
Nitro 2.1.1
Administrator Guide

March 2017 Revised: 03/30/2017

© 2017 Adaptive Computing Enterprises, Inc. All rights reserved.

Distribution of this document for commercial purposes in either hard or soft copy form is strictly prohibited without
prior written consent from Adaptive Computing Enterprises, Inc.

Adaptive Computing, Cluster Resources, Moab, Moab Workload Manager, Moab Viewpoint, Moab Cluster Manager,
Moab Cluster Suite, Moab Grid Scheduler, Moab Grid Suite, Moab Access Portal, and other Adaptive Computing
products are either registered trademarks or trademarks of Adaptive Computing Enterprises, Inc. The Adaptive
Computing logo and the Cluster Resources logo are trademarks of Adaptive Computing Enterprises, Inc. All other
company and product names may be trademarks of their respective companies.

Adaptive Computing Enterprises, Inc.
1712 S. East Bay Blvd., Suite 300
Provo, UT 84606
+1 (801) 717-3700
www.adaptivecomputing.com

Scan to open online help

ii

http://www.adaptivecomputing.com/

iii

Welcome 1

Documentation Changes 1

Chapter 1 Nitro Overview 2
Nitro Origins And Purpose 2
Workload Solutions And Use Cases 3
Theory Of Operation 5
Nitro And System Scheduler Policies 9
Key Terminology And Usage 10

Chapter 2 Installation And Configuration 11
Understand And Plan Your System Environment 11
System Requirements 12
Manual Installation And Upgrade 13

Preparing For Manual Installation Or Upgrade 14
Installing 15

Installing RLM Server 15
Installing Nitro 17
Installing Nitro Web Services 21

Upgrading 29
Upgrading RLM Server 29
Upgrading Nitro 30
Upgrading Nitro Web Services 32
Upgrading To MongoDB 3.2.x 35

RPM Installation And Upgrade 37
Preparing For RPM Installation Or Upgrade 38
Installing 40

Installing RLM Server 40
Installing Nitro 42
Installing Nitro Web Services 46

Upgrading 53
Upgrading RLM Server (RPM) 53
Upgrading Nitro 54
Upgrading Nitro Web Services (RPM) 56
Upgrading To MongoDB 3.2.x (RPM) 58

Additional Configuration 61
Opening Ports In A Firewall 61
Running Multiple Coordinators On The Same Node 62

Chapter 3 System Administration 63
Job Submission Methods 63
Nitro Configuration File 64
File System Configuration 65

Run Nitro Without A Scheduler 66

Chapter 4 Using Nitro 69
Prepare A Nitro Job 69
Submit A Nitro Job Using The Nitrosub Command 72
Submit A Nitro Job With User-Customized Job Scripts 73
Track Job Progress 74

Chapter 5 References 81
Nitrosub Command 81
Command Line Flags, Or Options, And Positional Parameters 83
Environment Variables 87
Job Scripts 88
Launch Scripts 91
Task File 93
Nitrostat 96
Job Recovery 98
Coordinator Resiliency 98
Dynamic Workload 99
Glossary 100

Chapter 6 Troubleshooting 105
Sources Of Troubleshooting Information 105
Troubleshooting Task Errors 105

iv

1

Welcome

Revised: 03/30/2017
Welcome to the Administrator Guide for Nitro 2.1.1.
The following chapters are provided to assist in understanding, getting started with, and using
Nitro.

l Nitro Overview on page 2 - Provides basic information on Nitro, including theory of
operation.

l Installation and Configuration on page 11 - Provides basic installation, configuration, and
upgrade information.

l System Administration on page 63 - Contains procedures and reference information for
system administrators.

l Using Nitro on page 69 - Contains procedures and reference information on using Nitro.
l References on page 81 - Provides additional conceptual information about Nitro, including a
glossary of key terms used throughout this guide.

l Troubleshooting on page 105 - Identifies common sources of reference for troubleshooting
and provides troubleshooting information for task errors.

Documentation Changes

This topic lists miscellaneous edits to the Nitro Administrator Guide Edits are listed in descending
order by revision date.

l Jan 31, 2017 – Initial release for version 2.1.1. See Release Notes for more information.
l Nov 10, 2016 – Initial release for version 2.1.0. See Release Notes for more information.

Welcome

http://docs.adaptivecomputing.com/nitro/2.1.1/releaseNotes/help.htm
http://docs.adaptivecomputing.com/nitro/2.1.0/releaseNotes/help.htm

Nitro Origins and Purpose 2

Chapter 1 Nitro Overview

Nitro is the Adaptive Computing High Throughput Computing (HTC) product designed to
integrate with either High Performance Computing (HPC), such as Moab Workload Manager, or
datacenter schedulers to schedule and run workloads consisting of large quantities (tens of
thousands to millions) of small jobs (seconds to minutes to complete) without affecting the
throughput of the HPC or datacenter scheduler.
In this chapter:

l Nitro Origins and Purpose on page 2
l Workload Solutions and Use Cases on page 3
l Theory of Operation on page 5
l Nitro and System Scheduler Policies on page 9
l Key Terminology and Usage on page 10

Nitro Origins and Purpose

This topic describes the motivation and purpose behind the creation of Nitro.
In this topic:

l Origins on page 2
l Purpose on page 3

Origins
Until recently, Adaptive Computing's traditional market has been scheduling batch jobs for HPC
systems, colloquially known as "supercomputers". These HPC systems are typically composed of
hundreds to tens of thousands of "compute nodes" (servers designed for fast computations and
large amounts of I/O), which are increasingly "off-the-shelf" servers. Part of scheduling workloads
on such large HPC systems is optimizing the use of all the system's resources. This can be a
complex process involving a large amount of computation which can take a significant amount of
time.
Complicating the scheduling of HPC systems is the increasing use of workloads consisting of small
jobs. These workloads do not need multiple servers but can execute on a single server or even on a
single core, and may execute in a short amount of time, sometimes just seconds or even sub-
seconds. Such workloads typically fall under the category of HTC and do not need the
optimization performed by HPC schedulers.
When an HPC scheduler must schedule large quantities of HTC workloads, these workloads
severely slow down the HPC scheduler and reduce its scheduling throughput. To counteract the
effects of HTC workloads on HPC schedulers, Adaptive Computing created Nitro. Nitro schedules
and runs HTC workloads on any HPC cluster or in any datacenter without affecting the throughput
of the HPC or the datacenter scheduling software.
Nitro runs large quantities of HTC workloads as a single job submitted to any HPC or datacenter
scheduler (it is scheduler-agnostic) using the resources allocated to it by the HPC or datacenter

Chapter 1 Nitro Overview

scheduler. This permits the scheduler to operate normally and eliminates the impact the scheduling
of thousands or millions of HTC workloads would have on it.

Purpose
Nitro runs workloads small enough to execute on a single compute node or server, regardless
whether HTC in nature, with as little overhead as possible in order to speed up the execution of
HTC-like workloads through the elimination of regular scheduler overhead. This is its primary
intended purpose.
Nitro runs a single workload submitted to any HPC or datacenter scheduler and executes hundreds,
thousands, or even millions of HTC-like workloads using the resources allocated to it by the HPC
or datacenter scheduler. This permits the scheduler to operate normally by eliminating the impact
that scheduling of thousands or millions of HTC workloads would have on the scheduler.

Workload Solutions and Use Cases

This topic provides an operational overview of workload solutions available with Nitro. Use cases
are also provided to showcase some of the solutions and benefits with using Nitro.
In this topic:

l Workloads on page 3
l Use Cases on page 3

Workloads
Nitro easily schedules and executes these typical workloads:

l Serial applications that use only a single core.
l Multi-threaded applications that run on a single node.
l Short-running applications.
l "Embarrassingly Parallel" applications such as Monte Carlo-based simulations.
l Serial or parallel applications that run on a single node.
l Regression testing.

Use Cases
This section contains use cases of Nitro workload solutions.
In this section:

l Many Independent Short Workloads on page 4
l Large Queues on page 4
l Multi-threaded HTC Applications on page 4
l Regression Testing on page 5

Chapter 1 Nitro Overview

3 Workload Solutions and Use Cases

Workload Solutions and Use Cases 4

Many Independent Short Workloads
Let's say a user wants to submit a workload of 50,000 HTC jobs to execute on a system, this means
submitting each job separately to the system's scheduler. Submitting all 50,000 jobs at once to the
work queue slows down the scheduler sufficiently that other users complain of reduced job
response times (turnaround time between job submission and job completion). This reduced
response time is due to the overhead the scheduler incurs scheduling so many HTC jobs and the
overhead of starting and managing so many individual short jobs. In other words, the shorter the
HTC job, the greater the percentage of the job's response time is consumed by job scheduling,
startup, and management overhead.
Using Nitro, a user can submit a single "Nitro job" with the 50,000 HTC jobs (now referred to as
Nitro tasks) to the system's scheduler. Nitro will quickly execute this workload using its very low
scheduling overhead and very quick workload management. In other words, Nitro's low scheduling
overhead provides improved response time for executing many short jobs when compared to a
normal scheduler.
For example, let's look at a Nitro demonstration with an investment trading enterprise. The
investment trading enterprise normally submitted a workload of 10,000 of its own HTC jobs to a
commercial scheduler that took 110 seconds to execute the 10,000 jobs on ten 12-core nodes.
Submitted as a single Nitro job to the same commercial scheduler, a very early version of Nitro
took only 9 seconds to execute the same 10,000 jobs (again now called tasks) on the same ten 12-
cores nodes. Resulting in a response time speedup of 12x!

Large Queues
Let's say an HPC cluster or a datacenter has a large job queue where a significant portion of the job
queue consists of HTC workloads (thousands to millions of short jobs taking seconds to minutes to
complete). This causes reduced job response times from the system scheduler.
However, by using Nitro, users can consolidate these workloads into a few Nitro jobs (tens or
hundreds) to improve the system scheduler's job response times. Those Nitro jobs will execute the
HTC workloads on the nodes the scheduler allocates to the Nitro jobs, thereby speeding their own
workload turnarounds as well as improving the other users' job turnaround times due to a large
reduction in the queue size.
For example, let's say a scheduler has a job queue containing 100,000 jobs and of those 95,000 can
be consolidated into 95 Nitro jobs (each executing 1,000 tasks). By consolidating, the scheduler's
job queue will drop from 100,000 jobs to 5,095 jobs, which the scheduler can process in 5% of the
time required for processing 100,000 jobs, for a 20x scheduling cycle speedup. This speedup also
benefits all the other jobs in the queue.

Multi-threaded HTC Applications
Let's say a user has a multi-threaded application that runs on a single node and wants to run the
same application many times, but each time with different parameters or datasets. The user will
either submit a single job that executes the application one instance at a time with the different
parameters or datasets, or submits many jobs that execute the application only once, each with
different parameters or datasets. The former method does not take advantage of the many available
nodes on which many application instances can execute simultaneously for a shorter overall
response time but does have the advantage of not affecting the system scheduler's scheduling time.
The latter method has a greater potential for a shorter overall response time but has the
disadvantage of affecting the system scheduler's job throughput.
Using Nitro, the user can run multiple instances of an application on the nodes the system scheduler
allocates to the Nitro job without affecting the system scheduler's scheduling time or throughput. In
addition, the Nitro job will usually execute all instances in a shorter time than the system scheduler
could due to much lower overhead since Nitro's orientation and optimization quickly starts the next
application instance as soon as an existing application instance completes.

Chapter 1 Nitro Overview

Regression Testing
Let's say an institution performs large quantities of regression tests each night for the applications it
develops. Many regression tests are similar and can execute independently of each other. The
regression test framework submits the tests as individual jobs to the system scheduler, which means
many jobs for it to schedule.
Using Nitro can increase the regression test throughput due to its much lower workload
management overhead; that is, it can immediately start the next regression workload as soon as an
existing workload completes without the overhead a system scheduler incurs communicating job
completion, scheduling the next job to start, and then starting the next job.

Theory of Operation

This topic identifies the various components of Nitro, describes their purpose, and illustrates how
they interact with the user, the system scheduler, the system hardware, and each other.
In this topic:

l Nitro High-Level Architecture and Flow on page 5
l Nitro Job Startup Architecture and Flow on page 7
l Nitro Job Architecture and Processing Flow on page 8

Nitro High-Level Architecture and Flow
This section identifies Nitro components from a high-level Nitro product architecture perspective
that most closely aligns with the perspective of a user submitting a Nitro job that uses the Nitro
application to execute workloads with minimal scheduling overhead.

Chapter 1 Nitro Overview

5 Theory of Operation

Theory of Operation 6

1. A user creates a "user job script" that executes Nitro with a task file (containing task definitions
created by the user) that execute the user's workloads, and submits the job script to the system's
job scheduler. The user job script can be scheduler-agnostic, which means the user can submit
the same script to different schedulers on other systems or on the same system if its scheduler
changes.

2. The scheduler allocates nodes to the Nitro job and, using a workload and/or resource manager,
starts the execution of the job script on one of the job's allocated nodes.

3. The user job script executes Nitro (…/bin/nitro) using the Nitro launch script
(…/bin/launch_nitro.sh). The Nitro launch script is scheduler-specific and allows the
user job script to be scheduler-agnostic.

4. Nitro reads the task file containing the user-defined task definitions and then executes the tasks
on its allocated nodes. A Nitro task definition is the equivalent of an HTC job running an
application in that the user converts individual HTC jobs previously submitted to a scheduler
into tasks executed by Nitro.

5. As tasks complete their execution, Nitro records information for each task in the Nitro task log
file.

6. As Nitro processes task definitions from the task file and executes them, Nitro periodically
updates the Nitro job log file with job progress and statistical task information to keep the user
informed of its progress.

Chapter 1 Nitro Overview

Also while Nitro executes, it records information about its environment and progress in the job's
standard output file. Likewise, any unusual or unexpected errors it encounters it records in the
job's standard error file.

Nitro Job Startup Architecture and Flow
This section identifies Nitro components from a job-level architecture perspective and indicates
which Nitro components start and interact with other components during a Nitro job startup.

1. The user job script executes and does whatever the user specified. This can include things such
as setting the Nitro environment variable for the task file path, setting other Nitro-recognized
environment variables with values that affect Nitro's behavior, and performing any other
preparatory work needed by the tasks Nitro will execute.

2. The last action performed by the user job script is to execute the Nitro launch script
(…/bin/launch_nitro.sh) that starts up Nitro.

3. Using scheduler- or resource manager-specific commands, the Nitro launch script starts up one
Nitro worker on each of the nodes allocated to the Nitro job.

4. Lastly, the Nitro launch script starts up the Nitro coordinator on the node on which it is
executing.

5. If the user job script or the Nitro launch script specified the Nitro coordinator should start up a
Nitro worker (Local Nitro Worker) on its node, the coordinator does so after it starts up.

Chapter 1 Nitro Overview

7 Theory of Operation

Theory of Operation 8

Nitro Job Architecture and Processing Flow
This section identifies the other Nitro components used and/or produced by the Nitro coordinator
from a job-level architecture perspective and shows their interactions.
This section continues the job-level perspective narrative relative to Nitro's operation shown in
Nitro Job Startup Architecture and Flow on page 7.

6. The Nitro coordinator outputs information about its environment, including file path
information, the job itself (with the job id), to the job's Standard Output File.

7. Nitro coordinator checks for the existence of a Nitro job checkpoint file. If it is present, the
coordinator reads the checkpoint file and resumes the Nitro job; otherwise, the Nitro coordinator
creates a checkpoint file for the Nitro job.

Chapter 1 Nitro Overview

A user can take advantage of restarting a Nitro job from where it left off if the user or an
administrator cancelled the job or the scheduler preempted the job.

8. The Nitro coordinator opens and starts reading the task file in the user job script or via an
environment variable. If the checkpoint file already exists, the coordinator resumes reading the
task file from where it stopped and reassigns any uncompleted tasks to workers for execution.

9. The Nitro coordinator processes the task definitions in the task file and creates task
"assignments" from the task definitions in the task file that it sends to the Nitro workers via a
message bus.

10. The Nitro workers each process their own task assignment and start up tasks using their "task
launch" threads. Each task launch thread starts up and executes one task.

11. When a task finishes executing, the worker asynchronously uses the task launch thread to
obtain statistical information about the task's execution.

12. When all tasks within a task assignment have completed, the worker returns the tasks' statistical
information to the coordinator via the message bus and then starts processing its next task
assignment.

13. The coordinator records the tasks' statistical information in the Nitro task Log file
14. The coordinator continues reading task definitions from the task file, creating task assignments,

and sending the task assignments to the workers. To keep the workers busy (fully utilizing the
nodes allocated to the Nitro job), the coordinator sends another task assignment to a worker
when the worker processed a majority of the current task assignment (while worker still has
tasks in its queue). This overlapping of task assignments keeps all of the node's cores executing
workload for a very high percentage of the time.

15. The coordinator periodically updates the Nitro job's statistical information in the Nitro job log
file. The user can refer to the job log file to follow the Nitro job's progress.

16. When the coordinator has reached the end of the task file and the workers have executed all
tasks, the coordinator shuts down the workers, deletes the checkpoint file, and then terminates
itself. At this point the user job completes.

Nitro and System Scheduler Policies

Nitro is an HTC scheduler application executed by a job script just like any other application a user
might execute. By design, Nitro does not and will not perform scheduling functions like a regular
system scheduler, such as, enforcing per-user, per-group, and/or per-account resource or usage limit
policies, supporting fair-share policies, maintaining separation between users in a multi-tenancy
environment, etc. This means Nitro will not perform functions such as launching tasks from one
Nitro job as different users, etc.

Nitro and Users
If users are subject to different constraints and policies, requiring the users to submit their own
Nitro jobs and not combine the Nitro tasks allows the system scheduler to enforce policies on the

Chapter 1 Nitro Overview

9 Nitro and System Scheduler Policies

Key Terminology and Usage 10

users, which is the system scheduler's responsibility. Thus with Nitro, the administrator will
continue to use the system scheduler to enforce policies in the normal manner.
For example, if three users (A, B and C) each want to execute Nitro tasks that are the same
application and perhaps even use the same data, they each must submit their own Nitro job with its
own task file (could be the same file but the users must specify it for their own job). If they are each
subject to different policies and constraints, the system scheduler enforces those constraints and, by
design, Nitro is ignorant of the policies and constraints and will remain so.

Nitro and Host Resources
If a user wants to execute workloads that require certain hardware resources or constraints, the user
must use the system scheduler's resource request capabilities to allocate or constrain such.
For example if a Nitro job will execute workloads that require an accelerator, such as
NVIDIA/AMD GPU or Intel MIC (Xeon Phi), the user must request hosts with the required
accelerator(s) for the Nitro job so the workloads have accelerator(s) available to them.

Key Terminology and Usage

This document includes a glossary of key terms used through this guide. This is to help simplify
and clarify the information presented.
For example, instead of using terms specific to the traditional HPC (research, university, and
government institutions) and commercial enterprise markets, such as "HPC cluster" and
"datacenter" and their corresponding "compute node" and "server" terms, this guide uses the
generic terms "system" and "host", respectively. Also this guide uses the term "workload" to
represent an arbitrary amount of work to execute on a system while "job" refers to workload
submitted by a user to a system's scheduler for eventual execution on one or more of the system's
hosts.
Refer often to Glossary on page 100 for a complete list of terms used in this guide.

Chapter 1 Nitro Overview

Understand and Plan Your System Environment 11

Chapter 2 Installation and Configuration

This chapter provides Nitro installation and configuration instructions. This chapter is designed for
system administrators.
In this chapter:

l Understand and Plan Your System Environment on page 11
l System Requirements on page 12
l Manual Installation and Upgrade on page 13
l RPM Installation and Upgrade on page 37

Understand and Plan Your System Environment

This topic provides information that is important to understand before you begin your Nitro
installation.
In this topic:

l Nitro Licenses and Licensing on page 11
l Nitro Product Packaging on page 11
l Default Installation Directory and Subdirectories on page 12

Nitro Licenses and Licensing
Nitro is a licensed software product that requires licenses conveyed via a license file and managed
by the RLM license server in order to execute. Adaptive Computing must generate a license file for
your Nitro product and you must install the license file onto the RLM server where the RLM
license daemon can read it. Without the proper installation of the license file, Nitro will not execute.
Adaptive Computing licenses Nitro in two mutually-exclusive ways, by node and by core.

l Sites running parallel jobs that request multiple whole host systems (HPC compute nodes or
servers) will want to license Nitro by node since their schedulers often allocates job resources
by whole hosts for speed.

l Sites running mainly serial (single-core) jobs that request one or a few cores will want to
license Nitro by core since their schedulers tend to fragment host system resources such that
it may be very difficult for a Nitro job to obtain whole host systems.

The Nitro license file indicates the license model, by-node or by-core, the Nitro product will
operate under.

Nitro Product Packaging
With Nitro 2.0, you will need access to an RLM Server for licensing.
A Nitro Web Services interface is also introduced with 2.0. Moab Viewpoint requires Nitro Web
Services to track Nitro job status.

Chapter 2 Installation and Configuration

Depending on your system configuration, you may need some or all of the components. The Nitro
Download page includes bundles that let you download all the components.

Nitro Web Services is currently not available for SUSE 11-based systems; it is not in the
Tarball or RPM bundles for that OS.

The RLM Server is included in the bundles as a courtesy. If your company already has
access to an RLM (for example, you installed one as part of your Remote Visualization
package), you will not need to install another RLM Server.

Default Installation Directory and Subdirectories
Nitro will be installed to the /opt/nitro directory by default. This directory includes the
following subdirectories.

cd /opt/nitro
ls -l
drwxr-xr-x. 2 root root 4096 Jun 9 16:20 bin
drwxr-xr-x. 6 root root 4096 Jun 9 16:20 scripts
drwxr-xr-x. 1 root root 4096 Jun 9 16:20 etc

l The bin directory contains the binary executable program files and executable scripts that
make up the Nitro product for your site.

l The scripts directory contains reference launch_nitro.sh scripts for different job schedulers
and resource managers, which include Cray ALPS with Torque or Slurm, Platform LSF,
Slurm, and Torque (Moab and Maui schedulers).

l The etc directory contains the nitro.cfg file. Nitro has some default settings that can be
changed by setting values in the /opt/nitro/etc/nitro.cfg file. See Nitro Configuration File on
page 64 for more information.

System Requirements

This topic identifies the system requirements for your Nitro installation.
In this topic:

l Hardware Requirements on page 12
l Supported Operating Systems on page 13
l Reprise License Manger Server Requirements on page 13
l Software Requirements on page 13

Hardware Requirements

l Nitro requires one or more multi-core processors per host. Generally the more processors
(sockets) and/or OS cores a host has, the more tasks Nitro can execute simultaneously on

Chapter 2 Installation and Configuration

12 System Requirements

Manual Installation and Upgrade 13

each host; although this will be application-dependent.
l It is recommended that hosts should have sufficient memory to execute as many applications
as possible so that Nitro can run them at a rate of one application instance per OS core
(especially if they are not multi-threaded). This eliminates the need for users to have to
request memory in their Nitro task definitions.

