before the current time.

l Duration cannot be negative.
l The += and -= operators operate on the time of the reservation (starttime+=5 adds
five seconds to the current reservation starttime), while + and - operate on the current
time (starttime+5 sets the starttime to five seconds from now).

l If the starttime or endtime specified is before the current time without a date specified, it
is set to the next time that fits the command. To force the date, add the date as well. For
the following examples, assume that the current time is 9:00 a.m. on March 1, 2007.

> mrsvctl -m starttime=8:00:00_3/1/07 system.1

Moab moves system.1's starttime to 8:00 a.m., March 1.

> mrsvctl -m starttime=8:00:00 system.1

Moab moves system.1's starttime to 8:00 a.m., March 2.

> mrsvctl -m endtime=7:00:00 system.1

Moab moves system.1's endtime to 7:00 a.m., March 3. This happens because the
endtime must also be after the starttime, so Moab continues searching until it has found a
valid time that is in the future and after the starttime.

> mrsvctl -m endtime=7:00:00_3/2/07 system.1

Moab will return an error because the endtime cannot be before the starttime.

-n

Name NAME

Format <STRING>

4.0 Scheduler Commands

-n

Description Name for new reservation.

If no name is specified, the reservation name is set to first name listed in ACL or SYSTEM if
no ACL is specified.

Reservation names may not contain whitespace.

Example mrsvctl -c -h node01 -n John

Moab will create a reservation on node01 with the name John.

-o

Name OWNER

Format <CREDTYPE>:<CREDID>

Description Specifies the owner of a reservation. See Reservation Ownership for more information.

Example mrsvctl -c -h node01 -o USER:user1

Moab creates a reservation on node01 owned by user1.

-p

Name PARTITION

Format <STRING>

Description Only allocate resources from the specified partition

Example mrsvctl -c -p switchB -t 14

Moab will allocate 14 tasks from the
switchB partition.

4.0 Scheduler Commands

172 4.6 Commands

http://www.adaptivecomputing.com/resources/docs/mwm/7.1.5managingreservations.php#owner

4.6 Commands 173

-P

Name PROFILE

Format <STRING>

Description Indicates the reservation profile to load when creating this reservation

Example mrsvctl -c -P testing2 -t 14

Moab will allocate 14 tasks to a reservation defined by the testing2
reservation profile.

-q

Name QUERY

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well).

Description Get diagnostic information or list all completed reservations. The command gathers information
from the Moab cache which prevents it from interrupting the scheduler, but the --blocking
option can be used to bypass the cache and interrupt the scheduler.

Example mrsvctl -q ALL

Moab will query reservations.

mrsvctl -q system.1

Moab will query the reservation system.1.

-r

Name RELEASE

Format <RSV_ID>— The -r option accepts x: node regular expressions and r: node range expressions
(asterisks (*) are supported wildcards as well).

4.0 Scheduler Commands

-r

Description Releases the specified reservation.

Example > mrsvctl -r system.1

Moab will release reservation system.1.

> mrsvctl -r -g idle

Moab will release all idle job reservations.

-R

Name RESOURCES

Format <tid> or
<RES>=<VAL>[{,|+|;}<RES>=<VAL>]...

Where <RES> is one of the following:
PROCS,
MEM,
DISK,
SWAP,
GRES

Default PROCS=-1

Description Specifies the resources to be reserved per task. (-1 indicates all resources on node)

For GRES resources, <VAL> is specified in the format <GRESNAME>
[:<COUNT>]

Example > mrsvctl -c -R MEM=100;PROCS=2 -t 2

Moab will create a reservation for two tasks with the specified resources.

4.0 Scheduler Commands

174 4.6 Commands

4.6 Commands 175

-s

Name STARTTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]SS

Default [NOW]

Description Absolute or relative time reservation will start. STARTTIME also supports an epoch timestamp.

Example > mrsvctl -c -t ALL -s 3:00:00_4/4/04

Moab will create a reservation on all system resources at 3:00 am on April 4, 2004

> mrsvctl -c -h node01 -s +5:00

Moab will create a reservation in 5 minutes on node01

> mrsvctl -m -s -=5:00 system.1

This will decrement the start time by 5 minutes.

-S

Name SET ATTRIBUTE

Format <ATTR>=<VALUE>where <ATTR> is one of
aaccount — Accountable account
agroup — accountable group
aqos — accountable QoS
auser — accountable user
reqarch — required architecture
reqmemory — required node memory - in MB
reqos — required operating system
rsvaccesslist — comma- delimited list of reservations or reservation groups which can be accessed
by this reservation request. Because each reservation can access all other reservations by default,
you should make any reservation with a specified rsvaccesslist exclusive by setting the -E on page
165 flag. This setting gives the otherwise exclusive reservation access to reservations specified in
the list.

4.0 Scheduler Commands

-S

Description Specifies a reservation attribute will be used to create this reservation

Example > mrsvctl -c -h node01 -S aqos=high

Moab will create a reservation on node01 and will use the QOS high as the accountable
credential

-t

Name TASKS

Format <INTEGER>[-<INTEGER>]

Description Specifies the number of tasks to reserve. ALL indicates all resources available should be reserved.

If the task value is set to ALL, Moab applies the reservation regardless of existing
reservations and exclusive issues. If an integer is used, Moab only allocates accessible
resources. If a range is specified Moab attempts to reserve the maximum number of tasks,
or at least the minimum.

Example > mrsvctl -c -t ALL

Moab will create a reservation on all resources.

> mrsvctl -c -t 3

Moab will create a reservation for three tasks.

> mrsvctl -c -t 3-10 -E

Moab will attempt to reserve 10 tasks but will fail if it cannot get at least three.

-T

Name TRIGGER

4.0 Scheduler Commands

176 4.6 Commands

4.6 Commands 177

-T

Format <STRING>

Description Comma-delimited reservation trigger list following format described in the trigger format section
of the reservation configuration overview. See About object triggers on page 655 for more
information.

To cancel a standing reservation with a trigger, the SRCFG parameter's attribute DEPTH
must be set to 0.

Example > mrsvctl -c -h node01 -T offset=200,etype=start,atype=exec,action=/opt/moab/
tools/support.diag.pl

Moab will create a reservation on node01 and fire the script /tmp/email.sh 200
seconds after it starts

-V

Name VARIABLE

Format <name>[=<value>][[;<name>[=<value>]]...]

Description Semicolon-delimited list of variables that will be set when the reservation is created (see About
trigger variables on page 684). Names with no values will simply be set to TRUE.

Example > mrsvctl -c -h node01 -V $T1=mac;var2=18.19

Moab will create a reservation on node01 and set $T1 to mac and var2 to 18.19.

For information on modifying a variable on a reservation, see MODIFY.

-x

Name JOBLIST

Format -x <jobs to be excluded>

4.0 Scheduler Commands

-x

Description The -x flag, when used with -F ignjobrsv, lets users create reservations but exclude certain
nodes that are running the listed jobs. The -F flag instructsmrsvctl to still consider nodes with cur-
rent running jobs. The nodes are not listed directly.

Example > mrsvctl -c -t 5 -F ignjobrsv -x moab.5,moab.6

Moab will create the reservation while assigning the nodes. Nodes running jobs moab5
and moab6 will not be assigned to the reservation.

Parameters

RESERVATION ID

Format <STRING>

Description The name of a reservation or a regular expression for several reservations.

Example system*

Specifies all reservations starting with system.

Resource Allocation Details

When allocating resources, the following rules apply:

l When specifying tasks, each task defaults to one full compute node unless otherwise specified
using the -R specification

l When specifying tasks, the reservation will not be created unless all requested resources can be
allocated. (This behavior can be changed by specifying -F besteffort)

l When specifying tasks or hosts, only nodes in an idle or running state will be considered. (This
behavior can be changed by specifying -F ignstate)

Reservation Timeframe Modification

Moab supports dynamically modifying the timeframe of existing reservations. This can be accomplished
using the mrsvctl -m flag. By default, Moab will perform advanced boundary and resource access to
verify that the modification does not result in an invalid scheduler state. However, in certain
circumstances administrators may wish to FORCE the modification in spite of any access violations. This
can be done using the switch mrsvctl -m --flags=force which forces Moab to bypass any access
verification and force the change through.

4.0 Scheduler Commands

178 4.6 Commands

4.6 Commands 179

Extending a reservation by modifying the endtime

The following increases the endtime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:57 1:11:35:57 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime+=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:35:22 2:11:35:22 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the endtime of a reservation by setting the endtime to an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:18 1:11:33:18 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/20 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:33:05 2:11:33:05 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Extending a reservation by modifying the duration

The following increases the duration of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:46 1:11:28:46 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration+=24:00:00 system.1
duration for rsv 'system.1' changed
>$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:28:42 2:11:28:42 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following increases the duration of a reservation by setting the duration to an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:41 1:11:26:41 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration=48:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:26:33 2:11:26:33 2:00:00:00 1/2 Sat Nov 18

4.0 Scheduler Commands

00:00:00
1 reservation located

Shortening a reservation by modifying the endtime

The following modifies the endtime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:51 2:11:15:51 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime-=24:00:00 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:15:48 1:11:15:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the endtime of a reservation by setting the endtime to an absolute time:

$ showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:14:00 2:11:14:00 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m endtime=0_11/19 system.1
endtime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:13:48 1:11:13:48 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Shortening a reservation by modifying the duration

The following modifies the duration of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:20 2:11:12:20 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration-=24:00:00 system.1
duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:12:07 1:11:12:07 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

The following modifies the duration of a reservation by setting the duration to an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:57 2:11:10:57 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m duration=24:00:00 system.1

4.0 Scheduler Commands

180 4.6 Commands

4.6 Commands 181

duration for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:10:50 1:11:10:50 1:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located

Modifying the starttime of a reservation

The following increases the starttime of a reservation using the += tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:08:30 2:11:08:30 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime+=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:08:22 3:11:08:22 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following decreases the starttime of a reservation using the -= tag:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:07:04 2:11:07:04 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime-=24:00:00 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:53:04 1:11:06:56 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:05:31 2:11:05:31 2:00:00:00 1/2 Sat Nov 18
00:00:00
1 reservation located
$> mrsvctl -m starttime=0_11/19 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 1:11:05:18 3:11:05:18 2:00:00:00 1/2 Sun Nov 19
00:00:00
1 reservation located

The following modifies the starttime of a reservation using an absolute time:

$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - 11:04:04 2:11:04:04 2:00:00:00 1/2 Sat Nov 18
00:00:00

4.0 Scheduler Commands

1 reservation located
$> mrsvctl -m starttime=0_11/17 system.1
starttime for rsv 'system.1' changed
$> showres
ReservationID Type S Start End Duration N/P StartTime
system.1 User - -12:56:02 1:11:03:58 2:00:00:00 1/2 Fri Nov 17
00:00:00
1 reservation located

Examples

l Basic Reservation on page 182

l System Maintenance Reservation on page 182

l Explicit Task Description on page 182

l Dynamic Reservation Modification on page 182

l Reservation Modification on page 182

l Allocating Reserved Resources on page 183

l Modifying an Existing Reservation on page 183

Example 4-26: Basic Reservation

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

> mrsvctl -c -a USER=john,USER=mary -starttime +24:00:00 -duration 8:00:00 -t 2
reservation 'system.1' created

Example 4-27: System Maintenance Reservation

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00
PM.

% mrsvctl -c -s 8:00:00_06/20 -e 17:00:00_06/22 -h ALL
reservation 'system.1' created

Example 4-28: Explicit Task Description

Reserve one processor and 512 MB of memory on nodes node003 through node node006 for members
of the group staff and jobs in the interactive class

> mrsvctl -c -R PROCS=1,MEM=512 -a GROUP=staff,CLASS=interactive -h 'node00[3-6]'
reservation 'system.1' created

Example 4-29: Dynamic Reservation Modification

Modify reservation john.1 to start in 2 hours, run for 2 hours, and include node02 in the host list.

> mrsvctl -m starttime=+2:00:00,duration=2:00:00,HostExp+=node02
Note: hosts added to rsv system.3

Example 4-30: Reservation Modification

Remove user John's access to reservation system.1

4.0 Scheduler Commands

182 4.6 Commands

4.6 Commands 183

> mrsvctl -m -a USER=John system.1 --flags=unset
successfully changed ACL for rsv system.1

Example 4-31: Allocating Reserved Resources

Allocate resources for group dev which are exclusive except for resources found within reservations
myrinet.3 or john.6

> mrsvctl -c -E -a group=dev,rsv=myrinet.3,rsv=john.6 -h 'node00[3-6]'
reservation 'dev.14' created

Create exclusive network reservation on racks 3 and 4

> mrsvctl -c -E -a group=ops -g network -f rack3 -h ALL
reservation 'ops.1' created
> mrsvctl -c -E -a group=ops -g network -f rack4 -h ALL
reservation 'ops.2' created

Allocate 64 nodes for 2 hours to new reservation and grant access to reservation system.3 and all
reservations in the reservation group network

> mrsvctl -c -E -d 2:00:00 -a group=dev -t 64 -S rsvaccesslist=system.3,network
reservation 'system.23' created

Allocate 4 nodes for 1 hour to new reservation and grant access to idle job reservations

> mrsvctl -c -E -d 1:00:00 -t 4 -S rsvaccesslist=idle
reservation 'system.24' created

Example 4-32: Modifying an Existing Reservation

Remove user john from reservation ACL

> mrsvctl -m -a USER=john system.1 --flags=unset
successfully changed ACL for rsv system.1

Change reservation group

> mrsvctl -m RSVGROUP=network ops.4
successfully changed RSVGROUP for rsv ops.4

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l Admin Reservation Overview
l showres
l mdiag -r
l mshow -a command to identify available resources
l job to rsv binding

4.0 Scheduler Commands

mschedctl
Synopsis

mschedctl -A '<MESSAGE>'

mschedctl -c message messagestring [-o type:val]

mschedctl -c trigger triggerid -o type:val

mschedctl -d trigger:triggerid

mschedctl -d message:index

mschedctl -f {all|fairshare|usage}

mschedctl -k

mschedctl -l {config|gmetric|gres|message|opsys|trigger|trans} [--flags=verbose] [--xml]

mschedctl -L [LOGLEVEL]

mschedctl -m config string [-e] [--flags=persistent]

mschedctl -m trigger triggerid attr=val[,attr=val...]

mschedctl -q mschedctl -q pactions --xml

mschedctl -p

mschedctl -r [resumetime]

mschedctl -R

mschedctl -s [STOPITERATION]

mschedctl -S [STEPITERATION]

Overview

The mschedctl command controls various aspects of scheduling behavior. It is used to manage scheduling
activity, shutdown the scheduler, and create resource trace files. It can also evaluate, modify, and create
parameters, triggers, and messages.

With many flags, the --msg=<MSG> option can be specified to annotate the action in the event log.

Format

-A - ANNOTATE

Format <STRING>

Description Report the specified parameter modification to the event log and annotate it with the specified
message. The RECORDEVENTLIST parameter must be set in order for this to work.

4.0 Scheduler Commands

184 4.6 Commands

4.6 Commands 185

-A - ANNOTATE

Example mschedctl -A 'increase logging' -m 'LOGLEVEL 6'

Adjust the LOGLEVEL parameter and record an associated message.

-c - CREATE

Format One of:
l message <STRING> [-o <TYPE>:<VAL>]
l trigger<TRIGSPEC> -o <OBJECTTYPE>:<OBJECTID>
l gevent -n <NAME> [-m <message>]

where <ATTR> is one of account, duration, ID, messages, profile, reqresources, resources,
rsvprofile, starttime, user, or variables

Descrip-
tion

Create a message, trigger, or gevent and attach it to the specified object. To create a trigger on a
default object, use the Moab configuration file (moab.cfg) rather than the mschedctl command.

Example mschedctl -c message tell the admin to be nice

Create a message on the system table.

mschedctl -c trigger EType=start,AType=exec,Action="/tmp/email $OWNER $TIME" -o
rsv:system.1

Create a trigger linked to system.1.

Creating triggers on default objects via mschedctl -c trigger does not propagate the
triggers to individual objects. To propagate triggers to all objects, the triggers must be

created within the moab.cfg file; for example: NODECFG[DEFAULT]TRIGGER.

mschedctl -c gevent -n diskfailure -m "node=n4"

Create a gevent indicating a disk failure on the node labeled n4.

4.0 Scheduler Commands

-d - DESTROY

Format One of:
l trigger:<TRIGID>
l message:<INDEX>

Description Delete a trigger or message.

Example mschedctl -d
trigger:3

Delete trigger
3.

mschedctl -d
message:5

Delete message
with index 5.

-f - FLUSH

Format {all|fairshare|usage}

Description Reset all internally-stored Moab Scheduler statistics to the initial start-up state as of the time the
command was executed.

Example mschedctl -f usage

Flush usage statistics.

-k - KILL

Description Stop scheduling and exit the scheduler

Example mschedctl -k

Kill the scheduler.

4.0 Scheduler Commands

186 4.6 Commands

4.6 Commands 187

-l - LIST

Format {config |gmetric| gres | message |opsys| trans | trigger} [--flags=verbose] [--xml]

Using the --xml argument with the trans option returns XML that states if the queried
TID is valid or not.

Default config

Description List the generic metrics, generic resources, operating systems, scheduler configuration, system
messages, triggers, or transactions.

Example mschedctl -l config

List system parameters.

mschedctl -l gmetric

List all configured generic metrics.

mschedctl -l gres

List all configured generic resources.

mschedctl -l message

List all system messages.

mschedctl -l opsys

List all operating systems.

mschedctl -l trans 1

List transaction id 1.

mschedctl -l trigger

List triggers.

-L - LOG

Format <INTEGER>

4.0 Scheduler Commands

-L - LOG

Default 7

Description Create a temporary log file with the specified loglevel.

Example mschedctl -L 7

Create temporary log file with naming convention
<logfile>.YYYYMMDDHHMMSS.

-m - MODIFY

Format One of:
l config [<STRING>]

[-e]
[--flags=pers]
<STRING> is any string which would be acceptable in moab.cfg

o If no string is specified, <STRING> is read from STDIN.
o If -e is specified, the configuration string will be evaluated for correctness but no

configuration changes will take place. Any issues with the provided string will be
reported to STDERR.

o If --flags=persistent is specified, the Moab configuration files (moab.cfg
and moab.dat) are modified.

l trigger:<TRIGID> <ATTR>=<VAL>

where <ATTR> is one of action, atype, etype, iscomplete, oid, otype, offset, or threshold

Description Modify a system parameter or trigger.

Example mschedctl -m config LOGLEVEL 9

Change the system loglevel to 9.

mschedctl -m trigger:2 AType=exec,Offset=200,OID=system.1

Change aspects of trigger 2.

4.0 Scheduler Commands

188 4.6 Commands

4.6 Commands 189

-p - PAUSE

Description Disable scheduling but allow the scheduler to update its cluster and workload state information.

Example mschedctl -p

-q QUERY PENDING ACTIONS

Default mschedctl -q pactions --xml

Description A way to view pending actions. Only an XML request is valid. Pending actions can be VMs or sys-
tem jobs.

Example mschedctl -q pactions --xml

-R - RECYCLE

Description Recycle scheduler immediately (shut it down and restart it using the original execution envir-
onment and command line arguments).

Example mschedctl -R

Recycle scheduler immediately.

To restart Moab with its last known scheduler state, use:
mschedctl -R savestate

-r - RESUME

Format mschedctl -r [[HH:[MM:]]SS]

Default 0

Description Resume scheduling in the specified amount of time (or immediately if none is specified).

4.0 Scheduler Commands

-r - RESUME

Example mschedctl -r

Resume scheduling immediately.

-s - STOP

Format <INTEGER>

Default 0

Description Suspend/stop scheduling at specified iteration (or at the end of the current iteration if none is spe-
cified). If the letter I follows <ITERATION>, Moab will not process client requests until this iteration
is reached.

Example mschedctl -s 100I

Stop scheduling at iteration 100 and ignore all client requests until then.

-S - STEP

Format <INTEGER>

Default 0

Description Step the specified number of iterations (or to the next iteration if none is specified) and suspend
scheduling If the letter I follows <ITERATION>, Moab will not process client requests until this iter-
ation is reached.

Example mschedctl -S

Step to the next iteration and stop scheduling.

Examples

Example 4-33: Shutting down the Scheduler

mschedctl -k

4.0 Scheduler Commands

190 4.6 Commands

4.6 Commands 191

scheduler will be shutdown immediately

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

mshow
Synopsis

mshow [-a] [-q jobqueue=active]

Overview

The mshow command displays various diagnostic messages about the system and job queues.

Arguments

Flag Description

-a AVAILABLE RESOURCES

-q [<QUEUENAME>] Displays the job queues.

Format

AVAILABLE RESOURCES

Format Can be combined with --flags=[tid|verbose|future] --format=xml and/or -w

Description Display available resources.

Example > mshow -a -w user=john --flags=tid --format=xml

Show resources available to john in XML format with a transaction id. See mshow
-a for details.

JOB QUEUE

Format <QUEUENAME>, where the queue name is one of: active, eligible, or blocked. Job queue names can
be delimited by a comma to display multiple queues. If no job queue name is specified, mshow dis-
plays all job queues.

4.0 Scheduler Commands

JOB QUEUE

Description Displays the job queues. If a job queue name is specified,mshow shows only that job queue.

Example > mshow -q active,blocked
[Displays all jobs in the active and blocked queues]

...

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mshow -a command to show available resources

mshow -a
Synopsis

mshow -a [-i] [-o] [-T] [-w where] [-x] [--xml]

Overview

The mshow -a command allows for querying of available system resources.

Arguments

[-i] INTERSECTION

[-o] NO AGGREGATE

[-T] TIMELOCK

[-w] WHERE

[-x] EXCLUSIVE

Table 4-1: Argument Format

--flags

Name Flags

Format --flags=[future | policy | tid | summary | verbose]

4.0 Scheduler Commands

192 4.6 Commands

4.6 Commands 193

--flags

Description futurewill return resources available immediately and available in the future.
policywill apply charging policies to determine the total cost of each reported solution (only
enabled for XML responses).
summarywill assign all jointly allocated transactions as dependencies of the first transaction
reported.
tid will associate a transaction id with the reported results.
verbosewill return diagnostic information.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a transaction ID.

--xml

Name XML

Format --xml

Description Report results in XML format.

Example > mshow -a -w user=john --flags=tid --xml

Show resources available to john in XML format with a
transaction ID.

-i

Name INTERSECTION

Description Specifies that an intersection should be performed during an mshow -a command with multiple
requirements.

-o

Name NO AGGREGATE

Description Specifies that the results of the command mshow -a with multiple requirements should not be
aggregated together.

4.0 Scheduler Commands

-T

Name TIMELOCK

Description Specifies that the multiple requirements of an mshow -a command should be timelocked.

Example > mshow -a -w minprocs=1,os=linux,duration=1:00:00 \
-w minprocs=1,os=aix,duration=10:00 \
--flags=tid,future -x -T

-w

Name WHERE

Format Comma delimited list of <ATTR>=<VAL> pairs:
<ATTR>=<VAL> [,<ATTR>=<VAL>]...

If any of the <ATTR>=<VAL> pairs contains a sub-list that is also comma delimited, the
entire -w string must be wrapped in single quotations with the sub-list expression
wrapped in double quotations. See the example below.

Attributes are listed below in table 2.

Description Add a Where clause to the current command (currently supports up to six co-allocation clauses).

Example > mshow -a -w minprocs=2,duration=1:00:00 -w nodemem=512,duration=1:00:00

Moab returns a list of all nodes with at least 2 processors and one hour duration or with a
memory of 512 and a duration of one hour.

> mshow -a -w nodefeature=\!vmware:gpfs --flags=future

Moab returns a list of all nodes that do not contain the vmware feature but that do
contain the gpfs feature.

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY, except for nodes named n01,
n12, and n23.
Note the use of single quotations containing the entire -w string and the use of double
quotations containing the exludehostlist attribute.

4.0 Scheduler Commands

194 4.6 Commands

4.6 Commands 195

-x

Name EXCLUSIVE

Description Specifies that the multiple requirements of an mshow -a command should be exclusive (i.e. each
node may only be allocated to a single requirement)

Example > mshow -a -w minprocs=1,os=linux -w minprocs=1,os=aix --flags=tid -x

Table 4-2: Request Attributes

Name Description

account The account credential of the requestor

acl ACL to attach to the reservation

This ACL must be enclosed in quotation marks. For example:
$ mshow -a ... -w acl=\"user=john\" ...

arch Select only nodes with the specified architecture

cal Select resources subject to the constraints of the specified global calendar

class The class credential of the requestor

coalloc The co-allocation group of the specific Where request (can be any string but must match co-
allocation group of at least one other Where request)

The number of tasks requested in each Where request must be equal whether this
task count is specified via minprocs, mintasks, or gres.

count The number of profiles to apply to the resource request

displaymode Possible value is future. (Example: displaymode=future). Constrains how results are
presented; setting future evaluates which resources are available now and which resources
will be available in the future that match the requested attributes.

duration The duration for which the resources will be required in format [[[DD:]HH:]MM:]SS

4.0 Scheduler Commands

Name Description

excludehostlist Do not select any nodes from the given list. The list must be comma delimited.

> mshow -a -w 'duration=INFINITY,"excludehostlist=n01,n12,n23"'

Moab returns a list of all nodes with a duration of INFINITY, except for nodes named
n01, n12, and n23.
Note the use of single quotations to contain the entire -w string, and the use of double
quotations containing the exludehostlist attribute.

gres Select only nodes which possess the specified generic resource

group The group credential of the requestor

hostlist Select only the specified resources. The list must be comma delimited.

> mshow -a -w 'duration=INFINITY,"hostlist=n01,n12,n23"'

Moab returns a list of nodes from the selected hostlist that have a duration of
INFINITY.
Note the use of single quotations to contain the entire -w string, and the use of double
quotations containing the hostlist attribute.

job Use the resource, duration, and credential information for the job specified as a resource
request template

jobfeature Select only resources which would allow access to jobs with the specified job features

jobflags Select only resources which would allow access to jobs with the specified job flags. The job-
flags attribute accepts a colon delimited list of multiple flags.

minnodes Return only results with at least the number of nodes specified. If used with TID's, return only
solutions with exactly minnodes nodes available

minprocs Return only results with at least the number of processors specified. If used with TID's, return
only solutions with exactly minprocs processors available

mintasks FORMAT: <TASKCOUNT>[@<RESTYPE>:<COUNT>[+<RESTYPE>:<COUNT>]...] where <RESTYPE>
is one of procs, mem, disk, or swap. Return only results with at least the number of tasks spe-
cified. If used with TID's, return only solutions with exactly mintasks available

nodedisk Select only nodes with at least nodedisk MB of local disk configured

4.0 Scheduler Commands

196 4.6 Commands

4.6 Commands 197

Name Description

nodefeature Select only nodes with all specified features present and nodes without all \! specified fea-
tures using format [\!]<feature>[:[\!]<feature>]... You must set the future flag
when specifying node features.

nodemem Select only nodes with at least nodememMB of memory configured

offset Select only resources which can be co-allocated with the specified time offset where offset is
specified in the format [[[DD:]HH:]MM:]SS

os Select only nodes with have, or can be provisioned to have, the specified operating system

partition The partition in which the resources must be located

policylevel Enable policy enforcement at the specified policy constraint level

qos The QoS credential of the requestor

rsvprofile Use the specified profile if committing a resulting transaction id directly to a reservation

starttime Constrain the timeframe for the returned results by specifying one or more ranges using the
format <STIME>[-<ENDTIME>][;<STIME>[-<ENDTIME>]] where each time is specified in the
format in absolute, relative, or epoch time format ([HH[:MM[:SS]]][_MO[/DD[/YY]]] or +
[[[DD:]HH:]MM:]SS or <EPOCHTIME>).

The starttime specified is not the exact time at which the returned range must start,
but is rather the earliest possible time the range may start.

taskmem Require taskmemMB of memory per task located

tpn Require exactly tpn tasks per node on all discovered resources

user The user credential of the requestor

var Use associated variables in generating per transaction charging quotes

variables Takes a string of the format variables='var[=attr]'[;'var[=attr]' and passes the
variables onto the reservation when used in conjunction with --flags=tid and mrsvctl -
c -R <tid>.

4.0 Scheduler Commands

Name Description

vmusage Possible value is vmcreate. Moab will find resources for the job assuming it is a vmcreate job,
and if os is also specified, Moab will look for a hypervisor capable of running a VM with the
requested OS.

Usage Notes

The mshow -a command allows for querying of available system resources. When combined with the --
flags=tid option these available resources can then be placed into a packaged reservation (using
mrsvctl -c -R). This allows system administrators to grab and reserve available resources for whatever
reason, without conflicting with jobs or reservations that may be holding certain resources.

There are a few restrictions on which <ATTR> from the -w command can be placed in the same req:
minprocs, minnodes, and gres are all mutually exclusive, only one may be used per -w request.

The allocation of available nodes will follow the global NODEALLOCATIONPOLICY.

When the '-o' flag is not used, multi-request results will be aggregated. This aggregation will negate the
use of offsets and request-specific starttimes.

The config parameter RESOURCEQUERYDEPTH controls the maximum number of options that will be
returned in response to a resource query.

Examples

Example 4-34: Basic Compute Node Query and Reservation

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobfeature=shared --
flags=tid,future

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0
> mrsvctl -c -R 4
Note: reservation system.2 created

Example 4-35: Mixed Processor and License Query

Select one node with 4 processors and 1 matlab license where the matlab license is only available for
the last hour of the reservation. Also, select 16 additional processors which are available during the
same timeframe but which can be located anywhere in the cluster. Group the resulting transactions
together using transaction dependencies so only the first transaction needs to be committed to reserve
all associated resources.

> mshow -a -i -o -x -w mintasks=1@PROCS:4,duration=10:00:00,coalloc=a \
-w gres=matlab,offset=9:00:00,duration=1:00:00,coalloc=a \
-w minprocs=16,duration=10:00:00 --flags=tid,future,summary

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:28:09_04/27 TID=4 ReqID=0
ALL 1 1 10:00:00 10:00:00 17:14:48_04/28 TID=5 ReqID=0
ALL 1 1 10:00:00 20:00:00 21:01:27_04/29 TID=6 ReqID=0

4.0 Scheduler Commands

198 4.6 Commands

4.6 Commands 199

> mrsvctl -c -R 4

Note: reservation system.2 created
Note: reservation system.3 created
Note: reservation system.4 created

Example 4-36: Request for Generic Resources

Query for a generic resource on a specific host (no processors, only a generic resource).

> mshow -a -i -x -o -w gres=dvd,duration=10:00,hostlist=node03 --flags=tid,future
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 00:00:00 00:10:00 11:33:25_07/27 TID=16
ReqID=0
ALL 1 1 00:10:00 00:10:00 11:43:25_07/27 TID=17
ReqID=0
ALL 1 1 00:20:00 00:10:00 11:53:25_07/27 TID=18
ReqID=0
> mrsvctl -c -R 16
Note: reservation system.6 created
> mdiag -r system.6
Diagnosing Reservations
RsvID Type Par StartTime EndTime Duration Node Task
Proc
----- ---- --- --------- ------- -------- ---- ---- ---
-
system.6 User loc -00:01:02 00:08:35 00:09:37 1 1
0

Flags: ISCLOSED
ACL: RSV==system.6=
CL: RSV==system.6
Accounting Creds: User:test
Task Resources: dvd: 1
Attributes (HostExp='^node03$')
Rsv-Group: system.6

Example 4-37: Allocation of Shared Resources

This example walks through a relatively complicated example in which a set of resources can be
reserved to be allocated for shared requests. In the example below, the first mshow query looks for
resources within an existing shared reservation. In the example, this first query fails because there is
now existing reservation. The second query looks for resources within an existing shared reservation. In
the example, this first query fails because there is now existing reservation. The second mshow request
asks for resources outside of a shared reservation and finds the desired resources. These resources are
then reserved as a shared pool. The third mshow request again asks for resources inside of a shared
reservation and this time finds the desired resources.

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid

Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
> mshow -a -w duration=100:00:00,minprocs=1,os=AIX53,jobfeature=shared --flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 100:00:00 00:00:00 13:20:23_04/27 TID=1 ReqID=0
> mrsvctl -c -R 1
Note: reservation system.1 created

4.0 Scheduler Commands

> mshow -a -w duration=10:00:00,minprocs=1,os=AIX53,jobflags=ADVRES,jobfeature=shared
--flags=tid
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 1 1 10:00:00 00:00:00 13:20:36_04/27 TID=2 ReqID=0
> mrsvctl -c -R 2
Note: reservation system.2 created

Example 4-38: Full Resource Query in XML Format

The following command will report information on all available resources which meet at least the
minimum specified processor and walltime constraints and which are available to the specified user. The
results will be reported in XML to allow for easy system processing.

> mshow -a -w class=grid,minprocs=8,duration=20:00 --format=xml --flags=future,verbose

<Data>
<Object>cluster</Object>
<job User="john" time="1162407604"></job>
<par Name="template">
<range duration="Duration" nodecount="Nodes" proccount="Procs"

starttime="StartTime"></range>
</par>

<par Name="ALL" feasibleNodeCount="131" feasibleTaskCount="163">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="10" proccount="8" reqid="0"

starttime="1162407604"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,P690-001:1,P690-021:1,P690-022:1"
index="0" nodecount="11" proccount="8"reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,x86-001:1,x86-002:1,x86-004:1,
x86-006:1,x86-013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,P690-001:1,P690-

021:1,P690-022:1"
index="0" nodecount="19" proccount="8" reqid="0"

starttime="1162425519"></range>
</par>

<par Name="SharedMem">
<range duration="1200" hostlist="P690-001:1,P690-002:1,P690-003:1,P690-004:1,P690-

005:1,P690-006:1,P690-007:1,P690-008:1,P690-009:1,
P690-010:1,P690-011:1,P690-012:1,P690-013:1,P690-014:1,P690-015:1,P690-

016:1,P690-017:1,P690-018:1,P690-019:1,P690-020:1,P690-021:1,
P690-022:1,P690-023:1,P690-024:1,P690-025:1,P690-026:1,P690-027:1,P690-

028:1,P690-029:1,P690-030:1,P690-031:1,P690-032:1"
index="0" nodecount="32" proccount="8" reqid="0"

starttime="1163122507"></range>
</par>

<par Name="64Bit">
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1"
index="0" nodecount="7" proccount="8" reqid="0"

starttime="1162411204"></range>
<range duration="1200" hostlist="opt-001:1,opt-024:1,opt-025:1,opt-027:2,opt-

039:1,opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,
opt-046:1,opt-047:1,opt-048:1,opt-049:1,opt-050:1"
index="0" nodecount="15" proccount="8" reqid="0"

starttime="1162428996"></range>
<range duration="1200" hostlist="opt-001:1,opt-006:1,opt-007:2,opt-008:2,opt-

009:2,opt-010:2,opt-011:2,opt-012:2,opt-013:2,opt-014:2,

4.0 Scheduler Commands

200 4.6 Commands

4.6 Commands 201

opt-015:2,opt-016:2,opt-017:2,opt-018:2,opt-019:2,opt-020:2,opt-021:2,opt-
022:2,opt-023:2,opt-024:2,opt-025:1,opt-027:2,opt-039:1,

opt-041:1,opt-042:1,opt-043:1,opt-044:1,opt-045:1,opt-046:1,opt-047:1,opt-
048:1,opt-049:1,opt-050:1"

index="0" nodecount="33" proccount="8" reqid="0"
starttime="1162876617"></range>

</par>
<par Name="32Bit">
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1"
index="0" nodecount="9" proccount="8" reqid="0"

starttime="1162425519"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-037:1,x86-042:1,x86-043:1"
index="0" nodecount="11" proccount="8" reqid="0"

starttime="1162956803"></range>
<range duration="1200" hostlist="x86-001:1,x86-002:1,x86-004:1,x86-006:1,x86-

013:1,x86-014:1,x86-015:1,x86-016:1,x86-027:1,x86-028:1,
x86-029:1,x86-030:1,x86-037:1,x86-041:1,x86-042:1,x86-043:1,x86-046:1,x86-

047:1,x86-048:1,x86-049:1"
index="0" nodecount="20" proccount="8" reqid="0"

starttime="1163053393"></range>
</par>

</Data>

This command reports the original query, and the timeframe, resource size, and hostlist
associated with each possible time slot.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mshow in a hosting environment

mshow -a

Basic Current and Future Requests
The mshow command can report information on many aspects of the scheduling environment. To request
information on available resources, the -a flag should be used. By default, the mshow command resource
availability query only reports resources that are immediately available. To request information on
specific resources, the type of resources required can be specified using the -w flag as in the following
example:

> mshow -a -w taskmem=1500,duration=600
...

To view current and future resource availability, the future flag should be set as in the following
example:

> mshow -a -w taskmem=1500,duration=600 --flags=future
...

4.0 Scheduler Commands

Co-allocation Resources Queries
In many cases, a particular request will need simultaneous access to resources of different types. The
mshow command supports a co-allocation request specified by using multiple -w arguments. For
example, to request 16 nodes with feature fastcpu and 2 nodes with feature fastio, the following
request might be used:

> mshow -a -w minprocs=16,duration=1:00:00,nodefeature=fastcpu -w
minprocs=2,nodefeature=fastio,duration=1:00:00 --flags=future
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 8 00:00:00 1:00:00 13:00:18_08/25 ReqID=0
ALL 2 1 00:00:00 1:00:00 13:00:18_08/25 ReqID=1

The mshow -a documentation contains a list of the different resources that may be queried as well as
examples on using mshow.

Using Transaction IDs
By default, the mshow command reports simply when and where the requested resources are available.
However, when the tid flag is specified, the mshow command returns both resource availability
information and a handle to these resources called a Transaction ID as in the following example:

> mshow -a -w minprocs=16,nodefeature=fastcpu,duration=2:00:00 --flags=future,tid
Partition Procs Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 16 16 00:00:00 2:00:00 13:00:18_08/25 TID=26 ReqID=0

In the preceding example, the returned transaction id (TID) may then be used to reserve the available
resources using the mrsvctl -c -R command:

> mrsvctl -c -R 26
reservation system.1 successfully created

Any TID can be printed out using the mschedctl -l trans command:

Code example (replace with your own content)

> mschedctl -l trans 26 TID[26] A1='node01' A2='600' A3='1093465728' A4='ADVRES' A5='fastio'

Where A1 is the host list, A2 is the duration, A3 is the starttime, A4 are any flags, and A5 are any
features.

Using Reservation Profiles
Reservation profiles (RSVPROFILE) stand as templates against which reservations can be created. They
can contain a host list, startime, endtime, duration, access-control list, flags, triggers, variables, and
most other attributes of an Administrative Reservation. The following example illustrates how to create
a reservation with the exact same trigger-set.

moab.cfg

RSVPROFILE[test1] TRIGGER=Sets=$Var1.$Var2.$Var3.!Net,EType=start,AType=exec,

Action=/tmp/host/triggers/Net.sh,

4.0 Scheduler Commands

202 4.6 Commands

4.6 Commands 203

Timeout=1:00:00
RSVPROFILE[test1] TRIGGER=Requires=$Var1.$Var2.$Var3,

Sets=$Var4.$Var5,EType=start,
AType=exec,Action=/tmp/host/triggers/
FS.sh+$Var1:$Var2:$Var3,Timeout=20:00

RSVPROFILE[test1]
TRIGGER=Requires=$Var1.$Var2.$Var3.$Var4.$Var5,

Sets=!NOOSinit.OSinit,Etype=start,
AType=exec,
Action=/tmp/host/triggers/
OS.sh+$Var1:$Var2:$Var3:$Var4:$Var5

RSVPROFILE[test1]
TRIGGER=Requires=NOOSini,AType=cancel,EType=start
RSVPROFILE[test1]
TRIGGER=EType=start,Requires=OSinit,AType=exec,

Action=/tmp/host/triggers/success.sh
...

To create a reservation with this profile the mrsvctl -c -P command is used:

> mrsvctl -c -P test1

reservation system.1 successfully created

Using Reservation Groups
Reservation groups are a way for Moab to tie reservations together. When a reservation is created
using multiple Transaction IDs, these transactions and their resulting reservations are tied together into
one group.

> mrsvctl -c -R 34,35,36
reservation system.99 successfully created
reservation system.100 successfully created
reservation system.101 successfully created

In the preceding example, these three reservations would be tied together into a single group. The mdiag
-r command can be used to see which group a reservation belongs to. The mrsvctl -q diag -g command
can also be used to print out a specific group of reservations. The mrsvctl -c -g command can also be
used to release a group of reservations.

Related topics

l mshow

msub
Synopsis

msub [-a datetime][-A account][-c interval][-C directive_prefix][-d path] [-e path][-E][-F][-h][-I][-j join][-k
keep][-K][-l resourcelist][-m mailoptions] [-M user_list][-N name][-o path][-p priority][-q destination][-r] [-
S pathlist][-t jobarrays][-u userlist][-v variablelist][-V] [-W additionalattributes][-x][-z][script]

4.0 Scheduler Commands

Overview

msub allows users to submit jobs directly to Moab. When a job is submitted directly to a resource
manager (such as TORQUE), it is constrained to run on only those nodes that the resource manager is
directly monitoring. In many instances, a site may be controlling multiple resource managers. When a
job is submitted to Moab rather than to a specific resource manager, it is not constrained as to what
nodes it is executed on. msub can accept command line arguments (with the same syntax as qsub), job
scripts (in either PBS or LoadLeveler syntax), or the SSS Job XML specification.

Moab must run as a root user in order for msub submissions to work. Workload submitted via
msub when Moab is running as a non-root user fail immediately.

Submitted jobs can then be viewed and controlled via the mjobctl command.

Flags specified in the following table are not necessarily supported by all resource managers.

Access

When Moab is configured to run as root, any user may submit jobs via msub.

Flags

-a

Name Eligible Date

Format [[[[CC]YY]MM]DD]hhmm[.SS]

Description Declares the time after which the job is eligible for execution.

Example > msub -a 12041300 cmd.pbs

Moab will not schedule the job until 1:00 pm on December 4, of
the current year.

-A

Name Account

Format <ACCOUNT NAME>

Description Defines the account associated with the job.

4.0 Scheduler Commands

204 4.6 Commands

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm

4.6 Commands 205

-A

Example > msub -A research cmd.pbs

Moab will associate this job with
account research.

-c

Name Checkpoint Interval

Format [n|s|c|c=<minutes>]

Description Checkpoint of the will occur at the specified interval.

n—No Checkpoint is to be performed.
s— Checkpointing is to be performed only when the server executing the job is shut down.
c— Checkpoint is to be performed at the default minimum time for the server executing the job.
c=<minutes>— Checkpoint is to be performed at an interval of minutes.

Example > msub -c c=12 cmd.pbs

The job will be checkpointed every 12minutes.

-C

Name Directive Prefix

Format '<PREFIX NAME>'

Default First known prefix (#PBS, #@, #BSUB, #!, #MOAB, #MSUB)

Description Specifies which directive prefix should be used from a job script.
l It is best to submit with single quotes. '#PBS'
l An empty prefix will cause Moab to not search for any prefix. -C ''
l Command line arguments have precedence over script arguments.
l Custom prefixes can be used with the -C flag. -C '#MYPREFIX'
l Custom directive prefixes must use PBS syntax.
l If the -C flag is not given, Moab will take the first default prefix found. Once a directive is
found, others are ignored.

4.0 Scheduler Commands

-C

Example > msub -C '#MYPREFIX' cmd.pbs
#MYPREFIX -l walltime=5:00:00 (in cmd.pbs)

Moab will use the #MYPREFIX directive specified in cmd.pbs, setting the wallclock limit to
five hours.

-d

Name Execution Directory

Format <path>

Default Depends on the RM being used. If using TORQUE, the default is $HOME. If using SLURM, the
default is the submission directory.

Description Specifies which directory the job should execute in.

Example > msub -d /home/test/job12 cmd.pbs

The job will begin execution in the /home/test/job12 directory.

-e

Name Error Path

Format [<hostname>:]<path>

Default $SUBMISSIONDIR/$JOBNAME.e$JOBID

Description Defines the path to be used for the standard error stream of the batch job.

Example > msub -e test12/stderr.txt

The STDERR stream of the job will be placed in the relative (to execution)
directory specified.

4.0 Scheduler Commands

206 4.6 Commands

4.6 Commands 207

-E

Name Environment Variables

Description Moab adds the following variables, if populated, to the job's environment:
l MOAB_ACCOUNT— Account name.
l MOAB_BATCH— Set if a batch job (non-interactive).
l MOAB_CLASS — Class name.
l MOAB_DEPEND — Job dependency string.
l MOAB_GROUP — Group name.
l MOAB_JOBARRAYINDEX —For a job in an array, the index of the job.
l MOAB_JOBARRAYRANGE — For a system with job arrays, the range of all job arrays.
l MOAB_JOBID — Job ID.
l MOAB_JOBNAME — Job name.
l MOAB_MACHINE — Name of the machine (i.e. Destination RM) that the job is running on.
l MOAB_NODECOUNT— Number of nodes allocated to job.
l MOAB_NODELIST — Comma-separated list of nodes (listed singly with no ppn info).
l MOAB_PARTITION— Partition name the job is running in.
l MOAB_PROCCOUNT— Number of processors allocated to job.
l MOAB_QOS — QoS name.
l MOAB_TASKMAP — Node list with procs per node listed. <nodename>.<procs>
l MOAB_USER— User name.

In SLURM environments, not all variables will be populated since the variables are added at
submission (such as NODELIST). With TORQUE/PBS, the variables are added just before the job is
started.
This feature only works with SLURM and TORQUE/PBS.

Example: > msub -E mySim.cmd

The job mySim will be submitted with extra environment variables.

-F

Name Script Flags

Format "\"<STRING>\""

Description Specifies the flags TORQUE will pass to the job script at execution time.

The -F flag is only compatible with TORQUE resource managers.

4.0 Scheduler Commands

-F

Example > msub -F "\"arg1 arg2\"" -1 nodes=1,walltime=60 files/job.sh

TORQUE will pass parameters arg1 and arg2 to the job.sh script when
the job executes.

-h

Name Hold

Description Specifies that a user hold be applied to the job at submission time.

Example > msub -h cmd.ll

The job will be submitted with a user hold on it.

-I

Name Interactive

Description Declares the job is to be run interactively.

qsub must exist on the same host asmsub if the interactive job is destined for a
TORQUE cluster, because the interactive msub request will be converted to a qsub -
I request.

Example > msub -I job117.sh

The job will be submitted in interactive mode.

-j

Name Join

Format [eo|oe|n]

Default n (not merged)

4.0 Scheduler Commands

208 4.6 Commands

4.6 Commands 209

-j

Description If eo is specified, the error and output streams are merged into the error stream. If oe is specified,
the error and output streams will be merged into the output stream.

If using either the -e or the -o option and the -j eo|oe option, the -j option takes
precedence and all standard error and output messages go to the chosen output file.

Example > msub -j oe cmd.sh

STDOUT and STDERR will be merged into one file.

-k

Name Keep

Format [e|o|eo|oe|n]

Default n (not retained)

Description Defines which (if either) of output and error streams will be retained on the execution host (over-
rides path for stream).

Example > msub -k oe myjob.sh

STDOUT and STDERR for the job will be retained on the execution host.

-K

Name Continue Running

Format N/A

Description Tells the client to continue running until the submitted job is completed. The client will query the
status of the job every 5 seconds. The time interval between queries can be specified or disabled
via MSUBQUERYINTERVAL.

Use the -K option sparingly (if at all) as it slows down the Moab scheduler with frequent
queries. Running ten jobs with the -K option creates an additional fifty queries per minute
for the scheduler.

4.0 Scheduler Commands

-K

Example > msub -K newjob.sh
3
Job 3 completed*

*Only shows up after job completion.

-l

Name Resource List

Format <STRING>
-l [BANDWIDTH|DDISK|DEADLINE|DEPEND|DMEM|EXCLUDENODES|FEATURE...|]
Additional options can be referenced on the resource manager extensions page.

Description Defines the resources that are required by the job and establishes a limit to the amount of
resource that can be consumed. Resources native to the resource manager, scheduler resource
manager extensions, or job flags may be specified. Note that resource lists are dependent on the
resource manager in use.
For information on specifying multiple types of resources for allocation, see Multi-Req Support.

Example > msub -l nodes=32:ppn=2,pmem=1800mb,walltime=3600,VAR=testvar:
myvalue cmd.sh

The job requires 32 nodes with 2 processors each, 1800MB per task, a walltime of 3600
seconds, and a variable named testvar with a value of myvalue.

If JOBNODEMATCHPOLICY is not set, Moab does not reserve the requested number of
processors on the requested number of nodes. It reserves the total number of requested
processors (nodes x ppn) on any number of nodes. Rather than setting
nodes=<value>:ppn=<value>, set procs=<value>, replacing <value>with the total
number of processors the job requires. Note that JOBNODEMATCHPOLICY is not set by
default.

> msub -l nodes=32:ppn=2 -l advres=!<resvid>

This entry would tell Moab to only consider resources outside of the specified <reservation
id>.

4.0 Scheduler Commands

210 4.6 Commands

4.6 Commands 211

-m

Name Mail Options

Format <STRING> (either n or one or more of the characters a, b, and e)

Description Defines the set of conditions (abort,begin,end) when the server will send a mail message about the
job to the user.

Example > msub -m be cmd.sh

Mail notifications will be sent when the job begins and ends.

-M

Name Mail List

Format <user>[@<host>][,<user>[@<host>],...]

Default $JOBOWNER

Description Specifies the list of users to whom mail is sent by the execution server. Overrides the
EMAILADDRESS specified on the USERCFG credential.

Example > msub -M jon@node01,bill@node01,jill@node02 cmd.sh

Mail will be sent to the specified users if the job is aborted.

-N

Name Name

Format <STRING>

Default STDIN or name of job script

Description Specifies the user-specified job name attribute.

4.0 Scheduler Commands

-N

Example > msub -N chemjob3 cmd.sh

Job will be associated with the
name chemjob3.

-o

Name Output Path

Format [<hostname>:]<path> - %J and %I are acceptable variables. %J is the master array name and %I is
the array member index in the array.

Default $SUBMISSIONDIR/$JOBNAME.o$JOBID

Description: Defines the path to be used for the standard output stream of the batch job.
More variables are allowed when they are used in the job script instead of msub -o. In the job
script, specify a #PBS -o line and input your desired variables. The allowable variables are:

l OID
l OTYPE
l USER
l OWNER
l JOBID
l JOBNAME

Submitting a job script that has the line #PBS -o $(USER)_$(JOBID)_$(JOBNAME).txt
results in a file called <username>_<jobID>_<jobName>.txt.
Do not use msub -o when submitting a job script that has a #PBS -o line defined.

Example > msub -o test12/stdout.txt

The STDOUT stream of the job will be placed in the relative (to execution) directory
specified.

> msub -t 1-2 -o /home/jsmith/simulations/%J-%I.out ~/sim5.sh

A job array is submitted and the name of the output files includes the master array index
and the array member index.

4.0 Scheduler Commands

212 4.6 Commands

4.6 Commands 213

-p

Name Priority

Format <INTEGER> (between -1024 and 0)

Default 0

Description Defines the priority of the job.
To enable priority range from -1024 to +1023, see ENABLEPOSUSERPRIORITY.

Example > msub -p 25 cmd.sh

The job will have a user priority of 25.

-q

Name Destination Queue (Class)

Format [<queue>][@<server>]

Default [<DEFAULT>]

Description Defines the destination of the job.

Example > msub -q priority cmd.sh

The job will be submitted to the
priority queue.

-r

Name Rerunable

Format [y|n]

Default n

Description: Declares whether the job is rerunable.

4.0 Scheduler Commands

-r

Example > msub -r n cmd.sh

The job cannot be rerun.

-S

Name Shell

Format <path>[@<host>][,<path>[@<host>],...]

Default $SHELL

Description Declares the shell that interprets the job script.

Example > msub -S /bin/bash

The job script will be interpreted by the
/bin/bash shell.

-t

Name Job Arrays

Format <name>.[<indexlist>]%<limit>

Description Starts a job array with the jobs in the index list. The limit variable specifies how many jobs may
run at a time. For more information, see Submitting Job Arrays.

Moab enforces an internal limit of 100,000 sub-jobs that a single array job submission can
specify.

Example > msub -t myarray.[1-1000]%4

-u

Name User List

4.0 Scheduler Commands

214 4.6 Commands

4.6 Commands 215

-u

Format <user>[@<host>[,<user>[@<host>],...]

Default UID of msub command

Description Defines the user name under which the job is to run on the execution system.

Example > msub -u bill@node01 cmd.sh

On node01 the job will run under Bill's UID, if permitted.

-v

Name Variable List

Format <string>[,<string>,...]

The -v flag is limited to about 500 characters.

Description Expands the list the environment variables that are exported to the job (taken from the msub com-
mand environment).

Example > msub -v DEBUG cmd.sh

The DEBUG environment variable will be defined for the job.

-V

Name All Variables

Description Declares that all environment variables in the msub environment are exported to the batch job

Example > msub -V cmd.sh

All environment variables will be exported to the job.

4.0 Scheduler Commands

-W

Name Additional Attributes

Format <string>

Description Allows for specification of additional job attributes (See Resource Manager Extension)

Example > msub -W x=GRES:matlab:1 cmd.sh

The job requires one resource of matlab.

This flag can be used to set a filter for what name spaces will be passed from a job to a trigger
using a comma-delimited list. This limits the trigger's action to objects contained in certain
workflows. For more information, see Requesting name space variables on page 687.

> msub -W x="trigns=vc1,vc2"

The job passes name spaces vc1 and vc2 to triggers.

-x

Format <script> or <command>

Description When running an interactive job, the -x flag makes it so that the corresponding script won't be
parsed for PBS directives, but is instead a command that is launched once the interactive job has
started. The job terminates at the completion of this command. This option works only when using
TORQUE.

The -x option for msub differs from qsub in that qsub does not require the script name to
come directly after the flag. The msub command requires a script or command
immediately after the -x declaration.

Example > msub -I -x ./script.pl
> msub -I -x /tmp/command

-z

Name Silent Mode

Description The job's identifier will not be printed to stdout upon submission.

4.0 Scheduler Commands

216 4.6 Commands

4.6 Commands 217

-z

Example > msub -z cmd.sh

No job identifier will be printout the stdout upon
successful submission.

Job Script

The msub command supports job scripts written in any one of the following languages:

Language Notes

PBS/TORQUE Job Sub-
mission Language

LoadLeveler Job Submission
Language

Use the INSTANTSTAGE parameter as only a subset of the command file
keywords are interpreted by Moab.

SSS XML Job Object Spe-
cification

LSF Job Submission Lan-
guage

enabled in Moab 4.2.4 and higher

/etc/msubrc

Sites that wish to automatically add parameters to every job submission can populate the file
/etc/msubrc with global parameters that every job submission will inherit.

For example, if a site wished every job to request a particular generic resource they could use the
following /etc/msubrc:

-W x=GRES:matlab:2

Usage Notes

msub is designed to be as flexible as possible, allowing users accustomed to PBS, LSF, or LoadLeveler
syntax, to continue submitting jobs as they normally would. It is not recommended that different styles
be mixed together in the same msub command.

When only one resource manager is configured inside of Moab, all jobs are immediately staged to the
only resource manager available. However, when multiple resource managers are configured Moab will
determine which resource manager can run the job soonest. Once this has been determined, Moab will
stage the job to the resource manager.

4.0 Scheduler Commands

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp?topic=/com.ibm.cluster.loadl.doc/loadl33/am2ug30223.html

It is possible to have Moab take a best effort approach at submission time using the forward flag. When
this flag is specified, Moab will do a quick check and make an intelligent guess as to which resource
manager can run the job soonest and then immediately stage the job.

Moab can be configured to instantly stage a job to the underlying resource manager (like
TORQUE/LOADLEVELER) through the parameter INSTANTSTAGE. When set inside moab.cfg, Moab will
migrate the job instantly to an appropriate resource manager. Once migrated, Moab will destroy all
knowledge of the job and refresh itself based on the information given to it from the underlying resource
manager.

In most instances Moab can determine what syntax style the job belongs to (PBS or LoadLeveler); if
Moab is unable to make a guess, it will default the style to whatever resource manager was configured
at compile time. If LoadLeveler and PBS were both compiled then LoadLeveler takes precedence.

Moab can translate a subset of job attributes from one syntax to another. It is therefore possible to
submit a PBS style job to a LoadLeveler resource manager, and vice versa, though not all job attributes
will be translated.

Examples

Example 4-39:

> msub -l nodes=3:ppn=2,walltime=1:00:00,pmem=100kb script2.pbs.cmd
4364.orion

Example 4-40:

This example is the XML-formatted version of the above example. See Submitting Jobs via msub in XML
for more information.

<job>
<InitialWorkingDirectory>/home/user/test/perlAPI
</InitialWorkingDirectory>
<Executable>/home/user/test/perlAPI/script2.pbs.cmd
</Executable>
<SubmitLanguage>PBS</SubmitLanguage>
<Requested>
<Feature>ppn2</Feature>
<Processors>3</Processors>
<WallclockDuration>3600</WallclockDuration>

</Requested>
</job>

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mjobctl command to view, modify, and cancel jobs
l checkjob command to view detailed information about the job
l mshow command to view all jobs in the queue
l DEFAULTSUBMITLANGUAGE parameter
l MSUBQUERYINTERVAL parameter
l SUBMITFILTER parameter
l Applying the msub Submit Filter for job script sample

Applying the msub Submit Filter

4.0 Scheduler Commands

218 4.6 Commands

4.6 Commands 219

When using msub to submit a job by specifying a job script, msub processes that script and then sends an
XML representation of the job to the Moab scheduler. It is possible to change the job XML before it is
sent to Moab via an msub submission filter.

The filter gives administrators the ability to customize the submission process. Customization may be
helpful if jobs should have certain defaults assigned to them, if an administrator wants to keep detailed
submission statistics, or if an administrator wants to change job requests based on custom needs.

The submit filter, which must be written by an administrator, is a simple executable or script that
receives XML via its standard input and then returns the modified XML in its standard output. To see the
schema for job submission XML, please refer to Submitting Jobs via msub in XML.

Sample Submit Filter Script

#!/usr/bin/perl
use strict;

Simple filter example that re-directs the output to a file.

my $file = "xmllog.out";

open FILE,">>$file" or die "Couldn't open $file: $!";
while (<>)
{
print FILE;
print;
}
close FILE;

The script is executed by the user running msub.

To configure msub to use the submit filter, each submission host must have access to the submit filter
script. Also, you must add a SUBMITFILTER parameter to the Moab configuration file (moab.cfg) on
each submission host. The following exemplifies how you might modify the moab.cfg file:

SUBMITFILTER /home/submitfilter/filter.pl

If you experience problems with your submit filter and want to debug its interaction with msub, enter
msub --loglevel=9, which causes msub to print verbose log messages to the terminal.

Global job submit filter
To configure Moab to automatically apply a filter to all job submissions, use the SERVERSUBMITFILTER
on page 912 parameter. SERVERSUBMITFILTER specifies the path to a global job submit filter script,
which Moab will run on the head node and apply to every job submitted.

SERVERSUBMITFILTER /opt/moab/scripts/jobFilter.pl

Moab runs jobFilter.pl, located in the /opt/moab/scripts directory, on the head node, applying the filter to all
jobs submitted.

Submitting Jobs via msub in XML
The following describes the XML format used with the msub command to submit a job to a Moab server.
This information can be used to implement a filter and modify the XML normally generated by the msub

4.0 Scheduler Commands

command. The XML format described in what follows is based on a variant of the Scalable Systems
Software Job Object Specification.

Overall XML Format
The overall format of an XML request to submit a job can be shown through the following example:

<job>
job attribute children
</job>

An example of a simple job element with all the required children for a job submission is as follows:

<job>
<Owner>user</Owner>
<UserId>user</UserId>
<GroupId>group</GroupId>
<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>
<UMask>18</UMask>
<Executable>/full/path/to/script/or/first/line/of/stdin</Executable>
<SubmitLanguage>Resource Manager Type</SubmitLanguage>
<SubmitString>\START\23!/usr/bin/ruby\0contents\20of\20script</SubmitString>

</job>

The section that follows entitled Job Element Format describes the possible attributes and their
meanings in detail. In actuality, all that is needed to run a job in Moab is something similar to the
following:

<job>
<SubmitString>\START\23!/bin/sh\0asleep\201000</SubmitString>

</job>

This piece of XML requests Moab to submit a job using the contents of the SubmitString tag as a script, which is in this
case a simple sh script to sleep for 1000 seconds. The msub command will create default values for all other needed
attributes.

Job Element Format
The job element of the submission request contains a list of children and string values inside the children
that represent the attribute/value pairs for the job. The earlier section, Overall XML Format, gives an
example of this format. This section explains these attributes in detail.

Arguments— The arguments to be passed to the program are normally specified as arguments after
the first argument specifying the script to be executed.

EligibleTime— The minimum time after which the job is eligible. This is the equivalent of the -a option
in msub. Format: [[[[CC]YY]MM]DD]hhmm[.SS]

Environment — The semi-colon list of environment variables that are exported to the job (taken from
the msub command environment). The -V msub flag, for example, adds all the environment variables
present at the time msub is invoked. Environment variables are delimited by the ~rs; characters.
Following is an example of the results of the msub -v arg1=1,arg2=2 command:

<Environment>arg1=1~rs;arg2=2~rs;</Environment>

4.0 Scheduler Commands

220 4.6 Commands

4.6 Commands 221

ErrorFile— Defines the path to be used for the standard error stream of the batch job. This is
equivalent to the -e flag in msub.

Executable— This is normally either the name of the script to be executed, or the first line of the script
if it is passed to msub through standard input.

Extension— The resource manager extension string. This can be specified via the command line in a
number of ways, including the -W x= directive. Some other requests, such as some extensions used in the
-l flag, are also converted to an extension string. The element has the following format:

<Extension>x=extension</Extension>

See Using the Extension Element to Submit Triggers for additional information on the extension element.

GroupId — The string name of the group of the user submitting the job. This will correspond to the
user's primary group on the operating system.

Hold — Specifies that a user hold be applied to the job at submission time. This is the equivalent to the
msub flag -h. It will have the form:

<Hold>User</Hold>

InitialWorkingDirectory— Specifies in which directory the job should begin executing. This is
equivalent to the -d flag in the msub command.

<InitialWorkingDirectory>/home/user/directory</InitialWorkingDirectory>

Interactive— Specifies that the job is to be interactive. This is the equivalent of the -I flag in msub.

<Interactive>TRUE</Interactive>

JobName— Specifies the user-specified job name attribute. This is equivalent to the -N flag in msub.

NotificationList — Specifies the job states after which an email should be sent and also specifies the
users to be emailed. This is the equivalent of the -m and -M options in msub.

<NotificationList URI=user1:user2>JobFail,JobStart,JobEnd</NotificationList>

In this example, the command msub -m abe -M user1:user2 ran indicating that emails should be sent when a job
fails, starts, or ends, and that they should be sent to user1 and user2.

OutputFile— Defines the path to be used for the standard output stream of the batch job. This is the
equivalent of the -o flag in msub.

Priority— A user-requested priority value. This is the equivalent to the msub -p flag.

ProjectId — Defines the account associated with the job. This is equivalent to the -A msub flag.

QueueName— The requested class of the job. This is the equivalent of the msub -q flag.

Requested — Specifies resources and attributes the job specifically requests and has the following form:

<Requested>
<... requested attributes>

</Requested>

4.0 Scheduler Commands

See the section dedicated to requestable attributes in this element.

RMFlags— Flags that will get passed directly to the resource manager on job submission. This is
equivalent to any arguments listed after the -l msub flag.

<RMFlags>arg1 arg2 arg3</RMFlags>

ShellName— Declares the shell that interprets the job script. This is equivalent to the msub flag -S.

SubmitLanguage— Resource manager whose language the job is using. Use TORQUE to specify a
TORQUE resource manager.

SubmitString — Contains the contents of the script to be run, retrieved either from an actual script or
from standard input. This also includes all resource manager specific directives that may have been in
the script already or added as a result of other command line arguments.

TaskGroup — Groups a set of requested resources together. It does so by encapsulating a Requested
element. For example, the command msub -l nodes=2+nodes=3:ppn=2 generates the following
XML:

<TaskGroup>
<Requested>
<Processors>2</Processors>
<TPN>2</TPN>

</Requested>
</TaskGroup>
<TaskGroup>
<Requested>
<Processors>2</Processors>

</Requested>
</TaskGroup>

UserId — The string value of the user ID of the job owner. This will correspond to the user's name on
the operating system.
Using the Extension Element to Submit Triggers
Use the Extension element to submit triggers. With the exception of certain characters, the syntax for
trigger creation is the same for non-XML trigger submission. See About object triggers on page 655 for
more information on triggers. The ampersand (&) and less than sign (<) characters must be replaced for
the XML to be valid. The following example shows how the Extension element is used to submit multiple
triggers (separated by a semi-colon). Note that ampersand characters are replaced with & in the
example:

<Job>
<UserId>user1</UserId>
<GroupId>user1</GroupId>
<Arguments>60</Arguments>
<Executable>/bin/sleep</Executable>

<Extension>x=trig:AType=exec&Action="env"&EType=start;trig:AType=exec&Acti
on="trig2.sh"&EType=end</Extension>
<Processors>3</Processors>
<Disk>500</Disk>
<Memory>1024</Memory>
<Swap>600</Swap>
<WallclockDuration>300</WallclockDuration>
<Environment>PERL5LIB=/perl5:</Environment>

</Job>

4.0 Scheduler Commands

222 4.6 Commands

4.6 Commands 223

Elements Found in Requested Element
The following describes the tags that can be found in the Requested sub-element of the job element in a
job submission request.

Nodes— A list of nodes that the job requests to be run on. This is the equivalent of the -l
hosts=<host-list> msub directive.

<Requested>
<Nodes>
<Node>n1:n2</Node>

</Nodes>
</Requested>

In this example, the users requested the hosts n1 and n2 with the command msub -l host=n1:n2.

Processors— The number of processors requested by the job. The following example was generated
with the command msub -l nodes=5:

<Requested>
<Processors>5</Processors>

</Requested>

TPN— Tasks per node. This is generated using the ppn resource manager extensions. For example, from
msub -l nodes=3:ppn=2, the following results:

<Requested>
<Processors>6</Processors>
<TPN>2</TPN>

</Requested>

WallclockDuration— The requested wallclock duration of the job. This attribute is specified in the
Requested element.

<Requested>
<WallclockDuration>3600</WallclockDuration>

</Requested>

Related topics

l Applying the msub Submit Filter
l SUBMITFILTER parameter

mvcctl

(Moab Virtual Container Control)

Synopsis

l mvcctl -a <OType>:<OName>[,<OType>:<OName>] <name>

l mvcctl -c [<description>]

l mvcctl -d <name>

4.0 Scheduler Commands

l mvcctl -m <ATTR>=VAL[,<ATTR>=<VAL>] <name>

l mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

l mvcctl -r <OType>:<OName>[,<OType>:<OName>] <name>

l mvcctl -x <action><name>

Overview

A virtual container (VC) is a logical grouping of objects with a shared variable space and applied policies.
Containers can hold virtual machines, jobs, reservations, and nodes. Containers can also be nested inside
other containers.

A VC can be owned by a user, group, or account. Users can only view VCs to which they have access.
Level 1 administrators (Admin1) can view and modify all VCs. The owner can also be changed. When
modifying the owner, you must also specify the owner type:

mvcctl -m OWNER=acct:bob myvc

Adding objects to VCs at submission: You associate jobs, VMs, and reservations with a specified VC upon
submission. For example,

l mrsvctl -c ... -H <VC>

l msub ... -W x="vc=<VC>"

l mvmctl -c ...,vc=<VC>

The user who submits objects must have access to the VC or the command is rejected.

FullXML flag

The FullXML flag will cause the mvcctl -q command to show VCs in a hierarchical manner. If doing a non-
XML (plaintext) query, sub-VCs will be listed inside their parent VCs. Each VC will be indented more than
its parent.

VC[vc2] (vc2)
Owner: user:jason
VCs:
VC[vc1] (vc1)

Owner: user:jason
Jobs: Moab.1
Rsvs: system.1
VCs:
VC[vc3] (vc3)

Owner: user:jason
VC[vc4] (vc4)

Owner: user:jason

If doing an XML query, the XML for all sub-objects (VCs, but also reservations, jobs, etc.) will also be
included in the VC.

<Data>
<vc DESCRIPTION="vc2" NAME="vc2" OWNER="user:jason">
<vc DESCRIPTION="vc1" NAME="vc1" OWNER="user:jason">
<job CmdFile="sleep 7200" Flags="GLOBALQUEUE,NORMSTART"

4.0 Scheduler Commands

224 4.6 Commands

4.6 Commands 225

Group="jason" JobID="Moab.1" PAL="[base]" RM="internal"
ReqAWDuration="2:00:00" User="jason">

<req Index="0"></req>
</job>
<rsv ACL="RSV=%=system.1=;" AUser="jason"
AllocNodeList="n0,n1,n2,n3,n4,n5,n6,n7,n8,n9" HostExp="ALL"
HostExpIsSpecified="TRUE" Name="system.1" Partition="base"
ReqNodeList="n0:1,n1:1,n2:1,n3:1,n4:1,n5:1,n6:1,n7:1,n8:1,n9:1"
Resources="PROCS=[ALL]" StatCIPS="5964.00" SubType="Other"
Type="User" ctime="1299953557" duration="3600"
endtime="1299957157"
flags="ISCLOSED,ISGLOBAL,ISACTIVE,REQFULL"
starttime="1299953557">
<ACL aff="neutral" cmp="%=" name="system.1" type="RSV">
</ACL>
<CL aff="neutral" cmp="%=" name="system.1" type="RSV"></CL>
<History>
<event state="PROCS=40" time="1299953557"></event>

</History>
</rsv>
<vc DESCRIPTION="vc3" NAME="vc3" OWNER="user:jason"></vc>

</vc>
<vc DESCRIPTION="vc4" NAME="vc4" OWNER="user:jason"></vc>

</vc>
</Data>

Note that the XML from the blocking and non-blocking commands may differ.

Virtual Container Flags

The following table indicates available virtual container (VC) flags and associated descriptions. Note that
the Deleting, HasStarted, and Workflow flags cannot be set by a user but are helpful indicators of
status.

VC Flags

DestroyObjects When the VC is destroyed, any reservations, jobs, and VMs in the VC are also destroyed.
This is recursive, so any objects in sub-VCs are also destroyed. Nodes are not removed.

DestroyWhenEmpty When the VC is empty, it is destroyed.

Deleting Set by the scheduler when the VC has been instructed to be removed.

Internal flag. Administrators cannot set or clear this flag.

HasStarted This flag is set on a VC workflow where at least one job has started.

Internal flag. Administrators cannot set or clear this flag.

HoldJobs This flag will place a hold on any job that is submitted to the VC while this flag is set. It is
not applied for already existing jobs that are added into the VC. If a job with a workflow is
submitted to the VC, all jobs within the workflow are placed on hold.

4.0 Scheduler Commands

VC Flags

Workflow Designates this VC as a VC that is for workflows. This flag is set when generated by a job
template workflow. Workflow jobs can only be attached to one workflow VC.

Internal flag. Administrators cannot set or clear this flag.

Format

-a

Format mvcctl -a<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, VC, or VM.

Description Add the given object(s).

Example mvcctl -a JOB:Moab.45 vc13
>>job 'Moab.45' added to VC 'vc13'

-c

Format mvcctl -c [<description>]

Description Create a virtual container (VC). The VC name is auto-generated. It is recommended that you sup-
ply a description; otherwise the description is the same as the auto-generated name.

Example mvcctl -c "Linux testing machine"
>>VC 'vc13' created

-d

Format mvcctl -d<lab01>

Description Destroy the VC.

Example mvcctl -d vc13
>>VC 'vc13'
destroyed

4.0 Scheduler Commands

226 4.6 Commands

4.6 Commands 227

-m

Format mvcctl -m<ATTR>=VAL[,<ATTR>=<VAL>] <name>

Description Modify the VC. Attributes are flags, owner, reqstarttime, reqnodeset, variables, and owner; note
that only the owner can modify owner. Use reqstarttime when implementing guaranteed start
time to specify when jobs should start. The reqnodeset attribute indicates the node set that jobs
should run in that are submitted to a virtual container.

Example mvcctl -m variables+=HV=node8 vc13
>>VC 'vc13' successfully modified

mvcctl -m flags+=DESTROYWHENEMPTY vc1
>>VC 'vc1' successfully modified

-q

Format mvcctl -q [<name>|ALL] [--xml][--blocking][--flags=fullxml]

Description Query VCs

Example mvcctl -q ALL
VC[vc13] (Linux testing machine)
Create Time: 1311027343 Creator: jdoe
Owner: user:jdoe
ACL: USER=%=jdoe+;
Jobs: Moab.45
Vars: HV=node88
Flags: DESTROYWHENEMPTY

-r

Format mvcctl -r<OType>:<OName>[,<OType>:<OName>] <name>
Where <OType> is one of JOB, RSV, NODE, VC, or VM.

Description Remove the given object(s) from the VC.

Example mvcctl -r JOB:Moab.45 vc13
>>job 'Moab.45' removed from VC 'vc13'

4.0 Scheduler Commands

-x

Format mvcctl -x<action><name>

Description Executes the given action on the virtual container (VC).

Example mvcctl -x schedulevc vc1

mvmctl
Synopsis

mvmctl -d <vmid> mvmctl -f <migrationPolicy> mvmctl -m [<options>] <vmid> mvmctl -M
dsthost=<newhost><vmid> mvmctl -q<vmid> [--blocking] [--xml] mvmctl -w state=drained

Overview

mvmctl controls the modification, querying, migration, and destruction of virtual machines (VMs).

Format

-d

Name Destroy

Format <vmid>

Description Destroys the specified VM.

Example > mvmctl -d oldVM

-f

Name Force Migrate

Format mvmctl -f consolidation|overcommit [--flags=eval [--xml]]

Description Forces the migration policy on the system. The eval flag causes Moab to run through migration
routines and report the results without actually migrating the VMs.

4.0 Scheduler Commands

228 4.6 Commands

4.6 Commands 229

-f

Example > mvmctl -f consolidation --flags=eval

Moab returns a report like the following:

1: VM 'vm1' from 'h0' to 'h3'
2: VM 'vm2' from 'h0' to 'h5'

-m

Name Modify

Format [<options>] <vmid>
The <options> variable is a comma-separated list of <attr>=<value> pairs.

Description Modifies the VM.

4.0 Scheduler Commands

-m

Example > mvmctl -m gevent=hitemp:'mymessage' myNewVM

Gevents can be set using gevent.

> mvmctl -m gmetric=bob:5.6 myNewVM

Gmetrics can be set using gmetric.

> mvmctl -m os=compute myNewVM

Reprovisioning is done by changing os.

> mvmctl -m powerstate=off myNewVM

Power management is done by modifying powerstate.

> mvmctl -m variable=user:bob+purpose:myVM myNewVM

Disallow VM migration by using cannotmigrate.

> mvmctl -m flags=cannotmigrate myNewVM

Allow a VM to migrate by setting the canmigrate flag.

> mvmctl -m flags=canmigrate myNewVM

Notes l The variable option is a set-only operation. Previous variables will be over-
written.

-M

Name Migrate

Format dsthost=<newhost><vmid>

4.0 Scheduler Commands

230 4.6 Commands

4.6 Commands 231

-M

Description Migrate the given VM to the destination host.
When you set the vmid to ANY, Moab migrates the VM to any available eligible hypervisor. For this
to work, the following conditions must be met:

l The VM reports a CPULOAD, and it is greater than 0.
l The VM's AMEMORY is less than its CMEMORY. This indicates that some memory is
currently in use and tells Moab that the RM is reporting memory correctly.

l The VM's state is not "Unknown."
l All hypervisors report a CPULOAD, and it is greater than 0.
l All hypervisors report an AMEMORY, and it is less than its CMEMORY.
l All hypervisors report a hypervisor type.

Example > mvmctl -M dsthost=node05 myNewVM

myNewVMmigrates to node05.

> mvmctl -M dsthost=ANY vm42

Moab migrates vm42 to a node based on policy destination limitations (such as the
NoVMMigrations flag).

-q

Name Query

Format <vmid> [--blocking] [--xml]

Description Queries the specified VM; that is, it returns detailed information about the given VM. May be used
with or without the --xml flag. ALL may also be used to display information about all VMs. This
option gathers information from the Moab cache which prevents it from waiting for the scheduler,
but the --blocking option can be used to bypass the cache and allow waiting for the scheduler.

Example > mvmctl -q myNewVM

> mvmctl -q ALL --blocking

> mvmctl -q ALL --xml

4.0 Scheduler Commands

-w

Name Constraint

Format state=drained

Description Overrides the HIDEDRAINED DISPLAYFLAGS attribute allowing display of VMs in a DRAINED state.

Example > mvmctl -q -w state=drained

showbf
Synopsis

showbf [-A] [-a account] [-c class] [-d duration] [-D] [-f features] [-g group] [-L] [-m [==|>|>=|<|<=]
memory] [-n nodecount] [-p partition] [-q qos] [-u user] [-v] [--blocking]

Overview

Shows what resources are available for immediate use.

The results Moab returns do not include resources that may be freed due to preemption.

This command can be used by any user to find out how many processors are available for immediate use
on the system. It is anticipated that users will use this information to submit jobs that meet these
criteria and thus obtain quick job turnaround times. This command incorporates down time, reservations,
and node state information in determining the available backfill window.

If specific information is not specified, showbf will return information for the user and group
running but with global access for other credentials. For example, if -q qos is not specified, Moab
will return resource availability information for a job as if it were entitled to access all QoS based
resources (i.e., resources covered by reservations with a QoS based ACL), if -c class is not
specified, the command will return information for resources accessible by any class.

The showbf command incorporates node configuration, node utilization, node state, and node
reservation information into the results it reports. This command does not incorporate constraints
imposed by credential based fairness policies on the results it reports.

Access

By default, this command can be used by any user or administrator.

4.0 Scheduler Commands

232 4.6 Commands

4.6 Commands 233

Parameters

Parameter Description

ACCOUNT Account name.

CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in [DD:]HH:MM:SS notation.

FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signs are >, >=, ==, <=, and <.

MEMORY Specifies the amount of required real memory configured on the node, (in MB), used with the -
m flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.

PARTITION Specify partition to check with -p flag.

QOS Specify QoS to check with -q flag.

USER Specify particular user to check with -u flag.

Flags

Flag Description

-A Show resource availability information for all users, groups, and accounts. By default, showbf uses the
default user, group, and account ID of the user issuing the command.

-a Show resource availability information only for specified account.

--block-
ing

Do not use cache information in the output. The --blocking flag retrieves results exclusively from
the scheduler.

-d Show resource availability information for specified duration.

-D Display current and future resource availability notation.

4.0 Scheduler Commands

Flag Description

-g Show resource availability information only for specified group.

-h Help for this command.

-L Enforce Hard limits when showing available resources.

-m Allows user to specify the memory requirements for the backfill nodes of interest. It is important to
note that if the optional MEMCMP and MEMORY parameters are used, they must be enclosed in
single ticks (') to avoid interpretation by the shell. For example, enter showbf -m '==256' to
request nodes with 256 MB memory.

-n Show resource availability information for a specified number of nodes. That is, this flag can be used
to force showbf to display only blocks of resources with at least this many nodes available.

-p Show resource availability information for the specified partition.

-q Show information for the specified QoS.

-r Show resource availability for the specified processor count.

-u Show resource availability information only for specified user.

Examples

Example 4-41:

In this example, a job requiring up to 2 processors could be submitted for immediate execution in
partition ClusterA for any duration. Additionally, a job requiring 1 processor could be submitted for
immediate execution in partition ClusterB. Note that by default, each task is tracked and reported as a
request for a single processor.

> showbf
Partition Tasks Nodes StartOffset Duration StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 3 3 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterA 1 1 00:00:00 INFINITY 11:32:38_08/19
ReqID=0
ClusterB 2 2 00:00:00 INFINITY 11:32:38_08/19
ReqID=0

StartOffset is the amount of time remaining before resources will be available.

4.0 Scheduler Commands

234 4.6 Commands

4.6 Commands 235

Example 4-42:

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour runtime and
at least 16 processors. Specifying job duration is of value when time based access is assigned to
reservations (i.e., using the SRCFG TIMELIMIT ACL)

> showbf -r 16 -d 3:00:00
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:22:25_07/19

Example 4-43:

In this example, a resource availability window is requested for processors located only on nodes with at
least 512 MB of memory.

> showbf -m ' =512'
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- -------- ----------- ---------
ALL 20 20 INFINITY 00:00:00 09:23:23_07/19
ClusterA 10 10 INFINITY 00:00:00 09:23:23_07/19
ClusterB 10 10 INFINITY 00:00:00 09:23:23_07/19

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l showq
l mdiag -t

showq
Synopsis

showq [-b] [-g] [-l] [-c|-i|-r] [-n] [-o] [-p partition] [-R rsvid] [-u] [-v] [-w <CONSTRAINT>] [--blocking] [--
noblock]

Overview

Displays information about active, eligible, blocked, and/or recently completed jobs. Since the resource
manager is not actually scheduling jobs, the job ordering it displays is not valid. The showq command
displays the actual job ordering under the Moab Workload Manager. When used without flags, this
command displays all jobs in active, idle, and non-queued states.

Access

By default, this command can be run by any user. However, the -c, -i, and -r flags can only be used by
level 1, 2, or 3 Moab administrators.

4.0 Scheduler Commands

Flags

Flag Description

-b Display blocked jobs only

-c Display details about recently completed jobs (see example, JOBCPURGETIME).

-g Display system ids for all jobs.

-i Display extended details about idle jobs. (see example)

-l Display local/remote view.

-n Displays normal showq output, but lists job names under JOBID

-o Displays jobs in the active queue in the order specified (uses format showq -o <spe-
cifiedOrder>). Valid options include REMAINING, REVERSEREMAINING, JOB, USER, STATE, and
STARTTIME. The default is REMAINING.

-p Display only jobs assigned to the specified partition.

-r Display extended details about active (running) jobs. (see example)

-R Display only jobs which overlap the specified reservation.

-u Display all running jobs for a particular user.

-v Display local and full resource manager job IDs as well as partitions. If specified with the -i option,
will display job reservation time. The -v option displays all array subjobs. All showq commands
without the -v option show just the master jobs in an array.

-w Display only jobs associated with the specified constraint. Valid constraints include user, group, acct,
class, and qos (see showq -w example.).

--block-
ing

Do not use cache information in the output. The --blocking flag retrieves results exclusively from
the scheduler.

--
noblock

Use cache information for a faster response.

4.0 Scheduler Commands

236 4.6 Commands

4.6 Commands 237

Details

Beyond job information, the showq command will also report if the scheduler is stopped or paused or if a
system reservation is in place. Further, the showq command will also report public system messages.

Examples

l Default Report on page 237

o Detailed Active/Running Job Report on page 239

o Eligible Jobs on page 238

o Detailed Completed Job Report on page 242

l Filtered Job Report on page 244

Example 4-44: Default Report

The output of this command is divided into three parts, Active Jobs, Eligible Jobs, and Blocked Jobs.

> showq

active jobs------------------------
JOBIDUSERNAMESTATEPROCSREMAINING STARTTIME

12941 sartois Running 25 2:44:11 Thu Sep 1 15:02:50
12954 tgates Running 4 2:57:33 Thu Sep 1 15:02:52
12944 eval1 Running 16 6:37:31 Thu Sep 1 15:02:50
12946 tgates Running 2 1:05:57:31 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

12956 cfosdyke Idle 32 6:40:00 Thu Sep 1 15:02:50
12969 cfosdyke Idle 4 6:40:00 Thu Sep 1 15:03:23
12939 eval1 Idle 16 3:00:00 Thu Sep 1 15:02:50
12940 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12947 mwillis Idle 2 3:00:00 Thu Sep 1 15:02:50
12949 eval1 Idle 2 3:00:00 Thu Sep 1 15:02:50
12953 tgates Idle 10 4:26:40 Thu Sep 1 15:02:50
12955 eval1 Idle 2 4:26:40 Thu Sep 1 15:02:50
12957 tgates Idle 16 3:00:00 Thu Sep 1 15:02:50
12963 eval1 Idle 16 1:06:00:00 Thu Sep 1 15:02:52
12964 tgates Idle 16 1:00:00:00 Thu Sep 1 15:02:52
12937 allendr Idle 9 1:00:00:00 Thu Sep 1 15:02:50
12962 aacker Idle 6 00:26:40 Thu Sep 1 15:02:50
12968 tamaker Idle 1 4:26:40 Thu Sep 1 15:02:52

14 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 18

The fields are as follows:

4.0 Scheduler Commands

Column Description

JOBID Job identifier.

USERNAME User owning job.

STATE Job State. Current batch state of the job.

PROCS Number of processors being used by the job.

REMAINING/WCLIMIT For active jobs, the time the job has until it has reached its wallclock limit or for idle/b-
locked jobs, the amount of time requested by the job. Time specified in [DD:]HH:MM:SS
notation.

STARTTIME Time job started running.

Active Jobs

Active jobs are those that are Running or Starting and consuming resources. Displayed are the job id*,
the job's owner, and the job state. Also displayed are the number of processors allocated to the job, the
amount of time remaining until the job completes (given in HH:MM:SS notation), and the time the job
started. All active jobs are sorted in "Earliest Completion Time First" order.

*Job ids may be marked with a single character to specify the following conditions:

Character Description

_ (underbar) job violates usage limit

* (asterisk) job is backfilled AND is preemptible

+ (plus) job is backfilled AND is NOT preemptible

- (hyphen) job is NOT backfilled AND is preemptible

Detailed active job information can be obtained using the -r flag.

Eligible Jobs

Eligible Jobs are those that are queued and eligible to be scheduled. They are all in the Idle job state and
do not violate any fairness policies or have any job holds in place. The jobs in the Idle section display the
same information as the Active Jobs section except that the wallclock CPULIMIT is specified rather than
job time REMAINING, and job QUEUETIME is displayed rather than job STARTTIME. The jobs in this

4.0 Scheduler Commands

238 4.6 Commands

4.6 Commands 239

section are ordered by job priority. Jobs in this queue are considered eligible for both scheduling and
backfilling.

Detailed eligible job information can be obtained using the -i flag.

Blocked Jobs

Blocked jobs are those that are ineligible to be run or queued. Jobs listed here could be in a number of
states for the following reasons:

State Description

Idle Job violates a fairness policy. Use diagnose -q for more information.

UserHold A user hold is in place.

SystemHold An administrative or system hold is in place.

BatchHold A scheduler batch hold is in place (used when the job cannot be run because the requested
resources are not available in the system or because the resource manager has repeatedly failed
in attempts to start the job).

Deferred A scheduler defer hold is in place (a temporary hold used when a job has been unable to start
after a specified number of attempts. This hold is automatically removed after a short period of
time).

NotQueued Job is in the resource manager state NQ (indicating the job's controlling scheduling daemon in
unavailable).

A summary of the job queue's status is provided at the end of the output.

Example 4-45: Detailed Active/Running Job Report

> showq -r

active jobs------------------------
JOBID S PAR EFFIC XFACTOR Q USER GROUP MHOST PROCS
REMAINING STARTTIME

12941 R 3 100.00 1.0 - sartois Arches G5-014 25
2:43:31 Thu Sep 1 15:02:50
12954 R 3 100.00 1.0 Hi tgates Arches G5-016 4
2:56:54 Thu Sep 1 15:02:52
12944 R 2 100.00 1.0 De eval1 RedRock P690-016 16
6:36:51 Thu Sep 1 15:02:50
12946 R 3 100.00 1.0 - tgates Arches G5-001 2
1:05:56:51 Thu Sep 1 15:02:50

4 active jobs 47 of 48 processors active (97.92%)
32 of 32 nodes active (100.00%)

4.0 Scheduler Commands

Total jobs: 4

The fields are as follows:

Column Description

JOBID Name of active job.

S Job State. Either R for Running or S for Starting.

PAR Partition in which job is running.

EFFIC CPU efficiency of job.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality Of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host running primary task of job.

PROCS Number of processors being used by the job.

REMAINING Time the job has until it has reached its wallclock limit. Time specified in HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the running jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

Column Description

JobName Name of active job.

S Job State. Either R for Running or S for Starting.

CCode Completion Code. The return/completion code given when a job completes. (Only applicable to com-
pleted jobs.)

4.0 Scheduler Commands

240 4.6 Commands

4.6 Commands 241

Column Description

Par Partition in which job is running.

Effic CPU efficiency of job.

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Number of processors being used by the job.

Remaining Time the job has until it has reached its wallclock limit. Time specified in HH:MM:SS notation.

StartTime Time job started running.

> showq -i

eligible jobs----------------------
JOBID PRIORITY XFACTOR Q USER GROUP PROCS WCLIMIT
CLASS SYSTEMQUEUETIME

12956* 20 1.0 - cfosdyke RedRock 32 6:40:00
batch Thu Sep 1 15:02:50
12969* 19 1.0 - cfosdyke RedRock 4 6:40:00
batch Thu Sep 1 15:03:23
12939 16 1.0 - eval1 RedRock 16 3:00:00
batch Thu Sep 1 15:02:50
12940 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12947 16 1.0 - mwillis Arches 2 3:00:00
batch Thu Sep 1 15:02:50
12949 16 1.0 - eval1 RedRock 2 3:00:00
batch Thu Sep 1 15:02:50
12953 16 1.0 - tgates Arches 10 4:26:40
batch Thu Sep 1 15:02:50
12955 16 1.0 - eval1 RedRock 2 4:26:40
batch Thu Sep 1 15:02:50
12957 16 1.0 - tgates Arches 16 3:00:00
batch Thu Sep 1 15:02:50
12963 16 1.0 - eval1 RedRock 16 1:06:00:00
batch Thu Sep 1 15:02:52
12964 16 1.0 - tgates Arches 16 1:00:00:00
batch Thu Sep 1 15:02:52
12937 1 1.0 - allendr RedRock 9 1:00:00:00
batch Thu Sep 1 15:02:50

4.0 Scheduler Commands

12962 1 1.2 - aacker RedRock 6 00:26:40
batch Thu Sep 1 15:02:50
12968 1 1.0 - tamaker RedRock 1 4:26:40
batch Thu Sep 1 15:02:52

14 eligible jobs

Total jobs: 14

The fields are as follows:

Column Description

JOBID Name of job.

PRIORITY Calculated job priority.

XFACTOR Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallC-
lockLimit

Q Quality Of Service specified for job.

USER User owning job.

GROUP Primary group of job owner.

PROCS Minimum number of processors required to run job.

WCLIMIT Wallclock limit specified for job. Time specified in HH:MM:SS notation.

CLASS Class requested by job.

SYSTEMQUEUETIME Time job was admitted into the system queue.

An asterisk at the end of a job (job 12956* in this example) indicates that the job has a job
reservation created for it. The details of this reservation can be displayed using the checkjob
command.

Example 4-46: Detailed Completed Job Report

> showq -c
completed jobs------------------------
JOBID SCCODE PAR EFFIC XFACTOR Q USERNAME GROUP MHOST
PROC WALLTIME STARTTIME
13098 C 0 bas 93.17 1.0 - sartois Arches G5-014
25 2:43:31 Thu Sep 1 15:02:50

4.0 Scheduler Commands

242 4.6 Commands

4.6 Commands 243

13102 C 0 bas 99.55 2.2 Hi tgates Arches G5-016
4 2:56:54 Thu Sep 1 15:02:52
13103 C 2 tes 99.30 2.9 De eval1 RedRock P690-016
16 6:36:51 Thu Sep 1 15:02:50
13115 C 0 tes 97.04 1.0 - tgates Arches G5-001
2 1:05:56:51 Thu Sep 1 15:02:50
3 completed jobs

The fields are as follows:

Column Description

JOBID job id for completed job.

S Job State. Either C for Completed or V for Vacated.

CCODE Completion code reported by the job.

PAR Partition in which job ran.

EFFIC CPU efficiency of job.

XFACTOR Expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit

Q Quality of Service specified for job.

USERNAME User owning job.

GROUP Primary group of job owner.

MHOST Master Host which ran the primary task of job.

PROCS Number of processors being used by the job.

WALLTIME Wallclock time used by the job. Time specified in [DD:]HH:MM:SS notation.

STARTTIME Time job started running.

After displaying the active jobs, a summary is provided indicating the number of jobs, the number of
allocated processors, and the system utilization.

If the DISPLAYFLAGS parameter is set to ACCOUNTCENTRIC, job group information will be
replaced with job account information.

4.0 Scheduler Commands

Example 4-47: Filtered Job Report

Show only jobs associated with user john and class benchmark.

> showq -w class=benchmark -w user=john
...

Job Array

Job arrays show the name of the job array and then in parenthesis, the number of sub-jobs in the job
array that are in the specified state.

> showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(14) aesplin Running 14 00:59:41 Fri May 27 14:58:57

14 active jobs 14 of 14 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1(4) aesplin Idle 4 1:00:00 Fri May 27 14:58:52

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.1(2) aesplin Blocked 2 1:00:00 Fri May 27 14:58:52

2 blocked jobs

Total jobs: 20

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l showbf - command to display resource availability.
l mdiag -j - command to display detailed job diagnostics.
l checkjob - command to check the status of a particular job.
l JOBCPURGETIME - parameter to adjust the duration of time Moab preserves information about
completed jobs

l DISPLAYFLAGS - parameter to control what job information is displayed

showhist.moab.pl
Synopsis

showhist.moab.pl [-a accountname]
[-c classname] [-e enddate]
[-g groupname] [-j jobid] [-n days]

4.0 Scheduler Commands

244 4.6 Commands

4.6 Commands 245

[-q qosname] [-s startdate]
[-u username]

Overview

The showhist.moab.pl script displays historical job information. Its purpose is similar to the checkjob
command's, but showhist.moab.pl displays information about jobs that have already completed.

Access

By default, this script's use is limited to administrators on the head node; however, end users can also be
given power to run the script. To grant access to the script to end users, move showhist.moab.pl
from the tools directory to the bin directory.

Arguments

-a (Account)

Format <ACCOUNTNAME>

Description Displays job records matching the specified account.

Example > showhist.moab.pl -a myAccount

Information about jobs related to the account
myAccount is displayed.

-c (Class)

Format <CLASSNAME>

Description Displays job records matching the specified class (queue).

Example > showhist.moab.pl -c newClass

Information about jobs related to the class
newClass is displayed.

-e (End Date)

Format YYYY-MM-DD

Description Displays the records of jobs recorded before or on the specified date.

4.0 Scheduler Commands

-e (End Date)

Example > showhist.moab.pl -e 2001-01-03

Information about all jobs recorded on or before January 3,
2001 is displayed.

> showhist.moab.pl -s 2011-01-01 -e 2011-01-31

Information is displayed about all jobs recorded in January
2011.

-g (Group)

Format <GROUPNAME>

Description Displays job records matching the specified group.

Example > showhist.moab.pl -g admins

Information about jobs related to the group
admins is displayed.

-j (Job ID)

Format <JOBID>

Description Displays job records matching the specified job id.

Example > showhist.moab.pl -j moab01

Information about job moab01 is
displayed.

-n (Number of Days)

Format <INTEGER>

4.0 Scheduler Commands

246 4.6 Commands

4.6 Commands 247

-n (Number of Days)

Description Restricts the number of past jobs to search by a specified number of days relative to today.

Example > showhist.moab.pl -n 90 -j moab924

Displays job information for job moab924. The search is restricted to the last 90
days.

-q (QoS)

Format <QOSNAME>

Description Displays job records matching the specified quality of service.

Example > showhist.moab.pl -q myQos

Information about jobs related to the QoS myQos
is displayed.

-s (Start Date)

Format YYYY-MM-DD

Description Displays the records of jobs that recorded on the specified date and later.

Example > showhist.moab.pl -s 1776-07-04

Information about all jobs recorded on July 4, 1776 and later is
displayed.

> showhist.moab.pl -s 2001-07-05 -e 2002-07-05

Information is displayed about all jobs recorded between July 5, 2001
and July 5, 2002.

4.0 Scheduler Commands

-u (User)

Format <USERNAME>

Description Displays job records matching the specified user.

Example > showhist.moab.pl -u bob

Information about user bob's jobs is
displayed.

Sample Output

> showhist.moab.pl
Job Id : Moab.4
User Name : user1
Group Name : company
Queue Name : NONE
Processor Count : 4
Wallclock Duration: 00:00:00
Submit Time : Mon Nov 21 10:48:32 2011
Start Time : Mon Nov 21 10:49:37 2011
End Time : Mon Nov 21 10:49:37 2011
Exit Code : 0
Allocated Nodelist: 10.10.10.3

Job Id : Moab.1
Executable : 4
User Name : user1
Group Name : company
Account Name : 1321897709
Queue Name : NONE
Quality Of Service: 0M
Processor Count : -0
Wallclock Duration: 00:01:05
Submit Time : Mon Nov 21 10:48:29 2011
Start Time : Mon Nov 21 10:48:32 2011
End Time : Mon Nov 21 10:49:37 2011
Exit Code : 0
Allocated Nodelist: 512M

Information is displayed for all completed jobs.

When a job's Start Time and End Time are the same, the job is infinite and still running.

Related topics

l checkjob - explains how to query for a status report for a specified job.
l mdiag -j command - display additional detailed information regarding jobs
l showq command - showq high-level job summaries

4.0 Scheduler Commands

248 4.6 Commands

4.6 Commands 249

showres
Synopsis

showres [-f] [-n [-g]] [-o] [-r] [reservationid]

Overview

This command displays all reservations currently in place within Moab. The default behavior is to
display reservations on a reservation-by-reservation basis.

Access

By default, this command can be run by any Moab administrator.

Flag Description

-f Show free (unreserved) resources rather than reserved resources. The -f flag cannot be used in con-
junction with the any other flag

-g When used with the -n flag, shows grep-able output with nodename on every line

-n Display information regarding all nodes reserved by <RSVID>

-o Display all reservations which overlap <RSVID> (in time and space)

Not supported with -n flag

-r Display reservation timeframes in relative time mode

-v Show verbose output. If used with the -n flag, the command will display all reservations found on nodes
contained in <RSVID>. Otherwise, it will show long reservation start dates including the reservation year.

Parameter Description

RSVID ID of reservation of interest — optional

Examples

Example 4-48:

> showres

ReservationID Type S Start End Duration N/P StartTime

12941 Job R -00:05:01 2:41:39 2:46:40 13/25 Thu Sep 1
15:02:50

4.0 Scheduler Commands

12944 Job R -00:05:01 6:34:59 6:40:00 16/16 Thu Sep 1
15:02:50
12946 Job R -00:05:01 1:05:54:59 1:06:00:00 1/2 Thu Sep 1
15:02:50
12954 Job R -00:04:59 2:55:01 3:00:00 2/4 Thu Sep 1
15:02:52
12956 Job I 1:05:54:59 1:12:34:59 6:40:00 16/32 Fri Sep 2
21:02:50
12969 Job I 6:34:59 13:14:59 6:40:00 4/4 Thu Sep 1
21:42:50

6 reservations located

The above example shows all reservations on the system.

The fields are as follows:

Column Description

Type Reservation Type. This will be one of the following: Job or User.

ReservationID This is the name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. Sys-
tem reservations are given the name SYSTEM followed by a number.

S State. This field is valid only for job reservations. It indicates whether the job is (S)tarting, (R)
unning, or (I)dle.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time.

End Relative end time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time. Reservations that will not complete in 1,000 hours are marked with the
keyword INFINITY.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1,000 hours
are marked with the keyword INFINITY.

Nodes Number of nodes involved in reservation.

StartTime Time Reservation became active.

Example 4-49:

> showres -n
reservations on Thu Sep 1 16:49:59

NodeName Type ReservationID JobState Task Start Duration
StartTime

4.0 Scheduler Commands

250 4.6 Commands

4.6 Commands 251

G5-001 Job 12946 Running 2 -1:47:09 1:06:00:00 Thu
Sep 1 15:02:50
G5-001 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-002 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-003 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-003 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-004 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-004 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-005 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-005 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-006 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-006 Job 12953 Running 2 -00:29:37 4:26:40 Thu
Sep 1 16:20:22
G5-007 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-007 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-008 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-008 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-009 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-009 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-010 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-010 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-011 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-011 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-012 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-012 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-013 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-013 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-014 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-014 Job 12939 Running 2 -00:29:37 3:00:00 Thu
Sep 1 16:20:22
G5-015 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri
Sep 2 21:02:50
G5-015 Job 12949 Running 2 -00:08:57 3:00:00 Thu
Sep 1 16:41:02
G5-016 Job 12956 Idle 2 1:04:12:51 6:40:00 Fri

4.0 Scheduler Commands

Sep 2 21:02:50
G5-016 Job 12947 Running 2 -00:08:57 3:00:00 Thu
Sep 1 16:41:02
P690-001 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-002 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-003 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-004 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-005 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-006 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-007 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-008 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-009 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-010 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-011 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-012 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-013 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-014 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-014 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-015 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-015 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50
P690-016 Job 12944 Running 1 -1:47:09 6:40:00 Thu
Sep 1 15:02:50
P690-016 Job 12969 Idle 1 4:52:51 6:40:00 Thu
Sep 1 21:42:50

52 nodes reserved

This example shows reservations for nodes.

The fields are as follows:

Column Description

NodeName Node on which reservation is placed.

Type Reservation Type. This will be one of the following: Job or User.

4.0 Scheduler Commands

252 4.6 Commands

4.6 Commands 253

Column Description

ReservationID This is the name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. Sys-
tem reservations are given the name SYSTEM followed by a number.

JobState This field is valid only for job reservations. It indicates the state of the job associated with the
reservation.

Start Relative start time of the reservation. Time is displayed in HH:MM:SS notation and is relative to
the present time.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1000 hours
are marked with the keyword INFINITY.

StartTime Time Reservation became active.

Example 4-50:

> showres 12956

ReservationID Type S Start End Duration N/P StartTime

12956 Job I 1:04:09:32 1:10:49:32 6:40:00 16/32 Fri Sep 2
21:02:50

1 reservation located

In this example, information for a specific reservation (job) is displayed.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mrsvctl -c - create new reservations.
l mrsvctl -r - release existing reservations.
l mdiag -r - diagnose/view the state of existing reservations.
l Reservation Overview - description of reservations and their use.

showstart
Synopsis

showstart {jobid|proccount[@duration]|s3jobspec} [-e {all|hist|prio|rsv}] [-f] [-g [peer]] [-l qos=<QOS>] [--
blocking] [--format=xml]

4.0 Scheduler Commands

Overview

This command displays the estimated start time of a job based a number of analysis types. This analysis
may include information based on historical usage, earliest available reservable resources, and priority
based backlog analysis. Each type of analysis will provide somewhat different estimates based on
current cluster environmental conditions. By default, only reservation based analysis is performed.

The start time estimate Moab returns does not account for resources that will become available
due to preemption.

Historical analysis utilizes historical queue times for jobs which match a similar processor count and job
duration profile. This information is updated on a sliding window which is configurable within moab.cfg

Reservation based start time estimation incorporates information regarding current administrative,
user, and job reservations to determine the earliest time the specified job could allocate the needed
resources and start running. In essence, this estimate will indicate the earliest time the job would start
assuming this job was the highest priority job in the queue.

Priority based job start analysis determines when the queried job would fit in the queue and determines
the estimated amount of time required to complete the jobs which are currently running or scheduled to
run before this job can start.

In all cases, if the job is running, this command will return the time the job started. If the job already has
a reservation, this command will return the start time of the reservation.

Access

By default, this command can be run by any user.

Parameters

Parameter Description

--blocking Do not use cache information in the output. The --blocking flag retrieves results exclusively
from the scheduler.

DURATION Duration of pseudo-job to be checked in format [[[DD:]HH:]MM:]SS (default duration is 1 second)

-e Estimate method. By default, Moab will use the reservation based estimation method.

-f Use feedback. If specified, Moab will apply historical accuracy information to Improve the quality
of the estimate. See ENABLESTARTESTIMATESTATS for more information.

-l qos-
s=<QOS>

Specifies what QoS the job must start under, using the same syntax as themsub command. Cur-
rently, no other resource manager extensions are supported. This flag only applies to hypothetical
jobs by using the proccount[@duration] syntax.

JOBID Job to be checked

4.0 Scheduler Commands

254 4.6 Commands

4.6 Commands 255

Parameter Description

PROCCOUNT Number of processors in pseudo-job to be checked

S3JOBSPEC XML describing the job according to the Dept. of Energy Scalable Systems Software/S3 job spe-
cification.

Examples

Example 4-51:

> showstart orion.13762
job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

Example 4-52:

> showstart 12@3600
job 12@3600 requires 12 procs for 1:00:00
Earliest start in 00:01:39 on Wed Aug 31 16:30:45
Earliest completion in 1:01:39 on Wed Aug 31 17:30:45
Best Partition: 32Bit

You cannot specify job flags when running showstart, and since a job by default can only run on one
partition, showstart fails when querying for a job requiring more nodes than the largest partition
available.

Additional Information

For reservation based estimates, the information provided by this command is more highly accurate if
the job is highest priority, if the job has a reservation, or if the majority of the jobs which are of higher
priority have reservations. Consequently, sites wishing to make decisions based on this information may
want to consider using the RESERVATIONDEPTH parameter to increase the number of priority based
reservations. This can be set so that most, or even all, idle jobs receive priority reservations and make
the results of this command generally useful. The only caution of this approach is that increasing the
RESERVATIONDEPTH parameter more tightly constrains the decisions of the scheduler and may resulting
in slightly lower system utilization (typically less than 8% reduction).

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l checkjob
l showres

4.0 Scheduler Commands

l showstats -f eststarttime
l showstats -f avgqtime
l Job Start Estimates

showstate
Synopsis

showstate

Overview

This command provides a summary of the state of the system. It displays a list of all active jobs and a
text-based map of the status of all nodes and the jobs they are servicing. Basic diagnostic tests are also
performed and any problems found are reported.

Access

By default, this command can be run by any Moab Administrator.

Examples

Example 4-53:

> showstate
cluster state summary for Wed Nov 23 12:00:21

JobID S User Group Procs Remaining StartTime
------------------ - --------- -------- ----- ----------- -------------------

(A) fr17n11.942.0 R johns staff 16 13:21:15 Nov 22 12:00:21
(B) fr17n12.942.0 S johns staff 32 13:07:11 Nov 22 12:00:21
(C) fr17n13.942.0 R johns staff 8 11:22:25 Nov 22 12:00:21
(D) fr17n14.942.0 S johns staff 8 10:43:43 Nov 22 12:01:21
(E) fr17n15.942.0 S johns staff 8 9:19:25 Nov 22 12:01:21
(F) fr17n16.942.0 R johns staff 8 9:01:16 Nov 22 12:01:21
(G) fr17n17.942.0 R johns staff 1 7:28:25 Nov 22 12:03:22
(H) fr17n18.942.0 R johns staff 1 3:05:17 Nov 22 12:04:22
(I) fr17n19.942.0 S johns staff 24 0:54:38 Nov 22 12:00:22
Usage Summary: 9 Active Jobs 106 Active Nodes

[0][0][0][0][0][0][0][0][0][1][1][1][1][1][1][1]
[1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6]

Frame 2: XXXXXXXXXXXXXXXXXXXXXXXX[][A][C][][A][C][C][A]
Frame 3: [][][][][][][A][][I][][I][][][][][]
Frame 4: [][I][][][][A][][I][][][][E][][I][][E]
Frame 5: [F][][E][][][][F][F][F][I][][][E][][E][E]
Frame 6: [][I][I][E][I][][I][I][][I][F][I][I][I][I][F]
Frame 7: []XXX[]XXX[]XXX[]XXX[b]XXX[]XXX[]XXX[#]XXX
Frame 9: [][][][][][][][][][][][][][][E][]
Frame 11: [][][][][][][I][F][@][][A][I][][F][][A]
Frame 12: [A][][][A][][][C][A][][C][A][A][][][][]
Frame 13: [D]XXX[I]XXX[]XXX[]XXX[]XXX[]XXX[I]XXX[I]XXX
Frame 14: [D]XXX[I]XXX[I]XXX[D]XXX[]XXX[H]XXX[I]XXX[]XXX
Frame 15: [b]XXX[b]XXX[b]XXX[b]XXX[D]XXX[b]XXX[b]XXX[b]XXX
Frame 16: [b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX[]XXX[b]XXX
Frame 17: [][][][][][][][][][][][][][][][]
Frame 21: []XXX[b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX
Frame 22: [b]XXX[b]XXX[b]XXX[]XXX[b]XXX[]XXX[b]XXX[b]XXX
Frame 27: [b]XXX[b]XXX[]XXX[b]XXX[b]XXX[b]XXX[b]XXX[b]XXX

4.0 Scheduler Commands

256 4.6 Commands

4.6 Commands 257

Frame 28: [G]XXX[]XXX[D]XXX[]XXX[D]XXX[D]XXX[D]XXX[]XXX
Frame 29: [A][C][A][A][C][][A][C]XXXXXXXXXXXXXXXXXXXXXXXX
Key: XXX:Unknown [*]:Down w/Job [#]:Down [']:Idle w/Job []:Idle [@]:Busy w/No Job
[!]:Drained
Key: [a]:(Any lower case letter indicates an idle node that is assigned to a job)

Check Memory on Node fr3n07
Check Memory on Node fr4n06
Check Memory on Node fr4n09

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with a
letter. For example, job fr17n11.942.0 is associated with the letter A. This letter can now be used to determine where
the job is currently running. By looking at the system map, it can be found that job fr17n11.942.0 (job A) is running
on nodes fr2n10, fr2n13, fr2n16, fr3n07 ...
The key at the bottom of the system map can be used to determine unusual node states. For example, fr7n15 is
currently in the state down.
After the key, a series of warning messages may be displayed indicating possible system problems. In this case, warning
message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09. Also, warning
messages indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 is in state BUSY but has no job
assigned to it (it possibly has a runaway job running on it).

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l Specifying Node Rack/Slot Location

showstats
Synopsis

showstats

showstats -a [accountid] [-v] [-t <TIMESPEC>]

showstats -c [classid] [-v] [-t <TIMESPEC>]

showstats -f <statistictype>

showstats -g [groupid] [-v] [-t <TIMESPEC>]

showstats -j [jobtemplate] [-t <TIMESPEC>]

showstats -n [nodeid] [-t <TIMESPEC>]

showstats -q [qosid] [-v] [-t <TIMESPEC>]

showstats -s

showstats -T [leafid | tree-level]

showstats -u [userid] [-v] [-t <TIMESPEC>]

Overview

This command shows various accounting and resource usage statistics for the system. Historical
statistics cover the timeframe from the most recent execution of the mschedctl -f command.

Access

By default, this command can be run by any Moab level 1, 2, or 3 Administrator.

4.0 Scheduler Commands

Parameters

Flag Description

-a[<ACCOUNTID>] Display account statistics. See Account statistics on page 259 for an example.

-c[<CLASSID>] Display class statistics

-f <statistictype> Display full matrix statistics (see showstats -f for full details)

-g[<GROUPID>] Display group statistics. See Group statistics on page 260 for an example.

-j
[<JOBTEMPLATE>]

Display template statistics

-n[<NODEID>] Display node statistics (ENABLEPROFILING must be set). See Node statistics on page 262
for an example.

-q [<QOSID>] Display QoS statistics

-s Display general scheduler statistics

-t Display statistical information from the specified timeframe:

<START_TIME>[,<END_TIME>]
(ABSTIME: [HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 14:30_06/20)
(RELTIME: -[[[DD:]HH:]MM:]SS)

See Statistics from an absolute time frame on page 267 and Statistics from a relative
time frame on page 267 for examples.

Profiling must be enabled for the credential type you want statistics for. See
Credential Statistics for information on how to enable profiling. Also, -t is not a
stand-alone option. It must be used in conjunction with the -a, -c, -g, -n, -q, or -u flag.

-T Display fairshare tree statistics. See Fairshare tree statistics on page 266 for an example.

-u[<USERID>] Display user statistics. See User statistics on page 264 for an example.

-v Display verbose information. See Verbose statistics on page 263 for an example.

4.0 Scheduler Commands

258 4.6 Commands

4.6 Commands 259

Examples

Example 4-54: Account statistics

> showstats -a
Account Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77
8.15 5.21 90.70 34.69
462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71
5.40 3.14 98.64 40.83
462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37
4.88 0.52 82.01 24.14
005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53

14.81 0.42 98.73 28.40
175436 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78
8.61 5.60 83.64 17.04
000102 0 0 0.00 1 0.17 64 0.16 5.1 0.03 ----- 10.85

10.85 10.77 27.90 7.40
000023 0 0 0.00 1 0.17 12 0.03 0.2 0.00 ----- 0.04
0.04 0.19 21.21 1.20

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both running
and completed jobs.

The fields are as follows:

Column Description

Account Account Number

Jobs Number of running jobs

Procs Number of processors allocated to running jobs

ProcHours Number of proc-hours required to complete running jobs

Jobs* Number of jobs completed

% Percentage of total jobs that were completed by account

PHReq* Total proc-hours requested by completed jobs

% Percentage of total proc-hours requested by completed jobs that were requested by account

4.0 Scheduler Commands

Column Description

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by account

FSTgt Fairshare target. An account's fairshare target is specified in the fs.cfg file. This value should be
compared to the account's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed

AvgQH* Average queue time (in hours) of jobs

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested walltime
it will report an accuracy of 100%.

* These fields are empty until an account has completed at least one job.

Example 4-55: Group statistics

> showstats -g
Group Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
GroupName GID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00
0.77 8.15 5.21 90.70 34.69

daf 204 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25
0.71 5.40 3.14 98.64 40.83

dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25
0.37 4.88 0.52 82.01 24.14

govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 -----
1.53 14.81 0.42 98.73 28.40

asp 227 0 0 0.00 12 2.05 6013 14.72 958.6 5.69 2.50
1.78 8.61 5.60 83.64 17.04

derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2.09 -----
0.50 1.93 0.51 96.03 32.60

dchall 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00

4.0 Scheduler Commands

260 4.6 Commands

4.6 Commands 261

0.52 0.88 2.49 95.82 33.67
nih 239 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----

0.95 1.83 0.14 97.59 84.31
darmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25

0.14 0.59 0.07 81.33 12.73
systems 80 0 0 0.00 6 1.03 67 0.16 22.4 0.13 -----

4.07 8.49 1.23 28.68 37.34
pdc 252 0 0 0.00 1 0.17 64 0.16 5.1 0.03 -----

10.85 10.85 10.77 27.90 7.40
staff 1 0 0 0.00 1 0.17 12 0.03 0.2 0.00 -----

0.04 0.04 0.19 21.21 1.20

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.
The statistical output is divided into two categories, Running and Completed. Running statistics include information
about jobs that are currently running. Completed statistics are compiled using historical information from both running
and completed jobs.

The fields are as follows:

Column Description

GroupName Name of group.

GID Group ID of group.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by group.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by group.

4.0 Scheduler Commands

Column Description

FSTgt Fairshare target. A group's fairshare target is specified in the fs.cfg file. This value should be
compared to the group's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by
the following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested
walltime it will report an accuracy of 100%.

* These fields are empty until a group has completed at least one job.

Example 4-56: Node statistics

> showstats -n
node stats from Mon Jul 10 00:00:00 to Mon Jul 10 16:30:00
node CfgMem MinMem MaxMem AvgMem | CfgProcs MinLoad MaxLoad AvgLoad
node01 58368 0 21122 5841 32 0.00 32.76 27.62
node02 122880 0 19466 220 30 0.00 33.98 29.54
node03 18432 0 9533 2135 24 0.00 25.10 18.64
node04 60440 0 17531 4468 32 0.00 30.55 24.61
node05 13312 0 2597 1189 8 0.00 9.85 8.45
node06 13312 0 3800 1112 8 0.00 8.66 5.27
node07 13312 0 2179 1210 8 0.00 9.62 8.27
node08 13312 0 3243 1995 8 0.00 11.71 8.02
node09 13312 0 2287 1943 8 0.00 10.26 7.58
node10 13312 0 2183 1505 8 0.00 13.12 9.28
node11 13312 0 3269 2448 8 0.00 8.93 6.71
node12 13312 0 10114 6900 8 0.00 13.13 8.44
node13 13312 0 2616 2501 8 0.00 9.24 8.21
node14 13312 0 3888 869 8 0.00 8.10 3.85
node15 13312 0 3788 308 8 0.00 8.40 4.67
node16 13312 0 4386 2191 7 0.00 18.37 8.36
node17 13312 0 3158 1870 8 0.00 8.95 5.91
node18 13312 0 5022 2397 8 0.00 19.25 8.19
node19 13312 0 2437 1371 8 0.00 8.98 7.09
node20 13312 0 4474 2486 8 0.00 8.51 7.11
node21 13312 0 4111 2056 8 0.00 8.93 6.68
node22 13312 0 5136 2313 8 0.00 8.61 5.75
node23 13312 0 1850 1752 8 0.00 8.39 5.71
node24 13312 0 3850 2539 8 0.00 8.94 7.80

4.0 Scheduler Commands

262 4.6 Commands

4.6 Commands 263

node25 13312 0 3789 3702 8 0.00 21.22 12.83
node26 13312 0 3809 1653 8 0.00 9.34 4.91
node27 13312 0 5637 70 4 0.00 17.97 2.46
node28 13312 0 3076 2864 8 0.00 22.91 10.33

Example 4-57: Verbose statistics

> showstats -v
current scheduler time: Sat Aug 18 18:23:02 2007
moab active for 00:00:01 started on Wed Dec 31 17:00:00
statistics for iteration 0 initialized on Sat Aug 11 23:55:25
Eligible/Idle Jobs: 6/8 (75.000%)
Active Jobs: 13
Successful/Completed Jobs: 167/167 (100.000%)
Preempt Jobs: 0
Avg/Max QTime (Hours): 0.34/2.07
Avg/Max XFactor: 1.165/3.26
Avg/Max Bypass: 0.40/8.00
Dedicated/Total ProcHours: 4.46K/4.47K (99.789%)
Preempt/Dedicated ProcHours: 0.00/4.46K (0.000%)
Current Active/Total Procs: 32/32 (100.0%)
Current Active/Total Nodes: 16/16 (100.0%)
Avg WallClock Accuracy: 64.919%
Avg Job Proc Efficiency: 99.683%
Min System Utilization: 87.323% (on iteration 46)
Est/Avg Backlog: 02:14:06/03:02:567

This example shows a concise summary of the system scheduling state. Note that showstats and showstats -s are
equivalent.
The first line of output indicates the number of scheduling iterations performed by the current scheduling process,
followed by the time the scheduler started. The second line indicates the amount of time the Moab Scheduler has been
scheduling in HH:MM:SS notation followed by the statistics initialization time.

The fields are as follows:

Column Description

Active Jobs Number of jobs currently active (Running or Starting).

Eligible Jobs Number of jobs in the system queue (jobs that are considered when scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the LoadLeveler Idle
state.

Completed Jobs Number of jobs completed since statistics were initialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max XFactor Maximum expansion factor of completed jobs.

4.0 Scheduler Commands

Column Description

Max Bypass Maximum bypass of completed jobs.

Available ProcHours Total proc-hours available to the scheduler.

Dedicated
ProcHours

Total proc-hours made available to jobs.

Effic Scheduling efficiency (DedicatedProcHours / Available ProcHours).

Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.

Iteration Iteration on which the minimum scheduling efficiency occurred.

Available Procs Number of procs currently available.

Busy Procs Number of procs currently busy.

Effic Current system efficiency (BusyProcs/AvailableProcs).

WallClock Accuracy Average wallclock accuracy of completed jobs (job-weighted average).

Job Efficiency Average job efficiency (UtilizedTime / DedicatedTime).

Est Backlog Estimated backlog of queued work in hours.

Avg Backlog Average backlog of queued work in hours.

Example 4-58: User statistics

> showstats -u
User Statistics Initialized Tue Aug 26 14:32:39

|----- Running ------|--------------------------------- Completed ------
----------------------------|
UserName UID Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
moorejt 2617 1 16 58.80 2 0.34 221 0.54 1896.6 11.25 -----

1.02 1.04 0.14 99.52 100.00
zhong 1767 3 24 220.72 20 3.42 2306 5.65 1511.3 8.96 -----

0.71 0.96 0.49 99.37 67.48
lui 2467 0 0 0.00 16 2.74 1970 4.82 1505.1 8.93 -----

1.02 6.33 0.25 98.96 57.72
evans 3092 0 0 0.00 62 10.60 4960 12.14 1464.3 8.69 5.0

0.62 1.64 5.04 87.64 30.62
wengel 2430 2 64 824.90 1 0.17 767 1.88 630.3 3.74 -----

0.18 0.18 4.26 99.63 0.40

4.0 Scheduler Commands

264 4.6 Commands

4.6 Commands 265

mukho 2961 2 16 71.06 6 1.03 776 1.90 563.5 3.34 -----
0.31 0.82 0.20 93.15 30.28
jimenez 1449 1 16 302.29 2 0.34 768 1.88 458.3 2.72 -----

0.80 0.98 2.31 97.99 70.30
neff 3194 0 0 0.00 74 12.65 669 1.64 352.5 2.09 10.0

0.50 1.93 0.51 96.03 32.60
cholik 1303 0 0 0.00 2 0.34 552 1.35 281.9 1.67 -----

1.72 3.07 25.35 99.69 66.70
jshoemak 2508 1 24 572.22 1 0.17 576 1.41 229.1 1.36 -----
0.55 0.55 3.74 99.20 39.20

kudo 2324 1 8 163.35 6 1.03 1152 2.82 211.1 1.25 -----
0.12 0.34 1.54 96.77 5.67

xztang 1835 1 8 18.99 ---- ------ ----- ------ 176.3 1.05 10.0 -----
- ------ ------ 99.62 ------

feller 1880 0 0 0.00 17 2.91 170 0.42 148.1 0.88 -----
0.95 1.83 0.14 97.59 84.31

maxia 2936 0 0 0.00 1 0.17 191 0.47 129.1 0.77 7.5
0.88 0.88 4.49 99.84 69.10
ktgnov71 2838 0 0 0.00 1 0.17 192 0.47 95.5 0.57 -----
0.53 0.53 0.34 90.07 51.20

This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the output
indicates the timeframe covered by the displayed statistics.
The statistical output is divided into two statistics categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical information from
both running and completed jobs.

The fields are as follows:

Column Description

UserName Name of user.

UID User ID of user.

Jobs Number of running jobs.

Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by user.

4.0 Scheduler Commands

Column Description

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are cal-
culated by multiplying the number of allocated procs by the length of time the procs were alloc-
ated, regardless of the job's CPU usage.

% Percentage of total prochours dedicated that were dedicated by user.

FSTgt Fairshare target. A user's fairshare target is specified in the fs.cfg file. This value should be com-
pared to the user's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.

AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time
used by the job by the node-hours allocated to the job.

WCAcc* Average wallclock accuracy for jobs completed. Wallclock accuracy is calculated by dividing a job's
actual run time by its specified wallclock limit.

A job's wallclock accuracy is capped at 100% so even if a job exceeds its requested walltime
it will report an accuracy of 100%.

* These fields are empty until a user has completed at least one job.

Example 4-59: Fairshare tree statistics

> showstats -T
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc

root 0 0 0.00 0 56 100.00 2.47K 100.00 1.58K 48.87 -----
1.22 0.00 0.24 100.00 58.84

l1.1 0 0 0.00 0 25 44.64 845.77 34.31 730.25 22.54 -----
1.97 0.00 0.20 100.00 65.50
Administrati 0 0 0.00 0 10 17.86 433.57 17.59 197.17 6.09 -----
3.67 0.00 0.25 100.00 62.74
Engineering 0 0 0.00 0 15 26.79 412.20 16.72 533.08 16.45 -----
0.83 0.00 0.17 100.00 67.35

l1.2 0 0 0.00 0 31 55.36 1.62K 65.69 853.00 26.33 -----
0.62 0.00 0.27 100.00 53.46
Shared 0 0 0.00 0 3 5.36 97.17 3.94 44.92 1.39 -----
0.58 0.00 0.56 100.00 31.73
Test 0 0 0.00 0 3 5.36 14.44 0.59 14.58 0.45 -----

4.0 Scheduler Commands

266 4.6 Commands

4.6 Commands 267

0.43 0.00 0.17 100.00 30.57
Research 0 0 0.00 0 25 44.64 1.51K 61.16 793.50 24.49 -----
0.65 0.00 0.24 100.00 58.82

> showstats -T 2
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
Test 0 0 0.00 0 22 4.99 271.27 0.55 167.42 0.19 -----
3.86 0.00 2.89 100.00 60.76
Shared 0 0 0.00 0 59 13.38 12.30K 24.75 4.46K 5.16 -----
6.24 0.00 10.73 100.00 49.87
Research 0 0 0.00 0 140 31.75 9.54K 19.19 5.40K 6.25 -----
2.84 0.00 5.52 100.00 57.86
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

> showstats -T l1.1
statistics initialized Mon Jul 10 15:29:41

|-------- Active ---------|---------------------------------- Completed
-----------------------------------|
user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt
AvgXF MaxXF AvgQH Effic WCAcc
l1.1 0 0 0.00 0 220 49.89 27.60K 55.52 33.01K 38.17 -----
3.68 0.00 2.39 100.00 63.17
Administrati 0 0 0.00 0 84 19.05 7.94K 15.96 4.24K 4.91 -----
4.77 0.00 0.34 100.00 62.31
Engineering 0 0 0.00 0 136 30.84 19.67K 39.56 28.77K 33.27 -----
3.01 0.00 3.66 100.00 63.70

Example 4-60: Statistics from an absolute time frame

> showstats -c batch -v -t 00:00:01_01/01/13,23:59:59_12/31/13
statistics initialized Wed Jan 1 00:00:00

-------- Active --------- ------------------------------------ Completed ------------

class Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
batch 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

Moab returns information about the class batch from January 1, 2013 to December 31, 2013. For more information
about specifying absolute dates, see "Absolute Time Format" in TIMESPEC on page 270.

Example 4-61: Statistics from a relative time frame

> showstats -u bob -v -t -30:00:00:00
statistics initialized Mon Nov 11 15:30:00

-------- Active --------- ------------------------------------ Completed ------------

user Jobs Procs ProcHours Mem Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
bob 0 0 0.00 0 23 100.00 15 100.00 1 100.00 ----- 0.40
5.01 0.00 88.94 39.87

4.0 Scheduler Commands

Moab returns information about user bob from the past 30 days. For more information about specifying relative dates,
see "Relative Time Format" in TIMESPEC on page 270.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mschedctl -f command - re-initialize statistics
l showstats -f command - display full matrix statistics

showstats -f
Synopsis

showstats -f <statistictype>

Overview

Shows table of various scheduler statistics.

This command displays a table of the selected Moab Scheduler statistics, such as expansion factor,
bypass count, jobs, proc-hours, wallclock accuracy, and backfill information.

Statistics are aggregated over time. This means statistical information is not available for time
frames and the -t option is not supported with showstats -f.

Access

This command can be run by any Moab Scheduler Administrator.

Parameters

Parameter Description

AVGBYPASS Average bypass count. Includes summary of job-weighted expansion bypass and total
samples.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and total samples.

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion factor, processor-
weighted expansion factor, processor-hour-weighted expansion factor, and total number of
samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job percent and total
samples.

BFPHRUN Number of proc-hours backfilled. Includes summary of job-weighted backfill proc-hour per-
centage and total samples.

4.0 Scheduler Commands

268 4.6 Commands

4.6 Commands 269

Parameter Description

ESTSTARTTIME Job start time estimate for jobs meeting specified processor/duration criteria. This estimate is
based on the reservation start time analysis algorithm.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and total samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum expansion factor and total
samples.

PHREQUEST proc-hours requested. Includes summary of total proc-hours requested and total samples.

PHRUN proc-hours run. Includes summary of total proc-hours run and total samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of service success rate
and total samples.

WCACCURACY Wallclock accuracy. Includes summary of overall wall clock accuracy and total samples.

Examples

Example 4-62:

> showstats -f AVGXFACTOR
Average XFactor Grid
[NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00][
02:08:00][04:16:00][08:32:00][17:04:00][34:08:00][TOTAL]
[1][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[2][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[4][--------][--------][--------][--------][--------][--------][
1.00 1][--------][1.12 2][--------][--------][1.10 3]
[8][--------][--------][--------][--------][--------][--------][
1.00 2][1.24 2][--------][--------][--------][1.15 4]
[16][--------][--------][--------][--------][--------][1.01 2][---
-----][--------][--------][--------][--------][1.01 2]
[32][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[64][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[128][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[256][--------][--------][--------][--------][--------][--------][---
-----][--------][--------][--------][--------][--------]
[T TOT][--------][--------][--------][--------][--------][1.01 2][
1.00 3][1.24 2][1.12 2][--------][--------]
Job Weighted X Factor: 1.0888
Node Weighted X Factor: 1.1147

4.0 Scheduler Commands

NS Weighted X Factor: 1.1900
Total Samples: 9

The showstats -f command returns a table with data for the specified STATISTICTYPE parameter. The left-most column
shows the maximum number of processors required by the jobs shown in the other columns. The column headers indicate
the maximum wallclock time (in HH:MM:SS notation) requested by the jobs shown in the columns. The data returned in
the table varies by the STATISTICTYPE requested. For table entries with one number, it is of the data requested. For
table entries with two numbers, the left number is the data requested and the right number is the number of jobs used
to calculate the average. Table entries that contain only dashes (-------) indicate no job has completed that matches
the profile associated for this inquiry. The bottom row shows the totals for each column. Following each table is a
summary, which varies by the STATISTICTYPE requested.

The column and row break down can be adjusted using the STATPROC* and STATTIME* parameters respectively.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of
information — the average expansion factor for all jobs that meet this slot's profile and the number of jobs that were
used to calculate this average. For example, the XFactors of two jobs were averaged to obtain an average XFactor of
1.24 for jobs requiring over 2 hours 8 minutes, but not more than 4 hours 16 minutes and between 5 and 8 processors.
Totals along the bottom provide overall XFactor averages weighted by job, processors, and processor-hours.

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes
l mschedctl -f command
l showstats command
l STATPROCMIN parameter
l STATPROCSTEPCOUNT parameter
l STATPROCSTEPSIZE parameter
l STATTIMEMIN parameter
l STATTIMESTEPCOUNT parameter
l STATTIMESTEPSIZE parameter

TIMESPEC

Relative Time Format
The relative time format specifies a time by using the current time as a reference and specifying a time
offset.

Format

+[[[DD:]HH:]MM:]SS

Examples

2 days, 3 hours and 57 seconds in the future:

+02:03:0:57

21 days (3 weeks) in the future:

+21:0:0:0

30 seconds in the future:

4.0 Scheduler Commands

270 4.6 Commands

4.6 Commands 271

+30

Absolute Time Format
 The absolute time format specifies a specific time in the future.

Format

[HH[:MM[:SS]]][_MO[/DD[/YY]]] ie 14:30_06/20)

Examples

1 PM, March 1 (this year)

13:00_03/01

4.6.1 Deprecated commands

canceljob

This command is deprecated. Use mjobctl -c instead.

Synopsis

canceljob jobid [jobid]...

Overview

The canceljob command is used to selectively cancel the specified job(s) (active, idle, or non-queued)
from the queue.

Access

This command can be run by any Moab Administrator and by the owner of the job (see ADMINCFG).

Flag Name Format Default Description Example

-h HELP N/A Display usage information > canceljob -h

JOB ID <STRING> --- a jobid, a job expression, or the
keyword ALL

> canceljob 13001
13003

Examples

Example 4-63: Cancel job 6397

> canceljob 6397

4.0 Scheduler Commands

changeparam

This command is deprecated. Use mschedctl -m instead.

Synopsis

changeparam parameter value

Overview

The changeparam command is used to dynamically change the value of any parameter which can be
specified in the moab.cfg file. The changes take effect at the beginning of the next scheduling iteration.
They are not persistent, only lasting until Moab is shut down.

changeparam is a compact command of mschedctl -m.

Access

This command can be run by a level 1 Moab administrator.

diagnose

This command is deprecated. Use mdiag instead.

Synopsis

diagnose -a [accountid]

diagnose -b [-l policylevel] [-t partition]

diagnose -c [classid]

diagnose -C [configfile]

diagnose -f [-o user|group|account|qos|class]

diagnose -g [groupid]

diagnose -j [jobid]

diagnose -L

diagnose -m [rackid]

diagnose -n [-t partition] [nodeid]

diagnose -p [-t partition]

diagnose -q [qosid]

diagnose -r [reservationid]

diagnose -R [resourcemanagername]

diagnose -s [standingreservationid]

diagnose -S diagnose -u [userid]

diagnose -v

4.0 Scheduler Commands

272 4.6 Commands

4.6 Commands 273

diagnose -x

Overview

The diagnose command is used to display information about various aspects of scheduling and the results
of internal diagnostic tests.

releasehold

This command is deprecated. Use mjobctl -u instead.

Synopsis

releasehold [-a|-b] jobexp

Overview

Release hold on specified job(s).

This command allows you to release batch holds or all holds (system, user, and batch) on specified jobs.
Any number of jobs may be released with this command.

Access

By default, this command can be run by any Moab Scheduler Administrator.

Parameters

JOBEXP Job expression of job(s) to release.

Flags

-a Release all types of holds (user, system, batch) for specified job(s).

-b Release batch hold from specified job(s).

-h Help for this command.

Examples

Example 4-64: releasehold -b

> releasehold -b 6443
batch hold released for job 6443

In this example, a batch hold was released from this one job.

4.0 Scheduler Commands

Example 4-65: releasehold -a

> releasehold -a "81[1-6]"
holds modified for job 811
holds modified for job 812
holds modified for job 813
holds modified for job 814
holds modified for job 815
holds modified for job 816

In this example, all holds were released from the specified jobs.

Related topics

l sethold
l mjobctl

releaseres

This command is deprecated. Use mrsvctl -r instead.

Synopsis

releaseres [arguments] reservationid [reservationid...]

Overview

Release existing reservation.

This command allows Moab Scheduler Administrators to release any user, group, account, job, or system
reservation. Users are allowed to release reservations on jobs they own. Note that releasing a
reservation on an active job has no effect since the reservation will be automatically recreated.

Access

Users can use this command to release any reservation they own. Level 1 and level 2 Moab
administrators may use this command to release any reservation.

Parameters

RESERVATION ID Name of reservation to release.

Examples

Example 4-66: Release two existing reservations

> releaseres system.1 bob.2
released User reservation 'system.1'
released User reservation 'bob.2'

4.0 Scheduler Commands

274 4.6 Commands

4.6 Commands 275

resetstats

This command is deprecated. Use mschedctl -f instead.

Synopsis

resetstats

Overview

This command resets all internally-stored Moab Scheduler statistics to the initial start-up state as of the
time the command was executed.

Access

By default, this command can be run by level 1 scheduler administrators.

Examples

Example 4-67:

> resetstats Statistics Reset at time Wed Feb 25 23:24:55 2011

Related topics

l Moab Client Installation - explains how to distribute this command to client nodes

runjob

This command is deprecated. Use mjobctl -x instead.

Synopsis

runjob [-c|-f|-n nodelist|-p partition|-s|-x] jobid

Overview

This command will attempt to immediately start the specified job.

runjob is a deprecated command, replaced by mjobctl.

Access

By default, this command can be run by any Moab administrator.

Parameters

JOBID Name of the job to run.

4.0 Scheduler Commands

Args Description

-c Clear job parameters from previous runs (used to clear PBS neednodes attribute after PBS job
launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-n
<NODELIST>

Attempt to start the job using the specified nodelist where node names are comma or colon
delimited

-p
<PARTITION>

Attempt to start the job in the specified partition

-s Attempt to suspend the job

-x Attempt to force the job to run, ignoring throttling policies, QoS constraints, and reservations

Examples

Example 4-68: Run job cluster.231

> runjob cluster.231
job cluster.231 successfully started

See Also

l mjobctl
l canceljob - cancel a job.
l checkjob - show detailed status of a job.
l showq - list queued jobs.

sethold

This command is deprecated. Use mjobctl -h instead.

Synopsis

sethold [-b] jobid [jobid...]

Overview

Set hold on specified job(s).

Permissions

This command can be run by any Moab Scheduler Administrator.

4.0 Scheduler Commands

276 4.6 Commands

4.6 Commands 277

Parameters

JOB Job number of job to hold.

Flags

-
b

Set a batch hold. Typically, only the scheduler places batch holds. This flag allows an administrator to manu-
ally set a batch hold.

-
h

Help for this command.

Examples

Example 4-69:

> sethold -b fr17n02.1072.0 fr15n03.1017.0
Batch Hold Placed on All Specified Jobs

In this example, a batch hold is placed on job fr17n02.1072.0 and job fr15n03.1017.0.

setqos

This command is deprecated. Use mjobctl -m instead.

Synopsis

setqos qosid jobid

Overview

Set Quality Of Service for a specified job.

This command allows users to change the QoS of their own jobs.

Access

This command can be run by any user.

Parameters

JOBID Job name.

QOSID QoS name.

4.0 Scheduler Commands

Examples

Example 4-70:

> setqos high_priority moab.3

Job QOS Adjusted

This example sets the Quality Of Service to a value of high_priority for job moab.3.

setres

This command is deprecated. Use mrsvctl -c instead.

Synopsis

setres [arguments] resourceexpression
[-a <ACCOUNT_LIST>]
[-b <SUBTYPE>]
[-c <CHARGE_SPEC>]
[-d <DURATION>]
[-e <ENDTIME>]
[-E] // EXCLUSIVE
[-f <FEATURE_LIST>]
[-g <GROUP_LIST>]
[-n <NAME>]
[-o <OWNER>]
[-p <PARTITION>]
[-q <QUEUE_LIST>] // (ie CLASS_LIST)
[-Q <QOSLIST>]
[-r <RESOURCE_DESCRIPTION>]
[-R <RESERVATION_PROFILE>]
[-s <STARTTIME>]
[-T <TRIGGER>]
[-u <USER_LIST>]
[-x <FLAGS>]

Overview

Reserve resources for use by jobs with particular credentials or attributes.

Access

This command can be run by level 1 and level 2 Moab administrators.

4.0 Scheduler Commands

278 4.6 Commands

4.6 Commands 279

Parameters

Name Format Default Description

ACCOUNT_LIST <STRING>
[:<STRING>]...

--- List of accounts that will be allowed access to the
reserved resources

SUBTYPE <STRING> --- Specify the subtype for a reservation

CHARGE_SPEC <ACCOUNT>
[,<GROUP>
[,<USER>]]

--- Specifies which credentials will be accountable for
unused resources dedicated to the reservation

CLASS_LIST <STRING>
[:<STRING>]...

--- List of classes that will be allowed access to the
reserved resource

DURATION [[[DD:]HH:]MM:]SS INFINITY Duration of the reservation (not needed if
ENDTIME is specified)

ENDTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]
SS

INFINITY Absolute or relative time reservation will end (not
required if Duration specified)

EXCLUSIVE N/A N/A Requests exclusive access to resources

FEATURE_LIST <STRING>
[:<STRING>]...

--- List of node features which must be possessed by
the reserved resources

FLAGS <STRING>
[:<STRING>]...

--- List of reservation flags (See Managing Reser-
vations for details)

GROUP_LIST <STRING>
[:<STRING>]...

--- List of groups that will be allowed access to the
reserved resources

NAME <STRING> Name set to
first name lis-
ted in ACL or
SYSTEM if no
ACL specified

Name for new reservation

4.0 Scheduler Commands

Name Format Default Description

OWNER <CREDTYPE>
:<CREDID>where
CREDTYPE is one of
user, group, acct,
class, or qos

N/A Specifies which credential is granted reservation
ownership privileges

PARTITION <STRING> [ANY] Partition in which resources must be located

QOS_LIST <STRING>
[:<STRING>]...

--- List of QoSes that will be allowed access to the
reserved resource

RESERVATION_

PROFILE

Existing reservation
profile ID

N/A Requests that default reservation attributes be
loaded from the specified reservation profile (see
RSVPROFILE)

RESOURCE_
DESCRIPTION

Colon delimited list
of zero or more of
the following
<ATTR>=<VALUE>
pairs
PROCS=<INTEGER>
MEM=<INTEGER>
DISK=<INTEGER>
SWAP=<INTEGER>
GRES=<STRING>

PROCS=-1 Specifies the resources to be reserved per task. (-
1 indicates all resources on node)

RESOURCE_
EXPRESSION ALL

or
TASKS{==|>=}
<TASKCOUNT>
or
<HOST_REGEX>

Required Field.
No Default

Specifies the tasks to reserve. ALL indicates all
resources available should be reserved.

If ALL or a host expression is specified,
Moab will apply the reservation regardless
of existing reservations and exclusive
issues. If TASKS is used, Moab will only
allocate accessible resources.

STARTTIME [HH[:MM[:SS]]][_
MO[/DD[/YY]]]
or
+[[[DD:]HH:]MM:]
SS

NOW Absolute or relative time reservation will start

4.0 Scheduler Commands

280 4.6 Commands

4.6 Commands 281

Name Format Default Description

TRIGGER <STRING> N/A Comma delimited reservation trigger list following
format described in the trigger format section of
the reservation configuration overview.

USER_LIST <STRING>
[:<STRING>]...

--- List of users that will be allowed access to the
reserved resources

Description

The setres command allows an arbitrary block of resources to be reserved for use by jobs which meet
the specified access constraints. The timeframe covered by the reservation can be specified on either an
absolute or relative basis. Only jobs with credentials listed in the reservation ACL (i.e., USERLIST,
GROUPLIST,...) can utilize the reserved resources. However, these jobs still have the freedom to utilize
resources outside of the reservation. The reservation will be assigned a name derived from the ACL
specified. If no reservation ACL is specified, the reservation is created as a system reservation and no
jobs will be allowed access to the resources during the specified timeframe (valuable for system
maintenance, etc). See the Reservation Overview for more information.

Reservations can be viewed using the showres command and can be released using the releaseres
command.

Examples

Example 4-71:

> setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2
reservation 'john.1' created on 2 nodes (2 tasks)
node001:1
node005:1

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

Example 4-72:

> setres -s 8:00:00_06/20 -e 17:00:00_06/22 ALL
reservation 'system.1' created on 8 nodes (8 tasks)
node001:1
node002:1
node003:1
node004:1
node005:1
node006:1
node007:1
node008:1

Schedule a system wide reservation to allow system maintenance on Jun 20, 8:00 AM until Jun 22, 5:00 PM.

Example 4-73:

> setres -r PROCS=1:MEM=512 -g staff -l interactive 'node00[3-6]'
reservation 'staff.1' created on 4 nodes (4 tasks)

4.0 Scheduler Commands

node003:1
node004:1
node005:1
node006:1

Reserve one processor and 512 MB of memory on nodes node003 through node node006 for members of the group staff
and jobs in the interactive class.

setspri

This command is deprecated. Use mjobctl -p instead.

Synopsis

setspri [-r] priorityjobid

Overview

(This command is deprecated by the mjobctl command)

Set or remove absolute or relative system priorities for a specified job.

This command allows you to set or remove a system priority level for a specified job. Any job with a
system priority level set is guaranteed a higher priority than jobs without a system priority. Jobs with
higher system priority settings have priority over jobs with lower system priority settings.

Access

This command can be run by any Moab Scheduler Administrator.

Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding the policy generated
priority value. Range is 0 to clear, 1 for lowest, 1000 for highest. The given value is added onto the
system priority (see 32-bit and 64-bit values below), except for a given value of zero. If the '-r' flag is
specified, the system priority is relative, adding or subtracting the specified value from the policy
generated priority.
If a relative priority is specified, any value in the range +/- 1,000,000,000 is acceptable.

Flags

-r Set relative system priority on job.

Examples

Example 4-74:

> setspri 10 orion.4752

4.0 Scheduler Commands

282 4.6 Commands

4.6 Commands 283

job system priority adjusted

In this example, a system priority of 10 is set for job orion.4752.

Example 4-75:

> setspri 0 clusterB.1102
job system priority adjusted

In this example, system priority is cleared for job clusterB.1102.

Example 4-76:

> setspri -r 100000 job.00001
job system priority adjusted

In this example, the job's priority will be increased by 100000 over the value determine by configured priority policy.

This command is deprecated. Use mjobctl instead.

showconfig

This command is deprecated. Use mschedctl -l instead.

Synopsis

showconfig [-v]

Overview

View the current configurable parameters of the Moab Scheduler.

The showconfig command shows the current scheduler version and the settings of all "in memory"
parameters. These parameters are set via internal defaults, command line arguments, environment
variable settings, parameters in the moab.cfg file, and via the mschedctl -m command. Because of the
many sources of configuration settings, the output may differ from the contents of the moab.cfg file.
The output is such that it can be saved and used as the contents of the moab.cfg file if desired.

Access

This command can be run by a level 1, 2, or 3 Moab administrator.

Flags

-
h

Help for this command.

-
v

This optional flag turns on verbose mode, which shows all possible Moab Scheduler parameters and their cur-
rent settings. If this flag is not used, this command operates in context-sensitive terse mode, which shows only
relevant parameter settings.

4.0 Scheduler Commands

Examples

Example 4-77: showconfig

> showconfig
moab scheduler version 4.2.4 (PID: 11080)
BACKFILLPOLICY FIRSTFIT
BACKFILLMETRIC NODES
ALLOCATIONPOLICY MINRESOURCE
RESERVATIONPOLICY CURRENTHIGHEST
...

The showconfig command without the -v flag does not show the settings of all parameters. It does
show all major parameters and all parameters which are in effect and have been set to non-
default values. However, it hides other rarely used parameters and those which currently have no
effect or are set to default values. To show the settings of all parameters, use the -v (verbose)
flag. This will provide an extended output. This output is often best used in conjunction with the
grep command as the output can be voluminous.

Related topics

l Use the mschedctl -m command to change the various Moab Scheduler parameters.
l See the Parameters document for details about configurable parameters.

4.0 Scheduler Commands

284 4.6 Commands

5.1 Job Prioritization 285

5.0 Prioritizing Jobs and Allocating
Resources

l Job Prioritization on page 285

l Node Allocation Policies on page 301

l Node Access Policies on page 309

l Node Availability Policies on page 311

l Scheduling Jobs When VMs Exist on page 317

5.1 Job Prioritization
In general, prioritization is the process of determining which of many options best fulfills overall goals.
In the case of scheduling, a site will often have multiple, independent goals that may include maximizing
system utilization, giving preference to users in specific projects, or making certain that no job sits in
the queue for more than a given period of time. The approach used by Moab in representing a multi-
faceted set of site goals is to assign weights to the various objectives so an overall value or priority can
be associated with each potential scheduling decision. With the jobs prioritized, the scheduler can
roughly fulfill site objectives by starting the jobs in priority order.

l Priority Overview

l Job Priority Factors

l Fairshare Job Priority Example on page 296

l Common Priority Usage

l Prioritization Strategies

l Manual Priority Management

Related topics

l mdiag -p (Priority Diagnostics)

5.1.1 Priority Overview
Moab's prioritization mechanism allows component and subcomponent weights to be associated with
many aspects of a job to enable fine-grained control over this aspect of scheduling. To allow this level of

control, Moab uses a simple priority-weighting hierarchy where the contribution of each priority
subcomponent is calculated as follows:

<COMPONENT WEIGHT> * <SUBCOMPONENT WEIGHT> * <PRIORITY SUBCOMPONENT VALUE>

Each priority component contains one or more subcomponents as described in the section titled Job
Priority Factors on page 286. For example, the Resource component consists of Node, Processor,
Memory, Swap, Disk, Walltime, and PE subcomponents. While there are numerous priority components
and many more subcomponents, a site need only focus on and configure the subset of components related
to their particular priority needs. In actual usage, few sites use more than a small fraction (usually 5 or
fewer) of the available priority subcomponents. This results in fairly straightforward priority
configurations and tuning. By mixing and matching priority weights, sites may generally obtain the
desired job-start behavior. At any time, you can issue the mdiag -p command to determine the impact of
the current priority-weight settings on idle jobs. Likewise, the command showstats -f can assist the
administrator in evaluating priority effectiveness on historical system usage metrics such as queue time
or expansion factor.

As mentioned above, a job's priority is the weighted sum of its activated subcomponents. By default, the
value of all component and subcomponent weights is set to 1 and 0 respectively. The one exception is the
"QUEUETIME" subcomponent weight that is set to 1. This results in a total job priority equal to the
period of time the job has been queued, causing Moab to act as a simple FIFO. Once the summed
component weight is determined, this value is then bounded resulting in a priority ranging between 0
and MAX_PRIO_VAL which is currently defined as 1000000000 (one billion). In no case will a job obtain a
priority in excess of MAX_PRIO_VAL through its priority subcomponent values.

Negative priority jobs may be allowed if desired; see ENABLENEGJOBPRIORITY and
REJECTNEGPRIOJOBS for more information.

Using the mjobctl -p command, site administrators may adjust the base calculated job priority by either
assigning a relative priority adjustment or an absolute system priority. A relative priority adjustment
causes the base priority to be increased or decreased by a specified value. Setting an absolute system
priority, SPRIO, causes the job to receive a priority equal to MAX_PRIO_VAL + SPRIO, and thus
guaranteed to be of higher value than any naturally occurring job priority.

Related topics

l REJECTNEGPRIOJOBS parameter

5.1.2 Job Priority Factors
l Credential (CRED) Component

l Fairshare (FS) Component

l Resource (RES) Component

l Service (SERVICE) Component

l Target Service (TARG) Component

5.0 Prioritizing Jobs and Allocating Resources

286 5.1 Job Prioritization

5.1 Job Prioritization 287

l Usage (USAGE) Component

l Job Attribute (ATTR) Component

Moab allows jobs to be prioritized based on a range of job related factors. These factors are broken
down into a two-tier hierarchy of priority factors and subfactors, each of which can be independently
assigned a weight. This approach provides the administrator with detailed yet straightforward control of
the job selection process.

Each factor and subfactor can be configured with independent priority weight and priority cap values
(described later). In addition, per credential and per QoS priority weight adjustments may be specified
for a subset of the priority factors. For example, QoS credentials can adjust the queuetime subfactor
weight and group credentials can adjust fairshare subfactor weight.

The following table highlights the factors and subfactors that make up a job's total priority.

Factor SubFactor Metric

CRED
(job credentials)

USER user-specific priority (See USERCFG)

GROUP group-specific priority (See GROUPCFG)

ACCOUNT account-specific priority (SEE ACCOUNTCFG)

QOS QoS-specific priority (See QOSCFG)

CLASS class/queue-specific priority (See CLASSCFG)

5.0 Prioritizing Jobs and Allocating Resources

Factor SubFactor Metric

FS
(fairshare usage)

FSUSER user-based historical usage (See Fairshare Overview)

FSGROUP group-based historical usage (See Fairshare Overview)

FSACCOUNT account-based historical usage (See Fairshare Overview)

FSQOS QoS-based historical usage (See Fairshare Overview)

FSCLASS class/queue-based historical usage (See Fairshare Overview)

FSGUSER imported global user-based historical usage (See ID Manager
and Fairshare Overview)

FSGGROUP imported global group-based historical usage (See ID Manager
and Fairshare Overview)

FSGACCOUNT imported global account-based historical usage (See ID Man-
ager and Fairshare Overview)

FSJPU current active jobs associated with job user

FSPPU current number of processors allocated to active jobs asso-
ciated with job user

FSPSPU current number of processor-seconds allocated to active jobs
associated with job user

WCACCURACY user's current historical job wallclock accuracy calculated as
total processor-seconds dedicated / total processor-seconds
requested

Factor values are in the range of 0.0 to 1.0.

5.0 Prioritizing Jobs and Allocating Resources

288 5.1 Job Prioritization

5.1 Job Prioritization 289

Factor SubFactor Metric

RES
(requested job
resources)

NODE number of nodes requested

PROC number of processors requested

MEM total real memory requested (in MB)

SWAP total virtual memory requested (in MB)

DISK total local disk requested (in MB)

PS total processor-seconds requested

PE total processor-equivalent requested

WALLTIME total walltime requested (in seconds)

SERV
(current service
levels)

QUEUETIME time job has been queued (in minutes)

XFACTOR minimum job expansion factor

BYPASS number of times job has been bypassed by backfill

STARTCOUNT number of times job has been restarted

DEADLINE proximity to job deadline

SPVIOLATION Boolean indicating whether the active job violates a soft usage
limit

USERPRIO user-specified job priority

TARGET
(target service
levels)

TARGETQUEUETIME time until queuetime target is reached (exponential)

TARGETXFACTOR distance to target expansion factor (exponential)

5.0 Prioritizing Jobs and Allocating Resources

Factor SubFactor Metric

USAGE
(consumed
resources -- active
jobs only)

CONSUMED processor-seconds dedicated to date

REMAINING processor-seconds outstanding

PERCENT percent of required walltime consumed

EXECUTIONTIME seconds since job started

ATTR
(job attribute-based
prioritization)

ATTRATTR Attribute priority if specified job attribute is set (attributes
may be user-defined or one of preemptor, or preemptee).
Default is 0.

ATTRSTATE Attribute priority if job is in specified state (see Job States).
Default is 0.

ATTRGRES Attribute priority if a generic resource is requested. Default is
0.

*CAP parameters (FSCAP, for example) are available to limit the maximum absolute value of each
priority component and subcomponent. If set to a positive value, a priority cap will bound priority
component values in both the positive and negative directions.

All *CAP and *WEIGHT parameters are specified as positive or negative integers. Non-integer
values are not supported.

Credential (CRED) Component
The credential component allows a site to prioritize jobs based on political issues such as the relative
importance of certain groups or accounts. This allows direct political priorities to be applied to jobs.

The priority calculation for the credential component is as follows:

Priority += CREDWEIGHT * (
USERWEIGHT * Job.User.Priority +
GROUPWEIGHT * Job.Group.Priority +
ACCOUNTWEIGHT * Job.Account.Priority +
QOSWEIGHT * Job.Qos.Priority +
CLASSWEIGHT * Job.Class.Priority)

All user, group, account, QoS, and class weights are specified by setting the PRIORITY attribute of using
the respective *CFG parameter (namely, USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, and CLASSCFG).

For example, to set user and group priorities, you might use the following:

5.0 Prioritizing Jobs and Allocating Resources

290 5.1 Job Prioritization

5.1 Job Prioritization 291

CREDWEIGHT 1
USERWEIGHT 1
GROUPWEIGHT 1
USERCFG[john] PRIORITY=2000
USERCFG[paul] PRIORITY=-1000
GROUPCFG[staff] PRIORITY=10000

Class (or queue) priority may also be specified via the resource manager where supported (as in
PBS queue priorities). However, if Moab class priority values are also specified, the resource
manager priority values will be overwritten.

All priorities may be positive or negative.

Fairshare (FS) Component
Fairshare components allow a site to favor jobs based on short-term historical usage. The Fairshare
Overview describes the configuration and use of fairshare in detail.

The fairshare factor is used to adjust a job's priority based on current and historical percentage system
utilization of the job's user, group, account, class, or QoS. This allows sites to steer workload toward a
particular usage mix across user, group, account, class, and QoS dimensions.

The fairshare priority factor calculation is as follows:

Priority += FSWEIGHT * MIN(FSCAP, (
FSUSERWEIGHT * DeltaUserFSUsage +
FSGROUPWEIGHT * DeltaGroupFSUsage +
FSACCOUNTWEIGHT * DeltaAccountFSUsage +
FSQOSWEIGHT * DeltaQOSFSUsage +
FSCLASSWEIGHT * DeltaClassFSUsage +
FSJPUWEIGHT * ActiveUserJobs +
FSPPUWEIGHT * ActiceUserProcs +
FSPSPUWEIGHT * ActiveUserPS +
WCACCURACYWEIGHT * UserWCAccuracy))

All *WEIGHT parameters just listed are specified on a per partition basis in the moab.cfg file. The
Delta*Usage components represent the difference in actual fairshare usage from the corresponding
fairshare usage target. Actual fairshare usage is determined based on historical usage over the time
frame specified in the fairshare configuration. The target usage can be a target, floor, or ceiling value as
specified in the fairshare configuration file. See the Fairshare Overview for further information on
configuring and tuning fairshare. Additional insight may be available in the fairshare usage example. The
ActiveUser* components represent current usage by the job's user credential.

How violated ceilings and floors affect fairshare-based priority

Moab determines FSUsageWeight in the previous section. In order to account for violated ceilings and
floors, Moab multiplies that number by the FSUsagePriority as demonstrated in the following
formula:

FSPriority = FSUsagePriority * FSUsageWeight

When a ceiling or floor is violated, FSUsagePriority = 0, so FSPriority = 0. This means the job
will gain no priority because of fairshare. If fairshare is the only component of priority, then violation

5.0 Prioritizing Jobs and Allocating Resources

takes the priority to 0. For more information, see Priority-Based Fairshare on page 347 and Fairshare
Targets on page 344.

Resource (RES) Component
Weighting jobs by the amount of resources requested allows a site to favor particular types of jobs. Such
prioritization may allow a site to better meet site mission objectives, improve fairness, or even improve
overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the resources requested.
This is good in three main scenarios: (1) when you need to favor large resource jobs because it's part of
your site's mission statement, (2) when you want to level the response time distribution across large
and small jobs (small jobs are more easily backfilled and thus generally have better turnaround time),
and (3) when you want to improve system utilization. While this may be surprising, system utilization
actually increases as large resource jobs are pushed to the front of the queue. This keeps the smaller
jobs in the back where they can be selected for backfill and thus increase overall system utilization. The
situation is like the story about filling a cup with golf balls and sand. If you put the sand in first, it gets in
the way and you are unable to put in as many golf balls. However, if you put in the golf balls first, the
sand can easily be poured in around them completely filling the cup.

The calculation for determining the total resource priority factor is as follows:

Priority += RESWEIGHT* MIN(RESCAP, (
NODEWEIGHT * TotalNodesRequested +
PROCWEIGHT * TotalProcessorsRequested +
MEMWEIGHT * TotalMemoryRequested +
SWAPWEIGHT * TotalSwapRequested +
DISKWEIGHT * TotalDiskRequested +
WALLTIMEWEIGHT* TotalWalltimeRequested +
PEWEIGHT * TotalPERequested))

The sum of all weighted resources components is then multiplied by the RESWEIGHT parameter and
capped by the RESCAP parameter. Memory, Swap, and Disk are all measured in megabytes (MB). The
final resource component, PE, represents Processor Equivalents. This component can be viewed as a
processor-weighted maximum percentage of total resources factor.

For example, if a job requested 25% of the processors and 50% of the total memory on a 128-processor
system, it would have a PE value of MAX(25,50) * 128, or 64. The concept of PEs is a highly effective
metric in shared resource systems.

Ideal values for requested job processor count and walltime can be specified using
PRIORITYTARGETPROCCOUNT and PRIORITYTARGETDURATION.

Service (SERVICE) Component
The Service component specifies which service metrics are of greatest value to the site. Favoring one
service subcomponent over another generally improves that service metric.

The priority calculation for the service priority factor is as follows:

Priority += SERVICEWEIGHT * (
QUEUETIMEWEIGHT * <QUEUETIME> +
XFACTORWEIGHT * <XFACTOR> +

5.0 Prioritizing Jobs and Allocating Resources

292 5.1 Job Prioritization

5.1 Job Prioritization 293

BYPASSWEIGHT * <BYPASSCOUNT> +
STARTCOUNTWEIGHT * <STARTCOUNT> +
DEADLINEWEIGHT * <DEADLINE> +
SPVIOLATIONWEIGHT * <SPBOOLEAN> +
USERPRIOWEIGHT * <USERPRIO>)

QueueTime (QUEUETIME) Subcomponent

In the priority calculation, a job's queue time is a duration measured in minutes. Using this
subcomponent tends to prioritize jobs in a FIFO order. Favoring queue time improves queue time based
fairness metrics and is probably the most widely used single job priority metric. In fact, under the initial
default configuration, this is the only priority subcomponent enabled within Moab. It is important to note
that within Moab, a job's queue time is not necessarily the amount of time since the job was submitted.
The parameter JOBPRIOACCRUALPOLICY allows a site to select how a job will accrue queue time based
on meeting various throttling policies. Regardless of the policy used to determine a job's queue time, this
effective queue time is used in the calculation of the QUEUETIME, XFACTOR, TARGETQUEUETIME, and
TARGETXFACTOR priority subcomponent values.

The need for a distinct effective queue time is necessitated by the fact that many sites have users who
like to work the system, whatever system it happens to be. A common practice at some long existent
sites is for some users to submit a large number of jobs and then place them on hold. These jobs remain
with a hold in place for an extended period of time and when the user is ready to run a job, the needed
executable and data files are linked into place and the hold released on one of these pre-submitted jobs.
The extended hold time guarantees that this job is now the highest priority job and will be the next to
run. The use of the JOBPRIOACCRUALPOLICY parameter can prevent this practice and prevent "queue
stuffers" from doing similar things on a shorter time scale. These "queue stuffer" users submit hundreds
of jobs at once to swamp the machine and consume use of the available compute resources. This
parameter prevents the user from gaining any advantage from stuffing the queue by not allowing these
jobs to accumulate any queue time based priority until they meet certain idle and active Moab fairness
policies (such as max job per user and max idle job per user).

As a final note, you can adjust the QUEUETIMEWEIGHT parameter on a per QoS basis using the QOSCFG
parameter and the QTWEIGHT attribute. For example, the line QOSCFG[special] QTWEIGHT=5000 causes
jobs using the QoS special to have their queue time subcomponent weight increased by 5000.

Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but favors shorter jobs
based on their requested wallclock run time. In its traditional form, the expansion factor (XFactor)
metric is calculated as follows:

XFACTOR = 1 + <QUEUETIME> / <EXECUTIONTIME>

However, a couple of aspects of this calculation make its use more difficult. First, the length of time the
job will actually run—<EXECUTIONTIME>—is not actually known until the job completes. All that is
known is how much time the job requests. Secondly, as described in the Queue Time Subcomponent
section, Moab does not necessarily use the raw time since job submission to determine <QUEUETIME> to
prevent various scheduler abuses. Consequently, Moab uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETIME> / <WALLCLOCKLIMIT>

In the equation Moab uses, <EFFQUEUETIME> is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and <WALLCLOCKLIMIT> is the user—or system—specified job
wallclock limit.

5.0 Prioritizing Jobs and Allocating Resources

Using this equation, it can be seen that short running jobs will have an XFactor that will grow much
faster over time than the xfactor associated with long running jobs. The following table demonstrates
this favoring of short running jobs:

Job Queue Time 1 hour 2 hours 4 hours 8 hours 16 hours

XFactor for 1
hour job

1 + (1 / 1) =
2.00

1 + (2 / 1) =
3.00

1 + (4 / 1) =
5.00

1 + (8 / 1) =
9.00

1 + (16 / 1) =
17.0

XFactor for 4
hour job

1 + (1 / 4) =
1.25

1 + (2 / 4) =
1.50

1 + (4 / 4) =
2.00

1 + (8 / 4) =
3.00

1 + (16 / 4) =
5.0

Since XFactor is calculated as a ratio of two values, it is possible for this subcomponent to be almost
arbitrarily large, potentially swamping the value of other priority subcomponents. This can be addressed
either by using the subcomponent cap XFACTORCAP, or by using the XFMINWCLIMIT parameter. If the
latter is used, the calculation for the XFactor subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETIME> / MAX(<XFMINWCLIMIT>,<WALLCLOCKLIMIT>)

Using the XFMINWCLIMIT parameter allows a site to prevent very short jobs from causing the XFactor
subcomponent to grow inordinately.

Some sites consider XFactor to be a more fair scheduling performance metric than queue time. At these
sites, job XFactor is given far more weight than job queue time when calculating job priority and job
XFactor distribution consequently tends to be fairly level across a wide range of job durations. (That is, a
flat XFactor distribution of 1.0 would result in a one-minute job being queued on average one minute,
while a 24-hour job would be queued an average of 24 hours.)

Like queue time, the effective XFactor subcomponent weight is the sum of two weights, the
XFACTORWEIGHT parameter and the QoS-specific XFWEIGHT setting. For example, the line QOSCFG
[special] XFWEIGHT=5000 causes jobs using the QoS special to increase their expansion factor
subcomponent weight by 5000.

Bypass (BYPASS) Subcomponent

The bypass factor is based on the bypass count of a job where the bypass count is increased by one every
time the job is bypassed by a lower priority job via backfill. Backfill starvation has never been reported,
but if encountered, use the BYPASS subcomponent.

StartCount (STARTCOUNT) Subcomponent

Apply the startcount factor to sites with trouble starting or completing due to policies or failures. The
primary causes of an idle job having a startcount greater than zero are resource manager level job start
failure, administrator based requeue, or requeue based preemption.

Deadline (DEADLINE) Subcomponent

The deadline factor allows sites to take into consideration the proximity of a job to its DEADLINE. As a
jobs moves closer to its deadline its priority increases linearly. This is an alternative to the strict
deadline discussed in QOS SERVICE.

5.0 Prioritizing Jobs and Allocating Resources

294 5.1 Job Prioritization

5.1 Job Prioritization 295

Soft Policy Violation (SPVIOLATION) Subcomponent

The soft policy violation factor allows sites to favor jobs which do not violate their associated soft
resource limit policies.

User Priority (USERPRIO) Subcomponent

The user priority subcomponent allows sites to consider end-user specified job priority in making the
overall job priority calculation. Under Moab, end-user specified priorities may only be negative and are
bounded in the range 0 to -1024. See Manual Priority Usage and Enabling End-user Priorities for more
information.

User priorities can be positive, ranging from -1024 to 1023, if ENABLEPOSUSERPRIORITY TRUE
is specified in moab.cfg.

Target Service (TARG) Component
The target factor component of priority takes into account job scheduling performance targets.
Currently, this is limited to target expansion factor and target queue time. Unlike the expansion factor
and queue time factors described earlier which increase gradually over time, the target factor
component is designed to grow exponentially as the target metric is approached. This behavior causes
the scheduler to do essentially all in its power to make certain the scheduling targets are met.

The priority calculation for the target factor is as follows:

Priority += TARGETWEIGHT* (
TARGETQUEUETIMEWEIGHT * QueueTimeComponent +
TARGETXFACTORWEIGHT * XFactorComponent)

The queue time and expansion factor target are specified on a per QoS basis using the XFTARGET and
QTTARGET attributes with the QOSCFG parameter. The QueueTime and XFactor component calculations
are designed to produce small values until the target value begins to approach, at which point these
components grow very rapidly. If the target is missed, this component remains high and continues to
grow, but it does not grow exponentially.

Usage (USAGE) Component
The Usage component applies to active jobs only. The priority calculation for the usage priority factor is
as follows:

Priority += USAGEWEIGHT * (
USAGECONSUMEDWEIGHT * ProcSecondsConsumed +
USAGEHUNGERWEIGHT * ProcNeededToBalanceDynamicJob +
USAGEREMAININGWEIGHT * ProcSecRemaining +
USAGEEXECUTIONTIMEWEIGHT * SecondsSinceStart +
USAGEPERCENTWEIGHT * WalltimePercent)

Job Attribute (ATTR) Component
The Attribute component allows the incorporation of job attributes into a job's priority. The most
common usage for this capability is to do one of the following:

5.0 Prioritizing Jobs and Allocating Resources

l adjust priority based on a job's state (favor suspended jobs)

l adjust priority based on a job's requested node features (favor jobs that request attribute pvfs)

l adjust priority based on internal job attributes (disfavor backfill or preemptee jobs)

l adjust priority based on a job's requested licenses, network consumption, or generic resource
requirements

To use job attribute based prioritization, the JOBPRIOF parameter must be specified to set corresponding
attribute priorities. To favor jobs based on node feature requirements, the parameter
NODETOJOBATTRMAP must be set to map node feature requests to job attributes.

The priority calculation for the attribute priority factor is as follows:

Priority += ATTRWEIGHT * (
ATTRATTRWEIGHT * <ATTRPRIORITY> +
ATTRSTATEWEIGHT * <STATEPRIORITY> +
ATTRGRESWEIGHT * <GRESPRIORITY>
JOBIDWEIGHT * <JOBID> +
JOBNAMEWEIGHT * <JOBNAME_INTEGER>)

Example 5-1:

ATTRWEIGHT 100
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1
ATTRGRESWEIGHT 5
favor suspended jobs
disfavor preemptible jobs
favor jobs requesting 'matlab'

JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=-200 ATTR[gpfs]
=30 GRES[matlab]=400
map node features to job features

NODETOJOBATTRMAP gpfs,pvfs
...

Related topics

l Node Allocation Priority
l Per Credential Priority Weight Offsets
l Managing Consumable Generic Resources

5.1.3 Fairshare Job Priority Example
Consider the following information associated with calculating the fairshare factor for job X.

Job X
User A
Group B
Account C
QoS D
Class E

5.0 Prioritizing Jobs and Allocating Resources

296 5.1 Job Prioritization

5.1 Job Prioritization 297

User A
Fairshare Target: 50.0
Current Fairshare Usage: 45.0

Group B
Fairshare Target: [NONE]
Current Fairshare Usage: 65.0

Account C
Fairshare Target: 25.0
Current Fairshare Usage: 35.0

QoS D
Fairshare Target: 10.0+
Current Fairshare Usage: 25.0

Class E
Fairshare Target: [NONE]
Current Fairshare Usage: 20.0

Priority Weights:
FSWEIGHT 100
FSUSERWEIGHT 10
FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30
FSQOSWEIGHT 40
FSCLASSWEIGHT 0

In this example, the Fairshare component calculation would be as follows:

Priority += 100 * (
10 * 5 +
20 * 0 +
30 * (-10) +
40 * 0 +
0 * 0)

User A is 5% below his target so fairshare increases the total fairshare factor accordingly. Group B has
no target so group fairshare usage is ignored. Account C is above its 10% above its fairshare usage
target so this component decreases the job's total fairshare factor. QoS D is 15% over its target but the
'+' in the target specification indicates that this is a 'floor' target, only influencing priority when
fairshare usage drops below the target value. Thus, the QoS D fairshare usage delta does not influence
the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a particular
distribution of jobs. However, it is important to realize that fairshare can only favor a particular
distribution of jobs, it cannot force it. If user X has a fairshare target of 50% of the machine but does not
submit enough jobs, no amount of priority favoring will get user X's usage up to 50%.

See the Fairshare Overview for more information.

5.0 Prioritizing Jobs and Allocating Resources

5.1.4 Common Priority Usage
l Credential Priority Factors

l Service Level Priority Factors

l Priority Factor Caps

l User Selectable Prioritization

Site administrators vary widely in their preferred manner of prioritizing jobs. Moab's scheduling
hierarchy allows sites to meet job control needs without requiring adjustments to dozens of parameters.
Some choose to use numerous subcomponents, others a few, and still others are content with the default
FIFO behavior. Any subcomponent that is not of interest may be safely ignored.

Credential Priority Factors
To help clarify the use of priority weights, a brief example may help. Suppose a site wished to maintain
the FIFO behavior but also incorporate some credential based prioritization to favor a special user.
Particularly, the site would like the user john to receive a higher initial priority than all other users.
Configuring this behavior requires two steps. First, the user credential subcomponent must be enabled
and second, john must have his relative priority specified. Take a look at the sample moab.cfg file:

USERWEIGHT 1
USERCFG[john] PRIORITY=300

The "USER" priority subcomponent was enabled by setting the USERWEIGHT parameter. In fact,
the parameters used to specify the weights of all components and subcomponents follow this same
"*WEIGHT" naming convention (as in RESWEIGHT and TARGETQUEUETIMEWEIGHT.

The second part of the example involves specifying the actual user priority for the user john. This is
accomplished using the USERCFG parameter. Why was the priority 300 selected and not some other
value? Is this value arbitrary? As in any priority system, actual priority values are meaningless, only
relative values are important. In this case, we are required to balance user priorities with the default
queue time based priorities. Since queuetime priority is measured in minutes queued, the user priority
of 300 places a job by user john on par with a job submitted 5 minutes earlier by another user.

Is this what the site wants? Maybe, maybe not. At the onset, most sites are uncertain what they want in
prioritization. Often, an estimate initiates prioritization and adjustments occur over time. Cluster
resources evolve, the workload evolves, and even site policies evolve, resulting in changing priority
needs over time. Anecdotal evidence indicates that most sites establish a relatively stable priority policy
within a few iterations and make only occasional adjustments to priority weights from that point.

Service Level Priority Factors
In another example, suppose a site administrator wants to do the following:

l favor jobs in the low, medium, and high QoSes so they will run in QoS order

l balance job expansion factor

l use job queue time to prevent jobs from starving

5.0 Prioritizing Jobs and Allocating Resources

298 5.1 Job Prioritization

5.1 Job Prioritization 299

Under such conditions, the sample moab.cfg file might appear as follows:

QOSWEIGHT 1
XFACTORWEIGHT 1
QUEUETIMEWEIGHT 10
TARGETQUEUETIMEWEIGHT 1
QOSCFG[low] PRIORITY=1000
QOSCFG[medium] PRIORITY=10000
QOSCFG[high] PRIORITY=100000
QOSCFG[DEFAULT] QTTARGET=4:00:00

This example is a bit more complicated but is more typical of the needs of many sites. The desired QoS
weightings are established by enabling the QoS subfactor using the QOSWEIGHT parameter while the
various QoS priorities are specified using QOSCFG. XFACTORWEIGHT is then set as this subcomponent
tends to establish a balanced distribution of expansion factors across all jobs. Next, the queuetime
component is used to gradually raise the priority of all jobs based on the length of time they have been
queued. Note that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its default value
of 1. Finally, the TARGETQUEUETIMEWEIGHT parameter is used in conjunction with the USERCFG line to
specify a queue time target of 4 hours.

Priority Factor Caps
Assume now that the site administrator is content with this priority mix but has a problem with users
submitting large numbers of very short jobs. Very short jobs would tend to have rapidly growing XFactor
values and would consequently quickly jump to the head of the queue. In this case, a factor cap would be
appropriate. Such caps allow a site to limit the contribution of a job's priority factor to be within a
defined range. This prevents certain priority factors from swamping others. Caps can be applied to either
priority components or subcomponents and are specified using the <COMPONENTNAME>CAP parameter
(such as QUEUETIMECAP, RESCAP, and SERVCAP). Note that both component and subcomponent caps
apply to the pre-weighted value, as in the following equation:

Priority =
C1WEIGHT * MIN(C1CAP,SUM(
S11WEIGHT * MIN(S11CAP,S11S) +
S12WEIGHT * MIN(S12CAP,S12S) +
...)) +

C2WEIGHT * MIN(C2CAP,SUM(
S21WEIGHT * MIN(S21CAP,S21S) +
S22WEIGHT * MIN(S22CAP,S22S) +
...)) +

...

Example 5-2: Priority cap

QOSWEIGHT 1
QOSCAP 10000
XFACTORWEIGHT 1
XFACTORCAP 1000
QUEUETIMEWEIGHT 10
QUEUETIMECAP 1000

User Selectable Prioritization
Moab allows users to specify a job priority to jobs they own or manage. This priority may be set at job
submission time or it may be dynamically modified (using setspri or mjobctl) after submitting the job.

5.0 Prioritizing Jobs and Allocating Resources

For fairness reasons, users may only apply a negative priority to their job and thus slide it further back
in the queue. This enables users to allow their more important jobs to run before their less important
ones without gaining unfair advantage over other users.

User priorities can be positive if ENABLEPOSUSERPRIORITY TRUE is specified in moab.cfg.

In order to set ENABLEPOSUSERPRIORITY, you must change the USERPRIOWEIGHT from its default
value of 0. For example:

USERPRIOWEIGHT 100

> setspri -r 100 332411
successfully modified job priority

Specifying a user priority at job submission time is resource manager specific. See the associated
resource manager documentation for more information.

User Selectable Priority w/QoS

Using the QoS facility, organizations can set up an environment in which users can more freely select the
desired priority of a given job. Organizations may enable access to a number of QoSes each with its own
charging rate, priority, and target service levels. Users can then assign job importance by selecting the
appropriate QoS. If desired, this can allow a user to jump ahead of other users in the queue if they are
willing to pay the associated costs.

Related topics

l User Selectable Priority

5.1.5 Prioritization Strategies
Each component or subcomponent may be used to accomplish different objectives. WALLTIME can be used
to favor (or disfavor) jobs based on their duration. Likewise, ACCOUNT can be used to favor jobs
associated with a particular project while QUEUETIME can be used to favor those jobs waiting the
longest.

l Queue Time

l Expansion Factor

l Resource

l Fairshare

l Credential

l Target Metrics

Each priority factor group may contain one or more subfactors. For example, the Resource factor
consists of Node, Processor, Memory, Swap, Disk, and PE components. From the table in Job Priority
Factors section, it is apparent that the prioritization problem is fairly complex since every site needs to

5.0 Prioritizing Jobs and Allocating Resources

300 5.1 Job Prioritization

5.2 Node Allocation Policies 301

prioritize a bit differently. When calculating a priority, the various priority factors are summed and then
bounded between 0 and MAX_PRIO_VAL, which is currently defined as 100000000 (one billion).

The mdiag -p command assists with visualizing the priority distribution resulting from the current job
priority configuration. Also, the showstats -f command helps indicate the impact of the current priority
settings on scheduler service distributions.

5.1.6 Manual Job Priority Adjustment
Batch administrator's regularly find a need to adjust the calculated priority of a job to meet current
needs. Current needs often are broken into two categories:

1. The need to run an administrator test job as soon as possible.

2. The need to pacify a disserviced user.

You can use the setspri command to handle these issues in one of two ways; this command allows the
specification of either a relative priority adjustment or the specification of an absolute priority. Using
absolute priority specification, administrators can set a job priority guaranteed to be higher than any
calculated value. Where Moab-calculated job priorities are in the range of 0 to 1 billion, system
administrator assigned absolute priorities start at 1 billion and go up. Issuing the setspri <PRIO>
<JOBID> command, for example, assigns a priority of 1 billion + <PRIO> to the job. Thus, setspri 5
job.1294 sets the priority of "job.1294" to 1000000005.

For more information, see Common Priority Usage - End-user Adjustment.

5.2 Node Allocation Policies
While job prioritization allows a site to determine which job to run, node allocation policies allow a site
to specify how available resources should be allocated to each job. The algorithm used is specified by the
parameter NODEALLOCATIONPOLICY. There are multiple node allocation policies to choose from
allowing selection based on reservation constraints, node configuration, resource usage, prefed other
factors. You can specify these policies with a system-wide default value, on a per-partition basis, or on a
per-job basis. Please note that LASTAVAILABLE is the default policy.

Available algorithms are described in detail in the following sections and include FIRSTAVAILABLE,
LASTAVAILABLE, PRIORITY, CPULOAD, MINRESOURCE, CONTIGUOUS, MAXBALANCE, and PLUGIN.

l Node Allocation Overview

o Heterogeneous Resources

o Shared Nodes

o Reservations or Service Guarantees

o Non-flat Network

l Node selection factors on page 305

5.0 Prioritizing Jobs and Allocating Resources

l Resource-Based Algorithms

o CPULOAD

o FIRSTAVAILABLE

o LASTAVAILABLE

o PRIORITY

o MINRESOURCE

o CONTIGUOUS

o MAXBALANCE

l User-Defined Algorithms

o PLUGIN

l Specifying Per Job Resource Preferences

o Specifying Resource Preferences

o Selecting Preferred Resources

Node Allocation Overview
Node allocation is the process of selecting the best resources to allocate to a job from a list of available
resources. Making this decision intelligently is important in an environment that possesses one or more
of the following attributes:

l heterogeneous resources (resources which vary from node to node in terms of quantity or quality)

l shared nodes (nodes may be utilized by more than one job)

l reservations or service guarantees

l non-flat network (a network in which a perceptible performance degradation may potentially exist
depending on workload placement)

Heterogeneous Resources

Moab analyzes job processing requirements and assigns resources to maximize hardware utility.

For example, suppose two nodes are available in a system, A and B. Node A has 768 MB of RAM and node
B has 512 MB. The next two jobs in the queue are X and Y. Job X requests 256 MB and job Y requests 640
MB. Job X is next in the queue and can fit on either node, but Moab recognizes that job Y (640 MB) can
only fit on node A (768 MB). Instead of putting job X on node A and blocking job Y, Moab can put job X on
node B and job Y on node A.

Shared Nodes

Symmetric Multiprocessing (SMP)

When sharing SMP-based compute resources amongst tasks from more than one job, resource contention
and fragmentation issues arise. In SMP environments, the general goal is to deliver maximum system

5.0 Prioritizing Jobs and Allocating Resources

302 5.2 Node Allocation Policies

5.2 Node Allocation Policies 303

utilization for a combination of compute-intensive and memory-intensive jobs while preventing
overcommitment of resources.

By default, most current systems do not do a good job of logically partitioning the resources (such as
CPU, memory, and network bandwidth) available on a given node. Consequently contention often arises
between tasks of independent jobs on the node. This can result in a slowdown for all jobs involved, which
can have significant ramifications if large-way parallel jobs are involved. Virtualization, CPU sets, and
other techniques are maturing quickly as methods to provide logical partitioning within shared
resources.

On large-way SMP systems (> 32 processors/node), job packing can result in intra-node fragmentation.
For example, take two nodes, A and B, each with 64 processors. Assume they are currently loaded with
various jobs and A has 24 and B has 12 processors free. Two jobs are submitted; job X requests 10
processors and job Y requests 20 processors. Job X can start on either node but starting it on node A
prevents job Y from running. An algorithm to handle intra-node fragmentation is straightforward for a
single resource case, but the algorithm becomes more involved when jobs request a combination of
processors, memory, and local disk. These workload factors should be considered when selecting a site's
node allocation policy as well as identifying appropriate policies for handling resource utilization limit
violations.

Interactive Nodes

In many cases, sites are interested in allowing multiple users to simultaneously use one or more nodes
for interactive purposes. Workload is commonly not compute intensive consisting of intermittent tasks
including coding, compiling, and testing. Because these jobs are highly varied in terms of resource usage
over time, sites are able to pack a larger number of these jobs onto the same node. Consequently, a
common practice is to restrict job scheduling based on utilized, rather than dedicated resources.

Interactive Node Example

The example configuration files that follow show one method by which node sharing can be accomplished
within a TORQUE + Moab environment. This example is based on a hypothetical cluster composed of 4
nodes each with 4 cores. For the compute nodes, job tasks are limited to actual cores preventing
overcommitment of resources. For the interactive nodes, up to 32 job tasks are allowed, but the node
also stops allowing additional tasks if either memory is fully utilized or if the CPU load exceeds 4.0. Thus,
Moab continues packing the interactive nodes with jobs until carrying capacity is reached.

Example 5-3: /opt/moab/etc/moab.cfg

constrain interactive jobs to interactive nodes
constrain interactive jobs to 900 proc-seconds
CLASSCFG[interactive] HOSTLIST=interactive01,interactive02
CLASSCFG[interactive] MAX.CPUTIME=900
RESOURCELIMITPOLICY CPUTIME:ALWAYS:CANCEL
base interactive node allocation on load and jobs
NODEALLOCATIONPOLICY PRIORITY
NODECFG[interactive01] PRIORITYF='-20*LOAD - JOBCOUNT'
NODECFG[interactive02] PRIORITYF='-20*LOAD - JOBCOUNT'

Example 5-4: /var/spool/torque/server_priv/nodes

interactive01 np=32
interactive02 np=32

5.0 Prioritizing Jobs and Allocating Resources

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

compute01 np=4
compute02 np=4

Example 5-5: /var/spool/torque/mom_priv/config on "interactive01"

interactive01
$max_load 4.0

Example 5-6: /var/spool/torque/mom_priv/config on "interactive02"

interactive02
$max_load 4.0

Reservations or Service Guarantees

A reservation-based system adds the time dimension into the node allocation decision. With
reservations, node resources must be viewed in a type of two dimension node-time space. Allocating
nodes to jobs fragments this node-time space and makes it more difficult to schedule jobs in the
remaining, more constrained node-time slots. Allocation decisions should be made in such a way as to
minimize this fragmentation and maximize the scheduler's ability to continue to start jobs in existing
slots. The following figure shows that job A and job B are running. A reservation, X, is created some time
in the future. Assume that job A is 2 hours long and job B is 3 hours long. Again, two new single-
processor jobs are submitted, C and D; job C requires 3 hours of compute time while job D requires 5
hours. Either job will just fit in the free space located above job A or in the free space located below job
B. If job C is placed above job A, job D, requiring 5 hours of time will be prevented from running by the
presence of reservation X. However, if job C is placed below job B, job D can still start immediately
above job A.

Image 5-1: Job A, Job B, and Reservation X scheduled on nodes

The preceding example demonstrates the importance of time based reservation information in making
node allocation decisions, both at the time of starting jobs and at the time of creating reservations. The
impact of time based issues grows significantly with the number of reservations in place on a given
system. The LASTAVAILABLE algorithm works on this premise, locating resources that have the smallest
space between the end of a job under consideration and the start of a future reservation.

5.0 Prioritizing Jobs and Allocating Resources

304 5.2 Node Allocation Policies

5.2 Node Allocation Policies 305

Non-flat Network

On systems where network connections do not resemble a flat all-to-all topology, task placement may
impact performance of communication intensive parallel jobs. If latencies and network bandwidth
between any two nodes vary significantly, the node allocation algorithm should attempt to pack tasks of
a given job as close to each other as possible to minimize impact of bandwidth and latency differences.

Node selection factors
While the node allocation policy determines which nodes a job will use, other factors narrow the options
before the policy makes the final decision. The following process demonstrates how Moab executes its
node allocation process and how other policies affect the decision:

1. Moab eliminates nodes that do not meet the hard resource requirements set by the job.

2. Moab gathers affinity information, first from workload proximity rules and then from reservation
affinity rules (See Affinity on page 410 for more information.). Reservation affinity rules trump
workload proximity rules.

3. Moab allocates nodes using the allocation policy.

l If more than enough nodes with Required affinity exist, only they are passed down for the final
sort by the node allocation policy.

l If the number of nodes with Required affinity matches the number of nodes requested exactly,
then the node allocation policy is skipped entirely and all of those nodes are assigned to the job.

l If too few nodes have Required affinity, all of them are assigned to the job, then the node
allocation policy is applied to the remaining eligible nodes (after Required, Moab will use
Positive, then Neutral, then Negative.).

Resource-Based Algorithms
Moab contains a number of allocation algorithms that address some of the needs described earlier. You
can also create allocation algorithms and interface them with the Moab scheduling system. Each of these
policies has a name and descriptive alias. They can be configured using either one, but Moab will only
report their names.

If ENABLEHIGHTHROUGHPUT on page 824 is TRUE, you must set NODEALLOCATIONPOLICY on
page 872 to FIRSTAVAILABLE.

The current suite of algorithms is described in what follows:

5.0 Prioritizing Jobs and Allocating Resources

Allocation
algorithm
name

Alias Description

CPULOAD ProcessorLoad Nodes are selected that have the maximum amount of available,
unused CPU power (<#of CPU's> - <CPU load>). CPULOAD is a
good algorithm for timesharing node systems and applies to jobs
starting immediately. For the purpose of future reservations, the
MINRESOURCE algorithm is used.

FIRSTAVAILA-
BLE

InReportedOrder Simple first come, first served algorithm where nodes are alloc-
ated in the order they are presented by the resource manager.
This is a very simple, and very fast algorithm.

LASTAVAILA-
BLE

InReserveReportedOrder Nodes are allocated in descending order that they are presented
by the resource manager, or the reverse of FIRSTAVAILABLE.

5.0 Prioritizing Jobs and Allocating Resources

306 5.2 Node Allocation Policies

5.2 Node Allocation Policies 307

Allocation
algorithm
name

Alias Description

PRIORITY CustomPriority Allows a site to specify the priority of various static and dynamic
aspects of compute nodes and allocate them with preference for
higher priority nodes. It is highly flexible allowing node attribute
and usage information to be combined with reservation affinity.
Using node allocation priority, you can specify the following
priority components:

l ADISK - Local disk currently available to batch jobs in MB.
l AMEM - Real memory currently available to batch jobs in
MB.

l APROCS - Processors currently available to batch jobs on
node (configured procs - dedicated procs).

l ARCH[<ARCH>] - Processor architecture.
l ASWAP - Virtual memory currently available to batch
jobs in MB.

l CDISK - Total local disk allocated for use by batch jobs in
MB.

l CMEM - Total real memory on node in MB.
l COST - Based on node CHARGERATE.
l CPROCS - Total processors on node.
l CSWAP - Total virtual memory configured on node in
MB.

l FEATURE[<FNAME>] - Boolean; specified feature is
present on node.

l FREETIME - FREETIME is calculated as the time during
which there is no reservation on the machine. It uses
either the job wallclock limit (if there is a job), or 2
months. The more free time a node has within either the
job wallclock limit or 2 months, the higher this value will
be.

l GMETRIC[<GMNAME>] - Current value of specified
generic metric on node.

l JOBCOUNT - Number of jobs currently running on node.
l JOBFREETIME - The number of seconds that the node is
idle between now and when the job is scheduled to start.

l LOAD - Current 1 minute load average.
l MTBF - Mean time between failures (in seconds).
l NODEINDEX - Node's nodeindex as specified by the
resource manager.

l OS - True if job compute requirements match node
operating system.

l PARAPROCS - Processors currently available to batch
jobs within partition (configured procs - dedicated procs).

l POWER - TRUE if node is ON.
l PREF - Boolean; node meets job specific resource
preferences.

l PRIORITY - Administrator specified node priority.
l RANDOM - Per iteration random value between 0 and 1.
(Allows introduction of random allocation factor.)

Regardless of coefficient, the contribution of this
weighted factor cannot exceed 32768.
The coefficient, if any, of the RANDOM component
must precede, not follow, the component in order
to work correctly. For example:

100 * RANDOM

l SPEED - If set, node processor speed (procspeed);
otherwise, relative node speed.

l SUSPENDEDJCOUNT - Number of suspended jobs
currently on the node.

l USAGE - Percentage of time node has been running
batch jobs since the last statistics initialization.

l WINDOWTIME - The window of time between the end of
one reservation and the beginning of another. This
algorithm, given a negative value, can be used to pack
reservations as close together on a node as possible.

The node allocation priority function can be specified on a node
by node or cluster wide basis. In both cases, the recommended
approach is to specify the PRIORITYF attribute with the NODECFG
parameter. Some examples follow.
Example 1: Favor the fastest nodes with the most available
memory that are running the fewest jobs

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='SPEED + .01 * AMEM - 10 *
JOBCOUNT'
...

If spaces are placed within the priority function for
readability, the priority function value must be quoted to
allow proper parsing.

Example 2: Favor the nodes with the least amount of idle time
between now and the job's scheduled start time.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=-JOBFREETIME

Moab stacks jobs on the nodes that are busiest between
now and the job's scheduled start time.

Example 3: A site has a batch system consisting of two dedicated "
batchX" nodes, as well as numerous desktop systems. The
allocation function should favor batch nodes first, followed by
desktop systems that are the least loaded and have received the
least historical usage.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='-LOAD - 5*USAGE'
NODECFG[batch1] PRIORITY=1000 PRIORITYF='PRIORITY +
APROCS'
NODECFG[batch2] PRIORITY=1000 PRIORITYF='PRIORITY +
APROCS'
...

Example 4: Pack tasks onto loaded nodes first.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=JOBCOUNT
...

5.0 Prioritizing Jobs and Allocating Resources

Allocation
algorithm
name

Alias Description

Example 5: Pack tasks onto nodes with the most processors
available and the lowest CPU temperature.

RMCFG[torque] TYPE=pbs
RMCFG[temp] TYPE=NATIVE
CLUSTERQUERYURL=exec://$TOOLSDIR/hwmon.pl
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='100*APROCS - GMETRIC[temp]
'
...

MINRESOURC-
E

Min-
imumCon-
figuredResources

Prioritizes nodes according to the configured resources on each
node. Those nodes with the fewest configured resources that still
meet the job's resource constraints are selected.

CONTIGUOUS Contiguous Allocates nodes in contiguous (linear) blocks as required by the
Compaq RMS system.

MAXBALANCE ProcessorSpeedBalance Attempts to allocate the most balanced set of nodes possible to a
job. In most cases, but not all, the metric for balance of the nodes
is node procspeed. Thus, if possible, nodes with identical proc-
speeds are allocated to the job. If identical procspeed nodes can-
not be found, the algorithm allocates the set of nodes with the
minimum node procspeed span or range.

User-Defined Algorithms
User-defined algorithms allow administrators to define their own algorithms based on factors such as
their system's network topology. When node allocation is based on topology, jobs finish faster,
administrators see better cluster productivity and users pay less for resources.

PLUGIN

This algorithm allows administrators to define their own node allocation policy and create a plug-in that
allocates nodes based on factors such as a cluster's network topology. This has the following advantages:

l plug-ins keep the source code of the cluster's interconnect network for node allocation separate
from Moab's source code (customers can implement plug-ins independent of Moab's release
schedule)

l plug-ins can be independently created and tailored to specific hardware and network topology

l plug-ins can be modified without assistance from Adaptive Computing, Inc.

5.0 Prioritizing Jobs and Allocating Resources

308 5.2 Node Allocation Policies

5.3 Node Access Policies 309

Specifying Per Job Resource Preferences
While the resource based node allocation algorithms can make a good guess at what compute resources
would best satisfy a job, sites often possess a subset of jobs that benefit from more explicit resource
allocation specification. For example one job may perform best on a particular subset of nodes due to
direct access to a tape drive, another may be very memory intensive. Resource preferences are distinct
from node requirements. While the former describes what a job needs to run at all, the latter describes
what the job needs to run well. In general, a scheduler must satisfy a job's node requirement
specification and then satisfy the job's resource preferences as well as possible.

Specifying Resource Preferences

A number of resource managers natively support the concept of resource preferences (such as
Loadleveler). When using these systems, the language specific preferences keywords may be used. For
systems that do not support resource preferences natively, Moab provides a resource manager extension
keyword, "PREF," which you can use to specify desired resources. This extension allows specification of
node features, memory, swap, and disk space conditions that define whether the node is considered
preferred.

Moab 5.2 (and earlier) only supports feature-based preferences.

Selecting Preferred Resources

Enforcing resource preferences is not completely straightforward. A site may have a number of
potentially conflicting requirements that the scheduler is asked to simultaneously satisfy. For example, a
scheduler may be asked to maximize the proximity of the allocated nodes at the same time it is supposed
to satisfy resource preferences and minimize node overcommitment. To allow site specific weighting of
these varying requirements, Moab allows resource preferences to be enabled through the PRIORITY
node allocation algorithm. For example, to use resource preferences together with node load, the
following configuration might be used:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='5 * PREF - LOAD'
...

To request specific resource preferences, a user could then submit a job indicating those preferences. In
the case of a PBS job, the following can be used:

> qsub -l nodes=4,walltime=1:00:00,pref=feature:fast

Related topics

l Generic Metrics
l Per Job Node Allocation Policy Specification via Resource Manager Extensions

5.3 Node Access Policies
Moab allocates resources to jobs on the basis of a job task—an atomic collection of resources that must
be co-located on a single compute node. A given job may request 20 tasks where each task is defined as

5.0 Prioritizing Jobs and Allocating Resources

one processor and 128 MB of RAM. Compute nodes with multiple processors often possess enough
resources to support more than one task simultaneously. When it is possible for more than one task to
run on a node, node access policies determine which tasks may share the compute node's resources.

Moab supports a distinct number of node access policies that are listed in the following table:

Policy Description

SHARED Tasks from any combination of jobs may use available resources.

SHAREDONLY Only jobs requesting shared node access may use available resources.

SINGLEACCOUNT Tasks from any jobs owned by the same account may use available resources.

SINGLEGROUP Tasks from any jobs owned by the same group may use available resources.

SINGLEJOB Only tasks from a single job may use available resources.

SINGLETASK Only a single task from a single job may run on the node.

SINGLEUSER Tasks from any jobs owned by the same user may use available resources.

UNIQUEUSER Any number of tasks from a single job may allocate resources from a node but only if the
user has no other jobs running on that node. UNIQUEUSER limits the number of jobs a single
user can run on a node, allowing other users to run jobs with the remaining resources.

This policy is useful in environments where job epilog/prologs scripts are used to
clean up processes based on userid.

Configuring Node Access Policies
The global node access polices may be specified via the parameter NODEACCESSPOLICY. This global
default may be overridden on a per node basis with the ACCESS attribute of the NODECFG parameter or
on a per job basis using the resource manager extension NACCESSPOLICY. Finally, a per queue node
access policy may also be specified by setting either the NODEACCESSPOLICY or
FORCENODEACCESSPOLICY attributes of the CLASSCFG parameter. FORCENODEACCESSPOLICY overrides
any per job specification in all cases, whereas NODEACCESSPOLICY is overridden by per job specification.

By default, nodes are accessible using the setting of the system wide NODEACCESSPOLICY parameter
unless a specific ACCESS policy is specified on a per node basis using the NODECFG parameter. Jobs may
override this policy and subsequent jobs are bound to conform to the access policies of all jobs currently
running on a given node. For example, if the NODEACCESSPOLICY parameter is set to SHARED, a new job
may be launched on an idle node with a job specific access policy of SINGLEUSER. While this job runs, the
effective node access policy changes to SINGLEUSER and subsequent job tasks may only be launched on
this node provided they are submitted by the same user. When all single user jobs have completed on
that node, the effective node access policy reverts back to SHARED and the node can again be used in
SHARED mode.

5.0 Prioritizing Jobs and Allocating Resources

310 5.3 Node Access Policies

5.4 Node Availability Policies 311

For example, to set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

Related topics

l Per job naccesspolicy specification via Resource Manager Extensions
l JOBNODEMATCHPOLICY parameter
l NODEAVAILABILITY parameter

5.4 Node Availability Policies
l Node Resource Availability Policies

l Node Categorization

l Node Failure/Performance Based Notification

l Node Failure/Performance Based Triggers

l Handling Transient Node Failures

l Allocated Resource Failure Policy for Jobs on page 315

Moab enables several features relating to node availability. These include policies that determine how
per node resource availability should be reported, how node failures are detected, and what should be
done in the event of a node failure.

Node Resource Availability Policies
Moab allows a job to be launched on a given compute node as long as the node is not full or busy. The
NODEAVAILABILITYPOLICY parameter allows a site to determine what criteria constitute a node being
busy. The legal settings are listed in the following table:

Availability
Policy Description

DEDICATED The node is considered busy if dedicated resources equal or exceed configured resources.

UTILIZED The node is considered busy if utilized resources equal or exceed configured resources.

COMBINED The node is considered busy if either dedicated or utilized resources equal or exceed con-
figured resources.

The default setting for all nodes is COMBINED, indicating that a node can accept workload so long as the
jobs that the node was allocated to do not request or use more resources than the node has available. In

5.0 Prioritizing Jobs and Allocating Resources

a load balancing environment, this may not be the desired behavior. Setting the
NODEAVAILABILITYPOLICY parameter to UTILIZED allows jobs to be packed onto a node even if the
aggregate resources requested exceed the resources configured. For example, assume a scenario with a
4-processor compute node and 8 jobs requesting 1 processor each. If the resource availability policy was
set to COMBINED, this node would only allow 4 jobs to start on this node even if the jobs induced a load
of less than 1.0 each. With the resource availability policy set to UTILIZED, the scheduler continues
allowing jobs to start on the node until the node's load average exceeds a per processor load value of 1.0
(in this case, a total load of 4.0). To prevent a node from being over populated within a single scheduling
iteration, Moab artificially raises the node's load for one scheduling iteration when starting a new job.
On subsequent iterations, the actual measured node load information is used.

Per Resource Availability Policies

By default, the NODEAVAILABILITYPOLICY sets a global per node resource availability policy. This policy
applies to all resource types on each node such as processors, memory, swap, and local disk. However,
the syntax of this parameter is as follows:

<POLICY>[:<RESOURCETYPE>] ...

This syntax allows per resource availability specification. For example, consider the following:

NODEAVAILABILITYPOLICY DEDICATED:PROC COMBINED:MEM COMBINED:DISK
...

This configuration causes Moab to only consider the quantity of processing resources actually dedicated
to active jobs running on each node and ignore utilized processor information (such as CPU load). For
memory and disk, both utilized resource information and dedicated resource information should be
combined to determine what resources are actually available for new jobs.

Node Categorization
Moab allows organizations to detect and use far richer information regarding node status than the
standard batch "idle," "busy," "down states" commonly found. Using node categorization, organizations
can record, track, and report on per node and cluster level status including the following categories:

Category Description

Active Node is healthy and currently executing batch workload.

BatchFailure Node is unavailable due to a failure in the underlying batch system (such as a
resource manager server or resource manager node daemon).

Benchmark Node is reserved for benchmarking.

EmergencyMaintenance Node is reserved for unscheduled system maintenance.

5.0 Prioritizing Jobs and Allocating Resources

312 5.4 Node Availability Policies

5.4 Node Availability Policies 313

Category Description

HardwareFailure Node is unavailable due to a failure in one or more aspects of its hardware con-
figuration (such as a power failure, excessive temperature, memory, processor, or
swap failure).

HardwareMaintenance Node is reserved for scheduled system maintenance.

Idle Node is healthy and is currently not executing batch workload.

JobReservation Node is reserved for job use.

NetworkFailure Node is unavailable due to a failure in its network adapter or in the switch.

Other Node is in an uncategorized state.

OtherFailure Node is unavailable due to a general failure.

PersonalReservation Node is reserved for dedicated use by a personal reservation.

Site[1-8] Site specified usage categorization.

SoftwareFailure Node is unavailable due to a failure in a local software service (such as automounter,
security or information service such as NIS, local databases, or other required soft-
ware services).

SoftwareMaintenance Node is reserved for software maintenance.

StandingReservation Node is reserved by a standing reservation.

StorageFailure Node is unavailable due to a failure in the cluster storage system or local storage infra-
structure (such as failures in Lustre, GPFS, PVFS, or SAN).

UserReservation Node is reserved for dedicated use by a particular user or group and may or may not
be actively executing jobs.

Node categories can be explicitly assigned by cluster administrators using the mrsvctl -c command to
create a reservation and associate a category with that node for a specified timeframe. Further, outside
of this explicit specification, Moab automatically mines all configured interfaces to learn about its
environment and the health of the resources it is managing. Consequently, Moab can identify many
hardware failures, software failures, and batch failures without any additional configuration. However, it
is often desirable to make additional information available to Moab to allow it to integrate this
information into reports; automatically notify managers, users, and administrators; adjust internal

5.0 Prioritizing Jobs and Allocating Resources

policies to steer workload around failures; and launch various custom triggers to rectify or mitigate the
problem.

You can specify the FORCERSVSUBTYPE parameter to require all administrative reservations be
associated with a node category at reservation creation time. For example:

NODECFG[DEFAULT] ENABLEPROFILING=TRUE
FORCERSVSUBTYPE TRUE

Node health and performance information from external systems can be imported into Moab using the
native resource manager interface. This is commonly done using generic metrics or consumable generic
resources for performance and node categories or node variables for status information. Combined with
arbitrary node messaging information, Moab can combine detailed information from remote services and
report this to other external services.

Use the NODECATCREDLIST parameter to generate extended node category based statistics.

Node Failure/Performance Based Notification
Moab can be configured to cause node failures and node performance levels that cross specified
thresholds to trigger notification events. This is accomplished using the GEVENTCFG parameter as
described in the Generic Event Overview section. For example, the following configuration can be used to
trigger an email to administrators each time a node is marked down.

GEVENTCFG[nodedown] ACTION=notify REARM=00:20:00
...

Node Failure/Performance Based Triggers
Moab supports per node triggers that can be configured to fire when specific events are fired or specific
thresholds are met. These triggers can be used to modify internal policies or take external actions. A few
examples follow:

l decrease node allocation priority if node throughput drops below threshold X

l launch local diagnostic/recovery script if parallel file system mounts become stale

l reset high performance network adapters if high speed network connectivity fails

l create general system reservation on node if processor or memory failure occurs

As mentioned, Moab triggers can be used to initiate almost any action, from sending mail to updating a
database, to publishing data for an SNMP trap, to driving a web service.

Handling Transient Node Failures
Since Moab actively schedules both current and future actions of the cluster, it is often important for it
to have a reasonable estimate of when failed nodes will be again available for use. This knowledge is
particularly useful for proper scheduling of new jobs and management of resources in regard to backfill.
With backfill, Moab determines which resources are available for priority jobs and when the highest

5.0 Prioritizing Jobs and Allocating Resources

314 5.4 Node Availability Policies

5.4 Node Availability Policies 315

priority idle jobs can run. If a node experiences a failure, Moab should have a concept of when this node
will be restored.

When Moab analyzes down nodes for allocation, one of two issues may occur with the highest priority
jobs. If Moab believes that down nodes will not be recovered for an extended period of time, a transient
node failure within a reservation for a priority job may cause the reservation to slide far into the future
allowing other lower priority jobs to allocate and launch on nodes previously reserved for it. Moments
later, when the transient node failures are resolved, Moab may be unable to restore the early
reservation start time as other jobs may already have been launched on previously available nodes.

In the reverse scenario, if Moab recognizes a likelihood that down nodes will be restored too quickly, it
may make reservations for top priority jobs that allocate those nodes. Over time, Moab slides those
reservations further into the future as it determines that the reserved nodes are not being recovered.
While this does not delay the start of the top priority jobs, these unfulfilled reservations can end up
blocking other jobs that should have properly been backfilled and executed.

Creating Automatic Reservations

If a node experiences occasional transient failures (often not associated with a node state of down), Moab
can automatically create a temporary reservation over the node to allow the transient failure time to
clear and prevent Moab from attempting to re-use the node while the failure is active. This reservation
behavior is controlled using the NODEFAILURERESERVETIME parameter as in the following example:

reserve nodes for 1 minute if transient failures are detected
NODEFAILURERESERVETIME 00:01:00

Blocking Out Down Nodes

If one or more resource managers identify failures and mark nodes as down, Moab can be configured to
associate a default unavailability time with this failure and the node state down. This is accomplished
using the NODEDOWNSTATEDELAYTIME parameter. This delay time floats and is measured as a fixed
time into the future from the time " NOW"; it is not associated with the time the node was originally
marked down. For example, if the delay time was set to 10 minutes, and a node was marked down 20
minutes ago, Moab would still consider the node unavailable until 10 minutes into the future.

While it is difficult to select a good default value that works for all clusters, the following is a general
rule of thumb:

l Increase NODEDOWNSTATEDELAYTIME if jobs are getting blocked due to priority reservations
sliding as down nodes are not recovered.

l Decrease NODEDOWNSTATEDELAYTIME if high priority job reservations are getting regularly
delayed due to transient node failures.

assume down nodes will not be recovered for one hour
NODEDOWNSTATEDELAYTIME 01:00:00

Allocated Resource Failure Policy for Jobs
If a failure occurs within a collection of nodes allocated to a job, Moab can automatically re-allocate
replacement resources. For jobs, this can be configured with JOBACTIONONNODEFAILURE.

How an active job behaves when one or more of its allocated resources fail depends on the allocated
resource failure policy. Depending on the type of job, type of resources, and type of middleware

5.0 Prioritizing Jobs and Allocating Resources

infrastructure, a site may choose to have different responses based on the job, the resource, and the type
of failure.

Failure Responses

By default, Moab cancels a job when an allocated resource failure is detected. However, you can specify
the following actions:

Option Policy action

CANCEL Cancels the job

FAIL Terminates the job as a failed job

HOLD Places a hold on the job. This option is only applicable if you are using checkpointing

IGNORE Ignores the failed node, allowing the job to proceed

NOTIFY Notifies the administrator and user of failure but takes no further action

REQUEUE Requeues job and allows it to run when alternate resources become available

Policy Precedence

For a given job, the applied policy can be set at various levels with policy precedence applied in the job,
class/queue, partition, and then system level. The following table indicates the available methods for
setting this policy:

Object Parameter Example

Job RESFAILPOLICY resource manager exten-
sion

> qsub -l resfailpolicy=requeue

Class/Queue RESFAILPOLICY attribute of CLASSCFG para-
meter

CLASSCFG[batch] RESFAILPOLICY=CANCEL

Partition JOBACTIONONNODE
FAILURE attribute of PARCFG parameter

PARCFG[web3]
JOBACTIONONNODEFAILURE=NOTIFY

System NODEALLOCRESFAILURE
POLICY parameter

NODEALLOCRESFAILUREPOLICY=MIGRATE

5.0 Prioritizing Jobs and Allocating Resources

316 5.4 Node Availability Policies

5.5 Scheduling Jobs When VMs Exist 317

Failure Definition

Any allocated node going down constitutes a failure. However, for certain types of workload, responses
to failures may be different depending on whether it is the master task (task 0) or a slave task that fails.
To indicate that the associated policy should only take effect if the master task fails, the allocated
resource failure policy should be specified with a trailing asterisk (*), as in the following example:

CLASSCFG[virtual_services] RESFAILPOLICY=requeue*

TORQUE Failure Details

When a node fails becoming unresponsive, the resource manager central daemon identifies this failure
within a configurable time frame (default: 60 seconds). Detection of this failure triggers an event that
causes Moab to immediately respond. Based on the specified policy, Moab notifies administrators, holds
the job, requeues the job, allocates replacement resources to the job, or cancels the job. If the job is
canceled or requeued, Moab sends the request to TORQUE, which immediately frees all non-failed
resources making them available for use by other jobs. Once the failed node is recovered, it contacts the
resource manager central daemon, determines that the associated job has been canceled/requeued,
cleans up, and makes itself available for new workload.

Related topics

l Node State Overview
l JOBACTIONONNODEFAILURE parameter
l NODEFAILURERESERVETIME parameter
l NODEDOWNSTATEDELAYTIME parameter (down nodes will be marked unavailable for the
specified duration)

l NODEDRAINSTATEDELAYTIME parameter (offline nodes will be marked unavailable for the
specified duration)

l NODEBUSYSTATEDELAYTIME parameter (nodes with unexpected background load will be marked
unavailable for the specified duration)

l NODEALLOCRESFAILUREPOLICY parameter (action to take if executing jobs have one or more
allocated nodes fail)

5.5 Scheduling JobsWhen VMs Exist
Each Job has a VM usage policy. This policy directs how Moab considers physical and virtual nodes when
allocating resources for a job. These are the supported policies:

Policy Details

CREATEVM The job should create a one-time use virtual machine for the job to run on. Any virtual machines
created by the job are destroyed when the job is finished. If specified, the job itself must request
an OS so an appropriate virtual machine can be provisioned.

REQUIREPM States that the job should run only on physical machines.

5.0 Prioritizing Jobs and Allocating Resources

If the HIDEVIRTUALNODES parameter is configured with a value of TRANSPARENT, jobs are given a
default policy of CREATEVM. These defaults can be overridden by using the extension resource VMUSAGE
or by setting the policy via a job template. An example of both is given below.

Example 5-7: as an extension resource:

> msub -l vmusage=requirepm

Example 5-8: as a template parameter:

JOBCFG[vmjob] VMUSAGE=createvm

The VMUSAGE policy of a job can be viewed by using checkjob -v.

5.0 Prioritizing Jobs and Allocating Resources

318 5.5 Scheduling Jobs When VMs Exist

6.1 Fairness Overview 319

6.0 Managing Fairness - Throttling Policies,
Fairshare, and Allocation Management

l Fairness Overview on page 319

l Usage Limits/Throttling Policies on page 322

l Fairshare on page 340

l Charging and Allocation Management on page 354

l Charging a Workflow on page 369

l NAMI Queuing on page 372

6.1 Fairness Overview
The concept of cluster fairness varies widely from person to person and site to site. While some
interpret it as giving all users equal access to compute resources, more complicated concepts
incorporating historical resource usage, political issues, and job value are equally valid. While no
scheduler can address all possible definitions of fair, Moab provides one of the industry's most
comprehensive and flexible set of tools allowing most sites the ability to address their many and varied
fairness management needs.

Under Moab, most fairness policies are addressed by a combination of the facilities described in the
following table:

Job Prioritization

Description: Specifies what is most important to the scheduler. Using service based priority factors allows a site
to balance job turnaround time, expansion factor, or other scheduling performance metrics.

Example: SERVICEWEIGHT 1
QUEUETIMEWEIGHT 10

Causes jobs to increase in priority by 10 points for every minute they remain in the queue.

Usage Limits (Throttling Policies)

Description: Specifies limits on exactly what resources can be used at any given instant.

Example: USERCFG[john] MAXJOB=3
GROUPCFG[DEFAULT] MAXPROC=64
GROUPCFG[staff] MAXPROC=128

Allows john to only run 3 jobs at a time. Allows the group staff to use up to 128 total
processors and all other groups to use up to 64 processors.

Fairshare

Description: Specifies usage targets to limit resource access or adjust priority based on historical cluster
resource usage.

Example: USERCFG[steve] FSTARGET=25.0+
FSWEIGHT 1
FSUSERWEIGHT 10

Enables priority based fairshare and specifies a fairshare target for user steve such that
his jobs are favored in an attempt to keep his jobs using at least 25.0% of delivered
compute cycles.

Allocation Management

Description: Specifies long term, credential-based resource usage limits.

Example: AMCFG[mam] TYPE=MAM HOST=server.sys.net

Enables the Moab Accounting Manager allocation management interface. Within the
allocation manager, project or account based allocations may be configured. These
allocations may, for example, do such things as allow project X to use up to 100,000
processor-hours per quarter, provide various QoS sensitive charge rates, and share
allocation access.

Quality of Service

Description: Specifies additional resource and service access for particular users, groups, and accounts. QoS facil-
ities can provide special priorities, policy exemptions, reservation access, and other benefits (as well
as special charge rates).

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

320 6.1 Fairness Overview

6.1 Fairness Overview 321

Quality of Service

Example: QOSCFG[orion] PRIORITY=1000 XFTARGET=1.2
QOSCFG[orion] QFLAGS=PREEMPTOR,IGNSYSTEM,RESERVEALWAYS

Enables jobs requesting the orion QoS a priority increase, an expansion factor target to
improve response time, the ability to preempt other jobs, an exemption from system level
job size policies, and the ability to always reserve needed resources if it cannot start
immediately.

Standing Reservations

Description: Reserves blocks of resources within the cluster for specific, periodic time frames under the con-
straints of a flexible access control list.

Example: SRCFG[jupiter] HOSTLIST=node01[1-4]
SRCFG[jupiter] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[jupiter] USERLIST=john,steve ACCOUNTLIST=jupiter

Reserve nodes node011 through node014 from 9:00 AM until 5:00 PM for use by jobs
from user john or steve or from the project jupiter.

Class/Queue Constraints

Description: Associates users, resources, priorities, and limits with cluster classes or cluster queues that can be
assigned to or selected by end-users.

Example: CLASSCFG[long] MIN.WCLIMIT=24:00:00
SRCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=acn[1-4][0-9]

Assigns long jobs a high priority but only allow them to run on certain nodes.

Selecting the Correct Policy Approach

Moab supports a rich set of policy controls in some cases allowing a particular policy to be enforced in
more than one way. For example, cycle distribution can be controlled using usage limits, fairshare, or
even queue definitions. Selecting the most correct policy depends on site objectives and needs; consider
the following when making such a decision:

l Minimal end-user training

o Does the solution use an approach familiar to or easily learned by existing users?

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

l End-user transparency

o Can the configuration be enabled or disabled without impacting user behavior or job
submission?

l Impact on system utilization and system responsiveness

l Solution complexity

o Is the impact of the configuration readily intuitive, and is it easy to identify possible side
effects?

l Solution extensibility and flexibility

o Will the proposed approach allow the solution to be easily tuned and extended as cluster
needs evolve?

Related topics

l Job Prioritization
l Usage Limits (Throttling Policies)
l Fairshare
l Allocation Management
l Quality of Service
l Standing Reservations
l Class/Queue Constraints

6.2 Usage Limits/Throttling Policies
A number of Moab policies allow an administrator to control job flow through the system. These
throttling policies work as filters allowing or disallowing a job to be considered for scheduling by
specifying limits regarding system usage for any given moment. These policies may be specified as
global or specific constraints specified on a per user, group, account, QoS, or class basis.

l Fairness via Throttling Policies

o Basic Fairness Policies

o Multi-Dimension Fairness Policies

l Override Limits

l Idle Job Limits

l Hard and Soft Limits

l Per-partition Limits

l Usage-based Limits on page 337

o Configuring Actions

o Specifying Hard and Soft Policy Violations

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

322 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 323

o Constraining Walltime Usage

Fairness via Throttling Policies
Moab allows sign ificant flexibility with usage limits, or throttling policies. At a high level, Moab allows
resource usage limits to be specified in three primary workload categories: (1) active, (2) idle, and (3)
system job limits.

Basic Fairness Policies

Workload category Description

Active job limits Constrain the total cumulative resources available to active jobs at a given time.

Idle job limits Constrain the total cumulative resources available to idle jobs at a given time.

System job limits Constrain the maximum resource requirements of any single job.

These limits can be applied to any job credential (user, group, account, QoS, and class), or on a system-
wide basis. Using the keyword DEFAULT, a site may also specify the default setting for the desired user,
group, account, QoS, and class. Additionally, you may configure QoS to allow limit overrides to any
particular policy.

To run, a job must meet all policy limits. Limits are applied using the *CFG set of parameters,
particularly USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG. Limits are specified by
associating the desired limit to the individual or default object. The usage limits currently supported are
listed in the following table.

MAXARRAYJOB

Units Number of simultaneous active array job sub-jobs.

Description Limits the number of simultaneously active (starting or running) array sub-jobs a credential can
have.

Example USERCFG[gertrude] MAXARRAYJOB=10

Gertrude can have a maximum of 10 active job array sub-jobs.

MAXGRES

Units # of concurrent uses of a generic resource

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

MAXGRES

Description Limits the concurrent usage of a generic resource to a specific quantity or quantity range.

Example USERCFG[joe] MAXGRES[matlab]=2
USERCFG[jim] MAXGRES[matlab]=2,4

MAXJOB

Units # of jobs

Description Limits the number of jobs a credential may have active (starting or running) at any given time.
Moab places a hold on all new jobs submitted by that credential once it has reached its maximum
number of allowable jobs.

MAXJOB=0 is not supported. You can, however, achieve similar results by using the HOLD
attribute of the USERCFG parameter:

USERCFG[john] HOLD=yes

Example USERCFG[DEFAULT] MAXJOB=8
GROUPCFG[staff] MAXJOB=2,4

MAXMEM

Units total memory in MB

Description Limits the total amount of dedicated memory (in MB) that can be allocated by a credential's active
jobs at any given time.

Example ACCOUNTCFG[jasper] MAXMEM=2048

MAXNODE

Units # of nodes

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

324 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 325

MAXNODE

Description Limits the total number of compute nodes that can be in use by active jobs at any given time.

On some systems (including TORQUE/PBS), nodes have been softly defined rather than
strictly defined; that is, a job may request 2 nodes but TORQUE will translate this request
into 1 node with 2 processors. This can prevent Moab from enforcing a MAXNODE policy
correctly for a single job. Correct behavior can be achieved using MAXPROC.

Example CLASSCFG[batch] MAXNODE=64

MAXPE

Units # of processor equivalents

Description Limits the total number of dedicated processor-equivalents that can be allocated by active jobs at
any given time.

Example QOSCFG[base] MAXPE=128

MAXPROC

Units # of processors

Description Limits the total number of dedicated processors that can be allocated by active jobs at any given
time per credential. To setMAXPROC per job, use msub -W.

Example CLASSCFG[debug] MAXPROC=32

MAXPS

Units <# of processors> * <walltime>

Description Limits the number of outstanding processor-seconds a credential may have allocated at any given
time. For example, if a user has a 4-processor job that will complete in 1 hour and a 2-processor
job that will complete in 6 hours, they have 4 * 1 * 3600 + 2 * 6 * 3600 = 16 * 3600 outstanding
processor-seconds. The outstanding processor-second usage of each credential is updated each
scheduling iteration, decreasing as jobs approach their completion time.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

MAXPS

Example USERCFG[DEFAULT] MAXPS=720000

MAXSUBMITJOBS

Units # of jobs

Description Limits the number of jobs a credential may submit and have in the system at once. Moab will reject
any job submitted beyond this limit.
If you use a TORQUE resource manager, you should also set max_user_queuable in case the
user submits jobs via qsub instead of msub. See "Queue attributes" in the TORQUE Administrator
Guide for more information.

Example USERCFG[DEFAULT] MAXSUBMITJOBS=5

MAXWC

Units job duration [[[DD:]HH:]MM:]SS

Description Limits the cumulative remaining walltime a credential may have associated with active jobs. It
behaves identically to the MAXPS on page 325 limit (listed earlier) only lacking the processor
weighting. Like MAXPS, the cumulative remaining walltime of each credential is also updated each
scheduling iteration.

MAXWC does not limit the maximum wallclock limit per job. For this capability, use
MAX.WCLIMIT on page 65.

Example USERCFG[ops] MAXWC=72:00:00

The following example demonstrates a simple limit specification:

USERCFG[DEFAULT] MAXJOB=4
USERCFG[john] MAXJOB=8

This example allows user john to run up to 8 jobs while all other users may only run up to 4.

Simultaneous limits of different types may be applied per credential and multiple types of credentials
may have limits specified. The next example demonstrates this mixing of limits and is a bit more
complicated.

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

326 6.2 Usage Limits/Throttling Policies

http://documentation.ac/torque/4-2-x/help.htm#topics/4-serverPolicies/queueAttributes.htm%23max_user_queuable

6.2 Usage Limits/Throttling Policies 327

CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32

This configuration may potentially apply multiple limits to a single job. As discussed previously, a job
may only run if it satisfies all applicable limits. Thus, in this example, the scheduler will be constrained
to allow at most 2 simultaneous user steve jobs with an aggregate node consumption of no more than 30
nodes. However, if the job is submitted to a class other than batch, it may be limited further. Here, only
16 total nodes may be used simultaneously by jobs running in any given class with the exception of the
class batch. If steve submitted a job to run in the class interactive, for example, and there were jobs
already running in this class using a total of 14 nodes, his job would be blocked unless it requested 2 or
fewer nodes by the default limit of 16 nodes per class.

Multi-Dimension Fairness Policies and Per Credential Overrides

Multi-dimensional fairness policies allow a site to specify policies based on combinations of job
credentials. A common example might be setting a maximum number of jobs allowed per queue per user
or a total number of processors per group per QoS. As with basic fairness policies, multi-dimension
policies are specified using the *CFG parameters or through the identity manager interface. Moab
supports the most commonly used multi-dimensional fairness policies (listed in the table below) using
the following format:

*CFG[X] <LIMITTYPE>[<CRED>]=<LIMITVALUE>

*CFG is one of USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, or CLASSCFG, the <LIMITTYPE> policy is one
of the policies listed in the table in section 6.2.1.1, and <CRED> is of the format <CREDTYPE>[:<VALUE>]
with CREDTYPE being one of USER, GROUP, ACCT, QoS, or CLASS. The optional <VALUE> setting can
be used to specify that the policy only applies to a specific credential value. For example, the following
configuration sets limits on the class fast, controlling the maximum number of jobs any group can have
active at any given time and the number of processors in use at any given time for user steve.

CLASSCFG[fast] MAXJOB[GROUP]=12
CLASSCFG[fast] MAXPROC[USER:steve]=50
CLASSCFG[fast] MAXIJOB[USER]=10

The following example configuration may clarify further:

allow class batch to run up the 3 simultaneous jobs
allow any user to use up to 8 total nodes within class
CLASSCFG[batch] MAXJOB=3 MAXNODE[USER]=8
allow users steve and bob to use up to 3 and 4 total processors respectively within
class
CLASSCFG[fast] MAXPROC[USER:steve]=3 MAXPROC[USER:bob]=4

Multi-dimensional policies cannot be applied on DEFAULT credentials.

The table below lists the currently implemented, multi-dimensional usage limit permutations. The "slmt"
stands for "Soft Limit" and "hlmt" stands for "Hard Limit."

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Account lim-
its Class limits Group limits QoS limits User limits

MAXIJO-
B

QoS:
MAXIJOB[QOS]
=hlmt
MAXIJOB
[QOS:qosname]
=hlmt

Account:
MAXIJOB[ACCT]
=hlmt
MAXIJOB
[ACCT:acctname]
=hlmt

MAXIPR-
OC

QoS:
MAXIPROC[QOS]
=hlmt
MAXIPROC
[QOS:qosname]
=hlmt

Account:
MAXIPROC
[ACCT]=hlmt
MAXIPROC
[ACCT:acctname]
=hlmt

MAXJOB Class:
MAXJOB[CLASS]
=slmt,hlmt
MAXJOB
[CLASS:classnam
e]=hlmt
Group:
MAXJOB[GROUP]
=slmt,hlmt
MAXJOB
[GROUP:groupna
me]=hlmt
QoS:
MAXJOB[QOS]
=slmt,hlmt
MAXJOB
[QOS:qosname]
=hlmt
User:
MAXJOB[USER]
=slmt,hlmt
MAXJOB
[USER:usernam
e]=hlmt

Account:
MAXJOB[ACCT]
=slmt,hlmt
MAXJOB
[ACCT:acctname]
=hlmt
Group:
MAXJOB[GROUP]
=slmt,hlmt
MAXJOB
[GROUP:groupna
me]=hlmt
QoS:
MAXJOB
[QOS:qosname]
=hlmt
User:
MAXJOB[USER]
=slmt,hlmt
MAXJOB
[USER:usernam
e]=hlmt

Account:
MAXJOB
[ACCT]
=slmt,hlmt
MAXJOB
[ACCT:acctnam
e]=hlmt
Class:
MAXJOB
[CLASS]
=slmt,hlmt
MAXJOB
[CLASS:classna
me]=hlmt
User:
MAXJOB
[USER]
=slmt,hlmt
MAXJOB
[USER:userna
me]=hlmt

Account:
MAXJOB[ACCT]
=slmt,hlmt
MAXJOB
[ACCT:acctname]
=hlmt
Class:
MAXJOB[CLASS]
=slmt,hlmt
MAXJOB
[CLASS:acctnam
e]=hlmt
Group:
MAXJOB[GROUP]
=slmt,hlmt
MAXJOB
[GROUP:groupna
me]=hlmt
User:
MAXJOB[USER]
=slmt,hlmt
MAXJOB
[USER:usernam
e]=hlmt

Account:
MAXJOB[ACCT]
=slmt,hlmt
MAXJOB
[ACCT:acctname]
=hlmt
Class:
MAXJOB[CLASS]
=slmt,hlmt
MAXJOB
[CLASS:classnam
e]=hlmt
Group:
MAXJOB[GROUP]
=slmt,hlmt
MAXJOB
[GROUP:groupna
me]=hlmt
QoS:
MAXJOB[QOS]
=slmt,hlmt
MAXJOB
[QOS:qosname]
=hlmt

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

328 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 329

Account lim-
its Class limits Group limits QoS limits User limits

MAXME-
M

Class:
MAXMEM
[CLASS]
=slmt,hlmt
MAXMEM
[CLASS:classnam
e]=hlmt
Group:
MAXMEM
[GROUP]
=slmt,hlmt
MAXMEM
[GROUP:groupna
me]=hlmt
QoS:
MEM[USER]
=slmt,hlmt
MAXMEM
[USER:usernam
e]=hlmt
User:
MAXMEM[USER]
=slmt,hlmt
MAXMEM
[USER:usernam
e]=hlmt

Account:
MAXMEM[ACCT]
=slmt,hlmt
MAXMEM
[ACCT:acctname]
=hlmt
Group:
MAXMEM
[GROUP]
=slmt,hlmt
MAXMEM
[GROUP:groupna
me]=hlmt
QoS:
MAXMEM
[QOS:qosname]
=hlmt
User:
MAXMEM[USER]
=slmt,hlmt
MAXMEM
[USER:usernam
e]=hlmt

Account:
MAXMEM
[ACCT]
=slmt,hlmt
MAXMEM
[ACCT:acctnam
e]=hlmt
Class:
MAXMEM
[CLASS]
=slmt,hlmt
MAXMEM
[CLASS:classna
me]=hlmt
User:
MAXMEM
[USER]
=slmt,hlmt
MAXMEM
[USER:userna
me]=hlmt

Account:
MAXMEM[ACCT]
=slmt,hlmt
MAXMEM
[ACCT:acctname]
=hlmt
Class:
MAXMEM
[CLASS]
=slmt,hlmt
MAXMEM
[CLASS:classnam
e]=hlmt
Group:
MAXMEM
[GROUP]
=slmt,hlmt
MAXMEM
[GROUP:groupna
me]=hlmt
User:
MAXMEM[USER]
=slmt,hlmt
MAXMEM
[USER:usernam
e]=hlmt

Account:
MAXMEM[ACCT]
=slmt,hlmt
MAXMEM
[ACCT:acctname]
=hlmt
Class:
MAXMEM
[CLASS]
=slmt,hlmt
MAXMEM
[CLASS:classnam
e]=hlmt
Group:
MAXMEM
[GROUP]
=slmt,hlmt
MAXMEM
[GROUP:groupna
me]=hlmt
QoS:
MAXMEM[QOS]
=slmt,hlmt
MAXMEM
[QOS:qosname]
=hlmt

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Account lim-
its Class limits Group limits QoS limits User limits

MAXNO-
DE

Class:
MAXNODE
[CLASS]
=slmt,hlmt
MAXNODE
[CLASS:classnam
e]=hlmt
Group:
MAXNODE
[GROUP]
=slmt,hlmt
MAXNODE
[GROUP:groupna
me]=hlmt
QoS:
MAXNODE[QOS]
=slmt,hlmt
MAXNODE
[QOS:qosname]
=hlmt
User:
MAXNODE
[USER]
=slmt,hlmt
MAXNODE
[USER:usernam
e]=hlmt

Account:
MAXNODE
[ACCT]
=slmt,hlmt
MAXNODE
[ACCT:acctname]
=hlmt
Group:
MAXNODE
[GROUP]
=slmt,hlmt
MAXNODE
[GROUP:groupna
me]=hlmt
QoS:
MAXNODE
[QOS:qosname]
=hlmt
User:
MAXNODE
[USER]
=slmt,hlmt
MAXNODE
[USER:usernam
e]=hlmt

Account:
MAXNODE
[ACCT]
=slmt,hlmt
MAXNODE
[ACCT:acctnam
e]=hlmt
Class:
MAXNODE
[CLASS]
=slmt,hlmt
MAXNODE
[CLASS:classna
me]=hlmt
User:
MAXNODE
[USER]
=slmt,hlmt
MAXNODE
[USER:userna
me]=hlmt

Account:
MAXNODE
[ACCT]
=slmt,hlmt
MAXNODE
[ACCT:acctname]
=hlmt
Class:
MAXNODE
[CLASS]
=slmt,hlmt
MAXNODE
[CLASS:classnam
e]=hlmt
Group:
MAXNODE
[GROUP]
=slmt,hlmt
MAXNODE
[GROUP:groupna
me]=hlmt
User:
MAXNODE
[USER]
=slmt,hlmt
MAXNODE
[USER:usernam
e]=hlmt

Account:
MAXNODE
[ACCT]
=slmt,hlmt
MAXNODE
[ACCT:acctname]
=hlmt
Class:
MAXNODE
[CLASS]
=slmt,hlmt
MAXNODE
[CLASS:classnam
e]=hlmt
Group:
MAXNODE
[GROUP]
=slmt,hlmt
MAXNODE
[GROUP:groupna
me]=hlmt
QoS:
MAXNODE[QOS]
=slmt,hlmt
MAXNODE
[QOS:qosname]
=hlmt

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

330 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 331

Account lim-
its Class limits Group limits QoS limits User limits

MAXPR-
OC

Class:
MAXPROC
[CLASS]
=slmt,hlmt
MAXPROC
[CLASS:classnam
e]=hlmt
Group:
MAXPROC
[GROUP]
=slmt,hlmt
MAXPROC
[GROUP:groupna
me]=hlmt
QoS:
MAXPROC[QOS]
=slmt,hlmt
MAXPROC
[QOS:qosname]
=hlmt
User:
MAXPROC[USER]
=slmt,hlmt
MAXPROC
[USER:usernam
e]=hlmt

Account:
MAXPROC[ACCT]
=slmt,hlmt
MAXPROC
[ACCT:acctname]
=hlmt
Group:
MAXPROC
[GROUP]
=slmt,hlmt
MAXPROC
[GROUP:groupna
me]=hlmt
QoS:
MAXPROC
[QOS:qosname]
=hlmt
User:
MAXPROC[USER]
=slmt,hlmt
MAXPROC
[USER:usernam
e]=hlmt

Account:
MAXPROC
[ACCT]
=slmt,hlmt
MAXPROC
[ACCT:acctnam
e]=hlmt
Class:
MAXPROC
[CLASS]
=slmt,hlmt
MAXPROC
[CLASS:classna
me]=hlmt
User:
MAXPROC
[USER]
=slmt,hlmt
MAXPROC
[USER:userna
me]=hlmt

Account:
MAXPROC[ACCT]
=slmt,hlmt
MAXPROC
[ACCT:acctname]
=hlmt
Class:
MAXPROC
[CLASS]
=slmt,hlmt
MAXPROC
[CLASS:classnam
e]=hlmt
Group:
MAXPROC
[GROUP]
=slmt,hlmt
MAXPROC
[GROUP:groupna
me]=hlmt
User:
MAXPROC[USER]
=slmt,hlmt
MAXPROC
[USER:usernam
e]=hlmt

Account:
MAXPROC[ACCT]
=slmt,hlmt
MAXPROC
[ACCT:acctname]
=hlmt
Class:
MAXPROC
[CLASS]
=slmt,hlmt
MAXPROC
[CLASS:classnam
e]=hlmt
Group:
MAXPROC
[GROUP]
=slmt,hlmt
MAXPROC
[GROUP:groupna
me]=hlmt
QoS:
MAXPROC[QOS]
=slmt,hlmt
MAXPROC
[QOS:qosname]
=hlmt

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Account lim-
its Class limits Group limits QoS limits User limits

MAXPS Class:
MAXPS[CLASS]
=slmt,hlmt
MAXPS
[CLASS:classnam
e]=hlmt
Group:
MAXPS[GROUP]
=slmt,hlmt
MAXPS
[GROUP:groupna
me]=hlmt
QoS:
MAXPS[QOS]
=slmt,hlmt
MAXPS
[QOS:qosname]
=hlmt
User:
MAXPS[USER]
=slmt,hlmt
MAXPS
[USER:usernam
e]=hlmt

Account:
MAXPS[ACCT]
=slmt,hlmt
MAXPS
[ACCT:acctname]
=hlmt
Group:
MAXPS[GROUP]
=slmt,hlmt
MAXPS
[GROUP:groupna
me]=hlmt
QoS:
MAXPS
[QOS:qosname]
=hlmt
User:
MAXPS[USER]
=slmt,hlmt
MAXPS
[USER:usernam
e]=hlmt

Account:
MAXPS[ACCT]
=slmt,hlmt
MAXPS
[ACCT:acctnam
e]=hlmt
Class:
MAXPS[CLASS]
=slmt,hlmt
MAXPS
[CLASS:classna
me]=hlmt
User:
MAXPS[USER]
=slmt,hlmt
MAXPS
[USER:userna
me]=hlmt

Account:
MAXPS[ACCT]
=slmt,hlmt
MAXPS
[ACCT:acctname]
=hlmt
Class:
MAXPS[CLASS]
=slmt,hlmt
MAXPS
[CLASS:classnam
e]=hlmt
Group:
MAXPS[GROUP]
=slmt,hlmt
MAXPS
[GROUP:groupna
me]=hlmt
User:
MAXPS[USER]
=slmt,hlmt
MAXPS
[USER:usernam
e]=hlmt

Account:
MAXPS[ACCT]
=slmt,hlmt
MAXPS
[ACCT:acctname]
=hlmt
Class:
MAXPS[CLASS]
=slmt,hlmt
MAXPS
[CLASS:classnam
e]=hlmt
Group:
MAXPS[GROUP]
=slmt,hlmt
MAXPS
[GROUP:groupna
me]=hlmt
QoS:
MAXPS[QOS]
=slmt,hlmt
MAXPS
[QOS:qosname]
=hlmt

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

332 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 333

Account lim-
its Class limits Group limits QoS limits User limits

MAXWC Class:
MAXWC[CLASS]
=slmt,hlmt
MAXWC
[CLASS:classnam
e]=hlmt
Group:
MAXWC[GROUP]
=slmt,hlmt
MAXWC
[GROUP:groupna
me]=hlmt
QoS:
MAXWC[QOS]
=slmt,hlmt
MAXWC
[QOS:qosname]
=hlmt
User:
MAXWC[USER]
=slmt,hlmt
MAXWC
[USER:usernam
e]=hlmt

Account:
MAXWC[ACCT]
=slmt,hlmt
MAXWC
[ACCT:acctname]
=hlmt
Group:
MAXWC[GROUP]
=slmt,hlmt
MAXWC
[GROUP:groupna
me]=hlmt
QoS:
MAXWC
[QOS:qosname]
=hlmt
User:
MAXWC[USER]
=slmt,hlmt
MAXWC
[USER:usernam
e]=hlmt

Account:
MAXWC[ACCT]
=slmt,hlmt
MAXWC
[ACCT:acctnam
e]=hlmt
Class:
MAXWC
[CLASS]
=slmt,hlmt
MAXWC
[CLASS:classna
me]=hlmt
User:
MAXWC[USER]
=slmt,hlmt
MAXWC
[USER:userna
me]=hlmt

Account:
MAXWC[ACCT]
=slmt,hlmt
MAXWC
[ACCT:acctname]
=hlmt
Class:
MAXWC[CLASS]
=slmt,hlmt
MAXWC
[CLASS:classnam
e]=hlmt
Group:
MAXWC[GROUP]
=slmt,hlmt
MAXWC
[GROUP:groupna
me]=hlmt
User:
MAXWC[USER]
=slmt,hlmt
MAXWC
[USER:usernam
e]=hlmt

Account:
MAXWC[ACCT]
=slmt,hlmt
MAXWC
[ACCT:acctname]
=hlmt
Class:
MAXWC[CLASS]
=slmt,hlmt
MAXWC
[CLASS:classnam
e]=hlmt
Group:
MAXWC[GROUP]
=slmt,hlmt
MAXWC
[GROUP:groupna
me]=hlmt
QoS:
MAXWC[QOS]
=slmt,hlmt
MAXWC
[QOS:qosname]
=hlmt

Override Limits
Like all job credentials, the QoS object may be associated with resource usage limits. However, this
credential can also be given special override limits that supersede the limits of other credentials,
effectively causing all other limits of the same type to be ignored. See QoS Usage Limits and Overrides
for a complete list of policies that can be overridden. The following configuration provides an example of
this in the last line:

USERCFG[steve] MAXJOB=2 MAXNODE=30
GROUPCFG[staff] MAXJOB=5
CLASSCFG[DEFAULT] MAXNODE=16
CLASSCFG[batch] MAXNODE=32
QOSCFG[hiprio] OMAXJOB=3 OMAXNODE=64

Only 3 hiprio QoS jobs may run simultaneously and hiprio QoS jobs may run with up to 64 nodes per credential ignoring
other credential MAXNODE limits.

Given the preceding configuration, assume a job is submitted with the credentials, user steve, group staff,
class batch, and QoS hiprio.

Such a job will start so long as running it does not lead to any of the following conditions:

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

l Total nodes used by user steve does not exceed 64.

l Total active jobs associated with user steve does not exceed 2.

l Total active jobs associated with group staff does not exceed 5.

l Total nodes dedicated to class batch does not exceed 64.

l Total active jobs associated with QoS hiprio does not exceed 3.

While the preceding example is a bit complicated for most sites, similar combinations may be required
to enforce policies found on many systems.

Idle Job Limits
Idle (or queued) job limits control which jobs are eligible for scheduling. To be eligible for scheduling, a
job must meet the following conditions:

l Be idle as far as the resource manager is concerned (no holds).

l Have all job prerequisites satisfied (no outstanding job or data dependencies).

l Meet all idle job throttling policies.

If a job fails to meet any of these conditions, it will not be considered for scheduling and will not accrue
service based job prioritization. (See service component and JOBPRIOACCRUALPOLICY.) The primary
purpose of idle job limits is to ensure fairness among competing users by preventing queue stuffing and
other similar abuses. Queue stuffing occurs when a single entity submits large numbers of jobs, perhaps
thousands, all at once so they begin accruing queue time based priority and remain first to run despite
subsequent submissions by other users.

Idle limits are specified in a manner almost identical to active job limits with the insertion of the capital
letter I into the middle of the limit name. Below are examples of the MAXIJOB and MAXINODE limits,
which are idle limit equivalents to the MAXJOB on page 324 and MAXNODE on page 324 limits:

MAXIJOB

Units # of jobs

Description Limits the number of idle (eligible) jobs a credential may have at any given time.

Example USERCFG[DEFAULT] MAXIJOB=8
GROUPCFG[staff] MAXIJOB=2,4

MAXINODE

Units # of nodes

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

334 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 335

MAXINODE

Description Limits the total number of compute nodes that can be requested by jobs in the eligible/idle queue
at any time. Once the limit is exceeded, the remaining jobs will be placed in the blocked queue. The
number of nodes is determined by <tasks> / <maximumProcsOnOneNode> or, if using
JOBNODEMATCHPOLICY on page 856 EXACTNODE, by the number of nodes requested.

Example USERCFG[DEFAULT] MAXINODE=2

Idle limits can constrain the total number of jobs considered to be eligible on a per credential basis.
Further, like active job limits, idle job limits can also constrain eligible jobs based on aggregate
requested resources. This could, for example, allow a site to indicate that for a given user, only jobs
requesting up to a total of 64 processors, or 3200 processor-seconds would be considered at any given
time. Which jobs to select is accomplished by prioritizing all idle jobs and then adding jobs to the eligible
list one at a time in priority order until jobs can no longer be added. This eligible job selection is done
only once per scheduling iteration, so, consequently, idle job limits only support a single hard limit
specification. Any specified soft limit is ignored.

All single dimensional job limit types supported as active job limits are also supported as idle job limits.
In addition, Moab also supports MAXIJOB[USER] and MAXIPROC[USER] policies on a per class basis. (See
Basic Fairness Policies.)

Example:

USERCFG[steve] MAXIJOB=2
GROUPCFG[staff] MAXIJOB=5
CLASSCFG[batch] MAXIJOB[USER]=2 MAXIJOB[USER:john]=6
QOSCFG[hiprio] MAXIJOB=3

Hard and Soft Limits
Hard and soft limit specification allows a site to balance both fairness and utilization on a given system.
Typically, throttling limits are used to constrain the quantity of resources a given credential (such as
user or group) is allowed to consume. These limits can be very effective in enforcing fair usage among a
group of users. However, in a lightly loaded system, or one in which there are significant swings in usage
from project to project, these limits can reduce system utilization by blocking jobs even when no
competing jobs are queued.

Soft limits help address this problem by providing additional scheduling flexibility. They allow sites to
specify two tiers of limits; the more constraining limits soft limits are in effect in heavily loaded
situations and reflect tight fairness constraints. The more flexible hard limits specify how flexible the
scheduler can be in selecting jobs when there are idle resources available after all jobs meeting the
tighter soft limits have started. Soft and hard limits are specified in the format [<SOFTLIMIT>,]
<HARDLIMIT>. For example, a given site may want to use the following configuration:

USERCFG[DEFAULT] MAXJOB=2,8

With this configuration, the scheduler would select all jobs that meet the per user MAXJOB limit of 2. It would then
attempt to start and reserve resources for all of these selected jobs. If after doing so there still remain available resources,
the scheduler would then select all jobs that meet the less constraining hard per user MAXJOB limit of 8 jobs. These jobs
would then be scheduled and reserved as available resources allow.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

If no soft limit is specified or the soft limit is less constraining than the hard limit, the soft limit is set equal to the hard
limit.

Example:

USERCFG[steve] MAXJOB=2,4 MAXNODE=15,30
GROUPCFG[staff] MAXJOB=2,5
CLASSCFG[DEFAULT] MAXNODE=16,32
CLASSCFG[batch] MAXNODE=12,32
QOSCFG[hiprio] MAXJOB=3,5 MAXNODE=32,64

Job preemption status can be adjusted based on whether the job violates a soft policy using the
ENABLESPVIOLATIONPREEMPTION parameter.

Per-partition Limits
Per-partition scheduling can set limits and enforce credentials and polices on a per-partition basis.

To enable per-partition scheduling, add the following to moab.cfg:

PERPARTITIONSCHEDULING TRUE
JOBMIGRATEPOLICY JUSTINTIME

With per-partition scheduling, it is recommended that limits go on the specific partitions and not
on the global level. If limits are specified on both levels, Moab will take the more constricting of
the limits. Also, please note that a DEFAULT policy on the global partition is not overridden by any
policy on a specific partition.

Per-partition Limits

You can configure per-job limits and credential usage limits on a per-partition basis in the moab.cfg
file. Here is a sample configuration for partitions g02 and g03 in moab.cfg.

PARCFG[g02] CONFIGFILE=/opt/moab/parg02.cfg
PARCFG[g03] CONFIGFILE=/opt/moab/parg03.cfg

You can then add per-partition limits in each partition configuration file:

/opt/moab/parg02.cfg
CLASSCFG[pbatch] MAXJOB=5

/opt/moab/parg03.cfg
CLASSCFG[pbatch] MAXJOB=10

You can configure Moab so that jobs submitted to any partition besides g02and g03 get the default limits
in moab.cfg:

stl

CLASSCFG[pbatch] MAXJOB=2

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

336 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 337

Supported Credentials and Limits

The user, group, account, QoS, and class credentials are supported in per-partition scheduling.

The following per-job limits are supported:

l MAX.NODE

l MAX.WCLIMIT

l MAX.PROC

The following credential usage limits are supported:

l MAXJOB

l MAXNODE

l MAXPROC

l MAXWC

l MAXSUBMITJOBS

Multi-dimensional limits are supported for the listed credentials and per-job limits. For example:

CLASSCFG[pbatch] MAXJOB[user:frank]=10

Usage-based Limits
Resource usage limits constrain the amount of resources a given job may consume. These limits are
generally proportional to the resources requested and may include walltime, any standard resource, or
any specified generic resource. The parameter RESOURCELIMITPOLICY controls which resources are
limited, what limit policy is enforced per resource, and what actions the scheduler should take in the
event of a policy violation.

Configuring Actions

The RESOURCELIMITPOLICY parameter accepts a number of policies, resources, and actions using the
format and values defined below.

If walltime is the resource to be limited, be sure that the resource manager is configured to not
interfere if a job surpasses its given walltime. For TORQUE, this is done by using $ignwalltime in
the configuration on each MOM node.

Format
RESOURCELIMITPOLICY<RESOURCE>:[<SPOLICY>,]<HPOLICY>:[<SACTION>,]<HACTION>[:
[<SVIOLATIONTIME>,]<HVIOLATIONTIME>]...

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/pbs_mom.htm#ignwalltime

Resource Description

CPUTIME Maximum total job proc-seconds used by any single job (allows scheduler enforcement of
cpulimit).

DISK Local disk space (in MB) used by any single job task.

JOBMEM Maximum real memory/RAM (in MB) used by any single job.

JOBMEM will only work with the MAXMEM flag.

JOBPROC Maximum processor load associated with any single job. You must setMAXPROC on page 325 to
use JOBPROC.

MEM Maximum real memory/RAM (in MB) used by any single job task.

MINJOBPROC Minimum processor load associated with any single job (action taken if job is using 5% or less of
potential CPU usage).

NETWORK Maximum network load associated with any single job task.

PROC Maximum processor load associated with any single job task.

SWAP Maximum virtual memory/SWAP (in MB) used by any single job task.

WALLTIME Requested job walltime.

Policy Description

ALWAYS take action whenever a violation is detected

EXTENDEDVIOLATION take action only if a violation is detected and persists for greater than the spe-
cified time limit

BLOCKEDWORKLOADONLY take action only if a violation is detected and the constrained resource is required
by another job

Action Description

CANCEL terminate the job

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

338 6.2 Usage Limits/Throttling Policies

6.2 Usage Limits/Throttling Policies 339

Action Description

CHECKPOINT checkpoint and terminate job

MIGRATE requeue the job and require a different set of hosts for execution

NOTIFY notify admins and job owner regarding violation

REQUEUE terminate and requeue the job

SUSPEND suspend the job and leave it suspended for an amount of time defined by the MINADMINSTIME
parameter

Example 6-1: Notify and then cancel job if requested memory is exceeded

if job exceeds memory usage, immediately notify owner
if job exceeds memory usage for more than 5 minutes, cancel the job
RESOURCELIMITPOLICY MEM:ALWAYS,EXTENDEDVIOLATION:NOTIFY,CANCEL:00:05:00

Example 6-2: Checkpoint job on walltime violations

if job exceeds requested walltime, checkpoint job
RESOURCELIMITPOLICY WALLTIME:ALWAYS:CHECKPOINT
when checkpointing, send term signal, followed by kill 1 minute later
RMCFG[base] TYPE=PBS CHECKPOINTTIMEOUT=00:01:00 CHECKPOINTSIG=SIGTERM

Example 6-3: Cancel jobs that use 5% or less of potential CPU usage for more than 5 minutes

RESOURCELIMITPOLICY MINJOBPROC:EXTENDEDVIOLATION:CANCEL:5:00

Example 6-4: Migrating a job when it blocks other workload

RESOURCELIMITPOLICY JOBPROC:BLOCKEDWORKLOADONLY:MIGRATE

Specifying Hard and Soft Policy Violations

Moab is able to perform different actions for both hard and soft policy violations. In most resource
management systems, a mechanism does not exist to allow the user to specify both hard and soft limits.
To address this, Moab provides the RESOURCELIMITMULTIPLIER parameter that allows per partition and
per resource multiplier factors to be specified to generate the actual hard and soft limits to be used. If
the factor is less than one, the soft limit will be lower than the specified value and a Moab action will be
taken before the specified limit is reached. If the factor is greater than one, the hard limit will be set
higher than the specified limit allowing a buffer space before the hard limit action is taken.

In the following example, job owners will be notified by email when their memory reaches 100% of the
target, and the job will be canceled if it reaches 125% of the target. For wallclock usage, the job will be
requeued when it reaches 90% of the specified limit if another job is waiting for its resources, and it will
be checkpointed when it reaches the full limit.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

RESOURCELIMITPOLICY MEM:ALWAYS,ALWAYS:NOTIFY,CANCEL
RESOURCELIMITPOLICY WALLTIME:BLOCKEDWORKLOADONLY,ALWAYS:REQUEUE,CHECKPOINT
RESOURCELIMITMULTIPLIER MEM:1.25,WALLTIME:0.9

Constraining Walltime Usage

While Moab constrains walltime using the parameter RESOURCELIMITPOLICY like other resources, it
also allows walltime exception policies which are not available with other resources. In particular, Moab
allows jobs to exceed the requested wallclock limit by an amount specified on a global basis using the
JOBMAXOVERRUN parameter or on a per credential basis using the OVERRUN attribute of the CLASSCFG
parameter.

JOBMAXOVERRUN 00:10:00
CLASSCFG[debug] overrun=00:00:30

Related topics

l RESOURCELIMITPOLICY parameter
l FSTREE parameter (set usage limits within share tree hierarchy)
l Credential Overview
l JOBMAXOVERRUN parameter
l WCVIOLATIONACTION parameter
l RESOURCELIMITMULTIPLIER parameter

6.3 Fairshare
Fairshare allows historical resource utilization information to be incorporated into job feasibility and
priority decisions. This feature allows site administrators to set system utilization targets for users,
groups, accounts, classes, and QoS levels. Administrators can also specify the time frame over which
resource utilization is evaluated in determining whether the goal is being reached. Parameters allow
sites to specify the utilization metric, how historical information is aggregated, and the effect of
fairshare state on scheduling behavior. You can specify fairshare targets for any credentials (such as
user, group, and class) that administrators want such information to affect.

l Fairshare Parameters

o FSPOLICY - Specifying the Metric of Consumption

o Specifying Fairshare Timeframe

o Managing Fairshare Data

l Using Fairshare Information

o Fairshare Targets

o Fairshare Caps

o Priority-Based Fairshare

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

340 6.3 Fairshare

6.3 Fairshare 341

o Per-Credential Fairshare Weights

o Extended Fairshare Examples

l Hierarchical Fairshare/Share Trees

o Defining the Tree

o Controlling Tree Evaluation

l Importing Fairshare Data

Fairshare Parameters
Fairshare is configured at two levels. First, at a system level, configuration is required to determine how
fairshare usage information is to be collected and processed. Second, some configuration is required at
the credential level to determine how this fairshare information affects particular jobs. The following
are system level parameters:

Parameter Description

FSINTERVAL Duration of each fairshare window.

FSDEPTH Number of fairshare windows factored into current fairshare utilization.

FSDECAY Decay factor applied to weighting the contribution of each fairshare window.

FSPOLICY Metric to use when tracking fairshare usage.

Credential level configuration consists of specifying fairshare utilization targets using the *CFG suite of
parameters, including ACCOUNTCFG, CLASSCFG, GROUPCFG, QOSCFG, and USERCFG.

If global (multi-cluster) fairshare is used, Moab must be configured to synchronize this information with
an identity manager.

Image 6-1: Effective fairshare over 7 days

FSPOLICY - Specifying the Metric of Consumption

As Moab runs, it records how available resources are used. Each iteration (RMPOLLINTERVAL seconds) it
updates fairshare resource utilization statistics. Resource utilization is tracked in accordance with the
FSPOLICY parameter allowing various aspects of resource consumption information to be measured. This

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

parameter allows selection of both the types of resources to be tracked as well as the method of
tracking. It provides the option of tracking usage by dedicated or consumed resources, where dedicated
usage tracks what the scheduler assigns to the job and consumed usage tracks what the job actually
uses.

Metric Description

DEDICATEDPES Usage tracked by processor-equivalent seconds dedicated to each job. Useful in dedicated and
shared nodes environments.

DEDICATEDPS Usage tracked by processor seconds dedicated to each job. Useful in dedicated node envir-
onments.

UTILIZEDPS Usage tracked by processor seconds used by each job. Useful in shared node/SMP envir-
onments.

Example 6-5:

An example may clarify the use of the FSPOLICY parameter. Assume a 4-processor job is running a
parallel /bin/sleep for 15 minutes. It will have a dedicated fairshare usage of 1 processor-hour but a
consumed fairshare usage of essentially nothing since it did not consume anything. Most often, dedicated
fairshare usage is used on dedicated resource platforms while consumed tracking is used in shared SMP
environments.

FSPOLICY DEDICATEDPS%
FSINTERVAL 24:00:00
FSDEPTH 28
FSDECAY 0.75

Percentage Based Fairshare

By default, when comparing fairshare usage against fairshare targets, Moab calculates usage as a
percentage of delivered cycles. To change the usage calculation to be based on available cycles, rather
than delivered cycles, the percent (%) character can be specified at the end of the FSPOLICY value as in
the preceding example.

Specifying Fairshare Timeframe

When configuring fairshare, it is important to determine the proper timeframe that should be
considered. Many sites choose to incorporate historical usage information from the last one to two
weeks while others are only concerned about the events of the last few hours. The correct setting is
very site dependent and usually incorporates both average job turnaround time and site mission policies.

With Moab's fairshare system, time is broken into a number of distinct fairshare windows. Sites
configure the amount of time they want to consider by specifying two parameters, FSINTERVAL and
FSDEPTH. The FSINTERVAL parameter specifies the duration of each window while the FSDEPTH
parameter indicates the number of windows to consider. Thus, the total time evaluated by fairshare is
simply FSINTERVAL * FSDEPTH.

Many sites want to limit the impact of fairshare data according to its age. The FSDECAY parameter
allows this, causing the most recent fairshare data to contribute more to a credential's total fairshare

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

342 6.3 Fairshare

6.3 Fairshare 343

usage than older data. This parameter is specified as a standard decay factor, which is applied to the
fairshare data. Generally, decay factors are specified as a value between 1 and 0 where a value of 1 (the
default) indicates no decay should be specified. The smaller the number, the more rapid the decay using
the calculation WeightedValue = Value * <DECAY> ^ <N> where <N> is the window number. The
following table shows the impact of a number of commonly used decay factors on the percentage
contribution of each fairshare window.

Decay
Factor Win0 Win1 Win2 Win3 Win4 Win5 Win6 Win7

1.00 100% 100% 100% 100% 100% 100% 100% 100%

0.80 100% 80% 64% 51% 41% 33% 26% 21%

0.75 100% 75% 56% 42% 31% 23% 17% 12%

0.50 100% 50% 25% 13% 6% 3% 2% 1%

While selecting how the total fairshare time frame is broken up between the number and length of
windows is a matter of preference, it is important to note that more windows will cause the decay factor
to degrade the contribution of aged data more quickly.

Managing Fairshare Data

Using the selected fairshare usage metric, Moab continues to update the current fairshare window until
it reaches a fairshare window boundary, at which point it rolls the fairshare window and begins updating
the new window. The information for each window is stored in its own file located in the Moab statistics
directory. Each file is named FS.<EPOCHTIME>[.<PNAME>] where <EPOCHTIME> is the time the new
fairshare window became active (see sample data file) and <PNAME> is only used if per-partition share
trees are configured. Each window contains utilization information for each entity as well as for total
usage.

Historical fairshare data is recorded in the fairshare file using the metric specified by the
FSPOLICY parameter. By default, this metric is processor-seconds.

Historical fairshare data can be directly analyzed and reported using the midag -f -v command.

When Moab needs to determine current fairshare usage for a particular credential, it calculates a decay-
weighted average of the usage information for that credential using the most recent fairshare intervals
where the number of windows evaluated is controlled by the FSDEPTH parameter. For example, assume
the credential of interest is user john and the following parameters are set:

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5

Further assume that the fairshare usage intervals have the following usage amounts:

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Fairshare interval Total user john usage Total cluster usage

0 60 110

1 0 125

2 10 100

3 50 150

Based on this information, the current fairshare usage for user john would be calculated as follows:

Usage = (60 * 1 + .5^1 * 0 + .5^2 * 10 + .5^3 * 50) / (110 + .5^1*125 + .5^2*100 + .5^3*150)

The current fairshare usage is relative to the actual resources delivered by the system over the
timeframe evaluated, not the resources available or configured during that time.

Historical fairshare data is organized into a number of data files, each file containing the
information for a length of time as specified by the FSINTERVAL parameter. Although FSDEPTH,
FSINTERVAL, and FSDECAY can be freely and dynamically modified, such changes may result in
unexpected fairshare status for a period of time as the fairshare data files with the old
FSINTERVAL setting are rolled out.

Using Fairshare Information

Fairshare Targets

Once the global fairshare policies have been configured, the next step involves applying resulting
fairshare usage information to affect scheduling behavior. As mentioned in the Fairshare Overview, by
specifying fairshare targets, site administrators can configure how fairshare information impacts
scheduling behavior. The targets can be applied to user, group, account, QoS, or class credentials using
the FSTARGET attribute of *CFG credential parameters. These targets allow fairshare information to
affect job priority and each target can be independently selected to be one of the types documented in
the following table:

Target type - Ceiling

Target mod-
ifier

-

Job impact Priority

Format Percentage Usage

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

344 6.3 Fairshare

6.3 Fairshare 345

Target type - Ceiling

Description Adjusts job priority down when usage exceeds target. See How violated ceilings and floors
affect fairshare-based priority on page 291 for more information on how ceilings affect job pri-
ority.

Target type - Floor

Target mod-
ifier

+

Job impact Priority

Format Percentage Usage

Description Adj usts job priority up when usage falls below target. See How violated ceilings and floors
affect fairshare-based priority on page 291 for more information on how floors affect job pri-
ority.

Target type - Target

Target modifier N/A

Job impact Priority

Format Percentage Usage

Description Adjusts job priority when usage does not meet target.

Setting a fairshare target value of 0 indicates that there is no target and that the priority of jobs
associated with that credential should not be affected by the credential's previous fairshare
target. If you want a credential's cluster usage near 0%, set the target to a very small value, such
as 0.001.

Example

The following example increases the priority of jobs belonging to user john until he reaches 16.5% of
total cluster usage. All other users have priority adjusted both up and down to bring them to their target
usage of 10%:

FSPOLICY DEDICATEDPS
FSWEIGHT 1
FSUSERWEIGHT 100
USERCFG[john] FSTARGET=16.5+

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

USERCFG[DEFAULT] FSTARGET=10
...

Fairshare Caps

Where fairshare targets affect a job's priority and position in the eligible queue, fairshare caps affect a
job's eligibility. Caps can be applied to users, accounts, groups, classes, and QoSes using the FSCAP
attribute of *CFG credential parameters and can be configured to modify scheduling behavior. Unlike
fairshare targets, if a credential reaches its fairshare cap, its jobs can no longer run and are thus
removed from the eligible queue and placed in the blocked queue. In this respect, fairshare targets
behave like soft limits and fairshare caps behave like hard limits. Fairshare caps can be absolute or
relative as described in the following table. If no modifier is specified, the cap is interpreted as relative.

Absolute Cap

Cap Modi-
fier:

^

Job Impact: Feasibility

Format: Absolute Usage

Description: Constrains job eligibility as an absolute quantity measured according to the scheduler charge met-
ric as defined by the FSPOLICY parameter

Relative Cap

Cap Modi-
fier:

%

Job Impact: Feasibility

Format: Percentage Usage

Description: Constrains job eligibility as a percentage of total delivered cycles measured according to the sched-
uler charge metric as defined by the FSPOLICY parameter.

Example

The following example constrains the marketing account to use no more than 16,500 processor seconds
during any given floating one week window. At the same time, all other accounts are constrained to use
no more than 10% of the total delivered processor seconds during any given one week window.

FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 14

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

346 6.3 Fairshare

6.3 Fairshare 347

ACCOUNTCFG[marketing] FSCAP=16500^
ACCOUNTCFG[DEFAULT] FSCAP=10
...

Priority-Based Fairshare

The most commonly used type of fairshare is priority based fairshare. In this mode, fairshare
information does not affect whether a job can run, but rather only the job's priority relative to other
jobs. In most cases, this is the desired behavior. Using the standard fairshare target, the priority of jobs
of a particular user who has used too many resources over the specified fairshare window is lowered.
Also, the standard fairshare target increases the priority of jobs that have not received enough
resources.

While the standard fairshare target is the most commonly used, Moab can also specify fairshare ceilings
and floors. These targets are like the default target; however, ceilings only adjust priority down when
usage is too high and floors only adjust priority up when usage is too low.

Since fairshare usage information must be integrated with Moab's overall priority mechanism, it is
critical that the corresponding fairshare priority weights be set. Specifically, the FSWEIGHT component
weight parameter and the target type subcomponent weight (such as FSACCOUNTWEIGHT,
FSCLASSWEIGHT, FSGROUPWEIGHT, FSQOSWEIGHT, and FSUSERWEIGHT) is specified.

If these weights are not set, the fairshare mechanism will be enabled but have no effect on
scheduling behavior. See the Job Priority Factor Overview for more information on setting priority
weights.

Example

set relative component weighting
FSWEIGHT 1
FSUSERWEIGHT 10
FSGROUPWEIGHT 50

FSINTERVAL 12:00:00
FSDEPTH 4
FSDECAY 0.5
FSPOLICY DEDICATEDPS
all users should have a FS target of 10%
USERCFG[DEFAULT] FSTARGET=10.0
user john gets extra cycles
USERCFG[john] FSTARGET=20.0
reduce staff priority if group usage exceed 15%
GROUPCFG[staff] FSTARGET=15.0-
give group orion additional priority if usage drops below 25.7%
GROUPCFG[orion] FSTARGET=25.7+

Job preemption status can be adjusted based on whether the job violates a fairshare target using
the ENABLEFSVIOLATIONPREEMPTION parameter.

Credential-Specific Fairshare Weights

Credential-specific fairshare weights can be set using the FSWEIGHT attribute of the ACCOUNT, GROUP,
and QOS credentials as in the following example:

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

FSWEIGHT 1000
ACCOUNTCFG[orion1] FSWEIGHT=100
ACCOUNTCFG[orion2] FSWEIGHT=200
ACCOUNTCFG[orion3] FSWEIGHT=-100
GROUPCFG[staff] FSWEIGHT=10

If specified, a per-credential fairshare weight is added to the global component fairshare weight.

The FSWEIGHT attribute is only enabled for ACCOUNT, GROUP, and QOS credentials.

Extended Fairshare Examples
Example 1: Multi-Cred Cycle Distribution
Example 1 represents a university setting where different schools have access to a cluster. The
Engineering department has put the most money into the cluster and therefore has greater access to the
cluster. The Math, Computer Science, and Physics departments have also pooled their money into the
cluster and have reduced relative access. A support group also has access to the cluster, but since they
only require minimal compute time and shouldn't block the higher-paying departments, they are
constrained to five percent of the cluster. At this time, users Tom and John have specific high-priority
projects that need increased cycles.

#global general usage limits - negative priority jobs are considered in scheduling
ENABLENEGJOBPRIORITY TRUE
site policy - no job can last longer than 8 hours
USERCFG[DEFAULT] MAX.WCLIMIT=8:00:00
Note: default user FS target only specified to apply default user-to-user balance
USERCFG[DEFAULT] FSTARGET=1
high-level fairshare config
FSPOLICY DEDICATEDPS
FSINTERVAL 12:00:00
FSDEPTH 32 #recycle FS every 16 days
FSDECAY 0.8 #favor more recent usage info
QoS config
QOSCFG[inst] FSTARGET=25
QOSCFG[supp] FSTARGET=5
QOSCFG[premium] FSTARGET=70
account config (QoS access and fstargets)
Note: user-to-account mapping handled via allocation manager
Note: FS targets are percentage of total cluster, not percentage of QOS
ACCOUNTCFG[cs] QLIST=inst FSTARGET=10
ACCOUNTCFG[math] QLIST=inst FSTARGET=15

ACCOUNTCFG[phys] QLIST=supp FSTARGET=5
ACCOUNTCFG[eng] QLIST=premium FSTARGET=70
handle per-user priority exceptions
USERCFG[tom] PRIORITY=100
USERCFG[john] PRIORITY=35
define overall job priority
USERWEIGHT 10 # user exceptions
relative FS weights (Note: QOS overrides ACCOUNT which overrides USER)
FSUSERWEIGHT 1
FSACCOUNTWEIGHT 10
FSQOSWEIGHT 100
apply XFactor to balance cycle delivery by job size fairly
Note: queuetime factor also on by default (use QUEUETIMEWEIGHT to adjust)
XFACTORWEIGHT 100
enable preemption
PREEMPTPOLICY REQUEUE

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

348 6.3 Fairshare

6.3 Fairshare 349

temporarily allow phys to preempt math
ACCOUNTCFG[phys] JOBFLAGS=PREEMPTOR PRIORITY=1000
ACCOUNTCFG[math] JOBFLAGS=PREEMPTEE

Hierarchical Fairshare/Share Trees
Moab supports arbitrary depth hierarchical fairshare based on a share tree. In this model, users, groups,
classes, and accounts can be arbitrarily organized and their usage tracked and limited. Moab extends
common share tree concepts to allow mixing of credential types, enforcement of ceiling and floor style
usage targets, and mixing of hierarchical fairshare state with other priority components.

Defining the Tree

The FSTREE parameter can be used to define and configure the share tree used in fairshare
configuration. This parameter supports the following attributes:

SHARES

Format: <COUNT>[@<PARTITION>][,<COUNT>[@<PARTITION>]]... where <COUNT> is a double and
<PARTITION> is a specified partition name.

Description: Specifies the node target usage or share.

Example: FSTREE[Eng] SHARES=1500.5
FSTREE[Sales] SHARES=2800

MEMBERLIST

Format: Comma delimited list of child nodes of the format [<OBJECT_TYPE>]:<OBJECT_ID> where
object types are only specified for leaf nodes associated with user, group, class, qos, or acct cre-
dentials.

Description: Specifies the tree objects associated with this node.

Example: FSTREE[root] SHARES=100 MEMBERLIST=Eng,Sales
FSTREE[Eng] SHARES=1500.5 MEMBERLIST=user:john,user:steve,user:bob
FSTREE[Sales] SHARES=2800 MEMBERLIST=Sales1,Sales2,Sales3
FSTREE[Sales1] SHARES=30 MEMBERLIST=user:kellyp,user:sam
FSTREE[Sales2] SHARES=10 MEMBERLIST=user:ux43,user:ux44,user:ux45
FSTREE[Sales3] SHARES=60 MEMBERLIST=user:robert,user:tjackson

Current tree configuration and monitored usage distribution is available using the mdiag -f -v commands.

Controlling Tree Evaluation

Moab provides multiple policies to customize how the share tree is evaluated.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

Policy Description

FSTREETIERMULTIPLIER Decreases the value of sub-level usage discrepancies. It can be a positive or negative
value. When positive, the parent's usage in the tree takes precedence; when neg-
ative, the child's usage takes precedence. The usage amount is not changed, only the
coefficient used when calculating the value of fstree usage in priority. When using
this parameter, it is recommended that you research how it changes the values in
mdiag -p to determine the appropriate use.

FSTREECAP Caps lower level usage factors to prevent them from exceeding upper tier dis-
crepancies.

Using FS Floors and Ceilings with Hierarchical Fairshare

All standard fairshare facilities including target floors, target ceilings, and target caps are supported
when using hierarchical fairshare.

Multi-Partition Fairshare

Moab supports independent, per-partition hierarchical fairshare targets allowing each partition to
possess independent prioritization and usage constraint settings. This is accomplished by setting the
PERPARTITIONSCHEDULING attribute of the FSTREE parameter to TRUE in moab.cfg and setting
partition="name" in your <fstree> leaf.

FSTREE[tree]
<fstree>
<tnode partition="slave1" name="root" type="acct" share="100" limits="MAXJOB=6">
<tnode name="accta" type="acct" share="50" limits="MAXSUBMITJOBS=2 MAXJOB=1">
<tnode name="fred" type="user" share="1" limits="MAXWC=1:00:00">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50" limits="MAXSUBMITJOBS=4 MAXJOB=3">
<tnode name="george" type="user" share="1" >
</tnode>

</tnode>
</tnode>
<tnode partition="slave2" name="root" type="acct" share="100"

limits="MAXSUBMITJOBS=6 MAXJOB=5">
<tnode name="accta" type="acct" share="50">
<tnode name="paul" type="user" share="1">
</tnode>

</tnode>
<tnode name="acctb" type="acct" share="50">
<tnode name="ringo" type="user" share="1">
</tnode>

</tnode>
</tnode>

</fstree>

If no partition is specified for a given share value, then this value is assigned to the global
partition. If a partition exists for which there are no explicitly specified shares for any node, this
partition will use the share distribution assigned to the global partition.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

350 6.3 Fairshare

6.3 Fairshare 351

Dynamically Importing Share Tree Data

Share trees can be centrally defined within a database, flat file, information service, or other system and
this information can be dynamically imported and used within Moab by setting the FSTREE parameter
within the Identity Managers on page 695. This interface can be used to load current information at
startup and periodically synchronize this information with the master source.

To create a fairshare tree in a separate XML file and import it into Moab

1. Create a file to store your fairshare tree specification. Give it a descriptive name and store it in your
Moab home directory ($MOABHOMEDIR or $MOABHOMEDIR/etc). In this example, the file is called
fstree.dat.

2. In the first line of fstree.dat, set FSTREE[myTree] to indicate that this is a fairshare file.

3. Build a tree in XML to match your needs. For example:

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8 MAXPROC=24
MAXWC=01:00:00"></tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5"></tnode>
</tnode>
</fstree>

This configuration creates a fairshare tree in which users share a value of 100. Users john and jane share the
value equally, because each has been given 50.

Because 100 is an arbitrary number, users john and jane could be assigned 10000 and 10000
respectively and still have a 50% share under the parent leaf. To keep the example simple, however,
it is recommended that you use 100 as your arbirary share value and distribute the share as
percentages. In this case, john and jane each have 50%.

If the users' numbers do not add up to at least the fairshare value of 100, the remaining value is
shared among all users under the tree. For instance, if the tree had a value of 100, user john had a
value of 50, and user jane had a value of 25, then 25% of the fairshare tree value would belong to
all other users associated with the tree. By default, tree leaves do not limit who can run under them.

Each value specified in the tnode elements must be contained in quotation marks.

4. Optional: Share trees defined within a flat file can be cumbersome; consider running tidy for xml to
improve readability. Sample usage:

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

> tidy -i -xml goldy.cfg <filename> <output file>

Sample output

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

5. Link the new file to Moab using the IDCFG parameter in your Moab configuration file.

IDCFG[myTree] server="FILE:///$MOABH OMEDIR/etc/fstree.dat" REFRESHPERIOD=INFINITY

Moab imports the myTree fairshare tree from the fstree.dat file. Setting REFRESHPERIOD to INFINITY causes
Moab to read the file each time it starts or restarts, but other settings (hour, day, month) cause Moab to read the
file more often (See Refreshing Identity Manager Data for more information).

6. To view your fairshare tree configuration, run mdiag -f. If it is configured correctly, the tree
information will appear beneath all the information about your fairshare settings configured in
moab.cfg.

> mdiag -f
Share Tree Overview for partition 'ALL'
Name Usage Target (FSFACTOR)
---- ----- ------ ------------
root 100.00 100.00 of 100.00 (node: 1171.81) (0.00)
- john 16.44 50.00 of 100.00 (user: 192.65) (302.04) MAXJOB=8
MAXPROC=24 MAXWC=3600
- jane 83.56 50.00 of 100.00 (user: 979.16) (-302.04) MAXJOB=5

The settings you configured in fstree.dat appear in the output. The tree of 100 is shared equally between users john
and jane.

Specifying Share Tree Based Limits

Limits can be specified on internal nodes of the share tree using standard credential limit semantics. The
following credential usage limits are valid:

l MAXIJOB (Maximum number of idle jobs allowed for the credential)

l MAXJOB on page 324

l MAXMEM on page 324

l MAXNODE on page 324

l MAXPROC on page 325

l MAXSUBMITJOBS on page 326

l MAXWC on page 326

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

352 6.3 Fairshare

6.3 Fairshare 353

Example 6-6: FSTREE limits example

FSTREE[myTree]
<fstree>
<tnode name="root" share="100">
<tnode name="john" type="user" share="50" limits="MAXJOB=8
MAXPROC=24 MAXWC=01:00:00">
</tnode>
<tnode name="jane" type="user" share="50" limits="MAXJOB=5">
</tnode>

</tnode>
</fstree>

Other Uses of Share Trees

If a share tree is defined, it can be used for purposes beyond fairshare, including organizing general
usage and performance statistics for reporting purposes (see showstats -T), enforcement of tree node
based usage limits, and specification of resource access policies.

Related topics

l mdiag -f command (provides diagnosis and monitoring of the fairshare facility)
l FSENABLECAPPRIORITY parameter
l ENABLEFSPREEMPTION parameter
l FSTARGETISABSOLUTE parameter

6.3.1 Sample FairShare Data File
FS.<EPOCHTIME>

FS Data File (Duration: 43200 seconds) Starting: Sat Jul 8 06:00:20
user jvella 134087.910
user reynolds 98283.840
user gastor 18751.770
user uannan 145551.260
user mwillis 149279.140
...
group DEFAULT 411628.980
group RedRock 3121560.280
group Summit 500327.640
group Arches 3047918.940
acct Administration 653559.290
acct Engineering 4746858.620
acct Shared 75033.020
acct Research 1605984.910
qos Deadline 2727971.100
qos HighPriority 4278431.720
qos STANDARD 75033.020
class batch 7081435.840
sched iCluster 7081435.840

The total usage consumed in this time interval is 7081435.840 processor-seconds. Since every job in this example
scenario had a user, group, account, and QoS assigned to it, the sum of the usage of all members of each category should
equal the total usage value: USERA + USERB + USERC + USERD = GROUPA + GROUPB = ACCTA + ACCTB + ACCTC = QOS0
+ QOS1 + QOS2 = SCHED.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

6.4 Charging and Allocation Management
l Charging and Allocation Management Overview

o Configuring the Allocation Manager Interface

o Allocation Management Policies

o Charge Metrics

l Allocation Manager Types

o MAM (Moab Accounting Manager)

o Native Allocation Manager

Charging and Allocation Management Overview

Either Moab HPC Suite 7.0 - Enterprise Edition or Moab Cloud Suite 7.0 are required for support of
charging and allocation management capabilities.

An allocation manager is a software system that manages resource allocations. A resource allocation
grants a job a right to use a particular amount of resources. While full details of each allocation manager
may be found within its respective documentation, the following brief review highlights a few of the
values of using such a system.

An allocation manager functions much like a bank in that it provides a form of currency that allows jobs
to run on an HPC system. The owners of the resource (cluster/supercomputer) determine how they want
the system to be used (often via an allocations committee) over a particular time frame, often a month,
quarter, or year. To enforce their decisions, they distribute allocations to various projects via accounts.
These allocations can be used for particular clusters or globally. They can also have time frames
associated with them to establish an allocation cycle. All transaction information is typically stored in a
database or directory server allowing extensive statistical and allocation tracking.

When using an allocation manager, each job must be associated with an account. To accomplish this with
minimal user impact, the allocation manager could be set up to handle default accounts on a per-user
basis. However, as is often the case, some users may be active on more than one project and thus have
access to more than one account. In these situations, a mechanism such as a job command file keyword
should be provided to allow a user to specify which account should be associated with the job.

The amount of each job's allocation charge is directly associated with the amount of resources used
(processors) by that job and the amount of time it was used. Optionally, the allocation manager can also
be configured to charge accounts varying amounts based on the QoS desired by the job, the type of
compute resources used, and the time when the resources were used.

The allocation manager interface provides near real-time allocation management, giving a great deal of
flexibility and control over how available compute resources are used over the medium- and long-term,
and works hand-in-hand with other job management features such as Moab's usage limit policies and
fairshare mechanism.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

354 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 355

The ENFORCEACCOUNTACCESS parameter controls whether the scheduler enforces account
constraints.

Supported allocation managers include MAM (Moab Accounting Manager) and Native.

Moab Accounting Manager is a commercial charge-back accounting system that can be used in cloud or
HPC environments. It is based on the Gold Allocation Manager.

The MAM allocation manager type (AMCFG[mam] TYPE=MAM) uses the direct SSS wire protocol
originally used by Gold.

The Native allocation manager type (AMCFG[mam] TYPE=Native) invokes scripts to create a
customization layer between Moab Workload Manager and Moab Accounting Manager. The interface is
used for cloud contexts and can be used in some hpc contexts where greater accounting customization is
required. The native interface can also be customized to interact with third-party allocation manager
system. Moab makes calls to the scripts that handle the interaction with the external system.

The MAM interface is faster while the native interface allows a higher level of customization.

Configuring the Allocation Manager Interface

Configure Moab to use the Moab Accounting Manager by running ./configure with the applicable
options when installing Moab:

l --with-am[=TYPE] - enables accounting management with the specified accounting manager
type (mam or native) [mam]

l --with-am-dir=DIR - uses the specified prefix directory for the accounting manager if installed
in a non-default location

l --with-cloud[=EDITION] - specifies cloud edition [xcat]

The --with-am option specifies the accounting manager type that you want to use as either mam,
which is the default, or native. Specifying this option will add the necessary entries into the moab.cfg
file and cause the install process to copy configuration files, scripts, and libraries into place.

Use --with-am-dir to specify the prefix directory for Moab Accounting Manager if the native type is
being used and it has been installed in a non-default location.

The --with-cloud option specifies that you are installing Moab in a cloud context (HPC is the default
context) and makes some adjustments to the configuration files and interface scripts necessary for
contextually appropriate charging behaviors. This option includes automatically setting the --with-
am=native option, since the mam accounting manager type is not supported in the cloud context. If you
are specifying a cloud context but do not wish to use the accounting manager, use the --without-am
configure option.

The following is an example of configuring Moab charging for HPC:

./configure --with-am

The following is an example of configuring Moab charging for cloud:

./configure --with-cloud

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

If using a native allocation manager type, it will also be necessary to run make perldeps as root when
installing so that the prerequisite bundled Perl modules are installed.

make perldeps

If you want to configure one of the other types of allocation manager, follow the instructions in the
appropriate section.

Moab's allocation manager interface(s) are defined using the AMCFG parameter. This parameter allows
specification of key aspects of the interface as shown in the following table:

CHARGEPOLICY on page 356
CREATEFAILUREACTION on page
357
CREATEURL on page 357
DELETEURL on page 358
ENDURL on page 358
FALLBACKACCOUNT on page 358
FALLBACKQOS on page 359

FLAGS on page 359
FLUSHINTERVAL on page 360
NODECHARGEPOLICY on page
360
PAUSEURL on page 361
QUOTEURL on page 361
SERVER on page 361

SOCKETPROTOCOL on page 362
STARTFAILUREACTION on page
362
STARTURL on page 362
TIMEOUT on page 363
UPDATEURL on page 363
VALIDATEJOBSUBMISSION on page
363
WIREPROTOCOL on page 364

CHARGEPOLICY

Format One of DEBITALLWC, DEBITALLCPU, DEBITALLPE, DEBITALLBLOCKED,
DEBITSUCCESSFULWC, DEBITSUCCESSFULCPU, DEBITSUCCESSFULPE, or
DEBITSUCCESSFULBLOCKED

Default DEBITSUCCESSFULWC

Description Specifies how consumed resources should be charged against the consumer's credentials. See
Charge Policy Overview for details.

When you use the Native accounting manager interface, Moab ignores the configured
CHARGEPOLICY and instead uses DEBITALLWC to calculate charges.

The DEBITSUCCESSFUL* policies require TORQUE to work. Additionally, the job scripts
must return a negative number as the exit code on failure in order to be ignored for
charging.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

356 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 357

CHARGEPOLICY

Example AMCFG[mam] CHARGEPOLICY=DEBITALLCPU

Allocation charges are based on actual CPU usage only, not dedicated CPU resources.

If the LOCALCOST flag (AMCFG[] FLAGS=LOCALCOST) is set, Moab uses the information
gathered with CHARGEPOLICY to calculate charges. If LOCALCOST is not set, Moab sends
this information to the allocation manager to calculate charges.

CREATEFAILUREACTION

Format <AMFailureAction>[,<FundsFailureAction>] where the action is one of CANCEL, DEFER, HOLD, or
IGNORE

Default IGNORE,IGNORE

Description Before creating a job that should be tracked or charged within the accounting manager, Moab
contacts the accounting manager for authorization. If the job creation is rejected due to lack of
funds, Moab applies the FundsFailureAction to the job. For any other rejection reason including a
connection problem, Moab applies the AMFailureAction to the job. If you do not specify a Fund-
sFailureAction, Moab will apply the AMFailureAction for an insufficient funds failure. If the action
is set to CANCEL, Moab cancels the job; DEFER, defers the job; HOLD, puts the job on hold; and
IGNORE, ignores the failure and continues to start the job. This parameter applies to both the
mam and native accounting manager types.

Example AMCFG[mam] CREATEFAILUREACTION=HOLD

A job will be placed on hold when submitted if there are insufficient funds for it to start.

CREATEURL

Format exec://<fullPathToCreateScript>

Default ---

Description If you use the native accounting manager interface, Moab runs this script to create a chargeable
job or reservation in order to determine whether it should be created. For jobs, the
CREATEFAILUREACTION parameter specifies the action that should be taken if the authorization
fails (such as for insufficient funds).

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

CREATEURL

Example AMCFG[mam] CREATEURL=exec://$TOOLSDIR/mam/usage.create.mam.pl

Moab calls the usage.create.mam.pl script for authorization before starting a job or
reservation.

DELETEURL

Format exec://<fullPathToDeleteScript>

Default ---

Description If you use the native accounting manager interface, Moab runs this script as needed to clean up
after an interrupted job or reservation life-cycle. The default behavior is to remove outstanding
liens.

Example AMCFG[mam] DELETEURL=exec://$TOOLSDIR/mam/usage.delete.mam.pl

Moab calls the usage.delete.mam.pl script to clean up after an interrupted job or
reservation.

ENDURL

Format exec://<fullPathToEndScript>

Default ---

Description If you use the native accounting manager interface, Moab runs this script after the end of a
chargeable job or reservation in order to make a final charge or update the accounting record. The
default behavior is to make a prorated charge for the job or reservation.

Example AMCFG[mam] ENDURL=exec://$TOOLSDIR/mam/usage.end.mam.pl

Calls the usage.end.mam.pl script to make the final charge for a job or reservation.

FALLBACKACCOUNT

Format STRING

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

358 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 359

FALLBACKACCOUNT

Default ---

Description If specified, Moab verifies adequate allocations for all new jobs. If adequate allocations are not
available in the job's primary account, Moab changes the job's credentials to use the fallback
account. If not specified, Moab places a hold on jobs that do not have adequate allocations in their
primary account.

Example AMCFG[mam] FALLBACKACCOUNT=freecycle

Moab assigns the account freecycle to jobs that do not have adequate allocations in their
primary account.

FALLBACKQOS

Format STRING

Default ---

Description If specified, Moab verifies adequate allocations for all new jobs. If adequate allocations are not
available in the job's primary QoS, Moab changes the job's credentials to use the fallback QoS. If
not specified, Moab places a hold on jobs that do not have adequate allocations in their primary
QoS.

Example AMCFG[mam] FALLBACKQOS=freecycle

Moab assigns the QoS freecycle to jobs that do not have adequate allocations in their
primary QoS.

FLAGS

Format <STRING>

Default ---

Description AMCFG flags are used to enable special services.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

FLAGS

Example AMCFG[mam] FLAGS=LOCALCOST

Moab calculates the charge for the job locally and sends that as a charge to the allocation
manager, which then charges that amount for the job.

FLUSHINTERVAL

Format HOUR, DAY, WEEK, MONTH (or NONE)

Default NONE

Description Indicates the amount of time between allocation manager debits for long running reservation and
job based charges. Only accepts intervals such as HOUR, DAY, WEEK, MONTH, or NONE.

Example AMCFG[mam] FLUSHINTERVAL=DAY

Moab updates its charges every 24 hours for long running jobs and reservations.

NODECHARGEPOLICY

Format One of AVG,MAX, orMIN

Default MIN

Description When charging for resource usage, the allocation manager will charge by node allocation
according to the specified policy. For AVG,MAX, and MIN, the allocation manager will charge by
the average, maximum, and minimum node charge rate of all allocated nodes. (Also see
CHARGEPOLICY.)

This feature can only be used in conjunction with the AMCFG[] LOCALCOST flag which
limits its use to cases where Moab calculates the full charge to be used by Moab
Accounting Manager.

Example NODECFG[node01] CHARGERATE=1.5
NODECFG[node02] CHARGERATE=1.75
AMCFG[mam] NODECHARGEPOLICY=MAX

Allocation management charges jobs by the maximum allocated node's charge rate.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

360 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 361

PAUSEURL

Format EXEC://<fullPathToPauseScript>

Default ---

Description If you use the native accounting manager interface, Moab runs this script after preempting a job
that might be resumed later. The default behavior is to make an incremental charge but not create
a fresh lien.

Example AMCFG[mam] PAUSEURL=exec://$TOOLSDIR/mam/usage.pause.mam.pl

Moab calls the usage.pause.mam.pl script after pausing a job.

QUOTEURL

Format exec://<fullPathToQuoteScript>

Default ---

Description If you use the native accounting manager interface, Moab runs the specified script to determine
the amount the accounting manager will charge for a job or reservation.

Example AMCFG[mam] QUOTEURL=exec://$TOOLSDIR/mam/usage.quote.mam.pl

Moab calls the usage.quote.mam.pl script when it needs to determine the cost for a
job or reservation.

SERVER

Format URL

Default N/A

Description Specifies the type and location of the allocation manager service. If the keyword ANY is specified
instead of a URL, Moab will use the local service directory to locate the allocation manager.

Example AMCFG[mam] SERVER=mam://tiny.supercluster.org:4368

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

SOCKETPROTOCOL

Format: One of SUTCP, SSS-HALF,HTTP, or SSS-CHALLENGE

Default: SSS-HALF

Description: Specifies the socket protocol to be used for scheduler-allocation manager communication.

Example: AMCFG[mam] SOCKETPROTOCOL=SSS-CHALLENGE

STARTFAILUREACTION

Format: <AMFailureAction>[,<FundsFailureAction>] where the action is one of CANCEL, DEFER,HOLD,
IGNORE, or RETRY

Default: IGNORE,IGNORE

Description: Moab applies <FundsFailureAction> to any job that should be tracked or charged within the
account manager if it is rejected due to insufficient funds for the given user and account. Moab
applies <AMFailureAction> to a job if the account manager rejects it for any other reason. If you do
not specify a <FundsFailureAction>, Moab will apply the <AMFailureAction> for an insufficient
funds failure. If the action is set to CANCEL, Moab cancels the job; DEFER, defers the job; HOLD,
puts the job on hold; IGNORE, ignores the failure and continues to start the job; and RETRY, does
not start the job on this attempt but attempts to start the job at the next opportunity.
STARTFAILUREACTION applies to both the mam and native accounting manager type.

Example: AMCFG[mam] STARTFAILUREACTION=HOLD

A job will be placed on hold if there are insufficient funds when it is time for it to start.

STARTURL

Format: exec://<fullPathToStartScript>

Default: ---

Description: If you use the native accounting manager interface, Moab runs this script on a chargeable job or
reservation to determine whether it should start. For jobs, the STARTFAILUREACTION attribute
specifies the action that Moab should take if the authorization fails (such as for insufficient funds).

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

362 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 363

STARTURL

Example: AMCFG[mam] STARTURL=exec://$TOOLSDIR/mam/usage.start.mam.pl

Moab calls the usage.start.mam.pl script for authorization before starting a job or
reservation.

TIMEOUT

Format: [[[DD:]HH:]MM:]SS

Default: 15

Description: Specifies the maximum delay allowed for scheduler-allocation manager communications.

Example: AMCFG[mam] TIMEOUT=30

UPDATEURL

Format exec://<fullPathToUpdateScript>

Description If you use the native accounting manager interface and have FLUSHINTERVAL set, Moab runs this
script every flush interval for each chargeable job or reservation to determine if it should continue.
The default behavior is to charge for the previous charge interval and create a lien for the next.

Example AMCFG[mam] UPDATEURL=exec://$TOOLSDIR/mam/usage.update.mam.pl

Moab calls the usage.update.mam.pl script for authorization to continue a job or
reservation.

VALIDATEJOBSUBMISSION

Format: <BOOLEAN>

Default: FALSE

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

VALIDATEJOBSUBMISSION

Description: If set to TRUE, when a new job is submitted, Moab will execute the CREATEURL script (for
TYPE=Native) or seek a job quote from Moab Accounting Manager (TYPE=MAM) before allow-
ing the job to be submitted. Otherwise, the fund validation step is just utilized by reservations
and fallback account checks. If the call fails (for example, if the user's account does not have
sufficient funds or specifies an invalid account.), Moab applies the CREATEFAILUREACTION.

Example: AMCFG[mam] VALIDATEJOBSUBMISSION=TRUE

Moab calls the usage.update.mam.pl script for authorization to continue a job or
reservation.

WIREPROTOCOL

Format: One of AVP,HTML, SSS2, or XML

Default: XML

Description: Specifies the wire protocol to be used for scheduler-allocation manager communication.

Example: AMCFG[mam] WIREPROTOCOL=SSS2

The first step to configure the allocation manager involves specifying where the allocation service can
be found. This is accomplished by setting the AMCFG parameter's SERVER attribute to the appropriate
URL.

In the case of the Moab Accounting Manager, after the interface URL is specified, secure communications
between scheduler and allocation manager must be enabled. As with other interfaces, this is configured
using the CLIENTCFG parameter within the moab-private.cfg file as described in the Security
Appendix. The KEY and AUTHTYPE attributes should be set to values defined during initial allocation
manager build and configuration, as in the following example:

CLIENTCFG[AM:mam] KEY=secret_key AUTHTYPE=HMAC64

AMCFG Flags

AMCFG flags can be used to enable special services and to disable default services. These services are
enabled/disabled by setting the AMCFG FLAGS attribute.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

364 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 365

Flag Name Description

ACCOUNTFAILASFUNDS When this flag is set, logic failures within the allocation manager are treated as fund
failures and are canceled. When ACCOUNTFAILASFUNDS is not set, Allocation Man-
ager failures are treated as a server failure and the result is a job which requests an
account to which the user does not have access.

LOCALCOST Moab calculates the charge for the job locally and sends that as a charge to the alloc-
ation manager, which then charges the amount for the job.

STRICTQUOTE Sends an estimated process count to the allocation manager when an initial quote is
requested for a newly-submitted job.

Allocation Management Policies

In most cases, the scheduler interfaces with a peer service. With all peer services based allocation
managers, the scheduler checks with the allocation manager before starting any job. For allocation
tracking to work, however, each job must specify an account to charge or the allocation manager must
be set up to handle default accounts on a per user basis.

Under this configuration, when Moab starts a job, it contacts the allocation manager and requests an
allocation reservation (or lien) be placed on the associated account. This allocation reservation is
equivalent to the total amount of allocation that could be consumed by the job (based on the job's
wallclock limit) and is used to prevent the possibility of allocation over subscription. Moab then starts
the job. When the job completes, Moab debits the amount of allocation actually consumed by the job from
the job's account and then releases the allocation reservation, or lien.

These steps should be transparent to users. Only when an account has insufficient allocations to run a
requested job will the presence of the allocation manager be noticed. If preferred, an account may be
specified for use when a job's primary account is out of allocations. This account, specified using the
AMCFG parameter's FALLBACKACCOUNT attribute, is often associated with a low QoS privilege and
priority, and is often configured to run only when no other jobs are present.

The scheduler can also be configured to charge for reservations. One of the big hesitations with
dedicating resources to a particular group is that if the resources are not used by that group, they go
idle and are wasted. By configuring a reservation to be chargeable, sites can charge every idle cycle of
the reservation to a particular project. When the reservation is in use, the consumed resources will be
associated with the account of the job using the resources. When the resources are idle, the resources
will be charged to the reservation's charge account. In the case of standing reservations, this account is
specified using the parameter SRCFG, attribute CHARGEACCOUNT. In the case of administrative
reservations, this account is specified via a command line flag to the setres command.

Moab only interfaces to the allocation manager when running in NORMAL mode.

Charge Metrics

The allocation manager interface allows a site to charge accounts in a number of different ways. Some
sites may wish to charge for all jobs regardless of whether the job completed successfully. Sites may
also want to charge based on differing usage metrics, such as dedicated wallclock time or processors
actually used. Moab supports the following charge policies specified via the CHARGEPOLICY attribute:

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

l DEBITALLWC - Charges all jobs regardless of job completion state using processor weighted
wallclock time dedicated as the usage metric.

l DEBITALLCPU - Charges all jobs based on processors used by job.

l DEBITALLPE - Charges all jobs based on processor-equivalents dedicated to job.

l DEBITALLBLOCKED - Charges all jobs based on processors dedicated and blocked according to
node access policy or QoS node exclusivity.

l DEBITSUCCESSFULWC - Charges only jobs that successfully complete using processor weighted
wallclock time dedicated as the usage metric. This is the default metric.

l DEBITSUCCESSFULCPU - Charges only jobs that successfully complete using CPU time as the
usage metric.

l DEBITSUCCESSFULPE - Charges only jobs that successfully complete using PE weighted
wallclock time dedicated as the usage metric.

l DEBITSUCCESSFULBLOCKED - Charges only jobs that successfully complete based on
processors dedicated and blocked according to node access policy or QoS node exclusivity.

When you use the Native accounting manager interface, Moab ignores the configured
CHARGEPOLICY and instead uses DEBITALLWC to calculate charges.

On systems where job wallclock limits are specified, jobs that exceed their wallclock limits and
are subsequently canceled by the scheduler or resource manager are considered to have
successfully completed as far as charging is concerned, even though the resource manager may
report these jobs as having been removed or canceled.

If machine-specific allocations are created within the allocation manager, the allocation manager
machine name should be synchronized with the Moab resource manager name as specified with
the RMCFG parameter, such as the name orion in RMCFG[orion] TYPE=PBS.

To control how jobs are charged when heterogeneous resources are allocated and per resource
charges may vary within the job, use the NODECHARGEPOLICY attribute.

When calculating the cost of the job, Moab will use the most restrictive node access policy. See
NODEACCESSPOLICY for more information.

Allocation Manager Types
Moab supports two allocation manager types: MAM (Moab Accounting Manager) and Native.

MAM (Moab Accounting Manager)

Moab Accounting Manager is an accounting management system that provides usage tracking, charge
accounting, and allocation enforcement for resource or service usage in cloud and technical computing
environments. It acts like a bank in which credits are deposited into accounts with constraints

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

366 6.4 Charging and Allocation Management

6.4 Charging and Allocation Management 367

designating which entities may access the account. As resources or services are utilized, accounts are
charged and usage recorded. MAM supports familiar operations such as deposits, withdrawals, transfers,
and refunds and provides balance and usage feedback to users, managers, and system administrators.

To configure Moab to use the MAM interface for allocation management, use the configure options as
described in the Configuring the Allocation Manager Interface section.

Example 6-7:

./configure -with-am=mam ...

Consequently, make install will add the essential configuration and connection entries into the
moab.cfg and moab-private.cfg files.

The following are typical entries in the Moab configuration files for using the MAM interface in the HPC
context:

moab.cfg:

AMCFG[mam] TYPE=MAM HOST=localhost PORT=7112
AMCFG[mam] STARTFAILUREACTION=HOLD CHARGEPOLICY=DEBITALLWC

moab-private.cfg:

CLIENTCFG[AM:mam] KEY=secret_key AUTHTYPE=HMAC64

Synchronize the secret key with Moab Accounting Manager by copying the value of the token.value
parameter from the MAM_PREFIX/etc/site.conf file which is randomly generated during the Moab
Accounting Manager install process.

Moab Accounting Manager should be installed, started, and initialized. See the Getting Started chapter of
the Moab Accounting Manager Administrator Guide for examples of how to initialize MAM for your initial
mode of operation.

Native

When utilizing the Native allocation manager interface, Moab calls scripts to perform its accounting and
allocation functions instead of communicating directly with the allocation manager, as is the case with
MAM. The default scripts are designed to interact with Moab Accounting Manager and are typically used
in the cloud context. You can customize these scripts to the needs of your site, either to provide
additional flexibility in accounting and allocation management with Moab Accounting Manager or to
interact with a third-party accounting or allocation management system.

Moab will invoke the Native Allocation Manager Interface (NAMI) scripts (see the AMCFG parameter
documentation for QUOTEURL, CREATEURL, STARTURL, UPDATEURL, PAUSEURL, ENDURL, DELETEURL) by
passing the job or reservation information via XML to the standard input of the script. The script should
return a return code (zero for success), data on standard out and messages on standard error. A failure
in CREATEURL, STARTURL, or UPDATEURL should result in the application of the CREATEFAILUREACTION,
STARTFAILUREACTION or UPDATEFAILUREACTION, respectively.

To configure Moab to use the Native interface for allocation management, use the configure options as
described in the Configuring the Allocation Manager Interface section.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

http://www.adaptivecomputing.com/resources/docs/mam/7-2-6/help.htm

Example 6-8:

./configure --with-am=native ...

Consequently, make install will add the essential allocation manager entries into moab.cfg and
install the accounting-related scripts ($PREFIX/tools/mam/usage.*.mam.pl) and configuration files
($MOABHOMEDIR/etc/nami.cfg) in the correct locations.

The following are typical entries in the Moab configuration files for using the Native interface for the
HPC context:

moab.cfg:

AMCFG[mam] TYPE=NATIVE
AMCFG[mam] CREATEURL=exec://$TOOLSDIR/mam/usage.create.mam.pl
AMCFG[mam] STARTURL=exec://$TOOLSDIR/mam/usage.start.mam.pl
AMCFG[mam] UPDATEURL=exec://$TOOLSDIR/mam/usage.update.mam.pl
AMCFG[mam] PAUSEURL=exec://$TOOLSDIR/mam/usage.pause.mam.pl
AMCFG[mam] ENDURL=exec://$TOOLSDIR/mam/usage.end.mam.pl
AMCFG[mam] DELETEURL=exec://$TOOLSDIR/mam/usage.delete.mam.pl
AMCFG[mam] STARTFAILUREACTION=HOLD

nami.cfg:

Context hpc
LOG[config] path=/opt/mam/log/nami.log
LOG[config] loglevel=debug
LOG[config] includeGoldLog=false
LOG[config] permissions=666
LOG[config] maxSize=10000000
LOG[config] rolloverLimit=7)

To view your current URL and FAILUREACTION information, run mdiag -R -v (even more information may
be available in mdiag -R -v --xml). The following shows sample output from running the mdiag
command:

AM[mam] Type: native State: 'Active'
ValidateJobSubmission: FALSE
FlushInterval: 1:00:00
ChargePolicy: DEBITALLWC
Quote URL:
Create URL: CREATEURL=exec://$TOOLSDIR/mam/usage.create.mam.pl
Start URL: STARTURL=exec://$TOOLSDIR/mam/usage.start.mam.pl
Update URL: UPDATEURL=exec://$TOOLSDIR/mam/usage.update.mam.pl
Pause URL: PAUSEURL=exec://$TOOLSDIR/mam/usage.pause.mam.pl
End URL: ENDURL=exec://$TOOLSDIR/mam/usage.end.mam.pl
Delete URL: DELETEURL=exec://$TOOLSDIR/mam/bank.delete.mam.pl

Moab Accounting Manager should be installed, started, and initialized. The simplest procedure is to
install it on the same server as Moab Workload Manager so that the Moab Accounting Manager can
share libraries and configuration files with the Moab Workload Manager and Moab Accounting Manager
scripts. See the Getting Started chapter of the Moab Accounting Manager User Guide for examples of how
to initialize MAM for your initial mode of operation.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

368 6.4 Charging and Allocation Management

http://www.adaptivecomputing.com/resources/docs/mam/7-2-6/help.htm

6.5 Charging a Workflow 369

Related topics

l Per Class DISABLEAM attribute
l Charging for Reservations
l ENFORCEACCOUNTACCESS parameter

6.5 Charging aWorkflow
The first thing you need to do is install Moab Accounting Manager. You can do this through the Adaptive
Computing website. After Moab Accounting Manager is installed you can look at the
createExampleGoldState.pl script to see examples of how to define users, projects, accounts, and
charge rates in Moab Accounting Manager. You can also run the script to set up a few test users,
accounts, and charge rates in Moab Accounting Manager. If ever you want to clear the sqlite database in
Moab Accounting Manager, run ./resetdb as root with the first parameter being the accounting admin
user and it will restore the accounting state the same as a fresh install.

Add NAMI URLs tomoab.cfg
The out-of-the-box-solution doesn't use the create or modify NAMI URL. Moab uses the reserve URL to
reserve funds and charge for setup costs, the charge URL to reserve funds and charge for reoccurring
costs, and the delete URL to unreserve the funds. These three URLs must be defined in moab.cfg in order
to charge a workflow. You should set a Reserve Failure Action in moab.cfg (the bottom line in the
example) in case the customer doesn't have enough funds to proceed. Therefore a sample moab.cfg
might look like this in the NAMI section:

AMCFG[nami] TYPE=NATIVE
AMCFG[nami] StartURL=exec:///opt/moab/tools/mam/usage.start.mam.pl
AMCFG[nami] UpdateURL=exec:///opt/moab/tools/mam/usage.update.mam.pl
AMCFG[nami] PauseURL=exec:///opt/moab/tools/mam/usage.pause.mam.pl
AMCFG[nami] EndURL=exec:///opt/moab/tools/mam/usage.end.mam.pl
AMCFG[nami] DeleteURL=exec:///opt/moab/tools/mam/usage.delete.mam.pl
AMCFG[nami] FLUSHINTERVAL=hour
AMCFG[nami] StartFailureAction=HOLD

HowWorkflows Are Expressed in nami.cfg
The nami.cfg file was designed to be similar to the moab.cfg. Each line is parsed as either
Predicate[constant] Attribute=value or key value. Each constant in the JobTemplate predicate
identifies specific job templates in moab.cfg. In respect to the workflow, nami.cfg needs to know
about:

l (required) What job template in the workflow is the infinite job that you will charge based on a
recurring bill cycle. In order to specify this you must set the Recurring attribute to True. For
example:

JobTemplate[newvm] Recurring=True

l (required) What job template starts off the workflow where you will reserve funds for the

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

http://www.adaptivecomputing.com/
http://www.adaptivecomputing.com/

eventual infinite job's first recurring bill as well as any setup costs that might occur. For example:

JobTemplate[newvm] StartJob=newvmprovision

l (required) What job templates follow the infinite job. This is important to register these template
names with NAMI in case of a job failure; otherwise, NAMI will simply ignore them.

JobTemplate[newvm] TemplateDepend=newvmprovision
JobTemplate[newvm] TemplateDepend=vmstoragehookup

l (optional) Moab Accounting Manager VBF charge rate associated with provision jobs. These
charge rates will be fixed setup costs per provision job that will be summed up and reserved with
the first recurring bill at the run time of the start job. They will be charged at run time of the
infinite job to ensure that all provision jobs ran successfully. It is important to note that the run
time of the infinite job is also when the bill cycle starts. The first recurring bill is not charged
with the setup costs at the beginning of the first bill cycle but rather at the end of each bill cycle
after the resources are used. The following is an example of configuring multiple set up costs:

JobTemplate[newvmprovision] GoldChargeRateName=VmSetUpCost
JobTemplate[vmstoragehookup] GoldChargeRateName=VmStorageHookUpCost

l (optional) In case you want to toggle billing on and off for a workflow, you can use the TrackUsage
attribute. The attribute only needs to be set on the recurring job for each workflow. Since having
billing on is the default behavior, here is an example of turning billing off:

JobTemplate[newvm] TrackUsage=False

Workflow frommoab.cfg to nami.cfg Example

moab.cfg

JOBCFG[newvmprovision] GENERICSYSJOB=AType=exec,Action="$TOOLSDIR/newvmprovision.pl
$*.SM",EType=start,Timeout=2:00,Flags=objectxmlstdin
JOBCFG[newvmprovision] INHERITRES=TRUE
JOBCFG[newvmprovision] FLAGS=NORMSTART

JOBCFG[vmstoragehookup]
GENERICSYSJOB=AType=exec,Action="$TOOLSDIR/vmstoragehookup.pl $.SM
$.SMMAP",EType=start,Timeout=2:00,Flags=objectxmlstdin
JOBCFG[vmstoragehookup] INHERITRES=TRUE
JOBCFG[vmstoragehookup] FLAGS=NORMSTART
JOBCFG[vmstoragehookup] TEMPLATEDEPEND=AFTEROK:newvmprovision

JOBCFG[newvm] FLAGS=VMTRACKING SELECT=true
JOBCFG[newvm] TEMPLATEDEPEND=AFTEROK:vmstoragehookup
JOBCFG[newvm] FLAGS=NORMSTART
JOBCFG[newvm] DESTROYTEMPLATE=destroyvm
JOBCFG[newvm] MIGRATETEMPLATE=migratevm

nami.cfg

JobTemplate[newvm] Recurring=True
JobTemplate[newvm] StartJob=newvmprovision
JobTemplate[newvm] TrackUsage=True
JobTemplate[newvm] TemplateDepend=newvmprovision

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

370 6.5 Charging a Workflow

6.5 Charging a Workflow 371

JobTemplate[newvm] TemplateDepend=vmstoragehookup
JobTemplate[newvmprovision] GoldChargeRateName=VmSetUpCost
JobTemplate[vmstoragehookup] GoldChargeRateName=VmStorageHookUpCost

Understanding UsageAttributes in nami.cfg
Recurring jobs are represented in Moab Accounting Manager as usage records. A usage record helps
constrain what account to charge, how much to charge, as well as keep record of additional information
about the job. The nami.cfg file defines what the usage record will like for the recurring job. Each
constant in the UsageAttribute can be an account constraint, charge rate name, usage record property
name, or any combination of the three. Because the constant can be a usage record property (something
that gets recorded and shown when you do a glsusage) and a charge rate name, most people make
charge rate names match the usage record property. For example, Processors is something that you
probably want to both record and charge for, so it is easier if the charge rate name and usage record
attribute name are both called Processors and nami.cfg has the line:

UsageAttribute[Processors] MoabXMLAttribute=Processors

The nami.cfg file interprets this to mean that the value in the Processors tag sent from Moab should be
the same value passed in the Processors tag in the usage record sent to Moab Accounting Manager. Moab
Accounting Manager will then recognize that it is the usage record property name, so it will record it
and show it when you do a glsusage command and will also recognize that it is a charge rate so it will
charge it accordingly. Other attributes like user and project help constrain which account gets charged.
However, there is nothing preventing you from making additional charge rates in Moab Accounting
Manager for them as well.

Currently, the NAMI scripts allow anything in the Moab job XML to be sent to Moab Accounting Manager,
including gres and user-defined variables. Gres and variables are expressed with either a gres: or var:
prepended to the name of what it is representing. For example you might see the following in
nami.cfg:

UsageAttribute[Disk] MoabXMLAttribute=GRes:Os
UsageAttribute[StorageHost] MoabXMLAttribute=Var:SH

Other Important nami.cfg Parameters
SetupTime - The amount of time (in seconds) beyond the bill cycle time that the reservation for the
setup cost and first bill cycle should last before it destroys itself (defaults to 43200). Here is an example
of how to define it in nami.cfg:

SetupTime 3213 (Defaults to 43200)

BillCycle - The amount of time of the bill cycle. It helps determine how much funds to reserve for each
bill cycle. Possible values are hour, day, week, month (the default is day). If you want to over- or under-
reserve funds for the bill cycle, you can also configure the default values for hour (60), day (86400), week
(604800), and month (2630000). Be careful to understand that if you use this with RoundChargeDuration,
the charge duration will be rounded to the modified bill cycle which is probably not what you wanted to
do. Configuring the bill cycle time is intended to increase or decrease the barrier of entry for your job
and assumes that the charge duration is not rounded. Here is an example of setting the bill cycle and
changing the time duration of Month.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

BILLCYCLE Month (Defaults to Day)
BILLCYCLE[Month] 2640000 (Defaults to average seconds in a month)

RoundChargeDuration - If set to True, then the charge duration sent from Moab will be rounded up or
down to match what was quoted within the default bounds of plus or minus 0 seconds. Otherwise, charge
duration will not be rounded. The bound to round the charge duration is configurable with the Bound
attribute. Here is an example of rounding the charge duration if it is within plus or minus a half a day:

RoundChargeDuration True (Defaults to False)
RoundChargeDuration[config] Bound=43200 (Defaults to 0)

Log - If set to True, the nami.log will also include everything that is written to the gold.log in
/opt/mam/log/. An example log configuration is:

LOG[config] path=../log/nami.log (Defaults to ../log/nami.log)
LOG[config] loglevel=debug (Possible values are fatal, error, warn, info,
debug and it defaults to info)
LOG[config] includeGoldLog=false (Defaults to true)
LOG[config] permissions=640 (Defaults to 666)
LOG[config] maxSize=10000000 (Defaults to 10000000)
LOG[config] rolloverLimit=7 (Defaults to 7)

6.6 NAMI Queuing
Using the QueueNAMIActions parameter, the NAMI (Native Allocation Manager Interface) charge and
destroy actions will be queued. Other actions are still fired by themselves.

All queues on an allocation manager will be flushed each flush interval.

NAMI for Jobs
There are five main events for billing jobs with NAMI. These are shown below in the job timeline:

Job: -------Quote--|--Submit------Start---------------------
-------------End----

|
Nami: -----Quote -|--Create-----Reserve--------Charge---

Charge---------Delete--
Input: XML | XML XML XML

XML XML
Output: #[:TID] | [TID]

All scripts will have return codes checked. For charge and delete, the return code will only cause Moab
to log the failure (this is also because of the queuing).

Quoting is not done by Moab, but called by Viewpoint. If they get a TID, it should be attached as a
variable on the job. If a TID is returned by the create call, it will be attached as a variable.

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

372 6.6 NAMI Queuing

6.6 NAMI Queuing 373

Each script will be passed an XML description of the object (the same scripts are used for both jobs and
reservations). This XML is not the same as checkpoint or checkjob XML, it is special XML specifically for
charging. It is simpler than the checkjob XML.

Also note that a final charge will always be called before the delete script.

Return Values

l Quote - Returns a number, and an optional TID. The TID is a string and will be stored as a
variable on the job (or reservation). The format is #:TID, or just the number if there is no TID.
This should only be called by Viewpoint. It is Viewpoint's responsibility to attach this to the job as
a variable.

l Create - Anything in stdout will be assumed to be a TID. Return code is checked.

l Reserve - Return code is checked.

l Charge - Return code is checked (may be batched).

l Delete - Return code is checked (may be batched).

l Modify - Return code is checked.

You must configure the NAMITransVarName parameter to save the TID. The TID will be saved under a
variable with that name. The TID may not contain equal sign (=) or colon (:) characters.

Billing Failure

If any call fails, Moab will log the failed action. Also, there will be two parameters on the allocation
manager, BillingCreateFailure and BillingReserveFailure, that specify the action that will be taken when
an action fails. Options will be IGNORE, HOLD, and CANCEL, with IGNORE being the default. Functionality
may differ between jobs and reservations. For the StartFailureAction, you can also use RETRY, which will
remove the job's reservation and will put it back into the queue to be scheduled the next iteration.

The RunAlways internal flag will cause jobs to ignore billing failures.

Job Approval

One of the great things about this billing system is that we get job approval very easily. The
administrator puts BillingCreateFailure to HOLD. Next, they make the create script trigger their
approval system (send an email, etc.) and return FAILURE. This will make the job always be put on hold.
Then the administrator takes off the hold to approve the job (or reservation).

6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management

374 6.6 NAMI Queuing

7.1 Advance Reservations 375

7.0 Controlling Resource Access -
Reservations, Partitions, and QoS Facilities

l Advance Reservations on page 375

l Partitions on page 419

l Quality of Service (QoS) Facilities on page 423

7.1 Advance Reservations
An advance reservation is the mechanism by which Moab guarantees the availability of a set of
resources at a particular time. Each reservation consists of three major components: (1) a set of
resources, (2) a time frame, and (3) an access control list. It is a scheduler role to ensure that the access
control list is not violated during the reservation's lifetime (that is, its time frame) on the resources
listed. For example, a reservation may specify that node002 is reserved for user Tom on Friday. The
scheduler is thus constrained to make certain that only Tom's jobs can use node002 at any time on
Friday. Advance reservation technology enables many features including backfill, deadline based
scheduling, and QoS support.

l Reservation Overview

l Administrative Reservations

l Standing Reservations

l Reservation Policies

l Configuring and Managing Reservations

l Enabling Reservations for End-users

7.1.1 Reservation Overview
l Resources

l TimeFrame

l Access Control List

l Job to Reservation Binding

l Reservation Specification

l Reservation Behavior

l Reservation Group

Every reservation consists of 3 major components: (1) a set of resources, (2) a time frame, and (3) an
access control list. Additionally, a reservation may also have a number of optional attributes controlling
its behavior and interaction with other aspects of scheduling. Reservation attribute descriptions follow.

Resources
Under Moab, the resources specified for a reservation are specified by way of a task description.
Conceptually, a task can be thought of as an atomic, or indivisible, collection of resources. If reservation
resources are unspecified, a task is a node by default. To define a task, specify resources. The resources
may include processors, memory, swap, local disk, and so forth. For example, a single task may consist of
one processor, 2 GB of memory, and 10 GB of local disk.

A reservation consists of one or more tasks. In attempting to locate the resources required for a
particular reservation, Moab examines all feasible resources and locates the needed resources in groups
specified by the task description. An example may help clarify this concept:

Reservation A requires four tasks. Each task is defined as 1 processor and 1 GB of memory.

Node X has 2 processors and 3 GB of memory available
Node Y has 2 processors and 1 GB of memory available
Node Z has 2 processors and 2 GB of memory available

When collecting the resources needed for the reservation, Moab examines each node in turn. Moab finds
that Node X can support 2 of the 4 tasks needed by reserving 2 processors and 2 GB of memory, leaving
1 GB of memory unreserved. Analysis of Node Y shows that it can only support 1 task reserving 1
processor and 1 GB of memory, leaving 1 processor unreserved. Note that the unreserved memory on
Node X cannot be combined with the unreserved processor on Node Y to satisfy the needs of another
task because a task requires all resources to be located on the same node. Finally, analysis finds that
node Z can support 2 tasks, fully reserving all of its resources.

Both reservations and jobs use the concept of a task description in specifying how resources should be
allocated. It is important to note that although a task description is used to allocate resources to a
reservation, this description does not in any way constrain the use of those resources by a job. In the
above example, a job requesting resources simply sees 4 processors and 4 GB of memory available in
reservation A. If the job has access to the reserved resources and the resources meet the other
requirements of the job, the job could use these resources according to its own task description and
needs.

Currently, the resources that can be associated with reservations include processors, memory, swap,
local disk, initiator classes, and any number of arbitrary resources. Arbitrary resources may include
peripherals such as tape drives, software licenses, or any other site specific resource.

Time Frame
Associated with each reservation is a time frame. This specifies when the resources will be reserved or
dedicated to jobs that meet the reservation's access control list (ACL). The time frame simply consists of
a start time and an end time. When configuring a reservation, this information may be specified as a
start time together with either an end time or a duration.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

376 7.1 Advance Reservations

7.1 Advance Reservations 377

Access Control List
A reservation's access control list specifies which jobs can use a reservation. Only jobs that meet one or
more of a reservation's access criteria are allowed to use the reserved resources during the reservation
time frame. Currently, the reservation access criteria include the following: users, groups, accounts,
classes, QoSes, job attributes, job duration, and job templates.

Job to Reservation Binding
While a reservation's ACL will allow particular jobs to use reserved resources, it does not force any job
to use these resources. With each job, Moab attempts to locate the best possible combination of
available resources whether these are reserved or unreserved. For example, in the following figure, note
that job X, which meets access criteria for both reservation A and B, allocates a portion of its resources
from each reservation and the remainder from resources outside of both reservations.

Image 7-1: Job X uses resources from reservations A and B

Although by default, reservations make resources available to jobs that meet particular criteria, Moab
can be configured to constrain jobs to only run within accessible reservations. This can be requested by
the user on a job by job basis using a resource manager extension flag, or it can be enabled
administratively via a QoS flag. For example, assume two reservations were created as follows:

> mrsvctl -c -a GROUP==staff -d 8:00:00 -h 'node[1-4]'
reservation staff.1 created

> mrsvctl -c -a USER==john -t 2
reservation john.2 created

If the user "john," who happened to also be a member of the group "staff," wanted to force a job to run
within a particular reservation, "john" could do so using the FLAGS resource manager extension.
Specifically, in the case of a PBS job, the following submission would force the job to run within the
"staff.1" reservation.

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES:staff.1 testjob.cmd

Note that for this to work, PBS needs to have resource manager extensions enabled as described in the
PBS Resource Manager Extension Overview. (TORQUE has resource manager extensions enabled by

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

default.) If the user wants the job to run on reserved resources but does not care which, the user could
submit the job with the following:

> msub -l nodes=1,walltime=1:00:00,flags=ADVRES testjob.cmd

To enable job to reservation mapping via QoS, the QoS flag USERESERVED should be set in a similar
manner.

Use the reservation BYNAME flag to require explicit binding for reservation access.

To lock jobs linked to a particular QoS into a reservation or reservation group, use the REQRID
attribute.

Reservation Specification
There are two main types of reservations that sites typically deal with. The first, administrative
reservations, are typically one-time reservations created for special purposes and projects. These
reservations are created using the mrsvctl or setres commands. These reservations provide an
integrated mechanism to allow graceful management of unexpected system maintenance, temporary
projects, and time critical demonstrations. This command allows an administrator to select a particular
set of resources or just specify the quantity of resources needed. For example an administrator could use
a regular expression to request a reservation be created on the nodes "blue0[1-9]" or could simply
request that the reservation locate the needed resources by specifying a quantity based request such as
"TASKS==20."

The second type of reservation is called a standing reservation. It is specified using the SRCFG
parameter and is of use when there is a recurring need for a particular type of resource distribution.
Standing reservations are a powerful, flexible, and efficient means for enabling persistent or periodic
policies such as those often enabled using classes or queues. For example, a site could use a standing
reservation to reserve a subset of its compute resources for quick turnaround jobs during business hours
on Monday thru Friday. The Standing Reservation Overview provides more information about configuring
and using these reservations.

Reservation Behavior
As previously mentioned, a given reservation may have one or more access criteria. A job can use the
reserved resources if it meets at least one of these access criteria. It is possible to stack multiple
reservations on the same node. In such a situation, a job can only use the given node if it has access to
each active reservation on the node.

Reservation Group
Reservations groups are ways of associating multiple reservations. This association is useful for variable
name space and reservation requests. The reservations in a group inherit the variables from the
reservation group head, but if the same variable is set locally on a reservation in the group, the local
variable overrides the inherited variable. Variable inheritance is useful for triggers as it provides
greater flexibility with automating certain tasks and system behaviors.

Jobs may be bound to a reservation group (instead of a single reservation) by using the resource
manager extension ADVRES.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

378 7.1 Advance Reservations

7.1 Advance Reservations 379

Infinite Jobs and Reservations
To allow infinite walltime jobs, you must have the following scheduler flag set:

SCHEDCFG[Moab] FLAGS=allowinfinitejobs

You can submit an infinite job by completing:

msub -l walltime=INFINITY

Or an infinite reservation by completing:

mrsvctl -c -d INFINITY

Infinite jobs can run in infinite reservations. Infinite walltime also works with job templates and advres.

Output XML for infinite jobs will print "INFINITY" in the ReqAWDuration, and XML for infinite rsvs will
print "INFINITY" in duration and endtime.

<Data>
<rsv AUser="jgardner" AllocNodeCount="1" AllocNodeList="n5"
AllocProcCount="4" AllocTaskCount="1" HostExp="n5"
LastChargeTime="0" Name="jgardner.1" Partition="base"
ReqNodeList="n5:1" Resources="PROCS=[ALL]" StatCAPS="0.00"
StatCIPS="0.00" StatTAPS="0.00" StatTIPS="0.00" SubType="Other"
Type="User" cost="0.000000" ctime="1302127058"
duration="INFINITY" endtime="INFINITY" starttime="1302127058">
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<ACL cmp="%=" name="jgardner" type="USER"></ACL>
<ACL cmp="%=" name="company" type="GROUP"></ACL>
<ACL aff="neutral" cmp="%=" name="jgardner.1" type="RSV"></ACL>
<History>
<event state="PROCS=4" time="1302127058"></event>

</History>
</rsv>

</Data>

Related topics

l Reservation Allocation Policies
l Reservation Re-Allocation Policies

7.1.2 Administrative Reservations
l Annotating Administrative Reservations

l Using Reservation Profiles

l Optimizing Maintenance Reservations

Administrative reservations behave much like standing reservations but are generally created to
address non-periodic, one-time issues. All administrative reservations are created using the mrsvctl -c
(or setres) command and are persistent until they expire or are removed using the mrsvctl -r (or
releaseres) command.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Annotating Administrative Reservations
Reservations can be labeled and annotated using comments allowing other administrators, local users,
portals and other services to obtain more detailed information regarding the reservations. Naming and
annotations are configured using the -n and -D options of the mrsvctl command respectively, as in the
following example:

> mrsvctl -c -D 'testing infiniband performance' -n nettest -h 'r:agt[15-245]'

Using Reservation Profiles
You can set up reservation profiles to avoid manually and repetitively inputting standard reservation
attributes. Profiles can specify reservation names, descriptions, ACLs, durations, host lists, triggers,
flags, and other aspects that are commonly used. With a reservation profile defined, a new
administrative reservation can be created that uses this profile by specifying the -P flag as in the
following example.

Example 7-1:

RSVPROFILE[mtn1] TRIGGER=AType=exec,Action="/tmp/trigger1.sh",EType=start
RSVPROFILE[mtn1] USERLIST=steve,marym
RSVPROFILE[mtn1] HOSTEXP="r:50-250"

> mrsvctl -c -P mtn1 -s 12:00:00_10/03 -d 2:00:00

Example 7-2: Non-Blocking System Reservations with Scheduler Pause

RSVPROFILE[pause] TRIGGER=atype=exec,etype=start,action="/opt/moab/bin/mschedctl -p"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=cancel,action="/opt/moab/bin/mschedctl -r"
RSVPROFILE[pause] TRIGGER=atype=exec,etype=end,action="/opt/moab/bin/mschedctl -r"

> mrsvctl -c -P pause -s 12:00:00_10/03 -d 2:00:00

Optimizing Maintenance Reservations
Any reservation causes some negative impact on cluster performance as it further limits the scheduler's
ability to optimize scheduling decisions. You can mitigate this impact by using flexible ACLs and triggers.

In particular, a maintenance reservation can be configured to reduce its effective reservation shadow by
allowing overlap with checkpointable/preemptible jobs until the time the reservation becomes active.
This can be done using a series of triggers that perform the following actions:

l Modify the reservation to disable preemption access.

l Preempt jobs that may overlap the reservation.

l Cancel any jobs that failed to properly checkpoint and exit.

The following example highlights one possible configuration:

RSVPROFILE[adm1] JOBATTRLIST=PREEMPTEE
RSVPROFILE[adm1] DESCRIPTION="regular system maintenance"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

380 7.1 Advance Reservations

7.1 Advance Reservations 381

300,AType=internal,Action="rsv:-:modify:acl:jattr-=PREEMPTEE"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-240,AType=jobpreempt,Action="checkpoint"
RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

> mrsvctl -c -P adm1 -s 12:00:00_10/03 -d 8:00:00 -h ALL

This reservation reserves all nodes in the cluster for a period of eight hours. Five minutes before the
reservation starts, the reservation is modified to remove access to new preemptible jobs. Four minutes
before the reservation starts, preemptible jobs that overlap the reservation are checkpointed. One
minute before the reservation, all remaining jobs that overlap the reservation are canceled.

Reservations can also be used to evacuate virtual machines from a nodelist. To do this, you can configure
a reservation profile in the moab.cfg file that calls an internal trigger to enable the evacuate VM logic.
For example:

RSVPROFILE[evacvms]
TRIGGER=EType=start,AType=internal,action=node:$(HOSTLIST):evacvms

> mrsvctl -c -P evacvms -s 12:00:00_10/03 -d 8:00:00 -h ALL

Please note that Moab gives its best effort in evacuating VMs; however, if other reservations and
policies prevent Moab from locating an alternate location for the VMs to be migrated to, then no action
will occur. Administrators can attach additional triggers to the reservation profile to add evacuation
logic where needed.

If your organization uses Viewpoint 7.1 or later, there is an option when creating reservations in
Viewpoint to evacuate VMs from reserved nodes. This functionality assumes the reservation
profile in Moab is named "evacvms." For Cloud customers, the evacvms reservation profile already
exists in your moab.cfg file configuration by default.

You can also manually create a reservation that evacuates VMs from a nodelist by using the
EVACVMS reservation flag. For example:

> mrsvctl -c -F EVACVMS -s 12:00:00_10/03 -d 8:00:00 -h ALL

Related topics

l Backfill
l Preemption
l mrsvctl command

7.1.3 Standing Reservations
Standing reservations build upon the capabilities of advance reservations to enable a site to enforce
advanced usage policies in an efficient manner. Standing reservations provide a superset of the
capabilities typically found in a batch queuing system's class or queue architecture. For example, queues
can be used to allow only particular types of jobs access to certain compute resources. Also, some batch
systems allow these queues to be configured so that they only allow this access during certain times of

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

the day or week. Standing reservations allow these same capabilities but with greater flexibility and
efficiency than is typically found in a normal queue management system.

Standing reservations provide a mechanism by which a site can dedicate a particular block of resources
for a special use on a regular daily or weekly basis. For example, node X could be dedicated to running
jobs only from users in the accounting group every Friday from 4 to 10 p.m. See the Reservation
Overview for more information about the use of reservations. The Managing Reservations section
provides a detailed explanation of the concepts and steps involved in the creation and configuration of
standing reservations.

A standing reservation is a powerful means of doing the following:

l Controlling local credential based access to resources.

l Controlling job responsiveness and turnaround.

Related topics

l SRCFG
l mdiag -s (diagnose standing reservations)

7.1.4 Reservation Policies
l Controlling Priority Reservation Creation

l Managing Resource Failures

l Resource Allocation Policy

l Resource Re-Allocation Policy

l Charging for Reserved Resources

Controlling Priority Reservation Creation
In addition to standing and administrative reservations, Moab can also create priority reservations.
These reservations are used to allow the benefits of out-of-order execution (such as is available with
backfill) without the side effect of job starvation. Starvation can occur in any system where the potential
exists for a job to be overlooked by the scheduler for an indefinite period. In the case of backfill, small
jobs may continue to run on available resources as they become available while a large job sits in the
queue, never able to find enough nodes available simultaneously on which to run.

To avoid such situations, priority reservations are created for high priority jobs that cannot run
immediately. When making these reservations, the scheduler determines the earliest time the job could
start and then reserves these resources for use by this job at that future time.

Priority Reservation Creation Policy

Organizations have the ability to control how priority reservations are created and maintained. It is
possible that one job can be at the top of the priority queue for a time and then get bypassed by another
job submitted later. The parameter RESERVATIONPOLICY allows a site to determine how existing
reservations should be handled when new reservations are made.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

382 7.1 Advance Reservations

7.1 Advance Reservations 383

Value Description

HIGHEST All jobs that have ever received a priority reservation up to the RESERVATIONDEPTH
number will maintain that reservation until they run, even if other jobs later bypass them
in priority value.
For example, if there are four jobs with priorities of 8, 10,12, and 20 and

RESERVATIONPOLICY HIGHEST
RESERVATIONDEPTH 3

Only jobs 20, 12, and 10 get priority reservations. Later, if a job with priority higher than
20 is submitted into the queue, it will also get a priority reservation along with the jobs
listed previously. If four jobs higher than 20 were to be submitted into the queue, only
three would get priority reservations, in accordance with the condition set in the
RESERVATIONDEPTH policy.
With HIGHEST, Moab may appear to exceed the RESERVATIONDEPTH if it has already
scheduled the maximum number of priority reservations and then users submit jobs with
higher priority than those already given a priority reservation. Moab keeps all of the
previously-created priority reservations and creates new ones for jobs with higher priority
(again up to the quantity specified with RESERVATIONDEPTH). This means that, if your
RESERVATIONDEPTH is set to 3, Moab can potentially schedule up to 3 new priority
reservations each scheduling iteration, as long as new higher-priority jobs are continually
submitted. This behavior ensures that the highest-priority jobs receive attention while the
former highest-priority jobs do not lose their priority reservation.

CURRENTHIGHEST Only the current top <RESERVATIONDEPTH> priority jobs receive reservations. Under this
policy, all job reservations are destroyed each iteration when the queue is re-prioritized.
The top jobs in the queue are then given new reservations.

NEVER No priority reservations are made.

Priority Reservation Depth

By default, only the highest priority job receives a priority reservation. However, this behavior is
configurable via the RESERVATIONDEPTH policy. Moab's default behavior of only reserving the highest
priority job allows backfill to be used in a form known as liberal backfill. Liberal backfill tends to
maximize system utilization and minimize overall average job turnaround time. However, it does lead to
the potential of some lower priority jobs being indirectly delayed and may lead to greater variance in
job turnaround time. The RESERVATIONDEPTH parameter can be set to a very large value, essentially
enabling what is called conservative backfill where every job that cannot run is given a reservation.
Most sites prefer the liberal backfill approach associated with the default RESERVATIONDEPTH of 1 or
else select a slightly higher value. It is important to note that to prevent starvation in conjunction with
reservations, monotonically increasing priority factors such as queue time or job XFactor should be
enabled. See the Prioritization Overview for more information on priority factors.

Another important consequence of backfill and reservation depth is how they affect job priority. In Moab,
all jobs are prioritized. Backfill allows jobs to be run out of order and thus, to some extent, job priority
to be ignored. This effect, known as priority dilution, can cause many site policies implemented via Moab
prioritization policies to be ineffective. Setting the RESERVATIONDEPTH parameter to a higher value

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

gives job priority more teeth at the cost of slightly lower system utilization. This lower utilization
results from the constraints of these additional reservations, decreasing the scheduler's freedom and its
ability to find additional optimizing schedules. Anecdotal evidence indicates that these utilization losses
are fairly minor, rarely exceeding 8%.

It is difficult a priori to know the right setting for the RESERVATIONDEPTH parameter. Surveys indicate
that the vast majority of sites use the default value of 1. Sites that do modify this value typically set it
somewhere in the range of 2 to 10. The following guidelines may be useful in determining if and how to
adjust this parameter:

Reasons to Increase RESERVATIONDEPTH

l The estimated job start time information provided by the showstart command is heavily used and
the accuracy needs to be increased.

l Priority dilution prevents certain key mission objectives from being fulfilled.

l Users are more interested in knowing when their job will run than in having it run sooner.

Reasons to Decrease RESERVATIONDEPTH

l Scheduling efficiency and job throughput need to be increased.

Assigning Per-QoS Reservation Creation Rules

QoS based reservation depths can be enabled via the RESERVATIONQOSLIST parameter. This parameter
allows varying reservation depths to be associated with different sets of job QoSes. For example, the
following configuration creates two reservation depth groupings:

RESERVATIONDEPTH[0] 8
RESERVATIONQOSLIST[0] highprio,interactive,debug
RESERVATIONDEPTH[1] 2
RESERVATIONQOSLIST[1] batch

This example causes that the top 8 jobs belonging to the aggregate group of highprio, interactive, and debug QoS jobs
will receive priority reservations. Additionally, the top two batch QoS jobs will also receive priority reservations. Use of
this feature allows sites to maintain high throughput for important jobs by guaranteeing that a significant proportion of
these jobs progress toward starting through use of the priority reservation.

By default, the following parameters are set inside Moab:

RESERVATIONDEPTH[DEFAULT] 1
RESERVATIONQOSLIST[DEFAULT] ALL

This allows one job with the highest priority to get a reservation. These values can be overwritten by modifying the
DEFAULT policy.

Managing Resource Failures
Moab allows organizations to control how to best respond to a number of real-world issues. Occasionally
when a reservation becomes active and a job attempts to start, various resource manager race
conditions or corrupt state situations will prevent the job from starting. By default, Moab assumes the
resource manager is corrupt, releases the reservation, and attempts to re-create the reservation after a
short timeout. However, in the interval between the reservation release and the re-creation timeout,
other priority reservations may allocate the newly available resources, reserving them before the

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

384 7.1 Advance Reservations

7.1 Advance Reservations 385

original reservation gets an opportunity to reallocate them. Thus, when the original job reservation is
re-established, its original resource may be unavailable and the resulting new reservation may be
delayed several hours from the earlier start time. The parameter RESERVATIONRETRYTIME allows a
site that is experiencing frequent resource manager race conditions and/or corruption situations to tell
Moab to hold on to the reserved resource for a period of time in an attempt to allow the resource
manager to correct its state.

Resource Allocation Policy
By default, when a standing or administrative reservation is created, Moab allocates nodes in accordance
with the specified task count, node expression, node constraints, and the MINRESOURCE node allocation
policy.

Charging for Reserved Resources

Either Moab HPC Suite 7.0 - Enterprise Edition or Moab Cloud Suite 7.0 are required for support of
charging and allocation management capabilities.

By default, resources consumed by jobs are tracked and charged to an allocation manager. However,
resources dedicated to a reservation are not charged although they are recorded within the reservation
event record. In particular, total processor-seconds reserved by the reservation are recorded as are
total unused processor-seconds reserved (processor-seconds not consumed by an active job). While this
information is available in real-time using the mdiag -r command (see the "Active PH" field), it is not
written to the event log until reservation completion.

To enable direct charging, accountable credentials should be associated with the reservation. If using
mrsvctl, the attributes aaccount, auser, aqos, and agroup can be set using the -S flag. If specified, these
credentials are charged for all unused cycles reserved by the reservation.

Example 7-3: Assigning Accountable Credentials to a Reservation

> mrsvctl -c -h node003 -a user=john,user=steve -S aaccount=jupiter

Moab allocation management interface allows charging for reserved idle resources to be exported in
real-time to peer services or to a file. To export this charge information to a file, use the file server type
as in the following example configuration:

Example 7-4: Setting up a File Based Allocation Management Interface

AMCFG[local] server=file://$HOME/charge.dat

As mentioned, by default, Moab only writes out charge information upon completion of the reservation. If
more timely information is needed, the FLUSHINTERVAL attribute can be specified.

Related topics

l Reservation Overview
l Backfill

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

7.1.5 Configuring and Managing Reservations
l Reservation Attributes

o Start/End Time

o Access Control List (ACL)

o Selecting Resources

o Flags

l Configuring and Managing Standing Reservations

o Standing Reservation Attributes

o Standing Reservation Overview

o Specifying Reservation Resources

o Enforcing Policies Via Multiple Reservations

o Affinity

o ACL Modifiers

o Reservation Ownership

o Partitions

o Resource Allocation Behavior

o Rolling Reservations

o Modifying Resources with Standing Reservations

l Managing Administrative Reservations

Reservation Attributes
All reservations possess a time frame of activity, an access control list (ACL), and a list of resources to
be reserved. Additionally, reservations may also possess a number of extension attributes including
epilog/prolog specification, reservation ownership and accountability attributes, and special flags that
modify the reservation's behavior.

Start/End Time

All reservations possess a start and an end time that define the reservation's active time. During this
active time, the resources within the reservation may only be used as specified by the reservation
access control list (ACL). This active time may be specified as either a start/end pair or a start/duration
pair. Reservations exist and are visible from the time they are created until the active time ends at
which point they are automatically removed.

Access Control List (ACL)

For a reservation to be useful, it must be able to limit who or what can access the resources it has
reserved. This is handled by way of an ACL. With reservations, ACLs can be based on credentials,
resources requested, or performance metrics. In particular, with a standing reservation, the attributes

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

386 7.1 Advance Reservations

7.1 Advance Reservations 387

USERLIST, GROUPLIST, ACCOUNTLIST, CLASSLIST, QOSLIST, JOBATTRLIST, PROCLIMIT, MAXTIME, or
TIMELIMIT may be specified. (See Affinity and Modifiers.)

Reservation access can be adjusted based on a job's requested node features by mapping node
feature requests to job attributes as in the following example:

NODECFG[DEFAULT] FEATURES+=ia64
NODETOJOBATTRMAP ia64,ia32
SRCFG[pgs] JOBATTRLIST=ia32

> mrsvctl -c -a jattr=gpfs\! -h "r:13-500"

Selecting Resources

When specifying which resources to reserve, the administrator has a number of options. These options
allow control over how many resources are reserved and where they are reserved. The following
reservation attributes allow the administrator to define resources.

Task Description

Moab uses the task concept extensively for its job and reservation management. A task is simply an
atomic collection of resources, such as processors, memory, or local disk, which must be found on the
same node. For example, if a task requires 4 processors and 2 GB of memory, the scheduler must find all
processors AND memory on the same node; it cannot allocate 3 processors and 1 GB on one node and 1
processor and 1 GB of memory on another node to satisfy this task. Tasks constrain how the scheduler
must collect resources for use in a standing reservation; however, they do not constrain the way in
which the scheduler makes these cumulative resources available to jobs. A job can use the resources
covered by an accessible reservation in whatever way it needs. If reservation X allocates 6 tasks with 2
processors and 512 MB of memory each, it could support job Y which requires 10 tasks of 1 processor
and 128 MB of memory or job Z which requires 2 tasks of 4 processors and 1 GB of memory each. The
task constraints used to acquire a reservation's resources are transparent to a job requesting use of
these resources.

Example 7-5:

SRCFG[test] RESOURCES=PROCS:2,MEM:1024

Task Count

Using the task description, the TASKCOUNT attribute defines how many tasks must be allocated to satisfy
the reservation request. To create a reservation, a task count and/or a host list must be specified.

Example 7-6:

SRCFG[test] TASKCOUNT=256

Host List

A host list constrains the set of resources available to a reservation. If no task count is specified, the
reservation attempts to reserve one task on each of the listed resources. If a task count is specified that
requests fewer resources than listed in the host list, the scheduler reserves only the number of tasks

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

from the host list specified by the task count attribute. If a task count is specified that requests more
resources than listed in the host list, the scheduler reserves the host list nodes first and then seeks
additional resources outside of this list.

Example 7-7:

SRCFG[test] HOSTLIST=node01,node1[3-5]

Node Features

Node features can be specified to constrain which resources are considered.

Example 7-8:

SRCFG[test] NODEFEATURES=fastos

Partition

A partition may be specified to constrain which resources are considered.

Example 7-9:

SRCFG[test] PARTITION=core3

Flags

Reservation flags allow specification of special reservation attributes or behaviors. Supported flags are
listed in the following table:

Flag Name Description

ACLOVERLAP Deprecated (this is now a default flag). In addition to free or idle
nodes, a reservation may also reserve resources that possess credentials
that meet the reservation's ACL. To change this behavior, set the
NOACLOVERLAP on page 390 flag.

ADVRESJOBDESTROY All jobs that have an ADVRES matching this reservation are canceled when
the reservation is destroyed.

ALLOWJOBOVERLAP A job is allowed to start in a reservation that may end before the job com-
pletes. When the reservation ends before the job completes, the job will
not be canceled but will continue to run.

BYNAME Reservation only allows access to jobs that meet reservation ACLs and
explicitly request the resources of this reservation using the job ADVRES
flag. (See Job to Reservation Binding.)

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

388 7.1 Advance Reservations

7.1 Advance Reservations 389

Flag Name Description

DEDICATEDRESOURCE
(aka EXCLUSIVE)

Reservation only placed on resources that are not reserved by any other
reservation including job, system, and user reservations (except when
combined with IGNJOBRSV*).

The order that SRCFG reservations are listed in the configuration
is important when using DEDICATEDRESOURCE, because
reservations made afterwards can steal resources later. During
configuration, list DEDICATEDRESOURCE reservations last to
guarantee exclusiveness.

EVACVMS Reservation will automatically evacuate virtual machines from the
reservation nodelist.

The same action can be accomplished by using reservation
profiles. For more information, see Optimizing Maintenance
Reservations on page 380.

IGNIDLEJOBS* Reservation can be placed on top of idle job reservations.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNJOBRSV* Ignores existing job reservations, allowing the reservation to be forced
onto available resources even if it conflicts with existing job reservations.
User and system reservation conflicts are still valid. It functions the same
as IGNIDLEJOBS plus allows a reservation to be placed on top of an
existing running job's reservation.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNRSV* Request ignores existing resource reservations allowing the reservation to
be forced onto available resources even if this conflicts with other
reservations. It functions the same as IGNJOBRSV plus allows the
reservation to be placed on top of the system reservations.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

IGNSTATE* Reservation ignores node state when assigning nodes. It functions the
same as IGNRSV plus allows the reservation to be placed on nodes that are
not currently available. Also ignores resource availability on nodes.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Flag Name Description

NOACLOVERLAP All resources must be free or idle, with no existing reservations. Moab will
not allocate in-use resources even if they match the reservation's ACL.

mrsvctl -c -t 12 -E -F noacloverlap -a user==john

Moab looks for resources that are exclusive (free). Without the
flag, Moab would look for resources that are exclusive or that
are already running john's jobs.

This flag is meant to be used in conjunction with
DEDICATEDRESOURCE.

NOCHARGE By default, Moab charges the allocation manager for unused cycles in a
standing reservation. Setting the NOCHARGE flag prevents Moab from
charging the allocation manager for standing reservations.

NOVMMIGRATION If set on a reservation, this prevents VMs from being migrated away from
the reservation. If there are multiple reservations on the hypervisor and
at least one reservation does not have the NOVMIGRATION flag, then
VMs will be migrated.

OWNERPREEMPT Jobs by the reservation owner are allowed to preempt non-owner jobs
using reservation resources.

OWNERPREEMPTIGNOREMINTIME Allows the OWNERPREEMPT flag to "trump" the PREEMPTMINTIME
setting for jobs already running on a reservation when the owner of the
reservation submits a job. For example: without the
OWNERPREEMPTIGNOREMINTIME flag set, a job submitted by the
owner of a reservation will not preempt non-owner jobs already running
on the reservation until the PREEMPTMINTIME setting (if set) for those
jobs is passed.
With the OWNERPREEMPTIGNOREMINTIME flag set, a job submitted
by the owner of a reservation immediately preempts non-owner jobs
already running on the reservation, regardless of whether
PREEMPTMINTIME is set for the non-owner jobs.

REQFULL Reservation is only created when all resources can be allocated.

SINGLEUSE Reservation is automatically removed after completion of the first job to
use the reserved resources.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

390 7.1 Advance Reservations

7.1 Advance Reservations 391

Flag Name Description

SPACEFLEX Deprecated (this is now a default flag). Reservation is allowed to adjust
resources allocated over time in an attempt to optimize resource util-
ization.

* IGNIDLEJOBS, IGNJOBRSV, IGNRSV, and IGNSTATE flags are built on one another and form
a hierarchy. IGNJOBRSV performs the function of IGNIDLEJOBS plus its own functions. IGNRSV
performs the function of IGNJOBSRV and IGNIDLEJOBS plus its own functions. IGNSTATE
performs the function of IGNRSV, IGNJOBRSV, and IGNIDLEJOBS plus its own functions. While
you can use combinations of these flags, it is not necessary. If you set one flag, you do not need to
set other flags that fall beneath it in the hierarchy.

Most flags can be associated with a reservation via the mrsvctl -c -F command or the SRCFG parameter.

Configuring Standing Reservations
Standing reservations allow resources to be dedicated for particular uses. This dedication can be
configured to be permanent or periodic, recurring at a regular time of day and/or time of week. There is
extensive applicability of standing reservations for everything from daily dedicated job runs to improved
use of resources on weekends. By default, standing reservations can overlap other reservations. Unless
you set an ignore-type flag (ACLOVERLAP, DEDICATEDRESOURCE, IGNIDLEJOBS, or IGNJOBRSV),
they are automatically given the IGNRSV flag. All standing reservation attributes are specified via the
SRCFG parameter using the attributes listed in the table below.

Standing Reservation Attributes

ACCESS

Format DEDICATED or SHARED

Default ---

Description If set to SHARED, allows a standing reservation to use resources already allocated to other non-
job reservations. Otherwise, these other reservations block resource access.

Example SRCFG[test] ACCESS=SHARED

Standing reservation test may access resources allocated to existing standing and
administrative reservations.

The order that SRCFG reservations are listed in the configuration are important when
using DEDICATED, because reservations made afterwards can steal resources later.
During configuration, list DEDICATED reservations last to guarantee exclusiveness.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

ACCOUNTLIST

Format List of valid, comma delimited account names (see ACL Modifiers).

Default ---

Description Specifies that jobs with the associated accounts may use the resources contained within this reser-
vation.

Example SRCFG[test] ACCOUNTLIST=ops,staff

Jobs using the account ops or staff are granted access to the resources in standing
reservation test.

CHARGEACCOUNT

Format Any valid accountname.

Default ---

Description Specifies the account to which Moab will charge all idle cycles within the reservation (via the
allocation manager).

CHARGEACCOUNTmust be used in conjunction with CHARGEUSER.

Example SRCFG[sr_gold1] HOSTLIST=kula
SRCFG[sr_gold1] PERIOD=INFINITY
SRCFG[sr_gold1] OWNER=USER:admin
SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting standing reservation sr_
gold1 to account math.

CHARGEUSER

Format Any valid username.

Default ---

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

392 7.1 Advance Reservations

7.1 Advance Reservations 393

CHARGEUSER

Description Specifies the user to which Moab will charge all idle cycles within the reservation (via the
allocation manager).

CHARGEUSERmust be used in conjunction with CHARGEACCOUNT.

Example SRCFG[sr_gold1] HOSTLIST=kula
SRCFG[sr_gold1] PERIOD=INFINITY
SRCFG[sr_gold1] OWNER=USER:admin
SRCFG[sr_gold1] CHARGEACCOUNT=math
SRCFG[sr_gold1] CHARGEUSER=john

Moab charges all idle cycles within reservations supporting standing reservation sr_
gold1 to user john.

CLASSLIST

Format List of valid, comma delimited classes/queues (see ACL Modifiers).

Default ---

Description Specifies that jobs with the associated classes/queues may use the resources contained within this
reservation.

Example SRCFG[test] CLASSLIST=!interactive

Jobs not using the class interactive are granted access to the resources in standing
reservation test.

COMMENT

Format <STRING>

If the string contains whitespace, it should be enclosed in single (') or double quotes (").

Default ---

Description Specifies a descriptive message associated with the standing reservation and all child reservations.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

COMMENT

Example SRCFG[test] COMMENT='rsv for network testing'

Moab annotates the standing reservation test and all child reservations with the specified
message. These messages show up within Moab client commands, Moab web tools, and
graphical administrator tools.

DAYS

Format One or more of the following (comma-delimited):
l Mon
l Tue
l Wed
l Thu
l Fri
l Sat
l Sun
l [ALL]

Default [ALL]

Description Specifies which days of the week the standing reservation is active.

Example SRCFG[test] DAYS=Mon,Tue,Wed,Thu,Fri

Standing reservation test is active Monday through
Friday.

DEPTH

Format <INTEGER>

Default 2

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

394 7.1 Advance Reservations

7.1 Advance Reservations 395

DEPTH

Description Specifies the depth of standing reservations to be created (one per period).

To satisfy the DEPTH, Moab creates new reservations at the beginning of the specified
PERIOD on page 400. If your reservation ends at the same time that a new PERIOD begins,
the number of reservations may not match the requested DEPTH. To prevent or resolve this
issue, set the ENDTIME on page 395 a couple minutes before the beginning of the next
PERIOD. For example, set the ENDTIME to 23:58 instead of 00:00.

Example SRCFG[test] PERIOD=DAY DEPTH=6

Specifies that six reservations will be created for standing reservation test.

DISABLE

Format <BOOLEAN>

Default FALSE

Description Specifies that the standing reservation should no longer spawn child reservations.

Example SRCFG[test] PERIOD=DAY DEPTH=7 DISABLE=TRUE

Specifies that reservations are created for standing reservation test for today and
the next six days.

ENDTIME

Format [[[DD:]HH:]MM:]SS

Default 24:00:00

Description Specifies the time of day the standing reservation period ends (end of day or end of week
depending on PERIOD).

Example SRCFG[test] STARTTIME=8:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

Standing reservation test is active from 8:00 AM until 5:00 PM.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

FLAGS

Format Comma-delimited list of zero or more flags listed in the reservation flags overview.

Default ---

Description Specifies special reservation attributes. See Managing Reservations - Flags for details.

Example SRCFG[test] FLAGS=BYNAME,DEDICATEDRESOURCE

Jobs may only access the resources within this reservation if they explicitly request the
reservation by name. Further, the reservation is created to not overlap with other
reservations.

GROUPLIST

Format One or more comma-delimited group names.

Default [ALL]

Description Specifies the groups allowed access to this standing reservation (see ACL Modifiers).

Example SRCFG[test] GROUPLIST=staff,ops,special
SRCFG[test] CLASSLIST=interactive

Moab allows jobs with the listed group IDs or which request the job class interactive to
use the resources covered by the standing reservation.

HOSTLIST

Format One or more comma delimited host names or host expressions or the string "class:<classname>".

Default ---

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

396 7.1 Advance Reservations

7.1 Advance Reservations 397

HOSTLIST

Description Specifies the set of hosts that the scheduler can search for resources to satisfy the reservation. If
specified using the "class:X" format, Moab only selects hosts that support the specified class. If
TASKCOUNT is also specified, only TASKCOUNT tasks are reserved. Otherwise, all matching hosts
are reserved.

The HOSTLIST attribute is treated as host regular expression so foo10 will map to foo10,
foo101, foo1006, and so forth. To request an exact host match, the expression can be
bounded by the carat and dollar symbol expression markers as in ^foo10$.

Example SRCFG[test] HOSTLIST=node001,node002,node003
SRCFG[test] RESOURCES=PROCS:2;MEM:512
SRCFG[test] TASKCOUNT=2

Moab reserves a total of two tasks with 2 processors and 512 MB each, using resources
located on node001, node002, and/or node003.

SRCFG[test] HOSTLIST=node01,node1[3-5]

The reservation will consume all nodes that have "node01" somewhere in their names and
all nodes that have both "node1" and either a "3," "4," or "5" in their names.

SRCFG[test] HOSTLIST=r:node[1-6]

The reservation will consume all nodes with names that begin with "node" and end with
any number 1 through 6. In other words, it will reserve node1, node2, node3, node4, node5,
and node6.

JOBATTRLIST

Format Comma-delimited list of one or more of the following job attributes:
l PREEMPTEE
l INTERACTIVE
l any generic attribute configured through NODECFG.

Default ---

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

JOBATTRLIST

Description Specifies job attributes that grant a job access to the reservation.

Values can be specified with a "!="assignment to only allow jobs NOT requesting a certain
feature inside the reservation.

To enable/disable reservation access based on requested node features, use the
parameter NODETOJOBATTRMAP.

Example SRCFG[test] JOBATTRLIST=PREEMPTEE

Preemptible jobs can access the resources reserved within this reservation.

MAXJOB

Format <INTEGER>

Default ---

Description Specifies the maximum number of jobs that can run in the reservation.

Example SRCFG[test] MAXJOB=1

Only one job will be allowed to run in this reservation.

MAXTIME

Format [[[DD:]HH:]MM:]SS[+]

Default ---

Description Specifies the maximum time for jobs allowable. Can be used with Affinity to attract jobs with same
MAXTIME.

Example SRCFG[test] MAXTIME=1:00:00+

Jobs with a time of 1:00:00 are attracted to this reservation.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

398 7.1 Advance Reservations

7.1 Advance Reservations 399

NODEFEATURES

Format Comma-delimited list of node features.

Default ---

Description Specifies the required node features for nodes that are part of the stand-
ing reservation.

Example SRCFG[test] NODEFEATURES=wide,fddi

All nodes allocated to the standing reservation must have both
thewide and fddi node attributes.

OWNER

Format <CREDTYPE>:<CREDID>
Where <CREDTYPE> is one of USER,GROUP, ACCT,QoS,CLASS or CLUSTER and
<CREDTYPE> is a valid credential id of that type.

Default ---

Description Specifies the owner of the reservation. Setting ownership for a reservation grants the user
management privileges, including the power to release it.

Setting a USER as the OWNER of a reservation gives that user privileges to query and
release the reservation.

For sandbox reservations, sandboxes are applied to a specific peer only if OWNER is set to
CLUSTER:<PEERNAME>.