See Task File on page 93 for more information on specifying memory requirements.

Supported Operating Systems
Nitro supports these operating systems:

l CentOS 6.x, 7.x
l Red Hat 6.x, 7.x
l Scientific Linux 6.x, 7.x
l SUSE Linux Enterprise Server 11, 12

SUSE Linux Enterprise Server (SLES) 11 is not available as an RPM installation method.

Reprise License Manger Server Requirements
As of version 2.0, Nitro is a licensed software product that requires the Reprise License Manager
(RLM) software to check out and check in Nitro licenses. The RLM web server/license daemon
software must execute on a central server accessible by all host systems on which Nitro will
execute.
The RLM software itself is extremely light-weight and does not require its own server. Meaning
that you can install the RLM server on the same host as your job scheduler or resource manager
server.

If your company does not already utilize an RLM, you will need to install one. See the RLM
Installation documentation available from the Nitro download site
(http://www.adaptivecomputing.com/support/download-center/nitro/).

Software Requirements
Nitro is built with all needed libraries statically linked. This provides for a quick and simple
installation and helps avoid troublesome library mismatches. No additional packages need to be
installed on the compute nodes.
However, users running nitrosub and the nitrostat utility require Python 2.6.6 or later on the system
from which they are running it.

Manual Installation and Upgrade

Chapter 2 Installation and Configuration

http://www.adaptivecomputing.com/support/download-center/nitro/

This section provides installation, configuration, and upgrading information using the Manual
Installation method.
In this section:

l Preparing for Manual Installation or Upgrade on page 14
l Install

o Installing RLM Server on page 15
o Installing Nitro on page 17
o Installing Nitro Web Services on page 21

l Upgrade
o Upgrading RLM Server on page 29
o Upgrading Nitro on page 30
o Upgrading Nitro Web Services on page 32

Preparing for Manual Installation or Upgrade

This topic contains instructions on how to download and unpack the Nitro Tarball Bundle for all
the hosts in your configuration.

Whether you are installing tarballs on one host or on several hosts, each host (physical
machine) on which a server is installed (RLM Server, Nitro, Nitro Web Servcies) must have
the Nitro Tarball Bundle.

Nitro Web Services is currently not available for SUSE 11-based systems; it is not in the
Tarball bundle for that OS.

Set Up Proxies
If your site uses a proxy to connect to the Internet, do the following:

export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>

Download and Unpack the Nitro Tarball Bundle
The Nitro Tarball Bundle contains all the tarballs available for Nitro. However, not every tarball
may be installed on the same host.
On each host (physical machine), do the following:
1. Using a web browser, navigate to the Adaptive Computing Nitro Download website

(http://www.adaptivecomputing.com/support/download-center/nitro/).
2. Download the Nitro Tarball Bundle (nitro-tarball-bundle-<version>-

<OS>.tar.gz).

Chapter 2 Installation and Configuration

14 Manual Installation and Upgrade

http://www.adaptivecomputing.com/support/download-center/nitro/

Manual Installation and Upgrade 15

The variable marked <version> indicates the build's version, revision, and changeset
information. The variable marked <OS> indicates the OS for which the build was
designed.

3. Unpack the Nitro Tarball Bundle.

[root]# tar xzvf nitro-tarball-bundle-<version>-<OS>.tar.gz

Installing

Installing RLM Server
Access to a Reprise License Manager (RLM) server is required when using Nitro.

The RLM Server can run multiple licenses. If your company already uses an RLM Server,
you do not need to install a new one for Nitro. Skip this topic and follow the instructions in
Installing Nitro on page 17.

This topic contains instructions on how to install an RLM Server.
In this topic:

l Open Necessary Ports on page 15
l Install the RLM Server on page 16
l Change the Default Passwords on page 17

Open Necessary Ports

These instructions assume you are using the default ports. If your configuration will use other
ports, then substitute your port numbers when opening the ports.

If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

Location Ports Functions When
Needed

RLM
Server
Host

5053 RLM Server Port Always

RLM
Server
Host

5054 RLM Web Interface Port Always

Chapter 2 Installation and Configuration

Location Ports Functions When
Needed

RLM
Server
Host

5135 ISV adaptiveco Port (for the Adaptive license-enabled
products)

Always

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.

Install the RLM Server

If your configuration uses firewalls, you must also open the necessary ports before installing
Nitro. See Open Necessary Ports on page 15.

On the host where the RLM Server will reside, do the following:
1. If you have not already done so, complete the steps to prepare the host. See Preparing for

Manual Installation or Upgrade on page 14.
2. Identify the RLM tarball (ac-rlm-<version>.tar.gz).

3. Create a non-root user and group (rlm is used in the example).

[root]# groupadd -r rlm
[root]# useradd -r -g rlm -d /opt/rlm -c "A non-root user under which to run
Reprise License Manager" rlm

4. Create a directory and install the tarball files in that location (we are using /opt/rlm as the install
location in the example).

[root]# mkdir -p -m 0744 /opt/rlm
[root]# cd /opt/rlm
[root]# tar -xzvf /tmp/ac-rlm-<version>.tar.gz --strip-components=1
[root]# chown -R rlm:rlm /opt/rlm

The --strip-components=1 removes the "ac-rlm-<version>/" from the relative
path so that they are extracted into the current directory.

5. Install the startup scripts.

If you are using a user:group other than rlm:rlm or a location other than /opt/rlm, then edit
the following files to reflect those changes after copying them.

l Red Hat 6-based or SUSE 11-based systems

[root]# cp init.d/rlm /etc/init.d

Chapter 2 Installation and Configuration

16 Manual Installation and Upgrade

Manual Installation and Upgrade 17

l Red Hat 7-based or SUSE 12-based systems

[root]# cp systemd/rlm.service /etc/systemd/system

6. Start the services and configure the RLM Server to start automatically at system reboot.
l Red Hat 6-based or SUSE 11-based systems

[root]# chkconfig --add rlm
[root]# chkconfig rlm on
[root]# service rlm start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl start rlm.service
[root]# systemctl enable rlm.service

Change the Default Passwords
The RLMWeb interface includes two usernames (admin and user) by default. These usernames
have the default password "changeme!".

If you do not change this password, RLM, and Remote Visualization, will not be secure.
For tips on choosing a good password, see https://www.us-cert.gov/ncas/tips/ST04-002.

Do the following for both the user and the admin usernames:
1. Using a web browser, navigate to your RLM instance (http://<RLM_host>:5054; where

<RLM_host> is the IP address or name of the RLM Server Host).
2. Log in.
3. Select Change Password and change the password according to your password security

process.

Installing Nitro
This topic contains instructions on how to install Nitro.
Nitro

l needs to be available to all of the nodes that will be used as part of the Nitro job.
l can be installed either to each node individually or to a shared file system that each node can
access.

Some Nitro functionality, such as using the nitrosub command, is not available unless
you are using a shared file system.

l can be installed to integrate with a scheduler, such as Moab Workload Manager, or without
(Nitro standalone). The instructions are the same.

In this topic:

Chapter 2 Installation and Configuration

https://www.us-cert.gov/ncas/tips/ST04-002

l Obtain a Nitro License on page 18
l Open Necessary Ports on page 19
l Install Nitro on page 20
l Verify Network Communication on page 21

Obtain a Nitro License
The Nitro license file is installed on an RLM Server.

These instructions assume you already have access to an RLM Server. See Installing RLM
Server on page 15 for instructions on how to set up a new RLM Server.

Do the following:
1. On the RLM server, obtain the hostid and hostname.

l hostid

[root]# /opt/rlm/rlmhostid

You should see output similar to the following.

rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.

Hostid of this machine: 00259096f004

l hostname

[root]# /opt/rlm/rlmhostid host

You should see output similar to the following.

rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.

Hostid of this machine: host=<your-host-name>

2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you
just obtained.

3. Adaptive Computing will generate the license and send you the Nitro license file (typically,
nitro.lic) file in a return email.

4. On the RLM server, do the following:
a. Download and install the license file.

[root]# cd /opt/rlm
[root]# chown rlm:rlm nitro.lic

b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the
ISV adaptiveco port for the Adaptive license-enabled products. This is the same port

Chapter 2 Installation and Configuration

18 Manual Installation and Upgrade

Manual Installation and Upgrade 19

number you opened during the RLM Server installation. See the instructions to open
necessary ports in the Installing RLM Server on page 15 (manual installation method) or
Installing RLM Server on page 40 (RPM installation method) for more information.

[root]# vi /opt/rlm/nitro.lic

ISV adaptiveco port=5135

The license file already references the RLM Server port (5053 by default).

If the RLM Server in your configuration uses different ports, you will need to modify
the license file to reflect the actual ports. See the instructions to open necessary ports
in the Installing RLM Server on page 15 (manual installation method) or Installing
RLM Server on page 40 (RPM installation method) for more information.

c. If you did not install an RLM Server using the file available from Adaptive Computing (for
example, because your system configuration already uses one), do the following:
i. Download the 'adaptiveco.set' file from the Adaptive Computing Nitro Download
Center (https://www.adaptivecomputing.com/support/download-center/nitro/).

ii. Copy the 'adaptiveco.set' file into the same directory where the Nitro license resides
(/opt/rlm).

d. Perform a reread to update the RLM Server with your license.

[root]# /opt/rlm/rlmreread

Open Necessary Ports
Nitro uses several ports for communication between the workers and the coordinator.
If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

The listed ports is for configurations that have only one coordinator. If multiple coordinators
are run on a single compute host, then sets of ports (range of 4) must be opened for the
number of expected simultaneous coordinators.

Location Ports Functions When
Needed

Compute
Hosts (Nitro
Coordinator)

47000 Coordinator/Worker communication Always

Compute
Hosts (Nitro
Coordinator)

47001 Coordinator PUB/SUB channel - publishes
status information

Always

Chapter 2 Installation and Configuration

https://www.adaptivecomputing.com/support/download-center/nitro/
https://www.adaptivecomputing.com/support/download-center/nitro/

Location Ports Functions When
Needed

Compute
Hosts (Nitro
Coordinator)

47002 Reserved for future functionality

Compute
Hosts (Nitro
Coordinator)

47003 API communication channel Always

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.

Install Nitro

You must complete the tasks to obtain a Nitro license before installing Nitro. See Obtain a
Nitro License on page 18.
If your configuration uses firewalls, you must also open the necessary ports before installing
Nitro. See Open Necessary Ports on page 19.

On the host where Nitro will reside, do the following:
1. If you have not already done so, complete the steps to prepare the host. See Preparing for

Manual Installation or Upgrade on page 14.
2. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

3. Identify the Nitro product tarball (nitro-<version>-<OS>.tar.gz).
4. Run each of the following commands in order.

[root]# mkdir /opt/nitro
[root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1

5. Copy the license file you generated earlier in this topic to each compute node (coordinator). On
each compute node, or on the shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

6. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

This is a "copy" file operation and not a "move" operation. This allows you to customize
your version and always have the factory version available for consultation and/or
comparison.

Chapter 2 Installation and Configuration

20 Manual Installation and Upgrade

Manual Installation and Upgrade 21

a. Copy the launch_nitro.sh and launch_worker.sh scripts for your resource manager to the
bin directory. Each resource manager has a subdirectory with the scripts directory that
contains the scripts. This example uses Torque as the resource manager.

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
[root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/

b. Copy the nitrosub command to the bin directory.

[root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/

c. Copy the nitro_job.sh and the worker_job.sh scripts to the etc directory.

[root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
[root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/

7. Now that you have copied the scripts and the nitrosub command, edit the copies for your site's
administrative policies.
l bin/nitrosub command (applicable only if using a shared file system). At a minimum,
do the following:
a. Uncomment the "_resource_manager" line for your resource manager.
b. Uncomment the "resource_type" line for your licensing model's allocation (nodes or

cores).
c. If your system will be using dynamic jobs, set the "_dynamic_size" value to the number

of resources to allocate to a dynamic job.
See nitrosub Command on page 81 for more information.

l bin/launch_nitro.sh and bin/launch.worker.sh scripts. See Launch
Scripts on page 91 for more information.

8. If your system configuration allows multiple coordinators on the same node, additional
configuration may be needed. See Running Multiple Coordinators on the Same Node on page
62 for more information.

9. If you are not using a shared file system, copy the Nitro installation directory to all hosts.

[root]# scp -r /opt/nitro root@host002:/opt

If you are not using a shared file system, you may not be able to use the nitrosub
command.

Verify Network Communication
Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports and
that the nodes are able to communicate with one another.

Installing Nitro Web Services
This topic contains instructions on how to install Nitro Web Services.

Chapter 2 Installation and Configuration

Nitro Web Services is not available for SUSE 11-based systems.

Do the following in the order presented:
1. Open Necessary Ports on page 22
2. Install MongoDB on page 22
3. Install and Configure Nitro Web Services on page 24
4. Configure Viewpoint for Nitro Web Services on page 26
5. Grant Users Nitro Permissions in Viewpoint on page 28
6. Publish Nitro Events to Nitro Web Services on page 28

Open Necessary Ports
If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

Location Ports Functions When Needed

Nitro
Web
Services
Host

9443 Tornado Web Port Always

Nitro
Web
Services
Host

47100 ZMQ Port Always

Nitro
Web
Services
Database
Host

27017 Nitro Web Services
MongoDB Server
Port

If you will be installing the Nitro Web Services
Database on a different host from Nitro Web
Services

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.
In this section:

Install MongoDB
On the Nitro Web Services MongoDB Database Host, do the following:

Chapter 2 Installation and Configuration

22 Manual Installation and Upgrade

Manual Installation and Upgrade 23

1. Add the MongoDB Repository.
l Red Hat 6-based or Red Hat 7-based systems

[root]# cat > /etc/yum.repos.d/mongodb-org-3.2.repo <<'EOF'
[mongodb-org-3.2]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.2/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.2.asc
EOF

l SUSE 12-based systems

[root]# zypper addrepo --refresh --no-gpgcheck
https://repo.mongodb.org/zypper/suse/12/mongodb-org/3.2/x86_64 mongodb

2. Install MongoDB.
l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install -y mongodb-org

l SUSE 12-based systems

[root]# zypper -n install mongodb-org

3. Enable and start MongoDB.
l Red Hat 6-based systems

[root]# chkconfig mongod on
[root]# service mongod start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

4. Add the required MongoDB users.

The passwords used below (secret1 and secret5) are examples. Choose your own
passwords for these users.

[root]# mongo
> use admin
> db.createUser({"user": "admin_user", "pwd": "secret1", "roles": ["root"]})

> use nitro-db
> db.createUser({"user": "nitro_user", "pwd": "secret5", "roles": ["dbOwner"]})

> exit

Chapter 2 Installation and Configuration

Because the admin_user has read and write rights to the admin database, it also has
read and write rights to all other databases. See Control Access to MongoDB Instances
with Authentication (at http://docs.mongodb.org/manual/tutorial/control-access-to-
mongodb-with-authentication) for more information.

5. Set MongoDB Configuration Options.
l The configuration file for MongoDB is /etc/mongod.conf. See
https://docs.mongodb.com/manual/reference/configuration-options for information.

l Adaptive Computing recommends that you set security.authorization to enabled. See
https://docs.mongodb.com/manual/reference/configuration-options/#security-options for
more information.

By default, /etc/mongod.conf sets net.bindIp to 127.0.0.1. You will need to change this
setting if the MongoDB server needs to be accessible from other hosts or from other
interfaces besides loopback. See
https://docs.mongodb.com/manual/reference/configuration-options/#net-options for more
information.

Sample /etc/mongod.conf file
net:
port: 27017
bindIp: 127.0.0.1

processManagement:
fork: true
pidFilePath: /var/run/mongodb/mongod.pid

security:
authorization: enabled

storage:
dbPath: /var/lib/mongo
journal:
enabled: true

systemLog:
destination: file
logAppend: true
path: /var/log/mongodb/mongod.log

6. Restart MongoDB.
l Red Hat 6-based systems

[root]# service mongod restart

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl restart mongod.service

Install and Configure Nitro Web Services

You must complete the tasks earlier in this topic before installing Nitro Web Services.

On the host where Nitro Web Services will reside, do the following:

Chapter 2 Installation and Configuration

24 Manual Installation and Upgrade

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
https://docs.mongodb.com/manual/reference/configuration-options
https://docs.mongodb.com/manual/reference/configuration-options/#security-options
https://docs.mongodb.com/manual/reference/configuration-options/#net-options

Manual Installation and Upgrade 25

1. If you have not already done so, complete the steps to prepare the host. See Preparing for
Manual Installation or Upgrade on page 14.

2. Identify and unpack the Nitro Web Services tarball (nitro-web-services-<version>-
<OS>.tar.gz).

[root]# tar -xzvpf nitro-web-services-<version>-<OS>.tar.gz

3. Install Nitro Web Services.

[root]# cd /opt/nitro-web-services-<version>
[root]# ./install <directory>
<directory> is optional; defaults to /opt/nitro-web-services when not given

4. Understand and edit the the Nitro Web Services web application configuration file (/opt/nitro-
web-services/etc/nitro.cfg). This includes clarifying what the configuration file is for and what
to expect the first time the NWS service is started vs. each subsequent start.

The nitro_user with dbOwner permissions was set up earlier in the procedure (see Install
MongoDB on page 22).
When you first start nitro-web-services, the nitro-db Mongo database (including its
collections and indexes) is created. The nitro-db 'user' collection is also populated with the
default Nitro Web Services API users/passwords. Several of the options defined in the
configuration files influence this process.

MongoDB user, table, and index creation is performed at initial startup. Many of the options
defined in the Nitro Web Service configuration files influence Mongo user/password and index
creation.

Usernames and passwords are created only if they do not yet exist. Changing a password
in the configuration file after initial startup will not update the password.

The /opt/nitro-web-services/etc/nitro.cfg configuration file includes default password values. If
you want to use passwords other than the default value, change the lines in the file as shown
below.
l Before initial startup, set the db_password to be the nitro_user password. It is also
recommended that you change all other default passwords before starting Nitro Web
Services. If you do not change the passwords at this point, it will be more difficult to change
them later.

db_password = <password goes here>
ws_admin_password = <ws_admin_password goes here>
ws_readonly_password = <ws_readonly_password goes here>
ws_writeonly_password = <ws_writeonly_password goes here>

l By default, NWS uses an auto-generated self-signed SSL certificate to encrypt the link
between the web server and the browser clients. The auto-generated self-signed SSL
certificate is created at service start up; not during the installation process.

Chapter 2 Installation and Configuration

However, you can use your own certfile, keyfile, and ca_certs files if you wish.

If you choose to use your own ssl_certfile and ssl_keyfile, ssl_create_self_
signed_cert=true is ignored.

l By default, NWS does not encrypt network traffic with MongoDB. You should set the db_
ssl_* properties if you choose to enable TLS/SSL when installing MongoDB earlier in this
topic.

5. Understand and edit the Nitro ZMQ Job Status Adapter configuration file (/opt/nitro-web-
services/etc/zmq_job_status_adapter.cfg). This includes clarifying what the configuration file is
for and what to expect the first time the NWS service is started vs. each subsequent start.
l The Nitro ZMQ Job Status Adapter listens to job status updates on the ZMQ bus and
publishes them to MongoDB using the Nitro Web Services REST API.

l The username and password must be set to a Nitro Web Services API user with write
permissions. At minimum, set the password for nitro-writeonly-user to the password defined
in /opt/nitro-web-services/etc/nitro.cfg and make sure the SSL options are set correctly based
on SSL settings in /opt/nitro-web-services/etc/nitro.cfg.

password = <ws_writeonly_password goes here>

6. If you did not need to install the Nitro Web Services MongoDB database earlier in this topic,
verify that the mongodb_hostlist in /opt/nitro-web-services/etc/nitro.cfg
is set correctly (localhost:27017 is the default).

7. Start the services and configure Nitro Web Services to start automatically at system boot.
l Red Hat 6-based systems

[root]# chkconfig --add nitro-web-services
[root]# chkconfig --add nitro-zmq-job-status-adapter
[root]# service nitro-web-services start
[root]# service nitro-zmq-job-status-adapter start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service
[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service

Configure Viewpoint for Nitro Web Services
Do the following:
1. Using a web browser, navigate to your Viewpoint instance (http://<server>:8081)

and then log in as the MWS administrative user (moab-admin, by default).
2. Click Configuration from the menu and then click Nitro Services from the left pane. The

following is an example of the Nitro Services Configuration page.

Chapter 2 Installation and Configuration

26 Manual Installation and Upgrade

Manual Installation and Upgrade 27

3. Enter the configuration information. The following table describes the required information.

Field Description

Nitro WS
URL

Hostname (or IP address) and port number for the host on which you installed Nitro Web
Services. For example, https://<hostname>:9443

Username Name of the user. This typically nitro-readonly-user.

Password The user's password.

Trust Self
Signed

Indicates whether Nitro Web Services was set up using self-signed certificates.

4. Click TEST to confirm the settings are correct. This confirms whether Nitro Web Services is
up and receiving connections.

5. Click SAVE.
6. (Recommended) Use curl to test Nitro Web Services connectivity.

[root]# curl --insecure --data '{"username": "nitro-admin", "password":
"ChangeMe2!"}' \
https://<hostname>:9443/auth

You should see output similar to the following.

Chapter 2 Installation and Configuration

{
"status": 200,
"data": {
"nitro-key": "3e0fb95e9a0e44ae91daef4deb500dcc67a3714880e851d781512a49",
"user": {
"username": "nitro-admin",
"last_updated": "2016-02-26 23:34:55.604000",
"name": "Nitro Admin",
"created": "2016-02-26 23:34:55.604000",
"auth": {
"job": [
"read",
"write",
"delete"

],
"user": [
"read",
"write",
"delete"

]
}

}
}

}

Grant Users Nitro Permissions in Viewpoint
Viewpoint comes packed with base (default) roles for Nitro jobs. Any user who will be working
with Nitro Web Services, must have the appropriate role added to the Viewpoint user principal.
These are the Viewpoint roles for Nitro:

l NitroAdmin – Administrative user, with permission to create Nitro application templates and
manage other user's Nitro jobs.

l NitroUser – Basic user, with permission to create and manage their own Nitro jobs.
See Creating or Editing Principals in theMoab Viewpoint Reference Guide for instructions on
setting up principals.

Publish Nitro Events to Nitro Web Services
You need to configure the Nitro coordinators to send job status updates to the Nitro Web Services's
ZMQ Job Status Adapter. The ZMQ Job Status Adapter is responsible for reading job status
updates off of the ZMQ bus and persisting them to Mongo. Nitro Web Services can then be used to
access Nitro job status.
Each Nitro job has a Nitro Coordinator. Nitro Coordinators can be configured to publish job status
updates to ZMQ by setting the "nws-connector-address" configuration option in Nitro's nitro.cfg
file. Each compute node allocated/scheduled to a Nitro Job can play the role of a Nitro coordinator.
Therefore, you must update the "nws-connector-address" in each compute node's nitro.cfg file.