Example SRCFG[test] OWNER=ACCT:jupiter

User jupiter owns the reservation and may be granted special privileges associated with
that ownership.

PARTITION

Format Valid partition name.

Default [ALL]

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

PARTITION

Description Specifies the partition in which to create the standing reservation.

Example SRCFG[test] PARTITION=OLD

The standing reservation will only select resources from
partitionOLD.

PERIOD

Format One of DAY,WEEK, or INFINITY.

Default DAY

Description Specifies the period of the standing reservation.

Example SRCFG[test] PERIOD=WEEK

Each standing reservation covers a one week period.

PROCLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

Default ---

Description Specifies the processor limit for jobs requesting access to this standing reservation.

Example SRCFG[test] PROCLIMIT<=4

Jobs requesting 4 or fewer processors are allowed to run.

PSLIMIT

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

400 7.1 Advance Reservations

7.1 Advance Reservations 401

PSLIMIT

Default ---

Description Specifies the processor-second limit for jobs requesting access to this standing reservation.

Example SRCFG[test] PSLIMIT<=40000

Jobs requesting 40000 or fewer processor-seconds are allowed to run.

QOSLIST

Format Zero or more valid, comma-delimited QoS names.

Default ---

Description Specifies that jobs with the listed QoS names can access the reserved resources.

Example SRCFG[test] QOSLIST=hi,low,special

Moab allows jobs using the listed QoSes access to the reserved
resources.

REQUIREDTPN

Format <QUALIFIER><INTEGER>
<QUALIFIER>may be one of the following <, <=, ==, >=, >

Default ---

Description Restricts access to reservations based on the job's TPN (tasks per node).

Example SRCFG[test] REQUIREDTPN==4

Jobs with tpn=4 or ppn=4 would be allowed within the reservation, but any other TPN
value would not. (For more information, see TPN (Exact Tasks Per Node) on page
404.)

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

RESOURCES

Format Semicolon delimited <ATTR>:<VALUE> pairs where <ATTR>may be one of PROCS,MEM, SWAP,
or DISK.

Default PROCS:-1 (All processors available on node)

Description Specifies what resources constitute a single standing reservation task. (Each task must be able to
obtain all of its resources as an atomic unit on a single node.) Supported resources currently
include the following:

l PROCS (number of processors)
l MEM (real memory in MB)
l DISK (local disk in MB)
l SWAP (virtual memory in MB)

Example SRCFG[test] RESOURCES=PROCS:1;MEM:512

Each standing reservation task reserves one processor and 512 MB of real memory.

ROLLBACKOFFSET

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the minimum time in the future at which the reservation may start. This offset is rolling
meaning the start time of the reservation will continuously roll back into the future to maintain
this offset. Rollback offsets are a good way of providing guaranteed resource access to users under
the conditions that they must commit their resources in the future or lose dedicated access. See
QoS for more info about quality of service and service level agreements; also see Rollback
Reservation Overview.

Neither credlock nor advres are compatible on the jobs submitted for this reservation.

Example SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

The standing reservation guarantees access to up to 32 processors within 24 hours to jobs
from the ajax account.

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when an
idle reservation is created in the rollback reservation. For example:

SRCFG[staff] ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

402 7.1 Advance Reservations

7.1 Advance Reservations 403

RSVACCESSLIST

Format <RESERVATION>[,...]

Default ---

Description A list of reservations to which the specified reservation has access.

Example SRCFG[test] RSVACCESSLIST=rsv1,rsv2,rsv3

RSVGROUP

Format <STRING>

Default ---

Description See section Reservation Group for a detailed description.

Example SRCFG[test] RSVGROUP=rsvgrp1
SRCFG[ajax] RSVGROUP=rsvgrp1

STARTTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:00:00 (midnight)

Description Specifies the time of day/week the standing reservation becomes active. Whether this indicates a
time of day or time of week depends on the setting of the PERIOD attribute.

If specified within a reservation profile, a value of 0 indicates the reservation should start
at the earliest opportunity.

Example SRCFG[test] STARTTIME=08:00:00
SRCFG[test] ENDTIME=17:00:00
SRCFG[test] PERIOD=DAY

The standing reservation will be active from 8:00 a.m. until 5:00 p.m. each day.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

TASKCOUNT

Format <INTEGER>

Default 0 (unlimited tasks)

Description Specifies how many tasks should be reserved for the reservation.

Example SRCFG[test] RESOURCES=PROCS:1;MEM:256
SRCFG[test] TASKCOUNT=16

Standing reservation test reserves 16 tasks worth of resources; in this case, 16 processors
and 4 GB of real memory.

TIMELIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (no time based access)

Description Specifies the maximum allowed overlap between the standing reservation and a job requesting
resource access.

Example SRCFG[test] TIMELIMIT=1:00:00

Moab allows jobs to access up to one hour of resources in the standing reservation.

TPN (Exact Tasks Per Node)

Format <INTEGER>

Default 0 (no TPN constraint)

Description Specifies the exact number of tasks per node that must be available on eligible nodes.

Example SRCFG[2] TPN=4
SRCFG[2] RESOURCES=PROCS:2;MEM:256

Moab must locate four tasks on each node that is to be part of the reservation. That is,
each node included in standing reservation 2 must have 8 processors and 1 GB of memory
available.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

404 7.1 Advance Reservations

7.1 Advance Reservations 405

TRIGGER

Format See Creating a trigger on page 658for syntax.

Default N/A

Descrip-
tion

Specifies event triggers to be launched by the scheduler under the scheduler's ID. These triggers
can be used to conditionally cancel reservations, modify resources, or launch various actions at spe-
cified event offsets. See About object triggers on page 655 for more information.

Example SRCFG[fast]
TRIGGER=EType=start,Offset=5:00:00,AType=exec,Action="/usr/local/domail.pl"

Moab launches the domail.pl script 5 hours after any fast reservation starts.

USERLIST

Format Comma-delimited list of users.

Default ---

Description Specifies which users have access to the resources reserved by this reservation (see ACL
Modifiers).

Example SRCFG[test] USERLIST=bob,joe,mary

Users bob, joe and mary can all access the resources reserved within this reservation.

Standing Reservation Overview

A standing reservation is similar to a normal administrative reservation in that it also places an access
control list on a specified set of resources. Resources are specified on a per-task basis and currently
include processors, local disk, real memory, and swap. The access control list supported for standing
reservations includes users, groups, accounts, job classes, and QoS levels. Standing reservations can be
configured to be permanent or periodic on a daily or weekly basis and can accept a daily or weekly start
and end time. Regardless of whether permanent or recurring on a daily or weekly basis, standing
reservations are enforced using a series of reservations, extending a number of periods into the future
as controlled by the DEPTH attribute of the SRCFG parameter.

The following examples demonstrate possible configurations specified with the SRCFG parameter.

Example 7-10: Basic Business Hour Standing Reservation

SRCFG[interactive] TASKCOUNT=6 RESOURCES=PROCS:1,MEM:512
SRCFG[interactive] PERIOD=DAY DAYS=MON,TUE,WED,THU,FRI

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

SRCFG[interactive] STARTTIME=9:00:00 ENDTIME=17:00:00
SRCFG[interactive] CLASSLIST=interactive

When using the SRCFG parameter, attribute lists must be delimited using the comma (,), pipe (|),
or colon (:) characters; they cannot be space delimited. For example, to specify a multi-class ACL,
specify:

SRCFG[test] CLASSLIST=classA,classB

Only one STARTTIME and one ENDTIME value can be specified per reservation. If varied start and
end times are desired throughout the week, complementary standing reservations should be
created. For example, to establish a reservation from 8:00 p.m. until 6:00 a.m. the next day during
business days, two reservations should be created-one from 8:00 p.m. until midnight, and the other
from midnight until 6:00 a.m. Jobs can run across reservation boundaries allowing these two
reservations to function as a single reservation that spans the night. The following example
demonstrates how to span a reservation across 2 days on the same nodes:

SRCFG[Sun] PERIOD=WEEK
SRCFG[Sun] STARTTIME=00:20:00:00 ENDTIME=01:00:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

SRCFG[Mon] PERIOD=WEEK
SRCFG[Mon] STARTTIME=01:00:00:00 ENDTIME=01:06:00:00
SRCFG[Sun] HOSTLIST=node01,node02,node03

The preceding example fully specifies a reservation including the quantity of resources requested using
the TASKCOUNT and RESOURCES attributes. In all cases, resources are allocated to a reservation in units
called tasks where a task is a collection of resources that must be allocated together on a single node.
The TASKCOUNT attribute specifies the number of these tasks that should be reserved by the
reservation. In conjunction with this attribute, the RESOURCES attribute defines the reservation task by
indicating what resources must be included in each task. In this case, the scheduler must locate and
reserve 1 processor and 512 MB of memory together on the same node for each task requested.

As mentioned previously, a standing reservation reserves resources over a given time frame. The
PERIOD attribute may be set to a value of DAY, WEEK, or INFINITY to indicate the period over which
this reservation should recur. If not specified, a standing reservation recurs on a daily basis. If a standing
reservation is configured to recur daily, the attribute DAYS may be specified to indicate which days of
the week the reservation should exist. This attribute takes a comma-delimited list of days where each
day is specified as the first three letters of the day in all capital letters: MON or FRI. The preceding
example specifies that this reservation is periodic on a daily basis and should only exist on business
days.

The time of day during which the requested tasks are to be reserved is specified using the STARTTIME
and ENDTIME attributes. These attributes are specified in standard military time HH:MM:SS format and
both STARTTIME and ENDTIME specification is optional defaulting to midnight at the beginning and end of
the day respectively. In the preceding example, resources are reserved from 9:00 a.m. until 5:00 p.m. on
business days.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

406 7.1 Advance Reservations

7.1 Advance Reservations 407

The final aspect of any reservation is the access control list indicating who or what can use the reserved
resources. In the preceding example, the CLASSLIST attribute is used to indicate that jobs requesting the
class "interactive" should be allowed to use this reservation.

Specifying Reservation Resources

In most cases, only a small subset of standing reservation attributes must be specified in any given case.
For example, by default, RESOURCES is set to PROCS=-1 which indicates that each task should reserve
all of the processors on the node on which it is located. This, in essence, creates a one task equals one
node mapping. In many cases, particularly on uniprocessor systems, this default behavior may be easiest
to work with. However, in SMP environments, the RESOURCES attribute provides a powerful means of
specifying an exact, multi-dimensional resource set.

An examination of the parameters documentation shows that the default value of PERIOD is DAYS.
Thus, specifying this parameter in the preceding above was unnecessary. It was used only to
introduce this parameter and indicate that other options exist beyond daily standing reservations.

Example 7-11: Host Constrained Standing Reservation

Although the first example did specify a quantity of resources to reserve, it did not specify where the
needed tasks were to be located. If this information is not specified, Moab attempts to locate the needed
resources anywhere it can find them. The Example 1 reservation essentially discovers hosts where the
needed resources can be found. If the SPACEFLEX reservation flag is set, then the reservation continues
to float to the best hosts over the life of the reservation. Otherwise, it will be locked to the initial set of
allocated hosts.

If a site wanted to constrain a reservation to a subset of available resources, this could be accomplished
using the HOSTLIST attribute. The HOSTLIST attribute is specified as a comma-separated list of host
names and constrains the scheduler to only select tasks from the specified list. This attribute can exactly
specify hosts or specify them using host regular expressions. The following example demonstrates a
possible use of the HOSTLIST attribute:

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive

Note that the HOSTLIST attribute specifies a non-contiguous list of hosts. Any combination of hosts may be specified and
hosts may be specified in any order. In this example, the TASKCOUNT attribute is also specified. These two attributes
both apply constraints on the scheduler with HOSTLIST specifying where the tasks can be located and TASKCOUNT
indicating how many total tasks may be allocated. In this example, six tasks are requested but only four hosts are
specified. To handle this, if adequate resources are available, the scheduler may attempt to allocate more than one task
per host. For example, assume that each host is a quad-processor system with 1 GB of memory. In such a case, the
scheduler could allocate up to two tasks per host and even satisfy the TASKCOUNT constraint without using all of the
hosts in the host list.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

It is important to note that even if there is a one to one mapping between the value of TASKCOUNT
and the number of hosts in HOSTLIST, the scheduler will not necessarily place one task on each
host. If, for example, node001 and node002 were 8 processor SMP hosts with 1 GB of memory, the
scheduler could locate up to four tasks on each of these hosts fully satisfying the reservation
taskcount without even partially using the remaining hosts. (Moab will place tasks on hosts
according to the policy specified with the NODEALLOCATIONPOLICY parameter.) If the host list
provides more resources than what is required by the reservation as specified via TASKCOUNT,
the scheduler will simply select the needed resources within the set of hosts listed.

Enforcing Policies Via Multiple Reservations

Single reservations enable multiple capabilities. Combinations of reservations can further extend a site's
capabilities to impose specific policies.

Example 7-12: Reservation Stacking

If HOSTLIST is specified but TASKCOUNT is not, the scheduler will pack as many tasks as possible onto all
of the listed hosts. For example, assume the site added a second standing reservation named debug to its
configuration that reserved resources for use by certain members of its staff using the following
configuration:

SRCFG[interactive] DAYS=MON,TUE,WED,THU,FRI
SRCFG[interactive] PERIOD=DAY
SRCFG[interactive] STARTTIME=10:00:00 ENDTIME=15:00:00
SRCFG[interactive] RESOURCES=PROCS:2,MEM:256
SRCFG[interactive] HOSTLIST=node001,node002,node005,node020
SRCFG[interactive] TASKCOUNT=6
SRCFG[interactive] CLASSLIST=interactive
SRCFG[debug] HOSTLIST=node001,node002,node003,node004
SRCFG[debug] USERLIST=helpdesk
SRCFG[debug] GROUPLIST=operations,sysadmin
SRCFG[debug] PERIOD=INFINITY

The new standing reservation is quite simple. Since RESOURCES is not specified, it will allocate all
processors on each host that is allocated. Since TASKCOUNT is not specified, it will allocate every host
listed in HOSTLIST. Since PERIOD is set to INFINITY, the reservation is always in force and there is no
need to specify STARTTIME, ENDTIME, or DAYS.

The standing reservation has two access parameters set using the attributes USERLIST and GROUPLIST.
This configuration indicates that the reservation can be accessed if any one of the access lists specified
is satisfied by the job. In essence, reservation access is logically ORed allowing access if the requester
meets any of the access constraints specified. In this example, jobs submitted by either user helpdesk or
any member of the groups operations or sysadmin can use the reserved resources. (See ACL Modifiers.)

Unless ACL Modifiers are specified, access is granted to the logical OR of access lists specified within a
standing reservation and granted to the logical AND of access lists across different standing
reservations. A comparison of the standing reservations interactive and debug in the preceding example
indicates that they both can allocate hosts node001 and node002. If node001 had both of these
reservations in place simultaneously and a job attempted to access this host during business hours when
standing reservation interactive was active. The job could only use the doubly reserved resources if it
requests the run class interactive and it meets the constraints of reservation debug—that is, that it is
submitted by user helpdesk or by a member of the group operations or sysadmin.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

408 7.1 Advance Reservations

7.1 Advance Reservations 409

As a rule, the scheduler does not stack reservations unless it must. If adequate resources exist, it can
allocate reserved resources side by side in a single SMP host rather than on top of each other. In the
case of a 16 processor SMP host with two 8 processor standing reservations, 8 of the processors on this
host will be allocated to the first reservation, and 8 to the next. Any configuration is possible. The 16
processor hosts can also have 4 processors reserved for user "John," 10 processors reserved for group
"Staff," with the remaining 2 processors available for use by any job.

Stacking reservations is not usually required but some site administrators choose to do it to enforce
elaborate policies. There is no problem with doing so as long as you can keep things straight. It really is
not too difficult a concept; it just takes a little getting used to. See the Reservation Overview section for
a more detailed description of reservation use and constraints.

As mentioned earlier, by default the scheduler enforces standing reservations by creating a number of
reservations where the number created is controlled by the DEPTH attribute. Each night at midnight, the
scheduler updates its periodic non-floating standing reservations. By default, DEPTH is set to 2, meaning
when the scheduler starts up, it will create two 24-hour reservations covering a total of two days' worth
of time-a reservation for today and one for tomorrow. For daily reservations, at midnight, the
reservations roll, meaning today's reservation expires and is removed, tomorrow's reservation becomes
today's, and the scheduler creates a new reservation for the next day.

With this model, the scheduler continues creating new reservations in the future as time moves forward.
Each day, the needed resources are always reserved. At first, all appears automatic but the standing
reservation DEPTH attribute is in fact an important aspect of reservation rolling, which helps address
certain site specific environmental factors. This attribute remedies a situation that might occur when a
job is submitted and cannot run immediately because the system is backlogged with jobs. In such a case,
available resources may not exist for several days out and the scheduler must reserve these future
resources for this job. With the default DEPTH setting of two, when midnight arrives, the scheduler
attempts to roll its standing reservations but a problem arises in that the job has now allocated the
resources needed for the standing reservation two days out. Moab cannot reserve the resources for the
standing reservation because they are already claimed by the job. The standing reservation reserves
what it can but because all needed resources are not available, the resulting reservation is now smaller
than it should be, or is possibly even empty.

If a standing reservation is smaller than it should be, the scheduler will attempt to add resources each
iteration until it is fully populated. However, in the case of this job, the job is not going to release its
reserved resources until it completes and the standing reservation cannot claim them until this time.
The DEPTH attribute allows a site to specify how deep into the future a standing reservation should
reserve its resources allowing it to claim the resources first and prevent this problem. If a partial
standing reservation is detected on a system, it may be an indication that the reservation's DEPTH
attribute should be increased.

In Example 3, the PERIOD attribute is set to INFINITY. With this setting, a single, permanent standing
reservation is created and the issues of resource contention do not exist. While this eliminates the
contention issue, infinite length standing reservations cannot be made periodic.

Example 7-13: Multiple ACL Types

In most cases, access lists within a reservation are logically ORed together to determine reservation
access. However, exceptions to this rule can be specified by using the required ACL marker-the asterisk
(*). Any ACL marked with this symbol is required and a job is only allowed to use a reservation if it
meets all required ACLs and at least one non-required ACL (if specified). A common use for this facility is
in conjunction with the TIMELIMIT attribute. This attribute controls the length of time a job may use the

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

resources within a standing reservation. This access mechanism can be ANDed or ORed to the
cumulative set of all other access lists as specified by the required ACL marker. Consider the following
example configuration:

SRCFG[special] TASKCOUNT=32
SRCFG[special] PERIOD=WEEK
SRCFG[special] STARTTIME=1:08:00:00
SRCFG[special] ENDTIME=5:17:00:00
SRCFG[special] NODEFEATURES=largememory
SRCFG[special] TIMELIMIT=1:00:00*
SRCFG[special] QOSLIST=high,low,special-
SRCFG[special] ACCCOUNTLIST=!projectX,!projectY

The above configuration requests 32 tasks which translate to 32 nodes. The PERIOD attribute makes this
reservation periodic on a weekly basis while the attributes STARTTIME and ENDTIME specify the week
offsets when this reservation is to start and end. (Note that the specification format has changed to
DD:HH:MM:SS.) In this case, the reservation starts on Monday at 8:00 a.m. and runs until Friday at 5:00
p.m. The reservation is enforced as a series of weekly reservations that only cover the specified time
frame. The NODEFEATURES attribute indicates that each of the reserved nodes must have the node
feature "largememory" configured.

As described earlier, TIMELIMIT indicates that jobs using this reservation can only use it for one hour.
This means the job and the reservation can only overlap for one hour. Clearly jobs requiring an hour or
less of wallclock time meet this constraint. However, a four-hour job that starts on Monday at 5:00 a.m.
or a 12-hour job that starts on Friday at 4:00 p.m. also satisfies this constraint. Also, note the TIMELIMIT
required ACL marker, *; it is set indicating that jobs must not only meet the TIMELIMIT access constraint
but must also meet one or more of the other access constraints. In this example, the job can use this
reservation if it can use the access specified via QOSLIST or ACCOUNTLIST; that is, it is assigned a QoS of
high, low, or special , or the submitter of the job has an account that satisfies the !projectX and !projectY
criteria. See the QoS Overview for more info about QoS configuration and usage.

Affinity

Reservation ACLs allow or deny access to reserved resources but they may be configured to also impact
a job's affinity for a particular reservation. By default, jobs gravitate toward reservations through a
mechanism known as positive affinity. This mechanism allows jobs to run on the most constrained
resources leaving other, unreserved resources free for use by other jobs that may not be able to access
the reserved resources. Normally this is a desired behavior. However, sometimes, it is desirable to
reserve resources for use only as a last resort-using the reserved resources only when there are no
other resources available. This last resort behavior is known as negative affinity. Note the '-' (hyphen or
negative sign) following the special in the QOSLIST values. This special mark indicates that QoS special
should be granted access to this reservation but should be assigned negative affinity. Thus, the QOSLIST
attribute specifies that QoS high and low should be granted access with positive affinity (use the
reservation first where possible) and QoS special granted access with negative affinity (use the
reservation only when no other resources are available).

Affinity status is granted on a per access object basis rather than a per access list basis and always
defaults to positive affinity. In addition to negative affinity, neutral affinity can also be specified using
the equal sign (=) as in QOSLIST[0] normal= high debug= low-.

When a job matches multiple ACLs for a reservation, the final node affinity for the node, job, and
reservation combination is based on the last matching ACL entry found in the configuration file.

For example, given the following reservation ACLs, a job matching both will receive a negative affinity:

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

410 7.1 Advance Reservations

7.1 Advance Reservations 411

SRCFG[res1] USERLIST=joe+ MAXTIME<=4:00:00-

With the following reservation ACLs, a job matching both will receive a positive affinity:

SRCFG[res1] MAXTIME<=4:00:00- USERLIST=joe+

ACLModifiers

ACL modifiers allow a site to change the default behavior of ACL processing. By default, a reservation can
be accessed if one or more of its ACLs can be met by the requestor. This behavior can be changed using
the "deny" or "required" ACL modifier, as in the following tables:

Not

Symbol: ! (exclamation point)

Description If attribute is met, the requestor is denied access regardless of any other satisfied ACLs.

Example SRCFG[test] GROUPLIST=staff USERLIST=!steve

Allow access to all staff members other than steve.

Required

Symbol: * (asterisk)

Description All required ACLs must be satisfied for requestor access to be granted.

Example SRCFG[test] QOSLIST=*high MAXTIME=*2:00:00

Only jobs in QoS high that request less than 2 hours of walltime are
granted access.

XOR

Symbol: ^ (carat)

Description All attributes of the type specified other than the ones listed in the ACL satisfy the ACL.

Example SRCFG[test] QOSLIST=^high

All jobs other than those requesting QoS high are granted access.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

CredLock

Symbol:
& (ampersand)

Description Matching jobs will be required to run on the resources reserved by this reservation. You can use
this modifier on accounts, classes, groups, qualities of service, and users.

Example SRCFG[test] USERLIST=&john

All of user john's jobs must run in this reservation.

HPEnable (hard policy enable)

Symbol: ~ (tilde)

Description ACLs marked with this modifier are ignored during soft policy scheduling and are only considered
for hard policy scheduling once all eligible soft policy jobs start.

Example SRCFG[johnspace] USERLIST=john CLASSLIST=~debug

All of user john's jobs are allowed to run in the reservation at any time. Debug jobs are
also allowed to run in this reservation but are only considered after all of John's jobs are
given an opportunity to start. User john's jobs are considered before debug jobs
regardless of job priority.

If HPEnable and Notmarkers are used in conjunction, then specified credentials are
blocked-out of the reservation during soft-policy scheduling.

Note the ACCOUNTLIST values in Example 7-13 are preceded with an exclamation point, or NOT symbol.
This indicates that all jobs with accounts other than projectX and projectY meet the account ACL. Note
that if a !<X> value (!projectX) appears in an ACL line, that ACL is satisfied by any object not explicitly
listed by a NOT entry. Also, if an object matches a NOT entry, the associated job is excluded from the
reservation even if it meets other ACL requirements. For example, a QoS 3 job requesting account
projectX is denied access to the reservation even though the job QoS matches the QoS ACL.

Example 7-14: Binding Users to Reservations at Reservation Creation

create a 4 node reservation for john and bind all of john's jobs to that reservation
> mrsvctl -c -a user=&john -t 4

Reservation Ownership

Reservation ownership allows a site to control who owns the reserved resources during the reservation
time frame. Depending on needs, this ownership may be identical to, a subset of, or completely distinct

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

412 7.1 Advance Reservations

7.1 Advance Reservations 413

from the reservation ACL. By default, reservation ownership implies resource accountability and
resources not consumed by jobs are accounted against the reservation owner. In addition, ownership can
also be associated with special privileges within the reservation.

Ownership is specified using the OWNER attribute in the format <CREDTYPE>:<CREDID>, as in
OWNER=USER:john. To enable john's jobs to preempt other jobs using resources within the reservation,
the SRCFG attribute FLAG should be set to OWNERPREEMPT. In the example below, the jupiter project
chooses to share resources with the saturn project but only when it does not currently need them.

Example 7-15: Limited Shared Access

ACCOUNTCFG[jupiter] PRIORITY=10000
SRCFG[jupiter] HOSTLIST=node0[1-9]
SRCFG[jupiter] PERIOD=INFINITY
SRCFG[jupiter] ACCOUNTLIST=jupiter,saturn-
SRCFG[jupiter] OWNER=ACCT:jupiter
SRCFG[jupiter] FLAGS=OWNERPREEMPT

Partitions

A reservation can be used in conjunction with a partition. Configuring a standing reservation on a
partition allows constraints to be (indirectly) applied to a partition.

Example 7-16: Time Constraints by Partition

The following example places a 3-day wall-clock limit on two partitions and a 64 processor-hour limit on
jobs running on partition small.

SRCFG[smallrsv] PARTITION=small MAXTIME=3:00:00:00 PSLIMIT<=230400 HOSTLIST=ALL
SRCFG[bigrsv] PARTITION=big MAXTIME=3:00:00:00 HOSTLIST=ALL

Resource Allocation Behavior

As mentioned, standing reservations can operate in one of two modes, floating, or non-floating
(essentially node-locked). A floating reservation is created when the flag SPACEFLEX is specified. If a
reservation is non-floating, the scheduler allocates all resources specified by the HOSTLIST parameter
regardless of node state, job load, or even the presence of other standing reservations. Moab interprets
the request for a non-floating reservation as, "I want a reservation on these exact nodes, no matter
what!"

If a reservation is configured to be floating, the scheduler takes a more relaxed stand, searching through
all possible nodes to find resources meeting standing reservation constraints. Only Idle, Running, or Busy
nodes are considered and further, only considered if no reservation conflict is detected. The reservation
attribute ACCESS modifies this behavior slightly and allows the reservation to allocate resources even if
reservation conflicts exist.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

If a TASKCOUNT is specified with or without a HOSTEXPRESSION, Moab will, by default, only
consider "up" nodes for allocation. To change this behavior, the reservation flag IGNSTATE can be
specified as in the following example:

SRCFG[nettest] GROUPLIST=sysadm
SRCFG[nettest] FLAGS=IGNSTATE
SRCFG[nettest] HOSTLIST=node1[3-8]
SRCFG[nettest] STARTTIME=9:00:00
SRCFG[nettest] ENDTIME=17:00:00

Access to existing reservations can be controlled using the reservation flag IGNRSV.

Other standing reservation attributes not covered here include PARTITION and CHARGEACCOUNT. These
parameters are described in some detail in the parameters documentation.

Example 7-17: Using Reservations to Guarantee Turnover

In some cases, it is desirable to make certain a portion of a cluster's resources are available within a
specific time frame. The following example creates a floating reservation belonging to the jupiter account
that guarantees 16 tasks for use by jobs requesting up to one hour.

SRCFG[shortpool] OWNER=ACCT:jupiter
SRCFG[shortpool] FLAGS=SPACEFLEX
SRCFG[shortpool] MAXTIME=1:00:00
SRCFG[shortpool] TASKCOUNT=16
SRCFG[shortpool] STARTTIME=9:00:00
SRCFG[shortpool] ENDTIME=17:00:00
SRCFG[shortpool] DAYS=Mon,Tue,Wed,Thu,Fri

This reservation enables a capability similar to what was known in early Maui releases as "shortpool."
The reservation covers every weekday from 9:00 a.m. to 5:00 p.m., reserving 16 tasks and allowing jobs
to overlap the reservation for up to one hour. The SPACEFLEX flag indicates that the reservation may
be dynamically modified--over time to re-locate to more optimal resources. In the case of a reservation
with the MAXTIME ACL, this would include migrating to resources that are in use but that free up within
the MAXTIME time frame. Additionally, because the MAXTIME ACL defaults to positive affinity, any jobs
that fit the ACL attempt to use available reserved resources first before looking elsewhere.

Rolling Reservations

Rolling reservations are enabled using the ROLLBACKOFFSET attribute and can be used to allow users
guaranteed access to resources, but the guaranteed access is limited to a time-window in the future. This
functionality forces users to commit their resources in the future or lose access.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

414 7.1 Advance Reservations

7.1 Advance Reservations 415

Image 7-2: Rolling reservation over 3 iterations

Example 7-18: Rollback Reservations

SRCFG[ajax] ROLLBACKOFFSET=24:00:00 TASKCOUNT=32
SRCFG[ajax] PERIOD=INFINITY ACCOUNTLIST=ajax

Adding an asterisk to the ROLLBACKOFFSET value pins rollback reservation start times when an idle
reservation is created in the rollback reservation. For example: SRCFG[staff]
ROLLBACKOFFSET=18:00:00* PERIOD=INFINITY.

Modifying Resources with Standing Reservations

Moab can customize compute resources associated with a reservation during the life of the reservation.
This can be done generally using the TRIGGER attribute, or it can be done for operating systems using

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

the shortcut attribute OS. If set, Moab dynamically reprovisions allocated reservation nodes to the
requested operating system as shown in the following example:

SRCFG[provision] PERIOD=DAY DAY=MON,WED,FRI STARTTIME=7:00:00 ENDTIME=10:00:00
SRCFG[provision] OS=rhel4 # provision nodes to use redhat during reservation, restore
when done

Managing Administrative Reservations
A default reservation with no ACL is termed an administrative reservation, but is occasionally referred to
as a system reservation. It blocks access to all jobs because it possesses an empty access control list. It
is often useful when performing administrative tasks but cannot be used for enforcing resource usage
policies.

Administrative reservations are created and managed using the mrsvctl command. With this command,
all aspects of reservation time frame, resource selection, and access control can be dynamically
modified. The mdiag -r command can be used to view configuration, state, allocated resource information
as well as identify any potential problems with the reservation. The following table briefly summarizes
commands used for common actions. More detailed information is available in the command summaries.

Action Command

create reservation mrsvctl -c <RSV_DESCRIPTION>

list reservations mrsvctl -l

release reservation mrsvctl -r <RSVID>

modify reservation mrsvctl -m <ATTR>=<VAL> <RSVID>

query reservation configuration mdiag -r <RSVID>

display reservation hostlist mrsvctl -q resources <RSVID>

Related topics

l SRCFG (configure standing reservations)
l RSVPROFILE (create reservation profiles)

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

416 7.1 Advance Reservations

7.1 Advance Reservations 417

7.1.6 Personal Reservations
l Enabling Personal Reservation Management

l Reservation Accountability and Defaults

o Reservation Allocation and Charging

o Setting Reservation Default Attributes

l Reservation Limits

l Reservation and Job Binding

o Constraining a job to only run in a particular reservation

o Constraining a Reservation to Only Accept Certain Jobs

By default, advance reservations are only available to scheduler administrators. While administrators
may create and manage reservations to provide resource access to end-users, end-users cannot create,
modify, or destroy these reservations. Moab extends the ability to manage reservations to end-users and
provides control facilities to keep these features manageable. Reservations created by end-users are
called personal reservations or user reservations.

Enabling Personal Reservation Management
User, or personal reservations can be enabled on a per QoS basis by setting the ENABLEUSERRSV flag as
in the following example:

QOSCFG[titan] QFLAGS=ENABLEUSERRSV # allow 'titan' QoS jobs to create user
reservations
USERCFG[DEFAULT] QDEF=titan # allow all users to access 'titan' QoS
...

If set, end-users are allowed to create, modify, cancel, and query reservations they own. As with jobs,
users may associate a personal reservation with any QoS or account to which they have access. This is
accomplished by specifying per reservation accountable credentials as in the following example:

> mrsvctl -c -S AQOS=titan -h node01 -d 1:00:00 -s 1:30:00
Note: reservation test.126 created

As in the preceding example, a non-administrator user who wants to create a reservation must ALWAYS
specify an accountable QoS with the mrsvctl -S flag. This specified QoS must have the ENABLEUSERRSV
flag. By default, a personal reservation is created with an ACL of only the user who created it.

Example 7-19: Allow All Users in Engineering Group to Create Personal Reservations

QOSCFG[rsv] QFLAGS=ENABLEUSERRSV # allow 'rsv' QoS jobs to create user
reservations
GROUPCFG[sales] QDEF=rsv # allow all users in group sales to access 'rsv'
QoS
...

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Example 7-20: Allow Specific Users to Create Personal Reservations

special QoS has higher job priority and ability to create user reservations
QOSCFG[special] QFLAGS=ENABLEUSERRSV
QOSCFG[special] PRIORITY=1000
allow betty and steve to use the special QoS
USERCFG[betty] QDEF=special
USERCFG[steve] QLIST=fast,special,basic QDEF=rsv
...

Reservation Accountability
Personal reservations must be configured with a set of accountable credentials. These credentials (user,
group, account, and so forth) indicate who is responsible for the resources dedicated by the reservation.
If resources are dedicated by a reservation but not consumed by a job, these resources can be charged
against the specified accountable credentials. Administrators are allowed to create reservations and
specify any accountable credentials for that reservation. While end-users can also be allowed to create
and otherwise modify personal reservations, they are only allowed to create reservations with
accountable credentials to which they have access. Further, while administrators may manage any
reservation, end-users may only control reservations they own.

Like jobs, reservation accountable credentials specify which credentials are charged for reservation
usage and what policies are enforced as far as usage limits and allocation management is concerned.
(See the mrsvctl command documentation for more information on setting personal reservation
credentials.) While similar to jobs, personal reservations do have a separate set of usage limits and
different allocation charging policies.

Setting Reservation Default Attributes

Organizations can use reservation profiles to set default attributes for personal reservations. These
attributes can include reservation aspects such as management policies, charging credentials, ACLs, host
constraints, and time frame settings.

Reservation Limits
Allowing end-users the ability to create advance reservations can lead to potentially unfair and
unproductive resource usage. This results from the fact that by default, there is nothing to prevent a
user from reserving all resources in a given system or reserving resources during time slots that would
greatly impede the scheduler's ability to schedule jobs efficiently. Because of this, it is highly advised
that sites initially place either usage or allocation based constraints on the use of personal reservations.
This can be achieved using Moab Accounting Manager (see the Moab Accounting Manager
Administrator Guide).

Reservation and Job Binding
Moab allows job-to-reservation binding to be configured at an administrator or end-user level. This
binding constrains how job to reservation mapping is allowed.

Constraining a job to only run in a particular reservation

Jobs may be bound to a particular reservation at submit time (using the RM extension ADVRES) or
dynamically using the mjobctl command. (See Job to Reservation Mapping.) In either case, once bound to

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

418 7.1 Advance Reservations

http://www.adaptivecomputing.com/resources/docs/mam/7-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/mam/7-2-6/help.htm

7.2 Partitions 419

a reservation, a job may only run in that reservation even if other resources may be found outside of
that reservation. The mjobctl command may also be used to dynamically release a job from reservation
binding.

Example 7-21: Bind job to reservation

> mjobctl -m flags+=advres:grid.3 job1352

Example 7-22: Release job from reservation binding

> mjobctl -m flags-=advres job1352

Constraining a Reservation to Only Accept Certain Jobs

Binding a job to a reservation is independent of binding a reservation to a job. For example, a
reservation may be created for user "steve." User "steve" may then submit a number of jobs including
one that is bound to that reservation using the ADVRES attribute. However, this binding simply forces
that one job to use the reservation, it does not prevent the reservation from accepting other jobs
submitted by user "steve." To prevent these other jobs from using the reserved resources, reservation to
job binding must occur. This binding is accomplished by specifying either general job binding or specific
job binding.

General job binding is the most flexible form of binding. Using the BYNAME attribute, a reservation may
be created that only accepts jobs specifically bound to it.

Specific job binding is more constraining. This form of binding causes the reservation to only accept
specific jobs, regardless of other job attributes and is set using the JOB reservation ACL.

Example 7-23: Configure a reservation to accept only jobs that are bound to it

> mrsvctl -m flags+=byname grid.3

Example 7-24: Remove general reservation to job binding

> mrsvctl -m flags-=byname grid.3

Example 7-25: Configure a reservation to accept a specific job

> mrsvctl -m -a JOB=3456 grid.3

Example 7-26: Remove a specific reservation to job binding

> mrsvctl -m -a JOB=3456 grid.3 --flags=unset

7.2 Partitions
l Partition Overview

l Defining Partitions

l Managing Partition Access

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

l Requesting Partitions

l Per-Partition Settings

l Miscellaneous Partition Issues

Partition Overview
Partitions are a logical construct that divide available resources. Any single resource (compute node)
may only belong to a single partition. Often, natural hardware or resource manager bounds delimit
partitions such as in the case of disjoint networks and diverse processor configurations within a cluster.
For example, a cluster may consist of 256 nodes containing four 64 port switches. This cluster may
receive excellent interprocess communication speeds for parallel job tasks located within the same
switch but sub-stellar performance for tasks that span switches. To handle this, the site may choose to
create four partitions, allowing jobs to run within any of the four partitions but not span them.

While partitions do have value, it is important to note that within Moab, the standing reservation facility
provides significantly improved flexibility and should be used in the vast majority of politically
motivated cases where partitions may be required under other resource management systems. Standing
reservations provide time flexibility, improved access control features, and more extended resource
specification options. Also, another Moab facility called Node Sets allows intelligent aggregation of
resources to improve per job node allocation decisions. In cases where system partitioning is considered
for such reasons, node sets may be able to provide a better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability to specify
partition specific policies, limits, priorities, and scheduling algorithms although this feature is rarely
required. An example of this need may be a cluster consisting of 48 nodes owned by the Astronomy
Department and 16 nodes owned by the Mathematics Department. Each department may be willing to
allow sharing of resources but wants to specify how their partition will be used. As mentioned, many of
Moab's scheduling policies may be specified on a per partition basis allowing each department to control
the scheduling goals within their partition.

The partition associated with each node should be specified as indicated in the Node Location section.
With this done, partition access lists may be specified on a per job or per QoS basis to constrain which
resources a job may have access to. (See the QoS Overview for more information.) By default, QoSes and
jobs allow global partition access. Note that by default, a job may only use resources within a single
partition.

If no partition is specified, Moab creates one partition per resource manager into which all resources
corresponding to that resource manager are placed. (This partition is given the same name as the
resource manager.)

A partition may not span multiple resource managers. In addition to these resource manager
partitions, a pseudo-partition named " [ALL]" is created that contains the aggregate resources of
all partitions.

While the resource manager partitions are real partitions containing resources not explicitly
assigned to other partitions, the " [ALL]" partition is only a convenience object and is not a real
partition; thus it cannot be requested by jobs or included in configuration ACLs.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

420 7.2 Partitions

7.2 Partitions 421

Defining Partitions
Node to partition mappings can be established directly using the NODECFG parameter or indirectly using
the FEATUREPARTITIONHEADER parameter. If using direct mapping, this is accomplished as shown in
the example that follows.

NODECFG[node001] PARTITION=astronomy
NODECFG[node002] PARTITION=astronomy
...
NODECFG[node049] PARTITION=math
...

By default, Moab creates two partitions, "DEFAULT" and "[ALL]." These are used internally, and
consume spots in the 31-partition maximum defined in the MMAX_PAR parameter. If more
partitions are needed, you can adjust the maximum partition count. See Adjusting Default Limits
for information on increasing the maximum number of partitions.

Managing Partition Access
Partition access can be constrained by credential ACLs and by limits based on job resource requirements.

Credential Based Access

Determining who can use which partition is specified using the *CFG parameters (USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, CLASSCFG, and SYSCFG). These parameters allow you to select a partition access
list on a credential or system wide basis using the PLIST attribute. By default, the access associated with
any given job is the logical OR of all partition access lists assigned to the job's credentials.

For example, assume a site with two partitions, general, and test. The site management would like
everybody to use the general partition by default. However, one user, Steve, needs to perform the
majority of his work on the test partition. Two special groups, staff and management will also need
access to use the test partition from time to time but will perform most of their work in the general
partition. The following example configuration enables the needed user and group access and defaults for
this site:

SYSCFG[base] PLIST=general:test
USERCFG[DEFAULT] PLIST=general
USERCFG[steve] PLIST=general:test
GROUPCFG[staff] PLIST=general:test
GROUPCFG[mgmt] PLIST=general:test

While using a logical OR approach allows sites to add access to certain jobs, some sites prefer to work
the other way around. In these cases, access is granted by default and certain credentials are then
restricted from accessing various partitions. To use this model, a system partition list must be specified
as in the following example:

SYSCFG[base] PLIST=general,test&
USERCFG[demo] PLIST=test&
GROUPCFG[staff] PLIST=general&

In the preceding example, note the ampersand (&). This character, which can be located anywhere in the
PLIST line, indicates that the specified partition list should be logically ANDed with other partition access

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

lists. In this case, the configuration limits jobs from user demo to running in partition test and jobs from
group staff to running in partition general. All other jobs are allowed to run in either partition.

When using AND-based partition access lists, the base system access list must be specified with
SYSCFG.

Per Job Resource Limits

Access to partitions can be constrained based on the resources requested on a per job basis with limits
on both minimum and maximum resources requested. All limits are specified using PARCFG. See Usage
Limits for more information on the available limits.

PARCFG[amd] MAX.PROC=16
PARCFG[pIII] MAX.WCLIMIT=12:00:00 MIN.PROC=4
PARCFG[aix] MIN.NODE=12

Requesting Partitions
Users may request to use any partition they have access to on a per job basis. This is accomplished using
the resource manager extensions since most native batch systems do not support the partition concept.
For example, on a TORQUE system, a job submitted by a member of the group staff could request that
the job run in the test partition by adding the line -l partition=test to the qsub command line. See
the resource manager extension overview for more information on configuring and using resource
manager extensions.

Per-Partition Settings
The following settings can be specified on a per-partition basis using the PARCFG parameter:

Setting Description

DEFAULTNODEFEATURES Specifies a default feature on a group of node within a partition and applies only to
nodes in that partition.

JOBNODEMATCHPOLICY Specifies the JOBNODEMATCHPOLICY to be applied to jobs that run in the specified
partition.

NODEACCESSPOLICY Specifies the NODEACCESSPOLICY to be applied to jobs that run in the specified
partition.

NODEALLOCATIONPOLICY Specifies the NODEALLOCATIONPOLICY to be applied to jobs that run in the spe-
cified partition.

USETTC Specifies whether TTC specified at submission should be used and displayed by
the scheduler.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

422 7.2 Partitions

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

7.3 Quality of Service (QoS) Facilities 423

Setting Description

VMCREATEDURATION Specifies the maximum amount of time VM creation can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

VMDELETEDURATION Specifies the maximum amount of time VM deletion can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

VMMIGRATEDURATION Specifies the maximum amount of time VM migration can take before Moab con-
siders it a failure (in [HH[:MM[:SS]). If no value is set, there is no maximum limit.

Miscellaneous Partition Issues
A brief caution: Use of partitions has been quite limited in recent years as other, more effective
approaches are selected for site scheduling policies. Consequently, some aspects of partitions have
received only minor testing. Still, note that partitions are fully supported and any problem found will be
rectified.

Related topics

l Standing Reservations
l Node Sets
l FEATUREPARTITIONHEADER parameter
l PARCFG parameter

7.3 Quality of Service (QoS) Facilities
This section describes how to do the following:

l Allow key projects access to special services (such as preemption, resource dedication, and
advance reservations).

l Provide access to special resources by requested QoS.

l Enable special treatment within priority and fairshare facilities by requested QoS.

l Provide exemptions to usage limits and other policies by requested QoS.

l Specify delivered service and response time targets.

l Enable job deadline guarantees.

l Control the list of QoSes available to each user and job.

l Enable special charging rates based on requested or delivered QoS levels.

l Enable limits on the extent of use for each defined QoS.

l Monitor current and historical usage for each defined QoS.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

It contains the following sub-sections:

l QoS Overview

l QoS Enabled Privileges

o Special Prioritization

o Service Access and Constraints

o Usage Limits and Overrides

o Service Access Thresholds

o Preemption Management

l Managing QoS Access

l Requesting QoS Services at Job Submission

l Restricting Access to Special Attributes

QoS Overview
Moab's QoS facility allows a site to give special treatment to various classes of jobs, users, groups, and
so forth. Each QoS object can be thought of as a container of special privileges ranging from fairness
policy exemptions, to special job prioritization, to special functionality access. Each QoS object also has
an extensive access list of users, groups, and accounts that can access these privileges.

Sites can configure various QoSes each with its own set of priorities, policy exemptions, and special
resource access settings. They can then configure user, group, account, and class access to these QoSes.
A given job will have a default QoS and may have access to several additional QoSes. When the job is
submitted, the submitter may request a specific QoS or just allow the default QoS to be used. Once a job
is submitted, a user may adjust the QoS of the job at any time using the setqos command. The setqos
command will only allow the user to modify the QoS of that user's jobs and only change the QoS to a QoS
that this user has access to. Moab administrators may change the QoS of any job to any value.

Jobs can be granted access to QoS privileges if the QoS is listed in the system default configuration QDEF
(QoS default) or QLIST (QoS access list), or if the QoS is specified in the QDEF or QLIST of a user, group,
account, or class associated with that job. Alternatively, a user may access QoS privileges if that user is
listed in the QoS's MEMBERULIST attribute.

The mdiag -q command can be used to obtain information about the current QoS configuration including
specified credential access.

QoS Enabled Privileges
The privileges enabled via QoS settings may be broken into the following categories:

l Special Prioritization on page 425

l Service Access and Constraints on page 425

l Usage Limits and Overrides on page 428

l Service Access Thresholds on page 428

l Preemption Management on page 429

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

424 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 425

All privileges are managed via the QOSCFG parameter.

Special Prioritization

Attribute name Description

FSTARGET Specifies QoS fairshare target.

FSWEIGHT Sets QoS fairshare weight offset affecting a job's fairshare priority component.

PRIORITY Assigns priority to all jobs requesting particular QoS.

QTTARGET Sets QoS queuetime target affecting a job's target priority component and QoS delivered.

QTWEIGHT Sets QoS queuetime weight offset affecting a job's service priority component.

XFTARGET Sets QoS XFactor target affecting a job's target priority component and QoS delivered.

XFWEIGHT Sets QoS XFactor weight offset affecting a job's service priority component.

Example 7-27:

assign priority for all QoS geo jobs

QOSCFG[geo] PRIORITY=10000

Service Access and Constraints

The QoS facility can be used to enable special services and to disable default services. These services
are enabled/disabled by setting the QoS QFLAGS attribute.

Flag Name Description

DEADLINE Job may request an absolute or relative completion deadline and Moab will reserve
resources to meet that deadline. (An alternative priority based deadline behavior is
discussed in the PRIORITY FACTORS section.)

DEDICATED Moab dedicates all resources of an allocated node to the job meaning that the job
will not share a node's compute resources with any other job.

ENABLEUSERRSV Allow user or personal reservations to be created and managed.

IGNALL Scheduler ignores all resource usage policies for jobs associated with this QoS.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Flag Name Description

JOBPRIOACCRUALPOLICY Specifies how Moab should track the dynamic aspects of a job's priority. The two
valid values are ACCRUE and RESET.

l ACCRUE indicates that the job will accrue queuetime based priority from
the time it is submitted unless it violates any of the policies not specified in
JOBPRIOEXCEPTIONS.

l RESET indicates that it will accrue priority from the time it is submitted
unless it violates any of the JOBPRIOEXCEPTIONS. However, with RESET, if
the job does violate JOBPRIOEXCEPTIONS then its queuetime based priority
will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but can be configured to
work only in QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been deprecated and
should be adjusted to the following values:

l QUEUEPOLICY = ACCRUE and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l QUEUEPOLICYRESET = RESET and JOBPRIOEXCEPTIONS
SOFTPOLICY,HARDPOLICY

l ALWAYS = ACCRUE and JOBPRIOEXCEPTIONS ALL
l FULLPOLICY = ACCRUE and JOBPRIOEXCEPTIONS NONE
l FULLPOLICYRESET = RESET and JOBPRIOEXCEPTIONS NONE

JOBPRIOEXCEPTIONS Specifies exceptions for calculating a job's dynamic priority (QUEUETIME, XFACTOR,
TARGETQUEUETIME). Valid values are a comma delimited list of any of the
following: DEFER,DEPENDS, SOFTPOLICY,HARDPOLICY, IDLEPOLICY,
USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE can also be
specified on their own).
Normally, when a job violates a policy, is placed on hold, or has an unsatisfied
dependency, it will not accrue priority. Exceptions can be configured to allow a job
to accrue priority in spite of any of these violations. With DEPENDS a job will
increase in priority even if there exists an unsatisfied dependency. With
SOFTPOLICY,HARDPOLICY, or IDLEPOLICY a job can accrue priority despite
violating a specific limit. With DEFER,USERHOLD, BATCHHOLD, or
SYSTEMHOLD a job can accrue priority despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be configured to work
only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

NOBF Job is not considered for backfill.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

426 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 427

Flag Name Description

NORESERVATION Job should never reserve resources regardless of priority.

NTR Job is prioritized as next to run (NTR) and backfill is disabled to prevent other jobs
from jumping in front of ones with the NTR flag.

It is important to note that jobs marked with this flag should not be blocked.
If they are, Moab will stop scheduling because if a job is marked with this
flag, no other jobs will be run until the flagged NTR (Next to Run) job starts.
Consider using the PRIORITY attribute of the QOSCFG[<QOSID>] on page
894 parameter instead, when possible. Or, as you may encounter a
scheduling delay for NTR-flagged jobs to start, consider using the
RESERVATIONDEPTH[X] and RESERVATIONQOSLIST[X] parameters to
provide better scheduling flow. See Reservation Policies on page 382
(especially the section on Assigning Per-QoS Reservation Creation Rules) for
more information.

PREEMPTCONFIG User jobs may specify options to alter how preemption impacts the job such as min-
preempttime.

PREEMPTEE Job may be preempted by higher priority PREEMPTOR jobs.

PREEMPTFSV Job may be preempted by higher priority PREEMPTOR jobs if it exceeds its fairshare
target when started.

PREEMPTOR Job may preempt lower priority PREEMPTEE jobs.

PREEMPTSPV Job may be preempted by higher priority PREEMPTOR jobs if it currently violates a
soft usage policy limit.

PROVISION If the job cannot locate available resources with the needed OS or software, the
scheduler may provision a number of nodes to meet the needed OS or software
requirements.

RESERVEALWAYS Job should create resource reservation regardless of job priority.

RUNNOW Boosts a job's system priority and makes the job a preemptor.

RUNNOW overrides resource restrictions such as MAXJOB or MAXPROC.

TRIGGER The job is able to directly specify triggers.

USERESERVED[:<RSVID>] Job may only use resources within accessible reservations. If <RSVID> is specified,
job may only use resources within the specified reservation.

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

Example 7-28: For lowprio QoS job, disable backfill and make job preemptible

QOSCFG[lowprio] QFLAGS=NOBF,PREEMPTEE

Example 7-29: Bind all jobs to chemistry reservation

QOSCFG[chem-b] QFLAGS=USERESERVED:chemistry

Other QoS Attributes

In addition to the flags, there are attributes that alter service access.

Attribute name Description

SYSPRIO Sets the system priority on jobs associated with this QoS.

Example 7-30: All jobs submitted under a QoS sample receive a system priority of 1

QOSCFG[sample] SYSPRIO=1

Per QoS Required Reservations

If desired, jobs associated with a particular QoS can be locked into a reservation or reservation group
using the REQRID attribute. For example, to force jobs using QoS jasper to only use the resources within
the failsafe standing reservation, use the following:

QOSCFG[jasper] REQRID=failsafe
...

Usage Limits and Overrides

All credentials, including QoS, allow specification of job usage limits as described in the Basic Fairness
Policies overview. In such cases, jobs are constrained by the most limiting of all applicable policies. With
QoSes, an override limit may also be specified and with this limit, jobs are constrained by the override,
regardless of other limits specified. The following attributes can override the throttling policies from
other credentials:

OMAXJOB, OMAXNODE, OMAXPE, OMAXPROC, OMAXPS, OMAXJPROC, OMAXJPS, OMAXJWC, and
OMAXJNODE.

(See Usage Limits/Throttling Policies Override Limits.)

Example 7-31:

staff QoS should have a limit of 48 jobs, ignoring the user limit
USERCFG[DEFAULT] MAXJOB=10
QOSCFG[staff] OMAXJOB=48

Service Access Thresholds

Jobs can be granted access to services such as preemption and reservation creation, and they can be
granted access to resource reservations. However, with QoS thresholds, this access can be made

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

428 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 429

conditional on the current queuetime and XFactor metrics of an idle job. The following table lists the
available QoS service thresholds:

Threshold attribute Description

PREEMPTQTTHRESHOLD A job with this QoS becomes a preemptor if the specified queuetime threshold is
reached.

PREEMPTXFTHRESHOLD A job with this QoS becomes a preemptor if the specified XFactor threshold is
reached.

RSVQTTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if the
specified queuetime threshold is reached.

RSVXFTHRESHOLD A job with this QoS can create a job reservation to guarantee resource access if the
specified XFactor threshold is reached.

ACLQTTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if the
specified queuetime threshold is reached.

ACLXFTHRESHOLD A job with this QoS can access reservations with a corresponding QoS ACL only if the
specified XFactor threshold is reached.

TRIGGERQTTHRESHOLD If a job with this QoS fails to run before this threshold is reached, any failure trig-
gers associated with this QoS will fire.

Preemption Management

Job preemption facilities can be controlled on a per-QoS basis using the PREEMPTEE and PREEMPTOR
flags. Jobs that are preemptible can optionally be constrained to only be preempted in a particular
manner by specifying the QoS PREEMPTPOLICY attribute as in the following example:

QOSCFG[special] QFLAGS=PREEMPTEE PREEMPTPOLICY=CHECKPOINT

For preemption to be effective, a job must be marked as a preemptee and must be enabled for the
requested preemption type. For example, if the PREEMPTPOLICY is set to suspend, a potential target job
must be both a preemptee and marked with the job flag SUSPENDABLE. (See suspension for more
information.) If the target job is not suspendable, it will be either requeued or canceled. Likewise, if the
PREEMPTPOLICY is set to requeue, the job will be requeued if it is marked restartable. Otherwise, it will
be canceled.

The minimum time a job must run before being considered eligible for preemption can also be configured
on a per-QoS basis using the PREEMPTMINTIME attribute, which is analogous to the
JOBPREEMPTMINACTIVETIME. Conversely, PREEMPTMAXTIME sets a threshold for which a job is no
longer eligible for preemption; see JOBPREEMPTMAXACTIVETIME for analogous details.

The PREEMPTEES attribute allows you to specify which QoSes that a job in a specific QoS is allowed to
preempt. The PREEMPTEES list is a comma-delimited list of QoS IDs. When a PREEMPTEES attribute is

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

specified, a job using that QoS can only preempt jobs using QoSes listed in the PREEMPTEES list. In turn,
those QoSes must be flagged as PREEMPTEE as in the following example:

QOSCFG[a] QFLAGS=PREEMPTOR PREEMPTEES=b,c
QOSCFG[b] QFLAGS=PREEMPTEE
QOSCFG[c] QFLAGS=PREEMPTEE

In the example, jobs in the a QoS can only preempt jobs in the b and c QoSes.

Managing QoS Access

Specifying Credential Based QoSAccess

You can define the privileges allowed within a QoS by using the QOSCFG parameter; however, in most
cases access to the QoS is enabled via credential specific *CFG parameters, specifically the USERCFG,
GROUPCFG, ACCOUNTCFG, and CLASSCFG parameters, which allow defining QoS access lists and QoS
defaults. Specify credential specific QoS access by using the QLIST and/or QDEF attributes of the
associated credential parameter.

QoSAccess via Logical OR

To enable QoS access, the QLIST and/or QDEF attributes of the appropriate user, group, account, or
class/queue should be specified as in the following example:

user john's jobs can access QoS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development QoS
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal QoS
CLASSCFG[batch] QDEF=normal

By default, jobs may request a QoS if access to that QoS is allowed by any of the job's credentials. (In the
previous example, a job from user john submitted to the class batch could request QoSes geo, chem, staff,
or normal).

QoSAccess via Logical AND

If desired, QoS access can be masked or logically ANDed if the QoS access list is specified with a
terminating ampersand (&) as in the following example:

user john's jobs can access QoS geo, chem, or staff with geo as default
USERCFG[john] QDEF=geo QLIST=geo,chem,staff
group system jobs can access the development QoS
GROUPCFG[systems] QDEF=development
class batch jobs can access the normal QoS
CLASSCFG[batch] QDEF=normal
class debug jobs can only access the development or lowpri QoSes regardless of other
credentials
CLASSCFG[debug] QLIST=development,lowpri&

Specifying QoS Based Access

QoS access may also be specified from within the QoS object using the QoS MEMBERULIST attribute as in
the following example:

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

430 7.3 Quality of Service (QoS) Facilities

7.3 Quality of Service (QoS) Facilities 431

define QoS premiere and grant access to users steve and john
QOSCFG[premiere] PRIORITY=1000 QFLAGS=PREEMPTOR MEMBERULIST=steve,john

By default, if a job requests a QoS that it cannot access, Moab places a hold on that job. The
QOSREJECTPOLICY can be used to modify this behavior.

Requesting QoS Services at Job Submission
By default, jobs inherit a default QoS based on the user, group, class, and account associated with the job.
If a job has access to multiple QoS levels, the submitter can explicitly request a particular QoS using the
QoS resource manager extension as in the following example:

> msub -l nodes=1,walltime=100,qos=special3 job.cmd

Restricting Access to Special Attributes
By default, Moab allows all users access to special attributes such as node access policy. By enabling the
QoS facility SPECATTRS, the access to these policies can be restricted. For example, to enable the facility,
in the moab.cfg file, specify QOSCFG[DEFAULT] SPECATTRS=. Then, to allow access to the special
attributes, indicate which special attributes a specific QoS may access.

QOSCFG[DEFAULT] SPECATTRS=
QOSCFG[high] SPECATTRS=NACCESSPOLICY

Related topics

l Credential Overview
l Allocation Management Overview
l Rollback Reservations
l Job Deadlines

7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities

432 7.3 Quality of Service (QoS) Facilities

8.1 Optimization Overview 433

8.0 Optimizing Scheduling Behavior –
Backfill and Node Sets

l Optimization Overview on page 433

l Backfill on page 434

l Node Set Overview on page 439

8.1 Optimization Overview
Moab optimizes cluster performance. Every policy, limit, and feature is designed to allow maximum
scheduling flexibility while enforcing the required constraints. A driving responsibility of the scheduler is
to do all in its power to maximize system use and to minimize job response time while honoring the
policies that make up the site's mission goals.

However, as all jobs are not created equal, optimization must be abstracted slightly further to
incorporate this fact. Cluster optimization must also focus on targeted cycle delivery. In the scientific
HPC community, the true goal of a cluster is to maximize delivered research. For businesses and other
organizations, the purposes may be slightly different, but all organizations agree on the simple tenet
that the cluster should optimize the site's mission goals.

To obtain this goal, the scheduler has several levels of optimization it performs:

Level Description

Workload
Ordering

Prioritizing workload and utilizing backfill

Intelligent
Resource
Allocation

Selecting those resources that best meet the job's needs or best enable future jobs to run (see
node allocation)

Maximizing
Intra-Job
Efficiency

Selecting the type of nodes, collection of nodes, and proximity of nodes required to maximize job
performance by minimizing both job compute and inter-process communication time (see node
sets and node allocation)

Job Pree-
mption

Preempting jobs to allow the most important jobs to receive the best response time (see pree-
mption)

Level Description

Utilizing
Flexible
Policies

Using policies that minimize blocking and resource fragmentation while enforcing needed con-
straints (see soft throttling policies and reservations)

8.2 Backfill
l Backfill Overview

l Backfill Algorithms

l Configuring Backfill

Backfill Overview
Backfill is a scheduling optimization that allows a scheduler to make better use of available resources by
running jobs out of order. When Moab schedules, it prioritizes the jobs in the queue according to a
number of factors and then orders the jobs into a highest priority first (or priority FIFO) sorted list. It
starts the jobs one by one stepping through the priority list until it reaches a job it cannot start. Because
all jobs and reservations possess a start time and a wallclock limit, Moab can determine the completion
time of all jobs in the queue. Consequently, Moab can also determine the earliest the needed resources
will become available for the highest priority job to start.

Backfill operates based on this earliest job start information. Because Moab knows the earliest the
highest priority job can start, and which resources it will need at that time, it can also determine which
jobs can be started without delaying this job. Enabling backfill allows the scheduler to start other, lower-
priority jobs so long as they do not delay the highest priority job. If backfill is enabled, Moab protects
the highest priority job's start time by creating a job reservation to reserve the needed resources at the
appropriate time. Moab then can start any job that will not interfere with this reservation.

Backfill offers significant scheduler performance improvement. In a typical large system, enabling
backfill increases system utilization by about 20% and improves turnaround time by an even greater
amount. Because of the way it works, essentially filling in holes in node space, backfill tends to favor
smaller and shorter running jobs more than larger and longer running ones. It is common to see over
90% of these small and short jobs backfilled. Consequently, sites will see marked improvement in the
level of service delivered to the small, short jobs and moderate to little improvement for the larger,
long ones.

With most algorithms and policies, there is a trade-off. Backfill is not an exception but the negative
effects are minor. Because backfill locates jobs to run from throughout the idle job queue, it tends to
diminish the influence of the job prioritization a site has chosen and thus may negate some desired
workload steering attempts through this prioritization. Although by default the start time of the highest
priority job is protected by a reservation, there is nothing to prevent the third priority job from starting
early and possibly delaying the start of the second priority job. This issue is addressed along with its
trade-offs later in this section.

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

434 8.2 Backfill

8.2 Backfill 435

Another problem is a little more subtle. Consider the following scenario involving a two-processor
cluster. Job A has a four-hour wallclock limit and requires one processor. It started one hour ago (time
zero) and will reach its wallclock limit in three more hours. Job B is the highest priority idle job and
requires two processors for one hour. Job C is the next highest priority job and requires one processor
for two hours. Moab examines the jobs and correctly determines that job A must finish in three hours
and thus, the earliest job B can start is in three hours. Moab also determines that job C can start and
finish in less than this amount of time. Consequently, Moab starts job C on the idle processor at time one.
One hour later (time two), job A completes early. Apparently, the user overestimated the amount of time
job A would need by a few hours. Since job B is now the highest priority job, it should be able to run.
However, job C, a lower priority job was started an hour ago and the resources needed for job B are not
available. Moab re-evaluates job B's reservation and determines that it can slide forward an hour. At
time three, job B starts.

In review, backfill provided positive benefits. Job A successfully ran to completion. Job C was started
immediately. Job B was able to start one hour sooner than its original target time, although, had backfill
not been enabled, job B would have been able to run two hours earlier.

The scenario just described occurs quite frequently because user estimates for job duration are
generally inaccurate. Job wallclock estimate accuracy, or wallclock accuracy, is defined as the ratio of
wall time required to actually run the job divided by the wall time requested for the job. Wallclock
accuracy varies from site to site but the site average is rarely better than 50%. Because the quality of
the walltime estimate provided by the user is so low, job reservations for high priority jobs are often
later than they need to be.

Although there do exist some minor drawbacks with backfill, its net performance impact on a site's
workload is very positive. While a few of the highest priority jobs may get temporarily delayed, their
position as highest priority was most likely accelerated by the fact that jobs in front of them were able
to start earlier due to backfill. Studies have shown that only a very small number of jobs are truly
delayed and when they are, it is only by a fraction of their total queue time. At the same time, many jobs
are started significantly earlier than would have occurred without backfill.

Backfill Algorithms
The algorithm behind Moab backfill scheduling is straightforward, although there are a number of issues
and parameters that should be highlighted. First of all, Moab makes two backfill scheduling passes. For
each pass, Moab selects a list of jobs that are eligible for backfill. On the first pass, only those jobs that
meet the constraints of the soft fairness throttling policies are considered and scheduled. The second
pass expands this list of jobs to include those that meet the hard (less constrained) fairness throttling
policies.

The second important concept regarding Moab backfill is the concept of backfill windows. The figure
below shows a simple batch environment containing two running jobs and a reservation for a third job.
The present time is represented by the leftmost end of the box with the future moving to the right. The
light gray boxes represent currently idle nodes that are eligible for backfill. For this example, let's
assume that the space represented covers 8 nodes and a 2 hour time frame. To determine backfill
windows, Moab analyzes the idle nodes essentially looking for largest node-time rectangles. It
determines that there are two backfill windows. The first window, Window 1, consists of 4 nodes that are
available for only one hour (because some of the nodes are blocked by the reservation for Job 3). The
second window contains only one node but has no time limit because this node is not blocked by the
reservation for Job 3. It is important to note that these backfill windows overlap.

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

Image 8-1: Backfillable nodes create backfill windows 1 and 2

Once the backfill windows have been determined, Moab begins to traverse them. The current behavior is
to traverse these windows widest window first (most nodes to fewest nodes). As each backfill window is
evaluated, Moab applies the backfill algorithm specified by the BACKFILLPOLICY parameter.

If the FIRSTFIT algorithm is applied, the following steps are taken:

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

436 8.2 Backfill

8.2 Backfill 437

1. The list of feasible backfill jobs is filtered, selecting only those that will actually fit in the current
backfill window.

2. The first job is started.

3. While backfill jobs and idle resources remain, repeat step 1.

If NONE is set, the backfill policy is disabled.

Other backfill policies behave in a generally similar manner. The parameters documentation provides
further details.

Liberal versus Conservative Backfill

By default, Moab reserves only the highest priority job resulting in a liberal and aggressive backfill. This
reservation guarantees that backfilled jobs will not delay the highest priority job, although they may
delay other jobs. The parameter RESERVATIONDEPTH controls how conservative or liberal the backfill
policy is. This parameter controls how deep down the queue priority reservations will be made. While
increasing this parameter guarantees that priority jobs will not be bypassed, it reduces the freedom of
the scheduler to backfill resulting in somewhat lower system utilization. The significance of the trade-
offs should be evaluated on a site by site basis.

Configuring Backfill

Backfill Policies

Backfill is enabled in Moab by specifying the BACKFILLPOLICY parameter. By default, backfill is enabled
in Moab using the FIRSTFIT algorithm. However, this parameter can also be set to NONE (disabled).

The number of reservations that protect the resources required by priority jobs can be controlled using
RESERVATIONDEPTH. This depth can be distributed across job QoS levels using RESERVATIONQOSLIST.

Backfill Chunking

In a batch environment saturated with serial jobs, serial jobs will, over time, dominate the resources
available for backfill at the expense of other jobs. This is due to the time-dimension fragmentation
associated with running serial jobs. For example, given an environment with an abundance of serial jobs,
if a multi-processor job completes freeing processors, one of three things will happen:

1. The freed resources are allocated to another job requiring the same number of processors.

2. Additional jobs may complete at the same time allowing a larger job to allocate the aggregate
resources.

3. The freed resources are allocated to one or more smaller jobs.

In environments where the scheduling iteration is much higher than the average time between
completing jobs, case 3 occurs far more often than case 2, leading to smaller and smaller jobs populating
the system over time.

To address this issue, the scheduler incorporates the concept of chunking. Chunking allows the scheduler
to favor case 2 maintaining a more controlled balance between large and small jobs. The idea of
chunking involves establishing a time-based threshold during which resources available for backfill are
aggregated. This threshold is set using the parameter BFCHUNKDURATION. When resources are freed,
they are made available only to jobs of a certain size (set using the parameter BFCHUNKSIZE) or larger.

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

These resources remain protected from smaller jobs until either additional resources are freed up and a
larger job can use the aggregate resources, or until the BFCHUNKDURATION threshold time expires.

Backfill chunking is only activated when a job of size BFCHUNKSIZE or larger is blocked in backfill
due to lack of resources.

It is important to note that the optimal settings for these parameters is very site-specific and will
depend on the workload (including the average job turnaround time, job size, and mix of large to small
jobs), cluster resources, and other scheduling environmental factors. Setting too restrictive values
needlessly reduces utilization while settings that are too relaxed do not allowed the desired aggregation
to occur.

Backfill chunking is only enabled in conjunction with the FIRSTFIT backfill policy.

VirtualWallclock Time Scaling

In most environments, users submit jobs with rough estimations of the wallclock times. Within the HPC
industry, a job typically runs for 40% of its specified wallclock time. Virtual Wallclock Time Scaling takes
advantage of this fact to implement a form of optimistic backfilling. Jobs that are eligible for backfilling
and not restricted by other policies are virtually scaled by the BFVIRTUALWALLTIMESCALINGFACTOR
(assuming that the jobs finish before this new virtual wallclock limit). The scaled jobs are then compared
to backfill windows to see if there is space and time for them to be scheduled. The scaled jobs are only
scheduled if there is no possibility that it will conflict with a standing or administrator reservation.
Conflicts with such reservations occur if the virtual wallclock time overlaps a reservation, or if the
original non-virtual wallclock time overlaps a standing or administrator reservation. Jobs that can fit
into an available backfill window without having their walltime scaled are backfilled "as-is" (meaning,
without virtually scaling the original walltime).

Virtual Wallclock Time Scaling is only enabled when the BFVIRTUALWALLTIMESCALINGFACTOR
parameter is defined.

If a virtually-scaled job fits into a window, and is backfilled, it will run until completion or until it comes
within one scheduling iteration (RMPOLLINTERVAL defines the exact time of an iteration) of the virtual
wallclock time expiration. In the latter case the job's wallclock time is restored to its original time and
Moab checks and resolves conflicts caused by this "expansion." Conflicts may occur when the backfilled
job is restored to its full duration resulting in reservation overlap. The
BFVIRTUALWALLTIMECONFLICTPOLICY parameter controls how Moab handles these conflicts.

If the BFVIRTUALWALLTIMECONFLICTPOLICY parameter is set to NONE or is not specified, the overlapped
job reservations are rescheduled.

Related topics

l BACKFILLDEPTH Parameter
l BACKFILLMETRIC Parameter
l BFMINVIRTUALWALLTIME
l Reservation Policy Overview

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

438 8.2 Backfill

8.3 Node Set Overview 439

8.3 Node Set Overview
l Node Set Usage Overview

l Node Set Configuration

o Node Set Policy

o Node Set Attribute

o Node Set Constraint Handling

o Node Set List

o Node Set Tolerance

o Node Set Priority

o NODESETPLUS

o Nested Node Sets

l Requesting Node Sets for Job Submission

l Configuring Node Sets for Classes

Node Set Usage Overview
While backfill improves the scheduler's performance, this is only half the battle. The efficiency of a
cluster, in terms of actual work accomplished, is a function of both scheduling performance and individual
job efficiency. In many clusters, job efficiency can vary from node to node as well as with the node mix
allocated. Most parallel jobs written in popular languages such as MPI or PVM do not internally load
balance their workload and thus run only as fast as the slowest node allocated. Consequently, these jobs
run most effectively on homogeneous sets of nodes. However, while many clusters start out as
homogeneous, they quickly evolve as new generations of compute nodes are integrated into the system.
Research has shown that this integration, while improving scheduling performance due to increased
scheduler selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without specifying exactly
what resources are required. Node set policy can be specified globally or on a per-job basis and can be
based on node processor speed, memory, network interfaces, or locally defined node attributes. In
addition to their use in forcing jobs onto homogeneous nodes, these policies may also be used to guide
jobs to one or more types of nodes on which a particular job performs best, similar to job preferences
available in other systems. For example, an I/O intensive job may run best on a certain range of
processor speeds, running slower on slower nodes, while wasting cycles on faster nodes. A job may
specify ANYOF:FEATURE:bigmem,fastos to request nodes with the bigmem or fastos feature.
Alternatively, if a simple feature-homogeneous node set is desired, ONEOF:FEATURE may be specified.
On the other hand, a job may request a feature based node set with the configuration
ONEOF:FEATURE:bigmem,fastos, in which case Moab will first attempt to locate adequate nodes
where all nodes contain the bigmem feature. If such a set cannot be found, Moab will look for sets of
nodes containing the other specified features. In highly heterogeneous clusters, the use of node sets
improves job throughput by 10 to 15%.

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

Node sets can be requested on a system wide or per job basis. System wide configuration is
accomplished via the NODESET* parameters while per job specification occurs via the resource manager
extensions. In all cases, node sets are a dynamic construct, created on a per job basis and built only of
nodes that meet all of a job's requirements.

The GLOBAL node is included in all feature node sets.

Node Set Configuration
Global node sets are defined using the NODESETPOLICY, NODESETATTRIBUTE, NODESETLIST, and
NODESETISOPTIONAL parameters.

The use of these parameters may be best highlighted with an example. In this example, a large site
possesses a Myrinet based interconnect and wishes to, whenever possible, allocate nodes within Myrinet
switch boundaries. To accomplish this, they could assign node attributes to each node indicating which
switch it was associated with (switchA, switchB, and so forth) and then use the following system wide
node set configuration:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL TRUE
NODESETLIST switchA,switchB,switchC,switchD
...

Node Set Policy

In the preceding example, the NODESETPOLICY parameter is set to the policy ONEOF and tells Moab to
allocate nodes within a single attribute set. Other nodeset policies are listed in the following table:

Policy Description

ANYOF Select resources from all sets contained in node set list. The job could span multiple node sets.

FIRSTOF Select resources from first set to match specified constraints.

ONEOF Select a single set that contains adequate resources to support job.

Node Set Attribute

The example's NODESETATTRIBUTE parameter is set to FEATURE specifying that the node sets are to
be constructed along node feature boundaries.

Node Set Constraint Handling

The next parameter, NODESETISOPTIONAL, indicates that Moab should not delay the start time of a job
if the desired node set is not available but adequate idle resources exist outside of the set. Setting this
parameter to TRUE basically tells Moab to attempt to use a node set if it is available, but if not, run the
job as soon as possible anyway.

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

440 8.3 Node Set Overview

8.3 Node Set Overview 441

Setting NODESETISOPTIONAL to FALSE will force the job to always run in a complete nodeset
regardless of any start delay this imposes.

Node Set List

Finally, the NODESETLIST value of switchA switchB... tells Moab to only use node sets based on
the listed feature values. This is necessary since sites will often use node features for many purposes
and the resulting node sets would be of little use for switch proximity if they were generated based on
irrelevant node features indicating things such as processor speed or node architecture.

To add nodes to the NODESETLIST, you must configure features on your nodes using the NODECFG
FEATURES on page 475 attribute.

NODECFG[node01] FEATURES+=switchA
NODECFG[node02] FEATURES+=switchA
NODECFG[node03] FEATURES+=switchB

Nodes node01 and node02 contain the switchA feature, and node node03 contains the switchB feature.

Node Set Priority

When resources are available in more than one resource set, the NODESETPRIORITYTYPE parameter
allows control over how the best resource set is selected. Legal values for this parameter are described
in the following table:

Priority
Type Description Details

AFFINITY Avoid a resource set with negative
affinity.

Choosing this type causes Moab to select a node set with no
negative affinity nodes (nodes that have a reservation that
with negative affinity). If all node sets have negative affin-
ity, then Moab will select the first matching node set.

BESTFIT Select the smallest resource set
possible.

Choosing this type causes Moab, when selecting a node set,
to eliminate sets that do not have all the required
resources. From the remaining sets, Moab chooses the set
with the least amount of resources. This priority type most
closely matches the job requirements in order to waste the
least amount of resources.
This type minimizes fragmentation of larger resource sets.

MINLOSS Select the resource set that results
in the minimal wasted resources
assuming no internal job load bal-
ancing is available. (Assumes par-
allel jobs only run as fast as the
slowest allocated node.)

Choosing this type works only when using the following
configuration:
NODESETATTRIBUTE FEATURE
In a SHAREDMEM environment (See Moab-NUMA
Integration Guide on page 1008 for more information.),
Moab will select the node set based on NUMA properties
(the smallest feasible node set).

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

Priority
Type Description Details

WORSTFIT Select the largest resource set pos-
sible.

This type causes Moab, when choosing a node set, to
eliminate sets that do not have all the required resources.
From the remaining sets, Moab chooses the set with the
greatest amount of resources.
This type minimizes fragmentation of smaller resource sets,
but increases fragmentation of larger resource sets.

NODESETPLUS

Moab supports additional node set behavior by specifying the NODESETPLUS parameter. Possible values
when specifying this parameter are SPANEVENLY and DELAY.

Neither SPANEVENLY nor DELAY will work with multi-req jobs or preemption.

SPANEVENLY

Moab attempts to fit all jobs within one node set, or it spans any number of node sets evenly. When a job
specifies a NODESETDELAY, Moab attempts to contain the job within a single node set; if unable to do so,
it spans node sets evenly, unless doing so would delay the job beyond the requested NODESETDELAY.

DELAY

Moab attempts to fit all jobs within the best possible SMP machine (when scheduling nodeboards in an
Altix environment) unless doing so delays the job beyond the requested NODESETDELAY.

Nested Node Sets

Moab attempts to fit jobs on node sets in the order they are specified in the NODESETLIST. You can
create nested node sets by listing your node sets in a specific order. Here is an example of a "smallest to
largest" nested node set:

NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETISOPTIONAL FALSE
NODESETLIST blade1a,blade1b,blade2a,blade2b,blade3a,
blade3b,blade4a,blade4b,quad1a,quad1b,quad2a,
quad2b,octet1,octet2,sixteen

The accompanying cluster would look like this:

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

442 8.3 Node Set Overview

8.3 Node Set Overview 443

Image 8-2: Octet, quad, and blade node sets on a cluster

In this example, Moab tries to fit the job on the nodes in the blade sets first. If that doesn't work, it
moves up to the nodes in the quad sets (a set of four blade sets). If the quads are insufficient, it tries the
nodes in the octet sets (a set of four quad node sets).

Requesting Node Sets for Job Submission
On a per job basis, each user can specify the equivalent of all parameters except NODESETDELAY. As
mentioned previously, this is accomplished using the resource manager extensions.

Configuring Node Sets for Classes
Classes can be configured with a default node set. In the configuration file, specify DEFAULT.NODESET
with the following syntax: DEFAULT.NODESET=<SETTYPE>:<SETATTR>[:<SETLIST>
[,<SETLIST>]...]. For example, in a heterogeneous cluster with two different types of processors,
the following configuration confines jobs assigned to the amd class to run on either ATHLON or OPTERON
processors:

CLASSCFG[amd] DEFAULT.NODESET=ONEOF:FEATURE:ATHLON,OPTERON

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

...

Related topics

l Resource Manager Extensions
l CLASSCFG
l Partition Overview

8.0 Optimizing Scheduling Behavior – Backfill and Node Sets

444 8.3 Node Set Overview

9.1 Moab Performance Evaluation Overview 445

9.0 Evaluating System Performance -
Statistics, Profiling, Testing, and Simulation

l Moab Performance Evaluation Overview on page 445

l Accounting: Job and System Statistics on page 445

l Testing New Versions and Configurations on page 447

l Answering What If? Questions with the Simulator on page 448

9.1 Moab Performance Evaluation Overview
Moab Workload Manager tracks numerous performance statistics for jobs, accounting, users, groups,
accounts, classes, QoS, the system, and so forth. These statistics can be accessed through various
commands or Moab Cluster Manager/Monitor.

9.2 Accounting: Job and System Statistics
Moab provides extensive accounting facilities that allow resource usage to be tracked by resources
(compute nodes), jobs, users, and other objects. The accounting facilities may be used in conjunction with,
and correlated with, the accounting records provided by the resource and allocation manager.

Moab maintains both raw persistent data and a large number of processed in memory statistics allowing
instant summaries of cycle delivery and system utilization. With this information, Moab can assist in
accomplishing any of the following tasks:

l Determining cumulative cluster performance over a fixed time frame.

l Graphing changes in cluster utilization and responsiveness over time.

l Identifying which compute resources are most heavily used.

l Charting resource usage distribution among users, groups, projects, and classes.

l Determining allocated resources, responsiveness, and failure conditions for jobs completed in the
past.

l Providing real-time statistics updates to external accounting systems.

This section describes how to accomplish each of these tasks using Moab tools and accounting
information.

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php

l Accounting Overview

l Real-Time Statistics

l FairShare Usage Statistics

Accounting Overview
Moab provides accounting data correlated to most major objects used within the cluster scheduling
environment. These records provide job and reservation accounting, resource accounting, and credential-
based accounting.

Job and Reservation Accounting

As each job or reservation completes, Moab creates a complete persistent trace record containing
information about who ran, the time frame of all significant events, and what resources were allocated.
In addition, actual execution environment, failure reports, requested service levels, and other pieces of
key information are also recorded. A complete description of each accounting data field can be found
within section Workload Traces.

Resource Accounting

The load on any given node is available historically allowing identification of not only its usage at any
point in time, but the actual jobs which were running on it. Moab Cluster Manager can show load
information (assuming load is configured as a generic metric), but not the individual jobs that were
running on a node at some point in the past. For aggregated, historical statistics covering node usage
and availability, the showstats command may be run with the -n flag.

Credential Accounting

Current and historical usage for users, groups, account, QoSes, and classes are determined in a manner
similar to that available for evaluating nodes. For aggregated, historical statistics covering credential
usage and availability, the showstats command may be run with the corresponding credential flag.

If needed, detailed credential accounting can also be enabled globally or on a credential by credential
basis. With detailed credential accounting enabled, real-time information regarding per-credential usage
over time can be displayed. To enable detailed per credential accounting, the ENABLEPROFILING attribute
must be specified for credentials that are to be monitored. For example, to track detailed credentials,
the following should be used:

USERCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE

Credential level profiling operates by maintaining a number of time-based statistical records for each
credential. The parameters PROFILECOUNT and PROFILEDURATION control the number and duration of
the statistical records.

Real-Time Statistics
Moab provides real-time statistical information about how the machine is running from a scheduling
point of view. The showstats command is actually a suite of commands providing detailed information on

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation

446 9.2 Accounting: Job and System Statistics

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php

9.3 Testing New Versions and Configurations 447

an overall scheduling basis as well as a per user, group, account and node basis. This command gets its
information from in memory statistics that are loaded at scheduler start time from the scheduler
checkpoint file. (See Checkpoint/Restart for more information.) This checkpoint file is updated
periodically and when the scheduler is shut down allowing statistics to be collected over an extended
time frame. At any time, real-time statistics can be reset using the mschedctl -f command.

In addition to the showstats command, the showstats -f command also obtains its information from the in
memory statistics and checkpoint file. This command displays a processor-time based matrix of
scheduling performance for a wide variety of metrics. Information such as backfill effectiveness or
average job queue time can be determined on a job size/duration basis.

FairShare Usage Statistics

Regardless of whether fairshare is enabled, detailed credential based fairshare statistics are maintained.
Like job traces, these statistics are stored in the directory pointed to by the STATDIR parameter.
Fairshare stats are maintained in a separate statistics file using the format FS.<EPOCHTIME>
(FS.982713600, for example) with one file created per fairshare window. (See the Fairshare Overview
for more information.) These files are also flat text and record credential based usage statistics.
Information from these files can be seen via the mdiag -f command.

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

9.3 Testing New Versions and Configurations
l MONITOR Mode

l INTERACTIVE Mode

MONITORMode
Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running
in NORMAL or production mode. Job are prioritized, reservations created, policies and limits enforced,
and administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in
NORMAL mode but its ability to actually impact the system is disabled. Using this mode, a site can
quickly verify correct resource manager configuration and scheduler operation. This mode can also be
used to validate new policies and constraints. In fact, Moab can be run in MONITOR mode on a
production system while another scheduler or even another version of Moab is running on the same
system. This unique ability can allow new versions and configurations to be fully tested without any
exposure to potential failures and with no cluster downtime.

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to
MONITOR and start Moab. Normal scheduler commands can be used to evaluate configuration and
performance. Diagnostic commands can be used to look for any potential issues. Further, the Moab log
file can be used to determine which jobs Moab attempted to start, and which resources Moab attempted
to allocate.

If another instance of Moab is running in production and a site administrator wants to evaluate an
alternate configuration or new version, this is easily done but care should be taken to avoid conflicts
with the primary scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user
interface ports. One of the easiest ways to avoid these conflicts is to create a new test directory with its
own log and stats subdirectories. The new moab.cfg file can be created from scratch or based on the
existing moab.cfg file already in use. In either case, make certain that the PORT attribute of the
SCHEDCFG parameter differs from that used by the production scheduler by at least two ports. If testing
with the production binary executable, the MOABHOMEDIR environment variable should be set to point
to the new test directory to prevent Moab from loading the production moab.cfg file.

INTERACTIVE Mode
INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different
from MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired
change request to the screen and asks for permission to complete it. For example, before starting a job,
Moab may print something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets
desired site policies. Moab then executes the specified command. This mode is highly useful in validating
scheduler behavior and can be used until configuration is appropriately tuned and all parties are
comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling mode
to NORMAL after verifying correct behavior.

Related topics

l Testing New Releases and Policies
l Cluster Simulations
l Side-by-Side Mode

9.4 AnsweringWhat If?Questions with the
Simulator

Moab Workload Manager can answer hypothetical situations through simulations. (See 16.0 Simulations.)
Once Resource and Workload Traces have been collected, any number of configurations can be tested
without disturbing the system.

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation

448 9.4 Answering What If? Questions with the Simulator

10.1 Job Holds 449

10.0 General Job Administration
l Job Holds on page 449

l Job Priority Management on page 451

l Suspend/Resume Handling on page 451

l Checkpoint/Restart Facilities on page 452

l Job Dependencies on page 452

l Job Defaults and Per Job Limits on page 454

l General Job Policies on page 455

l Using a Local Queue on page 457

l Job Deadlines on page 460

l Job Arrays on page 462

10.1 Job Holds
Holds and Deferred Jobs
Moab supports job holds applied by users (user holds), administrators (system holds), and resource
managers (batch holds). There is also a temporary hold known as a job defer.

User Holds
User holds are very straightforward. Many, if not most, resource managers provide interfaces by which
users can place a hold on their own job that tells the scheduler not to run the job while the hold is in
place. Users may use this capability because the job's data is not yet ready, or they want to be present
when the job runs to monitor results. Such user holds are created by, and under the control of a non-
privileged user and may be removed at any time by that user. As would be expected, users can only
place holds on their jobs. Jobs with a user hold in place will have a Moab state of Hold or UserHold
depending on the resource manager being used.

System Holds
The system hold is put in place by a system administrator either manually or by way of an automated
tool. As with all holds, the job is not allowed to run so long as this hold is in place. A batch administrator
can place and release system holds on any job regardless of job ownership. However, unlike a user hold,
normal users cannot release a system hold even on their own jobs. System holds are often used during
system maintenance and to prevent particular jobs from running in accordance with current system

needs. Jobs with a system hold in place will have a Moab state of Hold or SystemHold depending on
the resource manager being used.

Batch Holds
Batch holds are placed on a job by the scheduler itself when it determines that a job cannot run. The
reasons for this vary but can be displayed by issuing the checkjob<JOBID> command. Possible reasons
are included in the following list:

l No Resources — The job requests resources of a type or amount that do not exist on the system.

l System Limits — The job is larger or longer than what is allowed by the specified system policies.

l Bank Failure — The allocations bank is experiencing failures.

l No Allocations — The job requests use of an account that is out of allocations and no fallback
account has been specified.

l RM Reject — The resource manager refuses to start the job.

l RM Failure — The resource manager is experiencing failures.

l Policy Violation — The job violates certain throttling policies preventing it from running now and
in the future.

l No QOS Access — The job does not have access to the QoS level it requests.

Jobs which are placed in a batch hold will show up within Moab in the state BatchHold.

Job Defer
In most cases, a job violating these policies is not placed into a batch hold immediately; rather, it is
deferred. The parameter DEFERTIME indicates how long it is deferred. At this time, it is allowed back
into the idle queue and again considered for scheduling. If it again is unable to run at that time or at any
time in the future, it is again deferred for the timeframe specified by DEFERTIME. A job is released and
deferred up to DEFERCOUNT times at which point the scheduler places a batch hold on the job and waits
for a system administrator to determine the correct course of action. Deferred jobs have a Moab state of
Deferred. As with jobs in the BatchHold state, the reason the job was deferred can be determined by
use of the checkjob command.

At any time, a job can be released from any hold or deferred state using the releasehold command. The
Moab logs should provide detailed information about the cause of any batch hold or job deferral.

Under Moab, the reason a job is deferred or placed in a batch hold is stored in memory but is not
checkpointed. Thus this information is available only until Moab is recycled at which point the
checkjob command no longer displays this reason information.

Related topics

l DEFERSTARTCOUNT - number of job start failures allowed before job is deferred

10.0 General Job Administration

450 10.1 Job Holds

10.2 Job Priority Management 451

10.2 Job Priority Management
Job priority management is controlled via both configured and manual intervention mechanisms.

l Priority Configuration - see Job Prioritization

l Manual Intervention with setspri

10.3 Suspend/Resume Handling
When supported by the resource manager, Moab can suspend and resume jobs. A user can suspend
his/her own jobs, but only an administrator can resume them. By default, a job is suspended for one
minute before it can resume. You can modify this default time using the MINADMINSTIME parameter.

A job must be marked as suspendable for Moab to suspend and resume it. To do so, either submit the
job with the suspendable flag attached to it or configure a credential to pass the flag to its associated
jobs. These methods are demonstrated in the examples below:

msub -l flags=suspendable

GROUPCFG[default] JOBFLAGS=SUSPENDABLE

Once the job is suspendable, Moab allows you to suspend jobs using the two following methods: (1)
manually on the command line and (2) automatically in the moab.cfg file.

To manually suspend jobs, use the mjobctl command as demonstrated in the following examplee:

> mjobctl -s job05

Moab suspends job05, preventing it from running immediately in the job queue.

If you are an administrator and want to resume a job, use the mjobctl command as demonstrated in the
following example:

> mjobctl -r job05

Moab removes job05 from a suspended state and allows it to run.

You can also configure the Moab preemption policy to suspend and resume jobs automatically by setting
the PREEMPTPOLICY parameter to SUSPEND. A sample Moab configuration looks like this:

PREEMPTPOLICY SUSPEND
...
USERCFG[tom] JOBFLAGS=SUSPENDABLE

Moab suspends jobs submitted by user tom if necessary to make resources available for jobs with higher
priority.

If your resource manager has a native interface, you must configure JOBSUSPENDURL to suspend
and resume jobs.

10.0 General Job Administration

For more information about suspending and resuming jobs in Moab, see the following sections:

l manual preemption with the mjobctl command

l Job preemption

10.4 Checkpoint/Restart Facilities
Checkpointing records the state of a job, allowing for it to restart later without interruption to the job's
execution. Checkpointing can be performed manually, as the result of triggers or events, or in conjunction
with various QoS policies.

Moab's ability to checkpoint is dependent upon both the cluster's resource manager and operating
system. In most cases, two types of checkpoint are enabled, including (1) checkpoint and continue and (2)
checkpoint and terminate. While either checkpointing method can be activated using the mjobctl
command, only the checkpoint and terminate type is used by internal scheduling and event managements
facilities.

Checkpointing behavior can be configured on a per-resource manager basis using various attributes of
the RMCFG parameter.

Related topics

l Job Preemption Overview
l PREEMPTPOLICY Parameter
l Resource Manager CHECKPOINTSIG Attribute
l Resource Manager CHECKPOINTTIMEOUT Attribute

10.5 Job Dependencies
l Basic Job Dependency Support

o Job Dependency Syntax

Basic Job Dependency Support
By default, basic single step job dependencies are supported through completed/failed step evaluation.
Basic dependency support does not require special configuration and is activated by default. Dependent
jobs are only supported through a resource manager and therefore submission methods depend upon the
specific resource manager being used. For the TORQUE qsub command, the semantics listed in the
section below can be used with the -W x=depend=<STRING> or -W depend=<STRING> flag; for the
Moab msub command, the -l depend=<STRING> or -W x=depend=<STRING> flag. For other
resource managers, consult the resource manager specific documentation.

10.0 General Job Administration

452 10.4 Checkpoint/Restart Facilities

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm

10.5 Job Dependencies 453

Job Dependency Syntax

Dependency Format Description

after after:<job>
[:<job>]...

Job may start at any time after specified jobs have started execution.

afterany afterany:<job>
[:<job>]...

Job may start at any time after all specified jobs have completed
regardless of completion status.

afterok afterok:<job>
[:<job>]...

Job may be start at any time after all specified jobs have successfully
completed.

afternotok afternotok:<job>
[:<job>]...

Job may start at any time after all specified jobs have completed
unsuccessfully.

before before:<job>
[:<job>]...

Job may start at any time before specified jobs have started exe-
cution.

beforeany beforeany:<job>
[:<job>]...

Job may start at any time before all specified jobs have completed
regardless of completion status.

beforeok beforeok:<job>
[:<job>]...

Job may start at any time before all specified jobs have successfully
completed.

beforenotok beforenotok:<job>
[:<job>]...

Job may start at any time before any specified jobs have completed
unsuccessfully.

on on:<count> Job may start after <count> dependencies on other jobs have been
satisfied.

synccount synccount:<count> Job is the first in a set of jobs to be executed at the same time.
<count> is the number of additional jobs in the set, which can be up
to 5. synccount is valid for single-request jobs with TORQUE as the
resource manager.

syncwith syncwith:<job> Job is an additional member of a set of jobs to be executed at the
same time. Moab supports up to 5 jobs. syncwith is valid for single-
request jobs with TORQUE as the resource manager.

<job>={JOBNAME.jobname|jobid}

When using JobName dependencies, prepend "JOBNAME." to avoid ambiguity.

10.0 General Job Administration

The before dependencies do not work with jobs submitted with msub; they work only with qsub.

Any of the dependencies containing before must be used in conjunction with the on dependency. So, if
job A must run before job B, job B must be submitted with depend=on:1, as well as job A having
depend=before:A. This means job B cannot run until one dependency of another job on job B has been
fulfilled. This prevents job B from running until job A can be successfully submitted.

Related topics

l Job Deadlines

10.6 Job Defaults and Per Job Limits
Job Defaults
Job defaults can be specified on a per queue basis. These defaults are specified using the CLASSCFG
parameter. The following table shows the applicable attributes:

Attribute Format Example

DEFAULT.FEATURES comma-delimited list of node
features

CLASSCFG[batch] DEFAULT.FEATURES=fast,io

Jobs submitted to class batch will request
nodes features fast and io.

DEFAULT.WCLIMIT [[[DD:]HH:]MM:]SS CLASSCFG[batch] DEFAULT.WCLIMIT=1:00:00

Jobs submitted to class batch will request
one hour of walltime by default.

Per JobMaximum Limits
Job maximum limits can be specified on a per queue basis. These defaults are specified using the
CLASSCFG parameter. The following table shows the applicable attributes:

Attribute Format Example

MAX.WCLIMIT [[[DD:]HH:]MM:]
SS

CLASSCFG[batch] MAX.WCLIMIT=1:00:00

Jobs submitted to class batch can request no more than one
hour of walltime.

10.0 General Job Administration

454 10.6 Job Defaults and Per Job Limits

10.7 General Job Policies 455

Per JobMinimum Limits
Furthermore, minimum job defaults can be specified with the CLASSCFG parameter. The following table
shows the applicable attributes:

Attribute Format Example

MIN.PROC <integer> CLASSCFG[batch] MIN.PROC=10

Jobs submitted to class batch can request no less than
ten processors.

Related topics

l Usage-based Limits

10.7 General Job Policies
l Multi-Node Support

l Multi-Req Support

l Job Size Policy

l Malleable Job Support

l Enabling Job User Proxy

There are a number of configurable policies that help control advanced job functions. These policies help
determine allowable job sizes and structures.

Multi-Node Support
You can configure the ability to allocate resources from multiple nodes to a job with the MAX.NODE
limit.

Multi-Req Support
Jobs can specify multiple types of resources for allocation. For example, a job could request 4 nodes with
256 MB of memory and 8 nodes with feature fast present.

Resources specified in a multi-req job are delimited with a plus sign (+).

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work with multi-
req jobs or preemption.

Example 10-1:

-l nodes=4:ppn=1+10:ppn=5+2:ppn=2

10.0 General Job Administration

This example requests 4 nodes with 1 proc each, 10 nodes with 5 procs each, and 2 nodes with 2 procs each. The total
number of processors requested is (4*1) + (10*5) + (2*2), or 58 processors.

Example 10-2:

-l nodes=15+1:ppn=4

The job submitted in this example requests a total of 16 nodes. 15 of these nodes have no specific requirements, but the
remaining node must have 4 processors.

Example 10-3:

-l nodes=3:fast+1:io

The job requests a total of 4 nodes: 3 nodes with the fast feature and 1 node with the io feature.

Job Size Policy
Moab allows jobs to request resource ranges. Using this range information, the scheduler is able to
maximize the amount of resources available to the job while minimizing the amount of time the job is
blocked waiting for resources. The JOBSIZEPOLICY parameter can be used to set this behavior according
to local site needs.

Job resource ranges may only be specified when using a local queue as described in the Using a
Local Queue section.

Malleable Job Support
A job can specify whether it is able to use more processors or less processors and what effect, if any,
that has on its wallclock time. For example, a job may run for 10 minutes on 1 processor, 5 minutes on 2
processors and 3 minutes on 3 processors. When a job is submitted with a task request list attached,
Moab determines which task request fits best and molds the job based on its specifications. To submit a
job with a task request list and allow Moab to mold it based on the current scheduler environment, use
the TRL flag in the Resource Manager Extension.

Enabling Job User Proxy
By default, user proxying is disabled. To be enabled, it must be authorized using the PROXYLIST attribute
of the USERCFG parameter. This parameter can be specified either as a comma-delimited list of users or
as the keyword validate. If the keyword validate is specified, the RMCFG attribute JOBVALIDATEURL
should be set and used to confirm that the job's owner can proxy to the job's execution user. An example
script performing this check for ssh-based systems is provided in the tools directory.(See Job Validate
Tool Overview.)

For some resource managers (RM), proxying must also be enabled at the RM level. The following
example shows how ssh-based proxying can be accomplished in a Moab+TORQUE with SSH environment.

To validate proxy users, Moab must be running as root.

10.0 General Job Administration

456 10.7 General Job Policies

10.8 Using a Local Queue 457

Example 10-4: SSH Proxy Settings

USERCFG[DEFAULT] PROXYLIST=validate
RMCFG[base] TYPE=<resource manager>
JOBVALIDATEURL=exec://$HOME/tools/job.validate.sshproxy.pl

> qmgr -c 's s allow_proxy_user=true'
> su - testuser
> qsub -I -u testuser2
qsub: waiting for job 533.igt.org to start
qsub: job 533.igt.org ready
testuser2@igt:~$

In this example, the validate tool, 'job.validate.sshproxy.pl', can verify proxying is allowed by becoming the
submit user and determining if the submit user can achieve passwordless access to the specified execution user.
However, site-specific tools can use any method to determine proxy access including a flat file look-up, database lookup,
querying of an information service such as NIS or LDAP, or other local or remote tests. For example, if proxy validation is
required but end-user accounts are not available on the management node running Moab, the job validate service could
perform the validation test on a representative remote host such as a login host.

This feature supports qsub only.

The job validate tool is highly flexible allowing any combination of job attributes to be evaluated and
tested using either local or remote validation tests. The validate tool allows not only pass/fail
responses but also allows the job to be modified, or rejected in a custom manner depending on the site
or the nature of the failure.

Related topics

l Usage Limits

10.8 Using a Local Queue
Moab allows jobs to be submitted directly to the scheduler. With a local queue, Moab is able to directly
manage the job or translate it for resubmission to a standard resource manager queue. There are
multiple advantages to using a local queue:

l Jobs may be translated from one resource manager job submission language to another (such as
submitting a PBS job and running it on an LSF cluster).

l Jobs may be migrated from one local resource manager to another.

l Jobs may be migrated to remote systems using Moab peer-to-peer functionality.

l Jobs may be dynamically modified and optimized by Moab to improve response time and system
utilization.

l Jobs may be dynamically modified to account for system hardware failures or other issues.

l Jobs may be dynamically modified to conform to site policies and constraints.

10.0 General Job Administration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qmgr.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/serverParameters.htm#allow_proxy_user
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qsub.htm

Local Queue Configuration
A local queue is configured just like a standard resource manager queue. It may have defaults, limits,
resource mapping, and credential access constraints. The following table describes the most common
settings:

Default queue

Format RMCFG[internal] DEFAULTCLASS=<CLASSID>

Description The job class/queue assigned to the job if one is not explicitly requested by the submitter.

All jobs submitted directly to Moab are initially received by the pseudo-resource manager
internal. Therefore, default queue configuration may only be applied to it.

Example RMCFG[internal] DEFAULTCLASS=batch

Class default resource requirements

Format CLASSCFG[<CLASSID>] DEFAULT.FEATURES=<X> CLASSCFG[<CLASSID>]
DEFAULT.MEM=<X> CLASSCFG[<CLASSID>] DEFAULT.NODE=<X> CLASSCFG[<CLASSID>]
DEFAULT.NODESET=<X> CLASSCFG[<CLASSID>] DEFAULT.PROC=<X> CLASSCFG
[<CLASSID>] DEFAULT.WCLIMIT=<X>

Description The settings assigned to the job if not explicitly set by the submitter. Default values are available
for node features, per task memory, node count, nodeset configuration, processor count, and
wallclock limit.

Example CLASSCFG[batch] DEFAULT.WCLIMIT=4 DEFAULT.FEATURES=matlab

or

CLASSCFG[batch] DEFAULT.WCLIMIT=4
CLASSCFG[batch] DEFAULT.FEATURES=matlab

Class maximum resource limits

Format CLASSCFG[<CLASSID>] MAX.FEATURES=<X> CLASSCFG[<CLASSID>] MAX.NODE=<X>
CLASSCFG[<CLASSID>] MAX.PROC=<X> CLASSCFG[<CLASSID>] MAX.WCLIMIT=<X>

10.0 General Job Administration

458 10.8 Using a Local Queue

10.8 Using a Local Queue 459

Class maximum resource limits

Description The maximum node features, node count, processor count, and wallclock limit allowed for a job sub-
mitted to the class/queue. If these limits are not satisfied, the job is not accepted and the submit
request fails.MAX.FEATURES indicates that only the listed features may be requested by a job.

Example CLASSCFG[smalljob] MAX.PROC=4 MAX.FEATURES=slow,matlab

or

CLASSCFG[smalljob] MAX.PROC=4
CLASSCFG[smalljob] MAX.FEATURES=slow,matlab

Class minimum resource limits

Format CLASSCFG[<CLASSID>] MIN.FEATURES=<X> CLASSCFG[<CLASSID>] MIN.NODE=<X>
CLASSCFG[<CLASSID>] MIN.PROC=<X> CLASSCFG[<CLASSID>] MIN.WCLIMIT=<X>

Description The minimum node features, node count, processor count, and wallclock limit allowed for a job sub-
mitted to the class/queue. If these limits are not satisfied, the job is not accepted and the submit
request fails.MIN.FEATURES indicates that only the listed features may be requested by a job.

Example CLASSCFG[bigjob] MIN.PROC=4 MIN.WCLIMIT=1:00:00

or

CLASSCFG[bigjob] MIN.PROC=4
CLASSCFG[bigjob] MIN.WCLIMIT=1:00:00

Class access

Format CLASSCFG[<CLASSID>] REQUIREDUSERLIST=<USERID>[,<USERID>]...

Description The list of users who may submit jobs to the queue.

Example CLASSCFG[math] REQUIREDUSERLIST=john,steve

10.0 General Job Administration

Available resources

Format CLASSCFG[<CLASSID>] HOSTLIST=<HOSTID>[,<HOSTID>]...

Description The list of nodes that jobs in the queue may use.

Example CLASSCFG[special] HOSTLIST=node001,node003,node13

If a job is submitted directly to the resource manager used by the local queue, the class default resource
requirements are not applied. Also, if the job violates a local queue limitation, the job is accepted by the
resource manager, but placed in the Blocked state.

10.9 Job Deadlines
l Deadline Overview

l Setting Job Deadlines via QoS on page 460

o Setting Job Deadlines at Job Submission on page 461

o Submitting a Job to a QoS with a Preconfigured Deadline on page 461

l Job Termination Date

l Conflict Policies

Deadline Overview
Job deadlines may be specified on a per job and per credential basis and are also supported using both
absolute and QoS based specifications. A job requesting a deadline is first evaluated to determine if the
deadline is acceptable. If so, Moab adds it to the list of deadline jobs and allocates resources to
guarantee that all accepted deadline jobs are able to complete on or before their requested deadline.
Once the scheduler confirms that all deadlines can be satisfied, it then optimizes resource allocation (in
priority order) attempting to execute all jobs at the earliest possible time.

Setting Job Deadlines via QoS
Two types of job deadlines exist in Moab. The priority-based deadline linearly increases a job's priority
as its deadline approaches (See Deadline (DEADLINE) Subcomponent on page 294 for more
information). The QoS method allows you to set a job completion time on job submission if, and only if, it
requests and is allowed to access a QoS with the DEADLINE QFLAG set. This method is more powerful
than the priority method, because Moab will attempt to make a reservation for the job as soon as the job
enters the queue in order to meet the deadline, essentially bumping it to the front of the queue.

When a job is submitted to a QoS with the DEADLINE flag set, the job's -l deadline attribute is
honored. If such QoS access is not available, or if resources do not exist at job submission time to allow
the deadline to be satisfied, the job's deadline request is ignored.

Two methods exist for setting deadlines with a QoS:

10.0 General Job Administration

460 10.9 Job Deadlines

10.9 Job Deadlines 461

l Submitting a job to a deadline-enabled QoS and specifying a deadline using msub -l.

l Submitting a job to a deadline-enabled QoS with a QTTARGET specified.

Setting Job Deadlines at Job Submission

This method of setting a job deadline allows you to specify a job deadline as you submit the job. You can
set the deadline as either an exact date and time or as an amount of time after job submission (i.e. three
hours after submission).

To specify a deadline on job submission

1. In moab.cfg, reate a QoS with the DEADLINE flag enabled.

...
QOSCFG[special] QFLAGS=DEADLINE

Jobs requesting the QoS special may submit jobs with a deadline that Moab will honor.

2. Submit a job to the QoS and set a deadline. This can be either absolute or relative.

a. For an absolute deadline, use the format hh:mm:ss_mm/dd/yy. The following configuration sets
a deadline for a job to finish by 8 a.m. on March 15th, 2013.

msub -l qos=special deadline=08:00:00_03/15/13 job.sh

The job must finish running by 8 A.M. on March 15, 2013.

b. For a relative deadline, or the completion deadline of the job relative to its submission time, use
the time format [[[DD:]HH:]MM:]SS.

msub -l qos=special deadline=5:00:00 job.sh

The job's deadline is 5 hours after its submission.

Submitting a Job to a QoSwith a Preconfigured Deadline

You may also set a relative job deadline by limiting the job's queue time. This method allows you to pre-
configure the deadline rather than giving the power to specify a deadline to the user submitting the job.
For jobs requesting these QoSes, Moab identifies and sets job deadlines to satisfy the corresponding
response time targets.

To submit a job to a QoS with a preconfigured deadline

1. In moab.cfg, create a QoS with both the DEADLINE QFLAG and a response time target (QTTARGET).
The QTTARGET is the maximum amount of time that Moab should allow the job to be idle in the
queue.

...
QOSCFG[special2] QFLAGS=DEADLINE QTTARGET=1:00:00

Given this configuration, a job requesting QoS special2 must spend a maximum of one hour in the queue.

10.0 General Job Administration

2. Submit a job requesting the special2 quality of service.

msub -l qos=special2 walltime=2:00:00 job.sh

This two-hour job has a completion time deadline set to three hours after its submission (one hour of target queue
time and two hours of run time).

Job Termination Date
In addition to job completion targets, jobs may also be submitted with a TERMTIME attribute. The
scheduler attempts to complete the job prior to the termination date, but if it is unsuccessful, it will
terminate (cancel) the job once the termination date is reached.

Conflict Policies
The specific policy can be configured using the DEADLINEPOLICY parameter. Moab does not have a
default policy for this parameter.

Policy Description

CANCEL The job is canceled and the user is notified that the deadline could not be satisfied.

HOLD The job has a batch hold placed on it indefinitely. The administrator can then decide what action to
take.

RETRY The job continually retries each iteration to meet its deadline; note that when used with QTTARGET
the job's deadline continues to slide with relative time.

IGNORE The job has its request ignored and is scheduled as normal.

Deadline scheduling may not function properly with per partition scheduling enabled. Check that
PARALLOCATIONPOLICY is disabled to ensure DEADLINEPOLICY will work correctly.

Related topics

l QoS Facilities
l Job Submission Eligible Start Time constraints

10.10 Job Arrays
l Job Array Overview

l Enabling Job Arrays

l Sub-job Definitions

10.0 General Job Administration

462 10.10 Job Arrays

10.10 Job Arrays 463

l Using Environment Variables to Specify Array Index Values

o Control

o Reporting

l Job Array Cancellation Policies

l Examples

o Submitting Job Arrays

Job Array Overview
You can submit an array of jobs to Moab via the msub command. Array jobs are an easy way to submit
many sub-jobs that perform the same work using the same script, but operate on different sets of data.
Sub-jobs are the jobs created by an array job and are identified by the array job ID and an index; for
example, if 235[1] is an identifier, the number 235 is a job array ID, and 1 is the sub-job.

Sub-jobs of an array are executed in sub-job index order.

Moab job arrays are different from TORQUE job arrays.

Enabling Job Arrays
To enable job arrays, include the ENABLEJOBARRAYS parameter in the Moab configuration file
(moab.cfg).

Sub-job Definitions
Like a normal job, an array job submits a job script, but it additionally has a start index (sidx) and an
end index (eidx); array jobs also have increment (incr) values, which Moab uses to create sub-jobs, all
executing the same script. The model for sub-job creation follows the formula of end index minus start
index plus increment divided by the increment value: (eidx - sidx + incr) / incr.

To illustrate, suppose an array job has a start index of 1, an end index of 100, and an increment of 1. This
is an array job that creates (100 - 1 + 1) / 1 = 100 sub-jobs with indexes of 1, 2, 3, ..., 100. An increment of
2 produces (100 - 1 + 2) / 2 = 50 sub-jobs with indexes of 1, 3, 5, ..., 99. An increment of 2 with a start
index of 2 produces (100 - 2 + 2) / 2 = 50 sub-jobs with indexes of 2, 4, 6, ..., 100. Again, sub-jobs are jobs
in their own right that have a slightly different job naming convention jobID[subJobIndex] (e.g.
mycluster.45[37] or 45[37]).

Using Environment Variables to Specify Array Index Values
The script can use an environment variable to obtain the array index value to form data file and/or
directory names unique to an array job's particular sub-job. The following two environment variables are
supplied so job scripts can recognize what index in the array they are in; use the msub command with
the -V option to pass the environment parameters to the resource manager, or include the parameters in
a job script; for example: #PBS -V MOAB_JOBARRAYRANGE.

10.0 General Job Administration

Environment
Parameter Description

MOAB_
JOBARRAYINDEX

Used to create dataset file names, directory names, and so forth, when splitting up a single
problem into multiple jobs.
For example, a user may split up a problem into 20 separate jobs, each with its own input
and output data files whose names contain the numbers 1-20.
To illustrate, assume a user submits the 20 sub-jobs using two msub commands; one to
submit the ten even-numbered jobs and one to submit the ten odd-numbered jobs.
msub -t job1.[1-20:2]
msub -t job2.[2-20:2]

The MOAB_JOBARRAYINDEX environment variable value would populate each of the two
job arrays' ten sub-jobs as 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 for the first array job's ten sub-
jobs, and 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 for the second array job's ten sub-jobs.

MOAB_
JOBARRAYRANGE

The count of jobs in the array.

Control

Users can control individual sub-jobs in the same manner as normal jobs. In addition, an array job
represents its group of sub-jobs and any user or administrator commands performed on an array job
apply to its sub-jobs; for example, the command canceljob <arrayJobId> cancels all sub-jobs that belong to
the array job. For more information about job control, see the documentation for the mjobctl command.

Reporting

In the first example below, the parts unique to array subjobs are in red.

$ checkjob -v Moab.1[1]
job Moab.1[1]

AName: Moab
State: Running
Creds: user:user1 group:usergroup1
WallTime: 00:00:17 of 8:20:00
SubmitTime: Thu Nov 4 11:50:03
(Time Queued Total: 00:00:00 Eligible: INFINITY)
StartTime: Thu Nov 4 11:50:03
Total Requested Tasks: 1
Req[0] TaskCount: 1 Partition: base
Average Utilized Procs: 0.96
NodeCount: 1
Allocated Nodes:
[node010:1]

Job Group: Moab.1
Parent Array ID: Moab.1
Array Index: 1
Array Range: 10
SystemID: Moab
SystemJID: Moab.1[1]
Task Distribution: node010
IWD: /home/user1

10.0 General Job Administration

464 10.10 Job Arrays

10.10 Job Arrays 465

UMask: 0000
Executable: /opt/moab/spool/moab.job.3CvNjl
StartCount: 1
Partition List: base
SrcRM: internal DstRM: base DstRMJID: Moab.1[1]
Flags: ARRAYJOB,GLOBALQUEUE
StartPriority: 1
PE: 1.00
Reservation 'Moab.1[1]' (-00:00:19 -> 8:19:41 Duration: 8:20:00)

If the array range is not provided, the output displays all the jobs in the array.

$ checkjob -v Moab.1
job Moab.1

AName: Moab
Job Array Info:
Name: Moab.1
1 : Moab.1[1] : Running
2 : Moab.1[2] : Running
3 : Moab.1[3] : Running
4 : Moab.1[4] : Running
5 : Moab.1[5] : Running
6 : Moab.1[6] : Running
7 : Moab.1[7] : Running
8 : Moab.1[8] : Running
9 : Moab.1[9] : Running
10 : Moab.1[10] : Running
11 : Moab.1[11] : Running
12 : Moab.1[12] : Running
13 : Moab.1[13] : Running
14 : Moab.1[14] : Running
15 : Moab.1[15] : Running
16 : Moab.1[16] : Running
17 : Moab.1[17] : Running
18 : Moab.1[18] : Running
19 : Moab.1[19] : Running
20 : Moab.1[20] : Running
Totals:
Active: 20
Idle: 0
Complete: 0

You can also use showq. This displays the array master job with a count of how many sub-jobs are in
each queue.

$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

Moab.1(5) aesplin Running 5 00:52:41 Thu Jun 23 17:05:56
Moab.2(1) aesplin Running 1 00:53:41 Thu Jun 23 17:06:56

6 active jobs 6 of 6 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

10.0 General Job Administration

Moab.2(4) aesplin Idle 4 1:00:00 Thu Jun 23 17:06:56

4 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

Moab.2(1) aesplin Blocked 1 1:00:00 Thu Jun 23 17:06:56

1 blocked job

Total jobs: 11

Moab.1 has five sub-jobs running. Moab.2 has one sub-job running, four waiting to run, and one that is currently
blocked.

Job Array Cancellation Policies
Job arrays can be canceled based on the success or failure of the first sub-job, the first success or failure
of any sub-job, or if any sub-job exits with a specified exit code. The job array cancellation policies are:

Cancel Policy Description Exclus-
ivity

CancelOnFirstFail-
ure

Cancels the job array if the first sub-job (JOBARRAYINDEX = 1) fails.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstFailure

Mutually
exclusive

CancelOnFirstSuc-
cess

Cancels the job array if the first sub-job (JOBARRAYINDEX = 1) succeeds.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstSuccess

CancelOnAnyFail-
ure

Cancels the job array if any sub-job fails.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnyFailure

CancelOnAnySuc-
cess

Cancels the job array if any sub-job succeeds.

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnAnySuccess

CancelOnExitCode Cancels the job array if any sub-job returns the specified exit code.

> msub -t myarray[1-1000%50] -l
...,flags=CancelOnExitCode:<error code list>

The syntax for the error code list are ranges specified with a dash and
individual codes delimited by a plus (+) sign, such as: 1-4+9+15
Exit codes 1-387 are accepted.

10.0 General Job Administration

466 10.10 Job Arrays

10.10 Job Arrays 467

Up to two cancellation polices can be specified for an array and the two policies must be delimited by a
colon (:). The two "first sub-job" policies are mutually exclusive, as are the three "any sub-job" policies.
You can use either "first sub-job" policy with one of the "any sub-job" policies, as shown in this example:

> msub -t myarray[1-1000]%50 -l ...,flags=CancelOnFirstFailure:CancelOnExitCode:3-7+11

Examples
Operations can be performed on individual jobs, a selection of jobs in a job array, or on the entire array.

Submitting Job Arrays

The syntax for submitting job arrays is: msub -t [<jobname>]<indexlist>[%<limit>]
arrayscript.sh

The <jobname> and <limit> are optional. The jobname does not override the jobID Moab assigns to the
array. When submitting an array with a jobname, Moab returns the jobID, which is the scheduler name
followed by a unique ID.

For example, if the scheduler name in moab.cfg is Moab (SCHEDCFG[Moab]), submitting an array with
a jobname responds like this:

> msub -t myarray[1-10] job.sh

Moab.6

To specify that only a certain number of sub-jobs in the array can run at a time, use the percent sign (%)
delimiter. In this example, only five sub-jobs in the array can run at a time:

> msub -t myarray[1-1000]%5

To submit a specific set of array sub-jobs, use the comma delimiter in the array index list:

> msub -t myarray[1,2,3,4]
> msub -t myarray[1-5,7,10]

You can use the checkjob command on either the jobID or the jobname you specified.

> msub -t myarray[1-2] job.sh

Moab.10

$ checkjob -v myarray
job Moab.10

AName: myarray
Job Array Info:

Name: Moab.10
1 : Moab.10[1] : Running
2 : Moab.10[2] : Running

Sub-jobs: 2
Active: 2 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

10.0 General Job Administration

State: Idle
Creds: user:tuser1 group:tgroup1
WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

To submit a job with a step size, use a colon in the array range and specify how many jobs to step. In the
example below, a step size of 2 is requested. The sub-jobs will be numbered according to the step size
inside the index limit. The array master job name will be the same as explained above.

$ msub -t myarray[2-10:2] job.sh

job Moab.15

$ checkjob -v myarray #or you could use 'checkjob -v Moab.15'
job Moab.15

AName: myarray
Job Array Info:

Name: Moab.15
2 : Moab.15[2] : Running
4 : Moab.15[4] : Running
6 : Moab.15[6] : Running
8 : Moab.15[8] : Running
10 : Moab.15[10] : Running

Sub-jobs: 5
Active: 5 (100.0%)
Eligible: 0 (0.0%)
Blocked: 0 (0.0%)
Completed: 0 (0.0%)

State: Idle
Creds: user:tuser1 group:tgroup1
WallTime: 00:00:00 of 99:23:59:59
SubmitTime: Thu Jun 2 16:37:17

(Time Queued Total: 00:00:33 Eligible: 00:00:00)

Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL

Related topics

l Job Dependencies

10.0 General Job Administration

468 10.10 Job Arrays

469

11.0 General Node Administration
l Node Location on page 470

l Node Attributes on page 473

l Node Specific Policies on page 483

l Managing Shared Cluster Resources (Floating Resources) on page 484

l Managing Node State on page 488

l Managing Consumable Generic Resources on page 490

l Enabling Generic Metrics on page 492

l Enabling Generic Events on page 496

Overview
Moab has a very flexible and generalized definition of a node. This flexible definition, together with the
fact that Moab must inter-operate with many resource managers of varying capacities, requires that
Moab must possess a complete set of mechanisms for managing nodes that in some cases may be
redundant with resource manager facilities.

Resource Manager Specified 'Opaque' Attributes

Many resource managers support the concept of opaque node attributes, allowing a site to assign
arbitrary strings to a node. These strings are opaque in the sense that the resource manager passes
them along to the scheduler without assigning any meaning to them. Nodes possessing these opaque
attributes can then be requested by various jobs. Using certain Moab parameters, sites can assign a
meaning within Moab to these opaque node attributes and extract specific node information. For
example, setting the parameter FEATUREPROCSPEEDHEADER xps causes a node with the opaque string
xps950 to be assigned a processor speed of 950 MHz within Moab.

Scheduler Specified Default Node Attributes

Some default node attributes can be assigned on a rack or partition basis. In addition, many node
attributes can be specified globally by configuring the DEFAULT node template using the NODECFG
parameter (i.e., NODECFG[DEFAULT] PROCSPEED=3200). Unless explicitly specified otherwise, nodes
inherit node attributes from the associated rack or partition or from the default node template. See the
Partition Overview for more information.

Scheduler Specified Node Attributes

The NODECFG parameter also allows direct per-node specification of virtually all node attributes
supported via other mechanisms and also provides a number of additional attributes not found
elsewhere. For example, a site administrator may want to specify something like the following:

NODECFG[node031] MAXJOB=2 PROCSPEED=600 PARTITION=small

These approaches may be mixed and matched according to the site's local needs. Precedence for
the approaches generally follows the order listed earlier in cases where conflicting node
configuration information is specified through one or more mechanisms.

11.1 Node Location
Nodes can be assigned three types of location information based on partitions, racks, and queues.

l Partitions

l Racks

l Queues

o TORQUE/OpenPBS Queue to Node Mapping

l Node Selection/Specification

Partitions
The first form of location assignment, the partition, allows nodes to be grouped according to physical
resource constraints or policy needs. By default, jobs are not allowed to span more than one partition so
partition boundaries are often valuable if an underlying network topology make certain resource
allocations undesirable. Additionally, per-partition policies can be specified to grant control over how
scheduling is handled on a partition by partition basis. See the Partition Overview for more information.

Racks
Rack-based location information is orthogonal to the partition based configuration and is mainly an
organizational construct. In general rack based location usage, a node is assigned both a rack and a slot
number. This approach has descended from the IBM SP2 organizational approach in which a rack can
contain any number of slots but typically contains between 1 and 99. Using the rack and slot number
combo, individual compute nodes can be grouped and displayed in a more ordered manner in certain
Moab commands (i.e., showstate). Currently, rack information can only be specified directly by the
system via the SDR interface on SP2/Loadleveler systems. In all other systems, this information must be
specified using an information service or specified manually using the RACK, SLOT, and SIZE attributes of
the NODECFG parameter.

Sites may arbitrarily assign nodes to racks and rack slots without impacting scheduling behavior.
Neither rack numbers nor rack slot numbers need to be contiguous and their use is simply for
convenience purposes in displaying and analyzing compute resources.

Example 11-1:

NODECFG[node024] RACK=1 SLOT=1

11.0 General Node Administration

470 11.1 Node Location

11.1 Node Location 471

NODECFG[node025] RACK=1 SLOT=2
NODECFG[node026] RACK=2 SLOT=1 PARTITION=special
...

When specifying node and rack information, slot values must be in the range of 1 to 99, and racks must
be in the range of 1 to 399.

Queues
Some resource managers allow queues (or classes) to be defined and then associated with a subset of
available compute resources. With systems such as Loadleveler or PBSPro these queue to node mappings
are automatically detected. On resource managers that do not provide this service, Moab provides
alternative mechanisms for enabling this feature.

TORQUE/OpenPBSQueue to Node Mapping

Under TORQUE, queue to node mapping can be accomplished by using the qmgr command to set the
queue acl_hosts parameter to the mapping host list desired. Further, the acl_host_enable parameter
should be set to False.

Setting acl_hosts and then setting acl_host_enable to True constrains the list of hosts from
which jobs may be submitted to the queue.

The following example highlights this process and maps the queue debug to the nodes host14 through
host17.

> qmgr
Max open servers: 4
Qmgr: set queue debug acl_hosts = "host14,host15,host16,host17"
Qmgr: set queue debug acl_host_enable = false
Qmgr: quit

All queues that do not have acl_hosts specified are global; that is, they show up on every node.
To constrain these queues to a subset of nodes, each queue requires its own acl_hosts
parameter setting.

Node Selection
When selecting or specifying nodes either via command line tools or via configuration file based lists,
Moab offers three types of node expressions that can be based on node lists, exact lists, node ranges, or
regular expressions.

Node Lists

Node lists can be specified as one or more comma or whitespace delimited node IDs. Specified node IDs
can be based on either short or fully qualified host names. Each element will be interpreted as a regular
expression.

SRCFG[basic] HOSTLIST=cl37.icluster,ax45,ax46
...

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qmgr.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/serverParameters.htm

Exact Lists

When Moab receives a list of nodes it will, by default, interpret each element as a regular expression. To
disable this and have each element interpreted as a string node name, the l: can be used as in the
following example:

> setres l:n00,n01,n02

Node Range

Node lists can be specified as one or more comma or whitespace delimited node ranges. Each node range
can be based using either <STARTINDEX>-<ENDINDEX> or <HEADER>[<STARTINDEX>-<ENDINDEX>]
format. To explicitly request a range, the node expression must be preceded with the string r: as in the
following example:

> setres r:37-472,513,516-855

When you specify a <HEADER> for the range, note that it must only contain alphabetical characters. As
always, the range must be numeric.

CLASSCFG[long] HOSTLIST=r:anc-b[37-472]

Only one expression is allowed with node ranges.

By default, Moab attempts to extract a node's node index assuming this information is built into
the node's naming convention. If needed, this information can be explicitly specified in the Moab
configuration file using NODECFG's NODEINDEX attribute, or it can be extracted from alternately
formatted node IDs by specifying the NODEIDFORMAT parameter.

Node Regular Expression

Node lists may also be specified as one or more comma or whitespace delimited regular expressions.
Each node regular expression must be specified in a format acceptable by the standard C regular
expression libraries that allow support for wildcard and other special characters such as the following:

l * (asterisk)

l . (period)

l [] (left and right bracket)

l ^ (caret)

l $ (dollar)

Node lists are by default interpreted as a regular expression but can also be explicitly requested with
the string x: as in the following examples:

select nodes cl30 thru cl55
SRCFG[basic] HOSTLIST=x:cl[34],cl5[0-5]
...

11.0 General Node Administration

472 11.1 Node Location

11.2 Node Attributes 473

select nodes cl30 thru cl55
SRCFG[basic] HOSTLIST=cl[34],cl5[0-5]
...

To control node selection search ordering, set the OBJECTELIST parameter to one of the following
options: exact, range, regex, rangere, or rerange.

11.2 Node Attributes
l Configurable Node Attributes on page 473

l Node Features/Node Properties on page 482

Configurable Node Attributes
Nodes can possess a large number of attributes describing their configuration which are specified using
the NODECFG parameter. The majority of these attributes such as operating system or configured
network interfaces can only be specified by the direct resource manager interface. However, the number
and detail of node attributes varies widely from resource manager to resource manager. Sites often
have interest in making scheduling decisions based on scheduling attributes not directly supplied by the
resource manager. Configurable node attributes are listed in the following table; click an attribute for
more detailed information:

ACCESS on page 474
ARCH on page 474
CHARGERATE on page 474
COMMENT on page 474
ENABLEPROFILING on page 474
FEATURES on page 475
FLAGS on page 475
GRES on page 475
LOGLEVEL on page 476
MAXIOIN on page 476
MAXJOB on page 476
MAXJOBPERUSER on page 476
MAXPE on page 476
MAXPEPERJOB on page 476
MAXPROC on page 476

NETWORK on page 476
NODEINDEX on page 476
NODETYPE on page 477
OS on page 477
OSLIST on page 477
OVERCOMMIT on page 477
PARTITION on page 477
POWERPOLICY on page 477
PREEMPTMAXCPULOAD on page 478
PREEMPTMINMEMAVAIL on page 478
PREEMPTPOLICY on page 478
PRIORITY on page 478
PRIORITYF on page 479
PROCSPEED on page 479

PROVRM on page 479
RACK on page 479
RADISK on page 479
RCDISK on page 480
RCMEM on page 480
RCPROC on page 480
RCSWAP on page 481
SIZE on page 481
SLOT on page 481
SPEED on page 481
TRIGGER on page 481
VARIABLE on page 481
VMOCTHRESHOLD on page 482

11.0 General Node Administration

Attribute Description

ACCESS Specifies the node access policy that can be one of SHARED, SHAREDONLY,
SINGLEJOB, SINGLETASK, or SINGLEUSER. See Node Access Policies for more
details.

NODECFG[node013] ACCESS=singlejob

ARCH Specifies the node's processor architecture.

NODECFG[node013] ARCH=opteron

CHARGERATE Allows a site to assign specific charging rates to the usage of particular resources.
The CHARGERATE value may be specified as a floating point value and is integrated
into a job's total charge (as documented in the Charging and Allocation Management
section).

This feature can only be used in conjunction with the AMCFG[] LOCALCOST
flag which limits its use to cases where Moab calculates the full charge to be
used by Moab Accounting Manager.

NODECFG[DEFAULT] CHARGERATE=1.0
NODECFG[node003] CHARGERATE=1.5
NODECFG[node022] CHARGERATE=2.5

COMMENT Allows an organization to annotate a node via the configuration file to indicate
special information regarding this node to both users and administrators. The
COMMENT value may be specified as a quote delimited string as shown in the
example that follows. Comment information is visible using checknode, mdiag, Moab
Cluster Manager, and Moab Access Portal.

NODECFG[node013] COMMENT="Login Node"

ENABLEPROFILING Allows an organization to track node state over time. This information is available
using showstats -n.

NODECFG[DEFAULT] ENABLEPROFILING=TRUE

11.0 General Node Administration

474 11.2 Node Attributes

http://www.adaptivecomputing.com/resources/docs/maui/index.php
http://www.adaptivecomputing.com/resources/docs/maui/index.php
http://www.adaptivecomputing.com/resources/docs/map/index.php

11.2 Node Attributes 475

Attribute Description

FEATURES Not all resource managers allow specification of opaque node features (also known
as node properties). For these systems, the NODECFG parameter can be used to
directly assign a list of node features to individual nodes. To set/overwrite a node's
features, use FEATURES=<X>; to append node features, use FEATURES+=<X>.

NODECFG[node013] FEATURES+=gpfs,fastio

The total number of supported node features is limited as described in the
Adjusting Default Limits section.

If supported by the resource manager, the resource manager specific
manner of requesting node features/properties within a job may be used.
(Within TORQUE, use qsub -l nodes=<NODECOUNT>:<NODEFEATURE>.)
However, if either not supported within the resource manager or if support is
limited, the Moab feature resource manager extension may be used.

FLAGS Specifies various flags that should be set on the given node. Node flags must be set
using the mschedctl -m config command. Do not set node flags in the moab.cfg file.
Flags set in moab.cfgmay conflict with settings controlled automatically by
resource managers, Moab Web Services, or Viewpoint.

l globalvars - The node has variables that may be used by triggers.
l novmmigrations - Excludes this hypervisor from VM auto-migrations. This
means that VMs cannot automatically migrate to or from this hypervisor
while this flag is set.

NODECFG[node1] FLAGS=NoVMMigrations

To allow VMs to resume migrating, remove this flag using
mschedctl -m config 'NODECFG[node1] FLAGS-
=NoVMMigrations' or use a resource manager to unset the flag.
Because both Moab and the RM report the novmmigration flag
and the RM's setting always overrides the Moab setting, you
cannot remove the flag via the Moab command when the RM is
reporting it.

GRES Many resource managers do not allow specification of consumable generic node
resources. For these systems, the NODECFG parameter can be used to directly assign
a list of consumable generic attributes to individual nodes or to the special pseudo-
node global, which provides shared cluster (floating) consumable resources. To
set/overwrite a node's generic resources, use GRES=<NAME>[:<COUNT>]. (See
Managing Consumable Generic Resources.)

NODECFG[node013] GRES=quickcalc:20

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

Attribute Description

LOGLEVEL Node specific loglevel allowing targeted log facility verbosity.

MAXIOIN Maximum input allowed on node before it is marked busy.

MAXJOB See Node Policies for details.

MAXJOBPERUSER See Node Policies for details.

MAXPE See Node Policies for details.

MAXPEPERJOB Maximum allowed Processor Equivalent per job on this node. A job will not be
allowed to run on this node if its PE exceeds this number.

NODECFG[node024] MAXPEPERJOB=10000
...

MAXPROC Maximum dedicated processors allowed on this node. No jobs are scheduled on this
node when this number is reached. See Node Policies for more information.

NODECFG[node024] MAXPROC=8
...

NETWORK The ability to specify which networks are available to a given node is limited to only
a few resource managers. Using the NETWORK attribute, administrators can
establish this node to network connection directly through the scheduler. The
NODECFG parameter allows this list to be specified in a comma-delimited list.

NODECFG[node024] NETWORK=GigE
...

NODEINDEX The node's index. See Node Location for details.

11.0 General Node Administration

476 11.2 Node Attributes

11.2 Node Attributes 477

Attribute Description

NODETYPE The NODETYPE attribute is most commonly used in conjunction with an allocation
management system such as Moab Accounting Manager. In these cases, each node is
assigned a node type and within the allocation management system, each node type
is assigned a charge rate. For example, a site administrator may want to charge users
more for using large memory nodes and may assign a node type of BIGMEM to
these nodes. The allocation management system would then charge a premium rate
for jobs using BIGMEM nodes. (See the Allocation Manager Overview for more
information.)
Node types are specified as simple strings. If no node type is explicitly set, the node
will possess the default node type of DEFAULT. Node type information can be
specified directly using NODECFG or through use of the
FEATURENODETYPEHEADER parameter.

NODECFG[node024] NODETYPE=BIGMEM

OS This attribute specifies the node's operating system.

NODECFG[node013] OS=suse10

Because the TORQUE operating system overwrites the Moab operating
system, change the operating system with opsys instead of OS if you are
using TORQUE.

OSLIST This attribute specifies the list of operating systems the node can run.

NODECFG[compute002] OSLIST=linux,windows

OVERCOMMIT Specifies the high-water limit for over-allocation of processors or memory on a
hypervisor. This setting is used to protect hypervisors from having too many VMs
placed on them, regardless of the utilization level of those VMs. Possible attributes
include DISK, MEM, PROC, and SWAP. Usage is <attr>:<integer>.

NODECFG[node012] OVERCOMMIT=PROC:2,MEM:4

PARTITION See Node Location for details.

POWERPOLICY The POWERPOLICY can be set toOnDemand or STATIC. It defaults to STATIC if
not set. If set to STATIC, Moab will never automatically change the power status of a
node. If set toOnDemand, Moab will turn the machine off and on based on work-
load and global settings. See Green Computing for further details.

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/parameters.htm#opsys

Attribute Description

PREEMPTMAXCPULOAD If the node CPU load exceeds the specified value, any batch jobs running on the
node are preempted using the preemption policy specified with the node's
PREEMPTPOLICY attribute. If this attribute is not specified, the global default policy
specified with PREEMPTPOLICY parameter is used. See Sharing Server Resources
for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

PREEMPTMINMEMAVAIL If the available node memory drops below the specified value, any batch jobs
running on the node are preempted using the preemption policy specified with the
node's PREEMPTPOLICY attribute. If this attribute is not specified, the global default
policy specified with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMINMEMAVAIL=256
...

PREEMPTPOLICY If any node preemption policies are triggered (such as PREEMPTMAXCPULOAD or
PREEMPTMINMEMAVAIL) any batch jobs running on the node are preempted using
this preemption policy if specified. If not specified, the global default preemption
policy specified with PREEMPTPOLICY parameter is used. See Sharing Server
Resources for further details.

NODECFG[node024] PRIORITY=-150 COMMENT="NFS Server Node"
NODECFG[node024] PREEMPTPOLICY=CANCEL PREEMPTMAXCPULOAD=1.2
...

PRIORITY The PRIORITY attribute specifies the fixed node priority relative to other nodes. It is
only used if NODEALLOCATIONPOLICY is set to PRIORITY. The default node priority
is 0. A default cluster-wide node priority may be set by configuring the PRIORITY
attribute of the DEFAULT node. See Priority Node Allocation for more details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITY=120
...

11.0 General Node Administration

478 11.2 Node Attributes

11.2 Node Attributes 479

Attribute Description

PRIORITYF The PRIORITYF attribute specifies the function to use when calculating a node's
allocation priority specific to a particular job. It is only used if
NODEALLOCATIONPOLICY is set to PRIORITY. The default node priority function
sets a node's priority exactly equal to the configured node priority. The priority
function allows a site to indicate that various environmental considerations such as
node load, reservation affinity, and ownership be taken into account as well using
the following format:
<COEFFICIENT> * <ATTRIBUTE> [+ <COEFFICIENT> * <ATTRIBUTE>
]...

<ATTRIBUTE> is an attribute from the table found in the Priority Node Allocation
section.
A default cluster-wide node priority function may be set by configuring the
PRIORITYF attribute of the DEFAULT node. See Priority Node Allocation for more
details.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[node024] PRIORITYF='APROCS + .01 * AMEM - 10 * JOBCOUNT'
...

PROCSPEED Knowing a node's processor speed can help the scheduler improve intra-job
efficiencies by allocating nodes of similar speeds together. This helps reduce losses
due to poor internal job load balancing. Moab's Node Set scheduling policies allow a
site to control processor speed based allocation behavior.
Processor speed information is specified in MHz and can be indicated directly using
NODECFG or through use of the FEATUREPROCSPEEDHEADER parameter.

PROVRM Provisioning resource managers can be specified on a per node basis. This allows
flexibility in mixed environments. If the node does not have a provisioning resource
manager, the default provisioning resource manager will be used. The default is
always the first one listed in moab.cfg.

RMCFG[prov] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[prov] PROVDURATION=10:00
RMCFG[prov] NODEMODIFYURL=exec://$HOME/tools/os.switch.pl
...
NODECFG[node024] PROVRM=prov

RACK The rack associated with the node's physical location. Valid values range from 1 to
400. See Node Location for details.

RADISK Jobs can request a certain amount of disk space through the RM Extension String's
DDISK parameter. When done this way, Moab can track the amount of disk space
available for other jobs. To set the total amount of disk space available the RADISK
parameter is used.

11.0 General Node Administration

Attribute Description

RCDISK Jobs can request a certain amount of disk space (in MB) through the RM Extension
String's DDISK parameter. When done this way, Moab can track the amount of disk
space available for other jobs. The RCDISK attribute constrains the amount of disk
reported by a resource manager while the RADISK attribute specifies the amount of
disk available to jobs. If the resource manager does not report available disk, the
RADISK attribute should be used.

RCMEM Jobs can request a certain amount of real memory (RAM) in MB through the RM
Extension String's DMEM parameter. When done this way, Moab can track the
amount of memory available for other jobs. The RCMEM attribute constrains the
amount of RAM reported by a resource manager while the RAMEM attribute
specifies the amount of RAM available to jobs. If the resource manager does not
report available disk, the RAMEM attribute should be used.
Please note that memory reported by the resource manager will override the
configured value unless a trailing caret (^) is used.

NODECFG[node024] RCMEM=2048
...

If the resource manager does not report any memory, then Moab will
assign node0242048 MB of memory.

NODECFG[node024] RCMEM=2048^
...

Moab will assign 2048 MB of memory to node024 regardless of what the
resource manager reports.

RCPROC The RCPROC specifies the number of processors available on a compute node.

NODECFG[node024] RCPROC=8
...

11.0 General Node Administration

480 11.2 Node Attributes

11.2 Node Attributes 481

Attribute Description

RCSWAP Jobs can request a certain amount of swap space in MB.

RCSWAP works similarly to RCMEM. Setting RCSWAP on a node will set the
swap but can be overridden by swap reported by the resource manager. If
the trailing caret (^) is used, Moab will ignore the swap reported by the
resource manager and use the configured amount.

NODECFG[node024] RCSWAP=2048
...

If the resource manager does not report any memory, Moab will assign
node0242048 MB of swap.

NODECFG[node024] RCSWAP=2048^
...

Moab will assign 2048 MB of swap to node024 regardless of what the
resource manager reports.

SIZE The number of slots or size units consumed by the node. This value is used in
graphically representing the cluster using showstate or Moab Cluster Manager. See
Node Location for details. For display purposes, legal size values include 1, 2, 3, 4, 6,
8, 12, and 16.

NODECFG[node024] SIZE=2
...

SLOT The first slot in the rack associated with the node's physical location. Valid values
range from 1 toMMAX_RACKSIZE (default=64). See Node Location for details.

SPEED Because today's processors have multiple cores and adjustable clock frequency, this
feature has no meaning and will be deprecated.

TRIGGER See Object Triggers for details.

VARIABLE Variables associated with the given node, which can be used in job scheduling. See -l
PREF.

NODECFG[node024] VARIABLE=var1
...

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/maui/index.php

Attribute Description

VMOCTHRESHOLD Specifies the high-water threshold for utilization of resources on a server (i.e.
processor and memory). This setting is used to protect hypervisors from becoming
too highly utilized and thus negatively impacting the performance of VMs running
on the hypervisor. Possible attributes include PROC and MEM.

NODECFG[node024] VMOCTHRESHOLD=PROC=2,MEM=2

Node Features/Node Properties
A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it, and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

Node features may be assigned by the resource manager, and this information may be imported by Moab
or node features may be specified within Moab directly. As a convenience feature, certain node
attributes can be specified via node features using the parameters listed in the following table:

PARAMETER DESCRIPTION

FEATURENODETYPEHEADER Set Node Type

FEATUREPARTITIONHEADER Set Partition

FEATUREPROCSPEEDHEADER Set Processor Speed

FEATURERACKHEADER Set Rack

FEATURESLOTHEADER Set Slot

Example 11-2:

FEATUREPARTITIONHEADER par
FEATUREPROCSPEEDHEADER cpu

Related topics

l Job Preferences
l Configuring Node Features in TORQUE
l Configuring Node Features in Moab with NODECFG
l Specifying Job Feature Requirements
l Viewing Feature Availability Breakdown with mdiag -t
l Differences between Node Features and Managing Consumable Generic Resources

11.0 General Node Administration

482 11.2 Node Attributes

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/1-installConfig/specifyNodeFeatures.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

11.3 Node Specific Policies 483

11.3 Node Specific Policies
Node policies within Moab allow specification of not only how the node's load should be managed, but
who can use the node, and how the node and jobs should respond to various events. These policies allow
a site administrator to specify on a node by node basis what the node will and will not support. Node
policies may be applied to specific nodes or applied system-wide using the specification NODECFG
[DEFAULT]

Node Usage/Throttling Policies

MAXJOB

This policy constrains the number of total independent jobs a given node may run simultaneously. It can
only be specified via the NODECFG parameter.

On Cray XT systems, use the NID (node id) instead of the node name. For more information, see
Configuring the moab.cfg file.

MAXJOBPERUSER

Constrains the number of total independent jobs a given node may run simultaneously associated with
any single user. It can only be specified via the NODECFG parameter.

MAXJOBPERGROUP

Constrains the number of total independent jobs a given node may run simultaneously associated with
any single group. It can only be specified via the NODECFG parameter.

MAXLOAD

MAXLOAD constrains the CPU load the node will support as opposed to the number of jobs. This
maximum load policy can also be applied system wide using the parameter NODEMAXLOAD.

MAXPE

This policy constrains the number of total dedicated processor-equivalents a given node may support
simultaneously. It can only be specified via the NODECFG parameter.

MAXPROC

This policy constrains the number of total dedicated processors a given node may support
simultaneously. It can only be specified via the NODECFG parameter.

MAXPROCPERUSER

This policy constrains the number of total processors a given node may have dedicated to any single
user. It can only be specified via the NODECFG parameter.

11.0 General Node Administration

MAXPROCPERGROUP

This policy constrains the number of total processors a given node may have dedicated to any single
group. It can only be specified via the NODECFG parameter.

Node throttling policies are used strictly as constraints. If a node is defined as having a single
processor or the NODEACCESSPOLICY is set to SINGLETASK, and a MAXPROC policy of 4 is
specified, Moab will not run more than one task per node. A node's configured processors must be
specified so that multiple jobs may run and then the MAXJOB policy will be effective. The number
of configured processors per node is specified on a resource manager specific basis. PBS, for
example, allows this to be adjusted by setting the number of virtual processors with the np
parameter for each node in the PBS nodes file.

Example 11-3:

NODECFG[node024] MAXJOB=4 MAXJOBPERUSER=2
NODECFG[node025] MAXJOB=2
NODECFG[node026] MAXJOBPERUSER=1
NODECFG[DEFAULT] MAXLOAD=2.5
...

Node Access Policies
While most sites require only a single cluster wide node access policy (commonly set using
NODEACCESSPOLICY), it is possible to specify this policy on a node by node basis using the ACCESS
attributes of the NODECFG parameter. This attribute may be set to any of the valid node access policy
values listed in the Node Access Policies section.

Example 11-4:

To set a global policy of SINGLETASK on all nodes except nodes 13 and 14, use the following:

by default, enforce dedicated node access on all nodes
NODEACCESSPOLICY SINGLETASK
allow nodes 13 and 14 to be shared
NODECFG[node13] ACCESS=SHARED
NODECFG[node14] ACCESS=SHARED

Related topics

l mnodectl

11.4 Managing Shared Cluster Resources (Floating
Resources)

This section describes how to configure, request, and reserve cluster file system space and bandwidth,
software licenses, and generic cluster resources.

11.0 General Node Administration

484 11.4 Managing Shared Cluster Resources (Floating Resources)

11.4 Managing Shared Cluster Resources (Floating Resources) 485

Shared Cluster Resource Overview
Shared cluster resources such as file systems, networks, and licenses can be managed through creating a
pseudo-node. You can configure a pseudo-node via the NODECFG parameter much as a normal node would
be but additional information is required to allow the scheduler to contact and synchronize state with
the resource.

In the following example, a license manager is added as a cluster resource by defining the GLOBAL
pseudo-node and specifying how the scheduler should query and modify its state.

NODECFG[GLOBAL] RMLIST=NATIVE
NODECFG[GLOBAL] QUERYCMD=/usr/local/bin/flquery.sh
NODECFG[GLOBAL] MODIFYCMD=/usr/local/bin/flmodify.sh

In some cases, pseudo-node resources may be very comparable to node-locked generic resources
however there are a few fundamental differences which determine when one method of describing
resources should be used over the other. The following table contrasts the two resource types.

Attribute Pseudo-Node Generic Resource

Node-Locked No - Resources can be encapsulated as
an independent node.

Yes - Must be associated with an existing com-
pute node.

Requires exclus-
ive batch system
control over
resource

No - Resources (such as file systems and
licenses) may be consumed both inside
and outside of batch system workload.

Yes - Resources must only be consumed by
batch workload. Use outside of batch control
results in loss of resource synchronization.

Allows scheduler
level allocation
of resources

Yes - If required, the scheduler can take
external administrative action to allocate
the resource to the job.

No - The scheduler can only maintain logical
allocation information and cannot take any
external action to allocate resources to the job.

Configuring Generic Consumable Floating Resources
Consumable floating resources are configured in the same way as node-locked generic resources with the
exception of using the GLOBAL node instead of a particular node.

NODECFG[GLOBAL] GRES=tape:4,matlab:2
...

In this setup, four resources of type tape and 2 of type matlab are floating and available across all nodes.

Requesting Consumable Floating Resources

Floating resources are requested on a per task basis using native resource manager job submission
methods or using the GRES resource manager extensions.

11.0 General Node Administration

Configuring Cluster File Systems
Moab allows both the file space and bandwidth attributes or a cluster file system to be tracked,
reserved, and scheduled. With this capability, a job or reservation may request a particular quantity of
file space and a required amount of I/O bandwidth to this file system. While file system resources are
managed as a cluster generic resource, they are specified using the FS attribute of the NODECFG
parameter as in the following example:

NODECFG[GLOBAL] FS=PV1:10000@100,PV2:5000@100
...

In this example, PV1 defines a 10 GB file system with a maximum throughput of 100 MB/s while PV2 defines a 5 GB file
system also possessing a maximum throughput of 100 MB/s.

A job may request cluster file system resources using the fs resource manager extension. For a
TORQUE based system, the following could be used:

>qsub -l nodes=1,walltime=1:00:00 -W x=fs:10@50

Configuring Cluster Licenses
Jobs may request and reserve software licenses using native methods or using the GRES resource
manager extension. If the cluster license manager does not support a query interface, license availability
may be specified within Moab using the GRES attribute of the NODECFG parameter.

Example 11-5: Configure Moab to support four floating quickcalc and two floating matlab licenses.

NODECFG[GLOBAL] GRES=quickcalc:4,matlab:2
...

Example 11-6: Submit a TORQUE job requesting a node-locked or floating quickcalc license.

> qsub -l nodes=1,software=quickcalc,walltime=72000 testjob.cmd

Configuring Generic Resources as Features
Moab can be configured to treat generic resources as features in order to provide more control over
server access. For instance, if a node is configured with a certain GRES and that GRES is turned off, jobs
requesting the node will not run. To turn a GRES into a feature, set the FEATUREGRES attribute of
GRESCFG to TRUE in the moab.cfg file.

GRESCFG[gres1] FEATUREGRES=TRUE

Moab now treats gres1 as a scheduler-wide feature rather than a normal generic resource.

Note that jobs are submitted normally using the same GRES syntax.

You can safely upgrade an existing cluster to use the feature while jobs are running.

Two methods exist for managing GRES features: via Moab commands and via the resource manager.
Using Moab commands means that feature changes are not checkpointed; they do not remain in place

11.0 General Node Administration

486 11.4 Managing Shared Cluster Resources (Floating Resources)

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

11.4 Managing Shared Cluster Resources (Floating Resources) 487

when Moab restarts. Using the resource manager causes changes to be reported by the RM, so any
changes made before a Moab restart are still present after it.

These methods are mutually exclusive. Use one or the other, but do not mix methods.

Managing Feature GRES viaMoab Commands

In the following example, gres1 and gres2 are configured in the moab.cfg file. gres1 is not currently
functioning correctly, so it is set to 0, turning the feature off. Values above 0 and non-specified values
turn the feature on.

NODECFG[GLOBAL] GRES=gres1:0
NODECFG[GLOBAL] GRES=gres2:10000
GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

Moab now treats gres1 and gres2 as features.

To verify that this is set up correctly, run mdiag -S -v. It returns the following:

> mdiag -S -v
...
 Scheduler FeatureGres: gres1:off,gres2:on

Once Moab has started, use mschedctl -m to modify whether the feature is turned on or off.

mschedctl -m sched featuregres:gres1=on

INFO: FeatureGRes 'gres1' turned on

You can verify that the feature turned on or off by once again running mdiag -S -v.

If Moab restarts, it will not checkpoint the state of these changed feature general resources.
Instead, it will read the moab.cfg file to determine whether the feature GRES is on or off.

With feature GRES configured, jobs are submitted normally, requesting GRES type gres1 and gres2. Moab
ignores GRES counts and reads the feature simply as on or off.

> msub -l nodes=1,walltime=600,gres=gres1

1012
> checkjob 1012
job 1012

AName: STDIN
State: Running
.....
StartTime: Tue Jul 3 15:33:28
Feature GRes: gres1
Total Requested Tasks: 1

If you request a feature that is currently turned off, the state is not reported as Running, but as Idle.
A message like the following returns:

BLOCK MSG: requested feature gres 'gres2' is off

11.0 General Node Administration

Managing Feature GRES via the Resource Manager

You can automate the process of having a feature GRES turn on and off by setting up an external tool and
configuring Moab to query the tool the same way that Moab queries a license manager. For example:

RMCFG[myRM] CLUSTERQUERYURL=file:///$HOME/tools/myRM.dat TYPE=NATIVE
RESOURCETYPE=LICENSE

GRESCFG[gres1] FEATUREGRES=TRUE
GRESCFG[gres2] FEATUREGRES=TRUE

LICENSE means that the RM does not contain any compute resources and that Moab should not attempt to use it to
manage any jobs (start, cancel, submit, etc.).

The myRM.dat file should contain something like the following:

GLOBAL state=Idle cres=gres1:0,gres2:10

External tools can easily update the file based on file system availability. Switching any of the feature
GRES to 0 turns it off and switching it to a positive value turns it on. If you use this external mechanism,
you do not need to use mschedctl -m to turn a feature GRES on or off. You also do not need to worry
about whether Moab has checkpointed the information or not, since the information is provided by the
RM and not by any external commands.

Related topics

l Managing Resources Directly with the Native Interface

11.5 Managing Node State
There are multiple models in which Moab can operate allowing it to either honor the node state set by
an external service or locally determine and set the node state. This section covers the following:

l identifying meanings of particular node states

l specifying node states within locally developed services and resource managers

l adjusting node state within Moab based on load, policies, and events

Node State Definitions

State Definition

Down Node is either not reporting status, is reporting status but failures are detected, or is reporting status
but has been marked down by an administrator.

Idle Node is reporting status, currently is not executing any workload, and is ready to accept additional
workload.

11.0 General Node Administration

488 11.5 Managing Node State

11.5 Managing Node State 489

State Definition

Busy Node is reporting status, currently is executing workload, and cannot accept additional workload due
to load.

Running Node is reporting status, currently is executing workload, and can accept additional workload.

Drained Node is reporting status, currently is not executing workload, and cannot accept additional workload
due to administrative action.

Draining Node is reporting status, currently is executing workload, and cannot accept additional workload due
to administrative action.

Specifying Node States within Native Resource Managers
Native resource managers can report node state implicitly and explicitly, using NODESTATE, LOAD, and
other attributes. See Managing Resources Directly with the Native Interface for more information.

Moab Based Node State Adjustment
Node state can be adjusted based on reported processor, memory, or other load factors. It can also be
adjusted based on reports of one or more resource managers in a multi-resource manager configuration.
Also, both generic events and generic metrics can be used to adjust node state.

l TORQUE health scripts (allow compute nodes to detect and report site specific failures).

Adjusting Scheduling Behavior Based on Reported Node State
Based on reported node state, Moab can support various policies to make better use of available
resources.

Down State

l JOBACTIONONNODEFAILURE parameter (cancel/requeue jobs if allocated nodes fail).

l Triggers (take specified action if failure is detected).

Related topics

l Managing Resources Directly with the Native Interface
l License Management
l Adjusting Node Availability
l NODEMAXLOAD parameter

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/11-troubleshooting/computeNodeHealthCheck.htm

11.6 Managing Consumable Generic Resources
l Configuring Node-Locked Consumable Generic Resources

o Requesting Consumable Generic Resources

l Managing Generic Resource Race Conditions

Each time a job is allocated to a compute node, it consumes one or more types of resources. Standard
resources such as CPU, memory, disk, network adapter bandwidth, and swap are automatically tracked
and consumed by Moab. However, in many cases, additional resources may be provided by nodes and
consumed by jobs that must be tracked. The purpose of this tracking may include accounting, billing, or
the prevention of resource over-subscription. Generic consumable resources may be used to manage
software licenses, I/O usage, bandwidth, application connections, or any other aspect of the larger
compute environment; they may be associated with compute nodes, networks, storage systems, or other
real or virtual resources.

These additional resources can be managed within Moab by defining one or more generic resources. The
first step in defining a generic resource involves naming the resource. Generic resource availability can
then be associated with various compute nodes and generic resource usage requirements can be
associated with jobs.

Differences between Node Features and Consumable Resources
A node feature (or node property) is an opaque string label that is associated with a compute node. Each
compute node may have any number of node features assigned to it and jobs may request allocation of
nodes that have specific features assigned. Node features are labels and their association with a compute
node is not conditional, meaning they cannot be consumed or exhausted.

Configuring Node-locked Consumable Generic Resources
Consumable generic resources are supported within Moab using either direct configuration or resource
manager auto-detect (as when using TORQUE and accelerator hardware). For direct configuration, node-
locked consumable generic resources (or generic resources) are specified using the NODECFG
parameter's GRES attribute. This attribute is specified using the format <ATTR>:<COUNT> as in the
following example:

NODECFG[titan001] GRES=tape:4
NODECFG[login32] GRES=matlab:2,prime:4
NODECFG[login33] GRES=matlab:2
...

By default, Moab supports up to 128 independent generic resource types.

Requesting Consumable Generic Resources

Generic resources can be requested on a per task or per job basis using the GRES resource manager
extension. If the generic resource is located on a compute node, requests are by default interpreted as a

11.0 General Node Administration

490 11.6 Managing Consumable Generic Resources

11.6 Managing Consumable Generic Resources 491

per task request. If the generic resource is located on a shared, cluster-level resource (such as a
network or storage system), then the request defaults to a per job interpretation.

Generic resources are specified per task, not per node. When you submit a job, each processor
becomes a task. For example, a job asking for nodes=3:ppn=4,gres=test:5 asks for 60 gres of
type test ((3*4 processors)*5).

If using TORQUE, the GRES or software resource can be requested as in the following examples:

Example 11-7: Per Task Requests

NODECFG[compute001] GRES=dvd:2 SPEED=2200
NODECFG[compute002] GRES=dvd:2 SPEED=2200
NODECFG[compute003] GRES=dvd:2 SPEED=2200
NODECFG[compute004] GRES=dvd:2 SPEED=2200
NODECFG[compute005] SPEED=2200
NODECFG[compute006] SPEED=2200
NODECFG[compute007] SPEED=2200
NODECFG[compute008] SPEED=2200

submit job which will allocate only from nodes 1 through 4 requesting one dvd per
task
> qsub -l nodes=2,walltime=100,gres=dvd job.cmd

In this example, Moab determines that compute nodes exist that possess the requested generic resource. A compute node
is a node object that possesses processors on which compute jobs actually execute. License server, network, and storage
resources are typically represented by non-compute nodes. Because compute nodes exist with the requested generic
resource, Moab interprets this job as requesting two compute nodes each of which must also possess a DVD generic
resource.

Example 11-8: Per Job Requests

NODECFG[network] PARTITION=shared GRES=bandwidth:2000000

submit job which will allocate 2 nodes and 10000 units of network bandwidth
> qsub -l nodes=2,walltime=100,gres=bandwidth:10000 job.cmd

In this example, Moab determines that there exist no compute nodes that also possess the generic resource bandwidth so
this job is translated into a multiple-requirement—multi-req—job. Moab creates a job that has a requirement for two
compute nodes and a second requirement for 10000 bandwidth generic resources. Because this is a multi-req job, Moab
knows that it can locate these needed resources separately.

Using Generic Resource Requests in Conjunction with other Constraints

Jobs can explicitly specify generic resource constraints. However, if a job also specifies a host list, the
host list constraint overrides the generic resource constraint if the request is for per task allocation. In
the Per Task Requests example, if the job also specified a host list, the DVD request is ignored.

Requesting Resources with No Generic Resources

In some cases, it is valuable to allocate nodes that currently have no generic resources available. This
can be done using the special value none as in the following example:

> qsub -l nodes=2,walltime=100,gres=none job.cmd

11.0 General Node Administration

http://www.clusterresources.com/torque

In this case, the job only allocates compute nodes that have no generic resources associated with them.

Requesting Generic Resources Automatically within a Queue/Class

Generic resource constraints can be assigned to a queue or class and inherited by any jobs that do not
have a gres request. This allows targeting of specific resources, automation of co-allocation requests, and
other uses. To enable this, use the DEFAULT.GRES attribute of the CLASSCFG parameter as in the
following example:

CLASSCFG[viz] DEFAULT.GRES=graphics:2

For each node requested by a viz job, also request two graphics cards.

Managing Generic Resource Race Conditions
A software license race condition "window of opportunity" opens when Moab checks a license server for
sufficient available licenses and closes when the user's software actually checks out the software
licenses. The time between these two events can be seconds to many minutes depending on overhead
factors such as node OS provisioning, job startup, licensed software startup, and so forth.

During this window, another Moab-scheduled job or a user or job external to the cluster or cloud can
obtain enough software licenses that by the time the job attempts to obtain its software licenses, there
are an insufficient quantity of available licenses. In such cases a job will sit and wait for the license, and
while it waits it occupies but does not use resources that another job could have used. Use the
STARTDELAY parameter to prevent such a situation.

GRESCFG[<license>] STARTDELAY=<window_of_opportunity>

With the STARTDELAY parameter enabled (on a per generic resource basis) Moab blocks any idle jobs
requesting the same generic resource from starting until the <window_of_opportunity> passes. The
window is defined by the customer on a per generic resource basis.

Related topics

l GRESCFG parameter
l Generic Metrics
l Generic Events
l General Node Attributes
l Floating Generic Resources
l Per Class Assignment of Generic Resource Consumption
l mnodectl -m command to dynamically modify node resources
l Favoring Jobs Based On Generic Resource Requirements

11.7 Enabling Generic Metrics
l Configuring Generic Metrics

l Example Generic Metric Usage

11.0 General Node Administration

492 11.7 Enabling Generic Metrics

11.7 Enabling Generic Metrics 493

Moab allows organizations to enable generic performance metrics. These metrics allow decisions to be
made and reports to be generated based on site specific environmental factors. This increases Moab's
awareness of what is occurring within a given cluster environment, and allows arbitrary information to
be associated with resources and the workload within the cluster. Uses of these metrics are widespread
and can cover anything from tracking node temperature, to memory faults, to application effectiveness.

l Execute triggers when specified thresholds are reached

l Modify node allocation affinity for specific jobs

l Initiate automated notifications when thresholds are reached

l Display current, average, maximum, and minimum metrics values in reports and charts within
Moab Cluster Manager

Configuring Generic Metrics
A new generic metric is automatically created and tracked at the server level if it is reported by either
a node or a job.

To associate a generic metric with a job or node, a native resource manager must be set up and the
GMETRIC attribute must be specified. For example, to associate a generic metric of temp with each node
in a TORQUE cluster, the following could be reported by a native resource manager:

temperature output
node001 GMETRIC[temp]=113
node002 GMETRIC[temp]=107
node003 GMETRIC[temp]=83
node004 GMETRIC[temp]=85
...

Generic metrics are tracked as floating point values allowing virtually any number to be reported.

In the preceding example, the new metric, temp, can now be used to monitor system usage and
performance or to allow the scheduler to take action should certain thresholds be reached. Some uses
include the following:

l Executing triggers based on generic metric thresholds

l Adjust a node's availability for accepting additional workload

l Adjust a node's allocation priority

l Initiate administrator notification of current, minimum, maximum, or average generic metric
values

l Use metrics to report resource and job performance

l Use metrics to report resource and job failures

l Using job profiles to allow Moab to learn which resources best run which applications

l Tracking effective application efficiency to identify resource brown outs even when no node
failure is obvious

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php
http://www.clusterresources.com/products/torque-resource-manager.php

l Viewing current and historical cluster-wide generic metric values to identify failure, performance,
and usage

l Enable charging policies based on consumption of generic metrics patterns

l View changes in generic metrics on nodes, jobs, and cluster wide over time

l Submit jobs with generic metric based node-allocation requirements

Generic metric values can be viewed using checkjob, checknode, mdiag -n, mdiag -j, or Moab Cluster
Manager Charting and Reporting Features.

Historical job and node generic metric statistics can be cleared using the mjobctl and mnodectl
commands.

Example Generic Metric Usage
As an example, consider a cluster with two primary purposes for generic metrics. The first purpose is to
track and adjust scheduling behavior based on node temperature to mitigate overheating nodes. The
second purpose is to track and charge for utilization of a locally developed data staging service.

The first step in enabling a generic metric is to create probes to monitor and report this information.
Depending on the environment, this information may be distributed or centralized. In the case of
temperature monitoring, this information is often centralized by a hardware monitoring service and
available via command line or an API. If monitoring a locally developed data staging service, this
information may need to be collected from multiple remote nodes and aggregated to a central location.
The following are popular freely available monitoring tools:

Tool Link

BigBrother http://www.bb4.org

Ganglia http://ganglia.sourceforge.net

Monit http://www.tildeslash.com/monit

Nagios http://www.nagios.org

Once the needed probes are in place, a native resource manager interface must be created to report this
information to Moab. Creating a native resource manager interface should be very simple, and in most
cases a script similar to those found in the $TOOLSDIR($PREFIX/tools) directory can be used as a
template. For this example, we will assume centralized information and will use the RM script that
follows:

#!/usr/bin/perl
'hwctl outputs information in format '<NODEID> <TEMP>'
open(TQUERY,"/usr/sbin/hwctl -q temp |");
while (<TQUERY>)
{
my $nodeid,$temp = split /\w+/;

11.0 General Node Administration

494 11.7 Enabling Generic Metrics

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php
http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php
http://www.bb4.org/
http://ganglia.sourceforge.net/
http://www.tildeslash.com/monit
http://www.nagios.org/

11.7 Enabling Generic Metrics 495

$dstage=GetDSUsage($nodeid);
print "$nodeid GMETRIC[temp]=$temp GMETRIC[dstage]=$dstage

";
}

With the script complete, the next step is to integrate this information into Moab. This is accomplished
with the following configuration line:

RMCFG[local] TYPE=NATIVE CLUSTERQUERYURL=file://$TOOLSDIR/node.query.local.pl
...

Moab can now be recycled and temperature and data staging usage information will be integrated into Moab compute
node reports.

If the checknode command is run, output similar to the following is reported:

> checknode cluster013
...
Generic Metrics: temp=113.2,dstage=23748
...

Moab Cluster Manager reports full current and historical generic metric information in its visual cluster overview screen.

The next step in configuring Moab is to inform Moab to take certain actions based on the new
information it is tracking. For this example, there are two purposes. The first purpose is to get jobs to
avoid hot nodes when possible. This is accomplished using the GMETRIC attribute of the Node Allocation
Priority function as in the following example:

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=PRIORITY-10*GMETRIC[temp]
...

This simple priority function reduces the priority of the hottest nodes making such less likely to be
allocated. See Node Allocation Priority Factors for a complete list of available priority factors.

The example cluster is also interested in notifying administrators if the temperature of a given node
ever exceeds a critical threshold. This is accomplished using a trigger. The following line will send email
to administrators any time the temperature of a node exceeds 120 degrees.

NODECFG[DEFAULT] TRIGGER=atype=mail,etype=threshold,threshold=gmetric[temp]
>120,action='warning: node $OID temp high'
...

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

11.0 General Node Administration

http://www.adaptivecomputing.com/resources/docs/mcm/docs/index.php

11.8 Enabling Generic Events
l Configuring Generic Events

o Action Types

o Named Events

o Generic Metric (GMetric) Events

l Reporting Generic Events

o Using Generic Events for VM Detection

l Generic Events Attributes

l Manually Creating Generic Events

Generic events are used to identify failures and other occurrences that Moab or other systems must be
made aware. This information may result in automated resource recovery, notifications, adjustments to
statistics, or changes in policy. Generic events also have the ability to carry an arbitrary human
readable message that may be attached to associated objects or passed to administrators or external
systems. Generic events typically signify the occurrence of a specific event as opposed to generic metrics
which indicate a change in a measured value.

Using generic events, Moab can be configured to automatically address many failures and environmental
changes improving the overall performance. Some sample events that sites may be interested in
monitoring, recording, and taking action on include:

l Machine Room Status

o Excessive Room Temperature

o Power Failure or Power Fluctuation

o Chiller Health

l Network File Server Status

o Failed Network Connectivity

o Server Hardware Failure

o Full Network File System

l Compute Node Status

o Machine Check Event (MCE)

o Network Card (NIC) Failure

o Excessive Motherboard/CPU Temperature

o Hard Drive Failures

11.0 General Node Administration

496 11.8 Enabling Generic Events

11.8 Enabling Generic Events 497

Configuring Generic Events
Generic events are defined in the moab.cfg file and have several different configuration options. The
only required option is action.

The full list of configurable options for generic events is in the following table:

Attribute Description

ACTION Comma-delimited list of actions to be processed when a new event is received.

ECOUNT Number of events that must occur before launching action.

Action will be launched each <ECOUNT> event if rearm is set.

REARM Minimum time between events specified in [[[DD:]HH:]MM:]SS format.

SEVERITY An arbitrary severity level from 1 through 4, inclusive. SEVERITY appears in the output of mdiag -
n -v -v --xml.

The severity level will not be used for any other purpose.

Action Types

The impact of the event is controlled using the ACTION attribute of the GEVENTCFG parameter. The
ACTION attribute is comma-delimited and may include any combination of the actions in the following
table:

Value Description

DISABLE
[:<OTYPE>:<OID>]

Marks event object (or specified object) down until event report is cleared.

EXECUTE Executes a script at the provided path. The value of EXECUTE is not contained in quo-
tation marks. Arguments are allowed at the end of the path and are separated by question
marks (?). Trigger variables (such as $OID) are allowed.

NOTIFY Notifies administrators of the event occurrence.

11.0 General Node Administration

Value Description

OBJECTXMLSTDIN If the EXECUTE action type is also specified, this flag passes an XML description of the fir-
ing gevent to the script.

OFF Powers off node or resource.

ON Powers on node or resource.

PREEMPT
[:<POLICY>]

Preempts workload associated with object (valid for node, job, reservation, partition,
resource manager, user, group, account, class, QoS, and cluster objects).

RECORD Records events to the event log. The record action causes a line to be added to the event log
regardless of whether or not RECORDEVENTLIST includes GEVENT.

RESERVE
[:<DURATION>]

Reserves node for specified duration (default: 24 hours).

RESET Resets object (valid for nodes - causes reboot).

SIGNAL[:<SIGNO>] Sends signal to associated jobs or services (valid for node, job, reservation, partition,
resource manager, user, group, account, class, QoS, and cluster objects).

This is an example of using objectxmlstdin with a gevent:

<gevent name="bob" statuscode="0" time="1320334763">Testing</gevent>

Named Events

In general, generic events are named, with the exception of those based on generic metrics. Names are
used primarily to differentiate between different events and do not have any intrinsic meaning to Moab.
It is suggested that the administrator choose names that denote specific meanings within the
organization.

Example 11-9:

Note: cpu failures require admin attention, create maintenance reservation
GEVENTCFG[cpufail] action=notify,record,disable,reserve rearm=01:00:00# Note: power
failures are transient, minimize future use
GEVENTCFG[powerfail] action=notify,record, rearm=00:05:00
Note: fs full can be automatically fixed
GEVENTCFG[fsfull] action=notify,execute:/home/jason/MyPython/cleartmp.py?$OID?nodefix
Note: memory errors can cause invalid job results, clear node immediately
GEVENTCFG[badmem] action=notify,record,preempt,disable,reserve

Generic Metric (GMetric) Events

GMetric events are generic events based on generic metrics. They are used for executing an action when
a generic metric passes a defined threshold. Unlike named events, GMetric events are not named and use

11.0 General Node Administration

498 11.8 Enabling Generic Events

11.8 Enabling Generic Events 499

the following format:
GEVENTCFG[GMETRIC<COMPARISON>VALUE] ACTION=...

Example 11-10:

GEVENTCFG[cputemp>150] action=off

This form of generic events uses the GMetric name, as returned by a GMETRIC attribute in a native
Resource Manager interface.

Only one generic event may be specified for any given generic metric.

Valid comparative operators are shows in the following table:

Type Comparison Notes

> greater than Numeric values only

> = greater than or equal to Numeric values only

= = equal to Numeric values only

< less than Numeric values only

< = less than or equal to Numeric values only

< > not equal Numeric values only

Reporting Generic Events
Unlike generic metrics, generic events can be optionally configured at the global level to adjust rearm
policies, and other behaviors. In all cases, this is accomplished using the GEVENTCFG parameter.

To report an event associated with a job or node, use the native Resource Manager interface or the
mjobctl or mnodectl commands. You can report generic events on the scheduler with the mschedctl
command.

If using the native Resource Manager interface, use the GEVENT attribute as in the following example:

node001 GEVENT[hitemp]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs]='/var/tmp is full'

11.0 General Node Administration

The time at which the event occurred can be passed to Moab to prevent multiple processing of the
same event. This is accomplished by specifying the event type in the format <GEVENTID>
[:<EVENTTIME>] as in what follows:

node001 GEVENT[hitemp:1130325993]='temperature exceeds 150 degrees'
node017 GEVENT[fullfs:1130325142]='/var/tmp is full'

Using Generic Events for VM Detection

To enable Moab to detect a virtual machine (VM) reported by a generic event, do the following:

1. Set up your resource manager to detect virtual machine creation and to submit a generic event to
Moab.

2. Configure moab.cfg to recognize a generic event.

GEVENTCFG[NewVM] ACTION=execute:/opt/moab/AddVM.py,OBJECTXMLSTDIN

3. Report the event.

> mschedctl -c gevent -n NewVM -m "VM=newVMName"

With the ObjectXMLStdin action set, Moab sends an XML description of the generic event to the script, so the
message passes through. The script then creates a VMTracking job to attach to the newly discovered VM.

The following sample Perl script submits a VMTracking job for the new VM:

#!/usr/bin/perl

in moab.cfg: GEVENTCFG[NewVM] ACTION=execute:$TOOLSDIR/newvm_event.pl,OBJECTXMLSTDIN
trigger gevent with: mschedctl -c gevent -n NewVM -m "VM=TestVM1"
input to this script: <gevent name="NewVM" statuscode="0"
time="1318500261">VM=TestVM1</gevent>

use strict;

my $vmidVarName = "preVMID";
my $vmTemplate = "existingVM";
my $vmOwner = "operator";

$ENV{MOABHOMEDIR} = '/opt/moab';

my $xml = join "", <STDIN>;
my ($vmid) = ($xml =~ m/VM=([^\<]+)\</);
if (defined $vmid)
{

my $cmd = qq| $ENV{MOABHOMEDIR}/bin/mvmctl -q $vmid --xml |;
my $vmxml = `$cmd`;
my ($hv, $os, $proc, $disk, $mem) = (undef, undef, undef, undef, undef);
($hv) = ($vmxml =~ m/CONTAINERNODE="([^"]+)"/);
($os) = ($vmxml =~ m/OS="([^"]+)"/);
($proc) = ($vmxml =~ m/RCPROC="([^"]+)"/);
($mem) = ($vmxml =~ m/RCMEM="([^"]+)"/);
($disk) = ($vmxml =~ m/RCDISK="([^"]+)"/);
die "Error parsing VM XML. Invalid VMID $vmid or $hv || $os || $proc || $mem ||

$disk?

11.0 General Node Administration

500 11.8 Enabling Generic Events

11.8 Enabling Generic Events 501

"
if (! defined $hv || !defined $os || !defined $proc || !defined $mem || !defined

$disk);

$cmd = qq| $ENV{MOABHOMEDIR}/bin/msub -l
hostlist=$hv,os=$os,nodes=1:ppn=$proc,mem=$mem,file=$disk,template=$vmTemplate,VAR=$vm
idVarName=$vmid --proxy=$vmOwner /dev/null |;

my $msubout = `$cmd`;
die "Error executing msub. Output is:

$msubout
" if ($?);
} else {

die "Error parsing VMID from GEVENT message
";
}

Generic Events Attributes
Each node will record the following about reported generic events:

l status - is event active

l message - human readable message associated with event

l count - number of event incidences reported since statistics were cleared

l time - time of most recent event

Each event can be individually cleared, annotated, or deleted by cluster administrators using a mnodectl
command.

Generic events are only available in Moab 4.5.0 and later.

Manually Creating Generic Events
Generic events may be manually created on a physical node or VM.

To add GEVENT event with message "hello" to node02, do the following:

> mnodectl -m gevent=event:"hello" node02

To add GEVENT event with message "hello" to myvm, do the following:

> mvmctl -m gevent=event:"hello" myvm

Related topics

l Simulation Overview
l Generic Consumable Resources
l Object Variables
l Generic Event Counters

11.0 General Node Administration

502 11.8 Enabling Generic Events

503

12.0 Resource Managers and Interfaces
l Resource Manager Overview on page 504

l Resource Manager Configuration on page 507

l Resource Manager Extensions on page 537

l Adding New Resource Manager Interfaces on page 564

l Managing Resources Directly with the Native Interface on page 565

l Utilizing Multiple Resource Managers on page 576

l License Management on page 578

l Resource Provisioning on page 580

l Resource Manager Translation on page 583

Moab provides a powerful resource management interface that enables significant flexibility in how
resources and workloads are managed. Highlights of this interface are listed in what follows:

Highlight Description

Support for Mul-
tiple Standard
Resource Man-
ager Interface Pro-
tocols

Manage cluster resources and workloads via PBS, Loadleveler, SGE, LSF, or BProc based
resource managers.

Support for Gen-
eric Resource
Manager Inter-
faces

Manage cluster resources securely via locally developed or open source projects using
simple flat text interfaces or XML over HTTP.

Support for Mul-
tiple Sim-
ultaneous
Resource Man-
agers

Integrate resource and workload streams from multiple independent sources reporting dis-
joint sets of resources.

Highlight Description

Independent
Workload and
Resource Man-
agement

Allow one system to manage your workload (queue manager) and another to manage your
resources.

Support for Rapid
Development
Interfaces

Load resource and workload information directly from a file, a URL, or from the output of a
configurable script or other executable.

Resource Exten-
sion Information

Integrate information from multiple sources to obtain a cohesive view of a compute
resource. (That is, mix information from NIM, OpenPBS, FLEXlm, and a cluster performance
monitor to obtain a single node image with a coordinated state and a more extensive list of
node configuration and utilization attributes.)