Configuring nws-connector-address is simplified if each node is sharing Nitro's configuration
over a shared filesystem. If you are not using a shared filesystem, update the Nitro
configuration on each compute node.

Do the following:

Chapter 2 Installation and Configuration

28 Manual Installation and Upgrade

Manual Installation and Upgrade 29

1. If you have not already done so, on the Nitro Web Services Host, locate the msg_port number
in the /opt/nitro-web-services/etc/zmq_job_status_adapter.cfg
file. This is the port number you need to specify for the nws-connector-address.

2. On each Nitro compute note (Torque MOM Host), specify the nws-connector-address in the
/opt/nitro/etc/nitro.cfg file.

...
Viewpoint connection allows Nitro to communicate job status information
to viewpoint. This option indicates name and port of the remote server
in the form: <host>:<port>
nws-connector-address <nitro-web-services-hostname>:47100
...

Upgrading

Upgrading RLM Server
This topic contains instructions on how to upgrade the RLM Server.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM
package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release.
Adaptive Computing strongly recommends that your RLM Server is v12.1 (build:2).

Upgrade the RLM Server

These instructions assume you used /opt/rlm as the install location.

On the RLM Server Host, do the following:
1. If you have not already done so, complete the steps to prepare the host. See Preparing for

Manual Installation or Upgrade on page 14.
2. Identify the RLM tarball (ac-rlm-<version>.tar.gz).
3. Stop the RLM service.

l Red Hat 6-based or SUSE 11-based systems

[root]# service rlm stop

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl stop rlm.service

4. Archive the existing RLM installation, including the license file(s).

[root]# mv /opt/rlm/ /opt/rlm-<archive_version>/

Chapter 2 Installation and Configuration

5. Install the new tarball files.

[root]# mkdir -p -m 0744 /opt/rlm
[root]# cd /opt/rlm
[root]# tar -xzvf /<unpack-directory>/ac-rlm-<version>.tar.gz --strip-components=1
[root]# chown -R rlm:rlm /opt/rlm

The --strip-components=1 removes the "ac-rlm-<version>/" from the relative
path so that they are extracted into the current directory.

6. Install the startup scripts.

If you are using a user:group other than rlm:rlm or a location other than /opt/rlm, then edit
the following files to reflect those changes after copying them.

l Red Hat 6-based or SUSE 11-based systems

[root]# cp init.d/rlm /etc/init.d

l Red Hat 7-based or SUSE 12-based systems

[root]# cp systemd/rlm.service /etc/systemd/system

7. Restore the license file(s).

[root]# cp /opt/rlm-<archive_version>/*.lic /opt/rlm/

8. Restart the RLM service.
l Red Hat 6-based or SUSE 11-based systems

[root]# service rlm restart

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl daemon-reload
[root]# systemctl restart rlm.service

Upgrading Nitro
This topic contains the steps and procedures to follow to upgrade Nitro using the Manual upgrade
method.
In this topic:

l Upgrade from a Version Prior to 2.0 on page 30
l Upgrade Nitro on page 31
l Verify Network Communication on page 32

Upgrade from a Version Prior to 2.0

Chapter 2 Installation and Configuration

30 Manual Installation and Upgrade

Manual Installation and Upgrade 31

Beginning with Nitro 2.0, the licensing procedure changed to use an RLM server. If your
company already uses an RLM Server, you can skip this procedure.

The following steps are required if you are upgrading a Nitro version prior to 2.0.
1. Install or obtain access to an RLM server. See Installing RLM Server on page 15.

Beginning with Nitro 2.0, the licensing procedure changed to use an RLM server. If your
company already uses an RLM Server, you can skip this procedure.

2. Obtain and install the Nitro license. This requires access to an RLM server. See Obtain a Nitro
License on page 18.

3. Copy the license file to each compute node (coordinator). On each compute node, or on the
shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

Upgrade Nitro
On the Nitro Host, do the following::
1. If you have not already done so, complete the steps to prepare the host. See Preparing for

Manual Installation or Upgrade on page 14.
2. Back up your existing, customized launch scripts, job scripts, and the nitrosub command (if

applicable).
a. In /opt/nitro/bin/, back up the following:

l launch_nitro.sh
l launch_worker.sh (version 2.1 or later)
l nitrosub command (version 2.1 or later)

b. In /opt/nitro/etc/, back up the following:
l nitro_job.sh (version 2.1 or later)
l worker_job.sh (version 2.1 or later)

3. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

4. Identify the Nitro product tarball (nitro-<version>-<OS>.tar.gz) and unpack the tarball into the
same directory you created when you first installed Nitro (for example, /opt/nitro).

[root]# tar xzvpf nitro-<version>-<OS>.tar.gz -C /opt/nitro --strip-components=1

Chapter 2 Installation and Configuration

5. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

This is a "copy" file operation and not a "move" operation. This allows you to customize
your version and always have the factory version available for consultation and/or
comparison.

a. Copy the launch_nitro.sh and launch_worker.sh scripts for your resource manager to the
bin directory. Each resource manager has a subdirectory with the scripts directory that
contains the scripts. This example uses Torque as the resource manager.

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
[root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/

b. Copy the nitrosub command to the bin directory.

[root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/

c. Copy the nitro_job.sh and the worker_job.sh scripts to the etc directory.

[root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
[root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/

6. Merge any customizations from your existing launch scripts, job scripts, and the nitrosub
command (if applicable) into the new launch scripts, job scripts, and the nitrosub command that
you copied from the scripts directory.

7. If your system configuration allows multiple coordinators on the same node, additional
configuration may be needed. See Running Multiple Coordinators on the Same Node on page
62 for more information.

8. If you are not using a shared file system, copy the updated Nitro installation directory to all
hosts.

[root]# scp -r /opt/nitro root@host002:/opt

If you are not using a shared file system, you may not be able to use the nitrosub
command.

Verify Network Communication
Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports and
that the nodes are able to communicate with one another.

Upgrading Nitro Web Services
This topic contains instructions on how to upgrade Nitro Web Services.
In this topic:

Chapter 2 Installation and Configuration

32 Manual Installation and Upgrade

Manual Installation and Upgrade 33

l Upgrade to MongoDB 3.2.x on page 33, if you are upgrading Nitro Web Services from a
version prior to 2.1.0

l Back up the MongoDB Databases on page 33, if you are upgrading Nitro Web Services
from version 2.1.0 or later

l Upgrade Nitro Web Services on page 33
l Grant Users Nitro Permissions in Viewpoint on page 35

Upgrade to MongoDB 3.2.x
Beginning with version 9.1.0, Nitro Web Services requires MongoDB 3.2.x.
On the Nitro Web Services MongoDB host, do the following:
1. Check your MongoDB server version.

[root]# rpm -qa | grep mongo

2. If the MongoDB server version is older than 3.2.x, then you will need to upgrade the databases.
See Upgrading to MongoDB 3.2.x on page 35 for more information.

Back up the MongoDB Databases

This procedure is only applicable if you did not have to upgrade the MongoDB databases
earlier in this topic. See Upgrade to MongoDB 3.2.x on page 33 for more information.

On the Nitro Web Services MongoDB host, do the following:
1. Stop all services that are using the MongoDB databases.
2. Back up the MongoDB databases.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1

3. Restart the services.

Upgrade Nitro Web Services
On the Nitro Web Services Host, do the following:
1. If you have not already done so, complete the steps to prepare the host. See Preparing for

Manual Installation or Upgrade on page 14.
2. If you are upgrading Nitro Web Services from a version prior to 2.1.0, confirm the MongoDB

database is upgraded to 3.2.x. See Upgrading to MongoDB 3.2.x on page 35 for more
information.

3. If you are upgrading Nitro Web Services from version 2.1.0 or later, do the following on the
Nitro Web Services MongoDB host.

Chapter 2 Installation and Configuration

a. Stop all services on the host.
b. Back up the Nitro Web Service MongoDB database.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1

c. Restart the services.
4. Stop the services.

l Red Hat 6-based systems

[root]# service nitro-web-services stop
[root]# service nitro-zmq-job-status-adapter stop

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl stop nitro-web-services.service
[root]# systemctl stop nitro-zmq-job-status-adapter.service

5. Back up the contents of the /opt/nitro-web-services/etc directory (at least the
nitro.cfg and the zmq_job_status_adapter.cfg files).

6. Remove the /opt/nitro-web-services directory.

[root]# rm -rf /opt/nitro-web-services

7. Change the directory to the root of the unpacked Nitro tarball bundle.

[root]# cd nitro-tarball-bundle-<version>-<OS>

8. Identify and unpack the Nitro Web Services tarball (nitro-web-services-
<version>.<OS>.tar.gz).

[root]# tar xzvpf nitro-web-services-<version>.<OS>.tar.gz

9. Install Nitro Web Services.

[root]# cd ./nitro-web-services-<version>.<OS>
[root]# ./install <directory>
<directory> is where you want to install Nitro Web Services (defaults to /opt)

10. Merge any customizations from the nitro.cfg and the zmq_job_status_
adapter.cfg files (and any other files) you backed up earlier in this procedure into the new
files.

See the steps in Install and Configure Nitro Web Services on page 24 for more
information on the configuration files.

Chapter 2 Installation and Configuration

34 Manual Installation and Upgrade

Manual Installation and Upgrade 35

11. Start the services.
l Red Hat 6-based systems

[root]# service nitro-web-services start
[root]# service nitro-zmq-job-status-adapter start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service

Grant Users Nitro Permissions in Viewpoint
Verify that the users who work with Nitro Web Services have the appropriate role in their
Viewpoint user principal.
These are the Viewpoint roles for Nitro:

l NitroAdmin – Administrative user, with permission to create Nitro application templates and
manage other user's Nitro jobs.

l NitroUser – Basic user, with permission to create and manage their own Nitro jobs.
See Creating or Editing Principals in theMoab Viewpoint Reference Guide for instructions on
setting up principals.

Upgrading to MongoDB 3.2.x
Nitro Web Services 2.1.0 and after requires MongoDB 3.2.x.
Do the following:
1. Stop the service that uses MongoDB.

l Red Hat 6-based systems

[root]# service nitro-web-services stop

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl stop nitro-web-services.service

2. Confirm that nothing is connected to MongoDB.

[root]# netstat -antp | egrep '(27017|28017).*ESTABLISHED'

3. Dump the database.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1
[root]# cp -a dump dump.save
[root]# rm -rf dump/admin/system.users.* # Cannot restore users.

Chapter 2 Installation and Configuration

4. Install MongoDB 3.2.x.
l Red Hat 6-based systems

[root]# service mongod stop
[root]# chkconfig mongod off
[root]# cat > /etc/yum.repos.d/mongodb-org-3.2.repo <<'EOF'
[mongodb-org-3.2]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.2/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.2.asc
EOF
[root]# rpm -e --nodeps $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
[root]# yum install mongodb-org
[root]# chkconfig mongod on
[root]# service mongod start

l Red Hat 7-based systems

[root]# systemctl stop mongodb.service
[root]# systemctl disable mongodb.service
[root]# cat > /etc/yum.repos.d/mongodb-org-3.2.repo <<'EOF'
[mongodb-org-3.2]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.2/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.2.asc
EOF
[root]# rpm -e --nodeps --noscripts $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
/usr/lib/systemd/system/mongodb.service
[root]# yum install mongodb-org
[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

l SUSE 12-based systems

[root]# systemctl stop mongodb.service
[root]# systemctl disable mongodb.service
[root]# zypper addrepo --refresh --no-gpgcheck
https://repo.mongodb.org/zypper/suse/12/mongodb-org/3.2/x86_64 mongo-server
[root]# rpm -e --nodeps $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
[root]# zypper -n install mongodb-org
[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

5. Restore the database.

[root]# cd /root
[root]# mongorestore

6. Create the users.

Chapter 2 Installation and Configuration

36 Manual Installation and Upgrade

RPM Installation and Upgrade 37

[root]# mongo
use admin
db.createUser({"user": "admin_user", "pwd": "secret1", "roles": ["root"]})

use nitro-db
db.createUser({"user": "nitro_user", "pwd": "secret5", "roles":

["dbOwner"]})

exit

7. Set MongoDB Configuration Options.
l The configuration file for MongoDB is /etc/mongod.conf. See
https://docs.mongodb.com/manual/reference/configuration-options for information.

l Adaptive Computing recommends that you set security.authorization to enabled. See
https://docs.mongodb.com/manual/reference/configuration-options/#security-options for
more information.

By default, /etc/mongod.conf sets net.bindIp to 127.0.0.1. You will need to change this
setting if the MongoDB server needs to be accessible from other hosts or from other
interfaces besides loopback. See
https://docs.mongodb.com/manual/reference/configuration-options/#net-options for more
information.

Sample /etc/mongod.conf file
net:
port: 27017
bindIp: 127.0.0.1

processManagement:
fork: true
pidFilePath: /var/run/mongodb/mongod.pid

security:
authorization: enabled

storage:
dbPath: /var/lib/mongo
journal:
enabled: true

systemLog:
destination: file
logAppend: true
path: /var/log/mongodb/mongod.log

8. Restart MongoDB.
l Red Hat 6-based systems

[root]# service mongod restart

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl restart mongod.service

RPM Installation and Upgrade

Chapter 2 Installation and Configuration

https://docs.mongodb.com/manual/reference/configuration-options
https://docs.mongodb.com/manual/reference/configuration-options/#security-options
https://docs.mongodb.com/manual/reference/configuration-options/#net-options

This section provides installation, configuration, and upgrading information using the RPM
Installation method.

The RPM Installation method is not applicable for SUSE 11-based systems.

In this section:
l Preparing for RPM Installation or Upgrade on page 38
l Install

o Installing RLM Server on page 40
o Installing Nitro on page 42
o Installing Nitro Web Services on page 46

l Upgrade
o Upgrading RLM Server (RPM) on page 53
o Upgrading Nitro on page 54
o Upgrading Nitro Web Services (RPM) on page 56

Preparing for RPM Installation or Upgrade

This topic contains instructions on how to download the Nitro RPM Bundle and enable the
Adaptive Computing repository for all the hosts in your configuration.

Whether you are installing or upgrading RPMs on one host or on several hosts, each host
(physical machine) on which a server is installed (RLM Server, Nitro, Nitro Web Servcies)
must have the Adaptive Computing Package Repository enabled.

Nitro Web Services is currently not available for SUSE 11-based systems; it is not in the
RPM bundle for that OS.

Set Up Proxies
If your site uses a proxy to connect to the Internet, do the following:

export http_proxy=http://<proxy_server_id>:<port>
export https_proxy=http://<proxy_server_id>:<port>

Enable the Adaptive Computing Package Repository
The Nitro RPM Bundle contains all the RPMs for Nitro. However, not every RPM may be
installed on the same host.
On each host (physical machine), do the following:

Chapter 2 Installation and Configuration

38 RPM Installation and Upgrade

RPM Installation and Upgrade 39

1. Download the Nitro 2.1.1 RPM Bundle from the Adaptive Computing website.
2. Untar the Nitro RPM bundle.

[root]# tar zxf nitro-rpm-bundle-<version>-<OS>.tar.gz

3. Change directories into the untarred directory.

Consider reviewing the README file for additional details on using the RPM
distribution tarball.

4. Install the suite repositories. The -y option installs with the default settings for the RPM suite.

For a description of the options of the repository installer script, run:

[root]# ./install-rpm-repos.sh -h

[root]# ./install-rpm-repos.sh [<repository-directory>] [-y]

If the installation returns the following warning line:
Warning: RPMDB altered outside of yum.

This is normal and can safely be ignored.

The [<repository-directory>] option is the directory where you want to copy the RPMs. If no
argument is given, run "install-rpm-repos.sh -h" to view usage information and
identify the default directory location. If the [<repository-directory>] already exists, RPMs will
be added to the existing directory. No files are overwritten in [<repository-directory>].
A repository file is also created and points to the [<repository-directory>] location. For Red
Hat 6-based or Red Hat 7-based systems, the repository file is created in
/etc/yum.repos.d/. For SUSE 12-based systems, the repository file is created in
/etc/zypp/repos.d/.
For ease in repository maintenance, the install script fails if Adaptive Computing RPMs are
copied to different directories. If a non-default [<repository-directory>] is specified, please use
the same directory for future updates.
The script installs the createrepo package and its dependencies. You must answer "y" to
all the questions in order for the RPM install of the suite to work.
Additionally, the script installs:
l The EPEL and 10gen repositories on Red Hat 6-based and Red Hat 7-based systems.
l The openSUSE Apache:Modules, devel:languages:python, devel:languages:perl, and
server:database repositories on SUSE 12-based systems.

Chapter 2 Installation and Configuration

http://www.adaptivecomputing.com/support/download-center/

5. Test the repository.
l Red-Hat 6-based or Red Hat 7-based systems

[root]# yum search nitro

l SUSE 12-based systems

[root]# zypper search nitro

If no error is given, the repository is correctly installed. The following is an example of the
output after verifying the repository.

Loaded plugins: fastestmirror, security
Loading mirror speeds from cached hostfile
*epel: linux.mirrors.es.net
=== N/S Matched: nitro
==
nitro.x86_64 : Adaptive Nitro for High Throughput Computing
nitro-web-services.x86_64 : Nitro Web Services

Installing

Installing RLM Server
Access to a Reprise License Manager (RLM) server is required when using Nitro.

The RLM Server can run multiple licenses. If your company already uses an RLM Server,
you do not need to install a new one for Nitro. Skip this topic and follow the instructions in
Installing Nitro on page 42.

This topic contains instructions on how to install an RLM Server.
In this topic:

l Open Necessary Ports on page 40
l Install the RLM Server on page 41
l Change the Default Passwords on page 41

Open Necessary Ports

These instructions assume you are using the default ports. If your configuration will use other
ports, then substitute your port numbers when opening the ports.

If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

Chapter 2 Installation and Configuration

40 RPM Installation and Upgrade

RPM Installation and Upgrade 41

Location Ports Functions When
Needed

RLM
Server
Host

5053 RLM Server Port Always

RLM
Server
Host

5054 RLM Web Interface Port Always

RLM
Server
Host

5135 ISV adaptiveco Port (for the Adaptive license-enabled
products)

Always

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.

Install the RLM Server

If your configuration uses firewalls, you must also open the necessary ports before installing
the RLM Server . See Open Necessary Ports on page 40.

On the host where the RLM Server will reside, do the following:
1. If you are installing RLM Server on its own host or on a host that does not have another RPM

installation, complete the steps to prepare the host. See Preparing for RPM Installation or
Upgrade on page 38.

2. Install the RPM.
l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install ac-rlm

l SUSE 12-based systems

[root]# zypper install ac-rlm

Change the Default Passwords
The RLMWeb interface includes two usernames (admin and user) by default. These usernames
have the default password "changeme!".

If you do not change this password, RLM will not be secure. For tips on choosing a good
password, see https://www.us-cert.gov/ncas/tips/ST04-002.

Do the following for both the user and the admin usernames:

Chapter 2 Installation and Configuration

https://www.us-cert.gov/ncas/tips/ST04-002

1. Using a web browser, navigate to your RLM instance (http://<RLM_host>:5054; where
<RLM_host> is the IP address or name of the RLM Server Host).

2. Log in.
3. Select Change Password and change the password according to your password security

process.

Installing Nitro
This topic contains instructions on how to install Nitro.
Nitro

l needs to be available to all of the nodes that will be used as part of the Nitro job.
l can be installed either to each node individually or to a shared file system that each node can
access.

Some Nitro functionality, such as using the nitrosub command, is not available unless
you are using a shared file system.

l can be installed to integrate with a scheduler, such as Moab Workload Manager, or without
(Nitro standalone). The instructions are the same.

In this topic:
l Obtain a Nitro License on page 42
l Open Necessary Ports on page 44
l Install Nitro on page 44
l Verify Network Communication on page 46

Obtain a Nitro License
The Nitro license file is installed on an RLM Server.

These instructions assume you already have access to an RLM Server. See Installing RLM
Server on page 40 for instructions on how to set up a new RLM Server.

Do the following:
1. On the RLM server, obtain the hostid and hostname.

l hostid

[root]# /opt/rlm/rlmhostid

You should see output similar to the following.

Chapter 2 Installation and Configuration

42 RPM Installation and Upgrade

RPM Installation and Upgrade 43

rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.

Hostid of this machine: 00259096f004

l hostname

[root]# /opt/rlm/rlmhostid host

You should see output similar to the following.

rlmhostid v12.1
Copyright (C) 2006-2016, Reprise Software, Inc. All rights reserved.

Hostid of this machine: host=<your-host-name>

2. Email licenses@adaptivecomputing.com for a license and include the hostid and hostname you
just obtained.

3. Adaptive Computing will generate the license and send you the Nitro license file (typically,
nitro.lic) file in a return email.

4. On the RLM server, do the following:
a. Download and install the license file.

[root]# cd /opt/rlm
[root]# chown rlm:rlm nitro.lic

b. If the RLM Server in your configuration uses a firewall, edit the license file to reference the
ISV adaptiveco port for the Adaptive license-enabled products. This is the same port
number you opened during the RLM Server installation. See the instructions to open
necessary ports in the Installing RLM Server on page 15 (manual installation method) or
Installing RLM Server on page 40 (RPM installation method) for more information.

[root]# vi /opt/rlm/nitro.lic

ISV adaptiveco port=5135

The license file already references the RLM Server port (5053 by default).

If the RLM Server in your configuration uses different ports, you will need to modify
the license file to reflect the actual ports. See the instructions to open necessary ports
in the Installing RLM Server on page 15 (manual installation method) or Installing
RLM Server on page 40 (RPM installation method) for more information.

c. If you did not install an RLM Server using the file available from Adaptive Computing (for
example, because your system configuration already uses one), do the following:
i. Download the 'adaptiveco.set' file from the Adaptive Computing Nitro Download
Center (https://www.adaptivecomputing.com/support/download-center/nitro/).

Chapter 2 Installation and Configuration

https://www.adaptivecomputing.com/support/download-center/nitro/
https://www.adaptivecomputing.com/support/download-center/nitro/

ii. Copy the 'adaptiveco.set' file into the same directory where the Nitro license resides
(/opt/rlm).

d. Perform a reread to update the RLM Server with your license.

[root]# /opt/rlm/rlmreread

Open Necessary Ports
Nitro uses several ports for communication between the workers and the coordinator.
If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

The listed ports is for configurations that have only one coordinator. If multiple coordinators
are run on a single compute host, then sets of ports (range of 4) must be opened for the
number of expected simultaneous coordinators.

Location Ports Functions When
Needed

Compute
Hosts (Nitro
Coordinator)

47000 Coordinator/Worker communication Always

Compute
Hosts (Nitro
Coordinator)

47001 Coordinator PUB/SUB channel - publishes
status information

Always

Compute
Hosts (Nitro
Coordinator)

47002 Reserved for future functionality

Compute
Hosts (Nitro
Coordinator)

47003 API communication channel Always

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.

Install Nitro

You must complete the tasks to obtain a Nitro license before installing Nitro. See Obtain a
Nitro License on page 42.
If your configuration uses firewalls, you must also open the necessary ports before installing
Nitro. See Open Necessary Ports on page 44.

On the host where Nitro will reside, do the following:

Chapter 2 Installation and Configuration

44 RPM Installation and Upgrade

RPM Installation and Upgrade 45

1. If you are installing Nitro on its own host or on a host that does not have another RPM
installation, complete the steps to prepare the host. See Preparing for RPM Installation or
Upgrade on page 38.

2. Install the RPM.
l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install nitro

l SUSE 12-based systems

[root]# zypper install nitro

3. Copy the license file you generated earlier in this topic to each compute node (coordinator). On
each compute node, or on the shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

4. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

This is a "copy" file operation and not a "move" operation. This allows you to customize
your version and always have the factory version available for consultation and/or
comparison.

a. Copy the launch_nitro.sh and launch_worker.sh scripts for your resource manager to the
bin directory. Each resource manager has a subdirectory with the scripts directory that
contains the scripts. This example uses Torque as the resource manager.

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
[root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/

b. Copy the nitrosub command to the bin directory.

[root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/

c. Copy the nitro_job.sh and the worker_job.sh scripts to the etc directory.

[root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
[root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/

5. Now that you have copied the scripts and the nitrosub command, edit the copies for your site's
administrative policies.
l bin/nitrosub command (applicable only if using a shared file system). At a minimum,
do the following:
a. Uncomment the "_resource_manager" line for your resource manager.
b. Uncomment the "resource_type" line for your licensing model's allocation (nodes or

cores).

Chapter 2 Installation and Configuration

c. If your system will be using dynamic jobs, set the "_dynamic_size" value to the number
of resources to allocate to a dynamic job.

See nitrosub Command on page 81 for more information.
l bin/launch_nitro.sh and bin/launch.worker.sh scripts. See Launch
Scripts on page 91 for more information.

6. If your system configuration allows multiple coordinators on the same node, additional
configuration may be needed. See Running Multiple Coordinators on the Same Node on page
62 for more information.

7. If you are not using a shared file system, copy the Nitro installation directory to all hosts.

[root]# scp -r /opt/nitro root@host002:/opt

If you are not using a shared file system, you may not be able to use the nitrosub
command.

Verify Network Communication
Verify that the nodes that will be running Nitro are able to communicate with the Nitro ports and
that the nodes are able to communicate with one another.

Installing Nitro Web Services
This topic contains instructions on how to install Nitro Web Services.

Nitro Web Services is not available for SUSE 11-based systems.

Do the following in the order presented:
1. Open Necessary Ports on page 46
2. Install MongoDB on page 47
3. Install and Configure Nitro Web Services on page 49
4. Configure Viewpoint for Nitro Web Services on page 51
5. Grant Users Nitro Permissions in Viewpoint on page 52
6. Publish Nitro Events to Nitro Web Services on page 52

Open Necessary Ports
If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the necessary ports.

Chapter 2 Installation and Configuration

46 RPM Installation and Upgrade

RPM Installation and Upgrade 47

Location Ports Functions When Needed

Nitro
Web
Services
Host

9443 Tornado Web Port Always

Nitro
Web
Services
Host

47100 ZMQ Port Always

Nitro
Web
Services
Database
Host

27017 Nitro Web Services
MongoDB Server
Port

If you will be installing the Nitro Web Services
Database on a different host from Nitro Web
Services

See Opening Ports in a Firewall on page 61 for general instructions and an example of how to open
ports in the firewall.

Install MongoDB
On the Nitro Web Services MongoDB Database Host, do the following:
1. Install MongoDB.

l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install -y mongodb-org

l SUSE 12-based systems

[root]# zypper -n install mongodb-org

2. Enable and start MongoDB.
l Red Hat 6-based systems

[root]# chkconfig mongod on
[root]# service mongod start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

3. Add the required MongoDB users.

Chapter 2 Installation and Configuration

The passwords used below (secret1 and secret5) are examples. Choose your own
passwords for these users.

[root]# mongo
> use admin
> db.createUser({"user": "admin_user", "pwd": "secret1", "roles": ["root"]})

> use nitro-db
> db.createUser({"user": "nitro_user", "pwd": "secret5", "roles": ["dbOwner"]})

> exit

Because the admin_user has read and write rights to the admin database, it also has
read and write rights to all other databases. See Control Access to MongoDB Instances
with Authentication (at http://docs.mongodb.org/manual/tutorial/control-access-to-
mongodb-with-authentication) for more information.

4. Set MongoDB Configuration Options.
l The configuration file for MongoDB is /etc/mongod.conf. See
https://docs.mongodb.com/manual/reference/configuration-options for information.

l Adaptive Computing recommends that you set security.authorization to enabled. See
https://docs.mongodb.com/manual/reference/configuration-options/#security-options for
more information.

By default, /etc/mongod.conf sets net.bindIp to 127.0.0.1. You will need to change this
setting if the MongoDB server needs to be accessible from other hosts or from other
interfaces besides loopback. See
https://docs.mongodb.com/manual/reference/configuration-options/#net-options for more
information.

Sample /etc/mongod.conf file
net:
port: 27017
bindIp: 127.0.0.1

processManagement:
fork: true
pidFilePath: /var/run/mongodb/mongod.pid

security:
authorization: enabled

storage:
dbPath: /var/lib/mongo
journal:
enabled: true

systemLog:
destination: file
logAppend: true
path: /var/log/mongodb/mongod.log

Chapter 2 Installation and Configuration

48 RPM Installation and Upgrade

http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-authentication/
https://docs.mongodb.com/manual/reference/configuration-options
https://docs.mongodb.com/manual/reference/configuration-options/#security-options
https://docs.mongodb.com/manual/reference/configuration-options/#net-options

RPM Installation and Upgrade 49

5. Restart MongoDB.
l Red Hat 6-based systems

[root]# service mongod restart

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl restart mongod.service

Install and Configure Nitro Web Services

You must complete the tasks earlier in this topic before installing Nitro Web Services.

On the host where Nitro Web Services will reside, do the following:
1. If you have not already done so, complete the steps to prepare the host. See Preparing for RPM

Installation or Upgrade on page 38.
2. Install the Nitro Web Services RPM.

l Red Hat 6-based or Red Hat 7-based systems

[root]# yum install -y nitro-web-services

l SUSE 12-based systems

[root]# zypper --non-interactive install nitro-web-services

3. Understand and edit the the Nitro Web Services web application configuration file (/opt/nitro-
web-services/etc/nitro.cfg). This includes clarifying what the configuration file is for and what
to expect the first time the NWS service is started vs. each subsequent start.

The nitro_user with dbOwner permissions was set up earlier in the procedure (see Install
MongoDB on page 47).
When you first start nitro-web-services, the nitro-db Mongo database (including its
collections and indexes) is created. The nitro-db 'user' collection is also populated with the
default Nitro Web Services API users/passwords. Several of the options defined in the
configuration files influence this process.

MongoDB user, table, and index creation is performed at initial startup. Many of the options
defined in the Nitro Web Service configuration files influence Mongo user/password and index
creation.

Usernames and passwords are created only if they do not yet exist. Changing a password
in the configuration file after initial startup will not update the password.

Chapter 2 Installation and Configuration

The /opt/nitro-web-services/etc/nitro.cfg configuration file includes default password values. If
you want to use passwords other than the default value, change the lines in the file as shown
below.
l Before initial startup, set the db_password to be the nitro_user password. It is also
recommended that you change all other default passwords before starting Nitro Web
Services. If you do not change the passwords at this point, it will be more difficult to change
them later.

db_password = <password goes here>
ws_admin_password = <ws_admin_password goes here>
ws_readonly_password = <ws_readonly_password goes here>
ws_writeonly_password = <ws_writeonly_password goes here>

l By default, NWS uses an auto-generated self-signed SSL certificate to encrypt the link
between the web server and the browser clients. The auto-generated self-signed SSL
certificate is created at service start up; not during the installation process.
However, you can use your own certfile, keyfile, and ca_certs files if you wish.

If you choose to use your own ssl_certfile and ssl_keyfile, ssl_create_self_
signed_cert=true is ignored.

l By default, NWS does not encrypt network traffic with MongoDB. You should set the db_
ssl_* properties if you choose to enable TLS/SSL when installing MongoDB earlier in this
topic.

4. Understand and edit the Nitro ZMQ Job Status Adapter configuration file (/opt/nitro-web-
services/etc/zmq_job_status_adapter.cfg). This includes clarifying what the configuration file is
for and what to expect the first time the NWS service is started vs. each subsequent start.
l The Nitro ZMQ Job Status Adapter listens to job status updates on the ZMQ bus and
publishes them to MongoDB using the Nitro Web Services REST API.

l The username and password must be set to a Nitro Web Services API user with write
permissions. At minimum, set the password for nitro-writeonly-user to the password defined
in /opt/nitro-web-services/etc/nitro.cfg and make sure the SSL options are set correctly based
on SSL settings in /opt/nitro-web-services/etc/nitro.cfg.

password = <ws_writeonly_password goes here>

5. If you did not need to install the Nitro Web Services MongoDB database earlier in this topic,
verify that the mongodb_hostlist in /opt/nitro-web-services/etc/nitro.cfg
is set correctly (localhost:27017 is the default).

6. Start the services and configure Nitro Web Services to start automatically at system boot.
l Red Hat 6-based systems

[root]# chkconfig --add nitro-web-services
[root]# chkconfig --add nitro-zmq-job-status-adapter
[root]# service nitro-web-services start
[root]# service nitro-zmq-job-status-adapter start

Chapter 2 Installation and Configuration

50 RPM Installation and Upgrade

RPM Installation and Upgrade 51

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service
[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service

Configure Viewpoint for Nitro Web Services
Do the following:
1. Using a web browser, navigate to your Viewpoint instance (http://<server>:8081)

and then log in as the MWS administrative user (moab-admin, by default).
2. Click Configuration from the menu and then click Nitro Services from the left pane. The

following is an example of the Nitro Services Configuration page.

3. Enter the configuration information. The following table describes the required information.

Field Description

Nitro WS
URL

Hostname (or IP address) and port number for the host on which you installed Nitro Web
Services. For example, https://<hostname>:9443

Username Name of the user. This typically nitro-readonly-user.

Password The user's password.

Trust Self
Signed

Indicates whether Nitro Web Services was set up using self-signed certificates.

4. Click TEST to confirm the settings are correct. This confirms whether Nitro Web Services is
up and receiving connections.

Chapter 2 Installation and Configuration

5. Click SAVE.
6. (Recommended) Use curl to test Nitro Web Services connectivity.

[root]# curl --insecure --data '{"username": "nitro-admin", "password":
"ChangeMe2!"}' \
https://<hostname>:9443/auth

You should see output similar to the following.

{
"status": 200,
"data": {
"nitro-key": "3e0fb95e9a0e44ae91daef4deb500dcc67a3714880e851d781512a49",
"user": {
"username": "nitro-admin",
"last_updated": "2016-02-26 23:34:55.604000",
"name": "Nitro Admin",
"created": "2016-02-26 23:34:55.604000",
"auth": {
"job": [
"read",
"write",
"delete"

],
"user": [
"read",
"write",
"delete"

]
}

}
}

}

Grant Users Nitro Permissions in Viewpoint
Viewpoint comes packed with base (default) roles for Nitro jobs. Any user who will be working
with Nitro Web Services, must have the appropriate role added to the Viewpoint user principal.
These are the Viewpoint roles for Nitro:

l NitroAdmin – Administrative user, with permission to create Nitro application templates and
manage other user's Nitro jobs.

l NitroUser – Basic user, with permission to create and manage their own Nitro jobs.
See Creating or Editing Principals in theMoab Viewpoint Reference Guide for instructions on
setting up principals.

Publish Nitro Events to Nitro Web Services
You need to configure the Nitro coordinators to send job status updates to the Nitro Web Services's
ZMQ Job Status Adapter. The ZMQ Job Status Adapter is responsible for reading job status
updates off of the ZMQ bus and persisting them to Mongo. Nitro Web Services can then be used to
access Nitro job status.
Each Nitro job has a Nitro Coordinator. Nitro Coordinators can be configured to publish job status
updates to ZMQ by setting the "nws-connector-address" configuration option in Nitro's nitro.cfg

Chapter 2 Installation and Configuration

52 RPM Installation and Upgrade

RPM Installation and Upgrade 53

file. Each compute node allocated/scheduled to a Nitro Job can play the role of a Nitro coordinator.
Therefore, you must update the "nws-connector-address" in each compute node's nitro.cfg file.

Configuring nws-connector-address is simplified if each node is sharing Nitro's configuration
over a shared filesystem. If you are not using a shared filesystem, update the Nitro
configuration on each compute node.

Do the following:
1. If you have not already done so, on the Nitro Web Services Host, locate the msg_port number

in the /opt/nitro-web-services/etc/zmq_job_status_adapter.cfg
file. This is the port number you need to specify for the nws-connector-address.

2. On each Nitro compute note (Torque MOM Host), specify the nws-connector-address in the
/opt/nitro/etc/nitro.cfg file.

...
Viewpoint connection allows Nitro to communicate job status information
to viewpoint. This option indicates name and port of the remote server
in the form: <host>:<port>
nws-connector-address <nitro-web-services-hostname>:47100
...

Upgrading

Upgrading RLM Server (RPM)
This topic contains instructions on how to upgrade the RLM Server using the RPM upgrade
method.

The RLM v12.1 (build:2) release resolved memory leak and security issues. The RLM
package available with Moab HPC Suite 9.0.2, contains the v12.1 (build:2) release.
Adaptive Computing strongly recommends that your RLM Server is v12.1 (build:2).

Install the RLM Server
On the RLM Server Host, do the following:
1. If you installed the RLM Server on its own host or if the RLM Server is the first component

being upgraded on a host with other RPM installations, complete the steps to prepare the host.
See Preparing for RPM Installation or Upgrade on page 38.

2. Stop the RLM service.

[root]# service rlm stop

[root]# systemctl stop rlm.service

[root]# systemctl stop rlm.service

Chapter 2 Installation and Configuration

3. Install the upgrade.

[root]# yum update ac-rlm*

[root]# zypper update ac-rlm*

4. Restart the RLM service.

[root]# service rlm restart

[root]# systemctl daemon-reload
[root]# systemctl restart rlm.service

[root]# systemctl daemon-reload
[root]# systemctl restart rlm.service

Upgrading Nitro

You must be a root user when installing or upgrading Nitro.

This topic contains the steps and procedures to follow to upgrade Nitro using the RPM upgrade
method.
In this topic:

l Upgrade from a Version Prior to 2.0 on page 54
l Upgrade Nitro on page 54

Upgrade from a Version Prior to 2.0
The following steps are required if you are upgrading a Nitro version prior to 2.0.
1. Install or obtain access to an RLM server. See Installing RLM Server on page 40.

Beginning with Nitro 2.0, the licensing procedure changed to use an RLM server. If your
company already uses an RLM Server, you can skip this procedure.

2. Obtain and install the Nitro license. This requires access to an RLM server. See Obtain a Nitro
License on page 42.

3. Copy the license file to each compute node (coordinator). On each compute node, or on the
shared file system, do the following:

[root]# cp <licenseFileName>.lic /opt/nitro/bin/

Upgrade Nitro
On the Nitro Host, do the following:

Chapter 2 Installation and Configuration

54 RPM Installation and Upgrade

RPM Installation and Upgrade 55

1. If you installed Nitro on its own host or if Nitro is the first component being upgraded on a host
with other RPM installations, complete the steps to prepare the host. See Preparing for RPM
Installation or Upgrade on page 38.

2. Back up your existing, customized launch scripts, job scripts, and the nitrosub command (if
applicable).
a. In /opt/nitro/bin/, back up the following:

l launch_nitro.sh
l launch_worker.sh (version 2.1 or later)
l nitrosub command (version 2.1 or later)

b. In /opt/nitro/etc/, back up the following:
l nitro_job.sh (version 2.1 or later)
l worker_job.sh (version 2.1 or later)

3. Install the upgrade.
l Red Hat 6-based or Red Hat 7-based systems

[root]# yum update nitro

l SUSE 12-based systems

[root]# zypper update nitro

4. Copy the provided scripts and the nitrosub command from the /opt/nitro/scripts directory.

This is a "copy" file operation and not a "move" operation. This allows you to customize
your version and always have the factory version available for consultation and/or
comparison.

a. Copy the launch_nitro.sh and launch_worker.sh scripts for your resource manager to the
bin directory. Each resource manager has a subdirectory with the scripts directory that
contains the scripts. This example uses Torque as the resource manager.

[root]# cp /opt/nitro/scripts/torque/launch_nitro.sh /opt/nitro/bin/
[root]# cp /opt/nitro/scripts/torque/launch_worker.sh /opt/nitro/bin/

b. Copy the nitrosub command to the bin directory.

[root]# cp /opt/nitro/scripts/nitrosub /opt/nitro/bin/

c. Copy the nitro_job.sh and the worker_job.sh scripts to the etc directory.

[root]# cp /opt/nitro/scripts/nitro_job.sh /opt/nitro/etc/
[root]# cp /opt/nitro/scripts/worker_job.sh /opt/nitro/etc/

Chapter 2 Installation and Configuration

5. Merge any customizations from your existing launch scripts, job scripts, and the nitrosub
command (if applicable) into the new launch scripts, job scripts, and the nitrosub command that
you copied from the scripts directory.

6. If your system configuration allows multiple coordinators on the same node, additional
configuration may be needed. See Running Multiple Coordinators on the Same Node on page
62 for more information.

7. If you are not using a shared file system, copy the updated Nitro installation directory to all
hosts.

[root]# scp -r /opt/nitro root@host002:/opt

If you are not using a shared file system, you may not be able to use the nitrosub
command.

Upgrading Nitro Web Services (RPM)
This topic contains instructions on how to upgrade Nitro Web Services using the RPM upgrade
method.

Upgrade Steps
Do the following:

l Upgrade to MongoDB 3.2.x on page 56, if you are upgrading Nitro Web Services from a
version prior to 2.1.0

l Back up the MongoDB Databases on page 56, if you are upgrading Nitro Web Services
from version 2.1.0 or later

l Upgrade Nitro Web Services on page 57
l Grant Users Nitro Permissions in Viewpoint on page 58

Upgrade to MongoDB 3.2.x
Beginning with version 2.1.0, Nitro Web Services requires MongoDB 3.2.x.
On the Nitro Web Services MongoDB host, do the following:
1. Check your MongoDB server version.

[root]# rpm -qa | grep mongo

2. If the MongoDB server version is older than 3.2.x, then you will need to upgrade the databases.
See Upgrading to MongoDB 3.2.x (RPM) on page 58 for more information.

Back up the MongoDB Databases

Chapter 2 Installation and Configuration

56 RPM Installation and Upgrade

RPM Installation and Upgrade 57

This procedure is only applicable if you did not have to upgrade the MongoDB databases
earlier in this topic. See Upgrade to MongoDB 3.2.x on page 56 for more information.

On the Nitro Web Services MongoDB host, do the following:
1. Stop all services that are using the MongoDB databases.
2. Back up the MongoDB databases.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1

3. Restart the services.

Upgrade Nitro Web Services
On the Nitro Web Services Host, do the following:
1. If you installed Nitro Web Services on its own host or if Nitro Web Services is the first

component being upgraded on a host with other RPM installations, complete the steps to
prepare the host. See Preparing for RPM Installation or Upgrade on page 38.

2. If you are upgrading Nitro Web Services from a version prior to 2.1.0, confirm the MongoDB
database is upgraded to 3.2.x. See Upgrading to MongoDB 3.2.x (RPM) on page 58 for more
information.

3. Stop the services.
l Red Hat 6-based systems

[root]# service nitro-web-services stop
[root]# service nitro-zmq-job-status-adapter stop

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl stop nitro-web-services.service
[root]# systemctl stop nitro-zmq-job-status-adapter.service

4. If you are upgrading Nitro Web Services from version 2.1.0 or later, do the following on the
Nitro Web Services MongoDB host.
a. Stop all services on the host.
b. Back up the Nitro Web Service MongoDB database.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1

c. Restart the services.
5. Install the upgrade.

l Red Hat 6-based or Red Hat 7-based systems

[root]# yum update nitro-web-services

Chapter 2 Installation and Configuration

l SUSE 12-based systems

[root]# zypper update nitro-web-services

6. If you are upgrading Nitro from 2.0.0, re-enable the services.
l Red Hat 6-based systems

[root]# chkconfig nitro-web-services on
[root]# chkconfig nitro-zmq-job-status-adapter restart

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl enable nitro-web-services.service
[root]# systemctl enable nitro-zmq-job-status-adapter.service

7. Merge any customizations from the nitro.cfg and the zmq_job_status_
adapter.cfg files (and any other files) you backed up earlier in this procedure into the new
files.

See the steps in Install and Configure Nitro Web Services on page 24 for more
information on the configuration files.

8. Start the services.
l Red Hat 6-based systems

[root]# service nitro-web-services start
[root]# service nitro-zmq-job-status-adapter start

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl start nitro-web-services.service
[root]# systemctl start nitro-zmq-job-status-adapter.service

Grant Users Nitro Permissions in Viewpoint
Verify that the users who work with Nitro Web Services have the appropriate role in their
Viewpoint user principal.
These are the Viewpoint roles for Nitro:

l NitroAdmin – Administrative user, with permission to create Nitro application templates and
manage other user's Nitro jobs.

l NitroUser – Basic user, with permission to create and manage their own Nitro jobs.
See Creating or Editing Principals in theMoab Viewpoint Reference Guide for instructions on
setting up principals.

Upgrading to MongoDB 3.2.x (RPM)
Nitro Web Services 2.1.0 and after requires MongoDB 3.2.x.
Do the following:

Chapter 2 Installation and Configuration

58 RPM Installation and Upgrade

RPM Installation and Upgrade 59

1. Stop the service that uses MongoDB.
l Red Hat 6-based systems

[root]# service nitro-web-services stop

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl stop nitro-web-services.service

2. Confirm that nothing is connected to MongoDB.

[root]# netstat -antp | egrep '(27017|28017).*ESTABLISHED'

3. Dump the database.

[root]# cd /root
[root]# mongodump -u admin_user -p secret1
[root]# cp -a dump dump.save
[root]# rm -rf dump/admin/system.users.* # Cannot restore users.