12.1 Resource Manager Overview
For most installations, the Moab Workload Manager uses the services of a resource manager to obtain
information about the state of compute resources (nodes) and workload (jobs). Moab also uses the
resource manager to manage jobs, passing instructions regarding when, where, and how to start or
otherwise manipulate jobs.

Moab can be configured to manage more than one resource manager simultaneously, even resource
managers of different types. Using a local queue, jobs may even be migrated from one resource manager
to another. However, there are currently limitations regarding jobs submitted directly to a resource
manager (not to the local queue.) In such cases, the job is constrained to only run within the bound of the
resource manager to which it was submitted.

l Scheduler/Resource Manager Interactions

o Resource Manager Commands

o Resource Manager Flow

l Resource Manager Specific Details (Limitations/Special Features)

l Synchronizing Conflicting Information

l Evaluating Resource Manager Availability and Performance

Scheduler/Resource Manager Interactions
Moab interacts with all resource managers using a common set of commands and objects. Each resource
manager interfaces, obtains, and translates Moab concepts regarding workload and resources into native
resource manager objects, attributes, and commands.

12.0 Resource Managers and Interfaces

504 12.1 Resource Manager Overview

12.1 Resource Manager Overview 505

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

Resource Manager Commands

For many environments, Moab interaction with the resource manager is limited to the following objects
and functions:

Object Function Details

Job Query Collect detailed state, requirement, and utilization information about jobs

Modify Change job state and/or attributes

Start Execute a job on a specified set of resources

Cancel Cancel an existing job

Preempt/Resume Suspend, resume, checkpoint, restart, or requeue a job

Node Query Collect detailed state, configuration, and utilization information about compute
resources

Modify Change node state and/or attributes

Queue Query Collect detailed policy and configuration information from the resource manager

Using these functions, Moab is able to fully manage workload, resources, and cluster policies. More
detailed information about resource manager specific capabilities and limitations for each of these
functions can be found in the individual resource manager overviews. (LL, PBS, LSF, SGE, BProc, or WIKI).

Beyond these base functions, other commands exist to support advanced features such as provisioning
and cluster level resource management.

Resource Manager Flow

In general, Moab interacts with resource managers in a sequence of steps each scheduling iteration.
These steps are outlined in what follows:

1. load global resource information

2. load node specific information (optional)

12.0 Resource Managers and Interfaces

3. load job information

4. load queue/policy information (optional)

5. cancel/preempt/modify jobs according to cluster policies

6. start jobs in accordance with available resources and policy constraints

7. handle user commands

Typically, each step completes before the next step is started. However, with current systems, size and
complexity mandate a more advanced parallel approach providing benefits in the areas of reliability,
concurrency, and responsiveness.

Resource Manager Specific Details (Limitations/Special Features)
l TORQUE

o TORQUE Homepage

l SLURM/Wiki

o SLURM Integration Guide

o Wiki Overview

Synchronizing Conflicting Information
Moab does not trust resource manager information. Node, job, and policy information is reloaded on each
iteration and discrepancies are detected. Synchronization issues and allocation conflicts are logged and
handled where possible. To assist sites in minimizing stale information and conflicts, a number of policies
and parameters are available.

l Node State Synchronization Policies (see NODESYNCTIME on page 882)

l Stale Data Purging (see JOBPURGETIME on page 860)

l Thread Management (preventing resource manager failures from affecting scheduler operation)

l Resource Manager Poll Interval (see RMPOLLINTERVAL on page 907)

l Node Query Refresh Rate (see NODEPOLLFREQUENCY on page 879)

Evaluating Resource Manager Availability and Performance
Each resource manager is individually tracked and evaluated by Moab. Using the mdiag -R on page 125
command, a site can determine how a resource manager is configured, how heavily it is loaded, what
failures, if any, have occurred in the recent past, and how responsive it is to requests.

Related topics

l Resource Manager Configuration
l Resource Manager Extensions

12.0 Resource Managers and Interfaces

506 12.1 Resource Manager Overview

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

12.2 Resource Manager Configuration 507

12.2 Resource Manager Configuration
l Defining and Configuring Resource Manager Interfaces

o Resource Manager Attributes

l Resource Manager Configuration Details

o Resource Manager Types

o Resource Manager Name

o Resource Manager Location

o Resource Manager Flags

o Other Attributes

l Scheduler/Resource Manager Interactions

Defining and Configuring Resource Manager Interfaces
Moab resource manager interfaces are defined using the RMCFG on page 906 parameter. This parameter
allows specification of key aspects of the interface. In most cases, only the TYPE attribute needs to be
specified and Moab determines the needed defaults required to activate and use the selected interface.
In the following example, an interface to a Loadleveler resource manager is defined.

RMCFG[orion] TYPE=LL...

Note that the resource manager is given a label of orion. This label can be any arbitrary site-selected
string and is for local usage only. For sites with multiple active resource managers, the labels can be
used to distinguish between them for resource manager specific queries and commands.

Resource Manager Attributes

The following table lists the possible resource manager attributes that can be configured.

12.0 Resource Managers and Interfaces

ADMINEXEC on page 508
AUTHTYPE on page 509
BANDWIDTH on page 509
CHECKPOINTSIG on page 509
CHECKPOINTTIMEOUT on page 510
CLIENT on page 510
CLUSTERQUERYURL on page 511
CONFIGFILE on page 511
DATARM on page 511
DEFAULTCLASS on page 512
DEFAULTHIGHSPEEDADAPTER on
page 512
DESCRIPTION on page 512
ENV on page 513
EPORT on page 513
FAILTIME on page 513
FLAGS on page 514
FNLIST on page 514
HOST on page 514
IGNHNODES on page 515
JOBCANCELURL on page 515
JOBEXTENDDURATION on page 515

JOBIDFORMAT on page 516
JOBMODIFYURL on page 516
JOBRSVRECREATE on page 516
JOBSTARTURL on page 517
JOBSUBMITURL on page 517
JOBSUSPENDURL on page 517
JOBVALIDATEURL on page 518
MAXDSOP on page 518
MAXITERATIONFAILURECOUNT on
page 518
MAXJOBPERMINUTE on page 519
MAXJOBS on page 519
MINETIME on page 519
NMPORT on page 520
NODEFAILURERSVPROFILE on page
520
NODESTATEPOLICY on page 521
OMAP on page 521
PORT on page 521
PROVDURATION on page 522
PTYSTRING on page 522
RESOURCECREATEURL on page 522
RESOURCETYPE on page 523
RMSTARTURL on page 523

RMSTOPURL on page 524
SBINDIR on page 524
SLURMFLAGS on page 524
SOFTTERMSIG on page 525
STAGETHRESHOLD on page
525
STARTCMD on page 526
SUBMITCMD on page 526
SUBMITPOLICY on page 526
SUSPENDSIG on page 527
SYNCJOBID on page 527
SYSTEMMODIFYURL on page
527
SYSTEMQUERYURL on page
528
TARGETUSAGE on page 528
TIMEOUT on page 528
TRIGGER on page 529
TYPE on page 529
USEVNODES on page 529
VARIABLES on page 530
VERSION on page 530
VMOWNERRM on page 530
WORKLOADQUERYURL on
page 531

ADMINEXEC

Format "jobsubmit"

Default NONE

Description Normally, when the JOBSUBMITURL is executed, Moab will drop to the UID and GID of the user sub-
mitting the job. Specifying an ADMINEXEC of jobsubmit causes Moab to use its own UID and GID
instead (usually root). This is useful for some native resource managers where the JOBSUBMITURL
is not a user command (such as qsub) but a script that interfaces directly with the resource man-
ager.

Example RMCFG[base] ADMINEXEC=jobsubmit

Moab will not use the user's UID and GID for executing the JOBSUBMITURL.

12.0 Resource Managers and Interfaces

508 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 509

AUTHTYPE

Format One of CHECKSUM,OTHER, PKI, SECUREPORT, or NONE.

Default CHECKSUM

Description Specifies the security protocol to be used in scheduler-resource manager
communication.

Only valid with WIKI based interfaces.

Example RMCFG[base] AUTHTYPE=CHECKSUM

Moab requires a secret key-based checksum associated with each
resource manager message.

BANDWIDTH

Format: <FLOAT>[{M|G|T}]

Default: -1 (unlimited)

Description: Specifies the maximum deliverable bandwidth between the Moab server and the resource man-
ager for staging jobs and data. Bandwidth is specified in units per second and defaults to a unit of
MB/s. If a unit modifier is specified, the value is interpreted accordingly (M - megabytes/sec, G -
gigabytes/sec, T - terabytes/sec).

Example: RMCFG[base] BANDWIDTH=340G

Moab will reserve up to 340 GB of network bandwidth when scheduling job and data
staging operations to and from this resource manager.

CHECKPOINTSIG

Format One of suspend, <INTEGER>, or SIG<X>

Description Specifies what signal to send the resource manager when a job is checkpointed (See Checkpoint
Overview.).

12.0 Resource Managers and Interfaces

CHECKPOINTSIG

Example RMCFG[base] CHECKPOINTSIG=SIGKILL

Moab routes the signal SIGKILL through the resource manager to the job when a job is
checkpointed.

CHECKPOINTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 0 (no timeout)

Description Specifies how long Moab waits for a job to checkpoint before canceling it. If
set to 0, Moab does not cancel the job if it fails to checkpoint (See Checkpoint
Overview.).

Example RMCFG[base] CHECKPOINTTIMEOUT=5:00

Moab cancels any job that has not exited 5 minutes after receiving
a checkpoint request.

CLIENT

Format <PEER>

Default Use name of resource manager for peer client lookup

Description If specified, the resource manager will use the peer value to authenticate
remote connections. (See configuring peers). If not specified, the resource
manager will search for a CLIENTCFG[<X>] on page 811 entry of
RM:<RMNAME>in the moab-private.cfg file.

Example RMCFG[clusterBI] CLIENT=clusterB

Moab will look up and use information for peer clusterB when
authenticating the clusterBI resource manager.

12.0 Resource Managers and Interfaces

510 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 511

CLUSTERQUERYURL

Format [file://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file. If http:// is specified, Moab treats
the destination as a hypertext transfer protocol file. If just a path is specified, Moab treats the des-
tination as an executable.

Description Specifies how Moab queries the resource manager (See Native RM, URL Notes, and interface
details.).

Example RMCFG[base] CLUSTERQUERYURL=file:///tmp/cluster.config

Moab reads /tmp/cluster.config when it queries base resource manager.

CONFIGFILE

Format <STRING>

Description Specifies the resource manager specific configuration file that must be used to enable correct API
communication.

Only valid with LL- and SLURM-based interfaces.

Example RMCFG[base] TYPE=LL CONFIGFILE=/home/loadl/loadl_config

The scheduler uses the specified file when establishing the resource manager/scheduler
interface connection.

DATARM

Format <RM NAME>

Description If specified, the resource manager uses the given storage resource manager to handle staging data
in and out.

Example RMCFG[clusterB] DATARM=clusterB_storage

When data staging is required by jobs starting/completing on clusterB, Moab uses the
storage interface defined by clusterB_storage to stage and monitor the data.

12.0 Resource Managers and Interfaces

DEFAULTCLASS

Format <STRING>

Description Specifies the class to use if jobs submitted via this resource manager interface do not have an asso-
ciated class.

Example RMCFG[internal] DEFAULTCLASS=batch

Moab assigns the class batch to all jobs from the resource manager internal that do not
have a class assigned.

If you are using PBS as the resource manager, a job will never come from PBS without a
class, and the default will never apply.

DEFAULTHIGHSPEEDADAPTER

Format: <STRING>

Default: sn0

Description: Specifies the default high speed switch adapter to use when starting LoadLeveler jobs (sup-
ported in version 4.2.2 and higher of Moab and 3.2 of LoadLeveler).

Example: RMCFG[base] DEFAULTHIGHSPEEDADAPTER=sn1

The scheduler will start jobs requesting a high speed adapter on sn1.

DESCRIPTION

Format <STRING>

Description Specifies the human-readable description for the resource manager interface. If white space is
used, the description should be quoted.

Example RMCFG[torque] TYPE=NATIVE DESCRIPTION='Torque RM for launching jobs'

Moab annotates the TORQUE resource manager accordingly.

12.0 Resource Managers and Interfaces

512 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 513

ENV

Format Semi-colon-delimited (;) list of <KEY>=<VALUE> pairs

Default MOABHOMEDIR=<MOABHOMEDIR>

Description Specifies a list of environment variables that will be passed to URLs of type exec:// for that
resource manager.

Example RMCFG[base] ENV=HOST=node001;RETRYTIME=50
RMCFG[base] CLUSTERQUERYURL=exec:///opt/moab/tools/cluster.query.pl
RMCFG[base] WORKLOADQUERYURL=exec:///opt/moab/tools/
workload.query.pl

The environment variables HOST and RETRYTIME (with values node001 and 50
respectively) are passed to the /opt/moab/tools/cluster.query.pl and
/opt/moab/tools/workload.query.pl when they are executed.

EPORT

Format: <INTEGER>

Description: Specifies the event port to use to receive resource manager based scheduling events.

Example: RMCFG[base] EPORT=15017

The scheduler will look for scheduling events from the resource manager host
at port 15017.

FAILTIME

Format: [[[DD:]HH:]MM:]SS

Description: Specifies how long a resource manager must be down before any failure triggers associated with
the resource manager fire.

Example: RMCFG[base] FAILTIME=3:00

If the base resource manager is down for three minutes, any resource manager failure
triggers fire.

12.0 Resource Managers and Interfaces

FLAGS

Format Comma-delimited list of zero or more of the following: asyncdelete, async-
start, autostart, autosync, client, fullcp, executionServer, hostingCenter,
ignqueuestate, private, pushslavejobupdates, report, shared, slavepeer or
static

Description Specifies various attributes of the resource manager. See Flag Details for
more information.

Example RMCFG[base] FLAGS=static,slavepeer

Moab uses this resource manager to perform a single update of
node and job objects reported elsewhere.

FNLIST

Format Comma-delimited list of zero or more of the following: clusterquery, jobcancel, jobrequeue, jobre-
sume, jobstart, jobsuspend, queuequery, resourcequery or workloadquery

Description By default, a resource manager utilizes all functions supported to query and control batch objects.
If this parameter is specified, only the listed functions are used.

Example RMCFG[base] FNLIST=queuequery

Moab only uses this resource manager interface to load queue configuration information.

HOST

Format <STRING>

Default localhost

Description The host name of the machine on which the resource manager server is running.

Example RMCFG[base] host=server1

12.0 Resource Managers and Interfaces

514 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 515

IGNHNODES

Format <BOOLEAN>

Default FALSE

Description Specifies whether to read in the PBSPro host nodes. This parameter is used in conjunction with
USEVNODES on page 529. When both are set to TRUE, the host nodes are not queried.

Example RMCFG[pbs] IGNHNODES=TRUE

JOBCANCELURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab cancels jobs via the resource manager. (See URL Notes below.)

Example RMCFG[base] JOBCANCELURL=exec:///opt/moab/job.cancel.lsf.pl

Moab executes /opt/moab/job.cancel.lsf.pl to cancel specific
jobs.

JOBEXTENDDURATION

Format [[[DD:]HH:]MM:]SS[,[[[DD:]HH:]MM:]SS][!][<] (or <MIN TIME>[,<MAX TIME>]
[!])

Default ---

Description Specifies the minimum and maximum amount of time that can be added to a job's walltime if it is
possible for the job to be extended. (See MINWCLIMIT.) As the job runs longer than its current
specified minimum wallclock limit (-l minwclimit, for example), Moab attempts to extend the job's
limit by the minimum JOBEXTENDDURATION. This continues until either the extension can no
longer occur (it is blocked by a reservation or job), the maximum JOBEXTENDDURATION is
reached, or the user's specified wallclock limit (-l wallclock) is reached. When a job is extended, it
is marked as PREEMPTIBLE, unless the ! is appended to the end of the configuration string. If
the < is at the end of the string, however, the job is extended the maximum amount possible.

12.0 Resource Managers and Interfaces

JOBEXTENDDURATION

Example RMCFG[base] JOBEXTENDDURATION=30,1:00:00

Moab extends a job's walltime by 30 seconds each time the job is about to run out of
walltime until it is bound by one hour, a reservation/job, or the job's original
"maximum" wallclock limit.

JOBIDFORMAT

Format INTEGER

Default ---

Description Specifies that Moab should use numbers to create job IDs. This eliminates multiple job IDs asso-
ciated with a single job.

Example RMCFG[base] JOBIDFORMAT=INTEGER

Job IDs are generated as numbers.

JOBMODIFYURL

Format <protocol>://[<host>[:<port>]][<path>]

Default ---

Description Specifies how Moab modifies jobs via the resource manager. (See URL Notes, and interface details.)

Example RMCFG[base] JOBMODIFYURL=exec://$TOOLSDIR/job.modify.dyn.pl

Moab executes /opt/moab/job.modify.dyn.pl to modify specific jobs.

JOBRSVRECREATE

Format Boolean

Default TRUE

12.0 Resource Managers and Interfaces

516 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 517

JOBRSVRECREATE

Description Specifies whether Moab will re-create a job reservation each time job information is updated by a
resource manager (See Considerations for Large Clusters for more information.).

Example RMCFG[base] JOBRSVRECREATE=FALSE

Moab only creates a job reservation once when the job first starts.

JOBSTARTURL

Format <protocol>://[<host>[:<port>]][<path>]

Default TRUE

Description Specifies how Moab starts jobs via the resource manager. (See URL Notes below.)

Example RMCFG[base] JOBSTARTURL=http://orion.bsu.edu:1322/moab/jobstart.cgi

Moab triggers the jobstart.cgi script via http to start specific
jobs.

JOBSUBMITURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab submits jobs to the resource manager (See URL Notes below.).

Example RMCFG[base] JOBSUBMITURL=exec://$TOOLSDIR/job.submit.dyn.pl

Moab submits jobs directly to the database located on host
dbserver.flc.com.

JOBSUSPENDURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab suspends jobs via the resource manager. (See URL Notes below.)

12.0 Resource Managers and Interfaces

JOBSUSPENDURL

Example RMCFG[base] JOBSUSPENDURL=EXEC://$HOME/scripts/job.suspend

Moab executes the job.suspend script when jobs are suspended.

JOBVALIDATEURL

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies how Moab validates newly submitted jobs (See URL Notes below.). If the script returns
with a non-zero exit code, the job is rejected. (See User Proxying/Alternate Credentials.)

Example RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl

Moab executes the 'job.validate.pl' script when jobs are submitted to verify they
are acceptable.

MAXDSOP

Format <INTEGER>

Default -1 (unlimited)

Description Specifies the maximum number of data staging operations that may be simultaneously active.

Example RMCFG[ds] MAXDSOP=16

MAXITERATIONFAILURECOUNT

Format <INTEGER>

Default 80

Description Specifies the number of times the RM must fail within a certain iteration before Moab con-
siders it down or corrupt. When an RM is down or corrupt, Moab will not attempt to interact
with it.

12.0 Resource Managers and Interfaces

518 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 519

MAXITERATIONFAILURECOUNT

Example RMCFG[base] MAXITERATIONFAILURECOUNT=25

The RM basemust fail 25 times in a single iteration for Moab to consider it down
and cease interacting with it.

MAXJOBPERMINUTE

Format <INTEGER>

Default -1 (unlimited)

Description Specifies the maximum number of jobs allowed to start per minute via the resource manager.

Example RMCFG[base] MAXJOBPERMINUTE=5

The scheduler only allows five jobs per minute to launch via the resource manager
base.

MAXJOBS

Format <INTEGER>

Default 0 (limited only by the Moab MAXJOB setting)

Description Specifies the maximum number of active jobs that this interface is allowed to load from the
resource manager.

Only works with Moab peer resource managers at this time.

Example RMCFG[cluster1] SERVER=moab://cluster1 MAXJOBS=200

The scheduler loads up to 200 active jobs from the remote Moab peer cluster1.

MINETIME

Format <INTEGER>

12.0 Resource Managers and Interfaces

MINETIME

Default 1

Description Specifies the minimum time in seconds between processing subsequent scheduling events.

Example RMCFG[base] MINETIME=5

The scheduler batch-processes scheduling events that occur less than five seconds
apart.

NMPORT

Format <INTEGER>

Default (any valid port number)

Description Allows specification of the resource manager's node manager port and is only required when this
port has been set to a non-default value.

Example RMCFG[base] NMPORT=13001

The scheduler contacts the node manager located on each compute node at port 13001.

NODEFAILURERSVPROFILE

Format <STRING>

Description Specifies the rsv template to use when placing a reservation onto failed nodes (See also
NODEFAILURERESERVETIME on page 877.).

Example # moab.cfg
RMCFG[base] NODEFAILURERSVPROFILE=long
RSVPROFILE[long] DURATION=25:00RSVPROFILE[long] USERLIST=john

The scheduler will use the long rsv profile when creating reservations over failed
nodes belonging to base.

12.0 Resource Managers and Interfaces

520 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 521

NODESTATEPOLICY

Format One of OPTIMISTIC or PESSIMISTIC

Default PESSIMISTIC

Description Specifies how Moab should determine the state of a node when multiple resource managers are
reporting state.
OPTIMISTIC specifies that if any resource manager reports a state of up, that state will be used.
PESSIMISTIC specifies that if any resource manager reports a state of down, that state will be
used.

Example # moab.cfg
RMCFG[native] TYPE=NATIVE NODESTATEPOLICY=OPTIMISTIC

OMAP

Format <protocol>://[<host>[:<port>]][<path>]

Description Specifies an object map file that is used to map credentials and other objects when using this
resource manager peer

Example moab.cfg
RMCFG[peer1] OMAP=file:///opt/moab/omap.dat

When communicating with the resource manager peer1, objects are mapped according to
the rules defined in the /opt/moab/omap.dat file.

PORT

Format <INTEGER>

Default 0

Description Specifies the port on which the scheduler should contact the associated resource manager. The
value 0 specifies that the resource manager default port should be used.

Example RMCFG[base] TYPE=PBS HOST=cws PORT=20001

Moab attempts to contact the PBS server daemon on host cws, port 20001.

12.0 Resource Managers and Interfaces

PROVDURATION

Format [[[DD:]HH:]MM:]SS

Default 2:30

Description Specifies the upper bound (walltime) of a provisioning request. After this duration, Moab will con-
sider the privisioning attempt failed.

Example RMCFG[base] PROVDURATION=5:00

When RM base provisions a node for more than 5 minutes, Moab considers the
provisioning as having failed.

PTYSTRING

Format <STRING>

Default srun -n1 -N1 --pty

Description When a SLURM interactive job is submitted, it builds an salloc command that gets the requested
resources and an srun command that creates a terminal session on one of the nodes. The srun
command is called the PTYString. PTYString is configured in moab.cfg.
There are two special things you can do with PTYString:
1. You can have PTYSTRING=$salloc which says to use the default salloc command

(SallocDefaultCommand, look in the slurm.confman page) defined in slurm.conf.
Internally, Moab won't add a PTYString because SLURM will call the
SallocDefaultCommand.

2. As in the example below, you can add $SHELL. $SHELLwill be expanded to either what you
request on the command line (such asmsub -S /bin/tcsh -l) or to the value of $SHELL in your
current session.

PTYString works only with SLURM.

Example RMCFG[slurm] PTYSTRING="srun -n1 -N1 --pty --preserve-env $SHELL"

RESOURCECREATEURL

Format <STRING>

12.0 Resource Managers and Interfaces

522 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 523

RESOURCECREATEURL

Default [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified,
Moab treats the destination as a hypertext transfer protocol file.

Description Specifies a script or method that can be used by Moab to create resources dynamically, such as
creating a virtual machine on a hypervisor.

Example RMCFG[base] RESOURCECREATEURL=exec:///opt/script/vm.provision.py

Moab invokes the vm.provision.py script, passing in data as command line
arguments, to request a creation of new resources.

RESOURCETYPE

Format {COMPUTE|FS|LICENSE|NETWORK|PROV}

Description Specifies which type of resource this resource manager is configured to control. See Native
Resource Managers for more information.

Example RMCFG[base] TYPE=NATIVE RESOURCETYPE=FS

Resource manager base will function as a NATIVE resource manager and control file
systems.

RMSTARTURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab starts the resource manager.

Example RMCFG[base] RMSTARTURL=exec:///tmp/nat.start.pl

Moab executes /tmp/nat.start.pl to start the resource manager base.

12.0 Resource Managers and Interfaces

RMSTOPURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab stops the resource manager.

Example RMCFG[base] RMSTOPURL=exec:///tmp/nat.stop.pl

Moab executes /tmp/nat.stop.pl to stop the resource manager base.

SBINDIR

Format <PATH>

Description For use with TORQUE; specifies the location of the TORQUE system binaries (supported in
TORQUE 1.2.0p4 and higher).

Example RMCFG[base] TYPE=pbs SBINDIR=/usr/local/torque/sbin

Moab tells TORQUE that its system binaries are located in /usr/local/torque/sbin.

SERVER

Format <URL>

Description Specifies the resource management service to use. If not specified, the scheduler locates the
resource manager via built-in defaults or, if available, with an information service.

Example RMCFG[base] server=ll://supercluster.org:9705

Moab attempts to use the Loadleveler scheduling API at the specified location.

SLURMFLAGS

Format <STRING>

12.0 Resource Managers and Interfaces

524 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 525

SLURMFLAGS

Description Specifies characteristics of the SLURM resource manager interface. The COMPRESSOUTPUT flag
instructs Moab to use the compact host list format for job submissions to SLURM. The flag
NODEDELTAQUERY instructs Moab to request delta node updates when it queries SLURM for
node configuration.

Example RMCFG[slurm] SLURMFLAGS=COMPRESSOUTPUT

Moab uses theCOMPRESSOUTPUT flag to determine interface characteristics with
SLURM.

SOFTTERMSIG

Format <INTEGER>or SIG<X>

Description Specifies what signal to send the resource manager when a job reaches its soft wallclock limit. (See
JOBMAXOVERRUN.)

Example RMCFG[base] SOFTTERMSIG=SIGUSR1

Moab routes the signal SIGUSR1 through the resource manager to the job when a job
reaches its soft wallclock limit.

STAGETHRESHOLD

Format [[[DD:]HH:]MM:]SS

Description Specifies the maximum time a job waits to start locally before considering being migrated to a
remote peer. In other words, if a job's start time on a remote cluster is less than the start time on
the local cluster, but the difference between the two is less than STAGETHRESHOLD, then the job is
scheduled locally. The aim is to avoid job/data staging overhead if the difference in start times is
minimal.

If this attribute is used, backfill is disabled for the associated resource manager.

Example RMCFG[remote_cluster] STAGETHRESHOLD=00:05:00

Moab only migrates jobs to remote_cluster if the jobs can start five minutes sooner on the
remote cluster than they could on the local cluster.

12.0 Resource Managers and Interfaces

STARTCMD

Format <STRING>

Description Specifies the full path to the resource manager job start client. If the resource manager API fails,
Moab executes the specified start command in a second attempt to start the job.

Moab calls the start command with the format <CMD><JOBID> -H <HOSTLIST> unless
the environment variable MOABNOHOSTLIST is set in which case Moab will only pass the
job ID.

Example RMCFG[base] STARTCMD=/usr/local/bin/qrun

Moab uses the specified start command if API failures occur when launching jobs.

SUBMITCMD

Format <STRING>

Description Specifies the full path to the resource manager job submission client.

Example RMCFG[base] SUBMITCMD=/usr/local/bin/qsub

Moab uses the specified submit command when migrating
jobs.

SUBMITPOLICY

Format One of NODECENTRIC or PROCCENTRIC

Default PROCCENTRIC

Description If set to NODECENTRIC, each specified node requested by the job is interpreted as a true com-
pute host, not as a task or processor.

Example RMCFG[base] SUBMITPOLICY=NODECENTRIC

Moab uses the specified submit policy when migrating jobs.

12.0 Resource Managers and Interfaces

526 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 527

SUSPENDSIG

Format <INTEGER> (valid UNIX signal between 1 and 64)

Default RM-specific default

Description If set, Moab sends the specified signal to a job when a job suspend request is issued.

Example RMCFG[base] SUSPENDSIG=19

Moab uses the specified suspend signal when suspending jobs within the base
resource manager.

SUSPENDSIG should not be used with TORQUE or other PBS-based resource
managers.

SYNCJOBID

Format <BOOLEAN>

Description Specifies that Moab should migrate jobs to the local resource manager with the job's Moab-
assigned job ID. In a grid, the grid-head will only pass dependencies to the underlying Moab if
SYNCJOBID is set. This attribute can be used with the JOBIDFORMAT on page 516 attribute and
PROXYJOBSUBMISSION on page 535 flag in order to synchronize job IDs between Moab and the
resource manager. For more information about all steps necessary to synchronize job IDs between
Moab and TORQUE, see Synchronizing Job IDs in TORQUE and Moab on page 531.

Example RMCFG[slurm] TYPE=wiki:slurm SYNCJOBID=TRUE

SYSTEMMODIFYURL

Format [exec://<path> | http://<address> | <path>]

If exec:// is specified, Moab treats the destination as an executable file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file.

Description Specifies how Moab modifies attributes of the system. This interface is used in data staging.

Example RMCFG[base] SYSTEMMODIFYURL=exec:///tmp/system.modify.pl

Moab executes /tmp/system.modify.pl when it modifies system attributes in
conjunction with the resource manager base.

12.0 Resource Managers and Interfaces

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

SYSTEMQUERYURL

Format [exec://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified, Moab treats
the destination as a hypertext transfer protocol file; if just a path is specified, Moab treats the des-
tination as an executable.

Description Specifies how Moab queries attributes of the system. This interface is used in data staging.

Example RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

Moab reads /tmp/system.query when it queries the system in conjunction with base
resource manager.

TARGETUSAGE

Format <INTEGER>[%]

Default 90%

Description Amount of resource manager resources to explicitly use. In the case of a storage resource manager,
indicates the target usage of data storage resources to dedicate to active data migration requests.
If the specified value contains a percent sign (%), the target value is a percent of the configured
value. Otherwise, the target value is considered to be an absolute value measured in megabytes
(MB).

Example RMCFG[storage] TYPE=NATIVE RESOURCETYPE=storage
RMCFG[storage] TARGETUSAGE=80%

Moab schedules data migration requests to never exceed 80% usage of the storage
resource manager's disk cache and network resources.

TIMEOUT

Format <INTEGER>

Default 30

Description Time (in seconds) the scheduler waits for a response from the resource manager.

12.0 Resource Managers and Interfaces

528 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 529

TIMEOUT

Example RMCFG[base] TIMEOUT=40

Moab waits 40 seconds to receive a response from the resource manager before timing
out and giving up. Moab tries again on the next iteration.

TRIGGER

Format <TRIG_SPEC>

Description A trigger specification indicating behaviors to enforce in the event of certain events associated with
the resource manager, including resource manager start, stop, and failure.

Example RMCFG[base] TRIGGER=<X>

TYPE

Format <RMTYPE>[:<RMSUBTYPE>] where <RMTYPE> is one of the following: TORQUE, NATIVE, PBS,
RMS, SSS, or WIKI and the optional <RMSUBTYPE> value is one of RMS.

Default PBS

Description Specifies type of resource manager to be contacted by the scheduler.

For TYPE WIKI, AUTHTYPE must be set to CHECKSUM. The <RMSUBTYPE> option is
currently only used to support Compaq's RMS resource manager in conjunction with PBS.
In this case, the value PBS:RMS should be specified.

Example RMCFG[clusterA] TYPE=PBS HOST=clusterA PORT=15003
RMCFG[clusterB] TYPE=PBS HOST=clusterB PORT=15005

Moab interfaces to two different PBS resource managers, one located on server clusterA
at port 15003 and one located on server clusterB at port 15005.

USEVNODES

Format <BOOLEAN>

12.0 Resource Managers and Interfaces

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

USEVNODES

Default FALSE

Description Specifies whether to schedule on PBS virtual nodes. When set to TRUE, Moab queries PBSPro for
vnodes and puts jobs on vnodes rather than hosts. In some systems, such as PBS + Altix, it may not
be desirable to read in the host nodes; for such situations refer to the IGNHNODES attribute.

Example RMCFG[pbs] USEVNODES=TRUE

VARIABLES

Format <VAR>=<VAL>[,<VAR>=<VAL>]

Description Opaque resource manager variables.

Example RMCFG[base] VARIABLES=SCHEDDHOST=head1

Moab associates the variable SCHEDDHOST with the value head1 on resource
manager base.

VERSION

Format <STRING>

Default SLURM: 10200 (i.e., 1.2.0)

Description Resource manager-specific version string.

Example RMCFG[base] VERSION=10124

Moab assumes that resource manager base has a version
number of 1.1.24.

VMOWNERRM

Format <STRING>

12.0 Resource Managers and Interfaces

530 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 531

VMOWNERRM

Description Used with provisioning resource managers that can create VMs. It specifies the resource manager
that will own any VMs created by the resource manager.

Example RMCFG[torque]
RMCFG[prov] RESOURCETYPE=PROV VMOWNERRM=torque

WORKLOADQUERYURL

Format [file://<path> | http://<address> | <path>]

If file:// is specified, Moab treats the destination as a flat text file; if http:// is specified, Moab
treats the destination as a hypertext transfer protocol file; if just a path is specified, Moab treats
the destination as an executable.

Description Specifies how Moab queries the resource manager for workload information. (See Native RM,
URL Notes, and interface details.)

Example RMCFG[TORQUE] WORKLOADQUERYURL=exec://$TOOLSDIR/job.query.dyn.pl

Moab executes /opt/moab/tools/job.query.dyn.pl to obtain updated
workload information from resource manager TORQUE.

URL notes

URL parameters can load files by using the file, exec, and http protocols.

For the protocol file, Moab loads the data directly from the text file pointed to by path.

RMCFG[base] SYSTEMQUERYURL=file:///tmp/system.query

For the protocol exec, Moab executes the file pointed to by path and loads the output written to STDOUT.
If the script requires arguments, you can use a question mark (?) between the script name and the
arguments, and an ampersand (&) for each space.

RMCFG[base] JOBVALIDATEURL=exec://$TOOLS/job.validate.pl
RMCFG[native] CLUSTERQUERYURL=exec://opt/moab/tools/cluster.query.pl?-group=group1&-
arch=x86

Synchronizing Job IDs in TORQUE and Moab

Unless you use an msub on page 203 submit filter or you're in a grid, it is recommended that you
use your RM-specific job submission command (for instance, qsub).

In order to synchronize your job IDs between TORQUE and Moabyou must perform the following steps:

12.0 Resource Managers and Interfaces

1. Verify that you are using TORQUE version 2.5.6 or later.

2. Set SYNCJOBID on page 527 to TRUE in all resource managers.

RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE

3. Set the PROXYJOBSUBMISSION on page 535 flag. With PROXYJOBSUBMISSION enabled, you must
run Moab as a TORQUE manager or operator. Verify that other users can submit jobs using msub.
Moab, as a non-root user, should still be able to submit jobs to TORQUE and synchronize job IDs.
RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE
RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

4. Add JOBIDFORMAT on page 516=INTEGER to the internal RM. Adding this parameter forces Moab to
only use numbers as job IDs and those numbers to synchronize across Moab, TORQUE, and the entire
grid. This enhances the end-user experience as it eliminates multiple job IDs associated with a single
job.
RMCFG[torque] TYPE=PBS SYNCJOBID=TRUE
RMCFG[torque] FLAGS=PROXYJOBSUBMISSION

RMCFG[internal] JOBIDFORMAT=INTEGER

Resource Manager Configuration Details
As with all scheduler parameters, follows the syntax described within the Parameters Overview.

Resource Manager Types

The RMCFG parameter allows the scheduler to interface to multiple types of resource managers using
the TYPE or SERVER attributes. Specifying these attributes, any of the following listed resource managers
may be supported.

Type Resource managers Details

Moab Moab Workload Manager Use the Moab peer-to-peer (grid) capabilities to enable grids and
other configurations. (See Grid Configuration.)

Native Moab Native Interface Used for connecting directly to scripts, files, databases, and Web ser-
vices. (See Managing Resources Directly with the Native Interface.)

PBS TORQUE (all versions) N/A

SSS Scalable Systems Software
Project version 2.0 and
higher

N/A

WIKI Wiki interface specification
version 1.0 and higher

Used for LRM, YRM, ClubMASK, BProc, SLURM, and others.

12.0 Resource Managers and Interfaces

532 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 533

Resource Manager Name

Moab can support more than one resource manager simultaneously. Consequently, the RMCFG parameter
takes an index value such as RMCFG[clusterA]. This index value essentially names the resource
manager (as done by the deprecated parameter RMNAME). The resource manager name is used by the
scheduler in diagnostic displays, logging, and in reporting resource consumption to the allocation
manager. For most environments, the selection of the resource manager name can be arbitrary.

Resource Manager Location

The HOST, PORT, and SERVER attributes can be used to specify how the resource manager should be
contacted. For many resource managers the interface correctly establishes contact using default values.
These parameters need only to be specified for resource managers such as the WIKI interface (that do
not include defaults) or with resources managers that can be configured to run at non-standard locations
(such as PBS). In all other cases, the resource manager is automatically located.

Resource Manager Flags

The FLAGS attribute can be used to modify many aspects of a resources manager's behavior.

Flag Description

ASYNCSTART Jobs started on this resource manager start asynchronously. In this case, the
scheduler does not wait for confirmation that the job correctly starts before
proceeding. (See Large Cluster Tuning for more information.)

AUTOSTART Jobs staged to this resource manager do not need to be explicitly started by
the scheduler. The resource manager itself handles job launch.

AUTOSYNC Resource manager starts and stops together with Moab.

This requires that the resource manager support a resource manager
start and stop API or the RMSTARTURL and RMSTOPURL attributes are
set.

BECOMEMASTER Nodes reported by this resource manager will transfer ownership to this
resource manager if they are currently owned by another resource manager
that does not have this flag set.

CLIENT A client resource manager object is created for diagnostic/statistical purposes
or to configure Moab's interaction with this resource manager. It represents an
external entity that consumes server resources or services, allows a local
administrator to track this usage, and configures specific policies related to
that resource manager. A client resource manager object loads no data and
provides no services.

12.0 Resource Managers and Interfaces

Flag Description

CLOCKSKEWCHECKING Setting CLOCKSKEWCHECKING allows you to configure clock skew adjust-
ments. Most of the time it is sufficient to use an NTP server to keep the clocks
in your system synchronized.

COLLAPSEDVIEW Does not work— not supported
The resource manager masks details about local workload and resources and
presents only information relevant to the remote server.

DYNAMICCRED The resource manager creates credentials within the cluster as needed to sup-
port workload. (See Identity Manager Overview.)

EXECUTIONSERVER The resource manager is capable of launching and executing batch workload.

FSISREMOTE Add this flag if the working file system doesn't exist on the server to prevent
Moab from validating files and directories at migration.

FULLCP Always checkpoint full job information (useful with Native resource man-
agers).

HOSTINGCENTER The resource manager interface is used to negotiate an adjustment in dynamic
resource access.

IGNQUEUESTATE The queue state reported by the resource manager should be ignored. May be
used if queues must be disabled inside of a particular resource manager to
allow an external scheduler to properly operate.

IGNWORKLOADSTATE When this flag is applied to a native resource manager, any jobs that are
reported via that resource manager's "workload query URL" have their
reported state ignored. For example, if an RM has the IgnWorkloadState flag
and it reports that a set of jobs have a state of "Running," this state is ignored
and the jobs will either have a default state set or will inherit the state from
another RM reporting on that same set of jobs.
This flag only changes the behavior of RMs of type NATIVE.

LOCALWORKLOADEXPORT When set, destination peers share information about local and remote jobs,
allowing job management of different clusters at a single peer. For more
information, see Workload Submission and Control.

MIGRATEALLJOBATTRIBUTES When set, this flag causes additional job information to be migrated to the
resource manager; additional job information includes things such as node fea-
tures applied via CLASSCFG[name] DEFAULT.FEATURES, the account to
which the job was submitted, and job walltime limit.

12.0 Resource Managers and Interfaces

534 12.2 Resource Manager Configuration

12.2 Resource Manager Configuration 535

Flag Description

NOAUTORES If the resource manager does not report CPU usage to Moab because CPU
usage is at 0%, Moab assumes full CPU usage. When set, Moab recognizes the
resource manager report as 0% usage. This is only valid for PBS.

NOCREATERESOURCE To use resources discovered from this resource manager, they must be created
by another resource manager first. For example, if you set
NOCREATERESOURCE on RM A, which reports nodes 1 and 2, and RM B
only reports node 1, then node 2 will not be created because RM B did not
report it.

PRIVATE The resources and workload reported by the resource manager are not repor-
ted to non-administrator users.

PROXYJOBSUBMISSION Enables Admin proxy job submission, which means administrators may submit
jobs in behalf of other users.

PUSHSLAVEJOBUPDATES Enables job changes made on a grid slave to be pushed to the grid head or
master. Without this flag, jobs being reported to the grid head do not show any
changes made on the remote Moab server (via mjobctl and so forth).

RECORDGPUMETRICS Enables the recording of GPU metrics for nodes.

RECORDMICMETRICS Enables the recording of MIC metrics for nodes.

REPORT N/A

SHARED Resources of this resource manager may be scheduled by multiple inde-
pendent sources and may not be assumed to be owned by any single source.

SLAVEPEER Information from this resource manager may not be used to identify new jobs
or nodes. Instead, this information may only be used to update jobs and nodes
discovered and loaded from other non-slave resource managers.

STATIC This resource manager only provides partial object information and this
information does not change over time. Consequently, this resource manager
may only be called once per object to modify job and node information.

12.0 Resource Managers and Interfaces

Flag Description

USEPHYSICALMEMORY This tells Moab to use a node's physical memory instead of the swap space.
For example, if a node has 12 GB of RAM and an additional 12 GB of swap
space, it has 24 GB of virtual memory. If a 4 GB job is assigned to that node, the
reported available memory shows 12 GB because the job is using the swap
space not the physical memory. The reported available memory doesn't
decrease until the swap space is used up.
When this flag is set, the 4 GB job immediately reduces the available memory
to 8 GB (physical memory - used memory).

USERSPACEISSEPARATE This tells Moab to ignore validating the user's uid and gid in the case that
information doesn't exist on the Moab server.

Example

resource manager 'torque' should use asynchronous job start
and report resources in 'grid' mode
RMCFG[torque] FLAGS=asyncstart,grid

Scheduler/Resource Manager Interactions
In the simplest configuration, Moab interacts with the resource manager using the following four
primary functions:

Function Description

GETJOBINFO Collect detailed state and requirement information about idle, running, and recently completed
jobs.

GETNODEINFO Collect detailed state information about idle, busy, and defined nodes.

STARTJOB Immediately start a specific job on a particular set of nodes.

CANCELJOB Immediately cancel a specific job regardless of job state.

Using these four simple commands, Moab enables nearly its entire suite of scheduling functions. More
detailed information about resource manager specific requirements and semantics for each of these
commands can be found in the specific resource manager (such as WIKI) overviews.

In addition to these base commands, other commands are required to support advanced features such as
suspend/resume, gang scheduling, and scheduler initiated checkpoint restart.

Information on creating a new scheduler resource manager interface can be found in the Adding New
Resource Manager Interfaces section.

12.0 Resource Managers and Interfaces

536 12.2 Resource Manager Configuration

12.3 Resource Manager Extensions 537

12.3 Resource Manager Extensions
l Resource Manager Extension Specification

l Resource Manager Extension Values

l Resource Manager Extension Examples

All resource managers are not created equal. There is a wide range in what capabilities are available
from system to system. Additionally, there is a large body of functionality that many, if not all, resource
managers have no concept of. A good example of this is job QoS. Since most resource managers do not
have a concept of quality of service, they do not provide a mechanism for users to specify this
information. In many cases, Moab is able to add capabilities at a global level. However, a number of
features require a per job specification. Resource manager extensions allow this information to be
associated with the job.

Resource Manager Extension Specification
Specifying resource manager extensions varies by resource manager. TORQUE, OpenPBS, PBSPro,
Loadleveler, LSF, S3, and Wiki each allow the specification of an extension field as described in the
following table:

Resource
manager Specification method

TORQUE
2.0+

-l

> qsub -l nodes=3,qos=high sleepy.cmd

TORQUE
1.x/OpenPBS

-W x=

> qsub -l nodes=3 -W x=qos:high sleepy.cmd

OpenPBS does not support this ability by default but can be patched as described in the
PBS Resource Manager Extension Overview.

Loadleveler #@comment

#@nodes = 3
#@comment = qos:high

LSF -ext

> bsub -ext advres:system.2

12.0 Resource Managers and Interfaces

Resource
manager Specification method

PBSPro -l

> qsub -l advres=system.2

Use of PBSPro resources requires configuring the server_priv/resourcedef file to
define the needed extensions as in the following example:

advres type=string
qos type=string
sid type=string
sjid type=string

Wiki comment

comment=qos:high

Resource Manager Extension Values
Using the resource manager specific method, the following job extensions are currently available:

ADVRES on page 539
BANDWIDTH on page 539
DDISK on page 539
DEADLINE on page 539
DEPEND on page 540
DMEM on page 540
EPILOGUE on page 540
EXCLUDENODES on page 541
FEATURE on page 541
GATTR on page 541
GEOMETRY on page 542
GMETRIC on page 542
GPUs on page 542
GRES
HOSTLIST on page 544
JGROUP on page 545
JOBFLAGS
JOBREJECTPOLICY on page 546
LOGLEVEL on page 546
MAXMEM on page 547

MAXPROC on page 547
MEM on page 547
MICs on page 548
MINPREEMPTTIME on page 548
MINPROCSPEED on page 549
MINWCLIMIT on page 549
MSTAGEIN on page 550
MSTAGEOUT on page 550
NACCESSPOLICY on page 551
NALLOCPOLICY on page 552
NCPUS on page 552
NMATCHPOLICY on page 552
NODESET on page 553
NODESETCOUNT on page 553
NODESETDELAY on page 553
NODESETISOPTIONAL on page 553
OPSYS on page 554
PARTITION on page 554
PLACEMENT on page 554
PMEM on page 554

PROCS on page 555
PROLOGUE on page 556
PVMEM on page 556
QoS on page 556
QUEUEJOB on page 556
REQATTR on page 557
RESFAILPOLICY on page 557
RMTYPE on page 557
SIGNAL on page 558
SOFTWARE
SPRIORITY on page 558
TEMPLATE on page 558
TERMTIME on page 558
TPN on page 559
TRIG on page 559
TRL
VAR on page 561
VC on page 561
VMEM on page 561

12.0 Resource Managers and Interfaces

538 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 539

ADVRES

Format [!]<RSVID>

Description Specifies that reserved resources are required to run the job. If <RSVID> is specified, then only
resources within the specified reservation may be allocated (see Job to Reservation Binding).
You can request to not use a specific reservation by using advres=!<reservationname>.

Example > qsub -l advres=grid.3

Resources for the job must come from grid.3.

> qsub -l advres=!grid.5

Resources for the job must not come from grid.5

BANDWIDTH

Format <DOUBLE> (in MB/s)

Description Minimum available network bandwidth across allocated resources (See Network Management.).

Example > bsub -ext bandwidth=120 chemjob.txt

DDISK

Format <INTEGER>

Default 0

Description Dedicated disk per task in MB.

Example > qsub -l ddisk=2000

DEADLINE

Format Relative time: [[[DD:]HH:]MM:]SS
Absolute time: hh:mm:ss_mm/dd/yy

12.0 Resource Managers and Interfaces

DEADLINE

Description Either the relative completion deadline of job (from job submission time) or an absolute deadline
in which you specify the date and time the job will finish.

Example: > qsub -l deadline=2:00:00,nodes=4 /tmp/bio3.cmd

The job's deadline is 2 hours after its submission.

DEPEND

Format [<DEPENDTYPE>:][{jobname|jobid}.]<ID>[:[{jobname|jobid}.]<ID>]...

Description Allows specification of job dependencies for compute or system jobs. If no ID prefix (jobname or
jobid) is specified, the ID value is interpreted as a job ID.

Example # submit job which will run after job 1301 and 1304 complete
> msub -l depend=orion.1301:orion.1304 test.cmd
orion.1322
submit jobname-based dependency job
> msub -l depend=jobname.data1005 dataetl.cmd
orion.1428

DMEM

Format <INTEGER>

Default 0

Description Dedicated memory per task in bytes.

Example > msub -l dmem=20480

Moab will dedicate 20 MB of
memory to the task.

EPILOGUE

Format <STRING>

12.0 Resource Managers and Interfaces

540 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 541

EPILOGUE

Description Specifies a user owned epilogue script which is run before the system epilogue and epi-
logue.user scripts at the completion of a job. The syntax is epilogue=<file>. The file can be
designated with an absolute or relative path.

This parameter works only with TORQUE.

Example > msub -l epilogue=epilogue_script.sh job.sh

EXCLUDENODES

Format {<nodeid>|<node_range>}[:...]

Description Specifies nodes that should not be considered for the given job.

Example > msub -l excludenodes=k1:k2:k[5-8]
Comma separated ranges work only with SLURM
> msub -l excludenodes=k[1-2,5-8]

FEATURE

Format <FEATURE>[{:|}<FEATURE>]...

Description Required list of node attribute/node features.

If the pipe (|) character is used as a delimiter, the features are logically ORed together and
the associated job may use resources that match any of the specified features.

Example > qsub -l feature='fastos:bigio' testjob.cmd

GATTR

Format <STRING>

Description Generic job attribute associated with job. The maximum size for an attribute is 63 bytes (the core
Moab size limit of 64, including a null byte)

Example > qsub -l gattr=bigjob

12.0 Resource Managers and Interfaces

GEOMETRY

Format: {(<TASKID>[,<TASKID>[,...]])[(<TASKID>[,...])...]}

Description: Explicitly specified task geometry.

Example: > qsub -l nodes=2:ppn=4 -W x=geometry:'{(0,1,4,5)(2,3,6,7)}' quanta2.cmd

The job quanta2.cmd runs tasks 0, 1, 4, and 5 on one node, while tasks 2, 3, 6, and 7 run
on another node.

GMETRIC

Format Generic metric requirement for allocated nodes where the requirement is specified using the
format <GMNAME>[:{lt:,le:,eq:,ge:,gt:,ne:}<VALUE>]

Description Indicates generic constraints that must be found on all allocated nodes. If a <VALUE> is not spe-
cified, the node must simply possess the generic metric (See Generic Metrics for more inform-
ation.).

Example > qsub -l gmetric=bioversion:ge:133244 testj.txt

GPUs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:gpus=<VALUE>[:mode][:reseterr]

Where mode is one of:
exclusive - The default setting. The GPU is used exclusively by one process thread.
exclusive_thread - The GPU is used exclusively by one process thread.
exclusive_process - The GPU is used exclusively by one process regardless of process thread.
If present, reseterr resets the ECC memory bit error counters. This only resets the volatile error
counts, or errors since the last reboot. The permanent error counts are not affected.
Moab passes the mode and reseterr portion of the request to TORQUE for processing.

Moab does not support requesting GPUs as a GRES. Submitting msub -l gres=gpus:x
does not work.

Description Moab schedules GPUs as a special type of node-locked generic resources. When TORQUE reports
GPUs to Moab, Moab can schedule jobs and correctly assign GPUs to ensure that jobs are sched-
uled efficiently. To have Moab schedule GPUs, configure them in TORQUE then submit jobs using
the "GPU" attribute. Moab automatically parses the "GPU" attribute and assigns them in the cor-
rect manner. For information about GPU metrics, see GPGPUMetrics.

12.0 Resource Managers and Interfaces

542 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 543

GPUs

Examples > msub -l nodes=2:ppn=2:gpus=1:exclusive_process:reseterr

Submits a job that requests 2 tasks, 2 processors and 1 GPU per task (2 GPUs total). Each
GPU runs only threads related to the task and resets the volatile ECC memory big error
counts at job start time.

> msub -l nodes=4:gpus=1,tpn=2

Submits a job that requests 4 tasks, 1 GPU per node (4 GPUs total), and 2 tasks per node.
Each GPU is dedicated exclusively to one task process and the ECC memory bit error
counters are not reset.

> msub -l nodes=4:gpus=1:reseterr

Submits a job that requests 4 tasks, 1 processor and 1 GPU per task (4 GPUs total). Each
GPU is dedicated exclusively to one task process and resets the volatile ECC memory bit
error counts at job start time.

> msub -l nodes=4:gpus=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first is 4 tasks, each with 1
processor and 2 gpus, and the second is 1 task with 2 processors. Each GPU is dedicated
exclusively to one task process and the ECC memory bit error counters are not reset.

GRES and SOFTWARE

Format Percent sign (%) delimited list of generic resources where each resource is specified using the
format <RESTYPE>[{+|:}<COUNT>]

Description Indicates generic resources required by the job. If the generic resource is node-locked, it is a per-
task count. If a <COUNT> is not specified, the resource count defaults to 1.

Example > qsub -W x=GRES:tape+2%matlab+3 testj.txt

When specifying more than one generic resource with -l, use the percent (%) character to
delimit them.

> qsub -l gres=tape+2%matlab+3 testj.txt
> qsub -l software=matlab:2 testj.txt

12.0 Resource Managers and Interfaces

HOSTLIST

Format + delimited list of host names; also, ranges and regular expressions

Description Indicates an exact set, superset, or subset of nodes on which the job must run.

Use the caret (^) or asterisk (*) characters to specify a host list as superset or subset
respectively.

An exact set is defined without a caret or asterisk. An exact set means all the hosts in the specified
hostlist must be selected for the job.
A subset means the specified hostlist is used first to select hosts for the job. If the job requires
more hosts than are in the subset hostlist, they will be obtained from elsewhere if possible. If the
job does not require all of the nodes in the subset hostlist, it will use only the ones it needs.
A superset means the hostlist is the only source of hosts that should be considered for running the
job. If the job can't find the necessary resources in the superset hostlist it should not run. No other
hosts should be considered in allocating the job.

12.0 Resource Managers and Interfaces

544 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 545

HOSTLIST

Examples > msub -l hostlist=nodeA+nodeB+nodeE

hostlist=foo[1-5]

This is an exact set of (foo1,foo2,...,foo5). The job must run on all these nodes.

hostlist=foo1+foo[3-9]

This is an exact set of (foo1,foo3,foo4,...,foo9). The job must run on all these nodes.

hostlist=foo[1,3-9]

This is an exact set of the same nodes as the previous example.

hostlist=foo[1-3]+bar[72-79]

This is an exact set of (foo1,foo2,foo3,bar72,bar73,...,bar79). The job must run on all these
nodes.

hostlist=^node[1-50]

This is a superset of (node1,node2,...,node50). These are the only nodes that can be
considered for the job. If the necessary resources for the job are not in this hostlist, the job
is not run. If the job does not require all the nodes in this hostlist, it will use only the ones
that it needs.

hostlist=*node[15-25]

This is a subset of (node15,node16,...,node25). The nodes in this hostlist are considered first
for the job. If the necessary resources for the job are not in this hostlist, Moab tries to
obtain the necessary resources from elsewhere. If the job does not require all the nodes in
this hostlist, it will use only the ones that it needs.

JGROUP

Format <JOBGROUPID>

Description ID of job group to which this job belongs (different from the GID of the user running the job).

Example > msub -l JGROUP=bluegroup

12.0 Resource Managers and Interfaces

JOBFLAGS (aka FLAGS)

Format One or more of the following colon delimited job flags including ADVRES[:RSVID], NOQUEUE,
NORMSTART, PREEMPTEE, PREEMPTOR, RESTARTABLE, or SUSPENDABLE (see job flag overview
for a complete listing).

Description Associates various flags with the job.

Example > qsub -l nodes=1,walltime=3600,jobflags=advres myjob.py

JOBREJECTPOLICY

Format: One or more of CANCEL,HOLD, IGNORE (beta),MAIL, or RETRY

Default: HOLD

Details: Specifies the action to take when the scheduler determines that a job can never run.CANCEL
issues a call to the resource manager to cancel the job.HOLD places a batch hold on the job
preventing the job from being further evaluated until released by an administrator.

Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.

With IGNORE (currently in beta), the scheduler will allow the job to exist within the resource
manager queue but will neither process it nor report it. MAIL will send email to both the admin and
the user when rejected jobs are detected. If RETRY is set, then Moab will allow the job to remain
idle and will only attempt to start the job when the policy violation is resolved. Any combination of
attributes may be specified. See QOSREJECTPOLICY.
This is a per-job policy specified with msub -l. JOBREJECTPOLICY also exists as a global parameter.

Example: > msub -l jobrejectpolicy=cancel:mail

LOGLEVEL

Format <INTEGER>

Description Per job log verbosity.

Example > qsub -l -W x=loglevel:5
bw.cmd

12.0 Resource Managers and Interfaces

546 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 547

MAXMEM

Forma: <INTEGER> (in megabytes)

Description Maximum amount of memory the job may consume across all tasks before the JOBMEM action is
taken.

Example > qsub -W x=MAXMEM:1000mb bw.cmd

If a RESOURCELIMITPOLICY is set for per-job memory utilization, its action will be taken
when this value is reached.

MAXPROC

Format <INTEGER>

Description Maximum CPU load the job may consume across all tasks before the JOBPROC action is taken.

Example > qsub -W x=MAXPROC:4 bw.cmd

If a RESOURCELIMITPOLICY is set for per-job processor utilization, its action will be
taken when this value is reached.

MEM

Format <INTEGER>

Description Specify the maximum amount of physical memory used by the job.

Example > msub -l nodes=4:ppn=2,mem=1024mb

The job must have 4 compute nodes with 2 processors per node. The job is limited to 1024
MB of memory.

12.0 Resource Managers and Interfaces

MICs

Format msub -l nodes=<VALUE>:ppn=<VALUE>:mics=<VALUE>[:mode]

Where mode is one of:
exclusive - The default setting. The MIC is used exclusively by one process thread.
exclusive_thread - The MIC is used exclusively by one process thread.
exclusive_process - The MIC is used exclusively by one process regardless of process thread.
Moab passes the mode portion of the request to TORQUE for processing.

Moab does not support requesting MICs as a GRES. Submitting msub -l gres=mics:x
does not work.

Description Moab schedules MICs as a special type of node-locked generic resources. When TORQUE reports
MICs to Moab, Moab can schedule jobs and correctly assign MICs to ensure that jobs are sched-
uled efficiently. To have Moab schedule MICs , configure them in TORQUE then submit jobs using
the "MIC" attribute. Moab automatically parses the "MIC" attribute and assigns them in the correct
manner.

Examples > msub -l nodes=2:ppn=2:mics=1:exclusive_process

Submits a job that requests 2 tasks, 2 processors and 1 MIC per task (2 MICs total). Each
MIC runs only threads related to the task.

> msub -l nodes=4:mics=1,tpn=2

Submits a job that requests 4 tasks, 1 MIC per node (4 MICs total), and 2 tasks per node.
Each MIC is dedicated exclusively to one task process.

> msub -l nodes=4:mics=1

Submits a job that requests 4 tasks, 1 processor and 1 MIC per task (4 MICs total). Each
MIC is dedicated exclusively to one task process.

> msub -l nodes=4:mics=2+1:ppn=2,walltime=600

Submits a job that requests two different types of tasks, the first is 4 tasks, each with 1
processor and 2 MICs , and the second is 1 task with 2 processors. Each MIC is dedicated
exclusively to one task process.

MINPREEMPTTIME

Format [[DD:]HH:]MM:]SS

12.0 Resource Managers and Interfaces

548 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 549

MINPREEMPTTIME

Description Minimum time job must run before being eligible for preemption.

Can only be specified if associated QoS allows per-job preemption configuration by setting
the preemptconfig flag.

Example > qsub -l minpreempttime=900 bw.cmd

Job cannot be preempted until it has run for 15 minutes.

MINPROCSPEED

Format <INTEGER>

Default 0

Description Minimum processor speed (in MHz) for every node that this job will run on.

Example > qsub -W x=MINPROCSPEED:2000 bw.cmd

Every node that runs this job must have a processor speed of at
least 2000 MHz.

MINWCLIMIT

Format [[DD:]HH:]MM:]SS

Default ---

Description Minimum wallclock limit job must run before being eligible for extension (See
JOBEXTENDDURATION or JOBEXTENDSTARTWALLTIME.).

Example > qsub -l minwclimit=300,walltime=16000 bw.cmd

Job will run for at least 300 seconds but up to 16,000 seconds if possible (without
interfering with other jobs).

12.0 Resource Managers and Interfaces

MSTAGEIN

Format [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

Description Indicates a job has data staging requirements. The source URL(s) listed will be transferred to the
execution system for use by the job. If more than one source URL is specified, the destination URL
must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is local.

The format of <DSTURL> is:
[PROTO://][HOST][:PORT]][/PATH]where the path is remote.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when
sending a single file and must be a directory when sending multiple files. If a directory is specified,
it must end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Example: Copy helperscript.sh and datafile.txt from the local machine to /home/dev/ on host for use in exe-
cution of script.sh. $HOME is a path containing a preceding / (i.e. /home/adaptive)

MSTAGEOUT

Format [<SRCURL>[|<SRCRUL>...]%]<DSTURL>

12.0 Resource Managers and Interfaces

550 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 551

MSTAGEOUT

Description Indicates whether a job has data staging requirements. The source URL(s) listed will be trans-
ferred from the execution system after the completion of the job. If more than one source URL is
specified, the destination URL must be a directory.

The format of <SRCURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is remote.

The format of <DSTURL> is: [PROTO://][HOST][:PORT]][/PATH]where the path is local.

PROTO can be any of the following protocols: ssh, file, or gsiftp.
HOST is the name of the host where the file resides.
PATH is the path of the source or destination file. The destination path may be a directory when
sending a single file and must be a directory when sending multiple files. If a directory is specified,
it must end with a forward slash (/).

Valid variables include:
$JOBID
$HOME - Path the script was run from
$RHOME - Home dir of the user on the remote system
$SUBMITHOST
$DEST - This is the Moab where the job will run
$LOCALDATASTAGEHEAD

If no destination is given, the protocol and file name will be set to the same as the source.

The $RHOME (remote home directory) variable is for when a user's home directory on the
compute node is different than on the submission host.

Example Copy resultfile1.txt and resultscript.sh from the execution system to
/home/dev/ after the execution of script.sh is complete. $HOME is a path containing a
preceding / (i.e. /home/adaptive).

NACCESSPOLICY

Format One of SHARED, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Description Specifies how node resources should be accessed. (See Node Access Policies for more information).

The naccesspolicy option can only be used to make node access more constraining than is
specified by the system, partition, or node policies. If the effective node access policy is
shared, naccesspolicy can be set to singleuser, if the effective node access policy is
singlejob, naccesspolicy can be set to singletask.

12.0 Resource Managers and Interfaces

NACCESSPOLICY

Example > qsub -l naccesspolicy=singleuser bw.cmd

> bsub -ext naccesspolicy=singleuser lancer.cmd

Job can only allocate free nodes or nodes running jobs by same user.

NALLOCPOLICY

Format One of the valid settings for the parameter NODEALLOCATIONPOLICY

Description Specifies how node resources should be selected and allocated to the job. (See Node Allocation
Policies for more information.)

Example > qsub -l nallocpolicy=minresource bw.cmd

Job should use theminresource node allocation policy.

NCPUS

Format <INTEGER>

Description The number of processors in one task where a task cannot span nodes. If NCPUS is used, then the
resource manager's SUBMITPOLICY should be set to NODECENTRIC to get correct behavior. -l
ncpus=<#> is equivalent to -l nodes=1:ppn=<#>when JOBNODEMATCHPOLICY is set to
EXACTNODE. NCPUS is used when submitting jobs to an SMP. When using GPUs to submit to an
SMP, use -1 ncpus=<#>:GPUs=<#>.

You cannot request both ncpus and nodes in the same queue.

NMATCHPOLICY

Format One of the valid settings for the parameter JOBNODEMATCHPOLICY

Description Specifies how node resources should be selected and allocated to the job.

Example > qsub -l nodes=2 -W x=nmatchpolicy:exactnode bw.cmd

Job should use the EXACTNODE JOBNODEMATCHPOLICY.

12.0 Resource Managers and Interfaces

552 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 553

NODESET

Format <SETTYPE>:<SETATTR>[:<SETLIST>]

Description Specifies node set constraints for job resource allocation (See the Node Set Overview for more
information.).

Example > qsub -l nodeset=ONEOF:FEATURE:fastos:hiprio:bigmem bw.cmd

NODESETCOUNT

Format <INTEGER>

Description Specifies how many node sets a job uses.

Example > msub -l nodesetcount=2

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Description Causes Moab to attempt to span a job evenly across node sets unless doing so delays the job
beyond the requested NODESETDELAY.

Example > qsub -l nodesetdelay=300,walltime=16000 bw.cmd

NODESETISOPTIONAL

Format <BOOLEAN>

Description Specifies whether the nodeset constraint is optional (See the NodeSet Overview for more inform-
ation.).

Requires SCHEDCFG[] FLAGS=allowperjobnodesetisoptional.

Example > msub -l nodesetisoptional=true bw.cmd

12.0 Resource Managers and Interfaces

OPSYS

Format <OperatingSystem>

Description Specifies the job's required operating system.

Example > qsub -l nodes=1,opsys=rh73
chem92.cmd

PARTITION

Format <STRING>[:<STRING>]...

Description Specifies the partition (or partitions) in which the job must run.

The job must have access to this partition based on system wide or credential based
partition access lists.

Example > qsub -l nodes=1,partition=math:geology

The job must only run in themath partition or the geology partition.

PLACEMENT

Format [numa=X][[:]sockets=Y][:usethreads]

Description Specifies the task placement of jobs.

Example > msub -l nodes=4:ppn=2,placement=numa=2

This means to place the job on 4 compute nodes with 2 processors per node, with 2
different NUMA nodes per compute node, and 1 processor per NUMA node.

PMEM

Format <INTEGER>

Description Specifies the maximum amount of physical memory used by any single process of the job.

12.0 Resource Managers and Interfaces

554 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 555

PMEM

Example > msub -l nodes=4:ppn=2,pmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and each process of the
job is limited to 1024 MB of physical memory.

PREF

Format [{feature|variable}:]<STRING>[:<STRING>]...

If feature or variable are not specified, then feature is assumed.

Description Specifies which node features are preferred by the job and should be allocated if available. If pre-
ferred node criteria are specified, Moab favors the allocation of matching resources but is not
bound to only consider these resources.

Preferences are not honored unless the node allocation policy is set to PRIORITY and the
PREF priority component is set within the node's PRIORITYF attribute.

Example > qsub -l nodes=1,pref=bigmem

The job may run on any nodes but prefers to allocate nodes with the bigmem feature.

PROCS

Format <INTEGER>

Description Requests a specific amount of processors for the job. Instead of users trying to determine the
amount of nodes they need, they can instead decide how many processors they need and Moab
will automatically request the appropriate amount of nodes from the RM. This also works with
feature requests, such as procs=12[:feature1[:feature2[-]]].

Using this resource request overrides any other processor or node related request, such as
nodes=4.

Example > msub -l procs=32 myjob.pl

Moab will request as many nodes as is necessary to meet the 32-processor requirement
for the job.

12.0 Resource Managers and Interfaces

PROLOGUE

Format <STRING>

Description Specifies a user owned prologue script which will be run after the system prologue and pro-
logue.user scripts at the beginning of a job. The syntax is prologue=<file>. The file can be
designated with an absolute or relative path.

This parameter works only with TORQUE.

Example > msub -l prologue=prologue_script.sh job.s

PVMEM

Format <INTEGER>

Description Specify the maximum amount of virtual memory used by any single process in the job.

Example > msub -l nodes=4:ppn=2,pvmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and each process of the
job is limited to 1024 MB of virtual memory.

QoS

Format <STRING>

Description Requests the specified QoS for the job.

Example > qsub -l walltime=1000,qos=highprio
biojob.cmd

QUEUEJOB

Format <BOOLEAN>

Default TRUE

12.0 Resource Managers and Interfaces

556 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 557

QUEUEJOB

Description Indicates whether or not the scheduler should queue the job if resources are not available to run
the job immediately

Example > msub -l nodes=1,queuejob=false test.cmd

REQATTR

Format Required node attributes with version number support: <ATTRIBUTE>[{>=|>|<=|<|=}
<VERSION>]

Description Indicates required node attributes. For information about using reqattr to request dynamic fea-
tures, see Configuring dynamic features in TORQUE and Moab on page 562.

Example > qsub -l reqattr=matlab=7.1 testj.txt

RESFAILPOLICY

Format One of CANCEL,HOLD, IGNORE,NOTIFY, or REQUEUE

Description Specifies the action to take on an executing job if one or more allocated nodes fail. This setting over-
rides the global value specified with the NODEALLOCRESFAILUREPOLICY parameter.

Example > msub -l resfailpolicy=ignore

For this particular job, ignore node failures.

RMTYPE

Format <STRING>

Description One of the resource manager types currently available within the cluster or grid. Typically, this is
one of PBS, LSF, LL, SGE, SLURM, BProc, and so forth.

Example > msub -l rmtype=ll

Only run job on a Loadleveler destination resource manager.

12.0 Resource Managers and Interfaces

SIGNAL

Format <INTEGER>[@<OFFSET>]

Description Specifies the pre-termination signal to be sent to a job prior to it reaching its walltime limit or
being terminated by Moab. The optional offset value specifies how long before job termination the
signal should be sent. By default, the pre-termination signal is sent one minute before a job is ter-
minated

Example > msub -l signal=32@120 bio45.cmd

SPRIORITY

Format <INTEGER>

Default 0

Description Allows Moab administrators to set a system priority on a job (similar to setspri). This only works if
the job submitter is an administrator.

Example > qsub -l nodes=16,spriority=100 job.cmd

TEMPLATE

Format <STRING>

Description Specifies a job template to be used as a set template. The requested template must have SELECT-
T=TRUE (See Job Templates.).

Example > msub -l walltime=1000,nodes=16,template=biojob job.cmd

TERMTIME

Format <TIMESPEC>

Default 0

Description Specifies the time at which Moab should cancel a queued or active job (See Job Deadline Support.).

12.0 Resource Managers and Interfaces

558 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 559

TERMTIME

Example > msub -l nodes=10,walltime=600,termtime=12:00_Jun/14 job.cmd

TPN

Format <INTEGER>[+]

Default 0

Description Tasks per node allowed on allocated hosts. If the plus (+) character is specified, the tasks per node
value is interpreted as a minimum tasks per node constraint; otherwise it is interpreted as an
exact tasks per node constraint.
Differences between TPN and PPN:
There are two key differences between the following: (A) qsub -l nodes=12:ppn=3 and (B)
qsub -l nodes=12,tpn=3.
The first difference is that ppn is interpreted as the minimum required tasks per node while tpn
defaults to exact tasks per node; case (B) executes the job with exactly 3 tasks on each allocated
node while case (A) executes the job with at least 3 tasks on each allocated node-
nodeA:4,nodeB:3,nodeC:5

The second major difference is that the line, nodes=X:ppn=Y actually requests X*Y tasks,
whereas nodes=X,tpn=Y requests only X tasks.
TPN with TORQUE as an RM:
Moab interprets nodes loosely as procs. TORQUE interprets nodes as the number of nodes from
the actual number of nodes that you have in your nodes file, not your total number of procs. This
means that if TORQUE is your resource manager and you specify msub -l nodes=16:tpn=8
but do not have 16 nodes, TORQUE will not run the job. Instead, you should specify msub -l
procs=16:tpn=8.
To resolve the problem long term, you can also set server resources_available.nodect to
the total number of procs in your system and use msub -l nodes=16:tpn=8 as you would in a
non-TORQUE Moab environment. For more information, see resources_available in the TORQUE
Administrator Guide.

Example > msub -l nodes=10,walltime=600,tpn=4 job.cmd

TRIG

Format: <TRIGSPEC>

12.0 Resource Managers and Interfaces

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/4-serverPolicies/queueAttributes.htm%23resources_available

TRIG

Description: Adds trigger(s) to the job (See Creating a trigger on page 658 for specific syntax.).

Job triggers can only be specified if allowed by the QoS flag trigger.

Example: > qsub -l trig=etype=start\&atype=exec\&action="/tmp/email.sh
job.cmd"

TRL (Format 1)

Format <INTEGER>[@<INTEGER>][:<INTEGER>[@<INTEGER>]]...

Default: 0

Description: Specifies alternate task requests with their optional walltimes (See Malleable Jobs.).

Example: > msub -l trl=2@500:4@250:8@125:16@62 job.cmd

or

> qsub -l trl=2:3:4

TRL (Format 2)

Format <INTEGER>-<INTEGER>

Default 0

Description Specifies a range of task requests that require the same walltime (See Malleable Jobs.).

Example > msub -l trl=32-64 job.cmd

For optimization purposes Moab does not perform an exhaustive search of all possible
values but will at least do the beginning, the end, and 4 equally distributed choices in
between.

12.0 Resource Managers and Interfaces

560 12.3 Resource Manager Extensions

12.3 Resource Manager Extensions 561

VAR

Format <ATTR>[:<VALUE>]

Description Adds a generic variable or variables to the job.

Example > msub -l VAR=testvar1:testvalue1

Single variable

Multiple variables

VC

Format vc=<NAME>

Description Submits the job or workflow to a virtual container (VC).

Example vc=vc13

VMEM

Format: <INTEGER>

Description: Specify the maximum amount of virtual memory used by all concurrent processes in the job.

Example: > msub -l nodes=4:ppn=2,vmem=1024mb

The job must have 4 compute nodes with 2 processors per node, and the job is limited to
1024 MB of virtual memory.

Resource Manager Extension Examples
If more than one extension is required in a given job, extensions can be concatenated with a semicolon
separator using the format <ATTR>:<VALUE>[;<ATTR>:<VALUE>]...

Example 12-1:

#@comment="HOSTLIST:node1,node2;QOS:special;SID:silverA"

Job must run on nodes node1 and node2 using the QoS special. The job is also associated with the system ID silverA
allowing the silver daemon to monitor and control the job.

12.0 Resource Managers and Interfaces

Example 12-2:

PBS -W x=\"NODESET:ONEOF:NETWORK;DMEM:64\"

Job will have resources allocated subject to network based nodeset constraints. Further, each task will dedicate 64 MB of
memory.

Example 12-3:

> qsub -l nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES:john.1"

Job will be forced to run within the john.1 reservation.

Configuring dynamic features in TORQUE andMoab
Used together, the reqattr RM extension and TORQUE $varattr parameter allow you to create jobs that
request resources that may change or disappear. For example, if you wanted a job to request a certain
version of Octave but different versions are configured on each node and updated at any time, you can
create a script that searches for the feature and version on the nodes at a specified interval. Your Moab
job can then retrieve the dynamic node attributes from the latest poll and use them for scheduling.

This functionality is available when you use the TORQUE $varattr parameter to configure a script that
regularly retrieves updates on the nodes' feature(s) and the reqattr RM extension to require a feature
with a certain value.

To set up a dynamic feature in TORQUE and Moab

1. Create a script that pulls the information you need. For instance, the following script pulls the
version of Octave on each node and prints it.
#!/bin/bash
pull the version string for octave and print it for $varattr
version_str=`octave -v | grep version`
[[$version_str =~ ([[:digit:]].[[:digit:]].[[:digit:]])]]
echo "Octave: ${BASH_REMATCH[1]}"

2. Use the TORQUE $varattr parameter to configure the script. Specify both the number of seconds
between each time TORQUE runs the script and the path to the script. If you set the seconds to -1,
the script will run just once. You may include arguments if desired. In the following example, the
varattr parameter specifies that TORQUE calls the Octave script every 30 seconds.
$varattr 30 /usr/local/scripts/octave.sh

3. Submit your job in Moab, specifying reqattr as a resource. In this example, the job requests a node
where the octave feature has a value of 3.2.4 (that the node has Octave version 3.2.4 installed).

> msub -l rerqattr=octave=3.2.4 myJob.sh

Your job requests a node with Octave version 3.2.4. TORQUE passes the most recent (pulled within the last 30
seconds) version of Octave on each node. Moab then schedules the job on a node that currently has Octave 3.2.4.

Related topics

l Resource Manager Overview

12.0 Resource Managers and Interfaces

562 12.3 Resource Manager Extensions

http://docs.adaptivecomputing.com/torque/4-2-6/help.htm#topics/12-appendices/parameters.htm%23$varattr

12.3 Resource Manager Extensions 563

12.3.1 PBS Resource Manager Extensions
Resource manager extensions within PBS are used by setting the -W flag. To enable this flag, some
versions of PBS must be rebuilt. TORQUE and recent OSCAR distributions come with the flag enabled by
default. Most other versions do not. The required steps are documented in what follows:

1. Shut down the PBS server.

> qterm -t quick
#shutdown PBS server

2. cd to the directory from which you executed the PBS 'configure' at install time

> make distclean
> ./configure <WITH OPTIONS>

3. Create addparam script
(chmod +x addparam)

> addparam x
> make

Backup current $PBS_HOMEDIR directory contents

$PBS_HOMEDIR defaults to /usr/spool/PBS.

> make install

4. Restore old $PBS_HOMEDIR directory contents

> pbs_server # restart PBS server

A job's QoS level can then be specified using the qsub -W flag. For example, qsub -W x=iQOS:hi -l
nodes=4 ...

#!/bin/sh
#script: addparam
#usage: addparam $Parameter [S|L]
NewParameter=$1
ParameterType=x$2
if [! -d src/include]; then
echo "error: `basename $0` src/include doesn't exist, run configure"

1>&2
exit 1

fi
run make in this directory to pull over the template files
cd src/include
if make
then
if grep -q "\"$NewParameter\"" site_*.h 2>/dev/null; then
echo "parameter $NewParameter previously added"

12.0 Resource Managers and Interfaces

exit 0
fi

fi
chmod +w site_job_attr_enum.h
echo "
JOB_SITE_ATR_$1,

" >> site_job_attr_enum.h
chmod +w site_job_attr_def.h
if [$ParameterType = "xS"]
then
echo "
{ \"$NewParameter\",

decode_str,
encode_str,
set_str,
comp_str,
free_str,
NULL_FUNC,
READ_WRITE,
ATR_TYPE_STR,
PARENT_TYPE_JOB

},
" >> site_job_attr_def.h

else
echo "
{ \"$NewParameter\",

decode_l,
encode_l,
set_l,
comp_l,
free_null,
NULL_FUNC,
READ_WRITE,
ATR_TYPE_LONG,
PARENT_TYPE_JOB

},
" >> site_job_attr_def.h

fi
exit 0

12.4 Adding NewResource Manager Interfaces
Moab interfaces with numerous resource management systems. Some of these interact through a
resource manager specific interface (OpenPBS/PBSPro, Loadleveler, LSF), while others interact through
generalized interfaces such as SSS or Wiki (See the Wiki Overview). For most resource managers, either
route is possible depending on where it is easiest to focus development effort. Use of Wiki generally
requires modifications on the resource manager side while creation of a new resource manager specific
Moab interface would require more changes to Moab modules.

Regardless of the interface approach selected, adding support for a new resource manager is typically a
straightforward process for about 95% of all supported features. The final 5% of features usually
requires a bit more effort as each resource manager has a number of distinct concepts that must be
addressed.

12.0 Resource Managers and Interfaces

564 12.4 Adding New Resource Manager Interfaces

12.5 Managing Resources Directly with the Native Interface 565

l Resource Manager Specific Interfaces

l Wiki Interface

l SSS Interface

Resource Manager Specific Interfaces
If you require tighter integration and need additional instruction, see Managing Resources Directly with
the Native Interface. If you would like consultation on support for a new resource manager type, please
contact the Professional Services group at Adaptive Computing.

Wiki Interface
The Wiki interface is already defined as a resource manager type, so no modifications are required
within Moab. Additionally, no resource manager specific library or header file is required. However,
within the resource manager, internal job and node objects and attributes must be manipulated and
placed within Wiki based interface concepts as defined in the Wiki Overview. Additionally, resource
manager parameters must be created to allow a site to configure this interface appropriately.

SSS Interface
The SSS interface is an XML based generalized resource manager interface. It provides an extensible,
scalable, and secure method of querying and modifying general workload and resource information.

Related topics

l Creating New Tools within the Native Resource Manager Interface

12.5 Managing Resources Directly with the Native
Interface

l Native Interface Overview

l Configuring the Native Interface

o Configuring the Resource Manager

o Reporting Resources

l Generating Cluster Query Data

o Flat Cluster Query Data

o Interfacing to FLEXlm

o Interfacing to Nagios

o Interfacing to Supermon

12.0 Resource Managers and Interfaces

http://www.adaptivecomputing.com/about/contact.php

l Configuring Resource Types

l Creating New Tools to Manage the Cluster

Native Interface Overview
The Native interface allows a site to augment or even fully replace a resource manager for managing
resources. In some situations, the full capabilities of the resource manager are not needed and a lower
cost or lower overhead alternative is preferred. In other cases, the nature of the environment may make
use of a resource manager impossible due to lack of support. Still, in other situations it is desirable to
provide information about additional resource attributes, constraints, or state from alternate sources.

In any case, Moab provides the ability to directly query and manage resources alongside of or without
the use of a resource manager. This interface, called the NATIVE interface can also be used to launch,
cancel, and otherwise manage jobs. This NATIVE interface offers several advantages including the
following:

l No cost associated with purchasing a resource manager

l No effort required to install or configure the resource manager

l Ability to support abstract resources

l Ability to support abstract jobs

l Ability to integrate node availability information from multiple sources

l Ability to augment node configuration and utilization information provided by a resource manager

However, the NATIVE interface may also have some drawbacks.

l No support for standard job submission languages

l Limited default configured and utilized resource tracking (additional resource tracking available
with additional effort)

At a high level, the native interface works by launching threaded calls to perform standard resource
manager activities such as managing resources and jobs. The desired calls are configured within Moab
and used whenever an action or updated information is required.

Configuring the Native Interface
Using the native interface consists of defining the interface type and location. As mentioned earlier, a
single object may be fully defined by multiple interfaces simultaneously with each interface updating a
particular aspect of the object.

Configuring the Resource Manager

The Native resource manager must be configured using the RMCFG parameter. To specify the native
interface, the TYPE attribute must be set to NATIVE.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec:///tmp/query.sh

12.0 Resource Managers and Interfaces

566 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 567

Reporting Resources

To indicate the source of the resource information, the CLUSTERQUERYURL attribute of the RMCFG
parameter should be specified. This attribute is specified as a URL where the protocols FILE, EXEC, and
SQL are allowed. If a protocol is not specified, the protocol EXEC is assumed.

Format Description

EXEC Execute the script specified by the URL path. Use the script stdout as data.

FILE Load the file specified by the URL path. Use the file contents as data.

SQL Load data directly from an SQL database using the FULL format described below.

Moab considers a NativeRM script to have failed if it returns with a non-zero exit code, or if the
CHILDSTDERRCHECK parameter is set and its appropriate conditions are met. In addition, the NativeRM
script associated with a job submit URL will be considered as having failed if its standard output stream
contains the text ERROR.

This simple example queries a file on the server for information about every node in the cluster. This
differs from Moab remotely querying the status of each node individually.

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=file:///tmp/query.txt

Generating Cluster Query Data

Flat Cluster Query Data

If the EXEC or FILE protocol is specified in the CLUSTERQUERYURL attribute, the data should provide
flat text strings indicating the state and attributes of the node. The format follows the Moab Resource
Manager Language Interface Specification where attributes are delimited by white space rather than ';'
(See Resource Data Format):

Describes any set of node attributes with format: <NAME><ATTR>=<VAL> [<ATTR>=<VAL>]...

<NAME> Name of node

<ATTR> Node attribute

<VAL> Value of node attribute

n17 CPROC=4 AMEMORY=100980 STATE=idle

Interfacing to FLEXlm
Moab can interface with FLEXlm to provide scheduling based on license availability. Informing Moab of
license dependencies can reduce the number of costly licenses required by your cluster by allowing Moab

12.0 Resource Managers and Interfaces

to intelligently schedule around license limitations.

Provided with Moab in the tools directory is a Perl script, license.mon.flexLM.pl. This script
queries a FLEXlm license server and gathers data about available licenses. This script then formats this
data for Moab to read through a native interface. This script can easily be used by any site to help
facilitate FLEXlm integration--the only modification necessary to the script is setting the @FLEXlmCmd
to specify the local command to query FLEXlm. To make this change, edit license.mon.flexLM.pl
and, near the top of the file, look for the line:

my @FLEXlmCmd = ("SETME");

Set the @FLEXlmCmd to the appropriate value for your system to query a license server and license file
(if applicable). If lmutil is not in the PATH variable, specify its full path. Using the lmutil -a argument will
cause it to report all licenses. The -c option can be used to specify an optional license file.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

> ./license.mon.flexLM.pl
GLOBAL UPDATETIME=1104688300 STATE=idle ARES=autoCAD:130,idl_mpeg:160
CRES=autoCAD:200,idl_mpeg:330

If the output looks incorrect, set the $LOGLEVEL variable inside of license.mon.flexLM.pl, run it
again, and address the reported failure.

Once the license interface script is properly configured, the next step is to add a license native resource
manager to Moab via the moab.cfg file:

RMCFG[FLEXlm] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured
and utilized licenses can be viewed by issuing the mdiag -n. Floating licenses (non-node-locked) will be
reported as belonging to the GLOBAL node.

Due to the inherent conflict with the plus sign (+), the provided license manager script replaces
occurrences of the plus sign in license names with the underscore symbol (_). This replacement
requires that licenses with a plus sign in their names be requested with an underscore in place of
any plus signs.

Interfacing to Multiple License Managers Simultaneously

If multiple license managers are used within a cluster, Moab can interface to each of them to obtain the
needed license information. In the case of FLEXlm, this can be done by making one copy of the
license.mon.flexLM.pl script for each license manager and configuring each copy to point to a
different license manager. Then, within Moab, create one native resource manager interface for each
license manager and point it to the corresponding script as in the following example:

RMCFG[FLEXlm1] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm1] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM1.pl
RMCFG[FLEXlm2] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm2] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM2.pl

12.0 Resource Managers and Interfaces

568 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 569

RMCFG[FLEXlm3] TYPE=NATIVE RESOURCETYPE=LICENSE
RMCFG[FLEXlm3] CLUSTERQUERYURL=exec://$TOOLSDIR/flexlm/license.mon.flexLM3.pl
...

For an overview of license management, including job submission syntax, see Section 13.7, License
Management.

It may be necessary to increase the default limit, MMAX_GRES. See Appendix D for more
implementation details.

Interfacing to Nagios
Moab can interface with Nagios to provide scheduling based on network hosts and services availability.

Nagios installation and configuration documentation can be found at Nagios.org.

Provided with Moab in the tools directory is a Perl script, node.query.nagios.pl. This script reads the
Nagios status.dat file and gathers data about network hosts and services. This script then formats
data for Moab to read through a native interface. This script can be used by any site to help facilitate
Nagios integration. To customize the data that will be formatted for Moab, make the changes in this
script.

You may need to customize the associated configuration file in the etc directory, config.nagios.pl.
The statusFile line in this script tells Moab where the Nagios status.dat file is located. Make sure
that the path name specified is correct for your site. Note that the interval which Nagios updates the
Nagios status.dat file is specified in the Nagios nagios.cfg file. Refer to Nagios documentation for
further details.

To make these changes, familiarize yourself with the format of the Nagios status.dat file and make
the appropriate additions to the script to include the desired Moab RM language (formerly WIKI)
Interface attributes in the Moab output.

To test this script, run it manually. If working correctly, it will produce output similar to the following:

> ./node.query.nagios.pl
gateway STATE=Running
localhost STATE=Running CPULOAD=1.22 ADISK=75332

Once the Nagios interface script is properly configured, the next step is to add a Nagios native resource
manager to Moab via the moab.cfg file:

RMCFG[nagios] TYPE=NATIVE
RMCFG[nagios] CLUSTERQUERYURL=exec://$TOOLSDIR/node.query.nagios.pl
...

Once this change is made, restart Moab. The command mdiag -R can be used to verify that the resource
manager is properly configured and is in the state Active. Detailed information regarding configured
Nagios node information can be viewed by issuing the mdiag -n -v.

> mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap

12.0 Resource Managers and Interfaces

http://www.nagios.org/

Speed Opsys Arch Par Load Rsv Classes Network
Features

gateway Running 0:0 0:0 0:0 0:0
1.00 - - dav 0.00 0 - -

-
WARNING: node 'gateway' is busy/running but not assigned to an active job
WARNING: node 'gateway' has no configured processors

localhost Running 0:0 0:0 75343:75347 0:0
1.00 - - dav 0.48 0 - -

-
WARNING: node 'localhost' is busy/running but not assigned to an active job
WARNING: node 'localhost' has no configured processors

----- --- 3:8 1956:1956 75345:75349 5309:6273
Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

Interfacing to Supermon
Moab can integrate with Supermon to gather additional information regarding the nodes in a cluster. A
Perl script is provided in the tools directory that allows Moab to connect to the Supermon server. By
default the Perl script assumes that Supermon has been started on port 2709 on localhost. These defaults
can be modified by editing the respective parameter in config.supermon.pl in the etc directory. An
example setup is shown below.

RMCFG[TORQUE] TYPE=pbs
RMCFG[supermon] TYPE=NATIVE CLUSTERQUERYURL=exec://$HOME/tools/node.query.supermon.pl

To confirm that Supermon is properly connected to Moab, issue mdiag -R -v. The output should be similar
to the following example, specifically there are no errors about the CLUSTERQURYURL.

diagnosing resource managers
RM[TORQUE] State: Active
Type: PBS ResourceType: COMPUTE
Server: keche
Version: '2.2.0-snap.200707181818'
Job Submit URL: exec:///usr/local/bin/qsub
Objects Reported: Nodes=3 (6 procs) Jobs=0
Flags: executionServer
Partition: TORQUE
Event Management: EPORT=15004 (no events received)
Note: SSS protocol enabled
Submit Command: /usr/local/bin/qsub
DefaultClass: batch
RM Performance: AvgTime=0.26s MaxTime=1.04s (4 samples)
RM Languages: PBS
RM Sub-Languages: -

RM[supermon] State: Active
Type: NATIVE ResourceType: COMPUTE
Cluster Query URL: exec://$HOME/node.query.supermon.pl
Objects Reported: Nodes=3 (0 procs) Jobs=0
Partition: supermon
Event Management: (event interface disabled)
RM Performance: AvgTime=0.03s MaxTime=0.11s (4 samples)
RM Languages: NATIVE
RM Sub-Languages: -

Note: use 'mrmctl -f messages ' to clear stats/failures

Run the Perl script by itself. The script's results should look similar to this:

12.0 Resource Managers and Interfaces

570 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 571

vm01 GMETRIC[CPULOAD]=0.571428571428571 GMETRIC[NETIN]=133 GMETRIC[NETOUT]=702 GMETRIC
[NETUSAGE]=835
vm02 GMETRIC[CPULOAD]=0.428571428571429 GMETRIC[NETIN]=133 GMETRIC[NETOUT]=687 GMETRIC
[NETUSAGE]=820
keche GMETRIC[CPULOAD]=31 GMETRIC[NETIN]=5353 GMETRIC[NETOUT]=4937 GMETRIC[NETUSAGE]
=10290

If the preceding functioned properly, issue a checknode command on one of the nodes that Supermon is
gathering statistics for. The output should look similar to below.

node keche
State: Idle (in current state for 00:32:43)
Configured Resources: PROCS: 2 MEM: 1003M SWAP: 3353M DISK: 1M
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: CPULOAD=33.38,NETIN=11749.00,NETOUT=9507.00,NETUSAGE=21256.00
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.500
Network Load: 0.87 kB/s
Flags: rmdetected
Network: DEFAULT
Classes: [batch 2:2][interactive 2:2]
RM[TORQUE]: TYPE=PBS
EffNodeAccessPolicy: SHARED
Total Time: 2:03:27 Up: 2:03:27 (100.00%) Active: 00:00:00 (0.00%)
Reservations: ---

Configuring Resource Types
Native Resource managers can also perform special tasks when they are given a specific resource type.
These types are specified using the RESOURCETYPE attribute of the RMCFG parameter.

Type Description

COMPUTE Normal compute resources (no special handling)

FS File system resource manager (see Multiple Resource Managers for an example)

LICENSE Software license manager (see Interfacing with FLEXlm and License Management)

NETWORK Network resource manager

PROV Provisioning resource manager. This is the RM Moab uses to modify the OS of a node (not a VM)
and to power a node on or off.

Creating New Tools toManage the Cluster
Using the scripts found in the $TOOLSDIR ($INSTDIR/tools) directory as a template, new tools can be
quickly created to monitor or manage most any resource. Each tool should be associated with a

12.0 Resource Managers and Interfaces

particular resource manager service and specified using one of the following resource manager URL
attributes.

CLUSTERQUERYURL

Description Queries resource state, configuration, and utilization information for compute nodes, networks, stor-
age systems, software licenses, and other resources. For more details, see RM configuration.

Output Node status and configuration for one or more nodes. See Resource Data Format.

Example RMCFG[v-stor] CLUSTERQUERYURL=exec://$HOME/storquery.pl

Moab will execute the storquery.pl script to obtain information about 'v-stor'
resources.

JOBCANCELURL

Description Specifies how Moab cancels jobs via the resource manager. For more details, see RM configuration.

Input <protocol>://[<host>[:<port>]][<path>]

Example RMCFG[base] JOBCANCELURL=exec:///opt/moab/job.cancel.lsf.pl

Moab executes /opt/moab/job.cancel.lsf.pl to cancel specific jobs.

JOBMODIFYURL

Description Modifies a job or application. For more details, see RM configuration.

Input [-j <JOBEXPR>] [--s[et]|--c[lear]|--i[ncrement]|--d[ecrement]] <ATTR>
[=<VALUE>] [<ATTR>[=<VALUE>]]...

Example RMCFG[v-stor] JOBMODIFYURL=exec://$HOME/jobmodify.pl

Moab will execute the jobmodify.pl script to modify the specified job.

12.0 Resource Managers and Interfaces

572 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 573

JOBREQUEUEURL

Description Requeues a job.

Input <JOBID>

Example RMCFG[v-stor]
JOBREQUEUEURL=exec://$HOME/requeue.pl

Moab will execute the requeue.pl script to
requeue jobs.

JOBRESUMEURL

Description Resumes a suspended job or application.

Input <JOBID>

Example RMCFG[v-stor] JOBRESUMEURL=exec://$HOME/jobresume.pl

Moab will execute the jobresume.pl script to resume
suspended jobs.

JOBSTARTURL

Description Launches a job or application on a specified set of resources.

Input <JOBID><TASKLIST><USERNAME> [ARCH=<ARCH>] [OS=<OPSYS>]
[IDATA=<STAGEINFILEPATH>[,<STAGEINFILEPATH>]...] [EXEC=<EXECUTABLEPATH>]

Example RMCFG[v-stor] JOBSTARTURL=exec://$HOME/jobstart.pl

Moab will execute the jobstart.pl script to execute jobs.

JOBSUBMITURL

Description Submits a job to the resource manager, but it does not execute the job. The job executes when the
JOBSTARTURL is called.

12.0 Resource Managers and Interfaces

JOBSUBMITURL

Input [ACCOUNT=<ACCOUNT>] [ERROR=<ERROR>] [GATTR=<GATTR>] [GNAME=<GNAME>]
[GRES=<GRES>:<Value>[,<GRES>:<Value>]*] [HOSTLIST=<HOSTLIST>]
[INPUT=<INPUT>] [IWD=<IWD>] [NAME=<NAME>] [OUTPUT=<OUTPUT>]
[RCLASS=<RCLASS>] [REQUEST=<REQUEST>] [RFEATURES=<RFEATURES>]
[RMFLAGS=<RMFLAGS>] [SHELL=<SHELL>] [TASKLIST=<TASKLIST>] [TASKS=<TASKS>]
[TEMPLATE=<TEMPLATE>] [UNAME=<UNAME>] [VARIABLE=<VARIABLE>]
[WCLIMIT=<WCLIMIT>] [ARGS=<Value>[<Value>]*]

ARGS must be the last submitted attribute because there can be multiple space-separated
values for ARGS.

Example RMCFG[v-stor] JOBSUBMITURL=exec://$HOME/jobsubmit.pl

Moab submits the job to the jobsubmit.pl script for future job execution.

JOBSUSPENDURL

Description Suspends in memory an active job or application.

Input <JOBID>

Example RMCFG[v-stor] JOBSUSPENDURL=exec://$HOME/jobsuspend.pl

Moab will execute the jobsuspend.pl script to
suspend active jobs.

NODEMODIFYURL

Description Provide method to dynamically modify/provision compute resources including operating system,
applications, queues, node features, power states, etc.

Input <NODEID>[,<NODEID>] [--force] {--set <ATTR>=<VAL>|--clear <ATTR>}
ATTR is one of the node attributes listed in Resource Data Format

Example RMCFG[warewulf] NODEMODIFYURL=exec://$HOME/provision.pl

Moab will reprovision compute nodes using the provision.plscript.

12.0 Resource Managers and Interfaces

574 12.5 Managing Resources Directly with the Native Interface

12.5 Managing Resources Directly with the Native Interface 575

NODEPOWERURL

Description Allows Moab to issue IPMI power commands.

Input <NODEID>[,<NODEID>] ON | OFF

Example RMCFG[node17rm] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl

Moab will issue a power command contained in the
ipmi.power.plscript.

SYSTEMMODIFYURL

Description Provide method to dynamically modify aspects of the compute environment which are directly
associated with cluster resources. For more details, see RM configuration.

SYSTEMQUERYURL

Description Provide method to dynamically query aspects of the compute environment which are directly asso-
ciated with cluster resources. For more details, see RM configuration.

Input default <ATTR>
ATTR is one of images

Output <STRING>

Example RMCFG[warewulf] SYSTEMQUERYURL=exec://$HOME/checkimage.pl

Moab will load the list of images available from warewulf using the checkimage.pl
script.

WORKLOADQUERYURL

Description: Provide method to dynamically query the system workload (jobs, services, etc) of the compute
environment which is associated with managed resources.

Job/workload information should be reported back from the URL (script, file, webservice,
etc.) using the Moab RM language (formerly WIKI).

For more details, see RM configuration.

12.0 Resource Managers and Interfaces

WORKLOADQUERYURL

Output: <STRING>

Example: RMCFG[xt] WORKLOADQUERYURL=exec://$HOME/job.query.xt3.pl

Moab will load job/workload information by executing the job.query.xt3.pl script.

Related topics

l mdiag -R command (evaluate resource managers)
l License Management
l Moab Resource Manager Language Data Format
ll Managing Resources with SLURM

12.6 Utilizing Multiple Resource Managers
Multi-RM Overview
In many instances a site may have certain resources controlled by different resource managers. For
example, a site may use a particular resource manager for licensing software for jobs, another resource
manager for managing file systems, another resource manager for job control, and another for node
monitoring. Moab can be configured to communicate with each of these resource managers, gathering all
their data and incorporating such into scheduling decisions. With a more distributed approach to
resource handling, failures are more contained and scheduling decisions can be more intelligent.

Configuring Multiple Independent Resource Manager Partitions
Moab must know how to communicate with each resource manager. In most instances, this is simply
done by configuring a query command.

Migrating Jobs between Resource Managers
With multi-resource manager support, a job may be submitted either to a local resource manager queue
or to the Moab global queue. In most cases, submitting a job to a resource manager queue constrains the
job to only run within the resources controlled by that resource manager. However, if the job is
submitted to the Moab global queue, it can use resources of any active resource manager. This is
accomplished through job translation and staging.

When Moab evaluates resource availability, it determines the cost in terms of both data and job staging.
If staging a job's executable or input data requires a significant amount of time, Moab integrates data
and compute resource availability to determine a job's earliest potential start time on a per resource
manager basis and makes an optimal scheduling decision accordingly. If the optimal decision requires a
data stage operation, Moab reserves the required compute resources, stages the data, and then starts
the job when the required data and compute resources are available.

12.0 Resource Managers and Interfaces

576 12.6 Utilizing Multiple Resource Managers

12.6 Utilizing Multiple Resource Managers 577

Aggregating Information into a Cohesive Node View
Using the native interface, Moab can actually perform most of these functions without the need for an
external resource manager. First, configure the native resource managers:

RMCFG[base] TYPE=PBS
RMCFG[network] TYPE=NATIVE
RMCFG[network] CLUSTERQUERYURL=/tmp/network.sh
RMCFG[fs] TYPE=NATIVE
RMCFG[fs] CLUSTERQUERYURL=/tmp/fs.sh

The network script can be as simple as the following:

> _RX=`/sbin/ifconfig eth0 | grep "RX by" | cut -d: -f2 | cut -d' ' -f1`; \
> _TX=`/sbin/ifconfig eth0 | grep "TX by" | cut -d: -f3 | cut -d' ' -f1`; \
> echo `hostname` GMETRIC[netusage]=`echo "$_RX + $_TX" | bc`;

The preceding script would output something like the following:

node01 GMETRIC[netusage]=10928374

Moab grabs information from each resource manager and includes its data in the final view of the node.

> checknode node01
node node01
State: Running (in current state for 00:00:20)
Configured Resources: PROCS: 2 MEM: 949M SWAP: 2000M disk: 1000000
Utilized Resources: SWAP: 9M
Dedicated Resources: PROCS: 1 disk: 1000
Opsys: Linux-2.6.5-1.358 Arch: linux
Speed: 1.00 CPULoad: 0.320
Location: Partition: DEFAULT Rack/Slot: NA
Network Load: 464.11 b/s
Network: DEFAULT
Features: fast
Classes: [batch 1:2][serial 2:2]
Total Time: 00:30:39 Up: 00:30:39 (100.00%) Active: 00:09:57 (32.46%)
Reservations:
Job '5452'(x1) -00:00:20 -> 00:09:40 (00:10:00)

JobList: 5452

Notice that the Network Load is now being reported along with disk usage.

Example File System Utilization Tracker (per user)

The following configuration can be used to track file system usage on a per user basis:

.....
RMCFG[file] TYPE=NATIVE
RMCFG[file] RESOURCETYPE=FS
RMCFG[file] CLUSTERQUERYURL=/tmp/fs.pl
.....

Assuming that /tmp/fs.pl outputs something of the following format:

DEFAULT STATE=idle AFS=<fs id="user1" size="789456"></fs><fs
id="user2" size="123456"></fs>

12.0 Resource Managers and Interfaces

This will track disk usage for users user1 and user2 every 24 hours.

12.7 License Management
l License Management Overview

l Controlling and Monitoring License Availability

l Requesting Licenses w/in Jobs

License Management Overview
Software license management is typically enabled in one of two models: node-locked and floating. Under
a node-locked license, use of a given application is constrained to certain hosts. For example, node013
may support up to two simultaneous jobs accessing application matlab. In a floating license model, a
limited number of software licenses are made available cluster wide, and these licenses may be used on
any combination of compute hosts. In each case, these licenses are consumable and application access is
denied once they are gone.

Moab supports both node-locked and floating license models and even allows mixing the two models
simultaneously. Moab monitors license usage and only launches an application when required software
license availability is guaranteed. In addition, Moab also reserves licenses in conjunction with future jobs
to ensure these jobs can run at the appropriate time.

By default, Moab supports up to 128 independent license types.

Moab license recognition is case insensitive. This means that two licenses with the same spelling
and different capitalization are still recognized as the same license. When this occurs, Moab
considers the license invalid.

Controlling andMonitoring License Availability
Moab can use one of three methods to determine license availability. These methods include locally
specifying consumable generic resources, obtaining consumable generic resource information from the
resource manager, and interfacing directly with a license manager.

Local Consumable Resources

Both node-locked and floating licenses can be locally specified within Moab using the NODECFG
parameter. In all cases, this is accomplished by associating the license with a node using the GRES (or
generic resource) attribute. If floating, the total cluster-wide license count should be associated with the
GLOBAL node. If node-locked, the per node license count should be associated with each compute host (or
globally using the DEFAULT node). For example, if a site has two node-locked licenses for application
EvalA and six floating licenses for application EvalB, the following configuration could be used:

NODECFG[node001] GRES=EvalA:2
NODECFG[node002] GRES=EvalA:2
NODECFG[GLOBAL] GRES=EvalB:6
...

12.0 Resource Managers and Interfaces

578 12.7 License Management

12.7 License Management 579

Resource Manager Based Consumable Resources

Some resource managers support the ability to define and track generic resource usage at a per node
level. In such cases, support for node-locked licenses may be enabled by specifying this information
within the resource manager. Moab automatically detects and schedules these resources. For example, in
the case of TORQUE, this can be accomplished by adding generic resource specification lines to the MOM
configuration file.

Interfacing to an External License Manager

Moab may also obtain live software license information from a running license manager. Direct
interfaces to supported license managers such as FlexLM may be created using the Native Resource
Manager feature. A complete example on interfacing to an external license manager is provided in the
FLEXlm section of the native resource manager overview.

Interfacing to Multiple License Managers

Moab may interface to multiple external license managers simultaneously simply by defining additional
native resource manager interfaces. See the FLEXlm Native Resource Manager Overview for more
information.

Requesting Licenses within Jobs
Requesting use of software licenses within jobs is typically done in one of two ways. In most cases, the
native resource manager job submission language provides a direct method of license specification; for
example, in the case of TORQUE, OpenPBS, or PBSPro, the software argument could be specified using
the format <SOFTWARE_NAME>[+<LICENSE_COUNT>] as in the following example:

> qsub -l nodes=2,software=blast cmdscript.txt

The license count is a job total, not a per task total, and the license count value defaults to 1.

An alternative to direct specification is the use of the Moab resource manager extensions. With these
extensions, licenses can be requested as generic resources, using the GRES attribute. The job in the
preceding example could also be requested using the following syntax:

> qsub -l nodes=2 -W x=GRES:blast cmdscript.txt

In each case, Moab automatically determines if the software licenses are node-locked or floating and
applies resource requirements accordingly.

If a job requires multiple software licenses, whether of the same or different types, a user would use the
following syntax:

> qsub -l nodes=2 -W x=GRES:blast+2 cmdscript.txt # two 'blast' licenses required
> qsub -l nodes=2 -W x=GRES:blast+2%bkeep+3 cmdscript.txt # two 'blast' and three
'bkeep' licenses are required

Related topics

l Native Resource Manager License Configuration
l License Ownership with Advance Reservations

12.0 Resource Managers and Interfaces

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/nodeManagerConfig.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/nodeManagerConfig.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/2-jobs/jobSubmission.htm

12.8 Resource Provisioning
l Resource Provisioning Overview

l Configuring Provisioning

Resource Provisioning Overview
When processing a resource request, Moab attempts to match the request to an existing available
resource. However, if the scheduler determines that the resource is not available or will not be available
due to load or policy for an appreciable amount of time, it can select a resource to modify to meet the
needs of the current requests. This process of modifying resources to meet existing needs is called
provisioning.

Currently, there are two types of provisioning supported: operating system (OS) and application. As its
name suggests, OS provisioning allows the scheduler to modify the operating system of an existing
compute node while application level provisioning allows the scheduler to request that a software
application be made available on a given compute node. In each case, Moab evaluates the costs of making
the change in terms of time and other resources consumed before making the decision. Only if the
benefits outweigh the costs will the scheduler initiate the change required to support the current
workload.

Preemption (requeueing) does not work with dynamic provisioning.

Configuring Provisioning
Enabling provisioning consists of configuring an interface to a provisioning manager, specifying which
nodes can take advantage of this service, and what the estimated cost and duration of each change will
be. This interface can be used to contact provisioning software such as xCat or HP's Server Automation
tool. Additionally, locally developed systems can be interfaced via a script or web service.

Related topics

l Native Resource Manager Overview
l Appendix O: Resource Manager Integration

12.9 Intelligent PlatformManagement Interface
l IPMI Overview

l Node IPMI Configuration

l Installing IPMItool

l Setting-up the BMC-Node Map File

l Configuring Moab's IPMI Tools

12.0 Resource Managers and Interfaces

580 12.8 Resource Provisioning

http://www.xcat.org/

12.9 Intelligent Platform Management Interface 581

l Configuring Moab

l Ensuring Proper Setup

IPMI Overview
The Intelligent Platform Management Interface (IPMI) specification defines a set of common interfaces
system administrators can use to monitor system health and manage the system. The IPMI interface can
monitor temperature and other sensor information, query platform status and power-on/power-off
compute nodes. As IPMI operates independently of the node's OS interaction with the node can happen
even when powered down. Moab can use IPMI to monitor temperature information, check power status,
power-up, power-down, and reboot compute nodes.

Node IPMI Configuration
IPMI must be enabled on each node in the compute cluster. This is usually done either through the node's
BIOS or by using a boot CD containing IPMI utilities provided by the manufacturer. With regard to
configuring IPMI on the nodes, be sure to enable IPMI-over-LAN and set a common login and password on
all the nodes. Additionally, you must set a unique IP address for each node's BMC. Take note of these
addresses as you will need them when reviewing the Creating the IPMI BMC-Node Map File section.

Installing IPMItool
IPMItool is an open-source tool used to retrieve sensor information from the IPMI Baseboard
Management Controller (BMC) or to send remote chassis power control commands. The IPMItool
developer provides Fedora Core binary packages as well as a source tarball on the IPMItool download
page. Download and install IPMItool on the Moab head node and make sure the ipmitool binary is in
the current shell PATH.

Proper IPMI setup and IPMItool configuration can be confirmed by issuing the following command on the
Moab head node.

> ipmitool -I lan -U username -P password -H BMC IP chassis status

The output of this command should be similar to the following.

System Power : off
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false
Power Restore Policy : previous
Last Power Event :
Chassis Intrusion : inactive
Front-Panel Lockout : inactive
Drive Fault : false
Cooling/Fan Fault : false

Creating the IPMI BMC-Node Map File [OPTIONAL]
Since the BMC can be controlled via LAN, it is possible for the BMC to have its own unique IP address.
Since this IP address is separate from the IP address of the node, a simple mapping file is required for
Moab to know each node's BMC address. The file is a flat text file and should be stored in the Moab home

12.0 Resource Managers and Interfaces

http://ipmitool.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=95200
http://sourceforge.net/project/showfiles.php?group_id=95200

directory. If a mapping file is needed, specify the name in the config.ipmi.pl configuration file in the
etc/ directory. The following is an example of the mapping file:

#<NodeID> <BMC IP>
node01 10.10.10.101
node02 10.10.10.102
node03 10.10.10.103
node04 10.10.10.104
node05 10.10.10.105
NodeID = the name of the nodes returned with "mdiag -n"
BMC IP = the IP address of the IPMI BMC network interface

Note that only the nodes specified in this file are queried for IPMI information. Also note that the
mapping file is disabled by default and the nodes that are returned from Moab with mdiag -n are the ones
that are queried for IPMI sensor data.

Configuring the Moab IPMI Tools
The tools/ subdirectory in the install directory already contains the Perl scripts needed to interface
with IPMI. The following is a list of the Perl scripts that should be in the tools/ directory; confirm
these are present and executable.

ipmi.mon.pl # The daemon front-end called by Moab
ipmi.power.pl # The power control script called by Moab
__mon.ipmi.pl # The IPMI monitor daemon that updates and caches IPMI data from nodes

Next, a few configuration settings need to be adjusted in the config.ipmi.pl file found in the etc
subdirectory. The IPMI-over-LAN username and password need to be set to the values that were set in
the Node IPMI Configuration section. Also, the IPMI query daemon's polling interval can be modified by
adjusting $pollInterval. This specifies how often the IPMI-enabled nodes are queried to retrieve sensor
data.

Configuring Moab
To allow Moab to use the IPMI tools, a native resource manager is configured. To do this, the following
lines must be added to moab.cfg:

...
IPMI - Node monitor script
RMCFG[ipminative] TYPE=NATIVE CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi.mon.pl
...

Next, the following lines can be added to allow Moab to issue IPMI power commands.

...
IPMI - Power on/off/reboot script
RMCFG[ipminative] NODEPOWERURL=exec://$TOOLSDIR/ipmi.power.pl
...

Moab can be configured to perform actions based on sensor data. For example, Moab can shut down a
compute node if its CPU temperature exceeds 100 degrees Celsius, or it can power down idle compute
nodes if workload is low. Generic event thresholds are used to tell Moab to perform certain duties given
certain conditions. The following example is of a way for Moab to recognize it should power off a
compute node if its CPU0 temperature exceeds 100 degrees Celsius.

12.0 Resource Managers and Interfaces

582 12.9 Intelligent Platform Management Interface

12.10 Resource Manager Translation 583

...
IPMI - Power off compute node if its CPU0 temperature exceeds 100 degrees Celsius.
GEVENTCFG[CPU0_TEMP>100] action=off
...

Ensuring Proper Setup
Once the preceding steps have been taken, Moab should be started as normal. The IPMI monitoring
daemon should start automatically, which can be confirmed with the following:

moab@headnode:~/$ ps aux | grep __mon
moab 11444 0.0 0.3 6204 3172 pts/3 S 10:54 0:00 /usr/bin/perl -w
/opt/moab/tools/_mon.ipmi.pl --start

After a few minutes, IPMI data should be retrieved and cached. This can be confirmed with the following
command:

moab@headnode:~/$ cat spool/ipmicache.gm
node01 GMETRIC[CPU0_TEMP]=49
node01 GMETRIC[CPU1_TEMP]=32
node01 GMETRIC[SYS_TEMP]=31
node01 POWER=ON

Finally, issue the following to ensure Moab is grabbing the IPMI data. Temperature data should be
present in the Generic Metrics row.

moab@headnode:~/$ checknode node01
node node01
State: Idle (in current state for 00:03:12)
Configured Resources: PROCS: 1 MEM: 2000M SWAP: 3952M DISK: 1M
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: CPU0_TEMP=42.00,CPU1_TEMP=30.00,SYS_TEMP=29.00
...

12.10 Resource Manager Translation
l Translation Overview

l Translation Enablement Steps

Translation Overview
Resource manager translation allows end-users to continue to use existing job command scripts and
familiar job management and resource query commands. This is accomplished by emulating external
commands, routing the underlying queries to Moab, and then formatting the responses in a familiar
manner. Using translation, job submission clients, job query clients, job control clients, and resource
query clients can be emulated making switching from one resource manager to another transparent and
preserving investment in legacy scripts, tools, and experience.

Translation Enablement Steps
To enable translation, you must:

12.0 Resource Managers and Interfaces

l Edit the Moab tools configuration file.

l Copy, rename, and link the emulation scripts to a shorter, easier-to-use name.

Configure Translation Tools

Located in the $MOABHOMEDIR/etc directory are tools-specific configuration files. For each resource
manager that has installed translation tools, edit the Moab tools configuration file in the etc directory.
For example, if enabling LSF translation, do the following:

> vi $MOABHOMEDIR/etc/config.moab.pl
Set the PATH to include directories for moab client commands — mjobctl, etc.
$ENV{PATH} = "/opt/moab/bin:$ENV{PATH}";

Add Translation Tools

In a directory accessible to users, create links to (or copy) the emulation scripts you want your users to
use. For example, the emulation script tools/bjobs.lsf.pl could be copied to bin/bjobs, or, a
symbolic link could be created in bin/bjobs that points to tools/bjobs.lsf.pl.

> ln -s tools/bjobs.lsf.pl bin/bjobs
> ln -s tools/bhosts.lsf.pl bin/bhosts

12.0 Resource Managers and Interfaces

584 12.10 Resource Manager Translation

13.1 Internal Diagnostics/Diagnosing System Behavior and Problems 585

13.0 Troubleshooting and System
Maintenance

l Internal Diagnostics/Diagnosing System Behavior and Problems on page 585

l Logging Facilities on page 588

l Object Messages on page 597

l Notifying Administrators of Failures on page 599

l Issues with Client Commands on page 600

l Tracking System Failures on page 601

l Problems with Individual Jobs on page 603

l Diagnostic Scripts on page 604

13.1 Internal Diagnostics/Diagnosing System
Behavior and Problems

Moab provides a number of commands for diagnosing system behavior. These diagnostic commands
present detailed state information about various aspects of the scheduling problem, summarize
performance, and evaluate current operation reporting on any unexpected or potentially erroneous
conditions found. Where possible, Moab's diagnostic commands even correct detected problems if
desired.

At a high level, the diagnostic commands are organized along functionality and object based delineations.
Diagnostic commands exist to help prioritize workload, evaluate fairness, and determine effectiveness of
scheduling optimizations. Commands are also available to evaluate reservations reporting state
information, potential reservation conflicts, and possible corruption issues. Scheduling is a complicated
task. Failures and unexpected conditions can occur as a result of resource failures, job failures, or
conflicting policies.

Moab's diagnostics can intelligently organize information to help isolate these failures and allow them to
be resolved quickly. Another powerful use of the diagnostic commands is to address the situation in
which there are no hard failures. In these cases, the jobs, compute nodes, and scheduler are all
functioning properly, but the cluster is not behaving exactly as desired. Moab diagnostics can help a site
determine how the current configuration is performing and how it can be changed to obtain the desired
behavior.

The mdiag Command
The cornerstone of Moab's diagnostics is the mdiag command. This command provides detailed
information about scheduler state and also performs a large number of internal sanity checks presenting
problems it finds as warning messages.

Currently, the mdiag command provides in-depth analysis of the following objects and subsystems:

Object/Subsystem mdiag
Flag Use

Account -a Shows detailed account configuration information.

Blocked -b Indicates why blocked (ineligible) jobs are not allowed to run.

Class -c Shows detailed class configuration information.

Config -C Shows configuration lines from moab.cfg and whether or not they are valid.

FairShare -f Shows detailed fairshare configuration information as well as current fair-
share usage.

Group -g Shows detailed group information.

Job -j Shows detailed job information. Reports corrupt job attributes, unexpected
states, and excessive job failures.

Frame/Rack -m Shows detailed frame/rack information.

Node -n Shows detailed node information. Reports unexpected node states and
resource allocation conditions.

Priority -p Shows detailed job priority information including priority factor con-
tributions to all idle jobs.

QoS -q Shows detailed QoS information.

Reservation -r Shows detailed reservation information. Reports reservation corruption and
unexpected reservation conditions.

Resource Manager -R Shows detailed resource manager information. Reports configured and detec-
ted state, configuration, performance, and failures of all configured resource
manager interfaces.

13.0 Troubleshooting and System Maintenance

586 13.1 Internal Diagnostics/Diagnosing System Behavior and Problems

13.1 Internal Diagnostics/Diagnosing System Behavior and Problems 587

Object/Subsystem mdiag
Flag Use

Standing Reser-
vations

-s Shows detailed standing reservation information. Reports reservation cor-
ruption and unexpected reservation conditions.

Scheduler -S Shows detailed scheduler state information. Indicates if scheduler is stopped
and identifies and reports high-level scheduler failures.

Partition -t Shows detailed partition information.

User -u Shows detailed user information.

Other Diagnostic Commands
Beyond mdiag, the checkjob and checknode commands also provide detailed information and sanity
checking on individual jobs and nodes respectively. These commands can indicate why a job cannot start,
which nodes can be available, and information regarding the recent events impacting current job or
nodes state.

Using Moab Logs for Troubleshooting
Moab logging is extremely useful in determining the cause of a problem. Where other systems may be
cursed for not providing adequate logging to diagnose a problem, Moab may be cursed for the opposite
reason. If the logging level is configured too high, huge volumes of log output may be recorded,
potentially obscuring the problems in a flood of data. Intelligent searching combined with the use of the
LOGLEVEL and LOGFACILITY parameters can mine out the needed information. Key information
associated with various problems is generally marked with the keywords WARNING, ALERT, or ERROR.
See the Logging Overview for further information.

Automating Recovery Actions after a Failure
The RECOVERYACTION parameter of SCHEDCFG can be used to control scheduler action in the case of a
catastrophic internal failure. Valid actions include die, ignore, restart, and trap.

Recovery
Mode Description

die Moab will exit and, if core files are externally enabled, will create a core file for analysis (This is the
default behavior.).

ignore Moab will ignore the signal and continue processing. This may cause Moab to continue running with
corrupt data which may be dangerous. Use this setting with caution.

13.0 Troubleshooting and System Maintenance

Recovery
Mode Description

restart When a SIGSEGV is received, Moab will relaunch using the current checkpoint file, the original
launch environment, and the original command line flags. The receipt of the signal will be logged
but Moab will continue scheduling. Because the scheduler is restarted with a new memory image,
no corrupt scheduler data should exist. One caution with this mode is that it may mask underlying
system failures by allowing Moab to overcome them. If used, the event log should be checked occa-
sionally to determine if failures are being detected.

trap When a SIGSEGV is received, Moab stays alive but enters diagnostic mode. In this mode, Moab stops
scheduling but responds to client requests allowing analysis of the failure to occur using internal
diagnostics available via the mdiag command.

Related topics

l Troubleshooting Individual Jobs

13.2 Logging Facilities
The Moab Workload Manager provides the ability to produce detailed logging of all of its activities. This
is accomplished using verbose server logging, event logging, and system logging facilities.

l Log Facility Configuration

l Status Information

l Scheduler Warnings

l Scheduler Alerts

l Scheduler Errors

l Searching Moab Logs

l Event Logs

o Event Log Format

o Exporting Events in Real-Time

l Sending event logs to Moab Web Services for storage

l Enabling Syslog

l Managing Log Verbosity

Log Facility Configuration
The LOGFILE and/or LOGDIR parameters within the moab.cfg file specify the destination of this logging
information. Logging information will be written in the file <MOABHOMEDIR>/<LOGDIR><LOGFILE>

13.0 Troubleshooting and System Maintenance

588 13.2 Logging Facilities

13.2 Logging Facilities 589

unless <LOGDIR> or <LOGFILE> is specified using an absolute path. If the log file is not specified or points
to an invalid file, all logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in production. By default,
LOGDIR and LOGFILE are set to log and moab.log respectively, resulting in scheduler logs being written to
<MOABHOMEDIR>/log/moab.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to become before it is
rolled and is set to 10 MB by default. When the log file reaches this specified size, the log file is rolled.
The parameter LOGFILEROLLDEPTH controls the number of old logs maintained and defaults to 3. Rolled
log files have a numeric suffix appended indicating their order.

The parameter LOGLEVEL controls the verbosity of the information. Currently, LOGLEVEL values between
0 and 9 are used to control the amount of information logged, with 0 being the most terse, logging only
the most severe problems detected, while 9 is the most verbose, commenting on just about everything.
The amount of information provided at each log level is approximately an order of magnitude greater
than what is provided at the log level immediately below it. A LOGLEVEL of 2 will record virtually all
critical messages, while a log level of 4 will provide general information describing all actions taken by
the scheduler. If a problem is detected, you may want to increase the LOGLEVEL value to get more
details. However, doing so will cause the logs to roll faster and will also cause a lot of possibly unrelated
information to clutter up the logs. Also be aware of the fact that high LOGLEVEL values results in large
volumes of possibly unnecessary file I/O to occur on the scheduling machine. Consequently, it is not
recommended that high LOGLEVEL values be used unless tracking a problem or similar circumstances
warrant the I/O cost.

If high log levels are desired for an extended period of time and your Moab home directory is
located on a network file system, performance may be improved by moving your log directory to a
local file system using the LOGDIR parameter.

A final log related parameter is LOGFACILITY. This parameter can be used to focus logging on a subset
of scheduler activities. This parameter is specified as a list of one or more scheduling facilities as listed
in the parameters documentation.

Example 13-1:

moab.cfg
allow up to 30 100MB logfiles
LOGLEVEL 5
LOGDIR /var/tmp/moab
LOGFILEMAXSIZE 100000000
LOGFILEROLLDEPTH 30

The logging that occurs is of the following major types: subroutine information, status information,
scheduler warnings, scheduler alerts, and scheduler errors.

Status Information
Critical internal status is indicated at low LOGLEVELs while less critical and more verbose status
information is logged at higher LOGLEVELs. For example:

INFO: job orion.4228 rejected (max user jobs)
INFO: job fr4n01.923.0 rejected (maxjobperuser policy failure)

13.0 Troubleshooting and System Maintenance

Scheduler Warnings
Warnings are logged when the scheduler detects an unexpected value or receives an unexpected result
from a system call or subroutine. These messages are not necessarily indicative of problems and are not
catastrophic to the scheduler. Most warnings are reported at loglevel 0 to loglevel 3. For example:

WARNING: cannot open fairshare data file '/opt/moab/stats/FS.87000'

Scheduler Alerts
Alerts are logged when the scheduler detects events of an unexpected nature that may indicate problems
in other systems or in objects. They are typically of a more severe nature than warnings and possibly
should be brought to the attention of scheduler administrators. Most alerts are reported at loglevel 0 to
loglevel 2. For example:

ALERT: job orion.72 cannot run. deferring job for 360 Seconds

Scheduler Errors
Errors are logged when the scheduler detects problems of a nature that impacts the scheduler's ability
to properly schedule the cluster. Moab will try to remedy or mitigate the problem as best it can, but the
problem may be outside of its sphere of control. Errors should definitely be monitored by administrators.
Most errors are reported at loglevel 0 to loglevel 1. For example:

ERROR: cannot connect to Loadleveler API

Searching Moab Logs
While major failures are reported via the mdiag -S command, these failures can also be uncovered by
searching the logs using the grep command as in the following:

> grep -E "WARNING|ALERT|ERROR" moab.log

On a production system working normally, this list usually includes some ALERT and
WARNING messages. The messages are usually self-explanatory, but if not, viewing the log can give
context to the message.

If a problem is occurring early when starting the Moab scheduler (before the configuration file is read)
Moab can be started up using the -L <LOGLEVEL>flag. If this is the first flag on the command line, then
the LOGLEVEL is set to the specified level immediately before any setup processing is done and additional
logging is recorded.

If problems are detected in the use of one of the client commands, the client command can be re-issued
with the --loglevel=<LOGLEVEL> command line argument specified. This argument causes log
information to be written to STDERR as the client command is running. As with the server, <LOGLEVEL>
values from 0 to 9 are supported.

The LOGLEVEL can be changed dynamically by use of the mschedctl -m command, or by modifying the
moab.cfg file and restarting the scheduler. Also, if the scheduler appears to be hung or is not properly
responding, the log level can be incremented by one by sending a SIGUSR1 signal to the scheduler

13.0 Troubleshooting and System Maintenance

590 13.2 Logging Facilities

13.2 Logging Facilities 591

process. Repeated SIGUSR1signals continue to increase the log level. The SIGUSR2 signal can be used
to decrease the log level by one.

If an unexpected problem does occur, save the log file as it is often very helpful in isolating and
correcting the problem.

Event Logs
Major events are reported to both the Moab log file as well as the Moab event log. By default, the event
log is maintained in the statistics directory and rolls on a daily basis, using the naming convention
events.WWW_MMM_DD_YYYY as in events.Tue_Mar_18_2008.

Event Log Format

The event log contains information about major job, reservation, node, and scheduler events and failures
and reports this information in the following format:

<EVENTTIME> <EPOCHTIME>:<EID> <OBJECT> <OBJECTID> <EVENT> <DETAILS>

Example 13-2:

VERSION 500
07:03:21 110244322:0 sched clusterA start
07:03:26 110244327:1 rsv system.1 start 1124142432 1324142432 2 2 0.0 2342155.3
node1|node2 NA RSV=%=system.1=
07:03:54 110244355:2 job 1413 end 8 16 llw mcc 432000 Completed [batch:1]
11 08708752 1108703981 ...
07:04:59 110244410:3 rm base failure cannot connect to RM
07:05:20 110244431:4 sched clusterA stop admin
...

The parameter RECORDEVENTLIST can be used to control which events are reported to the event log.
See the sections on job and reservation trace format for more information regarding the values reported
in the details section for those records.

Record Type Specific Details Format

The format for each record type is unique and is described in the following table:

Record
Type Event Types Description

gevent See Enabling Generic Events
for gevent information. Generic events are included within node records. See node

detail format that follows.

13.0 Troubleshooting and System Maintenance

Record
Type Event Types Description

job JOBCANCEL,
JOBCHECKPOINT,
JOBEND, JOBHOLD,
JOBMIGRATE, JOBMODIFY,
JOBPREEMPT,
JOBREJECT, JOBRESUME,
JOBSTART, JOBSUBMIT

See Workload Accounting Records.

node NODEDOWN,
NODEFAILURE,NODEUP

The following fields are displayed in the event file in a space-delim-
ited line as long as Moab has information pertaining to it: state, par-
tition, disk, memory, maxprocs, swap, os, rm, nodeaccesspolicy, class,
and message, where state is the node's current state and message
is a human readable message indicating reason for node state
change.

rm RMDOWN,RMPOLLEND,
RMPOLLSTART,RMUP

Human readable message indicating reason for resource manager
state change.

For SCHEDCOMMAND, only create/modify commands
are recorded. No record is created for general list/query

commands. ALLSCHEDCOMMAND does the same thing as
SCHEDCOMMAND, but it also logs info query commands.

trigger TRIGEND, TRIGFAILURE,
TRIGSTART

<ATTR>="<VALUE>"[<ATTR>="<VALUE>"]...
where <ATTR> is one of the following: actiondata, actiontype,
description, ebuf, eventtime, eventtype, flags, name, objectid, object-
type, obuf, offset, period, requires, sets, threshold, timeout, and so
forth.
See About object triggers on page 655 for more information.

vm VMCREATE, VMDESTROY,
VMMIGRATE,
VMPOWEROFF,
VMPOWERON

The following fields are displayed in the event file in a space-delim-
ited line as long as Moab has information pertaining to it: name, sov-
ereign, powerstate, parentnode, swap, memory, disk, maxprocs,
opsys, class, and variables, where class and variables may have 0 or
multiple entries.

Exporting Events in Real-Time

Moab event information can be exported to external systems in real-time using the
ACCOUNTINGINTERFACEURL parameter. When set, Moab activates this URL each time one of the default
events or one of the events specified by the RECORDEVENTLIST occurs.

While various protocols can be used, the most common protocol is exec, which indicates that Moab
should launch the specified tool or script and pass in event information as command line arguments. This

13.0 Troubleshooting and System Maintenance

592 13.2 Logging Facilities

13.2 Logging Facilities 593

tool can then select those events and fields of interest and re-direct them as appropriate providing
significant flexibility and control to the organization.

Exec Protocol Format

When a URL with an exec protocol is specified, the target is launched with the event fields passed in as
STDIN. These fields appear exactly as they do in the event logs with the same values and order.

The tools/sql directory included with the Moab distribution contains event.create.sql.pl,
a sample accounting interface processing script that may be used as a template.

Event logging with web services
Administrators can configure Moab to push event data to Moab Web Services or other web services. This
allows you to manage and store event logs from a single location. Currently, Moab pushes the following
events to web services for storage:

These event logs are separate from the old Moab event logs.

Event type Facility Category

jobcancel job cancel

jobend job end

jobhold job hold

jobmodify job modify

jobreject job reject

jobrelease job release

jobstart job start

jobsubmit job submit

rsvcreate reservation create

rsvend reservation end

rsvstart reservation start

13.0 Troubleshooting and System Maintenance

Event type Facility Category

allschedcommand scheduler command

schedcommand scheduler command

schedcycleend scheduler end

schedcyclestart scheduler start

schedpause scheduler pause

schedrecycle scheduler recycle

schedresume scheduler resume

schedstart scheduler start

schedend scheduler end

trigcreate trigger create

trigend trigger end

trigstart trigger start

vmcancel vm cancel

vmdestroy vm destroy

vmend vm end

vmmigrateend vm migrate

vmmigratestart vm migrate

vmready vm ready

vmsubmit vm submit

13.0 Troubleshooting and System Maintenance

594 13.2 Logging Facilities

13.2 Logging Facilities 595

The SCHEDCOMMAND and ALLSCHEDCOMMAND event type log information is not pushed to
web services unless you have specified that you want to include it in the RECORDEVENTLIST
parameter.

Event cat-
egory Description

cancel Indicates the object was canceled.

command Indicates that Moab received a command.

create Indicates the object was created.

destroy Indicates the object was destroyed.

"end" can occur before "destroy".

end Indicates the object ended normally (it reached its end of life; completed).

hold Indicates the job had a hold placed on it.

migrate Indicates a VM migration event.

modify Indicates the object was modified.

pause Indicates the scheduler paused.

ready Indicates the object was ready.

"submit" can occur before "ready".

recycle Indicates the scheduler recycled.

reject Indicates the object was rejected as invalid.

release Indicates all holds have been removed from a job.

resume Indicates the scheduler resumed.

"pause" can occur before "resume".

13.0 Troubleshooting and System Maintenance

Event cat-
egory Description

start Indicates the object started.

"submit" can occur before "start".

stop Indicates the scheduler stopped.

submit Indicates the object was submitted to Moab. (Note that this does not indicate that Moab accep-
ted it.)

To enable Moab to push event logging to web services, you will need to set the following parameters in
moab.cfg:

l Set PUSHEVENTSTOWEBSERVICE to TRUE.

l Use EVENTLOGWSURL to specify your web services event log URL.

And these parameters in the moab-private.cfg file:

l Use EVENTLOGWSUSER to specify the username required to log in to your web services.

l Use EVENTLOGWSPASSWORD to specify the user password required to log in to your web
services.

For more information about Moab event logging in Moab Web Services, see the "Events" section of
the Moab Web Services Reference Guide.

Enabling Syslog
In addition to the log file, the Moab scheduler can report events it determines to be critical to the UNIX
syslog facility via the daemon facility using priorities ranging from INFO to ERROR. (See USESYSLOG).
The verbosity of this logging is not affected by the LOGLEVEL parameter. In addition to errors and
critical events, user commands that affect the state of the jobs, nodes, or the scheduler may also be
logged to syslog. Moab syslog messages are reported using the INFO, NOTICE, and ERR syslog priorities.

By default, messages are logged to syslog's user facility. However, using the USESYSLOG parameter,
Moab can be configured to use any of the following:

l user

l daemon

l local0

l local1

l local2

l local3

l local4

13.0 Troubleshooting and System Maintenance

596 13.2 Logging Facilities

http://www.adaptivecomputing.com/support/documentation/

13.3 Object Messages 597

l local5

l local6

l local7

Managing Verbosity
In very large systems, a highly verbose log may roll too quickly to be of use in tracking specific targeted
behaviors. In these cases, one or more of the following approaches may be of use:

l Use the LOGFACILITY parameter to log only functions and services of interest.

l Use syslog to maintain a permanent record of critical events and failures.

l Specify higher object loglevels on jobs, nodes, and reservations of interest (such as NODECFG
[orion13] LOGLEVEL=6).

l Increase the range of events reported to the event log using the RECORDEVENTLIST parameter.

l Review object messages for required details.

l Run Moab in monitor mode using IGNOREUSERS, IGNOREJOBS, IGNORECLASSES, or IGNORENODES.

Related topics

l RECORDEVENTLIST parameter
l USESYSLOG parameter
l Notifying Admins
l Simulation Workload Trace Overview
l mschedctl -L command

13.3 Object Messages
Object Message Overview
Messages can be associated with the scheduler, jobs, and nodes. Their primary use is a line of
communication between resource managers, the scheduler, and end-users. When a node goes offline, or
when a job fails to run, both the resource manager and the scheduler will post messages to the object's
message buffer, giving the administrators and end-users a reason for the failure. They can also be used
as a way for different administrators and users to send messages associated with the various objects.
For example, an administrator can set the message Node going down for maintenance
Apr/6/08 12pm," on node node01, which would then be visible to other administrators.

Viewing Messages
To view messages associated with a job (either from users, the resource manager, or Moab), run the
checkjob command.

To view messages associated with a node (either from users, the resource manager, or Moab), run the
checknode command.

13.0 Troubleshooting and System Maintenance

To view system messages, use the mschedctl -l message command.

To view the messages associated with a credential, run the mcredctl -c command.

Creating Messages
To create a message use the mschedctl -c message <STRING> [-o <OBJECTTYPE>:<OBJECTID>] [-
w <ATTRIBUTE>=<VALUE>[-w ...]] command.

The <OBJECTTYPE> can be one of the following:

l node

l job

l rsv

l user

l acct

l qos

l class

l group

The <ATTRIBUTE> can be one of the following:

l owner

l priority

l expiretime

l type

Valid types include:

l annotation

l other

l hold

l pendactionerror

Deleting Messages
Deleting, or removing, messages is straightforward. The commands used depend on the type of object to
which the message is attached:

l Scheduler: Use the "mschedctl -d message:<INDEX>" command (where INDEX is the index of the
message you want to delete).

l Node: Use the mnodectl<NODE> -d message:<INDEX> command.

13.0 Troubleshooting and System Maintenance

598 13.3 Object Messages

13.4 Notifying Administrators of Failures 599

13.4 Notifying Administrators of Failures
Enabling Administrator Email
In the case of certain events, Moab can automatically send email to administrators. To enable mail
notification, the MAILPROGRAM parameter must be set to DEFAULT or point to the locally available mail
client. With this set, policies such as JOBREJECTPOLICY will send email to administrators if set to a value
of MAIL.

Handling Events with the Notification Routine
Moab possesses a primitive event management system through the use of the notify program. The
program is called each time an event of interest occurs. Currently, most events are associated with
failures of some sort but use of this facility need not be limited in this way. The NOTIFICATIONPROGRAM
parameter allows a site to specify the name of the program to run. This program is most often locally
developed and designed to take action based on the event that has occurred. The location of the
notification program may be specified as a relative or absolute path. If a relative path is specified, Moab
looks for the notification relative to the $(INSTDIR)/tools directory. In all cases, Moab verifies the
existence of the notification program at start up and disables it if it cannot be found or is not executable.

The notification program's action may include steps such as reporting the event via email, adjusting
scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with command line arguments in a simple
<EVENTTYPE>: <MESSAGE> format. The following event types are currently enabled:

Event Type Format Description

JOBCORRUPTION <MESSAGE> An active job is in an unexpected state
or has one or more allocated nodes that
are in unexpected states.

JOBHOLD <MESSAGE> A job hold has been placed on a job.

JOBWCVIOLATION <MESSAGE> A job has exceeded its wallclock limit.

RESERVATIONCORRUPTION <MESSAGE> Reservation corruption has been detec-
ted.

RESERVATIONCREATED <RSVNAME> <RSVTYPE> <NAME>
<PRESENTTIME> <STARTTIME>
<ENDTIME> <NODECOUNT>

A new reservation has been created.

13.0 Troubleshooting and System Maintenance

Event Type Format Description

RESERVATIONDESTROYED <RSVNAME> <RSVTYPE>
<PRESENTTIME> <STARTTIME>
<ENDTIME> <NODECOUNT>

A reservation has been destroyed.

RMFAILURE <MESSAGE> The interface to the resource manager
has failed.

Perhaps the most valuable use of the notify program stems from the fact that additional notifications can
be easily inserted into Moab to handle site specific issues. To do this, locate the proper block routine,
specify the correct conditional statement, and add a call to the routine notify(<MESSAGE>);.

Related topics

l JOBREJECTPOLICY parameter
l MAILPROGRAM parameter
l Event Log Overview

13.5 Issues with Client Commands
l Client Overview

l Diagnosing Client Problems

Client Overview
Moab client commands are implemented as links to the executable mclient. When a Moab client
command runs, the client executable determines the name under which it runs and behaves accordingly.
At the time Moab was configured, a home directory was specified. The Moab client attempts to open the
configuration file, moab.cfg, in the etc/ folder of this home directory on the node where the client
command executes. This means that the home directory specified at configure time must be available on
all hosts where the Moab client commands are executed. This also means that a moab.cfg file must be
available in the etc/ folder of this home directory. When the clients open this file, they will try to load
the SCHEDCFG parameter to determine how to contact the Moab server.

The home directory value specified at configure time can be overridden by creating an
/etc/moab.cfg file or by setting the MOABHOMEDIR environment variable.

Once the client has determined where the Moab server is located, it creates a message, adds an
encrypted checksum, and sends the message to the server. The Moab client and Moab server must use a
shared secret key for this to work. When the Moab server receives the client request and verifies the
message, it processes the command and returns a reply.

13.0 Troubleshooting and System Maintenance

600 13.5 Issues with Client Commands

13.6 Tracking System Failures 601

Diagnosing Client Problems
The easiest way to determine where client failures are occurring is to use built-in Moab logging. On the
client side, use the --loglevel flag. For example:

> showq --loglevel=9

This will display verbose logging information regarding the loading of the configuration file, connecting to the Moab
server, sending the request, and receiving a response.

This information almost always reveals the source of the problem. If it does not, the next step is to look
at the Moab server side logs; this is done using the following steps:

l Stop Moab scheduling so that the only activity is handling Moab client requests.

> mschedctl -s

l Set the logging level to very verbose.

> mschedctl -m loglevel 7

l Watch Moab activity.

> tail -f log/moab.log | more

Now, in a second window, issue any failing client command, such as showq.

The moab.log file will record the client request and any reasons it was rejected.

13.6 Tracking System Failures
System Failures
The scheduler has a number of dependencies that may cause failures if not satisfied. These dependencies
are in the areas of disk space, network access, memory, and processor utilization.

Disk Space

The scheduler uses a number of files. If the file system is full or otherwise inaccessible, the following
behaviors might be noted:

Unavailable File Behavior

moab.pid Scheduler cannot perform single instance check.

moab.ck* Scheduler cannot store persistent record of reservations, jobs, policies, summary statistics,
and so forth.

13.0 Troubleshooting and System Maintenance

Unavailable File Behavior

moab.cfg
/moab.dat

Scheduler cannot load local configuration.

log/* Scheduler cannot log activities.

stats/* Scheduler cannot write job records.

When possible, configure Moab to use local disk space for configuration files, statistics files, and
logs files. If any of these files are located in a networked file system (such as NFS, DFS, or AFS)
and the network or file server experience heavy loads or failures, Moab server may appear
sluggish or unresponsive and client command may fail. Use of local disk space eliminates
susceptibility to this potential issue.

Network

The scheduler uses a number of socket connections to perform basic functions. Network failures may
affect the following facilities.

Network Connection Behavior

scheduler client Scheduler client commands fail.

resource manager Scheduler is unable to load/update information regarding nodes and jobs.

allocation manager Scheduler is unable to validate account access or reserve/debit account balances.

Memory

Depending on cluster size and configuration, the scheduler may require up to 120 MB of memory on the
server host. If inadequate memory is available, multiple aspects of scheduling may be negatively
affected. The scheduler log files should indicate if memory failures are detected and mark any such
messages with the ERROR or ALERT keywords.

Processor Utilization

On a heavily loaded system, the scheduler may appear sluggish and unresponsive. However, no direct
failures should result from this slowdown. Indirect failures may include timeouts of peer services (such
as the resource manager or allocation manager) or timeouts of client commands. All timeouts should be
recorded in the scheduler log files.

13.0 Troubleshooting and System Maintenance

602 13.6 Tracking System Failures

13.7 Problems with Individual Jobs 603

Internal Errors
The Moab scheduling system contains features to assist in diagnosing internal failures. If the scheduler
exits unexpectedly, the scheduler logs may provide information regarding the cause. If no reason can be
determined, use of a debugger may be required.

Logs

The first step in any exit failure is to check the last few lines of the scheduler log. In many cases, the
scheduler may have exited due to misconfiguration or detected system failures. The last few lines of the
log should indicate why the scheduler exited and what changes would be required to correct the
situation. If the scheduler did not intentionally exit, increasing the LOGLEVEL parameter to 7, or higher,
may help isolate the problem.

Reporting Failures
If an internal failure is detected on your system, the information of greatest value to developers in
isolating the problem will be the output of the gdb where subcommand and a printout of all variables
associated with the failure. In addition, a level 7 log covering the failure can also help in determining the
environment that caused the failure. If you encounter such and require assistance, please submit a ticket
at the following address:

http://www.adaptivecomputing.com/services/techsupport.php

If you do not already have a support username and password, please create a free account to
request a support ticket.

13.7 Problems with Individual Jobs
To determine why a particular job will not start, there are several helpful commands:

checkjob -v

checkjob evaluates the ability of a job to start immediately. Tests include resource access, node state,
job constraints (such as startdate, taskspernode, and QoS). Additionally, command line flags may be
specified to provide further information.

Flag Description

-l <POLICYLEVEL> Evaluates impact of throttling policies on job feasibility.

-n <NODENAME> Evaluates resource access on specific node.

-r <RESERVATION_LIST> Evaluates access to specified reservations.

checknode

Displays detailed status of node.

13.0 Troubleshooting and System Maintenance

http://www.adaptivecomputing.com/services/techsupport.php
https://www.adaptivecomputing.com/support/
https://www.adaptivecomputing.com/support/

mdiag -b

Displays various reasons job is considered blocked or non-queued.

mdiag -j

Displays high level summary of job attributes and performs sanity check on job attributes/state.

showbf -v

Determines general resource availability subject to specified constraints.

13.8 Diagnostic Scripts
Moab Workload Manager provides diagnostic scripts that can help aid in monitoring the state of the
scheduler, resource managers, and other important components of the cluster software stack. These
scripts can also be used to help diagnose issues that may need to be resolved with the help of Adaptive
Computing support staff. This section introduces available diagnostic scripts.

The support.diag.pl Script
The support.diag.pl script has a two-fold purpose. First, it can be used by a Moab trigger or cron job
to create a regular snapshot of the state of Moab. The script captures the output of several Moab
diagnostic commands (such as showq, mdiag -n, and mdiag -S), gathers configuration/log files, and records
pertinent operating system information. This data is then compressed in a time-stamped tarball for easy
long-term storage.

The second purpose of the support.diag.pl script is to provide Adaptive Computing support
personnel with a complete package of information that can be used to help diagnose configuration issues
or system bugs. After capturing the state of Moab, the resulting tarball could be sent to your Adaptive
Computing support contact for further diagnosis.

The support.diag.pl will ask you for the trouble ticket number then guide you through the process
of uploading the data to Adaptive Computing Customer Support. The uploading and ticket number request
may be prevented using the --no-upload and --support-ticket=<SUPPORT_TICKET_ID> flags
detailed in the Arguments table that follows.

Synopsis

support.diag.pl [--include-log-lines=<NUM>] [--diag-torque]

Arguments

Argument Description

--include-log-
lines=<NUM>

Instead of including the entire moab.log file, only the last <NUM> lines are
captured in the diagnostics.

--diag-torque Diagnostic commands pertinent to the TORQUE resource manager are
included.

13.0 Troubleshooting and System Maintenance

604 13.8 Diagnostic Scripts

13.8 Diagnostic Scripts 605

Argument Description

--no-upload Prevents the system from asking the user if they want to upload the tarball to
Adaptive Computing Customer Support.

--support-
ticket=<SUPPORT_TICKET_
ID>

Prevents the system from asking the user for a support ticket number.

13.0 Troubleshooting and System Maintenance

606 13.8 Diagnostic Scripts

14.1 User Feedback Loops 607

14.0 Improving User Effectiveness
l User Feedback Loops on page 607

l User Level Statistics on page 608

l Enhancing Wallclock Limit Estimates on page 608

l Job Start Time Estimates on page 608

l Providing Resource Availability Information on page 610

l Collecting Performance Information on Individual Jobs on page 610

14.1 User Feedback Loops
Almost invariably, real world systems outperform simulated systems, even when all policies,
reservations, workload, and resource distributions are fully captured and emulated. What is it about real
world usage that is not emulated via a simulation? The answer is the user feedback loop, the impact of
users making decisions to optimize their level of service based on real time information.

A user feedback loop is created any time information is provided to a user that modifies job submission
or job management behavior. As in a market economy, the cumulative effect of many users taking steps
to improve their individual scheduling performance results in better job packing, lower queue time, and
better overall system utilization. Because this behavior is beneficial to the system at large, system
administrators and management should encourage this behavior and provide the best possible
information to them.

There are two primary types of information that help users make improved decisions: cluster wide
resource availability information and per job resource utilization information.

Improving Job Size/Duration Requests
Moab provides a number of informational commands that help users make improved job management
decisions based on real-time cluster wide resource availability information. These commands include
showbf, showstats -f, and showq. Using these commands, a user can determine what resources are
available and what job configurations statistically receive the best scheduling performance.

Improving Resource Requirement Specification
A job's resource requirement specification tells the scheduler what type of compute nodes are required
to run the job. These requirements may state that a certain amount of memory is required per node or
that a node has a minimum processor speed. At many sites, users will determine the resource
requirements needed to run an initial job. Then, for the next several years, they will use the same basic
batch command file to run all of their remaining jobs even though the resource requirements of their

subsequent jobs may be very different from their initial run. Users often do not update their batch
command files even though these constraints may be unnecessarily limiting the resources available to
their jobs for two reasons: (1) users do not know how much their performance will improve if better
information were provided and (2) users do not know exactly what resources their jobs are using and
are afraid to lower their job's resource requirements since doing so might cause their job to fail.

To help with determining accurate per job resource utilization information, Moab provides the
FEEDBACKPROGRAM facility. This tool allows sites to send detailed resource utilization information back
to users via email, to store it in a centralized database for report preparation, or use it in other ways to
help users refine their batch jobs.

14.2 User Level Statistics
Besides displaying job queues, end-users can display a number of their own statistics. The showstats -u
<USER_ID> command displays current and historical statistics for a user as seen in what follows:

$ showstats -u john
statistics initialized Wed Dec 31 17:00:00

|------ Active ------|--------------------------------- Completed -----------
------------------------|
user Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
john 1 1 30.96 9 0.00 300.0 0.00 148.9 0.00 ----- 0.62
0.00 4.33 100.00 48.87

Users can query available system resources with the showbf command. This can aid users in requesting
node configurations that are idle. Also, users can use the checkjob command to determine what
parameter(s) are restricting their job from running. Moab performs better with more accurate wallclock
estimates.

Moab must use an ODBC-compliant database to report statistics with Viewpoint reports.

14.3 Enhancing Wallclock Limit Estimates
As explained in the previous section, showstats -u <USER_ID> reports statistics for a given user. The
showstats -u command can be accessed by all users. They can use fields such as PHReq, PHDed, or WCAcc
to gauge wallclock estimates. Accurate wallclock estimates allow a job to be scheduled as soon as
possible in a slot that it will fit in. Low or high estimates can cause a job to be scheduled in a less
favorable position.

14.4 Job Start Time Estimates
Each user can use the showstart command to display estimated start and completion times. The
following example illustrates a typical response from issuing this command:

14.0 Improving User Effectiveness

608 14.2 User Level Statistics

14.4 Job Start Time Estimates 609

> showstart orion.13762
job orion.13762 requires 2 procs for 0:33:20
Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40
Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40
Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40
Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40
Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45
Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45
Best Partition: fast

Estimation Types

Reservation-Based Estimates

Reservation-based start time estimation incorporates information regarding current administrative,
user, and job reservations to determine the earliest time the specified job can allocate the needed
resources and start running. In essence, this estimate indicates the earliest time the job will start,
assuming this job is the highest priority job in the queue.

For reservation-based estimates, the information provided by this command is more highly
accurate if the job is highest priority, if the job has a reservation, or if the majority of the jobs
that are of higher priority have reservations. Consequently, site administrators wanting to make
decisions based on this information may want to consider using the RESERVATIONDEPTH
parameter to increase the number of priority-based reservations. This can be set so that most, or
even all, idle jobs receive priority reservations and make the results of this command generally
useful. The only caution of this approach is that increasing the RESERVATIONDEPTH parameter
more tightly constrains the decisions of the scheduler and may result in slightly lower system
utilization (typically less than 8% reduction).

Backlog/Priority Estimates

Priority-based job start analysis determines when the queried job will fit in the queue and determines
the estimated amount of time required to complete the jobs currently running or scheduled to run before
this job can start.

In all cases, if the job is running, this command returns the time the job starts. If the job already has a
reservation, this command returns the start time of the reservation.

Historical Estimates

Historical analysis uses historical queue times for jobs that match a similar processor count and job
duration profile. This information is updated on a sliding window that is configurable within moab.cfg.

Related topics

l ENABLESTARTESTIMATESTATS parameter
l showstart command

14.0 Improving User Effectiveness

14.5 Providing Resource Availability Information
Moab provides commands to allow the user to query available resources. The showbf command displays
what resources are available for immediate use. Using different command line parameters, such as -m, -
n, and -q allows the user to query resources based on memory, nodecount, or QoS respectively.

14.6 Collecting Performance Information on
Individual Jobs

Individual job information can be collected from the statistics file in STATDIR, which contains start time,
end time, end state, QoS requested, QoS delivered, and so forth for different jobs. Also, Moab optionally
provides similar information to a site's feedback program. See section 21.1 User Feedback Overview for
more information about the feedback program.

14.0 Improving User Effectiveness

610 14.5 Providing Resource Availability Information

15.1 Testing New Releases and Policies 611

15.0 Cluster Analysis, Testing, and
Simulation

l Testing New Releases and Policies on page 611

l Testing New Middleware on page 615

l Simulations on page 618

Moab has a number of unique features that allow site administrators to visualize current cluster
behavior and performance, safely evaluate changes on production systems, and analyze probable future
behaviors within a variety of environments.

These capabilities are enabled through a number of Moab facilities that may not appear to be closely
related at first. However, taken together, these facilities allow organizations the ability to analyze their
cluster without the losses associated with policy conflicts, unnecessary downtime, and faulty systems
middleware.

Simulations allow organizations to evaluate many scenarios that could not be properly evaluated in real-
world situations. In particular, these evaluations may be impossible due to time constraints, budgetary
or personnel limitations, hardware availability, or even policy issues. In such cases, simulations provide
information in countless scenarios and can help answer questions such as the following:

l What is the impact of additional hardware on cluster utilization?

l What delays to key projects can be expected with the addition of new users?

l How will new prioritization weights alter cycle distribution among existing workload?

l What total loss of compute resources will result from introducing a maintenance downtime?

l Are the benefits of cycle stealing from non-dedicated desktop systems worth the effort?

15.1 Testing NewReleases and Policies
l Moab Evaluation Modes

o MONITOR Mode

o TEST Mode

o INTERACTIVE Mode

l Testing New Releases

l Testing New Policies

o Verifying Correct Specification of New Policies

o Verifying Correct Behavior of New Policies

o Determining Long Term Impact of New Policies

l Moab Side-by-Side

Moab Evaluation Modes

MONITORMode

Moab supports a scheduling mode called MONITOR. In this mode, the scheduler initializes, contacts the
resource manager and other peer services, and conducts scheduling cycles exactly as it would if running
in NORMAL or production mode. Jobs are prioritized, reservations created, policies and limits enforced,
and administrator and end-user commands enabled. The key difference is that although live resource
management information is loaded, MONITOR mode disables Moab's ability to start, preempt, cancel, or
otherwise modify jobs or resources. Moab continues to attempt to schedule exactly as it would in
NORMAL mode, but its ability to actually impact the system is disabled. Using this mode, a site can
quickly verify correct resource manager configuration and scheduler operation. This mode can also be
used to validate new policies and constraints. In fact, Moab can be run in MONITOR mode on a
production system while another scheduler or even another version of Moab is running on the same
system. This unique ability can allow new versions and configurations to be fully tested without any
exposure to potential failures and with no cluster downtime.

To run Moab in MONITOR mode, simply set the MODE attribute of the SCHEDCFG parameter to
MONITOR and start Moab. Normal scheduler commands can be used to evaluate configuration and
performance. Diagnostic commands can be used to look for any potential issues. Further, the Moab log
file can be used to determine which jobs Moab attempted to start, and which resources Moab attempted
to allocate.

If another instance of Moab is running in production and a site administrator wants to evaluate an
alternate configuration or new version, this is easily done but care should be taken to avoid conflicts
with the primary scheduler. Potential conflicts include statistics files, logs, checkpoint files, and user
interface ports. One of the easiest ways to avoid these conflicts is to create a new test directory with its
own log and statistics subdirectories. The new moab.cfg file can be created from scratch or based on
the existing moab.cfg file already in use. In either case, make certain that the PORT attribute of the
SCHEDCFG parameter differs from that used by the production scheduler by at least two ports. If testing
with the production binary executable, the MOABHOMEDIR environment variable should be set to point
to the new test directory to prevent Moab from loading the production moab.cfg file.

TESTMode

TEST mode behaves much like MONITOR mode with the exception that Moab will log the scheduling
actions it would have taken to the stats/<DAY>.events file. Using this file, sites can determine the
actions Moab would have taken if running in NORMAL mode and verify all actions are in agreement with
expected behavior.

15.0 Cluster Analysis, Testing, and Simulation

612 15.1 Testing New Releases and Policies

15.1 Testing New Releases and Policies 613

INTERACTIVE Mode

INTERACTIVE mode allows for evaluation of new versions and configurations in a manner different
from MONITOR mode. Instead of disabling all resource and job control functions, Moab sends the desired
change request to the screen and requests permission to complete it. For example, before starting a job,
Moab may print something like the following to the screen:

Command: start job 1139.ncsa.edu on node list test013,test017,test018,test021
Accept: (y/n) [default: n]?

The administrator must specifically accept each command request after verifying it correctly meets
desired site policies. Moab will then execute the specified command. This mode is highly useful in
validating scheduler behavior and can be used until configuration is appropriately tuned and all parties
are comfortable with the scheduler's performance. In most cases, sites will want to set the scheduling
mode to NORMAL after verifying correct behavior.

Testing New Releases
By default, Moab runs in a mode called NORMAL, which indicates that it is responsible for the cluster. It
loads workload and resource information, and is responsible for managing that workload according to
mission objectives and policies. It starts, cancels, preempts, and modifies jobs according to these policies.

If Moab is configured to use a mode called TEST, it loads all information, performs all analysis, but,
instead of actually starting or modifying a job, it merely logs the fact that it would have done so. A test
instance of Moab can run at the same time as a production instance of Moab. A test instance of Moab can
also run while a production scheduler of another type (such as PBS, LSF, or SLURM) is simultaneously
running. This multi-scheduler ability allows stability and performance tests to be conducted that can help
answer the following questions:

l What impact do Moab services have on network, processor, and memory load?

l What impact do Moab services have on the underlying resource manager?

l Is Moab able to correctly import resource, workload, policy, and credential information from the
underlying resource manager?

l Are Moab's logged scheduling decisions in line with mission objectives?

In test mode, all of Moab's commands and services operate normally allowing the use of client commands
to perform analysis. In most cases, the mdiag command is of greatest value, displaying loaded values as
well as reporting detected failures, inconsistencies, and object corruption. The following table highlights
the most common diagnostics performed.

Command Object

mdiag -n Compute nodes, storage systems, network systems, and generic resources

mdiag -j Applications and static jobs

15.0 Cluster Analysis, Testing, and Simulation

Command Object

mdiag -u
mdiag -g
mdiag -a

User, group, and account credentials

mdiag -c Queues and policies

mdiag -R Resource manager interface and performance

mdiag -S Scheduler/system level failures introduced by corrupt information

These commands will not only verify proper scheduling objects but will also analyze the behavior of each
resource manager, recording failures, and delivered performance. If any misconfiguration, corruption,
interface failure, or internal failure is detected, it can be addressed in the test mode instance of Moab
with no urgency or risk to production cluster activities.

Testing New Policies

Verifying Correct Specification of New Policies

The first aspect of verifying a new policy is verifying correct syntax and semantics. If using Moab Cluster
Manager, this step is not necessary as this tool automatically verifies proper policy specification. If
manually editing the moab.cfg file, the following command can be used for validation:

> mdiag -C

This command will validate the configuration file and report any misconfiguration.

Verifying Correct Behavior of New Policies

If concern exists over the impact of a new policy, an administrator can babysit Moab by putting it into
INTERACTIVE mode. In this mode, Moab will schedule according to all mission objectives and policies, but
before taking any action, it will request that the administrator confirm the action. See the interactive
mode overview for more information.

In this mode, only actions approved by the administrator will be carried out. Once proper behavior is
verified, the Moab mode can be set to NORMAL.

Determining Long Term Impact of New Policies

If a new policy has the potential to impact long-term performance or resource distribution, it may be
desirable to run a Moab simulation to evaluate this change. Simulations allow locally recorded workload
to be translated into simulation jobs and execute on a virtual cluster that emulates local resources.
Simulations import all job and resource attributes that are loaded in a production environment as well
as all policies specified in any configuration file. While running, all Moab commands and statistics are
fully supported.

Using simulation, a control run can be made using the original policies and the behavior of this run
compared to a second run that contains the specified change. Moab Cluster Manager's charting, graphing,

15.0 Cluster Analysis, Testing, and Simulation

614 15.1 Testing New Releases and Policies

http://www.clusterresources.com/mcm
http://www.clusterresources.com/mcm

15.2 Testing New Middleware 615

and reporting features can be used to report on and visualize the differences in these two runs.
Typically, a two-month real-time simulation can be completed in under an hour. For more information on
simulations, see the Simulation Overview.

Moab Side-by-Side
Moab provides an additional evaluation method that allows a production cluster or other resource to be
logically partitioned along resource and workload boundaries and allows different instances of Moab to
schedule different partitions. The parameters IGNORENODES, IGNORECLASSES, IGNOREJOBS, and
IGNOREUSERS are used to specify how the system is to be partitioned. In the following example, a small
portion of an existing cluster is partitioned for temporary testing so that there is no impact on the
production workload.

SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42020
RMCFG[TORQUE] TYPE=PBS
IGNORENODES node61,node62,node63,node64
IGNOREUSERS gridtest1,gridtest2
...
SCHEDCFG[prod] MODE=NORMAL SERVER=orion.cxz.com:42030
RMCFG[TORQUE] TYPE=PBS
IGNORENODES !node61,node62,node63,node64
IGNOREUSERS !gridtest1,gridtest2
...

Two completely independent Moab servers schedule the cluster. The first server handles all jobs and nodes except for the
ones involved in the test. The second server handles only test nodes and test jobs. While both servers actively talk and
interact with a single TORQUE resource manager, the IGNORE* parameters cause them to not schedule, nor even see the
other partition and its associated workload.

When enabling Moab side-by-side, each Moab server should have an independent home directory
to prevent logging and statistics conflicts. Also, in this environment, each Moab server should
communicate with its client commands using a different port as shown in the previous example.

When specifying the IGNORENODES parameter, the exact node names, as returned by the resource
manager, should be specified.

Related topics

l Testing New Versions and Configurations

15.2 Testing NewMiddleware
Moab can be used to drive new middleware stress testing resource management systems, information
services, allocation services, security services, data staging services, and other aspects. Moab is unique
when compared to other stress testing tools as it can perform the tests in response to actual or
recorded workload traces, performing a playback of events and driving the underlying system as if it
were part of the production environment.

This feature can be used to identify scalability issues, pathological use cases, and accounting
irregularities in anything from LDAP, to NIS, and NFS.

15.0 Cluster Analysis, Testing, and Simulation

Using Moab's time management facilities, Moab can drive the underlying systems in accordance with the
real recorded distribution of time, at a multiplier of real time, or as fast as possible.

The following table describes some aspects of cluster analysis that can be driven by Moab.

System Details

Allocation Manager Use test or simulation mode to drive scheduling queries, allocation debits, and reser-
vations to accounting packages. Verify synchronization of cluster statistics and stress
test interfaces and underlying databases.

On-Demand/Pro-
visioning Services

Use simulation or native resource manager mode to drive triggers and resource man-
agement interfaces to enable dynamic provisioning of hardware, operating systems,
application software, and services. Test reliability and scalability of data servers, net-
works, and provisioning software as well as the interfaces and business logic coordin-
ating these changes.

Resource Monitoring Use test or native resource manager mode to actively load information from compute,
network, storage, and software license managers confirming validity of data, availability
during failures, and scalability.

With each evaluation, the following tests can be enabled:

l functionality

l reliability

o hard failure

o hardware failure - compute, network, and data failures

o software failure - loss of software services (NIS, LDAP, NFS, database)

o soft failure

o network delays, full file system, dropped network packets

o corrupt data

l performance

l determine peak responsiveness in seconds/request

l determine peak throughput in requests/second

l determine responsiveness under heavy load conditions

l determine throughput under external load conditions

o large user base (many users, groups, accounts)

o large workload (many jobs)

o large cluster (many nodes)

15.0 Cluster Analysis, Testing, and Simulation

616 15.2 Testing New Middleware

15.2 Testing New Middleware 617

l manageability

o full accounting for all actions/events

o actions/failures can be easily and fully diagnosed

If using a native resource manager and you do not want to actually submit real workload, you can
set the environment variable MFORCESUBMIT to allow virtual workload to be managed without
ever launching a real process.

General Analysis
For all middleware interfaces, Moab provides built-in performance analysis and failure reporting.
Diagnostics for these interfaces are available via the mdiag command.

Native Mode Analysis
Using native mode analysis, organizations can run Moab in normal mode with all facilities fully enabled,
but with the resource manager fully emulated. With a native resource manager interface, any arbitrary
cluster can be emulated with a simple script or flat text file. Artificial failures can be introduced, jobs
can be virtually running, and artificial performance information generated and reported.

In the simplest case, emulation can be accomplished using the following configuration:

SCHEDCFG[natcluster] MODE=NORMAL SERVER=test1.bbli.com
ADMINCFG[1] USERS=dev
RMCFG[natcluster] TYPE=NATIVE CLUSTERQUERYURL=file://$HOME/cluster.dat

The preceding configuration will load cluster resource information from the file cluster.dat. An
example resource information file follows:

node01 state=idle cproc=2
node02 state=idle cproc=2
node03 state=idle cproc=2
node04 state=idle cproc=2
node05 state=idle cproc=2
node06 state=idle cproc=2
node07 state=idle cproc=2
node08 state=idle cproc=2

In actual usage, any number of node attributes may be specified to customize these nodes, but in this
example, only the node state and node configured processors attributes are specified.

The RMCFG flag NORMSTART indicates that Moab should not actually issue a job start command to an
external entity to start the job, but rather start the job logically internally only.

If it is desirable to take an arbitrary action at the start of a job, end of a job, or anywhere in between,
the JOBCFG parameter can be used to create one or more arbitrary triggers to initiate internal or
external events. The triggers can do anything from executing a script, to updating a database, to using a
Web service.

Using native resource manager mode, jobs may be introduced using the msub command according to any
arbitrary schedule. Moab will load them, schedule them, and start them according to all site mission
objectives and policies and drive all interfaced services as if running in a full production environment.

15.0 Cluster Analysis, Testing, and Simulation

15.3 Simulations
l Configuring Simulation on page 618

l Configuring Resources for Simulation on page 620

l Workload Event Format on page 621

l Interactive Simulation Tutorial on page 631

Simulations allow organizations to evaluate many scenarios that could not be properly evaluated in the
real world. In particular, these evaluations may be impossible due to time constraints, budgetary or
man-power limitations, hardware availability, or may even be impossible due to policy issues.

Image 15-1: Traditional TORQUE/Moab setup

Image 15-2: Moab simulation setup (information retrieved from a workload trace file)

In such cases, simulation can help answer questions in countless scenarios and provide information such
as the following:

l What is the impact of additional hardware on cluster utilization?

l What delays to key projects can be expected with the addition of new users?

l How will new prioritization weights alter cycle distribution among existing workload?

l What total loss of compute resources will result from introducing a maintenance downtime?

l Are the benefits of cycle stealing from non-dedicated desktop systems worth the effort?

15.3.1 Configuring Simulation
This section explains how to set up simulation mode in Moab.

15.0 Cluster Analysis, Testing, and Simulation

618 15.3 Simulations

15.3 Simulations 619

Configuring Moab Simulation

1. Determine the performance metrics. The first step of most simulations is to determine the primary
purpose of the simulation. Purposes may include identifying impact of certain resource or workload
changes on current cluster performance. Simulations may also focus on system utilization or
workload distribution across resources or credentials. Further, simulations may also be used for
training purposes, allowing risk-free evaluation of behavior, facilities, and commands. With the
purpose known, metrics of success can be specified and a proper simulation created. While
performance metrics may not be critical to training based simulations, they are key to successful
evaluation in most other cases.

2. Select resources. As in the real world, a simulation requires a set of resources (compute hosts) on
which to run. In Moab, this is specified using a resource trace file. This resource trace file may be
obtained from specific hardware or generated for the specific purpose.

3. Select workload. In addition to resources, a simulation also requires a workload (batch jobs) to
schedule onto the available resources. This workload is specified within a workload trace file. Like
the resource traces, this workload information may be based on recorded data or generated to meet
the need of the particular simulation.

4. Select policies. The final aspect of a simulation is the set of policies and configuration to be used to
determine how a workload is to be scheduled onto the available resources. This configuration is
placed in the moab.cfg file just as would be done in production (or normal) mode operation.

5. Set up the initial configuration using the sample traces. While mastering simulations may take some
time, initial configuration is straightforward. To start, edit the moab.cfg file and do the following:

a. Change the SCHEDCFG attribute MODE from NORMAL or MONITOR to SIMULATION.

Once SIMULATION is set, the following parameters control the environment, behavior, and
policies used within the simulation:

l Simulation Workload Specification, Queuing, and Management

Parameter Description

SIMINITIALQUEUEDEPTH Specifies simulation backlog.

SIMJOBSUBMISSIONPOLICY Specifies how simulation backlog is managed.

SIMPURGEBLOCKEDJOBS Removes jobs that can never run.

SIMWORKLOADTRACEFILE Specifies source of job traces.

l Time/Iteration Management

15.0 Cluster Analysis, Testing, and Simulation

Parameter Description

SIMAUTOSHUTDOWN Shuts down when all jobs have been scheduled.

SIMSTARTTIME Sets simulation clock to specified time.

STOPITERATION Pauses simulation on specified iteration.

b. You may need to add these lines to the moab.cfg file:

SIMWORKLOADTRACEFILE samples/workload.testcluster.txt
STOPITERATION 0
CREDDISCOVERY TRUE
SIMAUTOSHUTDOWN false
SIMSTARTTIME 1196987696
USERCFG[DEFAULT] ENABLEPROFILING=true
GROUPCFG[DEFAULT] ENABLEPROFILING=true
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=true
CLASSCFG[DEFAULT] ENABLEPROFILING=true
QOSCFG[DEFAULT] ENABLEPROFILING=true

The first two lines specify that the scheduler should run in simulation mode and use the referenced resource
and workload trace files. In addition, leaving the STOPITERATION parameter at zero indicates that Moab
should stop before the first scheduling iteration and wait for further instructions. If you want the simulation to
run as soon as you start Moab, remove (or comment out) this line. To continue scheduling, run the mschedctl -r
command.
The second set of parameters is helpful if you want to generate charts or reports from Moab Cluster Manager.
Since events in the workload trace may reference credentials that are not listed in your moab.cfg file, set
CREDDISCOVERY to true, which allows Moab to create simulated credentials for credentials that do not yet exist.
Setting SIMAUTOSHUTDOWN to false prevents Moab from terminating after it has finished running all the jobs
in the workload trace, and it allows you to generate charts after all the simulated jobs have finished. Ensure
that SIMSTARTTIME is set to the epoch time (in seconds) of the first event in your workload trace file. This
causes the internal clock in Moab to be set to the workload trace's first event, which prevents issues caused by
the difference between the time the workload trace was created and the time reported by the CPU clock.
Otherwise, Moab thinks the current time is the time that the CPU clock reports, yet simulated jobs that are
reported by showq as currently running will really be running at the time the workload trace was created. To
avoid confusion, set the SIMSTARTTIME. The lines that specify ENABLEPROFILING is true are necessary for Moab
to keep track of the statistics generated by the simulated jobs. Not setting these lines will cause charts and
reports to contain all zero values.

6. Start a simulation. As in all cases, Moab should be started by issuing the command moab. It should be
noted that in simulation mode, Moab does not daemonize itself and so will not background itself.
Verification of proper operation is possible using any common user command such as showq. If the
showq command is run, it will display the number of jobs currently in the scheduler's queue. The jobs
displayed by the showq command are taken from the workload trace file specified earlier and those
that are marked as running are running on resources described in the resource trace file. At any
point, a detailed summary of available resources may be obtained by running the mdiag -n command.

15.3.2 Configuring Resources for Simulation
Resource traces fully describe all scheduling relevant aspects of a batch system's compute resources. In
most cases, each resource trace describes a single compute node providing information about configured

15.0 Cluster Analysis, Testing, and Simulation

620 15.3 Simulations

15.3 Simulations 621

resources, node location, supported classes and queues, and so forth.

The resources Moab uses to simulate are created using Moab RM language. To create a Moab simulation
this way, perform the following steps:

1. Load resources into Moab using a native RM. Create a file manually using the format for different
resource attributes (see W.1 Moab Resource Manager Language Data Format on page 1112) or run
mnodectl -q wiki ALL > nodes.dat to create a resources simulation file from the resources
in your environment and write it to a file (in this example, a file called nodes.dat). You can modify
the resource file to add resources, change attributes, etc.

2. Set up the resource manager interface by inserting the following into your moab.cfg file.

RMCFG[rmName] TYPE=NATIVE CLUSTERQUERYURL=FILE:///<locationOfFile>/<nameOfFile>

For the example in step 1, you would replace <nameOfFile> with nodes.dat.

3. Restart Moab.

Sample Resource Trace

n8 STATE=Idle PARTITION=base AMEMORY=16000 APROC=4 CMEMORY=16000 CPROC=4 RM=base
NODEACCESSPOLICY=SHARED FEATURE=linux ARCH=x86_64

Related topics

l mnodectl -q wiki - outputs Moab RM language format directly to a file

15.3.3 Workload Event Format
Moab workload accounting records fully describe all scheduling relevant aspects of batch jobs including
resources requested and used, time of all major scheduling events (such as submission time and start
time), the job credentials used, and the job execution environment. Each job trace is composed of a single
line consisting of white space delimited fields as shown in the following table.

Moab can be configured to provide this information in flat text tabular form or in XML format
conforming to the SSS 1.0 job description specification.

l Workload Event Record Format

l Creating New Workload Accounting Records/Traces

l Reservation Records/Traces

l Recording Job events

Workload Event Record Format
All job events (JOBSUBMIT, JOBSTART, JOBEND, and so forth) provide job data in a standard format
as described in the following table:

15.0 Cluster Analysis, Testing, and Simulation

Field Name Field
Index Data Format Default

Value Details

Event Time
(Human Readable)

1 HH:MM:SS - Specifies time event occurred.

Event Time
(Epoch)

2 <epochtime> - Specifies time event occurred.

Object Type 3 job - Specifies record object type.

Object ID 4 <STRING> - Unique object identifier.

Object Event 5 one of job-
cancel,
jobcheckpoint,
jobend, job-
failure, jobhold,
jobmigrate, job-
preempt, jobre-
ject, jobresume,
jobstart or job-
submit

- Specifies record event type.

Nodes Requested 6 <INTEGER> 0 Number of nodes requested (0 = no
node request count specified).

Tasks Requested 7 <INTEGER> 1 Number of tasks requested.

User Name 8 <STRING> - Name of user submitting job.

Group Name 9 <STRING> - Primary group of user submitting job.

Wallclock Limit 10 <INTEGER> 1 Maximum allowed job duration (in
seconds).

Job Event State 11 <STRING> - Job state at time of event.

Required Class 12 <STRING> [DEFAULT:1] Class/queue required by job specified
as square bracket list of <QUEUE>
[:<QUEUEINSTANCE>] requirements.
(For example: [batch:1]).

15.0 Cluster Analysis, Testing, and Simulation

622 15.3 Simulations

15.3 Simulations 623

Field Name Field
Index Data Format Default

Value Details

Submission Time 13 <INTEGER> 0 Epoch time when job was submitted.

Dispatch Time 14 <INTEGER> 0 Epoch time when scheduler requested
job begin executing.

Start Time 15 <INTEGER> 0 Epoch time when job began executing.
This is usually identical to Dispatch
Time.

Completion Time 16 <INTEGER> 0 Epoch time when job completed exe-
cution.

Required Node
Architecture

17 <STRING> - Required node architecture if spe-
cified.

Required Node
Operating System

18 <STRING> - Required node operating system if spe-
cified.

Required Node
Memory
Comparison

19 one of >, >=, =,
<=, <

>= Comparison for determining com-
pliance with required node memory.

Required Node
Memory

20 <INTEGER> 0 Amount of required configured RAM
(in MB) on each node.

Required Node
Disk
Comparison

21 one of >, >=, =,
<=, <

>= Comparison for determining com-
pliance with required node disk.

Required Node
Disk

22 <INTEGER> 0 Amount of required configured local
disk (in MB) on each node.

Required Node
Attrib-
utes/Features

23 <STRING> - Square bracket enclosed list of node
features required by job if specified.
(For example: [fast][ethernet])

System Queue
Time

24 <INTEGER> 0 Epoch time when job met all fairness
policies.

15.0 Cluster Analysis, Testing, and Simulation

Field Name Field
Index Data Format Default

Value Details

Tasks Allocated 25 <INTEGER> <TASKS
REQUESTED>

Number of tasks actually allocated to
job.

In most cases, this field is
identical to field #7, Tasks
Requested.

Required Tasks
Per Node

26 <INTEGER> -1 Number of Tasks Per Node required
by job or '-1' if no requirement spe-
cified.

QOS 27 <STRING>
[:<STRING>]

- QoS requested/assigned using the
format <QOS_REQUESTED>
[:<QOS_DELIVERED>]. (For example:
hipriority:bottomfeeder)

JobFlags 28 <STRING>
[:
<STRING>]...

- Square bracket delimited list of job
attributes. (For example: [BACKFILL]
[PREEMPTEE])

Account Name 29 <STRING> - Name of account associated with job if
specified.

Executable 30 <STRING> - Name of job executable if specified.

Resource Manager
Extension String

31 <STRING> - Resource manager specific list of job
attributes if specified. See the Resource
Manager Extension Overview for more
information.