4. Install MongoDB 3.2.x.
l Red Hat 6-based systems

[root]# service mongod stop
[root]# chkconfig mongod off
[root]# rpm -e --nodeps $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
[root]# yum install mongodb-org
[root]# chkconfig mongod on
[root]# service mongod start

l Red Hat 7-based systems

[root]# systemctl stop mongodb.service
[root]# systemctl disable mongodb.service
[root]# rpm -e --nodeps --noscripts $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
/usr/lib/systemd/system/mongodb.service
[root]# yum install mongodb-org
[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

l SUSE 12-based systems

[root]# systemctl stop mongodb.service
[root]# systemctl disable mongodb.service
[root]# rpm -e --nodeps $(rpm -qa 'mongo*')
[root]# rm -rf /tmp/mongo*.sock /var/run/mongo* /var/lib/mongo* /var/log/mongo*
[root]# zypper -n install mongodb-org
[root]# systemctl enable mongod.service
[root]# systemctl start mongod.service

5. Restore the database.

Chapter 2 Installation and Configuration

[root]# cd /root
[root]# mongorestore

6. Create the users.

[root]# mongo
use admin
db.createUser({"user": "admin_user", "pwd": "secret1", "roles": ["root"]})

use nitro-db
db.createUser({"user": "nitro_user", "pwd": "secret5", "roles":

["dbOwner"]})

exit

7. Set MongoDB Configuration Options.
l The configuration file for MongoDB is /etc/mongod.conf. See
https://docs.mongodb.com/manual/reference/configuration-options for information.

l Adaptive Computing recommends that you set security.authorization to enabled. See
https://docs.mongodb.com/manual/reference/configuration-options/#security-options for
more information.

By default, /etc/mongod.conf sets net.bindIp to 127.0.0.1. You will need to change this
setting if the MongoDB server needs to be accessible from other hosts or from other
interfaces besides loopback. See
https://docs.mongodb.com/manual/reference/configuration-options/#net-options for more
information.

Sample /etc/mongod.conf file
net:
port: 27017
bindIp: 127.0.0.1

processManagement:
fork: true
pidFilePath: /var/run/mongodb/mongod.pid

security:
authorization: enabled

storage:
dbPath: /var/lib/mongo
journal:
enabled: true

systemLog:
destination: file
logAppend: true
path: /var/log/mongodb/mongod.log

8. Restart MongoDB.
l Red Hat 6-based systems

[root]# service mongod restart

Chapter 2 Installation and Configuration

60 RPM Installation and Upgrade

https://docs.mongodb.com/manual/reference/configuration-options
https://docs.mongodb.com/manual/reference/configuration-options/#security-options
https://docs.mongodb.com/manual/reference/configuration-options/#net-options

Additional Configuration 61

l Red Hat 7-based or SUSE 12-based systems

[root]# systemctl restart mongod.service

Additional Configuration

This section contains additional configuration procedures; depending on your system configuration,
some or all of these procedures may be required.
In this section:

l Opening Ports in a Firewall on page 61
l Running Multiple Coordinators on the Same Node on page 62

Opening Ports in a Firewall

If your site is running firewall software on its hosts, you will need to configure the firewall to allow
connections to the products in your installation.
This topic provides an example and general instructions for how to open ports in your firewall. The
actual port numbers for the various products will be provided in the installation instructions for that
product.
In this topic:

l Red Hat 6-Based Systems on page 61
l Red Hat 7-Based Systems on page 61
l SUSE 11-Based Systems on page 62
l SUSE 12-Based Systems on page 62

Red Hat 6-Based Systems
Red Hat 6-based systems use iptables as the default firewall software. For the ip6tables service,
replace all occurrences of iptables with ip6tables in the example. If you use different firewall
software, refer to your firewall documentation for opening ports in your firewall.
The following is an example of adding port 1234 when using iptables.

[root]# iptables-save > /tmp/iptables.mod

[root]# vi /tmp/iptables.mod

Add the following lines immediately *before* the line matching
"-A INPUT -j REJECT --reject-with icmp-host-prohibited"

-A INPUT -p tcp --dport 1234 -j ACCEPT

[root]# iptables-restore < /tmp/iptables.mod
[root]# service iptables save

Red Hat 7-Based Systems

Chapter 2 Installation and Configuration

Red Hat 7-based systems use firewalld as the default firewall software. If you use different firewall
software, refer to your firewall documentation for opening ports in your firewall.
The following is an example of adding port 1234 when using firewalld.

[root]# firewall-cmd --add-port=1234/tcp --permanent
[root]# firewall-cmd --reload

SUSE 11-Based Systems
SUSE 11-based systems use SuSEfirewall2 as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.
The following is an example of adding port 1234 when using SuSEfirewall2.

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="7112"

[root]# service SuSEfirewall2_setup restart

SUSE 12-Based Systems
SUSE 12-based systems use SuSEfirewall2 as the default firewall software. If you use different
firewall software, refer to your firewall documentation for opening ports in your firewall.
The following is an example of adding port 1234 when using SuSEfirewall2.

[root]# vi /etc/sysconfig/SuSEfirewall2

FW_SERVICES_EXT_TCP="1234"

[root]# service SuSEfirewall2 restart

Running Multiple Coordinators on the Same Node

Nitro provides the ability to run multiple coordinators on the same node.

Running multiple coordinators on the same node, is not available if your system
configuration uses a policy to limit nodes to a single job (i.e.,
NODEACCESSPOLICY=SINGLEJOB on Moab).

If your system is configured to allow multiple coordinators on the node:
l It is recommended that you instruct your uses to submit Nitro jobs using the nitrosub
command. See nitrosub Command on page 81 for more information.

l If you prefer that your users do not use the nitrosub command, and instead you prefer that
they submit the Nitro jobs directly to your scheduler/resource manager, then you will need to
add the --port-file option to the bin/launch_nitro.sh and bin/launch_worker.sh scripts to
ensure that all coordinators will be able to run.

NITRO_OPTIONS="--port-file --job-id ${NITROJOBID} ${NITRO_OPTIONS}"

Add the --port-file option before the --job-id information.

Chapter 2 Installation and Configuration

62 Additional Configuration

Job Submission Methods 63

Chapter 3 System Administration

This chapter provides additional configuration and resources, including troubleshooting, for system
administrators.
In this chapter:

l Job Submission Methods on page 63
l Nitro Configuration File on page 64
l File System Configuration on page 65
l Run Nitro Without a Scheduler on page 66

Job Submission Methods

Nitro enables system administrators to choose what level of detail users need to know in order to
submit Nitro jobs.
Nitro provides these options for users when submitting Nitro Jobs:

l User-customized job scripts (high level of detail, static jobs only)
l nitrosub command (minimal level of detail; static or dynamic jobs)

This topic provides information on the different options.
In this topic:

l User-Customized Job Script on page 63
l nitrosub Command on page 63

User-Customized Job Script

The User-customized job script methodology is only available for static jobs.

With the initial release of Nitro, system administrators copied a sample job script packaged with
Nitro and then customized it for their system. The system administrations then gave a copy of the
customized sample script to the user, who would then make a copy of it and further customize it
when submitting a job for the task file.
Nitro is now packaged with a nitro_job.sh and a worker_job.sh script. For static jobs, only the
nitro_job.sh script is applicable.
The nitro_job.sh script can be customized by the system administrators for their systems. The
system administrators can then have the user copy that script and make further customizations (such
as configuring environment variables) that affect the respective launch_nitro.sh script. Users will
then use the resource manager's job submission command (for example, qsub for Torque) to
execute the user's customized nitro_job.sh script.
See Job Scripts on page 88 for more information.

nitrosub Command

Chapter 3 System Administration

The nitrosub command is only available for systems that use a shared file system.

The nitrosub command lets users submit Nitro jobs without having to copy and customize the
nitro_job.sh script for their task file.
The user only needs to specify the user's task file path, a resource quantity, and a wall-time limit
when they submit a Nitro job for the task file. The nitrosub command will then execute the system's
nitro_job.sh script and the worker_job.sh script (as needed for dynamic jobs).
See nitrosub Command on page 81 for more information.

Nitro Configuration File

The nitro.cfg file is available to system administrators.
Nitro looks for this configuration file in the /opt/nitro/etc directory, which must be a peer
to the /opt/nitro/bin directory. If found, Nitro will load configuration options specified in
the nitro.cfg file.

nitro.cfg Configuration Options
These configuration options are available to customize the nitro.cfg file:

l assignment-size <size> – Sets the default assignment size. Valid values are 0 -
1000. 0 is the default, and allows the coordinator to automatically determine the assignment
size based on the assignment duration.

There is also an "--assignment-size" command line option, that if set, overrides the
<size> specified here (nitro.cfg file).

l coord-threads <count> – Indicates to the coordinator how many threads to reserve
for the coordinator when allocating cores to a local worker (when using "--run-local-worker"
on the coordinator command line). Default is 2. Adaptive Computing recommends setting
the <count> value to 1 if all jobs will use less than 20 hosts and setting the <count> value to
4 if the jobs require a large number of hosts (greater than 50) to run.

There is also a "--coord-threads" command line option, that if set, overrides the
<count> specified here (nitro.cfg file).

l default-shell <shell path> – Allows the configuration of the default shell used
by Nitro to launch tasks. The default value is "/bin/bash". In high throughput usages where
many very small tasks need to be launched as quickly as possible, it may be beneficial to use
a more compact shell such as the Bourne shell or Korn shell. To set this value, specify the
fully qualified path to the shell such as "/bin/sh".

l default-shell-command <command> – Allows configuration of the command
line parameter to the shell that Nitro uses when launching a task. The default shell command
is "-c" so that Nitro will execute "/bin/bash -c <task command line>". Set this value if you

Chapter 3 System Administration

64 Nitro Configuration File

File System Configuration 65

need to customize the launch command or are using a shell that uses a different command
line option to launch a command line.

l disable-affinity – Instructs the workers that they should not track and set the task's
affinity.

There is also a "--disable-affinity" command line option, that if set, overrides the
setting here (nitro.cfg file).

l max-cpu-threshold <value> – Causes Nitro to reduce task threads when the
threshold is reached. The <value> is a percentage of system load, where 100% is equivalent
to the number of cores in the node and is measured by the 60 second load average.

l maxtime-limit <period> – Lets you set the maxtime option's upper limit for all
Nitro job task definitions. If this option is not specified, the coordinator will use its default of
1 day (86400 seconds). This value can be specified as a number of seconds, or by using the
Days:Hours:Minutes:Seconds format (ie: 7:0:0:0 = 7 days).

l min-memory-threshold <threshold MB> – If set to a value other than 0 (zero),
causes Nitro to check the workers available physical memory before starting tasks. If the
available physical memory drops below this value, Nitro will stop running tasks until
available memory rises above the threshold. This can be used to throttle tasks or account for
background activity that is consuming memory and causing the system to swap memory to
disk. It is important to select a threshold that will allow the system to throttle before swapping
starts to happen. 2GB (2000MB) is a good threshold to start with.

l throttle-period <period> – Sets the amount of time (in seconds) that Nitro will
wait before checking for throttling conditions (such as the memory threshold). Nitro defaults
to checking every 2 seconds. Setting this to 0 (zero) causes Nitro to check when tasks
complete, or 1 second whichever comes first.

l task-output-limit <value> – Sets the number of bytes that will be captured by
stdout and stderr (each) and written to the task log file. The default value is 512 bytes. Nitro
captures the stdout and stderr strings output by tasks, but only retains the last n characters as
set by the limit to reduce communication and storage overhead.

File System Configuration

This topic provides details regarding the file system configuration.
Users will normally submit Nitro jobs to a scheduler. A Nitro job runs in the user's workspace on
the nodes allocated to the job by the scheduler. There are two Nitro output file locations (task log
and job log) that must be available to the hosts running the workers and coordinator.
In this topic:

l Nitro Launch Script Location on page 66
l Task File Location on page 66

Chapter 3 System Administration

l Job Output Directory on page 66
l Recommended NFS Settings on page 66

Nitro Launch Script Location
The Nitro launch script must be installed in a shared file location or a location that is accessible to
the users that will be running Nitro jobs. While users won't need to run the Nitro application itself,
they should have read access to the Nitro launch script.

Task File Location
The task file a Nitro job will use must be accessible to the job. Most schedulers will copy the user
job script, but will not copy the task file the user must provide. Users may need to stage this task
file into a location accessible to Nitro job hosts. Nitro only needs read access to this file.

Job Output Directory
If the user does not specify a Nitro job directory (using "--job-dir" command line option), Nitro
defaults to the $HOME/nitro/<job id> directory.
This directory contains the Nitro job and task log files, Nitro diagnostic log files, and temporary
files Nitro uses to recover a canceled job. Users' home directories on these hosts should be mapped
to a shared file location accessible to the users either from the system's login hosts, or outside of the
cluster. Nitro will need to create directories and files in the Nitro job directory.

Recommended NFS Settings
If the job directory and task file are located on an NFS, then depending on the NFS cache settings,
system administrators and users should be aware of the following:

l Job Directory - Users may not see job progress for several seconds after Nitro writes the
files.

l Task File - If using Nitro in linger mode, Nitro may not recognize that new tasks have been
added to the task file for up to 30 seconds.

l System Configuration (caching/tuning) - Add "lookupcache=none" to the NFS file system
mount options in /etc/fstab for all the hosts using the NFS to prevent caching delays.

Related Topics

l Launch Scripts on page 91
l Command Line Flags, or Options, and Positional Parameters on page 83
l Linger Mode on page 99

Run Nitro Without a Scheduler

Nitro works well running as a job invoked via a scheduler and/or resource manager.

Chapter 3 System Administration

66 Run Nitro Without a Scheduler

Run Nitro Without a Scheduler 67

However, if you have a set of nodes that are dedicated to high-throughput computing and would
like to run Nitro jobs on these machines, or have Nitro always waiting (ready to run tasks at any
time), you can run Nitro without the use of a scheduler.
This topic explains how to run Nitro without the use of a scheduler (also referred to Nitro
standalone).
In this topic:

l Selecting a Job ID on page 67
l Starting Workers on page 67
l Starting the Coordinator on page 67
l (Optional) Changing the Job Directory on page 68

Selecting a Job ID
Since you do not have a scheduler to supply a job ID, Nitro will create a default job ID based on
the current date and time in the format "YYYMMDDHHMMSS". Since the workers and
coordinator will be started separately, it is recommended that you designate a job ID and set the
"--job-id <job id>" command line option on the worker and coordinator command lines with that
job ID. Setting the job ID provides consistency between the workers and the coordinator when
referencing the job; for example, when viewing job output and log files.

Starting Workers
You must start a worker on each node you want to execute Nitro tasks by starting it manually on a
terminal on that node, or by running a remote command through ssh.
A worker command line must include an "--coord" argument that lists the node's host name and
port number (if other than default port "47000") of the coordinator.
When each worker connects to the coordinator, it identifies itself using the --name option. If
--name is not supplied, the worker's identification is the worker node's host name.

The name supplied to the coordinator via --workers or --workers-file must
match the --name argument specified on the worker’s command line.

For example, if you have the coordinator running on node "node001" and a worker running on
node "node002", then the command line to start the worker would look like the following:

/opt/nitro/bin/nitro --mode=worker --job-id MyJob01 --coord node001 --name node002

Alternately, to run the worker using ssh (assuming ssh keys have been exchanged between the
coordinator and worker), it would look like the following:

ssh user@node002 '/opt/nitro/bin/nitro --mode=worker --job-id MyJob01 --coord node001
--name node002'

Starting the Coordinator
The coordinator requires either a list of worker names or a session key that workers will use to
attach to the coordinator. When supplying a list of worker names, these workers will be the only
workers authorized to connect to the coordinator and receive workload assignments. If you specify
a session key, any worker with the session key will be able to attach and receive workload.

Chapter 3 System Administration

Using Worker Names
A list of worker names can be specified on the command line, with worker names separated by the
plus symbol (+). For example:

/opt/nitro/bin/nitro --mode=coord --job-id MyJob01 --workers
node002+node003+node004+node005 ~/taskfile.txt

Alternately if it is a large list, it may be written to a file with one name per line, where the name is
what the worker identifies itself as to the coordinator. For example:

echo -e "node001\nnode002\nnode003\nnode004\nnode005" > nodelist.txt
/opt/nitro/bin/nitro mode=coord --job-id MyJob01 --workers-file nodelist.txt
~/taskfile.txt

node node001 is the coordinator and nodes node002-node005 are workers.

Using a Session Key
To start the coordinator with a session key, use the --key <keyvalue> or --key-file
<file> command line option instead of the --workers or --workers-file command
line options. Any worker that is started with the --key command line option with the correct
<keyvalue> will be able to attach to the coordinator. For example:

/opt/nitro/bin/nitro --mode=worker --coord node01 --job-id MyJob01 --key password1234
/opt/nitro/bin/nitro --mode=coord --name=node01 --job-id MyJob01 --key password1234
~/taskfile.txt

(Optional) Changing the Job Directory
The default job directory (the location to which Nitro will write the job and task log files) is
$HOME/nitro/<job id>.
If you want to store results in a different directory, use the "--job-dir" command line option on both
the coordinator and workers.

Related Topics

l Command Line Flags, or Options, and Positional Parameters on page 83

Chapter 3 System Administration

68 Run Nitro Without a Scheduler

Prepare a Nitro Job 69

Chapter 4 Using Nitro

This chapter provides information and instructions on using Nitro.
In this chapter:

l Prepare a Nitro Job on page 69
l Submit a Nitro Job using the nitrosub Command on page 72
l Submit a Nitro Job with User-Customized Job Scripts on page 73
l Track Job Progress on page 74

Prepare a Nitro Job

This topic provides information on the Nitro job's task file and performance tuning information.
In this topic:

l Task File on page 69
l Performance Tuning on page 71

Task File
The task file is a single file that contains a list of tasks to execute. Each line of the task file should
contain only one task. You can add comments to your task file to help describe the tasks being
performed, the data required, or other information that is pertinent to describing the tasks. Nitro also
provides the capability to use task names and labels to help you organize your tasks.
Most of the tasks you create for a task file will probably run to completion fairly quickly, but it is
possible that a task gets stuck in a loop or needs to run for a certain amount of time. Nitro by
default limits tasks to 3,600 seconds (1 hour), but you can specify the limit to apply to the task by
using the "maxtime" token. Time limits are specified in seconds. The following is an example of a
task definition that limits a task to 30 seconds.

name=S23T01 maxtime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex
1

Tasks
A task line can be as simple as the command you want to execute. For example, if you want to run
a program called "framegen", input a file from a shared directory, and process the frame starting at
time index "0" (zero), the command line might look like as follows.

/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0

Nitro uses name/value pairs before the command line that you want to execute to define Nitro-
specific information, such as, specifying a task name, task labels (that you can use to categorize the
task), maximum time a task will run, and the command to execute to run the tasks itself. The key
words for these name/value pairs are:

Chapter 4 Using Nitro

"cores=<count>"
"env=<name=value>[,<name=value>,...]"
"labels=<label>[,<label>,...]"
"name=<task name>"
"maxtime=<time limit in seconds>"
"memory=<amount>"
"shell=[default | none | <shell path>]"
"cmd=<command line>"

The optional name/value pairs must be prepended to the line containing the task command
line. As soon as Nitro sees something that isn't a name/value pair, the task line parsing stops
and the rest is assumed to be part of the command line to execute.
To make it clear where the task options end and your command line begins, include "cmd="
before your task's command line. This token is optional but helps to make the task definition
easier to read when you are specifying other options. The following is an example command
line with the "cmd=" token.

cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0

Nitro organizes the tasks for tracking.
Nitro tracks tasks by a task ID and line number. Nitro automatically generates a task ID for each
task definition in the task file. The first task definition receives task ID "1".

Only a task definition will increment the task ID. Because a task file can have empty or
comment lines, the task ID and the line number in the task file may not be the same for the
task.

Nitro will create a report of all tasks run and will include the task ID and line number in this report.
The task ID is passed to the task via the $NITROTASKID environment variable.
To make Nitro tasks easier to track, or to search for specific tasks in the task completion report, add
a unique task name to your task definition. Task names don't have to be unique, but creating a
unique task name helps you identify specific tasks.

You can use any naming scheme you want, as long as the name does not include spaces
(which would indicate an end to the name/value pair).

For example, if you are processing data for scenes 21, 22, and 23, you can name the tasks
according to scene and time index.

name=S21T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 0
name=S21T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 1
name=S22T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 0
name=S22T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 1
name=S23T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0
name=S23T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 1

Nitro makes the task name available to the task via the $NITROTASKNAME environment variable
when it executes the task. If the task command line includes the environment variable, it is
substituted by its value before the command executes.
You can also use task labels to organize or identify the tasks. You can use multiple labels to
describe a task. Multiple label values are separated by a comma between them; spaces are not
allowed.

Chapter 4 Using Nitro

70 Prepare a Nitro Job

Prepare a Nitro Job 71

For example, if scene 22 contains a green screen that needs additional processing after this job
completes, you can include the label "green" on all of the tasks for this scene.

name=S21T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 0
name=S21T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene21.def -tindex 1
name=S22T00 labels=green /opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 0
name=S22T01 labels=green /opt/framemaker/bin/framegen -i /shared/scene22.def -tindex 1
name=S23T00 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 0
name=S23T01 cmd=/opt/framemaker/bin/framegen -i /shared/scene23.def -tindex 1

Performance Tuning

Assignment Size
Each set of tasks that a coordinator sends to a worker is called an assignment. Nitro is most efficient
when it can send a large enough assignment to each worker to keep the worker busy for at least 10
seconds before requesting more work. On the other hand, if you have a heterogeneous set of nodes
with a wide variance in performance characteristics, you don't want one worker taking a very long
time completing its assignment after all of the other workers have finished.
The nitro.cfg file lets you specify an assignment size of 0 up to 1000. A size of 0 allows the
assignment size to be calculated by the coordinator and dynamically calculated to target an
assignment duration of 5 seconds.
You can also use the --assignment-size command line option on the coordinator to change the
tasks per assignment for your configuration. You can specify an assignment size as "0" (calculated
by the coordinator), as small as "1" (which could be useful for tasks that need to use all of the
available OS cores), and as large as "1000" (useful to keep worker cores busy with tasks of
extremely short duration).
If submitting a job to a job scheduler, you can change the assignment size by setting the NITRO_
COORD_OPTIONS environment variable so it contains the --assignment-size command line
option.
For example, if your nodes are all running 16 OS cores and each task takes 2 seconds to complete,
each assignment of default size will take 31.25 seconds to complete (250 tasks at 2 seconds each
divided by 16 OS cores), so you might want to change the assignment size to "80" to get an
assignment time of closer to 10 seconds with the command line option.

--assignment-size 80

Assignment sizes don't need to be evenly divisible by the number of OS cores available.
Nitro will try to send the worker a second assignment when the worker gets about half way
done with the current assignment so the second assignment will start running tasks as soon as
an OS core becomes idle from the previous assignment.

Adaptive Computing recommends a 10-20 second assignment duration to optimize node
utilization and to prevent "tailing" jobs (job where at its end there is only one or a few
workers executing a large assignment and other workers are idle).

Thread Control
Nitro typically runs one task per available OS core on each worker. However, you can configure
Nitro to run more tasks than OS cores (over-subscription), fewer tasks than OS cores (under-
subscription) or a specific number of OS cores. You might want to over-subscribe the available OS
cores if you are not utilizing the full capacity of the node. You may need to under-subscribe cores if

Chapter 4 Using Nitro

background tasks are running on the nodes. To over- or under-subscribe, use the --thread-ratio
command line option.