Bypass Count 32 <INTEGER> -1 Number of times job was bypassed by
lower priority jobs via backfill or '-1' if
not specified.

ProcSeconds
Utilized

33 <DOUBLE> 0 Number of processor seconds actually
used by job.

Partition Name 34 <STRING> [DEFAULT] Name of partition in which job ran.

Dedicated Pro-
cessors per Task

35 <INTEGER> 1 Number of processors required per
task.

15.0 Cluster Analysis, Testing, and Simulation

624 15.3 Simulations

15.3 Simulations 625

Field Name Field
Index Data Format Default

Value Details

Dedicated Memory
per Task

36 <INTEGER> 0 Amount of RAM (in MB) required per
task.

Dedicated Disk per
Task

37 <INTEGER> 0 Amount of local disk (in MB) required
per task.

Dedicated Swap per
Task

38 <INTEGER> 0 Amount of virtual memory (in MB)
required per task.

Start Date 39 <INTEGER> 0 Epoch time indicating earliest time job
can start.

End Date 40 <INTEGER> 0 Epoch time indicating latest time by
which job must complete.

Allocated Host List 41 <hostname>
[,
<hostname>
]...

- Comma delimited list of hosts allocated
to job. (For example:
node001,node004)

Resource Manager
Name

42 <STRING> - Name of resource manager if specified.

Required Host List 43 <hostname>
[,
<hostname>
]...

- List of hosts required by job. (If the
job's task count is greater than the spe-
cified number of hosts, the scheduler
must use these nodes in addition to
others; if the job's task count is less
than the specified number of hosts, the
scheduler must select needed hosts
from this list.)

Reservation 44 <STRING> - Name of reservation required by job if
specified.

Application Sim-
ulator Data

45 <STRING>
[:<STRING>]

- Name of application simulator module
and associated configuration data. (For
example:
HSM:IN-
N=infile.txt:140000;OUT=
outfile.txt:500000)

15.0 Cluster Analysis, Testing, and Simulation

Field Name Field
Index Data Format Default

Value Details

Set Description 46 <STRING>:
<STRING>
[:<STRING>]

- Set constraints required by node in the
form <SetConstraint>:<SetType>
[:<SetList>] where SetConstraint
is one of ONEOF, FIRSTOF, or ANYOF,
SetType is one of PROCSPEED,
FEATURE, or NETWORK, and SetList is
an optional colon delimited list of
allowed set attributes. (For example:
ONEOF:PROCSPEED:350:450:500)

Job Message 47 <STRING> - Job messages including resource man-
ager, scheduler, and administrator mes-
sages if specified.

Job Cost 48 <DOUBLE> 0.0 Cost of executing job incorporating
resource consumption metric, resource
quantity consumed, and credential,
allocated resource, and delivered QoS
charge rates.

History 49 <STRING> - List of job events impacting resource
allocation (XML).

History information is only
reported in Moab 5.1.0 and
higher.

15.0 Cluster Analysis, Testing, and Simulation

626 15.3 Simulations

15.3 Simulations 627

Field Name Field
Index Data Format Default

Value Details

Utilization 50 Comma-delim-
ited list of one
or more of the
following:
<ATTR>=
<VALUE> pairs
where <VALUE>
is a double and
<ATTR> is one
of the following:
network (in
MB trans-
ferred),
license (in
license-
seconds), stor-
age (in MB-
seconds stored),
or
gmetric:
<TYPE>.

- Cumulative resources used over life of
job.

Estimate Data 51 <STRING> - List of job estimate usage.

Completion Code 52 <INTEGER> - Job exit status/completion code.

Extended Memory
Load Information

53 <STRING> - Deprecated. Extended memory usage
statistics (max, mem, avg, and so forth).

Extended CPU Load
Information

54 <STRING> - Extended CPU usage statistics (max,
mem, avg, and so forth).

Generic Metric
Averages

55 <STRING> -1 Generic metric averages.

Effective Queue Dur-
ation

56 <INTEGER> -1 The amount of time, in seconds, that
the job was eligible for scheduling.

Job Submission
Arguments

57 <STRING> - The job's submit arguments and script.
This field is enabled by setting
STOREJOBSUBMISSION to TRUE.

If no applicable value is specified, the exact string - should be entered.

15.0 Cluster Analysis, Testing, and Simulation

Fields that contain a description string such as Job Message use a packed string format. The
packed string format replaces white space characters such as spaces and carriage returns with a
hex character representation. For example a blank space is represented as \20. Since fields in the
event record are space delimited, this preserves the correct order and spacing of fields in the
record.

Sample Workload Trace

13:21:05 110244355 job 1413 JOBEND 20 20 josh staff 86400 Removed [batch:1] 887343658
889585185 \
889585185 889585411 ethernet R6000 AIX53 >= 256 >= 0 - 889584538 20 0 0 2 0 test.cmd \
1001 6 678.08 0 1 0 0 0 0 0 - 0 - - - - - - - - 0.0 - - - 0 - -

Creating NewWorkload Simulation Traces
Because workload event records and simulation workload traces use the same format, these event
records can be used as a starting point for generating a new simulation trace. In the Moab simple case,
an event record or collection of event records can be used directly as the value for the
SIMWORKLOADTRACEFILE as in the following example:
1.

collect all job records for July
> cat /opt/moab/stats/events.*July*2012 | grep JOBEND > /opt/moab/DecJobs.txt

2.
edit moab.cfg for use job records
> vi /opt/moab/etc/moab.cfg
(add 'SIMWORKLOADTRACEFILE /opt/moab/DecJobs.txt')

In the preceding example, all non-JOBEND events were filtered out. This step is not required but
only JOBEND events are used in a simulation; other events are ignored by Moab.

Modifying Existing Job Event Records

When creating a new simulation workload, it is often valuable to start with workload traces
representing a well-known or even local workload. These traces preserve distribution information about
job submission times, durations, processor count, users, groups, projects, special resource requests, and
numerous other factors that effectively represent an industry, user base, or organization.

When modifying records, a field or combination of fields can be altered, new jobs inserted, or certain
jobs filtered out.

Because job event records are used for multiple purposes, some of the fields are valuable for
statistics or auditing purposes but are ignored in simulations. For the most part, fields
representing resource utilization information are ignored while fields representing resource
requests are not.

Modifying Time Distribution Factors of aWorkload Trace

In some cases, simulations focus on determining the effects of changing the quantities or types of jobs or
on changing policies or job ownership to see changes to system performance and resource utilization.

15.0 Cluster Analysis, Testing, and Simulation

628 15.3 Simulations

15.3 Simulations 629

However, other times simulations tend to focus on response-time metrics as job submission and job
duration aspects of the workload are modified. Which time-based fields are important to modify depend
on the simulation purpose and the setting of the JOBSUBMISSIONPOLICY parameter.

JOBSUBMISSIONPOLICY Value Critical Time Based Fields

NORMAL WallClock Limit
Submission Time
StartTime
Completion Time

CONSTANTJOBDEPTH
CONSTANTPSDEPTH

WallClock Limit
StartTime
Completion Time

Dispatch Time should always be identical to Start Time.

In all cases, the difference of 'Completion Time - Start Time' is used to determine actual job run
time.

System Queue Time and Proc-Seconds Utilized are only used for statistics gathering purposes and
will not alter the behavior of the simulation.

In all cases, relative time values are important, i.e., Start Time must be greater than or equal to
Submission Time and less than Completion Time.

Creating Workload Traces From Scratch

There is nothing which prevents a completely new workload trace from being created from scratch. To
do this, simply create a file with fields matching the format described in the Workload Event Record
Format section.

Reservation Records/Traces
All reservation events provide reservation data in a standard format as described in the following table:

Field
Name

Field
Index Data Format Default

Value Details

Event
Time
(Human)

0 [HH:MM:SS] - Specifies time event occurred.

15.0 Cluster Analysis, Testing, and Simulation

Field
Name

Field
Index Data Format Default

Value Details

Event
Time
(Epoch)

1 <epochtime> - Specifies time event occurred.

Object
Type

2 rsv - Specifies record object type.

Object ID 3 <STRING> - Unique object identifier.

Object
Event

4 one of rsvcreate,
rsvstart, rsvmodify, rsv-
fail or rsvend

- Specifies record event type.

Creation
Time

5 <EPOCHTIME> - Specifies epoch time of reservation start date.

Start Time 6 <EPOCHTIME> - Specifies epoch time of reservation start date.

End Time 7 <EPOCHTIME> - Specifies epoch time of reservation end date.

Tasks
Allocated

8 <INTEGER> - Specifies number of tasks allocated to reser-
vation at event time.

Nodes
Allocated

9 <INTEGER> - Specifies number of nodes allocated to reser-
vation at event time.

Total Act-
ive Proc-
Seconds

10 <INTEGER> - Specifies proc-seconds reserved resources
were dedicated to one or more job at event
time.

Total
Proc-
Seconds

11 <INTEGER> - Specifies proc-seconds resources were
reserved at event time.

Hostlist 12 <comma-delimited list
of hostnames>

- Specifies list of hosts reserved at event time.

Owner 13 <STRING> - Specifies reservation ownership credentials.

ACL 14 <STRING> - Specifies reservation access control list.

15.0 Cluster Analysis, Testing, and Simulation

630 15.3 Simulations

15.3 Simulations 631

Field
Name

Field
Index Data Format Default

Value Details

Comment 15 <STRING> - Specifies general human readable event mes-
sage.

Command
Line

16 <STRING> - Displays the command line arguments used to
create the reservation (only shows on the
rsvcreate event).

Recording Job Events
Job events occur when a job undergoes a definitive change in state. Job events include submission,
starting, cancellation, migration, and completion. Some site administrators do not want to use an
external accounting system and use these logged events to determine their clusters' accounting
statistics. Moab can be configured to record these events in the appropriate event file found in the Moab
stats/ directory. To enable job event recording for both local and remotely staged jobs, use the
RECORDEVENTLIST parameter. For example:

RECORDEVENTLIST JOBCANCEL,JOBCOMPLETE,JOBSTART,JOBSUBMIT
...

This configuration records an event each time both remote and/or local jobs are canceled, run to completion, started, or
submitted. The Event Logs section details the format of these records.

Related topics

l Event Logging Overview
l SIMWORKLOADTRACEFILE

15.3.4 Interactive Simulation Tutorial
This of this section provides an interactive tutorial to demonstrate the basics of the simulator's
capacities in Moab. It is an example of what you can do once you have set up simulation. The commands
to issue are formatted as follows: > showq along with the expected output.

The following commands are used:

l showq [-r] [-i]

l showstats [-g] [-u] [-v]

l mschedctl -l

l mschedctl [{-s|-S} [I]] [-k]

l checkjob

l mschedctl -m

15.0 Cluster Analysis, Testing, and Simulation

l mdiag -n

l showres [-n jobid]

l setres

To run through the simulation mode tutorial

1. Run moab.

> moab&

2. Check the status of the queue (see Checking the Queue Status).

3. Check the status of the job. If any jobs are not running, find the problem (see Determining Why Jobs
Are Not Running).

4. Advance and check the status of Moab iterations and time in simulation mode (see Controlling
Iterations).

5. View and manage reservations and their nodes and jobs (see Managing Reservations Applying to the
Queue).

6. Verify that the Moab simulation is scheduling fairly (see Verifying Fair Scheduling).

7. Take down the entire system for maintenance (see Taking the System Down for Maintenance).

15.3.4.1 Checking the Queue Status
Verify that Moab is running by executing showq:

> showq
active jobs------------------------
JOBNAME USERNAME STATE PROC REMAINING STARTTIME
fr8n01.187.0 570 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr8n01.189.0 570 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr8n01.190.0 570 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr8n01.191.0 570 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr8n01.276.0 550 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr1n04.369.0 550 Running 20 1:00:00:00 Mon Feb 16 11:54:03
fr1n04.487.0 550 Running 20 1:00:00:00 Mon Feb 16 11:54:03

7 active jobs 140 of 196 Processors Active (71.43%)
eligible jobs----------------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME
fr1n04.362.0 550 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.363.0 550 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.365.0 550 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.366.0 550 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.501.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.580.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.597.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.598.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
fr1n04.602.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:53:33
9 eligible jobs
blocked jobs-----------------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME
0 blocked jobs
Total jobs: 16

15.0 Cluster Analysis, Testing, and Simulation

632 15.3 Simulations

15.3 Simulations 633

Out of the thousands of jobs in the workload trace, only 16 jobs are either active or eligible because of the default
settings of the SIMINITIALQUEUEDEPTH parameter. Sixteen jobs are put in the idle queue, seven of which immediately
run. Issuing the command showq -r allows a more detailed look at the active (or running) jobs. The output is sorted by
job completion time and indicates that the first job will complete in one day (1:00:00:00).

15.3.4.2 Determining Why Jobs Are Not Running
While showq details information about the queues, scheduler statistics may be viewed using the
showstats command. The field Current Active/Total Procs shows current system utilization, for
example.

> showstats
moab active for 00:00:30 stats initialized on Mon Feb 16 11:53:33
Eligible/Idle Jobs: 9/9 (100.000%)
Active Jobs: 0
Successful/Completed Jobs: 0/0 (0.000%)
Avg/Max QTime (Hours): 0.00/0.00
Avg/Max XFactor: 0.00/0.00
Dedicated/Total ProcHours: 1.17/1.63 (71.429%)

Current Active/Total Procs: 140/196 (71.429%)

Avg WallClock Accuracy: N/A
Avg Job Proc Efficiency: N/A
Est/Avg Backlog (Hours): N/A / N/A

You might be wondering why there are only 140 of 196 Processors Active (as shown with
showq) when the first job (fr1n04.362.0) in the queue only requires 20 processors. We will use the
checkjob command, which reports detailed job state information and diagnostic output for a particular
job to determine why it is not running:

> checkjob fr1n04.362.0
job fr1n04.362.0
State: Idle
...
Network: hps_user Memory >= 256M Disk >= 0 Swap >= 0
...
Job Eligibility Analysis -------
job cannot run in partition DEFAULT (idle procs do not meet requirements : 8 of 20
procs found)
idle procs: 56 feasible procs: 8
Rejection Reasons: [Memory : 48][State : 140]

checkjob not only tells us the job's wallclock limit and the number of requested nodes (they're in the ellipsis) but explains
why the job was rejected from running. The Job Eligibility Analysis tells us that 48 of the processors rejected
this job due to memory limitations and that another 140 processors rejected it because of their state (that is, they're
running other jobs). Notice the >= 256 M(B) memory requirement.

If you run checkjob with the ID of a running job, it would also tell us exactly which nodes have been
allocated to this job. There is additional information that the checkjob command page describes in more
detail.

15.3.4.3 Controlling Iterations
Advancing the simulator an iteration, the following happens:

15.0 Cluster Analysis, Testing, and Simulation

> mschedctl -S
scheduling will stop in 00:00:30 at iteration 1

The scheduler control command, mschedctl, controls various aspects of scheduling behavior. It can be
used to manage scheduling activity, kill the scheduler, and create resource trace files. The -S argument
indicates that the scheduler run for a single iteration and stop. Specifying a number, n, after -S causes
the simulator to advance n steps. You can determine what iteration you are currently on using showstats
-v.

> showstats -v
current scheduler time: Mon Feb 16 11:54:03 1998 (887655243)
moab active for 00:01:00 stats initialized on Mon Feb 16 11:53:33
statistics for iteration 1 scheduler started on Wed Dec 31 17:00:00
...

The line that starts with statistics for iteration <X> specifies the iteration you are currently on. Each iteration
advances the simulator RMPOLLINTERVAL seconds. By default, RMPOLLINTERVAL is set to 30 seconds.

To see what RMPOLLINTERVAL is set to, use the showconfig command:

> showconfig | grep RMPOLLINTERVAL
RMPOLLINTERVAL 30,30

The showq -r command can be used to display the running (active) jobs to see what happened in the last
iteration:

> showq -r
active jobs------------------------
JOBID S PAR EFFIC XFACTOR Q USER GROUP MHOST PROCS
REMAINING STARTTIME
fr8n01.804.0 R 1 ------ 1.0 - 529 519 fr9n16 5
00:05:00 Mon Feb 16 11:54:03
fr8n01.187.0 R 1 ------ 1.0 - 570 519 fr7n15 20
1:00:00:00 Mon Feb 16 11:54:03
...
fr8n01.960.0 R 1 ------ 1.0 - 588 519 fr9n11 32
1:00:00:00 Mon Feb 16 11:54:03

9 active jobs 177 of 196 Processors Active (90.31%)
Total jobs: 9

Notice that two new jobs started (without waiting in the eligible queue). Also notice that job fr8n01.187.0, along
with the rest that are summarized in the ellipsis, did NOT advance its REMAINING or STARTTIME.

The simulator needs one iteration to do a sanity check. Setting the parameter STOPITERATION to 1
causes Moab to stop after the first scheduling iteration and wait for further instructions.

The showq -i command displays the idle (eligible) jobs.

> showq -i
eligible jobs----------------------
JOBID PRIORITY XFACTOR Q USER GROUP PROCS WCLIMIT
CLASS SYSTEMQUEUETIME
fr1n04.362.0* 1 1.0 - 550 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.363.0 1 1.0 - 550 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.365.0 1 1.0 - 550 519 20 1:00:00:00
batch Mon Feb 16 11:53:33

15.0 Cluster Analysis, Testing, and Simulation

634 15.3 Simulations

15.3 Simulations 635

fr1n04.366.0 1 1.0 - 550 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.501.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.580.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.597.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.598.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.602.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:53:33
fr1n04.743.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:54:03
fr1n04.744.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:54:03
fr1n04.746.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:54:03
fr1n04.747.0 1 1.0 - 570 519 20 1:00:00:00
batch Mon Feb 16 11:54:03
fr8n01.388.0 1 1.0 - 550 519 20 1:00:00:00
batch Mon Feb 16 11:54:03
14 eligible jobs
Total jobs: 14

Notice how none of the eligible jobs are requesting 19 or fewer jobs (the number of idle processors). Also notice the *
after the job id fr1n04.362.0. This means that this job now has a reservation.

15.3.4.4 Managing Reservations Applying to the Queue
The showres command shows all reservations currently on the system.

> showres
ReservationID Type S Start End Duration N/P StartTime
fr8n01.187.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr8n01.189.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr8n01.190.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr8n01.191.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr8n01.276.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr1n04.362.0 Job I 1:00:00:00 2:00:00:00 1:00:00:00 20/20 Tue Feb 17
11:54:03
fr1n04.369.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr1n04.487.0 Job R 00:00:00 1:00:00:00 1:00:00:00 20/20 Mon Feb 16
11:54:03
fr8n01.804.0 Job R 00:00:00 00:05:00 00:05:00 5/5 Mon Feb 16
11:54:03
fr8n01.960.0 Job R 00:00:00 1:00:00:00 1:00:00:00 32/32 Mon Feb 16
11:54:03
10 reservations located

Here, the S column is the job's state(R = running, I = idle). All the active jobs have a reservation along with idle job
fr1n04.362.0. This reservation was actually created by the backfill scheduler for the highest priority idle job as a way
to prevent starvation while lower priority jobs were being backfilled (The backfill documentation describes the
mechanics of the backfill scheduling more fully.).

15.0 Cluster Analysis, Testing, and Simulation

To display information about the nodes that job fr1n04.362.0 has reserved, use showres -n <JOBID>.

> showres -n fr1n04.362.0
reservations on Mon Feb 16 11:54:03
NodeName Type ReservationID JobState Task Start
Duration StartTime
fr5n09 Job fr1n04.362.0 Idle 1 1:00:00:00
1:00:00:00 Tue Feb 17 11:54:03
...
fr7n15 Job fr1n04.362.0 Idle 1 1:00:00:00
1:00:00:00 Tue Feb 17 11:54:03
20 nodes reserved

Now advance the simulator an iteration to allow some jobs to actually run.

> mschedctl -S
scheduling will stop in 00:00:30 at iteration 2

Next, check the queues to see what happened.

> showq
active jobs------------------------
JOBNAME USERNAME STATE PROC REMAINING STARTTIME
fr8n01.804.0 529 Running 5 00:04:30 Mon Feb 16 11:54:03
fr8n01.187.0 570 Running 20 23:59:30 Mon Feb 16 11:54:03
...

9 active jobs 177 of 196 Processors Active (90.31%)
eligible jobs----------------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME
...
fr8n01.963.0 586 Idle 32 9:00:00 Mon Feb 16 11:54:33
fr8n01.1016.0 570 Idle 20 1:00:00:00 Mon Feb 16 11:54:33
16 eligible jobs
...

Two new jobs, fr8n01.963.0 and fr8n01.1016.0, are in the eligible queue. Also, note that the first
job will now complete in 4 minutes 30 seconds rather than 5 minutes because we have just advanced now
by 30 seconds, one RMPOLLINTERVAL. It is important to note that when the simulated jobs were created,
both the job's wallclock limit and its actual run time were recorded. The wallclock limit is specified by
the user indicating their best estimate of an upper bound on how long the job will run. The run time is
how long the job actually ran before completing and releasing its allocated resources. For example, a job
with a wallclock limit of 1 hour will be given the needed resources for up to an hour but may complete in
only 20 minutes.

Stop the simulation at iteration 6.

> mschedctl -s 6I
scheduling will stop in 00:03:00 at iteration 6

The -s 6I argument indicates that the scheduler will stop at iteration 6 and will (I)gnore user input until it gets
there. This prevents the possibility of obtaining showq output from iteration 5 rather than iteration 6.

> showq
active jobs------------------------
JOBNAME USERNAME STATE PROC REMAINING STARTTIME
fr8n01.804.0 529 Running 5 00:02:30 Mon Feb 16 11:54:03
...
fr1n04.501.0 570 Running 20 1:00:00:00 Mon Feb 16 11:56:33

15.0 Cluster Analysis, Testing, and Simulation

636 15.3 Simulations

15.3 Simulations 637

fr8n01.388.0 550 Running 20 1:00:00:00 Mon Feb 16 11:56:33
9 active jobs 177 of 196 Processors Active (90.31%)

...
14 eligible jobs

...

Job fr8n01.804.0 is still 2 minutes 30 seconds away from completing as expected but notice that both jobs
fr8n01.189.0 and fr8n01.191.0 have completed early. Although they had almost 24 hours remaining of wallclock
limit, they terminated. In reality, they probably failed on the real world system where the trace file was being created.
Their completion freed up 40 processors which the scheduler was able to immediately use by starting several more jobs.

Note the system statistics:

> showstats
...
Successful/Completed Jobs: 0/2 (0.000%)
...
Avg WallClock Accuracy: 0.150%
Avg Job Proc Efficiency: 100.000%
Est/Avg Backlog (Hours): 0.00/3652178.74

A few more fields are filled in now that some jobs have completed providing information on which to
generate statistics.

Decrease the default LOGLEVEL with mschedctl -m to avoid unnecessary logging, and speed up the
simulation.

> mschedctl -m LOGLEVEL 0
INFO: parameter modified

You can use mschedctl -m to immediately change the value of any parameter. The change is only made to the currently
running Moab server and is not propagated to the configuration file. Changes can also be made by modifying the
configuration file and restarting the scheduler.

Stop at iteration 580 and pull up the scheduler's statistics.

> mschedctl -s 580I; showq
scheduling will stop in 4:47:00 at iteration 580
...

11 active jobs 156 of 196 Processors Active (79.59%)
eligible jobs----------------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME
fr8n01.963.0 586 Idle 32 9:00:00 Mon Feb 16 11:54:33
fr8n01.1075.0 560 Idle 32 23:56:00 Mon Feb 16 11:58:33
fr8n01.1076.0 560 Idle 16 23:56:00 Mon Feb 16 11:59:33
fr1n04.1953.0 520 Idle 46 7:45:00 Mon Feb 16 12:03:03
...
16 eligible jobs
...

You may note that showq hangs a while as the scheduler simulates up to iteration 580. The output shows that currently
only 156 of the 196 nodes are busy, yet at first glance 3 jobs, fr8n01.963.0, fr8n01.1075.0, and fr8n01.1076.0
appear to be ready to run.

> checkjob fr8n01.963.0; checkjob fr8n01.1075.0; checkjob fr8n01.1076.0
job fr8n01.963.0
...
Network: hps_user Memory >= 256M Disk >= 0 Swap >= 0
...

15.0 Cluster Analysis, Testing, and Simulation

Job Eligibility Analysis -------
job cannot run in partition DEFAULT (idle procs do not meet requirements : 20 of 32
procs found)
idle procs: 40 feasible procs: 20
Rejection Reasons: [Memory : 20][State : 156]

job fr8n01.1075.0
...
Network: hps_user Memory >= 256M Disk >= 0 Swap >= 0
...
job cannot run in partition DEFAULT (idle procs do not meet requirements : 0 of 32
procs found)
idle procs: 40 feasible procs: 0
Rejection Reasons: [Memory : 20][State : 156][ReserveTime : 20]

job fr8n01.1076.0
...
Network: hps_user Memory >= 256M Disk >= 0 Swap >= 0
...
job cannot run in partition DEFAULT (idle procs do not meet requirements : 0 of 16
procs found)
idle procs: 40 feasible procs: 0
Rejection Reasons: [Memory : 20][State : 156][ReserveTime : 20]

The checkjob command reveals that job fr8n01.963.0 only found 20 of 32 processors. The remaining 20 idle
processors could not be used because the configured memory on the node did not meet the jobs requirements. The other
jobs cannot find enough nodes because of ReserveTime. This indicates that the processors are idle, but that they have a
reservation in place that will start before the job being checked could complete.

Verify that the idle nodes do not have enough memory configured and they are already reserved with
the mdiag -n command, which provides detailed information about the state of nodes Moab is currently
tracking. The mdiag command can be used with various flags to obtain detailed information about
accounts, blocked jobs, fairshare, groups, jobs, nodes, QoS, reservations, the resource manager, and
users. The command also performs a number of sanity checks on the data provided and will present
warning messages if discrepancies are detected.

> mdiag -n -v | grep -e Name -e Idle
Name State Procs Memory Disk Swap Speed Opsys Arch Par
Load Rsv ...
fr10n09 Idle 1:1 256:256 9780:9780 411488:411488 1.00 AIX43 R6000 DEF
0.00 001 .
fr10n11 Idle 1:1 256:256 8772:8772 425280:425280 1.00 AIX43 R6000 DEF
0.00 001 .
fr10n13 Idle 1:1 256:256 9272:9272 441124:441124 1.00 AIX43 R6000 DEF
0.00 001 .
fr10n15 Idle 1:1 256:256 8652:8652 440776:440776 1.00 AIX43 R6000 DEF
0.00 001
fr11n01 Idle 1:1 256:256 7668:7668 438624:438624 1.00 AIX43 R6000 DEF
0.00 001
fr11n03 Idle 1:1 256:256 9548:9548 424584:424584 1.00 AIX43 R6000 DEF
0.00 001
fr11n05 Idle 1:1 256:256 11608:11608 454476:454476 1.00 AIX43 R6000 DEF
0.00 001
fr11n07 Idle 1:1 256:256 9008:9008 425292:425292 1.00 AIX43 R6000 DEF
0.00 001
fr11n09 Idle 1:1 256:256 8588:8588 424684:424684 1.00 AIX43 R6000 DEF
0.00 001
fr11n11 Idle 1:1 256:256 9632:9632 424936:424936 1.00 AIX43 R6000 DEF
0.00 001
fr11n13 Idle 1:1 256:256 9524:9524 425432:425432 1.00 AIX43 R6000 DEF

15.0 Cluster Analysis, Testing, and Simulation

638 15.3 Simulations

15.3 Simulations 639

0.00 001
fr11n15 Idle 1:1 256:256 9388:9388 425728:425728 1.00 AIX43 R6000 DEF
0.00 001
fr14n01 Idle 1:1 256:256 6848:6848 424260:424260 1.00 AIX43 R6000 DEF
0.00 001
fr14n03 Idle 1:1 256:256 9752:9752 424192:424192 1.00 AIX43 R6000 DEF
0.00 001
fr14n05 Idle 1:1 256:256 9920:9920 434088:434088 1.00 AIX43 R6000 DEF
0.00 001
fr14n07 Idle 1:1 256:256 2196:2196 434224:434224 1.00 AIX43 R6000 DEF
0.00 001
fr14n09 Idle 1:1 256:256 9368:9368 434568:434568 1.00 AIX43 R6000 DEF
0.00 001
fr14n11 Idle 1:1 256:256 9880:9880 434172:434172 1.00 AIX43 R6000 DEF
0.00 001
fr14n13 Idle 1:1 256:256 9760:9760 433952:433952 1.00 AIX43 R6000 DEF
0.00 001
fr14n15 Idle 1:1 256:256 25000:25000 434044:434044 1.00 AIX43 R6000 DEF
0.00 001
fr17n05 Idle 1:1 128:128 10016:10016 182720:182720 1.00 AIX43 R6000 DEF
0.00 000
...
Total Nodes: 196 (Active: 156 Idle: 40 Down: 0)

The grep gets the command header and the idle nodes listed. All the idle nodes with 256 MB of memory installed already
have a reservation. (See the Rsv column.) The rest of the idle nodes only have 128 MB of memory.

> checknode fr10n09
node fr10n09
State: Idle (in current state for 4:21:00)
Configured Resources: PROCS: 1 MEM: 256M SWAP: 401G DISK: 9780M
Utilized Resources: [NONE]
Dedicated Resources: [NONE]
..
Total Time: 4:50:00 Up: 4:50:00 (100.00%) Active: 00:34:30 (11.90%)
Reservations:
Job 'fr8n01.963.0'(x1) 3:25:00 -> 12:25:00 (9:00:00)

Using checknode revealed that Job fr8n01.963.0 has the reservation.

Moving ahead:

> mschedctl -S 500I;showstats -v
scheduling will stop in 4:10:00 at iteration 1080
...
Eligible/Idle Jobs: 16/16 (100.000%)
Active Jobs: 11
Successful/Completed Jobs: 2/25 (8.000%)
Preempt Jobs: 0
Avg/Max QTime (Hours): 0.00/0.00
Avg/Max XFactor: 0.00/1.04
Avg/Max Bypass: 0.00/13.00
Dedicated/Total ProcHours: 1545.44/1765.63 (87.529%)
Preempt/Dedicated ProcHours: 0.00/1545.44 (0.000%)
Current Active/Total Procs: 156/196 (79.592%)
Avg WallClock Accuracy: 9.960%
Avg Job Proc Efficiency: 100.000%
Min System Utilization: 79.592% (on iteration 33)
Est/Avg Backlog (Hours): 0.00/20289.84

We now know that the scheduler is scheduling efficiently. So far, system utilization as reported by showstats -v looks very

15.0 Cluster Analysis, Testing, and Simulation

good.

15.3.4.5 Verifying Fair Scheduling
An important and subjective question is whether the scheduler is scheduling fairly. Look at the user and
group statistics to see if there are any glaring problems.

> showstats -u
statistics initialized Wed Dec 31 17:00:00

|------ Active ------|--------------------------------- Completed -----------
------------------------|
user Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
520 1 46 172.88 1 0.00 356.5 0.00 541.3 0.00 ----- 1.04
0.00 0.35 100.00 100.00
550 1 20 301.83 7 0.00 3360.0 0.00 283.7 0.00 ----- 0.03
0.00 0.06 100.00 3.17
524 1 32 239.73 ---- ------ ------ ------ 272.3 0.00 ----- ------ --
---- ------ 100.00 ------
570 1 20 301.00 14 0.00 6720.0 0.00 199.5 0.00 ----- 0.01
0.00 0.20 100.00 0.34
588 0 0 0.00 1 0.00 768.0 0.00 159.7 0.00 ----- 0.21
0.00 0.00 100.00 20.80
578 6 6 146.82 ---- ------ ------ ------ 53.2 0.00 ----- ------ --
---- ------ 100.00 ------
586 1 32 265.07 ---- ------ ------ ------ 22.9 0.00 ----- ------ --
---- ------ 100.00 ------
517 0 0 0.00 1 0.00 432.0 0.00 4.8 0.00 ----- 0.02
0.00 0.12 100.00 1.10
529 0 0 0.00 1 0.00 0.4 0.00 1.3 0.00 ----- 1.00
0.00 0.00 100.00 100.00

> showstats -g
statistics initialized Wed Dec 31 17:00:00

|------ Active ------|--------------------------------- Completed -----------
------------------------|
group Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF
MaxXF AvgQH Effic WCAcc
503 1 32 239.73 1 0.00 432.0 0.00 277.1 0.00 ----- 0.02
0.00 0.12 100.00 1.10
501 1 32 265.07 ---- ------ ------ ------ 22.9 0.00 ----- ------ --
---- ------ 100.00 ------
519 9 92 922.54 24 0.00 11204.9 0.00 1238.6 0.00 ----- 0.11
0.00 0.15 100.00 10.33

15.3.4.6 Taking the System Down for Maintenance
Suppose you need to now take down the entire system for maintenance on Thursday from 2:00 to 8:00
a.m. To do this, create a reservation with mrsvctl -c.

> mrsvctl -c -t ALL -s 2:00_02/17 -d 6:00:00

Shut down the scheduler.

15.0 Cluster Analysis, Testing, and Simulation

640 15.3 Simulations

15.3 Simulations 641

> mschedctl -k
moab will be shutdown immediately

15.0 Cluster Analysis, Testing, and Simulation

642 15.3 Simulations

16.1 About green computing 643

16.0 Green computing

16.1 About green computing
To conserve energy, Moab can automatically turn power off idle nodes that have no reservations or
running workload on them. Conversely, Moab can automatically power on additional nodes when jobs
require such. For Moab to automatically perform these power management functions, you must configure
Moab for green computing operation.

Using the MAXGREENSTANDBYPOOLSIZE parameter, you can specify a "green pool" size, which is the
number of idle nodes Moab keeps turned powered on and ready to run jobs (even if some nodes are idle).
Moab turns off idle nodes that exceed the number specified with the MAXGREENSTANDBYPOOLSIZE
parameter. Thus, Moab automatically powers nodes on and off using a power provisioning resource
manager to keep the green pool of idle nodes at the configured size.

Moab can work with various power management solutions such as IPMI, iLO (HP), DRAC (Dell), xCAT
(IBM), and others. Adaptive Computing has provided some IPMI-based reference scripts you can use to
deploy a green computing solution. The examples in this section will generally refer to our reference
scripts and to IPMI power management. You can modify our supplied scripts to use your own power
management system's commands or you can create your own scripts.

If you intentionally power off a node, a green policy might try to turn it back on automatically. If
you want the node to remain powered off, you must associate a reservation with the node before
you power it off. After you finish with the node, you can return it to service by deleting the
reservation.

Tasks associated with green computing:

The following sections include information about the configurations and settings needed to use green
computing.

l Enabling green computing on page 644

l Deploying Adaptive Computing IPMI scripts on page 647

l Choosing which nodes Moab powers on or off on page 648

l Adjusting green pool size on page 649

l Handling power-related events on page 649

l Maximizing scheduling efficiency on page 650

l Troubleshooting green computing on page 651

16.0 Green computing

16.2 How-to's

16.2.1 Enabling green computing
Context

To enable green computing, follow the steps below. These steps are generic for all green computing
configurations. It doesn't matter what power management solution you employ, these steps are what
enables green computing in Moab.

To enable green computing

1. Edit moab.cfg to enable green computing. There are four things you must configure for basic
functionality of green computing:

a. Configure the POWERPOLICY attribute of the NODECFG parameter. The default value is STATIC.
Set it to OnDemand.

b. Configure a power provisioning resource manager to be TYPE=NATIVE and
RESOURCETYPE=PROV. The resource type of PROV means the RM works only with node
hardware and not workloads.

c. Configure a CLUSTERQUERYURL attribute of the power provisioning RM to point to the power
query script you'd like to use. Moab uses this script to query the current power state of the
nodes. CLUSTERQUERYURL is traditionally used as a workload query but is also used by green
computing for the node power state query. Adaptive Computing provides a reference IPMI script
you can use.

d. Configure a NODEPOWERURL attribute of the power provisioning RM to point to the power action
script you'd like to use. Moab uses this script to turn nodes on or off. Adaptive Computing
provides a reference IPMI script you can use.

NODECFG[DEFAULT] POWERPOLICY=OnDemand
RMCFG[ipmi] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[ipmi] CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi/ipmi.mon.py
RMCFG[ipmi] NODEPOWERURL=exec://$TOOLSDIR/ipmi/ipmi.power.py

Sample moab.cfg for green computing

Below is a sample moab.cfg configuration file of a green computing setup using the Adaptive Computing
IPMI scripts.

##
#
Use 'mdiag -C' to validate config file parameters
#
##

SCHEDCFG[Moab] SERVER=myhostname:5150
ADMINCFG[1] USERS=myusername,root
TOOLSDIR /$HOME/tools
LOGLEVEL 1

16.0 Green computing

644 16.2 How-to's

16.2 How-to's 645

##
#
Basic Resource Manager configuration
#
For more information on configuring a Resource Manager, see:
docs.adaptivecomputing.com
#
##

RMCFG[local] TYPE=NATIVE
RMCFG[local] CLUSTERQUERYURL=exec://$HOME/scripts/query.resource
RMCFG[local] WORKLOADQUERYURL=exec://$HOME/scripts/query.workload

RMCFG[local] JOBSUBMITURL=exec://$HOME/scripts/submit.pl
RMCFG[local] JOBSTARTURL=exec://$HOME/scripts/job.start
RMCFG[local] JOBCANCELURL=exec://$HOME/scripts/job.cancel
RMCFG[local] JOBMODIFYURL=exec://$HOME/scripts/job.modify
RMCFG[local] JOBREQUEUEURL=exec://$HOME/scripts/job.requeue
RMCFG[local] JOBSUSPENDURL=exec://$HOME/scripts/job.suspend
RMCFG[local] JOBRESUMEURL=exec://$HOME/scripts/job.resume

##################################
GREEN configuration:
##################################
Turn on "green" policy. (This is the policy that enables green computing).
Here we are doing it for all nodes, but it can be controlled on a node-by-node basis
Default is STATIC, which means green computing is disabled.
#NODECFG[DEFAULT] POWERPOLICY=STATIC
NODECFG[DEFAULT] POWERPOLICY=OnDemand

Configure the power provisioning and power state query scripts for the power
management system.
Note that this is an entirely different RM (with a name of power in this case
and a type of 'PROV').
The PROV type RM is the only one that uses a NODEPOWERURL. Additionally, the
output of the CLUSTERQUERYURL for this type of RM is different. (See docs)
RMCFG[power] TYPE=NATIVE RESOURCETYPE=PROV
RMCFG[power] NODEPOWERURL=exec://$TOOLSDIR/ipmi/ipmi.power.py
RMCFG[power] CLUSTERQUERYURL=exec://$TOOLSDIR/ipmi/ipmi.mon.py

We want green policy to work so it allocates jobs to compute nodes already
powered on and will power on powered-off compute nodes only when there are
no powered-on compute nodes available. This requires using the PRIORITY
node allocation policy with a PRIORITYF function that has the POWER variable
as the greatest contributing factor to the function (1 = powered-on,
0 = powered-off).
If we want all compute nodes to operate under green policy, we can assign
the PRIORITYF function to the default node configuration, which is easier
than assigning it to individual compute nodes. If only some compute nodes
should operate under green policy, then the PRIORITYF function must be
configured for the individual nodes. Note the POWER variable must be the
largest factor in the function below; it is assigned the largest multiplier,
which should be greater than the sum of all other factors! Doing so forces
Moab to use all eligible powered-on nodes for workload placement before
powering on any eligible powered-off nodes.

Enable PRIORITYF functionality
NODEALLOCATIONPOLICY PRIORITY

Use a priority function that uses power as the major factor (plus some other
imaginary factors)
#NODECFG[DEFAULT] PRIORITYF='1000000*POWER + 1000*factor2 + 100*factor3...'

16.0 Green computing

Use a priority function where power is the only factor.
#NODECFG[DEFAULT] PRIORITYF='10000*POWER'
Use a priority function that adds some randomness but uses power as the major
factor.
NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

Set a priority function that specifies the order nodes should be chosen to power
up/down. By default, Moab will start at the top of the node list and go down. Some
installations want to rotate power cycles among nodes in a different order.
The configuration below forces Moab to power on/off random nodes, which
eventually guarantees all nodes occasionally go through a power cycle.
GREENPOOLPRIORITYF '10*RANDOM'

Ensure we are recording power management events
(powering on and off nodes are recorded as "node modification" events).
RECORDEVENTLIST +NODEMODIFY

Set the size of the standby pool. This is the number of idle nodes that will
be powered on and idle. As the workload changes, Moab turns nodes on
or off to try to meet this goal.
Default value is 0
MAXGREENSTANDBYPOOLSIZE 5

Set the length of time that it takes to power a node on/off. This will be the
walltime of the system job that performs the power operation and should be the
maximum expected time. If Moab detects (via the power RM) that the power
operations have all completed, the system job will finish early.
Default value is 10 minutes (600)
#PARCFG[ALL] NODEPOWEROFFDURATION=600
#PARCFG[ALL] NODEPOWERONDURATION=600

Set the length of time a node should remain idle before it is powered off.
This prevents Moab from immediately powering off nodes that have just finished
a job. Increasing this number should decrease power on/off thrashing
This should be set higher than NODEPOWEROFFDURATION and/or NODEPOWERONDURATION
#NODEIDLEPOWERTHRESHOLD 660

If a node fails to power on, we need to remove it from the available nodes so
Moab won't keep [re-]trying to power it on. Do this by setting a reservation
on the failed node to give time for manual investigation.
#RMCFG[torque] NODEFAILURERSVPROFILE=failure
#RSVPROFILE[failure] DURATION=3600

Related topics

l Deploying Adaptive Computing IPMI scripts on page 647
l Choosing which nodes Moab powers on or off on page 648
l Adjusting green pool size on page 649
l Handling power-related events on page 649
l Maximizing scheduling efficiency on page 650
l Troubleshooting green computing on page 651

16.0 Green computing

646 16.2 How-to's

16.2 How-to's 647

16.2.2 Deploying Adaptive Computing IPMI scripts
Context

If you want to enable green computing on your system using the Adaptive Computing supplied
IPMI reference scripts, follow the steps here. The IPMI scripts provided are meant as a reference for
you to configure the solution to your environment, but can also be used as-is.

Prerequisites

l OpenIPMI and ipmitool must be installed and working.

l All nodes must have the same IPMI username and password.

l You must know the IPMI host names and/or IPMI IP addresses of your nodes.

l Python must be installed. The provided IPMI scripts were developed using Python 2.6.5.

l You must identify your Moab home directory. These instructions assume the default Moab home
directory of /opt/moab.

l You must identify your Moab tools directory. These instructions assume the default Moab tools
directory of /opt/moab/tools.

To deploy the Adaptive Computing IPMI scripts

1. Edit the /opt/moab/tools/ipmi/config.py script:

a. Set self.ipmiuser to the IPMI username for your nodes.

b. Set self.ipmipass to the location of the IPMI password file (/opt/moab/passfile.txt by
default).

The permissions for the directory and the password file itself should be set so that they
can be read only by root or the Moab user running the script.

c. Set self.homeDir to your Moab home directory.

d. If desired, change the self.pollInterval value. This is the interval, in seconds, between polls from
the IPMI monitoring script.

e. The self.ipmifile value is the name of a temporary file where the cluster query information is
stored. You can change this or leave it alone.

f. The self.bmcaddrmap value is the filename for the Moab node name/IPMI mapping. The file must
exist in the Moab home directory and will be created in the next step.

2. Create a node-bmc.txt file in the Moab home directory. The file must contain a space-delimited
list of Moab node names that map to the IPMI host names or IP address. For Example:

node01 node01_ipmi # For all three of these entries, the first value is the
node02 node02_ipmi # node name as Moab knows it. The second value is either
node03 10.1.1.1 # the node IPMI name or IPMI IP address.

16.0 Green computing

3. Configure the moab.cfg file for green computing as described in Enabling green computing. Use the
ipmi.mon.py script for the CLUSTERQUERYURL and the ipmi.power.py script for the
NODEPOWERURL.

4. Restart Moab and verify green computing is working correctly. If you encounter trouble, see the
Troubleshooting green computing topic for help.

Related topics

l Enabling green computing on page 644
l Troubleshooting green computing on page 651
l Adjusting green pool size on page 649
l Handling power-related events on page 649
l Maximizing scheduling efficiency on page 650

16.2.3 Choosing which nodes Moab powers on or off
Context

Moab can use the GREENPOOLPRIORITYF function to determine which nodes to power on or off. The
PRIORITY node allocation policy is used to determine which nodes to allocate workload to. When
Moab can no longer allocate workload to available nodes, it begins to power nodes on in the order
specified by the GREENPOOLPRIORITYF function.

To choose which nodes Moab powers on or off

1. Set a GREENPOOLPRIORITYF function to describe which order nodes should be selected for power
on/off actions. GREENPOOLPRIORITYF uses the PRIORITY node allocation policy options and syntax.

GREENPOOLPRIORITYF '10*RANDOM'

This tells Moab to randomly choose a node to power on to meet workload demands, and to randomly choose an idle
node to power off to meet the MAXGREENSTANDBYPOOLSIZE goal.

To choose which nodes Moab allocates jobs to

1. Set a PRIORITY node allocation policy that uses power as the major factor. This causes Moab to
allocate jobs to nodes that are already powered on. When no nodes are available to meet this policy,
Moab uses the GREENPOOLPRIORITYF function to turn on nodes that are powered off.

NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF='10000*POWER + 10*RANDOM'

The nodes with the highest priority for workload are the nodes that are powered on. After that, Moab randomly
allocates workload.

Related topics

l Adjusting green pool size on page 649
l Maximizing scheduling efficiency on page 650

16.0 Green computing

648 16.2 How-to's

16.2 How-to's 649

16.2.4 Adjusting green pool size
Context

The MAXGREENSTANDBYPOOLSIZE parameter allows you to allocate the number of nodes to keep
powered on in the standby pool. This is the number of idle nodes that are allowed be powered on and
idle. As the workload changes, Moab turns nodes on or off to try to meet this goal. The default value
is 0.

To adjust the green pool size

1. Modify the MAXGREENSTANDBYPOOLSIZE parameter with the number of nodes you want Moab to
keep powered on for the standby pool.

MAXGREENSTANDBYPOOLSIZE 10

Moab keeps up to 10 idle nodes powered on to be kept on standby.

Related topics

l Maximizing scheduling efficiency on page 650
l Choosing which nodes Moab powers on or off on page 648

16.2.5 Handling power-related events
Context

Power actions are considered NODEMODIFYURL events and are not recorded by default, but you can
configure Moab to include power-related events in the logs. Also, if a node fails to turn on (or off),
it's best to associate a reservation on the failed node so that Moab won't keep trying to perform the
power action over and over.

To configure Moab to record power-related events

1. Modify the RECORDEVENTLIST parameter.

RECORDEVENTLIST +NODEMODIFY

Power-related events are logged to the Moab log file.

To put a reservation on a node that fails to perform a power action

1. Configure the NODEFAILURERSVPROFILE attribute of RMCFG and create an RSVPROFILE with a high
duration.

RMCFG[torque] NODEFAILURERSVPROFILE=failure
RSVPROFILE[failure] DURATION=3600

Nodes that fail to power on or off have a 1-hour reservation placed on them.

16.0 Green computing

Related topics

l RECORDEVENTLIST on page 898
l Event Logs on page 591

16.2.6 Maximizing scheduling efficiency
Context

When considering whether to power a node on or off, Moab can take into account the amount of time
that it takes to power on or power off the node. With this information, Moab can keep an idle node
powered on if it knows that workload in the queue will be ready for the node in less time that it
takes to power off/power on the node.

Moab can also wait to shut down nodes after they've been idle for a specific amount of time.

To specify node power on/power off duration

1. Modify the NODEPOWERONDURATION and NODEPOWEROFFDURATION attributes of PARCFG with the
maximum amount of time it takes for your nodes to power on/power off. Make sure to use the
keyword ALL for the resource manager name to avoid cases where Moab won't consider the power
on/off duration for a node before making a power action decision.

PARCFG[ALL] NODEPOWERONDURATION=2:00
PARCFG[ALL] NODEPOWEROFFDURATION=2:00

If a node goes idle and has to wait for workload, Moab will not power off the node if the workload will be available
within 4 minutes or less.

To shut down on nodes after they've been idle for a specified time

1. Modify the NODEIDLEPOWERTHRESHOLD parameter with the duration (in seconds) you want Moab
to wait before shutting down an idle node. The default value is 60 seconds. Increasing the number
should decrease power on/off thrashing. This should be set higher than NODEPOWERONDURATION
and/or NODEPOWEROFFDURATION.

NODEIDLEPOWERTHRESHOLD 300

Moab will wait 5 minutes before shutting down a node that has become idle.

Related topics

l Adjusting green pool size on page 649
l Choosing which nodes Moab powers on or off on page 648

16.0 Green computing

650 16.2 How-to's

16.2 How-to's 651

16.2.7 Troubleshooting green computing
Context

If you've enabled green computing and are having trouble, here are some tips that can help you
determine the cause of the issues you encounter. These tips are specifically for the Adaptive
Computing supplied IPMI scripts, but can be generalized for whatever power management solution
you use. Simply substitute your power management system, power query script (as specified by
CLUSTERQUERYURL), and power action script (as specified by NODEPOWERURL) where appropriate.

Verify your IPMI access

1. Use the ipmitool command to verify you have access to the IPMI interface of your nodes. Try getting
the current power state of a node. The syntax is ipmitool -I lan -H <host> -U <IPMI
username> -P <IPMI password> chassis power status.

$ ipmitool -I lan -H qt06 -U ADMIN -P ADMIN chassis power status

Chassis Power is off

Verify the power query (CLUSTERQUERYURL) script is working

1. Execute the impi.mon.py script (should be found in /<MOABHOMEDIR>/tools/ipmi) to start the
monitor.

$ cd /opt/moab/tools/ipmi
$./ipmi.mon.py

2. Execute the script again. The following is an example of the expected output:

$./ipmi.mon.py

qt09 GMETRIC[System_Temp]=27 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt08 GMETRIC[System_Temp]=31 GMETRIC[CPU_Temp]=25 POWER=on State=Unknown
qt07 GMETRIC[System_Temp]=30 GMETRIC[CPU_Temp]=29 POWER=on State=Unknown
qt06 GMETRIC[System_Temp]=Disabled GMETRIC[CPU_Temp]=Disabled POWER=off
State=Unknown

If the POWER attribute is not present the script is not working correctly.

Verify the power action (NODEPOWERURL) script is working

1. Execute the ipmi.power.py script (should be found in /<MOABHOMEDIR>/tools/ipmi) to see if
you can force a node to power on or off. The syntax is ipmi.power.py
<node>,<node>,<node>... [off|on]

$ /opt/moab/tools/ipmi/ipmi.power.py qt06 off

This example is trying to power off a node named qt06.

2. Verify the machine's power state was changed to what you attempted in the previous step. You can
do this remotely via two methods:

16.0 Green computing

a. If the cluster query script is working, you can use that to verify the current power state of the
node.

b. If you have IPMI access, you can use the ipmitool command to verify the current power state of
the node.

Verify the scripts are configured correctly

1. Run the mdiag -R command to verify your IPMI resource manager configuration.

$ mdiag -R -v
RM[ipmi] State: Active Type: NATIVE ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: exec://$TOOLSDIR/ipmi/ipmi.mon.py
Node Power URL: exec://$TOOLSDIR/ipmi/ipmi.power.py
Objects Reported: Nodes=3 (0 procs) Jobs=0
Nodes Reported: 3 (N/A)
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.05s MaxTime=0.06s (176 samples)
RM Languages: NATIVE
RM Sub-Languages: NATIVE

2. Run the mdiag -G command to verify that power information is being reported correctly.

$ mdiag -G

NodeID State Power Watts PWatts
qt09 Idle On 0.00 0.00
qt08 Idle On 0.00 0.00
qt07 Idle Off 0.00 0.00

Verify the scripts are running

1. Once green is configured and Moab is running, Moab should start the power query script
automatically. Use the ps command to verify the script is running.

$ ps -ef | grep <CLUSTERQUERYURL script name>

If this command does not show the power query script running then your settings in moab.cfg aren't working.

Verify Moab can power nodes on or off

1. Use the mnodectl command to turn a node on or off. The syntax is mnodectl -m power=[off|on]
<node>.

mnodectl -m power=off qt06

Moab should turn off the node named qt06.

a. Moab generates a system job called poweron-<num> or poweroff-<num> job as shown in
showq. The system job calls the ipmi.power.py (NODEPOWERURL) script to execute the
command.

16.0 Green computing

652 16.2 How-to's

16.2 How-to's 653

b. Moab waits until the cluster query reports the correct data. In this case, the ipmi.power.py
script reports that the power attribute has changed.

c. Moab does not change the power status based on the power script return code. Rather, Moab
completes the system power job when it detects the power attribute has changed as indicated by
the cluster query script.

Related topics

l Enabling green computing on page 644
l Deploying Adaptive Computing IPMI scripts on page 647

16.0 Green computing

654 16.2 How-to's

17.1 About object triggers 655

17.0 Object triggers

17.1 About object triggers
Moab triggers are configurable actions that respond to an event occurring on a Moab object. A trigger is
attached to an object and consists of both an event that may take place on the object and the action that
the trigger will take.

Image 17-1: Trigger attachment

Triggers are a powerful tool. Extreme caution should be taken when using them. They are useful in
creating automatic responses to well-understood Moab events; however, by default triggers run as
root and do exactly as they are told, meaning they require great thought and consideration to
ensure that they act appropriately in response to the event.

Use case

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature increases to more
than 40°C, Moab requeues all jobs on the node. If the node's temperature exceeds 50°C, Moab shuts it
down. Moab removes the node's reservation and unsets the variables when the node cools to less
than 25°C.

The administrator wants to receive an email whenever any of these events occur. All of this can be
configured in Moab using triggers. To see a full example for this use case, see Node maintenance
example on page 682.

Sub content

l About trigger variables on page 684

How-to's

l Creating a trigger on page 658
l Using a trigger to send email on page 662
l Using a trigger to execute a script on page 663
l Using a trigger to perform internal Moab actions on page 663
l Requiring an object threshold for trigger execution on page 664
l Enabling job triggers on page 664
l Modifying a trigger on page 665
l Viewing a trigger on page 666
l Checkpointing a trigger on page 667

References

l Job triggers on page 667
l Node triggers on page 668
l Reservation triggers on page 670
l Resource manager triggers on page 671
l Scheduler triggers on page 672
l Threshold triggers on page 673
l Trigger components on page 674
l Trigger exit codes on page 682
l Node maintenance example on page 682
l Environment creation example on page 683

17.0 Object triggers

656 17.1 About object triggers

17.2 How-to's 657

17.2 How-to's

17.0 Object triggers

17.2.1 Creating a trigger

17.0 Object triggers

658 17.2 How-to's

17.2 How-to's 659

Context

Three methods exist for attaching a trigger to an object:

l Directly to the object via the command line

l Directly to the object via the configuration file

l As part of a template via the configuration file

<attr>=<val> pair delimiters, quotation marks, and other elements of the syntax may differ
slightly from one method/object combination to another, but creating any trigger follows the same
basic format:

<attr>=<val>[[{&,}<attr>=<val>]...]

The beginning of the trigger is set off by the keyword trigger. It is followed by a delimited list
(typically by commas) of <attr>=<val> pairs.

Each method of trigger creation can only be used for certain Moab objects. The following table
displays which objects can receive triggers via each method. The links contain examples.

Method Objects

Command line job, reservation; a trigger can be attached to any existing object using mschedctl -c

Configuration file node, reservation, RM, scheduler

Template job, reservation

Triggers are composed of attributes. Only three are required for each trigger: an EType (event
type), an AType (action type), and an Action.

17.0 Object triggers

Image 17-2: Required trigger attributes

Other attributes exist to further customize triggers. See Trigger components on page 674 for more
information.

To create a Moab trigger

1. Choose an object to which, and a method by which, you will attach the trigger. Use the format and
examples described in its corresponding documentation:

l Job triggers on page 667

l Node triggers on page 668

l Reservation triggers on page 670

l Resource manager triggers on page 671

l Scheduler triggers on page 672

If the trigger is to be attached to a job, you must first enable job triggers (see Enabling job
triggers on page 664 for more information.). Please carefully review the warning before doing
so.

2. Decide whether to attach the trigger via the command line or configuration file. Verify the correct
syntax.

17.0 Object triggers

660 17.2 How-to's

17.2 How-to's 661

3. Set the EType equal to whichever event will launch the trigger if and when it occurs on the object.

Each object has a different lifecycle, so not every event type will occur on every object. For a list of
valid ETypes for your selected object, see the corresponding object reference page linked in step 1.

a. To modify the timing of the trigger in any of the following ways, see Event-modifying trigger
components on page 678.

l To set the trigger as rearmable and specify the amount of time the trigger must wait before
firing again.

l To set an amount of time before or after the event that the trigger will fire (See Offset on
page 678 for restrictions).

l To set a specific threshold and the amount of time that the object must meet that threshold
before the trigger will fire.

4. Configure the action that the trigger will take when the event happens. To do so, you must set the
AType to a valid value for your object and specify the action. For instance, to execute a script, set the
AType to exec and the Action to the location of the script in quotation marks. Include the name of the
object on which the script will run.

NODECFG[node01] TRIGGER=EType=fail,AType=exec,Action="node.fail.sh node01"

a. To modify the action in any of the following ways, see Action-modifying trigger components on
page 680.

l To specify environment variables available to the trigger

l To set a flag on the trigger

o To attach any stderr output generated by the trigger to the parent object

o To destroy the trigger if its object ends or cancels

o To tell Moab to checkpoint the trigger

o To set the trigger as periodic

o To pass the object's XML information to the trigger's stdin

o To set the trigger to reset if its object is modified

o To set the trigger to fire under the user ID of the object's owner

l To specify an amount of time that Moab will suspend normal operation to wait for the trigger
to execute

l To allot an amount of time that the trigger will attempt to run before it is marked as
unsuccessful and the process, if any exists, is killed

l Set a maximum number of times that a trigger will attempt to fire before it fails

b. To give the trigger a name or description, see Organizational trigger components on page 681.

c. To configure the trigger to set or unset a variable when it fires or to require a variable to fire,
see Setting and receiving trigger variables on page 685.

17.0 Object triggers

17.2.2 Using a trigger to send email
Context

Mail triggers can be attached to nodes, jobs, reservations, and the scheduler. The recipient of the
email depends on the object to which the trigger is attached. To select different recipient(s) and add
flexibility to formatting, send email via a script using an exec trigger.

To use a trigger to send email

1. For objects that send mail to the primary user, you must configure the Moab administrator email
using the MAILPROGRAM on page 867 parameter.

2. Create a trigger on one of the four valid objects listed below, setting the AType to mail and the
Action to the body of the message inside of quotation marks.

Object Recipient

Node The primary user (the first user listed in ADMINCFG[1], typically root)

Job The job's owner

Reservation The primary user

Scheduler The primary user

3. When attaching a mail trigger to all objects of a certain type, use internal variables in the Action to
add information that is specific to an object, such as the ID, owner, time the event occurred, etc. A
variable must be preceded by a dollar sign ($).

Variable Description

$OID Name of the object to which the trigger is attached

$OTYPE The type of object to which the trigger is attached

$TIME Time the trigger launched

$HOSTLIST Host list of the trigger's object (jobs and reservations)

$OWNER Owner of the trigger's object (jobs and reservations)

$USER User (jobs and reservations)

17.0 Object triggers

662 17.2 How-to's

17.2 How-to's 663

The variable is replaced with the information described above. For example, the following trigger is
configured on all nodes:

NODECFG[DEFAULT] EType=fail,AType=mail,Action="node $OID failed at $TIME"

When, for example, node node03 fails, an email is sent to the primary user with a message with the subject line
"node node03 started on Sat Aug 18 11:42:00".

17.2.3 Using a trigger to execute a script
Context

Exec triggers launch a program or script when the event occurs. A few examples of what a script
might do in response to an event include:

l Execute an external program

l Send a complex email to any desired recipient(s)

l Collect diagnostics

It is important to note that when a script runs via a trigger, Moab forks and performs a direct
OS exec, meaning there will be no pre-processing of the command by the shell. In addition, the
script runs in a new, reduced environment without the same settings and variables as the
environment from which it stemmed. The script must be able to run in the reduced
environment.

To use a trigger to execute a script

1. Create or locate the script and note its location.

2. Create a trigger on the desired object, setting the AType to exec and the Action to location of the
script or program.

JOBCFG[temp1] TRIGGER=EType=start,AType=exec,Offset=03:00,Action="/tmp/monitor.pl"

Jobs with the temp1 template receive a trigger that executes monitor.pl three minutes after the job starts.

17.2.4 Using a trigger to perform internal Moab actions

To perform internal actions in Moab with a trigger

Create a trigger on a job, node, or reservation, setting the AType to internal and the Action to one
of the following:

o node:-:reserve - reserves the node to which the trigger is attached

o job:-:cancel - cancels the job to which the trigger is attached

o reservation:-:cancel - cancels the reservation to which the trigger is attached

17.0 Object triggers

The specified object reserves or cancels itself once the event occurs. See Internal Action on page
676 for examples.

17.2.5 Requiring an object threshold for trigger execution
Context

Threshold triggers allow sites to configure triggers to launch based on internal scheduler statistics,
such as generic metrics. For example, you might configure a trigger to warn the administrator when
the percentage of nodes available is less than 25.

To configure a threshold trigger

1. Create a trigger. Set its EType to threshold. Configure the AType, Action, and Threshold attributes'
values based on the valid thresholds per object listed in the table found in Threshold triggers on
page 673.
NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric

2. Insert the gmetric name between brackets (such as gmetric[temp]). Provide a comparison
operator. For valid options, see the comparison operators table.

3. Provide a number or string to match against the threshold.

NODECFG[node04] TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp.py
$OID",Threshold=gmetric[TEMP]>70,RearmTime=5:00

Moab launches a script that warns the administrator when node04's gmetric temp exceeds 70. Moab rearms the
trigger five minutes after it fires.

17.2.6 Enabling job triggers
Context

By default common users cannot create most objects, and as a result, common users also cannot
create triggers. The exception, however, is jobs. Because common users can create jobs and triggers
generally run as root, additional security is necessary to ensure that not all users can create
triggers. For this reason, job triggers are disabled by default.

Because triggers generally run as root, any user given the power to attach triggers has the
power to run scripts and commands as root. It is recommended that you only enable job
triggers on closed systems in which human users do not have access to directly submit jobs.

To give specific users permission to create job triggers, you must create a QoS, set the trigger flag,
and add users to it.

17.0 Object triggers

664 17.2 How-to's

17.2 How-to's 665

To enable job triggers

1. In the moab.cfg file, create a QoS and set the trigger flag.

QOSCFG[triggerok] QFLAGS=trigger

2. Add users to the QoS who should be allowed to add triggers to jobs.

USERCFG[joe] QDEF=triggerok

User joe is added to the triggerok QoS, giving him both the power to create job triggers and root
access to the machine.

17.2.7 Modifying a trigger
Context

You can modify a trigger at any time by updating its settings in the Moab configuration file
(moab.cfg). This will update most triggers at the beginning of the next Moab iteration; however,
modifying template triggers (configured using RSVPROFILE or JOBCFG) will not update the instances
of the trigger that were attached to individual reservations or jobs on creation. The modification will
only affect the triggers that the template attaches to future objects.

Any trigger with a specified name can be modified using the mschedctl -m command in the following
format:

mschedctl -m trigger: <triggerID><attr1>=<val1><attr2>=<val2>

Modifying triggers on the command line does not change their configuration in moab.cfg.
Except for reservations that are checkpointed, changes made dynamically are lost when Moab
restarts.

For example, the procedure below demonstrates how to modify the following trigger so that the
offset is 10 minutes instead of 5 and so that Moab will attempt to fire the trigger up to 10 times if it
fails. Assume your trigger currently looks like this:

NODECFG[DEFAULT] EType=fail,AType=exec,Action="/scripts/node_
fail.pl",Name=nodeFailTrig,Offset=00:05:00,MultiFire=TRUE,RearmTime=01:00:00

To modify a trigger

1. Type mschedctl -m into the command line and set off the trigger modification with trigger:<id>.
Use the trigger's assigned ID or specified name to state which trigger will receive the modification.

> mschedctl -m trigger:nodeFailTrig

2. Type any changing attributes equal to the new value. Separate multiple modifications with a space
between each <attr>=<val> pair. In this case, set the Offset and MaxRetry attributes the following
way:

> mschedctl -m trigger:nodeFailTrig Offset=00:10:00 MaxRetry=10

17.0 Object triggers

The newly-specified attributes replace the original ones. Trigger nodeFailTrig now has an offset
of 10 minutes and will try to fire a maximum of 10 times if it fails. The new trigger has the following
attributes:

EType=fail,AType=exec,Action="/scripts/start_
rsv.pl",Name=nodeFailTrig,Offset=00:10:00,MultiFire=TRUE,RearmTime=01:00:00,MaxRetr
y=10

17.2.8 Viewing a trigger
Context

Moab provides a list of triggers when you run the mdiag -T command. You can view a specific trigger
by running mdiag -T in the following format:

mdiag -T [<triggerID>|<objectID>|<triggerName>|<objectType>]

To view a trigger

1. Type mdiag -T in the command line.

2. Specify either the trigger ID, the trigger name, the name of the object to which the trigger is
attached, or the type of object to which the trigger is attached. For example, if you wanted to view
information about a trigger with ID trigger.34 and name jobFailTrigger, which is attached to
job job.493, you could run any of the following commands:

> mdiag -T trigger.34

> mdiag -T job.493

> mdiag -T jobFailTrigger

> mdiag -T job

The output of the first command would provide basic information about trigger.34; the second command,
information about all triggers attached to job.493 that the user can access; the third command, basic
information about jobFailTrigger; and the fourth command, basic information about all triggers attached to
jobs that the user can access.

3. Optional: to view additional information about the trigger, run the same command with the -v flag
specified after -T.
> mdiag -T -v job.493

This mode outputs information in multiple lines.

4. Optional: to view detailed information about all triggers available to you, use the mdiag -T -
v command. This outputs all triggers available to the user in a single line for each trigger. It provides
additional state information about triggers, including reasons triggers are currently blocked.

> mdiag -T -v

17.0 Object triggers

666 17.2 How-to's

17.3 References 667

17.2.9 Checkpointing a trigger
Context

Checkpointing is the process of saving state information when Moab is shut down. In general,
triggers defined in the moab.cfg file are not checkpointed but are recreated when Moab starts. The
exception is the JOBCFG parameter, which attaches triggers to jobs as they are created. There are
two cases in which you may want to tell Moab to checkpoint a trigger:

l If a trigger is defined in the moab.cfg file but was created at the command line

l When creating a trigger using the mschedctl on page 184 command

To checkpoint a trigger

1. Locate the trigger to be checkpointed in the moab.cfg file, create one on the command line, or
modify a trigger dynamically (See Modifying a trigger on page 665 for more information). Attach the
checkpoint flag using the FLAGS attribute. For more information about flags, see Flags on page 680.

FLAGS=checkpoint

2. If you are working in the configuration file, save the changes. Moab will now checkpoint your trigger.

17.3 References

17.3.1 Job triggers
For security reasons, job triggers are disabled by default. They must be enabled in order to successfully
attach triggers to jobs (See Enabling job triggers on page 664 for more information.).

Triggers attached to jobs follow the same basic rules and formats as attaching them to other objects;
however, not all attribute options are valid for each object. Jobs, like other objects, have a unique set of
trigger rules. The table below details the methods, options, and other notable details associated with
attaching triggers to jobs.

Creation methods

Method Format Example

Command line
on job
creation: msub -l

msub <jobName> -l
'trig=<trigSpec>'

Attributes are delimited
by backslash ampersand
(\&).

> msub my.job -l
'trig=EType=create\&AType=exec\&Action="/jobs/my_
trigger.pl"\&Offset=10:00'

17.0 Object triggers

Method Format Example

Command line
on existing
job: mschedctl -
c

mschedctl -c trig-
ger <trigSpec> -o
job:<jobID>

> mschedctl -c trigger
EType=end,AType=mail,Action="Job moab.54 has ended"
-o job:moab.54

Job template in
moab.cfg
: JOBCFG

JOBCFG[<tem-
plateName>]
TRIGGER=<trigSpec>

JOBCFG[vmcreate]
TRIGGER=,EType=end,AType=exec,Action="/tmp/jobEnd.
sh"

Valid event types

l cancel on page 677

l checkpoint on page 677

l create on page 677

l end on page 677

l hold on page 678

l modify on page 678

l preempt on page 678

l start on page 678

Valid action types

l changeparam

l exec

l internal

l mail

Mail recipient

The job's owner

See Using a trigger to send email on page 662 for more information.

17.3.2 Node triggers
Triggers attached to nodes follow the same basic rules and formats as attaching them to other objects;
however, not all attribute options are valid for each object. Nodes, like the other objects, have a unique
set of trigger rules. The table below details the methods, options, and other notable details that come
with attaching triggers to nodes.

17.0 Object triggers

668 17.3 References

17.3 References 669

Creation methods

Method Format Example

Command line
on existing
node: msched-
ctl - c

mschedctl -c
trigger
<trigSpec> -o
node:<nodeID>

> mschedctl -c trigger
EType=fail,AType=exec,Action="/tmp/nodeFailure.sh" -o
node:node01

Node con-
figuration in
moab.cfg:
NODECFG

NODECFG
[<name>]
TRIGGER=
<trigSpec>

NODECFG[node04]
TRIGGER=EType=threshold,AType=exec,Action="$HOME/hightemp
.py $OID",Threshold=gmetric[TEMP]>70

Valid event types

l create on page 677

l discover on page 677

l end on page 677

l fail on page 677

l standing on page 678

l threshold on page 678

Valid action types

l changeparam

l exec

l internal

l mail

Thresholds

Node threshold settings

Valid ETypes threshold

Valid Threshold types gmetric

Mail recipient

The user listed first in ADMINCFG[1] (usually root)

See Using a trigger to send email on page 662 for more information.

17.0 Object triggers

17.3.3 Reservation triggers
Triggers attached to reservations follow the same basic rules and formats as attaching them to other
objects; however, not all attribute options are valid for each object. Reservations, like the other objects,
have a unique set of trigger rules. The table below details the methods, options, and other notable
details that come with attaching triggers to reservations.

Creation methods

Method Format Example

Command line
on reservation
creation: mrs-
vctl -T

mrsvctl -c
-h <host-
list> -T
<trigSpec>

> mrsvctl -c -h node01 -T EType=start,AType=exec,
Action="/scripts/node_start.pl"

Command line
on existing
reservation:
mschedctl - c

mschedctl -
c trigger
<trigSpec>
-o
rsv:<rsvID>

> mschedctl -c trigger
EType=modify,AType=mail,Action="Reservation system.4 has been
modified" -o rsv:system.4

Standing reser-
vation con-
figuration in
moab.cfg
: SRCFG

SRCFG
[<name>]
TRIGGER=
<trigSpec>

SRCFG[Mail2]
TRIGGER=EType=start,Offset=200,AType=exec,Action="/tmp/email.
sh"

Reservation
template in
moab.cfg
: RSVPROFILE

RSVPROFILE
[<name>]
TRIGGER=
<trigSpec>

RSVPROFILE[rsvtest]
TRIGGER=EType=cancel,AType=exec,Action="$HOME/logdate.pl TEST
CANCEL $OID $HOSTLIST $ACTIVE"

Valid event types

l create on page 677

l end on page 677

l modify on page 678

l standing on page 678

l start on page 678

l threshold on page 678

17.0 Object triggers

670 17.3 References

17.3 References 671

Valid action types

l cancel

l changeparam

l exec

l internal

l jobpreempt

l mail

Thresholds

Node threshold settings

Valid ETypes threshold

Valid Threshold types usage

Mail recipient

The owner of the reservation. If the owner is unknown or not a user, the first user listed first in
ADMINCFG (usually root).

See Using a trigger to send email on page 662 for more information.

17.3.4 Resource manager triggers
Triggers attached to the resource manager follow the same basic rules and formats as attaching them to
other objects; however, not all attribute options are valid for each object. The resource manager, like
other objects, has a unique set of trigger rules. The table below details the methods, options, and other
notable details that come with attaching triggers to RMs.

Creation methods

Method Format Example

Command line
on existing
RM: mschedctl
- c

mschedctl -c
trigger
<trigSpec> -
o rm:<rmID>

> mschedctl -c trigger
EType=start,AType=exec,Action="/tmp/rmStart.sh" -o rm:torque

RM con-
figuration in
moab.cfg:
RMCFG

RMCFG
[<name>]
TRIGGER=
<trigSpec>

RMCFG[base]
TRIGGER=EType=fail,AType=exec,Action="/opt/moab/tools/diagno
se_rm.pl $OID"

17.0 Object triggers

Valid event types

l fail on page 677

l threshold on page 678

Valid action types

l changeparam

l exec

l internal

17.3.5 Scheduler triggers
Triggers attached to the scheduler follow the same basic rules and formats as attaching them to other
objects; however, not all attribute options are valid for each object. The scheduler, like the other objects,
has a unique set of trigger rules. The table below details the methods, options, and other notable details
associated with attaching triggers to the scheduler.

Creation methods

Method Format Example

Command line on
existing
scheduler: msched-
ctl - c

mschedctl -c trigger
<trigSpec> -o
sched:<schedID>

> mschedctl -c trigger
EType=end,AType=exec,Action="/tmp/startRsvs.s
h" -o sched:moab

Scheduler con-
figuration in
moab.cfg
: SCHEDCFG

SCHEDCFG[<name>]
TRIGGER=<trigSpec>

SCHEDCFG[MyCluster]
TRIGGER=EType=fail,AType=mail,Action="schedul
er failure detected on $TIME",RearmTime=15:00

Valid event types

l create on page 677

l end on page 677

l fail on page 677

l modify on page 678

l standing on page 678

l start on page 678

17.0 Object triggers

672 17.3 References

17.3 References 673

Valid action types

l changeparam

l exec

l internal

l mail

Mail recipient

The user listed first in ADMINCFG (usually root)

See Using a trigger to send email on page 662 for more information.

17.3.6 Threshold triggers
The following table identifies the object event, and usage types with which the threshold event/action
type feature works.

Object type Event Type Usage types

Node Threshold gmetric

Reservation Threshold usage

The following table defines each of the usage types:

Usage
type Description

gmetric Generic performance metrics configured in Moab (See Enabling Generic Metrics for more inform-
ation).

usage The percentage of the resource being used (not idle).

The following table defines each of the threshold trigger comparison operators:

Comparison operator Value

> Greater than

>= Greater than or equal to

< Less than

17.0 Object triggers

Comparison operator Value

<= Less than or equal to

== Equal to

Examples

Example 17-1: Reservation usage threshold

SRCFG[res1] TRIGGER=EType=threshold,AType=mail,Action="More than 75% of reservation
res1 is being used",Threshold=usage>75,FailOffset=1:00

When more than 75% of the reservation has been in use for at least a minute, Moab fires a trigger to notify the primary
user.

17.3.7 Trigger components
Required trigger components

AType

Action type Description

cancel Cancels the object

changeparam Causes Moab to give a parameter to a new value

exec Launches an external program or script on the command line when the dependencies are ful-
filled. See Using a trigger to execute a script on page 663 for more information.

internal Modifies Moab without using the command line. See Using a trigger to perform internal
Moab actions on page 663 for more information.

jobpreempt Indicates the preempt policy to apply to all jobs currently allocated resources assigned to the trig-
ger's parent reservation

mail Causes Moab to send mail. See Using a trigger to send email on page 662 for more inform-
ation.

17.0 Object triggers

674 17.3 References

17.3 References 675

Action

Cancel Action

Format NONE

Description Indicates that Moab should cancel the reservation when the event occurs. No action should be spe-
cified.

Example Etype=threshold,Threshold=usage<10,FailOffset=1:00,AType=cancel

When less than 10% of the reservation has been in use for a minute, Moab cancels it.

Changeparam Action

Format Action="<STRING>"

Description Specifies the parameter to change and its new value (using the same syntax and behavior as the
changeparam on page 272 command)

Example Atype=changeparam,Action="JOBCPURGETIME 02:00:00"

Moab maintains detailed job information for two hours after a job has completed.

Jobpreempt Action

Format Action="cancel|checkpoint|requeue|suspend"

Description Signifies PREEMPTPOLICY to apply to jobs that are running on allocated resources

Example RSVPROFILE[adm1] TRIGGER=EType=start,Offset=-240,AType=jobpreempt,Action="cancel"

40 minutes after the reservation adm1 starts, all jobs using the reservation's resources
adopt a PREEMPTPOLICY of cancel.

Mail Action

Format Action="<MESSAGE>"

17.0 Object triggers

Mail Action

Descrip-
tion

When AType=mail, the Action parameter contains the message body of the email. This can be con-
figured to include certain variables. See Using a trigger to send email on page 662 for details.
Mail triggers can be configured to launch for node failures, reservation creation or release,
scheduler failures, and even job events. In this way, site administrators can keep track of scheduler
events through email.
The email comes from moabadmin, has a subject of moab update, and has a body of whatever you
specified in the Action attribute. The recipient list depends on the type of object the trigger is
attached to.

l Node - The primary user (first listed in ADMINCFG[1]), typically root
l Scheduler - The primary user
l Job - The user who owns the job
l Reservation - The primary user

Example NODECFG[DEFAULT] TRIGGER=EType=fail,AType=mail,Action="node $OID will
failed.",Offset=05:00:00

This example sends an email to the primary administrator informing him/her that the node
(including the node ID) has failed.

Exec Action

Format Action="<script>"

Description Exec triggers will launch an external program or script when their dependencies are fulfilled. The
following example will submit job.cmd and then execute monitor.pl three minutes after the
job is started. See Using a trigger to execute a script on page 663 for more information.

Example > msub -l trig=EType=start\&AType=exec\&Action="/tmp/monitor.pl"
job.cmd\&Offset=03:00

Internal Action

Format Action="<objectType>:-:<cancel|reserve>"

17.0 Object triggers

676 17.3 References

17.3 References 677

Internal Action

Descrip-
tion

A couple different actions are valid depending on what type of object the internal trigger is acting
upon. The following list shows the available actions:

l Reserve a node
l Cancel a job
l Cancel a reservation

See Using a trigger to perform internal Moab actions on page 663 for more information.

Example NODECFG[node01] TRIGGER=EType=start,AType=internal,Action="node:-:reserve"

When node01 starts, it becomes a reservation.

> msub moab.3 -l 'trig=EType=fail\&AType=internal\&Action="job:-:cancel"

If moab.3 fails, Moab cancels it.

> mrsvctl -c -a user==joe -h node50 -T
EType=start,AType=internal,Action="reservation:-:cancel",Offset=10:00

User joe's jobs are given a ten-minute window to start, then the reservation cancels.

EType

Event
type Description

cancel The event is triggered when the parent object is either canceled or deleted.

checkpoint Triggers fire when the job is checkpointed. checkpoint triggers can only be attached to jobs.

create Triggers fire when the parent object is created. create triggers can be attached to nodes, jobs, reser-
vations, and the scheduler (when attached to the scheduler, triggers fire when Moab starts).

discover Triggers fire when the node is loaded from a resource manager and Moab cannot recorgnize it nor
find it in the checkpoint file.

end Triggers fire when the parent object ends. end triggers can be attached to nodes, jobs, reservations,
and the scheduler (when attached to the scheduler, triggers fire when Moab shuts down).

fail Triggers fire when the resource manager is in a corrupt or down state for longer than the con-
figured fail time, or when Moab detects a corruption in a node's reservation table. fail triggers can
be attached to jobs, nodes, resource managers, and the scheduler.

17.0 Object triggers

Event
type Description

hold Triggers fire when the job is put on hold. hold triggers can only be attached to jobs.

modify Triggers fire when the parent object is modified.modify triggers can be attached to jobs and reser-
vations

preempt Triggers fire when the job is preempted. preempt triggers can only be attached to jobs.

standing Triggers fire multiple times based on a certain period. They can be used with Period and Offset
attributes. standing triggers can be attached to nodes and the scheduler.

start Triggers fire when the parent object or Moab starts. start triggers can be attached to jobs, reser-
vations, resource managers, and the scheduler (when Moab starts and at the beginning of Moab's
first iteration).

threshold Triggers fire when a threshold, such as usage or a gmetric comparison, is true. threshold triggers
can be attached to nodes and reservations.
Triggers with ETypes set to threshold must include the Threshold attribute.

Event-modifying trigger components

The following trigger attributes modify the event that causes the trigger to fire.

RearmTime

Possible Val-
ues

[[HH:]MM:]SS

Description The amount of time that must pass before a trigger can fire again. RearmTime is enforced from
the trigger event time.

Usage Notes ---

Offset

Possible Values [-][[HH:]MM:]SS

Description The relative time offset from event when trigger can fire

17.0 Object triggers

678 17.3 References

17.3 References 679

Offset

Usage Notes l Only end triggers can have a negative value for
Offset.

l Offset cannot be used with cancel.

Period

Possible Values Minute,Hour,Day,Week,Month, Infinity

Description The period at which the trigger will regularly fire

Usage Notes ---

Threshold

Possible
Values

Threshold={<metric>[<metricName>]}{> >= < <= ==}<FLOAT>
Where <metric> is one of:

l gmetric
l usage

Description When the object meets, drops below, or increases past the configured Threshold, the trigger will
fire.

Usage
Notes

Threshold triggers allow sites to configure triggers to launch based on internal scheduler statistics,
such as the usage of a reservation.

FailOffset

Possible Values [[HH:]MM:]SS

Description The time that the threshold condition must exist before the trigger fires

Usage Notes Use with fail triggers to avoid transient triggers.

17.0 Object triggers

Action-modifying trigger components

Flags

Possible
Values

Flags=<flag>[:<flag>] or Flags=[<flag>][[<flag>]]
attacherror - If the trigger outputs anything to stderr, Moab attaches it as a message to the trigger
object.
cleanup - If the trigger is still running when the parent object completes or is canceled, Moab kills
the trigger.
checkpoint - Moab always checkpoints this trigger. For more information, see Checkpointing a
trigger on page 667.
objectxmlstdin - Trigger passes its parent's object XML information into the trigger's stdin. This
only works for exec triggers with reservation type parents.
resetonmodify - The trigger resets if its object is modified, even if RearmTime is not set.
user - The trigger executes under the user ID of the object's owner. If the parent object is the
scheduler, you may explicitly specify the user using the format user+<username>. For example:
Flags=user+john.

Description Specifies various trigger behaviors and actions

Usage
Notes

When specifying multiple flags, each flag can be delimited by colons (:) or with square brackets;
for example:
Flags=[user][cleanup] or Flags=user:cleanup

BlockTime

Possible Values [[HH:]MM:]SS

Description The amount of time Moab will suspend normal operation to wait for trigger execution to finish

Usage Notes Use caution; Moab will completely stop normal operation until BlockTime expires.

ExpireTime

Possible Values <INTEGER>

Description The time at which trigger should be terminated if it has not already been activated

Usage Notes ---

17.0 Object triggers

680 17.3 References

17.3 References 681

Timeout

Possible Val-
ues

[+|-][[HH:]MM:]SS

Description The time allotted to this trigger before it is marked as unsuccessful and its process (if any)
killed

Usage Notes ---

MaxRetry

Possible
Values

MaxRetry=<INTEGER>

Description The number of times Action will be attempted before the trigger is designated a failure

Usage
Notes

If Action fails, the trigger will restart immediately (up toMaxRetry times). If it fails more than
MaxRetry times, the trigger has failed. This restart ignores FailOffset and RearmTime.

Organizational trigger components

Name

Possible
Values

Name=<STRING>

Description Name of the trigger

Usage
Notes

Because Moab uses its own internal ID to distinguish triggers, the Name need not be unique. Only
the first 16 characters of Name are stored by Moab.

Description

Possible Values Description=<STRING>

Description Description of the trigger

Usage Notes ---

17.0 Object triggers

17.3.8 Trigger exit codes
By default Moab considers any non-zero exit code as a failure and marks the trigger as having failed. If a
trigger is killed by a signal outside of Moab, Moab treats the signal as the exit code and (in almost all
cases) marks the trigger as having failed. Only exec triggers that exit with an exit code of 0 are marked
as successful.

17.3.9 Node maintenance example

Example scenario

An administrator wants to create the following setup in Moab:

When a node's temperature exceeds 34°C, Moab reserves it. If the temperature increases to more
than 40°C, Moab requeues all jobs on the node. If the node's temperature exceeds 50°C, Moab shuts it
down. Moab removes the node's reservation and unsets the variables when the node cools to less
than 25°C. The administrator wants to receive an email whenever any of these events occur.

The first trigger reserves the node when its reported temperature exceeds 34°C. Note that the gmetric
name in the trigger must match the name of the configured gmetric exactly, including its case (See
Enabling Generic Metrics on page 492 for more information.).

NODECFG[DEFAULT] TRIGGER=Description="ThresholdA",EType=threshold,Threshold=gmetric
[temp]>34,AType=internal,Action="node:-:reserve",RearmTime=30,Offset=2:00,Sets=temp_
rsv

The administrator wants the trigger to fire any time a node overheats, so it must be rearmable. It also
needs to specify that the node must be over 34°C for at least two minutes for Moab to reserve it. If the
trigger succeeds, it will set a variable to be received by the next trigger in order to make them
sequential.

The administrator wants to know when this trigger has fired, so another trigger will send an email once
the first trigger has fired and the temp_rsv variable is set. This one does so via a script:

NODECFG[DEFAULT] Trigger=Description="Email on
Reservation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailReserve.pl
$OID",RearmTime=3:00,Requires=temp_rsv

The second threshold trigger requeues the node's jobs if the node exceeds 40°C and the temp_rsv
variable is set. It uses a script to do so. It sets node_evac variable when it fires, regardless of whether
it succeeds or fails.

NODECFG[DEFAULT] Trigger=Description="Threshold B",EType=threshold,Threshold=gmetric
[temp]>40,Atype=exec,Action="$TOOLSDIR/node_evacuate.pl
$OID",RearmTime=3:00,requires=temp_rsv,Sets=node_evac,!node_evac

The administrator wants another email to inform him that the node is still overheating and has been
evacuated. Another email trigger fires once it receives the node_evac variable.

NODECFG[DEFAULT] Trigger=Description="Email on
Evacuation",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailEvac.pl
$OID",RearmTime=3:00,Requires=node_evac

17.0 Object triggers

682 17.3 References

17.3 References 683

The third threshold trigger uses a script to shut down the node if the temp gmetric exceeds 50 and the
node_evac variable is set. It sets a node_shutdown variable to be received by the notification email.

NODECFG[DEFAULT TRIGGER=Description="Threshold C",EType=threshold,Threshold=gmetric
[temp]>50,AType=exec,Action="$TOOLSDIR/node_shutdown.pl
$OID",RearmTime=3:00,Requires=node_evac,Sets=node_shutdown

NODECFG[DEFAULT] Trigger=Description="Email on
Shutdown",EType=start,AType=exec,Action="$TOOLSDIR/node_temp_emailShutdown.pl
$OID",RearmTime=3:00,Requires=node_shutdown

The final trigger removes the reservation and unsets the variables once the node's temp gmetric is less
than 25.

NODECFG[DEFAULT] Trigger=Description="Remove
Reservation",EType=threshold,Threshold=gmetric[temp]
<25,AType=exec,Action="opt/moab/bin/mrsvctl -r r:$OID",RearmTime=3:00,Requires=temp_
rsv,unsets=temp_rsv.node_evac.node_shutdown

17.3.10 Environment creation example

Example scenario

An administrator wants to create the following setup in Moab:

If a user requests an environment, she must have the permission of her two managers and the
administrator. If all three approve, then the environment builds. The user is sent email messages
informing her of the environment's end date in case she would like an extension. These are sent 7, 3,
and 1 days prior to the environment's ending.

The administrator wants to require his and the managers' approval of any modifications the user
makes to her environment so that it cannot be extended without consent.

The first trigger requests manager and administrator approval in response to the user's environment
request. So in the event of a reservation's creation, a script is used to send messages to the
administrator and manager. The internal variable OWNER is used to indicate to the recipients (via the
script) which user is requesting the environment.

RSVPROFILE[envSetup] TRIGGER=EType=create,AType=exec,Action="envRequest.sh $OWNER"

The managers and administrator use an external program to approve or reject the request. On approval,
a variable is sent back to Moab (to the reservation specifically). Once all three variables are set, the
environment can start. In this example, the variables are called approval1, approval2, and
approval3.

RSVPROFILE[envSetup]
TRIGGER=EType=start,AType=exec,Action="buildScript",Requires=approval1.approval2.appro
val3

As it is configured now, the reservation will continue to reserve the requested resources regardless of
whether all three approvals are given. So, in case approval is not given, the next trigger cancels the
reservation 7 days after its creation if the three variables are not set.

17.0 Object triggers

RSVPROFILE[envSetup]
TRIGGER=EType=create,Offset=7:00:00,AType=internal,Action="rsv:-:cancel",Requires=!app
roval1.!approval2.!approval3

Every remaining trigger in this series is meant to fire for an approved environment and must require
the approval variables. Otherwise these notifications would be sent to users who do not have the
environment they requested. The next triggers must be rearmable so that it can fire again if necessary;
however, they should be set to just over the amount of time left on the reservation so that it doesn't fire
again for the same environment. The notification triggers use the Offset attribute to fire at the
administrator's requested times (7, 3, and 1 day(s) prior to the environment's end).

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
7:00:00,AType=exec,Action="weekNotification.sh",RearmTime=7:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
3:00:00,AType=exec,Action="3dayNotification.sh",RearmTime=3:00:00:02,Requires=approval
1.approval2.approval3

RSVPROFILE[envSetup] TRIGGER=EType=end,Offset=-
1:00:00,AType=exec,Action="dayNotification.sh",RearmTime=1:00:00:02,Requires=approval1
.approval2.approval3

The next trigger requests administrator and manager approval when the environment is modified. The
problem is that the trigger must be rearmable in case of multiple modifications and each time the
RearmTime on page 678 is reached, Moab will fire the trigger based on the first instance of modification.
To resolve this issue, this modification trigger requires a modify variable. When the reservation is
modified, the modify variable is set.

RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modify.sh",RearmTime=1:00:00,Requires=approval
1.approval2.approval3.!modify,Sets=modify
RSVPROFILE[envSetup]
TRIGGER=EType=modify,AType=exec,Action="modificationRequest.sh",RearmTime=5:00,Require
s=approval1.approval2.approval3.modify,Unsets=modify

The final triggers notify the user of the end of the environment.

RSVPROFILE[envSetup]
TRIGGER=EType=end,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

The same trigger is repeated for the cancelEType in case the environment ends unexpectedly.

RSVPROFILE[envSetup]
TRIGGER=EType=cancel,AType=exec,Action="end.sh",Requires=approval1.approval2.approval3

17.4 Trigger variables

17.4.1 About trigger variables
Trigger variables are pieces of information that pass from trigger to trigger. They allow triggers to fire
based on another trigger's behavior, state, and/or output. A variable can be a required condition for a
trigger to fire; for instance, a trigger might be set to launch when a reservation starts, but only if it has

17.0 Object triggers

684 17.4 Trigger variables

17.4 Trigger variables 685

received a variable from another trigger indicating that a specific node has started first. Variables give
greater flexibility and power to a site administrator who wants to automate certain tasks and system
behaviors.

Variables can be used to define under what circumstances the trigger will fire. Many Moab objects have
their own variables and each object's variable name space is unique. Triggers can use their own
variables or the variables attached to their parent objects. A trigger's variable name space is limited to
itself and its parent object. Variables do not have to be unique across all objects.

How-to's

l Setting and receiving trigger variables on page 685
l Externally injecting variables into job triggers on page 686
l Exporting variables to parent objects on page 686
l Requiring variables from generations of parent objects on page 687
l Requesting name space variables on page 687

References

l Dependency trigger components on page 688
l Internal variables on page 689

17.4.2 How-to's

17.4.2.1 Setting and receiving trigger variables
Context

Following is an example of how comparative dependencies can be expressed when creating a trigger.

To set and require variables

1. Create a trigger.

EType=start,AType=exec,Action="/tmp/trigger1.sh"

2. Use the Sets attribute to set a variable if the trigger succeeds. You can precede the variable with "!"
to indicate that the variable should be set if the trigger fails. You can specify more than one variable
by separating them with a period.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2

The trigger sets variable Var2 when it succeeds and variable Var1 when it fails.

3. Set up the recipient trigger(s). Use the Requires attribute to receive the variable(s). Note that
preceding the variable with "!" means that the variable must not be set in order for the trigger to
fire.

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=!Var1.Var2
AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

17.0 Object triggers

The second trigger will launch if Var1 has been set (the first trigger failed), and the third trigger will launch if
Var2 is set (the first trigger succeeded).

4. Refine the requirement with comparisons.

a. Use the following format:
<varID>[:<type>[:<varVal>]]

b. Change <varID> to the variable name.

c. Use any of the comparisons found on the Trigger variable comparison types on page 689 page in
place of <type>:

d. Set the value that the variable will be compared against.

AType=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1:eq:45
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2:ne:failure1

The first trigger fires if Var1 exists and has a value of 45. The second trigger fires if Var2 does not have a
string value of failure1.

17.4.2.2 Externally injecting variables into job triggers
Context

Job triggers are able to see the variables in the job object to which it is attached. This means that,
for triggers that are attached to job objects, another method for supplying variables exists. Updating
the job object's variables effectively updates the variable for the trigger.

To externally inject variables into job triggers

Use the mjobctl -m command to set a variable to attach to a job.

> mjobctl -m var=Flag1=TRUE 1664

The variable Flag1 is set. This will be available to any trigger attached to job 1664.

17.4.2.3 Exporting variables to parent objects

To export variables to parent objects

1. When setting a variable, indicate that the variable is to be exported to the parent object by using a
caret (^).

AType=exec,Action="/tmp/trigger1.sh",EType=start,Sets=Var1.!^Var2
Atype=exec,Action="/tmp/trigger2.sh",EType=start,Requires=Var1
AType=exec,Action="/tmp/trigger3.sh",EType=start,Requires=Var2

Var2 is exported to the parent object if the trigger fails. It can be used by job and reservation
triggers at the same level or by parent objects.

17.0 Object triggers

686 17.4 Trigger variables

17.4 Trigger variables 687

2. Optional: if running a script, you can set a variable as a string to pass up to the parent object.

a. Set the variable to pass up to the parent object with the caret (^). Use the exec AType to run a
script.

AType=exec,Action="/tmp/trigger.sh",EType=start,Sets=^Var1

The trigger sets Var1 when it completes successfully. Because the trigger launches a script, a
string value can be set for Var1.

b. Declare the variable's string value on its own line in the trigger stdout.

EXITCODE=15
Var1=linux

Var1 has the value of linux and is passed up to the parent object. This is useful in workflows in which a
trigger may depend on the value given by a previous trigger.

To return multiple variables, simply print out one per line.

17.4.2.4 Requiring variables from generations of parent objects
Context

By default, triggers look for variables to fulfill dependencies in the object to which they are directly
attached. If they are attached to a job object, they will also look in the job group, if defined.
However, it is not uncommon for objects to have multiple generations of parent objects. If the
desired behavior is to search through all parent objects, do the following task.

To require variables from generations of parent objects

Set the Requires attribute in the trigger to the required variable, preceded by a caret (^).

EType=start,AType=exec,Action="/tmp/trigger2.sh",Requires=^Var1

The trigger searches through the parent objects in which it resides for the variable Var1.

17.4.2.5 Requesting name space variables

To request a name space variable in a trigger

1. Configure the trigger. If it is attached to a generic system job, verify that it meets all the generic
system job trigger requirements.

2. Create an argument list in the Action attribute (after the script path and before the closing quotes)
and request the desired variable with an asterisk (*) in place of the name space.

...Action="$HOME/myTrig.py $*.IPAddr"...

Each applicable name space variable is added to the argument list in the format <varName>=<val>.

For instance, the example above would cause the script to run the following way:

17.0 Object triggers

> myTrig.py vc1.IPAddr=/tmp/dir1 vc2.IPAddr=/tmp/dir2 vc4.IPAddr=/tmp/dir3

Any other arguments provided here without name spaces will not change.

3. Filter which name spaces are passed down to a job trigger by setting trigns when you submit the
job. Its value is a comma-delimited list of the desired name spaces.

msub -l ... -W x="trigns=vc2,vc4"

If the new job is applied to the example in step 2, the script's arguments include vc2.IPAddr and
vc4.Addr and exclude vc1.IPAddr. The script runs as follows:

> myTrig.py vc2.IPAddr=/tmp/dir1 vc4.IPAddr=/tmp/dir2

17.4.3 References

17.4.3.1 Dependency trigger components

Sets

Possible
values

'.' delimited string

Description Variable values this trigger sets upon success or failure

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is set upon trigger failure.
Preceding the string with a caret (^) indicates this variable is to be exported to the parent object
when the trigger completes and satisfies all its set conditions. Used in conjunction with Requires
on page 689 to create trigger dependencies.

Unsets

Possible
values

'.' delimited string

Description Variable this trigger destroys upon success or failure.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable is unset upon trigger fail-
ure. Used in conjunction with Requires on page 689 to create trigger dependencies.

17.0 Object triggers

688 17.4 Trigger variables

17.4 Trigger variables 689

Requires

Possible
values

'.' delimited string

Description Variables this trigger requires to be set or not set before it will fire.

Usage
notes

Preceding the string with an exclamation mark (!) indicates this variable must not be set. Pre-
ceding the string with a caret (^) indicates that the variable may come from a parent object (See
Requiring variables from generations of parent objects on page 687 for more information.).
Used in conjunction with Sets on page 688 to create trigger dependencies.

17.4.3.2 Trigger variable comparison types
The following table describes the valid types of comparisons you can use to express the relationship of a
trigger variable to its value:

Type Comparison Notes

set is set (exists) Default

notset not set (does not exist) Same as specifying '!' before a variable

eq equals

ne not equal

gt greater than Integer values only

lt less than Integer values only

ge greater than or equal to Integer values only

le less than or equal to Integer values only

17.4.3.3 Internal variables
Several internal variables are available for use in trigger scripts. These can be accessed using
$<varName>.

17.0 Object triggers

Internal Variables

ETYPE The type of event that signals that the trigger can fire. ETYPE values include cancel, checkpoint,
create, end, fail, hold, migrate, preempt, standing, start, and threshold.

OID The name of the object to which the trigger was attached

OTYPE The type of object to which the trigger is attached; can be rsv, job, node, vm, or sched

OWNERMAIL A variable that is populated only if the trigger's parent object has a user associated with it and
that user has an email address associated with it

TIME The time of the trigger launch in the following format:
Wed Mar 10 12:35:12 2012

USER The user (when applicable)

Object-specific internal variables

Job Variables

MASTERHOST The primary node for the job

HOSTLIST The entire host list of the job

Reservation Variables

HOSTLIST The entire host list for the reservation

OBJECTXML The XML representation of an object output is the same that is generated by mdiag -r --xml

OS The operating system on the first node of the reservation

OWNER The owner of the reservation

Example 17-2: Internal variable example

AType=exec,Action="/tmp/trigger.sh $OID $HOSTLIST",EType=start

The object ID ($OID) and host list ($HOSTLIST) will be passed to /tmp/trigger.sh as command line arguments when
the trigger executes the script. The script can then process this information as needed.

17.0 Object triggers

690 17.4 Trigger variables

18.1 User Feedback Overview 691

18.0 Miscellaneous
l User Feedback Overview on page 691

l Enabling High Availability Features on page 692

l Malleable Jobs on page 694

l Identity Managers on page 695

l Generic System Jobs on page 699

l Implementing Guaranteed Start Time on page 702

18.1 User Feedback Overview
The Feedback facility allows a site administrator to provide job performance information to users at job
completion time. When a job completes, the program pointed to by the FEEDBACKPROGRAM parameter
is called with a number of command line arguments. The site administrator is responsible for creating a
program capable of processing and acting upon the contents of the command line. The command line
arguments passed are as follows:

1. job id

2. user name

3. user email

4. final job state

5. QoS requested

6. epoch time job was submitted

7. epoch time job started

8. epoch time job completed

9. job XFactor

10. job wallclock limit

11. processors requested

12. memory requested

13. average per task cpu load

14. maximum per task cpu load

15. average per task memory usage

16. maximum per task memory usage

17. messages associated with the job

18. host list (comma-delimited)

For many sites, the feedback script is useful as a means of letting users know the accuracy of their
wallclock limit estimate, as well as the CPU efficiency, and memory usage pattern of their job. The
feedback script may be used as a mechanism to do any of the following:

l email users regarding statistics of all completed jobs

l email users only when certain criteria are met (such as "Job 14991 has just completed which
requested 128 MB of memory per task. During execution, it used 253 MB of memory per task
potentially conflicting with other jobs. Please improve your resource usage estimates in future
jobs.")

l update system databases

l take system actions based on job completion statistics

Some of these fields may be set to zero if the underlying OS/resource manager does not support
the necessary data collection.

Example 18-1:

FEEDBACKPROGAM /opt/moab/tools/fb.pl

18.2 Enabling High Availability Features
l Moab High Availability Overview

o Configuring High Availability via a Networked File System

o Confirming High Availability on a Networked File System

l Other High Availability Configuration

High Availability Overview
High availability allows Moab to run on two different machines: a primary and secondary server. The
configuration method to achieve this behavior takes advantage of a networked file system to configure
two Moab servers with only one operating at a time.

If you use a shared file system for High Availability and Moab is configured to use a database,
Moab must be an ODBC build, not SQLite.

When configured to run on a networked file system — any networked file system that supports file
locking is supported — the first Moab server that starts locks a particular file. The second Moab server

18.0 Miscellaneous

692 18.2 Enabling High Availability Features

18.2 Enabling High Availability Features 693

waits on that lock and only begins scheduling when it gains control of the lock on the file. This method
achieves near instantaneous turnover between failures and eliminates the need for two Moab servers to
synchronize information periodically as the two Moab servers access the same database/checkpoint file.

As Moab uses timestamping in the lock file to implement high availability, the clocks on both
servers require synchronization; all machines in a cluster must be synchronized to the same time
server.

Moab high availability and TORQUE high availability operate independently of each other. If a job is
submitted with msub and the primary Moab server is down, msub tries to connect to the fallback Moab
server. Once the job is given to TORQUE, if TORQUE can't connect to the primary pbs_server, it tries to
connect to the fallback pbs_server. For example:

A job is submitted with msub, but Moab is down on server01, so msub contacts Moab running on server02.

A job is submitted with msub and Moab hands it off to TORQUE, but pbs_server is down on server01, so
qsub contacts pbs_server running on server02.

When you shut down or restart Moab on both servers, you must run the command twice. A single
shutdown (mschedctl -k) or restart (mschedctl -R) command will go to the primary server and kill it,
causing the secondary server to fall back and start operating. To kill the secondary server, resubmit the
command.

Configuring High Availability on a Networked File System
Because the two Moab servers access the same files, configuration is only required in the moab.cfg file.
The two hosts that run Moab must be configured with the SERVER and FBSERVER attributes of the
SCHEDCFG parameter. File lock is turned on using the FLAGS=filelockha flag. Specify the lock file with the
HALOCKFILE attribute. The following example illustrates a possible configuration:

SCHEDCFG[Moab] SERVER=host1:42559
SCHEDCFG[Moab] FBSERVER=host2
SCHEDCFG[Moab] FLAGS=filelockha
SCHEDCFG[Moab] HALOCKFILE=/opt/moab/.moab_lock

Use the HALOCKUPDATETIME parameter to specify how frequently the primary server updates the
timestamp on the lock file. Use the HALOCKCHECKTIME parameter to specify how frequently the
secondary server checks the timestamp on the lock file.

HALOCKCHECKTIME 9
HALOCKUPDATETIME 3

In the preceding example, the secondary server checks the lock file for updates every 9 seconds. The HALOCKUPDATETIME
parameter is set to 3 seconds, permitting the primary server three opportunities to update the timestamp for each time
the secondary server checks the timestamp on the lock file.

FBSERVER does not take a port number. The primary server's port is used for both the primary
server and the fallback server.

18.0 Miscellaneous

Confirming High Availability on a Networked File System
Administrators can run the mdiag -S -v command to view which Moab server is currently scheduling and
responding to client requests.

Other High Availability Configuration
Moab has many features to improve the availability of a cluster beyond the ability to automatically
relocate to another execution server. The following table describes some of these features.

Feature Description

JOBACTIONONNODEFAILURE If a node allocated to an active job fails, it is possible for the job to continue run-
ning indefinitely even though the output it produces is of no value. Setting this
parameter allows the scheduler to automatically preempt these jobs when a
node failure is detected, possibly allowing the job to run elsewhere and also
allowing other allocated nodes to be used by other jobs.

SCHEDCFG[]
RECOVERYACTION

If a catastrophic failure event occurs (SIGSEGV or SIGILL signal is triggered),
Moab can be configured to automatically restart, trap the failure, ignore the fail-
ure, or behave in the default manner for the specified signal. These actions are
specified using the values RESTART, TRAP, IGNORE, or DIE, as in the fol-
lowing example:

SCHEDCFG[bas] MODE=NORMAL RECOVERYACTION=RESTART

18.3 Malleable Jobs
Malleable jobs are jobs that can be adjusted in terms of resources and duration required, and which
allow the scheduler to maximize job responsiveness by selecting a job's resource shape or footprint prior
to job execution. Once a job has started, however, its resource footprint is fixed until job completion.

To enable malleable jobs, the underlying resource manager must support dynamic modification of
resource requirements prior to execution (i.e., TORQUE) and the jobs must be submitted using the TRL
(task request list) resource manager extension string. With the TRL attribute specified, Moab will
attempt to select a start time and resource footprint to minimize job completion time and maximize
overall effective system utilization (i.e., <AverageJobEfficiency> *
<AverageSystemUtilization>).

Example 18-2:

With the following job submission, Moab will execute the job in one of the following configurations: 1
node for 1 hour, 2 nodes for 30 minutes, or 4 nodes for 15 minutes.

> qsub -l nodes=1,trl=1@3600:2@1800:4@900 testjob.cmd
job 72436.orion submitted

18.0 Miscellaneous

694 18.3 Malleable Jobs

http://www.clusterresources.com/products/torque-resource-manager.php

18.4 Identity Managers 695

18.4 Identity Managers
l Identity Manager Overview

l Basic Configuration

l Importing Credential Fairness Policies

l Identity Manager Data Format

l Identity Manager Conflicts

l Refreshing Identity Manager Data

The Moab identity manager interface can be used to coordinate global and local information regarding
users, groups, accounts, and classes associated with compute resources. The identity manager interface
may also be used to allow Moab to automatically and dynamically create and modify user accounts and
credential attributes according to current workload needs.

Only one identity manager can be configured at a time.

Identity Manager Overview
Moab allows sites extensive flexibility when it comes to defining credential access, attributes, and
relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, and QOSCFG
parameters is adequate to specify the needed configuration. However, in certain cases such as the
following, this approach may not be ideal or even adequate:

l Environments with very large user sets

l Environments with very dynamic credential configurations in terms of fairshare targets,
priorities, service access constraints, and credential relationships

l Enterprise environments with fairness policies based on multi-cluster usage

Moab addresses these and similar issues through the use of an identity manager. An identity manager is
configured with the IDCFG parameter and allows Moab to exchange information with an external identity
management service. As with Moab resource manager interfaces, this service can be a full commercial
package designed for this purpose, or something far simpler such as a web service, text file, or database.

Basic Configuration
Configuring an identity manager in basic read-only mode can be accomplished by simply setting the
SERVER attribute. If Moab is to interact with the identity manager in read/write mode, some additional
configuration may be required.

BLOCKCREDLIST

Format One or more comma-delimited object types from the following list: acct, group, or user

18.0 Miscellaneous

BLOCKCREDLIST

Details If specified, Moab will block all jobs associated with credentials not explicitly reported in the most
recent identity manager update. If the credential appears on subsequent updates, resource access
will be immediately restored.

Jobs will only be blocked if fairshare is enabled. This can be accomplished by setting the
FSPOLICY parameter to any value such as in the following example:

FSPOLICY DEDICATEDPS

Example IDCFG[test01] BLOCKCREDLIST=acct,user,groups

Moab will block any jobs associated with accounts, users, or groups not in the most recent
identity manager update.

CREATECRED

Format <BOOLEAN> (default is FALSE)

Details Specifies whether Moab should create credentials reported by the identity manager that have not yet
been locally discovered or loaded via the resource manager. By default, Moab will only load inform-
ation for credentials which have been discovered outside of the identity manager.

Example IDCFG[test01] CREATECRED=TRUE

Moab will create credentials from test01 that have not been previously loaded.

REFRESHPERIOD

Format minute, hour, day, or infinity (default is infinity).

Details If specified, Moab refreshes identity manager information once every specified iteration. If infinity is
specified, the information is updated only at Moab start up.

Example IDCFG[test01] REFRESHPERIOD=hour

Moab queries the identity manager every hour.

18.0 Miscellaneous

696 18.4 Identity Managers

18.4 Identity Managers 697

RESETCREDLIST

Format One or more comma-delimited object types from the following list: acct, group, or user.

Details If specified, Moab will reset the account access list and fairshare cap and target for all credentials of
the specified type(s) regardless of whether they are included in the current info manager report.
Moab will then load information for the specified credentials.

Example IDCFG[test01] RESETCREDLIST=group

Moab will reset the account access list and fairshare target for all groups.

SERVER

Format <URL>

Details Specifies the protocol/interface to use to contact the identity manager.

Example IDCFG[test01] SERVER=exec://$HOME/example.pl

Moab will use example.pl to communicate with the
identity manager.

UPDATEREFRESHONFAILURE

Format <BOOLEAN> (default is FALSE)

Details When an IDCFG script fails, it retries almost immediately and continuously until it succeeds. When
UPDATEREFRESHONFAILURE is set to TRUE, a failed script does not attempt to rerun immediately,
but instead follows the specified REFRESHPERIOD schedule. When set to TRUE,
UPDATEREFRESHONFAILURE updates the script execution timestamp, even if the script does not
end successfully.

Example IDCFG[info] SERVER=exec:///home/tshaw/test/1447/bad_script.pl REFRESHPERIOD=hour
UPDATEREFRESHONFAILURE=TRUE

Importing Credential Fairness Policies
One common use for an identity manager is to import fairness data from a global external information
service. As an example, assume a site needed to coordinate Moab group level fairshare targets with an

18.0 Miscellaneous

allocation database that constrains total allocations available to any given group. To enable this, a
configuration like the following might be used:

IDCFG[alloc] SERVER=exec://$TOOLSDIR/idquery.pl
...

The tools/idquery.pl script could be set up to query a local database and report its results to Moab. Each iteration,
Moab will then import this information, adjust its internal configuration, and immediately respect the new fairness
policies.

Identity Manager Data Format
When an identity manager outputs credential information either through an exec or file based
interface, the data should be organized in the following format:
<CREDTYPE>:<CREDID> <ATTR>=<VALUE>

where

l <CREDTYPE> is one of user, group, account, class, or qos.

l <CREDID> is the name of the credential.

l <ATTR> is one of adminlevel, alist, chargerate, comment, emailaddress, fstarget,
globalfstarget, globalfsusage, maxjob, maxmem, maxnode, maxpe, maxproc, maxps,
maxwc, plist, priority, qlist, or role. Multi-dimensional policies work here as well.

l <VALUE> is the value for the specified attribute.

To clear a comment, set its value to ""; for example: comment="".

Example 18-3:

The following output may be generated by an exec based identity manager:

group:financial fstarget=16.3 alist=project2
group:marketing fstarget=2.5
group:engineering fstarget=36.7
group:dm fstarget=42.5
user:jason adminlevel=3
account:sales maxnode=128 maxjob=8,16

The following example limits user bob to 8 matlab generic resources.

user:bob MAXGRES[matlab]=8

To specify unlimited use of generic resources, set the value to -1.

Identity Manager Conflicts
When local credential configuration (as specified via moab.cfg) conflicts with identity manager
configuration, the identity manager value takes precedence and the local values are overwritten.

18.0 Miscellaneous

698 18.4 Identity Managers

18.5 Generic System Jobs 699

Refreshing Identity Manager Data
By default, Moab only loads identity manager information once when it is first started up. If the identity
manager data is dynamic, then you may want Moab to periodically update its information. To do this, set
the REFRESHPERIOD attribute of the IDCFG parameter. Legal values are documented in the following
table:

Value Description

minute Update identity information once per minute

hour Update identity information once per hour

day Update identity information once per day

infinity Update identity information only at start-up (default)

Example 18-4:

IDCFG[hq] SERVER=exec://$TOOLSDIR/updatepolicy.sh REFRESHPERIOD=hour

Job credential feasibility is evaluated at job submission and start time.

Related topics

l Credential Overview
l Usage Limits/Throttling Policies

18.5 Generic System Jobs
Generic system jobs are system jobs with a trigger. They are useful for specifying steps in a workflow.

l Creating a Generic System Job

o The Trigger

l Workflows Using Job Template Dependencies

o Inheriting Resources in Workflows

Creating a Generic System Job
Generic system jobs are specified via a job template. The template can be selectable and you must use
the GENERICSYSJOB attribute to let Moab know that this job template describes a generic system job and
to specify a trigger, as shown in the following example:

18.0 Miscellaneous

JOBCFG[gen]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/genericTrig.py",Timeout=5:00

The Trigger

The generic system job's trigger that meets certain criteria. This trigger must have a timeout, an
Atype=Exec, and the EType must equal "start". The timeout of the trigger will be used as the walltime
for the job. The trigger will begin when the system job begins and the job will be considered completed
when the trigger completes. The job will have the same completion code as the trigger. The walltime on
the job template is not applicable in this case since the timeout of the trigger will be the walltime.

If the trigger fails, an error message will be attached to all of the job's parent VCs. You can view this in
the --xml output of the VC query. The message includes the location of STDIN, STDOUT, and STDERR
files. For example:

mvcctl -q ALL --xml

<Data>
<vc CREATETIME="1320184350" DESCRIPTION="Moab.1"
 FLAGS="DESTROYOBJECTS,DESTROYWHENEMPTY,HASSTARTED,WORKFLOW"
 JOBS="Moab.1" NAME="vc1" OWNER="user:frank">
<ACL aff="positive" cmp="%=" name="frank" type="USER"></ACL>
<MESSAGES>
<message COUNT="1" CTIME="1320184362"
 DATA="Trigger 10 failed on job Moab.1.setup- STDIN:
/tmp/ByLLl2wv/spool/vm.py.ieWPPS5 STDOUT:
/tmp/ByLLl2wv/spool/vm.py.oDMIXAW STDERR /tmp/ByLLl2wv/spool/vm.py.e2jD5iN"
 EXPIRETIME="1322776362" OWNER="frank" PRIORITY="0"
 TYPE="other" index="0"></message>
</MESSAGES>
<Variables>
<Variable name="VMID">vm1</Variable>
<Variable name="HV">TRUE</Variable>
</Variables>
</vc>
</Data>

You can specify other triggers on a generic system job using the TRIGGER attribute and delimiting them
with semicolons. For example:

JOBCFG[gen] GENERICSYSJOB=<genericSystemJobTriggerSpecs>
JOBCFG[gen] TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>

Workflows Using Job Template Dependencies
To create workflows, use the following format:

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate

This will create a job based on the template otherTemplate. The generic job will run after the
otherTemplate job has finished. Afterany in the example means after all other jobs have completed,
regardless of success.

Inheriting Resources in Workflows

The INHERITRES flag can be used to cause the same resources in one step of a workflow to be passed
to the next step:

18.0 Miscellaneous

700 18.5 Generic System Jobs

18.5 Generic System Jobs 701

JOBCFG[gen] TEMPLATEDEPEND=AFTERANY:otherTemplate
JOBCFG[otherTemplate] INHERITRES=TRUE

This example forces the job based on otherTemplate to have the same resource requirements as its parent. When the
otherTemplate job is finished, the INHERITRES flag will cause the parent to run on the same resources as the child.

The job that finishes first will pass its allocation up.

Any variables on the original job will be passed to the other jobs in the workflow. Variables can be added
by other jobs in the workflow via the sets attribute in the generic system job's trigger. Other triggers
must then request that variable name in the command line options.

You will need to set the carat (^) in order for the variable to be sent up to the job group.

If you set the variable, you need to set it in the STDOUT of the trigger script. See the example below:

JOBCFG[W1] GENERICSYSJOB=...,action='$HOME/W1.py $ipaddress' TEMPLATEDEPEND=AFTER:W2
JOBCFG[W2] TRIGGER=...,action='$HOME/W2.py',sets=^ipaddress

If a variable value is not set in STDOUT, it will be set to TRUE.

To set the variable to a specific value, the W2.py script must set the value in its STDOUT:

print "ipaddress=10.10.10.1" #This will be parsed by Moab and set as the value of the
"ipaddress" variable

Example 18-5:

To create a VM with a workflow using job template dependencies and generic system jobs, use the
following format:

#The job template that is "gate" to the workflow
JOBCFG[CreateVMWithSoftware] TEMPLATEDEPEND=AFTEROK:InstallSoftware SELECT=TRUE

JOBCFG[InstallSoftware]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/setupSoftware.py
$IPAddr",Timeout=30:00
JOBCFG[InstallSoftware] INHERITRES=TRUE
JOBCFG[InstallSoftware] TEMPLATEDEPEND=AFTEROK:CreateVM

JOBCFG[CreateVM] GENERICSYSJOB=EType=start,AType=exec,Action=$HOME/installVM.py
$HOSTLIST",Timeout=1:00:00,sets=^IPAddr
JOBCFG[CreateVM] INHERITRES=TRUE

The user will then submit the job requesting what they need in the VM:

msub -1 walltime=2:00:00,template=CreateVMWithSoftware,nodes=1:ppn=4,mem=1024
ActualWorkload.py

The job will have the CreateVMWithSoftware template applied to it and will create the InstallSoftware job. The
InstallSoftware job, because of INHERITRES, will have the same resource request (4 procs, 1GB of memory). This job
then has its template applied to it which will do the same thing in creating the CreateVM job. The CreateVM job will
then run, the trigger script will return the IP address of the new VM and pass its allocation up to the InstallSoftware
job. The InstallSoftware job will use the IPAddr variable to find the VM and install the software. It will then return
its resources up to the parent job, which will run the actual workload.

18.0 Miscellaneous

18.6 Implementing Guaranteed Start Time
Guaranteed start time allows you to specify when your environment will start. There are limitations on
the number of jobs that can be combined for a guaranteed start time. Also, each job must be a single
requirement job. The process of guaranteeing a start time requires that jobs be attached to a virtual
container (VC). Only jobs or workflows belonging directly to the VC will be scheduled.

To guarantee start time, do the following:

1. Create a virtual container (VC).

> mvcctl -c

2. Set the holdjobs flag on the VC to prevent jobs from immediately running.

> mvcctl -m flags+=holdjobs <VCNAME>

3. Submit the job(s).

> msub -W x=vc=<VCNAME> . . .

4. (Optional Step) Specify a start time as epoch or relative (+) via the reqstarttime attribute.

> mvcctl -m reqstarttime=<epoch | +{mm:ss}> <VCNAME>

5. Schedule the VC.

> mvcctl -x schedulevc <VCNAME>

There is a default limit of five jobs that can be combined for guaranteed start time.

18.0 Miscellaneous

702 18.6 Implementing Guaranteed Start Time

19.1 SQLite3 703

19.0 Database Configuration
Moab supports connecting to a database via native SQLite3, and it can also connect to other databases
using the ODBC driver. Oracle support is forthcoming. These optional external databases store some
additional information that the MongoDB database does not and allow you to query them directly using
SQL. These databases are slower, however, and only SQLite3, which does not allow external queries, is
supported.

The SQLite3 connection is for storing statistics. Consider reviewing the SQLite web page Appropriate
Uses for SQLite for information regarding the suitability of using SQLite3 on your system.

While the ODBC connection is useful for storing statistics, it also stores events, nodes, and jobs. You can
further configure Moab to store checkpoint information to a database rather than to the flat text file
(.moab.ck) if you set the CHECKPOINTWITHDATABASE parameter to TRUE.

Connecting to an external database makes Moab more searchable, allowing you to run queries for
statistics and events rather than using regular expressions to drawn the information from the Moab flat
files.

l SQLite3 on page 703

l Connecting to a MySQL Database with an ODBC Driver on page 704

l Connecting to a PostgreSQL Database with an ODBC Driver on page 707

l Migrating Your Database to Newer Versions of Moab on page 709

l Importing Statistics from stats/DAY.* to the Moab Database on page 714

Moab must use an ODBC-compliant database to report statistics with Viewpoint reports.

19.1 SQLite3
Moab supports connecting to a database via native SQLite3. Database installation and configuration
occurs automatically during normal Moab installation (configure, make install). If you did not follow the
normal process to install Moab and need to install the database, do the following to manually install and
configure Moab database support:

1. Create the database file moab.db in your moab home directory by running the following command
from the root of your unzipped Moab build directory:
perl buildutils/install.sqlite3.pl ‹moab-home-directory›

l Verify that the command worked by running lib/sqlite3 ‹moab-home-
directory›/moab.db; at the resulting prompt, type .tables and press ENTER. You should

http://www.sqlite.org/whentouse.html
http://www.sqlite.org/whentouse.html

see several tables such as mcheckpoint listed. Exit from this program with the .quit command.

l The perl buildutils/install.sqlite3.pl ‹moab-home-directory› command may
fail if your operating system cannot find the SQLite3 libraries. Also, Moab fails if unable to
identify the libraries. To temporarily force the libraries to be found, run the following command:
export LD_LIBRARY_PATH=‹location where libraries were copied›

2. In the moab.cfg file in the etc/ folder of the home directory, add the following line:

USEDATABASE INTERNAL

To verify that Moab is running with SQLite3 support, start Moab and run the mdiag -S -v command. If
there are no database-related error messages displayed, then Moab should be successfully connected to
a database.

> moabd is a safe and recommended method of starting Moab if things are not installed in their
default locations.

19.2 Connecting to aMySQL Database with an ODBC
Driver

This documentation shows how to set up and configure Moab to connect to a MySQL database using the
MySQL ODBC driver. This document assumes the necessary MySQL and ODBC drivers have already been
installed and configured.

To set up and configure Moab to connect to a MySQL database using the MySQL ODBC driver, do the
following:

This solution has been tested and works with these versions:

l libmyodbc - 5.1.5

l unixodbc - 2.3.2

l MySQL 5.1

For a Debian-based system, unixodbc-dev is required, but it might not be required for Red Hat
flavors (such as CentOS and RHEL).

1. Download and install the ODBC version of Moab. Install and configure Moab as normal but add the
following in the Moab configuration file (moab.cfg):

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE

19.0 Database Configuration

704 19.2 Connecting to a MySQL Database with an ODBC Driver

19.2 Connecting to a MySQL Database with an ODBC Driver 705

NODECFG[DEFAULT] ENABLEPROFILING=TRUE

2. Create the database in MySQL using the MySQL database dump contained in the moab-db.sql file.
This file is located in the contrib/sql directory in the root of the binaries.

l Run the following command:

mysql -u root -p < moab-db-mysql-create.sql

3. Configure the MySQL and ODBC driver. The /etc/odbcinst.ini file should contain content similar
to what follows:

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so

Run updatedb && locate libmyodbc to find the MySQL ODBC client driver. You could
also check the libmyodbc package that was installed.

4. Configure Moab to use the MySQL ODBC driver. Moab uses an ODBC datastore file to connect to
MySQL using ODBC. This file must be located in the Moab home directory (/opt/moab by default)
and be named dsninfo.dsn, which is used by Moab. If the following content, which follows the
standard ODBC driver file syntax, is not already included in the /etc/odbc.ini file, make sure that
you include it. Also, include the same content in the dsninfo.dsn file.

[ODBC]
Driver = MySQL
USER = <username>
PASSWORD = <password>
Server = localhost
Database = Moab
Port = 3306

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the MySQL driver, username <username>, password
<password>, and to connect to MySQL running on the localhost on port 3306. ODBC uses this
information to connect to the database called Moab.

5. Test the ODBC to MySQL connection by running the isql command, which reads the /etc/odbc.ini
file:

$ isql -v ODBC
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

19.0 Database Configuration

SQL> show tables;
+---+
| Tables_in_Moab |
+---+
| EventType |
| Events |
| GeneralStats |
| GenericMetrics |
| Moab |
| NodeStats |
| NodeStatsGenericResources |
| ObjectType |
| mcheckpoint |
+---+
SQLRowCount returns 10
10 rows fetched
SQL>

If you encounter any errors using the isql command, there was a problem setting up the ODBC to
MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in /etc, but that is
not always true. Use the odbcinst -j command to determine the assumed location of the files
in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not /etc, move them
from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and odbcinst.ini
files.

$ strace isql -v ODBC noting the location in which isql expects the odbc.ini and
odbcinst.ini files.

6. With the ODBC driver configured, the database created, and Moab configured to use the database,
start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not installed in
their default locations.

Related topics

l Importing Statistics to the Moab Database

19.0 Database Configuration

706 19.2 Connecting to a MySQL Database with an ODBC Driver

19.3 Connecting to a PostgreSQL Database with an ODBC Driver 707

19.3 Connecting to a PostgreSQL Database with an
ODBC Driver

This documentation shows how to set up and configure Moab to connect to a PostgreSQL database using
the ODBC driver. This document assumes the necessary ODBC drivers have already been installed and
configured.

Occasionally vacuuming your PostgresSQL database could improve Moab performance. See the
PostgresSQL documentation for information on how to vacuum your database.

To set up and configure Moab to connect to a PostgreSQL database using the ODBC driver, do the
following:

This solution has been tested and works with these file versions:

l odbc-postgresql - 1:08.03.0200-1.2

l unixodbc - 2.2.14

For a Debian-based system, unixodbc-dev is required, but it might not be required for Red Hat
flavors (such as CentOS and RHEL).

1. Configure the PostgreSQL and ODBC driver. The /etc/odbcinst.ini file should contain content
similar to what follows:

[PostgreSQL]
Description = PostgreSQL ODBC driver
Driver = /usr/lib/odbc/psqlodbca.so
Setup = /usr/lib/odbc/libodbcpsqlS.so
Debug = 0
CommLog = 1
UsageCount = 2

Run updatedb && locate libodbcpsql to find the PostgreSQL ODBC client driver. You
could also check the libodbcpsql package that was installed.

2. Configure Moab to use the PostgreSQL ODBC driver. Moab uses an ODBC datastore file to connect to
PostgreSQL using ODBC. This file must be located in the Moab home directory (/opt/moab by
default) and be named dsninfo.dsn, which is used by Moab. If the following content, which follows
the standard ODBC driver file syntax, is not already included in the /etc/odbc.ini file, make sure
that you include it. Also, include the same content in the dsninfo.dsn file.

[ODBC]
Driver = PostgreSQL
Description = PostgreSQL Data Source
Servername = localhost
Port = 5432

19.0 Database Configuration

Protocol = 8.4
UserName = postgres
Password = moab
Database = Moab

The user should have read/write privileges on the Moab database.

The preceding example file tells ODBC to use the PostgreSQL driver, postgres user, moab
password, and to connect to PostgreSQL running on the localhost on port 5432. ODBC uses this
information and connects to the database called Moab.

3. Test the ODBC to PostgreSQL connection by running the isql command, which reads the
/etc/odbc.ini file. If connected, you should be able to run the help command.

If you encounter any errors using the isql command, there was a problem setting up the ODBC to
MySQL connection. Try the following debugging steps to resolve the issue:

a. The odbcinst.ini and odbc.ini files are usually assumed to be located in /etc, but that is
not always true. Use the odbcinst -j command to determine the assumed location of the files
in your configuration.

[root#] odbcinst -j
unixODBC 2.2.12
DRIVERS............: /etc/unixODBC/odbcinst.ini
SYSTEM DATA SOURCES: /etc/unixODBC/odbc.ini
USER DATA SOURCES..: /home/adaptive/.odbc.ini

b. Because odbcinst.ini and odbc.ini are expected in /etc/unixODBC, not /etc, move them
from /etc to /etc/unixODBC.

c. Use the strace command to determine where isql expects the odbc.ini and odbcinst.ini
files.

$ strace isql -v ODBC noting the location in which isql expects the odbc.ini and
odbcinst.ini files.

4. Create the database in PostgreSQL using the moab-db-postgresql.sh setup script contained in
the contrib/sql directory at the root of the binary.

l Run the script and provide the DB username that will attach to the Moab database (you must
supply a DB username or the script will exit). The default admin user is postgres, but you can
make a new user at this time:

> ./moab-db-postgresql.sh postgres
Create db user "postgres" in postgreSQL? (y/n)>

l The script asks if you want to create the DB user you specified in postgreSQL. If the DB user
already exists, answer 'n'. Otherwise, the DB user is created and it asks for the new user's
password.

l The script then creates the database "Moab".

19.0 Database Configuration

708 19.3 Connecting to a PostgreSQL Database with an ODBC Driver

19.4 Migrating Your Database to Newer Versions of Moab 709

l Finally, as the DB user you provided, the script imports the DB schema from moab-db-
postgresql-create.sql into the Moab database.

5. Download and install the ODBC version of Moab. Install and configure Moab as normal but add the
following in the Moab configuration file (moab.cfg):

USEDATABASE ODBC
Turn on stat profiling
USERCFG[DEFAULT] ENABLEPROFILING=TRUE
GROUPCFG[DEFAULT] ENABLEPROFILING=TRUE
QOSCFG[DEFAULT] ENABLEPROFILING=TRUE
CLASSCFG[DEFAULT] ENABLEPROFILING=TRUE
ACCOUNTCFG[DEFAULT] ENABLEPROFILING=TRUE
NODECFG[DEFAULT] ENABLEPROFILING=TRUE

6. With the ODBC driver configured, the database created, and Moab configured to use the database,
start Moab for it to begin storing information in the created database.

> moabd is a safe and recommended method of starting Moab if things are not installed in
their default locations.

Related topics

l Importing Statistics to the Moab Database

19.4 Migrating Your Database to Newer Versions of
Moab

Sometimes when upgrading from an older version of Moab to a newer version, you must update your
database schema. If the schema Moab expects to operate against is different from the actual schema of
the database Moab is connected to, Moab might not be able to use the database properly and data might
be lost.

When upgrading the Moab database schema from an old version, you must perform each version upgrade
in order. You cannot skip versions. For example, to migrate from version 6.1 to version 7.2, you must
follow the steps in Migrating from Moab 6.1 to Moab 7.0 on page 710, Migrating from Moab 7.0 to
Moab 7.1 on page 710, Migrating from Moab 7.1 to Moab 7.2 on page 710, then Migrating from Moab
7.2.x (where "x" is 5 or lower) to Moab 7.2.6 on page 709.

Migrating fromMoab 7.2.x (where "x" is 5 or lower) toMoab 7.2.6
In Moab 7.2.6, several columns were extended and the primary key on the Triggers table changed. To
upgrade your database with these changes, use the moab-db-<database>-upgrade7_2_6.sql file
located in the contrib/sql directory in the root of the binaries. For example, to migrate your MySQL
database from the 7.2.x (pre-7.2.6) schema to the 7.2.6 schema, run the following:

mysql -u root -p < moab-db-mysql-upgrade7_2_6.sql

Similar migration scripts exist for Oracle and PostgreSQL.

19.0 Database Configuration

Migrating from Moab 7.1 toMoab 7.2
In Moab 7.2, several events in the event table related to the Accounting Manager were renamed. To
upgrade your database with these changes, use the moab-db-<database>-upgrade7_2.sql file
located in the contrib/sql directory in the root of the binaries. For example, to migrate your MySQL
database from the 7.1 schema to the 7.2 schema, run the following:

mysql -u root -p < moab-db-mysql-upgrade7_2.sql

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating fromMoab 7.0 toMoab 7.1
In Moab 7.1, Offset was renamed TriggerOffset in the Triggers table. To upgrade your database with
these changes, use the moab-db-<database>-upgrade7_1.sql file located in the root of the
binaries. For example, to migrate your MySQL database from the 7.0 schema to the 7.1 schema, run the
following:

mysql -u root -p < moab-db-mysql-upgrade7_1.sql

Similar migration scripts exist for Oracle and PostgreSQL.

Migrating fromMoab 6.1 toMoab 7.0
In Moab 7.0, the Moab table has been removed from the database, and a MoabInfo and JobHistory table
have been added to it. To upgrade your database with these changes, use the moab-db-mysql-
upgrade6_1.sql file located in the contrib/sql directory in the root of the binaries. This is done by
running the following command:

mysql -u root -p < moab-db-mysql-upgrade6_1.sql

Your MySQL database is updated for Moab 7.0.

Migrating fromMoab 6.0 toMoab 6.1
An Events table has been added to the database in Moab 6.1. Update the contrib/sql/moab-db.sql
file with the following table:

CREATE TABLE Events (
ID INTEGER,
ObjectType INTEGER,
EventType INTEGER,
EventTime INTEGER UNSIGNED,
ObjectName VARCHAR(64),
Name VARCHAR(64),
Description TEXT,
PRIMARY KEY (ID)
);

Use the mdiag -e --xml command in the following format to query the events table.

mdiag -e [-w <starttime>|<endtime>|<eventtypes>|<oidlist>|<eidlist>|<objectlist>] --
xml

The table is then displayed with all specified events configured with the RECORDEVENTLIST parameter.

19.0 Database Configuration

710 19.4 Migrating Your Database to Newer Versions of Moab

19.4 Migrating Your Database to Newer Versions of Moab 711

If the command could return a large of data, redirect the output. mdiag -e --xml >
outputfile

Migrating fromMoab 5.4 toMoab 6.0
The ODBC database schema has been updated for Moab 6.0. When updating Moab to version 6.0, the
changes below must be applied to the database for database functionality to work. Below are the SQL
statements required to update the schema for Moab 6.0.

These changes are only necessary for an ODBC database. An SQLite database does not require an
update.

ALTER TABLE Events ADD COLUMN Name VARCHAR(64);
ALTER TABLE Events MODIFY Description TEXT;

CREATE TABLE Nodes (
ID VARCHAR(64),
State VARCHAR(64),
OperatingSystem VARCHAR(64),
ConfiguredProcessors INTEGER UNSIGNED,
AvailableProcessors INTEGER UNSIGNED,
ConfiguredMemory INTEGER UNSIGNED,
AvailableMemory INTEGER UNSIGNED,
Architecture VARCHAR(64),
AvailGres VARCHAR(64),
ConfigGres VARCHAR(64),
AvailClasses VARCHAR(64),
ConfigClasses VARCHAR(64),
ChargeRate DOUBLE,
DynamicPriority DOUBLE,
EnableProfiling INTEGER UNSIGNED,
Features VARCHAR(64),
GMetric VARCHAR(64),
HopCount INTEGER UNSIGNED,
HypervisorType VARCHAR(64),
IsDeleted INTEGER UNSIGNED,
IsDynamic INTEGER UNSIGNED,
JobList VARCHAR(64),
LastUpdateTime INTEGER UNSIGNED,
LoadAvg DOUBLE,
MaxLoad DOUBLE,
MaxJob INTEGER UNSIGNED,
MaxJobPerUser INTEGER UNSIGNED,
MaxProc INTEGER UNSIGNED,
MaxProcPerUser INTEGER UNSIGNED,
OldMessages VARCHAR(64),
NetworkAddress VARCHAR(64),
NodeSubstate VARCHAR(64),
Operations VARCHAR(64),
OSList VARCHAR(64),
Owner VARCHAR(64),
ResOvercommitFactor VARCHAR(64),
Partition VARCHAR(64),
PowerIsEnabled INTEGER UNSIGNED,
PowerPolicy VARCHAR(64),
PowerSelectState VARCHAR(64),
PowerState VARCHAR(64),

19.0 Database Configuration

Priority INTEGER UNSIGNED,
PriorityFunction VARCHAR(64),
ProcessorSpeed INTEGER UNSIGNED,
ProvisioningData VARCHAR(64),
AvailableDisk INTEGER UNSIGNED,
AvailableSwap INTEGER UNSIGNED,
ConfiguredDisk INTEGER UNSIGNED,
ConfiguredSwap INTEGER UNSIGNED,
ReservationCount INTEGER UNSIGNED,
ReservationList VARCHAR(64),
ResourceManagerList VARCHAR(64),
Size INTEGER UNSIGNED,
Speed DOUBLE,
SpeedWeight DOUBLE,
TotalNodeActiveTime INTEGER UNSIGNED,
LastModifyTime INTEGER UNSIGNED,
TotalTimeTracked INTEGER UNSIGNED,
TotalNodeUpTime INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
VMOSList VARCHAR(64),
PRIMARY KEY (ID)

);

CREATE TABLE Jobs (
ID VARCHAR(64),
SourceRMJobID VARCHAR(64),
DestinationRMJobID VARCHAR(64),
GridJobID VARCHAR(64),
AName VARCHAR(64),
User VARCHAR(64),
Account VARCHAR(64),
Class VARCHAR(64),
QOS VARCHAR(64),
OwnerGroup VARCHAR(64),
JobGroup VARCHAR(64),
State VARCHAR(64),
EState VARCHAR(64),
SubState VARCHAR(64),
UserPriority INTEGER UNSIGNED,
SystemPriority INTEGER UNSIGNED,
CurrentStartPriority INTEGER UNSIGNED,
RunPriority INTEGER UNSIGNED,
PerPartitionPriority TEXT,
SubmitTime INTEGER UNSIGNED,
QueueTime INTEGER UNSIGNED,
StartTime INTEGER UNSIGNED,
CompletionTime INTEGER UNSIGNED,
CompletionCode INTEGER,
UsedWalltime INTEGER UNSIGNED,
RequestedMinWalltime INTEGER UNSIGNED,
RequestedMaxWalltime INTEGER UNSIGNED,
CPULimit INTEGER UNSIGNED,
SuspendTime INTEGER UNSIGNED,
HoldTime INTEGER UNSIGNED,
ProcessorCount INTEGER,
RequestedNodes INTEGER,
ActivePartition VARCHAR(64),
SpecPAL VARCHAR(64),
DestinationRM VARCHAR(64),
SourceRM VARCHAR(64),

19.0 Database Configuration

712 19.4 Migrating Your Database to Newer Versions of Moab

19.4 Migrating Your Database to Newer Versions of Moab 713

Flags TEXT,
MinPreemptTime INTEGER UNSIGNED,
Dependencies TEXT,
RequestedHostList TEXT,
ExcludedHostList TEXT,
MasterHostName VARCHAR(64),
GenericAttributes TEXT,
Holds TEXT,
Cost DOUBLE,
Description TEXT,
Messages TEXT,
NotificationAddress TEXT,
StartCount INTEGER UNSIGNED,
BypassCount INTEGER UNSIGNED,
CommandFile TEXT,
Arguments TEXT,
RMSubmitLanguage TEXT,
StdIn TEXT,
StdOut TEXT,
StdErr TEXT,
RMOutput TEXT,
RMError TEXT,
InitialWorkingDirectory TEXT,
UMask INTEGER UNSIGNED,
RsvStartTime INTEGER UNSIGNED,
BlockReason TEXT,
BlockMsg TEXT,
PSDedicated DOUBLE,
PSUtilized DOUBLE,
PRIMARY KEY (ID)

);

CREATE TABLE Requests (
JobID VARCHAR(64),
RIndex INTEGER UNSIGNED,
AllocNodeList VARCHAR(1024),
AllocPartition VARCHAR(64),
PartitionIndex INTEGER UNSIGNED,
NodeAccessPolicy VARCHAR(64),
PreferredFeatures TEXT,
RequestedApp VARCHAR(64),
RequestedArch VARCHAR(64),
ReqOS VARCHAR(64),
ReqNodeSet VARCHAR(64),
ReqPartition VARCHAR(64),
MinNodeCount INTEGER UNSIGNED,
MinTaskCount INTEGER UNSIGNED,
TaskCount INTEGER UNSIGNED,
TasksPerNode INTEGER UNSIGNED,
DiskPerTask INTEGER UNSIGNED,
MemPerTask INTEGER UNSIGNED,
ProcsPerTask INTEGER UNSIGNED,
SwapPerTask INTEGER UNSIGNED,
NodeDisk INTEGER UNSIGNED,
NodeFeatures TEXT,
NodeMemory INTEGER UNSIGNED,
NodeSwap INTEGER UNSIGNED,
NodeProcs INTEGER UNSIGNED,
GenericResources TEXT,
ConfiguredGenericResources TEXT,
PRIMARY KEY (JobID,RIndex)

);

19.0 Database Configuration

INSERT INTO ObjectType (Name,ID) VALUES ("Rsv",13);
INSERT INTO ObjectType (Name,ID) VALUES ("RM",14);
INSERT INTO ObjectType (Name,ID) VALUES ("Sched",15);
INSERT INTO ObjectType (Name,ID) VALUES ("SRsv",16);
INSERT INTO ObjectType (Name,ID) VALUES ("Sys",17);
INSERT INTO ObjectType (Name,ID) VALUES ("TNode",18);
INSERT INTO ObjectType (Name,ID) VALUES ("Trig",19);
INSERT INTO ObjectType (Name,ID) VALUES ("User",20);
INSERT INTO ObjectType (Name,ID) VALUES ("CJob",23);
INSERT INTO ObjectType (Name,ID) VALUES ("GRes",30);
INSERT INTO ObjectType (Name,ID) VALUES ("Gmetric",31);
INSERT INTO ObjectType (Name,ID) VALUES ("Stats",39);
INSERT INTO ObjectType (Name,ID) VALUES ("TJob",42);
INSERT INTO ObjectType (Name,ID) VALUES ("Paction",43);
INSERT INTO ObjectType (Name,ID) VALUES ("VM",45);
INSERT INTO ObjectType (Name,ID) VALUES ("JGroup",48);

INSERT INTO EventType (Name,ID) VALUES ("TRIGTHRESHOLD",41);
INSERT INTO EventType (Name,ID) VALUES ("VMCREATE",42);
INSERT INTO EventType (Name,ID) VALUES ("VMDESTROY",43);
INSERT INTO EventType (Name,ID) VALUES ("VMMIGRATE",44);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWERON",45);
INSERT INTO EventType (Name,ID) VALUES ("VMPOWEROFF",46);
INSERT INTO EventType (Name,ID) VALUES ("NODEMODIFY",47);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWEROFF",48);
INSERT INTO EventType (Name,ID) VALUES ("NODEPOWERON",49);
INSERT INTO EventType (Name,ID) VALUES ("NODEPROVISION",50);
INSERT INTO EventType (Name,ID) VALUES ("ALLSCHEDCOMMAND",51);
INSERT INTO EventType (Name,ID) VALUES ("AMCANCEL",52);
INSERT INTO EventType (Name,ID) VALUES ("AMDEBIT",53);
INSERT INTO EventType (Name,ID) VALUES ("AMQUOTE",54);
INSERT INTO EventType (Name,ID) VALUES ("AMRESERVE",55);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLEND",56);
INSERT INTO EventType (Name,ID) VALUES ("RMPOLLSTART",57);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLEEND",58);
INSERT INTO EventType (Name,ID) VALUES ("SCHEDCYCLESTART",59);
INSERT INTO EventType (Name,ID) VALUES ("JOBCHECKPOINT",60);

ALTER TABLE GeneralStats ADD COLUMN TotalConfiguredProcCount INTEGER;

19.5 Importing Statistics from stats/DAY.* to the
Moab Database

The contrib/stat_converter folder contains the files to build mstat_converter, an executable
that reads file-based statistics in a Moab stats directory and dumps them into a database. It also reads
the Moab checkpoint file (.moab.ck) and dumps that to the database as well. It uses the
$MOABHOMEDIR/moab.cfg file to connect to the appropriate database and reads the statistics files
from $MOABHOMEDIR/stats.

To run, execute the program mstat_converter with no arguments.

The statistics converter program does not clear the database before converting. However, if there are
statistics in the database and the statistics files from the same period, the converter overwrites the
database information with the information from the statistics files.

19.0 Database Configuration

714 19.5 Importing Statistics from stats/DAY.* to the Moab Database

20.1 Scheduling GPUs 715

20.0 Accelerators
Moab can integrate with the TORQUE resource manager to discover, report, schedule, and submit
workload to various accelerator architectures (such as NVIDIA GPUs or Intel® Xeon Phi™ co-processor
architecture) for parallel processing. See the topics below for specific information.

l Scheduling GPUs

o Using GPUs with NUMA

o NVIDIA GPUs

o GPU Metrics

l Configuring Intel® Xeon Phi™ Co-processor Architecture

o Intel® Xeon Phi™ Co-processor Metrics

20.1 Scheduling GPUs
In TORQUE 2.5.4 and later, users can request GPUs on a node at job submission by specifying a nodes
resource request, using the qsub -l option. The number of GPUs a node has must be specified in the nodes
file. The GPU is then reported in the output of pbsnodes:

napali
state = free
np = 2
ntype = cluster
status = rectime=1288888871,varattr=,jobs=,state=free,netload=1606207294,gres=tom:!
/home/dbeer/dev/scripts/dynamic_
resc.sh,loadave=0.10,ncpus=2,physmem=3091140kb,availmem=32788032348kb,
totmem=34653576492kb,idletime=4983,nusers=3,nsessions=14,sessions=3136 1805 2380 2428
1161 3174 3184
3191 3209 3228 3272 3333 20560 32371,uname=Linux napali 2.6.32-25-generic #45-Ubuntu
SMP Sat Oct 16 19:52:42
UTC 2010 x86_64,opsys=linux
mom_service_port = 15002
mom_manager_port = 15003
gpus = 1

The $PBS_GPUFILE has been created to include GPU awareness. The GPU appears as a separate line in
$PBS_GPUFILE and follows this syntax:

<hostname>-gpu<index>

If a job were submitted to run on a server called "napali" (the submit command would look something
like: qsub test.sh -l nodes=1:ppn=2:gpus=1), the $PBS_GPUFILE would contain:

napali-gpu0

It is left up to the job's owner to make sure that the job executes properly on the GPU. By default,
TORQUE treats GPUs exactly the same as ppn (which corresponds to CPUs).

Related topics

l Using GPUs with NUMA
l NVIDIA GPUs

20.2 Using GPUs with NUMA
The pbs_server requires awareness of how the MOM is reporting nodes since there is only one MOM
daemon and multiple MOM nodes. Configure the server_priv/nodes file with the num_node_boards
and numa_gpu_node_str attributes. The attribute num_node_boards tells pbs_server how many
NUMA nodes are reported by the MOM. If each NUMA node has the same number of GPUs, add the total
number of GPUs to the nodes file. Following is an example of how to configure the nodes file with num_
node_boards:

numahost gpus=12 num_node_boards=6

This line in the nodes file tells pbs_server there is a host named numahost and that it has 12 GPUs and 6
nodes. The pbs_server divides the value of GPUs (12) by the value for num_node_boards (6) and
determines there are 2 GPUs per NUMA node.

In this example, the NUMA system is uniform in its configuration of GPUs per node board, but a system
does not have to be configured with the same number of GPUs per node board. For systems with non-
uniform GPU distributions, use the attribute numa_gpu_node_str to let pbs_server know where GPUs
are located in the cluster.

If there are equal numbers of GPUs on each NUMA node, you can specify them with a string. For example,
if there are 3 NUMA nodes and the first has 0 GPUs, the second has 3, and the third has 5, you would add
this to the nodes file entry:

numa_gpu_node_str=0,3,5

In this configuration, pbs_server knows it has three MOM nodes and the nodes have 0, 3s, and 5 GPUs
respectively. Note that the attribute gpus is not used. The gpus attribute is ignored because the number
of GPUs per node is specifically given.

In TORQUE 3.0.2 or later, qsub supports the mapping of -l gpus=X to -l gres=gpus:X. This allows
users who are using NUMA systems to make requests such as -l ncpus=20,gpus=5 (or -l
ncpus=20:gpus=5)indicating they are not concerned with the GPUs in relation to the NUMA nodes they
request; they only want a total of 20 cores and 5 GPUs.

Related topics

l Scheduling GPUs
l NVIDIA GPUs

20.0 Accelerators

716 20.2 Using GPUs with NUMA

20.3 NVIDIA GPUs 717

20.3 NVIDIA GPUs
The pbs_mom file can now query for GPU hardware information and report status to the pbs_server.
gpustatus will appear in pbsnodes output. New commands allow for setting GPU modes and for resetting
GPU ECC error counts.

This feature is only available in TORQUE 2.5.6, 3.0.2, and later.

This document assumes that you have installed the NVIDIA CUDA ToolKit and the NVIDIA
development drivers on a compute node with an NVIDIA GPU. (Both can be downloaded from
http://developer.nvidia.com/category/zone/cuda-zone).

You will want to download the latest version if you run into problems compiling.

If the pbs_server does not have GPUs, it only needs to be configured with --enable-nvidia-gpus. All
other systems that have NVIDIA GPUs will need:

l --enable-nvidia-gpus

l --with-nvml-include=DIR (include path for nvml.h)

nvml.h is only found in the NVIDIA CUDA ToolKit.

l --with-nvml-lib=DIR (*lib path for libnvidia-ml)

Systems that have NVIDIA GPUs require the following:

Server

./configure --with-debug --enable-nvidia-gpus

Compute nodes (with NVIDIA GPUs)

./configure --with-debug --enable-nvidia-gpus --with-nvml-lib=/usr/lib64 --with-nvml-
include=/cuda/NVML

If all of the compute nodes have the same hardware and software configuration, you can choose to
compile on one compute node and then run make packages.

> make packages
Building ./torque-package-clients-linux-x86_64.sh ...
Building ./torque-package-mom-linux-x86_64.sh ...
Building ./torque-package-server-linux-x86_64.sh ...
Building ./torque-package-gui-linux-x86_64.sh ...
Building ./torque-package-devel-linux-x86_64.sh ...
Done.

The package files are self-extracting packages that can be copied and executed on your production
machines. (Use --help for options.)

When updating, it is good practice to stop the pbs_server and make a backup of the TORQUE home
directory. You will also want to back up the output of qmgr -c 'p s'. The update will only overwrite
the binaries.

20.0 Accelerators

http://developer.nvidia.com/category/zone/cuda-zone

If you move GPU cards to different slots, you must restart pbs_server in order for TORQUE to
recognize the drivers as the same ones in different locations rather than 2 new, additional drivers.

For further details, see these topics:

l TORQUE configuration on page 718
l GPU modes for NVIDIA 260.x driver on page 718
l GPU Modes for NVIDIA 270.x driver on page 718
l gpu_status on page 719
l New NVIDIA GPU support on page 719

TORQUE configuration

There are three configuration (./configure) options available for use with Nvidia GPGPUs:

l --enable-nvidia-gpus

l --with-nvml-lib=DIR

l --with-nvml-include=DIR

--enable-nvidia-gpus is used to enable the new features for the Nvidia GPGPUs. By default, the
pbs_moms use the nvidia_smi command to interface with the Nvidia GPUs.

./configure --enable-nvidia-gpus

To use the NVML (NVIDIA Management Library) API instead of nvidia-smi, configure TORQUE using --
with-nvml-lib=DIR and --with-nvml-include=DIR. These commands specify the location of the
libnvidia-ml library and the location of the nvml.h include file.

./configure -with-nvml-lib=/usr/lib
--with-nvml-include=/usr/local/cuda/Tools/NVML
server_priv/nodes:
node001 gpus=1
node002 gpus=4
…
pbsnodes -a
node001
 …
 gpus = 1
...

By default, when TORQUE is configured with --enable-nvidia-gpus the $TORQUE_HOME/nodes file
is automatically updated with the correct GPU count for each MOM node.

GPUmodes for NVIDIA 260.x driver

l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive - Only one COMPUTE thread is allowed to run on the GPU

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

GPUModes for NVIDIA 270.x driver

l 0 – Default - Shared mode available for multiple processes

l 1 – Exclusive Thread - Only one COMPUTE thread is allowed to run on the GPU (v260 exclusive)

20.0 Accelerators

718 20.3 NVIDIA GPUs

20.4 GPU Metrics 719

l 2 – Prohibited - No COMPUTE contexts are allowed to run on the GPU

l 3 – Exclusive Process - Only one COMPUTE process is allowed to run on the GPU

gpu_status

root@gpu:~# pbsnodes gpu
gpu
...
 gpus = 2
 gpu_status = gpu[1]=gpu_id=0:6:0;gpu_product_name=Tesla
 C2050;gpu_display=Disabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:6:0;
 gpu_fan_speed=54 %;gpu_memory_total=2687 Mb;gpu_memory_used=74
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;gpu_double_bit_ecc_errors=
0;gpu_temperature=88 C,gpu[0]=gpu_id=0:5:0;gpu_product_name=Tesla
C2050;gpu_display=Enabled;gpu_pci_device_id=6D110DE;gpu_pci_location_id=0:5:0;
gpu_fan_speed=66 %;gpu_memory_total=2687 Mb;gpu_memory_used=136
Mb;gpu_mode=Default;gpu_state=Unallocated;gpu_utilization=96
%;gpu_memory_utilization=10
%;gpu_ecc_mode=Enabled;gpu_single_bit_ecc_errors=0;
gpu_double_bit_ecc_errors=0;gpu_temperature=86 C,driver_ver=270.41.06,timestamp=Wed
May 4 13:00:35
2011

NewNVIDIA GPU support

qsub allows specifying required compute mode when requesting GPUs. If no GPU mode is requested, it
will default to "exclusive" for Nvidia driver version 260 or "exclusive_thread" for NVIDIA driver version
270 and above.

l qsub -l nodes=1:ppn=1:gpus=1

l qsub -l nodes=1:gpus=1

l qsub -l nodes=1:gpus=1:exclusive_thread

l qsub -l nodes=1:gpus=1:exclusive_process

l qsub -l nodes=1:gpus=1:reseterr

l qsub -l nodes=1:gpus=1:reseterr:exclusive_thread (exclusive_thread:reseterr)

l qsub -l nodes=1:gpus=1:reseterr:exclusive_process

Related topics

l Scheduling GPUs on page 715
l Using GPUs with NUMA on page 716

20.4 GPUMetrics
GPU metrics can be collected for nodes that:

l Have one or more GPUs.

l Run TORQUE 2.5.x or later.

20.0 Accelerators

l Use NVIDIA drivers v260.x or v270.x.

GPU metric tracking must be enabled in moab.cfg:

RMCFG[torque] flags=RECORDGPUMETRICS

There is one GPU metric for all GPU devices within a node (gpu_timestamp) and nine GPU metrics
for each GPU device within a node. If the maximum GPU devices within a node is 4, you must
increase the MAXGMETRIC value in moab.cfg by (maxgpudevices x gpumetrics) + 1. In this case,
the formula is (4 x 9) + 1 = 37, so whatever the MAXGMETRIC value is, it must be increased by 37.
This way, when enabling GPU metrics recording, Moab has enough GMETRIC types to accommodate
the GPU metrics.

GPU Metrics Map
The GPU metric names map is as follows (where X is the GPU number):

Metric name as
returned by
pbsnodes

GMETRIC name as stored in Moab Metric output

timestamp gpu_timestamp

The gpu_timestamp metric is global to all GPUs on
the node and indicates the last time the driver
collected information on the GPUs.

The time data was collected
in epoch time

gpu_fan_speed gpuX_fan The current fan speed as a
percentage

gpu_memory_
total

gpuX_mem The total GPU memory in
megabytes

gpu_memory_
used

gpuX_usedmem The total used GPU memory
in megabytes

gpu_utilization gpuX_util The GPU capability currently
in use as a percentage

gpu_memory_util-
ization

gpuX_memutil The GPU memory currently
in use as a percentage

gpu_ecc_mode gpuX_ecc Whether ECC is enabled or
disabled

20.0 Accelerators

720 20.4 GPU Metrics

20.5 Intel® Xeon Phi™ Coprocessor Configuration 721

Metric name as
returned by
pbsnodes

GMETRIC name as stored in Moab Metric output

gpu_single_bit_
ecc_errors

gpuX_ecc1err The total number of EEC
single-bit errors since the last
counter reset

gpu_double_bit_
ecc_errors

gpuX_ecc2err The total number of EEC
double-bit errors since the
last counter reset

gpu_temperature gpuX_temp The GPU current tem-
perature in Celsius

Example 20-1: GPU example

$ mdiag -n -v --xml

<Data>
<node AGRES="GPUS=2;"
AVLCLASS="[test 8][batch 8]"
CFGCLASS="[test 8][batch 8]"
GMETRIC="gpu1_fan:59.00,gpu1_mem:2687.00,gpu1_usedmem:74.00,gpu1_util:94.00,gpu1_
memutil:9.00,gpu1_ecc:0.00,gpu1_ecc1err:0.00,gpu1_ecc2err:0.00,gpu1_temp:89.00,gpu0_
fan:70.00,gpu0_mem:2687.00,gpu0_usedmem:136.00,gpu0_util:94.00,gpu0_memutil:9.00,gpu0_
ecc:0.00,gpu0_ecc1err:0.00,gpu0_ecc2err:0.00,gpu0_temp:89.00,gpu_
timestamp:1304526680.00"
GRES="GPUS=2;"
LASTUPDATETIME="1304526518" LOAD="1.050000"
MAXJOB="0" MAXJOBPERUSER="0" MAXLOAD="0.000000" NODEID="gpu"
NODEINDEX="0" NODESTATE="Idle" OS="linux" OSLIST="linux"
PARTITION="makai" PRIORITY="0" PROCSPEED="0" RADISK="1"
RAMEM="5978" RAPROC="7" RASWAP="22722" RCDISK="1" RCMEM="5978"
RCPROC="8" RCSWAP="23493" RMACCESSLIST="makai" SPEED="1.000000"
STATMODIFYTIME="1304525679" STATTOTALTIME="315649"
STATUPTIME="315649"></node>
</Data>

20.5 Intel® Xeon Phi™ Coprocessor Configuration
Intel Many-Integrated Cores (MIC) architecture configuration
If you use an Intel Many-Integrated Cores (MIC) architecture-based product (e.g., Intel Xeon Phi™) in your
cluster for parallel processing, you must configure TORQUE to detect them.

20.0 Accelerators

Prerequisites

l TORQUE 4.2 or later

l If you set up TORQUE using auto-detection and intend to get the MIC-based device status report,
you must build pbs_mom on a system that has the lower-level API libraries for the MIC-based
device(s) installed. Additionally, every MOM built with --enable-mics and running on a
compute node must already have the lower-level API libraries installed on the node. Note that the
library is called coi_host. You must obtain the API libraries from Intel.

Setup Options

There are two ways to configure MIC-based devices with TORQUE: (1) manually and (2) by auto-
detection.

Manual configuration

l Add mics=X to the nodes file for the appropriate nodes.

napali np=12 mics=2

Auto-detect

When you use auto-detection, pbs_mom discovers the MIC-based devices and reports them to pbs_server.

l At build time, add --enable-mics to the configure line.

./configure --enable-mics <other configure options>

Validating the configuration

TORQUE

pbsnodes

Example 20-2: pbsnodes output

slesmic
state = free
np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=7442004852,gres=,loadave=0.00,ncp
us=32,physmem=65925692kb,availmem=66531344kb,totmem=68028984kb,idletime=59059,nusers=2
,nsessions=8,sessions=4387 4391 4392 4436 4439 4443 4459 100395,uname=Linux slesmic
3.0.13-0.27-default #1 SMP Wed Feb 15 13:33:49 UTC 2012 (d73692b) x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 2
mic_status = mic[1]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;free_

physmem=7854972928;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.000000;normalized_load=0.000000;,mic[0]=mic_id=8796;num_cores=61;num_
threads=244;physmem=8065748992;free_physmem=7872712704;swap=0;free_swap=0;max_
frequency=1090;isa=COI_ISA_KNC;load=0.540000;normalized_load=0.008852;

rhmic.ac
state = free

20.0 Accelerators

722 20.5 Intel® Xeon Phi™ Coprocessor Configuration

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/1-installConfig/specifyComputeNodes.htm

20.5 Intel® Xeon Phi™ Coprocessor Configuration 723

np = 100
ntype = cluster
status =

rectime=1347634381,varattr=,jobs=,state=free,netload=3006171583,gres=,loadave=0.00,ncp
us=32,physmem=65918268kb,availmem=66901588kb,totmem=67982644kb,idletime=59477,nusers=2
,nsessions=2,sessions=3401 29320,uname=Linux rhmic.ac 2.6.32-220.el6.x86_64 #1 SMP Tue
Dec 6 19:48:22 GMT 2011 x86_64,opsys=linux

mom_service_port = 15002
mom_manager_port = 15003
mics = 1
mic_status = mic[0]=mic_id=8796;num_cores=61;num_threads=244;physmem=8065748992;free_

physmem=7872032768;swap=0;free_swap=0;max_frequency=1090;isa=COI_ISA_
KNC;load=0.540000;normalized_load=0.008852;<mic_status>;

Moab

mdiag -n -v

Example 20-3: mdiag -n -v output

$ mdiag -n -v
compute node summary
Name State Procs Memory Disk Swap
Speed Opsys Arch Par Load Classes Features

hola Idle 4:4 8002:8002 1:1 10236:13723
1.00 linux - hol 0.24 [batch] -
GRES=MICS:2,
----- --- 4:4 8002:8002 1:1 10236:13723

Total Nodes: 1 (Active: 0 Idle: 1 Down: 0)

checknode -v

Example 20-4: checknode output

$ checknode slesmic
node slesmic

State: Idle (in current state for 00:00:16)
Configured Resources: PROCS: 100 MEM: 62G SWAP: 64G DISK: 1M MICS: 2
Utilized Resources: SWAP: 1581M
Dedicated Resources: ---
Generic Metrics: mic1_mic_id=8796.00,mic1_num_cores=61.00,mic1_num_
threads=244.00,mic1_physmem=8065748992.00,mic1_free_physmem=7854972928.00,mic1_
swap=0.00,mic1_free_swap=0.00,mic1_max_frequency=1090.00,mic1_load=0.12,mic1_
normalized_load=0.00,mic0_mic_id=8796.00,mic0_num_cores=61.00,mic0_num_
threads=244.00,mic0_physmem=8065748992.00,mic0_free_physmem=7872679936.00,mic0_
swap=0.00,mic0_free_swap=0.00,mic0_max_frequency=1090.00
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: linux Arch: ---
Speed: 1.00 CPULoad: 0.000
Classes: [batch]
RM[napali]* TYPE=PBS
EffNodeAccessPolicy: SHARED

Total Time: 3:45:43 Up: 3:45:43 (100.00%) Active: 00:00:00 (0.00%)

Reservations:

20.0 Accelerators

Job submission

Syntax

Example 20-5: Request MIC-based device(s) in qsub

qsub -l nodes=X:mics=Y

Because these resources are delimited with a colon, this command requests a job with X nodes and Y mics per task. If you
run the same command and delimit the resources with a comma (qsub -l nodes=X,mics=Y), you request a job
with X nodes and Y mics per job.

qstat -f

Example 20-6: qstat -f output

Job Id: 5271.napali
Job_Name = STDIN
Job_Owner = dbeer@napali
job_state = Q
queue = batch
server = napali
Checkpoint = u
ctime = Fri Sep 14 08:56:33 2012
Error_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.e5271
Hold_Types = n
Join_Path = oe
Keep_Files = n
Mail_Points = a
mtime = Fri Sep 14 08:56:33 2012
Output_Path = napali:/home/dbeer/dev/private-torque/trunk/STDIN.o5271
Priority = 0
qtime = Fri Sep 14 08:56:33 2012
Rerunable = True
Resource_List.neednodes = 1:mics=1
Resource_List.nodect = 1
Resource_List.nodes = 1:mics=1
substate = 10
Variable_List = PBS_O_QUEUE=batch,PBS_O_HOME=/home/dbeer,

PBS_O_LOGNAME=dbeer,
PBS_O_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/b
in:/usr/games,PBS_O_MAIL=/var/mail/dbeer,PBS_O_SHELL=/bin/bash,
PBS_O_LANG=en_US.UTF-8,
PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfilter,
PBS_O_WORKDIR=/home/dbeer/dev/private-torque/trunk,PBS_O_HOST=napali,
PBS_O_SERVER=napali

euser = dbeer
egroup = company
queue_rank = 3
queue_type = E
etime = Fri Sep 14 08:56:33 2012
submit_args = -l nodes=1:mics=1
fault_tolerant = False
job_radix = 0
submit_host = napali

20.0 Accelerators

724 20.5 Intel® Xeon Phi™ Coprocessor Configuration

20.6 Intel® Xeon Phi™ Co-processor Metrics 725

checkjob -v

Example 20-7: checkjob -v output

dthompson@mahalo:~/dev/moab-test/trunk$ checkjob -v 2
job 2 (RM job '2.mahalo')

AName: STDIN
State: Idle
Creds: user:dthompson group:dthompson class:batch
WallTime: 00:00:00 of 1:00:00
SubmitTime: Thu Sep 13 17:06:06
(Time Queued Total: 00:00:24 Eligible: 00:00:02)

TemplateSets: DEFAULT
Total Requested Tasks: 1

Req[0] TaskCount: 1 Partition: ALL
Dedicated Resources Per Task: PROCS: 1 MICS: 1

...

20.6 Intel® Xeon Phi™ Co-processor Metrics
Intel Many-Integrated Cores (MIC) architecture-based device (e.g., Intel Xeon Phi™) metrics can be
collected for nodes that:

l Have one or more MIC-based devices.

l Run TORQUE 4.2.x or later.

l Run Moab 7.2 or later.

MIC-based device metric tracking must be enabled in moab.cfg:

RMCFG[torque] flags=RECORDMICMETRICS

There are 11 metrics for each MIC-based device within a node. If the maximum MIC-based devices
within a node is 4, you must increase the MAXGMETRIC value in moab.cfg by (maxmicdevices x
micmetrics). In this case, the formula is (4 x 11) = 44, so whatever the MAXGMETRIC value is, it
must be increased by 44. This way, when enabling MIC-based device metrics recording, Moab has
enough GMETRIC types to accommodate the additional metrics.

MIC-basedMetrics Map
The MIC-based metric names map is as follows (where X is the MIC-based device number):

20.0 Accelerators

Metric name as
returned by
pbsnodes

GMETRIC name
as stored in
Moab

Metric output

mic_id micX_mic_id The ID of the MIC-based device

num_cores micX_num_cores The number of cores in the MIC-based device

num_threads micX_num_threads The number of hardware threads on the MIC-based device

physmem micX_physmem The total physical memory in the MIC-based device

free_physmem micX_free_physmem The available physical memory in the MIC-based device

swap micX_swap The total swap space on the MIC-based device

free_swap micX_free_swap The unused swap space on the MIC-based device

max_frequency micX_max_frequency The maximum frequency speed of any core in the MIC-
based device

isa micX_isa The hardware interface type of the MIC-based device

load micX_load The total current load of the MIC-based device

normalized_load micX_normalized_
load

The normalized load of the MIC-based device (total load
divided by number of cores in the MIC-based device)

20.0 Accelerators

726 20.6 Intel® Xeon Phi™ Co-processor Metrics

21.1 Policy-based VMMigration 727

21.0 VMs
l Policy-based VM Migration on page 727

l Overcommit Factor and Threshold on page 729

l Overutilization Migration on page 731

l Green Migration and Consolidation on page 731

21.1 Policy-based VMMigration
One of the unique features of Moab Adaptive Computing Suite is policy-based VM migration. Using
information about data center applications and server load, Moab can aim to keep VMs in the data center
optimally distributed across hypervisors.

There are two types of policy-based VM migration:

l Performance-based Migration

l Consolidation-based Migration (formerly known as "Green Migration")

These two types have differing goals that at times may seem at odds with one another. Fortunately,
Moab's scheduling engine is, in most cases, able to resolve and satisfy both sets of goals:

l Performance goal: To equalize loads across hypervisors as migrations are queued due to
overcommit conditions. This places VMs to be migrated on the least-loaded HV available.

l Consolidation goal: To load hypervisors as close to thresholds as possible, without exceeding
them. This policy places VMs to be migrated on the most loaded HV possible, within these
constraints. A second loop of this policy will select lightly-loaded hypervisors to be evacuated
completely.

This chapter will explain each type of migration in more detail and the general steps taken by Moab to
find the best VM placement. It will also discuss how to configure Moab to perform automatic migration.

l Overcommit Factor and Threshold

l Overutilization Migration

l Green Migration and Consolidation

Throttling VMMigration
When the event occurs that triggers the migration you will want to prevent your infrastructure from
being overloaded with migrations. In the following example we use GRES to limit the migration of VMs to
10.

Example of throttling in the Moab.cfg:

Limit for reservation-based migration throttle Moab.cfg
#Throttle the number of VMs that can be migrated at any given time to 10
VMMigrateThrottle 10

General Notes
l If the RM reports a VM's resources as undefined or 0, or the VM's reported resources do not meet
the following criteria, Moab prevents the VM from migrating.

o The VM's state must not be "Unknown."

o The VM must have a reported CPULOAD greater than 0.

o The VM must have an AMEMORY less than its CMEMORY. This indicates that some memory
is currently in use and tells Moab that the RM is reporting memory correctly.

l The RM must report a hypervisor's HVType and a positive CPU and memory load for Moab to
consider it for migration; however, Moab will allow migration to hypervisors without a reported
CPU or memory load if VMMIGRATETOZEROLOADNODES is TRUE.

l The mvmctl -f command, run with the eval flag, does not submit migration jobs, but returns a
report detailing the actions that would occur if you configured a VM migration policy.

Example moab.cfg

SCHEDCFGMoab SERVER=server:42559

#Note for this you would need to have a xcat and msm configuration. For convenience I
have removed those to keep this example short
#VM Management

HideVirtualNodes Transparent
AllowVMMigration TRUE

VMMigrateThrottle 10

PARCFG[ALL] VMMigrateDuration=0:40:00
PARCFG[ALL] VMCreateDuration=01:00:00
PARCFG[ALL] VMDeleteDuration=30:00

#List of images available

IMAGECFG[xcat] VMOSLIST=suse11,win2008,rhel54

#Set the powerpolicy for each node

NODECFG[DEFAULT] POWERPOLICY=green

#Number of systems to keep active for a resource in the pool. This example keeps one
system available if VM migration is needed.

MaxGreenStandByPoolSize 1

PARCFG[xcat] NODEPOWEROFFDURATION=20:00
PARCFG[xcat] NODEPOWERONDURATION=20:00

#Max time to wait before a hypervisor is powered off if that hypervisor is idle. This
is a green setting
NodeIdlePowerThreshold 40:00:00

21.0 VMs

728 21.1 Policy-based VMMigration

21.2 Overcommit Factor and Threshold 729

#Overcommit settings and green settings

NODEAVAILABILITYPOLICY UTILIZED
VMMigrationPolicy OVERCOMMIT,CONSOLIDATION@10:00:00
VMOCThreshold PROC:0.7,MEM:0.95
NODECFG[DEFAULT] OVERCOMMIT=PROC:2.0,MEM:2.0

GEVENTCFG[disk_free] ACTION=fail SEVERITY=4
NODECFG[DEFAULT]
TRIGGER=atype=exec,etype=threshold,failoffset=1:00,threshold=gmetricdisk_
free>90,action="/opt/moab/tools/filesize_fault.py $OID $METRICTYPE"

21.2 Overcommit Factor and Threshold
The two main configuration settings that govern how migrations work are the Overcommit Factor and
Overcommit Threshold. Both can be applied to the processors and memory of virtual machines (VM's).

The Overcommit Factor and Threshold can be defined as a global default or on a per-node basis.

NODECFG[DEFAULT] OVERCOMMIT=PROC:2.0,MEM:2.0 # This is the default global policy
NODECFG[node42] OVERCOMMIT=PROC:3.0,MEM:3.0 # This is a node-specific policy for
node42

Overcommit Factor defines the upper bound or maximum amount of VCPUs that can be created on any
given hypervisor (HV). For example, if you have a hypervisor with 12 processors or cores (Moab sees
them as 12 processors), and have an Overcommit Factor of 2.0 for procs, then Moab will not allow, under
any condition, more than 24 VCPU's to be allocated on this hypervisor. Remember: a VM can have one or
more VCPU's. So, in this example, the HV could only support 8 VM's if they all had 3 VPCU's each. It could
support 4 VM's if they had 6 VPCU's each, and so forth.

The Overcommit Threshold defines how many VM's are allowed on a node if those VM's have a load
being reported. The Overcommit Factor defines the maximum under any condition, but the Overcommit
Threshold controls how many can be practically supported by a hypervisor due to load.

An Overcommit Threshold is a number between 0 and 1 and is interpreted as a percentage that is
applied to the number of configured processors. It is not applied to the overcommitted processor count.
For example, if we have an Overcommit Threshold of 0.7 for CPUs and a hypervisor with 12 configured
processors, then that HV can support a CPU load of up to 8.4 before Moab will try to migrate VM's off of
it. Moab uses the CPULOAD reported for the hypervisor to determine if the threshold is exceeded.

An example using both the Overcommit Factor and Overcommit Threshold is as follows:

l We have a hypervisor with 12 procs, an overcommit factor of 2.0 and a threshold of 0.7.

We initially create VM's on the hypervisor. Each VM has a VCPU count of 1 and a CPULOAD of 0.1.
We keep creating VM's on the hypervisor until we have 24. At this point, Moab will not any more
VMs to be created because the Overcommit Factor has been reached (12x2.0=24). The hypervisor
reports a load of about 2.4 (this will usually be greater than the sum of the VM loads due to
overhead and VMs that are not under Moab's control). The load is well below the threshold of 0.7
(threshold) * 12 (number of processors) = 8.4, so no VM's need be migrated.

21.0 VMs

#Example of the above implemented in Moab.cfg
NODEAVAILABILITYPOLICY UTILIZED
VMMigrationPolicy OVERCOMMIT,CONSOLIDATION@10:00:00
NODECFG[DEFAULT] VMOCThreshold=PROC:0.7,MEM:0.95
NODECFG[DEFAULT] OVERCOMMIT=PROC:2.0,MEM:2.0

l The example above first specifies NODEAVAILABILITYPOLICY UTILIZED. This tells Moab to use
what the resource manager is reporting as being used for resources. Next the OVERCOMMIT flag
must be set on VMMigrationPolicy for the VMOCTHRESHOLD attribute to function.
CONSOLIDATION is then also specified with an Overcommit migration even time of 10:00:00 or
10 minutes. Next VMOCThreshold is then specified to overcommit PROC by .7 and MEM by .95
allowing PROC utilization to reach 8.2 and MEM to reach 22.8 Gigs (.95 x 24) before action needs
to be taken. Finally each node is given a default OVERCOMMIT for PROC by 2 and MEM by 2. This
could allow up to 24 VM's at 1 processor and 2 Gigs of memory each.

l Over time, the VMs start to get used more and their CPULOAD increases. Soon, four of the VM's
load shoots up to 3. This brings the load to 12 x 3.0 = 36. This is above the Overcommit Threshold
of 8.4, so Moab will now need to migrate VM's during the next Overcommit Migration event.

l When the Overcommit Migration event occurs, Moab will migrate enough of the high-load VMs off
of the hypervisor to bring the load back down below 8.4. In this example, Moab would need to
migrate at least TWO of the high-load VMs, bringing the total load down to 6.2. Once these two
VM's have been migrated, Moab should not migrate any more, as we are now below our threshold.
Moab should migrate these two VM's in the same Overcommit event--it should not take multiple
events to migrate both of them.

Example of Overcommit Migration event

#GMETRIC threshold based triggers
WLM Metric Threshold to check file system utilization
GEVENTCFG[disk_free] ACTION=fail SEVERITY=4
NODECFG[DEFAULT] TRIGGER=atype=exec,etype=threshold,failoffset=1:00,threshold=gmetric
[disk_free]>90,action="/opt/moab/tools/filesize_fault.py $OID $METRICTYPE"

In the above example, a GEVENT of type disk_free is created. This is one of the predefined GEVENTS
provided by Moab. The action is set to fail if the event is triggered and give it an arbitrary SEVERITY of
4. Next, the nodes to be defined with this event are specified. In this example this is applied to all nodes.
If the threshold is over 90, Moab is informed the following action will take effect:
/opt/moab/tools/filesize_fault.py $OID $METRICTYPE

Example of supported GMETRIC. Note this is not an exhaustive list:

"bytes_out"Number of net bytes out per second
"cpu_num" Number of CPUs
"cpu_speed" processor speed (in MHz)
"disk_free" Total free disk space (GB)
"disk_total" Total available disk space
"load_one" One minute load average
"machine_type" cpu architecture
"mem_free" Amount of available memory (KB)
"mem_total" Amount of available memory
"os_name"
"os_release" operating system release
"pkts_in" NYI */ / Packets in per second (packets/sec)
"pkts_out" NYI Packets out per second

21.0 VMs

730 21.2 Overcommit Factor and Threshold

21.3 Overutilization Migration 731

"swap_free" Amount of available swap memory (KB)
"swap_total" Total amount of swap memory

Note that the Overcommit Factor and Threshold should also apply when selecting a VM destination. If a
VM needs to be migrated off of a loaded hypervisor Y, but moving it to hypervisor X would cause X's load
or overcommit factor to be violated, Moab cannot move it to X. It must try to find another location. Also,
the example above dealt only with CPU or processor counts, but Overcommit Factor and Threshold also
apply to a wide array of system resources. You can also create your own with Ganglia.

21.3 Overutilization Migration
Overutilization occurs when a hypervisor's resource usage load goes above a defined threshold. Once
this occurs, Moab can be configured to migrate any VM's present on the hypervisor to other, less-used
hypervisors.

Calculations
In terms of values returned by the resource managers, a hypervisor's Utilization Threshold is exceeded
(and migrations should occur at the next overcommit migration event) if:

CPULOAD(HV) > VMOCTHRESHOLD(PROC) * CPROC(HV)

or if:

(CMEMORY(HV) - AMEMORY(HV)) / CMEMORY(HV) > VMOCTHRESHOLD(MEM) * CMEMORY(HV)

Moab will calculate the quantity of virtual machines to remove by subtracting the sum of the CPULOAD
(VM)'s and/or the (CMEMORY(VM) - AMEMORY(VM))'s from the corresponding processor or memory
hypervisor loads until the overcommit condition is improved.

As mentioned in the example in Overcommit Factor and Threshold we see the following from the
configuration:

NODECFG[DEFAULT] OVERCOMMIT=PROC:2.0,MEM:2.0

Moab will monitor the resources based off the resource manager's reports and then migrate the VM to a less used
hypervisor. Note there are many parameters that this can be attached to using GMETRIC.

21.4 Green Migration and Consolidation
As stated previously, the goal of consolidation is to minimize the number of hypervisors with one or
more VMs on them. This is accomplished by migrating VMs from lightly utilized hypervisor onto other
hypervisors. The primary goal is to completely evacuate as many hypervisors as possible. Additional
migrations to make a hypervisor lightly loaded are also desirable. The VMs from a particular hypervisor
can be migrated onto more than one target hypervisor.

21.0 VMs

http://ganglia.sourceforge.net/

Calculations
In terms of values returned by the resource managers, a hypervisor will not allow a VM to be
provisioned or a migration to occur that violates a UTILIZATION Threshold (if set) or that violate

SUM(CPROC(VM)) > OVERCOMMIT(PROC) * CPROC(HV)

or violates:

SUM(CMEMORY(VM)) > OVERCOMMIT(MEM) * CMEMORY(HV)

AllowVMMigration TRUE
AggregateNodeActions False
VMMigrateThrottle 10
PARCFG[ALL] VMCreateDuration=01:00:00
PARCFG[ALL] VMDeleteDuration=30:00
PARCFG[ALL] VMMigrateDuration=0:40:00
NODECFG[DEFAULT] POWERPOLICY=OnDemand
#MaxGreenStandByPoolSize considered a standby pool. Default value is 0 and when 0 is
set it disables the standbypool. Nodes can be evaluated based off idle rate to be
added to the standby pool.
MaxGreenStandByPoolSize 0
PARCFG[xcat] NODEPOWEROFFDURATION=20:00
PARCFG[xcat] NODEPOWERONDURATION=20:00
NodeIdlePowerThreshold 40:00:00 # Time a node must be idle before we shut it down

21.0 VMs

732 21.4 Green Migration and Consolidation

22.1 About workload-driven cloud services 733

22.0 Workload-Driven Cloud Services

22.1 About workload-driven cloud services
A cloud service is one or more job workflows held in a virtual container — each comprising a separate
but related piece of the service — that create, set up, and maintain it. Individual jobs within the
workflows implement Moab triggers to run scripts that perform certain tasks and to set and receive
variables. Variables correctly sequence the jobs that set up the services and allow scripts further in the
workflow to locate them. The following example illustrates the composition of a simple VM service
without storage:

A VC contains the job workflow, its jobs, and their triggers and shared variables. That workflow consists
of a number of generic system jobs and a single selectable job that the user submits when requesting the
service or service component.

Workflows
A cloud workflow contains a series of generic system jobs, or system jobs with a trigger, with
dependencies and variables. The workflow also contains a selectable job, which must meet the following
criteria:

1. It is not a generic system job.

2. It is the final job in the workflow.

3. If the service is a VM, it is a VM-tracking job.

Each job, besides the first in the workflow, has a dependency on another job to ensure that they run in
the correct order. Workflows must be linear; they cannot branch.

Image 22-1: Workflow example

As shown in the illustration above, the user requests the selectable job using the msub command. Moab
creates it and the other jobs inside of a VC. They run in the order specified by the template
dependencies, ending with the selectable job.

Virtual Containers
Virtual Containers (VCs) are logical groupings of objects with a shared variable space. They can hold
jobs, reservations, nodes, VMs, and other VCs, including services.

22.0 Workload-Driven Cloud Services

734 22.1 About workload-driven cloud services

22.1 About workload-driven cloud services 735

This image illustrates a VC containing all possible object types, a PM workflow, and a child VC containing
a VM service. The child VC contains two virtual machines and one physical machine workflow.

Variables
Variables are the method by which jobs in a workflow, or even jobs within separate subservices of a
single service, send messages to one another. A variable could be the IP address of a new VM, an
indication of script success or failure, or another piece of information that affects other jobs in the
service. By default, trigger variables are only accessible to its parent object (in this case, the job to
which the trigger is attached); however, If configured to do so, triggers will pass their variables up to
the VC, granting all objects access to one another's variables.

22.0 Workload-Driven Cloud Services

The image above shows vc1, a container comprised of two jobs. Each job has a trigger that sets a
variable and it passes it up to vc1. When vc1 receives the variables, they become available to all
objects. Job2 can receive V1, and Job1 can receive V2.

Additionally, if vc1 is the child of another VC, it passes all those variables up to its parent. This means
that, as long as they have one VC in common, an object buried deep inside of multiple VCs can access a
variable set by an object deep inside another series of VCs.

When variables are to be passed further up than one VC, Moab applies a name space before sending them
to the parent VC(s). This way, if variables originating from separate components of a single service have
the same name, they will not overwrite each other. A variable's new name becomes the name of its
immediate VC and its original name with a period between them (<vcName>.<varName>). For example, if
V2 in the image above were passed up to vc1's parent VC, its name would become vc1.V2.

22.0 Workload-Driven Cloud Services

736 22.1 About workload-driven cloud services

22.1 About workload-driven cloud services 737

The VM service in vc9 pictured above is made up of two VMs services, each containing one VM and two
storage mounts. The six child containers each have a job with a trigger that sets a variable. When the
variables are passed up from the first VC to the second, they inherit the name of the first VC as part of
their own name. If this did not occur, vc9 would have four MtAddr and two IPAddr variables overwriting
one another. A job that requests a variable originating from a different VC from its own would most
likely receive the wrong information. When configuring a trigger, you can request name spaces in the
argument list so that the script only pulls in the desired variable(s).

Setting upWorkload-Driven Cloud in Moab

1. Enable VMs and VM-tracking jobs in Moab. See Enabling Cloud Services.

2. Configure the setup templates using generic system jobs, where the trigger called will interact with
underlying systems or resource managers. See Creating a generic system job on page 739.

3. Set up job templates in moab.cfg that define generic workflows for all create VM processes. You
will likely create template workflows for other resources as well, such as storage or VLANs.
Configure the workflows with job template dependencies for receiving a host name, provisioning an
OS, setting up software, or other tasks. Set a single selectable job template to represent the main
resource for each workflow. See Creating a cloud workflow on page 740 and Requesting Name
Space Variables.

4. Create a virtual container to hold the workflow(s) that create the VM. See Creating a VC to Hold a
Service.

Related Tasks:

l Enabling Cloud Services

l Creating a Generic System Job

l Creating a Cloud Workflow

22.0 Workload-Driven Cloud Services

l Creating a Service

l Canceling a Service

Reference topics:

l Cloud-Specific Job Template Attributes

l Generic System Job Trigger Requirements

l VM Service Example

22.2 Tasks

22.2.1 Enabling cloud services

To configure Moab for cloud services

1. In the Moab configuration file, set HIDEVIRTUALNODES to TRANSPARENT and VMTRACKING to
TRUE.

HIDEVIRTUALNODES TRANSPARENT
VMTRACKING TRUE

HIDEVIRTUALNODES enables VM management and reveals hypervisors, and VMTRACKING turns on
Moab's ability to use VM-tracking jobs to represent VMs in the job queue.

2. Optional: By default, Moab takes no action when a VM expires or becomes stale (has not been
reported by the RM for five 30-second iterations). To customize this behavior, modify or add the
following parameters in moab.cfg:

l ENABLEVMDESTROY - causes Moab to automatically destroy VMs when their walltime expires or,
if VMSTALEACTION is DESTROY, when they become stale.

l VMSTALEACTION - specifies what action Moab should take when a VM becomes stale.

l VMSTALEITERATIONS - specifies how many consecutive iterations a VM must not be reported by
the RM for Moab to consider it stale.

l RMPOLLINTERVAL - sets the length of an iteration.

In the following example, Moab destroys stale VMs after three 60-second iterations.

RMPOLLINTERVAL 60,60
...
VMSTALEACTION DESTROY
ENABLEVMDESTROY TRUE
VMSTALEITERATIONS 3

22.0 Workload-Driven Cloud Services

738 22.2 Tasks

22.2 Tasks 739

22.2.2 Creating a generic system job
Context

Generic system jobs, or system jobs with a trigger, are created via job templates. They can be
selectable, but they should not be when used in a cloud workflow.

To create a generic system job

1. Create a job template that sets the GENERICSYSJOB attribute.

2. Create a trigger that meets the requirements detailed in Generic system job trigger requirements
on page 748 and make it the value of GENERICSYSJOB.

JOBCFG[gen]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/genericTrig.py",Timeout=5:00,Flags=
objectxmlstdin

22.0 Workload-Driven Cloud Services

22.2.3 Creating a cloud workflow
Context

The following procedure details the steps required to create a workflow that builds a VM. This
workflow contains four job templates:

1. createVM - The system job that creates the VM. It starts the workflow but may not run
immediately. The trigger sets the IP address of the VM as a variable when it successfully
completes.

2. installSoftware - The system job that installs software on the new VM. It depends on the
successful completion of createVM and uses the IP address variable to locate the correct VM.

3. createVMWithSoftware - The VM tracking job the user submits to request the workflow. It is the
final job in the workflow and depends on the successful completion of installSoftware.

4. destroy - The job that, if createVMWithSoftware is canceled, runs a script to delete the VM.

Image 22-2: Sample cloud workflow in submit order

22.0 Workload-Driven Cloud Services

740 22.2 Tasks

22.2 Tasks 741

Image 22-3: Sample cloud workflow in run order

To create a generic system job workflow

1. Create a generic system job template in moab.cfg that will set up the VM.

a. Give the template a unique name (createVM).

b. Set the INHERITRES attribute to TRUE.

c. Configure the trigger to launch a script that creates the VM (see Generic system job trigger
requirements on page 748). Set a variable to hold the VM's IP address.

JOBCFG[createVM] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/installVM.py
$HOSTLIST",Timeout=1:00:00,sets=^IPAddr
JOBCFG[createVM] INHERITRES=TRUE

2. Create a generic system job template to install software on the new VM.

a. Give the template a unique name (installSoftware).

b. Set the INHERITRES attribute to TRUE.

22.0 Workload-Driven Cloud Services

c. Specify a dependency on the createVM job using the TEMPLATEDEPEND attribute (see the Job
Dependency Syntax table for options). In this example, the installSoftware job begins after the
createVM job completes successfully.

d. Configure the trigger to launch a script that installs the software on VM, located via the IP
address provided in the IPAddr variable.

JOBCFG[installSoftware]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/setupSoftware.py
$IPAddr",Timeout=30:00,Flags=objectxmlstdin
JOBCFG[installSoftware] INHERITRES=TRUE
JOBCFG[installSoftware] TEMPLATEDEPEND=AFTEROK:createVM

If you are using your workflow in Moab Web Services or Viewpoint, the trigger attached to the
last setup job must pass up the Deployed variable upon success.

3. Create a template for the job that will act as the gate to the workflow. Do not make it a generic
system job.

a. Give the template a unique name (createVMWithSoftware).

b. Set a dependency on the previous job. In this case, createVMWithSoftware should begin after
installSoftware completes successfully.

c. Set the SELECT attribute to TRUE to indicate that users can request the workflow using this job
(see Applying templates based on job attributes on page 779 for more information). The SELECT
attribute also makes the workflow available in the Viewpoint service templates.

d. Set the VMTRACKING and NORMSTART flags. When you set the VMTRACKING flag on a job,
Moab automatically changes the SYSTEMJOBTYPE to vmtracking.

e. Configure the DESTROYTEMPLATE attribute to point to the destroy job in the workflow. When this
job is canceled, the destroy job runs a script to delete the service.

JOBCFG[createVMWithSoftware] TEMPLATEDEPEND=AFTEROK:installSoftware SELECT=TRUE
FLAGS=NORMSTART,VMTRACKING
JOBCFG[createVMWIthSoftware] DESTROYTEMPLATE=destroy

4. Create the destroy job template, specifying that it is a generic system job. Attach a trigger with a
script that will take the location of the VM or other workflow service from the IPAddr variable and
destroy the workflow.

JOBCFG[destroy] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/destroy.py
$IPAddr",timeout=5:00

5.

If you wish to implement an automatic VM migration policy, you must similarly configure a
migration job and link to it via the MIGRATETEMPLATE attribute.

To request the VM, submit a job with the createVMWithSoftware job template and any other desired
resources. You must specify a script to satisfy the msub syntax, but it will not actually run.

> msub -l walltime=2:00:00,template=createVMWithSoftware,nodes=1:ppn=4,mem=1024
anyScript.py

22.0 Workload-Driven Cloud Services

742 22.2 Tasks

22.2 Tasks 743

If ENABLEVMDESTROY is FALSE (default), Moab puts the VM-tracking job on hold when a VM
build times out rather than deleting it. The job is visible in the showq report. Releasing the job
hold causes Moab to attempt to pick up the VM again.

Moab creates a job and applies the createVMWithSoftware template to it. This includes the creation of
the installSoftware and createVM jobs. The INHERITRES attribute causes the new jobs to adopt the
same resource request as createVMWithSoftware (4 processors and 1 GB of memory). Moab then
applies their own templates.

The createVM job runs first, the trigger script returning the IP address of the new VM and setting it
as a variable. The job passes its allocation to the installSoftware job. installSoftware uses the
IP address variable to locate the VM and install software on it. The job returns its resources to
createVMWithSoftware, which is now the VM-tracking job.

22.2.4 Creating a service
Context

A VM service can contain multiple resources or subservices. For instance, the example below
contains a VM and storage. To combine multiple resources in a single service, you must create a
virtual container and add the services to it.

To create a virtual container and add workflows

1. Create the top layer VC using the mvcctl -c command.

> mvcctl -c
VC 'vc1' created

2. Submit the storage mount to vc1. To do so, run msub -l, requesting the storage workflow's
configured submit job. You may submit multiple storage mounts if desired. You must submit a job
script to satisfy the msub syntax, but Moab ignores the script.

> msub -l walltime=2:00:00,gres=gold:50,flags=gresonly,template=storage -W
x="vc=vc1" job.sh --xml
<Data><job JobID="Moab.4"></job><CreatedVC>vc2</CreatedVC></Data>

Job Moab.4 and VC vc2 have been created. Moab.4 has been placed inside of vc2, and vc2 has been placed inside
of vc1.

3. Submit the VM-tracking job to vc1, setting its dependencies on the storage mount variable (SM) and
its name space (vc2).

To request a specific name for your VM, set the VMID variable. The request will be rejected if
the VM ID is not available.

> msub -l walltime=INFINITY,template=VMTracking,os=rhel51,depend=set:vc2.SM -W
x="vc=vc1" -W x=var=VMID=myVM" job.sh --xml
<Data><job JobID="Moab.5"></job></CreatedVC>vc4</CreatedVC></Data>

Job Moab.5 and VC vc4 have been created. Moab.5 has been placed inside of vc4, and vc4 has been placed inside

22.0 Workload-Driven Cloud Services

of vc1. Moab.5 depends on vc2.SM, the variable set by Moab.4's trigger.

22.2.5 Canceling a service
Context

A few methods exist to delete a service in Moab. If the service is a VM, you can use the mvmctl -d
command and cancel any attached services (such as storage) by running canceljob on those services'
tracking jobs.

For any service, you can destroy the contained objects and delete the service container using mvcctl
-d as documented in the steps below, or you can delete each component of the service individually by
running canceljob on the tracking jobs.

Do not remove out-of-band VMs by deleting the placeholder reservation that Moab creates to
track its resources. Instead, verify that your resource manager no longer reports the VM, then
run mvmctl -d.

To cancel a service

1. When creating the service workflow, include a destroy job that will delete the service (all VMs,
storage, etc.) when the main job is canceled.

2. Set the DestroyObjects flag on the service's main VC.

> mvcctl -m flags+=DestroyObjects vc1

3. Run mvcctl -d on the VC. The DestroyObjects flag causes Moab to tear down the entire service, using
destroy template jobs where they exist.

> mvcctl -d vc1

vc1 and all of its objects are destroyed.

4. Alternately, rather than doing steps 2-3, you can run canceljob on the select job of each workflow to
delete the service. This will retain the main job while the destroy job runs. Once the destroy job
completes successfully, the main job or VM-tracking job will cancel.

mvmctl -d will also destroy the VM; however, Moab does not automatically delete attached resource
workflows, like storage mounts. You must use canceljob on the select (tracking) job of each attached
workflow to destroy the whole service.

22.0 Workload-Driven Cloud Services

744 22.2 Tasks

22.3 References 745

22.3 References

22.3.1 Cloud-specific job template attributes
The table below details the job template attributes that relate specifically to workload-driven cloud
services.

DESTROYTEMPLATE

Format <templateName>

Tem-
plate
Type

JSET

Descrip-
tion

When this job is canceled, Moab creates a new job and applies the specified template (must be a gen-
eric system job). The original job remains until the new job successfully completes. The job created by
DESTROYTEMPLATE is the cancel action for the original job. By default, the destroy job runs after the
tracking job; however, you can write the destroy job script so that it can be called regardless of
whether the setup or tracking job ran.
For a destroy job to run, its dependencies must be satisfied. You can disable dependencies by setting
the NOVMDESTROYDEPENDENCIES on page 1139 scheduler flag.

Example JOBCFG[VMTracking] GENERICSYSJOB=<triggerSpecs>
JOBCFG[VMTracking] DESTROYTEMPLATE=destroyVM

JOBCFG[destroyVM] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/destroy.py
$VMID",timeout=5:00

When the VMTracking job is canceled, the destroyVM job is created. When that completes,
VMTracking is removed.

GENERICSYSJOB

Format <triggerSpecifications>

Tem-
plate
Type

JSET

22.0 Workload-Driven Cloud Services

GENERICSYSJOB

Descrip-
tion

Causes the job template to create a special type of system job (a generic system job) that does the
following:

l runs for the duration of the trigger to which it is attached
l shares an exit code with the trigger
l must have one trigger attached to it that meets certain requirements (See Generic System
Job Trigger Requirements).

See Creating a Generic System Job for more information.

Example JOBCFG[test] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/setupSoftware.py
$IPAddr",Time=5:00

INHERITRES

Format <BOOLEAN> : TRUE | FALSE

Template
Type

JSET

Description This job inherits the resource definition of the job that created it (via TEMPLATEDEPEND). The job
that finishes first will pass its allocation directly to the next job.

Example JOBCFG[test] INHERITRES=TRUE

MIGRATETEMPLATE

Form-
at

<templateName>

Tem-
plate
Type

JSET

Descri-
ption

When this job is relocated, Moab creates a new job and applies the specified template (must be a
generic system job). The original job remains until the new job successfully completes. The job created
byMIGRATETEMPLATE is the migrate action for the original job.

22.0 Workload-Driven Cloud Services

746 22.3 References

22.3 References 747

MIGRATETEMPLATE

Exam-
ple

JOBCFG[VMTracking] MIGRATETEMPLATE=migrateVM

JOBCFG[migrateVM] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/migrate.py
$VMID $MASTERHOST",timeout=5:00 FLAGS=NORMSTART

When the VMTracking job is moved, the migrateVM job is created. When that completes,
VMTracking migrates to the desired location.

TEMPLATEDEPEND

Format <dependencyType>:<templateName>

Template
Type

JSET

Description Specifies when the job should run based on other jobs in the workflow. See the Job Dependency
Syntax table for details.

Example JOBCFG[test] TEMPLATEDEPEND=AFTEROK:test2

VMUSAGE

Format <requirepm|createvm>

Template
Type

JSET

Description Distinguishes between jobs that request an OS that might be available as both a physical machine
and as a virtual machine. If HIDEVIRTUALNODES on page 844 is TRANSPARENT, then Moab
will assume that jobs should create VMs. Valid options include:

l requirepm - job must run on a physical machine. This setting tells Moab that you are using
a normal HPC job.

l createvm - job must run on a hypervisor that can create a VM with the specified image.
See Scheduling Jobs When VMs Exist for details.

Example JOBCFG[test] VMUSAGE=createvm

A job with the test template applied must run on a hypervisor that can supports the VM it
sets up.

22.0 Workload-Driven Cloud Services

22.3.2 Generic system job trigger requirements
A generic system job specifies one trigger that must meet the all of the following criteria:

1. The EType is start.

2. The AType is exec.

3. The Timeout attribute is the desired walltime of the job. Moab ignores walltime requests when you
submit a generic system job, using the trigger Timeout instead.

4. The objectxmlstdin flag is set so that the job's XML, which contains the description of the VM being
created, is passed to the trigger stdin for the VM creation script to access.

The trigger fires when the system job begins, and, because the trigger's Timeout doubles as the job's
walltime, both complete at the same time. The job and trigger have the same completion code.

JOBCFG[gen] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/installVM.py
$HOSTLIST",Timeout=1:00:00,Flags=objectxmlstdin

The job template gen creates a job with a walltime of 1 hour.

Sometimes the trigger will set a variable on completion or require a variable to run at all. For
information about setting variables, passing them up to parent objects, and requiring variables on parent
objects, see the Trigger Variables documentation.

You can attach additional triggers using the TRIGGER attribute and delimit them with semicolons.

JOBCFG[gen] GENERICSYSJOB=<genericSystemJobTriggerSpecs>
JOBCFG[gen] TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>;TRIGGER=<triggerSpecs>

The job template gen creates a job with a walltime of 1 hour.

22.3.3 VM service example
This section describes how to set up a VM with two storage mounts. The scripts referenced in the code
samples are examples and not shipped with Moab.

#The VM-tracking job
JOBCFG[VMTracking] FLAGS=VMTRACKING SELECT=TRUE
JOBCFG[VMTracking] TEMPLATEDEPEND=AFTEROK:VMSetup
JOBCFG[VMTracking] DESTROYTEMPLATE=VMDestroy

JOBCFG[VMSetup] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/vm.py $MASTERHOST
$*.SM",flags=objectxmlstdin,timeout=5:00,sets=^VMID

JOBCFG[VMSetup] INHERITRES=TRUE

#This is VMID, not *.VMID, because it put directly into the VMTracking workflow (same
is true for storageDestroy below)
JOBCFG[VMDestroy] GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/destroy.py
$VMID",timeout=5:00

#Storage jobs
JOBCFG[storage] FLAGS=NORMSTART,GRESONLY SELECT=TRUE
JOBCFG[storage] WALLTIME=INFINITY
JOBCFG[storage] TEMPLATEDEPEND=AFTEROK:storageSetup

22.0 Workload-Driven Cloud Services

748 22.3 References

22.3 References 749

JOBCFG[storage] DESTROYTEMPLATE=storageDestroy

JOBCFG[storageSetup]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/storage.py",flags=objectxmlstdin,ti
meout=5:00,sets=^SM FLAGS=NORMSTART,GRESONLY
JOBCFG[storageSetup] INHERITRES=TRUE

JOBCFG[storageDestroy]
GENERICSYSJOB=EType=start,AType=exec,Action="$HOME/removeStorage.py $SM",timeout=5:00
SELECT=TRUE

The moab.cfg configuration above contains two service workflow templates: VM and storage. Each workflow is
comprised of three jobs: a setup job, a submit/tracking job, and a destroy job. The destroy jobs retrieve variables
containing their respective service's location and run a script to destroy their respective workflows.

The following image illustrates how the templates above will work together when one VMTracking and
two storage jobs are requested as part of a service in a single VC:

To put the workflows together like the service illustrated above, you would first need to create the top
layer VC (vc1).

> mvcctl -c
VC 'vc1' created

You would then submit the two storage mounts by creating two of the storage jobs and placing them
inside of vc1.

22.0 Workload-Driven Cloud Services

> msub -l walltime=1:00:00,gres=gold:50,flags=gresonly,template=storage -W x="vc=vc1"
job.sh --xml
vc2
> msub -l walltime=1:00:00,gres=silver:100,flags=gresonly,template=storage -W
x="vc=vc1" job.sh --xml
vc3

Finally, you would request the VMTracking job and place it into vc1, indicating its dependencies on the
storage VCs. Since these are being pulled from the uppermost VC, their name spaces will be applied and
must be specified (vc2.SM and vc3.SM).

> msub -l walltime=INFINITY,template=VMTracking,os=rhel51,depend=set:vc3.SM:vc2.SM -W
x="vc=vc1" -W x="trigns=vc1,vc2" -W x="var=VMID=myvm" job.sh --xml
vc4

22.0 Workload-Driven Cloud Services

750 22.3 References

23.1 About preemption 751

23.0 Preemption

23.1 About preemption
Sites possess workloads of varying importance, and users may want to run jobs with higher priorities
before jobs with lower priorities. This can be done by using preemption. Preemption is simply the
process by which a higher-priority job can take the place of a lower-priority job. You can also use
preemption for optimistic scheduling and development job support.

This section explains how to configure and use preemption. Simple example of preemption on page 771
offers a basic introduction and contains examples to help you get started using preemption. The other
sections offer more explanation and information about what you can do with preemption and contain
some best practices that will help you avoid the need for troubleshooting in the future.

While this section does not explain every possible preemption configuration, it does prescribe the best
practices for setting up and using preemption with your system. It is recommended that you follow the
established instructions contained in this section.

Preemption does not work with dynamic provisioning.

Neither SPANEVENLY nor DELAY values of the NODESETPLUS parameter will work with multi-
req jobs or preemption.

Do not allow preemption with interactive jobs unless PREEMPTPOLICY is set to CANCEL. (For
more information, see Canceling jobs with preemption on page 752.)

Tasks associated with preemption:

The following sections include information about each type of preemption, their different usage
benefits, and any configurations and settings needed to use them.

l Canceling jobs with preemption on page 752

l Checkpointing jobs with preemption on page 755

l Requeueing jobs with preemption on page 757

l Suspending jobs with preemption on page 760

l Using owner preemption on page 763

l Using QoS preemption on page 767

Preemption references:

These sections contain information that you can use as references for the preemption tasks.

l Manual preemption commands on page 768

l Preemption flags on page 769

l PREEMPTPOLICY types on page 770

l Simple example of preemption on page 771

l Testing and troubleshooting preemption on page 774

Related topics

l Optimizing Scheduling Behavior – Backfill and Node Sets on page 433

23.2 Preemption tasks

23.2.1 Canceling jobs with preemption
Context

CANCEL is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 770). The CANCEL value cancels active jobs, regardless of any JOBFLAGS (such as
REQUEUEABLE or SUSPENDABLE). (For more information, see Job Flags on page 73.)

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 769

You should not allow preemption with interactive jobs unless PREEMPTPOLICY is set to
CANCEL.

The following outlines some benefits of using CANCEL and also lists some things you should be
aware of if you choose to use it.

Advantages:

This attribute is the easiest to configure and use.

Cautions:

Canceled jobs are not automatically restarted or requeued. Users must resubmit canceled jobs.

To preempt jobs using CANCEL

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

23.0 Preemption

752 23.2 Preemption tasks

23.2 Preemption tasks 753

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 774).

c. Set PREEMPTPOLICY to CANCEL (for more information, see PREEMPTPOLICY types on page
770).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 769).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CANCEL

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

(Optional) Examine the following output for showq:

Moab.8
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME

23.0 Preemption

Moab.7 john Canceling 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that test1 is canceled when test2 is submitted.

(Optional) Examine the checkjob outputs for these two jobs:

[john@g06]$ checkjob Moab.9
job Moab.9

State: Removed
Completetion Code: -1 Time: Thu Nov 10 12:28:48
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:28:44
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100

Note that the preempted job has been removed.

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

23.0 Preemption

754 23.2 Preemption tasks

23.2 Preemption tasks 755

StartTime: Thu Nov 10 12:28:48
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Related topics

l Suspending jobs with preemption on page 760
l Checkpointing jobs with preemption on page 755
l Requeueing jobs with preemption on page 757
l Preemption flags on page 769
l About preemption on page 751
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.2.2 Checkpointing jobs with preemption
Context

CHECKPOINT is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY
types on page 770). For systems that allow checkpointing, the CHECKPOINT value allows a job to
save its current state and either terminate or continue running. A checkpointed job may restart at
any time and resume execution from its most recent checkpoint.

You can tune checkpointing behavior on a per-resource manager-basis by setting the CHECKPOINTSIG
and CHECKPOINTTIMEOUT attributes of the RMCFG parameter.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 769

The following outlines some benefits of using CHECKPOINT and also lists some things you should be
aware of if you choose to use it.

Advantages:

This attribute allows you to restart a job from its last checkpoint.

Cautions:

Jobs tend to take longer to complete when you use CHECKPOINT.

23.0 Preemption

To preempt jobs using CHECKPOINT
Make the following configurations to the moab.cfg file:

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 774).

3. Set PREEMPTPOLICY to CHECKPOINT (for more information, see PREEMPTPOLICY types on page
770).

4. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 769).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY CHECKPOINT

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

Related topics

l Suspending jobs with preemption on page 760
l Requeueing jobs with preemption on page 757
l Canceling jobs with preemption on page 752
l Preemption flags on page 769
l About preemption on page 751
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.0 Preemption

756 23.2 Preemption tasks

23.2 Preemption tasks 757

23.2.3 Requeueing jobs with preemption
Context

REQUEUE is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 770). The REQUEUE value terminates active jobs and returns them to the job queue in an
idle state.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 769

The following outlines some benefits of using REQUEUE and also lists some things you should be
aware of if you choose to use it.

Advantages:

l Jobs are automatically resubmitted into the job queue.

Cautions:

l A job gets resubmitted in the job queue at the same priority it had when Moab originally
started it (i.e., the job does not jump ahead in the queue).

l Jobs start over from the beginning.

You must mark a job as RESTARTABLE if you want it to requeue. If you do not, the job will be
canceled when it is preempted.

If supported by the resource manager, you can set the RESTARTABLE job flag when submitting
the job by using the msub -r option. Otherwise, use the JOBFLAGS attribute of the associated class
or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=RESTARTABLE

For more information, see Job Flags on page 73.

To preempt jobs using REQUEUE

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 774).

c. Set PREEMPTPOLICY to REQUEUE (for more information, see PREEMPTPOLICY types on page
770).

d. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 769).

For example:

23.0 Preemption

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

(Optional) Examine the following output for showq:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

(Optional) Examine the following output for showq and checkjob:

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

23.0 Preemption

758 23.2 Preemption tasks

23.2 Preemption tasks 759

0 blocked jobs

Total jobs: 2

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Related topics

l Suspending jobs with preemption on page 760
l Checkpointing jobs with preemption on page 755
l Canceling jobs with preemption on page 752
l Preemption flags on page 769
l About preemption on page 751
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.0 Preemption

23.2.4 Suspending jobs with preemption
Context

SUSPEND is one of the PREEMPTPOLICY types (for more information, see PREEMPTPOLICY types
on page 770). The SUSPEND attribute causes active jobs to stop executing, but to remain in
memory on the allocated compute nodes.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 769

The following outlines some benefits of using SUSPEND, and also lists some things you should be
aware of if you choose to use it.

Advantages:

l The job remains in memory on the allocated compute nodes.

l Using SUSPEND frees up processor resources.

l The job can restart where it left off before it was suspended.

Cautions:

l There is a possibility that having multiple suspended jobs on a compute node will crash the
swap.

l Moab tracks only requested memory of active jobs (not used memory). The swap can crash if
the job uses a lot of memory and Moab starts other jobs.

l Suspended jobs do not relinquish their licenses.

You must mark a job as SUSPENDABLE if you want it to suspend. If you do not, the job will be
requeued or canceled when it is preempted.

If supported by the resource manager, you can set the job SUSPENDABLE flag when submitting
the job by using the msub -r option. Otherwise, use the JOBFLAGS attribute of the associated class
or QoS credential, as in this example:

CLASSCFG[low] JOBFLAGS=SUSPENDABLE

For more information, see Job Flags on page 73.

To preempt jobs using SUSPEND
When you use SUSPEND, you must increase your JOBRETRYTIME. By default, JOBRETRYTIME is set to
60 seconds, but when you use SUSPEND, it is recommended that you increase the time to 300 seconds
(5 minutes).

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

23.0 Preemption

760 23.2 Preemption tasks

23.2 Preemption tasks 761

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 774).

c. Set PREEMPTPOLICY to SUSPEND (for more information, see PREEMPTPOLICY types on page
770).

d. For the PREEMPTEE job, set JOBFLAGS=RESTARTABLE,SUSPENDABLE.

e. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job (for more
information, see Preemption flags on page 769).

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY SUSPEND

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE,SUSPENDABLE MEMBERULIST=john
PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to the preemptee QoS (test1). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test1

(Optional) Examine the output for showq:

Moab.7
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Running 128 00:01:59 Thu Nov 10 12:28:44

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

3. Now submit a job to the preemptor QoS (test2). For example:

[john@g06]$ echo sleep 120 | msub -l procs=128,walltime=120 -l qos=test2

(Optional) Examine the output for showq:

Moab.8
[john@g06]# showq

23.0 Preemption

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.7 john Suspended 128 00:01:56 Thu Nov 10 12:28:44
Moab.8 john Running 128 00:02:00 Thu Nov 10 12:28:48

2 active jobs 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that when a job is suspended, it stays in the output of showq. This is normal behavior for a suspended job.
Moab should only suspend a job once.

4. (Optional) Examine the checkjob outputs for these two jobs.

[john@g06]$ checkjob Moab.9
job Moab.9

State: Suspended
Creds: user:john group:john qos:test1
WallTime: 00:00:02 of 00:02:00
SubmitTime: Thu Nov 10 12:36:29
(Time Queued Total: 00:00:07 Eligible: 00:00:00)

Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.UFe8sQ

StartCount: 1
Flags: RESTARTABLE,SUSPENDABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
job cannot be resumed: preemption required but job is conditional preemptor with no
targets
BLOCK MSG: non-idle state 'Running' (recorded at last scheduling iteration)

[john@g06]$ checkjob Moab.10
job Moab.10

State: Running

23.0 Preemption

762 23.2 Preemption tasks

23.2 Preemption tasks 763

Creds: user:john group:john qos:test2
WallTime: 00:00:00 of 00:02:00
SubmitTime: Thu Nov 10 12:36:31
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Thu Nov 10 12:36:31
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.CZavjU

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.10' (-00:00:07 -> 00:01:53 Duration: 00:02:00)

Occasionally, Moab will keep a job from restarting, holding it in a suspended state for a long
period of time, if it thinks the job cannot restart. For example, if a job could write to I/O before it
was suspended, and now it cannot, Moab would realize the job is unable to start and would leave it
in a suspended state.

Related topics

l Checkpointing jobs with preemption on page 755
l Requeueing jobs with preemption on page 757
l Canceling jobs with preemption on page 752
l Preemption flags on page 769
l About preemption on page 751
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.2.5 Using owner preemption
Context

Owner preemption allows jobs submitted by a reservation owner to preempt jobs submitted by other
users (for more information, see Configuring and Managing Reservations on page 386).

Owner preemption is enabled with the OWNERPREEMPT reservation flag.

For information about PREEPMPTEE and PREEMPTOR flags, see Preemption flags on page 769

23.0 Preemption

To enable owner preemption

1. Make the following configurations to the moab.cfg file:

a. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

b. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption
on page 774).

c. Set the PREEMPTPOLICY type (for more information, see PREEMPTPOLICY types on page 770).

d. Set the OWNERPREEMPT flag.

Optionally, if you want the owner preemption to override any PREEMPTMINTIME settings
for PREEMPTEE jobs, you can set the OWNERPREEMPTIGNOREMINTIME flag as well.

e. Specify an owner.

If the non-owner job does not have a RESTARTABLE or REQUEUEABLE flag set, the job
will cancel.

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

SRCFG[myrez] FLAGS=OWNERPREEMPT HOSTLIST=node01
SRCFG[myrez] OWNER=USER:john
SRCFG[myrez] USERLIST=jane,john PERIOD=INFINITY

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=restartable MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=10000

2. Submit a job to a user who is not the owner (in this example, jane).

[jane@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=64

(Optional) Examine the following output for showq and checkjob for jane's job:

Moab.1
[jane@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Running 64 00:09:57 Mon Nov 14 12:07:52

1 active job 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

23.0 Preemption

764 23.2 Preemption tasks

23.2 Preemption tasks 765

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

root@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:jane group:jane
WallTime: 00:01:02 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:07:52
Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

StartCount: 1
Flags: GLOBALQUEUE,PROCSPECIFIED
StartPriority: 1
Reservation 'Moab.1' (-00:01:24 -> 00:08:36 Duration: 00:10:00)

3. Now submit a job for the owner (in this example, john).

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

[john@g06]$ echo sleep 600 | msub -l walltime=600 -l procs=50

(Optional) Examine the following output for showq and checkjob for john's job:

Moab.2
[john@g06]$ showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 jane Canceling 64 00:07:43 Mon Nov 14 12:07:52
Moab.2 john Running 50 00:09:59 Mon Nov 14 12:10:08

2 active jobs 64 of 64 processors in use by local jobs (100.00%)
1 of 1 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

23.0 Preemption

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that jane's job is canceled once john's job is submitted.

[john@g06]$ checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john
WallTime: 00:00:31 of 00:10:00
SubmitTime: Mon Nov 14 12:10:08
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Mon Nov 14 12:10:08
Total Requested Tasks: 50

Req[0] TaskCount: 50 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:50]

IWD: /opt/native
SubmitDir: /opt/native
Executable: /opt/native/spool/moab.job.jf1N4a

StartCount: 1
Flags: HASPREEMPTED,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 1
Reservation 'Moab.2' (-00:00:48 -> 00:09:12 Duration: 00:10:00)

Note the new HASPREEMPTED flag.

(Optional) Now look at the showq for jane's job (after):

[root@g06]# checkjob Moab.1
job Moab.1

State: Removed
Completion Code: -1 Time: Mon Nov 14 12:10:08
Creds: user:jane group:jane
WallTime: 00:02:47 of 00:10:00
SubmitTime: Mon Nov 14 12:07:52
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

Total Requested Tasks: 64

Req[0] TaskCount: 64 Partition: FLEXlm
NodeCount: 1

Allocated Nodes:
[node01:64]

23.0 Preemption

766 23.2 Preemption tasks

23.2 Preemption tasks 767

IWD: /opt/native
Executable: /opt/native/spool/moab.job.FoZfIU

Execution Partition: FLEXlm
Flags: GLOBALQUEUE,PROCSPECIFIED
StartPriority: 0

Note that the state is now Removed.

Related topics

l Preemption flags on page 769
l About preemption on page 751
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.2.6 Using QoS preemption
Context

This section breaks down how to configure the moab.cfg file to set up preemption with QoS. Using
QoS, you can specify preemption rules and control access to preemption privileges by using the
QFLAGS PREEMPTEE and PREEMPTOR credentials. For information about the PREEMPTEE and
PREEMPTOR flags, see Preemption flags on page 769.

QoS-based preemption only occurs when the following three conditions are satisfied:

l The preemptor job has the PREEMPTOR value set.

l The preemptee job has the PREEMPTEE value set.

l The preemptor job has a higher priority than the preemptee job.

To configure moab.cfg for QoS preemption

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 774).

3. If it is not already, set NODEACCESSPOLICY to SHARED.

4. Set the PREEMPTPOLICY policy type (for more information, see PREEMPTPOLICY types on page
770).

5. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be preempted by a
higher-priority job), or as PREEMPTOR (a higher-priority job that can preempt a lower-priority
job). As in the example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100

23.0 Preemption

QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For more information, see Preemption flags on page 769.

6. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job. As in the
example:

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

For example:

GUARANTEEDPREEMPTION TRUE
PREEMPTPOLICY <policy>

QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Related topics

l About preemption on page 751
l Preemption flags on page 769
l PREEMPTPOLICY types on page 770
l Simple example of preemption on page 771
l Testing and troubleshooting preemption on page 774

23.3 Preemption references

23.3.1 Manual preemption commands
You can use the mjobctl command to manually preempt jobs. The command can modify a job's execution
state in the following ways:

Action Flag Details

Cancel -c Terminate job; remove from queue

Checkpoint -C Terminate and checkpoint job leaving job in queue

Requeue -R Terminate job; leave in queue

Resume -r Resume suspended job

Start (execute) -x Start idle job

23.0 Preemption

768 23.3 Preemption references

23.3 Preemption references 769

Action Flag Details

Suspend -s Suspend active job

In general, users are allowed to suspend or terminate jobs they own. Administrators are allowed to
suspend, terminate, resume, and execute any queued jobs.

Related topics

l About preemption on page 751
l Testing and troubleshooting preemption on page 774

23.3.2 Preemption flags
Using QoS, you can specify preemption rules and control access to preemption privileges. This allows you
to increase system throughput, improve job response time for specific classes of jobs, or enable various
political policies. You enable all policies by specifying some QoS credentials with the QFLAGS
PREEMPTEE, and others with PREEMPTOR.

PREEMPTEE

Description Indicates that the job can be preempted by a higher-priority job.

Use Use for lower-priority jobs that can be preempted.

Notes
This may delay some node actions. When reprovisioning, the system job may expire before
the provision action occurs; while the action will still occur, the job will not show it.

Example QOSCFG[test1] QFLAGS=PREEMPTEE MEMBERULIST=<user> PRIORITY=100

PREEMPTOR

Description Indicates that the job should take priority and preempt any PREEMPTEE jobs.

Use Use for jobs that need to take precedence over lower-priority jobs.

Notes
PREEMPTOR jobs, either queued or running, must have a higher priority than
PREEMPTEE jobs.
When you configure job as a PREEMPTOR, you should also increase its priority (for
details, see PREEMPTPRIOJOBSELECTWEIGHT and PREEMPTRTIMEWEIGHT).

23.0 Preemption

PREEMPTOR

Example QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=<user> PRIORITY=10000

Additional preemptor and preemptee information

Preemptor priority plays a big role in preemption. Generally, you should assign the preemptor job
a higher priority value than any other queued jobs so that it will move to (or near to) the top of
the eligible queue.

You can set the RESERVATIONPOLICY parameter to NEVER. With this configuration, preemptee jobs
can start whenever idle resources become available. These jobs will be allowed to run until a preemptor
job arrives, at which point the preemptee jobs are preempted, freeing the resource. This configuration
allows near immediate resource access for the preemptor jobs. Using this approach, a cluster can
maintain near 100% system utilization while still delivering excellent turnaround time to the most
important jobs.

In environments where job checkpointing or job suspension incur significant overhead, you might want to
constrain the rate at which job preemption is allowed. You can use the JOBPREEMPTMINACTIVETIME
parameter to throttle job preemption. In essence, this parameter prevents a newly started or newly
resumed job from being eligible for preemption until it has executed for a specified amount of time.
Conversely, you can exclude jobs from preemption after they have run for a certain amount of time by
using the JOBPREEMPTMAXACTIVETIME parameter.

Related topics

l About preemption on page 751
l Using QoS preemption on page 767
l Manual preemption commands on page 768
l PREEMPTPOLICY types on page 770
l Testing and troubleshooting preemption on page 774

23.3.3 PREEMPTPOLICY types
You can use the PREEMPTPOLICY parameter to control how the scheduler preempts a job. This
parameter enforces preemption using one of the following methods:

PREEMPTPOLICY
type Description

SUSPEND Causes active jobs to stop executing, but to remain in memory on the allocated compute
nodes.

23.0 Preemption

770 23.3 Preemption references

23.3 Preemption references 771

PREEMPTPOLICY
type Description

CHECKPOINT Saves the current job state and either terminates or continues running the job. A check-
pointed job may restart at any time and resume execution from its most recent checkpoint.

REQUEUE Terminates active jobs and returns them to the job queue in an idle state.

CANCEL Cancels active jobs.

Each of these methods varies in the level of disruption to the job, SUSPEND being the least disruptive
and CANCEL being the most disruptive.

Moab uses preemption escalation to free up resources. So for example, if the PREEMPTPOLICY is set to
SUSPEND, Moab uses this method if it is available; however, Moab will escalate it to something
potentially more disruptive if necessary to preempt and free up resources.

Related topics

l Suspending jobs with preemption on page 760
l Checkpointing jobs with preemption on page 755
l Requeueing jobs with preemption on page 757
l Canceling jobs with preemption on page 752
l About preemption on page 751
l Preemption flags on page 769

23.3.4 Simple example of preemption
This section illustrates the process of setting up preemption on your system from beginning to end and
contains examples of what actions to take and what you should see as you go.

Example scenario

For this basic setup example, we will have a user who can submit to either a "test1" or "test2" QoS.
This example will use a REQUEUE preemption type.

We will go through three parts to set up this preemption:

l Configuring the moab.cfg file

l Submitting a job to the PREEMPTEE QoS

l Submitting a job to the PREEMPTOR QoS

Okay, let's get started!

23.0 Preemption

Configuring moab.cfg

First, you will need to make some configurations to the moab.cfg file.

1. Set GUARANTEEDPREEMPTION to TRUE. (This causes Moab to lock PREEMPTOR jobs until
JOBRETRYTIME expires.)

2. Make sure that JOBNODEMATCHPOLICY is not set to EXACTNODE, which is not currently
supported for preemption (for more information, see Testing and troubleshooting preemption on
page 774).

3. Set the PREEMPTPOLICY type. In this example, PREEMPTPOLICY is set to REQUEUE. For more
information, see PREEMPTPOLICY types on page 770.

4. Set up QFLAGS to mark jobs as PREEMPTEE (a lower-priority job that can be preempted by a
higher-priority job), or as PREEMPTOR (a higher-priority job that can preempt a lower-priority
job). For more information, see Preemption flags on page 769.

For this example, we also set JOBFLAGS=RESTARTABLE (because this example uses
REQUEUE). For more information, see Requeueing jobs with preemption on page 757.

5. Make sure that the PREEMPTEE job has a lower priority than the PREEMPTOR job.

Here is an example of how that would all look in a moab.cfg file (text marked red for emphasis).

GUARANTEEDPREEMPTION TRUE
#should not be JOBNODEMATCHPOLICY EXACTNODE as it causes problems when starting jobs

PREEMPTPOLICY REQUEUE

QOSCFG[test1] QFLAGS=PREEMPTEE JOBFLAGS=RESTARTABLE MEMBERULIST=john PRIORITY=100
QOSCFG[test2] QFLAGS=PREEMPTOR MEMBERULIST=john PRIORITY=1000

Now you can submit a job to the preemptee QoS (test1).

Submitting a job to the preemptee QoS

Let's submit a job to the preemptee QoS (test1), requesting all processor cores in the cluster:

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test1 -l procs=128

Take a look at the showq and checkjob output:

Moab.1
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.1 john Running 128 00:09:59 Wed Nov 9 15:56:33

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs

23.0 Preemption

772 23.3 Preemption references

23.3 Preemption references 773

blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total job: 1

[john@g06]# checkjob Moab.1
job Moab.1

State: Running
Creds: user:john group:john qos:test1
WallTime: 00:00:00 of 00:10:00
SubmitTime: Wed Nov 9 15:56:33
(Time Queued Total: 00:00:00 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:33
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.zOyf1N

StartCount: 1
Flags: RESTARTABLE,PREEMPTEE,GLOBALQUEUE,PROCSPECIFIED
Attr: PREEMPTEE
StartPriority: 100
Reservation 'Moab.1' (-00:00:03 -> 00:09:57 Duration: 00:10:00

Submitting a job to the preemptor QoS

Now we will submit a preemptor QoS job (test2) to preempt the first job (test1):

[john@g06]# echo sleep 600 | msub -l walltime=600 -l qos=test2 -l procs=128

Examine the following output for showq and checkjob:

Moab.2
[john@g06]# showq

active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
Moab.2 john Running 128 00:09:59 Wed Nov 9 15:56:47

1 active job 128 of 128 processors in use by local jobs (100.00%)
2 of 2 nodes active (100.00%)

eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
Moab.1 john Idle 128 00:10:00 Wed Nov 9 15:56:33

1 eligible job

blocked jobs-----------------------

23.0 Preemption

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs

Total jobs: 2

Note that the preemptor job (Moab.2) moved to Running, while the preemptee job (Moab.1) was requeued.

[john@g06]# checkjob Moab.2
job Moab.2

State: Running
Creds: user:john group:john qos:test2
WallTime: 00:02:04 of 00:10:00
SubmitTime: Wed Nov 9 15:56:46
(Time Queued Total: 00:00:01 Eligible: 00:00:00)

StartTime: Wed Nov 9 15:56:47
Total Requested Tasks: 128

Req[0] TaskCount: 128 Partition: licenses
NodeCount: 2

Allocated Nodes:
node[01-02]*64

IWD: /opt/native/
SubmitDir: /opt/native/
Executable: /opt/native/spool/moab.job.ELoX5Q

StartCount: 1
Flags: HASPREEMPTED,PREEMPTOR,GLOBALQUEUE,PROCSPECIFIED
StartPriority: 10000
Reservation 'Moab.2' (-00:02:21 -> 00:07:39 Duration: 00:10:00)

Note the flag, HASPREEMPTED. HASPREEMPTED is set when the PREEMPTOR job has preempted the PREEMPTEE
job. Also note that the preemptor job priority plays a very big role in preemption. Generally, you should assign the
preemptor a higher priority than any other queued jobs so that it will move to (or near to) the top of the eligible queue.

Related topics

l About preemption on page 751
l Preemption flags on page 769
l PREEMPTPOLICY types on page 770
l Manual preemption commands on page 768
l Testing and troubleshooting preemption on page 774

23.3.5 Testing and troubleshooting preemption
There are multiple steps associated with setting up a working preemption policy. With preemption,
issues arise because it appears that Moab is not allowing preemptor jobs to preempt preemptee jobs in
the right way. To diagnose this, use the following checklist:

23.0 Preemption

774 23.3 Preemption references

23.3 Preemption references 775

Verify that preemptor jobs are marked with the PREEMPTOR flag. (Verify with checkjob <JOBID> | grep
Flags.)

Verify that preemptee jobs are marked with the PREEMPTEE flag. (Verify with checkjob <JOBID> | grep
Flags.)

Verify that the start priority of the preemptor job is higher than the priority of the preemptee job. (Verify with
checkjob <JOBID> | grep Priority.)

Verify that the resources allocated to the preemptee job match those requested by the preemptor job.

Verify that the preemptor job is within the 32-preemptee limit.

Verify that there are no policies preventing preemption from occurring. (Verify with checkjob -v -n <NODEID>
<JOBID>.)

Verify that the PREEMPTPOLICY parameter is properly set. (See PREEMPTPOLICY types on page 770.)

Verify that the preemptee job is properly marked as restartable, suspendable, or checkpointable. (Verify with
checkjob <JOBID> | grep Flags.)

Verify that GUARANTEEDPREEMPTION is set to TRUE.

Verify that JOBNODEMATCHPOLICY is not set to EXACTNODE. Moab does not currently consider
EXACTNODE when it handles preemption, resulting in unexpected behavior when EXACTNODE is set in an
environment with preemption.

Verify that NODEACCESSPOLICY is not set to SINGLEUSER. (SHARED is recommended.)

Verify that BACKFILLPOLICY is set to FIRSTFIT.

Verify that the resource manager is properly responding to preemption requests. (Usemdiag -R.)

If there is a resource manager level race condition, verify that Moab is properly holding target resources.
(Verify with mdiag -S and set RESERVATIONRETRYTIME if needed.)

Related topics

l About preemption on page 751
l Quality of Service (QoS) Facilities on page 423
l Managing QoS Access on page 430
l JOBMAXPREEMPTPERITERATION on page 854
l Trigger components on page 674
l Checkpoint/Restart Facilities on page 452

23.0 Preemption

l ENABLEFSVIOLATIONPREEMPTION on page 823
l PREEMPTPRIOJOBSELECTWEIGHT on page 890
l PREEMPTSEARCHDEPTH on page 891
l USAGEEXECUTIONTIMEWEIGHT on page 935 (control priority of suspended jobs)
l IGNOREPREEMPTEEPRIORITY on page 846 (relative job priority is ignored in preemption
decisions)

l DISABLESAMECREDPREEMPTION on page 819 (jobs cannot preempt other jobs with the same
credential)

l PREEMPTRTIMEWEIGHT on page 890 (add remaining time of jobs to preemption calculation)

23.0 Preemption

776 23.3 Preemption references

24.1 About job templates 777

24.0 Job templates

24.1 About job templates
A Moab job template is a set of pre-configured settings, attributes, and resources that Moab applies to
jobs that match certain criteria or to which you manually apply it. They perform three primary
functions:

1. They generically match and categorize jobs.

2. They set arbitrary default or forced attributes for certain jobs.

3. They generate workflows that create and maintain user-requested services in a cloud environment.
For more information about creating cloud services, see About workload-driven cloud services on
page 733.

You can use job templates in many aspects of scheduling, including cloud environments. Job templates
are defined using the JOBCFG on page 849 configuration parameter.

Two methods exist for applying job templates to jobs. You can use the JOBMATCHCFG on page 852
parameter to mark a template that contains the criteria a job must meet for eligibility and another
template as the one to be applied to the job if it is eligible. This allows you to automate the use of
templates. For example, to force all interactive jobs to run on a certain set of nodes, you can set one
template (the criteria template) to have the interactive flag, then give the other template the desired
host list. You can also apply a template directly to a job at submission if that ability is enabled for that
template.

Job template how-to's

l Creating job templates on page 778
l Viewing job templates on page 779
l Applying templates based on job attributes on page 779
l Requesting job templates directly on page 780
l Creating workflows with job templates on page 781

Job template references

l Job template extension attributes on page 782
l Job template matching attributes on page 793
l Job template examples on page 794
l Job template workflow examples on page 795

24.2 Job template how-to's

24.2.1 Creating job templates
Context

Job templates are created in the Moab configure file using the JOBCFG on page 849 parameter.

To create a job template

1. Open moab.cfg. Add the JOBCFG parameter and give the new job template a unique name.

JOBCFG[newtemplate]

2. Configure any desired attributes (see Job template extension attributes on page 782.). Some of the
important attributes include:

l FLAGS on page 784 - Lets you specify any job flags that should be applied.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE

When Moab applies newtemplate to a job, the job is marked as suspendable.

l SELECT on page 790 - Lets you apply the template directly at job submission.

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE

When you submit a job via msub, you can specify that your job has newtemplate applied to it. When Moab
applies the template to a job, that job is marked as suspendable.

l TEMPLATEDEPEND on page 791 - Lets you create dependencies when you create a job template
workflow (see Creating workflows with job templates on page 781.).

JOBCFG[newtemplate] FLAGS=SUSPENDABLE SELECT=TRUE TEMPLATEDEPEND=AFTER:job1.pre

When Moab applies newtemplate to a job, the job cannot run until job job1.pre has finished running; the
job is also marked as suspendable. You can specify that Moab apply this template to a job as you submit it.

3. If you want to automate job template application, see Applying templates based on job attributes
on page 779 for instructions. If you want to apply the template manually on job submission, see
Requesting job templates directly on page 780 for instructions.

Related topics

l Job template extension attributes on page 782
l Job template examples on page 794

24.0 Job templates

778 24.2 Job template how-to's

24.2 Job template how-to's 779

24.2.2 Viewing job templates
Context

You can view a job template by running the mdiag -j command.

To view a job template

Run the mdiag -j command with the policy flag. Moab returns a list of job templates configured in
moab.cfg.

> mdiag -j --flags=policy --blocking

24.2.3 Applying templates based on job attributes
Context

The JOBMATCHCFG on page 852 parameter allows you to establish relationships between a number
of job templates. JMAX and JMIN function as filters to determine whether a job is eligible for a
subsequent template to be applied to the job. If a job is eligible, JDEF and JSET templates apply
attributes to the job. See Job template extension attributes on page 782 for more information about
the JOBMATCHCFG attributes. The table on that page indicates which job template types are
compatible with which job template extension attributes.

JSETs and JDEFs have only been tested using msub as the job submission command.

To apply a job template based on job attributes

1. In the Moab configuration file, create a job template with a set of criteria that a job must meet in
order for Moab to apply the template. In the following example, Moab will apply a template to all
interactive jobs, so the first template sets the interactive flag.

JOBCFG[inter.min] FLAGS=interactive

2. Create the job template that Moab should apply to the job if it meets the requirements set in the
first template. In this example, Moab ignores all configured policies, so the second template sets the
ignpolicies flag.

JOBCFG[inter.set] FLAGS=ignpolicies

3. Use the JOBMATCHCFG parameter and its JMAX or JMIN (specify the template specifying maximum
or minimum requirements) and JDEF or JSET (specify the template to be applied) attributes to
demonstrate the relationship between the two templates (See Job template matching attributes on
page 793 for more information.). In this case, all interactive jobs ignore policies; in other words, if a
submitted job has at least the inter.min template settings, Moab applies the inter.set template
settings to the job.

JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

24.0 Job templates

Moab applies the inter.set template to all jobs with the interactive flag set, causing them to ignore Moab's
configured policies.

4. To control which job template is applied to a job that matches multiple templates, use
FLAGS=BREAK. Job templates are processed in the order they are listed in the configuration file and
using the BREAK flag causes Moab to stop evaluating JOBMATCHCFG entries that occur after the
current match.

JOBMATCHCFG[small] JMIN=small.min JMAX=small.max JSET.set=small.set FLAGS=BREAK
JOBMATCHCFG[large] JMIN=large.min JMAX=large.max JSET=large.set

In this case, the large template would not be applied when a job matches both the small and large templates. The
small template matches first, and because of FLAGS=BREAK, Moab stops evaluating further JOBMATCHFG entries for
the job.

Related topics

l Requesting job templates directly on page 780
l Job template examples on page 794

24.2.4 Requesting job templates directly
Context

When a job template has its SELECT on page 790 attribute set to TRUE, you can request that
template directly on job submission.

To directly request job templates

1. Set the SELECT attribute on the template in moab.cfg.

JOBCFG[medium.set] NODESET=ONEOF:FEATURE:fast,slow SELECT=true

2. Submit a job with a resource list (msub -l), requesting the template using the format
template=<templateName>.

> msub -l template=medium.set

Moab creates a job with the medium.set job template created in step 1.

Attributes set in the template are evaluated as if they were part of the job submission. They
are still subject to all of the same ACLs and policies.

Related topics

l Applying templates based on job attributes on page 779

24.0 Job templates

780 24.2 Job template how-to's

24.2 Job template how-to's 781

24.2.5 Creating workflows with job templates
Context

Moab can create workflows from individual jobs using job templates.

To build a workflow with job templates

1. Create the jobs in the workflow using the JOBCFG on page 849 parameter (See Creating job
templates on page 778 for more information.). Specify the order in which they should run with the
TEMPLATEDEPEND on page 791 attribute. Please see the Job dependency syntax table for a list of
valid dependency options.

JOBCFG[setup.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/setup.pre.sh STAGEIN=TRUE
JOBCFG[setup.pre2] TEMPLATEDEPEND=AFTER:setup.pre SELECT=TRUE
EXEC=/nfs/tools/setup.pre2.sh
JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre2

When Moab applies the engineering template to a qualifying job, the job will not run until template job setup.pre
and then setup.pre2 are created from the specified EXEC strings and finish running.

The Moab naming convention for jobs created with job templates is
<moabId>.<templateName>. By default, when Moab submits jobs to only one resource
manager, the job IDs are synchronized with the resource manager's job IDs. You can use the
parameter USEMOABJOBID on page 938 so that a template-created job is easily associated
with its parent job (such as moab.1, moab.1.setup.pre).

Since the setup.pre.sh script is not on an NFS mount, it must be staged in. STAGEIN has a
value of TRUE or FALSE. If set to TRUE, Moab ensures the executable is staged out to the
compute host where the dependent job runs. If set to FALSE, Moab assumes the executable is
already available on the compute host.

2. Create the job template that will act as the criteria a job must meet for Moab to apply the
engineering template. In this situation, the job must be submitted with the account name engineering.

JOBCFG[engineering.match] ACCOUNT=engineering

3. Create the JOBMATCHCFG on page 852 configuration to tell Moab that when a job matches the
engineering.match template, it should apply the engineering template.

JOBMATCHCFG[engineering.job] JMIN=engineering.match JSET=engineering

Related topics

l Job template extension attributes on page 782
l Job template workflow examples on page 795
l Creating job templates on page 778

24.0 Job templates

24.3 Job template references

24.3.1 Job template extension attributes
When creating a job template, you can use any attribute acceptable within the WIKI workload query data
format. In addition, job templates can use any of the extension attributes in the following table. Note that
the Template type (JMIN, JMAX, JDEF, JSET) row indicates compatibility with the associated attribute
(See Applying templates based on job attributes on page 779 for more information.).

Attributes set in a template are evaluated as if they were part of the original job submission.
Their jobs are still subject to all the same ACLs and policies.

ACCOUNT

Format <ACCOUNT>[,<ACCOUNT>]...

Template type JMIN
JDEF
JSET

Description Account credentials associated with job. This is used for job template matching.

Example JOBCFG[public] FLAGS=preemptee
JOBCFG[public.min] ACCOUNT=public_acct
JOBMATCHCFG[public] JMIN=public.min JSET=public

CLASS

Format <CLASS>[,<CLASS>]...

Template type JMIN
JDEF
JSET

Description Class credentials associated with job. This is used for job template matching.

Example JOBCFG[night] FLAGS=preemptor
JOBCFG[night.min] CLASS=night_class
JOBMATCHCFG[night] JMIN=night.min JSET=night

24.0 Job templates

782 24.3 Job template references

24.3 Job template references 783

CPULIMIT

Format [[[DD:]HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Maximum amount of CPU time used by all processes in the job.

Example JOBCFG[job.min] CPULIMIT=1:00:00:00
JOBCFG[job.max] CPULIMIT=2:00:00:00

DESCRIPTION

Format <STRING>

Template type JMAX
JDEF

Description Description of the job. When you run the checkjob command, the description appears as Reason.

Example JOBCFG[webdb] DESCRIPTION="Template job"

DPROCS

Format <INTEGER>

Template type JMIN
JMAX
JSET

Description Number of processors dedicated per task. The default is 1.

Example JOBCFG[job.min] DPROCS=2
JOBCFG[job.max] DPROCS=4

24.0 Job templates

EXEC

Format <STRING>

Template type JSET

Description Specifies what the job runs, regardless of what the user set.

Example JOBCFG[setup.pre] EXEC=nfs/tools/setup.pre.sh

FLAGS

Format <JOBFLAG>[,<JOBFLAG>]...

Template type JMIN
JDEF
JSET

Description One or more legal job flag values.

Example JOBCFG[webdb]
FLAGS=NORMSTART

GNAME

Format <STRING>

Template type JDEF

JSET

Description Group credential associated with job.

Example JOBCFG[webserv] GNAME=service

For matching the group, see the GROUP
attribute.

24.0 Job templates

784 24.3 Job template references

24.3 Job template references 785

GRES

Format <genericResource>[:<COUNT>][,<genericResource>[:<COUNT>]]...

Template
type

JMAX
JDEF

Description Consumable generic attributes associated with individual nodes or the special pseudo-node global,
which provides shared cluster (floating) consumable resources. Use the NODECFG parameter to
configure such resources.

Example JOBCFG[gres.set] GRES=abaqus:2

In this example, the gres.set template applies two Abaqus licenses per task to a matched
job.

GROUP

Format <GROUP>[,<GROUP>]...

Template type JMIN

Description Group credentials associated with job. This is used for job template matching.

Example JOBCFG[webserv] GROUP=service

For information about setting the group, see the GNAME attribute.

MEM

Format <INTEGER>

Template
type

JMIN
JMAX
JDEF
JSET

Description Maximum amount of physical memory per task used by the job in megabytes. You can optionally
specify other units with your integer (300kb or 2gb, for example). See Requesting Resources for
more information.

24.0 Job templates

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/2-jobs/requestingRes.htm

MEM

Example JOBCFG[smalljobs] MEM=25

NODEACCESSPOLICY

Format One of the following: SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK , SINGLEUSER, or
UNIQUEUSER

Template
type

JDEF
JSET

Description Specifies how node resources will be shared by a job. See the Node Access Policies on page 309
for more information.

Example JOBCFG[serverapp] NODEACCESSPOLICY=SINGLEJOB

NODERANGE

Format <MIN>[,<MAX>]

Template type JMAX
JDEF

Description Minimum and maximum nodes allowed to be allocated to job.

Example JOBCFG[vizserver] NODERANGE=1,16

NODES

Format <INTEGER>

Template
type

JMIN
JMAX
JSET

Description Number of nodes required by the job. The default is 1. See Node Definition for more inform-
ation.

24.0 Job templates

786 24.3 Job template references

24.3 Job template references 787

NODES

Example JOBCFG[job.min] NODES=2
JOBCFG[job.max] NODES=4

NODESET

Format <STRING>

Template type JSET

Description See Node Set Overview on page 439 for more information.

Example JOBCFG[medium.set]
NODESET=ONEOF:FEATURE:fast,slow

PARTITION

Format <PARTITION>[:<PARTITION>]...

Template type JMIN
JDEF
JSET

Description Specifies the partition (or partitions) in which a job must run.

Example JOBCFG[meis] PARTITION=math:geology

PREF

Format <FEATURE>[,<FEATURE>]...

Template
type

JDEF
JSET

Description Specifies which node features are preferred by the job and should be allocated if available. See
PREF for more information.

Example JOBCFG[meis] PREF=bigmem

24.0 Job templates

PRIORITY

Format <INTEGER>

Template type JMAX
JDEF

Description Relative job priority.

PRIORITY works only as a default setting and not as an override (JSET)
setting.

Example JOBCFG[meis] PRIORITY=25000

PROCRANGE

Format <MIN>[,<MAX>]

Template type JDEF
JSET

Description Minimum and maximum processors allowed to be allocated to job.

Example JOBCFG[meis] PROCRANGE=2,64

QOS

Format <QOS>[,<QOS>]...

Template type JMIN
JDEF
JSET

Description QoS credentials associated with job. This is used for job template matching.

Example JOBCFG[admin] RFEATURES=bigmem
JOBCFG[admin.min] QOS=admin_qos
JOBMATCHCFG[admin] JMIN=admin.min JSET=admin

24.0 Job templates

788 24.3 Job template references

24.3 Job template references 789

RARCH

Format <STRING>

Template type JSET

Description Architecture required by job.

Example JOBCFG[servapp]
RARCH=i386

RFEATURES

Format <FEATURE>[,<FEATURE>]...

Template type JMIN
JDEF
JSET

Description List of features required by job.

Example JOBCFG[servapp]
RFEATURES=fast,bigmem

RM

Format <STRING>

Template type JDEF
JSET

Description Destination resource manager to be associated with job.

Example JOBCFG[webdb] RM=slurm

ROPSYS

Format <STRING>

24.0 Job templates

ROPSYS

Template type JDEF
JSET

Description Operating system required by job.

Example JOBCFG[test.set]
ROPSYS=windows

SELECT

Format <BOOLEAN> : TRUE | FALSE

Description Job template can be directly requested by job at submission.

Example JOBCFG[servapp] SELECT=TRUE

SOFTWARE

Format <RESTYPE>[{+|:}<COUNT>][@<TIMEFRAME>]

Template type JDEF
JSET

Description Indicates generic resources required by the job. See SOFTWARE for more information.

Example JOBCFG[servapp] SOFTWARE=matlab:2

SYSTEMJOBTYPE

Template type JMIN

Description System job type (ex. vmcreate).

Example JOBCFG[vmcreate.min] SYSTEMJOBTYPE=vmcreate
JOBCFG[vmcreate.set]
TRIGGER=atype=reserve,action="00:05:00",etype=end
JOBMATCHCFG[vmcreate] JMIN=vmcreate.min JSET=vmcreate.set

24.0 Job templates

790 24.3 Job template references

24.3 Job template references 791

TASKS

Format <INTEGER>

Template type JMIN
JMAX
JSET

Description Number of tasks required by job. The default is 1. See Task Definition for more information.

Example JOBCFG[job.min] TASKS=4
JOBCFG[job.max] TASKS=8

TASKPERNODE

Format <INTEGER>

Template type JMIN
JMAX
JDEF

Description Exact number of tasks required per node. The default is 0.

TASKPERNODEworks only as a default setting and not as an override (JSET)
setting.

Example JOBCFG[job.min] TASKPERNODE=2
JOBCFG[job.max] TASKPERNODE=4

TEMPLATEDEPEND

Format <TYPE>:<TEMPLATE_NAME>

Description Create another job from the <TEMPLATE_NAME> job template, on which any jobs using this tem-
plate will depend. This is used for dynamically creating workflows. See Job Dependencies for more
information.

Example JOBCFG[engineering] TEMPLATEDEPEND=AFTER:setup.pre
JOBCFG[setup.pre] SELECT=TRUE EXEC=/tools/setup.pre.sh

24.0 Job templates

UNAME

Format <STRING>

Default JDEF

JSET

Description User credential associated with job.

Example JOBCFG[webserv] UNAME=service

For matching the user, see the USER
attribute.

USER

Format <USER>[,<USER>]...

Template type JMIN
JMAX

Description User credentials associated with job.

Example JOBCFG[webserv] USER=service

For setting the user, see the UNAME
attribute.

VARIABLE

Format <NAME>[:<VAL>]

Template type JMIN
JSET

Description Variables attached to the job template.

Example JOBCFG[this] VARIABLE=var1:1 VARIABLE=var2:1

Variables are set upon successful completion of
the job.

24.0 Job templates

792 24.3 Job template references

24.3 Job template references 793

WCLIMIT

Format [[HH:]MM:]SS

Template type JMIN
JMAX
JDEF
JSET

Description Walltime required by job. The default is 8640000 (100 days).

Example JOBCFG[job.min] WCLIMIT=2:00:00
JOBCFG[job.max] WCLIMIT=12:00:00

Related topics

l Job template examples on page 794
l Creating job templates on page 778

24.3.2 Job template matching attributes
The JOBMATCHCFG on page 852 parameter allows you to establish relationships between a number of
job templates. The table in Job template extension attributes on page 782 indicates which job template
types are compatible with which job template extension attributes. The following types of templates can
be specified with the JOBMATCHCFG parameter:

Attribute Description

JMAX A potential job is rejected if it has matching attributes set or has resource requests that exceed
those specified in this template.

For JMAX, a job template can specify only positive non-zero numbers as maximum limits for
generic resources. If a job requests a generic resource that is not limited by the template,
then the template can still be used.

JMIN A potential job is rejected if it does not have matching attributes set or has resource requests that
do not meet or exceed those specified in this template.

JDEF Amatching job has the specified attributes set as defaults but all values can be overridden by the
user if the matching attribute is explicitly set at job submission time.

JSET Amatching job has the specified attributes forced to these values and these values override any val-
ues specified by the submitter at job submission time.

24.0 Job templates

Attribute Description

JSTAT Amatching job has its usage statistics reported into this template.

Related topics

l Job template extension attributes on page 782
l Job template examples on page 794
l Applying templates based on job attributes on page 779

24.3.3 Job template examples
Job templates can be used for a wide range of purposes including enabling automated learning, setting up
custom application environments, imposing special account constraints, and applying group default
settings. The following examples highlight some of these uses:

Example 24-1: Setting up application-specific environments

JOBCFG[xxx] EXEC=*app* JOBPROLOG=/usr/local/appprolog.x

Example 24-2: Applying job preferences and defaults

JOBCFG[xxx] CLASS=appq EXEC=*app* PREF=clearspeed
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=5.0*PREF

Example 24-3: Applying resource constraints to fuzzy collections

In the following example, a job template match is set up. Using the JOBMATCHCFG on page 852
parameter, Moab is configured to apply all attributes of the inter.set job template to all jobs that match
the constraints of the inter.min job template. In this example, all interactive jobs are assigned the
ignpolicies flag that allows them to ignore active, idle, system, and partition level policies. Interactive
jobs are also locked into the test standing reservation and thus only allowed to run on the associated
nodes.

limit all users to a total of two non-interactive jobs
USERCFG[DEFAULT] MAXJOB=2
SRCFG[test] DESCRIPTION="compute pool for interactive and short duration jobs"
SRCFG[test] JOBATTRLIST=INTERACTIVE
SRCFG[test] MAXTIME=1:00:00
SRCFG[test] HOSTLIST=R:atl[16-63]
JOBCFG[inter.min] FLAGS=interactive
JOBCFG[inter.set] FLAGS=ignpolicies
JOBMATCHCFG[interactive] JMIN=inter.min JSET=inter.set

Example 24-4: Resource manager templates

In the following example, interactive jobs are not allowed to enter through this resource manager and
any job that does route in from this resource manager interface has the preemptee flag set.

JOBCFG[no_inter] FLAGS=interactive
JOBCFG[preempt_job] FLAGS=preemptee
RMCFG[gridA.in] MAX.JOB=no_inter SET.JOB=preempt_job

24.0 Job templates

794 24.3 Job template references

24.3 Job template references 795

Related topics

l Job template extension attributes on page 782
l Job template workflow examples on page 795
l Creating job templates on page 778

24.3.4 Job template workflow examples
Example 24-5: A workflow with multiple dependencies

In this example the job will depend on the completion of two other jobs Moab creates. Both jobs execute
at the same time.

Engineering2
JOBCFG[engineering2] TEMPLATEDEPEND=AFTER:engineering2.pre2
TEMPLATEDEPEND=AFTER:engineering2.pre
JOBCFG[engineering2.pre2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre2.sh
JOBCFG[engineering2.pre] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/engineering2.pre.sh
JOBCFG[engineering2.match] ACCOUNT=engineering2
JOBMATCHCFG[engineering2.job] JMIN=engineering2.match JSET=engineering2

Example 24-6: Jobs that run after the submission job

Three additional jobs are created that depend on the submitted job.

Workflow 2
JOBCFG[workflow2] TEMPLATEDEPEND=BEFORE:workflow2.post1
TEMPLATEDEPEND=BEFORE:workflow2.post2 TEMPLATEDEPEND=BEFORE:workflow2.post3
JOBCFG[workflow2.post1] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post1.sh
JOBCFG[workflow2.post2] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post2.sh
JOBCFG[workflow2.post3] TASKS=2 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow2.post3.sh
JOBCFG[workflow2.match] ACCOUNT=workflow2
JOBMATCHCFG[workflow2.job] JMIN=workflow2.match JSET=workflow2

Example 24-7: A complex workflow

A complex workflow that handles failures.

24.0 Job templates

Workflow 4
JOBCFG[workflow4.step1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step1.sh TEMPLATEDEPEND=BEFOREFAIL:workflow4.fail1
JOBCFG[workflow4.fail1] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.1.sh TEMPLATEDEPEND=BEFOREANY:workflow4.fail2
JOBCFG[workflow4.fail2] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.fail.2.sh
Submission job
JOBCFG[workflow4.step2] TEMPLATEDEPEND=AFTEROK:workflow4.step1
TEMPLATEDEPEND=BEFOREOK:workflow4.step3.1 TEMPLATEDEPEND=BEFOREOK:workflow4.step3.2
JOBCFG[workflow4.step3.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.1.sh
JOBCFG[workflow4.step3.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step3.2.sh TEMPLATEDEPEND=BEFOREOK:workflow4.step4
JOBCFG[workflow4.step4] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step4.sh
JOBCFG[workflow4.step4] TEMPLATEDEPEND=BEFOREOK:workflow4.step5.1
TEMPLATEDEPEND=BEFOREOK:workflow4.step5.2 TEMPLATEDEPEND=BEFORENOTOK:workflow4.step5.3
JOBCFG[workflow4.step5.1] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.1.sh
JOBCFG[workflow4.step5.2] TASKS=1 WCLIMIT=00:01:00 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.2.sh
JOBCFG[workflow4.step5.3] TASKS=1 WCLIMIT=00:00:30 SELECT=TRUE
EXEC=/usr/tools/workflow.step5.3.sh
JOBCFG[workflow4.match] ACCOUNT=workflow4

Related topics

l Creating workflows with job templates on page 781
l Applying templates based on job attributes on page 779
l Job template examples on page 794
l Job template extension attributes on page 782

24.0 Job templates

796 24.3 Job template references

Appendix A: Moab Parameters 797

25.0 Appendices

Appendix A: Moab Parameters
See the Parameters Overview in the Moab Admin Manual for further information about specifying
parameters.

Index: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ACCOUNTCFG[<ACCOUNTID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, CHARGERATE, PRIORITY, ENABLEPROFILING, MEMBERULIST, PLIST,
QDEF, QLIST, usage limit, or a fairness usage limit specification (FSCAP, FSTARGET, and
FSWEIGHT).

Default ---

Description Specifies account specific attributes. See the account overview for general information and the job
flag overview for a description of legal flag values.

Example ACCOUNTCFG[projectX] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted under the account ID projectX will be allowed to execute
simultaneously and will be assigned the QoS highprio by default.

ACCOUNTINGINTERFACEURL

Format <URL>where protocol can be one of exec or file

Default ---

Description Specifies the interface to use for real-time export of Moab accounting/auditing information.
See Exporting Events in Real-Time for more information.

Example ACCOUNTINGINTERFACEURL exec:///$TOOLSDIR/dumpacc.pl

ACCOUNTWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight to be applied to the specified account priority. See Credential (CRED)
Factor.

Example ACCOUNTWEIGHT 100

ADMIN1, ADMIN2, ADMIN3

Format Space-delimited list of user names

Default root

Description Deprecated. Use ADMINCFG. Users listed under the parameter ADMIN1 are allowed to perform
any scheduling function. They have full control over the scheduler and access to all data. The first
user listed in the ADMIN1 user list is considered to be the 'primary admin' and is the ID under
which Moab must be started and run. Valid values include user names or the keyword 'ALL'. Again,
these parameters are deprecated; use ADMINCFG.

Example ADMIN1 moabuser steve scott jenny

All users listed have full access to Moab control commands and Moab data. Moab must be
started by and run under themoabuser user id sincemoabuser is the primary admin.

25.0 Appendices

798 Appendix A: Moab Parameters

Appendix A: Moab Parameters 799

ADMINCFG[X]

Format One or more <ATTR>=<VALUE> pairs where <ATTR> is one of the following: ENABLEPROXY, USERS,
GROUPS, SERVICES, or NAME

Default ---

Description Allows a site to configure which services and users belong to a particular level of administration.
Note: The first user listed in the ADMINCFG[1] users list is considered to be the primary admin.
The option USERS=ALL is allowed. The groups list adds the groups' users as if they were listed indi-
vidually as USERS. To prevent Moab from assigning a primary user from the first group listed, you
must specify a primary user first using the USERS attribute, then list the desired groups.

Example ADMINCFG[1] USERS=root,john
ADMINCFG[1] GROUPS=admin
ADMINCFG[1] SERVICES=ALL
ADMINCFG[1] NAME=batchadmin
ADMINCFG[3] USERS=bob,carol,smoore
ADMINCFG[3] GROUPS=science,math
ADMINCFG[3] SERVICES=mjobctl,mcredctl,runjob
ADMINCFG[3] NAME=helpdesk

Members of the batchadmin admin role and members of the admin group are allowed to
run all commands. Members of the helpdesk role and science and math groups are
allowed to runmjobctl. They are also able to view and modify credential objects (i.e. users,
groups, accounts, etc.) See the security overview for more details.

ADMINCFG[4] USERS=ALL SERVICES=checknode

All users can execute mdiag -n or checknode to get information on any node.

25.0 Appendices

AGGREGATENODEACTIONS

Format <BOOLEAN>

Default FALSE

Description Consolidates queued node actions into as few actions as possible to reduce communication bur-
den with resource manager. Node actions are queued until the
AGGREGATENODEACTIONSTIME setting.

This may delay some node actions. When reprovisioning, the system job may expire
before the provision action occurs; while the action will still occur, the job will not show
it.

Example AGGREGATENODEACTIONS TRUE

Queues node actions together when possible.

AGGREGATENODEACTIONSTIME

Format <SECONDS>

Default 60

Description The delay time for the AGGREGATENODEACTIONS parameter to aggregate requests before
sending job batches.

Example AGGREGATENODEACTIONSTIME 120

Sets the AGGREGATENODEACTIONS delay to two minutes.

25.0 Appendices

800 Appendix A: Moab Parameters

Appendix A: Moab Parameters 801

ALLOWMULTIREQNODEUSE

Format <BOOLEAN>

Default FALSE

Description By default Moab does not allow different requirements on the same job to occupy the same
node. For example, if a job is submitted with nodes=2:ppn=8+4:fast:ppn=16, it's possible
that some of the tasks requested could overlap onto the same node. This parameter instructs
Moab to allow overlapping the same node, or not. This parameter also applies to the various -
w clauses of an mshow -a on page 192 command.

Example ALLOWMULTIREQNODEUSE TRUE

ALLOWROOTJOBS

Format <BOOLEAN>

Default FALSE

Description Specifies whether batch jobs from the root user (UID=0) are allowed to be executed. Note: The
resource manager must also support root jobs.

Example ALLOWROOTJOBS TRUE

Jobs from the root user can execute.

ALLOWVMMIGRATION

Format <BOOLEAN>

Default FALSE

Description Enables Moab to migrate VMs.

Example ALLOWVMMIGRATION TRUE

25.0 Appendices

ALWAYSEVALUATEALLJOBS

Format <BOOLEAN>

Default FALSE

Description When scheduling priority jobs, Moab stops scheduling when it encounters the first job that
cannot run and cannot get a reservation. ALWAYSEVALUATEALLJOBS directs Moab to con-
tinue scheduling until all priority jobs (jobs that do not violate any limits) are evaluated.

Example ALWAYSEVALUATEALLJOBS TRUE

AMCFG

Format One or more key-value pairs as described in the Allocation Manager Configuration Overview.

Default ---

Description Specifies the interface and policy configuration for the scheduler-allocation manager interface.
Described in detail in the Allocation Manager Configuration Overview.

Example AMCFG[mam] SERVER=mam://master.ufl.edu STARTFAILUREACTION=HOLD TIMEOUT=15

APPLICATIONLIST

Format Space-delimited list of generic resources.

Default ---

Description Specifies which generic resources represent actual applications on the cluster. See 12.4 Managing
Consumable Generic Resources for more information.

Example NODECFG[node01] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
NODECFG[node02] GRES=calclab:1,powerhouse:1 RCSOFTWARE=calclab:1,powerhouse:1
APPLICATIONLIST calclab,powerhouse

The generic resources calclab and powerhouse will now be recognized and treated as
application software.

25.0 Appendices

802 Appendix A: Moab Parameters

Appendix A: Moab Parameters 803

ARRAYJOBPARLOCK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, all sub jobs of an array are locked to a single partition. The default behavior when
scheduling array sub jobs is to span the jobs across partitions when possible. The
ARRAYJOBPARLOCK job flag can be used to specify partition locking at submit time. The
ARRAYJOBPARSPAN job flag overrides this parameter.

Example ARRAYJOBPARLOCK TRUE

ASSIGNVLANFEATURES

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this forces all VMs to be contained in VLANs.

Example ASSIGNVLANFEATURES TRUE

ATTRATTRWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs with the specified job attribute. See Attribute
(ATTR) Factor.

Example ATTRATTRWEIGHT 100

25.0 Appendices

ATTRGRESWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs requesting the specified generic resource. See
Attribute (ATTR) Factor.

Example ATTRGRESWEIGHT 200

ATTRSTATEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to jobs with the specified job state. See Attribute (ATTR)
Factor.

Example ATTRSTATEWEIGHT 200

ATTRWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority component weight to be applied to the ATTR subcomponents. See Attribute
(ATTR) Factor.

Example ATTRWEIGHT 2
ATTRSTATEWEIGHT 200

25.0 Appendices

804 Appendix A: Moab Parameters

Appendix A: Moab Parameters 805

BACKFILLDEPTH

Format <INTEGER>

Default 0 (no limit)

Description Specifies the number of idle jobs to evaluate for backfill. The backfill algorithm will evaluate the
top <X> priority jobs for scheduling. By default, all jobs are evaluated.

Example BACKFILLDEPTH 128

Evaluate only the top 128 highest priority idle jobs for consideration for backfill.

BACKFILLPOLICY

Format One of FIRSTFIT or NONE

Default FIRSTFIT

Description Specifies which backfill algorithm will be used. See Configuring Backfill for more information.

Example BACKFILLPOLICY NONE

BFCHUNKDURATION

Format [[[DD:]HH:]MM:]SS

Default 0 (chunking disabled)

Description Specifies the duration during which freed resources will be aggregated for use by larger jobs.
Used in conjunction with BFCHUNKSIZE on page 806. See Configuring Backfill for more inform-
ation.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making resources available only to
jobs of size 4 or larger.

25.0 Appendices

BFCHUNKSIZE

Format <INTEGER>

Default 0 (chunking disabled)

Description Specifies the minimum job size which can utilize chunked resources. Used in conjunction with
BFCHUNKDURATION on page 805. See Configuring Backfill for more information.

Example BFCHUNKDURATION 00:05:00
BFCHUNKSIZE 4

Aggregate backfillable resources for up to 5 minutes, making resources available only to
jobs of size 4 or larger.

BFMINVIRTUALWALLTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the minimum job wallclock time for virtual scaling (optimistic-like backfilling.) Any job
with a wallclock time less than this setting will not be virtually scaled. The value specified
relates to a job's original walltime and not its virtually-scaled walltime.

Example BFMINVIRTUALWALLTIME 00:01:30

BFPRIORITYPOLICY

Format One of RANDOM,DURATION, or HWDURATION

Default ---

Description Specifies policy to use when prioritizing backfill jobs for preemption

Example BFPRIORITYPOLICY DURATION

Use length of job in determining which backfill job to
preempt.

25.0 Appendices

806 Appendix A: Moab Parameters

Appendix A: Moab Parameters 807

BFVIRTUALWALLTIMECONFLICTPOLICY

Format One of the following: PREEMPT

Default ---

Description Specifies how to handle scheduling conflicts when a virtually scaled job "expands" to its
original wallclock time. This occurs when the job is within one scheduling iteration -
RMPOLLINTERVAL on page 907 - of its virtually scaled wallclock time expiring.

Example BFVIRTUALWALLTIMECONFLICTPOLICY PREEMPT

BFVIRTUALWALLTIMESCALINGFACTOR

Format <DOUBLE>

Default 0 (virtual scaling disabled)

Description Specifies the factor by which eligible jobs' wallclock time is virtually scaled (optimistic-
like backfilling).

Example BFVIRTUALWALLTIMESCALINGFACTOR .4

BYPASSCAP

Format <INTEGER>

Default 0

Description Specifies the max weighted value allowed from the bypass count subfactor when determining a
job's priority (see Priority Factors for more information).

Example BYPASSWEIGHT 5000
BYPASSCAP 30000

25.0 Appendices

BYPASSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's backfill bypass count when determining a job's priority
(see Priority Factors for more information).

Example BYPASSWEIGHT 5000

CHECKPOINTDIR

Format <STRING>

Default ---

Description Specifies the directory for temporary job checkpoint files (usually of the form jobid.cp). This is
not the directory for Moab's checkpoint file (.moab.ck).

Example CHECKPOINTDIR /tmp/moabcheckpoint

CHECKPOINTEXPIRATIONTIME

Format [[[DD:]HH:]MM:]SS or UNLIMITED

Default 3,000,000 seconds

Description Specifies how 'stale' checkpoint data can be before it is ignored and purged.

Example CHECKPOINTEXPIRATIONTIME 1:00:00:00

Expire checkpoint data which has been stale for over 1 day.

25.0 Appendices

808 Appendix A: Moab Parameters

Appendix A: Moab Parameters 809

CHECKPOINTFILE

Format <STRING>

Default moab.ck

Description Name (absolute or relative) of the Moab checkpoint file.

Example CHECKPOINTFILE /var/adm/moab/moab.ck

Maintain the Moab checkpoint file in the file
specified.

CHECKPOINTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description Time between automatic Moab checkpoints.

If RMPOLLINTERVAL does not specify both a minimum and maximum poll time, Moab
will ignore CHECKPOINTINTERVAL and checkpoint every iteration.

Example CHECKPOINTINTERVAL 00:15:00

Moab should checkpoint state information every 15 minutes.

CHECKPOINTWITHDATABASE

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab stores checkpoint information to a database rather than to the
.moab.ck flat text file.

Example CHECKPOINTWITHDATABASE TRUE

25.0 Appendices

CHECKSUSPENDEDJOBPRIORITY

Format <BOOLEAN>

Default TRUE

Description Prevents Moab from starting a job on any node containing a suspended job of higher pri-
ority.

Example CHECKSUSPENDEDJOBPRIORITY FALSE

CHILDSTDERRCHECK

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, child processes Moab executes are considered failed if their standard error stream
contains the text "ERROR".

Example CHILDSTDERRCHECK TRUE

CLASSCFG[<CLASSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, DEFAULT.ATTR, DEFAULT.DISK, DEFAULT.FEATURES, DEFAULT.GRES,
DEFAULT.MEM, DEFAULT.NODE, DEFAULT.NODESET, DEFAULT.PROC, ENABLEPROFILING,
EXCL.FEATURES, EXCLUDEUSERLIST, HOSTLIST, JOBEPILOG, JOBPROLOG, MAXPROCPERNODE,
MAX.NODE, MAX.PROC, MAX.WCLIMIT, MIN.NODE, MIN.PROC, MIN.TPN, MIN.WCLIMIT, PARTITION,
PRIORITY, PRIORITYF, QDEF, QLIST, REQ.FEATURES, REQUIREDACCOUNTLIST,
REQUIREDUSERLIST, RESFAILPOLICY, SYSPRIO, WCOVERRUN, usage limit, or fairshare usage limit
specification.

Default ---

Description Specifies class specific attributes (see Credential Overview for details).

Example CLASSCFG[batch] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted to the class batch will be allowed to execute simultaneously and
will be assigned the QoS highprio by default.

25.0 Appendices

810 Appendix A: Moab Parameters

Appendix A: Moab Parameters 811

CLASSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the class priority of each job (see Credential (CRED) Factor
and credential priority).

Example CLASSWEIGHT 10

CLIENTCFG[<X>]

Format One or more of <ATTR>-<VALUE> pairs where <X> indicates the specified peer and <ATTR> is one
of the following: AUTH, AUTHCMD, AUTHTYPE, HOST, KEY, or DEFAULTSUBMITPARTITION.

Default ---

Description Specifies the shared secret key and authentication method which Moab will use to communicate
with the named peer daemon. See Security Overview for more information. Note: The AUTHTYPE
and KEY attributes of this parameter may only be specified in the moab-private.cfg config file.

Example CLIENTCFG[silverB] KEY=apple7 AUTH=admin1

Moab will use the session key apple7 for peer authentication and for encrypting and
decrypting messages sent from silverB. Also, client connections from this interface will be
authorized at an admin 1 level.

CLIENTMAXCONNECTIONS

Format <INTEGER>

Default 128

Description Changes the maximum number of connections that can simultaneously connect to Moab. The
value can be increased during runtime, but it cannot be decreased. The value cannot be
reduced below the default value of 128.

Example CLIENTMAXCONNECTIONS 256

Doubles the maximum number of connections.

25.0 Appendices

CLIENTMAXPRIMARYRETRY

Format <INTEGER> or INFINITY

Default 1

Description Specifies how many times the client command will attempt to retry its connection to the
primary server if Moab is not available.

Example CLIENTMAXPRIMARYRETRY 5
CLIENTMAXPRIMARYRETRYTIMEOUT 1000

The client command will attempt to retry its connection to the primary server 5
times with 1 second intervals before giving up. Note: If INFINITY is specified, Moab
will attempt 2,140,000,000 times.

CLIENTMAXPRIMARYRETRYTIMEOUT

Format <INTEGER> (milliseconds)

Default 2000

Description Specifies how much time to wait until the client command will attempt to retry its con-
nection to the primary server if Moab is not available.

Example CLIENTMAXPRIMARYRETRY 3
CLIENTMAXPRIMARYRETRYTIMEOUT 500

The client command will attempt to retry its connection to the primary server
3 times with .5 second intervals before giving up.

25.0 Appendices

812 Appendix A: Moab Parameters

Appendix A: Moab Parameters 813

CLIENTTIMEOUT

Format [[[DD:]HH:]MM:]SS

Default 00:00:30

Description Time which Moab client commands will wait for a response from the Moab server. See Client Con-
figuration for more information. Note: May also be specified as an environment variable.

Example CLIENTTIMEOUT 00:15:00

Moab clients will wait up to 15 minutes for a response from the server before timing out.

CREDDISCOVERY

Format TRUE

Default FALSE

Description Specifies that Moab should create otherwise unknown credentials when it discovers them in the
statistics files.

Example CREDDISCOVERY TRUE

CREDWEIGHT

Format <INTEGER>

Default 1

Description Specifies the credential component weight associated with the credential priority. See Credential
(CRED) Factor for more information.

Example CREDWEIGHT 2

25.0 Appendices

DATASTAGEHOLDTYPE

Format Any Job Hold type

Default DEFER

Description Specifies what to do if a job's data staging operations fail.

Example DATASTAGEHOLDTYPE BATCH

DEADLINEPOLICY

Format One of CANCEL,HOLD, IGNORE, or RETRY

Default NONE

Description Specifies what to do when a requested deadline cannot be reached (see Job Deadlines).

Example DEADLINEPOLICY IGNORE

DEFAULTCLASSLIST

Format Space-delimited list of one or more <STRING>s.

Default ---

Description Specifies the default classes supported on each node for RM systems which do not provide this
information.

Example DEFAULTCLASSLIST serial parallel

25.0 Appendices

814 Appendix A: Moab Parameters

Appendix A: Moab Parameters 815

DEFAULTSUBMITPARTITION

Format See parameter CLIENTCFG[].

Default ---

Description If a user submits a job using msub which does not specify host, feature, or partition con-
straints, then the msub client will insert the specified default submit partition into the newly
submitted job as a hard requirement.

Example CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=partition1

DEFERCOUNT

Format <INTEGER>

Default 24

Description Specifies the number of times a job can be deferred before it will be placed in batch hold.

Example DEFERCOUNT 12

DEFERSTARTCOUNT

Format <INTEGER>

Default 1

Description Specifies the number of times a job will be allowed to fail in its start attempts before being
deferred. JOBRETRYTIME overrides DEFERSTARTCOUNT; DEFERSTARTCOUNT only begins when the
JOBRETRYTIMEwindow elapses. Note: A job's startcount will increase each time a start request is
made to the resource manager regardless of whether or not this request succeeded. This means
start count increases if job starts fail or if jobs are started and then rejected by the resource man-
ager. (For related information, see Reservation Policies, DEFERTIME, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example DEFERSTARTCOUNT 3

25.0 Appendices

DEFERTIME

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description Specifies the amount of time a job will be held in the deferred state before being released back to
the Idle job queue. Note: A job's defer time will be restarted if Moab is restarted. (For related
information, see Reservation Policies, DEFERSTARTCOUNT, RESERVATIONRETRYTIME,
NODEFAILURERESERVETIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example DEFERTIME 0:05:00

DELETESTAGEOUTFILES

Format <BOOLEAN>

Default FALSE

Description Specifies whether the scheduler should delete explicitly specified stageout files after they are
successfully staged. By default, such files are not deleted but are left on the nodes where the job
ran.

Example DELETESTAGEOUTFILES TRUE
Example of an explicit stageout request
msub x=MSTAGEOUT:ssh://source_node/tmp/file,file:///results_folder
job.cmd

With this parameter set to TRUE, /tmp/file on source_node is deleted after it is
copied to the specified destination (file:///results_folder). If the parameter is
not set, or if it is set to FALSE, /tmp/file remains on source_node after the job
terminates.

25.0 Appendices

816 Appendix A: Moab Parameters

Appendix A: Moab Parameters 817

DEPENDFAILUREPOLICY

Format HOLD or CANCEL

Default HOLD

Description Specifies what happens to a job if its dependencies cannot be fulfilled; that is, what happens
when a job depends on another job to complete successfully but the other job fails.

Example DEPENDFAILUREPOLICY CANCEL

If job A is submitted with depend=afterok:B and job B fails, job A is canceled.

DIRECTORYSERVER

Format <HOST>[:<PORT>]

Default ---

Description Specifies the interface for the directory server.

Example DIRECTORYSERVER
calli3.icluster.org:4702

DISABLEEXCHLIST

Format <BOOLEAN>

Default FALSE

Description If the resource manager rejects a job and the value is set to TRUE, then the node is not added to
the job's exclude host list.

Example DISABLEEXCHLIST TRUE

25.0 Appendices

DISABLEINTERACTIVEJOBS

Format <BOOLEAN>

Default FALSE

Description Disallows interactive jobs submitted with msub -I.
Note: It is possible for users to submit interactive jobs directly to a resource manager, which
can bypass the DISABLEINTERACTIVEJOBS parameter. However, some resource managers
(such as TORQUE) will check with Moab before allowing an interactive job.

Example DISABLEINTERACTIVEJOBS TRUE

DISABLEREGEXCACHING

Format <BOOLEAN>

Default FALSE

Description Turns off regular expression caching. Turning off regular expression caching preserves memory
with host list reservations and speeds up start time.

Example DISABLEREGEXCACHING TRUE

DISABLEREQUIREDGRESNONE

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this causes Moab to reject msub requests that have a gres of "none".
ENFORCEGRESSACCESSS must also be set to TRUE for this feature to work.

Example ########## moab.cfg ##########
ENFORCEGRESACCESS TRUE
DISABLEREQUIREDGRESNONE TRUE
################################

> msub -A ee -l nodes=1,ttc=5,walltime=600,partition=g02 -l gres=none
ERROR: cannot submit job - cannot locate required resource 'none'

25.0 Appendices

818 Appendix A: Moab Parameters

Appendix A: Moab Parameters 819

DISABLESAMECREDPREEMPTION

Format Comma-delimited list of one or more credentials: ACCT,CLASS,GROUP,QOS, or USER

Default ---

Description This parameter prevents specified credentials from preempting its own jobs.

Example DISABLESAMECREDPREEMPTION QOS,USER

DISABLESCHEDULING

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not the scheduler will schedule jobs. If set to TRUE, Moab will continue to
update node and job state but will not start, preempt, or otherwise modify jobs. The command
mschedctl -r will clear this parameter and resume normal scheduling.

Example DISABLESCHEDULING FALSE

DISABLETHRESHOLDTRIGGERS

Format <BOOLEAN>

Default FALSE

Description This makes Moab not fire threshold-based triggers, but will log the intended action to the
event logs. Similar to DISABLEVMDECISIONS.

Example DISABLETHRESHOLDTRIGGERS TRUE

25.0 Appendices

DISABLEVMDECISIONS

Format <BOOLEAN>

Default FALSE

Description This makes Moab not take any automatic decisions with respect to VM's, namely powering on/off
nodes and migrating VMs. Intended actions will instead be logged in the event logs. Similar to
DISABLETHRESHOLDTRIGGERS.

Example DISABLEVMDECISIONS TRUE

DISKWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the amount of dedicated disk space required per task
by a job (in MB).

Example RESWEIGHT 10
DISKWEIGHT 100

If a job requires 12 tasks and 512 MB per task of dedicated local disk space, Moab will
increase the job's priority by 10 * 100 * 12 * 512

25.0 Appendices

820 Appendix A: Moab Parameters

Appendix A: Moab Parameters 821

DISPLAYFLAGS

Format One or more of the following values (space delimited):
ACCOUNTCENTRIC,HIDEBLOCKED,HIDEDRAINED,NODECENTRIC, or USEBLOCKING

Default ---

Description Specifies flags that control how Moab client commands display varied information.
ACCOUNTCENTRIC will display account information in showq, rather than group information.
HIDEBLOCKED will prevent showq from listing information about blocked jobs which are not
owned by the user if the user is not an admin.
HIDEDRAINED prevents mdiag -n from displaying nodes and mvmctl -q from displaying VMs in
the DRAINED state. An override option of mdiag -n -w nodestate=drained lists only those nodes
with a DRAINED state. Similarly, an override option of mvmctl -q -w state=drained lists only those
VMs with a DRAINED state.
NODECENTRIC will display node allocation information instead of processor allocation
information in showq.
USEBLOCKING disables threading for commands that support it; those commands include
showq, mdiag -n, and mdiag -j.

Example DISPLAYFLAGS NODECENTRIC

DISPLAYPROXYUSERASUSER

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab shows the proxy users instead of the real user on some queries of sys-
tem jobs that have proxy users. Commands affected include mjobctl -q diag and checkjob.

Example DISPLAYPROXYUSERASUSER TRUE

25.0 Appendices

DONTCANCELINTERACTIVEHJOBS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab does not cancel interactive jobs that are held.

Example DONTCANCELINTERACTIVEHJOBS TRUE

DONTENFORCEPEERJOBLIMITS

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, only the scheduler that is running the job can cancel the job or enforce other
limits.

Example DONTENFORCEPEERJOBLIMITS TRUE

EMULATIONMODE

Format SLURM

Default ---

Description Specifies whether or not the scheduler will perform the automatic setup of a particular resource
manager environment.

Example EMULATIONMODE SLURM

Moab will perform the automated setup steps as if it were interfacing with a slurm
resource manager (automatic QoS creation).

ENABLEFAILUREFORPURGEDJOB

Format <BOOLEAN>

25.0 Appendices

822 Appendix A: Moab Parameters

Appendix A: Moab Parameters 823

ENABLEFAILUREFORPURGEDJOB

Default FALSE

Description By default, when a job is purged or removed by the TORQUE resource manager for a
walltime violation, the job takes on a state of Completed and a completion code of 0. If
TRUE, the job state is set to Removed and has a completion code of 98.
ENABLEFAILUREFORPURGEDJOB is for the TORQUE resource manager only.

For ENABLEFAILUREFORPURGEDJOB to return Removed job states, you must reset
the TORQUE server attribute keep_completed to 0 in qmgr. See "Queue
attributes" in the TORQUE Administrator Guide for more information.

Example ENABLEFAILUREFORPURGEDJOB TRUE

Jobs that are purged or removed by TORQUE are given a state of Removed and a
completion code of 98.

ENABLEFSVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a fairshare target and the preemptor is not.

Example ENABLEFSVIOLATIONPREEMPTION TRUE

25.0 Appendices

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/4-serverPolicies/queueAttributes.htm%23keep_completed
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/4-serverPolicies/queueAttributes.htm%23keep_completed

ENABLEHIGHTHROUGHPUT

Format <BOOLEAN>

Default FALSE

Description Configures Moab so that it will acceptmsub submissions, start jobs, process triggers, etc., in a
manner which minimizes their processing time. The downside is that Moab will return
minimal information about these jobs at submit time.

If ENABLEHIGHTHROUGHPUT is TRUE, you must set NODEALLOCATIONPOLICY on
page 872 to FIRSTAVAILABLE.

Example ENABLEHIGHTHROUGHPUT TRUE

Moab can now accept hundreds of jobs per second using msub instead of 20-30.

ENABLEJOBARRAYS

Format <BOOLEAN>

Default TRUE

Description If set to TRUE, job arrays will be enabled .

Example ENABLEJOBARRAYS TRUE

ENABLENEGJOBPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler allows job priority value to range from -INFINITY to MMAX_PRIO;
otherwise, job priority values are given a lower bound of '1'. For more information, see
REJECTNEGPRIOJOBS.

Example ENABLENEGJOBPRIORITY TRUE

Job priority may range from -INFINITY to MMAX_PRIO.

25.0 Appendices

824 Appendix A: Moab Parameters

Appendix A: Moab Parameters 825

ENABLENODEADDRLOOKUP

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will use the default host name service lookup mechanism (i.e.,
/etc/hosts, DNS, NIS, etc.) to determine the IP address of the nodes reported by the
resource manager. This information is used to correlate information reported by multi-homed
hosts.

Example ENABLENODEADDRLOOKUP TRUE

ENABLEPOSUSERPRIORITY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, the scheduler will allow users to specify positive job priority values which will
be honored. In other words, users can specify a priority that falls in the range of -1024 to
+1023, inclusive. If set to FALSE (the default), user priority values are given an upper bound
of '0' when users request a positive priority. See USERPRIOWEIGHT.

Example ENABLEPOSUSERPRIORITY TRUE

Users may now specify positive job priorities and have them take effect (e.g. msub -
p 100 job.cmd).

ENABLESPVIOLATIONPREEMPTION

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, Moab will allow jobs within the same class/queue to preempt when the
preemptee is violating a softusage policy and the preemptor is not.

Example ENABLESPVIOLATIONPREEMPTION TRUE

25.0 Appendices

ENABLEVMDESTROY

Format <BOOLEAN>

Default FALSE

Description If set to TRUE, enables the automatic destruction of a VM when the VM wall time is expired or
when the VM is stale and configured to be destroyed (for more information, see
VMSTALEACTION).

Example ENABLEVMDESTROY TRUE

ENFORCEACCOUNTACCESS

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab will enforce account access constraints without an allocation
manager.

Example ENFORCEACCOUNTACCESS TRUE

ENFORCEGRESACCESS

Format <BOOLEAN>

Default FALSE

Description If a user submits a job with a non-existent gres (e.g. in the case of a typo) and
ENFORCEGREACCESS is not set in moab.cfg, or is set to FALSE, then the requested gres will be
created (but will not exist on any nodes) and the job will be deferred (similar to
ENFORCEACCOUNTACCESS).

Example ENFORCEGRESACCESS TRUE

25.0 Appendices

826 Appendix A: Moab Parameters

Appendix A: Moab Parameters 827

EVENTLOGWSPASSWORD

Format <STRING>

Default ---

Description Specifies the user password required for logging in to your web services. You should set this
parameter in the moab-private.cfg file.

In conjunction with this parameter, you will also need to configure the following
parameters to set up event logging to Moab Web Services:

l PUSHEVENTSTOWEBSERVICE
l EVENTLOGWSURL
l EVENTLOGWSUSER

Example EVENTLOGWSPASSWORD adminpw

EVENTLOGWSURL

Format <STRING>

Default ---

Description Specifies your web services event log URL. For example, if you are using Moab Web Services:
< HOST>:< PORT><URL>

In conjunction with this parameter, you will also need to configure the following
parameters to set up event logging to Moab Web Services:

l PUSHEVENTSTOWEBSERVICE
l EVENTLOGWSUSER
l EVENTLOGWSPASSWORD

Example EVENTLOGWSURL wsServer:8080/mws/rest/events

25.0 Appendices

EVENTLOGWSUSER

Format <STRING>

Default ---

Description Specifies the username required for logging in to your web services. You should set this parameter
in the moab-private.cfg file.

In conjunction with this parameter, you will also need to configure the following
parameters to set up event logging to Moab Web Services:

l PUSHEVENTSTOWEBSERVICE
l EVENTLOGWSURL
l EVENTLOGWSPASSWORD

Example EVENTLOGWSUSER admin

EVENTSERVER

Format <HOST>[:<PORT>]

Default ---

Description Specifies the interface for the event server.

Example EVENTSERVER
calli3.icluster.org:4702

25.0 Appendices

828 Appendix A: Moab Parameters

Appendix A: Moab Parameters 829

FEATURENODETYPEHEADER

Format <STRING>

Default ---

Description Specifies the header used to specify node type via node features (i.e. LL features or PBS node
attributes).

Example FEATURENODETYPEHEADER xnt

Moab will interpret all node features with the leading string xnt as a nodetype
specification - as used by the allocation manager and other allocation managers, and
assign the associated value to the node. i.e., xntFast.

FEATUREPARTITIONHEADER

Format <STRING>

Default ---

Description Specifies the header used to specify node partition via node features (i.e. LL features or PBS
node attributes).

Example FEATUREPARTITIONHEADER xpt

Moab will interpret all node features with the leading string xpt as a partition
specification and assign the associated value to the node. i.e., xptGold.

25.0 Appendices

FEATUREPROCSPEEDHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node processor speed via node features (i.e., LL features
or PBS node attributes). Note: Adding a trailing '$' character will specifies that only features
with a trailing number be interpreted. For example, the header 'sp$' will match 'sp450' but
not 'sport'.

Example FEATUREPROCSPEEDHEADER xps

Moab will interpret all node features with the leading string xps as a processor
speed specification and assign the associated value to the node. i.e., xps950.

FEATURERACKHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node rack index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specifies that only features with a trail-
ing number be interpreted. For example, the header 'rack$' will match 'rack4' but not 'racket'.

Example FEATURERACKHEADER rack

Moab will interpret all node features with the leading string rack as a rack index
specification and assign the associated value to the node. i.e., rack16.

25.0 Appendices

830 Appendix A: Moab Parameters

Appendix A: Moab Parameters 831

FEATURESLOTHEADER

Format <STRING>

Default ---

Description Specifies the header used to extract node slot index via node features (i.e., LL features or PBS
node attributes). Note: Adding a trailing '$' character will specifies that only features with a trail-
ing number be interpreted. For example, the header 'slot$' will match 'slot12' but not 'slotted'.

Example FEATURESLOTHEADER slot

Moab will interpret all node features with the leading string slot as a slot index
specification and assign the associated value to the node. i.e., slot16.

FEEDBACKPROGRAM

Format <STRING>

Default ---

Description Specifies the name of the program to be run at the completion of each job. If not fully qualified,
Moab will attempt to locate this program in the 'tools' subdirectory.

Example FEEDBACKPROGRAM /var/moab/fb.pl

Moab will run the specified program at the completion of each job.

FILEREQUESTISJOBCENTRIC

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job's file request is a total request for the job or a per task request.

Example FILEREQUESTISJOBCENTRIC TRUE

Moab will treat file requests as a total request per job.

25.0 Appendices

FILTERCMDFILE

Format <BOOLEAN>

Default TRUE

Description Running the msub command performs the following operations on the submission script:
l Replace all comments with spaces (excludes Resource Manager directives)
l Strip empty lines
l Replace \r with \n
l Lock job to a PBS resource manager if $PBS is found in the script

Include the FILTERCMDFILE parameter in the moab.cfg file that resides on the clients.

FILTERCMDFILEmust be FALSE for REJECTDOSSCRIPTS on page 898 to work
correctly.

Example FILTERCMDFILE FALSE

Running themsub command does not perform the actions detailed earlier.

FORCENODEREPROVISION

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, this config option causes Moab to reprovision a node, even if it is to the
same operating system (in essence rewriting the OS).

Example FORCENODEREPROVISION TRUE

25.0 Appendices

832 Appendix A: Moab Parameters

Appendix A: Moab Parameters 833

FORCERSVSUBTYPE

Format <BOOLEAN>

Default FALSE

Description Specifies that admin reservations must have a subtype associated with them.

Example FORCERSVSUBTYPE TRUE

Moab will require all admin reservations to include a subtype.

FREETIMELOOKAHEADDURATION

Format [[[DD:]HH:]MM:]SS

Default 2 Months

Description Specifies how far ahead Moab will look when calculating free time on a node.

Example FREETIMELOOKAHEADDURATION 7:00:00:00

Moab will look 1 week ahead when it calculates free time on a
node.

FSACCOUNTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the account subcomponent of the fairshare component of priority.

Example FSACCOUNTWEIGHT 10

25.0 Appendices

FSCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute value for a job's total pre-weighted fairshare component.

Example FSCAP 10.0

Moab will bound a job's pre-weighted fairshare component by the range +/- 10.0.

FSCLASSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the class subcomponent of the fairshare component of priority.

Example FSCLASSWEIGHT 10

FSDECAY

Format <DOUBLE>

Default 1.0

Description Specifies decay rate applied to past fairshare interval when computing effective fairshare usage.
Values may be in the range of 0.01 to 1.0. A smaller value causes more rapid decay causing aged
usage to contribute less to the overall effective fairshare usage. A value of 1.0 indicates that no
decay will occur and all fairshare intervals will be weighted equally when determining effective
fairshare usage. See Fairshare Overview.

Example FSPOLICY DEDICATEDPS
FSDECAY 0.8
FSDEPTH 8

Moab will apply a decay rate of 0.8 to all fairshare windows.

25.0 Appendices

834 Appendix A: Moab Parameters

Appendix A: Moab Parameters 835

FSDEPTH

Format <INTEGER>

Default 8

Description Note: The number of available fairshare windows is bounded by the MAX_FSDEPTH value (32 in
Moab). See Fairshare Overview.

Example FSDEPTH 12

FSENABLECAPPRIORITY

Format <BOOLEAN>

Default FALSE

Description Fairshare priority will increase to target and stop.

Example FSENABLECAPPRIORITY TRUE

FSGROUPWEIGHT

Format <INTEGER>

Default 0

Description

Example FSGROUPWEIGHT
4

25.0 Appendices

FSINTERVAL

Format [[[DD:]HH:]MM:]SS

Default 12:00:00

Description Specifies the length of each fairshare window.

Example FSINTERVAL 12:00:00

Track fairshare usage in 12 hour
blocks.

FSJPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to jobs per user.

Example FSJPUWEIGHT 10

FSMOSTSPECIFICLIMIT

Format <BOOLEAN>

Default FALSE

Description When checking policy usage limits in a fairshare tree, if the most specific policy limit is passed
then do not check the same policy again at higher levels in the tree. For example, if a user has a
MaxProc policy limit then do not check the MaxProc policy limit on the account for this same user.

Example FSMOSTSPECIFICLIMIT TRUE

25.0 Appendices

836 Appendix A: Moab Parameters

Appendix A: Moab Parameters 837

FSPOLICY

Format <POLICY>[*] where <POLICY> is one of the following: DEDICATEDPS,DEDICATEDPES, or
UTILIZEDPS.

Default ---

Description Specifies the unit of tracking fairshare usage.DEDICATEDPS tracks dedicated processor seconds.
DEDICATEDPES tracks dedicated processor-equivalent seconds.UTILIZEDPS tracks the number
of utilized processor seconds. If the optional '%' (percentage) character is specified, percentage
based fairshare will be used. See Fairshare Overview and Fairshare Consumption Metrics or more
information.

Example FSPOLICY DEDICATEDPES

Moab will track fairshare usage by dedicated process-equivalent seconds.

FSPPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to processors per user.

Example FSPPUWEIGHT 10

FSPSPUWEIGHT

Format <INTEGER>

Default 0

Description Specifies the fairshare weight assigned to processor-seconds per user.

Example FSPSPUWEIGHT 10

25.0 Appendices

FSQOSWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the QoS fairshare subcomponent.

Example FSQOSWEIGHT 16

FSTARGETISABSOLUTE

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should base fairshare targets off of delivered cycles or up/available
cycles.

Example FSTARGETISABSOLUTE TRUE

FSTREE

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
SHARES or MEMBERLIST

Default ---

Description Specifies the share tree distribution for job fairshare prioritization (see Hierarchical Share Tree
Overview).

Example FSTREE[geo] SHARES=16 MEMBERLIST=geo103,geo313,geo422

25.0 Appendices

838 Appendix A: Moab Parameters

Appendix A: Moab Parameters 839

FSTREEACLPOLICY

Format OFF, PARENT, or FULL

Default FULL

Description Specifies how Moab should interpret credential membership when building the FSTREE (see Hier-
archical Share Tree Overview).

Example FSTREEACLPOLICY PARENT

Credentials will be given access to their parent node when applicable.

FSTREEISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether a job must have an applicable node in the partition's FSTREE in order to execute
within that partition (see Hierarchical Share Tree Overview).

Example FSTREEISREQUIRED TRUE

Jobs must have an applicable node in the FSTREE in order to execute.

FSTREEUSERISREQUIRED

Format <BOOLEAN>

Default FALSE

Description Specifies whether the user must be given explicit access to a branch in the FSTREE (see Hier-
archical Share Tree Overview).

Example FSTREEUSERISREQUIRED TRUE

Users must be given explicit access to FSTREE nodes in order to gain access to the
FSTREE.

25.0 Appendices

FSUSERWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the user fairshare subfactor.

Example FSUSERWEIGHT 8

FSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight assigned to the summation of the fairshare subfactors (see Priority
Factor and Fairshare overviews).

Example FSWEIGHT 500

GEVENTCFG[<GEVENT>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is ACTION, ECOUNT,
REARM, or SEVERITY. See Responding to Generic Events for details on values you can assign to each
attribute.

Default ---

Description Specifies how the scheduler should behave when various cluster events are detected. See the Gen-
eric Events Overview for more information.

Example GEVENTCFG[hitemp] ACTION=avoid,record,notify REARM=00:10:00
GEVENT[nodeerror] SEVERITY=3

If a hitemp event is detected, Moab adjusts the node allocation policy to minimize the
allocation of the node. Moab also sends emails to cluster administrators and reports the
event in the Moab event log.

25.0 Appendices

840 Appendix A: Moab Parameters

Appendix A: Moab Parameters 841

GRESCFG[<GRES>]

Format List of zero or more space delimited <ATTR >=<VALUE> pairs where <ATTR> is one of the following:
TYPE, PRIVATE, INHERITREQFEATURES, INVERTTASKCOUNT, FEATUREGRES, or STARTDELAY

Default ---

Description Specifies associations of generic resources into resource groups.
When PRIVATE is set to TRUE, Moab puts the requested generic resource on a separate job
request.
By default a private request is a request with 1 task with X number of generic resources per task.
When INVERTTASKCOUNTandPRIVATE are set to TRUE, Moab makes the generic resource's private
request a request with X number of tasks with 1 generic resource per task. If
INHERITREQFEATURES is also TRUE, then the private request will inherit the features of the
primary request, causing Moab to place the private requests on the same nodes as the primary
request.
See 12.6 Managing Consumable Generic Resources for more information.

Example GRESCFG[scsi1] TYPE=fastio
GRESCFG[scsi2] TYPE=fastio
GRESCFG[scsi3] TYPE=fastio

The generic resources scsi1, scsi2, and scsi3 are all associated with the generic resource
type fastio.

GRESTOJOBATTR

Format Comma delimited list of generic resources

Default ---

Description The list of generic resources will also be interpreted as JOB features. See Managing Reservations.

Example GRESTOJOBATTR matlab,ccs

Jobs which request the generic resources matlab or ccs will have a corresponding job
attribute assigned to them.

25.0 Appendices

GROUPCFG[<GROUPID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, PRIORITY, ENABLEPROFILING, QLIST, QDEF, PLIST, FLAGS, usage limits, or
a fairshare usage limit specification.

Default ---

Description Specifies group specific attributes. See the flag overview for a description of legal flag values.

Example GROUPCFG[staff] MAXJOB=50 QDEF=highprio

Up to 50 jobs submitted by members of the group staff will be allowed to execute
simultaneously and will be assigned the QoS highprio by default.

GROUPWEIGHT

Format <INTEGER>

Default 1

Description Specifies the priority weight assigned to the specified group priority (See Credential (CRED)
Factor).

Example GROUPWEIGHT 20

25.0 Appendices

842 Appendix A: Moab Parameters

Appendix A: Moab Parameters 843

GUARANTEEDPREEMPTION

Format <BOOLEAN>

Default FALSE

Description Causes Moab to lock PREEMPTOR jobs until JOBRETRYTIME expires (essentially, waiting for
the PREEMPTEE jobs to finish).
It may take some time for the PREEMPTEE jobs to clear out. During that time, the PREEMPTOR
job might want to look elsewhere to run, which would be disruptive as it might preempt
another set of jobs. If you wish it prevent this, it is recommended that you set
GUARANTEEDPREEMPTION to TRUE.
For related information, see About preemption, Reservation Policies, DEFERSTARTCOUNT,
DEFERTIME, RESERVATIONRETRYTIME, NODEFAILURERESERVETIME, and JOBRETRYTIME.

Example GUARANTEEDPREEMPTION TRUE

HALOCKCHECKTIME

Format [[[DD:]HH:]MM:]SS

Default 9

Description Specifies how frequently the secondary server checks the timestamp on the lock file. See High Avail-
ability Overview for more info.

Example HALOCKCHECKTIME 00:00:15

The Moab fallback server will check the health of the Moab primary server every 15
seconds.

HALOCKUPDATETIME

Format [[[DD:]HH:]MM:]SS

Default 3

Description Specifies how frequently the primary server checks the timestamp on the lock file. See High Avail-
ability Overview for more info.

25.0 Appendices

HALOCKUPDATETIME

Example HALOCKUPDATETIME 00:00:03

The Moab primary server will check the timestamp of the lock file every 3 seconds.

HIDEVIRTUALNODES

Format <BOOLEAN>

Default ---

Description Enables VM management; also used to reveal hypervisors.

Example HIDEVIRTUALNODES TRANSPARENT

IDCFG[X]

Format One or more of the following attribute/value pairs: BLOCKEDCREDLIST, CREATECRED,
CREATECREDURL,REFRESHPERIOD,RESETCREDLIST or SERVER.

Default ---

Description This parameter enables the identity manager interface allowing credential, policy, and usage
information to be shared with an external information service.

Only one identity manager can be configured at a time.

Example IDCFG[info] SERVER=exec://dbquery.pl REFRESHPERIOD=hour

Moab will refresh credential info every hour using the specified script.

25.0 Appendices

844 Appendix A: Moab Parameters

Appendix A: Moab Parameters 845

IGNOREMDATASTAGING

Format <BOOLEAN>

Default FALSE

Description When set to TRUE, Moab will ignore any resource manager specific data staging on a job and
assume the resource manager is processing the request. Currently, this only applies to PBS.

Example IGNORERMDATASTAGING TRUE

IGNORECLASSES

Format [!]<CLASS>[,<CLASS>]...

Default ---

Description By default, if using the TORQUE resource manager, jobs from all listed classes are ignored and not
scheduled, tracked, or otherwise processed by Moab. If the not(i.e., '!') character is specified, only
jobs from listed classes are processed. See the Moab Side-by-Side Analysis for more information.

Example IGNORECLASSES dque,batch

Moab will ignore jobs from classes dque and batch.

IGNOREJOBS

Format [!]<JOBID>[,<JOBID>]...

Default ---

Description By default, listed jobs are ignored and not scheduled, tracked, or otherwise processed by Moab. If
the not(i.e., '!') character is specified, only listed jobs are processed. See the Moab Side-by-Side Ana-
lysis for more information.

Example IGNOREJOBS !14221,14223

Moab will ignore jobs all classes except 14221 and 14223.

25.0 Appendices

IGNORENODES

Format [!]<NODE>[,<NODE>]...

Default ---

Description By default, all listed nodes are ignored and not scheduled, tracked, or otherwise processed by
Moab. If the not(i.e., '!') character is specified, only listed nodes are processed. See the Moab Side-
by-Side Analysis for more information.

Example IGNORENODES !host3,host4

Moab will only process nodes host3 and host4.

IGNOREPREEMPTEEPRIORITY

Format <BOOLEAN>

Default FALSE

Description By default, preemptor jobs can only preempt preemptee jobs if the preemptor has a higher
job priority than the preemptee. When this parameter is set to true, the priority constraint is
removed allowing any preemptor to preempt any preemptees once it reaches the top of the
eligible job queue.

Example IGNOREPREEMPTEEPRIORITY TRUE

A preemptor job can preempt any preemptee jobs when it is at the top of the eligible
job queue.

25.0 Appendices

846 Appendix A: Moab Parameters

Appendix A: Moab Parameters 847

IGNOREUSERS

Format [!]<USERNAME>[,<USERNAME>]...

Default ---

Description By default, if using the TORQUE resource manager, jobs from all listed users are ignored and not
scheduled, tracked, or otherwise processed by Moab. If the not(i.e., '!') character is specified, only
jobs from listed users are processed. (See the Moab Side-by-Side Analysis for more information.)

Example IGNOREUSERS testuser1,annapolis

Moab will ignore jobs from users testuser1 and annapolis.

#INCLUDE

Format <STRING>

Default ---

Description Specifies another file which contains more configuration parameters. If <STRING> is not an abso-
lute path, Moab will search its home directory for the file.

Example #INCLUDE moab.acct

Moab will process the parameters in moab.acct as well as moab.cfg

INSTANTSTAGE

Format <BOOLEAN>

Default FALSE

Description Deprecated. Use JOBMIGRATEPOLICY. Specifies whether Moab should instantly stage jobs to the
underlying resource manager when a job is submitted through msub.

Example INSTANTSTAGE TRUE

25.0 Appendices

INVALIDFSTREEMSG

Format "<STRING>"

Default "no valid fstree node found"

Description Specifies the error message that should be attached to jobs that cannot run because of a fairshare
tree configuration violation.

Example INVALIDFSTREEMSG "account is invalid for requested partition"

JOBACTIONONNODEFAILURE

Format CANCEL on page 316, FAIL on page 316,HOLD on page 316, IGNORE on page 316, NOTIFY
on page 316, or REQUEUE on page 316

Default ---

Description Specifies the action to take if Moab detects that a node allocated to an active job has failed
(state is down). By default, Moab only reports this information via diagnostic commands. If
this parameter is set, Moab will cancel or requeue the active job. See Reallocating Resources
When Failures Occur for more information.

Note: The HOLD value is only applicable when using checkpointing.

Example JOBACTIONONNODEFAILURE REQUEUE

Moab will requeue active jobs which have allocated nodes which have failed during
the execution of the job.

25.0 Appendices

848 Appendix A: Moab Parameters

Appendix A: Moab Parameters 849

JOBAGGREGATIONTIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description Specifies the minimum amount of time the scheduler should wait after receiving a job event
until it should process that event. This parameter allows sites with bursty job submissions to pro-
cess job events in groups decreasing total job scheduling cycles and allowing the scheduler to
make more intelligent choices by aggregating job submissions and choosing between the jobs.
See Considerations for Large Clusters.

Example JOBAGGREGATIONTIME 00:00:04
RMPOLLINTERVAL 30,30

Moab will wait 4 seconds between scheduling cycles when job events have been
received and will wait 30 seconds between scheduling cycles otherwise.

JOBCFG

Format <ATTR>=<VAL>where <ATTR> is one of FLAGS, GRES, NODERANGE, PRIORITYF, PROCRANGE, QOS,
RARCH, RFEATURES, ROPSYS, SELECT, or TARGETLOAD

Default ---

Description Specifies attributes for jobs which satisfy the specified profile. The SELECT attribute allows users to
specify the job template by using msub -l template=.
The JOBCFG parameter supports the following attributes:
NONE, ACCOUNT, ACTION, AUTOSIZE, CLASS, CPULIMIT, DESCRIPTION, DGRES, FAILUREPOLICY,
GROUP, IFLAGS, JOBSCRIPT MEM (forMEM=<value>),MEMORY (forMEMORY=$LEARN),
NODEACCESSPOLICY, NODEMOD, PARTITION, PREF, QOS, RESTARTABLE, RM, RMSERVICEJOB,
SELECT, STAGEIN, SOFTWARE, SRM, TEMPLIMIT, TFLAGS, USER, VMUSAGE,WALLTIME,WORK
It also supports the following Wiki attributes:
ARGS, DMEM, DDISK, DWAP, ERROR, EXEC, EXITCODE, GATTR, GEVENT, IWD, JNAME, NAME,
PARTITIONMASK, PRIORITYF, RDISK, RSWAP, RAGRES, RCGRES, TASKPERNODE, TRIGGER, VARIABLE,
NULL

Note: The index to the JOBCFG parameter can either be an admin-chosen job template name or the
exact name of job reported by one or more workload queries. See Wiki Attributes and Job
Template Extensions.

Example JOBCFG[sql] RFEATURES=sqlnode QOS=service

When the sql job is detected, it will have the specified default QoS and node feature
attributes set.

25.0 Appendices

JOBCPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 00:05:00

Description Specifies the amount of time Moab will preserve detailed information about a completed job (see
showq -c and checkjob).

Example JOBCPURGETIME 02:00:00

Moab will maintain detailed job information for 2 hours after a job has completed.

JOBCTRUNCATENLCP

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab will store only the first node of the node list for a completed job in the
checkpoint file.

Example JOBCTRUNCATENLCP TRUE

JOBCTRUNCATENLCP reduces the amount of memory Moab uses to store completed job
information.

25.0 Appendices

850 Appendix A: Moab Parameters

Appendix A: Moab Parameters 851

JOBEXTENDSTARTWALLTIME

Format <BOOLEAN>

Default ---

Description Extends the job walltime when Moab starts the job up to the lesser of the maximum or the
next reservation (rounded down to the nearest minute).

Example JOBEXTENDSTARTWALLTIME TRUE

Submit job with a minimum wallclock limit and a walltime; for example:

echo sleep 500 | msub -A ee -l
nodes=5,minwclimit=5:00,walltime=30:00,partition=g02

At job start, Moab recognizes the nodes assigned to the specified job and extends the
walltime for the job (one time at job start) up to the lesser of the maximum
walltime requested or the least amount of time available for any of the nodes until
the next reservation on that node.

JOBFAILRETRYCOUNT

Format <INTEGER>

Default 0

Description Specifies the number of times a job is requeued and restarted by Moab if the job fails (if the job
itself returns a non-zero exit code). Some types of jobs may succeed if automatically retried
several times in short succession. This parameter was created with these types of jobs in mind.
Note that the job in question must also be restartable (the job needs to have the "RESTARTABLE"
flag set on it) and the RM managing the job must support requeuing and starting completed jobs.
If a job fails too many times, and reaches the number of retries given by JobFailRetryCount, then
a UserHold is placed on the job and a message is attached to it signifying that the job has a
"restart count violation."

Example JOBFAILRETRYCOUNT 7

Any job with a RESTARTABLE flag is requeued, if it fails, up to 7 times before a UserHold
is placed on it.

25.0 Appendices

JOBIDWEIGHT

Format <INTEGER>

Default ---

Description Specifies the weight to be applied to the job's id. See Attribute (ATTR) Factor.

Example JOBIDWEIGHT -1

Later jobs' priority will be negatively affected.

JOBMATCHCFG

Format <ATTR>=<VAL>where <ATTR> is one of JMIN, JMAX, JDEF, JSET, or JSTAT, or the <ATTR>=<VAL>
pair can be FLAGS=BREAK.

Default ---

Description Specifies the job templates which must be matched and which will be applied in the case of a
match. To force Moab to break from matching, use FLAGS=BREAK. If a job matches a job template
that has FLAGS=BREAK enabled, Moab stops evaluating further JOBMATCHCFG entries for that
job.

Example JOBMATCHCFG[sql] JMIN=interactive JSTAT=istat

JOBMATCHCFG[small] JMIN=small.min JMAX=small.max JSET.set=small.set FLAGS=BREAK
JOBMATCHCFG[large] JMIN=large.min JMAX=large.max JSET=large.set

In this case, the large template would not be applied when a job matches both the small
and large templates. The small template matches first, and because of FLAGS=BREAK,
Moab stops evaluating further JOBMATCHFG entries for the job.

25.0 Appendices

852 Appendix A: Moab Parameters

Appendix A: Moab Parameters 853

JOBMAXHOLDTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the amount of time a job can be held before it is canceled automatically.

Example JOBMAXHOLDTIME 02:00:00

Moab will keep jobs in any HOLD state for 2 hours before canceling
them.

JOBMAXNODECOUNT

Format <INTEGER>

Default 1024

Description Specifies the maximum number of nodes which can be allocated to a job. After changing this para-
meter, Moab must be restarted. Note: This value cannot exceed eitherMMAX_NODE orMMAX_
TASK_PER_JOB. If larger values are required, these values must also be increased. Moab must be
restarted before changes to this command will take effect. The command mdiag -S will indicate if
any job node count overflows have occurred. See Consideration for Large Clusters.

Example JOBMAXNODECOUNT 4000

25.0 Appendices

JOBMAXOVERRUN

Format [[[[DD:]HH:]MM:]SS,][[[DD:]HH:]MM:]SS

Default (no soft limit), 10 minutes (hard limit)

Description Soft and hard limit of the amount of time Moab will allow a job to exceed its wallclock limit before
it first sends a mail to the primary admin (soft limit) and then terminates the job (hard limit). See
WCVIOLATIONACTION or Usage-based Limits.

If you run Moab with the TORQUE resource manager, you must set the $ignwalltime
parameter to true in the /var/spool/torque/mom_priv/config file, otherwise the
pbs_mom will kill any job that exceeds its walltime. See the TORQUE documentation for
more information.

Example JOBMAXOVERRUN 15:00,1:00:00

Jobs may exceed their wallclock limit by up to 1 hour, but Moab will send an email to the
primary administrator when a job exceeds its walltime by 15 minutes.

JOBMAXTASKCOUNT

Format <INTEGER>

Default 4096

Description Specifies the total number of tasks allowed per job.

Example JOBMAXTASKCOUNT 226000

JOBMAXPREEMPTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to be preempted per iteration.

Example JOBMAXPREEMPTPERITERATION 10

25.0 Appendices

854 Appendix A: Moab Parameters

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

Appendix A: Moab Parameters 855

JOBMAXSTARTPERITERATION

Format <INTEGER>

Default 0 (No Limit)

Description Maximum number of jobs allowed to start per iteration.

Example JOBMAXSTARTPERITERATION 10

JOBMAXSTARTTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description Length of time a job is allowed to remain in a 'starting' state. If a 'started' job does not transition to
a running state within this amount of time, Moab will cancel the job, believing a system failure has
occurred.

Example JOBMAXSTARTTIME 2:00:00

Jobs may attempt to start for up to 2 hours before being canceled by the scheduler

JOBMIGRATEPOLICY

Format One of the following: IMMEDIATE, JUSTINTIME, or AUTO

Default AUTO

Description Upon using the msub command to submit a job, you can allocate the job to immediately
(IMMEDIATE) migrate to the resource manager, or you can instruct Moab to only migrate the job
to the resource manager when it is ready to run (JUSTINTIME). Specifying AUTO allows MOAB to
determine on a per-job basis whether to use IMMEDIATE or JUSTINTIME.

Example JOBMIGRATEPOLICY JUSTINTIME

25.0 Appendices

JOBNAMEWEIGHT

Format <INTEGER>

Default ---

Description Specifies the weight to be applied to the job's name if the Name contains an integer. See Attribute
(ATTR) Factor.

Example JOBNAMEWEIGHT 1

JOBNODEMATCHPOLICY

Format EXACTNODE or EXACTPROC

Default ---

Description Specifies additional constraints on how compute nodes are to be selected. EXACTNODE indic-
ates that Moab should select as many nodes as requested even if it could pack multiple tasks
onto the same node. EXACTPROC indicates that Moab should select only nodes with exactly
the number of processors configured as are requested per node even if nodes with excess pro-
cessors are available.

Example JOBNODEMATCHPOLICY EXACTNODE

In a PBS/Native job with resource specification nodes=<x>:ppn=<y>, Moab will
allocate exactly <y> task on each of <x> distinct nodes.

JOBPREEMPTMAXACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time in which a job may be eligible for preemption. See Job Preemption.

Example JOBPREEMPTMAXACTIVETIME 00:05:00

A job is preemptible for the first 5 minutes of its run time.

25.0 Appendices

856 Appendix A: Moab Parameters

Appendix A: Moab Parameters 857

JOBPREEMPTMINACTIVETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The minimum amount of time a job must be active before being considered eligible for pree-
mption. See Job Preemption.

Example JOBPREEMPTMINACTIVETIME 00:05:00

A job must execute for 5 minutes before Moab will consider it eligible for
preemption.

25.0 Appendices

JOBPRIOACCRUALPOLICY

Format ACCRUE or RESET

Default ACCRUE

Description Specifies how Moab should track the dynamic aspects of a job's priority. ACCRUE indicates
that the job will accrue queuetime based priority from the time it is submitted unless it violates
any of the policies not specified in JOBPRIOEXCEPTIONS.RESET indicates that it will accrue
priority from the time it is submitted unless it violates any of the JOBPRIOEXCEPTIONS.
However, with RESET, if the job does violate JOBPRIOEXCEPTIONS then its queuetime based
priority will be reset to 0.

JOBPRIOACCRUALPOLICY is a global parameter, but can be configured to work only in
QOSCFG:

QOSCFG[arrays] JOBPRIOACCRUALPOLICY=ACCRUE

The following old JOBPRIOACCRUALPOLICY values have been deprecated and should be
adjusted to the following values:

l QUEUEPOLICY= ACCRUE and JOBPRIOEXCEPTIONSSOFTPOLICY,HARDPOLICY
l QUEUEPOLICYRESET= RESET and
JOBPRIOEXCEPTIONSSOFTPOLICY,HARDPOLICY

l ALWAYS= ACCRUE and JOBPRIOEXCEPTIONSALL
l FULLPOLICY= ACCRUE and JOBPRIOEXCEPTIONSNONE
l FULLPOLICYRESET= RESET and JOBPRIOEXCEPTIONSNONE

Example JOBPRIOACCRUALPOLICY RESET

Moab will adjust the job's dynamic priority subcomponents, i.e., QUEUETIME,
XFACTOR, and TARGETQUEUETIME, etc. each iteration that the job does not violate
any JOBPRIOEXCEPTIONS, if it is found in violation, its queuetime will be reset to 0.

25.0 Appendices

858 Appendix A: Moab Parameters

Appendix A: Moab Parameters 859

JOBPRIOEXCEPTIONS

Format Comma delimited list of any of the following: DEFER,DEPENDS, SOFTPOLICY,HARDPOLICY,
IDLEPOLICY,USERHOLD, BATCHHOLD, and SYSTEMHOLD (ALL or NONE can also be spe-
cified on their own)

Default NONE

Description Specifies exceptions for calculating a job's dynamic priority (QUEUETIME, XFACTOR,
TARGETQUEUETIME). Normally, when a job violates a policy, is placed on hold, or has an
unsatisfied dependency, it will not accrue priority. Exceptions can be configured to allow a job to
accrue priority in spite of any of these violations. With DEPENDS a job will increase in priority
even if there exists an unsatisfied dependency. With SOFTPOLICY,HARDPOLICY, or
IDLEPOLICY a job can accrue priority despite violating a specific limit. With DEFER,
USERHOLD, BATCHHOLD, or SYSTEMHOLD a job can accrue priority despite being on hold.

JOBPRIOEXCEPTIONS is a global parameter, but can be configured to work only in QOSCFG:

QOSCFG[arrays] JOBPRIOEXCEPTIONS=IDLEPOLICY

Example JOBPRIOEXCEPTIONS BATCHHOLD,SYSTEMHOLD,DEPENDS

Jobs will accrue priority in spite of batchholds, systemholds, or unsatisfied dependencies.

JOBPRIOF

Format <ATTRIBUTE>[<VALUE>]=<PRIORITY>where <ATTRIBUTE> is one of ATTR, GRES or STATE

Default ---

Descrip-
tion

Specifies attribute priority weights for jobs with specific attributes, generic resource requests, or
states. State values must be one of the standard Moab job states. See Attribute-Based Job Pri-
oritization.

Example JOBPRIOF STATE[Running]=100 STATE[Suspended]=1000 ATTR[PREEMPTEE]=200
GRES[biocalc]=5
ATTRATTRWEIGHT 1
ATTRSTATEWEIGHT 1

Moab will adjust the job's dynamic priority subcomponents.

25.0 Appendices

JOBPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 0 (purge immediately if the resource manager does not report the job)

Description The amount of time Moab will keep a job record which is no longer reported by the resource man-
ager. Useful when using a resource manager which drops information about a job due to internal
failures. See JOBCPURGETIME.

Example JOBPURGETIME 00:05:00

Moab will maintain a job record for 5 minutes after the last update regarding that object
received from the resource manager.

JOBREJECTPOLICY

Format One or more of CANCEL,HOLD, IGNORE (beta),MAIL, or RETRY

Default HOLD

Description Specifies the action to take when the scheduler determines that a job can never run.CANCEL
issues a call to the resource manager to cancel the job.HOLD places a batch hold on the job pre-
venting the job from being further evaluated until released by an administrator. (Note: Admin-
istrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.) With
IGNORE(currently in beta), the scheduler will allow the job to exist within the resource manager
queue but will neither process it nor report it. MAIL will send email to both the admin and the
user when rejected jobs are detected. If RETRY is set, then Moab will allow the job to remain idle
and will only attempt to start the job when the policy violation is resolved. Any combination of
attributes may be specified. See QOSREJECTPOLICY.

Example JOBREJECTPOLICY MAIL,CANCEL

25.0 Appendices

860 Appendix A: Moab Parameters

Appendix A: Moab Parameters 861

JOBREMOVEENVVARLIST

Format Comma-delimited list of strings

Default ---

Description Moab will remove the specified environment variables from the job's environment before
migrating the job to its destination resource manager. This is useful when jobs submit
themselves from one cluster to another with the full environment.

This parameter is currently only supported with TORQUE resource managers.

Example JOBREMOVEENVVARLIST PBS_SERVER,TZ

Moab will remove the environment variables PBS_SERVER and TZ before
submitting jobs.

JOBRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 00:00:60

Description Period of time Moab will continue to attempt to start a job which has failed to start due to tran-
sient failures or which has successfully started and was then rejected by the resource manager
due to transient failures. (For related information, see Reservation Policies, DEFERSTARTCOUNT,
DEFERTIME, RESERVATIONRETRYTIME, NODEFAILURERESERVETIME, and
GUARANTEEDPREEMPTION.)

Example JOBRETRYTIME 00:05:00

Moab will try for up to 5 minutes to restart jobs if the job start has failed due to
transient errors.

25.0 Appendices

LIMITEDJOBCP

Format <BOOLEAN>

Default FALSE

Description Specifies whether there should be limited job checkpointing (see Consideration for Large
Clusters). With LIMITEDJOBCP enabled, Moab will only checkpoint a job if it is modified with
mjobctl on page 132 or if it has been submitted with msub on page 203 but has not migrated. In
all other cases, Moab does not checkpoint the job and all Moab-specific information (such as mes-
sages attached to the job) is lost. No TORQUE-specific information will be lost.

Example LIMITEDJOBCP TRUE

Moab will only maintain scheduler checkpoint information for jobs with explicitly
modified job attributes. Some minor job performance and usage statistics may be lost.

LIMITEDNODECP

Format <BOOLEAN>

Default FALSE

Description Specifies whether there should be limited node checkpointing (see Consideration for Large
Clusters).

Example LIMITEDNODECP TRUE

Moab will only maintain scheduler checkpoint information for nodes with explicitly
modified job attributes. (some minor node performance and usage statistics may be lost)

25.0 Appendices

862 Appendix A: Moab Parameters

Appendix A: Moab Parameters 863

LOADALLJOBCP

Format <BOOLEAN>

Default FALSE

Description Specifies whether Moab should load, during startup, all non-completed jobs in the checkpoint files
regardless of whether or not their corresponding resource managers are active. For example, this
allows source peers to continue showing remote jobs in the queue based on checkpointed info,
even though the destination peer is offline.

Example LOADALLJOBCP TRUE

Moab will load, at startup, all non-completed jobs from all checkpoint files.

LOCKFILE

Format <STRING>

Default ---

Description Specifies the path for the lock (pid) file used by Moab.

Example LOCKFILE /var/spool/moab/lock

LOGDIR

Format <STRING>

Default log

Description Specifies the directory in which log files will be maintained. If specified as a relative path, LOGDIR
will be relative to $(MOABHOMEDIR) See Logging Overview for more information.

Example LOGDIR /var/spool/moab

Moab will record its log files directly into the /var/spool/moab directory

25.0 Appendices

LOGFACILITY

Format Colon delimited list of one or more of the following: CORE, SCHED, SOCK,UI, LL,CONFIG,
STAT, SIM, STRUCT, FS,CKPT, BANK,RM, PBS,WIKI, ALL

Default ALL

Description Specifies which types of events to log (see Logging Overview).

Example LOGFACILITY RM:PBS

Moab will log only events involving general resource manager or PBS interface activities.

LOGFILE

Format <STRING>

Default moab.log

Description Name of the Moab log file. This file is maintained in the directory pointed to by <LOGDIR> unless
<LOGFILE> is an absolute path (see Logging Overview)

Example LOGFILE moab.test.log

Log information will be written to the filemoab.test.log located in the directory pointed
to by the LOGDIR parameter.

LOGFILEMAXSIZE

Format <INTEGER>

Default 10000000

Description Maximum allowed size (in bytes) of the log file before it will be rolled (see Logging Overview).

Example LOGFILEMAXSIZE 50000000

Log files will be rolled when they reach 50 MB in size

25.0 Appendices

864 Appendix A: Moab Parameters

Appendix A: Moab Parameters 865

LOGFILEROLLDEPTH

Format <INTEGER>

Default 3

Description Number of old log files to maintain (i.e., when full, moab.log will be renamed moab.log.1,
moab.log.1 will be renamed moab.log.2, ...). See Logging Overview.

Example LOGFILEROLLDEPTH 5

Moab will maintain and roll the last 5 log files.

LOGLEVEL

Format <INTEGER> (0-9)

Default 0

Description Specifies the verbosity of Moab logging where 9 is the most verbose (Note: each logging level is
approximately an order of magnitude more verbose than the previous level). See Logging Over-
view.

Example LOGLEVEL 4

Moab will write all Moab log messages with a threshold of 4 or lower to the moab.log
file.

25.0 Appendices

LOGLEVELOVERRIDE

Format <BOOLEAN>

Default FALSE

Description When this parameter is on, if someone runs a command with --loglevel=<x>, that loglevel, if
higher than the current loglevel, is used on the scheduler side for the duration of the command. All
logs produced during that time are put into a separate log file (this creates a "gap" in the normal
logs). This can be very useful for debugging, but it is recommend that this be used only when dia-
gnosing a specific problem so that users can't affect performance by submitting multiple --log-
level commands.

This parameter does not work with threaded commands (such as showq,mdiag -n, and
mdiag -j).

Example LOGLEVELOVERRIDE TRUE

LOGPERMISSIONS

Format <INTEGER>

Default 644

Description Specifies the octal number that represents read, write, and execute permissions.

Example LOGPERMISSIONS 600

Allows the file owner to read and write permissions, but denies rights to the
group and others.

25.0 Appendices

866 Appendix A: Moab Parameters

Appendix A: Moab Parameters 867

LOGROLLACTION

Format <STRING>

Default ---

Description Specifies a script to run when the logs roll. The script is run as a trigger and can be viewed using
mdiag -T. For example, a script can be specified that always moves the first rolled log file, moab.-
log.1, to an archive directory for longer term storage.

Example LOGROLLACTION /usr/local/tools/logroll.pl

MAILPROGRAM

Format [<Full_Path_To_Mail_Command> | DEFAULT | NONE][@<DEFAULTMAILDOMAIN>]

Default NONE

Description If set to NONE, no mail is sent. If set to DEFAULT, Moab sends mail via the system's default mail
program (usually /usr/bin/sendmail). If set to the local path of a mail program, Moab uses the
specified mail program to send mail.
By default, Moab mail notification is disabled. To enable, you must setMAILPROGRAM to
DEFAULT or specify some other locally available mail program. If the default mail domain is set,
emails will be routed to this domain unless a per-user domain is specified using the
EMAILADDRESS attribute of the USERCFG parameter. If neither of these values is set, Moab uses
"@localhost" as the mail domain. See Notify Admins.
For jobs, the email address used on the msub -M option overrides all other user email addresses.
Additionally, administrators are notified in the case of job violations.

Example MAILPROGRAM DEFAULT

Moab sends mail via the system's default mail program, /usr/bin/sendmail.

MAILPROGRAM /usr/local/bin/sendmail@mydomain.com

Moab sends mail via the mail program located at /usr/local/bin/sendmail with default
mail domain@mydomain.com

25.0 Appendices

MAXGRES

Format <INTEGER>

Default 512

Description Specifies how many generic resources Moab should manage.

Example MAXGRES 1024

MAXGMETRIC

Format <INTEGER>

Default 10

Description Specifies how many generic metrics Moab should manage.

Example MAXGMETRIC 20

MAXJOB

Format <INTEGER>

Default 4096

Description Specifies the maximum quantity of jobs for which Moab should allocate memory used for tracking
jobs. If Moab is tracking the maximum quantity of jobs specified by this parameter, it rejects
subsequent jobs submitted by any user since it has no memory left with which to track newly
submitted jobs.
If a user submitted a job with the msub command, this rejection behavior requires the user to
resubmit the job at a later time after other jobs have completed, which frees memory in which
Moab can place later-submitted jobs. If a user submitted a job with the TORQUE qsub command,
TORQUE will automatically resubmit the job to Moab until Moab accepts it.
The mdiag -S command indicates if any job overflows have occurred.
If this parameter's value is changed, it does not go into effect until Moab restarts. Moab reads the
parameter only on initial startup and uses its value to allocate the memory it uses to track jobs.

Example MAXJOB 45000

25.0 Appendices

868 Appendix A: Moab Parameters

Appendix A: Moab Parameters 869

MAXNODE

Format <INTEGER>

Default 5120

Description Specifies the maximum number of compute nodes supported.

Example MAXNODE 10000

MAXRSVPERNODE

Format <INTEGER>

Default 48

Description Specifies the maximum number of reservations on a node.

For large SMP systems (>512 processors/node), Adaptive Computing advises adjusting the value
to approximately twice the average sum of admin, standing, and job reservations present.

A second number, led by a comma, can also be specified to set a maximum number of reservations
for nodes that are part of the SHARED partition.
The maximum possible value of MAXRSVPERNODE is 8192 for a global node and 4096 for any
other node.

Moab must be restarted for any changes to this parameter to take effect. The command mdiag -S
indicates whether any node reservation overflows have occurred. See Considerations for Large
Clusters.

Do not lower the MAXRSVPERNODE value while there are active jobs in the queue. This
can lead to queue instability and certain jobs could become stuck or disconnected from

the system.

Example MAXRSVPERNODE 64

64 is the maximum number of reservations on a single node.

MAXRSVPERNODE 100,7000

100 is the maximum number of reservations on a single node, and 7000 is the maximum
number of reservations for global nodes.

25.0 Appendices

MEMREFRESHINTERVAL

Format [[[DD:]HH:]MM:]:SS | job:<COUNT>

Default ---

Description Specifies the time interval or total job query count at which Moab will perform garbage col-
lection to free memory associated with resource manager API's which possess memory leaks
(i.e., Loadleveler, etc.).

Example # free memory associated with leaky RM API
MEMREFRESHINTERVAL 24:00:00

Moab will perform garbage collection once every 24 hours.

MEMWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's MEM (dedicated memory in MB) factor. See
Resource Priority Overview.

Example RESWEIGHT 10
MEMWEIGHT 1000

Each job's priority will be increased by 10 * 1000 * <request memory>.

MINADMINSTIME

Format <INTEGER>

Default 60 seconds

Description Specifies the minimum time a job will be suspended if suspended by an administrator or by a
scheduler policy.

Example MINADMINSTIME 00:10:00

Each job suspended by administrators or policies will stay in the suspended state for at
least 10 minutes.

25.0 Appendices

870 Appendix A: Moab Parameters

Appendix A: Moab Parameters 871

MISSINGDEPENDENCYACTION

Format CANCEL,HOLD, or RUN

Default HOLD

Description Controls what Moab does with a dependent job when its dependency job cannot be found
when Moab evaluates the dependent job for scheduling. This only affects jobs whose
dependent job cannot be found.

Example MISSINGDEPENDENCYACTION CANCEL

Any job that has a dependent job that cannot be found is canceled.

MSUBQUERYINTERVAL

Format <INTEGER>

Default 5 seconds

Description Specifies the length of the interval (in seconds) between job queries when using msub -K. Jobs
submitted with the -K option query the scheduler everyMSUBQUERYINTERVAL seconds until the
job is completed.
MSUBQUERYINTERVAL can exist as an environment variable. Any value in moab.cfg overrides
the environment variable.
Note: If MSUBQUERYINTERVAL is set to 0, the -K option will be disabled. Jobs will still submit
correctly, but the client will not continue to check on the job.

Example MSUBQUERYINTERVAL 60

If a user uses the msub -K command, the client remains open and queries the server
every 60 seconds until the job completes.

25.0 Appendices

NODEACCESSPOLICY

Format One of the following:
SHARED, SHAREDONLY, SINGLEJOB, SINGLETASK, SINGLEUSER, or UNIQUEUSER

Default SHARED

Description Specifies how node resources will be shared by various tasks (See the Node Access Overview for
more information).

Example NODEACCESSPOLICY SINGLEUSER

Moab will allow resources on a node to be used by more than one job provided that the jobs are all
owned by the same user.

NODEALLOCATIONPOLICY

Format One of the following:
FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE, CPULOAD, LOCAL, CONTIGUOUS,
MAXBALANCE, PRIORITY, or PLUGIN.

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to jobs. See Node Allocation Overview
for more information.

If ENABLEHIGHTHROUGHPUT on page 824 is TRUE, you must set
NODEALLOCATIONPOLICY to FIRSTAVAILABLE.

Example NODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to all jobs by default.

25.0 Appendices

872 Appendix A: Moab Parameters

Appendix A: Moab Parameters 873

NODEALLOCRESFAILUREPOLICY

Format One of the following:
CANCEL,HOLD, IGNORE,MIGRATE,NOTIFY, or REQUEUE

Default NONE

Description Specifies how Moab should handle active jobs which experience node failures during exe-
cution. See the RESFAILPOLICY resource manager extension or the Node Availability Over-
view.

Example NODEALLOCRESFAILUREPOLICY REQUEUE

Moab will requeue jobs which have allocated nodes fail during execution.

NODEAVAILABILITYPOLICY

Format <POLICY>[:<RESOURCETYPE>] ...
where <POLICY> is one of COMBINED, DEDICATED, or UTILIZED
and <RESOURCETYPE> is one of PROC,MEM, SWAP, or DISK

Default COMBINED

Description Specifies how available node resources are reported. Moab uses the following calculations to
determine the amount of available resources:

Dedicated(use what Moab has scheduled to be used):
Available = Configured - Dedicated
Utilized(use what the resource manager is reporting is being used):
Available = Configured - Utilized
Combined(use the larger of dedicated and utilized):
Available = Configured - (MAX(Dedicated,Utilized))

Moab marks a node as busy when it has no available processors, so NODEAVAILABILTYPOLICY,
by affecting how many processors are reported as available, also affects node state. See Node
Availability Policies for more information.

Example NODEAVAILABILITYPOLICY DEDICATED:PROCS COMBINED:MEM

Moab will ignore resource utilization information in locating available processors for
jobs but will use both dedicated and utilized memory information in determining
memory availability.

25.0 Appendices

NODEBUSYSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:01:00 (one minute)

Description Length of time Moab will assume busy nodes will remain unavailable for scheduling if a sys-
tem reservation is not explicitly created for the node.

Example NODEBUSYSTATEDELAYTIME 0:30:00

Moab will assume busy nodes are not available for scheduling for at least 30
minutes from the current time. Thus, these nodes will never be allocated to starting
jobs. Also, these nodes will only be available for reservations starting more than 30
minutes in the future.

NODECATCREDLIST

Format <LABEL>=<NODECAT>[,<NODECAT>]...[<LABEL>=<NODECAT>[,<NODECAT>]...]...
where <LABEL> is any string and <NODECAT> is one of the defined node categories.

Default ---

Description If specified, Moab will generate node category groupings and each iteration will assign usage of
matching resources to pseudo-credentials with a name matching the specified label. See the Node
Categorization section of the Admin manual for more information.

Example NODECATCREDLIST down=BatchFailure,HardwareFailure,NetworkFailure idle=Idle

Moab will create a down user, group, account, class, and QoS and will associate
BatchFailure, HardwareFailure, and NetworkFailure resources with these credentials.
Additionally, Moab will assign all Idle resources to matching idle credentials.

25.0 Appendices

874 Appendix A: Moab Parameters

Appendix A: Moab Parameters 875

NODECFG[X]

Format List of space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
ACCESS, CHARGERATE, FEATURES, FLAGS, GRES, LOGLEVEL, MAXJOB, MAXJOBPERUSER, MAXLOAD,
MAXPE, NODEINDEX, NODETYPE, OSLIST, PARTITION, POWERPOLICY on page 477, PRIORITY,
PRIORITYF, PROCSPEED, RACK, RADISK, SLOT, SPEED, or TRIGGER

Default ---

Description Specifies node-specific attributes for the node indicated in the array field. See the General Node
Administration Overview for more information.

Example NODECFG[nodeA] MAXJOB=2 SPEED=1.2

Moab will only allow 2 simultaneous jobs to run on node nodeA and will assign a relative
machine speed of 1.2 to this node.

NODEDOWNSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (never)

Description Length of time Moab will assume down, drained(offline), or corrupt nodes will remain
unavailable for scheduling if a system reservation is not explicitly created for the node. The
default specification of "-1" causes Moab to never create job reservations on down nodes.
See Node Availability for more information.

Example NODEDOWNSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not available for
scheduling for at least 30 minutes from the current time. Thus, these nodes will
never be allocated to starting jobs. Also, these nodes will only be available for
reservations starting more than 30 minutes in the future.

25.0 Appendices

NODEDOWNTIME

Format [[[DD:]HH:]MM:]SS

Default ---

Description The maximum time a previously reported node remains unreported by a resource manager
before the node is considered to be in the down state. This can happen if communication with a
resource manager or a peer server is lost for more than the specified length of time, or if there is
communication with the resource manager but it fails to report the node status.

Example NODEDOWNTIME 10:00

If Moab loses communication with the resource manager for more than 10 minutes, it
sets the state of all nodes belonging to that resource manager to DOWN.

NODEDRAINSTATEDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 3:00:00 (three hours)

Description Length of time Moab will assume drained nodes will remain unavailable for scheduling if a
system reservation is not explicitly created for the node. Specifying "-1" will cause Moab to
never create job reservations on drained nodes. See Node Availability for more information.

Example NODEDRAINSTATEDELAYTIME 0:30:00

Moab will assume down, drained, and corrupt nodes are not available for scheduling
for at least 30 minutes from the current time. Thus, these nodes will never be
allocated to starting jobs. Also, these nodes will only be available for reservations
starting more than 30 minutes in the future.

25.0 Appendices

876 Appendix A: Moab Parameters

Appendix A: Moab Parameters 877

NODEFAILURERESERVETIME

Format [[[DD:]HH:]MM:]SS

Default 0:05:00

Description Duration of reservation Moab will place on any node in which it detects a failure from the
resource manager (0 indicates no reservation will be placed on the node). See Node Avail-
ability for more information. See also RMCFG[] NODEFAILURERSVPROFILE. (For related
information, see Reservation Policies, DEFERSTARTCOUNT, DEFERTIME,
RESERVATIONRETRYTIME, JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example NODEFAILURERESERVETIME 10:00

Moab will reserve failed nodes for 10 minutes.

NODEIDFORMAT

Format <STRING>

Default *$N*

Description Specifies how a node id can be processed to extract possible node, rack, slot, and cluster index
information. The value of the parameter may include the markers $C (cluster index), $N (node
index), $R (rack index), or $S (slot index) separated by *(asterisk - representing any number of
non-numeric characters) or other characters to indicate this encoding. See Node Selection for more
information on use of node, rack, and slot indices.

Example NODEIDFORMAT *$R*$S

Moab will extract rack and slot information from the cluster node ids (i.e. tg-13s08).

25.0 Appendices

NODEMAXLOAD

Format <DOUBLE>

Default 0.0

Description Specifies that maximum cpu load on an idle or running node. If the node's load reaches or exceeds
this value, Moab will mark the node busy.

Example NODEMAXLOAD 0.75

Moab will adjust the state of all idle and running nodes with a load >= .75 to the state
busy.

NODEMEMOVERCOMMITFACTOR

Format <DOUBLE>

Default ---

Description The parameter overcommits available and configured memory and swap on a node by the
specified factor (for example: mem/swap * factor). Used to show that the node has more
mem and swap than it really does. Only works for PBS RM types.

Example NODEMEMOVERCOMMITFACTOR .5

Moab will overcommit the memory and swap of the node by a factor of 0.5.

25.0 Appendices

878 Appendix A: Moab Parameters

Appendix A: Moab Parameters 879

NODEPOLLFREQUENCY

Format <INTEGER>

Default 0 (Poll Always)

Description Specifies the number of scheduling iterations between scheduler initiated node manager quer-
ies. If set to ' -2, Moab will never query the node manager daemons. If set to ' -1', Moab will only
query on the first iteration. Note: this parameter is most often used with OpenPBS and PBSPro. It
is not required when using TORQUE, LoadLeveler, LSF, or SGE as the resource managers.

Example NODEPOLLFREQUENCY 5

Moab will update node manager based information every 5 scheduling iterations.

NODESETATTRIBUTE

Format FEATURE

Default ---

Description Specifies the type of node attribute by which node set boundaries will be established. See Node
Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE

Moab will create node sets containing nodes with common features.

25.0 Appendices

NODESETDELAY

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Causes Moab to attempt to span a job evenly across node sets unless doing so delays the job
beyond the requested NODESETDELAY.

Must use with NODESETPLUS on page 881 set to SPANEVENLY; if you do not want to
use SPANEVENLY, use NODESETISOPTIONAL on page 880 instead of NODESETDELAY.

Example NODESETPLUS SPANEVENLY
NODESETDELAY 5:00

Moab tries to span the job evenly across node sets unless doing so delays the job by 5
minutes.

NODESETISOPTIONAL

Format <BOOLEAN>

Default TRUE

Description Specifies whether or not Moab will start a job if a requested node set cannot be satisfied. See
Node Set Overview.

Example NODESETISOPTIONAL TRUE

Moab will not block a job from running if its node set cannot be satisfied.

25.0 Appendices

880 Appendix A: Moab Parameters

Appendix A: Moab Parameters 881

NODESETLIST

Format <ATTR>[{ :,|}<ATTR>]...

Default ---

Description Specifies the list of node attribute values which will be considered for establishing node sets. See
Node Set Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE FEATURE
NODESETLIST switchA,switchB

Moab will allocate nodes to jobs either using only nodes with the switchA feature or using
only nodes with the switchB feature.

NODESETPLUS

Format DELAY or SPANEVENLY

Default ---

Description Specifies how Moab distributes jobs among node sets. See Node Set Overview.

This parameter will not work with multi-req jobs or preemption.

Example NODESETPLUS SPANEVENLY

Moab attempts to fit all jobs on a single node set or to span them evenly across a number
of node sets, unless doing so would delay a job beyond the requested NODESETDELAY.

25.0 Appendices

NODESETPOLICY

Format ANYOF, FIRSTOF, or ONEOF

Default ---

Description Specifies how nodes will be allocated to the job from the various node set generated. See Node Set
Overview.

Example NODESETPOLICY ONEOF
NODESETATTRIBUTE NETWORK

Moab will create node sets containing nodes with common network interfaces.

NODESETPRIORITYTYPE

Format one of AFFINITY, BESTFIT,WORSTFIT, or MINLOSS

Default MINLOSS

Description Specifies how resource sets will be selected when more than one feasible resource can be found.
See Node Set Overview.

Example NODESETPRIORITYTYPE BESTFIT
NODESETATTRIBUTE PROCSPEED

Moab will select the resource set that most closely matches the resources requested.

NODESYNCTIME

Format [[[DD:]HH:]MM:]SS

Default 00:10:00

Description Specifies the length of time after which Moab will sync up a node's expected state with an unex-
pected reported state. IMPORTANT Note: Moab will not start new jobs on a node with an expec-
ted state which does not match the state reported by the resource manager.

Example NODESYNCTIME 1:00:00

25.0 Appendices

882 Appendix A: Moab Parameters

Appendix A: Moab Parameters 883

NODETOJOBATTRMAP

Format Comma delimited list of node features

Default ---

Description Job requesting the listed node features will be assigned a corresponding job attribute. These job
attributes can be used to enable reservation access, adjust job priority or enable other cap-
abilities.

Example NODETOJOBATTRMAP fast,big

Jobs requesting node feature fast or big will be assigned a corresponding job attribute.

NODEUNTRACKEDRESDELAYTIME

Format [[[DD:]HH:]MM:]SS

Default 0:00:00

Description Length of time Moab will assume untracked generic resources will remain unavailable for
scheduling if a system reservation is not explicitly created for the node.
If NODEUNTRACKEDRESDELAYTIME is enabled and there is an untracked resource
preventing a job from running, then the job remains in the idle queue instead of being
deferred.

Example NODEUNTRACKEDRESDELAYTIME 0:30:00

Moab will assume untracked generic resources are not available for scheduling
for at least 30 minutes from the current time. Thus, these nodes will never be
allocated to starting jobs. Also, these nodes will only be available for reservations
starting more than 30 minutes in the future.

25.0 Appendices

NODEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight which will be applied to a job's requested node count before this value is
added to the job's cumulative priority. Note: this weight currently only applies when a nodecount
is specified by the user job. If the job only specifies tasks or processors, no node factor will be
applied to the job's total priority. This will be rectified in future versions.

Example NODEWEIGHT 1000

NOLOCALUSERENV

Format <BOOLEAN>

Default FALSE

Description If TRUE, specifies that a user's UserID, GroupID, and HomeDirectory are available on the Moab
server host.

Example NOLOCALUSERENV TRUE

NOJOBHOLDNORESOURCES

Format <BOOLEAN>

Default FALSE

Description If TRUE, Moab does not place a hold on jobs that don't have feasible resources. For example,
suppose there are 20 processors available for ClassA and 50 processors for the entire system.
If a job requests 21 or more processors from ClassA, or 51 or more processors from the entire
system, Moab idles the job (instead of putting a hold on it) until the resources become avail-
able.

Example NOJOBHOLDNORESOURCES TRUE

25.0 Appendices

884 Appendix A: Moab Parameters

Appendix A: Moab Parameters 885

NOTIFICATIONPROGRAM

Format <STRING>

Default ---

Description Specifies the name of the program to handle all notification call-outs.

Example NOTIFICATIONPROGRAM tools/notifyme.pl

NOWAITPREEMPTION

Format <BOOLEAN>

Default ---

Description Generally when a job is trying to preempt another, it just waits for the original jobs that it chose to
preempt to end. If this parameter is on, the preemptor will continue trying to preempt jobs until
it can get in.

Example NOWAITPREEMPTION TRUE

25.0 Appendices

OSCREDLOOKUP

Format NEVER

Default ---

Description Disables all Moab OS credential lookups, including UID, GID, user to group mappings, and any
other OS specific information.
Setting OSCREDLOOKUP by itself does not allow job submission; additional configuration is
required. When submitting jobs from user accounts that do not exist on the head node (where
Moab Workload Manager and TORQUE are running), you must also set the PROXYJOBSUBMISSION
flag in addition to specifying configuration settings in the resource manager configuration file. See
the example that follows for information on required resource manager settings.

Example OSCREDLOOKUP NEVER
RMCFG[] FLAGS=PROXYJOBSUBMISSION

To allow job submission, in the TORQUE configuration file (torque.cfg):

VALIDATEPATH FALSE

Run the following qmgr directive:

set server disable_server_id_check = True

Restart both Moab Workload Manager and pbs_server.

PARALLOCATIONPOLICY

Format One of BestFit, BestFitP, FirstStart, LoadBalance, LoadBalanceP,Random, or RoundRobin

Default FirstStart

Description Specifies the approach to use to allocate resources when more than one eligible partition can be
found.

Example PARALLOCATIONPOLICY LOADBALANCE

New jobs will be started on the most lightly allocated partition.

25.0 Appendices

886 Appendix A: Moab Parameters

http://docs.adaptivecomputing.com/torque/help.htm#topics/12-appendices/torque.cfgConfigFile.htm
http://docs.adaptivecomputing.com/torque/help.htm#topics/commands/qmgr.htm

Appendix A: Moab Parameters 887

PARCFG

Format NODEPOWEROFFDURATION, NODEPOWERONDURATION, NODEALLOCATIONPOLICY or one or
more key-value pairs as described in the Partition Overview

Default ---

Description Specifies the attributes, policies, and constraints for the given partition.

Example PARCFG[oldcluster] MAX.WCLIMIT=12:00:00

Moab will not allow jobs to run on the oldcluster partition which has a wallclock limit in
excess of 12 hours.

PBSACCOUNTINGDIR

Format <PATH>

Default ---

Description When specified, Moab will write out job events in standard PBS/ TORQUEtracejob format to the
specified directory using the standard PBS/TORQUE log file naming convention.

Example PBSACCOUNTINGDIR /var/spool/torque/sched_logs/

Job events will be written to the specified directory (can be consumed by PBS's tracejob
command).

25.0 Appendices

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/11-troubleshooting/usingTracejobToLocateFailures.htm

PERPARTITIONSCHEDULING

Format <BOOLEAN>

Default FALSE

Description By default Moab's scheduling routine schedules each job on each partition using the following
algorithm:
prioritize
foreach (job)
 find the partition on which that job should run
 schedule job
In this model, a job's priority is the same on each partition as it uses a single global priority.
Because a job's priority is the same on every partition, Moab prioritizes the queue once and
then schedules the prioritized queue across all partitions.
When PERPARTITIONSCHEDULING TRUE is set, the following algorithm is used:
foreach (partition)
 prioritize
 foreach (job)
 schedule job
In this case, each partition may have a unique priority configuration and Moab will re-
prioritize the jobs for each partition on the system. Each job is prioritized and scheduled on
each partition. See PARCFG on page 887 for more information. Also, note that Moab will order
the partitions as they are discovered in the moab.cfg file. Partitions should be explicitly
ordered via PARCFG in the moab.cfg file.

Example PERPARTITIONSCHEDULING TRUE
PARCFG[p1] CONFIGFILE=/opt/moab/etc/p1.cfg
PARCFG[p2] CONFIGFILE=/opt/moab/etc/p2.cfg

Rather than prioritizing the job queue once, Moab prioritizes the job queue for each
partition, p1 and p2 respectively, and schedules each partition in turn using the
policies located in their respective configuration files. (See Per-Partition Settings
on page 422 for more information).

25.0 Appendices

888 Appendix A: Moab Parameters

Appendix A: Moab Parameters 889

PEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's PE (processor equivalent) priority factor.

Example RESWEIGHT 10
PEWEIGHT 100

Each job's priority will be increased by 10 * 100 * its PE factor.

PREEMPTPOLICY

Format one of the following:
CANCEL, REQUEUE, SUSPEND, or CHECKPOINT

Default REQUEUE

Description Specifies how preemptible jobs will be preempted.
Note: If this policy is set to REQUEUE, preemptible jobs should be marked as RESTARTABLE. If
this policy is set to SUSPEND, preemptible jobs should be marked as SUSPENDABLE. Note:Moab
uses preemption escalation to preempt resources if the specified preemption facility is not
applicable. This means if the policy is set to SUSPEND and the job is not SUSPENDABLE, Moab
may attempt to requeue or even cancel the job.

Example PREEMPTPOLICY CHECKPOINT

Jobs that are to be preempted will be checkpointed and restarted at a later time.

25.0 Appendices

PREEMPTPRIOJOBSELECTWEIGHT

Format <DOUBLE>

Default 256.0

Description Determines which jobs to preempt based on size or priority. The higher the value, the
more emphasis is placed on the priority of the job, causing the lower priority jobs to be
preempted first. The lower the value, the more emphasis is placed on the size of the job,
causing the smaller jobs to be preempted first. If set to 0, job priority will be ignored, job
size will take precedence and the smallest jobs will be preempted.
The special setting of -1 places the emphasis solely on resource utilization. This means that
jobs will be preempted in a manner that keeps the resource utilization at the highest level,
regardless of job priority or size.

Example PREEMPTPRIOJOBSELECTWEIGHT 220.5

PREEMPTRTIMEWEIGHT

Format <DOUBLE>

Default 0

Description If set to anything other than 0, a job's remaining time is added into the calculation of which jobs
will be preempted. If a positive weight is specified, jobs with a longer remaining time are
favored. If a negative weight is specified, jobs with a shorter remaining time are favored.

Example PREEMPTRTWEIGHT 1.5

25.0 Appendices

890 Appendix A: Moab Parameters

Appendix A: Moab Parameters 891

PREEMPTSEARCHDEPTH

Format <INTEGER>

Default unlimited

Description Specifies how many preemptible jobs will be evaluated as potential targets for serial job pree-
mptors. See Preemption Overview for more information.

Example PREEMPTSEARCHDEPTH 8

Serial job preemptors will only consider the first 8 feasible preemptee jobs when
determining the best action to take.

PRIORITYTARGETDURATION

Format [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the ideal job duration which will maximize the value of the WALLTIMEWEIGHT pri-
ority factor. If specified, this factor will be calculated as the distance from the ideal. Con-
sequently, in most cases, the associated subcomponent weight should be set to a negative
value.

Example WALLTIMEWEIGHT -2500
PRIORITYTARGETDURATION 1:00:00

PRIORITYTARGETPROCCOUNT

Format <INTEGER>{+|-|%}

Default ---

Description Specifies the ideal job requested proc count which will maximize the value of the
PROCWEIGHT priority factor. If specified, this factor will be calculated as the distance from
the ideal (proc count - ideal = coefficient of PROCWEIGHT). Consequently, in most cases, the
associated subcomponent weight should be set to a negative value.

Example PROCWEIGHT -1000
PRIORITYTARGETPROCCOUNT 64

25.0 Appendices

PROCWEIGHT

Format <INTEGER>

Default 0

Description Specifies the coefficient to be multiplied by a job's requested processor count priority factor.

Example PROCWEIGHT 2500

PROFILECOUNT

Format <INTEGER>

Default 600

Description Specifies the number of statistical profiles to maintain.
PROFILECOUNT must be set high enough that at least one day of statistics is maintained. The
statistics time window can be determined by measuring PROFILEDURATION * PROFILECOUNT. If
PROFILEDURATION is one hour then PROFILECOUNT must be at least 24 so 24 hours worth of
statistics are maintained. If PROFILEDURATION is 30:00 then PROFILECOUNT must be set to at
least 48. If PROFILECOUNT is not high enough for at least one day of statistics, Moab adjusts it
automatically.

Example PROFILECOUNT 300

PROFILEDURATION

Format [[[DD:]HH:]MM:]SS

Default 00:30:00

Description Specifies the duration of each statistical profile. The duration cannot be more than 24 hours, and
any specified duration must be a factor of 24. For example, factors of 1/4, 1/2, 1, 2, 3, 4, 6, 8, 12,
and 24 are acceptable durations.

Example PROFILEDURATION 24:00:00

25.0 Appendices

892 Appendix A: Moab Parameters

Appendix A: Moab Parameters 893

PURGETIME

Format [[[DD:]HH:]MM:]SS

Default 0

Description The amount of time Moab will keep a job or node record for an object no longer reported by the
resource manager. Useful when using a resource manager which 'drops' information about a node
or job due to internal failures. Note: This parameter is superseded by JOBPURGETIME on page
860.

Example PURGETIME 00:05:00

Moab will maintain a job or node record for 5 minutes after the last update regarding
that object received from the resource manager.

PUSHCACHETOWEBSERVICE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not you want to send cache objects (nodes, jobs, services, etc.) to Moab
Web Services.

Example PUSHCACHETOWEBSERVICE TRUE

25.0 Appendices

PUSHEVENTSTOWEBSERVICE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not you want to send event logs to web services for storage. For more
information, see Event logging with web services.

In conjunction with this parameter, you will also need to configure the following
parameters to set up event logging to Moab Web Services:

l EVENTLOGWSURL
l EVENTLOGWSUSER
l EVENTLOGWSPASSWORD

Example PUSHEVENTSTOWEBSERVICE TRUE

QOSCFG[<QOSID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, PRIORITY, ENABLEPROFILING, FSTARGET, JOBPRIOACCRUALPOLICY,
JOBPRIOEXCEPTIONS, MEMBERULIST, QTWEIGHT, QTTARGET, XFWEIGHT, XFTARGET,
PREEMPTMINTIME, PREEMPTMAXTIME, PREEMPTQTTHRESHOLD, PREEMPTXFTHRESHOLD,
PREEMPTEES, RSVQTTHRESHOLD, RSVXFTHRESHOLD, ACLBLTHRESHOLD, ACLQTTHRESHOLD,
ACLXFTHRESHOLD, PLIST, QFLAGS, or a usage limit.

Default ---

Description Specifies QoS specific attributes. See the flag overview for a description of legal flag values. See the
QoS Overview section for further details.

Example QOSCFG[commercial] PRIORITY=1000 MAXJOB=4 MAXPROC=80

Moab will increase the priority of jobs using QoS commercial, and will allow up to 4
simultaneous QoS commercial jobs with up to 80 total allocated processors.

25.0 Appendices

894 Appendix A: Moab Parameters

Appendix A: Moab Parameters 895

QOSDEFAULTORDER

Format Comma-delimited list of QoS names.

Default ---

Description Sets a global QoS default order for all QoSes which overrides any specific default QoS. If the order
is defined as b,a,c and a user has access to c,a and submits a job without requesting a specific
QoS, the job is assigned a as the default QoS.

Example QOSDEFAULTORDER b,a,c

If the job does not have a QoS specified, it is assigned a QoS from the QOSDEFAULTORDER
list (if the user has access to one of them).

QOSISOPTIONAL

Format <BOOLEAN>

Default FALSE

Description An entity's default QoS will be the first QoS specified in the QLIST parameter. When this para-
meter is set to TRUE the default QoS for the associated credential (user, account, class, etc.) will
not be automatically set to the first QoS specified in the QLIST.

Example QOSISOPTIONAL TRUE
USERCFG[bob] QLIST=high,low

Moab will set the QoSList for user bob to high and low but will not set the QDEF. Should
bob decide to submit to a particular QoS he will have to do so manually.