--thread-ratio <ratio>

<ratio> only applies to worker nodes. However, if you are using the --run-local-worker command
line option, then the thread ratio will be passed on to the coordinator's local worker.

--thread-ratio also lets you specify over- or under-subscription properly in a heterogeneous node
environment where nodes have different numbers of processors, cores, or threads. For example, if
your nodes are all single socket, oct-core with hyper-threading enabled (16 total OS cores), but you
want to over-subscribe by a factor of 1.5x, you could accomplish this by adding "--thread-ratio 1.5"
to the worker command line to give each worker the ability to run 24 concurrent tasks. Alternately,
if your tasks are all designed to use 2 OS cores each (multi-threaded application), you could use
"--thread-ratio 0.5".
There may also be cases where you want to specify the exact number of OS cores to be used by the
worker, such as when you have tasks that will use all available OS cores. In that case, you would
use the --thread-count command line option to specify a thread count of 1 (--thread-count 1).

Run a Worker on the Coordinator Node
In configurations where you will be running less than 20 worker nodes, the coordinator node may
be underutilized. To remedy this situation you may want to run a worker on the coordinator node
so you can use its resources more effectively. To run a worker on the coordinator node, include the
--run-local-worker flag on the coordinator's command line or you can explicitly start a worker
Nitro process on the node.
If using the nitrosub command, use --no-local-worker to prevent a worker from running on a
coordinator node.

Nitro will calculate the number of threads that the local worker should run so the coordinator
is not starved for CPU cycles; causing it to slow down all the other workers.

Task Execution Environment Variables
Nitro will pass several environment variables to your tasks when it executes them. See
Environment Variables on page 87 for more information.

Nitro reads a portion of the task file at a time. While the Nitro job is running, do not add or
remove any task definitions or comment lines in the task file. Changes to the task file could
cause line numbers to be changed and jobs to not run or be accidentally rerun.

Related Topics

l Command Line Flags, or Options, and Positional Parameters on page 83
l Environment Variables on page 87

Submit a Nitro Job using the nitrosub Command

Chapter 4 Using Nitro

72 Submit a Nitro Job using the nitrosub Command

Submit a Nitro Job with User-Customized Job Scripts 73

This topic is applicable for static and dynamic jobs. Alternatively, for static jobs, you can
submit the jobs using a customized nitro_job.sh script and the resource manager's submit
command (for example, Torque's qsub). See Submit a Nitro Job with User-Customized Job
Scripts on page 73 for more information.

Do the following:
1. Obtain the required information:

l how many resources (nodes or cores) you will need; this can be a static amount or a range
(used for dynamic jobs).

Resources are determined by the system's licensing model and configured in the
nitrosub command.

l the time limit for the execution (wall-time)
l location of your task file

2. Determine if you want any additional information included:
l whether a worker will reside on the same host as the coordinator
l a job ID for the job
l a job directory for recording job information
l any customized environment variables

3. Submit the Nitro job. The following example is for a dynamic job requesting 4-10 hosts, with a
walltime of 30 minutes.

$ nitrosub --resources=4-10--wall-time=30:00--task-file=mytasks.txt

Related Topics

l nitrosub Command on page 81
l Prepare a Nitro Job on page 69

Submit a Nitro Job with User-Customized Job Scripts

This topic is only applicable for static jobs submitted using the resource manager's submit
command (for example, qsub for Torque). If your configuration uses the nitrosub command,
see Submit a Nitro Job using the nitrosub Command on page 72.

Do the following:

Chapter 4 Using Nitro

1. If you have not already done so,
a. Obtain the etc/nitro_job.sh script customized for your system.
b. Create a copy of that job script.

2. Customize the job script for your task file.
a. Specify the path to your task file (NITRO_TASK_FILE).
b. (Optional) Specify the directory to which Nitro writes log files (NITROJOBDIR). This

directory can be used to store output files from your tasks.
c. Customize any other environment variables referenced by the launch_nitro.sh script as

needed. See Environment Variables on page 87 for more information.
d. Confirm the job script executes the launch_nitro.sh script (last line in the script).

3. Save your customized nitro_job.sh script.
4. Using your resource manager's submit command, submit the Nitro job for your task file. The

following example uses the Torque resource manager and the customized job script saved in the
"myscripts" directory.

$ qsub \myscripts\nitro_job.sh

Related Topics

l Job Scripts on page 88
l Prepare a Nitro Job on page 69

Track Job Progress

This topic provides information on viewing job progress and output.
In this topic:

l Introduction on How Nitro Tracks the Job on page 74
l Job Log on page 75
l Task Log on page 78

Introduction on How Nitro Tracks the Job
Nitro will print some job information to stdout, such as what workers attached, how many tasks
have been run, if any tasks failed, etc.
If your Nitro job is submitted through a scheduler, you may not see any of this until the job has
completed and the resource manager has copied the job output to your job's submission directory.
However, Nitro provides a tool called nitrostat to display status information while the job is
running. nitrostat is located in the nitro/bin directory where Nitro was installed.
Nitro creates two files that you can use to stay up-to-date on the progress of your job.

Chapter 4 Using Nitro

74 Track Job Progress

Track Job Progress 75

l nitro_<jobid>.joblog.txt - Information about the job in general.
l nitro_<jobid>.tasklog.txt - Listing of individual tasks that have completed along with
performance statistics collected from running the task (duration and memory usage) and the
task output to stdout and/or stderr.

Both files are written to the job directory that you provide using the --job-dir command
line option when submitting your job, or to the default job directory
$HOME/nitro/<jobid>.

Job Log
To see job status using nitrostat, you will need the job ID. The job ID is the job ID reported to you
when you submitted the job to the schuleder or that you set manually via the --job-id
command line option in the NITRO_OPTIONS environment variable or via the NITROJOBID
environment variable.

l The default location for the job and task logs are in your "$HOME/nitro/<jobID>"
directory.

l You can also use the "--job-dir" command line option to specify a different job directory if
you are not using the default location.

Nitro Job Progress Report
The Nitro job progress reports lets you see the current contents of a job log file.
For example, let's say you have a job that was run by your resource manager as job "23576",
running "/opt/nitro/bin/nitrostat 23576"shows you the job's progress.

Chapter 4 Using Nitro

Nitro Job Progress Report

Start Time : 2016-02-10 09:10:11-0600
Current Time: 2016-02-10 09:10:42-0600
Elapsed Time: 31 seconds (00:00:31)

Job Id : 23576
Coordinator : node01
Load Pct : 5.6%

Task Log : /home/jdoe/jobs/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/jobs/survey03.tasks
 File Size : 123366
Est Tasks : 3016
Processed : 75%

Tasks

Pending : 500
In Progress : 500
Completed : 1250
 Success : 1250
 Failure : 0
InsufRes : 0
Timeout : 0
 Invalid : 0
 Tasks/sec : 40.3
Total Tasks : 2250

Workers

Host Pid Thrds Status Assigned Running Completed Success Failure InsufRes
Timeout Tasks/sec AsgmtDur
node02 6851 12 running 1250 250 1000 1000 0 0
0 36.0 8.0

node03 14988 4 running 500 250 250 250 0 0
0 9.3 27.0

The following describes the fields and their output descriptions.
l Start Time – Date and time the coordinator started running.
l Current Time – Current date and time the report was generated (reports are generated every 5
seconds).

l Elapsed Time – Amount of time the coordinator has been working on the tasks.
l Job Id – Job ID that Nitro was passed on its command line. Typically assigned by the
resource manager, but can be assigned by the user.

l Coordinator – Host name on which the coordinator is running.
l Load Pct – Percentage of coordinator load capacity.
l Task Log – Path and file name of the task log file that is generated by the coordinator.
l Task File – Path and file name of the task file.
l File Size – File size of the task file.
l Est Tasks – Number of tasks the coordinator estimates in the task file. Since Nitro doesn't
read the entire task file on startup, an estimate is given based on lines read from the file so
far.

l Processed– Percentage of the task file that has been read by the coordinator.

Chapter 4 Using Nitro

76 Track Job Progress

Track Job Progress 77

l Tasks Section: Lists the counts of tasks in each category
o Pending – Number of tasks that have been put into assignments and are waiting to be
sent to a worker.

o In Progress– Number of tasks in assignments sent to the workers for which workers
have not yet returned results.

o Completed – Number of tasks in assignments that have been completed (workers have
returned results).

o Success – Number of completed tasks that were successful (the task returned an exit
code of 0).

o Failure – Number of completed tasks that returned an exit code other than 0.
o InsufRes – Number of tasks that could not be run because the requested resources for
the task were not available.

o Timeout – Number of completed tasks that ran longer than the task "maxtime"
parameter and were terminated by the worker.

o Invalid – Number of task definitions that contained errors and could not be run.
o Tasks/sec – Number of tasks per second based on the time that the coordinator sends
the first assignment until the time the report is generated. If in linger mode, this will
only be calculated for the last 60 seconds.

o Total Tasks – Total number of tasks including completed and invalid tasks.
l Workers Section: List by worker

o Host – Host name and port (if not the default port) of the worker.
o Pid – Process ID of the worker.
o Thrds –Number of task launch threads the worker is using to run tasks.
o Status – Status of the worker. This may be "unconnected", "running", "unresponsive",
"closing", or "closed".

o Assigned – Number of tasks assigned to this worker so far.
o Running – Number of tasks in assignments currently allocated to the worker.
o Completed – Number of tasks in assignments the worker has completed.
o Success – Number of successfully completed tasks.
o Failure – Number of tasks that returned an exit code other than 0.
o InsufRes – Number of tasks that could not be run because the requested resources for
the task were not available.

o Timeout – Number of tasks that exceeded the tasks "maxtime" threshold and were
terminated by the worker.

o Tasks/sec – Number of tasks per second that the worker has completed so far. In

Chapter 4 Using Nitro

linger mode this is only calculated for the last 60 seconds.
o AsgmtDur – Average assignment duration in seconds.

Job Completed Report
Once the job has completed, the job report will show "(final)" on the end of the first line of the
report and Current Time is replaced with Finish Time (after Start Time). The following example is
based on the previous example for job "23576" .

Nitro Job Progress Report (final)

Start Time : 2016-02-10 09:10:11-0600
Finish Time : 2016-02-10 09:11:36-0600
Elapsed Time: 85 seconds (00:01:25)

Job Id : 23576
Task Log : /home/jdoe/jobs/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/jobs/survey03.tasks

Tasks

Pending : 0
Running : 0
Completed : 3000
Success : 3000
Failure : 0
InsufRes : 0
Timeout : 0
Invalid : 0
Tasks/sec : 35.3

Total Tasks : 3000

Coordinator

Host : node01
Threads : 8

Worker Resources

Workers : 2
Threads : 16

Workers

Host Pid Thrds Status Assigned Running Completed Success Failure InsufRes
Timeout Tasks/sec AsgmtDur
node02 6851 12 closed 2250 0 2250 2250 0 0
0 29.2 8.3
node03 14988 4 closed 750 0 750 750 0 0
0 8.8 35.7

Task Log
The task log file contains a listing of all tasks that have been completed and some statistics about
the tasks duration and memory consumption. This file is named nitro_
<JobID>.tasklog.txt and is located in the same directory as the job log file.
The task log file is tab-delimited, so you can easily import it into a spreadsheet or database, or
process it using another program. You can also view the task log using the nitrostat utility.

Chapter 4 Using Nitro

78 Track Job Progress

Track Job Progress 79

JobID TaskID Line Name Status ExitCode Hostname StartTime
Duration UserCPU SystemCPU VirtualMem PhysicalMem Labels

Output
foo 1 1 task001 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.005 0.000 0.000 7364608 630784
foo,foobar,foobaz,xyz
foo 2 2 task002 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.007 0.000 0.000 87834368 630784 foo,foobar,xyz
foo 3 3 task003 Success 0 localhost:10004 2015-06-18_
15:26:52.954-0600 1.005 0.000 0.000 71728640 901120 foo,xyz
foo 4 4 task004 Success 0 localhost:10004 2015-06-18_
15:26:52.955-0600 1.005 0.000 0.000 38837504 630784
foo,foobar,foobaz,abc
foo 5 5 task005 Success 0 localhost:10004 2015-06-18_
15:26:53.960-0600 1.004 0.000 0.000 405946368 630784 foo,foobar,abc
foo 6 6 task006 Success 0 localhost:10004 2015-06-18_
15:26:53.961-0600 1.005 0.000 0.000 405946368 946176 foo,abc
foo 7 7 task007 Success 0 localhost:10004 2015-06-18_
15:26:53.961-0600 1.003 0.000 0.000 405946368 630784
foo 8 8 task008 Success 0 localhost:10004 2015-06-18_
15:26:53.966-0600 1.003 0.000 0.000 405946368 700416
foo 9 9 task009 Success 0 localhost:10004 2015-06-18_
15:26:54.965-0600 1.005 0.000 0.000 405946368 630784
foo 10 10 task010 Success 0 localhost:10004 2015-06-18_
15:26:54.965-0600 1.003 0.000 0.000 405946368 630784
foo 11 11 task011 Success 0 localhost:10004 2015-06-18_
15:26:55.973-0600 1.005 0.000 0.000 7364608 630784
foo 12 12 Success 0 localhost:10004 2015-06-18_
15:26:55.973-0600 1.004 0.000 0.000 405946368 626688
foo 13 14 fail Failure 1 localhost:10004 2015-06-18_
15:26:55.973-0600 0.005 0.000 0.000 8192 4096
foo 14 16 stderr Success 0 localhost:10004 2015-06-18_
15:26:55.974-0600 0.005 0.000 0.000 405946368 536576
foo 15 18 stderr_fail Failure 1 localhost:10004 2015-06-18_
15:26:55.979-0600 0.005 0.000 0.000 405946368 1228800

ERROR MESSAGE
foo 16 20 overtime Timeout -9 localhost:10004 2015-06-18_
15:26:55.980-0600 2.006 0.000 0.000 405946368 970752

maxtime exceeded, process was killed
foo 17 21 Success 0 localhost:10004 2015-06-18_
15:26:55.985-0600 1.002 0.000 0.000 405946368 626688
foo 19 23 Success 0 localhost:10004 2015-06-18_
15:26:56.979-0600 1.007 0.000 0.000 405946368 970752
foo 20 24 Success 0 localhost:10004 2015-06-18_
15:26:56.988-0600 1.003 0.000 0.000 405946368 724992
foo 21 25 Success 0 localhost:10004 2015-06-18_
15:26:57.986-0600 1.005 0.000 0.000 405946368 724992
foo 22 26 Success 0 localhost:10004 2015-06-18_
15:26:57.988-0600 1.005 0.000 0.000 405946368 970752
foo 23 27 Success 0 localhost:10004 2015-06-18_
15:26:57.988-0600 1.005 0.000 0.000 405946368 630784
foo 24 28 Success 0 localhost:10004 2015-06-18_
15:26:57.995-0600 1.005 0.000 0.000 405946368 630784
foo 25 29 Success 0 localhost:10004 2015-06-18_
15:26:58.993-0600 1.005 0.000 0.000 405946368 974848
foo 26 30 Success 0 localhost:10004 2015-06-18_
15:26:58.994-0600 1.004 0.000 0.000 405946368 626688

The task log contains the following fields.
l JobID – Job ID that was passed to Nitro using the "--job-id" command line option.
l TaskID – Task number within the Nitro job.
l Line – Line number in the task file of the task definition.

Chapter 4 Using Nitro

l Name – Task name supplied in the task definition by the "name=<name>" option.
l Status – One of "Success", "Failure", "InsufRes", "Timeout", or "Invalid".
l ExitCode – Numerical exit code returned by the task.
l Hostname – Name of the worker that executed the task.
l StartTime – Date and time the worker actually started the task.
l Duration – Number of seconds the task ran (millisecond resolution).
l UserCPU – Number of seconds the task ran in user mode (millisecond resolution).
l SystemCPU – Number of seconds the task run system calls (millisecond resolution).
l VirtualMem – Maximum virtual memory allocated to the task in bytes.

The operating system may allocate shared memory and may charge a proportion of this
shared memory to random tasks.

l PhysicalMem – Maximum physical memory allocated to the task in bytes.
l Labels – Optional task labels specified by the task definition.
l Output – stdout and/or stderr. If a task outputs to both stdout and stderr, both are displayed in
the format <stdout>/<stderr>.

Related Topics

l Command Line Flags, or Options, and Positional Parameters on page 83
l nitrostat on page 96

Chapter 4 Using Nitro

80 Track Job Progress

nitrosub Command 81

Chapter 5 References

This chapter provides additional information for system administrators and users.
In this chapter:

l nitrosub Command on page 81
l Command Line Flags, or Options, and Positional Parameters on page 83
l Environment Variables on page 87
l Job Scripts on page 88
l Launch Scripts on page 91
l Task File on page 93
l nitrostat on page 96
l Job Recovery on page 98
l Coordinator Resiliency on page 98
l Dynamic Workload on page 99
l Glossary on page 100

nitrosub Command

The nitrosub command lets users easily submit Nitro jobs without having to create their own user
job scripts; thereby not requiring the users to modify bash shell scripts. The nitrosub command is
designed to submit static or dynamic Nitro jobs.
This topic provides information on the nitrosub command and what system administrators need to
do to configure the command for their system.
In this topic:

l Modify the nitrosub Command for your System on page 81
l Command Parameters on page 82

Modify the nitrosub Command for your System
When Nitro is first installed, system administrators need to modify the bin/nitrosub script for
their specific resource manager and licensing model. Specifically,
1. Uncomment the "_resource_manager" line for your resource manager
2. Uncomment the "resouce_type" line for your licensing model's allocation (nodes or cores).
3. If your system will be using dynamic jobs, set the "_dynamic_size" value to the number of

resources to allocate to a dynamic job.

Chapter 5 References

Command Parameters
The following table describes the parameters for the nitrosub command and how they affect a Nitro
job submission.

The terms "node" and "processor" are mutually-exclusive.

Parameter Required Description Syntax

Environment
Variables

No Passes environment variables to Nitro via by the job
scheduler and/or resource manager.
Users may specify multiple environment variable names
using a comma-delimited list (square brackets indicate
optional additional environment variable names).

--env-
var=xxx=nnn
[,yyy=mmm
[,zzz=ooo]]

Job
Directory
Path

No Sets the directory path the user desires the Nitro job to
use for recording job information. This parameter is
required for a Nitro job restart when a user or
administrator cancels an executing Nitro job and must
have the job directory value of the canceled Nitro job.
When not set, it is the default job directory Nitro creates.
The directory path must be accessible from a compute
node and the job submission node.

--job-dir=xxx

Job ID No Sets the job ID the user desires to give the job. This
parameter is required for a Nitro job restart when a user or
administrator cancels an executing Nitro job and must
have the job id value of the canceled Nitro job.
When not set, it is the default job ID Nitro creates.

--job-id=xxx

Local
Worker

No Indicates whether the Nitro coordinator should start a
local worker on its resources.
The default is --local-worker.

--local-worker
--no-local-
worker

Resources Yes Indicates the number of hosts (compute nodes/servers) or
hardware cores/threads to be allocated to the Nitro job by
the scheduler.

l If for a static Nitro job, the quantity value (nn) is a
positive decimal integer.

l If for a dynamic Nitro job, the quantity range
values (mm-nn) are positive decimal integers and
"mm" must be less than "nn".

--resources=nn

--
resources=mm-
nn

Chapter 5 References

82 nitrosub Command

Command Line Flags, or Options, and Positional Parameters 83

Parameter Required Description Syntax

Task File
Path

Yes Specifies the path of the Nitro task file created by the
user.
This path must be accessible from a compute node

--task-file=xxx

Wall Time Yes Specifies the time limit for the Nitro job's execution. The
parameter's "xxx" value format depends on the job
scheduler used.

--wall-
time=xxx

Command Line Flags, or Options, and Positional Parameters

This topic identifies the individual command line flags, or options, and positional parameters
recognized and/or required by Nitro.
In this topic:

l Flags on page 83
l Options on page 84
l Positional Parameters on page 86
l Command Line Options per Nitro Mode on page 87

Flags

l Disable Affinity – Instructs a worker that it should not track and set the task's affinity.

This option overrides --disable-affinity in the nitro.cfg file.

--disable-affinity

l Linger – Tells Nitro to keep running after the initial tasks have completed. The <timeout>
specifies the number of seconds that must pass after the last completed task before Nitro
closes (shuts down). A <timeout> value of -1 indicates an indefinite period of time; Nitro
will not close until a signal is given to close.

--linger <timeout>

l Run Local Worker – Runs a local worker on the coordinator's node.

--run-local-worker

l Trust Workers – Allows any worker to attach to Nitro and accept workload. Without this
flag, the coordinator will only connect workers that were specified with the --workers,

Chapter 5 References

--workers-file, --key, or --key-file command line option.

--trust-workers

Options

l Mode – Required command line parameter that indicates the role (coord/worker) of Nitro
when started on a node.

--mode=[coord | worker]

l Coordinator Host – Specifies the coordinator to connect to when Nitro is running in worker
mode (--mode=worker).

--coord <HOST[:PORT]>

l Session Key – Specifies a session key that can be used to authenticate workers to the
coordinator. The session key must be provided on the workers and coordinator command
lines. Any worker reporting in to the coordinator will be required to provide this key to be
able to connect and receive workload. The session key is any string that does not contain
spaces or any characters which the shell will interpret.

--key <keyvalue>

l Key File – File containing a passphrase that can be used to authenticate workers to a
coordinator. If the file contains newline or tab characters, these will be removed from the
passphrase.

--key-file <file>

l Worker Hosts – "+"-separated list of the host names of the worker hosts the job scheduler
allocated to the Nitro job for its exclusive use.

--workers <hostlist>

l Worker Hosts File – File containing a list of the host names, one per line, the job scheduler
allocated to the Nitro job for its exclusive use.

--workers-file <filename>

l Name – Name the worker uses to reference itself when communicating with the coordinator.
For the coordinator, this is the name to which the workers will connect. If not specified,
Nitro defaults to the node's host name.

The name supplied to the coordinator via --workers or --workers-file must
match --name. If using --trust-workers, --key, or --key-file, any
unique value can be used for --name. Workers' names must be unique within a
coordinator group.

--name <name>

Chapter 5 References

84 Command Line Flags, or Options, and Positional Parameters

Command Line Flags, or Options, and Positional Parameters 85

l Port Base – Base port number for port assignments (default 47000); used to override first
port assignment by Nitro process. Valid range of ports is 47000-65535.
Each Nitro coordinator process requires four ports. A coordinator process will bind a range
of four ports starting with the start port specified by this option as the starting point for port
assignments.