25.0 Appendices

QOSREJECTPOLICY

Format One or more of CANCEL,HOLD, IGNORE, or MAIL

Default HOLD (IGNORE for SLURM users)

Description Specifies the action to take when Moab determines that a job cannot access a requested QoS.
CANCEL issues a call to the resource manager to cancel the job.HOLD places a batch hold on the
job preventing the job from being further evaluated until released by an administrator. (Note:
Administrators can dynamically alter job attributes and possibly fix the job with mjobctl -m.) With
IGNORE, Moab will ignore the QoS request and schedule the job using the default QoS for that
job. MAIL will send email to both the admin and the user when QoS request violations are detec-
ted. Most combinations of attributes may be specified; however, if both MAIL and IGNORE are spe-
cified, Moab will not implement MAIL. Similarly, while CANCEL and HOLD are mutually exclusive,
CANCEL will supersede HOLD if both are specified. (see JOBREJECTPOLICY).

Example QOSREJECTPOLICY MAIL,CANCEL

QOSWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the QoS priority of each job (see Credential (CRED) Factor).

Example QOSWEIGHT 10

QUEUETIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute pre-weighted queuetime priority factor.

Example QUEUETIMECAP 10000
QUEUETIMEWEIGHT 10

A job that has been queued for 40 minutes will have its queuetime priority factor
calculated as 'Priority = QUEUETIMEWEIGHT * MIN(10000,40)'.

25.0 Appendices

896 Appendix A: Moab Parameters

Appendix A: Moab Parameters 897

QUEUETIMEWEIGHT

Format <INTEGER>

Default 1

Description Specifies multiplier applied to a job's queue time (in minutes) to determine the job's queuetime
priority factor.

Example QUEUETIMEWEIGHT 20

A job that has been queued for 4:20:00 will have a queuetime priority factor of 20 * 260.

REALTIMEDBOBJECTS

Format Comma-delimited list of one or more of the following: JOB,NODE,RSV (reservation), TRIG (trig-
ger), VC (virtual container). You can also specify ALL or NONE.

Default ALL

Description Specifies which objects Moab will store in the unixodbc database.

Example REALTIMEDBOBJECTS JOB,RSV,TRIG

Moab stores jobs, reservations, and triggers in the uxodbc database. It will no longer
record real time information about nodes and VCs.

25.0 Appendices

RECORDEVENTLIST

Format One or more comma (',') or plus ('+') separated events of GEVENT, ALLSCHEDCOMMAND,
JOBCANCEL, JOBCHECKPOINT, JOBEND, JOBFAILURE, JOBMIGRATE, JOBMODIFY,
JOBPREEMPT, JOBREJECT, JOBRESUME, JOBSTART, JOBSUBMIT,NODEDOWN,
NODEFAILURE,NODEUP,QOSVIOLATION,RMDOWN,RMPOLLEND,RMPOLLSTART,
RMUP,RSVCANCEL,RSVCREATE,RSVEND,RSVMODIFY,RSVSTART, SCHEDCOMMAND,
SCHEDCYCLEEND, SCHEDCYCLESTART, SCHEDPAUSE, SCHEDSTART, SCHEDSTOP,
VMCREATE, VMDESTROY, VMMIGRATE, VMPOWEROFF, VMPOWERON, or ALL

Default JOBSTART, JOBCANCEL, JOBEND, JOBFAILURE, SCHEDPAUSE, SCHEDSTART,
SCHEDSTOP, TRIGEND, TRIGFAILURE, TRIGSTART

Description Specifies which events should be recorded in the appropriate event file found in Moab's stats/
directory. These events are recorded for both local and remotely staged jobs. (See Event Log Over-
view) Note: If a plus character is included in the list, the specified events will be added to the
default list; otherwise, the specified list will replace the default list.

Example RECORDEVENTLIST JOBSTART,JOBCANCEL,JOBEND

When a local and/or remote job starts, is canceled, or ends, the respective event will be
recorded.

REJECTDOSSCRIPTS

Format <BOOLEAN>

Default TRUE

Description Moab rejects DOS-formatted scripts submitted with the msub command. This is useful if you use
SLURM as your resource manager, since it does not handle DOS scripts well. For
REJECTDOSSCRIPTS to work correctly, FILTERCMDFILE on page 832 must be FALSE. Otherwise,
Moab modifies the script instead of rejecting it, leading to job errors.

Example REJECTDOSSCRIPTS FALSE

Moab does not reject DOS-formatted scripts submitted withmsub.

25.0 Appendices

898 Appendix A: Moab Parameters

Appendix A: Moab Parameters 899

REJECTINFEASIBLEJOBS

Format <BOOLEAN>

Default FALSE

Description If zero feasible nodes are found for a job among the currently available nodes on the cluster, the
scheduler rejects the job. See JOBREJECTPOLICY for more information.

Example REJECTINFEASIBLEJOBS TRUE
JOBREJECTPOLICY MAIL,CANCEL

Any job with zero feasible nodes for execution will be rejected.

REJECTNEGPRIOJOBS

Format <BOOLEAN>

Default TRUE

Description If enabled, the scheduler will refuse to start any job with a negative priority. See Job Priority Over-
view and ENABLENEGJOBPRIORITY for more information.

Example ENABLENEGJOBPRIORITY TRUE
REJECTNEGPRIOJOBS TRUE

Any job with a priority less than zero will be rejected.

25.0 Appendices

REMAPCLASS

Format <ClassID>

Default ---

Description Specifies which class/queue will be remapped based on the processors, nodes, and node features
requested and the resource limits of each class. See Remap Class Overview for more information.

In order to use REMAPCLASS, you must specify a DEFAULTCLASS.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
CLASSCFG[small] MAX.PROC=2
CLASSCFG[medium] MAX.PROC=16
CLASSCFG[large] MAX.PROC=1024

Class batch will be remapped based on the number of processors requested.

REMAPCLASSLIST

Format Comma delimited list of class names

Default ---

Description Specifies the order in which classes will be searched when attempting to remap a class. Only
classes included in the list will be searched and Moab will select the first class with matches. Note:
If no REMAPCLASSLIST is specified, Moab will search all classes and will search them in the order
they are discovered. See Remap Class Overview for more information.

Example RMCFG[internal] DEFAULTCLASS=batch
REMAPCLASS batch
REMAPCLASSLIST short,medium,long

Class batch will be re-mapped to one of the listed classes.

25.0 Appendices

900 Appendix A: Moab Parameters

Appendix A: Moab Parameters 901

REMOTEFAILTRANSIENT

Format <BOOLEAN>

Default FALSE

Description Only applicable to Moab configurations with multiple resource managers able to run jobs. When
Moab attempts to migrate a job to one of these resource managers, a remote failure may occur.
REMOTEFAILTRANSIENT controls how Moab reacts to remote errors. By default, Moab considers
such an error permanent and does not try to migrate the same job to that resource manager
again. If REMOTEFAILTRANSIENT is set to TRUE, then Moab considers such an error as transient
and will not exclude the erring resource manager in future migration attempts.

Example REMOTEFAILTRANSIENT TRUE

REMOVETRIGOUTPUTFILES

Format <BOOLEAN>

Default FALSE

Description When Moab launches external trigger actions, the standard output and error of those trigger
actions are redirected to files located in Moab's spool directory. By default, these files are
cleaned every 24 hours. (Files older than 24 hours are removed.) If, however, you wish to
have Moab immediately remove the spool files after they are no longer needed, set
RemoveTrigOutputFiles to TRUE.

Example REMOVETRIGOUTPUTFILES TRUE

RESCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum allowed absolute pre-weighted job resource priority factor.

Example RESCAP 1000

The total resource priority factor component of a job will be bound by
+/- 1000

25.0 Appendices

RESERVATIONDEPTH[X]

Format <INTEGER>

Default 1

Description Specifies the number of priority reservations which are allowed in the associated reservation
bucket. Note: The array index, X, is the bucket label and can be any string up to 64 characters.
This label should be synchronized with the RESERVATIONQOSLIST parameter. See Reservation
Policies.

Example RESERVATIONDEPTH[bigmem] 4
RESERVATIONQOSLIST[bigmem] special,fast,joshua

Jobs with QoSes of special, fast, or joshua can have a cumulative total of up to 4
priority reservations.

RESERVATIONPOLICY

Format One of the following: CURRENTHIGHEST,HIGHEST,NEVER

Default CURRENTHIGHEST

Description Specifies how Moab reservations will be handled. (See also RESERVATIONDEPTH) See Reservation
Policies.

Example RESERVATIONPOLICY CURRENTHIGHEST
RESERVATIONDEPTH[DEFAULT] 2

Moab will maintain reservations for only the 2 currently highest priority jobs.

25.0 Appendices

902 Appendix A: Moab Parameters

Appendix A: Moab Parameters 903

RESERVATIONQOSLIST[X]

Format One or more QoS values or [ALL]

Default [ALL]

Description Specifies which QoS credentials have access to the associated reservation bucket. Note: The array
index, X, is the bucket label and can be any string up to 64 characters. This label should be syn-
chronized with the RESERVATIONDEPTH parameter. See Reservation Policies.

Example RESERVATIONDEPTH[big] 4
RESERVATIONQOSLIST[big] hi,low,med

Jobs with QoSes of hi, low, or med can have a cumulative total of up to 4 priority
reservations.

RESERVATIONRETRYTIME

Format [[[DD:]HH:]MM:]SS

Default 60 seconds

Description Period of time Moab will continue to attempt to allocate resources to start a job after the time
resources should be made available. This parameter takes into account resource manager node
state race conditions, nodes with residual high load, network glitches, etc. (For related inform-
ation, see Reservation Policies, DEFERSTARTCOUNT, DEFERTIME, NODEFAILURERESERVETIME,
JOBRETRYTIME, and GUARANTEEDPREEMPTION.)

Example RESERVATIONRETRYTIME 00:05:00

Moab will try for up to 5 minutes to maintain immediate reservations if the
reservations are blocked due to node state, network, or batch system based race
conditions.

25.0 Appendices

RESOURCELIMITMULTIPLIER[<PARID>]

Format <RESOURCE>:<MULTIPLIER>[,...]
Where <RESOURCE> is one of the following:
NODE, PROC, JOBPROC,MEM, JOBMEM, SWAP, DISK, orWALLTIME

Default 1.0

Description If set to less than one, then the hard limit will be the specified limit and the soft limit will be
the specified limit multiplied by the multiplier. If set to a value greater than one, then the spe-
cified limit will be the soft limit and the hard limit will be the specified limit multiplied by the
multiplier. See Usage-based Limits.

Example RESOURCELIMITMULTIPLER PROC:1.1,MEM:2.0

Sets hard limit for PROC at 1.1 times the PROC soft limit, and the hard limit of MEM
to 2.0 times the MEM soft limit.

RESOURCELIMITPOLICY

Format <RESOURCE>:[<SPOLICY>,]<HPOLICY> :[<SACTION>,]<HACTION> [:[<SVIOLATIONTIME>,]
<HVIOLATIONTIME>]...
Where RESOURCE is one of CPUTIME,DISK, JOBMEM, JOBPROC,MEM,MINJOBPROC,
NETWORK, PROC, SWAP, or WALLTIME
where *POLICY is one of ALWAYS, EXTENDEDVIOLATION, or BLOCKEDWORKLOADONLY
and where *ACTION is one of CANCEL,CHECKPOINT,NOTIFY,REQUEUE, SIGNAL, or
SUSPEND.

Default No limit enforcement.

Description Specifies how the scheduler should handle jobs which utilize more resources than they request.
See Usage-based Limits.

Example RESOURCELIMITPOLICY MEM:ALWAYS,BLOCKEDWORKLOADONLY:REQUEUE,CANCEL

Moab will cancel all jobs which exceed their requested memory limits.

25.0 Appendices

904 Appendix A: Moab Parameters

Appendix A: Moab Parameters 905

RESTARTINTERVAL

Format [[[DD:]HH:]MM:]SS

Default ---

Description Causes Moab daemon to recycle/restart when the given interval of time has transpired.

Example RESTARTINTERVAL 20:00:00

Moab daemon will automatically restart every 20 hours.

RESOURCEQUERYDEPTH

Format <INTEGER>

Default 3

Description Maximum number of options which will be returned in response to an mshow -a resource
query.

Example RESOURCEQUERYDEPTH 1

Themshow -a command will return at most 1 valid collection of resources.

RESWEIGHT

Format <INTEGER>

Default 1

Description All resource priority components are multiplied by this value before being added to the total job
priority. See Job Prioritization.

Example RESWEIGHT 5
MEMWEIGHT 10
PROCWEIGHT 100
SWAPWEIGHT 0
RESCAP 2000

The job priority resource factor will be calculated as MIN(2000,5 * (10 * JobMemory +
100 * JobProc)).

25.0 Appendices

RMCFG

Format One or more key-value pairs as described in the Resource Manager Configuration Overview

Default ---

Description Specifies the interface and policy configuration for the scheduler-resource manager interface.
Described in detail in the Resource Manager Configuration Overview.

Example RMCFG[TORQUE3] TYPE=PBS

The PBS server will be used for resource management.

RMMSGIGNORE

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not Moab should adjust node state based on generic resource manager fail-
ure messages. See RM Health Check for more info.

Example RMMSGIGNORE TRUE

Moab will load and report resource manager failure messages but will not adjust node
state as a result of them.

25.0 Appendices

906 Appendix A: Moab Parameters

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/11-troubleshooting/computeNodeHealthCheck.htm

Appendix A: Moab Parameters 907

RMPOLLINTERVAL

Format [<MINPOLLTIME>,]<MAXPOLLTIME>where poll time is specified as [[[DD:]HH:]MM:]SS

Default 0,30

Description Specifies interval between RM polls. The poll interval will be no less than MINPOLLTIME and no
more than MAXPOLLTIME. If you specify a single value, Moab interprets the value as the
MAXPOLLTIME with a MINPOLLTIME of 0.

If you use TORQUE as your resource manager, prevent communication errors by giving
tcp_timeout at least twice the value of the Moab RMPOLLINTERVAL.

Example RMPOLLINTERVAL 30,45

Moab will refresh its resource manager information between a minimum of 30 seconds
and a maximum of 45 seconds. Note: This parameter specifies the default global poll
interval for all resource managers.

RMRETRYTIMECAP

Format [[[DD:]HH:]MM:]SS

Default 1:00:00

Description Moab attempts to contact RMs that are in state 'corrupt' (not down). If the attempt is unsuccessful,
Moab tries again later. If the second attempt is unsuccessful, Moab increases the gap (the gap
grows exponentially) between communication attempts. RMRETRYTIMECAP puts a cap on the
length between connection attempts.

Example RMRETRYTIMECAP 24:00:00

Moab stops increasing the gap between connection attempts once the retry gap reaches 24
hours.

25.0 Appendices

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/serverParameters.htm%23tcp_timeout

RSVLIMITPOLICY

Format HARD or SOFT

Default ---

Description Specifies what limits should be enforced when creating reservations.

Example RSVLIMITPOLICY HARD

Moab will limit reservation creation based on theHARD
limits configured.

RSVNODEALLOCATIONPOLICY

Format One of the following:
FIRSTAVAILABLE, LASTAVAILABLE, MINRESOURCE, CPULOAD, LOCAL, CONTIGUOUS,
MAXBALANCE, or PRIORITY

Default LASTAVAILABLE

Description Specifies how Moab should allocate available resources to reservations.

Example RSVNODEALLOCATIONPOLICY MINRESOURCE

Moab will apply the node allocation policy MINRESOURCE to all reservations by
default.

RSVNODEALLOCATIONPRIORITYF

Format User specified algorithm

Default ---

Description When RSVNODEALLOCATIONPOLICY is set to PRIORITY, this parameter allows you to spe-
cify your own priority algorithm. The priority functions available are the same as the node
priority functions.

Example RSVNODEALLOCATIONPOLICY PRIORITY
RSVNODEALLOCATIONPRIORITYF 'SPEED + .01 * AMEM - 10 * JOBCOUNT'

25.0 Appendices

908 Appendix A: Moab Parameters

Appendix A: Moab Parameters 909

RSVPROFILE[X]

Format One or more of the following:
Allowed:
TRIGGERACL (ACCOUNTLIST, CLASSLIST, GROUPLIST, MAXTIME, QOSLIST, USERLIST)
HostExp (HOSTLIST)
Features (NODEFEATURES)
FLAGS
TASKCOUNT
RSVACCESSLIST
Note: Lists of more than one ACL value cannot be whitespace delimited. Such lists must be
delimited with the comma, pipe, or colon characters.
Not allowed:
ACCESS
CHARGEACCOUNT
DAYS
DEPTH
ENDTIME
OWNER
PARTITION
PERIOD
PRIORITY

RESOURCES
STARTTIME
TPN

Default ---

Description Specifies attributes of a reservation profile using syntax similar to that for specifying a standing
reservation. See Using Reservation Profiles for details.

Example RSVPROFILE[fast] USERLIST=john,steve
RSVPROFILE[fast] QOSLIST=high,low
RSVPROFILE[fast]
TRIGGER=ETYPE=start,OFFSET=5:00,ATYPE=exec,ACTION="/opt/moab/rp.pl"

Moab will create a reservation profile including trigger and ACL information.

25.0 Appendices

RSVSEARCHALGO

Format LONG or WIDE

Default NONE

Description When Moab is determining when and where a job can run, it either searches for the most
resources (WIDE) or the longest range of resources (LONG). In almost all cases, searching for the
longest range is ideal and returns the soonest starttime. In some rare cases, however, a particular
job may need to search for the most resources. In those cases sites can configure this parameter to
prevent the starvation of large jobs that fail to hold onto their reservation starttimes. See the
WIDERSVSEARCHALGO job flag.
If this parameter is not set, it will be displayed in mschedctl -l as NONE but the algorithm that is
used will be LONG.

Example RSVSEARCHALGO WIDE

SCHEDCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
FBSERVER, FLAGS,MAXRECORDEDCJOBID,MINJOBID, HTTPSERVERPORT, MODE,
RECOVERYACTION, SERVER, or TRIGGER

Default ---

Description Specifies scheduler policy and interface configuration.

The SERVER attribute can also be set using the environment variable $MOABSERVER.
Using this variable allows you to quickly change to Moab server that client commands will
connect to.

> export MOABSERVER=cluster2:12221

Example SCHEDCFG[zylem3] SERVER=geronimo.scc.com:3422 MODE=NORMAL

Moab will execute inNORMAL mode on the host geronimo.scc.com.

25.0 Appendices

910 Appendix A: Moab Parameters

Appendix A: Moab Parameters 911

SERVERHOST

Format <HOSTNAME>

Default ---

Description Deprecated. Host name of machine on which Moab will run. See SCHEDCFG for replacement para-
meter.

Example SERVERHOST geronimo.scc.edu

Moab will execute on the host geronimo.scc.edu.

SERVERMODE

Format One of the following:
INTERACTIVE, MONITOR,NORMAL, SIMULATION, or SLAVE

Default NORMAL

Description Deprecated. Specifies how Moab interacts with the outside world. See SCHEDCFG for replacement
parameter.

Example SERVERMODE SIMULATION

SERVERNAME

Format <STRING>

Default <SERVERHOST>

Description Specifies the name the scheduler will use to refer to itself in communication with peer daemons.
See SCHEDCFG for replacement parameter.

Example SERVERNAME moabA

25.0 Appendices

SERVERPORT

Format <INTEGER> (range: 1-64000)

Default 40559

Description Port on which moab will open its user interface socket. See SCHEDCFG for replacement parameter.

Example SERVERPORT 30003

Moab will listen for client socket connections on port 30003.

SERVERSUBMITFILTER

Format <PORT>

Default ---

Description Specifies the location of a global job submit filter script. When you configure a global job submit
filter, Moab executes it on the head node and uses it to filter every job submission it receives. See
Global job submit filter on page 219 for more information about job submit filters.

Example SERVERSUBMITFILTER /opt/moab/scripts/globalfilter.pl

Moab uses /opt/moab/scripts/globalfilter.pl to filter every job submitted to Moab.

SERVICEWEIGHT

Format <INTEGER>

Default 1

Description Specifies the service component weight associated with the service factors. See Service (SERV)
Factor for more information.

Example SERVICEWEIGHT 2

25.0 Appendices

912 Appendix A: Moab Parameters

Appendix A: Moab Parameters 913

SHOWMIGRATEDJOBSASIDLE

Format <BOOLEAN>

Default FALSE

Description By default, migrated jobs will show as blocked. This is to prevent jobs from counting against
the idle policies of multiple clusters rather than just the cluster to which the job was
migrated.

Example SHOWMIGRATEDJOBSASIDLE TRUE

When set to TRUE, migrated jobs will show as idle and will count against the idle
policies of the cluster showing the job as migrated.

SIMAUTOSHUTDOWN

Format <BOOLEAN>

Default TRUE

Description If TRUE, the scheduler will end simulations when the active queue and idle queue become
empty.

Example SIMAUTOSHUTDOWN TRUE

The simulation will end as soon as there are no jobs running and no idle jobs which could
run.

25.0 Appendices

SIMINITIALQUEUEDEPTH

Format <INTEGER>

Default 16

Description Specifies how many jobs the simulator will initially place in the idle job queue (see Sim-
ulations on page 618).

Example SCHEDCFG[sim1] MODE=SIMULATION
SIMINITIALQUEUEDEPTH 64
SIMJOBSUBMISSIONPOLICY CONSTANTJOBDEPTH

Moab will initially place 64 idle jobs in the queue and, because of the specified queue
policy, will attempt to maintain this many jobs in the idle queue throughout the
duration of the simulation.

SIMJOBSUBMISSIONPOLICY

Format One of the following:
NORMAL,CONSTANTJOBDEPTH,CONSTANTPSDEPTH, or REPLAY

Default CONSTANTJOBDEPTH

Description Specifies how the simulator will submit new jobs into the idle queue.NORMAL mode causes
jobs to be submitted at the time recorded in the workload trace file,CONSTANTJOBDEPTH
and CONSTANTPSDEPTH attempt to maintain an idle queue of SIMINITIALQUEUEDEPTH
jobs and procseconds respectively.REPLAY will force jobs to execute at the exactly the time
specified in the simulation job trace file. This mode is most often used to generate detailed
profile statistics for analysis in Moab Cluster Manager(see Simulations on page 618).

Example SIMJOBSUBMISSIONPOLICY NORMAL

Moab will submit jobs with the relative time distribution specified in the workload
trace file.

25.0 Appendices

914 Appendix A: Moab Parameters

http://www.clusterresources.com/mcm

Appendix A: Moab Parameters 915

SIMPURGEBLOCKEDJOBS

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab should remove jobs which can never execute (see Simulation
Overview).

Example SIMPURGEBLOCKEDJOBS FALSE

SIMRMRANDOMDELAY

Format <INTEGER>

Default 0

Description Specifies the random delay added to the RM command base delay accumulated when making
any resource manager call in simulation mode.

Example SIMRMRANDOMDELAY 5

Moab will add a random delay of between 0 and 5 seconds to the simulated time delay
of all RM calls.

SIMSTARTTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default ---

Description Specifies the time when the simulation starts.

Example SIMSTARTTIME 00:00:00_01/01/00

Moab will set its clock to January 1, 2000 at 12:00:00 in the morning before starting
the simulation

25.0 Appendices

SIMSTOPTIME

Format [HH[:MM[:SS]]][_MO[/DD[/YY]]]

Default ---

Description Specifies the time when the simulation should pause.

Example SIMSTOPTIME 00:00:00_01/01/04

Moab will stop scheduling when its internal simulation time reaches
January 1, 2004.

SIMWORKLOADTRACEFILE

Format <STRING>

Default Traces/workload.trace

Description Specifies the file from which moab will obtain job information when running in simulation
mode. Moab will attempt to locate the file relative to <MOABHOMEDIR> unless specified as an
absolute path. See Simulation Overview and Workload Accounting Records.

Example SIMWORKLOADTRACEFILE traces/jobs.2

Moab will obtain job traces when running in simulation mode from the
<MOABHOMEDIR>/traces/jobs.2 file.

SPOOLDIR

Format <STRING>

Default ---

Description Specifies the directory for temporary spool files created by Moab while submitting a job to the RM.

Example SPOOLDIR /tmp/moab/spool

25.0 Appendices

916 Appendix A: Moab Parameters

Appendix A: Moab Parameters 917

SPOOLDIRKEEPTIME

Format <INTEGER> (seconds) or [[[DD:]HH:]MM:]SS

Default ---

Description Specifies the interval to delete spool files and other temporary files that have been left in the spool
directory.

Example SPOOLDIRKEEPTIME 4:00:00

SPVIOLATIONWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job which violates soft usage limit policies (see Service
(SERVICE) Component on page 292).

Example SPVIOLATIONWEIGHT 5000

25.0 Appendices

SRCFG[X]

Format One or more of the following <ATTR>=<VALUE> pairs
ACCESS, ACCOUNTLIST, CHARGEACCOUNT, CHARGEUSER, CLASSLIST, CLUSTERLIST, COMMENT,
DAYS, DEPTH, DISABLE, ENDTIME, FLAGS, GROUPLIST, HOSTLIST, JOBATTRLIST,MAXTIME,
NODEFEATURES, OWNER, PARTITION, PERIOD, PRIORITY, QOSLIST, REQUIREDTPN, RESOURCES,
ROLLBACKOFFSET, RSVACCESSLIST, RSVGROUP, STARTTIME, TASKCOUNT, TIMELIMIT, TPN,
TRIGGER, or USERLIST
Note:HOSTLIST and ACL list values must be comma delimited. For example:
HOSTLIST=nodeA,nodeB

Default ---

Description Specifies attributes of a standing reservation. See Managing Reservations for details.

Example SRCFG[fast] STARTTIME=9:00:00 ENDTIME=15:00:00
SRCFG[fast] HOSTLIST=node0[1-4]$
SRCFG[fast] QOSLIST=high,low

Moab will create a standing reservation running from 9:00 AM to 3:00 PM on nodes 1
through 4 accessible by jobs with QoS high or low.

STARTCOUNTCAP

Format <INTEGER>

Default 0

Description Specifies the max weighted value allowed from the startcount subfactor when determining a job's
priority (see Priority Factors for more information).

Example STARTCOUNTWEIGHT 5000
STARTCOUNTCAP 30000

25.0 Appendices

918 Appendix A: Moab Parameters

Appendix A: Moab Parameters 919

STARTCOUNTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's startcount when determining a job's priority (see Pri-
ority Factors for more information).

Example STARTCOUNTWEIGHT 5000

STATDIR

Format <STRING>

Default stats

Description Specifies the directory in which Moab statistics will be maintained.

Example STATDIR /var/adm/moab/stats

25.0 Appendices

STATPROCMAX

Format <INTEGER>

Default 1

Description Specifies the maximum number of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via mschedctl -m or changeparam
while Moab is running. Changing any of the parameters invalidates all past data and will
start the collection over.

Example STATPROCMAX 256
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

25.0 Appendices

920 Appendix A: Moab Parameters

Appendix A: Moab Parameters 921

STATPROCMIN

Format <INTEGER>

Default 1

Description Specifies the minimum number of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

A NONE in services will still allow users to run showq and checkjob on their own jobs.

STATPROCSTEPCOUNT

Format <INTEGER>

Default 5

Description Specifies the number of rows of processors requested by jobs to be displayed in matrix outputs
(as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all
past data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

25.0 Appendices

STATPROCSTEPSIZE

Format <INTEGER>

Default 4

Description Specifies the processor count multiplier for rows of processors requested by jobs to be displayed
in matrix outputs (as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATPROCMIN 4
STATPROCSTEPCOUNT 4
STATPROCSTEPSIZE 4

Each matrix output will display data in rows for jobs requesting between 4 and 256
processors.

STATTIMEMAX

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description Specifies the maximum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMAX 02:08:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

25.0 Appendices

922 Appendix A: Moab Parameters

Appendix A: Moab Parameters 923

STATTIMEMIN

Format [[DD:]HH:]MM:]SS

Default 00:15:00

Description Specifies the minimum amount of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

STATTIMESTEPCOUNT

Format <INTEGER>

Default 6

Description Specifies the number of columns of time requested by jobs to be displayed in matrix outputs (as
displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all
past data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

25.0 Appendices

STATTIMESTEPSIZE

Format <INTEGER>

Default 4

Description Specifies the time multiplier for columns of time requested by jobs to be displayed in matrix
outputs (as displayed by the showstats -f command).

It is recommended that you not change any parameters via 'mschedctl -m' or
'changeparam' while Moab is running. Changing any of the parameters invalidates all past
data and will start the collection over.

Example STATTIMEMIN 00:02:00
STATTIMESTEPCOUNT 4
STATTIMESTEPSIZE 4

Each matrix output will display data in columns for jobs requesting between 2 and 128
minutes.

STOPITERATION

Format <INTEGER>

Default -1 (don't stop)

Description Specifies which scheduling iteration Moab will stop and wait for a command to resume scheduling.

Example STOPITERATION 10

Moab should stop after iteration 10 of scheduling and wait for administrator commands.

25.0 Appendices

924 Appendix A: Moab Parameters

Appendix A: Moab Parameters 925

STOREJOBSUBMISSION

Format <BOOLEAN>

Default ---

Description When set to TRUE, specifies that Moab will save a job's submit arguments and script to
$MOABHOMEDIR/stats/jobarchive/jobNumber.
If you use TORQUE as your resource manager, you can configure it to store completed job
information, and it will store the same information returned by the qstat -f command. For more
information, see Job logging in the TORQUE documentation.

Example STOREJOBSUBMISSION TRUE

STRICTPROTOCOLCHECK

Format <BOOLEAN>

Default FALSE

Description Specifies how Moab reacts to differences in XML protocols when communicating with other
Moab peers. If set to TRUE, Moab will reject any communication that does not strictly conform
to the expected protocol. If set to FALSE (the default), Moab will not reject XML that has extra
or unknown attributes.

Example STRICTPROTOCOLCHECK TRUE

Moab will reject any XML communication that does not strictly conform to the
expected protocol definition.

25.0 Appendices

http://docs.adaptivecomputing.com/torque/help.htm#-f
http://docs.adaptivecomputing.com/torque/help.htm

SUBMITENVFILELOCATION

Format FILE or PIPE

Default ---

Description If set to FILE, these behaviors are expected:
l The environment file is owned by a user with 600 permissions.
l Moab writes the environment variables ('\0' delimited) to a random file in Moab's
spool directory.

l Moab adds the --export-file=<path_to_file> on the sbatch command line.
l Moab deletes the file after the job completes.

If set to PIPE, these behaviors are expected:
l Moab creates a pipe and passes the read end of the pipe's file descriptor to sbatch.
l Moab's parent process writes the environment ('\0' delimited) into the write end of
the pipe.

Adaptive Computing recommends that you configure this parameter for a more secure
environment.

Example SUBMITENVFILELOCATION PIPE

SUBMITFILTER

Format <STRING>

Default ---

Description Specifies the directory of a given submit filter script.

Example SUBMITFILTER /home/submitfilter/filter.pl

SUBMITHOSTS

Format space delimited list of host names

Default ---

Description If specified, SUBMITHOSTS specifies an explicit list of hosts where jobs can be submitted.

Example SUBMITHOSTS hostA hostB

25.0 Appendices

926 Appendix A: Moab Parameters

Appendix A: Moab Parameters 927

SUSPENDRESOURCES[<PARID>]

Format <RESOURCE>[,...]
Where <RESOURCE> is one of the following:
NODE, PROC,MEM, SWAP,DISK

Default ---

Description List of resources to dedicate while a job is suspended (available in Moab version 4.5.1 and
higher).

Example SUSPENDRESOURCES[base] MEM,SWAP,DISK

While a job is suspended in partition base, the memory, swap and disk for that job will
remain dedicated to the job.

SYSCFG

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
PRIORITY, FSTARGET, QLIST, QDEF, PLIST, FLAGS, or a fairness policy specification.

Default ---

Description Specifies system-wide default attributes. See the Attribute/Flag Overview for more information.

Example SYSCFG PLIST=Partition1 QDEF=highprio

By default, all jobs will have access to partition Partition1 and will use the QoS highprio.

SWAPWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the virtual memory request of a job.

Example SWAPWEIGHT 10

25.0 Appendices

SYSTEMMAXPROCPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description Specifies the maximum number of processors that can be requested by any single job.

Example SYSTEMMAXPROCPERJOB 256

Moab will reject jobs requesting more than 256 processors.

SYSTEMMAXPROCSECONDPERJOB

Format <INTEGER>

Default -1 (NO LIMIT)

Description Specifies the maximum number of proc-seconds that can be requested by any single job.

Example SYSTEMMAXJOBPROCSECOND 86400

Moab will reject jobs requesting more than 86400 procs seconds. i.e., 64
processors * 30 minutes will be rejected, while a 2 processor * 12 hour job will be
allowed to run.

SYSTEMMAXJOBWALLTIME

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description Specifies the maximum amount of wallclock time that can be requested by any single job.

Example SYSTEMMAXJOBWALLTIME 1:00:00:00

Moab will reject jobs requesting more than 1 day of walltime.

25.0 Appendices

928 Appendix A: Moab Parameters

Appendix A: Moab Parameters 929

TARGETQUEUETIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the time remaining until the queuetime is reached.

Example TARGETQUEUETIMEWEIGHT 10

TARGETWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to a job's queuetime and expansion factor target components
(see Job Prioritization).

Example TARGETWEIGHT 1000

TARGETXFACTORWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to the distance to the target expansion factor.

Example TARGETXFACTORWEIGHT 10

25.0 Appendices

TASKDISTRIBUTIONPOLICY

Format One of DEFAULT, PACK,RR (round-robin)

Default ---

Description Specifies how job tasks should be mapped to allocated resources.DEFAULT allows the
resource manager to determine how the tasks are placed on the nodes. When PACK is used, a
node is filled up with tasks before the next node is used. When RR is used, tasks are cycled
through nodes, one task at a time, until there are no more tasks. See Task Distribution Over-
view for more information.

Example TASKDISTRIBUTIONPOLICY DEFAULT

Moab should use standard task distribution algorithms.

THREADPOOLSIZE

Format <INTEGER>

Default 2 (MAX: 25)

Description Specifies how many threads to have available for threaded operations.

Example THREADPOOLSIZE 10

TOOLSDIR

Format <STRING>

Default tools

Description Specifies the directory in which Moab tools will be maintained (commonly used in conjunction with
Native Resource Managers, and Triggers).

Example TOOLSDIR /var/adm/moab/tools

25.0 Appendices

930 Appendix A: Moab Parameters

Appendix A: Moab Parameters 931

TRAPFUNCTION

Format <STRING>

Default ---

Description Specifies the functions to be trapped.

Example TRAPFUNCTION
UpdateNodeUtilization|GetNodeSResTime

TRAPJOB

Format <STRING>

Default ---

Description Specifies the jobs to be trapped.

Example TRAPJOB pros23.0023.0

TRAPNODE

Format <STRING>

Default ---

Description Specifies the nodes to be trapped.

Example TRAPNODE
node001|node004|node005

25.0 Appendices

TRAPRES

Format <STRING>

Default ---

Description Specifies the reservations to be trapped.

Example TRAPRES interactive.0.1

TRIGCHECKTIME

Format <INTEGER> (milliseconds)

Default 2000

Description Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. Usually this only takes a fraction of a
second, but if the number of triggers is large it could take up substantially more time (up to sev-
eral seconds). While Moab is evaluating triggers, it doesn't respond to UI commands. This makes
Moab feel sluggish and unresponsive. To remedy this, use the parameter TRIGCHECKTIME. This
parameter tells Moab to only spend up to X milliseconds processing triggers during the UI phase.
After X milliseconds has gone by, Moab will pause the evaluating of triggers, handle any pending
UI events, and then restart the trigger evaluations where it last left off.

Example TRIGCHECKTIME 4000

25.0 Appendices

932 Appendix A: Moab Parameters

Appendix A: Moab Parameters 933

TRIGEVALLIMIT

Format <INTEGER>

Default 1

Description Each scheduling iteration, Moab will have a period of time where it handles commands and other
UI requests. This time period is controlled by RMPOLLINTERVAL. During this time period, known
as the UI phase, Moab will periodically evaluate triggers. The number of times Moab evaluates all
triggers in the system is controlled by the TRIGEVALLIMIT parameter. By default, this is set to 1.
This means that Moab will evaluate all triggers at most once during the UI phase. Moab will not
leave the UI phase and start other scheduling tasks until ALL triggers are evaluated at least one
time. If TrigEvalLimit is set to 5, then Moab will wait until all triggers are evaluated five times.

Example TRIGEVALLIMIT 3

UJOBWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by jobs per user. -1 will reduce priority by number of active jobs owned by user.

Example UJOBWEIGHT 10

UMASK

Format <INTEGER>

Default 0022 (octal) (produces 0644 permissions)

Description Specifies the file permission mask to use when creating new fairshare, stats, and event files. See
the umaskman page for more details.

Example UMASK 0127

Create statistics and event files which are 'read-write' by owner and 'read' by group only.

25.0 Appendices

UNSUPPORTEDDEPENDENCIES

Format Comma delimited string

Default ---

Description Specifies dependencies that are not supported and should not be accepted by job sub-
missions. A maximum of 30 dependencies is supported.

Example # moab.cfg
UNSUPPORTEDDEPENDENCIES before,beforeok,beforenotok,on

> msub -l depend=before:105 cmd.sh
ERROR: cannot submit job - error in extension string

UPROCWEIGHT

Format <INTEGER>

Default 0

Description Weight assigned by processors per user. -1 will reduce priority by number of active procs owned
by user.

Example UPROCWEIGHT 10

USAGECONSUMEDWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to per job processor second consumption.

Example USAGECONSUMEDWEIGHT 10

25.0 Appendices

934 Appendix A: Moab Parameters

Appendix A: Moab Parameters 935

USAGEEXECUTIONTIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight assigned to the total job execution time (measured in seconds
since job start). See Preemption Overview.

Example USAGEEXECUTIONTIMEWEIGHT 10

USAGEPERCENTWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to total requested resources consumed.

Example USAGEPERCENTWEIGHT 5

USAGEREMAININGWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight assigned to remaining usage.

Example USAGEREMAININGWEIGHT 10

25.0 Appendices

USAGEWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight assigned to the percent and total job usage subfactors.

Example USAGEWEIGHT 100

USEANYPARTITIONPRIO

Format <BOOLEAN>

Default FALSE

Description The FSTREE data from the first feasible FSTREE will be used when determining a job's start
priority, rather than having no FSTREE data considered.

Do not set USEANYPARTITIONPRIO if you use per-partition scheduling. Doing so causes
to schedule jobs to the first partition listed, even if nodes from another partition will be
available sooner.

Example USEANYPARTITIONPRIO TRUE

USECPRSVNODELIST

Format <BOOLEAN>

Default TRUE

Description Specifies whether Moab should use the checkpointed reservation node list when rebuilding reser-
vations on startup. If this is not used then Moab will use the reservation's specified host expres-
sion during rebuilding.

Example USECPRSVNODELIST FALSE

25.0 Appendices

936 Appendix A: Moab Parameters

Appendix A: Moab Parameters 937

USEDATABASE

Format INTERNAL

Default -

Description Specifies whether Moab should store profile statistics, checkpoint information, and event inform-
ation in an integrated database. See Layout of Scheduler Components with Integrated Database
Enabled for more information.

Example USEDATABASE INTERNAL

USEMOABCTIME

Format <BOOLEAN>

Default FALSE

Description When Moab finds new jobs on the resource manager, it creates a job inside of Moab for each job in
the resource manager. By default, when Moab creates a new job, it uses the time the job was sub-
mitted to the resource manager to calculate how long the job has been in the queue (Moab pro-
cessing time - job creation in resource manager), which is then used in determining the job's
priority.
In a system where more jobs are submitted to a resource manager than Moab can handle in one
iteration, there is the possibility of jobs running out of order. For example, two jobs are both
submitted at time 5. The first submitted job is processed first at time 6. So the first job's effective
queue duration would be 1 (6-5). On the next iteration, the second job is processed at time 8. So
the second job's effective queue duration would be 3 (8-5), indicating that it has been in the
queue longer than the other job. Since the later job has a higher effective queue duration it will
get a higher priority and could be scheduled to run before earlier submitted jobs.
Setting USEMOABCTIME to TRUE tells Moab to use the creation time of the job in Moab rather
than the creation time in the resource manager. This corrects the possible problem of having later
submitted jobs having higher priorities and starting before earlier submitted jobs.

Example USEMOABCTIME TRUE

25.0 Appendices

USEMOABJOBID

Format <BOOLEAN>

Default FALSE

Description Specifies whether to use the Moab job ID, or the resource manager's job ID.

Example USEMOABJOBID TRUE

USERCFG[<USERID>]

Format List of zero or more space delimited <ATTR>=<VALUE> pairs where <ATTR> is one of the following:
General Credential Flags, CDEF, DEFAULT.TPN, DEFAULT.WCLIMIT, EMAILADDRESS,
ENABLEPROFILING, FSCAP, FSTARGET, JOBFLAGS,MAX.WCLIMIT, QLIST, QDEF, NOEMAIL, OVERRUN,
PLIST, PRIORITY, or a usage limit.

Default ---

Description Specifies user specific attributes. For general user attribute information, See the Credential Over-
view. For a description of legal flag values, see flag overview.

Example USERCFG[john] MAXJOB=50 QDEF=highprio
USERCFG[john] EMAILADDRESS=john@company.com

Up to 50 jobs submitted under the user ID john will be allowed to execute simultaneously
and will be assigned the QoS highprio.

USERPRIOCAP

Format <INTEGER>

Default ---

Description Specifies the priority cap to be applied to the user specified job priority factor. Under Moab, only
negative user priorities may be specified. See Credential (Service) Factor.

Example USERPRIOWEIGHT 10
USERPRIOCAP -10000

25.0 Appendices

938 Appendix A: Moab Parameters

Appendix A: Moab Parameters 939

USERPRIOWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to the user specified job priority. Under Moab, only negative
user priorities may be specified. If this weight is set, users may reduce the priority of some of their
jobs to allow other jobs to run earlier. See Credential (Service) Factor and User Selectable Pri-
oritization.

Example USERPRIOWEIGHT 10

USERWEIGHT

Format <INTEGER>

Default 1

Description Specifies the weight to be applied to the user priority of each job. See Credential (CRED) Factor.

Example USERWEIGHT 10

USESYSLOG

Format <BOOLEAN>[<FACILITY>]

Default FALSE:daemon

Description Specifies whether or not the scheduler will report key events to the system syslog facility. If the
<FACILITY> is specified, Moab will report events to this syslog facility. See Logging Facilities for
more information.

Example USESYSLOG TRUE:local3

Moab will report key events, commands, and failures to syslog using the local3 facility.

25.0 Appendices

USESYSTEMQUEUETIME

Format <BOOLEAN>

Default FALSE

Description Specifies whether or not job prioritization should be based on the time the job has been eligible
to run, i.e., idle and meets all fairness policies (TRUE) or the time the job has been idle
(FALSE). See Priority Factors for more info. Note: This parameter has been superseded by the
JOBPRIOACCRUALPOLICY parameter.

Example USESYSTEMQUEUETIME FALSE

The queuetime and expansion factor components of a job's priority will be calculated
based on the length of time the job has been in the idle state.

USEUSERHASH

Format <BOOLEAN>

Default FALSE

Description Enables searching of the user buffer using the user hash key instead of doing sequential searches
of the user buffer.

Example USEUSERHASH TRUE

VMCALCULATELOADBYVMSUM

Format <BOOLEAN>

Default FALSE

Description When false, vmmigrate using overcommits uses the CPU load from the node to determine if
VM's need to be migrated off the hypervisor. When true, overcommit vmmigrates calculates
the total node load using the total sum reported by each VM on the hypervisor.

Example VMCALCULATELOADBYVMSUM TRUE

25.0 Appendices

940 Appendix A: Moab Parameters

Appendix A: Moab Parameters 941

VMCPURGETIME

Format [[[DD:]HH:]MM:]SS

Default 5:00

Description When a VM completes, Moab stores it in a completed VM table for the specified amount of time.
This prevents it from starting again if an RM reports it late. It also prevents a user from creating a
VM with the same ID for a certain amount of time.

Example VMCPURGETIME 10:00

Moab holds completed VMs for 10 minutes to prevent a late RM from reporting and
restarting it.

VMMIGRATETOZEROLOADNODES

Format <BOOLEAN>

Default FALSE

Description Allows VM migrations to occur to and from hypervisors that do not report a CPULoad or
memory load.

Example VMMIGRATETOZEROLOADNODES TRUE

VMMIGRATETHROTTLE

Format <INTEGER>

Default ---

Description Sets the maximum allowable 'VM migrate' jobs at any given time.

Example VMMIGRATETHROTTLE 20

Only 20 VM migrate jobs are allowed in the system at
any given time.

25.0 Appendices

VMMIGRATIONPOLICY

Format <STRING>; values include CONSOLIDATION and OVERCOMMIT

Default NONE

Description Choose only one of these values:
l CONSOLIDATION- If the CONSOLIDATION flag is set, Moab consolidates VMs to allow
nodes to go idle. This flag also ensures that no hypervisors are overloaded.

l OVERCOMMIT- If the OVERCOMMIT flag is set, VMs to be migrated will be selected
from overloaded hypervisors to bring them below the selected thresholds. This flag must
be set for the VMOCTHRESHOLD parameter to function.

Example VMMIGRATIONPOLICY OVERCOMMIT

The OVERCOMMIT VM migration policy is set.

VMMIGRATIONPOLICY CONSOLIDATION

The CONSOLIDATION VM migration policy is set.

VMMINOPDELAY

Format [HH[:MM[:SS]

Default ---

Description The minimum time between automatic VM node operations, such as creating, modifying, and des-
troying VMs. May prevent thrashing.

Example VMMINOPDELAY 30

25.0 Appendices

942 Appendix A: Moab Parameters

Appendix A: Moab Parameters 943

VMOCTHRESHOLD

Format MEM:<0-1>,PROCS:<0-1>,DISK:<0-1>,SWAP:<0-1>,GMETRIC:<metric>:value

Default ---

Descrip-
tion

Percentage threshold at which Moab begins to migrate virtual machines to other nodes.
VMMIGRATIONPOLICY must be set to OVERCOMMIT for this to occur.

Exampl-
e

NODECFG[DEFAULT] VMOCTHRESHOLD=PROC:.7,MEM:.9,GMETRIC:mem_io:6000 # This is the
default global policy
NODECFG[node42] VMOCTHRESHOLD=PROC:.2,MEM:.1,GMETRIC:mem_io:12000 # This is a
node-specific policy for node42

When a node surpasses .7 (70%) load of CPU or .9 (90%) of memory, Moab begins to migrate
virtual machines to other nodes. When node42surpasses .2 (20%) load of CPU or .1 (10%) of
memory, Moab begins to migrate virtual machines to other nodes.

VMPROVISIONSTATUSREADYVALUE

Format <INTEGER>

Default ---

Description Checks a VM for a special value or values (which Moab gets from the resource manager)
and, based on the value, tells Moab that a VM was created..

Example VMProvisionStatusReadyValue 2

VMProvisionStatusReadyValue 1-4,6,16

VMSARESTATIC

Format <BOOLEAN>

Default FALSE

Description When set to true, informs Moab that it can schedule under the assumption that no VMs will be
migrated and no new VMs will be created, and disables Moab from scheduling any VM creations or
migrations.

Example VMSARESTATIC TRUE

25.0 Appendices

VMSTALEACTION

Format One of the following: IGNORE,CANCELTRACKINGJOB, or DESTROY

Default IGNORE

Description Specifies the action that is applied to a stale VM, or a VM that the resource manager has not
reported to Moab recently (see VMSTALEITERATIONS).

l IGNORE specifies that Moab will take no action.
l CANCELTRACKING specifies that Moab will remove the tracking job for stale VMs, but
will not remove the actual VM (not recommended).

l DESTROY specifies that Moab destroys stale VMs.

If you specify DESTROY, you must also set the ENABLEVMDESTROY parameter to TRUE.

Example VMSTALEACTION DESTROY

VMSTALEITERATIONS

Format <INTEGER>

Default 5

Description Specifies the number of Moab iterations a VM must be unreported by any resource manager
before it is considered "stale."
To specify what happens with the VM after it has become stale, see VMSTALEACTION.

Example VMSTALEITERATIONS 3

3 iterations must complete without a resource manager reporting a VM for it to be
considered stale. This means that if the RMPOLLINTERVAL maximum is set to 2:00, a VM
must be unreported for 6 minutes to be stale.

25.0 Appendices

944 Appendix A: Moab Parameters

Appendix A: Moab Parameters 945

VMSTORAGEMOUNTDIR

Format <PATH>

Default ---

Description The specified path is used as the default location for storage mounts in all newly created VMs
(created via the mvmctl command). This parameter defines the default storage mount directory
if one is not specified.

Example VMSTORAGEMOUTDIR /var/spool

Moab uses /var/spool as a storage mount directory if a storage directory is not
submitted (but additional storage is requested) at VM creation.

VMTRACKING

Format <STRING>

Default ---

Description When set to TRUE, VMTracking jobs are used to represent VMs in the queue.

Example VMTRACKING TRUE

WALLTIMECAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the walltime component. This value is specified as an absolute priority value, not as a
percent.

Example WALLTIMECAP 10000

Moab will bound a job's pre-weighted walltime priority component within the range +/-
10000.

25.0 Appendices

WALLTIMEWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the amount of walltime requested by a job (in
seconds) (see Resource (RES) Factor).

Example RESWEIGHT 10
WALLTIMEWEIGHT 100

Increase the priority of longer duration jobs.

WCACCURACYCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the wallclock accuracy component. This value is specified as an absolute priority value,
not as a percent.

Example WCACCURACYCAP 10000

Moab will bound a job's pre-weighted wallclock accuracy priority component within the
range +/- 10000.

WCACCURACYWEIGHT

Format <INTEGER>

Default 0

Description Specifies the priority weight to be applied to the job's historical user wallclock accuracy (range
0.0 to 1.0) (see Fairshare (FS) Factor).

Example FSWEIGHT 10
WCACCURACYWEIGHT 100

Favor jobs with good wallclock accuracies by giving them a priority increase.

25.0 Appendices

946 Appendix A: Moab Parameters

Appendix A: Moab Parameters 947

WCVIOLATIONACTION

Format one of CANCEL or PREEMPT

Default CANCEL

Description Specifies the action to take when a job exceeds its wallclock limit. If set to CANCEL, the job will be
terminated. If set to PREEMPT, the action defined by PREEMPTPOLICY parameter will be taken.
See JOBMAXOVERRUN or Usage-based Limits.

Example WCVIOLATIONACTION PREEMPT
PREEMPTPOLICY REQUEUE

Moab will requeue jobs which exceed their wallclock limit.

WEBSERVICESURL

Format <URL>

Default ---

Description If specified, Moab sends data to Moab Web Services (MWS) to be stored in a database. This allows
Moab to spend more cycles on scheduling instead of database interaction. The sending occurs via
HTTP PUT.

Example WEBSERVICESURL http://mws-staging.ac:8080/mws/rm/moab/dump

Moab sends data that needs to be stored in a database to the specified URL.

25.0 Appendices

WIKIEVENTS

Format <BOOLEAN>

Default TRUE

Descrip-
tion

When set to true, Moab events are set to native wiki format (ATTR=VALUE pairs) to facilitate easier
readability .

Example WIKIEVENTS TRUE

Moab events will generate output in the format of the following sample:

09:26:40 1288279600:5 job 58 JOBEND 58 REQUESTEDNC=1 REQUESTEDTC=3 UNAME=wightman
GNAME=wightman
WCLIMIT=60 STATE=Completed RCLASS=[batch:1] SUBMITTIME=1288279493 RMEMCMP=>=
RDISKCMP=>=
RFEATURES=[NONE] SYSTEMQUEUETIME=1288279493 TASKS=1 FLAGS=RESTARTABLE PARTITION=pbs
DPROCS=1
ENDDATE=2140000000 TASKMAP=proxy,GLOBAL SRM=pbs EXITCODE=0 SID=2357
NODEALLOCATIONPOLICY=SHARED
EFFECTIVEQUEUEDURATION=107

XFACTORCAP

Format <DOUBLE>

Default 0 (NO CAP)

Description Specifies the maximum total pre-weighted absolute contribution to job priority which can be con-
tributed by the expansion factor component. This value is specified as an absolute priority value,
not as a percent.

Example XFACTORCAP 10000

Moab will bound a job's pre-weighted XFactor priority component within the range +/-
10000.

25.0 Appendices

948 Appendix A: Moab Parameters

Appendix B: Multi-OS Provisioning 949

XFACTORWEIGHT

Format <INTEGER>

Default 0

Description Specifies the weight to be applied to a job's minimum expansion factor before it is added to the
job's cumulative priority.

Example XFACTORWEIGHT 1000

Moab will multiply a job's XFactor value by 1000 and then add this value to its total
priority.

XFMINWCLIMIT

Format [[[DD:]HH:]MM:]SS

Default -1 (NO LIMIT)

Description Specifies the minimum job wallclock limit that will be considered in job expansion factor priority
calculations.

Example XFMINWCLIMIT 0:01:00

Jobs requesting less than 1 minute of wallclock time will be treated as if their wallclock
limit was set to 1 minute when determining expansion factor for priority calculations.

Appendix B: Multi-OS Provisioning
l xCAT Configuration Requirements

l MSM Installation

l Integrating MSM and xCAT

l MSM Configuration

l Configuration Validation

l Troubleshooting

l Deploying Images with TORQUE

l Installing Moab on the Management Node

25.0 Appendices

l Moab Configuration File Example

l Verifying the Installation

l xCAT Plug-in Configuration Parameters

Introduction
Moab can dynamically provision compute machines to requested operating systems and power off
compute machines when not in use. Moab can intelligently control xCAT and use its advanced system
configuration mechanisms to adapt systems to current workload requirements. Moab communicates with
xCAT using the Moab Service Manager (MSM). MSM is a translation utility that resides between Moab
and xCAT and acts as aggregator and interpreter. The Moab Workload Manager will query MSM, which in
turn queries xCAT, about system resources, configurations, images, and metrics. After learning about
these resources from MSM, Moab then makes intelligent decisions about the best way to maximize
system utilization.

In this model Moab gathers system information from two resource managers. The first is TORQUE, which
handles the workload on the system; the second is MSM, which relays information gathered by xCAT. By
leveraging these software packages, Moab intelligently adapts clusters to deliver on-site goals.

This document assumes that xCAT has been installed and configured. It describes the process of getting
MSM and xCAT communicating, and it offers troubleshooting guidance for basic integration. This
document offers a description for how to get Moab communicating with MSM and the final steps in
verifying a complete software stack.

xCAT Configuration Requirements
Observe the following xCAT configuration requirements before installing MSM:

l Configure xCAT normally for your site.

o Test the following commands to verify proper function:

o rpower

o nodeset

o makedhcp

o makedns

o nodestat

o rvitals

o If MSM will run on a different machine than the one on which xCAT runs, install the xCAT
client packages on that machine, and test the previously listed commands on that machine
as well.

o Configure and test all stateful/stateless images you intend to use.

l Configure xCAT to use either PostgreSQL or MySQL. Note that the default of SQLite may not
function properly when MSM drives xCAT.

o PostgreSQL: See xCATSetupPostgreSQL.pdf for more information.

o MySQL: See xCAT2.SetupMySQL.pdf for more information.

25.0 Appendices

950 Appendix B: Multi-OS Provisioning

http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCATSetupPostgreSQL.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2.SetupMySQL.pdf

Appendix B: Multi-OS Provisioning 951

You must have a valid Moab license file (moab.lic) with provisioning and green enabled. For
information on acquiring an evaluation license, please contact info@adaptivecomputing.com.

MSM Installation
l Determine the installation directory (usually /opt/moab/tools/msm)

l Untar the MSM tarball into the specified directory (making it the MSM home directory, or
$MSMHOMEDIR)

l Verify the required Perl modules and version are available

> perl -e 'use Storable 2.18'
> perl -MXML::Simple -e 'exit'
> perl -MProc::Daemon -e 'exit'
> perl -MDBD::SQLite -e 'exit'

Integrating MSM and xCAT
Copy the x_msm table schema to the xCAT schema directory:

> cp $MSMHOMEDIR/contrib/xcat/MSM.pm $XCATROOT/lib/perl/xCAT_schema

Restart xcatd and check the x_msm table is correctly created:

> service xcatd restart

> tabdump x_msm

Prepare xCAT images and ensure they provision correctly (see xCAT documentation)

Populate the x_msm table with your image definitions:

> tabedit x_msm

#flavorname,arch,profile,os,nodeset,features,vmoslist,hvtype,hvgroupname,vmgroupname,co
mments,disable

"compute","x86_64","compute","centos5.3","netboot","torque",,,,,,
"science","x86","compute","scientific_linux","netboot","torque",,,,,,

l flavorname - A user specified name for the image and settings; also an xCAT group name, nodes
are added to this group when provisioned

l arch - Architecture as used by xCAT

l profile - Profile as used by xCAT

l os - Operating system as used by xCAT

l nodeset - One of netboot|install|statelite

l features - Names of xCAT groups that identify special hardware features ('torque' and 'paravirt'
are special cases)

25.0 Appendices

mailto:info@adaptivecomputing.com

l vmoslist - Note: Not used. List of flavorname's this image may host as VMs (hypervisor images
only)

l hvtype - Note: Not used. One of esx|xen|kvm (hypervisor images only)

l hvgroupname - Note: Not used. Name of xCAT group nodes will be added to when provisioned to
this image

l vmgroupname - Note: Not used. Name of xCAT group VMs will be added to when hosted on a
hypervisor of this image

l comments - User specified comments

l disable - Flag to temporarily disable use of this image

Ensure all xCAT group names in the x_msm table exist in the xCAT nodegroup table

> tabedit nodegroup

Edit as necessary to simulate the following example:

#groupname,grouptype,members,wherevals,comments,disable
"compute",,,,,
"esxi4",,,,,
"esxhv",,,,,
"esxvmmgt",,,,,

After making any necessary edits, run the following command:

> nodels compute,esxi4,esxhv,esxvmmgt
should complete without error, ok if doesn't return anything

MSM Configuration
Edit $MSMHOMEDIR/msm.cfg and configure the xCAT plug-in. Below is a generic example for use with
TORQUE without virtualization. See the section on configuration parameters for a complete list of
parameters and descriptions.

MSM configuration options
RMCFG[msm] PORT=24603
RMCFG[msm] POLLINTERVAL=45
RMCFG[msm] LOGFILE=/opt/moab/log/msm.log
RMCFG[msm] LOGLEVEL=8
RMCFG[msm] DEFAULTNODEAPP=xcat

xCAT plugin specific options
APPCFG[xcat] DESCRIPTION="xCAT plugin"
APPCFG[xcat] MODULE=Moab::MSM::App::xCAT
APPCFG[xcat] LOGLEVEL=3
APPCFG[xcat] POLLINTERVAL=45
APPCFG[xcat] TIMEOUT=3600
APPCFG[xcat] _USEOPIDS=0
APPCFG[xcat] _NODERANGE=moab,esxcompute
APPCFG[xcat] _USESTATES=boot,netboot,install
APPCFG[xcat] _LIMITCLUSTERQUERY=1
APPCFG[xcat] _RPOWERTIMEOUT=120
APPCFG[xcat] _DONODESTAT=1
APPCFG[xcat] _REPORTNETADDR=1

25.0 Appendices

952 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 953

APPCFG[xcat] _CQXCATSESSIONS=4

Configuration Validation
Set up environment to manually call MSM commands:

substitute appropriate value(s) for path(s)
export MSMHOMEDIR=/opt/moab/tools/msm
export MSMLIBDIR=/opt/moab/tools/msm
export PATH=$PATH:/$MSMLIBDIR/contrib:$MSMLIBDIR/bin

Verify that MSM starts without errors:

> msmd

Verify that the expected nodes are listed, without errors, using the value of _NODERANGE from
msm.cfg.

> nodels <_NODERANGE>

Verify that the expected nodes, are listed in the cluster query output from MSM:

> cluster.query.pl

Provision all nodes through MSM for the first time (pick and image name from x_msm):

> for i in `nodels <_NODERANGE>; do node.modify.pl $i --set os=<image_name>;done

Verify the nodes correctly provision and that the correct OS is reported (which may take some time
after the provisioning requests are made):

> cluster.query.pl

Troubleshooting
l msmctl -a does not report the xCAT plugin - Check the log file (path specified in msm.cfg) for
error messages. A common cause is missing Perl modules (Storable, DBD::SQLite, xCAT::Client).

l cluster.query.pl does not report any nodes - Check that the xCAT command nodels <noderange>,
where <noderange> is the value configured for _NODERANGE in msm.cfg, outputs the nodes
expected.

l cluster.query.pl does not report OS - MSM must provision a node to recognize what the current
operating system is. It is not sufficient to look up the values in the nodetype table because MSM
has no way of recognizing whether nodeset and rpower were run with the current values in the
nodetype table.

l cluster.query.pl does not report OSLIST, or does not report the expected OSLIST for a node -
Check that the node belongs to the appropriate groups, particularly any listed in the features field
of the x_msm table for the missing image name.

25.0 Appendices

Deploying Images with TORQUE
When using MSM + xCAT to deploy images with TORQUE, there are some special configuration
considerations. Most of these also apply to other workload resource managers.

Note that while the MSM xCAT plugin contains support for manipulating TORQUE directly, this is not an
ideal solution. If you are using a version of xCAT that supports prescripts, it is more appropriate to write
prescripts that manipulate TORQUE based on the state of the xCAT tables. This approach is also
applicable to other workload resource managers, while the xCAT plugin only deals with TORQUE.

Several use cases and configuration choices are discussed in what follows.

Each image should be configured to report its image name through TORQUE. In the TORQUE pbs_mom
mom_config file the opsys value should mirror the name of the image. See Node Manager (MOM)
Configuration in the TORQUE Administrator's Guide for more information.

Installing Moab on the Management Node
Moab is the intelligence engine that coordinates the capabilities of xCAT and TORQUE to dynamically
provision compute nodes to the requested operating system. Moab also schedules workload on the
system and powers off idle nodes. Download and install Moab.

Moab Configuration File Example
Moab stores its configuration in the moab.cfg file: /opt/moab/etc/moab.cfg. A sample
configuration file, set up and optimized for adaptive computing follows:

SCHEDCFG[Moab] SERVER=gpc-sched:42559
ADMINCFG[1] USERS=root,egan
LOGLEVEL 7

How often (in seconds) to refresh information from TORQUE and MSM
RMPOLLINTERVAL 60,60
RESERVATIONDEPTH 10
DEFERTIME 0
TOOLSDIR /opt/moab/tools

###
TORQUE and MSM configuration
###
RMCFG[torque] TYPE=PBS
RMCFG[msm] TYPE=NATIVE:msm FLAGS=autosync,NOCREATERESOURCE RESOURCETYPE=PROV
RMCFG[msm] TIMEOUT=60
RMCFG[msm] PROVDURATION=10:00
AGGREGATENODEACTIONS TRUE

###
ON DEMAND PROVISIONING SETUP
###
QOSCFG[od] QFLAGS=PROVISION
USERCFG[DEFAULT] QLIST=od
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=1000*OS+1000*POWER
NODEAVAILABILITYPOLICY DEDICATED
CLASSCFG[DEFAULT] DEFAULT.OS=scinetcompute

###
GREEN POLICIES
###

25.0 Appendices

954 Appendix B: Multi-OS Provisioning

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/nodeManagerConfig.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/nodeManagerConfig.htm
https://www.adaptivecomputing.com/myaccount/login.php?url=/resources/downloads/index.php

Appendix B: Multi-OS Provisioning 955

NODECFG[DEFAULT] POWERPOLICY=ONDEMAND
PARCFG[ALL] NODEPOWEROFFDURATION=20:00
NODEIDLEPOWERTHRESHOLD 600
END Example moab.cfg

Verifying the Installation
When Moab starts it immediately communicates with its configured resource managers. In this case
Moab communicates with TORQUE to get compute node and job queue information. It then communicates
with MSM to determine the state of the nodes according to xCAT. It aggregates this information and
processes the jobs discovered from TORQUE.

When a job is submitted, Moab determines whether nodes need to be provisioned to a particular
operating system to satisfy the requirements of the job. If any nodes need to be provisioned Moab
performs this action by creating a provisioning system job (a job that is internal to Moab). This system
job communicates with xCAT to provision the nodes and remain active while the nodes are provisioning.
Once the system job has provisioned the nodes it informs the user's job that the nodes are ready at
which time the user's job starts running on the newly provisioned nodes.

When a node has been idle for a specified amount of time (see NODEIDLEPOWERTHRESHOLD), Moab
creates a power-off system job. This job communicates with xCAT to power off the nodes and remain
active in the job queue until the nodes have powered off. Then the system job informs Moab that the
nodes are powered off but are still available to run jobs. The power off system job then exits.

To verify correct communication between Moab and MSM run the mdiag -R -v msm command.

$ mdiag -R -v msm
diagnosing resource managers
RM[msm] State: Active Type: NATIVE:MSM ResourceType: PROV
Timeout: 30000.00 ms
Cluster Query URL: $HOME/tools/msm/contrib/cluster.query.xcat.pl
Workload Query URL: exec://$TOOLSDIR/msm/contrib/workload.query.pl
Job Start URL: exec://$TOOLSDIR/msm/contrib/job.start.pl
Job Cancel URL: exec://$TOOLSDIR/msm/contrib/job.modify.pl
Job Migrate URL: exec://$TOOLSDIR/msm/contrib/job.migrate.pl
Job Submit URL: exec://$TOOLSDIR/msm/contrib/job.submit.pl
Node Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Node Power URL: exec://$TOOLSDIR/msm/contrib/node.power.pl
RM Start URL: exec://$TOOLSDIR/msm/bin/msmd
RM Stop URL: exec://$TOOLSDIR/msm/bin/msmctl?-k
System Modify URL: exec://$TOOLSDIR/msm/contrib/node.modify.pl
Environment:

MSMHOMEDIR=/home/wightman/test/scinet/tools//msm;MSMLIBDIR=/home/wightman/test/scinet/
tools//msm
Objects Reported: Nodes=10 (0 procs) Jobs=0
Flags: autosync
Partition: SHARED
Event Management: (event interface disabled)
RM Performance: AvgTime=0.10s MaxTime=0.25s (38 samples)
RM Languages: NATIVE
RM Sub-Languages: -

To verify nodes are configured to provision use the checknode -v command. Each node will have a list of
available operating systems.

$ checknode n01
node n01

25.0 Appendices

State: Idle (in current state for 00:00:00)
Configured Resources: PROCS: 4 MEM: 1024G SWAP: 4096M DISK: 1024G
Utilized Resources: ---
Dedicated Resources: ---
Generic Metrics: watts=25.00,temp=40.00
Power Policy: Green (global policy) Selected Power State: Off
Power State: Off
Power: Off
MTBF(longterm): INFINITY MTBF(24h): INFINITY

Opsys: compute Arch: ---
OS Option: compute
OS Option: computea
OS Option: gpfscompute
OS Option: gpfscomputea

Speed: 1.00 CPULoad: 0.000
Flags: rmdetected
RM[msm]: TYPE=NATIVE:MSM ATTRO=POWER
EffNodeAccessPolicy: SINGLEJOB
Total Time: 00:02:30 Up: 00:02:19 (92.67%) Active: 00:00:11 (7.33%)

To verify nodes are configured for Green power management, run the mdiag -G command. Each node will
show its power state.

$ mdiag -G
NOTE: power management enabled for all nodes
Partition ALL: power management enabled
Partition NodeList:

Partition local: power management enabled
Partition NodeList:
node n01 is in state Idle, power state On (green powerpolicy enabled)
node n02 is in state Idle, power state On (green powerpolicy enabled)
node n03 is in state Idle, power state On (green powerpolicy enabled)
node n04 is in state Idle, power state On (green powerpolicy enabled)
node n05 is in state Idle, power state On (green powerpolicy enabled)
node n06 is in state Idle, power state On (green powerpolicy enabled)
node n07 is in state Idle, power state On (green powerpolicy enabled)
node n08 is in state Idle, power state On (green powerpolicy enabled)
node n09 is in state Idle, power state On (green powerpolicy enabled)
node n10 is in state Idle, power state On (green powerpolicy enabled)

Partition SHARED: power management enabled

To submit a job that dynamically provisions compute nodes, run the msub -l os=<image> command.

$ msub -l os=computea job.sh
yuby.3
$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
provision-4 root Running 8 00:01:00 Fri Jun 19 09:12:56
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
yuby.3 wightman Idle 8 00:10:00 Fri Jun 19 09:12:55
1 eligible job
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total jobs: 2

25.0 Appendices

956 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 957

Notice that Moab created a provisioning system job named provision-4 to provision the nodes. When
provision-4 detects that the nodes are correctly provisioned to the requested OS, the submitted job
yuby.3 runs:

$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
yuby.3 wightman Running 8 00:08:49 Fri Jun 19 09:13:29
1 active job 8 of 40 processors in use by local jobs (20.00%)

2 of 10 nodes active (20.00%)
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 eligible jobs
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

0 blocked jobs
Total job: 1

The checkjob command shows information about the provisioning job as well as the submitted job. If any
errors occur, run the checkjob -v <jobid> command to diagnose failures.

xCAT Plug-in Configuration Parameters
Plugin parameters that begin with an underscore character are specific to the xCAT plug-in; others are
common to all plug-ins and may either be set in the RMCFG[msm] for all plug-ins, or per plug-in in the
APPCFG[<plugin_name>].

Description
Module
LogLevel
PollInterval
TimeOut
_NodeRange
_CQxCATSessions
_DORVitals
_PowerString
_DoNodeStat
_DoxCATStats
_LockDir
_HVxCATPasswdKey

_FeatureGroups
_DefaultVMCProc
_DefaultVMDisk
_DefaultVMCMemory
_KVMStoragePath
_ESXStore
_ESXCFGPath
_VMInterfaces
_XenHostInterfaces
_KVMHostInterfaces
_VMSovereign
_UseStates
_ImagesTabName

_VerifyRPower
_RPowerTimeOut
_QueueRPower
_RPowerQueueAge
_RPowerQueueSize
_MaskOSWhenOff
_ModifyTORQUE
_ReportNETADDR
_UseOpIDs
_VMIPRange
_xCATHost
_NoRollbackOnError

Description

Format Double quoted string containing brief description of plugin.

Default ---

Description This information is not visible in Moab, but shows up in msmctl -a.

25.0 Appendices

Module

Format Moab::MSM::App::xCAT

Default ---

Description Name of the plugin module to load.

LogLevel

Format 1-9

Default 5

Description Used to control the verbosity of logging, 1 being the lowest (least information logged) and 9 being
the highest (most information logged). For initial setup and testing, 8 is recommended, then
lowering to 3 (only errors logged) for normal operation. Use 9 for debugging, or when submitting
a log file for support.

PollInterval

Format Integer > 0

Default 60

Description MSM will query xCAT every POLLINTERVAL seconds to update general node status. This number
will likely require tuning for each specific system. In general, to develop this number, you should
pick a fraction of the total nodes MSM will be managing (1/_CQXCATSESSIONS), and time how
long it takes run nodestat, rpower stat, and optionally rvitals on these nodes, and add ~15%.
Increasing the POLLINTERVAL will lower the overall load on the xCAT headnode, but decrease the
responsiveness to provisioning and power operations.

TimeOut

Format Integer value > POLLINTERVAL

Default 300

Description This parameter controls how long MSM will wait for child processed to complete (all xCAT com-
mands are run in child processes). After TIMEOUT seconds, if a child has not returned it will be
killed, and an error reported for the operation.

25.0 Appendices

958 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 959

_NodeRange

Format Any valid noderange (see the xCAT noderange manpage).

Default All

Description When MSM queries xCAT this is the noderange it will use. At sites where xCAT manages other
hardware that Moab is not intended to control, it is important to change this.

_CQxCATSessions

Format Positive integer > 1

Default 10

Description MSM will divide the node list generated by nodels into this many groups and simultaneously
query xCAT for each group. The value may need tuning for large installations, higher values will
cause the time to complete a single cluster query to go down, but cause a higher load on the xCAT
headnode.

_DORVitals

Format 0 or 1

Default 0

Description When set to 1, MSM will poll rvitals power and led status (see the xCAT rvitals manpage). This only
works with IBM BMCs currently. In order to use this, xCAT should respond without error to the
rvitals <noderange> watts and rvitals <noderange> leds commands. Status is reported as GMETRTIC
[watts] and GMETRIC[leds]. See also the _PowerString on page 959 configuration parameter.

_PowerString

Format single quote delimited string

Default 'AC Avg Power'

Description Only meaningful when used with _DORVitals on page 959=1. Some BMCs return multiple
responses to the rvitals command, or use slightly different text to describe the power metrics. Use
this parameter to control what is reported to Moab. You can use '$MSMLIBDIR/con-
trib/xcat/dump.xcat.cmd.pl rvitals <node_name> power' and examine the output to determ-
ine what the appropriate value of this string is.

25.0 Appendices

_DoNodeStat

Format 0 or 1

Default 1

Description If set to 0, MSM will not call nodestat to generated a substate. This can be used to speed up the
time it takes to query xCAT, and you do not need the substate visible to Moab.

_DoxCATStats

Format 0 or 1

Default 0

Description If Set to 1, MSM will track performance statistics about calls to xCAT, and the performance of
higher level operations. The information is available via the script $MSMHOMEDIR/con-
trib/xcat/xcatstats.pl. This parameter is useful for tuning the POLLINTERVAL and _
CQxCATSessions on page 959 configuration parameters.

_LockDir

Format Existing path on MSM host

Default $MSMHOMEDIR/lck

Description This is a path to where MSM maintains lock files to control concurrency with some Xen and KVM
operations.

_HVxCATPasswdKey

Format key value in the xCAT passwd table

Default vmware

Description This is where MSM gets the user/password to communicate with ESX hypervisors.

25.0 Appendices

960 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 961

_FeatureGroups

Format Comma delimited string of xCAT group names.

Default ---

Description MSM builds the OSLIST for a node as the intersection of _FEATUREGROUPS, features specified in
x_msm for that image, and the nodes group membership. The value 'torque' is special, and indic-
ates that the image uses TORQUE, and the node should be added/removed from TORQUE during
provisioning when used in conjunction with the _ModifyTORQUE on page 965 parameter.

_DefaultVMCProc

Format 1-?

Default 1

Description If not explicitly specified in the create request, MSM will create VMs with this many processors.

_DefaultVMDisk

Format Positive integer values, minimum is determined by your vm image needs

Default 4096

Description If not explicitly specified in the create request, MSM will create VMs with this much disk allocated.

_DefaultVMCMemory

Format Positive integer values, minimum is determined by your vm image needs

Default 512

Description If not specified, MSM will create VMs with this much memory allocated.

_KVMStoragePath

Format Existing path on MSM host

25.0 Appendices

_KVMStoragePath

Default /vms

Description File backed disk location for stateful KVM VMS will be placed here.

_ESXStore

Format Mountable NFS Path

Default ---

Description Location of ESX stores.

_ESXCFGPath

Format Mountable NFS Path

Default ESXStore

Description Location of ESX VM configuration files.

_VMInterfaces

Format Name of bridge device in your VM image

Default br0

Description Bridge device name passed to libvirt for network configuration of VMs (overrides _
XENHOSTINTERFACES and _KVMHOSTINTERFACES if specified).

_XenHostInterfaces

Format Name of bridge device in your VM image

Default xenbr0

Description Bridge device name passed to libvirt for network configuration of Xen VMs.

25.0 Appendices

962 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 963

_KVMHostInterfaces

Format Name of bridge device in your VM image

Default br0

Description Bridge device name passed to libvirt for network configuration of KVM VMs.

_VMSovereign

Format 0 or 1

Default 0

Description Setting this attribute will cause Moab to reserve VMs' memory and procs on the hypervisor and
treat the VM as the workload — additional workload cannot be scheduled on the VM.

_UseStates

Format Valid xCAT chain.currstate values (see the xCAT chain manpage)

Default boot,netboot,install

Description Nodes that do not have one of these values in the xCAT chain.currstate field will reported
with STATE=Updating. Use this configuration parameter to prevent Moab from scheduling nodes
that are updating firmware, etc.

_ImagesTabName

Format Existing xCAT table that contains your image definitions.

Default x_msm

Description This table specifies the images that may be presented to Moab in a nodes OSLIST. The xCAT
schema for this table is defined in $MSMHOMEDIR/contrib/xcat/MSM.pm, which needs to be
copied to the $XCATROOT/lib/perl/xCAT_schema directory.

25.0 Appendices

_VerifyRPower

Format 0 or 1

Default 0

Description If set, MSM will attempt to confirm that rpower requests were successful by polling the power
state with rpower stat until the node reports the expected state, or _RPowerTimeOut on page
964 is reached.
NOTE: This can create significant load on the xCAT headnode.

_RPowerTimeOut

Format Positive integer values

Default 60

Description Only meaningful when used with _VerifyRPower on page 964. If nodes do not report the expec-
ted power state in this amount of time, a GEVENT will be produced on the node (or system job).

_QueueRPower

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to aggregate rpower requests to xCAT into batches. The
timing and size of these batches is controlled with the _RPowerQueueAge on page 964 and _
RPowerQueueSize on page 965 parameters.
NOTE: This can significantly reduce load on the xCAT headnode, but will cause the power
commands to take longer, and MSM shutdown to take longer.

_RPowerQueueAge

Format Positive integer values

Default 30

Description Only meaningful when used with _QueueRPower on page 964. MSM will send any pending
rpower requests when the oldest request in the queue exceeds this value (seconds).

25.0 Appendices

964 Appendix B: Multi-OS Provisioning

Appendix B: Multi-OS Provisioning 965

_RPowerQueueSize

Format Positive integer values

Default 200

Description Only meaningful when used with _QueueRPower on page 964. MSM will send any pending
rpower requests when the queue depth exceeds this value.

_MaskOSWhenOff

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report OS=None for nodes that are powered off. This
may be useful when mixing stateless and stateful images, forcing Moab to request provisioning
instead of just powering on a node.

_ModifyTORQUE

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to add and removes nodes and VMs from TORQUE as
required by provisioning. See the _FeatureGroups on page 961 parameter as well.

_ReportNETADDR

Format 0 or 1

Default 0

Description When set, this parameter will cause MSM to report NETADDR=<hosts.ip from xCAT>.

_UseOpIDs

Format 0 or 1

25.0 Appendices

_UseOpIDs

Default 0

Description When set, this parameter will cause errors to be reported as GEVENTs on the provided system job,
instead of a node (Moab 5.4 only, with appropriate Moab CFG)

_VMIPRange

Format Comma separated list of dynamic ranges for VM (ex '10.10.23.100-200,10.10.24.1-255')

Default ---

Description Use this parameter to specify a pool of IPs that MSM should assign to VMs at creation time. IPs are
selected sequentially from this list as available. Omit this configuration parameter if an external
service is managing IP assignment, or if they are all previously statically assigned.

_xCATHost

Format <xcat_headnode>:<xcatd_port>

Default localhost:3001

Description Use to configure MSM to communicate with xCAT on another host.

_NoRollbackOnError

Format 0 or 1

Default 0

Description When an error occurs and rollback is activated (as it is by default), rollback causes a reversion to
the previous successful request. _NoRollbackOnError is useful for debugging to determine the
xCAT state if no rollback occurred. If set to 1 and an error occurs between MSM and xCAT when
creating a node, assigning a name (DNS) to a node, or assigning an IP address (DHCP) to a node,
then no rollback occurs.

25.0 Appendices

966 Appendix B: Multi-OS Provisioning

Appendix D: Adjusting Default Limits 967

Appendix D: Adjusting Default Limits
Moab is distributed in a configuration capable of supporting multiple architectures and systems ranging
from a few processors to several thousand processors. However, in spite of its flexibility, for
performance reasons, it still contains a number of default object limits parameters and static structures
defined in header files. These limits constrain such things as the maximum number of jobs, reservations,
and nodes that Moab can handle and are set to values that provide a reasonable compromise between
capability and memory consumption for most sites. However, many site administrators want to increase
some of these settings to extend functionality, or decrease them to save consumed memory. The most
common parameters are listed in what follows. Parameters listed in the Moab configuration file
(moab.cfg) can be modified by restarting Moab. To change parameters listed in moab.h, please contact
technical support.

CLIENTMAXCONNECTIONS

Location moab.cfg (dynamic parameter)

Default 128

Max tested ---

Description Maximum number of connections that can simultaneously connect to Moab.

JOBMAXNODECOUNT

Location moab.cfg (dynamic parameter)

Default 1024

Max tested 8192

Description Maximum number of compute nodes that can be allocated to a job. (Can also be specified within
configure using --with-maxjobsize=<NODECOUNT>.)

MAXGRES

Location moab.cfg (dynamic parameter)

Default 512

25.0 Appendices

MAXGRES

Max tested ---

Description Total number of distinct generic resources that can be managed.

MAXJOB

Location moab.cfg (dynamic parameter)

Default 4096

Max tested 500,000

Description Maximum number of jobs that can be evaluated simultaneously. (Can also be specified within con-
figure using --with-maxjobs=<JOBCOUNT>.)

MAXRSVPERNODE

Location moab.cfg (dynamic parameter)

Default 48

Max tested 1024

Description Maximum number of reservations a node can simultaneously support.

MMAX_ATTR

Location moab.h

Default 128

Max tested 512

Description Total number of distinct node attributes (PBS node attributes/LL node features) that can be
tracked.

25.0 Appendices

968 Appendix D: Adjusting Default Limits

Appendix D: Adjusting Default Limits 969

MMAX_CLASS

Location moab.h

Default 256

Max tested 256

Description Total number of distinct job classes/queues available.

MMAX_FSDEPTH

Location moab.h

Default 24

Max tested 32

Description Number of active fairshare windows.

MAXNODE

Location moab.cfg (dynamic parameter

Default 5120

Max tested 160000

Description Maximum number of compute nodes supported.

MMAX_PAR

Location moab.h

Default 32

Max tested 32

Description Maximum number of partitions supported.

25.0 Appendices

MMAX_QOS

Location moab.h

Default 128

Max tested 128

Description Total number of distinct QoS objects available to jobs.

MMAX_RACK

Location moab.h

Default 200

Max tested 200

Description Total number of distinct rack objects available within cluster.

MMAX_RANGE

Location moab.h

Default 2048

Max tested 2048

Description Total number of distinct timeframes evaluated.

Note: This is proportional to the size of the cluster and the number of simultaneously active jobs in
the cluster. (Can be specified within ./configure using --with-maxrange=<RANGECOUNT>.)
Increasing this value will not increase the size of total memory consumed by Moab but may result
in minor slowdowns in the evaluation and optimization of reservations.

MMAX_REQ_PER_JOB

Location moab.h

Default 5

25.0 Appendices

970 Appendix D: Adjusting Default Limits

Appendix E: Security 971

MMAX_REQ_PER_JOB

Max tested 64

Description Total number of unique requirement structures a job can have. Limits the number of -w clauses in
the mshow -a command. It also limits the number of -l nodes=X+Y+Z a normal HPC job can
have.

JOBMAXTASKCOUNT

Location moab.cfg (dynamic parameter

Default 4096

Max tested 16000

Description Total number of tasks allowed per job.

Moab currently possesses hooks to allow sites to create local algorithms for handling site specific needs
in several areas. The contrib directory contains a number of sample local algorithms for various
purposes. The MLocal.c module incorporates the algorithm of interest into the main code. The
following scheduling areas are currently handled via the MLocal.c hooks.

l Local Job Attributes

l Local Node Allocation Policies

l Local Job Priorities

l Local Fairness Policies

Related topics

l Appendix I: Considerations for Large Clusters

Appendix E: Security
Moab provides role and host based authorization, encryption*, and DES, HMAC, and MD5 based
authentication. The following sections describe these features in more detail.

l Authorization

o Role Based Authorization Security Configuration

l Authentication

25.0 Appendices

o Mauth Authentication

o Munge Authentication

o Server Response Control

o Interface Development Notes

l Host Security

o Minimal Host Security Enforcement

o Medium Host Security Enforcement

o Strict Host Security Enforcement

l Access Portal Security

Authorization

Role Based Authorization Security Configuration

Moab provides access control mechanisms to limit how the scheduling environment is managed. The
primary means of accomplishing this is through limiting the users and hosts that are trusted and have
access to privileged commands and data.

With regard to users, Moab breaks access into three distinct levels.

Level 1 Moab Admin (Administrator Access)

Level 1 Moab administrators have global access to information and unlimited control over scheduling
operations. By default, they are allowed to control scheduler configuration, policies, jobs, reservations,
and all scheduling functions. They are also granted access to all available statistics and state
information. Level 1 administrators are specified using the ADMINCFG[1] parameter.

Level 2 Moab Admin (Operator Access)

Level 2 Moab administrators are specified using the ADMINCFG[2] parameter. By default, the users listed
under this parameter are allowed to change all job attributes and are granted access to all informational
Moab commands.

Level 3 Moab Admin (Help Desk Access)

Level 3 administrators are specified via the ADMINCFG[3] parameter. By default, they are allowed
access to all informational Moab commands. They cannot change scheduler or job attributes.

Configuring Role Based Access

Moab allows site specific tuning of exactly which functions are available to each administrator level.
Moab also provides two additional administrator levels (ADMINCFG[4] and ADMINCFG[5]) that may be
used for site specific needs.

To configure Moab role based access, use the ADMINCFG parameter.

ADMINCFG[1] USERS=root,john SERVICES=ALL NAME=admin
ADMINCFG[3] USERS=joe,mary SERVICES=mdiag,mrsvctl,mcredctl NAME=power

25.0 Appendices

972 Appendix E: Security

Appendix E: Security 973

ADMINCFG[5] USERS=joy,blake SERVICES=NONE NAME=users
...

A NONE in services will still allow users to run showq and checkjob on their own jobs.

To determine the role of system users and what commands they can run, use the mcredctl -q role
user:<USERID> command.

Using the SERVICES attribute of the ADMINCFG parameter, access to an arbitrary selection of services
can be enabled on a per administrator-level basis. Possible services include the following:

Service Description

changeparam Change any scheduling policy or parameter (This command is deprecated. Use mschedctl -m
instead).

checkjob View detailed information for any job.

checknode View detailed information for any node.

mbal Perform real-time load-balancing of interactive commands.

mcredctl View and modify credential attributes.

mdiag Provide diagnostic reports for resources, workload, and scheduling.

mjobctl Modify, control, and view jobs.

mnodectl Modify, control, and view nodes.

mrmctl Modify, control, and view resource managers.

mrsvctl Modify, control, and view reservations.

mschedctl Modify, control, and view scheduler behavior.

mshow View existing configuration and predicted resource availability.

showstats View all scheduler and credential statistics.

releaseres Release all reservations (This command is deprecated. Use mrsvctl -r instead).

25.0 Appendices

Service Description

runjob Immediately execute any job (see mjobctl -x).

setqos Set QoS on any job (This command is deprecated. Use mjobctl -m instead).

setres Create any reservation (This command is deprecated. Use mrsvctl -c instead).

setspri Set system priority on any job (This command is deprecated. Use mjobctl -p instead).

showconfig Show all scheduler configuration parameters (This command is deprecated. Use mschedctl -l
instead).

showres Show detailed information for any reservation.

showstate Show detailed information for all jobs, including their locations, and display job error messages, if
any.

Account and Class/Queue Admins

While the ADMINCFG parameter allows organizations to provide controlled access to scheduling objects,
it does not allow for distribution along organizational boundaries. For example, a site may set up a level
3 administrator to be able to view statistics, diagnose jobs, and modify job priorities; it does not provide
a way to differentiate one type of job from another. If a site administrator wanted to allow control based
on the queue or account associated with a job, they would best accomplish this using the credential
MANAGERS attribute.

A credential manager allows a user to be trusted to administer workload and policies for an associated
subgroup of jobs. For example, in the configuration below, a number of queue and account managers are
configured.

CLASSCFG[orion] MANAGERS=johns
CLASSCFG[xray] MANAGERS=steve2
CLASSCFG[gamma] MANAGERS=steve2,jpw
ACCOUNTCFG[bio] MANAGERS=charles

By default, the specified managers can do anything to a job that the actual job owner could do. By
default, this would include the ability to view cumulative and per job statistics, see job details, modify
job priorities and holds, cancel and preempt jobs, and otherwise adjust policies and constraints within
the associated credential.

Authentication (Interface Security)
Moab supports password-challenge, DES, HMAC, and MD5 based authentication. Authentication protocols
may be specified on a per interface basis allowing independent realms of trust with per realm secret
keys and even per realm authentication protocols.

25.0 Appendices

974 Appendix E: Security

Appendix E: Security 975

Mauth Authentication

Mauth is a tool provided with Moab that provides client authentication services. With mauth enabled,
each client request is packaged with the client ID, a timestamp, and an encrypted key of the entire
request generated using the shared secret key.

This tool is enabled by providing a secret key. A random key is selected when the Moab ./configure
script is run and may be regenerated at any time by rerunning ./configure and rebuilding Moab. If
desired, this random key may be overridden by specifying a new key in the protected .moab.key file as
in the example below:

Moab must be shut down before setting a new secret key. Use the service moab stop or
mschedctl -k commands to shut down Moab.

> vi /opt/moab/etc/.moab.key
(insert key)
> cat /opt/moab/etc/.moab.key
XXXXXXXX
secure file by setting owner read-only permissions
> chmod 400 /opt/moab/etc/.moab.key
verify file is owned by root and permissions allow only root to read file
> ls -l /opt/moab/etc.moab.key
-r-------- 1 root root 15 2007-04-05 03:47 /opt/moab/etc/.moab.key

All directories in the path containing .moab.key must be owned by the root or primary Moab
user It must not be writable by "other" in its permissions.

If .moab.key is used, this protected file will need to be on each host that is authorized to run
Moab client commands.

By default, this file will be owned by the user root and its contents will be read by the mauth tool
which provides client authorization services. If desired, the ownership of this file can be changed
so long as this file is readable by the Moab server and the mauth tool. This can be accomplished if
the Moab primary administrator, the owner of mauth, and the owner of .moab.key are the same.

By default, it is up to the individual cluster administrators to determine whether to use the
.moab.key file. For sites with source code, the use of .moab.key can be mandated by using
./configure --with-keyfile.

By default, mauth is located in the install bin directory. If an alternate name or alternate file
location is desired, this can be specified by setting the AUTHCMD attribute of the CLIENTCFG
parameter within the moab.cfg file as in the following example.

CLIENTCFG AUTHCMD=/opt/sbin/mauth

25.0 Appendices

Configuring Peer-Specific Secret Keys

Peer-specific secret keys can be specified using the CLIENTCFG parameter. This key information must be
kept secret and consequently can only be specified in the moab-private.cfg file. With regard to
security, there are two key attributes that can be set. (Other resource managers or clients such as Moab
Accounting Manager or a SLURM/Wiki interface can also use the attributes to configure their
authentication algorithms. The default, unless otherwise stated, is always DES. These attributes are
listed in the table below:

AUTH

Format one of ADMIN1, ADMIN2, or ADMIN3

Default ---

Description Specifies the level of control/information available to requests coming from this source/peer.

Example CLIENTCFG[RM:clusterB] AUTH=admin1 KEY=14335443

AUTHTYPE

Format one of DES,HMAC,HMAC64, or MD5.

Default DES

Description Specifies the encryption algorithm to use when generating the message checksum.

Example CLIENTCFG[AM:mam] AUTHTYPE=HMAC64

HOST

Format <STRING >

Default ---

Description Specifies the host name of the remote peer. Peer requests coming from this host will be authen-
ticated using the specified mechanism. This parameter is optional.

Example CLIENTCFG[RM:clusterA] HOST=orx.pb13.com KEY=banana6

25.0 Appendices

976 Appendix E: Security

Appendix E: Security 977

KEY

Format <STRING >

Default ---

Description Specifies the shared secret key to be used to generate the message checksum.

Example CLIENTCFG[RM:clusterA] KEY=banana6

The CLIENTCFG parameter takes a string index indicating which peer service will use the specified
attributes. In most cases, this string is simply the defined name of the peer service. However, for the
special cases of resource and allocation managers, the peer name should be prepended with the prefix
RM: or AM: respectively, as in CLIENTCFG[AM:mam] or CLIENTCFG[RM:devcluster].

The first character of any secret key can be viewed by trusted administrators using specific
diagnostic commands to analyze Moab interfaces. If needed, increase the length of the secret keys
to maintain the desired security level.

Munge Authentication

Moab also integrates with MUNGE, an open source authentication service created by Lawrence
Livermore National Laboratory (http://home.gna.org/munge/). MUNGE works with Moab to authenticate
user credentials being passed between the Moab client and the Moab server or from Moab server to
Moab server.

To set up MUNGE in a cluster, download and install MUNGE on every node in the cluster by following the
installation steps found at http://home.gna.org/munge/. The MUNGE secret key must reside on each
node in the cluster. Before starting the Moab daemon, the MUNGE daemon must be running on all nodes.

To enable Moab to use MUNGE for authentication purposes, specify the MUNGE executable path in the
moab.cfg file using CLIENTCFG and AUTHCMD as in the following example. The MUNGE executable path
must reside in each client's moab.cfg file as well.

CLIENTCFG AUTHCMD=/usr/bin/munge

Moab requires that the MUNGE and UNMUNGE executable names be "munge" and "unmunge"
respectively. It also assumes that the UNMUNGE executable resides in the same directory as the
MUNGE executable.

ConfiguringMunge Command Options

Moab also integrates with MUNGE command line options. For example, to set up Moab to use a specific
socket that was created when the MUNGE daemon was started, use CLIENTCFG and AUTHCMDOPTIONS to
specify the newly created socket. The AUTHCMDOPTIONS attribute, like AUTHCMD, must also reside in
the client's moab.cfg file.

25.0 Appendices

http://home.gna.org/munge/

CLIENTCFG AUTHCMD=/usr/bin/munge
CLIENTCFG AUTHCMDOPTIONS="-S /var/run/munge/munge.socket.2"

Server Response Control

If a request is received that is corrupt or cannot be authenticated, Moab will report some limited
information to the client indicating the source of the failure, such as "bad key," "malformed header," and
so forth. In the case of highly secure environments, or to minimize the impact of sniffing or denial of
service attacks, Moab can be configured to simply drop invalid requests. This is accomplished by adding
the DROPBADREQUEST attribute to the CLIENTCFG parameter in the moab-private.cfg file as in the
following example:

CLIENTCFG[DEFAULT] DROPBADREQUEST=TRUE

Interface Development Notes

Sample checksum generation algorithm code can be found in the Socket Protocol Description document.

Host Security for Compute Resources
Host level security can vary widely from one site to another with everything from pure on-your-honor
based clusters to complete encrypted VLAN based network security and government approved per job
scrubbing procedures being used. The following documentation describes some best practices in use
throughout the industry.

Minimal Host Security Enforcement

For minimal host security, no additional configuration is required.

Medium Host Security Enforcement

l Login Access

o PAM — Enable/disable access by modifying /etc/security/access.conf.

l Processes

o Kill all processes associated with job user (dedicated).

o Kill all processes associated with job session (dedicated/shared). Use ps -ju <USER> or
ps -js <SESSID>.

l IPC (Inter-Process Communication)

o Remove shared memory, semaphores, and message queues (use ipcs/ipcrm).

o Remove named pipes.

l Network/Global File System Access

o Explicitly unmount user home and global file systems.

25.0 Appendices

978 Appendix E: Security

Appendix G: Integrating Other Resources with Moab 979

l Local Temporary File Systems

o Where possible, mount local file systems read-only.

o Clear /tmp, /scratch and other publicly available local file systems.

o Remove user files with shred; shred is a Linux command that first overwrites files
completely before removing them, preventing remnant data from surviving on the hard
drive.

Strict Host Security Enforcement

l VLAN creation

l Host rebuild

o U.S Dept of Energy Disk/File Sanitization (SCRUB)

o U.S Dept of Defense Scrubbing Software (DOD-5520)

Moab Access Portal Security Overview
The Moab Access Portal (MAP) security model is composed of several different components. First, users
will use a Web browser to log in and interact with the Web server running MAP. This communication can
be encrypted using industry standard SSL to protect usernames/passwords and other sensitive
information that may be accessed by the user. (Instructions on how to set up SSL connections with
popular Web servers and servlet engines are readily available on the Internet. A guide for setting up SSL
with Apache is available in the MAP documentation.)

When a user logs in via their Web browser, the JSP interface passes this request to a back-end Java
infrastructure that then uses an encrypted SSH connection to authenticate the user's credentials at the
cluster head node. After the credentials are authenticated and the SSH connection established, further
communication between MAP and the cluster head node occurs over the encrypted SSH connection. These
three components provide an end-to-end security solution for Web-based job submission and workload
management.

Appendix G: Integrating Other Resources with Moab
Moab can interface with most popular resource managers, many cluster services, and numerous general
protocols. The following links provide additional information.

Compute Resource Managers

l TORQUE - Integration Guide, TORQUE documentation

l SLURM - Integration Guide, http://www.llnl.gov/linux/slurm

l WIKI - WIKI Integration Guide

l Cray XT/TORQUE - Integration Guide (html, pdf), http://www.cray.com

25.0 Appendices

http://www.doecirc.energy.gov/documents/CIRC-2325-Sanitizing-Disks.pdf
http://www.dss.mil/isp/fac_clear/download_nispom.html
http://www.adaptivecomputing.com/resources/docs/map/1.6tomcatinstall.php#ssl
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.llnl.gov/linux/slurm
http://www.adaptivecomputing.com/resources/docs/mwm/pdf/xtinstall.pdf
http://www.cray.com/

Provisioning Resource Managers

l xCAT - Validating an xCAT Installation for Use with Moab

Hardware Integration

l NUMA - Integration Guide

Compute Resource Managers
l Moab-TORQUE Integration Guide on page 980

l Moab-SLURM Integration Guide on page 984

l Installation Notes for Moab and TORQUE for Cray on page 988

Moab-TORQUE Integration Guide
l Overview

l Integration Steps

o Install TORQUE

o Install Moab

o Configure TORQUE

o TORQUE/Moab Considerations

l Current Limitations

l Troubleshooting

Install TORQUE
l Install TORQUE

Keep track of the PBS target directory, $PBSTARGDIR

Install Moab
l Untar the Moab distribution file.

l Change the directory to the moab-<version> directory.

l Run ./configure.

l Specify the PBS target directory ($PBSTARGDIR from step 2.1) when queried by ./configure.

Moab interfaces to PBS by utilizing a few PBS libraries and include files. If you have a non-standard PBS
installation, you may need to modify Makefile and change PBSIP and PBSLP values and references as
necessary for your local site configuration.

25.0 Appendices

980 Appendix G: Integrating Other Resources with Moab

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/1-installConfig/installing.htm

Appendix G: Integrating Other Resources with Moab 981

The ./configure script automatically sets up Moab so that the user running configure will become the
default Primary Moab Administrator ($MOABADMIN). This can be changed by modifying the ADMINCFG
[1] USERS=<USERNAME> line in the Moab configuration file (moab.cfg). The primary administrator is
the first user listed in the USERS attribute and is the ID under which the Moab daemon runs.

Some Tru64 and IRIX systems have a local libnet library that conflicts with PBS's libnet library. To
resolve this, try setting PBSLIB to '${PBSLIBDIR}/libnet.a -lpbs' in the Moab Makefile.

Moab is 64-bit compatible. If PBS/TORQUE is running in 64-bit mode, Moab likewise needs to be built in
this manner to use the PBS scheduling API (i.e., for IRIX compilers, add -64 to OSCCFLAGS and OSLDFLAGS
variables in the Makefile).

General Configuration for All Versions of TORQUE
l Make $MOABADMIN a PBS admin.

o By default, Moab only communicates with the pbs_server daemons and the $MOABADMIN
should be authorized to talk to this daemon (See suggestions for more information.).

l (OPTIONAL) Set default PBS queue, nodecount, and walltime attributes (See suggestions for more
information.).

l (OPTIONAL - TORQUE Only) Configure TORQUE to report completed job information by setting the
qmgrkeep_completed parameter:>

> qmgr -c 'set server keep_completed = 300'

PBS nodes can be configured as time shared or space shared according to local needs. In almost all
cases, space shared nodes provide the desired behavior.

PBS/TORQUE supports the concept of virtual nodes. Using this feature, Moab can individually
schedule processors on SMP nodes. The online TORQUE documentation describes how to set up the
$PBS_HOME/server_priv/nodes file to enable this capability. (For example, <NODENAME>
np=<VIRTUAL NODE COUNT>)

Version-Specific Configuration for TORQUE
Do not start the pbs_sched daemon. This is the default scheduler for TORQUE; Moab provides this
service.

Moab uses PBS's scheduling port to obtain real-time event information from PBS regarding job and
node transitions. Leaving the default qmgr setting of set server scheduling=True allows Moab to
receive and process this real-time information.

Configure Moab
By default, Moab automatically interfaces with TORQUE/PBS when it is installed. Consequently, in most
cases, the following steps are not required:

25.0 Appendices

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm

l Specify PBS as the primary resource manager by setting RMCFG[base] TYPE=PBS in the Moab
configuration file (moab.cfg).

If a non-standard PBS installation/configuration is being used, additional Moab parameters may be
required to enable the Moab/PBS interface as in the line RMCFG[base] HOST=$PBSSERVERHOST
PORT=$PBSSERVERPORT. See the Resource Manager Overview for more information.

Moab's user interface port is set using the SCHEDCFG parameter and is used for user-scheduler
communication. This port must be different from the PBS scheduler port used for resource
manager-scheduler communication.

TORQUE/Moab Considerations
The default meaning of a node for TORQUE and Moab are not the same. By default, a node is a host in
TORQUE. The node may have one or more execution slots (procs) allocated to it in the $TORQUE_
HOME/server_priv/nodes file. However, the number of nodes recognized by TORQUE is equivalent to the
number of node entries in the $TORQUE_HOME/server_priv/nodes file. A node specification from
qsub such as -1 nodes=2:ppn=2 will direct TORQUE to allocate to execution slots on two separate
nodes.

Moab is more liberal in its interpretations of a node. To Moab, the qsub request above would be
interpreted to mean allocate four tasks with at least two tasks on a node. Where TORQUE would require
two nodes for the request, Moab will place all four tasks on the name node (host) if four execution slots
are available.

If a cluster has four nodes with eight processors each, TORQUE still sees only four nodes. Moab sees 32
nodes. However, if a user made a qsub request with -1 nodes=10, TORQUE would reject the request
because there are only four nodes available. To enable TORQUE to accommodate Moab's more liberal
node interpretation, the server parameter available_resources.nodect can be set as a server parameter
in TORQUE. The value of available_resources.nodect should equal at least the number of execution slots
in the cluster.

For our example, cluster available_resources.nodect should be 32. With this parameter set, the user can
now make a request such as -1 nodes=8:ppn=2. In this example, the user is still limited to a
maximum node request of 32.

With available_resources.nodect set in TORQUE, Moab can be directed to honor the default TORQUE
behavior by setting JOBNODEMATCHPOLICY to EXACTNODE.

PBS Features Not Supported by Moab

Moab supports basic scheduling of all PBS node specifications.

Moab Features Not Supported by PBS

PBS does not support the concept of a job QoS or other extended scheduling features by default. This can
be handled using the techniques described in the PBS Resource Manager Extensions section. See the
Resource Manager Extensions Overview for more information.

25.0 Appendices

982 Appendix G: Integrating Other Resources with Moab

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/1-installConfig/serverNodeFileConfig.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/1-installConfig/serverNodeFileConfig.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/4-serverPolicies/queueConfig.htm

Appendix G: Integrating Other Resources with Moab 983

Troubleshooting
On TRU64 systems, the PBS libpbs library does not properly export a number of symbols required by
Moab. This can be worked around by modifying the Moab Makefile to link the PBS rm.o object file
directly into Moab.

TORQUE/PBS Integration Guide - RM Access Control

Server Configuration
Using the PBS qmgr command, add the Moab administrator as both a manager and operator.

> qmgr
Qmgr: set server managers += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: set server operators += <MOABADMIN>@*.<YOURDOMAIN>
Qmgr: quit

For example:

> qmgr
Qmgr: set server managers += staff@*.ucsd.edu
Qmgr: set operators += staff@*.ucsd.edu
Qmgr: quit

If desired, the Moab administrator can be enabled as a manager and operator only on the host on
which Moab is running by replacing "*.<YOURDOMAIN>" with "<MOABSERVERHOSTNAME>".

Mom Configuration (optional)
If direct Moab to pbs_mom communication is required, the mom_priv/config file on each compute
node where pbs_mom runs should be set as in the following example:

$restricted *.<YOURDOMAIN>
$clienthost <MOABSERVERHOSTNAME>

For security purposes, sites may want to run Moab under a non-root user id. If so, and Moab-pbs_
mom communication is required, the mom_priv/config files must be world-readable and contain
the line '$restricted *.<YOURDOMAIN>'. (i.e., '$restricted *.uconn.edu')

TORQUE/PBS Config - Default Queue Settings

Default Queue
To set the default queue (the queue used by jobs if a queue is not explicitly specified by the user), issue
the following:

>> qmgr
Qmgr: set system default_queue = <QUEUENAME>
Qmgr: quit

25.0 Appendices

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/commands/qmgr.htm

Queue Default Node andWalltime Attributes
To set a default of one node and 15 minutes of walltime for a particular queue, issue the following:

> qmgr
Qmgr: set queue <QUEUENAME> resources_default.nodect = 1
Qmgr: set queue <QUEUENAME> resources_default.walltime = 00:15:00
Qmgr: quit

Default SystemWide Node andWalltime Attributes
To set system wide defaults, set the following:

> qmgr
Qmgr: set server resources_default.nodect = 1
Qmgr: set server resources_default.walltime = 00:15:00
Qmgr: quit

Moab-SLURM Integration Guide
l Overview

l SLURM Configuration Steps

l Moab Configuration Steps

o Configuration for Standby and Expedite

o Configuration for the Quadrics Switch

o Authentication

o Queue/Class Support

o Policies

o Moab Queue and RM Emulation

o SLURM High Availability

Overview
Moab can be used as the scheduler for the SLURM resource manager. In this configuration, the SLURM
handles the job queue and the compute resources while Moab determines when, where and how jobs
should be executed according to current cluster state and site mission objectives.

The documentation below describes how to configure Moab to interface with SLURM.

For Moab-SLURM integration, Moab 6.0 or higher and SLURM 2.2 or higher are recommended.
From the downloads page, the generic version is needed to install SLURM.

SLURM Configuration Steps
To configure SLURM to utilize Moab as the scheduler, the SchedulerType parameters must be set in the
slurm.conf config file located in the SLURM etc directory (/usr/local/etc by default)

25.0 Appendices

984 Appendix G: Integrating Other Resources with Moab

http://www.llnl.gov/linux/slurm
https://www.adaptivecomputing.com/myaccount/login.php?url=/resources/downloads/index.php?#moab

Appendix G: Integrating Other Resources with Moab 985

slurm.conf
SchedulerType=sched/wiki2

The SchedulerType parameter controls the communication protocol used between Moab and SLURM.
This interface can be customized using the wiki.conf configuration file located in the same directory and
further documented in the SLURM Admin Manual.

Note: To allow sharing of nodes, the SLURM partition should be configured with 'Shared=yes' attribute.

Moab Configuration Steps
By default, Moab is built with WIKI interface support (which is used to interface with SLURM) when
running the standard configure and make process.

To configure Moab to use SLURM, the parameter 'RMCFG' should be set to use the WIKI:SLURM protocol
as in the example below.

moab.cfg

SCHEDCFG[base] MODE=NORMAL
RMCFG[base] TYPE=WIKI:SLURM
...

Note: The RMCFG index (set to base in the example above) can be any value chosen by the site. Also, if
SLURM is running on a node other than the one on which Moab is running, then the SERVER attribute of
the RMCFG parameter should be set.

Note: SLURM possesses a SchedulerPort parameter which is used to communicate with the scheduler.
Moab will auto-detect this port and communicate with SLURM automatically with no explicit
configuration required. Do NOT set Moab's SCHEDCFG[] PORT attribute to this value, this port controls
Moab client communication and setting it to match the SchedulerPort value will cause conflicts. With no
changes, the default configuration will work fine.

Note: If the SLURM client commands/executables are not available on the machine running Moab, SLURM
partition and other certain configuration information will not be automatically imported from SLURM,
thereby requiring a manual setup of this information in Moab. In addition, the SLURM VERSION should be
set as an attribute on the RMCFG parameter. If it is not set, the default is version 1.2.0. The following
example shows how to set this line if SLURM v1.1.24 is running on a host named Node01 (set using the
SERVER attribute).

moab.cfg with SLURM on Host Node01

RMCFG[base] TYPE=WIKI:SLURM SERVER=Node01 VERSION=10124
...

Configuration for Standby and Expedite Support

SLURM's 'Standby' and 'Expedite' options are mapped to the Moab QoS feature. By default, when a SLURM
interface is detected, Moab will automatically create a 'standby' and an 'expedite' QoS. By default, the
'standby' QoS will be globally accessible to all users and on all nodes and will have a lower than normal
priority. Also by default, the 'expedite' QoS will not be accessible by any user, will have no node
constraints, and will have a higher than normal priority.

25.0 Appendices

http://www.llnl.gov/linux/slurm/moab.html#wiki.conf
http://www.llnl.gov/linux/slurm/moab.html

Authorizing Users to Use 'Expedite'

To allow users to request 'expedite' jobs, the user will need to be added to the 'expedite' QoS. This can
be accomplished using the MEMBERULIST attribute as in the following example:

MEMBERULIST

allow josh, steve, and user c1443 to submit 'expedite' jobs
QOSCFG[expedite] MEMBERULIST=josh,steve,c1443
...

Excluding Nodes for 'Expedite' and 'Standby' Usage

Both 'expedite' and 'standby' jobs can be independently excluded from certain nodes by creating a QoS-
based standing reservation.

Specifically, this is accomplished by creating a reservation with a logical-not QoS ACL and a host list
indicating which nodes are to be exempted as in the following example:

MEMBERULIST

block expedite jobs from reserved nodes
SRCFG[expedite-blocker] QOSLIST=!expedite
SRCFG[expedite-blocker] HOSTLIST=c001[3-7],c200
SRCFG[expedite-blocker] PERIOD=INFINITY

block standby jobs from rack 13
SRCFG[standby-blocker] QOSLIST=!standby
SRCFG[standby-blocker] HOSTLIST=R:r13-[0-13]
SRCFG[standby-blocker] PERIOD=INFINITY
...

Quadrics Integration

If managing a cluster with a Quadrics high speed network, significant performance improvement can be
obtained by instructing Moab to allocate contiguous collections of nodes. This can be accomplished by
setting the NODEALLOCATIONPOLICY parameter to CONTIGUOUS as in the example below:

moab.cfg

SCHEDCFG[cluster1] MODE=NORMAL SERVER=head.cluster1.org
RMCFG[slurm] TYPE=wiki:slurm
NODEALLOCATIONPOLICY CONTIGUOUS
...

Setting Up Authentication

By default, Moab will not require server authentication. However, if SLURM's wiki.conf file (default
location is /usr/local/etc) contains the AuthKey parameter or a secret key is specified via SLURM's
configure using the --with-key option, Moab must be configured to honor this setting. Moab
configuration is specified by setting the resource manager AUTHTYPE attribute to CHECKSUM and the
KEY value in the moab-private.cfg file to the secret key as in the example below.

/usr/local/etc/wiki.conf

AuthKey=4322953

25.0 Appendices

986 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 987

...

moab.cfg

RMCFG[slurm] TYPE=wiki:slurm AUTHTYPE=CHECKSUM
...

moab-private.cfg

CLIENTCFG[RM:slurm] KEY=4322953
...

Note: For the CHECKSUM authorization method, the key value specified in the moab-private.cfg
file must be a decimal, octal, or hexadecimal value, it cannot be an arbitrary non-numeric string.

Queue/Class Support

While SLURM supports the concept of classes and queues, Moab provides a flexible alternative queue
interface system. In most cases, sites can create and manage queues by defining partitions within
SLURM. Internally, these SLURM partitions are mapped to Moab classes which can then be managed and
configured using Moab's CLASSCFG parameter and mdiag -c command.

Policies

By default, SLURM systems only allow tasks from a single job to utilize the resources of a compute node.
Consequently, when a SLURM interface is detected, Moab will automatically set the NODEACCESSPOLICY
parameter to SINGLEJOB. To allow node sharing, the SLURM partition attribute 'Shared' should be set
to FORCE in the slurm.conf as in the example below:

slurm.conf

PartitionName=batch Nodes=node[1-64] Default=YES MaxTime=INFINITE State=UP
Shared=FORCE

Moab Queue and RM Emulation

With a SLURM system, jobs can be submitted either to SLURM or to Moab. If submitted to SLURM, the
standard SLURM job submission language must be used. If jobs are submitted to Moab using the msub
command, then either LSF*, PBS, or Loadleveler* job submission syntax can be used. These jobs will be
translated by Moab and migrated to SLURM using its native job language.

SLURM High Availability

If SLURM high availability mode is enabled, Moab will automatically detect the presence of the SLURM
BackupController and utilize it if the primary fails. To verify SLURM is properly configured, issue the
SLURM command 'scontrol show config | grep Backup'. To verify Moab properly detects this information,
run 'mdiag -R -v | grep FallBack'.

Note: To use SLURM high availability, the SLURM parameter StateSaveLocation must point to a shared
directory which is readable and writable by both the primary and backup hosts. See the slurm.conf
man page for additional information.

25.0 Appendices

Related topics

l SLURM Admin Manual
l SLURM's Moab Integration Guide
l Additional SLURM Documentation
l Wiki Overview

Installation Notes for Moab and TORQUE for Cray
Copyright © 2012 Adaptive Computing Enterprises, Inc.

This document provides information on the steps to install Moab 7.2.0 and TORQUE 4.1.0 on a Cray XT
system.

Overview
Moab and TORQUE can be used to manage the batch system for Cray. This document describes how to
configure Moab and TORQUE to bring Moab's unmatched scheduling capabilities to the Cray.

New to TORQUE 4.1, TORQUE now handles all communication with ALPS, specifically the pbs_mom.
Previously, communication with ALPS was handled by a combination of Moab, scripts and TORQUE. In the
new model, Moab treats TORQUE as a regular TORQUE cluster without any special configuration.
TORQUE now uses an extra MOM called the alps_reporter MOM to communicate with ALPS regarding
configured and available resources. From the information reported by the alps_reporter mom, TORQUE
creates a virtual node for each Cray compute node. Previously, TORQUE only reported the login nodes.

Note: For clarity this document assumes that your SDB node is mounting a persistent /var file system
from the bootnode. If you have chosen not to use persistent /var file systems please be aware that the
instructions below would have to be modified for your situation.

Upgrade Notes
When upgrading to TORQUE 4.1.0 and using the new Cray model as described in this document, there
should be no running jobs. Jobs may be queued but not running.

Torque Installation Notes

Perform the following steps from the boot node as root:

Many of the following examples reflect a specific setup and must be modified to fit your unique
configuration.

Download the latest TORQUE release.

Download the latest TORQUE release.

Example 1. Download TORQUE

cd /rr/current/software
wget http://www.adaptivecomputing.com/resources/downloads/torque/torque-4.1.0.tar.gz

25.0 Appendices

988 Appendix G: Integrating Other Resources with Moab

http://www.llnl.gov/linux/slurm/quickstart_admin.html
http://www.llnl.gov/linux/slurm/moab.html
http://www.llnl.gov/linux/slurm/documentation.html
http://www.adaptivecomputing.com/support/download-center/torque-download/

Appendix G: Integrating Other Resources with Moab 989

Unpack the TORQUE tarball in an xtopview session

Using xtopview, unpack the TORQUE tarball into the software directory in the shared root.
Example 2. Unpack TORQUE

xtopview
default/:/ # cd /software
default/:/software # tar -zxvf torque-4.1.0.tar.gz

Configure TORQUE

While still in xtopview, run configure with the options set appropriately for your installation. Run
./configure --help to see a list of configure options. Adaptive Computing recommends installing the
TORQUE binaries into /opt/torque/$version and establishing a symbolic link to it from
/opt/torque/default. At a minimum, you will need to specify the host name where the TORQUE
server will run (--with-default-server) if it is different from the host it is being compiled on. The
TORQUE server has typically been on the SDB node of your Cray system.
Example 3. Run configure

default/:/software # cd torque-4.1.0
default/:/software/torque-4.1.0 # ./configure --prefix=/opt/torque/4.1.0 --with-
server-home=/var/spool/torque --with-default-server=sdb --enable-syslog --disable-gcc-
warnings --with-debug --with-modulefiles=/opt/modulefiles --with-job-create CFLAGS="-
DCRAY_MOAB_PASSTHRU"

Note: The --with-job-create is a change for TORQUE 2.5.9 onwards. This is not necessary on 2.4.16.
Sites running TORQUE 2.5.x should upgrade to 2.5.9 or later.

Note: The -DCRAY_MOAB_PASSTHRU option tells TORQUE to not validate the qsub -l nodes syntax. For
more information, see Submitting Jobs.

Compile and Install TORQUE

You must unload the current module:

module unload moab torque

As xtopview may also load the old version of Moab and TORQUE, it is good practice to unload and
load after the install so that you have the correct binary in your path.

While still in xtopview, compile and install TORQUE into the shared root. Create a link to the installed
TORQUE. Exit xtopview.
Example 4. Make and Make Install

default/:/software/torque-4.1.0 # make
default/:/software/torque-4.1.0 # make packages
default/:/software/torque-4.1.0 # make install
default/:/software/torque-4.1.0 # ln -sf /opt/torque/4.1.0/ /opt/torque/default
default/:/software/torque-4.1.0 # exit

After installing, run module list to see what versions you have. If the versions are incorrect, unload
and load to confirm you are using the correct versions.

Copy your TORQUE server directory to your moab server host

25.0 Appendices

Example 5. On the boot node, copy the TORQUE home directory to the SDB node's persistent /var
file system (as exported from the bootnode). This example assumes that the SDB is NID 3 and that
you are installing it on the SDB. These instructions need to be modified if the Moab and TORQUE
servers are being installed on a different node.

cd /rr/current/var/spool
cp -pr torque /snv/3/var/spool

Set up pbs_server to be Cray compatible

1. Customize the nodes file located in <TORQUE HOME>/server_priv/nodes.

a. Identify the reporter MOM with the reserved feature alps_reporter.

sdb alps_reporter

We recommend that you set up the SDB node as the ALPS reporter. Setting the NP for this node
isn't important because this node will not appear in pbsnodes output and, therefore, will not be
scheduled to run jobs.

b. Identify all login nodes using the reserved feature alps_login.

login1 alps_login np=X <other features>
login2 alps_login np=Y <other features>
login3 alps_login np=Z <other features>
...

Identifying these moms as login nodes allows pbs_server to verify that each job has a login node as
its mother superior. It also tells pbs_server to place size=0 jobs on one of these login nodes.

2. Set up access and submit permissions from your login nodes.

$ qmgr -c 'set server acl_host_enable=true'
$ qmgr -c 'set server acl_hosts+=login1'
$ qmgr -c 'set server acl_hosts+=login2'
$ qmgr -c 'set server acl_hosts+=login3'
$ qmgr -c 'set server submit_hosts+=login1'
$ qmgr -c 'set server submit_hosts+=login2'
$ qmgr -c 'set server submit_hosts+=login3'

3. Set some helpful server parameters.

$ qmgr -c 'set server scheduling = true'

This parameter tells pbs_server to notify Moab when pertinent events have happened. If this isn't set,
Moab will automatically set it on startup.

$ qmgr -c 'set server keep_completed = 300'

This tells TORQUE to keep information about completed jobs for 300 seconds (5 minutes) after they
have completed. You can customize this number to meet your site's needs.

4. Set the server attribute cray_enabled to True.

$ qmgr -c 'set server cray_enabled = true'

25.0 Appendices

990 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 991

After using qmgr to set this variable, you will need to restart so that when pbs_server parses the
nodes file, it will know it is Cray-enabled.

Install the pbs_server init.d script on the server (Optional)

TORQUE provides an init.d script for starting pbs_server as a service.
Example 6. Copy in init.d script

xtopview -n <sdb nid>
node/<sdb nid>:/ # cp /software/torque-4.1.0/contrib/init.d/suse.pbs_server
/etc/init.d
node/<sdb nid>:/ # chmod +x /etc/init.d/pbs_server
node/<sdb nid>:/ # chkconfig --add pbs_server

Edit the init.d file as necessary -- i.e., change PBS_DAEMON and PBS_HOME as appropriate.

vi /etc/init.d/pbs_server
PBS_DAEMON=/opt/torque/default/sbin/pbs_server PBS_HOME=/var/spool/torque

Install the pbs_mom init.d script on the login nodes (Optional)

TORQUE provides an init.d script for starting pbs_mom as a service.
Example 7. Copy in init.d script

xtopview
default/:/ # cp /software/torque-4.1.0/contrib/init.d/suse.pbs_mom /etc/init.d
default/:/ # chmod +x /etc/init.d/pbs_mom
default/:/ # chkconfig --add pbs_mom

Edit the init.d file as necessary -- i.e. change PBS_DAEMON and PBS_HOME as appropriate, retain core
files, etc.

vi /etc/init.d/pbs_mom
PBS_DAEMON=/opt/torque/default/sbin/pbs_mom PBS_HOME=/var/spool/torque

Uncomment the following line to retain core dump files:

ulimit -c unlimited # Uncomment this to preserve core files

Install the trqauthd init.d script on all TORQUE nodes and the SDB (Optional)

Torque provides an init.d script for starting trqauthd as a service.

Example 8. Copy in init.d script

xtopview
default/:/ # cp /software/torque-4.1.0/contrib/init.d/suse.trqauthd /etc/init.d
default/:/ # chmod +x /etc/init.d/trqauthd
default/:/ # chkconfig --add trqauthd

Edit the init.d file as necessary -- i.e. change PBS_DAEMON and PBS_HOME as appropriate.

vi /etc/init.d/trqauthd
PBS_DAEMON=/opt/torque/default/sbin/trqauthd PBS_HOME=/var/spool/torque

25.0 Appendices

Stage outMOM dirs to login nodes

Stage out the MOM dirs and client server info on all login nodes. This example assumes you are using a
persistent /var file systems mounted from /snv on the boot node. Alternatively, a ram var file system
must be populated by a skeleton tarball on the bootnode (/rr/current/.shared/var-skel.tgz)
into which these files must be added. The example below assumes that you have 3 login nodes with nids
of 4, 64 and 68. Place the host name of the SDB node in the server_name file.

Example 9. Copy out MOM dirs and client server info

cd /rr/current/software/torque-4.1.0/tpackages/mom/var/spool
for i in 4 64 68: \

do cp -pr torque /snv/$i/var/spool; \
echo sdb > /snv/$i/var/spool/torque/server_name; \
done

Note: It is possible that the host name for the SDB node is not set to SDB on your system. Run ssh sdb
hostname to determine the host name in use. If the command returns, for example, sdb-p1, modify the
"for loop" above to echo sdb-p1 into the server_name file.

Update the TORQUE MOM config file for the ALPS reporter mom

In the above steps, we identified the ALPS reporter MOM on the pbs_server. We now need to configure
the MOM to be the ALPS reporter mom. The ALPS reporter MOM is installed on the SDB. To configure
the ALPS reporter mom, set the following in the pbs_mom config file on the SDB:

vi var/spool/torque/mom_priv/config
$reporter_mom true # defaults to false

You may also wish to set these variables:

$apbasil_path <path_to_apbasil> # defaults to /usr/bin/apbasil if not set
$apbasil_protocol <protocol> # defaults to 1.0 if not set

As of CLE 5.0, apbasil is in the /opt/cray/alps/default/bin/apbasil directory, not
/usr/bin/apbasil. Supported apbasil protocols are 1.0, 1.1, and 1.2.

Cray systems do not support GPUs until ALPS version 1.2. Setting $apbasil_protocol 1.2 in
mom_priv/config causes the GPU status to appear in the pbsnodes output.

Update the TORQUE MOM config file on each login node

Login nodes are service nodes running pbs_moms which are used for submission and launching of job
scripts. Login nodes are responsible for creating and confirming ALPS reservations so that the script
launched on a login node can access the compute nodes with the aprun command.

Edit the MOM config file so job output is copied to locally mounted directories.
Example 10. Edit the MOM config file

vi var/spool/torque/mom_priv/config

$usecp *:/home/users /home/users

25.0 Appendices

992 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 993

$usecp *:/scratch /scratch

$login_node true

$login_node specifies that this node will create and confirm ALPS reservations.

Note: It may be acceptable to use a $usecp *:/ / in place of the sample above. Consult with the site.

You may also wish to set these variables:

$apbasil_path <path_to_apbasil> # defaults to /usr/bin/apbasil if not set
$apbasil_protocol <protocol> # defaults to 1.0 if not set

As of CLE 5.0, apbasil is in the /opt/cray/alps/default/bin/apbasil directory, not
/usr/bin/apbasil. Supported apbasil protocols are 1.0, 1.1, and 1.2.

Start up the TORQUE MOM Daemons

On the boot node as root:
Example 11. Start up the pbs_moms on the login nodes.

pdsh -w sdb,login[1-3] /opt/torque/default/sbin/pbs_mom
pdsh -w login[1-3] trqauthd

Alternatively, if you installed the init.d script, you may run:

pdsh -w sdb,login[1-3] /sbin/service pbs_mom start
pdsh -w login[1-3] service trqauthd start

Startup the TORQUE Server

On the TORQUE server host as root:
Example 12. Start pbs_server

/opt/torque/default/sbin/pbs_server
/opt/torque/default/sbin/trqauthd

Alternatively, if you installed the init.d script, you may run:

service pbs_server start
service trqauthd start

Moab Installation Notes
Perform the following steps from the boot node as root:

Download the latestMoab release

Download the latest Moab release from Adaptive Computing Enterprises, Inc.

The correct tarball to install is the plain Moab & TORQUE builds. The XT4 builds are for releases
prior to TORQUE 4.1.0 and MWM 7.2.0.

Example 13. Download Moab to the boot node

25.0 Appendices

http://www.adaptivecomputing.com/support/download-center/

cd /rr/current/software
wget --post-
data="username=<username>&password=<password>&submit=submit&url=/download/mwm/moab-
7.2.0-linux-x86_64-torque.tar.gz"
https://www.adaptivecomputing.com/myaccount/login.php;

Unpack the Moab tarball

Using xtopview, unpack the Moab tarball into the software directory in the shared root.
Example 14. Unpack Moab

xtopview
default/:/ # cd /software
default/:/software # tar -zxvf moab-7.2.0-linux-x86_64-torque.tar.gz

Configure Moab

While still in xtopview, run configure with the options set appropriately for your installation. Run
./configure —help to see a list of configure options. Adaptive Computing recommends installing the Moab
binaries into /opt/moab/$version and establishing a symbolic link to it from /opt/moab/default.
Since the Moab home directory must be read-write by root, Adaptive Computing recommends you specify
the homedir in a location such as /var/spool/moab.
Example 15. Run configure

default/:/software # cd moab-7.2.0
default/:/software/moab-7.2.0 # ./configure --prefix=/opt/moab/7.0.1 --with-
homedir=/var/spool/moab --with-torque=/opt/torque/default --with-
modulefiles=/opt/modulefiles

Install Moab

While still in xtopview, install Moab into the shared root. You may also need to link
/opt/moab/default to this installation.
Example 16. Make Install

default/:/software/moab-7.2.0 # make install
default/:/software/moab-7.2.0 # ln -sf /opt/moab/7.0.1/ /opt/moab/default

Customize the Moab configuration file for yourMoab server host

The moab.cfg file should be customized for your scheduling environment. We will use
/rr/current/var/spool/moab as a temporary staging area before copying them out to their final
destinations. See the Moab Admin Guide for more details about Moab configuration parameters.
Example 17. Edit the Moab configuration file

cd /rr/current/var/spool/moab
vi moab.cfg
SCHEDCFG[moab] SERVER=sdb:42559
RMCFG[<clustername>] TYPE=TORQUE
NODEACCESSPOLICY SINGLEJOB
NODEALLOCATIONPOLICY PRIORITY
NODECFG[DEFAULT] PRIORITYF=-NODEINDEX

JOBMAXTASKCOUNT <total number of processors>
MAXNODE <total number of nodes>

25.0 Appendices

994 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 995

By default, ALPS reports the compute nodes in a serialized topology order. TORQUE preserves this
ordering by reporting a node_index on each compute node that represents the compute nodes' placement
in the ALPS topology ordering. This information is then used by Moab to allocate nodes close to each
other in the network. The downside to this is that the nodes can be become fragmented. The
NODEALLOCATIONPOLICYPRIORITY parameter used with NODECFG[DEFAULT] PRIORITYF=-NODEINDEX
tells Moab to allocate nodes based on the nodes' node_index reported by TORQUE beginning with the
first nodes in the list (-1 x node_index of 1).

It is also possible to use the same node indexes reported by TORQUE to allocate strict contiguous sets of
nodes. This is configured by specifying a NODEALLOCATIONPOLICY of CONTIGUOUS. In this mode, a job
won't run until it can get a strict set of contiguous nodes.

When Moab allocates nodes on the Cray it must only get compute nodes. The purpose of the login nodes
are to create and confirm ALPS reservations so that the job script can access the allocated compute
nodes. Moab shifts the responsibility of selecting a login node for the allocated compute nodes to
TORQUE. Because Moab doesn't allocate a login node with compute nodes, the login nodes must be kept
separate from other compute nodes so that Moab doesn't allocate login nodes and compute nodes for the
same job. This is accomplished by putting the login nodes in a separate partition. Moab does not allocate
jobs across partitions. By default, Moab creates a partition for each RMCFG with the name given in the
RMCFG parameter and sticks all the nodes reported by that resource manager in that partition.

With the login and compute nodes now separated, configure all jobs to request the compute partition by
default.

Place each login node in a separate partition called login. For example:

NODECFG[login1] Partition=login
NODECFG[login2] Partition=login
NODECFG[login3] Partition=login
NODECFG[login4] Partition=login

Configure all jobs submitted through msub to request the compute node partition by default.

CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=<clustername>

Configure all jobs submitted through qsub to request the compute node partition by default.

qmgr -c "set server resources_default.partition=<clustername>"

Login nodes can be requested to run jobs that don't require Cray compute nodes (for example, compute
jobs or data transfer jobs). These jobs can be submitted to the login partition (for example, qsub -l
partition=login).

Copy yourMoab home directory to yourMoab server host

In this example we assume the Moab server will be running on the SDB node. If you are installing Moab
with its server home in /var as in this example and assuming that your var file system is being served
from your boot node under /snv, you will need to login to SDB and determine the nid with cat
/proc/cray_xt/nid.
Example 18. Copy out Moab home directory. This example assumes that the SDB is NID 3.

cd /rr/current/var/spool
cp -pr moab /snv/3/var/spool

25.0 Appendices

Copy the Moab configuration file to all of the login nodes

The Moab configuration file (moab.cfg) must be copied out to the /var file system on the login nodes.
The essential parameters that must be in the moab.cfg on the login nodes are the SCHEDCFG line so
the clients can find the server and any client-specific parameters, such as the CLIENTCFG parameter.
Example 19. Copy out the configuration files.

cd /rr/current/var/spool/moab
for i in 4 64 68; do mkdir -p /snv/$i/var/spool/moab/etc /snv/$i/var/spool/moab/log;
cp moab.cfg /snv/$i/var/spool/moab; done

Install the Moab init.d script (Optional)

Moab provides an init.d script for starting Moab as a service. Using xtopview into the SDB node, copy
the init script into /etc/init.d.
Example 20. Copy in init.d script to the SDB node from the shared root.

xtopview -n <sdb nid>
node/<sdb nid>:/ # cp /software/moab/moab-7.2/contrib/init.d/moab_sles_init
/etc/init.d/moab
node/<sdb nid>:/ # chkconfig --add /etc/init.d/moab

Edit the init.d file as necessary -- i.e. retain core files, etc.

Uncomment the following line to retain core dump files

ulimit -c unlimited # Uncomment to preserve core files

Perform the following steps from the Moab server node (sdb) as root:

Set the proper environment

The MOABHOMEDIR environment variable must be set in your environment when starting Moab or using
Moab commands. If you are on a system with a large number of nodes (thousands), you will need to
increase your stack limit to unlimited. You will also want to adjust your path to include the Moab and
TORQUE bin and sbin directories. The proper environment can be established by loading the appropriate
Moab module, by sourcing properly edited login files, or by directly modifying your environment
variables.
Example 21. Loading the Moab module

module load moab

Example 22. Exporting the environment variables by hand (in bash)
Example 23. Setting the stack limit to unlimited

If you are running on a system with large numbers of nodes (thousands), you may need to increase the
stack size user limit to unlimited. This should be set in the shell from which Moab is launched. If you
start Moab via an init script, this should be set in the script, otherwise it would be recommended to put
this in the appropriate shell startup file for root.

ulimit -s unlimited

Startup the MoabWorkloadManager

Start up the Moab daemon.
Example 24. Start Moab

25.0 Appendices

996 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 997

/opt/moab/default/sbin/moab

Alternatively, if you installed the init.d script, you may run:

service moab start

Running Moab and PBS Server outside the Cray network

Previously, Moab and TORQUE had to be run inside the Cray network. With the new model, it is now
possible to run Moab and pbs_server outside of the Cray. This provides benefits of having Moab and pbs_
server on bigger hardware other than that provided in the service nodes and enables the use of Moab
and TORQUE's high-availability features. Also, jobs can be submitted and queued up if the Cray is down.
In order to set up Moab and TORQUE to run on an external node, pbs_server must be able to
communicate with the login nodes inside the Cray on ports 15002 and 15003 and the login nodes must be
able to communicate with the pbs_server on ports 15001.

[root@ext-server /]# telnet login1 15002
Trying XXX.XXX.XXX.XXX...
Connected to login1
Escape character is '^]'.

[root@ext-server /]# telnet login1 15003
Trying XXX.XXX.XXX.XXX...
Connected to login1
Escape character is '^]'.

[root@login1 /]# telnet ext-server 15001
Trying XXX.XXX.XXX.XXX...
Connected to ext-server
Escape character is '^]'.

System Reservations
System reservations can be done several ways. 1) Just compute nodes can be reserved leaving the login
nodes available for executing non-compute jobs.

SRCFG[PM] TASKCOUNT=7832
SRCFG[PM] HOSTLIST=!login
SRCFG[PM] PERIOD=DAY DAYS=TUE
SRCFG[PM] FLAGS=OWNERPREEMPT
SRCFG[PM] STARTTIME=8:00:00 ENDTIME=14:00:00
SRCFG[PM] JOBATTRLIST=PREEMPTEE
SRCFG[PM] TRIGGER=EType=start,
Offset=300,AType=internal,Action="rsv::modify:acl:jattr-=PREEMPTEE"
SRCFG[PM] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

2) Just the login nodes can be reserved leaving just the compute nodes available for execution and

SRCFG[PM] TASKCOUNT=192
SRCFG[PM] HOSTLIST=login
SRCFG[PM] PERIOD=DAY DAYS=TUE
SRCFG[PM] FLAGS=OWNERPREEMPT
SRCFG[PM] STARTTIME=8:00:00 ENDTIME=14:00:00
SRCFG[PM] JOBATTRLIST=PREEMPTEE

25.0 Appendices

SRCFG[PM] TRIGGER=EType=start,
Offset=300,AType=internal,Action="rsv::modify:acl:jattr-=PREEMPTEE"
SRCFG[PM] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

3) Reserving the whole system, preventing any kind of job from starting.

SRCFG[PM] HOSTLIST=ALL
SRCFG[PM] PERIOD=DAY DAYS=TUE
SRCFG[PM] FLAGS=OWNERPREEMPT
SRCFG[PM] STARTTIME=8:00:00 ENDTIME=14:00:00
SRCFG[PM] JOBATTRLIST=PREEMPTEE
SRCFG[PM] TRIGGER=EType=start,
Offset=300,AType=internal,Action="rsv::modify:acl:jattr-=PREEMPTEE"
SRCFG[PM] TRIGGER=EType=start,Offset=-60,AType=jobpreempt,Action="cancel"

Setting up the Cray for Use with External Nodes

This feature works with TORQUE 4.1.2 or later.

Set up the Cray as described previously. In Moab, do not place the login nodes in a separate partition.
Add the external nodes to the nodes file (<TORQUEHOME>/server_priv/nodes) with a feature named
external.

<hostname> np=X external

In pbsnodes or mdiag -n -v output the login nodes have the feature alps_login and the Cray compute
nodes have the cray_compute feature. These are automatically added by pbs_server.

To request a heterogeneous job:

> qsub job_script.sh -l nodes=X:cray_compute+Y:external

In the example above, Moab assigns X number of Cray compute nodes and Y number of external nodes
and passes the information appropriately to pbs_server.

To request a cray only job:

> qsub job.script.sh -l nodes=X:cray_compute

To request an external only job:

> qsub job_script.sh -l nodes=X:external

To request a login-only job (such as a job that compiles the code to be run on Cray compute nodes):

> qsub job_script.sh -l nodes=X:alps_login

In this setup, all job requests must request features for all jobs. If this doesn't happen, Moab might
try to schedule the login nodes for running a job or other issues might occur. This should be
enforced by setting defaults or by using a submit filter (see the Applying the msub Submit Filter
on page 218 section for more information)

25.0 Appendices

998 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 999

Writing job scripts for heterogeneous (Cray and external node) jobs
Once configured as above, the same job script is launched on the external nodes and on the Cray. In order
for this job to function properly, the job script must detect whether or not it is on the Cray, and then
execute the appropriate commands. We recommend that the script inspect the contents of $PBS_
NODEFILE. This file, whose path is contained in the variable $PBS_NODEFILE, contains a list of the host
names on which the job is executing, with one host name per line. The first line is the host name of the
node on which the script is executing. The script should simply read this line, decide if that is a node
external to or inside the Cray, and then execute appropriately.

Submitting Jobs
There are three different ways to submit jobs to the Cray. Each way works in its own way and shouldn't
be mixed with other methods.

l -l nodes=

l -l size=

l -l mpp*=

-l nodes= is the standard way of submitting jobs to Moab. It is the recommended way since this is the
most supported and standard way of submitting jobs among all types of systems run by Moab. One
benefit of the -l nodes= syntax is that you can submit multi-req jobs (ex., -l
nodes=2:ppn=3+3:ppn=2). When using the -l nodes= syntax, TORQUE should be compiled with the
-DCRAY_MOAB_PASSTHRU option. By default, -l nodes= requests the number of processors, not nodes.
If you want -l nodes= to request nodes, add JOBNODEMATCHPOLICY EXACTNODE to your moab.cfg.

-l size= was created to be a very simple interface for submitting to the Cray. It requests the number
of one-proc tasks to submit on the Cray. Customers that use this option usually have a submit filter that
verifies that the number of tasks requested is a multiple of the number of processors per node and
rejects the submission if it isn't.

-l mmp*= is standard among Cray systems, which is known among Moab/TORQUE and PBS-run systems.
Most of the mpp options have an equivalent -l nodes= option.

mppwidth

Format <INTEGER>

Default ---

Description Number of tasks.

Example qsub -l mppwidth=48

Requests 48 tasks of 1
processor each.

25.0 Appendices

mppwidth

Equivalent qsub -l nodes=4

mppnppn

Format <INTEGER>

Default ---

Description Number of tasks per node.

Example qsub -l mppwidth=48,mppnppn=8

Requests 48 tasks with 8
tasks per node.

Equivalent qsub -l nodes=48:ppn=8

mppdepth

Format <INTEGER>

Default ---

Description Number of processors per task.

Example qsub -l mppwidth=24,mppdepth=2,mppnppn=8

Requests 24 tasks with 2 processors per task with 8
tasks per node.

mpphost

Format <STRING>[:<STRING>]...

Default ---

25.0 Appendices

1000 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 1001

mpphost

Description Partition access list.

Example qsub -l mpphost=cray

Specifies that the job must run on the
cray partition.

Equivalent qsub -l partition=cray

mpparch

Format <STRING>

Default ---

Description Required architecture.

Example qsub -l mpparch=xt5

Specifies that the job must run on the xt5
architecture nodes.

Equivalent qsub -l arch=xt5

mppmem

Format <INTEGER>[kb|mb|gb]

Default ---

Description Dedicated memory per task in bytes.

Example qsub -l mppmem=200mb

Specifies that the job requires
200mb per task.

25.0 Appendices

mppmem

Equivalent qsub -l mem=200mb

mpplabels

Format <FEATURE>[:<FEATURE>]...

Default ---

Description Required list of node features.

Example qsub -l mpplabels=featureA:featureB

Specifies that the job should run on nodes that have both the featureA and
featureB features.

Equivalent qsub -l feature=featureA:featureB

mppnodes

Format '+' delimited list of host names

Default ---

Description Indicates an exact set, superset, or subset of nodes on which the job must run.

Use the caret (^) or asterisk (*) characters to specify a host list as superset or subset
respectively.

A subset means the specified host list is used first to select hosts for the job. If the job requires
more hosts than are in the host list, they will be obtained from elsewhere if possible. If the job
does not require all of the jobs in the host list, it will use only the ones it needs.
A superset means the host list is the only source of hosts that should be considered for running the
job. If the job can't find the necessary resources in the hosts in this list it should not run. No other
hosts should be considered in allocating the job.

Example qsub -l mppnodes=*512+513

Specifies that the job should use nodes 512 and 513.

25.0 Appendices

1002 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 1003

mppnodes

Equivalent qsub -l hostlist=*512+513

The mppnppn and mppwidth parameters work with CLASSCFG MIN.NODE and MAX.NODE to filter
classes based on how many nodes the job will use. The other parameters have not been tested.

Launching jobs from designated login nodes (Optional)
It is possible to direct a job to launch from a specific login node. This is done by assigning node features
to specific login nodes and requesting these features at submission time with the -W login_property
option. The login_property has no influence on which compute nodes are allocated to the job.

Example 25. Declaring MOM features

For example, if login2 had the himem feature, a job could request that its job launch from login2 rather
than login1.

vi /var/spool/torque/server-priv/nodes
login1 alps_login np=200
login2 alps_login np=200 himem

qsub -W login_property=himem

Setting upmsub
Point Moab to the qsub binary on the server where Moab is running (ex. sdb).

RMCFG[] SUBMITCMD=/opt/torque/default/bin/qsub

Setup Moab to schedule nodes when -l nodes is requested.

JOBNODEMATCHPOLICY EXACTNODE

Because Moab uses qsub to submit msub'd jobs, qsub must be configured to not validate the path of the
working directory on the sdb as they don't exist on the sdb. (ex. msub -d /users/jdoe/tmpdir). Add
VALIDATEPATHFALSE to the torque.cfg on the sdb.

As of TORQUE 2.4.11, the node count and the processors per node count can be obtained in the job's
environment by using $PBS_NUM_NODES and $PBS_NUM_PPN respectively. This aids in mapping the
requested nodes to aprun calls. For example, the general format for calling aprun within a job script is:
aprun -n $(($PBS_NUM_NODES * $PBS_NUM_PPN)) -N $PBS_NUM_PPN

Example submissions:

#PBS -l nodes=1:ppn=16
aprun -n 16 -N 16 hostname

#PBS -l nodes=20
aprun -n 20 hostname

25.0 Appendices

#PBS -l nodes=20:ppn=16
aprun -n 320 -N 16 hostname

#PBS -l nodes=2:ppn=16
#PBS -l hostlist=35+36
aprun -n 32 -N 16 hostname

#PBS -l procs=64
aprun -n 64 hostname

#run on login nodes only
#PBS -l procs=0

Interactive Jobs
By default, interactive jobs run from the login node that they are submitted from, which can be useful if
you need that node's particular features. This default behavior can be changed using the TORQUE server
parameter interactive_jobs_can_roam. When set to TRUE, this parameter allows interactive jobs to run
on login nodes other than the one where the jobs were submitted from. For an interactive job submitted
from a different node to run on it, a node must have the alps_login property set in the nodes file.

qmgr -c 'set server interactive_jobs_can_roam = True'

You can disable the behavior of interactive_jobs_can_roam = True for an individual interactive
job by submitting it with the option -W login_property=<nodeId>. The job will run on node
<nodeId> and will not roam.

Job Information
In TORQUE 4.1, Cray compute nodes are treated as TORQUE nodes. This also applies to job allocations.
For example, a job can know which nodes were allocated to the job by cat'ing $PBS_NODEFILE.

$ qsub -l -l size=64,walltime=5:00
qsub: waiting for job 3043.cray to start
qsub: job 3043.cray ready

$ cat $PBS_NODEFILE | wc -l
64
$ cat $PBS_NODEFILE | uniq
2876
2877

You can also view where your job is running by looking at exec_host in qsat -f output.

$ qstat -f 3043 | grep -A 7 exec_host
exec_host = 2876/31+2876/30+2876/29+2876/28+2876/27+2876/26+2876/25+2876/2
4+2876/23+2876/22+2876/21+2876/20+2876/19+2876/18+2876/17+2876/16+2876
/15+2876/14+2876/13+2876/12+2876/11+2876/10+2876/9+2876/8+2876/7+2876/
6+2876/5+2876/4+2876/3+2876/2+2876/1+2876/0+2877/31+2877/30+2877/29+28
77/28+2877/27+2877/26+2877/25+2877/24+2877/23+2877/22+2877/21+2877/20+
2877/19+2877/18+2877/17+2877/16+2877/15+2877/14+2877/13+2877/12+2877/1
1+2877/10+2877/9+2877/8+2877/7+2877/6+2877/5+2877/4+2877/3+2877/2+2877
/1+2877/0

25.0 Appendices

1004 Appendix G: Integrating Other Resources with Moab

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/serverParameters.htm%23interactive_jobs_can_roam

Appendix G: Integrating Other Resources with Moab 1005

The login node is not included in $PBS_NODEFILE or exec_host. It can be viewed through qstat -f on the
login_node_id field.

$ qstat -f 3043 | grep login_node_id
login_node_id = login6/0

pbsnodes will report the job running on compute nodes under jobs = field for compute nodes.

$ pbsnodes 2878
state = job-exclusive,busy
np = 32
ntype = cluster
jobs = 0/3043.cray, 1/3043.cray, 2/3043.cray, 3/3043.cray, 4/3043.cray, 5/3043.cray,
6/3043.cray, 7/3043.cray, 8/3043.cray, 9/3043.cray,
10/3043.cray, 11/3043.cray, 12/3043.cray, 13/3043.cray, 14/3043.cray, 15/3043.cray,
16/3043.cray, 17/3043.cray, 18/3043.cray, 19/3043.cray,
20/3043.cray, 21/3043.cray, 22/3043.cray, 23/3043.cray, 24/3043.cray, 25/3043.cray,
26/3043.cray, 27/3043.cray, 28/3043.cray, 29/3043.cray,
30/3043.cray, 31/3043.cray
status = rectime=1340836785,node_
index=2814,state=BUSY,totmem=33554432kb,CMEMORY=32768,APROC=0,CPROC=32,name=c1-
0c2s0n2,ARCH=XT
mom_service_port = 15002
mom_manager_port = 15003
gpus = 0

pbsnodes will not present Cray compute nodes on the login node's "jobs =" field but will for login only
jobs. Cray compute jobs can be seen in the "jobs=" attribute in the "status=" field.

$ pbsnodes login6
state = free
np =24
properties = fa,fb
ntype = cluster
jobs =
status =
rectime=1340836830,varattr=,jobs=3043.cray,state=free,netload=3044161434,gres=,loadave
=0.04,ncpus=6,physmem=

7934560kb,availmem=12820180kb,totmem=15934044kb,idletime=1754,nusers=3,nsessions=29,se
ssions=1506 1923 1179 2127 2163 2176
2187 2195 2262 2275 2308 5809 8123 8277 8675 9547 10515 10551 12769 32351 14430 14518
22380 24082 24321 24849 30918 32371
32718,uname=Linux cray 2.6.35-32-generic #67-Ubuntu SMP Mon Mar 5 19:39:49 UTC 2012
x86_64,opsys=linux
mom_service_port = 34001
mom_manager_port = 34002
gpus = 0

Provisioning Resource Managers
l Validating an xCAT Installation for Use with Moab on page 1006

25.0 Appendices

Validating an xCAT Installation for Use with Moab
l Introduction to Validating xCAT Configuration

l Verifying Node List

l Reporting Node Status

l Verifying Hardware Management Configuration

l Verifying Provisioning Images

l Verifying VM Migration
Introduction to Validating xCAT Configuration
This document describes a series of steps to validate xCAT configuration prior to configuring Moab to
manage hardware via xCAT. It is assumed the reader is familiar with xCAT and the xCAT configuration on
the target site. This document does not provide xCAT configuration documentation or troubleshooting
information; please refer to the xCAT documentation for such information.
Verifying Node List
Verify that all nodes that Moab will manage are known to xCAT with the xCAT nodels command. Ensure
that all expected (and no unexpected) nodes are listed. You may find it useful to create new group names
to identify Moab-managed nodes.

[root@h0 moab]# nodels hyper,compute
h1
h2
h3
h4
h5
h7
kvmm1
kvmm10
kvmm2
kvmm3
kvmm4
kvmm5
kvmm6
kvmm7
kvmm8
[root@h0 moab]#

Reporting Node Status
Verify that all nodes report their status correctly using the xCAT nodestat command. Ensure that all
nodes show the correct status (sshd, installing, noping, and so forth); there should not be any
timeouts or error messages.

[root@h0 moab]# nodestat hyper,compute |sort
h1: pbs,sshd
h2: pbs,sshd
h3: pbs,sshd
h4: pbs,sshd
h5: pbs,sshd
h7: noping
kvmm10: noping
kvmm1: pbs,sshd

25.0 Appendices

1006 Appendix G: Integrating Other Resources with Moab

https://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk/xCAT-client/share/doc/

Appendix G: Integrating Other Resources with Moab 1007

kvmm2: pbs,sshd
kvmm3: pbs,sshd
kvmm4: pbs,sshd
kvmm5: pbs,sshd
kvmm6: pbs,sshd
kvmm7: pbs,sshd
kvmm8: noping
kvmm9: noping
[root@h0 moab]#

Verifying Hardware Management Configuration
Verify that all nodes that Moab will manage have hardware management interfaces correctly configured
using the xCAT nodels and rpower commands. After each of the rpower commands, verify the requested
state was achieved with rpower stat.

[root@h0 moab]# nodels h1,kvmm1 nodehm.mgt nodehm.power
h1: nodehm.power: ilo
h1: nodehm.mgt: ilo
kvmm1: nodehm.power: kvm
kvmm1: nodehm.mgt: kvm
[root@h0 moab]# rpower h1,kvmm1 off
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 stat
h1: off
kvmm1: off
[root@h0 moab]# rpower h1,kvmm1 boot
h1: on reset
kvmm1: on reset
[root@h0 moab]# rpower h1,kvmm1 stat
h1: on
kvmm1: on
[root@h0 moab]#

Verifying Provisioning Images
Verify that all operating system images that Moab uses are configured correctly in xCAT. For stateful
images, test that all combinations of operating system, architecture, and profile install correctly.

[root@h0 moab]# rinstall -o centos5.3 -a x86_64 -p hyper h1
h1: install centos3.2-x86_64-hyper
h1: on reset
[root@n100 ~]# sleep 15 && nodestat n05
n05: ping install centos5.3-x86_64-hyper
[root@h0 moab]#

For stateless images, test that nodes are able to network boot the images.

[root@h0 moab]# nodech h5 nodetype.os=centos5.3 nodetype.arch=x86_64
nodetype.profile=hyper
[root@h0 moab]# nodeset h5 netboot
h5: netboot centos5.3-x86_64-hyper
[root@h0 moab]# rpower h5 boot
h5: on reset
[root@h0 moab]# sleep 60 && nodestat h5
h5: pbs, sshd
[root@h0 moab]#

25.0 Appendices

Verifying VMMigration
If you use VM migration, verify that xCAT can successfully perform migrations using the rmigrate
command.

[root@h0 moab]# rmigrate kvmm7 h1
kvmm7: migrated to h1
[root@h0 moab]# ssh h1 virsh list
Id Name State

33 kvmm1 running
34 kvmm2 running
35 kvmm7 running

Related topics

l Native Resource Manager Overview
l Resource Provisioning

Hardware Integration
l Moab-NUMA Integration Guide on page 1008

Moab-NUMA Integration Guide
Scheduling a shared-memory NUMA type system (not the same as a modern SMP-based individual
compute node, which cannot share memory between compute nodes) requires some special configuration.
Additionally, Moab can use NODESETs to guarantee feasibility of large memory jobs and to enforce node
allocation based on the system's interconnect network topology.

Configuration

To integrate Moab and NUMA

1. Configure Moab to schedule large memory jobs. Because Moab creates a partition for each resource
manager by default, you must configure the cluster controlled by the resource manager to be a
shared-memory system to support jobs spanning multiple nodes/blades. To do so, use the PARCFG
parameter.

RMCFG[sys-uv] TYPE=TORQUE
PARCFG[sys-uv] FLAGS=SharedMem

Cluster sys-uv is now configured as a shared-memory system to Moab.

2. Configure NODESETs as shown below.

NODESETISOPTIONAL FALSE
NODESETATTRIBUTE FEATURE
NODESETPOLICY ONEOF
NODESETPRIORITYTYPE FIRSTFIT

25.0 Appendices

1008 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 1009

The NODESET parameters tell Moab that performing node allocation using node sets is required, that the node set
name is a feature name assigned to compute nodes, that a job must fit within the available nodes of one node set,
and that Moab should use the first node set that contains sufficient available nodes to satisfy the job's request.

3. To configure Moab to perform topology-aware node allocation using node sets, you must create a
node set definition for each set of nodes that has the same number of maximum network "hops" from
any node to every other node within the node set. For an example, see the following sample scenario:

Use case

The SGI UV 1000 has a two-socket blade with a physical organization of 16 blades within a blade
chassis (SGI term is Intra-Rack Unit or IRU), two blade chassis (IRUs) within a rack, and up to
four racks within a single UV system. The UV 1000 interconnect network has a topology that
requires zero hops between the two sockets on the same physical blade, one hop between an
even-odd blade pair (e.g. blades 0 and 1, 2 and 3, etc.), two hops between all even-numbered or
all odd-numbered blades within an IRU, three hops maximum between all blades within an IRU,
four hops maximum between all even-numbered blades or all odd-numbered blades within a UV
system, and five hops maximum between all blades within a UV system.

a. Define topology-aware node definitions to parallel the compute nodes reachable within a specific
hop count. For the UV 1000, this means the sockets of each blade will belong to six separate node
set definitions; i.e., one each for 0, 1, 2, 3, 4, and 5 hops).

b. Define multiple node sets for different nodes reachable in a specific hop count based on the
context of where they are in the network topology; that is, you must create a separate and
distinct node set definition for each pair of blades reachable with one hop, for each IRU for its
nodes reachable in three hops, etc.

c. Moab node sets are usually defined as compute node features; that is, each node set defined to
Moab should appear as a "feature" name on one or more compute nodes. Which node set/feature
names appear on each compute node depends on where the compute node is in the interconnect
network topology.

Since the SGI UV operating system identifies each blade socket as a separate NUMA node, each
NUMA node within a UV system is traditionally an individual compute node to Moab (although
TORQUE has the ability to redefine a compute node definition by grouping OS NUMA nodes, which
some UV installations do to define a blade as a compute node).

For the sake of illustration, this example assumes each OS NUMA node, which is a UV blade
socket, is also a compute node in Moab. This means each compute node (blade socket) will have
six feature names assigned, where each feature name must reflect both the compute node's
location in the network topology and the hop count the name represents. A feature name is
constructed by using the same root name for a hop count and a number for the topology location
at the hop-count level.

For example, the root feature name "blade" represents the zero-hop count and the numbers "0",
"1,", etc, represent the consecutively numbered blades throughout the entire UV system, which
yields feature names of "blade0" for the first blade in the system, "blade1" for the second blade,
etc, to "blade127" for the last blade in a fully populated 4-rack UV system. To illustrate further,

25.0 Appendices

the root feature name "iru" represents the 3-hops count and the numbers "0" through "7"
represent the eight IRUs within a full 4-rack UV system.

d. For each compute node, configure the correct feature name for each of the hop counts possible
and its location within the topology at the hop-count level (e.g., blade (0 hops), blade pair (1 hop),
odd- or even-numbered nodes within an IRU (2 hops), IRU (3 hops), odd- or even-numbered nodes
within the UV (4 hops), and UV system (5 hops)). The following example illustrates the feature
names assigned to the compute nodes for an SGI UV 1000 system using the following root feature
names.

l blade (0 hops)

l pair (1 hop)

l eiru (2 hops for even-numbered blades within an IRU)

l oiru (2 hops for odd-numbered blades within an IRU)

l iru (3 hops)

l esys (4 hops for even-numbered blades within a UV system)

l osys (4 hops for odd-numbered blades within a UV system)

l sys (5 hops)

Note that nodes 0 and 1 are not given any feature names. This is because the operating system
instance for the UV system runs on the first blade and in order to not adversely affect OS
performance, no jobs should run on the same compute resources as the operating system; hence,
these nodes have no node set feature names and therefore will never be chosen to run jobs. In
addition, some of the first feature names at a specific hop count-level are omitted (such as pair0)
since it makes no sense to define them when the first blade is a substantial part of the nodes
making up a node set.

The node name of a UV system has the same name as the UV system's host name plus the NUMA
node's relative socket number.

/var/spool/torque/server_priv/nodes:
sys-uv0
sys-uv1
sys-uv2 blade1 oiru0 iru0 osys sys
sys-uv3 blade1 oiru0 iru0 osys sys
sys-uv4 blade2 pair1 eiru0 iru0 esys sys
sys-uv5 blade2 pair1 eiru0 iru0 esys sys
sys-uv6 blade3 pair1 oiru0 iru0 osys sys
sys-uv7 blade3 pair1 oiru0 iru0 osys sys
sys-uv8 blade4 pair2 eiru0 iru0 esys sys
sys-uv9 blade4 pair2 eiru0 iru0 esys sys
sys-uv10 blade5 pair2 oiru0 iru0 osys sys
sys-uv11 blade5 pair2 oiru0 iru0 osys sys
sys-uv12 blade6 pair3 eiru0 iru0 esys sys
sys-uv13 blade6 pair3 eiru0 iru0 esys sys
sys-uv14 blade7 pair3 oiru0 iru0 osys sys
sys-uv15 blade7 pair3 oiru0 iru0 osys sys
sys-uv16 blade8 pair4 eiru0 iru0 esys sys
sys-uv17 blade8 pair4 eiru0 iru0 esys sys
sys-uv18 blade9 pair4 oiru0 iru0 osys sys
sys-uv19 blade9 pair4 oiru0 iru0 osys sys

25.0 Appendices

1010 Appendix G: Integrating Other Resources with Moab

Appendix G: Integrating Other Resources with Moab 1011

sys-uv20 blade10 pair5 eiru0 iru0 esys sys
sys-uv21 blade10 pair5 eiru0 iru0 esys sys
sys-uv22 blade11 pair5 oiru0 iru0 osys sys
sys-uv23 blade11 pair5 oiru0 iru0 osys sys
sys-uv24 blade12 pair6 eiru0 iru0 esys sys
sys-uv25 blade12 pair6 eiru0 iru0 esys sys
sys-uv26 blade13 pair6 oiru0 iru0 osys sys
sys-uv27 blade13 pair6 oiru0 iru0 osys sys
sys-uv28 blade14 pair7 eiru0 iru0 esys sys
sys-uv29 blade14 pair7 eiru0 iru0 esys sys
sys-uv30 blade15 pair7 oiru0 iru0 osys sys
sys-uv31 blade15 pair7 oiru0 iru0 osys sys
sys-uv32 blade16 pair8 eiru1 iru1 esys sys
sys-uv33 blade16 pair8 eiru1 iru1 esys sys
sys-uv34 blade17 pair9 oiru1 iru1 osys sys
sys-uv35 blade17 pair9 oiru1 iru1 osys sys
...
sys-uv62 blade31 pair15 oiru1 iru1 osys sys
sys-uv63 blade31 pair15 oiru1 iru1 osys sys
sys-uv64 blade32 pair16 eiru2 iru2 esys sys
sys-uv65 blade32 pair16 eiru2 iru2 esys sys
...
sys-uv126 blade63 pair31 oiru3 iru3 osys sys
sys-uv127 blade63 pair31 oiru3 iru3 osys sys
sys-uv128 blade64 pair32 eiru4 iru4 esys sys
sys-uv129 blade64 pair32 eiru4 iru4 esys sys
...
sys-uv190 blade95 pair47 oiru5 iru5 osys sys
sys-uv191 blade95 pair47 oiru5 iru5 osys sys
sys-uv192 blade96 pair48 eiru6 iru6 esys sys
sys-uv193 blade96 pair48 eiru6 iru6 esys sys
...
sys-uv252 blade126 pair63 eiru7 iru7 esys sys
sys-uv253 blade126 pair63 eiru7 iru7 esys sys
sys-uv254 blade127 pair63 oiru7 iru7 osys sys
sys-uv255 blade127 pair63 oiru7 iru7 osys sys

4. Define the order in which Moab should check node sets for available nodes. Since the
NODESETPRIORITYTYPE has a value of FIRSTFIT, the node sets must be ordered from smallest to
largest so Moab will always choose the node set with the fewest nodes required to satisfy the job's
request. This means listing all blades, blade pairs, even and odd IRUs, IRUs, even and odd system, and
system, respectively.

moab.cfg:
NODESETLIST
blade1,blade2,blade3,…,blade127,pair1,pair2,pair3,…,pair63,eiru0,oiru0,eiru1,oiru1,
…,eiru7,oiru7,iru0,iru1,…,iru7,esys,osys,sys

5. Configure Moab to use the PRIORITYNODEALLOCATIONPOLICY. This allocation policy causes Moab to
allocate enough nodes to fulfill a job's processor and memory requirement.

NODEALLOCATIONPOLICY PRIORITY

6. Set NODEACCESSPOLICY to SINGLEJOB to ensure that Moab will schedule large memory requests
correctly and efficiently. This is necessary even when a job uses only the memory of a NUMA node.

NODEACCESSPOLICY SINGLEJOB

The policy SINGLEJOB tells Moab not to allow jobs to share NUMA resources (cores and memory),
which for a shared-memory system is very important for fast job execution. For example, if Moab

25.0 Appendices

scheduled a job to use the cores of a NUMA node where memory is used by another job, both jobs
would execute slowly (up to 10 times more slowly).

Job Submission
Jobs can request processors and memory using the -l nodes=<number of cpus> and -l
mem=<amount of memory> syntaxes. You should not have JOBNODEMATCHPOLICY EXACTNODE
configured on a NUMA system. You must use the sharedmem job flag on submission to force the job to
run only on a sharedmem partition or cluster and to indicate that the job can span multiple nodes. For
example:

qsub -l nodes=3,mem=640sgb,flags=sharedmem

Appendix H: Interfacing with Moab (APIs)
Moab provides numerous interfaces allowing it to monitor and manage most services and resources. It
also possesses flexible interfaces to allow it to interact with peer services and applications as both a
broker and an information service. This appendix is designed to provide a general overview and links to
more detailed interface documentation.

l H.1 Moab Query and Control APIs

o Allow external portals and services to obtain information about compute resources,
workload, and usage statistics.

l H.2 Resource Management Interfaces

o Allow Moab to monitor, schedule, and control services and resources.

l H.3 Identity and Credential Management Interfaces

o Allow monitoring and active management of user configuration, credentials, policies, and
usage information.

l H.4 Accounting and Event Interfaces

o Allow import/export of accounting and event information to external entities.

l H.5 Discovery/Directory Services

l H.6 Job Submission and Management Interface

o Query resource availability, submit, modify, and manage jobs, and query the status of
active and completed jobs.

Moab interfaces to systems providing various services and using various protocols. This appendix is
designed to assist users who want to enable Moab in new environments using one of the existing
interfaces. It does not cover the steps required to create a new interface.

25.0 Appendices

1012 Appendix H: Interfacing with Moab (APIs)

Appendix H: Interfacing with Moab (APIs) 1013

H.1 Query and Control APIs
The Moab Cluster Suite provide a (Moab) workload manager server that supports a broad array of client
services. These services can be directly accessed via Moab client commands.

H.1.3 CLI (Command Line Interface) XML API

All Moab client commands can report results in XML format to allow the information to be easily
integrated into peer services, portals, databases, and other applications. To request that a client
command report its output in XML, specify the --format=xml flag as in the following example:

> showq --format=xml
<Data>
<Object>queue</Object>
<cluster LocalActiveNodes="1" LocalAllocProcs="1" LocalIdleNodes="0"
LocalIdleProcs="3" LocalUpNodes="1"
LocalUpProcs="4" RemoteActiveNodes="0" RemoteAllocProcs="0" RemoteIdleNodes="0"

RemoteIdleProcs="0"
RemoteUpNodes="0" RemoteUpProcs="0" time="1128451812"></cluster>

<queue count="1" option="active">
<job AWDuration="11672" EEDuration="1128451812" Group="[DEFAULT]" JobID="Moab.2"
MasterHost="cw2" PAL="2"
QOS="bug3" ReqAWDuration="54000" ReqNodes="1" ReqProcs="1" RsvStartTime="1128451812"

RunPriority="0"
StartPriority="1" StartTime="1128451812" StatPSDed="11886.580000"

StatPSUtl="11886.580000" State="Running"
SubmissionTime="1128451812" SuspendDuration="0" User="smith"></job>

</queue>
<queue count="1" option="eligible">
<job EEDuration="1128451812" Group="jacksond" JobID="customer.35" QOS="bug"
ReqAWDuration="3600"
ReqProcs="1" StartPriority="1" StartTime="0" State="Idle"

SubmissionTime="1128451812" SuspendDuration="0"
User="johnson"></job>

<queue><queue count="0" option="blocked"></queue>
</Data>

Common Query/Control Services

l jobs

o query status - mdiag -j (XML details)

o submit - msub (XML format)

o cancel - mjobctl -c

l nodes

o query status - mdiag -n (XML details)

o create resource reservation - mrsvctl -c

o destroy resource reservation - mrsvctl -r

25.0 Appendices

H.2 Resource Management Interfaces
Moab can monitor, schedule, and control services and resources using multiple protocols. These
protocols include the following:

l LDAP

l script/flat file

l Resource Manager Specific Interfaces - LSF, SGE, TORQUE, PBSPro, Loadleveler, and so forth

Using the resource manager interfaces, Moab can do the following:

l monitor resources (compute host, network, storage, and software license based resources)

o load configuration, architecture, and feature information

o load state, utilization, and workload information

o load policy and ownership information

l manage resources

o dynamically reconfigure and reprovision resource hardware (processors, memory, etc.)

o dynamically reconfigure and reprovision resource software (operating system, application
software, file system mounts, etc.)

o dynamically reconfigure and reprovision resource security (VPN's, VLAN's, host security,
etc.)

l monitor workload (batch jobs, interactive jobs, persistent services, dynamic services, distributed
services)

o load state, resource requirement, and required environment information

o load user, group, and credential information

o load utilization, resource allocation, and policy information

l manage workload

o migrate jobs from one resource to another (intra-cluster and inter-cluster)

o modify jobs for translation and optimization purposes

o suspend, resume, checkpoint, restart, and cancel jobs

l query cluster policies and configuration

H.3 Identity and Credential Management Interfaces
Moab's identity and credential management interfaces allow Moab to exchange credential and user
configuration, access, policy, and usage information.

l Identity Manager

l Allocation Manager

25.0 Appendices

1014 Appendix H: Interfacing with Moab (APIs)

Appendix H: Interfacing with Moab (APIs) 1015

H.4 Accounting Interfaces
Moab accounting interfaces allow Moab to export local utilization statistics, events, and accounting
information to site specific scripts.

l Accounting Interface

H.5 Discovery/Directory Services
Moab can import and export key event information regarding workload, cluster resources, cluster
services, and other components of hardware and software infrastructure.

By default, these clients communicate with the scheduler using the U.S. Department of Energy (DOE)
Scalable Systems Software socket and wire protocols. These protocols are largely HTML- and XML-based,
using PKI, 3DES, MD5, challenge, and other security protocols and are documented within the SSS project
pages.

As part of this initiative, the scheduler/client protocol has been extended to support multiple socket
level protocol standards in communicating with its clients and peer services. These include
SingleUseTCP, SSS-HALF, and HTTP. The client socket protocol can be specified by setting the
MCSOCKETPROTOCOL parameter to SUTCP, SSS-HALF, or HTTP. Further protocols are being defined
and standardized over time and backwards compatibility will be maintained. Documentation on the SSS-
HALF implementation can be found within the DOE's SSS Project Notebooks.

H.6 Job Submission andManagement Interface
Moab provides interfaces to enable the following services:

l Resource Availability Query

o Determine quantity, state, and configuration of configured resources (idle, busy, and down
nodes)

o Determine quantity and configuration of all available resources (idle nodes)

o Determine resources available subject now and in the future for potential job

o Determine best target cluster destination for potential job

o Determine largest/longest job which could start immediately

o Determine estimated start time for potential job

o Determine earliest guaranteed start time for potential job

l Reserve Resources

o Reserve specific resources for desired time frame

l Submit Job (XML format)

o Submit job to specific cluster

o Submit job to global job queue

25.0 Appendices

http://www.scidac.org/ScalableSystems

l Manage Job

o Hold job

o Adjust job priority

o Modify job executable, args, data requirements, job dependencies, duration, hostcount, or
other attributes

o Suspend/resume job

o Checkpoint/requeue job

o Cancel job

o Migrate job

o Adjust job quality of service (QoS)

l Query Job

o Determine job state, utilization, or output results for idle, active, or completed job

o Determine estimated start time

o Determine guaranteed start time

Appendix I: Considerations for Large Clusters
l I.1 Resource Manager Scaling

l I.2 Handling Large Numbers of Jobs

l I.3 Handling Large Numbers of Nodes

l I.4 Handling Large Jobs

l I.5 Handling Large SMP Systems

l I.6 Server Sizing

There are several key considerations in getting a batch system to scale.

I.1 Resource Manager Scaling

Proper Resource Manager Configuration

l TORQUE

o General Scaling Overview

l OpenPBS/PBSPro

o Manage Direct Node Communication with NODEPOLLFREQUENCY

25.0 Appendices

1016 Appendix I: Considerations for Large Clusters

http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm
http://www.adaptivecomputing.com/resources/docs/torque/4-2-6/help.htm#topics/12-appendices/largeClusterConsiderations.htm

Appendix I: Considerations for Large Clusters 1017

I.2 Handling Large Numbers of Jobs

Aggregating Scheduling Cycles

Use the JOBAGGREGATIONTIME on page 849 parameter. With event driven resource manager
interfaces (such as TORQUE, PBS, and SGE), each time a job is submitted, the resource manager notifies
the scheduler of this fact. In an attempt to minimize response time, the scheduler will start a new
scheduling cycle to determine if the newly submitted job can run. In systems with large numbers of jobs
submitted at once, this may not result in the desired behavior for two reasons. First, by scheduling at
every job submission, Moab will schedule newly submitted jobs onto available resources in a first come,
first served basis rather than evaluating the entire group of new jobs at once and optimizing the
placement accordingly. Second, by launching a scheduling iteration for every job submitted, Moab may
place a heavy load on the resource manager. For example, if a user were to submit 1000 new jobs
simultaneously, for each job submitted, the resource manager would contact the scheduler, the scheduler
would start a new iteration, and in this iteration, the scheduler would contact the resource manager
requesting updated information on all jobs and resources available.

The JOBAGGREGATIONTIME parameter works by informing the scheduler to not process jobs as quickly
as they are submitted, but rather to process these new jobs in groups.

Limited Job Checkpointing

Use the LIMITEDJOBCP on page 862 parameter. By default, Moab will checkpoint information about
every job it reads from its resource managers. When a cluster routinely runs more than 15000 jobs, they
may see some speed-ups by limiting which jobs are checkpointed. When LIMITEDJOBCP is set to TRUE,
Moab will only checkpoint jobs that have a hold, a system priority, jobs that have had their QoS modified,
and a few other limited attributes. Some minimal statistical information is lost for jobs that are not
checkpointed.

Minimize Job Processing Time

Use the ENABLEHIGHTHROUGHPUT on page 824 parameter. By default, Moab processes all job
attributes, filters, remap classes, job arrays, and other information when a job is submitted. This
requires full access to the Moab configuration and significantly increases the processing time Moab
needs when jobs are submitted. By setting ENABLEHIGHTHROUGHPUT to TRUE, Moab stores the job
information in an internal queue and returns the job ID immediately. The internal queue is processed
when Moab begins its next scheduling iteration. This enables Moab to process hundreds of jobs per
second rather than 20-30 per second. Because the jobs are processed in a separate queue after the job
has been returned, it is recommended that MAILPROGRAM be configured. Moab will send an email to the
user if a job is rejected.

Because the job is not fully processed, some attributes may change after the job has been submitted. For
example, when a job class is remapped, the new class is not reflected until Moab begins its next
scheduling iteration. Additionally, job arrays are not instantiated until Moab begins its next scheduling
cycle.

If ENABLEHIGHTHROUGHPUT on page 824 is TRUE, you must set NODEALLOCATIONPOLICY on
page 872 to FIRSTAVAILABLE.

25.0 Appendices

http://www.clusterresources.com/products/torque-resource-manager.php

Load all Non-Completed Jobs at Startup

Use the LOADALLJOBCP on page 863 parameter. By default, Moab loads non-complete jobs for active
resource managers only. By setting LOADALLJOBCP to TRUE, Moab will load all non-complete jobs from
all checkpoint files at startup, regardless of whether their corresponding resource manager is active.

Reducing Job Start Time

Use the ASYNCSTART parameter. By default, Moab will launch one job at a time and verify that each job
successfully started before launching a subsequent job. For organizations with large numbers of very
short jobs (less than 2 minutes in duration), the delay associated with confirming successful job start can
lead to productivity losses. If tens or hundreds of jobs must be started per minute, and especially if the
workload is composed primarily of serial jobs, then the resource manager ASYNCSTART flag may be
set. When set, Moab will launch jobs optimistically and confirm success or failure of the job start on the
subsequent scheduling iteration. Also consider adding the ASYNCDELETE flag if users frequently cancel
jobs.

Increase TORQUE Timeout

The number of jobs in the queue affects the time needed by TORQUE to get updates to Moab. Adjust the
Moab timeout to prevent "End of File" errors on scheduling intervals. This is environment specific, but in
general if you have more than 50,000 jobs in the queue you should make this adjustment.

RMCFG[torque] TIMEOUT=300

This sets the connection timeout to 300 seconds.

Reducing Job Reservation Creation Time

Use the RMCFG on page 906 JOBRSVRECREATE on page 516 attribute. By default, Moab destroys and re-
creates job reservations each time a resource manager updates any aspect of a job. Historically, this
stems from the fact that certain resource managers would inadvertently or intentionally migrate job
tasks from originally requested nodes to other nodes. To maintain synchronization, Moab would re-
create reservations each iteration thus incorporating these changes. On most modern resource
managers, these changes never occur, but the effort required to handle this case grows with the size of
the cluster and the size of the queue. Consequently, on very large systems with thousands of nodes and
thousands of jobs, a noticeable delay is present. By setting JOBRSVRECREATE to FALSE on resource
managers that do not exhibit this behavior, significant time savings per iteration can be obtained.

Optimizing Backfill Time

Use the OPTIMIZEDBACKFILL flag, which speeds up backfill when a system reservation is in use.

Constraining Moab Logging - LOGLEVEL

Use the LOGLEVEL on page 865 parameter. When running on large systems, setting LOGLEVEL to 0 or 1 is
normal and recommended. Only increase LOGLEVEL above 0 or 1 if you have been instructed to do so by
Moab support.

Preemption

When preemption is enabled Moab can take considerably more time scheduling jobs for every scheduling
iteration. Preemption increases the number of options available to Moab and therefore takes more time

25.0 Appendices

1018 Appendix I: Considerations for Large Clusters

Appendix I: Considerations for Large Clusters 1019

for Moab to optimally place jobs. If you are running a large cluster or have more than the usual amount
of jobs (>10000), consider disabling preemption. If disabling preemption is not possible, consider limiting
its scope to only a small subset of jobs (as both preemptors and preemptees).

Handling Transient Resource Manager Failures

Use the RMCFGMAXITERATIONFAILURECOUNT on page 518 attribute.

Constrain the number of jobs preempted per iteration

Use the JOBMAXPREEMPTPERITERATION parameter.

For very large job count systems, configuration options controlling the maximum supported limits
may need to be adjusted including the maximum number of reservations and the maximum number
of supported evaluation ranges.

I.3 Handling Large Numbers of Nodes
For very large clusters (>= 10,000 processors) default scheduling behavior may not scale as desired. To
address this, the following parameters should be considered:

Parameter Recommended Settings

RMPOLLINTERVAL In large node environments with large and long jobs, scheduling overhead can be min-
imized by increasing RMPOLLINTERVAL above its default setting. If an event-driven
resource management interface is available, values of two minutes or higher may be used.
Scheduling overhead can be determined by looking at the scheduling load reported by
mdiag -S.

LIMITEDNODECP Startup/shutdown time can be minimized by disabling full node state checkpointing that
includes some statistics covering node availability.

SCHEDCFG
FLAGS="
FASTRSVSTARTUP
on page 1137

When you have reservations on a large number of nodes, it can take Moab a long time to
recreate them on startup. Setting the FASTRSVSTARTUP scheduler flag greatly reduces
startup time.

* For clusters where the number of nodes or processors exceeds 50,000, the maximum stack size for the
shell in which Moab is started may need to be increased (as Moab may crash if the stack size is too
small). On most Unix/Linux based systems, the command ulimit -s unlimited may be used to increase the
stack size limit before starting Moab. This may be placed in your Moab startup script.

See Appendix D for further information on default and supported object limits.

Avoid adding large numbers of NODECFG lines in the moab.cfg or moab.d/*.cfg files to keep the
Moab boot time low.

For example, adding a configuration line to define features for each node in a large cluster (such as
NODECFG[x] Features+=green,purple) can greatly increase the Moab boot time. If Moab

25.0 Appendices

processes 15 node configuration lines per second for a 50,000-node system, it could add approximately 55
minutes of node configuration processing to the Moab boot time.

In this case, it is better to define the node features in the resource manager configuration.

I.4 Handling Large Jobs
For large jobs, additional parameters beyond those specified for large node systems may be required.
These include settings for the maximum number of tasks per job, and the maximum number of nodes per
job.

I.5 Handling Large SMP Systems
For large-way SMP systems (> 512 processors/node) Moab defaults may need adjustment.

Parameter Recommended Settings

MAXRSVPERNODE By default, Moab does not expect more than 48 jobs per node to be running or have future
reservations. Increasing this parameter to a value larger than the expected maximum num-
ber of jobs per node is advised.

I.6 Server Sizing
See Hardware and Software Requirements for recommendations.

Related topics

l Appendix D: Adjusting Default Limits

Appendix J: Configuring Moab as a Service
Scripts that follow can be used to start up Moab services automatically upon a reboot. To enable a
service script, copy the script to /etc/rc.d/init.d/S97moab, edit the file to make needed
localization changes (adjust binary paths, execution user, etc), and add links to the rc3.dand rc5.d
directories as in the example that follows:

> cp mwm.service /etc/rc.d/init.d/S97moab
> vi /etc/rc.d/init.d/S97moab

(make needed localizations)
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc3.d
> ln -s /etc/rc.d/init.d/S97moab /etc/rc.d/rc5.d

J.1 MoabWorkloadManager Service Scripts

l Moab Workload Manager Script
l Moab Workload Manager + TORQUE Script

25.0 Appendices

1020 Appendix J: Configuring Moab as a Service

Appendix K: Migrating from 3.2 1021

Appendix K: Migrating from 3.2
Overview
This guide is intended to help facilitate migrating from Maui to Moab. If you do not have Moab yet, you
can download a free evaluation version. At a high level, migrating from Maui 3.2 to Moab involves
minimal effort. In fact, Moab fully supports all Maui parameters and commands. Migration can consist of
nothing more than renaming maui.cfg to moab.cfg and launching Moab using the moab command.
With this migration, the biggest single issue is becoming aware of all the new facilities and capabilities
available within Moab. Beyond this, migration consists of a few minor issues that may require attention
such as some statistics and priorities.

Another approach of migrating from Maui to Moab is to configure Moab in Monitor mode and run it
beside Maui. Maui will continue to perform the scheduling and control workload. Moab will simply
monitor the cluster environment using the policies configured in moab.cfg. Moab will not have the
ability to affect workload, providing a safe and risk-free environment to evaluate Moab without affecting
your production environment. You can also have Moab capture resource and workload trace files and
allow Moab to simulate what it would have done if it controlled workload. When you feel comfortable
with and want to run Moab live on your cluster, all you need to do is change the mode to NORMAL, stop
Maui, and restart Moab. Current jobs will remain running and Moab will take over control of scheduling.

As with any migration, we suggest that you back up important files such as the following: maui.cfg,
maui.log and maui.ck.

View the Flash demo of migrating from Maui to Moab.

Migrating fromMaui toMoab

1. Install Moab Workload Manager. (Installation Instructions)

2. Copy your maui.cfg file to the MOABHOMEDIR/etc (/opt/moab/etc) and rename it moab.cfg.

3. Stop Maui.

4. Start Moab.

5. If Applicable: Re-apply those configurations found in the Statistics and Checkpointing section that
need adjustment after migration as well as any parameters in moab.cfg that point to a Maui file
like maui.log.

Running Maui andMoab Side-By-Side

1. Install Moab Workload Manager on your cluster. (Installation steps will differ slightly from a typical
installation.)

a. Run ./configure.

b. Run make.

25.0 Appendices

http://www.adaptivecomputing.com/eval
http://www.clusterresources.com/services/Tutorials/MPortDemo.shtml

c. You will need to set your MOABHOMEDIR environment variable to the location where you built
Moab by typing export MOABHOMDIR=[make directory].

2. To have Moab use all the same policies as Maui, copy maui.cfg to the MOABHOMEDIR/etc and
rename it moab.cfg.

l You can also start your moab.cfg file from scratch. Just use the moab.cfg already in the
MOABHOMEDIR/etc.

3. Make sure that the port in moab.cfg is different than the port used in maui.cfg.

4. In the moab.cfg file, add the parameter, SERVERMODE=MONITOR.

l If you used the moab.cfg from scratch, on the SCHEDCFG line add MODE=MONITOR.

5. You will need to either put the Moab commands in your environment path (located in
MOABHOMEDIR/bin) or run the commands from their location if you still want to use the Maui
commands in your environment path.

6. Run Moab Workload Manager using the moab command located in MOABHOMEDIR/bin.

Other Notes
The following are minor differences between Maui and Moab and changes you may need to make:

File Naming
Moab uses slightly different naming than Maui. The following table displays these changes:

File Maui Moab

executable maui moab

logs maui.log moab.log

configuration file maui.cfg moab.cfg

Statistics and Checkpointing
Moab supports Maui version 3.2 or higher workload traces (statistics) allowing it to process historical
statistics based on these traces as well as generate simulations based on them. No changes are required
to use these statistics. See the Simulation Configuration documentation for more information on trace
files. You can also view a flash demonstration of the simulation mode.

Moab does not support the Maui 3.2 checkpointing format. Because of this, state information
checkpointed under Maui will not be available at the time of the migration. The loss of this information
will have the following impact:

l Admin reservations, if any, will need to be re-created.

l Processed credential and scheduler statistics (displayed by showstats) will be lost.

25.0 Appendices

1022 Appendix K: Migrating from 3.2

http://www.clusterresources.com/services/Tutorials/MSimDemo.shtml

Appendix R: Node Allocation Plug-in Developer Kit 1023

l Admin job system priority configured by the setspri command and QoS assignments configured by
the setqos command, if any, will be lost.

Verify Configuration File Compatibility
The command mdiag -C will perform diagnostics on your new configuration file and may prove helpful in
identifying any issues.

Environment Variables
Scheduler environment variables are supported under Moab with obvious naming changes. Sample
environment variables follow:

Maui Moab

MAUIHOMEDIR MOABHOMEDIR

MAUIDEBUG MOABDEBUG

MAUICRASHVARIBALE MOABCRASHVARIABLE

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

MAUIRECOVERYACTION MOABRECOVERYACTION

MAUI-COMMANDS-PATH MOAB-COMMANDS-PATH

MAUIENABLELOGBUFFERING MOABENABLELOGBUFFERING

Appendix R: Node Allocation Plug-in Developer Kit
l R.1 Overview

o R.1.1 Writing the plugin

o R.1.1.1 API & Data Structures

o R.1.2 Moab configuration

o R.1.2.1 Moab.cfg

o R.1.2.2 Syntax rules

o R.1.2.3 Troubleshooting

25.0 Appendices

R.1 Overview
Each time Moab schedules a job, it must choose the nodes on which the job will run. Moab uses the Node
Allocation policy to select the available nodes to be used. Because there are so many different systems
and cluster topologies, you now have the ability to create and use a node allocation plugin for allocating
nodes based on your cluster's interconnect topology.

The plugin policy allows you to write your own algorithm to choose which nodes will be used. This
algorithm is contained in a shared library that Moab loads at run time.

To obtain the Plug-in Developer Kit (PDK) with the header file and example code, contact your sales
representative.

R.1.1 Writing the plugin

A plugin is a shared library that has specific functions and variables that will be called directly from
Moab. The plugin conforms to a C language API. The API is specified through an include file: moab-
plugin.h. This file must be included in the plugin code. The include file provides function definitions,
structures and variables that will be used when communicating with Moab.

When you write the plugin, you need to ensure that the plugin code is robust. If the plugin crashes, Moab
will crash. You will need to handle your own memory appropriately. If the plugin has memory leaks,
Moab will have similar issues. If you want to maintain logs, the plugin will need to be responsible for its
own logging.

R.1.1.1 API and Data Structures

The Application Programmer Interface (API) for the Moab Node Allocation Plugin consists of three data
items and three entry points that must be supplied to Moab by the plugin.

Plugin Supplied
Data Description

const char
*PLUGIN_NAME =
"Node Allocation
plugin 1.1";

This character pointer is used by Moab when logging information regarding the operation
of the plugin.

const char
*PLUGIN_TYPE =
PLUGIN_TYPE_
NAME_
NODEALLOCATION;

This character pointer is used by Moab to verify the type of plugin. The value of this data
is supplied by the moab-plugin.h source file. The plugin must set this as shown so that
Moab does not attempt to use a plugin incorrectly. Moab uses this to determine whether
the plugin API type is correct and to allow Moab to correctly communicate with the plugin.

const char
*PLUGIN_VERSION
= PLUGIN_API_
VERSION;

This character pointer is used by Moab to verify the API version number. The value of this
data is supplied by the moab-plugin.h source file. The plugin must set this as shown so
that the correct version of the moab-plugin.h is supplied to Moab. Moab uses this to
determine whether the API version is correct and to allow Moab to correctly communicate
with the plugin.

25.0 Appendices

1024 Appendix R: Node Allocation Plug-in Developer Kit

Appendix R: Node Allocation Plug-in Developer Kit 1025

Load Time
API Description

initialize() int initialize(const char *name, void **data_handle)
The plugin must supply an initialize() entry point. This entry point is called for each use
instance of the plugin. For example, if the plugin is used on two different partitions, the
initialize() entry point will be called once for each partition.

l Name — The name is the unique identifier which is used to distinguish multiple
instances of the plugin and for logging. When configured globally, the name “ALL” will
be given.

l Data handle — The data_handle points to a location where the plugin should store a
pointer to any internal data needed by the plugin between calls to the API. The actual
format and structure of the data is up to the plugin. Moab will supply this pointer back
to the plugin each time a plugin entry point is called. This data can provide context for
the plugin usage instance.

Return codes The initialize() entry point should return one of two return statuses as defined in moab-
plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Gathering
node info

The initialize() entry point must gather any information about system nodes, their topology,
interconnection, and configuration that it needs to make correct node allocations. Since Moab
does not know what information the plugin may need, the plugin must gather this information
itself.

Memory con-
siderations

The plugin may allocate memory for temporary or persistent data as needed, but must de-alloc-
ate or return the memory when finished. Not returning memory can result in memory leaks
and unstable operation on the part of Moab.

Multiple
access

A given loaded plugin can be used by more than one partition. This means that the plugin must
maintain its internal data in such a way that calls to the plugin for the separate partitions do
not conflict. It is recommended that internal data be allocated and a pointer to the data be kept
in the data_handle described above as opposed to using global or static variables. Any global or
static data will be shared between possible multiple instances of the plugin.

25.0 Appendices

Runti-
me
API

Description

node_
allocate
()

int node_allocate (
 void *data_handle,
 const char *job_name,
 int container_count,
 nalloc_container_t container[])

The plugin must provide a node_allocate() entry point. This entry point is called each time Moab needs
to determine where (on what nodes) a job will eventually run. Note that this entry point can be called
many times before the job is actually scheduled to run.

l Data structures — Moab uses C data structures to pass information and lists of nodes to the
plugin and receive them back from the plugin. See moab-plugin.h for the definitions of
these structures and for information on how they relate to one another.

25.0 Appendices

1026 Appendix R: Node Allocation Plug-in Developer Kit

Appendix R: Node Allocation Plug-in Developer Kit 1027

Runti-
me
API

Description

Oper-
ations

A node allocation request consists of one or more requirements. Each of these requirements is
provided within a “container” structure. The container has information regarding the requirement to
be met, the count and list of all nodes that are available to meet the requirement and a place to return
the list of nodes that the plugin has chosen to use for the job.

Command

Mo-
ab
Job
Tas-
k
Cou-
nt

Job
No-
de
Cou-
nt

Job
Tas-
ks
Per
No-
de

No-
de
CF-
G
Pro-
cs

No-
de
AV-
L
Pro-
cs

Plu-
gin
Node
Mapp-
ed TC

require-
ment -
>taskcou-
nt

retur-
n_
nod-
e_
coun-
t

Non-ExactNode

-l nodes=12 12 0 0 8 8 8 12 2

-l nodes-
s=12:ppn=2

24 0 2 8 8 8 24 3

ExactNode

-l nodes=4 4 4 0 8 8 1 4 4

-l nodes-
s=4:ppn=2

8 4 2 8 8 2 8 4

-l nodes=12 12 0 0 8 6 6 12 2

The duty of the plugin is to use the information that it has previously gathered (during the
initialization) to select from the available nodes those that will best fulfill the requirements.

The basic algorithm is to consume all the task count and memory on each node until the consumed
task count is greater than or equal to the container's task_count and memory requirements.

A job's task count is calculated differently based on the JOBNODEMATCHPOLICY parameter. By
default, it isn't defined and -l nodes=# actually requests the number of tasks without respect to the
number of nodes. In this case, the plugin should consume all the tasks of each chosen node until the
task count is greater and/or equal to the container's task count requirement. The plugin is for node
allocation and not task placement.

25.0 Appendices

Runti-
me
API

Description

When the JOBNODEMATCHPOLICY EXACTNODE is configured, then -l nodes=#means the job
wants # of nodes with 1 task per node. In this case, the nodes passed to the plugin will have a task
count that is mapped down to what the job can only use on that node. Each node's task count should
be consumed on each node until the summed amount is equal to the container's requirement task
count requirement.

The following table shows how commands are interpreted by Moab and translated to the plugin and
what is expected of the plugin.

Errors
and
return
codes

The plugin may internally log any errors encountered and must return a success or error status as
defined in moab-plugin.h:

#define PLUGIN_RC_SUCCESS 0
#define PLUGIN_RC_FAILURE 1

Mul-
tiple
access
safe

The node_allocate() entry point must support multiple access as described above.

Unload Time
API Description

finish() void finish(void *data_handle)
The plugin must supply a finish() entry point. This entry point is called when Moab is pre-
paring to disable and/or unload an instance of the plugin.

Memory/resource
cleanup

The plugin must de-allocate and free up any resources acquired either during the initialize
() entry point or during any calls to the node_allocate() entry point. When the last entry
point returns, there should be no allocated memory or other resources still in use by the
plugin instance.

Multiple access
safe

The finish() entry point must support multiple access as described above.

R.1.2 Moab configuration

The actual loading of a plugin is accomplished by specifying the plugin in the Moab configuration file,
moab.cfg.

25.0 Appendices

1028 Appendix R: Node Allocation Plug-in Developer Kit

Appendix R: Node Allocation Plug-in Developer Kit 1029

R.1.2.1 Moab.cfg

We recommend that you store all Moab plugins in the $MOABHOMEDIR/lib directory (e.g.,
/opt/moab/lib) as shared libraries (*.so). The name of the actual plugin shared library file is up to
the plugin developer, which means you must give the correct name in the moab.cfg file to form the
absolute plugin filename.

If a plug-in's specified shared library filename starts with a forward slash (/), it is an absolute file path
name and Moab simply uses it without alteration. For example, if a plugin's specified shared library
filename is /opt/moab/plugins/plugin.so, Moab will use it as the absolute plugin file path name.

If a plugin's specified shared library filename does not start with a forward slash (/), it is a plugin name
and Moab forms the plugin's absolute path name by concatenating the Moab home directory, "/lib/lib",
the specified plugin name, and ".so" to obtain the absolute path name. For example, if the
$MOABHOMEDIR environment variable contains /opt/moab and the plugin name is plugin, Moab will
create /opt/moab/lib/libplugin.so and use it as the absolute plugin file path name.

R.1.2.2 Syntax rules

In order for Moab to use a plugin for the Node Allocation policy, instead of a built-in Moab policy, you
must configure the policy in the moab.cfg file with the value "PLUGIN:" followed by the plugin's shared
library file name. The examples below assume the environment variable $MOABHOMEDIR has a value of
/opt/moab. Note the use of relative and absolute plugin shared library file path names in the
parameter value and how they affect Moab's construction of the full path name.

Par-
tition Plug-in Name moab.cfg Parameter Moab-derived Full Path

Name

global plugin.so NODEALLOCATIONPOLICY
PLUGIN:plugin.so

/op-
t/moab/lib/libplugin.so

global /us-
r/loc-
al/plugins/plugin.so

NODEALLOCATIONPOLICY
PLUGIN:/us-
r/local/plugins/plugin.so

/us-
r/loc-
al/plugins/plugin.so

abc plugin.so PARCFG[abc]
NODEALLOCATIONPOLICY
=PLUGIN:plugin.so

/op-
t/moab/lib/libplugin.so

xyz /us-
r/loc-
al/plugins/plugin.so

PARCFG[xyz]
NODEALLOCATIONPOLICY=
PLUGIN:/us-
r/local/plugins/plugin.so

/usr/local/plugins/plug
in.so

R.1.2.3 Troubleshooting

There are several commands that can be used to confirm that the Plugin Node Allocation Policy was
loaded properly.

mschedctl -l

25.0 Appendices

mschedctl -l is used to print out Moab's in memory configurations. If the plugin policy, with its full path,
doesn't show for the configured partition then Moab failed to load the partition. Note that when the
NODEALLOCATIONPOLICY is configured globally, it is configured on the "ALL" partition.

$ mschedctl -l -v|grep ^NODEALLOCATIONPOLICY
NODEALLOCATIONPOLICY[ALL] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[a] PLUGIN:/opt/moab/lib/liblastavailable.so
NODEALLOCATIONPOLICY[b] CONTIGUOUS
NODEALLOCATIONPOLICY[c] PLUGIN:/opt/moab/lib/libfirstavailable.so
NODEALLOCATIONPOLICY[d] [NONE]

mdiag -C

mdiag -C is used to validate the moab.cfg configuration. With a plugin node allocation policy, Moab will
validate that it can successfully load the plugin and that all of the required symbols are present.

$ mdiag -C
...
INFO: line #35 is valid: 'NODEALLOCATIONPOLICY PLUGIN:firstavailable'
INFO: line #36 is valid: 'PARCFG[a]NODEALLOCATIONPOLICY=PLUGIN:lastavailable'
INFO: line #37 is valid: 'PARCFG[b]NODEALLOCATIONPOLICY=CONTIGUOUS'
INFO: line #38 is valid: 'PARCFG[d]NODEALLOCATIONPOLICY=PLUGIN:firstavailable'

Appendix S: Scalable Systems Software Specification
l SSS Job Object Specification

l SSS Resource Management and Accounting Protocol Message Format

l SSS Node Object Specification

l SSS Resource Management and Accounting Protocol Wire Protocol

Scalable Systems Software Job Object Specification
SSSJob Object Specification
Draft Release Version 3.1.0
26 April 2011

Scott Jackson, PNNLStringDavid Jackson, Ames Lab
Brett Bode, Ames Lab

Status of This Memo
This document describes the job object to be used by Scalable Systems Software compliant components.
It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the job
object passed in the Data field of Requests and Responses. Queries can be issued to a job-cognizant

25.0 Appendices

1030 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1031

component in the form of modified XPATH expressions to the Get field to extract specific information
from the job object as described in the SSSRMAP protocol.

Abstract
This document describes the syntax and structure of the SSS job object. A job model is described that is
flexible enough to support the specification of very simple jobs as well as jobs with elaborate and
complex specification requirements in a way that avoids complex structures and syntax when it is not
needed. The basic assumption is that a solitary job specification should be usable for all phases of the job
lifecycle and can be used at submission, queuing, staging, reservations, quotations, execution, charging,
accounting, etc. This job specification provides support for multi-step jobs, as well as jobs with disparate
task descriptions. It accounts for operational requirements in a meta-scheduled environment where the
job is executed by multiple hosts in different administrative domains that support different resource
management systems.

Table of Contents

l Scalable Systems Software Job Object Specification

l Table of Contents

l 1.0 Introduction

o 1.1 Goals

o 1.2 Non-Goals

o 1.3 Examples

o 1.3.1 Very Simple Example

o 1.3.2 Moderate Example

o 1.3.3 Elaborate Example

l 2.0 Conventions used in this document

o 2.1 Keywords

o 2.2 Table Column Interpretations

o 2.3 Element Syntax Cardinality

l 3.0 The Job Model

l 4.0 JobGroup Element

o 4.1 JobGroup Properties

o 4.1.1 Simple JobGroup Properties

o 4.1.2 Job

o 4.1.3 JobDefaults

o 4.2 JobGroup Reference

25.0 Appendices

l 5.0 Job and JobDefaults Element

o 5.1 Job Properties

o 5.1.1 Simple Job Properties

o 5.1.2 Feature Element

o 5.1.3 OutputFile Element

o 5.1.4 ErrorFile Element

o 5.1.5 InputFile Element

o 5.1.6 NotificationList Element

o 5.1.7 ResourceLimit Element

o 5.1.8 Credentials

o 5.1.9 Environment Element

o 5.1.9.1 Variable Element

o 5.1.10 Node Element

o 5.1.11 TaskDistribution Element

o 5.1.12 Dependency Element

o 5.1.13 Consumable Resources

o 5.1.14 Resource Element

o 5.1.15 Extension Element

o 5.1.16 TaskGroup

o 5.1.17 TaskGroupDefaults

o 5.2 Job Reference

l 6.0 TaskGroup and TaskGroupDefaults Element

o 6.1 TaskGroup Properties

o 6.1.1 Simple TaskGroup Properties

o 6.1.2 Task

o 6.1.3 TaskDefaults

o 6.2 TaskGroup Reference

l 7.0 Task and TaskDefaults Element

o 7.1 Task Properties

o 7.1.1 Simple Task Properties

o 7.2 Task Reference

25.0 Appendices

1032 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1033

l 8.0 Property Categories

o 8.1 Requested Element

o 8.2 Delivered Element

l 9.0 AwarenessPolicy Attribute

l 10. References

l Appendix A

l Units of Measure Abbreviations

1.0 Introduction
This specification proposes a standard XML representation for a job object for use by the various
components in the SSS Resource Management System. This object will be used in multiple contexts and
by multiple components. It is anticipated that this object will be passed via the Data Element of
SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

The representation needs to be inherently flexible. We recognize we will not be able to exhaustively
include the ever-changing job properties and capabilities that constantly arise.

The representation should use the same job object at all stages of that job’s lifecycle. This object will be
used at job submission, queuing, scheduling, charging and accounting, hence it may need to distinguish
between requested and delivered properties.

The design must account for the properties and structure required to function in a meta environment. It
needs to include the capability to support local mapping of properties, global name spaces, etc.

The equivalent of multi-step jobs must be supported. Each step (job) can have multiple logical task
descriptions.

Many potential users of the specification will not be prepared to implement the complex portions or fine-
granularity that others need. There needs to be a way to allow the more complicated structure to be
added as needed while leaving more straightforward cases simple.

There needs to be guidance for how to understand a given job object when higher order features are not
supported by an implementation, and which parts are required, recommended and optional for
implementers to implement.

It needs to support composite resources.

It should include the ability to specify preferences or fuzzy requirements.

1.2 Non-Goals

Name space considerations and naming conventions for most property values are outside of the scope of
this document.

25.0 Appendices

1.3 Examples

Example 25-1: Very Simple Example

This example shows a simple job object that captures the requirements of a simple job.

<Job>
<Id>PBS.1234.0</Id>
<State>Idle</State>
<User>scottmo</User>
<Executable>/bin/hostname</Executable>
<Processors>16</Processors>
<Duration>3600</Duration>

</Job>

Example 25-2: Moderate Example

This example shows a moderately complex job object that uses features such as required versus
delivered properties.

<Job>
<Id>PBS.1234.0</Id>
<Name>Heavy Water</Name>
<Project>nwchemdev</Project>
<User>peterk</User>
<Application>NWChem</Application>
<Executable>/usr/local/nwchem/bin/nwchem</Executable>
<Arguments>-input basis.in</Arguments>
<InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>
<Machine>Colony</Machine>
<QualityOfService>BottomFeeder</QualityOfService>
<Queue>batch_normal</Queue>
<State>Completed</State>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Charge>25410</Charge>
<Requested>
<Processors op=”GE”>12</Processors>
<Memory op=”GE” units=”GB”>2</Memory>
<Duration>3600</Duration>

</Requested>
<Delivered>
<Processors>16</Processors>
<Memory metric=”Average” units=”GB”>1.89</Memory>
<Duration>1155</Duration>

</Delivered>
<Environment>
<Variable name=”PATH”>/usr/bin:/home/peterk</Variable>

</Environment>
</Job>

Example 25-3: Elaborate Example

This example uses a job group to encapsulate a multi-step job. It shows this protocol’s ability to
characterize complex job processing capabilities. A component that processes this message is free to
retain only that part of the information that it requires. Superfluous information can be ignored by the
component or filtered out (by XSLT for example).

25.0 Appendices

1034 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1035

<JobGroup>
<Id>workflow1</Id>
<State>Active</State>
<Name>ShuttleTakeoff</Name>
<JobDefaults>
<StagedTime>1051557859</StagedTime>
<SubmitHost>asteroid.lbl.gov</SubmitHost>
<SubmitTime>1051556734</SubmitTime>
<Project>GrandChallenge18</Project>
<GlobalUser>C=US,O=LBNL,CN=Keith Jackson</GlobalUser>
<User>keith</User>
<Environment>
<Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>
<Variable name=”PATH”>/usr/bin:~/bin:</Variable>

<Environment>
</JobDefaults>
<Job>
<Id>fr15n05.1234.0</Id>
<Name>Launch Vector Initialization</Name>
<Executable>/usr/local/gridphys/bin/lvcalc</Executable>
<Queue>batch</Queue>
<State>Completed</State>
<Machine>SMP2.emsl.pnl.gov</Machine>
<StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Quote>http://www.pnl.gov/SMP2#654321</Quote>
<Charge units=”USD”>12.75</Charge>
<Requested>
<Duration>3600</Duration>
<Processors>2</Processors>
<Memory>1024</Memory>

</Requested>
<Delivered>
<Duration>1155</Duration>
<Processors consumptionRate=”0.78”>2</Processors>
<Memory metric=”Max”>975</Memory>

</Delivered>
<TaskGroup>
<TaskCount>2</TaskCount>
<TaskDistribution type=”TasksPerNode”>1</TaskDistribution>
<Task>
<Node>node1</Node>
<Process>99353</Process>

</Task>
<Task>
<Node>node12</Node>
<Process>80209</Process>

</Task>
</TaskGroup>

</Job>
<Job>
<Id>fr15n05.1234.1</Id>
<Name>3-Phase Ascension</Name>
<Queue>batch_normal</Queue>
<State>Idle</State>
<Machine>Colony.emsl.pnl.gov</Machine>
<Priority>1032847</Priority>
<Hold>System</Hold>
<StatusMessage>Insufficient funds to start job</StatusMessage>
<Requested>

25.0 Appendices

<Duration>43200</Duration>
</Requested>
<TaskGroup>
<TaskCount>1</TaskCount>
<Name>Master</Name>
<Executable>/usr/local/bin/stage-coordinator</Executable>
<Memory>2048<Memory>
<Resource name=”License” type=”ESSL2”>1</Resource>
<Feature>Jumbo-Frame</Feature>

</TaskGroup>
<TaskGroup>
<Name>Slave</Name>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<Executable>/usr/local/bin/stage-slave</Executable>
<NodeCount>4</NodeCount>
<Requested>
<Processors group=”-1”>12</Processors>
<Processors conj=”Or” group=”1”>16</Processors>
<Memory>512</Memory>
<Node aggregation=”Pattern”>fr15n.*</Node>

</Requested>
</TaskGroup>

</Job>
</JobGroup>

2.0 Conventions Used in This Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

The columns of the property tables in this document have the following meanings:

Element
Name Name of the XML element (xsd;element) see [DATATYPES]

Type Data type defined by xsd (XML Schema Definition)as:
l String — xsd:string (a finite length sequence of printable characters)
l Integer — xsd:integer (a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals “true” or “false”)
l DateTime — xsd:int (a 32-bit unsigned long in GMT seconds since the EPOCH)
l Duration — xsd:int (a 32-bit unsigned long measured in seconds)

Description Brief description of the meaning of the property

25.0 Appendices

1036 Appendix S: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc2119.txt

Appendix S: Scalable Systems Software Specification 1037

Element
Name Name of the XML element (xsd;element) see [DATATYPES]

Appearance An indication of whether the given property must appear in the parent element. It assumes the
following meanings:

l MUST — This property is REQUIRED when the parent is specified
l SHOULD — This property is RECOMMENDED when the parent is specified.
l MAY — This property is OPTIONAL when the parent is specified.

Compliance An indication of the relative importance of supporting the given property.
l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Categories Some properties may be categorized into one of several categories. Letters in this column indicate
that the given property can be classified in the following property categories.

l R— This property can be encompassed in a Requested element.
l D — This property can be encompassed in a Delivered element.

2.3 Element Syntax Cardinality

Selected elements in the element syntax sections use regular expression wildcards with the following
meanings:

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies exactly one occurrence.

3.0 The JobModel
The primary object within the job model is a job. A job can be thought of as a single schedulable entity
and will be the object normally seen in job queues.

25.0 Appendices

Image 25-1: JobGroup contains Job and JobDefaults, which contain TaskGroup and TaskGroupDefaults

Jobs with dependencies on other jobs may be submitted in a job group. Jobs within a job group form a
DAG (directed acyclic graph) where the nodes are jobs and the edges represent dependencies on the
status of previous jobs. A job group will consist of at least one job. A job group can optionally specify job
defaults which are a set of job properties to be assumed by all jobs within the job group unless
overridden within the job.

A job may consist of multiple tasks, which are the finest grained work unit and represent an endpoint for
executing a given process instance. For example, a job that requests 3 nodes and 4 processors will have 4
tasks, two on one node and one on each of two nodes. Tasks may be grouped into task groups, which are
logical aggregations of tasks and their common properties. Submit filters, prologs, epilogs, notification
scripts, etc. run once only for each job. Whereas task groups function as logical descriptions of tasks and
their properties, they also describe the number of such tasks and the nodes that they run on. As an
example, a master task group (consisting of a single task) might ask for a node with a MATLAB license,

25.0 Appendices

1038 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1039

2GB of memory and an Internet connected network adapter while a slave task group (consisting of 12
tasks) could be targeted for nodes with more CPU bandwidth -- all within the same job and utilizing a
common MPI ring. Tasks (and hence taskgroups) can have different executables or environments, specify
different consumable resources or node properties. A job, therefore, may specify one or more task group.
A job that does not specify an explicit task group is considered as having a single implicit task group. A
job can optionally specify task group defaults which are a set of task group properties to be assumed by
all task groups within the job unless overridden within a task group.

A task group may specify one or more tasks. A task group that does not specify an explicit task is
considered as having a single implicit task. A task group can optionally specify task defaults which are a
set of task properties to be assumed by all tasks within the task group unless overridden within a task.

4.0 JobGroup Element
A JobGroup is an optional element that aggregates one or more interdependent jobs. Some resource
managers support the submission of job groups (multi-step jobs) and queries on the status of an entire
job group.

l A compliant implementation MAY support this element.

l A JobGroup MUST specify one or more JobGroup Properties.

l A JobGroup MUST contain one or more Jobs.

l A JobGroup MAY contain zero or more JobsDefaults.

The following illustrates this element’s syntax:

C<JobGroup>
<!-- JobGroup Properties -->+
<Job/>+
<JobDefaults/>?

</JobGroup>

4.1 JobGroup Properties

JobGroup Properties are properties that apply to the job group as a whole. These include the job group
id, jobs and job defaults, and other simple optional job properties.

Simple JobGroup Properties

Simple (unstructured) job group properties are enumerated in the table below.

Table 25-1: Simple JobGroup Properties

Element
Name Type Description Appearance Compliance

CreationTime DateTime Date and time that the job group was instan-
tiated

MAY MAY

25.0 Appendices

Element
Name Type Description Appearance Compliance

Description String Description of the job group MAY MAY

Id String Job group identifier MUST MUST

Name String Name of the job group MAY SHOULD

State String State of the job group as a whole. Valid
states may include NotQueued, Unstarted,
Active, and Completed.

MAY SHOULD

Job

A job group MUST contain one or more jobs.

See the next section for element details.

JobDefaults

A job group MAY contain zero or one job defaults.

See the next section for element details.

4.2 JobGroup Reference

When a simple reference to a predefined job group is needed in an encapsulating element, a JobGroup
element is used with the text content being the job group id:

<JobGroup> workflow1</JobGroup>

5.0 Job and JobDefaults Element
The Job and JobDefaults elements are of the same structure. A Job element encapsulates a job and may
be expressed as a standalone object. A JobDefaults element may only appear within a JobGroup and
represents the defaults to be taken by all jobs within the job group. Job properties in Job elements
override any properties found in a sibling JobDefaults element.

l A compliant implementation MUST support the Job element.

l A compliant implementation MAY support the JobDefaults element only if it supports the JobGroup
element.

l A job MUST specify one or more Job Properties.

l One or more TaskGroup elements MAY appear at this level.

l Zero or one TaskGroupDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

25.0 Appendices

1040 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1041

<Job>
<!-- Job Properties -->+
<TaskGroup/>*
<TaskGroupDefaults/>?

</Job>

5.1 Job Properties

Job Properties apply to a particular job or as default properties to all jobs. They include the job id, job
credentials, task groups, task group defaults, and other simple optional properties.

Simple Job Properties

Simple (unstructured) job properties are enumerated in the table below.

Table 25-2: Simple Job Properties

Element Name Type Description Appearance Compliance Categories

Application String Type of applic-
ation such as
Gaussian or
Nwchem

MAY MAY

Architecture String Type archi-
tecture for the
nodes on which
this job must
run

MAY MAY RD

Arguments String The arguments
for the execut-
able

MAY SHOULD

Charge Float The amount
charged for the
job

MAY SHOULD

Checkpointable Boolean Can this job be
checkpointed?

MAY MAY

CpuDuration Duration Number of cpu
seconds used by
the job

MAY SHOULD

25.0 Appendices

Element Name Type Description Appearance Compliance Categories

DeadlineTime DateTime Date and time
that a job must
end by

MAY MAY

EligibleTime DateTime Date and time
that a job must
start after

MAY MAY

EndTime DateTime Date and time
that a job ended
(independent of
success or fail-
ure)

MAY MUST

Executable String Executable. This
may be an abso-
lute or relative
path or a URI.*

MAY MUST

ExitCode Integer Exit code for the
job

MAY SHOULD

GlobalJob String Globally unique
job identifier
(possibly in the
form of a URI)

MAY SHOULD

Hold String Hold(s) on the
job. There may
be multiple
instances of this
element if there
is more than
one ld on the
job

MAY SHOULD

InitialWorking-Dir-
ectory

String Initial working
directory

MAY SHOULD

Interactive Boolean Is this an inter-
active job?

MAY SHOULD

25.0 Appendices

1042 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1043

Element Name Type Description Appearance Compliance Categories

Id String A local job iden-
tifier assigned to
the job by the
local resource
manager

MUST MUST

Name String Name of the job MAY SHOULD

State String State of the job.
Valid states may
include Idle,
Hold, Running,
Suspended, or
Completed

MAY MUST

Type String Type of job.
Meaning of this
extension prop-
erty is context
specific.

MAY MAY

Machine String Name of the sys-
tem or cluster
that runs the
job

MAY MUST RD

Network String Type of network
adapter
required by the
job

MAY MAY RD

NodeCount Integer Number of
nodes used by
the job

MAY MUST RD

OperatingSystem String Operating Sys-
tem required by
the job

MAY MAY RD

25.0 Appendices

Element Name Type Description Appearance Compliance Categories

Partition String Name of the par-
tition in which
the job should
run

MAY MAY RD

Priority Integer Current queue
priority (or
rank)for the job

MAY SHOULD

QualityOfService String Name of the
Quality of Ser-
vice (QoS)

MAY SHOULD RD

Queue String Name of the
Queue (or class)
that the job
runs in

MAY SHOULD RD

Quote String Identifier for a
guaranteed
charge rate
quote obtained
by the job

MAY MAY

Reservation String Identifier for a
reservation
used by the job

MAY MAY RD

ReservationTime DateTime Date and time
that a reser-
vation was
placed for the
job

MAY MAY

ResourceManagerType String Type of
resource man-
ager required to
run this job

MAY MAY RD

Restartable Boolean Can this job be
restarted?

MAY MAY

25.0 Appendices

1044 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1045

Element Name Type Description Appearance Compliance Categories

Shell String Specified the
shell necessary
to interpret the
job script

MAY MAY

StagedTime DateTime Date and time
that a job was
staged to the
local resource
management
system

MAY MAY

StartCount Integer Number of
times the sched-
uler tried to
start the job

MAY MAY

StartTime DateTime Date and time
that the job star-
ted

MAY MUST

StatusMessage String Natural lan-
guage message
that can be used
to provide detail
on why a job
failed, isn't run-
ning, etc.

MAY SHOULD

SubmitTIme DateTime Date and time
that a job was
submitted

MAY SHOULD

SubmitHost String FQDN of host
where the job
was submitted
from

MAY SHOULD

Suspendable Boolean Can this job be
suspended?

MAY MAY

25.0 Appendices

Element Name Type Description Appearance Compliance Categories

SuspendDuration Integer Number of
seconds the job
was in the Sus-
pended state

MAY MAY

TimeCategory String This allows the
specification of
shifts like
PrimeTime for
charging pur-
poses

MAY MAY

Duration Duration Number of
seconds in the
Running state

SHOULD MUST RD

* The Executable may be a script or a binary executable. If it is already on the target system it may be
referenced by an absolute or relative pathname (relative to InitialWorkingDirectory). If it is passed with
the job in a File object (see SSSRMAP), it can be referenced by an absolute or relative URI. An absolute
URI would specify a URL where the file can be downloaded (like with wget). A relative URI is specified by
preceding an identifier by a pound sign, as in

<Executable>#Script</Executable>

It will be found in a File object included along with the Job object with the Script as an identifier, as in

<File id=”Script”>echo hello world</File>

Feature Element

The Feature element connotes an arbitrary named feature of a node.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List — a comma-separated list of features

o Pattern — a regular expression (perl5) matching desired features

25.0 Appendices

1046 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1047

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list
elements. The default list delimiter is a comma.

l This element MAY be categorized as a requested or delivered property by being encompassed by
the appropriate element.

The following is an example of a feature element:

<Feature aggregation=”List”>feature1,feature2</Feature>

OutputFile Element

The OutputFile element specifies the name of the file to which the output stream (stdout) from the job
will be written.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate output file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of output
redirection attributes of type String. A compliant implementation SHOULD support this attribute if
OutputFile is supported. Possible values for this attribute include:

o Append — opens the output file for append

o Close — closes and discards the output stream

o Flush — output is written to output file as it is generated

o Keep — leave the output file on the execution host

o Merge — merges the output stream into the error stream

Note that when using the redirectList attributes, the cumulative effect of the ErrorFile and
OutputFile directives may be order dependent.

The following is an example of an OutputFile element:

<OutputFile redirectList=”Append”>~/myjob.out</OutputFile>

ErrorFile Element

The ErrorFile element specifies the name of the file to which the error stream (stderr) from the job
will be written.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate error file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of error
redirection attributes of type String. A compliant implementation SHOULD support this attribute if
ErrorFile is supported. Possible values for this attribute include:

o Close — closes and discards the error stream

o Append — opens the error file for append

25.0 Appendices

o Flush — output is written to output file as it is generated

o Keep — leave the output file on the execution host

o Merge — merges the error stream into the output stream

Note that when using the redirectList attributes, the cumulative effect of the ErrorFile and
OutputFile directives may be order dependent.

The following is an example of an ErrorFile element:

<ErrorFile redirectList=”Merge”></ErrorFile>

InputFile Element

The InputFile element specifies the name of the file from which the input stream (stdin) for the job
will be read.

l This element’s character content is the name of the file. If this element is omitted or it is empty,
then an appropriate input file is auto-determined by the queuing system.

l This element MAY have a redirectList attribute which is a comma-separated list of input
attributes of type String. A compliant implementation SHOULD support this attribute if
InputFile is supported. Possible values for this attribute include:

o Close — closes and discards the input stream

The following is an example of an InputFile element:

<InputFile redirectList=”Close”></InputFile>

NotificationList Element

The NotificationList element specifies the job-related events or conditions for which a notification
will be sent.

l This element’s character content is a comma-separated list of events or conditions for which a
notification should be sent. Possible values for the elements of this list include:

o JobStart — send a notification when the job starts

o JobEnd — send a notification when the job ends

o All — send notifications for all notifiable events

o None — do not send notifications for any events

l This element MAY have a uri attribute of type String which indicates where the notification is to
be sent. A compliant implementation MAY support this attribute if NotificationList is
supported. The uri is in the format: [scheme://]authority with the scheme being smtp and
the authority being an email address by default.

The following is an example of a NotificationList element:

<NotificationList uri=”smith@business.com”>JobStart,JobEnd</NotificationList>

25.0 Appendices

1048 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1049

ResourceLimitElement

The ResourceLimit element represents a resource limit with its name and value.

l This element MUST have a name attribute of type String. A compliant implementation MUST
support the name attribute if ResourceLimit is supported.

l This element MAY have a type attribute of type String that may have the values Hard or Soft.
If the limit is enforced by the operating system, a hard limit is one that cannot be increased once
it is set while a soft limit may be increased up to the value of the hard limit. If the type attribute
is omitted, both the soft and hard limits are set.

l This element’s character content is the resource limit’s value.

Some typical names include:

Name Description

CoreFileSize Maximum core file size

CpuTime CPU time in seconds

DataSegSize Maximum data size

FileSize Maximum file size

MaxMemorySize Maximum resident set size

MaxProcesses Maximum number of processes

MaxSwap Virtual memory limit

MaxMemLock Maximum locked-in-memory address space

MaxProcessors Maximum processors

MaxMemory Maximum memory

MaxDisk Maximum disk space

MaxNetwork Maximum network bandwidth

MaxFileIO Maximum file i/o

25.0 Appendices

Name Description

OpenFiles Maximum number of open files

Stacksize Maximum stack size

The following is an example of a ResourceLimit element:

<ResourceLimit name=”CPUTime”>1000000</ResourceLimit>

Credentials

Credentials are a special group of job properties that characterize an authenticated token or id. They can
be categorized in both requested and delivered forms.

Credential job properties are enumerated in the table below.

Table 25-3: Credential Job Properties

Element
Name Type Description Appearance Compliance Categories

Project String Name of the Project or Charge
Account

MAY SHOULD RD

GlobalUser String Globally unique user identifier.
This may be an X.509 DN for
example

MAY SHOULD RD

Group String Name of the local group id MAY MAY RD

User String Name of the local user id for the
job

MAY MUST RD

Environment Element

The Environment element encapsulates environment variables.

l This element MAY have an export attribute of type Boolean that which if set to True indicates
that all environment variables in the context of the job submission process should be exported in
the job’s execution environment.

l A compliant implementation SHOULD support this element.

l An Environment element MAY appear zero or one times within a given set of Job (or TaskGroup)

25.0 Appendices

1050 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1051

Properties.

l An Environment element MAY contain one or more Variable elements.

The following illustrates this element’s syntax:

<Environment>
<Variable/>+

</Environment>

Variable Element

The Variable element represents an environment variable with its name and value.

This element MUST have a name attribute of type String. A compliant implementation MUST support the
name attribute if Variable is supported. This element’s character content is the environment variable’s
value.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

Node Element

The Node element represents a node.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times within a given set of Job Properties.

l This element is of type String.

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List - a comma-separated list of features

o Pattern - a regular expression (perl5) matching desired features

o Range - a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list
elements. The default list delimiter is a comma.

l This element MAY have a count attribute of type Integer that indicates the instance count of the
specified node(s).

l This element MAY be categorized as a requested or delivered property by being encompassed by
the appropriate element.

The following is an example of a Node element:

<Node aggregation=”Pattern”>node[1-5]</Node>

25.0 Appendices

TaskDistribution Element

The TaskDistribution element describes how tasks are to be mapped to nodes. This mapping may be
expressed as a rule name, a task per node ratio or an arbitrary geometry.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or one times in a given set of Job (or TaskGroup) Properties.

l This element is of type String.

l This element MAY have a type attribute of type String that provides a hint as to the type of
mapping guidance provided. It may have values including Rule, TasksPerNode,
ProcessorsPerTask or Geometry. A compliant implementation MAY support the type
attribute if the TaskDistribution element is supported.

l It is possible to use Processors, NodeCount and TaskCount elements to specify a set of
mutually contradictory task parameters. When this occurs, components are responsible for
resolving conflicting requirements.

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>
<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

Dependency Element

The Dependency element allows a job’s execution to depend on the status of other jobs. In a job group
(multi-step job), some jobs may delay execution until the failure or success of other jobs creating in
general a Directed Acyclic Graph relationship between the jobs. This element’s content is of type String
and represents the job that the current job is dependent upon. Since a job may have two or more
dependencies, this element may appear more than once in a given job scope. A compliant implementation
SHOULD support this element if job groups are supported.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times in a given set of Job (or TaskGroup) Properties.

l This element is of type String and contains the JobId that the current job is dependent upon.

l This element MAY have a condition attribute of type String that indicates the basis for
determining when the current job executes in relation to the specified job. A compliant
implementation MUST support this attribute if this element is supported.
Possible values for this attribute include:

o OnSuccess this job should run after the referenced job only if it completes successfully (this
is the default if the type attribute is omitted)

o OnFailure this job should run after the referenced job only if it fails

o OnExit this job should run after the referenced job exits

25.0 Appendices

1052 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1053

l If the condition attribute is equal to OnExit, this element MAY have a code attribute of type
Integer that indicates the exit code that will trigger this job to run. If the code attribute is
omitted, then the current job should run after the referenced job for any exit status.

l This element MAY have a designator attribute of type String that indicates that indicates the
property of the job that identifies it as the dependent job. A compliant implementation MAY
support this attribute if this element is supported.
Possible values for this attribute include:

o JobId the job this job is dependent upon is specified by JobId (this is the default if the
designator attribute is omitted)

o JobName the job(s) this job is dependent upon are specified by JobName

The following is an example of a Dependency element:

<Dependency condition=”OnSuccess” designator=”JobId”>PBS.1234.0</Dependency>

Consumable Resources

Consumable Resources are a special group of properties that can have additional attributes and can be
used in multiple contexts. In general a consumable resource is a resource that can be consumed in a
measurable quantity.

l A consumable resource MAY have a context attribute of type String that indicates the sense in
which the resource is used. A compliant implementation MAY support this attribute. Possible
values for this attribute include:

o Configured — run this task only on nodes having the specified configured resources

o Available — run this task only on nodes having the specified available resources. (this is
the default if the context attribute is omitted)

o Used — the task used the indicated resources (this is analogous to being including in a
Delivered block)

o Dedicated — the indicated amount of the resource should be dedicated to the task

l A consumable resource MAY have a units attribute that is of type String that specifies the units
by which it is being measured. If this attribute is omitted, a default unit is implied. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a metric attribute that is of type String that specifies the type
of measurement being described. For example, the measurement may be a Total, an Average, a
Min or a Max. A compliant implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a duration attribute of type Duration that indicates the
amount of time for which that resource was used. This need only be specified if the resource was
used for a different amount of time than the duration for the job. A compliant implementation MAY
support this attribute if the element is supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that indicates the
average percentage that a resource was used over its duration. For example, an overbooked SMP

25.0 Appendices

running 100 jobs across 32 processors may wish to scale the usage and charge by the average
fraction of processor usage actually delivered. A compliant implementation MAY support this
attribute if the element is supported.

l A consumable resource MAY have a dynamic attribute of type Boolean that indicates whether the
resource allocated for this job should be allowed to grow or shrink dynamically. For example, if
processors is specified with dynamic equal to True, the job may be dynamically allocated more
processors as they become available. The growth bounds can be indicated via the op attribute
which is inherited when a consumable resource element is encapsulated within a Requested
element. A compliant implementation MAY support this attribute if the element is supported.

A list of simple consumable resources is listed in the table below.

Table 25-4: Simple Consumable Resources

Element
Name Type Description Appearance Compliance Categories

Disk Float Amount of disk MAY SHOULD RD

Memory Float Amount of memory MAY SHOULD RD

Network Float Amount of network MAY MAY RD

Processors Integer Number of processors MAY MUST RD

Swap Float Amount of virtual
memory

MAY MAY RD

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors duration=”1234” consumptionRate=”0.63”>4</Processors>

Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable
resource is defined by the Resource element.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of job (or task group) properties.

l Like the other consumable resources, this property MAY be categorized as a requested or
delivered property by being encompassed in the appropriate element.

l This element is of type Float.

25.0 Appendices

1054 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1055

l This element shares the same properties and attributes as the other consumable resources but it
requires an additional name (and optional type) attribute to describe it.

l It MUST have a name attribute of type String that indicates the type of consumable resource
being measured. A compliant implementation MUST support this attribute if the element is
supported.

l It MAY have a type attribute of type String that distinguishes it within a general resource class.
A compliant implementation SHOULD support this attribute if the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” duration=”750” metric=”KX”>10</Resource>

Extension Element

The Extension element provides a means to pass extensible properties with the job object.

Some applications may find it easier to use a named extension property than discover and handle
elements they do not understand or anticipate by name.

l A compliant implementation MAY support this element.

l This element MUST have a name attribute of type String that gives the extension property’s
name. A compliant implementation MUST support this attribute if this element is supported.

l This element MAY have a type attribute of type String that characterizes the context within
which the property should be understood. A compliant implementation SHOULD support this
attribute if this element is supported.

l This element’s character content, which is of type String, is the extension property’s value.

The following is an example of an Extension element:

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

TaskGroup

A job MAY specify one or more task groups.

See the next section for element details.

TaskGroupDefaults

A job MAY specify zero or more task group defaults.

See the next section for element details.

5.2 Job Reference

When a simple reference to a predefined job is needed in an encapsulating element, a Job element is
used with the text content being the job id:

25.0 Appendices

<Job> job123</Job>

6.0 TaskGroup and TaskGroupDefaults Element
The TaskGroup and TaskGroupDefaults elements have the same structure. A TaskGroup element
aggregates tasks. A TaskGroupDefaults element may only appear within a Job (or JobDefaults) and
represents the defaults to be taken by all task groups within the job. Task group properties in
TaskGroup elements override any properties found in a sibling TaskGroupDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<TaskGroup>
<!-- TaskGroup Properties -->+
<!-- Job Properties -->*
<Task>+
<TaskDefaults>?

</TaskGroup>

6.1 TaskGroup Properties

TaskGroup Properties apply to a particular task group or as default properties to encompassed task
groups. These properties include the task group id, its tasks, task defaults, and other simple task group
properties.

Simple TaskGroup Properties

Simple (unstructured) task group properties are enumerated in Table 6.

Table 25-5: Simple TaskGroup Properties

Element
Name Type Description Appearance Compliance Categories

TaskCount Integer Number of tasks in this
taskgroup

MAY MUST

Id String A task group identifier
unique within the job

MAY MAY

25.0 Appendices

1056 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1057

Element
Name Type Description Appearance Compliance Categories

Name String A task group name (such as
Master)

MAY SHOULD

Task

A task group MAY specify zero or more tasks.

See the next section for element details.

TaskDefaults

A task group MAY specify zero or more task defaults.

See the next section for element details.

6.2 TaskGroup Reference

When a simple reference to a predefined task group is needed in an encapsulating element, a TaskGroup
element is used with the text content being the task group id:

<TaskGroup> tg1</TaskGroup>

7.0 Task and TaskDefaults Element
The Task and TaskDefaults elements have the same structure. A Task element contains information
specific to a task (like the process id or the host it ran on). A TaskDefaults element may only appear
within a TaskGroup (or TaskGroupDefaults) element and represents the defaults for all tasks within
the task group. Task properties in Task elements override any properties found in a sibling
TaskDefaults element.

l A compliant implementation MAY support the TaskGroup element.

l A compliant implementation MAY support the TaskGroupDefaults element.

l A task group MUST specify one or more TaskGroup Properties.

l One or more Task elements MAY appear at this level.

l Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Task>
<!-- Task Properties -->+
<!-- Job Properties -->*

</Task>

25.0 Appendices

7.1 Task Properties

Task Properties are properties that apply to a particular task or as default properties to encompassed
tasks. These properties include the task id and other task properties.

Simple Task Properties

Simple (unstructured) task properties are enumerated in the table below.

Table 25-6: Simple Task Properties

Element
Name Type Description Appearance Compliance Categories

Node String Name of the node this task
ran on

MAY MUST

Session Integer Session id for the task group
or job

MAY MAY

Id String A task identifier unique
within the taskgroup

MAY MAY

7.2 Task Reference

When a simple reference to a predefined task is needed in an encapsulating element, a Task element is
used with the text content being the task id:

<Task>1</Task>

8.0 Property Categories
Certain properties need to be classified as being in a particular category. This is done when it is
necessary to distinguish between a property that is requested versus a property that was delivered.
When no such distinction is necessary, it is recommended that the property not be enveloped in one of
these elements. In general, a property should be enveloped in a category element only if it is expected
that the property will need to be attributed to more than one property category, or if it needs to make
use of some of the special attributes inherited from the category.

8.1 Requested Element

A requested property reflects properties as they were requested. A disparity might occur between the
requested value and the value delivered if a preference was expressed, if multiple options were
specified, or if ranges or pattern matching was specified.

l A compliant implementation SHOULD support this element.

25.0 Appendices

1058 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1059

The following illustrates the syntax of this element:

<Requested>
<!-- Requested Properties -->+

</Requested>

The following describes the attributes and elements for the example above:

/Requested

This element is used to encapsulate requested properties.

/Requested/<Requested Property>

Requested properties appear at this level.

Requested Properties inherit some additional attributes.

l A requested property MAY have an op attribute of type String that indicates a conditional
operation on the value. A compliant implementation SHOULD support this attribute. Valid values
for the op attribute include EQ meaning equals (which is the default), NE meaning not equal, LT
meaning less than, GT meaning greater than, LE meaning less than or equal to, GE meaning
greater than or equal to, Match which implies the value is a pattern to be matched.

l A requested property MAY have a conj attribute of type String that indicates a conjunctive
relationship with the previous element. A compliant implementation MAY support this attribute.
Valid values for the conj attribute include And (which is the default), Or, Nand meaning and not,
and Nor meaning or not.

l A requested property MAY have a group attribute of type Integer that indicates expression
grouping and operator precedence much like parenthetical groupings. A compliant implementation
MAY support this attribute. A positive grouping indicates the number of nested expressions being
opened with the property while a negative grouping indicates the number of nested expressions
being closed with the property.

l A requested property MAY have a preference attribute of type Integer that indicates a
preference for the property along with a weight (the weights are taken as a ratio to the sum of all
weights in the same group). A compliant implementation MAY support this attribute. If a group of
positive valued preference alternatives are specified, at least one of the preferences must be
satisfied for the job to run. If a group of negative valued preferences are specified, the
preferences will try to be met according to their weights but the job will still run even if it can’t
satisfy any of the preferred properties. (Weight ranking can be removed by making all weights
the same value (1 or -1 for example).

l A requested property MAY have a performanceFactor attribute of type Float that provides a
hint to the scheduler of what performance tradeoffs to make in terms of resources and start time.
A compliant implementation MAY support this attribute.

The following are four examples of using Requested Properties:

<Requested>

25.0 Appendices

<Processors op=”GE”>8</Processors>
<Processors op=”LE”>16</Processors>
<Duration>3600</Duration>

</Requested>
<Requested>
<NodeCount>1</NodeCount>
<Node aggregation=”Pattern”>fr15.*</Node>

<Requested>
<Requested>
<User group=”1”>scottmo</User>
<Account group=”-1”>mscfops</Account>
<User conj=”Or” group=”1”>amy</User>
<Account group=”-1”>chemistry</Account>

</Requested>
<Requested>
<Memory preference=”2”>1024</Memory>
<Memory preference=”1”>512</Memory>

</Requested>

8.2 Delivered Element

A delivered property reflects properties as they were actually utilized, realized or consumed. It reflects
the actual amounts or values that are used, as opposed to a limit, choice or pattern as may be the case
with a requested property.

l A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Delivered>
<!-- Delivered Properties -->+

</Delivered>

The following describes the attributes and elements for the example above:

/Delivered

This element is used to encapsulate delivered properties.

/Delivered/<Delivered Property>

Delivered properties appear at this level.

Delivered Properties inherit some additional attributes.

l A delivered property MAY have a group attribute of type Integer that indicates expression
grouping and operator precedence much like parenthetical groupings. A compliant implementation
MAY support this attribute. A positive grouping indicates the number of nested expressions being
opened with the property while a negative grouping indicates the number of nested expressions
being closed with the property. The purpose of this attribute would be to logically group delivered
properties if they were used in certain aggregations (like a job that spanned machines).

The following are the same four examples distinguishing the delivered amounts and values:

<Delivered>

25.0 Appendices

1060 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1061

<Processors>12</Processors>
<Duration>1234</Duration>

</Delivered>
<Delivered>
<Node>fr15n03</Node>

</Delivered>
<Delivered>
<User>scottmo</User>
<Account>mscfops</Account>

</Delivered>
<Delivered>
<Memory>1024</Memory>

</Delivered>

9.0 AwarenessPolicy Attribute
A word or two should be said about compatibility mechanisms. With all the leeway in the specification
with regard to implementing various portions of the specification, problems might arise if an
implementation simply ignores a portion of a job specification that is critical to the job function in
certain contexts. Given this situation, it might be desirable in some circumstances for jobs to be rejected
by sites that fail to fully support that job’s element or attributes. At other times, it might be desirable
for a job to run, using a best-effort approach to supporting unimplemented features. Consequently, we
define an awarenessPolicy attribute which can be added as an optional attribute to the Job element
or any other containment or property element to indicate how the property (or the default action for the
elements that the containment element encloses) must react when the implementation does not
understand an element or attribute.

An awareness policy of Reject will cause the server to return a failure if it receives a client request in
which it does not support an associated element name or attribute name or value. It is reasonable for an
implementation to ignore (not even look for) an element or attribute that would not be critical to its
function as long as ignoring this attribute or element would not cause an incorrect result. However, any
element or attribute that was present that would be expected to be handled in a manner that the
implementation does not support must result in a failure.

An awareness policy of Warn will accept the misunderstood element or attribute and continue to process
the job object on a best effort basis. However a warning MUST be sent (if possible) to the requestor
enumerating the elements and attributes that are not understood.

An awareness policy of Ignore will accept the unsupported element or attribute and continue to process
the job object on a best effort basis. The action could be to simply ignore the attribute.

l This name of this attribute is awarenessPolicy.

l This attribute is of type String.

l This attribute can have values of Reject, Warn or Ignore.

l A compliant implementation MAY support this attribute.

25.0 Appendices

l An implementation that does not support an attribute MUST reject any job object which contains
elements or attributes that it does not support. Furthermore, it SHOULD return a message to the
requestor with an indication of the element or attribute name it did not understand.

l This attribute MAY be present in a property or containment element.

l If an implementation does support the attribute, but it is absent, the default value of Reject is
implied.

l Individual elements in the job object may override the containing object’s awareness policy
default by including this attribute. For example, a job might specify an awarenessPolicy of
Reject at its root (the Job element) but may want to allow a particular subset of elements or
attributes to be ignored if not understood. Conversely, a job with a default awarenessPolicy of
Ignore might want to classify a subset of its optional elements as Reject if they are indispensable
to its correct interpretation. An implementation can opt to check or not check for this attribute at
any level it wants but must assume a Reject policy for any elements it does not check.

10.0 References

ISO 8601

ISO (International Organization for Standardization). Representations of dates and times,
1988-06-15. http://www.iso.ch/markete/8601.pdf

DATATYPES

XML Schema Part 2: Datatypes. Recommendation, 02 MAY 2001.
http://www.w3.org/TR/xmlschema-2/

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

MB Megabyte 2^20 bytes

25.0 Appendices

1062 Appendix S: Scalable Systems Software Specification

http://www.iso.org/iso/home.html
http://www.w3.org/TR/xmlschema-2/

Appendix S: Scalable Systems Software Specification 1063

Abbreviation Definition Quantity

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

ZB Zettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

Scalable Systems Software Resource Management and
Accounting Protocol (SSSRMAP) Message Format
Resource Management Interface Specs
Release v. 3.0.4
18 JUL 2005

Scott Jackson
Brett Bode

David Jackson
Kevin Walker

Status of This Memo
This is a specification defining an XML message format used between Scalable Systems Software
components. It is intended that this specification will continue to evolve as these interfaces are
implemented and thoroughly tested by time and experience.

Abstract
This document is a specification describing a message format for the interaction of resource
management and accounting software components developed as part of the Scalable Systems Software
Center. The SSSRMAP Message Format defines a request-response syntax supporting both functional and
object-oriented messages. The protocol is specified in XML Schema Definition. The message elements

25.0 Appendices

defined in this specification are intended to be framed within the Envelope and Body elements defined in
the SSSRMAP Wire Protocol specification document.

Table of Contents

l 1.0 Introduction

l 2.0 Conventions Used in this Document

o 2.1 Keywords

o 2.2 XML Case Conventions

o 2.3 Schema Definitions

l 3.0 Encoding

o 3.1 Schema Header and Name spaces

o 3.2 Element Descriptions

o 3.2.1 The Request Element

o 3.2.2 The Object Element

o 3.2.3 The Get Element

o 3.2.4 The Set Element

o 3.2.5 The Where Element

o 3.2.6 The Option Element

o 3.2.7 The Data Element

o 3.2.8 The File Element

o 3.2.9 The Count Element

o 3.2.10 The Response Element

o 3.2.11 The Status Element

o 3.2.12 The Value Element

o 3.2.13 The Code Element

o 3.2.14 The Message Element

o 3.3 Modified XPATH Expressions

o 3.3.1 Sample Modified XPATH expressions

o 3.4 Examples

o 3.4.1 Sample Requests

o 3.4.2 Sample Responses

25.0 Appendices

1064 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1065

l 4.0 Error Reporting

l 5.0 References

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular
infrastructure for resource management and accounting on terascale clusters including resource
scheduling, node daemon support, comprehensive usage accounting and user interfaces emphasizing
portability to terascale vendor operating systems. Existing resource management and accounting
components feature disparate APIs (Application Programming Interfaces) requiring various forms of
application coding to interact with other components.

This document proposes a common message format expressed in an XML request-response syntax to be
considered as the foundation of a standard for communications between and among resource
management and accounting software components. In this document this standard is expressed in two
levels of generality. The features of the core SSSRMAP protocol common to all resource management
and accounting components in general are described in the main body of this document. The aspects of
the syntax specific to individual components are described in component-specific binding documents.

2.0 Conventions Used in This Document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119 [RFC2119].

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications
“Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style
capitalizes the first character of each word and compounds the name. LCC style capitalizes the first
character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

l Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

l Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain
(example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of
JOB.ID, Job_ID or job-id).

2.3 Schema Definitions

SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file takes precedence.

25.0 Appendices

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages SHALL
be defined in terms of XML schema [XML_SCHEMA].

3.1 Schema Header and Name Spaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:sssrmap="http://scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="http://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 Element Descriptions

The following subsections describe the elements that make up SSSRMAP messages. SSSRMAP messages
are transmitted in the Body and Envelope elements as described in the SSSRMAP Wire Protocol
specification [WIRE_PROTOCOL].

The Request Element

The Request element specifies an individual request. An object-oriented request will have at least one
Object element while a functional request will not have one. Depending on context, the Request
element MAY contain one or more Get elements or one or more Set elements and any number of Where
elements. Option, Data, File or Count elements may also be included. If a component supports it,
chunking may be requested where large response data is possible. Setting the chunking attribute to
“True” requests that the server break a large response into multiple chunks (each with their own
envelope) so they can be processed in separate pieces.

Only an action attribute is required. All other attributes are optional.

Attribute Description

action Specifies the action or function to be performed

actor The authenticated user sending the request

id Uniquely maps the request to the appropriate response

chunking Requests that segmentation be used for large response data if set to “True”

chunkSize Requests that the segmentation size be no larger than the specified amount

25.0 Appendices

1066 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1067

<complexType name="RequestType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Object" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Option" minOccurs="0" maxOccurs="unbounded"/>
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:Get" minOccurs="1" maxOccurs="unbounded"/>
<element ref="sssrmap:Set" minOccurs="1" maxOccurs="unbounded"/>

</choice>
<element ref="sssrmap:Where" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</choice>
<attribute name="action" type="string" use="required"/>
<attribute name="actor" type="string" use="required"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunking" type="sssrmap:BoolType" use="optional"/>
<attribute name="chunkSize" type="positiveInteger" use="optional"/>

</complexType>

<element name="Request" type="sssrmap:RequestType"/>

The Object Element

The Object element is used in an object-oriented request to specify the object receiving the action. It is
possible to have multiple Object elements in a request if an implementation supports multi-object
queries.

The object class name is specified as text content. All attributes are optional.

l join – the type of join to be performed with the preceding object

o A join attribute of “Inner” specifies an inner join. This is the default.

o A join attribute of “FullOuter” specifies a full outer join.

o A join attribute of “LeftOuter” specifies a left outer join.

o A join attribute of “RightOuter” specifies a right outer join.

o A join attribute of “Cross” specifies a cross join.

o A join attribute of “Union” specifies a union join.

<complexType name="ObjectType">
<simpleContent>
<extension base="string">
<attribute name="join" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Object" type="sssrmap:ObjectType"/>

The Get Element

The Get element is used to indicate the data fields to be returned in a query. Get is typically used within
requests with action=”query”. Multiple Get elements cause the fields to be returned in the order
specified. If no Get elements are specified, the query will return a default set of fields.

Only a name attribute is required. All other attributes are optional.

25.0 Appendices

Attribute Description

name The name of the data field to be returned. This MUST be of the form of a “Modified XPATH expres-
sion” as described in a later section.

op The operator to be used to aggregate or perform an operation on the returned values.
l An op attribute of “Sort” specifies an ascending sort operation
l An op attribute of “Tros” specifies a descending sort operation
l An op attribute of “Sum” returns the sum (only valid for numeric values)
l An op attribute of “Max” returns the maximum value
l An op attribute of “Min” returns the minimum value
l An op attribute of “Count” returns the number of values
l An op attribute of “Average” returns the average of the values
l An op attribute of “GroupBy” signifies that aggregates are grouped by this field

object Specifies the object for which you want the named attribute in a multi-object query.

units The units in which to return the value (if applicable)

<complexType name="GetType">
<attribute name="name" type="string" use="required"/>
<attribute name="object" type="string" use="optional"/>
<attribute name="op" type="sssrmap:GetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</complexType>

<element name="Get" type="sssrmap:GetType"/>

<simpleType name="GetOperatorType">
<restriction base="string">
<enumeration value="Sort"/>
<enumeration value="Tros"/>
<enumeration value="Count"/>
<enumeration value="Sum"/>
<enumeration value="Max"/>
<enumeration value="Min"/>
<enumeration value="Average"/>
<enumeration value="GroupBy"/>

</restriction>
</simpleType>

The Set Element

The Set element is used to specify the object data fields to be assigned values. Set is typically used
within requests with action=”Create” or action=”Modify”. The use of Get or Set elements
within a request is mutually exclusive.

The assignment value (to which the field is being changed) is specified as the text content. A Set element
without a value may be used as an assertion flag. Only the name attribute is required. All other
attributes are optional.

25.0 Appendices

1068 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1069

Attribute Description

name The name of the field being assigned a value. This MUST be of the form of a “Modified XPATH
expression” as described in a later section.

op The operator to be used in assigning a new value to the name. If an op attribute is not specified and
a value is specified, the specified value will be assigned to the named field (“assign”).

l An op attribute of “Assign” assigns value to the named field
l An op attribute of “Inc” increments the named field by the value
l An op attribute of “Dec” decrements the named field by the value

units The units corresponding to the value being set

<complexType name="SetType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:SetOperatorType" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Set" type="sssrmap:SetType"/>

<simpleType name="SetOperatorType">
<restriction base="string">
<enumeration value="Assign"/>
<enumeration value="Inc"/>
<enumeration value="Dec"/>

</restriction>
</simpleType>

TheWhere Element

A Request element may contain one or more Where elements that specify the search conditions for
which objects the action is to be performed on.

The condition value (against which the field is tested) is specified as the text content. A Where element
without a value may be used as a truth test. Only the name attribute is required. All other attributes are
optional.

Attribute Description

name The name of the data field to be tested. This MUST be of the form of a “Modified XPATH expression”
as described in a later section.

25.0 Appendices

Attribute Description

op The operator to be used to test the name against the value. If an op attribute is not specified and a
value is specified, the field will be tested whether it is equal to the value (“EQ”).

l An op attribute of “EQ” specifies an equality comparison
l An op attribute of “LT” specifies a “less than” comparison
l An op attribute of “GT” specifies a “greater than” comparison
l An op attribute of “LE” specifies a “less than or equal to” test
l An op attribute of “GE” specifies a “greater than or equal to” test
l An op attribute of “NE” specifies a “not equal to” test
l An op attribute of “Match” specifies a regular expression matching comparison

conj Indicates whether this test is to be ANDed or ORed with the immediately preceding where condition
l A conj attribute of “And” specifies an “and” conjunction
l A conj attribute of “Or” specifies an “or” condition
l A conj attribute of “AndNot” specifies an “and not” conjunction
l A conj attribute of “OrNot” specifies an “or not” condition

group Indicates an increase or decrease of parentheses grouping depth
l A positive number indicates the number of left parentheses to precede the condition, i.e.
group=”2” represents “((condition”.

l A negative number indicates the number of right parentheses to follow the condition, i.e.
group=”-2” represents “condition))”.

object Specifies the object for the first operand in a multi-object query.

subject Specifies the object for the second operand in a multi-object query.

units Indicates the units to be used in the value comparison

25.0 Appendices

1070 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1071

<complexType name="WhereType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>
<attribute name="group" type="integer" use="optional"/>
<attribute name="units" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Where" type="sssrmap:WhereType"/>

<simpleType name="WhereOperatorType">
<restriction base="string">
<enumeration value="EQ"/>
<enumeration value="GT"/>
<enumeration value="LT"/>
<enumeration value="GE"/>
<enumeration value="LE"/>
<enumeration value="NE"/>
<enumeration value="Match"/>

</restriction>
</simpleType>

The Option Element

The Option element is used to indicate processing options for the command. An option might be used to
indicate that command usage or special formatting is desired, or that the command is to be invoked with
particular options.

The option value is specified as the text content. An Option element without a value may be used as an
assertion flag. Only the name attribute is required. All other attributes are optional.

Attribute Description

name The name of the field being assigned a value

op The operator to be used to disassert the option
l An op attribute of “Not” specifies that the option is not asserted

conj Indicates whether this test is to be ANDed or ORed with the immediately preceding where condition
l A conj attribute of “And” specifies an “and” conjunction
l A conj attribute of “Or” specifies an “or” condition
l A conj attribute of “AndNot” specifies an “and not” conjunction
l A conj attribute of “OrNot” specifies an “or not” condition

25.0 Appendices

<complexType name="OptionType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="op" type="sssrmap:OptionOperatorType" use="optional"/>
<attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="Option" type="sssrmap:OptionType"/>

<simpleType name="OptionOperatorType">
<restriction base="string">
<enumeration value="Not"/>

</restriction>
</simpleType>

The Data Element

A Request or Response element may have one or more Data elements that allow the supplying of
context-specific data. A request might pass in a structured object via a Data element to be acted upon.
Typically a query will result in a response with the data encapsulated within a Data element.

The following attributes are optional:

Attribute Description

name Object name describing the contents of the data

type Describing the form in which the data is represented
l A type attribute of “XML” indicates the data has internal xml structure and can be
recursively parsed by an XML parser

l A type attribute of “Binary” indicates the data is an opaque dataset consisting of binary
data

l A type attribute of “String” indicates the data is an ASCII string
l A type attribute of “Int” indicates the data is an integer
l A type attribute of “Text” indicates the data is in formatted human-readable text
l A type attribute of “HTML” indicates the data is represented in HTML

<complexType name="DataType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute ref="sssrmap:Type" use="optional"/>

</complexType>

<element name="Data" type="sssrmap:DataType"/>

The File Element

A Request or Response element may have one or more File elements of type String that allow the
inclusion of files. The files may be either text or binary and may be referenced by objects inside the Data
element. A file may be compressed using the gzip algorithm [ZIP]. A binary file or a compressed file must

25.0 Appendices

1072 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1073

be base64 encoded as defined in XML Digital Signatures
(“http://www.w3.org/2000/09/xmldsig#base64”). Metadata describing the modes and properties
of the resulting file are passed as parameters. The text or base64 encoded file data forms the string
content of the File element.

The following attributes are optional:

Attribute Description

id Specifies an identifier that allows the file to be referenced from within another object. If more
than one File elements are specified, this attribute is REQUIRED in each of them.

name Specifies the name to give the file upon creation on the target system. This can be an absolute or
relative pathname (relative to the InitialWorkingDirectory).

owner Indicates what owner the file should be changed to. By default it will be changed to the UserId
that the authenticated actor maps to on the target system. Note that this function should succeed
only if the requestor has the privileges to do so (i.e. authenticated as root).

group Indicates what group the file should be changed to. By default it will be set to the primary groupid
of the UserId that the authenticated actor maps to on the target system. Note that this function
should succeed only if the requestor has the proper privileges.

mode Indicates the permissions the file should possess. By default it will be set according to the default
umask for the UserId that the authenticated actor maps to on the target system. Note that this
function should not set permissions for the file that exceed the privileges for the actor. These per-
missions can be specified using either an octal number or symbolic operations (as accepted by the
GNU chmod(1) command).

compressed Indicates whether the file has been compressed
l A compressed attribute of “True” indicates the file has been compressed.
l A compressed attribute of “False” indicates the file has not been compressed. This is the
default.

encoded Indicates whether the file has been base64 encoded
l An encoded attribute of “True” indicates the file has been encoded.
l An encoded attribute of “False” indicates the file has not been encoded. This is the
default.

25.0 Appendices

<complexType name="FileType">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="name" type="string" use="optional"/>
<attribute name="owner" type=="string" use="optional"/>
<attribute name="group" type="string" use="optional"/>
<attribute name="mode" type="string" use="optional"/>
<attribute name="compressed" type="boolean" use="optional"/>
<attribute name="encoded" type="boolean" use="optional"/>

</complexType>

<element name="file type="sssrmap:FileType"/>

The Count Element

A single Count element may be included within a Request or Response and is context-specific. This
can be used to represent the number of objects acted upon or returned.

<element name="Count" type="positiveInteger"/>

The Response Element

The Response element specifies an individual response. It MUST contain a Status element. It MAY also
contain Count and any number of Data or File elements. If chunking has been requested and is
supported by the server, a large response may be broken up into multiple chunks (each with their own
envelope). The chunkNum attribute can be used to indicate which chunk the current one is. The
chunkMax attribute can be used to determine when all the chunks have been received (all chunks have
been received if chunkNum=chunkMax or chunkMax=0).

It MAY have any of the following attributes:

Attribute Description

id Uniquely maps the response to the corresponding request

chunkNum Integer indicating the current chunk number [1 is implied when this attribute is missing or blank]

chunkMax Integer indicating the number of chunks expected [-1 means unknown but more chunks to follow;
0 means unknown but this is the last chunk; 0 is implied if this attribute is missing or blank]

<complexType name="ResponseType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="sssrmap:Status" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>
<element ref="sssrmap:File" minOccurs="0" maxOccurs="unbounded"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>
<attribute name="object" type="string" use="optional"/>
<attribute name="action" type="string" use="optional"/>
<attribute name="id" type="string" use="optional"/>
<attribute name="chunkNum" type="integer" use="optional"/>
<attribute name="chunkMax" type="integer" use="optional"/>

</complexType>

<element name="Response" type="sssrmap:ResponseType"/>

25.0 Appendices

1074 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1075

The Status Element

A Response element MUST contain a single Status element that indicates whether the reply
represents a success, warning or failure. This element is composed of the child elements Value, Code
and Message. Of these, Value and Code are required, and Message is optional.

<complexType name="StatusType">
<choice minOccurs="1" maxOccurs="unbounded">
<element ref="sssrmap:Value" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Code" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:Message" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

</choice>
</complexType>

<element name="Status" type="sssrmap:StatusType"/>

The Value Element

The Value element is of type String and MUST have a value of “Success”, “Warning” or “Failure”.

<simpleType name="StatusValueType">
<restriction base="string">
<enumeration value="Success"/>
<enumeration value="Warning"/>
<enumeration value="Failure"/>

</restriction>
</simpleType>

<element name="Value" type="sssrmap:StatusValueType"/>

The Code Element

A Response element must contain a single Code element that specifies the 3-digit status code for the
response. Refer to the next section on Error Reporting for a description and listing of supported status
codes.

<simpleType name="CodeType">
<restriction base="string">
<pattern value="[0-9]{3}"/>

</restriction>
</simpleType>

<element name="Code" type="sssrmap:CodeType"/>

The Message Element

A Response element may contain a single Message element that is context specific to the success or
failure response. The message should be an error message if status is false. If present for a successful
response, it may be used as a human readable message for a user interface.

<element name="Message" type="string"/>

3.3 Modified XPATH Expressions

The name attribute used within the Get, Set and Where Elements MUST have the form of a modified
XPATH expression as defined in this section. Usually this will just be the simple name of the object
property. Some complex objects, such as the SSS Job Object and the SSS Node Object, however, are

25.0 Appendices

represented in a structured way with nested elements. In order to define a consistent and flexible way to
access and manipulate these objects as well as keeping the flat XML objects simple and straightforward,
SSSRMAP specifies that a “Modified XPATH” syntax be used.

In essence, “Modified XPATH” is defined to be an XPATH [XPATH] expression with the exception that the
“//” may be omitted from the beginning of the expression when a document search is desired. Thus, on
the server side, a standard XPATH routine can be used by prepending “//” to any expression that does
not begin with a “/”.

The response data should always include all of the structure of the queried object necessary to place the
requested data in its proper context.

See the XPATH specification for a full description of XPATH. The XPath 1.0 Recommendation is
http://www.w3.org/TR/1999/REC-xpath-19991116. The latest version of XPath 1.0 is available
at http://www.w3.org/TR/xpath.

Sample Modified XPATH Expressions

Consider the following hypothetical object(s) (which might be returned within a Data element).

<Job>
<JobId>PBS.1234.0</JobId>
<Requested>
<Memory op=”GE”>512</Memory>
<Processors>2</Processors>
<WallDuration>P3600S</WallDuration>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>
<WallDuration>P1441S</WallDuration>

</Utilized>
</Job>

To get everything above for this job you would not need a Get element:

<Request action=”Query”>
<Object>Job</Object>
<Where name=”JobId”>PBS.1234.0</Where>

</Request>

If you used <Get name=”JobId”/> you would get back:

<Job>
<JobId>PBS.1234.0</JobId>

</Job>

If you used <Get name=”Memory”/> (or name=”/Job/*/Memory”) you would get:

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

25.0 Appendices

1076 Appendix S: Scalable Systems Software Specification

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

Appendix S: Scalable Systems Software Specification 1077

If you used <Get name=”Requested/Memory”/> (or name=”/Job/Requested/Memory”) you
would get:

<Job>
<Requested>
<Memory op=”GE”>512</Memory>

</Requested>
</Job>

If you used <Get name=”Memory[@metric=’Average’]”/> (or name=”Memory[@metric]”) you
would get:

<Job>
<Utilized>
<Memory metric=”Average”>488</Memory>

</Utilized>
</Job>

3.4 Examples

Sample Requests

Requesting a list of nodes with a certain configured memory threshold (batch format):

<Request action=”Query” id=”1”>
<Object>Node</Object>
<Get name=”Name” />
<Get name=”Configured/Memory” />
<Where name=”Configured/Memory” op=”GE” units=”MB”>512</Where>

</Request>

Activating a couple of users:

<Request action=”Modify”>
<Object>User</Object>
<Set name=”Active”>True</Set>
<Where name=”Name”>scott</Where>
<Where name=”Name” conj=”Or”/>brett</Where>

</Request>

Submitting a simple job:

<Request action=”Submit”>
<Object>Job</Object>
<Data>
<Job>
<User>xdp</User>
<Account>youraccount</Account>
<Command>myprogram</Command>
<InitialWorkingDirectory>/usr/home/scl/xdp</InitialWorkingDirectory>
<RequestedNodes>4</RequestedNodes>
<RequestedWCTime>100</RequestedWCTime>

</Job>
</Data>

</Request>

25.0 Appendices

Sample Responses

A response to the available memory nodes query (batch format)

<Response id=”1”>
<Status>
<Value>Success</Value>
<Code>000</Code>

</Status>
<Count>2</Count>
<Data>
<Node>
<Name>fr01n01</Name>
<Configured>
<Memory>512</Memory>

</Configured>
</Node>
<Node>
<Name>fr12n04</Name>
<Configured>
<Memory>1024</Memory>

</Configured>
</Node>

</Data>
</Response>

Two users successfully activated

<Response>
<Status>
<Code>000</Code>
<Message>Two users were successfully modified</Message>

</Status>
<Count>2</Count>

</Response>

A failed job submission:

<Response>
<Status>
<Value>Failure</Value>
<Code>711</Code>
<Message>Invalid account specified. The job was not submitted.</Message>

</Status>
</Response>

4.0 Error Reporting
SSSRMAP requests will return a status and a 3-digit response code to signify success or failure
conditions. When a request is successful, a corresponding response is returned with the status
element set to Success and the code element set to “000”. When a request results in an error detected
by the server, a response is returned with the status element set to Failure and a 3-digit error code
in the code element. An optional human-readable message may also be include in a failure response
providing context-specific detail about the failure. The default message language is US English. (The
status flag makes it easy to signal success or failure and allows the receiving peer some freedom in the
amount of parsing it wants to do on failure [BXXP]).

25.0 Appendices

1078 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1079

Success codes:

Code Response Text in US English

0xx Request was successful

000 General Success

010 Help/usage reply

020 Status reply

030 Subscription successful

035 Notification successful (Ack)

040 Registration successful

050-079 Component-defined

080-099 Application-defined

Warning codes:

Code Response Text in US English

1xx Request was successful but includes a warning

100 General warning (examine message for details)

102 Check result (Did what you asked but may not have been what you intended -- or information is sus-
pect)

110 Wire Protocol or Network warning

112 Redirect

114 Protocol warning (something was wrong with the protocol, but best effort guesses were applied to fulfill
the request)

25.0 Appendices

Code Response Text in US English

120 Message Format warning

122 Incomplete specification (request missing some essential information -- best effort guess applied)

124 Format warning (something was wrong with the format but best effort guesses were applied to fulfill
the request)

130 Security warning

132 Insecure request

134 Insufficient privileges (Response was sanitized or reduced in scope due to lack of privileges)

140 Content or action warning

142 No content (The server has processed the request but there is no data to be returned

144 No action taken (nothing acted upon -- i.e. deletion request did not match any objects)

146 Partial content

148 Partial action taken

150-
179

Component-defined

180-
199

Application-defined

Wire protocol codes:

Code Response Text in US English

2xx A problem occurred in the wire protocol or network

200 General wire protocol or network error

210 Network failure

25.0 Appendices

1080 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1081

Code Response Text in US English

212 Cannot resolve host name

214 Cannot resolve service port

216 Cannot create socket

218 Cannot bind socket

220 Connection failure

222 Cannot connect

224 Cannot send data

226 Cannot receive data

230 Connection rejected

232 Timed out

234 Too busy

236 Message too large

240 Framing failure

242 Malformed framing protocol

244 Invalid payload size

246 Unexpected end of file

250-279 Component-defined

280-299 Application-defined

25.0 Appendices

Message format codes:

Code Response Text in US English

3xx A problem occurred in the message format

300 General message format error

302 Malformed XML document

304 Validation error(XML Schema)

306 Name space error

308 Invalid message type (Something other than Request or Response in Body

310 General syntax error in request

311 Object incorrectly (or not) specified

312 Action incorrectly (or not) specified

313 Invalid Action

314 Missing required element or attribute

315 Invalid Object (or Object-Action combination

316 Invalid element or attribute name

317 Illegal value for element or attribute

318 Illegal combination

319 Malformed Data

320 General syntax error in response

321 Status incorrectly (or not)specified

25.0 Appendices

1082 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1083

Code Response Text in US English

322 Code incorrectly (or not)specified

324 Missing required element or attribute

326 Invalid element or attribute name

327 Illegal value for element or attribute

328 Illegal combination

329 Malformed Data

340 Pipelining failure

342 Request identifier is not unique

344 Multiple messages not supported

346 Mixed messages not supported (Both requests and responses in same batch)

348 Request/response count mismatch

350-379 Component-defined

380-399 Application-defined

Security codes:

Code Response Text in US English

4xx A security requirement was not fulfilled

400 General security error

410 Negotiation failure

412 Not understood

25.0 Appendices

Code Response Text in US English

414 Not supported

416 Not accepted

420 Authentication failure

422 Signature failed at client

424 Authentication failed at server

426 Signature failed at server

428 Authentication failed at client

430 Encryption failure

432 Encryption failed at client

434 Decryption failed at server

436 Encryption failed at server

438 Decryption failed at client

440 Authorization failure

442 Authorization failed at client

444 Authorization failed at server

450-479 Component-defined

480-499 Application-defined

25.0 Appendices

1084 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1085

Eventmanagement codes:

Code Response Text in US English

5xx Failure conditions in event messaging

500 General Event Management failure

510 Subscription failed

520 Notification failed

550-579 Component-defined

580-599 Application-defined

Reserved codes:

Code Response Text in US English

6xx Reserved for future use

Server application codes:

Code Response Text in US English

7xx A server-side application-specific error occurred

700 General failure

710 Not supported

712 Not understood

720 Internal error

730 Resource unavailable (insufficient resources -- software, hardware or a service I rely upon is down)

740 Business logic

25.0 Appendices

Code Response Text in US English

750-779 Component-defined

780-799 Application-defined

Client application codes:

Code Response Text in US English

8xx A client-side application-specific error occurred

800 General failure

810 Not supported

812 Not understood

820 Internal error

830 Resource unavailable

840 Business logic

850-879 Component-defined

880-899 Application-defined

Miscellaneous codes:

Code Response Text in US English

9xx Miscellaneous failures

999 Unknown failure

5.0 References
[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[FED_XML] “U.S. Federal XML Guidelines”.

25.0 Appendices

1086 Appendix S: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc3080.txt
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html

Appendix S: Scalable Systems Software Specification 1087

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC
2104, February 1997.

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March
1997.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash
Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems

[WIRE_PROTOCOL] S. Jackson, B. Bode, D. Jackson, K. Walker, “Systems Software Resource Management
and Accounting Protocol (SSSRMAP) Wire Protocol“, SSS Resource Management and Accounting
Documents, January 2004.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate
Recommendation, 4 March 2002.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”,
April 2000.

[XPath 1.0] J. Clark, S. DeRose, “XML Path Language (XPath) Version 1.0”, 16 November 1999.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft,
expired August 2001.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/

Scalable Systems Software Node Object Specification
SSS Node Object Specification
Release Version 3.1.0
26 April 2011

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Status of This Memo
This is a specification of the node object to be used by Scalable Systems Software compliant components.
It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the node
object passed in the Data field of Requests and Responses. Queries can be issued to a node-cognizant
component in the form of modified XPATH expressions to the Get field to extract specific information
from the node object as described in the SSSRMAP protocol.

25.0 Appendices

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.faqs.org/rfcs/rfc3117.html
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt
http://www.scidac.org/ScalableSystems
http://sss.scl.ameslab.gov/docs.shtml
http://sss.scl.ameslab.gov/docs.shtml
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.aiai.ed.uk/project/ix/inca/xml-conventions.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
http://www.gzip.org/

Abstract
This document describes the syntax and structure of the SSS node object. This node model takes into
account various node property categories such as whether it represents a configured, available or
utilized property.

Table of Contents

l Scalable Systems Software Node Object Specification

l Table of Contents

l 1.0 Introduction

o 1.1 Goals

o 1.2 Examples

o 1.2.1 Simple Example

o 1.2.2 Elaborate Example

l 2.0 Conventions Used in This Document

o 2.1 Keywords

o 2.2 Table Column Interpretations

o 2.3 Element Syntax Cardinality

l 3.0 The Node Model

l 4.0 Node Element

o 4.1 Uncategorized Node Properties

o 4.1.1 Simple Node Properties

o 4.1.2 Extension Element

o 4.2 Property Categories

o 4.2.1 Configured Element

o 4.2.2 Available Element

o 4.2.3 Utilized Element

o 4.3 Categorized Node Properties

o 4.3.1 Consumable Resources

o 4.3.2 Resource Element

l Appendix A

l Units of Measure Abbreviations

25.0 Appendices

1088 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1089

1.0 Introduction
This specification proposes a standard XML representation for a node object for use by the various
components in the SSS Resource Management System. This object will be used in multiple contexts and
by multiple components. It is anticipated that this object will be passed via the Data Element of
SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively include the ever-
changing node properties and capabilities that constantly arise.

The same node object should be used at all stages of its lifecycle. This object needs to distinguish
between configured, available and utilized properties of a node.

Its design takes into account the properties and structure required to function in a meta environment. It
should eventually include the capability of resolving name space and locality issues, though the earliest
versions will ignore this requirement.

One should not have to make multiple queries to obtain a single piece of information — i.e. there should
not be two mutually exclusive ways to represent a node resource.

Needs to support resource metric as well as unit specifications.

1.2 Examples

Simple Example

This example shows a simple expression of the Node object.

<Node>
<Id>Node64</Id>
<Configured>
<Processors>2</Processors>
<Memory>512</Memory>

</Configured>
</Node>

Elaborate Example

This example shows a more elaborate Node object.

<Node>
<Id>64</Id>
<Name>Netpipe2</Name>
<Feature>BigMem</Feature>
<Feature>NetOC12</Feature>
<Opsys>AIX</Opsys>
<Arch>Power4</Arch>
<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>
<Swap>512</Swap>

</Configured>
<Available>

25.0 Appendices

<Processors>7</Processors>
<Memory metric=”Instantaneous”>143</Memory>

</Available>
<Utilized>
<Processors wallDuration=”3576”>8</Processors>
<Memory metric=”Average” wallDuration=”3576”>400</Memory>

</Utilized>
</Node>

2.0 Conventions Used in This Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

In the property tables, the columns are interpreted to have the following meanings:

Property Description

Element
Name

Name of the XML element (xsd:element)

Type Data type defined by xsd (XML Schema Definition) as:

l String — xsd:string(a finite length sequence of printable characters)
l Integer — xsd:integer(a signed finite length sequence of decimal digits)
l Float — xsd:float (single-precision 32-bit floating point)
l Boolean — xsd:boolean (consists of the literals “true” or “false”)
l DateTime — xsd:dateTime (discreet time values are represented in ISO 8601 extended
format CCYY-MM-DDThh:mm:ss where CC represents the century, YY the year, MM the
month and DD the day. The letter T is the date/time separator and hh, mm, ss represent
hour, minute and second respectively. This representation may be immediately followed
by a Z to indicate Coordinated Universal Time (UTC) or, to indicate the time zone, i.e. the
difference between the local time and Coordinated Universal Time, immediately followed
by a sign, + or -, followed by the difference from UTC.)

l Duration — xsd:duration (a duration of time is represented in ISO 8601 extended format
PnYnMnDTnHnMnS, where nY represents the number of years, nM the number of
months, nD the number of days, T is the date/time separator, nH the number of hours, nM
the number of minutes and nS the number of seconds. The number of seconds can include
decimal digits to arbitrary precision.)

Description Brief description of the meaning of the property

25.0 Appendices

1090 Appendix S: Scalable Systems Software Specification

http://www.ietf.org/rfc/rfc2119.txt

Appendix S: Scalable Systems Software Specification 1091

Property Description

Appearance This column indicates whether the given property has to appear within the parent element. It
assumes the following meanings:

l MUST — This property is REQUIRED when the parent is specified.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Compliance The column indicates whether a compliant implementation has to support the given property.
l MUST — A compliant implementation MUST support this property.
l SHOULD — A compliant implementation SHOULD support this property.
l MAY — A compliant implementation MAY support this property.

Categories Some properties may be categorized into one of several categories. Letters in this column indicate
that the given property can be classified in the following property categories.

l C — This property can be encompassed in a Configured element.
l A— This property can be encompassed in an Available element.
l U — This property can be encompassed in a Utilized element.

2.3 Element Syntax Cardinality

The cardinality of elements in the element syntax sections may make use of regular expression
wildcards with the following meanings:

Wildcard Description

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrences

The absence of one of these symbols implies one and only one occurrence.

3.0 The Node Model
The primary element within the node model is a node. One can speak of some node properties as being a
configured, available or utilized property of the node.

4.0 Node Element
The Node element is the root element of a node object and is used to encapsulate a node.

l A node object MUST have exactly one Node element.

l A compliant implementation MUST support this element.

25.0 Appendices

l A node MUST specify one or more Node Properties.

4.1 Uncategorized Node Properties

Uncategorized Node Properties are properties that apply to the node as a whole and do not need to be
distinguished between being configured, available or utilized. These include the node id and other
optional node properties.

Simple Node Properties

Simple (unstructured) node properties are enumerated in the table below.

Table 25-7: Simple Node Properties

Element
Name Type Description Appearance Compliance

Id String Node identifier MUST MUST

Name String Node name or pattern MAY MAY

OpSys String Operating System MAY SHOULD

Arch String Architecture MAY SHOULD

Description String Description of the node MAY MAY

State String State of the node. Valid states may include Offline,
Configured, Unknown, Idle, and Busy.

SHOULD MUST

Features String Arbitrary named features of the node (comma-
delimited string)

MAY SHOULD

Extension Element

The Extension element provides a means to pass extensible properties with the node object. Some
applications may find it easier to deal with a named extension property than discover and handle
elements for which they do not understand or anticipate by name.

l A compliant implementation MAY support this element.

l This element MUST have a name attribute that is of type String and represents the name of the
extension property. A compliant implementation MUST support this attribute if this element is
supported.

l This element MAY have a type attribute that is of type String and provides a hint about the
context within which the property should be understood. A compliant implementation SHOULD

25.0 Appendices

1092 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1093

support this attribute if this element is supported.

l The character content of this element is of type String and is the value of the extension property.

The following is an example of an Extension element:

<Extension type=”Chemistry” name=”Software”>NWChem</Extension>

4.2 Property Categories

Certain node properties (particularly consumable resources) need to be classified as being in a
particular category. This is done when it is necessary to distinguish between a property that is
configured versus a property that is available or utilized. For example, a node might be configured with
16 processors. At a particular time, 8 might be utilized, 7 might be available and 1 disabled. When a node
property must be categorized to be understood properly, the property MUST be enveloped within the
appropriate Property Category Element.

Configured Element

A configured node property reflects resources pertaining to the node that could in principle be used
though they may not be available at this time. This information could be used to determine if a job could
ever conceivably run on a given node.

l A compliant implementation MUST support this element.

The following is an example of using Configured Properties:

<Configured>
<Processors>16</Processors>
<Memory units=”MB”>512</Memory>

</Configured>

Available Element

An available node property refers to a resource that is currently available for use.

l A compliant implementation SHOULD support this element.

The following is an example of specifying available properties:

<Available>
<Processors>7</Processors>
<Memory units=”MB”>256</Memory>

</Available>

Utilized Element

A utilized node property reflects resources that are currently utilized.

l A compliant implementation SHOULD support this element.

The following is an example of specifying utilized properties:

<Utilized>
<Processors>8</Processors>
<Memory metric=”Average”>207</Memory>

</Utilized>

25.0 Appendices

4.3 Categorized Node Properties

Consumable Resources

Consumable Resources are a special group of node properties that can have additional attributes and can
be used in multiple categories. In general a consumable resource is a resource that can be consumed in a
measurable quantity.

l A consumable resource MUST be categorized as being a configured, available or utilized node
property by being a child element of a Configured, Available or Utilized element respectively.

l A consumable resource MAY have a units attribute that is of type String that specifies the units by
which it is being measured. If this attribute is omitted, a default unit is implied. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a metric attribute that is of type String that specifies the type
of measurement being described. For example, the measurement may be a Total, an Average, a
Min or a Max. A compliant implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a wallDuration attribute of type Duration that indicates the
amount of time for which that resource was used. This need only be specified if the resource was
used for a different amount of time than the wallDuration for the step. A compliant
implementation MAY support this attribute if the element is supported.

l A consumable resource MAY have a consumptionRate attribute of type Float that indicates the
average percentage that a resource was used over its wallDuration. For example, an overbooked
SMP running 100 jobs across 32 processors may wish to scale the usage and charge by the
average fraction of processor usage actually delivered. A compliant implementation MAY support
this attribute if the element is supported.

A list of simple consumable resources is listed in the table below.

Table 25-8: Consumable Resource Node Properties

Element
Name Type Description Appearance Compliance Categories

Processors Integer Number of processors MAY MUST CAU

Memory Float Amount of memory MAY SHOULD CAU

Disk Float Amount of disk MAY SHOULD CAU

Swap Float Amount of virtual
memory

MAY MAY CAU

Network Float Amount of network MAY MAY CAU

The following are two examples for specifying a consumable resource:

25.0 Appendices

1094 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1095

<Memory metric=”Max” units=”GB”>483</Memory>
<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable
resource is defined by the Resource element.

l A compliant implementation SHOULD support this element.

l This element MAY appear zero or more times within a given set of node properties.

l Like the other consumable resources, this property MUST be categorized as a configured,
available or utilized property by being encompassed in the appropriate elements.

l This element is of type Float.

l It shares the other same properties and attributes as the other consumable resources but it
requires an additional name (and optional type) attribute to describe it.

l This element MUST have a name attribute of type String that indicates the type of consumable
resource being measured. A compliant implementation MUST support this attribute if the element
is supported.

l This element MAY have a type attribute of type String that distinguishes it within a general
resource class. A compliant implementation SHOULD support this attribute if the element is
supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>
<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750”
metric=”KX”>10</Resource>

4.4 Node Reference

When a simple reference to a predefined node is needed in an encapsulating element, a Node element is
used with the text content being the node id:

<Node>node1</Node>

l This element MAY have an aggregation attribute of type String that provides a way to indicate
multiple values with a single expression. A compliant implementation MAY support the
aggregation attribute if the Feature element is supported. Possible values for this attribute
include:

o List a comma-separated list of features

o Pattern a regular expression (perl5) matching desired features

o Range a range of nodes of the form: <prefix>[5-23,77]

l If an aggregation attribute is specified with the value of List, this element MAY also have a
delimiter attribute of type String that indicates what delimiter is used to separate list elements.
The default list delimiter is a comma.

25.0 Appendices

l This element MAY have a count attribute of type Integer that indicates the instance count of the
specified node(s).

The following is another example of a Node element:

<Node aggregation=”Pattern”>node[1-5]</Node>

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity

B byte 1 byte

KB Kilobyte 2^10 bytes

MB Megabyte 2^20 bytes

GB Gigabyte 2^30 bytes

TB Terabyte 2^40 bytes

PB Petabyte 2^50 bytes

EB Exabyte 2^60 bytes

ZB Aettabyte 2^70 bytes

YB Yottabyte 2^80 bytes

NB Nonabyte 2^90 bytes

DB Doggabyte 2^100 bytes

Scalable Systems Software Resource Management and
Accounting Protocol (SSSRMAP) Wire Protocol
Resource Management Interface Specs
Release v. 3.0.3
13 May 2004

25.0 Appendices

1096 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1097

Scott Jackson
Brett Bode

David Jackson
Kevin Walker

Status of This Memo
This is a specification defining a wire level protocol used between Scalable Systems Software
components. It is intended that this specification will continue to evolve as these interfaces are
implemented and thoroughly tested by time and experience.

Abstract
This document is a specification describing a connection-oriented XML-based application layer client-
server protocol for the interaction of resource management and accounting software components
developed as part of the Scalable Systems Software Center. The SSSRMAP Wire Protocol defines a
framing protocol that includes provisions for security. The protocol is specified in XML Schema Definition
and rides on the HTTP protocol.

Table of Contents

l Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire
Protocol

l Table of Contents

l 1.0 Introduction

l 2.0 Conventions Used in this Document

o 2.1 Keywords

o 2.2 XML Case Conventions

o 2.3 Schema Definitions

l 3.0 Encoding

o 3.1 Schema Header and Name spaces

o 3.2 The Envelope Element

o 3.3 The Body Element

l 4.0 Transport Layer

l 5.0 Framing

o 5.1 Message Header Requirements

o 5.2 Message Chunk Format

o 5.3 Reply Header Requirements

25.0 Appendices

o 5.4 Reply Chunk Format

o 5.5 Message and Reply Tail Requirements and Multiple Chunks

o 5.6 Examples

o 5.6.1 Sample SSSRMAP Message Embedded in HTTP Request

o 5.6.2 Sample SSSRMAP Reply Embedded in HTTP Response

l 6.0 Asynchrony

l 7.0 Security

o 7.1 Security Token

o 7.1.1 The SecurityToken Element

o 7.1.2 Security Token Types

o 7.1.2.1 Symmetric Key

o 7.1.2.2 Asymmetric Key

o 7.1.2.3 Password

o 7.1.2.4 Cleartext

o 7.1.2.5 Kerberos

o 7.1.2.6 GSI (X.509)

o 7.1.3 Example

o 7.2 Authentication

o 7.2.1 The Signature Element

o 7.2.2 The DigestValue Element

o 7.2.3 The SignatureValue Element

o 7.2.4 Signature Example

o 7.3 Confidentiality

o 7.3.1 The EncryptedData Element

o 7.3.2 The EncryptedKey Element

o 7.3.3 The CipherValue Element

o 7.3.4 Encryption Example

l 8.0 Acknowledgements

l 9.0 References

25.0 Appendices

1098 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1099

1.0 Introduction
A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular
infrastructure for resource management and accounting on terascale clusters including resource
scheduling, node daemon support, comprehensive usage accounting and user interfaces emphasizing
portability to terascale vendor operating systems. Existing resource management and accounting
components feature disparate APIs (Application Programming Interfaces) requiring various forms of
application coding to interact with other components.

This document proposes a wire level protocol expressed in an XML envelope to be considered as the
foundation of a standard for communications between and among resource management and accounting
software components. Individual components additionally need to define the particular XML binding
necessary to represent the message format for communicating with the component.

2.0 Conventions Used in this Document

2.1 Keywords

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, RECOMMENDED, MAY, and
OPTIONAL in this document are to be interpreted as described in RFC2119.

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications
“Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style
capitalizes the first character of each word and compounds the name. LCC style capitalizes the first
character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

l Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

l Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

l Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain
(example: XMLSignature).

l Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of
JOB.ID, Job_ID or job-id).

2.3 Schema Definitions

SSSRMAP Schema Definitions appear like this

In case of disagreement between the schema file and this specification, the schema file takes precedence.

3.0 Encoding
Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages SHALL
be defined in terms of XML schema [XML_SCHEMA].

25.0 Appendices

http://www.ietf.org/rfc/rfc2119.txt

3.1 Schema Header and Name spaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema
xmlns="http://www.w3.org/201/XMLSchema"
xmlns:sssrmap="http://www.scidac.org/ScalableSystems/SSSRMAP"
targetNamespace="http://www.scidac.org/ScalableSystems/SSSRMAP"
elementFormDefault="qualified">

3.2 The Envelope Element

SSSRMAP messages and replies are encapsulated in the Envelope element. There are two possibilities
for the contents of this element. If the contents are unencrypted, this element MUST contain a Body
element and MAY contain a Signature element (refer to the section on Security). If the contents are
encrypted, this element MUST contain exactly one EncryptedData element (refer to the section on
Security). The Envelope element MAY contain name space and other xsd-specific information necessary
to validate the document against the schema. In addition, it MAY have any of the following attributes
which may serve as processing clues to the parser:

Attribute Description

type Amessage type providing a hint as to the body contents such as “Request” or “Notification”

component A component type such as “QueueManager” or “LocalScheduler”

name A component name such as “OpenPBS” or “Maui”

version A component version such as “2.2p12” or “3.2.2”

<complexType name=EnvelopeType">
<choice minOccurs="1" maxOccurs="1">
<choice minOccurs="1" maxOccurs="2">
<element ref="sssrmap:Signature" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Body" minOccurs="1" maxOccurs="1"/>

</choice>
<element ref="sssrmap:EncryptedData" minOccurs="1" maxOccurs="1"/>

</choice>
<attribute name="type" type="string" use="optional"/>
<attribute name="component" type="string" use="optional"/>
<attribute name="name" type="string" use="optional"/>
<attribute name="version" type="string" use="optional"/>

</complexType>

<element name="Envelope" type="sssrmap:EnvelopeType"/>

3.3 The Body Element

l SSSRMAP messages and replies are encapsulated in the Body element. This element MUST
contain exactly one Request or Response element.

25.0 Appendices

1100 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1101

<complexType name="BodyType">
<choice minOccurs="1" maxOccurs="1">
<element ref="sssrmap:Request" minOccurs="0" maxOccurs="1"/>
<element ref="sssrmap:Response" minOccurs="0" maxOccurs="1"/>
<any minOccurs="0" maxOccurs="1" namspace="##other"/>

</choice>
</complexType>

<element name="Body" type="sssrmap:BodyType"/>

4.0 Transport Layer
This protocol will be built over the connection-oriented reliable transport layer TCP/IP. Support for
other transport layers could also be considered, but native support for TCP/IP can be found on most
terascale clusters and automatically handles issues such as reliability and connection fullness for the
application developer implementing the SSSRMAP protocol.

5.0 Framing
Framing specifies how the beginning and ending of each message is delimited. Given that the encoding
will be expressed as one or more XML documents, clients and servers need to know when an XML
document has been fully read in order to be parsed and acted upon.

SSSRMAP uses the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-counting mechanism to
delimit the message segments. HTTP chunked encoding is used. This allows for optional support for
batched messages, large message segmentation and persistent connections.

5.1 Message Header Requirements

The HTTP request line (first line of the HTTP request header) begins with POST and is followed by a URI
and the version of the HTTP protocol that the client understands. It is suggested for this protocol that
the URI consist of a single slash, followed by the protocol name in uppercase (i.e. /SSSRMAP), though this
field is not checked and could be empty, a single slash or any URI.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-
ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Transfer-Encoding must be specified as chunked. The Content-Length must NOT be specified as the
chunk size is specified in the message chunk.

Other properties such as User-Agent, Host and Date are strictly optional.

5.2 Message Chunk Format

A message chunk consists of a chunk size in hexadecimal format (whose value is the number of bytes in
the XML message not including the chunk size and delimiter) delimited by a CR/LF “\r\n” and followed
by the message payload in XML that consists of a single XML document having a root element of
Envelope.

5.3 Reply Header Requirements

The HTTP response line (first line of the HTTP response header) begins with HTTP and a version
number, followed by a numeric code and a message indicating what sort of response is made. These
response codes and messages indicate the status of the entire response and are as defined by the HTTP

25.0 Appendices

standard. The most common response is 200 OK, indicating that the message was received and an
appropriate response is being returned.

The Content-Type must be specified as text/xml. Charset may be optionally specified and defaults to US-
ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Transfer-Encoding MUST be specified as chunked. The Content-Length must NOT be specified.

Other properties such as Server, Host and Date are strictly optional.

5.4 Reply Chunk Format

A reply chunk consists of a chunk size in hexadecimal format (whose value is the number of bytes in the
XML reply not including the chunk size and delimiter) delimited by a CR/LF “\r\n” and followed by the
reply payload in XML that consists of a single XML document having a root element of Envelope.

5.5Message and Reply Tail Requirements andMultiple Chunks

This specification only requires that single chunks be supported. A server may optionally be configured
to handle requests with persistent connections (multiple chunks). It will be the responsibility of clients to
know whether a particular server supports this additional functionality. After all chunks have been sent,
a connection is terminated by sending a zero followed by a carriage return-linefeed combination (0\r\n)
and closing the connection.

5.6 Examples

Sample SSSRMAP Message Embedded in HTTP Request

POST /SSSRMAP HTTP/1.1\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
9A\r\n
<Envelope …/>
0\r\n

Sample SSSRMAP Reply Embedded in HTTP Response

HTTP/1.1 200 OK\r\n
Content-Type: text/xml; charset=”utf-8”\r\n
Transfer-Encoding: chunked\r\n
\r\n
2B4\r\n
<Envelope …/>
0\r\n

6.0 Asynchrony
Asynchrony (or multiplexing) allows for the handling of independent exchanges over the same connection.
A widely-implemented approach is to allow pipelining (or boxcarring) by aggregating requests or
responses within the body of the message or via persistent connections and chunking in HTTP 1.1.
Pipelining helps reduce network latency by allowing a client to make multiple requests of a server, but
requires the requests to be processed serially [RFC3117]. Parallelism could be employed to further
reduce server latency by allowing multiple requests to be processed in parallel by multi-threaded
applications.

25.0 Appendices

1102 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1103

Segmentation may become necessary if the messages are larger than the available window. With
support for segmentation, the octet-counting requirement that you need to know the length of the whole
message before sending it can be relegated to the segment level – and you can start sending segments
before the whole message is available. Segmentation is facilitated via “chunking” in HTTP 1.1.

The current SSSRMAP strategy supports only a single request or response within the Body element. A
server may optionally support persistent connections from a client via HTTP chunking. Segmentation of
large responses is also optionally supported via HTTP chunking. Later versions of the protocol could
allow pipelined requests and responses in a single Body element.

7.0 Security
SSSRMAP security features include capabilities for integrity, authentication, confidentiality, and non-
repudiation. The absence or presence of the various security features depend upon the type of security
token used and the protection methods you choose to specify in the request.

For compatibility reasons, SSSRMAP specifies six supported security token types. Extensibility features
are included allowing an implementation to use alternate security algorithms and security tokens. It is
also possible for an implementation to ignore security features if it is deemed nonessential for the
component. However, it is highly RECOMMENDED that an implementation support at least the default
security token type in both authentication and encryption.

7.1 Security Token

A security token may be included in either the Signature block, and/or in the EncryptedData block (both
described later) as an implicit or explicit cryptographic key. If this element is omitted, the security token
is assumed to be a secret key shared between the client and the server.

The SecurityToken Element

This element is of type String. If the security token conveys an explicit key, this element’s content is the
value of the key. If the key is natively expressed in a binary form, it must be converted to base64
encoding as defined in XML Digital Signatures (“http://www.w3.org/2000/09/xmldsig#base64”). If the
type is not specified, it is assumed to be of type “Symmetric”.

It may have any of the following optional attributes:

25.0 Appendices

http://www.w3.org/2000/09/xmldsig#base64

Attribute Description

type The type of security token (described subsequently)
l A type attribute of “Symmetric” specifies a shared secret key between the client and server.
This is the default.

l A type attribute of “Asymmetric” specifies the use of public private key pairs between the
client and server.

l A type attribute of “Password” encrypts and authenticates with a user password known to
both the client and server.

l A type attribute of “Cleartext” allows the passing of a cleartext username and password
and depends on the use of a secure transport (such as SSL or IPSec).

l A type attribute of “Kerberos5” specifies a kerberos token.
l A type attribute of “X509v3” specifies an X.509 certificate.

name The name of the security token which serves as an identifier for the actor making the request (use-
ful when the key is a password, or when the key value is implicit as when a public key is named but
not included)

<complexType name="SecurityTokenType" mixed="true">
<simpleContent>
<extension base="string">
<attribute name="type" type="string" use="optional">
<attribute name="name" type="string" use="optional">

</extension>
</simpleContent>

</complexType>

<element name="SecurityToken" type="sssrmap:SecurityTokenType"/>

Security Token Types

SSSRMAP defines six standard security token types:

Symmetric Key

The default security token specifies the use of a shared secret key. The secret key is up to 128-bits long
and known by both client and server. When using a symmetric key as a security token, it is not
necessary to specify the type attribute with value “Sym metric” because this is assumed when the
attribute is absent. The name attribute should be specified indicating the actor issuing the request. If the
user provides a password to be sent to the server for authentication, then the password is encrypted
with the secret key using a default method=”kw-tripledes” (XML ENCRYPTION
http://www.w3.org/2001/04/xmlenc#kw-tripledes), base64 encoded and included as the string content of
the SecurityToken element. If the client authenticated the user, then the SecurityToken element is
empty. The same symmetric key is used in both authentication and encryption.

Asymmetric Key

Public and private key pairs can be used to provide non-repudiation of the client (or server). The client
and the server must each have their own asymmetric key pairs. This mode is indicated by specifying the
type attribute as “Asymmetric”. The name attribute should be specified indicating the actor issuing the
request. If the user provides a password to be sent to the server for authentication, then the password is
encrypted with the server’s public key using a default method=”rsa-1_5” (XML ENCRYPTION

25.0 Appendices

1104 Appendix S: Scalable Systems Software Specification

http://www.w3.org/2001/04/xmlenc#kw-tripledes

Appendix S: Scalable Systems Software Specification 1105

http://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and included as the string content of the
SecurityToken element. If the client authenticated the user, then the SecurityToken element is empty
.The sender’s private key is used in authentication (signing) while the recipient’s public key is used for
encryption.

Password

This mode allows for a username password combination to be used under the assumption that the server
also knows the password for the user. This security token type is indicated by specifying a value of
“Password” for the type attribute. The password itself is used as the cryptographic key for authentication
and encryption. The name attribute contains the user name of the actor making the request. The
SecurityToken element itself is empty.

Cleartext

This security mode is equivalent to passing the username and password in the clear and depends upon
the use of a secure transport (such as SSL or IPSec). The purpose of including this security token type is
to enable authentication to occur from web browsers over SSL or over internal LANs who use IPSec to
encrypt all traffic. The password (or a hash of the password like in /etc/passwd) would have to be
known by the server for authentication to occur. In this mode, neither encryption nor signing of the hash
is performed at the application layer. This mode is indicated by specifying a value of “Cleartext” for the
type attribute. The name attribute contains the user name of the actor making the request and the string
content of the SecurityToken element is the unencrypted plaintext password.

Kerberos

The use of a Kerberos version 5 token is indicated by specifying “Kerberos5” in the type attribute. The
name attribute is used to contain the kerberos user id of the actor making the request. The
SecurityToken element contains two subelements. The Authenticator element contains the
authenticator encoded in base64. A Ticket element contains the service-granting ticket, also base64
encoded.

GSI (X.509)

The Grid Security Infrastructure (GSI) which is based on public key encryption, X.509 certificates, and the
Secure Sockets Layer (SSL) communication protocol can be indicated by specifying a type attribute of
“X509v3”. The name attribute contains the userid used that the actor was mapped to in the local system.
The string content of the SecurityToken element is the GSI authentication message including the
X.509 identity of the sender encoded in base64.

Example

<SecurityToken type=”Asymmetric” name=”scottmo”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...
</SecurityToken>

7.2 Authentication

Authentication entails how the peers at each end of the connection are identified and verified.
Authentication is optional in an SSSRMAP message or reply. SSSRMAP uses a digital signature scheme
for authentication that borrows from concepts in XML Digital Signatures [XML_DSIG]. In addition to
authentication, the use of digital signatures also ensures integrity of the message, protecting exchanges
from third-party modification.

25.0 Appendices

http://www.w3.org/2001/04/xmlenc#rsa-1_5

When authentication is used, a Signature element is prepended as the first element within the
Envelope element. All of the security modes will create a digest of the data for integrity checking and
store this in base64 encoding in a DigestValue element as a child of the Signature element. The
digital signature is created by encrypting the hash with the appropriate security token and storing this
value in a SignatureValue element as a child of the Signature element. The security token itself is
included as a child of the Security element within a SecurityToken element.

There are a number of procedural practices that must be followed in order to standardize this approach.
The digest (or hash) is created over the contents of the Envelope element (not including the Element
tag or its attributes). This might be over one or more Request or Notify elements (or Response or
Ack elements) and necessarily excludes the Signature Element itself. (Note that any data encryption
is performed after the creation of the digital signature and any decryption is performed before
authenticating so the EncryptedData element will not interfere with this process. Hence, the signature
is always based on the (hashed but) unencrypted data). For the purposes of generating the digest over
the same value, it is assumed that the data is first canonicalized to remove extraneous whitespace,
comments, etc according to the XML Digital Signature algorithm (“http://www.w3.org/TR/2001/REC-
xml-c14n-20010315”) and a transform is applied to remove name space information. As a rule, any binary
values are always transformed into their base64 encoded values when represented in XML.

The Signature Element

The Signature element MUST contain a DigestValue element that is used for integrity checking. It
MUST also contain a SecurityToken element that is used to indicate the security mode and token
type, and to verify the signature. It MUST contain a SignatureValue element that contains the base64
encrypted value of the signature wrought on the hash UNLESS the security token type indicates Cleartext
mode where a signature would be of no value with the encryption key being sent in the clear -- in this
case we use the password itself for authentication).

<complexType name="SignatureType">
<choice minOccurs="2" maxOccurs="3">
<element ref="sssrmap:DigestValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SignatureValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:SecurityToken" minOccurs="0" maxOccurs="1"/>

</choice>
</complexType>

<element name="Signature" type="sssrmap:SignatureType"/>

The DigestValue Element

The DigestValue element contains the cryptographic digest of the message data. As described above,
the hash is generated over the Body element. The data to be hashed must first be canonicalized and
appropriately transformed before generating the digest since typically an application will read in the
XML document into an internal binary form, then marshal (or serialize) the data into a string which is
passed as input to the hash algorithm. Different implementations marshal the data differently so it is
necessary to convert this to a well-defined format before generating the digest or the clients will
generate different digest values for the same XML. The SHA-1 [SHA-1] message digest algorithm
(http://www.w3.org/2000/09/xmldsig#sha1) SHALL be used as the default method for generating the
digest. A method attribute is defined as an extensibility option in case an implementation wants to be
able to specify alternate message digest algorithms.

It MAY have a method attribute:

25.0 Appendices

1106 Appendix S: Scalable Systems Software Specification

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/2000/09/xmldsig#sha1

Appendix S: Scalable Systems Software Specification 1107

Attribute Description

method The message digest algorithm.
l A method attribute of “sha1” specifies the SHA-1 message digest algorithm. This is the
default and is implied if this attribute is omitted.

<complexType name="DigestValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="DigestValue" type="sssrmap:DigestValueType"/>

The SignatureValue Element

The SignatureValue element contains the digital signature that serves the authentication (and
potentially non-repudiation) function. The string content of the SignatureValue element is a base64
encoding of the encrypted digest value. The HMAC algorithm [HMAC] based on the SHA1 message digest
(http://www.w3.org/2000/09/xmldsig#hmac-sha1) SHALL be used as the default message authentication
code algorithm for user identification and message integrity. A method attribute is defined as an
extensibility option in case an implementation wants to be able to specify alternate digital signature
algorithms.

It MAY have a method attribute:

Attribute Description

method The digest signature algorithm.
l A method attribute of “hmac-sha1” specifies the HMAC SHA-1 digital signature algorithm.
This is the default and is implied if this attribute is omitted.

<complexType name="SignatureValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="SignatureValue" type="sssrmap:SignatureValueType"/>

Signature Example

Pre-authentication:

25.0 Appendices

http://www.w3.org/2000/09/xmldsig#hmac-sha1

<Envelope>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scott</Where>

</Request>
</Body>

</Envelope>

Post-authentication:

<Envelope>
<Signature>
<DigestValue>
LyLsF0Pi4wPU...

</DigestValue>
<SignatureValue>
DJbchm5gK...

</SignatureValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</Signature>
<Body>
<Request action=”Query” actor=”kenneth”>
<Object>User</Object>
<Get name=”EmailAddress”></Get>
<Where name=”Name”>scottmo</Where>

</Request>
</Body>

</Envelope>

7.3 Confidentiality

Confidentiality involves encrypting the sensitive data in the message, protecting exchanges against third-
party interception and modification. Confidentiality is optional in an SSSRMAP message or reply. When
confidentiality is required, SSSRMAP sessions use block cipher encryption with concepts borrowed from
the emerging XML Encryption [XML_ENC] standard.

When confidentiality is used, encryption is performed over all child elements of the Envelope element,
i.e. on the message data as well as any signature (The encrypted data is not signed -- rather the
signature is encrypted). This data is replaced in-place within the envelope with an EncryptedData
element. The data is first compressed using the gzip algorithm [ZIP]. Instead of encrypting this
compressed data with the security token directly, a 192-bit random session key is generated by the
sender and used to perform symmetric encryption on the compressed data. This key is itself encrypted
with the security token and included with the encrypted data as the value of the EncryptedKey
element as a child of the EncryptedData element. The ciphertext resulting from the data being
encrypted with the session key is passed as the value of a CipherValue element (also a child of the
EncryptedData element). As in the case with authentication, the security token itself is included as a
child of the Security element within a SecurityToken element.

The EncryptedData Element

When SSSRMAP confidentiality is required, the EncryptedData element MUST appear as the only child
element in the Envelope element. It directly replaces the contents of these elements including the data

25.0 Appendices

1108 Appendix S: Scalable Systems Software Specification

Appendix S: Scalable Systems Software Specification 1109

and any digital signature. It MUST contain an EncryptedKey element that is used to encrypt the data.
It MUST contain a CipherValue element that holds the base64 encoded ciphertext. It MAY also contain
a SecurityToken element that is used to indicate the security mode and token type. If the
SecurityToken element is omitted, a Symmetric key token type is assumed. Confidentiality is not used
when a security token type of “Cleartext” is specified since it would be pointless to encrypt the data with
the encryption key in the clear.

<complexType name="EncryptionDataType">
<choice minOccurs="0" maxOccurs="1">
<element ref="sssrmap:EncryptedKey" minOccurs="1" maxOccurs="1"/>
<element ref="sssrmap:CipherValue" minOccurs="1" maxOccurs="1"/>
<element ref="sssmap:SecurityToken" minOccurs="1" maxOccurs="1"/>

</choice>
</complexType>

<element name="EncryptedData" type="sssrmap:EncryptedDataType"/>

The EncryptedKey Element

The EncryptedKey element is a random session key encrypted with the security token. This approach
is used for a couple of reasons. In the case where public key encryption is used, asymmetric encryption is
much slower than symmetric encryption and it makes sense to use a symmetric key for encryption and
pass along it along by encrypting it with the recipient’s public key. It is also useful in that the security
token which does not change very often (compared to the session key which changes for every
connection) is used on a very small sampling of data (the session key), whereas if it was used to encrypt
the whole message an attacker could more effectively exploit an attack against the ciphertext. The CMS
Triple DES Key Wrap algorithm “kw-tripledes” SHALL be used as the default method for key encryption.
The session key is encrypted using the security token, base64 encoded and specified as the string content
of the EncryptedKey element. A method attribute is defined as an extensibility option in case an
implementation wants to be able to specify alternate key encryption algorithms.

It is REQUIRED that an implementation use a cryptographically secure Pseudo-Random number
generator. It is RECOMMENDED that the session key be cryptographically generated (such as cyclic
encryption, DES OFB, ANSI X9.17 PRNG, SHA1PRNG, or ANSI X12.17 (used by PGP)).

It MAY have a method attribute:

Attribute Description

method The key encryption algorithm.
l A method attribute of “kw-tripledes” specifies the CMS Triple DES Key Wrap algorithm. This
algorithm is specified by the XML Encryption [XML_ENC] URI
“http://www.w3.org/2001/04/xmlenc#kw-tripledes”. It involves two Triple DES
encryptions, a random and known Initialization Vector (IV) and a CMS key checksum. A 192-
bit key encryption key is generated from the security token, lengthened as necessary by
zero-padding. No additional padding is performed in the encryptions. This is the default and
is implied if this attribute is omitted.

25.0 Appendices

<complexType name="EncryptedKeyType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="EncryptedKey" type="sssrmap:EncryptedKeyType"/>

The CipherValue Element

The CipherValue element contains the message (and possibly signature) data encrypted with the random
session key. The ciphertext is compressed using the gzip algorithm [ZIP], encrypted by the designated
method, base64 encoded and included as the string content of the CipherValue element. The Triple DES
algorithm with Cipher Block Chaining (CBC) feedback mode SHALL be used as the default method for
encryption. A method attribute is defined as an extensibility option in case an implementation wants to
be able to specify alternate data encryption algorithms.

It MAY have a method attribute:

Attribute Description

method The data encryption algorithm.
l A method attribute of “tripledes-cbc” specifies the Triple DES algorithm with Cipher Block
Chaining (CBC) feedback mode. This algorithm is specified by the XML Encryption [XML_
ENC] URI identifier “http://www.w3.org/2001/04/xmlenc#tripledes-cbc”. It specifies the
use of a 192-bit encryption key and a 64-bit Initialization Vector (IV). Of the key bits, the
first 64 are used in the first DES operation, the second 64 bits in the middle DES operation,
and the third 64 bits in the last DES operation. The plaintext is first padded to a multiple of
the block size (8 octets) using the padding scheme described in [XMLENC] for Block
Encryption Algorithms (Padding per PKCS #5 will suffice for this). The resulting cipher text
is prefixed by the IV. This is the default and is implied if this attribute is omitted.

<complexType name="CipherValueType">
<simpleContent>
<extension base="string">
<attribute name="method" type="string" use="optional"/>

</extension>
</simpleContent>

</complexType>

<element name="CipherValue" type="sssrmap:CipherValueType"/>

Encryption Example

In this example, a simple request is demonstrated without a digital signature for the sake of emphasizing
the encryption plaintext replacement.

Pre-encryption:

<Envelope>
<Body>
<Response>
<Status>true</Status>

25.0 Appendices

1110 Appendix S: Scalable Systems Software Specification

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Appendix S: Scalable Systems Software Specification 1111

<Code>000</Code>
<Count>1</Count>
<Data>
<User>
<EmailAddress>Scott.Jackson@pnl.gov</EmailAddress>

</User>
</Data>

</Response>
</Body>

</Envelope>

Post-encryption:

<Envelope>
<EncryptedData>
<EncryptedKey>
NAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSM...

</EncryptedKey>
<CipherValue>
mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPW...

</CipherValue>
<SecurityToken type=”Asymmetric” name=”kenneth”>
MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>
</EncryptedData>

</Envelope>

8.0 Acknowledgements

9.0 References
[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March
1997.

[BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC
2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash
Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems

[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C
Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate
Recommendation, 4 March 2002.

25.0 Appendices

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3080.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://csrc.nist.gov/publications/fips/fips180-1/fips180-1.txt
http://csrc.nist.gov/publications/fips/fips180-1/fips180-1.txt
http://www.scidac.org/ScalableSystems
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.aiai.ed.uk/project/ix/inca/xml-conventions.html
http://www.xml.com/pub/a/2002/02/06/fedguidelines.html
http://www.faqs.org/rfcs/rfc3117.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft,
expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”,
April 2000.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/

Appendix W: Moab Resource Manager Language
Interface Overview

The Moab RM Language (formerly called WIKI) is the language that some resource managers use to
communicate with Moab, specifically a native RM. Generally each line represents a single resource or
workload in Moab. The line contains the name of the resource or workload followed by a set of
<attr>=<val> pairs. Although the Moab RM language follows the same data format for all RMs, each
RM type receives and returns it differently. For instructions and examples on using Moab RM language
with SLURM or a native RM, see W.2 Managing Resources with SLURM on page 1121 and Managing
Resources Directly with the Native Interface on page 565 respectively.

l W.1 Moab Resource Manager Language Data Format

l W.2 Managing Resources with SLURM

l W.3 Moab RM Language Socket Protocol Description

W.1 Moab Resource Manager Language Data Format
l W.1.1 Query Resources Data Format

l W.1.2 Query Workload Data Format

W.1.1 Query Resources Data Format

NAME FORMAT DEFAULT DESCRIPTION

ADISK <INTEGER> 0 Available local disk on node (in
MB)

AFS <fs id="X" size="X" io="Y"
rcount="X" wcount="X" ocoun-
t="X"></fs>[...]

0 Available file system state

25.0 Appendices

1112 Appendix W: Moab Resource Manager Language Interface Overview

http://www.icann.org/en/tlds/agreements/biz/draft-brunner-xrp-00.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/
http://www.gzip.org/

Appendix W: Moab Resource Manager Language Interface Overview 1113

NAME FORMAT DEFAULT DESCRIPTION

AMEMORY <INTEGER> 0 Available/free RAM on node (in
MB)

APROC <INTEGER> 1 Available processors on node

ARCH <STRING> --- Compute architecture of node

ARES one or more comma delimited
<NAME>:<VALUE> pairs (i.e.
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources
currently available on the node

ASWAP <INTEGER> 0 Available swap on node (in MB)

CCLASS one or more bracket enclosed
<NAME>:<COUNT> pairs (i.e.
[batch:5][sge:3])

--- Run classes supported by node.
Typically, one class is 'consumed'
per task. Thus, an 8 processor
node may have 8 instances of
each class it supports present, i.e.
[batch:8][interactive:8]

CDISK <INTEGER> 0 Configured local disk on node (in
MB)

CFS <STRING> 0 Configured file system state

CMEMORY <INTEGER> 0 Configured RAM on node (in MB)

CONTAINERNODE <STRING> --- The physical machine that is host-
ing the virtual machine. Only
valid on VMs.

CPROC <INTEGER> 1 Configured processors on node

CPULOAD <DOUBLE> 0.0 One minute BSD load average

CPUSPEED <INTEGER> --- The node's processor speed in
MHz

25.0 Appendices

NAME FORMAT DEFAULT DESCRIPTION

CRES one or more comma delimited
<NAME>:<VALUE> pairs (i.e.
MATLAB:6,COMPILER:100)

--- Arbitrary consumable resources
supported and tracked on the
node, i.e. software licenses or
tape drives

CSWAP <INTEGER> 0 Configured swap on node (in
MB)

FEATURE one or more colon delimited
<STRING>'s (i.e. WIDE:HSM)

--- Generic attributes, often describ-
ing hardware or software fea-
tures, associated with the node

GEVENT GEVENT[<EVENTNAME>]=<STRING> --- Generic event occurrence and
context data

GMETRIC GMETRIC[<METRICNAME>]
=<DOUBLE>

--- Current value of generic metric,
i.e., 'GMETRIC[temp]=103.5'.

IDLETIME <INTEGER> --- Number of seconds since last
detected keyboard or mouse
activity (often used with desktop
harvesting)

MAXTASK <INTEGER> <CPROC> Maximum number of tasks
allowed on the node at any given
time

NETADDR <STRING> --- The IP address of the machine

NODEINDEX <INTEGER> --- The node's index

OS <STRING> --- Operating system running on
node

OSLIST One or more comma delimited
<STRING>'s with quotes if the string
has spaces (i.e. "SAS7 AS3 Core
Baseline Build
v0.1.0","RedHat AS3-U5Devel-
opment Build v0.2").

--- Operating systems accepted by
node

25.0 Appendices

1114 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1115

NAME FORMAT DEFAULT DESCRIPTION

OTHER <ATTR>=<VALUE>
[,<ATTR>=<VALUE>]...

--- Opaque node attributes assigned
to node

PARTITION <STRING> DEFAULT Partition to which node belongs

POWER <BOOLEAN> Whether the machine is on or off

PRIORITY <INTEGER> --- Node allocation priority

RACK <INTEGER> 0 Rack location of the node

SLOT <INTEGER> 0 Slot location of the node

STATE* one of the following: Idle, Running,
Busy, Unknown, Drained, Draining,
or Down

Down State of the node

UPDATETIME* <EPOCHTIME> 0 Time node information was last
updated

VARATTR <ATTR1>=<VAL1>
[+<ATTR2>=<VAL2>]...

--- Plus-delimited (+) list of
<ATTR>=<VAL> pairs that jobs
can request

VARIABLE <ATTR>=<VAL> --- Generic variables to be asso-
ciated with node

VMOSLIST <STRING> --- Comma-delimited list (,) of sup-
ported virtual machine operating
systems for this node

XRES one or more comma delimited
<NAME>:<VALUE> pairs (i.e.
MATLAB:6,COMPILER:100)

--- Amount of external usage of a
particular generic resource

* indicates required field

Node states have the following definitions:

25.0 Appendices

State Description

Busy Node is running some jobs and will not accept additional jobs

Down Resource Manager problems have been detected. Node is incapable of running jobs.

Draining Node is responding but will not accept new jobs

Idle Node is ready to run jobs but currently is not running any.

Running Node is running some jobs and will accept additional jobs

Unknown Node is capable of running jobs but the scheduler will need to determine if the node state is actually
Idle, Running, or Busy.

W.1.2 Query Workload Data Format

NAME FORMAT DEFAULT DESCRIPTION

ACCOUNT <STRING> --- AccountID associated with job

ARGS <STRING> --- job command-line arguments

COMMENT <STRING> 0 job resource manager extension arguments includ-
ing QoS, dependencies, reservation constraints, etc

COMPLETETIME* <EPOCHTIME> 0 time job completed execution

DDISK <INTEGER> 0 quantity of local disk space (in MB) which must be
dedicated to each task of the job

DGRES name:value
[,name:value]

--- Dedicated generic resources per task.

DPROCS <INTEGER> 1 number of processors dedicated per task

DSWAP <INTEGER> 0 quantity of virtual memory (swap, in MB) which
must be dedicated to each task of the job

ENDDATE <EPOCHTIME> [ANY] time by which job must complete

25.0 Appendices

1116 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1117

NAME FORMAT DEFAULT DESCRIPTION

ENV <STRING> --- job environment variables

ERROR <STRING> --- file to contain STDERR

EVENT <EVENT> --- event or exception experienced by job

EXEC <STRING> --- job executable command

EXITCODE <INTEGER> --- job exit code

FLAGS <STRING> --- job flags

GEOMETRY <STRING> --- String describing task geometry required by job

GNAME* <STRING> --- GroupID under which job will run

HOSTLIST comma or colon
delimited list of host
names -
suffix the host list
with a carat (^) to
mean superset; suf-
fix with an asterisk
(*) to mean subset;
otherwise, the host
list is interpreted as
an exact set

[ANY] list of required hosts on which job must run. (see
TASKLIST)
A subset means the specified host list is used first
to select hosts for the job. If the job requires more
hosts than are in the host list, they will be obtained
from elsewhere if possible. If the job does not
require all of the jobs in the host list, it will use only
the ones it needs.
A superset means the host list is the only source of
hosts that should be considered for running the
job. If the job can't find the necessary resources in
the hosts in this list it should not run. No other
hosts should be considered in allocating the job.

INPUT <STRING> --- file containing STDIN

IWD <STRING> --- job's initial working directory

NAME <STRING> --- User specified name of job

NODES <INTEGER> 1 Number of nodes required by job (See Node Defin-
ition for more info)

OUTPUT <STRING> --- file to contain STDOUT

25.0 Appendices

NAME FORMAT DEFAULT DESCRIPTION

PARTITIONMASK one or more colon
delimited <STRING>s

[ANY] list of partitions in which job can run

PREF colon delimited list
of <STRING>s

--- List of preferred node features or variables. (See
PREF for more information.)

PRIORITY <INTEGER> --- system priority (absolute or relative - use '+' and '-
' to specify relative)

QOS <INTEGER> 0 quality of service requested

QUEUETIME* <EPOCHTIME> 0 time job was submitted to resource manager

RARCH <STRING> --- architecture required by job

RCLASS list of bracket
enclosed
<STRING>
:<INTEGER> pairs

--- list of <CLASSNAME>:<COUNT> pairs indicating
type and number of class instances required per
task. (i.e. [batch:1] or [batch:2][tape:1])

RDISK <INTEGER> 0 local disk space (in MB) required to be configured
on nodes allocated to the job

RDISKCMP one of >=, >, ==, <, or
<=

>= local disk comparison (i.e. node must have > 2048
MB local disk)

REJCODE <INTEGER> 0 reason job was rejected

REJCOUNT <INTEGER> 0 number of times job was rejected

REJMESSAGE <STRING> --- text description of reason job was rejected

REQRSV <STRING> --- Name of reservation in which job must run

RESACCESS <STRING> --- List of reservations in which job can run

RFEATURES colon delimited list
<STRING>'s

--- List of features required on nodes

25.0 Appendices

1118 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1119

NAME FORMAT DEFAULT DESCRIPTION

RMEM <INTEGER> 0 real memory (RAM, in MB) required to be con-
figured on nodes allocated to the job

RMEMCMP one of '>=', '>', '==',
'<', or '<='

>= real memory comparison (i.e. node must have >=
512MB RAM)

ROPSYS <STRING> --- operating system required by job

RSOFTWARE <RESTYPE>[{+|:}
<COUNT>]
[@<TIMEFRAME>]

--- software required by job

RSWAP <INTEGER> 0 virtual memory (swap, in MB) required to be con-
figured on nodes allocated to the job

RSWAPCMP one of '>=', '>', '==',
'<', or '<='

>= virtual memory comparison (i.e. node must have
==4096 MB virtual memory)

SID <STRING> --- system id (global job system owner)

STARTDATE <EPOCHTIME> 0 earliest time job should be allowed to start

STARTTIME* <EPOCHTIME> 0 time job was started by the resource manager

STATE* one of Idle, Running,
Hold, Suspended,
Completed, or
Removed

Idle State of job

SUSPENDTIME <INTEGER> 0 Number of seconds job has been suspended

TASKLIST one or more comma-
delimited
<STRING>'s

--- list of allocated tasks, or in other words, comma-
delimited list of node ID's associated with each act-
ive task of job (i.e., cl01, cl02, cl01, cl02, cl03) The
tasklist is initially selected by the scheduler at the
time the StartJob command is issued. The resource
manager is then responsible for starting the job on
these nodes and maintaining this task distribution
information throughout the life of the job. (see
HOSTLIST)

25.0 Appendices

NAME FORMAT DEFAULT DESCRIPTION

TASKS* <INTEGER> 1 Number of tasks required by job (See Task Defin-
ition for more info)

TASKPERNODE <INTEGER> 0 exact number of tasks required per node

UNAME* <STRING> --- UserID under which job will run

UPDATETIME* <EPOCHTIME> 0 Time job was last updated

WCLIMIT* [[HH:]MM:]SS 864000 walltime required by job

* indicates required field

Job states have the following definitions:

State Definition

Completed Job has completed

Hold Job is in the queue but is not allowed to run

Idle Job is ready to run

Removed Job has been canceled or otherwise terminated externally

Running Job is currently executing

Suspended job has started but execution has temporarily been suspended

Completed and canceled jobs should be maintained by the resource manager for a brief time,
perhaps 1 to 5 minutes, before being purged. This provides the scheduler time to obtain all final
job state information for scheduler statistics.

Related topics

l Managing Resources with SLURM
l Managing Resources Directly with the Native Interface

25.0 Appendices

1120 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1121

W.2 Managing Resources with SLURM
This section demonstrates how Moab uses the Moab RM language (formerly called WIKI) to communicate
with SLURM. For SLURM configuration instructions, see the Moab-SLURM Integration Guide.

l W.2.1 Commands

o W.2.1.1 Resource Query

o W.2.1.1.1 Query Resources Request Format

o W.2.1.1.2 Query Resources Response Format

o W.2.1.2 Workload Query

o W.2.1.2.1 Query Workload Request Format

o W.2.1.2.2 Query Workload Response Format

o W.2.1.2.3 Query Workload Example

o W.2.1.3 Start Job

o W.2.1.4 Cancel Job

o W.2.1.5 Suspend Job

o W.2.1.6 Resume Job

o W.2.1.7 Requeue Job

o W.2.1.8 Signal Job

o W.2.1.9 Modify Job

o W.2.1.10 JobAddTask

o W.2.1.11 JobRemoveTask

l W.2.2 Rejection Codes

W.2.1 Commands
All commands are requested via a socket interface, one command per socket connection. All fields and
values are specified in ASCII text.

Supported Commands are:

l Query Resources

l Query Workload

l Start Job

l Cancel Job

l Suspend Job

25.0 Appendices

l Resume Job

l Requeue Job

l JOBADDTASK

l JOBRELEASETASK

W.2.1.1 Moab RM Language Query Resources

W.2.1.1.1 Moab RM Language Query Resources Request Format

CMD=GETNODES ARG={<UPDATETIME>:<NODEID>[:<NODEID>]... | <UPDATETIME>:ALL}

Only nodes updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is
specified as the epoch time of interest. Setting <UPDATETIME> to 0 will return information for all nodes.
Specify a colon delimited list of NODEIDs if specific nodes are desired or use the keyword ALL to receive
information for all nodes.

W.2.1.1.2 Moab RM Language Resources Response Format

The query resources response format is one or more line of the following format (separated with a new
line):

<NODEID><ATTR>=<VALUE>[;<ATTR>=<VALUE>]...

<ATTR> is one of the names in the table below and the format of <VALUE> is dependent on <ATTR>.

Example 25-4: Moab RM language resource query and response

Request:

CMD=GETNODES ARG=0:node001:node002:node003

Response:

node001 UPDATETIME=963004212;STATE=Busy;OS=AIX43;ARCH=RS6000...
node002 UPDATETIME=963004213;STATE=Busy;OS=AIX43;ARCH=RS6000...
...

W.2.1.2 Moab RM Language Query Workload

W.2.1.2.1 Moab RM Language Query Workload Request Format

CMD=GETJOBS ARG={<UPDATETIME>:<JOBID>[:<JOBID>]... | <UPDATETIME>:ALL }

Only jobs updated more recently than <UPDATETIME> will be returned where <UPDATETIME> is
specified as the epoch time of interest. Setting <UPDATETIME> to 0 will return information for all jobs.
Specify a colon delimited list of JOBID's if information for specific jobs is desired or use the keyword ALL
to receive information about all jobs.

W.2.1.2.2 Moab RM Language Query Workload Response Format

SC=<STATUSCODE> ARG=<JOBCOUNT>#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...
[#<JOBID>:<FIELD>=<VALUE>;[<FIELD>=<VALUE>;]...]...

25.0 Appendices

1122 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1123

or

SC=<STATUSCODE> RESPONSE=<RESPONSE>

FIELD is either the text name listed below or A<FIELDNUM>
(i.e. UPDATETIME or A2)

STATUSCODE values:

l 0 SUCCESS

l -1 INTERNAL ERROR

RESPONSE is a statuscode sensitive message describing error or state details.

W.2.1.2.3 Moab RM Language Query Workload Example

Request:

CMD=GETJOBS ARG=0:ALL

Response:

ARG=2#nebo3001.0:UPDATETIME=9780000320;STATE=Idle;WCLIMIT=3600;...

W.2.1.3 StartJob

The StartJob command may only be applied to jobs in the Idle state. It causes the job to begin running
using the resources listed in the NodeID list.

send CMD=STARTJOB ARG=<JOBID> TASKLIST=<NODEID>[:<NODEID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 25-5: Job start

Start job nebo.1 on nodes cluster001 and cluster002

send
CMD=STARTJOB ARG=nebo.1 TASKLIST=cluster001:cluster002
receive
SC=0;RESPONSE=job nebo.1 started with 2 tasks

W.2.1.4 CancelJob

The CancelJob command, if applied to an active job, will terminate its execution. If applied to an idle or
active job, the CancelJob command will change the job's state to Canceled.

send CMD=CANCELJOB ARG=<JOBID> TYPE=<CANCELTYPE>

<CANCELTYPE> is one of the following:

ADMIN (command initiated by scheduler administrator)
WALLCLOCK (command initiated by scheduler because job exceeded its specified wallclock limit)

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

25.0 Appendices

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 25-6: Job cancel

Cancel job nebo.2

send
CMD=CANCELJOB ARG=nebo.2 TYPE=ADMIN'
receive
SC=0 RESPONSE=job nebo.2 canceled

W.2.1.5 SuspendJob

The SuspendJob command can only be issued against a job in the state Running. This command
suspends job execution and results in the job changing to the Suspended state.

send CMD=SUSPENDJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 25-7: Job suspend

Suspend job nebo.3

send
CMD=SUSPENDJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 suspended

W.2.1.6 ResumeJob

The ResumeJob command can only be issued against a job in the state Suspended. This command
resumes a suspended job returning it to the Running state.

send CMD=RESUMEJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 25-8: Job resume

Resume job nebo.3

send
CMD=RESUMEJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 resumed

25.0 Appendices

1124 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1125

W.2.1.7 RequeueJob

The RequeueJob command can only be issued against an active job in the state Starting or Running.
This command requeues the job, stopping execution and returning the job to an idle state in the queue.
The requeued job will be eligible for execution the next time resources are available.

send CMD=REQUEUEJOB ARG=<JOBID>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 25-9: job requeue

Requeue job nebo.3

send
CMD=REQUEUEJOB ARG=nebo.3
receive
SC=0 RESPONSE=job nebo.3 requeued

W.2.1.8 SignalJob

The SignalJob command can only be issued against an active job in the state Starting or Running.
This command signals the job, sending the specified signal to the master process. The signaled job will
be remain in the same state it was before the signal was issued.

send CMD=SIGNALJOB ARG=<JOBID> ACTION=signal VALUE=<SIGNAL>

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 25-10: Job signal

Signal job nebo.3

send
CMD=SIGNALJOB ARG=nebo.3 ACTION=signal VALUE=13
receive
SC=0 RESPONSE=job nebo.3 signalled

W.2.1.9 ModifyJob

The ModifyJob command can be issued against any active or queued job. This command modifies
specified attributes of the job.

send CMD=MODIFYJOB ARG=<JOBID> [BANK=name] [NODES=num] [PARTITION=name]
[TIMELIMIT=minutes]

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

25.0 Appendices

Example 25-11: Job modify

Signal job nebo.3

send
CMD=MODIFYJOB ARG=nebo.3 TIMELIMIT=9600
receive
SC=0 RESPONSE=job nebo.3 modified

W.2.1.10 JobAddTask

The JobAddTask command allocates additional tasks to an active job.

send CMD=JOBADDTASK ARG=<JOBID> <NODEID> [<NODEID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message possibly further describing an error or state

Example 25-12: Job addtask

Add 3 default tasks to job nebo30023.0 using resources located on nodes cluster002,
cluster016, and cluster112.

send
CMD=JOBADDTASK ARG=nebo30023.0 DEFAULT cluster002 cluster016 cluster112
receive
SC=0 RESPONSE=3 tasks added

W.2.1.11 JobRemoveTask

The JobRemoveTask command removes tasks from an active job.

send CMD=JOBREMOVETASK ARG=<JOBID> <TASKID> [<TASKID>]...

receive SC=<STATUSCODE> RESPONSE=<RESPONSE>

STATUSCODE >= 0 indicates SUCCESS
STATUSCODE < 0 indicates FAILURE
RESPONSE is a text message further describing an error or state

Example 25-13: Job removetask

Free resources allocated to tasks 14, 15, and 16 of job nebo30023.0

send
CMD=JOBREMOVETASK ARG=nebo30023.0 14 15 16
receive
SC=0 RESPONSE=3 tasks removed

25.0 Appendices

1126 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1127

W.2.2 Rejection Codes

l 0xx - success - no error

o 00x - success

o 000 - success

o 01x - usage/help reply

o 010 - usage/help reply

o 02x - status reply

o 020 - general status reply

l 1xx - warning

o 10x - general warning

o 100 - general warning

o 11x - no content

o 110 - general wire protocol or network warning

o 112 - redirect

o 114 - protocol warning

o 12x - no matching results

o 120 - general message format warning

o 122 - incomplete specification (best guess action/response applied)

o 13x - security warning

o 130 - general security warning

o 132 - insecure request

o 134 - insufficient privileges (response was censored/action reduced in scope)

o 14x - content or action warning

o 140 - general content/action warning

o 142 - no content (server has processed the request but there is no data to be
returned)

o 144 - no action (no object to act upon)

o 146 - partial content

o 148 - partial action

o 15x - component defined

o 18x - application defined

25.0 Appendices

l 2xx - wire protocol/network failure

o 20x - protocol failure

o 200 - general protocol/network failure

o 21x - network failure

o 210 - general network failure

o 212 - cannot resolve host

o 214 - cannot resolve port

o 216 - cannot create socket

o 218 - cannot bind socket

o 22x - connection failure

o 220 - general connection failure

o 222 - cannot connect to service

o 224 - cannot send data

o 226 - cannot receive data

o 23x - connection rejected

o 230 - general connection failure

o 232 - connection timed-out

o 234 - connection rejected - too busy

o 236 - connection rejected - message too big

o 24x - malformed framing

o 240 - general framing failure

o 242 - malformed framing protocol

o 244 - invalid message size

o 246 - unexpected end of file

o 25x - component defined

o 28x - application defined

l 3xx - messaging format error

o 30x - general messaging format error

o 300 - general messaging format error

o 31x - malformed XML document

o 310 - general malformed XML error

25.0 Appendices

1128 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1129

o 32x - XML schema validation error

o 320 - general XML schema validation

o 33x - general syntax error in request

o 330 - general syntax error in response

o 332 - object incorrectly specified

o 334 - action incorrectly specified

o 336 - option/parameter incorrectly specified

o 34x - general syntax error in response

o 340 - general response syntax error

o 342 - object incorrectly specified

o 344 - action incorrectly specified

o 346 - option/parameter incorrectly specified

o 35x - synchronization failure

o 350 - general synchronization failure

o 352 - request identifier is not unique

o 354 - request id values do not match

o 356 - request id count does not match

l 4xx - security error occurred

o 40x - authentication failure - client signature

o 400 - general client signature failure

o 402 - invalid authentication type

o 404 - cannot generate security token key - inadequate information

o 406 - cannot canonicalize request

o 408 - cannot sign request

o 41x - negotiation failure

o 410 - general negotiation failure

o 412 - negotiation request malformed

o 414 - negotiation request not understood

o 416 - negotiation request not supported

25.0 Appendices

o 42x - authentication failure

o 420 - general authentication failure

o 422 - client signature failure

o 424 - server authentication failure

o 426 - server signature failure

o 428 - client authentication failure

o 43x - encryption failure

o 430 - general encryption failure

o 432 - client encryption failure

o 434 - server decryption failure

o 436 - server encryption failure

o 438 - client decryption failure

o 44x - authorization failure

o 440 - general authorization failure

o 442 - client authorization failure

o 444 - server authorization failure

o 45x - component defined failure

o 48x - application defined failure

l 5xx - event management request failure

o 50x - reserved

o 500 - reserved

l 6xx - reserved for future use

o 60x - reserved

o 600 - reserved

l 7xx - server side error occurred

o 70x - server side error

o 700 - general server side error

o 71x - server does not support requested function

o 710 - server does not support requested function

o 72x - internal server error

o 720 - general internal server error

25.0 Appendices

1130 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1131

o 73x - resource unavailable

o 730 - general resource unavailable error

o 732 - software resource unavailable error

o 734 - hardware resource unavailable error

o 74x - request violates policy

o 740 - general policy violation

o 75x - component-defined failure

o 78x - application-defined failure

l 8xx - client side error occurred

o 80x - general client side error

o 800 - general client side error

o 81x - request not supported

o 810 - request not supported

o 82x - application specific failure

o 820 - general application specific failure

l 9xx - miscellaneous

o 90x - general miscellaneous error

o 900 - general miscellaneous error

o 91x - general insufficient resources error

o 910 - general insufficient resources error

o 99x - general unknown error

o 999 - unknown error

Related topics

l Moab Resource Manager Language Data Format
l Managing Resources Directly with the Native Interface

W.3 Moab RM Language Socket Protocol Description
Moab RM language is formerly known as WIKI. The Moab scheduler uses a simple protocol for socket
connections to the user client and the resource manager as described below:

<SIZE><CHAR>CK=<CKSUM><WS>TS=<TIMESTAMP><WS>AUTH=<AUTH><WS>DT=<DATA>

25.0 Appendices

Attribute Description

<SIZE> 8 character decimal ASCII representation of the size of the packet following '<SIZE><CHAR>'
Leading zeroes must be used to pad this value to 8 characters if necessary.

<CHAR> A single ASCII character

<CKSUM> A 16 character hexadecimal ASCII DES-based checksum calculated using the algorithm below*
and <SEED> selected and kept secret by the site admins. The checksum is performed on the
line from TS= to the end of the message including <DATA>.

<WS> A series of white space characters consisting of either tabs and/or space characters.

<TIMESTAMP> ASCII representation of epoch time

<AUTH> Identifier of user requesting service (i.e., USERNAME)

<DT> Data to be sent

An example header follows:

00001057 CK=cdf6d7a7ad45026f TS=922401962 AUTH=sched DT=<DATA>

where <DATA> is replaced by actual message data.

W.3.1 Checksum Algorithm ('C' version)

#define MAX_CKSUM_ITERATION 4

int GetChecksum(
char *Buf,
int BufSize,
char *Checksum,
char *CSKey) /* Note: pass in secret key */
{
unsigned int crc;
unsigned int lword;
unsigned int irword;
int index;
unsigned int Seed;
Seed = (unsigned int)strtoul(CSKey,NULL,0);
crc = 0;
for (index = 0;index < BufSize;index++)
{
crc = (unsigned int)DoCRC((unsigned short)crc,Buf[index]);
}
lword = crc;
irword = Seed;
PSDES(&lword,&irword);
sprintf(Checksum,"%08x%08x",
lword,

25.0 Appendices

1132 Appendix W: Moab Resource Manager Language Interface Overview

Appendix W: Moab Resource Manager Language Interface Overview 1133

irword);
return(SUCCESS);
}

unsigned short DoCRC(
unsigned short crc,
unsigned char onech)
{
int index;
unsigned int ans;
ans = (crc ^ onech << 8);
for (index = 0;index < 8;index++)
{
if (ans & 0x8000)
ans = (ans <<= 1) ^ 4129;
else
ans <<= 1;
}
return((unsigned short)ans);
}

int PSDES(
unsigned int *lword,
unsigned int *irword)
{
int index;
unsigned int ia;
unsigned int ib;
unsigned int iswap;
unsigned int itmph;
unsigned int itmpl;
static unsigned int c1[MAX_CKSUM_ITERATION] = {
0xcba4e531, 0x537158eb, 0x145cdc3c, 0x0d3fdeb2 };
static unsigned int c2[MAX_CKSUM_ITERATION] = {
0x12be4590, 0xab54ce58, 0x6954c7a6, 0x15a2ca46 };
itmph = 0;
itmpl = 0;
for (index = 0;index < MAX_CKSUM_ITERATION;index++)
{
iswap = *irword;
ia = iswap ^ c1[index];
itmpl = ia & 0xffff;
itmph = ia >> 16;
ib = (itmpl * itmpl) + ~(itmph*itmph);
ia = (ib >> 16) | ((ib & 0xffff) << 16);
*irword = (*lword) ^ ((ia ^ c2[index]) + (itmpl * itmph));
*lword = iswap;
}
return(SUCCESS);
}

W.3.2 Header Creation (PERL code)
(taken from PNNL's QBank client code)

##
#
subroutine wiki($COMMAND)

25.0 Appendices

#
Sends command to Moab server and returns the parsed result and status
#
##
sub wiki
{
my($COMMAND,$REQUEST,$result);
my($sockaddr,$hostname);
my($name,$aliases,$proto,$port,$type,$len,$thisaddr);
my($thisport,$thatport,$response,$result);
$COMMAND = shift;
#
Establish socket connection
#
$sockaddr = 'S n a4 x8';
chop ($hostname = `hostname`);
($name,$aliases,$proto)=getprotobyname('tcp');
($name,$aliases,$type,$len,$thisaddr)=gethostbyname($hostname);
($name,$aliases,$type,$len,$thataddr)=gethostbyname($BANKHOST);
$thisport=pack($sockaddr, &AF_INET,0,$thisaddr);
$thatport=pack($sockaddr, &AF_INET,$BANKPORT,$thataddr);
socket(S, &PF_INET,&SOCK_STREAM,$proto) || die "cannot create socket\n";
bind(S,$thisport) || die "cannot bind socket\n";
connect(S,$thatport) || die "cannot connect socket\n";
select(S); $| = 1; # Turn on autoflushing
select(stdout); $| = 1; # Select STDOUT as default output
#
Build and send command
#
$REQUEST="COMMAND=$COMMAND AUTH=$AUTH";
chomp($CHECKSUM = `$QSUM "$REQUEST"`);
$REQUEST .= " CHECKSUM=$CHECKSUM";
my $command=pack "a8 a1 A*",sprintf("%08d",length($REQUEST))," ",$REQUEST;
print S "$command"; # Send Command to server
@REPLY=();
while () { push(@REPLY,$_); } # Listen for Reply
$STATUS=grep(/STATUSCODE=(\d*)/&&$1,@REPLY); # STATUSCODE stored in $STATUS
grep(s/.*RESULT=//,@REPLY); # Parse out the RESULT
return @REPLY;
}

W.3.3 Header Processing (PERL code)

sysread(NS,$length,8); # Read length string
sysread(NS,$delimiter,1); # Read delimiter byte
$DEBUG && print STDERR "length=[$length]\tdelimiter=[$delimiter]\n";
while($length) {
$DEBUG && print STDERR "Awaiting $length bytes -- ".`date`;
$length-=sysread(NS,$request,$length); # Read request
sleep 1;
}
%REQUEST=();
chomp($request);
foreach (@REQUEST=&shellwords($request)) # Parse arguments into array
{
($key,$value)=split(/=/,$_);
$REQUEST{$key}=$value unless defined $REQUEST{$key};
}
$request =~ s/\s+CHECKSUM=.*//; # Strip off the checksum
print STDERR "REQUEST=$request\n";

25.0 Appendices

1134 Appendix W: Moab Resource Manager Language Interface Overview

SCHEDCFG flags 1135

chomp($checksum=`$QSUM "$request"`);
$me=$REQUEST{AUTH};
$command=$REQUEST{COMMAND};
if (!grep($command eq $_,@VALIDCMDS))
{ $REPLY = "STATUSCODE=0 RESULT=$command is not a valid command\n";}
elsif ($checksum ne $REQUEST{CHECKSUM})
{ $REPLY = "STATUSCODE=0 RESULT=Invalid Checksum\n";}
else
{ $REPLY = do $command(@REQUEST); }
$len=sprintf("%08d",length($REPLY)-1);
$delim=' ';
$DEBUG && print STDERR "REPLY=${len}${delim}$REPLY\n";
$buf="$len"."$delim"."$REPLY";
syswrite(NS,$buf,length($buf));
close NS;

SCHEDCFG flags
Flag Description

AGGREGATENODEFEATURES AGGREGATENODEFEATURES causes Moab to
aggregate features reported by the different RMs.
For example, if you have two RMs reporting different
features for the same node, Moab will add both
features together (instead of one being overwritten
by the other).
In order to set features manually, you can use
mnodectl -m features (for details, seemnodectl on
page 149).

ALLOWINFINITEJOBS ALLOWINFINITEJOBS allows infinite wallclock
times to be accepted. Previously, jobs with infinite job
times were allowed by default.

ALLOWMULTICOMPUTE ALLOWMULTICOMPUTE tells Moab how to resolve
conflicting information from different resource man-
agers. If ALLOWMULTICOMPUTE is specified, Moab
will use the STATE and OS information from the
resource manager that reports the node as online.

DISABLEPERJOBNODESETS Disables a job's ability to override the system spe-
cified node set. See 13.3 Resource Manager Exten-
sions for more information.

DISABLEPARTIALNODERESERVATIONS Blocks partial node reservations.

25.0 Appendices

Flag Description

ENABLESLURMMEMPERCPU By default Moab calls sbatch or srun with a --mem=
request in a SLURM environment. When you set
ENABLESLURMMEMPERCPU, Moab instead calls
--mem-per-cpu=. This is to allow sites with policies
that require the other parameter to use --mem-
per-cpu.

ENFORCERESERVEDNODES Without this flag Moab tries to optimize the reser-
vation for a job before it starts, meaning a job may
start on nodes that weren't part of its reservation.
With this flag Moab tries to start jobs only on the
nodes that were reserved.

ENFORCESAMENODESET The same node set is not enforced across job require-
ments by default, rather each requirement is sched-
uled separately and the node sets are determined on
a per-req basis. To have Moab enforce the same
node set across all job requirements set this flag.

FASTGROUPLOOKUP Moab will use the system call getgrouplist to
gather group information. This can significantly
improve performance on some LDAP systems.

25.0 Appendices

1136 SCHEDCFG flags

SCHEDCFG flags 1137

Flag Description

FASTRSVSTARTUP Speeds up start time if there are existing
reservations.

FASTRSVSTARTUP is incompatible with
partial node reservations.

On very large systems, if there is a reservation in the
checkpoint file on all the nodes, it would take a really
long time for Moab to start up. For every node in the
reservation, Moab checks every other node. With this
flag, Moab just uses the nodelist that was
checkpointed to create the reservation. It speeds up
the startup process because it doesn't have to check
every node. Where Moab would take 8 - 10 minutes
to start up with an 18,000 node reservation without
the flag, Moab can start up in 2-3 minutes with the
flag.
With the flag you will see one difference in
checknode. A reservation that uses all the procs on a
node initially shows that all the procs are blocked.
Without the flag, and as jobs fill on the node, the
blocked resources will be configured - dedicated (ex.
5/6). With the flag, the blocked resources will always
be what the reservation is blocking and won't change
when jobs fill on the node.
Without flag:
Reservations:
brian.1x1 User -00:12:52 -> INFINITY (INFINITY)
Blocked Resources@-00:00:02 Procs: 5/6 (83.33%)
Mem: 0/5000 (0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%)
Mem: 0/5000 (0.00%)
m.2x1 Job:Running -00:00:02 -> 00:04:58
(00:05:00)
Jobs: m.2

With flag:
Reservations:
brian.1x1 User -00:00:15 -> INFINITY (INFINITY)
Blocked Resources@-00:00:02 Procs: 6/6
(100.00%) Mem: 0/5000 (0.00%)
Blocked Resources@00:04:58 Procs: 6/6 (100.00%)
Mem: 0/5000 (0.00%)
m.1x1 Job:Running -00:00:02 -> 00:04:58
(00:05:00)
Jobs: m.1

25.0 Appendices

Flag Description

When you set the FASTRVSSTARTUP flag,
Moab will also set the
DISABLEPARTIALNODERESERVATIONS flag.

FILELOCKHA This is a High Availability feature. FILELOCKHA pre-
vents scheduling conflicts between multiple Moab
servers.

FREECOMPLETEDJOBSUBMITSTRING Moab frees the job submit string for completed jobs,
decreasing the amount of memory needed during
operation. This is useful in environments with large
job scripts that can create a large memory footprint.

IGNOREPIDFILELOCK Moab will not fail if it cannot get a lock on the
.moab.pid file. This is useful when Moab is run-
ning on a shared file system where file locking can be
unpredictable.

JOBSUSERSVWALLTIME Allows jobs submitted without a walltime request or
default walltime received from a class or queue but
with an ADVRES:reservation to inherit their wall-
time limit from the reservation instead of the Moab
default. The job walltime limit is then the remaining
time of the reservation to which the job was sub-
mitted.

NOCLASSUPDATE While running against TORQUE, Moab will not
update classes when it refreshes each iteration.
Moab loads the classes at startup, but does not
refresh them until the next time it is restarted.

NORMALIZETASKDEFINITIONS Instructs Moab to normalize all tasks that it receives
via an mshow -a command. Moab normalizes the task
definition to one processor and then changes the
tasks requested to the number of processors
requested. For example, when the following is
received by Moab:

mshow -a -w mintasks=1@procs:4+mem:4096

It is changed to this:

mshow -a -w
mintasks=4@procs:1+,mem:1024,tpn=4

25.0 Appendices

1138 SCHEDCFG flags

SCHEDCFG flags 1139

Flag Description

NOVMDESTROYDEPENDENCIES The destroy job a in cloud workflow does not have
any dependencies, allowing it to run whenever you
cancel the service. For more information about des-
troy jobs, see DESTROYTEMPLATE on page 745 and
Creating a cloud workflow on page 740.

OPTIMIZEDBACKFILL On large systems that utilize system-wide reser-
vations, backfill can take a considerable amount of
time. This flag speeds up backfill scheduling by using
an alternative BETA backfill algorithm. This flag will
be the default in future versions of Moab.

OUTOFBANDVMRSV Causes Moab to put reservations on untracked VMs
(VMs that are created outside of Moab) so that the
untracked VMs are visible when you use checkjob,
mshow, checknode, etc. commands. These
reservations are updated each new iteration, so if the
VM is migrated or modified outside of Moab, the
reservation will accordingly adjust automatically.
The reservations are not checkpointed. The system
re-creates them when you restart Moab (new
reservation IDs, etc.). If a VM tracking job appears for
the VM, then the reservation will be removed.

This scheduler flag is highly recommended
for Cloud users. For more information, see
About workload-driven cloud services on
page 733.

SHOWREQUESTEDPROCS Shows requested processors regardless of NodeAc-
cessPolicy in showq. When SINGLEJOB
NODEACCESSPOLICY is used and the job requests
one processor, showq displays the job with one pro-
cessor.

SHOWUSERJOBSONLY Causes Moab, when a non-admin user runs showq, to
return only that user's jobs. If an administrator runs
showq when this flag is set,Moab returns the jobs of
all users; no restrictions are placed on admin-
istrators.

STRICTSPOOLDIRPERMISSIONS Enforces at least a 511 permission on the Moab spool
directory.

25.0 Appendices

Flag Description

UNMIGRATEONDEFER Forces Moab to unmigrate a job if it enters a
deferred state.

25.0 Appendices

1140 SCHEDCFG flags

	 Welcome
	Moab overview

	1.0 Philosophy
	1.1 Value of a Batch System
	1.2 Philosophy and Goals
	1.3 Workload

	2.0 Installation and Initial Configuration
	2.1 Hardware and Software Requirements
	2.2 Installing Moab
	2.3 Connecting Moab to MongoDB
	2.4 Upgrading Moab
	2.5 Initial Moab Configuration
	2.6 Initial Moab Testing

	3.0 Scheduler Basics
	3.1 Layout of Scheduler Components
	3.2 Scheduling Environment
	3.2.1 Scheduling Dictionary

	3.3 Scheduling Iterations and Job Flow
	3.4 Configuring the Scheduler
	3.5 Credential Overview
	3.5.1 Job Attributes/Flags Overview

	4.0 Scheduler Commands
	4.1 Status Commands
	4.2 Job Management Commands
	4.3 Reservation Management Commands
	4.4 Policy/Configuration Management Commands
	4.5 End-user Commands
	4.6 Commands
	checkjob
	checknode
	mcredctl
	mdiag
	mdiag -a
	mdiag -b
	mdiag -c
	mdiag -f
	mdiag -g
	mdiag -j
	mdiag -n
	mdiag -t
	mdiag -p
	mdiag -q
	mdiag -r
	mdiag -R
	mdiag -S
	mdiag -s
	mdiag -T
	mdiag -u

	mjobctl
	mnodectl
	moab
	mrmctl
	mrsvctl
	mschedctl
	mshow
	mshow -a
	mshow -a

	msub
	Applying the msub Submit Filter
	Sample Submit Filter Script
	Submitting Jobs via msub in XML

	mvcctl
	mvmctl
	showbf
	showq
	showhist.moab.pl
	showres
	showstart
	showstate
	showstats
	showstats -f
	TIMESPEC

	4.6.1 Deprecated commands
	canceljob
	changeparam
	diagnose
	releasehold
	releaseres
	resetstats
	runjob
	sethold
	setqos
	setres
	setspri
	showconfig

	5.0 Prioritizing Jobs and Allocating Resources
	5.1 Job Prioritization
	5.1.1 Priority Overview
	5.1.2 Job Priority Factors
	5.1.3 Fairshare Job Priority Example
	5.1.4 Common Priority Usage
	5.1.5 Prioritization Strategies
	5.1.6 Manual Job Priority Adjustment

	5.2 Node Allocation Policies
	5.3 Node Access Policies
	5.4 Node Availability Policies
	5.5 Scheduling Jobs When VMs Exist

	6.0 Managing Fairness - Throttling Policies, Fairshare, and Allocation Management
	6.1 Fairness Overview
	6.2 Usage Limits/Throttling Policies
	6.3 Fairshare
	6.3.1 Sample FairShare Data File

	6.4 Charging and Allocation Management
	6.5 Charging a Workflow
	6.6 NAMI Queuing

	7.0 Controlling Resource Access - Reservations, Partitions, and QoS Facilities
	7.1 Advance Reservations
	7.1.1 Reservation Overview
	7.1.2 Administrative Reservations
	7.1.3 Standing Reservations
	7.1.4 Reservation Policies
	7.1.5 Configuring and Managing Reservations
	7.1.6 Personal Reservations

	7.2 Partitions
	7.3 Quality of Service (QoS) Facilities

	8.0 Optimizing Scheduling Behavior – Backfill and Node Sets
	8.1 Optimization Overview
	8.2 Backfill
	8.3 Node Set Overview

	9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation
	9.1 Moab Performance Evaluation Overview
	9.2 Accounting: Job and System Statistics
	9.3 Testing New Versions and Configurations
	9.4 Answering What If? Questions with the Simulator

	10.0 General Job Administration
	10.1 Job Holds
	10.2 Job Priority Management
	10.3 Suspend/Resume Handling
	10.4 Checkpoint/Restart Facilities
	10.5 Job Dependencies
	10.6 Job Defaults and Per Job Limits
	10.7 General Job Policies
	10.8 Using a Local Queue
	10.9 Job Deadlines
	10.10 Job Arrays

	11.0 General Node Administration
	11.1 Node Location
	11.2 Node Attributes
	11.3 Node Specific Policies
	11.4 Managing Shared Cluster Resources (Floating Resources)
	11.5 Managing Node State
	11.6 Managing Consumable Generic Resources
	11.7 Enabling Generic Metrics
	11.8 Enabling Generic Events

	12.0 Resource Managers and Interfaces
	12.1 Resource Manager Overview
	12.2 Resource Manager Configuration
	12.3 Resource Manager Extensions
	12.3.1 PBS Resource Manager Extensions

	12.4 Adding New Resource Manager Interfaces
	12.5 Managing Resources Directly with the Native Interface
	12.6 Utilizing Multiple Resource Managers
	12.7 License Management
	12.8 Resource Provisioning
	12.9 Intelligent Platform Management Interface
	12.10 Resource Manager Translation

	13.0 Troubleshooting and System Maintenance
	13.1 Internal Diagnostics/Diagnosing System Behavior and Problems
	13.2 Logging Facilities
	13.3 Object Messages
	13.4 Notifying Administrators of Failures
	13.5 Issues with Client Commands
	13.6 Tracking System Failures
	13.7 Problems with Individual Jobs
	13.8 Diagnostic Scripts

	14.0 Improving User Effectiveness
	14.1 User Feedback Loops
	14.2 User Level Statistics
	14.3 Enhancing Wallclock Limit Estimates
	14.4 Job Start Time Estimates
	14.5 Providing Resource Availability Information
	14.6 Collecting Performance Information on Individual Jobs

	15.0 Cluster Analysis, Testing, and Simulation
	15.1 Testing New Releases and Policies
	15.2 Testing New Middleware
	15.3 Simulations
	15.3.1 Configuring Simulation
	15.3.2 Configuring Resources for Simulation
	15.3.3 Workload Event Format
	15.3.4 Interactive Simulation Tutorial
	15.3.4.1 Checking the Queue Status
	15.3.4.2 Determining Why Jobs Are Not Running
	15.3.4.3 Controlling Iterations
	15.3.4.4 Managing Reservations Applying to the Queue
	15.3.4.5 Verifying Fair Scheduling
	15.3.4.6 Taking the System Down for Maintenance

	16.0 Green computing
	16.1 About green computing
	16.2 How-to's
	16.2.1 Enabling green computing
	16.2.2 Deploying Adaptive Computing IPMI scripts
	16.2.3 Choosing which nodes Moab powers on or off
	16.2.4 Adjusting green pool size
	16.2.5 Handling power-related events
	16.2.6 Maximizing scheduling efficiency
	16.2.7 Troubleshooting green computing

	17.0 Object triggers
	17.1 About object triggers
	17.2 How-to's
	17.2.1 Creating a trigger
	17.2.2 Using a trigger to send email
	17.2.3 Using a trigger to execute a script
	17.2.4 Using a trigger to perform internal Moab actions
	17.2.5 Requiring an object threshold for trigger execution
	17.2.6 Enabling job triggers
	17.2.7 Modifying a trigger
	17.2.8 Viewing a trigger
	17.2.9 Checkpointing a trigger

	17.3 References
	17.3.1 Job triggers
	17.3.2 Node triggers
	17.3.3 Reservation triggers
	17.3.4 Resource manager triggers
	17.3.5 Scheduler triggers
	17.3.6 Threshold triggers
	17.3.7 Trigger components
	17.3.8 Trigger exit codes
	17.3.9 Node maintenance example
	17.3.10 Environment creation example

	17.4 Trigger variables
	17.4.1 About trigger variables
	17.4.2 How-to's
	17.4.2.1 Setting and receiving trigger variables
	17.4.2.2 Externally injecting variables into job triggers
	17.4.2.3 Exporting variables to parent objects
	17.4.2.4 Requiring variables from generations of parent objects
	17.4.2.5 Requesting name space variables

	17.4.3 References
	17.4.3.1 Dependency trigger components
	17.4.3.2 Trigger variable comparison types
	17.4.3.3 Internal variables

	18.0 Miscellaneous
	18.1 User Feedback Overview
	18.2 Enabling High Availability Features
	18.3 Malleable Jobs
	18.4 Identity Managers
	18.5 Generic System Jobs
	18.6 Implementing Guaranteed Start Time

	19.0 Database Configuration
	19.1 SQLite3
	19.2 Connecting to a MySQL Database with an ODBC Driver
	19.3 Connecting to a PostgreSQL Database with an ODBC Driver
	19.4 Migrating Your Database to Newer Versions of Moab
	19.5 Importing Statistics from stats/DAY.* to the Moab Database

	20.0 Accelerators
	20.1 Scheduling GPUs
	20.2 Using GPUs with NUMA
	20.3 NVIDIA GPUs
	20.4 GPU Metrics
	20.5 Intel® Xeon Phi™ Coprocessor Configuration
	20.6 Intel® Xeon Phi™ Co-processor Metrics

	21.0 VMs
	21.1 Policy-based VM Migration
	21.2 Overcommit Factor and Threshold
	21.3 Overutilization Migration
	21.4 Green Migration and Consolidation

	22.0 Workload-Driven Cloud Services
	22.1 About workload-driven cloud services
	22.2 Tasks
	22.2.1 Enabling cloud services
	22.2.2 Creating a generic system job
	22.2.3 Creating a cloud workflow
	22.2.4 Creating a service
	22.2.5 Canceling a service

	22.3 References
	22.3.1 Cloud-specific job template attributes
	22.3.2 Generic system job trigger requirements
	22.3.3 VM service example

	23.0 Preemption
	23.1 About preemption
	23.2 Preemption tasks
	23.2.1 Canceling jobs with preemption
	23.2.2 Checkpointing jobs with preemption
	23.2.3 Requeueing jobs with preemption
	23.2.4 Suspending jobs with preemption
	23.2.5 Using owner preemption
	23.2.6 Using QoS preemption

	23.3 Preemption references
	23.3.1 Manual preemption commands
	23.3.2 Preemption flags
	23.3.3 PREEMPTPOLICY types
	23.3.4 Simple example of preemption
	23.3.5 Testing and troubleshooting preemption

	24.0 Job templates
	24.1 About job templates
	24.2 Job template how-to's
	24.2.1 Creating job templates
	24.2.2 Viewing job templates
	24.2.3 Applying templates based on job attributes
	24.2.4 Requesting job templates directly
	24.2.5 Creating workflows with job templates

	24.3 Job template references
	24.3.1 Job template extension attributes
	24.3.2 Job template matching attributes
	24.3.3 Job template examples
	24.3.4 Job template workflow examples

	25.0 Appendices
	Appendix A: Moab Parameters
	Appendix B: Multi-OS Provisioning
	Appendix D: Adjusting Default Limits
	Appendix E: Security
	Appendix G: Integrating Other Resources with Moab
	Compute Resource Managers
	Moab-TORQUE Integration Guide
	TORQUE/PBS Integration Guide - RM Access Control
	TORQUE/PBS Config - Default Queue Settings

	Moab-SLURM Integration Guide
	Installation Notes for Moab and TORQUE for Cray

	Provisioning Resource Managers
	Validating an xCAT Installation for Use with Moab

	Hardware Integration
	Moab-NUMA Integration Guide

	Appendix H: Interfacing with Moab (APIs)
	Appendix I: Considerations for Large Clusters
	Appendix J: Configuring Moab as a Service
	Appendix K: Migrating from 3.2
	Appendix R: Node Allocation Plug-in Developer Kit
	Appendix S: Scalable Systems Software Specification
	Scalable Systems Software Job Object Specification
	Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Message Format
	Scalable Systems Software Node Object Specification
	Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP) Wire Protocol

	Appendix W: Moab Resource Manager Language Interface Overview
	W.1 Moab Resource Manager Language Data Format
	W.2 Managing Resources with SLURM
	W.3 Moab RM Language Socket Protocol Description

	SCHEDCFG flags