-p <port>
--port1 <port>

l Port File – File name that the coordinator should use to contain the first port number used by
the coordinator. This also indicates that the coordinator should do a port search to find the
first set of available ports. If the coordinator cannot find an available port, and when the
coordinator closes, "closed" will be written to the file so that workers being started after the
coordinator has closed can immediately close.
The file name argument is optional, and if not specified, defaults to a file in the job directory
named ".coord_<job id>.port". If supplied, the file name argument must be in the form --
arg=<value>, not --arg <value> (with a space between).

--port-file=[<file_name>]

l Thread Count – The quantity of threads the Nitro workers should use when executing
tasks. This option is mutually-exclusive with the Thread Ratio option.
If this option and the Thread Ratio option are not given, a worker uses one task launch
thread per OS core to which it is pinned.
The primary reason for this option is to explicitly specify a task-launch thread count for Nitro
running a specific single application, usually on homogeneous nodes.

--thread-count <num>

l Thread Ratio – The ratio of task launch threads-to-OS "cores" the Nitro workers should use
when creating task launch threads. This option is mutually exclusive with the Thread Count
option.
If this option and the Thread Count option are not given, the ratio is "1.0", meaning a worker
uses one task launch thread per OS core to which it is pinned.
Ratio is a positive real number (e.g., 1.5, 0.5, etc) that when multiplied with the count of OS
cores to which a worker is pinned yields a count of the task launch threads it will use. The
worker rounds the count to the nearest integer, with a minimum value of 1.
The primary reason for this option is to allow a user to over-subscribe or under-subscribe the
task-launch thread count appropriately relative to the OS core count of heterogeneous nodes
(e.g., 1.5 means 6 threads for a quad-core node and 24 threads for a 16-core node).

--thread-ratio <ratio>

l Assignment Size – The quantity of tasks the Nitro coordinator should pass to a Nitro worker

Chapter 5 References

at one time; default is 350, maximum value is 1000. Alternatively, you can specify an
assignment size of 0; allowing the coordinator to automatically determine the assignment size
based on the assignment duration.

This option overrides the --assignment-size setting in the nitro.cfg file.

--assignment-size <num>

l Job Directory – Specifies the path for the directory where Nitro will place its Job Progress
Log and Completed Task Log files.

--job-dir <path>

l Job ID – Specifies the job ID for a specific Nitro run. The job ID may be used to create the
job directory and certain file paths.

--job-id <jobID>

l Coordinator Threads – Indicates to the coordinator how many threads to reserve for the
coordinator when allocating cores to a local worker (when using "--run-local-worker" on the
coordinator command line). Default is 2. Adaptive Computing recommends setting the
<count> value to 1 if all jobs will use less than 20 nodes and setting the <count> value to 4
if the jobs require a large number of nodes (greater than 50) to run.

This option overrides the --coord-threads setting in the nitro.cfg file.

--coord-threads <count>

l Task Environment – Specifies the environment variables to set in the task's execution
environment. This is used by the worker but is also needed on the coordinator's command
line if running a local worker. Multiple values can be specified by separating name/value
pairs with a comma.

--task-env <ENVVARNAME=value[,...]>

l Debug Log File – The path for the optional "debug log" file the Nitro coordinator can
produce. If the path is not defined, the coordinator will use the default path
$NITROJOBDIR/nitro_$NITROJOBID-hostname_pid.log.

--logfile <path>

l Debug Log Level – The level of debug log information the Nitro coordinator will output
when tracing/logging. The default is "3" (information). The highest level allowed is "7"
(debug).

--loglevel <num>

Positional Parameters

Chapter 5 References

86 Command Line Flags, or Options, and Positional Parameters

Environment Variables 87

l Task File Name – Path of text file containing Nitro task definitions. This must be the last
parameter on the coordinator's command line.

path

Command Line Options per Nitro Mode
The table that follows identifies which command line options Nitro uses in worker or coordinator
mode. Some command line options are used in both modes and are listed in this table in the "Both"
row.

Nitro Mode Command Line Option

Coordinator --assignment-size
--coord-threads (if using --run-local-worker with the coordinator)
--port1
--run-local-worker
--trust-workers
--workers
--workers-file
--key-file

Worker --coord
--disable-affinity (if not using --run-local-worker with the coordinator)
--name
--task-env (if not using --run-local-worker with the coordinator)
--thread-count (if not using --run-local-worker with the coordinator)
--thread-ratio (if not using --run-local-worker with the coordinator)

Both --disable-affinity (if using --run-local-worker with the coordinator)
--job-dir
--job-id
--key
--linger
--logfile
--loglevel
--mode
--port-file
--task-env (if using --run-local-worker with the coordinator)
--thread-count (if using --run-local-worker with the coordinator)
--thread-ratio (if using --run-local-worker with the coordinator)

Environment Variables

Chapter 5 References

This topic provides information on the Task Execution environment variables available to
customize Nitro's operation.
Valid environment variables:

l $NITROJOBID – Job ID of the Nitro job.
l $NITROJOBDIR – Job directory to which Nitro writes log files. This directory can be used
to store output files from your tasks.

l $NITROTASKCORES – Number of cores allocated to the task.
l $NITROTASKID – Task ID of the task. The task ID is a number that starts at 1 and
increments by 1 for each task definition (valid or invalid) in the task file. Commented and
empty lines are not counted; if the task file contains such, the task ID and the line number
will diverge.

l $NITROTASKMEMORY – Amount of memory (in MB) allocated to the task.
l $NITROTASKNAME – Task name, if provided by the task definition.
l $NITROTASKTIME – Task time limit, specified by "maxtime" in the task definition.
l $NITRO_TASK_FILE – Can be used with normal file names that do not use spaces, but
MUST be used if the user submits more than one task file.

l $NITRO_LONG_TASK_FILE - Can be used with normal file names that do contain
spaces, butMUST be used if the file name contains spaces. This variable can only contain
one file name. You cannot submit multiple file names containing spaces.

Related Topics

l Command Line Flags, or Options, and Positional Parameters on page 83

Job Scripts

This topic provides information about the different job scripts, including customization options
(where applicable).
In this topic

l Nitro Job Script on page 88
l Worker Job Script on page 89
l Moab/Torque Customization Commands and Options on page 89

Nitro Job Script
The nitro_job.sh script is located in the /opt/nitro/etc/ directory.
Typically the nitro_job.sh script is customized by the system administrator and executed by the
nitrosub command. This job script is used for static jobs, if resources are not in a range. For
dynamic jobs, it sets up the initial resource request (minimum resource value in the range).

Chapter 5 References

88 Job Scripts

Job Scripts 89

Alternatively, the system administrators can modify the nitro_job.sh script and then have authorized
users copy and customize the script for their task file. This script is then executed using the resource
manager's job submission command (for example, Torque's qsub). This functionality is similar to
the Nitro functionality prior to version 2.1.
The nitro_job.sh script:

l Defines path to your task file (NITRO_TASK_FILE)
l Defines the directory to which Nitro writes log files (NITROJOBDIR). This directory can be
used to store output files from your tasks.

l Executes the launch_nitro.sh script (last line in the script)
In the nitro_job.sh script, you can also customize the launch_nitro.sh script.

l NITROJOBID – Job ID used by Nitro. If not provided, this ID is based on the resource
manager's job ID.
Unless you are restarting a job that partially completed and was canceled, you don't need to
set this environment variable. If you specify this environment variable in the job's
submission, it will override the resource manager job ID and Nitro will use the value you
supplied.

If your job scheduler and resource manager use different numbering systems, the job
ID that Nitro will use is the one that it gets from the resource manager. You may want
to submit the job directly to the resource manager in this case to avoid confusion.
Check with your system administrator to find out if your job scheduler's and resource
manager's job ids are synchronized.

l Command line options – Any command line options you want passed to the launch_nitro.sh
script must be contained in the NITRO_OPTIONS, NITRO_COORD_OPTIONS, or
NITRO_WORKER_OPTIONS environment variables. See Command Line Flags, or
Options, and Positional Parameters on page 83 or Environment Variables on page 87 for
more information.

Worker Job Script
The worker_job.sh script is located in the /opt/nitro/etc/ directory.
The worker_job.sh script is executed only by the nitrosub command. This job script is used for the
dynamic portion of dynamic jobs (resources after the initial request up to the maximum value).

l Defines the job ID for the coordinator set up by the nitro_job.sh script for the first part of the
dynamic job submission (NITROJOBID).

l Defines the directory to which Nitro writes log files (NITROJOBDIR). This directory can be
used to store output files from your tasks.

l Executes the launch_worker.sh script (last line in the script).

Moab/Torque Customization Commands and Options
If using Moab/Torque, be aware of the following:

Chapter 5 References

l Nitro will consume all available OS cores on the nodes on which it runs. However, if the
jobs are using the cgroups functionality (provided by the resource manager), then the
coordinator and worker will only see as many cores as are in the cgroup.

o If Nitro is running exclusively on nodes, you may want to configure your system to
run a single job per node (for example, in Moab, set NODEACCESSPOLICY to
SINGLEJOB in the moab.cfg file or during job submission).

o If you will run other workload on the system that may run multiple jobs per node, you
will need to provide a script or instruct users on how to specify their Nitro jobs to run
with a single task per node configuration. In Moab and Torque the jobs should be
submitted (using either msub or qsub) with the "-l nodes=<node
count>:tpn=1" command line option.

Example: Setting Environment Variables at Job Submission
The "-v" option in Moab's msub command sets environment variables before calling the user job
script. The user job script inherits these environment variables.

The user job script can add to or overwrite any environment variable defined in msub's "-v"
option.

l User job script (/home/jdoe/user_job_script.sh)
This script must exist on the node where you execute the msub command. In this example,
this user job script exists in jdoe's home directory.

exec /opt/nitro/bin/launch_nitro.sh

l msub example

msub -lnodes=5 -ltpn=1 -lwalltime=600 -v "NITRO_TASK_
FILE=/home/jdoe/nitro/monte_sim.txt,NITRO_OPTIONS=--job-dir
/home/jdoe/monte01,NITRO_COORD_OPTIONS=--run-local-worker" /home/jdoe/user_job_
script.sh

o The task file monte_sim.txt contains the list of task command lines that you want to
execute.

o The "--job-dir" sets the path to which Nitro will write the job and task logs.
o The last parameter is the path of the user job script.

Example: Setting Environment Variables In the User Job Script
l User job script (/home/jdoe/user_job_script.sh)
This script must exist on the node where you execute the msub command. In this example,
this user job script exists in jdoe's home directory.

NITRO_TASK_FILE=/home/jdoe/nitro/monte_sim.txt
NITRO_OPTIONS="--job-dir /home/jdoe/monte01"
NITRO_COORD_OPTIONS=--run-local-worker
exec /opt/nitro/bin/launch_nitro.sh

Chapter 5 References

90 Job Scripts

Launch Scripts 91

l msub example

msub -lnodes=5 -ltpn=1 -lwalltime=600 /home/jdoe/user_job_script.sh

o The task file monte_sim.txt contains the list of task command lines that you want to
execute.

o The "--job-dir" sets the path to which Nitro will write the job and task logs.
o The last parameter is the path of the user job script.
o NITRO_TASK_FILE, NITRO_OPTIONS and NITRO_COORD_OPTIONS are set
in the user job script.

Related Topics

l Launch Scripts on page 91

Launch Scripts

Nitro comes packaged with a launch_nitro.sh and a launch_worker.sh script for Torque,
SLURM, LSF, and Cray resource managers or environments. If you use another resource manager,
you may need to build the scripts.
There are several basic points that each launch script needs to cover to interface the resource
manager with Nitro.
1. Getting the resource manager job ID and passing it to Nitro. See Resource Manager Job ID on

page 91.
2. Specifying the location of the Nitro binary. See Location of the Nitro Binary on page 91.
3. Getting the list of nodes that Nitro is to run on for the current job. See List of Job Nodes on

page 92.
4. Launching the Nitro workers and coordinator. Launch Nitro Workers and Coordinator on page

92.
5. Customize the command line parameters of workers and/or coordinator. See Customize

Command Line Parameters on page 92.

Resource Manager Job ID
Nitro uses the job ID to customize the output files so if several copies of Nitro are running at the
same time they don't corrupt each other's information. Torque, for example, defines the $PBS_
JOBID environment variable that contains a job ID as defined by Torque.
The provided launch scripts add the "--job-id <job id>" parameter to Nitro's command
line parameters (to the workers and the coordinator) if a job ID is provided, or if no job ID is found,
then it defaults to a job ID with the format "YYYYMMDDHHMMSS" containing the date and
time the Nitro launch script runs.

Location of the Nitro Binary

Chapter 5 References

The launch scripts assume the Nitro binary will be found in the /opt/nitro/bin directory.
This requires that Nitro has been installed all the nodes, or that the /opt/nitro directory has
been mapped to a remote file system.
If you have installed Nitro to a directory other than the default, you need to customize the launch
scripts with this location. For example, if you installed Nitro to /mysharedfs/nitro, you
need to change the line of the launch scripts
from

NITRO=/opt/nitro/bin/nitro

to

NITRO=/mysharedfs/nitro/bin/nitro

List of Job Nodes
Resource managers typically have an environment variable set with the list of nodes allocated to the
job. In Torque, this environment variable is "$PBS_NODEFILE" and contains the file that is
accessible to the job containing the list of nodes allocated to the job.
The file containing the list of nodes is typically a file with a single node name per line, such as:

node01
node02
node03

Launch Nitro Workers and Coordinator
The launch scripts need to include the resource manager's remote command in order to set up the
workers and the coordinator.

l Torque uses the "pbsdsh" command.
l SLURM uses the "srun" command.
l LSF uses the "blaunch" command.
l Cray systems use the "aprun" command.

Please refer to your resource manager's documentation for instructions and options to run the
remote command.

For static and dynamic jobs, when executing the launch_nitro.sh script, the workers are started
first and the coordinator will be executed last using "exec". This is so the coordinator gains control
of the process. The launch_nitro.sh script currently uses (and assumes) the first node in the node
list is the coordinator and all other nodes are workers.
In addition, for dynamic jobs, the launch_worker.sh script is executed to add one or more workers
to the coordinator that was executed by the launch_nitro.sh script.

Customize Command Line Parameters
The system administrator may customize the Nitro launch script to suit the needs of the system. The
launch scripts may examine and modify, or simply pass through, the command line options
specified by the environment variables set by the nitro_job.sh and/orworker.job.sh scripts. The

Chapter 5 References

92 Launch Scripts

Task File 93

command line options are then passed via the environment variables to the Nitro workers and
coordinator that are started by the launch scripts.
If you want to add command line parameters to Nitro, the best way is to prepend the option to the
beginning of either the NITRO_OPTIONS, NITRO_COORD_OPTIONS, or NITRO_
WORKER_OPTIONS environment variable(s), as appropriate. See Command Line Flags, or
Options, and Positional Parameters on page 83 for more information.
For example, if all of your user's jobs are expected to use less than 20 nodes, you may want to add
the option to run a local worker on the coordinator node to maximize task throughput. If you add
this option to the launch_nitro.sh script, it reduces the parameters necessary to configure the
nitro_job.sh script. Alternatively, you can add the "--run-local-worker" flag to the
NITRO_COORD_OPTIONS environment variable in the nitro_job.sh script (if using the
nitrosub command). If your configuration allows users to submit jobs using the resource manager's
job submission command (such as Torque's qsub), those users can either add this flag to their
customized nitro_job.sh script (saved in their work directory) or add this flag at job submission.
To add the "--run-local-worker" flag to the coordinator command line, add the following
line to the launch_nitro.sh script after the line containing the NITRO_OPTIONS.

NITRO_OPTIONS="--job-id ${NITROJOBID} ${NITRO_OPTIONS}"
NITRO_COORD_OPTIONS="--run-local-worker ${NITRO_COORD_OPTIONS}"

The launch_worker.sh script must be congruent with the launch_nitro.sh script.

Task File

A task file contains a list of Nitro task definitions (task execution options) along with the task
command line Nitro will execute. Since the Nitro coordinator will be running on one of the nodes
allocated to the Nitro job, the task file must be accessible to the node on which the coordinator will
run.
The task file is a text file where each task definition must be contained on a single line. Lines of
text may be terminated by either a Linux-style line ending (LF or '\n' new line character) or a
Windows-style line ending (CR/LF - '\r\n' carriage return/line feed combination). The line number
is reported in the task log so that errors in the task file can be quickly located and fixed.
The task file allows comment and empty lines. A hash symbol (#) in the first column of a line
identifies a comment line.
Each task will be assigned a task ID, which will start at 1 and increment with each task line
(comment and empty lines are not assigned a task ID). This task ID is passed to the task in the
NITROTASKID environment variable.

Task Options
Task options are name/value pairs that are listed before the task's command line of the form
"<option>=<value>". Task options must be specified before the task's command line to be
executed. As Nitro parses the line, it will stop looking for name/value pairs as soon as it finds a
character string that does not include the name/value delimiter (=) or is the "cmd" option.
Everything after the "cmd=" option or the first string that is not delimited as a name/value pair will
be considered part of the task command line.
Task definitions that contain errors (such as a misspelled option) are considered "invalid" tasks and
will be reported in the task log along with an explanation of the error in the line. Examples of valid
command lines are as follows:

Chapter 5 References

Commented line
/opt/framemaker/bin/assemble_frame --input /shared/scene23.def --time-index 0
cmd=/opt/framemaker/bin/assemble_frame --input /shared/scene23.def --time-index 0

name=Scene23Time0 /opt/framemaker/bin/assemble_frame --input /shared/scene23.def --
time-index 0
name=Scene23Time0 maxtime=30 cmd=/opt/framemaker/bin/assemble_frame --input
/shared/scene23.def --time-index 0

The following describes the various task options.
l Application Command – The coordinator considers everything immediately after the equal
sign (= in "cmd=") as the task's "application" command line, which a worker will execute.
There must be at least one non-whitespace character immediately after the "=" or the
coordinator declares the task definition invalid. The application command line permits
standard I/O redirection and environment variable substitution.

cmd=<xxx -y zzz>

Do not place any task options after the command line or the coordinator will not parse
them; assumes they are part of the command line.

l Labels – Specifies the labels assigned to a task.
This is optional and there is no default value.
If given, a label must be composed of letters, digits, underscore, hyphen, and/or period. Use
a comma to separate multiple labels.
If the option's value violates the conditions above, the coordinator will declare the task
definition invalid and will not send the task to a worker.
When the coordinator logs the task in the Completed Tasks Log file, it outputs this option's
value "as is", meaning without alteration and with no substitution of spaces for commas.

labels=<list>

l Maximum Time – Maximum time (in seconds) a task may execute after which the worker
will terminate it. This is optional; the default value is 3,600 seconds (1 hour).
If given, the value must be less than the maxtime-limit <period> value. See Nitro
Configuration File on page 64 for more information on the maxtime-limit
configuration option.

If the option's value is non-numeric, non-decimal, or outside the allowed range, the
coordinator will declare the task definition invalid and will not send the task to a
worker.

maxtime=<nn>

l Name – Unique name assigned to your task definition. Task names do not have to be

Chapter 5 References

94 Task File

Task File 95

unique, but creating a unique task name will help to identify tasks.

name=<task name>

l Task Cores – Number of OS cores that the task requires. Nitro will allocate the number of
cores requested and set the affinity of the task to the available cores.

cores=<count>

The command line options "--thread-count" or "--thread-ratio" affect the number of
available cores. If you use either of these options and they specify more cores than the
node has available, Nitro will not pin the task to a specific core. If a task is specified
to require more cores than the node that receives the task assignment, the task will not
run.

Users should submit their jobs so that tasks can run on any of the nodes that are
allocated to the job. If, for example, you have some tasks that require 20 processors,
but there are some 16 core nodes in the cluster, the job should be submitted so that it
only allows 20 proc nodes to be allocated to the job. If a Nitro worker is assigned a job
with requirements that it cannot fulfill (either too many cores, or too much memory) the
task will be counted as failed, and Nitro will show the status of "InsufRes" for that task
in the task log file.

l Task Environment Variables – Specifies a list of user supplied environment variables that
will be set in the context of the task. The list of environment variables can be one or more
name/value pairs separated by commas. Environment variable name value pairs cannot
contain spaces.

env=<name=value>[,<name=value>,...]

l Task Memory – Maximum amount of memory that the task requires. Nitro determines the
amount of physical memory available on the system and uses this number as the limit that
can be allocated by concurrent tasks. If no units are specified, GB is assumed. Available unit
specifications include "GB" (10^9 bytes), "GiB" (2^30 bytes), "MB" (10^6 bytes), and
"MiB" (2^20 bytes). Nitro uses MB units in debug logs.

memory=<amount>

Users should submit their jobs so that tasks can run on any of the nodes that are
allocated to the job. If, for example, you have some tasks that require 32 GB, but there
are some 16 GB nodes in the cluster, the job should be submitted so that it only allows
32 GB nodes to be allocated to the job. If a Nitro worker is assigned a job with
requirements that it cannot fulfill (either too many cores, or too much memory) the task
will be counted as failed, and Nitro will show the status of "InsufRes" for that task in
the task log file.

l Task Shell – Specifies the task shell, if any, to use. Tasks are normally executed by running

Chapter 5 References

"/bin/bash -c <task command line>".

shell=[default | none | <shell path>]

o The default shell provides translation of environment variables into command line
options and other command line processing benefits.

o In high-throughput environments performance gains can be realized by using a lighter
weight shell such as the Bourne shell or Korn shell.

o If no command line processing is needed, the task can be run without a shell.
o Executing a task directly instead of using the shell can speed task invocation by more
than 50% over the default shell.

When specifying a shell other than the default shell, the fully qualified path should be used.
For example, if you want to use the Bourne shell you should specify the shell as "/bin/sh" as
opposed to just "sh".

nitrostat

nitrostat is a utility found in the /opt/nitro/bin directory that will display the status of a
Nitro job or of individual tasks. nitrostat lets you quickly find specific tasks or list all failed, invalid,
or timed out tasks. nitrostat also offers a "wait" mode that will monitor the task log for tasks
matching the specified criteria until the job completes.

Running nitrostat
To run nitrostat, you'll need to know the job ID of the job you want to monitor. For example, if you
have a job with ID "3145", you can monitor the job progress with the following command:

/opt/nitro/bin/nitrostat 3145 -w

nitrostat assumes that the job information can be found in $HOME/nitro/<job id>.
If you have specified a different location for the job directory using the Nitro "--job-dir"
command line option, then you'll need to specify the same location using the nitrostat
"--job-dir" command line option.
For example, if your job directory is in $HOME/projects/survey03 then use the following
command:

/opt/nitro/bin/nitrostat 3145 --job-dir $HOME/projects/survey03 -w

nitrostat will show the following information when job status is requested:

Chapter 5 References

96 nitrostat

nitrostat 97

Nitro Job Progress Report

Start Time : 2015-06-17 09:10:11-0600
Current Time: 2015-06-17 09:10:42-0600
Elapsed Time: 31 seconds (00:00:31)

Job Id : 23576
Coordinator : node01
Load Pct : 5.6%

Task Log : /home/jdoe/projects/survey03/23576/nitro_23576.tasklog.txt
Task File : /home/jdoe/projects/survey03/survey03.tasks
 File Size : 123366
Est Tasks : 3016
Processed : 75%

Tasks

Pending : 500
Running : 500
Completed : 1250
Success : 1250
Failure : 0
 InsufRes : 0
Timeout : 0
Invalid : 0
 Tasks/sec : 40.3
Total Tasks : 2250

Workers

Host Port Pid Thrds Status Assigned Running Completed Success Failure
InsufRes Timeout Tasks/sec AsgmtDur
node02 47000 6851 12 running 1250 250 1000 1000 0
0 0 36.0 8.0
node03 47000 14988 4 running 500 250 250 250 0
0 0 9.3 27.0

Searching for Task Records
You can use nitrostat to search the task log by task name, task ID, or label using regular
expressions. You can also combine criteria to further refine your search.
For example, if you want to search for tasks containing the task name "Survey03" and the label
"NYC" you can specify the command line as follows:

/opt/nitro/bin/nitrostat Job01 --name Survey03 --label NYC

The following identifies the nitrostat command line options.
l --all, -a – Shows all tasks.
l --completed, -c – Shows completed tasks.
l --failed, -f – Shows failed tasks.
l --invalid, -i – Shows invalid tasks.
l --timedout, -o – Shows tasks that timed out (exceeded maxtime).
l --wait, -w – Continues updating results until entire job is completed.
l --name, -n <task name> – Shows task(s) with the specified task name.
l --task, -t <task id> – Shows the task with the specified task ID.

Chapter 5 References

l --label, -l <label list> – Shows all tasks that contain the specified label. <label
list> is a comma-separated list of labels that may not contain spaces.

l --working-dir, -d <directory>—Uses the specified working directory to
locate the job and task log files. The default working directory is $HOME/nitro.

l --regex – If set, uses regular expression as the matching mode for <task name>, <task
id>, and <label list>. The default is literal (exact string).

Job Recovery

Jobs run under a scheduler can, depending on job priority and settings, be preempted by a higher
priority job, or even canceled by the user or administrator, or may fail due to hardware failure.
Depending on the scheduler's configuration, a preempted job may be restarted later by the
scheduler using the same job ID as the original job.
The job ID is the key to recovering jobs since Nitro uses the job ID as part of the path to the files
associated with that job. Nitro tracks its progress by storing a checkpoint file that indicates which
tasks have been completed and which have not. When Nitro is restarted, it looks for a checkpoint
file and will continue from where it left off if one is found. If a job was canceled or preempted
without a restart policy, then you will need to restart the job manually. Again, the key to restarting
the job is to use the job ID of the original job.
The job ID is usually the ID that was returned when the job was submitted. There can be some
differences between the scheduler's job ID and the resource manager's job ID depending on
scheduler and resource manager settings. When you submitted your Nitro job, you may have set a
Nitro job directory. If you didn't, it defaults to $HOME/nitro/<jobid>. This directory will
contain the job log and task log files, along with checkpoint and Nitro log files. You can therefore
use the directory name that Nitro created as the job directory with which to resubmit the job by
passing the --job-dir option with the directory name through the NITRO_OPTIONS
environment variable.
To restart the job you must set the NITROJOBID environment variable to the original job ID.
Setting this environment variable will override the job ID provided by the resource manager and
Nitro will resume from the line number of the task file described in the checkpoint file.
The checkpoint file is updated periodically when assignments are completed by workers and are
returned to the coordinator. If a job is canceled, the workers will do their best to respond to the
coordinator with the tasks that have been completed so far, but depending on how quickly the
resource manager forces the applications to close, the checkpoint file may or may not be fully
updated. Therefore, it is possible that restarting a job will result in a particular task or set of tasks
being run a second time. Users should take this into account and program their tasks so that if
running the task a second time would cause a problem, transactions are recorded by the task that
would prevent the second run.
If a job is canceled for reasons of task failure (for example, because of a typo in the task command
line), you may want to submit the job as a new job instead of trying to resume the job with failed
tasks.

Failed and invalid tasks are marked as complete in the checkpoint file; they won't be re-run if
the job is just restarted.

Coordinator Resiliency

Chapter 5 References

98 Job Recovery

Dynamic Workload 99

Nitro has the ability to detect workers that have become unresponsive due to hardware, network, or
software failure. During normal operation, workers periodically send an update to the coordinator.
If the coordinator doesn't receive a status update after 45 seconds, the worker is deemed to be
unresponsive, and any outstanding assignments will be revoked and reassigned to responsive
workers. However, if the worker reports back to the coordinator before the assignment has been
assigned to another worker, the assignment will be recovered and completed by that originally-
assigned worker.

Dynamic Workload

This topic identifies activities pertaining to dynamic workload.
Nitro jobs are flexible in the number of resources they can use to accomplish the tasks given them.
Worker nodes can be added to a job or taken away without any adverse consequences (other than
the job running more slowly). You can also add workload by appending the task file.
In this topic:

l Removing Worker Nodes on page 99
l Adding Worker Nodes to a Running Job on page 99
l Linger Mode on page 99

Removing Worker Nodes
If nodes are needed for a more important task, the workers can be killed, and their assignments will
be returned to the coordinator.

Killing the worker with a SIGTERM signal will allow the worker to send a partial
assignment completion report to the coordinator. Be aware that if a worker is killed, the tasks
that are running, may be run again when the assignment is given to a different worker to
complete. Therefore, it is important to program your tasks to exit if the work has already been
completed or overwrite the previous result.

Adding Worker Nodes to a Running Job
While the workload is being executed, workers can be added to the coordinator. The coordinator
requires either a list of worker names or a session key that workers will use to attach to the
coordinator to receive workload assignments. If you specify a list of worker names, only those
workers will be authorized to connect to the coordinator. If you specify a session key, any worker
with the session key will be able to connect to the coordinator.
Once the coordinator exits, the job is finished and workers won't be able to connect.

Linger Mode
If you need to keep a coordinator up continually to respond to workload that could be added at any
time, you can use the "--linger" command line option on the workers and coordinator to allow
Nitro to stay resident and not exit when the tasks are completed.
Nitro provides a message-based process to dynamically add workload to Nitro. Contact Adaptive
Computing Professional Services for more information on dynamically adding workload.

Chapter 5 References

Glossary

C

Compute Node
Term for a server designed for high-performance computing and managed by an HPC administrator as
part of an HPC cluster.

Coordinator
Nitro component responsible for scheduling Nitro tasks to the Worker components for execution,
recording the tasks' information in the Task Log file and job information in the Nitro Job Log file, and
checkpointing the Nitro job's state information in the Nitro Checkpoint file.

Core
An individual hardware-based execution unit within a processor that can independently execute a
software execution thread and maintain its execution state separate from the execution state of all other
cores within the processor.

CPU
See Processor, Core, Thread, OS Core, and Virtual Core. CPU is too generic, ambiguous, or context-
specific for utilization in this guide.

D

Datacenter
A non-HPC cluster system composed of many "servers" that typically are not used for high performance
computing.

Dynamic job
Nitro job where the requested resources are specified in a range. Nitro will execute the task file as a
static job using the minimum value specified in the range. When resources become available, Nitro
will add in more workers until the maximum range value is reached.

H

High Performance Computing
The use of highly parallel and/or specialized "supercomputers" for executing parallel workloads such as
large simulations, solving problems that require very complex and extensive calculations, computations
that require very long running calculations, etc. Such workloads are characterized by their use of many
"compute nodes", often in the thousands, to work on a single problem and have execution times
ranging from minutes to months. HPC systems often execute from one to a few dozen or hundreds of
simultaneous workloads and have a job (workload) queue with a few hundred to several thousands of
pending jobs. In HPC systems, the performance of individual workloads within a time interval is the
primary objective and therefore HPC schedulers attempt to optimize their use of an HPC system's
resources regardless of the scheduling overhead incurred to do so (within reason).

Chapter 5 References

100 Glossary

Glossary 101

High Throughput Computing
Describes workloads that often execute on just a single core and may have execution times ranging
from sub-seconds to minutes and perhaps hours. HTC systems often execute hundreds to tens of
thousands of simultaneous workloads. In HTC systems, the quantity of workloads processed per time
interval is the primary objective and therefore HTC schedulers attempt to minimize scheduling
overhead in order to maximize workload throughput.

Host
The host name of the HPC system's "compute node" or a datacenter's "server".

HPC
See High Performance Computing.

HPC Cluser
HPC industry's term for a "supercomputer". It is somewhat analogous to a "datacenter", except for the
sometimes specialized nature of its hardware.

HT
See Hyper-Threading.

HTC
See High Throughput Computing.

Hyper-Threading
Term used by Intel for its Simultaneous Multi-Threading (SMT) capability in its Atom, Core, Itanium,
Pentium 4, Xeon, and Xeon Phi processor families. See also Simultaneous Multi-Threading.

J

Job
HPC term for workload submitted by a user to a scheduler for the purpose of scheduling resources on
which the workload executes when started up by the scheduler. This guide will use this term to
identify workload, in whatever form, submitted to a scheduler that schedules the workload for
execution on a system (HPC cluster or commercial datacenter). Typically, a user creates a script that
executes the workload (one or more applications) and submits the script to the scheduler where it
becomes a "job". The user also gives information identifying the types of resources, typically one or
more nodes and optionally other hardware (such as GPU or MIC accelerators) or software and/or
software licenses, required by the workload to execute, either in the job script itself or at the time of
job submission (for example, via command line options or web portal form). The scheduler schedules
the job for the requested resources and when they are available allocates them to the job and then starts
the job by executing the script on one of the allocated nodes. The script executes the workload
(s)/application(s) that then use the resources allocated to the job by the scheduler.

Job Scheduler
HPC term for a scheduler that manages submitted workloads (called "jobs") for an HPC cluster. See
Scheduler.

Chapter 5 References

M

Multi-threading
The use of multiple software threads, which may or may not be pinned to hardware threads (core
affinity), to implement processing in parallel. There are multiple implementations of multi-threading,
such as Linux "pthreads", etc.

N

Nitro
HTC task scheduler application offered by Adaptive Computing, Inc.

Node
Shorthand term for "compute node". See Compute Node.

O

OS Core
Term that refers to what the operating system considers an individual hardware-based computation unit,
often called a "core" or a 'CPU". In actuality, the "OS core" can be a hardware-based core (see "Core")
or a hardware-based thread (see "Thread"). This guide uses this term to refer to the basic hardware-based
computational unit allocatable by an operating system to a process.

P

Process
An individual executing program managed by an operating system. It has its own resources and
memory address space, independent of all other executing processes managed by the operating system.
A process may itself be multi-threaded, which means the operating system can execute simultaneously
different software execution threads of the process.

Processor
A physical hardware chip (sometimes called a "socket"); regardless of whether it supports a single core
or multiple cores ("multi-core" processor). Socket is a strong, unambiguous synonym for processor
while CPU (see CPU) is an ambiguous synonym individuals and/or processor vendor documentation
may use. In addition, people and literature sometimes use the term processor to refer to a hardware core
(see Core) or hardware thread (see Thread). This guide uses the term "processor" to refer to the physical
hardware chip.

S

Scheduler
Term used generically in the guide for the specialized software between the user and the HPC
cluster/datacenter system that manages submitted workloads or "jobs". Such management includes
queuing jobs, prioritizing queued jobs for execution, scheduling and allocating requested resources for
each job, and starting jobs when their requested resources become available and the jobs have the

Chapter 5 References

102 Glossary

Glossary 103

highest priority. This guide uses the term "system scheduler" to refer to the scheduler that schedules
jobs for your system, regardless whether it is an HPC cluster or datacenter.

Server
Term for a (typically) "headless" computer used in a data center and managed by a system administrator
in an IT department.

Simultaneous Multi-Threading
Processor core's ability to execute (in hardware) instructions from multiple, independent, software
execution threads and track their states simultaneously.

SMT
See Simultaneous Multi-Threading.

Static job
Nitro job where the number of resources (nodes or cores) does not change. The task file is not executed
until all of the job's resources become available.

T

Task
A single unit of work (HTC job) defined by Nitro task definitions in a user task file (list of HTC jobs
now referred to as tasks) that Nitro can schedule and launch for execution as a single OS process.

Task file
The file containing the list of tasks that Nitro should execute.

Task Launch Thread
A Nitro worker "software execution thread" capable of launching one Nitro "task". Unless modified by
a Nitro worker command line option, the worker's quantity of task launch threads is identical to the
quantity of node OS cores made available to the worker by the system scheduler.

Thread
In SMT or hyper-threading, refers to a hardware-based thread execution capability. For example, the
consumer-oriented Intel Core i7 processor has four cores, each of which has hardware that can
simultaneously track two software execution thread states and execute the other thread when one
thread blocks waiting on a memory access; thus increasing the utilization of each core's computational
capability and yielding 8 hardware-based threads for the entire processor. The server-oriented Intel
Xeon processor documentation refers to threads as "logical processors". Cray documentation uses the
term threads relative to the SMT capability of the Intel Xeon processors in its XC systems. Regardless
of vendor terminology, one thread in the context of SMT refers to the hardware capability for tracking
and executing one software execution thread. The term threads used in the context of a processor core
refers to the quantity of software execution threads the core can simultaneously track; e.g., 2 threads
per Intel Xeon E5-2650 v3 core and 20 threads per Intel Xeon E5-2650 v3 processor. BIOS settings
enable or disable the SMT capability of SMT-capable processors and therefore determine at boot time
whether a processor has only one thread per core or multiple threads per core. See Core and OS Core.

Chapter 5 References

V

Virtual Core
Term often used to refer to a hardware-based thread of a core that is not the first thread (thread 0)
within a core. If a processor has SMT or hyper-threading enabled, "thread 0" represents the core and the
other threads 1-N represent "virtual cores". The only way to execute using just a core that has
SMT/hyper-threading enabled is to use only thread 0 of the core and expressly enforce the non-use of
the core's other threads or "virtual cores" through a CPUset or control-group (cgroup).

W

Worker
Nitro component responsible for executing the user's workloads specified by the task definitions in the
Task file.

Workload
Generic term used in this guide to refer to some amount of work to be done, typically by executing
one or more software applications.

Chapter 5 References

104 Glossary

Sources of Troubleshooting Information 105

Chapter 6 Troubleshooting

This chapter provides troubleshooting information.
In this topic:

l Sources of Troubleshooting Information on page 105
l Troubleshooting Task Errors on page 105

Sources of Troubleshooting Information

These are common sources of reference for troubleshooting:
l Job Output Files - Any errors that Nitro reports should be reported on stderr and will be
captured to your job's output files (if running Nitro through a job scheduler).

l Job and Task Log Files in the Job Directory -
o Nitro writes a job log indicating the startup parameters, input files, configuration, and
the main worker events and statistics. You can review the job log to determine if any
tasks failed, timed out, or were invalid (an error parsing the task line).

o The task log contains a listing of all task results from the job and includes stdout and/or
stderr output.

l Nitro debug logs - In the job directory you will also find a "logs" directory with worker and
coordinator logs. The logs are named according to the role (worker or coordinator), host, job,
and process ID so that logs being written to the same directory will not overwrite logs from
another Nitro job or worker with the same process ID.
The default log level that Nitro logs at is level 3 (information), but this can be raised as high
as 7 (debug) to gather much more information about the messages that Nitro is sending
between the workers and coordinator, and the actions Nitro is taking (very large log file).
You can use the "--loglevel" command line parameter to set the log level independently on
the workers and coordinator.

Related Topics

l Troubleshooting on page 105

Troubleshooting Task Errors

The Nitro job log, and the stdout output from the Nitro coordinator, lists the number of tasks
completed, tasks successfully completed (exit code of 0), failed tasks (exit code other than 0), tasks
that timed out (exceeded the "maxtime" task option), invalid tasks (tasks that the coordinator could
not parse without errors), and tasks with insufficient resources.

Chapter 6 Troubleshooting

If you encounter a problem you are unable to solve, forward the log files according to your
company's escalation process.

In this topic:
l Task Command Line Errors on page 106
l Failed Tasks on page 106
l Invalid Tasks on page 107
l Insufficient Resources Tasks on page 107

Task Command Line Errors
If the command line that you use to specify the task's command line contains an error (for example,
the path is incorrect or you are attempting to run a script with noexecute permissions set), then the
shell will output an error message to stderr that will be captured and stored in the task log file.
For example, if the task's command line references a binary that doesn't exist, you would see the
following error in the task log file.

Job ID Task ID Line # Task Name Status Ret Hostname Start time Duration UserCPU
SysCPU VirtMem PhysMem Labels Output
------ ------- ------ --------- ------- ---- -------- ------------ -------- ------- --
---- ------- ------- ------- ------
EX01 3 3 S07T2303 Failure 127 node02 07:58:07.868 0.005 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 4 4 S07T2304 Failure 127 node02 07:58:07.872 0.007 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 5 5 S07T2305 Failure 127 node02 07:58:07.878 0.003 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory

Failed Tasks
Failed tasks were tasks that the worker executed, but have failed because the command line was
not valid, or the task ran and returned an exit code other than 0. To diagnose the error, examine the
task log file located in the job directory. See Track Job Progress on page 74.
You can also use nitrostat to list failed tasks. See nitrostat on page 96. To list failed tasks using
nitrostat use the following command line.

/opt/nitro/bin/nitrostat <job id> -f

The following is an example of information provided by nitrostat showing failed tasks.

Chapter 6 Troubleshooting

106 Troubleshooting Task Errors

Troubleshooting Task Errors 107

Job ID Task ID Line # Task Name Status Ret Hostname Start time Duration UserCPU
SysCPU VirtMem PhysMem Labels Output
------ ------- ------ --------- ------- ---- -------- ------------ -------- ------- --
---- ------- ------- ------- ------
EX01 3 3 S07T2303 Failure 127 node02 07:58:07.868 0.005 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 4 4 S07T2304 Failure 127 node02 07:58:07.872 0.007 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory
EX01 5 5 S07T2305 Failure 127 node02 07:58:07.878 0.003 0.000
0.000 0 0 bash: /opt/framemaker/bin/framegen: No such file or
directory

The line number of the failed task in the task file is listed so you can easily identify which lines in
the task file generated errors. If you need to verify the path to the task file used by Nitro you will
find it both in the job log file and in the stdout output from the coordinator, which may also be
recorded in the output files provided by your scheduler.

Nitro Environment

Job Id : EX01
Job path : /home/jdoe/jobs/EX01
Job log : /home/jdoe/jobs/EX01/nitro_EX01.joblog.txt
Task log : /home/jdoe/jobs/EX01/nitro_EX01.tasklog.txt
Task file : /home/jdoe/jobs/example1.tasks
Worker hosts : node02

If Nitro cannot access the task file, you will receive an error from the coordinator on stderr
indicating that the task file was not found or is not accessible.

Invalid Tasks
Invalid tasks are lines in the task file that Nitro could not parse without errors. Parsing errors
usually include misspelling a task option name. If your task line doesn't contain any task options,
you should prepend the "cmd=" option to your command line. The "cmd" option indicates that
Nitro should stop parsing the task line and accept the rest of the line as the command line to be
executed. The following example shows an invalid task.

Job ID Task ID Line # Task Name Status Ret Output
------ ------- ------ --------- -------- ---- ... ------
EX01 14 14 Invalid Unrecognized option name: walltime

In this case an invalid option "walltime" was used in a task definition instead of "maxtime".

invalid line:
name=S07T2314 walltime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene07.def -
tindex 2314

valid line:
name=S07T2314 maxtime=30 cmd=/opt/framemaker/bin/framegen -i /shared/scene07.def -
tindex 2314

The task file may also be rejected if you have any binary data in the file. The task file should only
include ASCII text and each task must be on a separate line. The task file allows comment and
empty lines. A hash symbol (#) in the first column of a line identifies a comment line.

Insufficient Resources Tasks

Chapter 6 Troubleshooting

If workers are not able to fulfill resource requirements for tasks with cores or memory
specifications, an insufficient resources error is logged. The following example show a task with
insufficient resources.

JobID TaskID Line# Status ExitCode Hostname StartTime Duration
UserCPU SystemCPU VirtualMem PhysicalMem Labels Output
425 1 13 Success 0 node02 2016-02-16_17:58:07.052-0700 0.030
0.010 0.000 130211840 1077248 1 1000000 3.142116000
425 2 14 Success 0 node02 2016-02-16_17:58:07.052-0700 0.030
0.010 0.000 130211840 1081344 2 1000000 3.141296000
425 3 15 Success 0 node02 2016-02-16_17:58:07.083-0700 0.021
0.010 0.000 275505152 1679360 3 1000000 3.139544000
425 4 16 InsufRes -1 node02 2016-02-16_17:58:07.083-0700 0.000
0.000 0.000 0 0
Error: worker is limited to 2 threads, task is requesting 3 threads

Related Topics

l Track Job Progress on page 74
l nitrostat on page 96
l Troubleshooting on page 105

Chapter 6 Troubleshooting

108 Troubleshooting Task Errors

	 Welcome
	 Documentation Changes
	Chapter 1 Nitro Overview
	 Nitro Origins and Purpose
	 Workload Solutions and Use Cases
	 Theory of Operation
	 Nitro and System Scheduler Policies
	 Key Terminology and Usage

	Chapter 2 Installation and Configuration
	 Understand and Plan Your System Environment
	 System Requirements
	 Manual Installation and Upgrade
	 Preparing for Manual Installation or Upgrade
	 Installing
	 Installing RLM Server
	 Installing Nitro
	 Installing Nitro Web Services

	 Upgrading
	 Upgrading RLM Server
	 Upgrading Nitro
	 Upgrading Nitro Web Services
	 Upgrading to MongoDB 3.2.x

	 RPM Installation and Upgrade
	 Preparing for RPM Installation or Upgrade
	 Installing
	 Installing RLM Server
	 Installing Nitro
	 Installing Nitro Web Services

	 Upgrading
	 Upgrading RLM Server (RPM)
	 Upgrading Nitro
	 Upgrading Nitro Web Services (RPM)
	 Upgrading to MongoDB 3.2.x (RPM)

	 Additional Configuration
	 Opening Ports in a Firewall
	 Running Multiple Coordinators on the Same Node

	Chapter 3 System Administration
	 Job Submission Methods
	 Nitro Configuration File
	 File System Configuration
	 Run Nitro Without a Scheduler

	Chapter 4 Using Nitro
	 Prepare a Nitro Job
	 Submit a Nitro Job using the nitrosub Command
	 Submit a Nitro Job with User-Customized Job Scripts
	 Track Job Progress

	Chapter 5 References
	 nitrosub Command
	 Command Line Flags, or Options, and Positional Parameters
	 Environment Variables
	 Job Scripts
	 Launch Scripts
	 Task File
	 nitrostat
	 Job Recovery
	 Coordinator Resiliency
	 Dynamic Workload
	 Glossary

	Chapter 6 Troubleshooting
	 Sources of Troubleshooting Information
	 Troubleshooting Task Errors

